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The Fermilab Tevatron is currently the world’s highest energy colliding beam

facility. Its counter-rotating proton and antiproton beams collide at 2 TeV

center-of-mass. Delivery of such intense beam fluxes to experiments has re-

quired improved knowledge of the Tevatron’s beam optical lattice. An oscil-

lating dipole magnet, referred to as an AC dipole, is one of such a tool to

non-destructively assess the optical properties of the synchrotron.

We discusses development of an AC dipole system for the Tevatron, a

fast-oscillating (f ∼ 20 kHz) dipole magnet which can be adiabatically turned

on and off to establish sustained coherent oscillations of the beam particles

without affecting the transverse emittance. By utilizing an existing magnet

and a higher power audio amplifier, the cost of the Tevatron AC dipole system

became relatively inexpensive. We discuss corrections which must be applied

to the driven oscillation measurements to obtain the proper interpretation of
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beam optical parameters from AC dipole studies. After successful operations

of the Tevatron AC dipole system, AC dipole systems, similar to that in the

Tevatron, will be build for the CERN LHC. We present several measurements

of linear optical parameters (beta function and phase advance) for the Teva-

tron, as well as studies of non-linear perturbations from sextupole and octupole

elements.
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Chapter 1

The Fermilab Tevatron

Charged particle accelerators have been used as probes to study structures and

interactions of subatomic particles, governed by the laws of quantum physics.

Because of the subatomic particles’ wave nature, for instance described by the

de Broglie’s equation of matter waves λ = h/p, observing phenomena in a small

quantum system requires large momentum particles with small wavelengths.

Figure 1.1 summarize historical growth of charged particles’ energy achieved

by the succession of accelerators, enabling research of the physics of smaller

structures.

In early history of elementary particle physics, some particles, such

as positrons, muons, and pions, were discovered in cosmic rays. The most

energetic particles in cosmic rays have energies higher than 1 J [2], and even

the highest energy accelerator of the present day cannot accelerate particles

to such a high energy. However, the fluence of high energy cosmic rays is

insufficient to observe rare events, such as the production of the long-sought

Higgs particle.

Hence, in addition to achieving a high energy, another important aspect
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Figure 1.1: Livingston’s plot [1], showing historical growth in beam particles’
energies in various accelerators.
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of an accelerator is to produce extremely intense beams, whose collision rates

are sufficiently high to observe statistically rare processes. Today’s highest

energy collisions are studied at so-called “colliding beam” accelerators, where

counter-rotating beams are made to collide head-on. Such collisions of dif-

fuse clouds of beam particles requires extremely good control of the beams’

motion and spatial size. One of the important subjects of accelerator physics

is the measurement of the beam particles’ properties to test whether they

are controlled as desired. This dissertation discusses measurements the beam

particles’ properties in the Fermilab Tevatron [3], using a type of a magnet

referred to as an AC dipole [4].

1.1 Luminosity

In the present day, there are many types of accelerators for various purposes

(see for instance Chapters 1 and 13 of [5]). In this dissertation, we mainly

discuss one type of circular accelerators, referred to as a collider synchrotron.

In a circular accelerator, charged particles undergo circular motions guided by

dipole magnetic fields and are repeatedly accelerated by longitudinal electric

fields of radio frequency. When a charged particle circulates in a uniform

magnetic field �B, radius of the circular motion ρ, charge of the particle e, and

momentum of the particle p satisfy the following equation:

1

ρ
=
e| �B|
p

=
| �B|

(Bρ)
, (1.1)

where (Bρ) denotes the ratio p/e and is referred to as magnetic rigidity, de-

scribing hardness to bend the charged particle. When the momentum is given

in units of GeV/c, the magnetic rigidity satisfies

(Bρ) =
10

2.997
p T m . (1.2)
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In the synchrotrons, the guiding magnetic field is adjusted along with accel-

eration of the beam particles, so that the circulation radius of the particles

remains the same throughout processes of the acceleration. This makes the

synchrotrons more compact, compared to other types of circular accelerators.

The collider synchrotron, such as the Fermilab Tevatron, is a type of syn-

chrotrons where two counter-rotating beams of charged particles are acceler-

ated and collided head-on, producing higher center-of-mass energy for physics

experiments than smashing the beam particles to a target (Figure 1.2).

Besides the beam energy, an important parameter of a collider is the

number of produced particle collisions. In a collider, rate of the particle col-

lisions R, with dimensions (time)−1, is proportional to the total cross-section

of the counter-rotating particles Σ (see for instance [7, 8]):

R = LΣ , (1.3)

where the prefactor L has units of (area)−2(time)−1, is referred to as luminosity

of the collider, and is a measure of the intensity of the colliding beams. We

suppose that each of the counter-rotating beam includesN particles, transverse

distributions of the particles within the beams are Gaussian with a standard

deviation σ, and frequency of the beams’ collisions is f . Then, with these

parameters, the luminosity is given by [7, 8]

L =
fN2

4πσ2
=

fN2

4πεβ∗ . (1.4)

We note that the luminosity is determined only by parameters of the col-

lider and that it increases with the number of particles and decreases with

the cross-section of the beams. In modern synchrotrons, in addition to bend-

ing dipole magnets, quadrupole magnets are used to produce linear restoring

forces and to focus the beam particles around the ideal trajectory. In the

4



Figure 1.2: Livingston’s plot modified by Panofsky and Breidenbach [6], de-
scribing historical growth of center-of-mass energies produced by accelerators
which collide beams head-on, so-called colliding beam facilities..
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second expression of Equation 1.4, the cross-section of the beams is rewritten

with a parameter related to the lattice of such focusing quadrupole magnets

β∗, referred to as amplitude function. The other parameter ε, referred to as

emittance, describes the beams’ qualities determined from the initial condi-

tions of the beam particles. (We will discuss about the amplitude function and

the emittance in detail in Chapter 2.) Once a collider is constructed, it is very

hard to raise its beam energy. However, we can often improve the luminosity

[9] by increasing the number of particles as well as by improving the lattice

of quadrupole magnets and the beams’ qualities. Hence, when applied to a

collider, the goal of accelerator physics is to improve the luminosity to produce

more particle collisions for experiments.

Figure 1.3 shows historical growth in the integrated luminosity of the

Tevatron since the year 2001. Because of various improvements [10], the in-

tegrated luminosity has been growing better than a linear function of time.

Figure 1.4 shows historical growths in the peak luminosity and the number

of antiprotons of the Tevatron since the year 2001. During this time period,

growth in the number of protons has been negligible. While it is true that the

number of antiprotons has increased by a factor of 4 to 5, it is interesting to

note that the peal luminosity has increased by more than a factor of ten. This

indicates that the luminosity growth is also due to reductions of the beam

sizes from improvements of the beams’ qualities and the lattice of the focusing

quadrupole magnets. Hence, to maximize a collider’s luminosity, it is desired

to constantly diagnose (and, if possible, improve) the lattice of the quadrupole

magnet in the collider .

6



Figure 1.3: The integrated luminosity of the Tevatron since the year 2001.
The vertical axis is given by units of inverse picobarn, where barn is a unit of
area 1 b = 10−28 m2. Because of various improvements, the luminosity growth
has been growing better than a linear function of time.
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Figure 1.4: Growths of the peak luminosity and the number of antiprotons
since the year 2001. The luminosity has been improved not only by increasing
number of the particles but also by improving the qualities of the beams and
the lattice of the magnetic elements.
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1.2 The Fermilab Tevatron

The Fermilab Tevatron [3] is a collider synchrotron, which accelerates the

counter-rotating proton and antiproton beams from 150 GeV to about 1 TeV,

producing particle collisions of 2 TeV center-of-mass energy, which is the

world’s highest center-of-mass energy at present1. Figure 1.5 shows an aerial

photograph of the Fermilab Tevatron with its preaccelerators. The beam par-

ticles in the Tevatron are guided by superconducting dipole magnets with the

maximum field strength of 4.4 T. Even with such strong dipole magnets, the

radius of the Tevatron must be at least 750 m to form a circular trajectory

for the 1 TeV beam particles (Equations 1.1 and 1.2). Because an accelera-

tor requires space for components other than the bending dipole magnets, the

actual radius of the Tevatron is 1 km.

Table 1.1 lists preaccelerators of the Tevatron. All the accelerators are

synchrotrons except the Cockcroft-Walton and the Linac (see [7] for details of

these two types of accelerators). In one cycle of the Tevatron, first, negatively

charged hydrogen ions are produced from the source and are accelerated to

400 MeV with the Cockcroft-Walton and the Linac. When injected to the

Booster the electrons of the hydrogen ions are stripped, and then the protons

are accelerated to 150 GeV with the Booster and Main Injector and are sent

to a target to produce antiprotons. This process to produce antiprotons is re-

peated until a sufficient number of antiprotons is prepared, which takes about

one day. In the Accumulator and Recycler, the antiprotons are stored and the

sizes of the antiproton beam are slowly shrunk down through the processes

referred to as stochastic cooling [11] or electron cooling [12]. The proton and

1The Large Hadron Collider (LHC), which has been constructed at CERN and is turned
on soon, will collider counter-rotating proton beams and produce particle collisions of 14 TeV
center-of-mass energy.
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Figure 1.5: Aerial photograph of the Fermilab Tevatron and its preaccelerators.
Even with superconducting bending dipole magnets of 4.4 T, the radius of the
Tevatron must be as large as 1 km to make a circular path for ∼1 TeV beam
particles.

Table 1.1: Preaccelerators of the Tevatron. Negatively charged hydrogen ions
are produced from the source and accelerated to 400 MeV with the Cockcroft-
Walton and Linac. When injected into the Booster, the electrons are stripped.
The Booster and Main Injector accelerate protons up to 150 GeV for the an-
tiproton production. The Main Injector is also used to accelerate protons and
antiprotons to 150 GeV and to inject them into the Tevatron. The Accumu-
lator and Recycler store and cool the antiproton beam.

Accelerator Particle type(s) Injection energy Extraction energy
Cockcroft-Walton H− - 750 keV
Linac H− 750 keV 400 MeV
Booster p+ 400 MeV 8 GeV
Main Injector p+/p− 8 GeV 150 GeV

Accumulator p− - 8 GeV
Recycler p− 8 GeV 8 GeV

10



antiproton beams are accelerated to 150 GeV and injected into the Tevatron

separately. In the Tevatron, the both beams are accelerated simultaneously

and, once the energy reaches the maximum 980 GeV, the collisions are initi-

ated. The two beams continue circulating and colliding usually about one day

until the next batch of antiprotons are prepared. This cycle of about one day

is called one store. In the Tevatron, the proton and antiproton beams circu-

late in a single beam vacuum pipe without colliding each other except at two

designated collision points, inside the physics detectors. This is achieved by

separating the orbits of the two beams with electric fields produced by pairs

of high voltage plates (electric separators). Such orbits of the two beams are

referred to as helical orbits or simply helices.

Table 1.2 lists the main parameters of the Tevatron which determine its

luminosity. As seen in Figure 1.4, the parameters such as the beam intensities

and the beam emittances, determining quality of the beams, vary over stores.

In addition, in a large collider like the Tevatron, the lattice of the quadrupole

magnets also changes in a long period of time, changing the parameters like

the amplitude function β∗ and affecting the luminosity. Hence, to maximize

its performance, it is ideal to constantly diagnose the lattice of the quadrupole

magnets in the collider.

Table 1.3 lists types of additional magnets in the Tevatron, referred to

as correctors [3, 13]. These magnets are used to make small corrections when

errors are found in a diagnosis. The dipole and normal quadrupole correctors

are used for to compensate errors in bending dipole magnets and focusing

quadrupole magnets. In the Tevatron, motions in the two transverse planes are

uncoupled by design since coupling may affect the luminosity and the beam’s

stability. When the coupling occurs, for instance due to a rolled quadrupole

magnet, the skew quadrupole correctors are used to fix it. To compensate

11



Table 1.2: Main parameters of the Tevatron. As seen in Figure 1.4, some
parameters are not constants and the luminosity differs over the stores. Even
parameters related to the quadrupole magnet lattice, such as the amplitude
function β∗, may change and affect the luminosity. To maximize performance
of a large accelerator like the Tevatron, we have to constantly perform the
machine diagnoses.

Injection energy 150 GeV
Collision energy 980 GeV
Maximum peak luminosity 300 μb−1sec−1

Number of collision points 2

Circumference 2π × 1000 m
Revolution frequency 47.7 kHz
Number of bunches 36
Typical proton bunch intensity 2.75 × 1011

Typical antiproton bunch intensity 0.75 × 1011

βmax in arc 100 m
βmin in arc 25 m
β∗ at collision points 28 cm
Tune 20.58
Phase advance per cell 68 deg
Typical proton emittance (95% normalized) 20π mmmrad
Typical antiproton emittance (95% normalized) 10π mmmrad

Number of bend magnets 774
Bending dipole field (980 GeV) 4.4 T
Number of quadrupole magnets (except low-β) 204
Focal length (980 GeV) 25 m
Standard half-cell length 30 m

12



Table 1.3: List of corrector magnets in the Tevatron. The second column
shows the maximum strength of one of each collector magnets, The third
column shows the errors/effects compensated by each collector magnets.

Collector Maximum strength Collection/Compensation
Dipole 0.46 Tm Central orbit
Quadrupole (normal) 7.5 Tm/m Focusing
Quadrupole (skew) 7.5 Tm/m Transverse coupling
Sextupole (chromaticity) 450 Tm/m2 Tune spread due to momentum spread
Sextupole (feeddown) 350 Tm/m2 Orbits and focusings on helices
Octupole 31000 Tm/m3 Instability due to high intensity

certain multi particle effects, the Tevatron also has magnets to produce higher

order nonlinear fields, such as sextupole and octupole magnets. We discuss the

effects of these nonlinear fields on the motion of the beam particles in Chapter

3.

1.3 Diagnostics with an AC Dipole

Under the influence of the linear restoring forces of the quadrupole magnets,

the beam particles undergo oscillations in the transverse planes around the

ideal orbit. The oscillations are analogous to simple harmonic oscillations in

classical mechanics and are referred to as betatron oscillations. As reviewed

in Chapter 2, the function of a quadrupole magnet on the particle beam is

analogous to a thin focusing lens in ray optics. Hence, the parameters asso-

ciated to the betatron oscillations, which are determined from the lattice of

the focusing quadrupole magnets, are referred to as beam optical parameters

(or just optical parameters). The parameter β∗ in Equation 1.4 is one of the

beam optical parameters. To maximize the luminosity of a collider, we have

13



to monitor the beam optical parameters and maintain them at their optimum

values.

This dissertation discusses measurements of the beam optical parame-

ters, using a diagnostic magnet referred to as an AC dipole. Synchrotron di-

agnostics using the AC dipole was first tested in BNL AGS [4]. The AC dipole

has been also employed in the BNL RHIC [14, 15], the CERN SPS [16, 17],

and the FNAL [18, 19, 20, 21] and will be used in CERN LHC [22]. The

AC dipole, located at one point on the synchrotron, has a weak sinusoidally-

varying dipole field which deflects the beam particles slightly. The AC dipole’s

field oscillates at a frequency nearly equal to the natural frequency of beam

particles’ transverse oscillations, as they go around the synchrotron. Thus, the

AC dipole excites a resonant motion of all the beam particles which is readily

measured, providing detailed information about the beam optical parameters

of the synchrotron.

The resonant motion of the beam particles excited by the AC dipole is

monitored with devices referred to as beam position monitors (BPM’s). The

Tevatorn has 236 BPM’s around the ring to measure transverse positions of

the beam particles. Figure 1.6 shows a schematic cross-section of a BPM in the

Tevatron [23, 24]. When the beam goes through the BPM, the beam’s image

charges are detected by the two conducting plates forming a shunt capacitance

to ground. If the signals on the left and right plates are L and R, the beam’s

horizontal displacement x from the center of the BPM is given by

x =
b
2
sinφ sin(πR−L

Ib
)

cos φ
2

cos(πR−L
Ib

) − cos(πR+L
Ib

+ φ
2
)
� bφ

4 sin φ
2

R− L

R+ L
, (1.5)

where Ib is the total current of the beam and the geometric angle of the

conducting plates φ and the radius to the conducting plates b are defined in

Figure 1.6. This formula, which is exact, was derived by the author in [25].

14



conducting plates

RL

b

Φ x
y

beam

Figure 1.6: Schematic cross-section of a BPM in the Tevatron. The beam’s
image charges are detected by the two conducting plates. The horizontal
position of the beam centroid x, measured from the center of the BPM, is
determined from the signals on the two plates, L and R, and geometry of the
BPM, b and φ.
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The approximate formula and Taylor series corrections to it (see for instance

[26, 27]) are commonly used at accelerator laboratories. We note that this

type of a BPM can measure only position of the beam centroid and does not

give us any information of the particles’ distribution within the beam. As

explained in Chapter 4, this is why we have to excite motion of all the beam

particles to acquire information of the beam optical parameters.

1.4 Outline of This Dissertation

In Chapter 2, we review basics of the betatron oscillations in the synchrotron

and define linear optical parameters of the charged particle beam. A syn-

chrotron can never be perfect and it always has error magnetic fields perturb-

ing the ideal betatron oscillations. Chapter 3 summarizes such perturbative

effects of the betatron oscillations and it also discusses nonlinear motions of

the beam particles. In Chapter 4, we discuss measurement of linear optical

parameters, using the AC dipole. We compare the measurement using the AC

dipole to the other conventional measurement techniques, to show advantages

to the measurement with the AC dipole. In Chapter 5, we discuss the AC

dipole system used in the Tevatron. In Chapter 6, we discuss the formalism

to describe the motion of the charged particle beam excited by the AC dipole.

Chapter 7 shows measurements of the linear optical parameters using the AC

dipole, performed in the Tevatron. In Chapter 8, we show measurements of

the nonlinear effects, discussed in Chapter 3, performed in the Tevatron using

the AC dipole. Chapter 9 gives conclusions of this dissertation.
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Chapter 2

Particle Motion in an Ideal

Synchrotron

While the ideal particles in a synchrotron will move in a circular orbit guided by

dipole magnetic fields and accelerated by longitudinal electric fields of resonant

cavities, few particles circulate in ideal orbit. Instead, the cloud of the beam

particles tends to diverge due to the angular spread and the momentum spread

of the beam. In order to achieve a substantial collision rate for experiments, we

must contain the circulating beam to a finite size (see the luminosity formula,

Equation 1.4). We use quadrupole magnets to produce restoring forces and

confine the particles around the ideal trajectory or, in other words, to focus

the beam.

The importance of beam focusing can be demonstrated with a couple

of simple numerical examples. When a particle moves in a uniform vertical

magnetic field in the absence of focusing, if the initial momentum of the particle

is perfectly horizontal, it undergoes a circular motion in the horizontal plane.

However, if the particle has a vertical angular divergence, it spirals up or
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Figure 2.1: Motion of a particle in a uniform magnetic field. A particle with
the speed of light and angular divergence as little as 10 μrad moves up or down
3 km just in one second. Even the perfect beam with no divergence is pulled
down 5 m in 1 sec by the gravitational force, without any restoring forces.
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down and soon hits the beam vacuum pipe in a synchrotron. For instance,

a 1 TeV/c proton with as little as 10 μrad vertical angular divergence moves

up or down 3 km in just 1 sec. Such is indicated in Figure 2.1. A real

synchrotron has billions of particles, about 1013 in the case of the Tevatron,

and it is impossible to perfectly control the initial conditions of all the particles.

Even if we could have perfect control of the protons’ initial conditions, there

is still the gravitational force which pulls the particles down by 5 m in 1 sec.

In this chapter, we discuss the focusing properties of quadrupole mag-

nets and their implementation in typical synchrotrons. As well, we develop the

formalism of calculating particles’ trajectories around the synchrotron under

the influence of quadrupole magnets’ restoring forces. In Section 2.1, we dis-

cuss the properties of quadrupole magnets as thin focusing/defocusing lenses.

In Section 2.2, we discuss the fundamental unit of a modern synchrotron, the

FODO lattice, which consists of a pair of focusing and defocusing quadrupole

magnets. We show a simple simulation of a particle motion in such a system

and introduce basic concepts of a particle’s transverse motion in a synchrotron,

referred to as betatron oscillations. Section 2.3 gives the mathematical for-

malism of betatron oscillations in detail. We introduce Hill’s equation and

the Courant-Snyder parameters to characterize the particles’ trajectories in a

synchrotron.

2.1 Quadrupole Magnets

2.1.1 Field and Force

Figure 2.2 shows the magnetic field and force of a typical quadrupole magnet.

The force vectors are shown for a positive charge coming out of the page.
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Figure 2.2: Magnetic field and force of a quadrupole magnet. For a positive
charge coming out of the page, the quadrupole magnet (a) produces an at-
tractive force in the horizontal direction and repulsive force in the vertical
direction. The quadrupole magnet (b), whose pole faces are rotated by 90
degrees compared to (a), has the opposite effect on the same charge.
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The field of the quadrupole magnet is linearly proportional to position of the

particle, (x, y), and given by

By(x, y) = By,1x , (2.1)

Bx(x, y) = By,1y (2.2)

where the origin of the coordinate is the center of the quadrupole magnet and

the constant parameter By,1, referred to as gradient of the quadrupole magnet,

is a shorthand notation of

By,1 ≡ ∂By

∂x

∣∣∣∣
x=y=0

. (2.3)

The quadrupole magnet shown in Figure 2.2(a) produces an attractive force in

the horizontal direction and a repulsive force in the vertical direction. Rotation

of the pole faces by 90 degrees produces the opposite effect, as in Figure 2.2(b).

In any case, a quadrupole magnet produces a restoring force only in one of

the transverse directions. Hence, to stabilize the particle’s motions in both of

the transverse planes, a pair of quadrupole magnets, one of which is rotated

90 degrees or has opposite polarity, is required.

2.1.2 Thin Lens Approximation

The length of a typical quadrupole magnet is much less than its bending radius.

In such a case, we can approximate the function of a quadrupole magnet as a

thin lens, which deflects a particle but does not change its position (thin lens

approximation). Figure 2.3 is a schematic of a particle deflected by a generic

thin magnetic element with length �. In a thin element, the magnetic field

seen by the particle is approximately uniform and the particle moves on an

arc with radius ρ (ρ � �). The deflection angle is equal to the arc angle and
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Figure 2.3: Schematic of a particle deflected by a thin magnetic element with
length � (shaded area). In the thin element, the deflection angle is approxi-

mated by |θ| � �/ρ = | �B|�/(Bρ).
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satisfies

|θ| � �

ρ
=

| �B|�
(Bρ)

, (2.4)

where the curvature 1/ρ is rewritten by using Equation 1.2. We note that we

allow a negative deflection angle. From Equations 2.1, 2.2, and 2.4, for a thin

quadrupole magnet, deflection angles in the horizontal and vertical planes, θx

and θx, are given by

θx � −By,1�

(Bρ)
x (2.5)

θy � By,1�

(Bρ)
y . (2.6)

Here, x and y are the horizontal and vertical displacements of the particle

relative to the ideal trajectory, which is also equal to the horizontal and vertical

distances from the center of the quadrupole magnet. We choose the outward

and upward directions as positive directions of x and y. The negative sign for

the horizontal case is a convention related to this coordinate system. Because

the deflection angles θx and θy are linearly proportional to the displacements

x and y, the quadrupole acts on a particle as a linear focusing or defocusing

lens in a optical system. Figure 2.4 is a schematic of particles focused in

the horizontal plane and defocused in the vertical plane by a thin quadrupole

magnet. As in the case of geometrical optics, we assume the charged particles

are paraxial. Focal lengths of this quadrupole magnet Fx and Fy are given by

1

Fx
� θx

x
� −By,1�

(Bρ)

1

Fy
� θy

y
� By,1�

(Bρ)
. (2.7)

Here, magnitudes of the focal lengths in both planes are the same, |Fx| = |Fy|,
but their signs are different, indicating the quadrupole focuses the beam only
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in one plane. Reciprocal of focal length is referred to as effective strength of a

quadrupole and is denoted with q.

The function of a linear focusing or defocusing lens can be expressed

with a 2×2 matrix. In the paraxial approximation, the angle of a particle

is equal to the slope of the particle’s trajectory x′ ≡ dx/ds. Here, s is the

distance from a reference point measured along the ideal trajectory and is

referred to as the longitudinal coordinate. When the particle goes through a

thin focusing or defocusing lens, transformation of the particle’s position and

angle, (x, x′), is given by ⎛
⎝x

x′

⎞
⎠
f

=

⎛
⎝1 0

1
F

1

⎞
⎠

⎛
⎝x

x′

⎞
⎠
i

, (2.8)

where F < 0 and F > 0 corresponds to the thin focusing lens and defocusing

lens for each, and subscripts i and f denote the initial and final states of a

particle.

Particle motion in a magnet free straight region, referred to as drift

space, can be also expressed with a 2×2 matrix. When a particle moves in a

drift space of length L, its angle remains the same but its transverse position

changes by Lx′. Hence, the transformation is given by⎛
⎝x

x′

⎞
⎠
f

=

⎛
⎝1 L

0 1

⎞
⎠

⎛
⎝x

x′

⎞
⎠
i

. (2.9)

2.2 FODO Lattice

2.2.1 System with a Focusing and Defocusing Lenses

In Section 2.1, we discussed that a pair of quadrupole magnets can focus

particles’ motions in both of the transverse planes. By using the matrices of
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Figure 2.4: Schematic of a thin quadrupole magnet focusing particles in the
horizontal plane and defocusing particles in the vertical plane. Because the
deflection angles θx and θy are linearly proportional to the displacements x
and y, the particles moving parallel to the axes are focused to the focal points.
The coil lengths Fx and Fy are given by Equation 2.7.
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thin lenses and a drift space in Section 2.1.2, we can easily check this statement.

Figures 2.5(a) and 2.5(b) show trajectories of particles going through a system

consisting of a thin focusing and defocusing lenses with focal lengths −|F | and

|F |. Here, the trajectories of the particles are calculated by multiplying the

matrices of the thin lenses and drift space. The difference between Figures

2.5(a) and 2.5(b) is that magnitude of the focal lengths |F | is larger than

the distance between the two lenses L (|F | > L) in 2.5(a) and the relation

is opposite (|F | < L) in 2.5(b). In Figure 2.5(b), when |F | < L, we can

see particles cross the axis before the deflections of the defocusing lens and

diverge away after they exit the system. Figure 2.5(c) and Figure 2.5(d) show

trajectories of particles going through the systems similar to Figures 2.5(a)

and 2.5(b), where the order of the focusing and defocusing lenses are flipped.

Because a quadrupole magnet has the opposing focusing properties in the two

transverse planes, Figures 2.5(c) and 2.5(d) can be interpreted as the same

systems at Figures 2.5(a) and 2.5(b) observed in the other plane. In both

cases, the net effects are focusing when the condition |F | > L is satisfied.

The conclusion of the previous paragraph can be analytically derived by

using the matrices of the thin lenses and a drift space. When the initial state

of a particle is (x, x′)i = (x, 0), the state of the particle when it exits a pair of

lenses, (x, x′)f , can be calculated by the following matrix multiplications:⎛
⎝x

x′

⎞
⎠
f

=

⎛
⎝ 1 0

± 1
|F | 1

⎞
⎠

⎛
⎝1 L

0 1

⎞
⎠

⎛
⎝ 1 0

∓ 1
|F | 1

⎞
⎠

⎛
⎝x

0

⎞
⎠

=

⎛
⎝1 ∓ L

|F | L

− L
|F |2 1 ± L

|F |

⎞
⎠

⎛
⎝x

0

⎞
⎠ =

⎛
⎝(1 ∓ L

|F |)x
L

|F |2x

⎞
⎠ , (2.10)

where the upper set of signs represents the case when a particle passes through

a focusing, then defocusing lens (“FD”) and the lower set of signs represents
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Figure 2.5: Systems consisting of a focusing and defocusing lens. When par-
ticles enter the focusing lens and exit from the defocusing lens, the net effect
is focusing when |F | > L, (a), and defocusing when |F | < L, (b),. When the
order of the focusing and defocusing lenses are flipped, the net effect is always
focusing, (c) and (d).
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the opposite case (“DF”). From this equation, magnitude of the focal lengths

|F | must be larger than the drift space length L for parallel particles to be

focused for both the FD and DF cases. Hence, if we adjust focal lengths

properly, a pair of quadrupole magnets can focus transverse motions in both

planes.

A system consisting of a pair of equally spaced quadrupole magnets,

with the same magnitude of focal lengths |F |, is called the FODO lattice.

Here, F and D represent the focusing and defocusing lenses and O represents

the drift space. This system, focusing the beam in both of the transverse

planes, is a fundamental unit of modern synchrotrons. If the order is first the

focusing lens, the matrix of the FODO lattice MFODO is given by

MFODO =

⎛
⎝1 L

0 1

⎞
⎠

⎛
⎝ 1 0

1
|F | 1

⎞
⎠

⎛
⎝1 L

0 1

⎞
⎠

⎛
⎝ 1 0

− 1
|F | 1

⎞
⎠

=

⎛
⎝1 − L

|F | − L2

|F |2 2L+ L2

|F |

− L
|F |2 1 + L

|F |

⎞
⎠ . (2.11)

2.2.2 Structure of a Synchrotron

Figure 2.6 is a schematic diagram of a small synchrotron. Focusing and defo-

cusing quadrupole magnets are evenly spaced and interleaved with the bending

dipole magnets. To describe motion of circulating particles, we use the coordi-

nate system known as Frenet-Serret’s curvilinear coordinates (see for instance

page 3 of [28]). In Figure 2.6, the closed loop is the trajectory of an ideal

particle. The longitudinal coordinate s is the distance measured along this

ideal trajectory. The two transverse coordinates x and y describe the horizon-

tal and vertical deviations from the ideal trajectory. The positive directions

of x and y are outward and upward directions, and the combination (x, y, s)
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Figure 2.6: Schematic diagram of a small synchrotron. A modern synchrotron
consists of the bending dipole magnets, focusing quadrupole magnets, and
straight sections in-between. In the Frenet-Serret’s curvilinear coordinates
moving along the ideal trajectory, the space of the bending dipole magnet is
equivalent to the drift space and the synchrotron is reduced to a system of
FODO lattices with the periodic boundaries.
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forms a right-hand coordinate system. In this coordinate system, the spaces of

the bending dipole magnets become effectively free spaces and a synchrotron

becomes equivalent to a straight system of FODO lattices with the periodic

boundaries1. Hence, we can understand the transverse motions of particles in

a synchrotron by studying particles’ motion in the FODO lattices.

2.2.3 Simulation of a FODO Lattice System

This section shows simple model of a particle’s motion in the FODO lattices.

Through this model, we can learn basic concepts of betatron oscillations. In

brief, the particles which diverge from the ideal orbit experience restoring

forces from the quadrupole magnets in the synchrotron. As a result, the par-

ticles undergo transverse oscillations around the ideal trajectory, referred to

as betatron oscillations. Mathematical details of betatron oscillations are dis-

cussed in the next section.

Trajectory

Figure 2.7 shows the calculated trajectory of the particle in a model system of

two FODO lattices, like the small synchrotron in Figure 2.6. In the calculation,

we chose the focal length F = 25 m and drift distance L = 30 m as the FODO

lattices in the Tevatron. A particle with initial conditions x = 1 mm and x′ =

0 mrad enters the system from the location of the focusing lens F1 and proceeds

rightward. The position and angle of the particle are tracked by multiplying

the matrices of lenses (Equation 2.8) and the drift space (Equation 2.9), as

we did in Equation 2.10. We note, in our coordinate system, the particle’s

1This statement is true only for a particle with the ideal longitudinal momentum. The
bending dipole magnets cannot be ignored for off-momentum particles even in the Frenet-
Serret’s coordinates.
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Figure 2.7: Trajectory of a particle in a system of two FODO lattices. In
the Frenet-Serret’s coordinates, the particle moves on straight lines between
thin lenses. The periodicity of the system returns the particle from the right
end to the left end. After many turns, the trajectory shows the envelope
structure, whose shape and scale are determined by the amplitude function
β(s) and emittance ε. If trajectories of multiple particles are traced in a single
revolution, there appears the same envelope structure, determining the beam
size in this case.
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motion is a combination of straight motions between lenses and instantaneous

deflections by lenses. The betatron oscillations are such zigzag motions in

this coordinate system. Because of the periodicity in the system, once the

particle reaches the right end, it wraps back to the left end and begins the

next revolution. Because there are two complete FODO lattices in our model

synchrotron, the position and angle after the first revolution, (x, x′)1, is given

by multiplying the matrix (MFODO)2 to the initial state, (1, 0):⎛
⎝x

x′

⎞
⎠

1

= (MFODO)2

⎛
⎝1

0

⎞
⎠ . (2.12)

More generally, the position and angle after n revolutions, (x, x′)n, is given by

multiplying (MFODO)2n: ⎛
⎝x

x′

⎞
⎠
n

= (MFODO)2n

⎛
⎝1

0

⎞
⎠ . (2.13)

In Figure 2.7, we can see that, after many revolutions, the motion has

an envelope structure. The shape of the envelope is determined by a function

of the longitudinal position s, referred to as the (betatron) amplitude function

or β-function and denoted by β(s). The particle’s maximum deviation from

the ideal trajectory is proportional to square root of the amplitude function at

each longitudinal position. Obviously, the maximum deviation from the ideal

trajectory also depends on the particle’s initial condition. We use a constant

parameter, referred to as the emittance and denoted by ε, to describe the

scale of the maximum deviation. Although this figure shows the trajectory of a

single particle in multiple revolutions, we can also interpret it as trajectories of

multiple particles within the beam in a single revolution. In the interpretation

of multiple particles, the envelope of the particles’ trajectories is of significance,

defining the beam size in the transverse direction.
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Turn-by-turn Position

Figure 2.8 shows the particle’s positions observed at two fixed locations, F1

and D1, in the same model as Figure 2.7. When observed at one location, the

particle undergoes sinusoidal oscillations as a function of revolution number.

This is the other aspect of the betatron oscillations. Such oscillations observed

at one location in a synchrotron is referred to as turn-by-turn oscillations. The

amplitude of the turn-by-turn oscillations is proportional to square root of the

amplitude function β(s) at the location. The frequency of the turn-by-turn

oscillations is the same at any location in the synchrotron but relative phases

of the turn-by-turn oscillations at any two locations are obviously different.

The betatron tune, denoted by ν, is the frequency of the turn-by-turn oscilla-

tions in units of the revolution number. The betatron phase advance, denoted

by ψ(s2|s1), is the relative phase difference between two locations in the syn-

chrotron, s1 and s2. A schematic definition of the phase advance, for example,

between F1 and D1 is given in Figure 2.8.

Phase Space

As we have seen in this chapter, the horizontal deviation from the ideal tra-

jectory x and the angle x′ = dx/ds are convenient coordinates to describe the

particle’s horizontal motion in the synchrotron. Hence, instead of momentum,

we use the angle x′ as the second coordinate of the phase space to character-

ize the horizontal motion. Similarly, the phase space of the vertical motion

is characterized by the pair (y, y′), where y′ ≡ dy/ds. Figure 2.9 shows the

evolution of particle’s phase space in the same model as Figures 2.7 and 2.8.

Here, points with the same color represent values of (x, x′) for the particle at

a specific location in the FODO lattice. For instance, yellow points represent
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Figure 2.8: Turn-by-turn positions at F1 and D1 of Figure 2.7. The amplitude
of the turn-by-turn oscillations is proportional to square root of the amplitude
function β(s). The difference of the amplitudes at F1 and D1 is due to the
difference of the amplitude functions at these locations. The betatron tune ν
is the frequency of the turn-by-turn oscillations, which is a global parameter,
and the betatron phase advance ψ(s2|s1) is the oscillations’ relative phase
difference between two locations.
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Figure 2.9: Phase space of a system consisting of the FODO lattices. The
colors of the points represent the locations in the FODO lattice. Corresponding
to the zigzag trajectory of the particle, only the angle changes in the lenses
and only the position changes in the drift spaces. If observed at one location
of the system, the particle moves on one ellipse. The area of the ellipses, the
emittance, is a constant of motion and the shapes of the ellipses are determined
by the amplitude function.
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the phase space positions when the particle is in front of the focusing lenses,

F1 and F2. Referring to Figure 2.9(a), the series of plotted points give the

particle’s position at the various longitudinal position in the FODO lattice,

indicated above. For instance, as the particle moves right to left through lens

D1, indicated in colors by the transition from blue to pink, the plotted coor-

dinate x does not change but the angle x′ becomes increasingly negative, as

expected for a defocusing lens at the location. In contrast, the drift region

between D1 and F2, characterized by the color from pink to yellow, shows no

change in the angle x′ but shows an increase in the position x as the particle

drifts away from the central orbit. Figures 2.9(b) and 2.9(c) continue to follow

the particle through additional revolutions around this model system.

As seen in Figure 2.9, if observed at one location of the FODO lattice,

the particle’s motion can be seen to follow an ellipse. The area enclosed by

these ellipses is a constant of motion and it is the emittance. The shapes

of these ellipses are determined by the amplitude function and its slope at

each locations. The turn-by-turn oscillations in Figure 2.8 are the projections

of such motions on the phase space ellipses onto the position axes. As we

did for Figure 2.7, we can imagine the case of multiple particles from this

figure. If we assume these ellipses are of the outermost particle, they can be

interpreted as the shapes of the particle distributions at each locations. We

can see the transverse beam size varies depending on the amplitude function

of the location, in this interpretation as well.

Simulation of Free Straight Regions

Figure 2.10 shows the trajectories of the particles coming out of the system of

the FODO lattices in Figure 2.7 and traveling in a drift space. In the model,
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Figure 2.10: Particles’ trajectories in a drift space. The beam looks like this
in a collision straight section of a collider. We adjust the beam so that its size
become minimum at the center of the physics detector.
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the particles are coming out of a focusing lens of the FODO lattices. In a

drift space, the amplitude function is a parabolic function of the longitudinal

position s. The location where the amplitude function and the beam size

become minimum is referred to as the (beam) waist. In a collider, a physics

detector sits in a magnet free straight region, referred to as collision straight

section, and the beam looks like Figure 2.10 near the detector. To maximize

the event rate, we adjust the collider’s lattice so that the beam waists in both

of the plains are at the center of the detector2

2.3 Betatron Oscillations

In the previous section, through simple models, we learned basic properties of

the betatron oscillations and also introduced parameters such as the amplitude

function, emittance, tune, and phase advance. In this section, we discuss the

mathematical formalism of the betatron oscillations.

2.3.1 Hill’s Equation of Motion

In this section, we discuss the equation of motion to describe the betatron os-

cillations. When a charged particle goes through a thin magnetic element, the

deflection angle is given by Equation 2.4. From this equation, when a particle

is deflected by a short magnetic element with field (Bx(x, y, s), By(x, y, s)) and

length Δs, located at the longitudinal position s, the changes of the transverse

2In this simulation, the beam has no waist in the other plane since the last quadrupole
magnet defocus the beam in the other plane. To arrange the beam waists in both of the
planes at the center of the detector, we need a set of quadrupole magnets, referred to as
quadrupole triplets (see for instance [29]), at both ends of a collision straight section.
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angles, Δx′ and Δy′, are given by

Δx′ = −By(x, y, s)Δs

(Bρ)
(2.14)

Δy′ =
Bx(x, y, s)Δs

(Bρ)
. (2.15)

Here, the signs in the right-hand-sides are from the choice of the Frenet-Serret’s

coordinate system. By taking the limit Δs → 0, we get the following two

equations:

x′′ = −By(x, y, s)

(Bρ)
(2.16)

y′′ =
Bx(x, y, s)

(Bρ)
. (2.17)

We note that, because the transverse positions x and y are the deviations

from the ideal trajectory, the angles x′ and y′ are not changed by the bend-

ing dipole magnets. Hence, in our coordinate system, the magnetic field

(Bx(x, y, s), By(x, y, s)) should not include that of the bending dipole mag-

nets.

In Equations 2.16 and 2.17, we usually perform the multipole expansion

of the field (Bx(x, y, s), By(x, y, s)) and separate the dipole and quadrupole

field components from the rest. The general multipole expansion of two di-

mensional magnetic field is given by

Bx(x, y, s) = Bx,0(s) +Bx,1(s)x+By,1(s)y + . . . (2.18)

By(x, y, s) = By,0(s) +By,1(s)x− Bx,1(s)y + . . . . (2.19)

Here, Bx,n(s) and By,n(s) (n = 0, 1, 2, . . . ) are shorthand notations similar to

Equation 2.3:

Bx,n(s) ≡ ∂nBx(x, y, s)

∂nx

∣∣∣∣
x=y=0

(2.20)

By,n(s) ≡ ∂nBy(x, y, s)

∂nx

∣∣∣∣
x=y=0

(2.21)
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and the two dimensional Maxwell’s equations in vacuum are used:

∂Bx(x, y, s)

∂x
+
∂By(x, y, s)

∂y
= 0 (2.22)

∂By(x, y, s)

∂x
− ∂Bx(x, y, s)

∂y
= 0 . (2.23)

In this expansion, By,0(s) denotes the dipole field component. As we already

discussed in this section, By,0(s) is zero by design in our coordinate system.

The termBx,0(s) is referred to as skew dipole component which bends the beam

particles vertically. Because we are thinking planar synchrotrons, Bx,0(s) is

also zero by design. As we defined in Section 2.1, the terms proportional to

By,1(s) represent the field of the quadrupole magnets. The terms proportional

to Bx,1(s) represent the field referred to as skew quadrupole field. The skew

quadrupole field has an undesired effect of coupling the motions in the two

transverse planes, which is often undesired, and so Bx,1(s) is zero in the designs

of most accelerators. Hence, by keeping only the quadrupole field, we rewrite

Equations 2.18 and 2.19 in the following way:

Bx(x, y, s) = By,1(s)y +ΔBx(x, y, s) (2.24)

By(x, y, s) = By,1(s)x+ΔBy(x, y, s) , (2.25)

where ΔBx(x, y, s) and ΔBy(x, y, s) represent perturbative fields including the

error dipole fields, error quadrupole fields, skew dipole fields, skew quadrupole

fields, and the other higher order fields. By using Equations 2.24 and 2.25,

Equations 2.16 and 2.17 can be written as

x′′ +K(s)x = −ΔBy(x, y, s)

(Bρ)
(2.26)

y′′ −K(s)y =
ΔBx(x, y, s)

(Bρ)
, (2.27)
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where the quantity K(s), defined as

K(s) ≡ By,1(s)

(Bρ)
, (2.28)

is referred to as effective gradient of the quadrupole magnets and is analogous

to the spring constant of a harmonic oscillator.

Because of the synchrotron’s periodicity, K(s) is a periodic function of

the longitudinal coordinate s, satisfying K(s) = K(s + C). This type of a

second order differential equation, with spring constant of a periodic function,

is known as Hill’s equation [30]. In the ideal synchrotron, the right-hand-sides

of Equations 2.26 and 2.27 are zero and, then, the equations are homogeneous.

In this case, transverse motions of the beam particles are linear and uncoupled.

The fields ΔBx(x, y, s) and ΔBy(x, y, s) produce perturbative effects on such

ideal motions. In Chapter 3, we discuss details of such perturbative effects on

the ideal motions.

2.3.2 A Closed Form Solution of the Hill’s Equation

Hill’s equation (in homogeneous form) has a closed form solution which is

similar to the solution of a simple harmonic oscillator:

x(s) = A
√
β(s) cos(ψ(s|s0) + χ) . (2.29)

Here, A is a constant of the integral with dimensions of (length)1/2 and χ

is a constant phase. As we discussed in Section 2.2.3, the square root of the

amplitude function β(s) determines the amplitude of the betatron oscillations.

The amplitude function has dimensions of length and is a periodic function

of the longitudinal coordinate s, satisfying β(s + C) = β(s). The amplitude

function is determined from the effective gradient K(s) through the following
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differential equation:

1

2
β(s)β ′′(s) − 1

4
β ′(s)2 + β(s)2K(s) = 1 . (2.30)

Instead of solving this differential equation, we discuss a method to determine

the amplitude function using matrices, later in Section 2.3.4. The phase of

the betatron oscillations is determined by the phase advance ψ(s|s0), intro-

duced in Section 2.2.3. We note that the phase advance is always defined from

a reference point, in this case s0. When the reference point is the origin of

the longitudinal coordinate s, namely s0 = 0, we sometimes use the following

shorthand notation: ψ(s) ≡ ψ(s|0). An important difference between beta-

tron oscillations and simple harmonic oscillations is the following correlation

between the amplitude and phase, given by

ψ(s|s0) ≡
∫ s

s0

ds̄

β(s̄)
, (2.31)

where s̄ is a variable of integration. From this relation, the amplitude function

can be interpreted as the local wavelength of the betatron oscillations (divided

by 2π). The betatron tune ν is the phase advance of a single revolution

measured in units of 2π:

2πν ≡ ψ(s+ C|s) =

∫ s+C

s

ds̄

β(s̄)
, (2.32)

where s is an arbitrary longitudinal position in the synchrotron. Because of the

amplitude function’s periodicity, the tune is a global parameter, independent

of the starting point s.

In a real synchrotron, we cannot trace the entire trajectory of the beta-

tron oscillations. Rather, we can only observe the turn-by-turn oscillations at

locations of the BPM’s. When we observe turn-by-turn oscillations, it is con-

venient to rewrite Equation 2.29. First, we express the longitudinal position s
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with the circumference C, revolution number n, and a parameter s̃ which is in

the range 0 ≤ s̃ < C: s = nC+s̃. Similarly we rewrite the longitudinal position

of the reference: s0 = nC + s̃0. We note that the amplitude function and be-

tatron phase advance satisfy β(s) = β(s̃) and ψ(s|s0) = 2πν(n−n0)+ψ(s̃|s̃0).

Then, Equation 2.29 can be also written as

x(nC + s̃) = A
√
β(s̃) cos(2πνn+ ψ(s̃|s̃0) + χ̄) , (2.33)

where χ̄ ≡ χ − 2πνn0 is a constant phase. This equation describes the si-

nusoidal oscillations as a function of revolution number n, as we saw in the

model of Figure 2.8. In this equation, we can see that the tune and phase

advance are the frequency (in units of the revolution number) and relative

phase differences between different locations, as discussed in Section 2.2.3.

2.3.3 Courant-Snyder Parameters and Emittance

By differentiating Equation 2.29 with respect to the longitudinal coordinate

s, the slope is given by

x′(s) = − A√
β(s)

sin(ψ(s|s0) + χ) − Aα(s)√
β(s)

cos(ψ(s|s0) + χ) (2.34)

= −A
√
γ(s) sin(ψ(s|s0) + χ + arctan(α(s))) , (2.35)

where we introduced the two new parameters α(s) and γ(s):

α(s) ≡ −1

2

dβ(s)

ds
(2.36)

γ(s) ≡ 1 + α(s)2

β(s)
. (2.37)

A set of parameters β(s), α(s), and γ(s) are referred to as Courant-Snyder

parameters [31]. We note, just as the β-function determines the amplitude of

the position oscillations, the γ-function determines the amplitude of the angle
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oscillations. The differential equation to determine the amplitude function,

Equation 2.30, is simplified with the Courant-Snyder parameters:

K(s)β(s) = γ(s) + α′(s) . (2.38)

Mathematical expressions of the betatron oscillations is often simplified

by using normalized conjugate momentum, px ≡ α(s)x + β(s)x′, instead of

the angle x′. The space spanned by x and px is called the normalized phase

space, as opposed to the ordinary phase space spanned by x and x′. From

Equations 2.29 and 2.34, when a particle undergoes the betatron oscillations,

the normalized conjugate momentum is given by

px(s) = −A
√
β(s) sin(ψ(s|s0) + χ) . (2.39)

A relation referred to as Courant-Snyder invariance can be easily verified from

Equations 2.29 and 2.39:

1

β(s)

[
x(s)2 + px(s)

2
]

= γ(s)x(s)2 + 2α(s)x(s) + β(s)x′(s)2 = A2 . (2.40)

This relation is analogous to the energy conservation of a simple harmonic

oscillator. This equation indicates that, if observed at one location in the syn-

chrotron, the mapping in the normalized phase space (x, px) forms a circle and

the mapping in the ordinary phase space (x, x′) forms an ellipse. Figure 2.11

shows schematic examples of mappings in the normalized and ordinary phase

spaces, observed at one location in the synchrotron. Because the Courant-

Snyder parameters varies over the longitudinal position s, the shape of the

ellipse is different at each location in the synchrotron. Such a phenomenon

is also seen in Figure 2.9. In this sense, the Courant-Snyder parameters can

be interpreted as the parameters to determine the shape of the phase space
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�a� Normalized phase space

�b� Phase space

Figure 2.11: The mapping in the normalized phase space (x, p) and ordinary
phase space (x, x′), observed at one location in the synchrotron. In the nor-
malized phase space, the mapping forms a circle with area πAβ(s). In the
ordinary phase space, the mapping forms an ellipse with area πA2. The emit-
tance ε is the area of the ellipse in the ordinary phase space and is a constant
of motion.
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ellipse at each location in the synchrotron. In contrast, the area of the ellipse

in the ordinary phase space is a constant of motion, given by

ε =
πA2√

β(s)γ(s) − α(s)2
= πA2 , (2.41)

where we used an identity of the Courant-Snyder parameters: β(s)γ(s) −
α(s)2 = 1. This area ε is the emittance defined in Section 2.2.3. The emittance

is analogous to the energy of a simple harmonic oscillator.

When we read articles of accelerator physics, depending on authors and

institutions, the definition of the emittance is different. In the following, when

we consider a single particle, the emittance denotes the area of the ellipse in

the ordinary phase space. This emittance is sometimes referred to as single

particle emittance. When we consider multiple particles in a synchrotron, we

use the definition referred to as 95% convention. In this case, the emittace is

defined as the area enclosed by the outermost particle, inside which 95% of the

particles are included (Figure 2.12). This is a typical convention for proton

synchrotrons. Details about various conventions of the emittance can be seen

in pages 81-83 of [7]. As discussed in Section 2.2.3, what is important for the

synchrotron is that the beam size is determined by the amplitude function

β(s) and emittance.

2.3.4 Transfer Matrix

The matrix to describe a particle’s propagation in a synchrotron is referred to

as transfer matrix. The matrices of the thin lenses and drifting in Equations

2.8 and 2.9 are the simplest examples of the transfer matrix. In principle, we

know all the elements of the synchrotron and so the transfer matrix between

any two locations can be calculated by multiplying the matrices of the all
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Figure 2.12: Beam emittance. Each black point represents a particle and the
shaded are shows the emittance of the 95% convention which encloses 95% of
the particles. The beam size is determined by the emittance and the amplitude
function at the location.
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elements in-between, one after the other. By using properties of the closed

form solution of the betatron oscillations, the transfer matrix can be also

expressed with the betatron tune and Courant-Snyder parameters. In this

section, we discuss the relation among the transfer matrix, the betatron tune,

and the Courant-Snyder parameters.

Transfer Matrix of a Single Revolution

Suppose a particle’s position and normalized conjugate momentum are x(s)

and px(s) at the longitudinal position s. After a single revolution, from Equa-

tions 2.29 and 2.39, the state of the particle becomes

⎛
⎝ x(s + C)

px(s+ C)

⎞
⎠ =

⎛
⎝ cos(2πν) sin(2πν)

− sin(2πν) cos(2πν)

⎞
⎠

⎛
⎝ x(s)

px(s)

⎞
⎠

= R(−2πν)

⎛
⎝ x(s)

px(s)

⎞
⎠ , (2.42)

where R(θ) is the two dimensional rotational matrix with angle θ. In the nor-

malized phase space, the single turn transfer matrix is the rotational matrix

with angle −2πν and independent of the longitudinal position s. This corre-

sponds to the fact that, if observed at one location in the synchrotron, the

mapping in the normalized phase space forms a circle (Figure 2.11). Suppose

M(s + C|s) is the single-turn transfer matrix in the ordinary phase space,

defined by

⎛
⎝x(s+ C)

x′(s+ C)

⎞
⎠ = M(s + C|s)

⎛
⎝x(s)

x′(s)

⎞
⎠ . (2.43)

48



Because the ordinary phase space is related to the normalized phase space by

a matrix N(s): ⎛
⎝ x

px

⎞
⎠ =

⎛
⎝ 1 0

α(s) β(s)

⎞
⎠

⎛
⎝x

x′

⎞
⎠ ≡ N(s)

⎛
⎝x

x′

⎞
⎠ , (2.44)

the single turn transfer matrix M(s+C|s) in the ordinary phase space can be

calculated from R(−2πν) and N(s):

M(s+ C|s)
= N(s)−1R(−2πν)N(s)

=

⎛
⎝cos(2πν) + α(s) sin(2πν) β(s) sin(2πν)

−γ(s) sin(2πν) cos(2πν) − α(s) sin(2πν)

⎞
⎠ . (2.45)

We note that the matrix M(s + C|s) can be also written in the following

compact form:

M(s+ C|s) = I cos(2πν) + J(s) sin(2πν) , (2.46)

where I is the identity matrix and J(s) is a matrix given by the Courant-Snyder

parameters:

J(s) ≡
⎛
⎝ α(s) β(s)

−γ(s) −α(s)

⎞
⎠ . (2.47)

In contrast to the normalized phase space, the single turn transfer matrix

in the ordinary phase space depends on the longitudinal position s. This

corresponds to the fact that, if observed at one location, the mapping in the

ordinary phase space forms an ellipse and its shape depends on the longitudinal

position s (Figure 2.11).

As we discussed earlier, the single turn transfer matrix can be calcu-

lated by multiplying the matrices of the all elements, one after the other. For
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instance, if the system consists of N FODO lattices, the single turn transfer

matrix in front of the focusing lens is given by (MFODO)N . Hence, by com-

paring the elements of the known single turn transfer matrix with those of

Equation 2.45, we can determine the betatron tune and the Courant-Snyder

parameters at the location. This is a standard procedure to determine the

Courant-Snyder parameters, rather than solving the differential equation 2.30.

Transfer Matrix of Two Arbitrary Positions

In the normalized phase space, the general transfer matrix between two arbi-

trary longitudinal positions, s0 and s, is the composite of the rotational matrix

with angle −ψ(s|s0) and the scaling related to the amplitude function:⎛
⎝ x(s)

px(s)

⎞
⎠ =

√
β(s)

β(s0)
R(−ψ(s|s0))

⎛
⎝ x(s0)

px(s0)

⎞
⎠ . (2.48)

Here, the scaling factor (β(s)/β(s0))
1/2 corresponds to the fact that the area

enclosed by the mapping depends on β(s) in the normalized phase space (Fig-

ure 2.11). As in the case of the single turn transfer matrix, the transfer matrix

from s0 to s in the ordinary phase space, M(s|s0), is calculated from the

corresponding matrix in the normalized phase space and Equation 2.44:

M(s|s0)

=

√
β(s)

β(s0)
N(s)−1R(−ψ(s|s0))N(s0)

=

⎛
⎝

√
β
β0

(cosΔψ + α0 sinΔψ)
√
ββ0 sinΔψ

−1+αα0√
ββ0

sinΔψ − α−α0√
ββ0

cosΔψ
√

β0

β
(cosΔψ − α sinΔψ)

⎞
⎠ , (2.49)

where, in the last expression, we used the following shorthand notations: β ≡
β(s), β0 ≡ β(s0), α ≡ α(s), α0 ≡ α(s0), and Δψ ≡ ψ(s|s0). As discussed
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previously, the transfer matrix is calculated by multiplying the matrices of

the all elements between the two positions. This equation indicates that, if

the Courant-Snyder parameters and the betatron phase advance are known at

these two positions, we can construct the transfer matrix between these two

points without performing the matrix multiplications.

Propagation of the Courant-Snyder Parameters

So far, we have been discussing the propagation of the phase space coordinates.

There is also a similar law of propagation for the Courant-Snyder parameters.

The matrix J(s)’s at two longitudinal positions s0 and s are related through

the transfer matrix between these two positions M(s|s0) in the following way:

J(s) = M(s|s0)J(s0)M(s|s0)
−1 . (2.50)

From this equation, we can determine behavior of the Courant-Snyder param-

eters of a region, where magnetic elements and transfer matrices are known.

For instance, if the space between s = 0 and s is a drift space, from

Equation 2.9, its transfer matrix is given by

M(s|0) =

⎛
⎝1 s

0 1

⎞
⎠ . (2.51)

From Equation 2.50, the Courant-Snyder parameters at s = 0 and s are related

by the following equation:⎛
⎝ α(s) β(s)

−γ(s) −α(s)

⎞
⎠ =

⎛
⎝1 s

0 1

⎞
⎠

⎛
⎝ α(0) β(0)

−γ(0) −α(0)

⎞
⎠

⎛
⎝1 −s

0 1

⎞
⎠

=

⎛
⎝α(0) − γ(0)s β(0) − 2α(0)s+ γ(0)s2

−γ(0) −α(0) + γ(0)s

⎞
⎠ . (2.52)
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By comparing the 2-1 element of the both sides, we can see the γ-function is

a constant in the drift space. From the 1-2 elements of the both sides, the

amplitude function β(s) satisfies

β(s) = β(0) − 2α(0)s+ γ(0)s2

= β∗ +
1

β∗ (s− s∗)2 , (2.53)

where, in the second expression, we used the two new parameters:

β∗ ≡ 1

γ(0)
(2.54)

s∗ ≡ α(0)

γ(0)
= α0β

∗ . (2.55)

As seen in the simulation of Figure 2.10, the amplitude function is a parabolic

function of the longitudinal position s in the drift space. If s∗ > 0 (α(0) > 0),

the amplitude function has the waist at s = s∗ and its value becomes β(s∗) =

β∗. We note that the β∗ in the luminosity formula, Equation 1.4, is this quan-

tity. Hence, the Courant-Snyder parameters in the collision straight section is

particularly important since they are directly related to its luminosity.
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Chapter 3

Perturbations to the Ideal

Motion in a Synchrotron

In chapter 2, we discussed the transverse oscillatory motion of particles in

the restoring forces around the ideal trajectory of a synchrotron. A real syn-

chrotron consists of many magnets with imperfections and such imperfections

produce perturbative fields to the ideal betatron oscillations. This is par-

ticularly important for a large accelerator consisting of many magnets, like

the Tevatron. For instance, if the restoring force is changed due to errors

in quadrupole magnets, the betatron amplitude function is modified and the

luminosity may be degraded. Perturbative fields also drive certain oscilla-

tion modes. The phenomena are similar to classical driven oscillations: for

certain values of the tunes, a given mode may be sufficiently large to cause

losses of the beam particles. Furthermore, in modern synchrotrons, we some-

times use higher order magnets producing nonlinear fields, such as sextupole

and octupole magnets, to compensate some phenomena related to multiple

particle effects. We also treat these higher order fields as perturbations. In
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Table 3.1: Effects of the perturbative fields to one dimensional betatron oscil-
lations. Each column represents list of effects due to each field. For instance,
a sextupole field causes a central orbit distortion and also drives a mode with
tune 2ν. Magnitudes of these two effects depend on the constant A of the
solution of the homogeneous Hill’s equation in Equation 2.29. We note that
higher order perturbations include the effects of lower order perturbations.
When the tune is close to one of the resonant condition listed in the last row,
where N is an arbitrary positive integer, the corresponding field may cause
large motion leading to particle losses (resonance).

Magnet type Dipole Quadrupole Sextupole Octupole
Order 1st 2nd 3rd 4th
Force ∝ x0 ∝ x1 ∝ x2 ∝ x3

Potential ∝ x1 ∝ x2 ∝ x3 ∝ x4

Central orbit distortion ∝ A0 - ∝ A2 -
(Eq. 3.36) (Eq. 3.56)

Tune shift - ∝ A0 - ∝ A2

(Eq. 3.45) (Eq. 3.61)
Beta-beat - ∝ A0 - ∝ A2

(Eq. 3.48) (Eq. 3.64)
New Modes - - ∝ A2 (at 2ν) ∝ A3 (at 2ν)

(Eq. 3.56) (Eq. 3.64)
Resonant conditions ν = N 2ν = N 3ν = N 4ν = N

ν = N 2ν = N
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this chapter, we discuss perturbations due to dipole field errors, quadrupole

field errors, sextupole fields, and octupole fields. The effects of these pertur-

bations are summarized in Table 3.1. The main goal of this chapter is to

understand these effects listed on this table. Figure 3.1 shows magnetic field

lines of dipole, quadrupole, sextupole, and octupole magnets. As reviewed

previously, the dipole magnet produces a constant force and the quadrupole

magnet produces a linearly growing restoring force, which is proportional to

the transverse positon of a beam particle x, much like a harmonic oscillator

in classical mechanics. In the horizontal plane, the sextupole produces a force

proportional to x2, corresponding to a potential proportional to x3, and the

octupole produces a force proportional to x3, corresponding to the potential

proportional to x4. If these forces are small compared to the linear restoring

forces of the quadrupole magnets, then these higher higher order fields may

be treated as perturbations to the ideal oscillations.

This chapter proceeds as follows. In Section 3.1, we review perturba-

tions to a simple classical oscillator. By considering perturbations similar to

the perturbative fields listed in Table 3.1, we can have better ideas about

the effects of these perturbative fields. In Section 3.2, we discuss details of

perturbative effects listed in Table 3.1.

3.1 Review of Simple Oscillatory Systems

Perturbative fields in the synchrotron produce forces given by polynomials of

position x. Hence, in this section, we review perturbations to a classical simple

oscillator, whose forces are also given by similar polynomials of position x.

Through such simple examples, we can more easily interpret the perturbations

to betatron oscillations. As seen in Section 2.3.1, the betatron oscillations of
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Figure 3.1: Schematic cross-sections and magnetic fields of a dipole,
quadrupole, sextupole, and octupole magnet. In the horizontal plane, each
magnet produce a force proportional to x0, x1, x2, and x3.
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beam particles are determined by Equations 2.26 and 2.27. Hence, we consider

an analogous classical system described by the following equation of motion:

d2x

dt2
+ ω2

0x = −f(x) , (3.1)

where ω0 is the intrinsic angular frequency of the system and the function f(x)

describes the perturbation. We suppose the solution of the homogeneous part,

the case corresponding to zero perturbation f(x) = 0, is given by

x0(t) = a cos(ω0t) , (3.2)

where a is a constant amplitude.

When the oscillator is driven by a periodic external force f(t) = −κd cos(ωdt),

the equation of motion for the driven oscillator is given by

d2x

dt2
+ ω2

0x = −κd cos(ωdt) , (3.3)

where κd and ωd are the strength and angular frequency of the driving force.

A perturbation which is a polynomial of x may be approximated by such an

external force. The particular solution of this equation, xd(t), is given by

xd(t) =
κd

ω2
d − ω2

0

cos(ωdt)

=
κd
2ωd

[
1

ωd − ω0
+

1

ωd + ω0

]
cos(ωdt) . (3.4)

Because the angular frequencies ω0 and ωd are positive, resonances occur only

when ωd = ω0. For betatron oscillations, ωd and ω0 correspond to the driving

tune and the intrinsic tune of the system. As we will see in Section 6.1, for

the driven particles in the synchrotron, resonances occur at more than one

frequencies because of the synchrotron’s periodicity.
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3.1.1 First Order Perturbation

Suppose the system is under a perturbation of a constant force: f(x) = κ1,

corresponding to the potential V (s) = κ1x. Here, the index 1 denotes the first

order. In a synchrotron, the first order perturbations are due to errors of the

dipole fields. The equation of motion is given by

d2x

dt2
+ ω2

0x = −κ1 . (3.5)

The particular solution of this equation, x1(t), is also a constant:

x1(t) = −κ1

ω2
0

, (3.6)

and the full solution is given by the sum of x0(t) and x1(t):

x(t) = x0(t) + x1(t) = a cos(ω0t) − κ1

ω2
0

. (3.7)

Hence, the first order perturbation to the simple harmonic oscillator shifts the

equilibrium position of the oscillations. This effect can be seen by compar-

ing the potentials with and without this perturbation. Figure 3.2(a) shows

schematic potentials of a harmonic oscillator with no perturbation (solid),

V (x) = 1
2
ω2

0x
2, and with the first order perturbation, V (x) = 1

2
ω2

0x
2 + κ1x

2.

In the figure, we can see the first order perturbation simply translates the

potential1. The classical system described by Equation 3.6 is quite analogous

to the case of a dipole field error in a synchrotron. Such an error shifts the

equilibrium of the betatron oscillations and distorts the central orbit by an

amount that linearly grows with the perturbation strength κ1.

1Here, we ignored the constant change of the potential, which makes no impact on
dynamics of the system.
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Figure 3.2: Distortions of a harmonic potential V0(x) = 1
2
ω2

0x
2 (black curve)

by various perturbations (dashed curves). These potentials correspond to po-
tentials of magnets in the synchrotron, described in Figure 3.1. (a) The first
order perturbation translate the potential and shifts the equilibrium position
of the oscillations. (b) The second order perturbation changes the potential to
a different quadratic form and changes the system’s frequency. (c) Depending
on the oscillation amplitude, the third order perturbation drives a mode with
the angular frequency 2ω0 and shifts the equilibrium point. (d) Depending on
the oscillation amplitude, the fourth order perturbation changes the frequency
of the system and drives a mode with the angular frequency 3ω0.
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3.1.2 Second Order Perturbation

A second order perturbative force f(x) is linearly proportional to x, corre-

sponding to a potential V (x) = 1
2
ω2

0x
2 + 1

2
κ2x

2 (Figure 3.2(b)). Here, κ2 is

a constant to describe the strength of the second order perturbation. The

equation of motion is given by

d2x

dt2
+ ω2

0x = −κ2x . (3.8)

This perturbation changes the angular frequency of the system from ω0 to an

another value ω:

ω =
√
ω2

0 + κ2 � ω0 +
κ2

2ω0
, (3.9)

If the perturbation is small and ω2
0 � κ2, ω is approximated by the second

expression. Figure 3.2(b) shows schematic potentials of the cases with and

without the second order perturbation. The perturbation changes the coeffi-

cient of the quadratic potential from ω2
0 to ω2

0 + κ2 and, hence, changes the

frequency of the system. In a synchrotron, the second order perturbations

are due to quadrupole field errors and we can expect such errors change the

betatron tune. As discussed later in Section 3.2, a change of the betatron tune

may have a significant impact on operations of a synchrotron.

When the second order perturbation is small, a naive way to solve

Equation 3.8 is to expand x(t) around the solution of the homogeneous part

x0(t) from Equation 3.2, such as x(t) = x0(t) + x2(t), and to solve for the

difference x2(t). Here, the difference x2(t) is of the order of κ2. Up to the first

of order of κ2, the equation to determine x2(t) is given by

d2x2

dt2
+ ω2

0x2 = −κ2x0 = −κ2a cos(ω0t) . (3.10)
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The right-hand-side of this equation indicates that, on the first order of κ2,

the second order perturbation reduces to an external force with the angular

frequency ω0. If we use the solution of the driven oscillator in Equation 3.4, the

second order position x2 becomes infinitely large. This result is quite different

from the true effect of the second order perturbation, changing the frequency

of the system. When a perturbation changes the frequency of the system,

the naive perturbation like this always ends up infinity and we must use a

modified perturbation technique [32]. The essence of such a modified pertur-

bation technique is the following. First, from the coefficient of the external

force giving divergence, in this case κ2a, we can predict the frequency change

of Equation 3.9. Once we know the new angular frequency ω, we replace all

the intrinsic angular frequency ω0 to this new frequency ω. Then, the leading

order position x0(t) is changed to

x0(t) = a cos(ωt) . (3.11)

After this replacement of the angular frequency, we can drop the external force

giving the divergence, in this case [−κ2a cos(ω0t)]. Here, there is no external

force for the second order position x2(t) and so x2(t) = 0. Hence, the modified

perturbation technique also gives

x(t) = x0(t) = a cos(ωt) . (3.12)

This modified perturbation technique will be used for the fourth order per-

turbations to a simple harmonic oscillator and the betatron oscillations in

Sections 3.1.4 and 3.2.4.
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3.1.3 Third Order Perturbation

We next consider third and fourth order perturbations to a simple harmonic

oscillator, as examples of nonlinear perturbations. In contrast to the first and

second order perturbations, closed form solutions do not always exist under

the presence of the nonlinear perturbations. Here, we consider only the leading

order effects of these perturbations.

For a third order perturbation, the perturbative force f(x) is propor-

tional to square of x, corresponding the potential V (x) = 1
2
ω2

0x
2 + 1

6
κ3x

3

(Figure 3.2(c)). Here, κ3 is a constant to describe the strength of the third

order perturbation. Then, the equation of motion is given by

d2x

dt2
+ ω2

0x = −1

2
κ3x

2 . (3.13)

Figure 3.2(c) shows schematic potentials of oscillators with and without the

third order perturbation. The figure indicates that, when the oscillation am-

plitude (or the energy) increases, the equilibrium point of the oscillations shifts

from the origin, in this case leftward. When the oscillation amplitude increases,

the potential deviates farther from the quadratic form 1
2
ω2

0x
2 and, as we learn

next, this indicates that the perturbation drives modes with different angular

frequencies from the intrinsic angular frequency ω0.

We can solve Equation 3.13 perturbatively by expanding x(t) around

the solution of the homogeneous part x0(t) from Equation 3.2. By substituting

x(t) = x0(t) + x3(t) into Equation 3.13, up to the first order of the parameter

κ3, the equation to determine the third order position x3(t) is given by

d2x3

dt2
+ ω2

0x3 � −1

2
κ3x

2
0

= −1

4
κ3a

2 − 1

4
κ3a

2 cos(2ω0t) , (3.14)
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where we used a formula of the trigonometric functions to rewrite x0(t)
2 =

a2 cos2(ω0t):

cos2(ω0t) =
1

2
+

1

2
cos(2ω0t) . (3.15)

As derived in Equation 3.5, the constant term in Equation 3.14 simply shifts

the equilibrium point of the oscillations. The right-hand-side of Equation 3.14

also contains a term proportional to cos(2ω0t) which corresponds to the case

of the driven harmonic oscillator with the angular frequency ωd = 2ω0. From

Equations 3.3 and 3.4, this term drives a mode with the angular frequency

2ω0. The full solution x(t) = x0(t) + x3(t) is given by the sum of these three

contributions:

x(t) = a cos(ω0t) − κ3a
2

4ω2
0

+
κ3a

2

12ω2
0

cos(2ω0t) . (3.16)

We note that the magnitudes of both of the perturbative effects depend on

the amplitude of the leading order oscillations a, which makes this a nonlinear

perturbation.

In a synchrotron, the third order perturbations are due to sextupole

magnetic fields. From these discussions, we can expect that the presence of

sextupole fields in a synchrotron will distort the central orbit of the beam and

will also drive modes whose tunes are twice of the intrinsic betatron tune.

3.1.4 Fourth Order Perturbation

For a fourth order perturbation, the perturbative force f(x) is proportional

to cube of x, corresponding to the potential V (x) = 1
2
ω2

0x
2 + 1

24
κ4x

4 (Figure

3.2(d)). Here, the parameter κ4 describes the strength of the fourth order

perturbation. Then, the equation of motion is given by

d2x

dt2
+ ω2

0x = −1

6
κ4x

3 , (3.17)
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As in the case of the third order perturbation, when the oscillation amplitude

increases, the potential deviates from the quadratic form 1
2
ω2

0x
2. This indicates

that the perturbation drives a mode whose frequency is different from the

system’s intrinsic frequency.

We again try to solve Equation 3.17 perturbatively by expanding x(t)

around the solution of the homogeneous part, such as x(t) = x0(t)+x4(t). Up

to the first order of the constant parameter κ4, x4(t) is determined by

d2x4

dt2
+ ω2

0x4 � −1

6
κ4x

3
0

= −1

8
κ4a

3 cos(ω0t) − 1

24
κ4a

3 cos(3ω0t) , (3.18)

where we used a formula of the trigonometric functions to rewrite x0(t)
3:

cos3(ω0t) =
3

4
cos(ω0t) +

1

4
cos(3ω0t) . (3.19)

We note that the two terms on the right-hand-side of Equation 3.18 drive

modes whose angular frequencies are ω0 and 3ω0. As we discussed about the

second order perturbation in Section 3.1.2, the term [− 3
24
κ4a

3 cos(ω0t)] makes

the fourth order position x4 infinitely large and we have to use the modified

perturbation technique in such a case. Here, we follow the procedure discussed

in Section 3.1.2. First, by comparing Equations 3.9, 3.10, and 3.18, we can

expect that the new frequency of the system ω is given by

ω � ω0 +
κ4a

2

16ω0
. (3.20)

After this frequency change, the leading order solution x0(t) is given by

x0(t) = a cos(ωt) . (3.21)

Once the frequency is changed, the influence of the term [− 3
24
κ4a

3 cos(ω0t)]

is included and we can drop this term from Equation 3.18. The fourth order
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position x4(t) is now determined by

d2x4

dt2
+ ω2x4 = − 1

24
κ4a

3 cos(3ωt) , (3.22)

where the intrinsic angular frequency ω0 is replaced by the new angular fre-

quency ω. Hence, from Equation 3.4, the full solution x(t) = x0(t) + x4(t) is

given by

x(t) = a cos(ωt) +
κ4a

3

192ω2
cos(3ωt) . (3.23)

In this way, the fourth order perturbation changes the oscillator’s frequency

and drives a mode with the angular frequency 3ω. We note that both of these

effects depend on the amplitude of the leading order solution a, again making

this a nonlinear perturbation.

In a synchrotron, the fourth order perturbations are due to octupole

magnetic fields. From these discussions, we can expect presence of the octupole

fields in a synchrotron changes the betatron tune and also drives modes whose

tunes are three times of the tune of the leading order solution, and the effects

grow as the particles’ oscillation amplitude increases.

3.1.5 Remarks on a Perturbation of an Arbitrary Order

From the discussions of the third and fourth order perturbations, we can see

that a higher order perturbation includes effects of lower order perturbations.

For a system with the intrinsic angular frequency ω0, we can make the following

general statement.

• A perturbation of an odd order 2n + 1 shifts the equilibrium point of

the oscillations and also drives modes with angular frequencies 2nω0,

(2n− 2)ω0, . . . , and 2ω0.
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• A perturbation of an even order 2n changes the angular frequency to a

new value ω and also drives modes with angular frequencies (2n− 1)ω,

(2n− 3)ω, . . . , and 3ω.

When a system has perturbations of the first and nth (n ≥ 2) orders,

the combination produces perturbations of all the orders less than n. The

equation of motion for this system is given by

d2x

dt2
+ ω2

0x = −κ1 − 1

(n− 1)!
κnx

n−1 , (3.24)

where κ1 and κn are parameters to describe the strengths of the first and

nth order perturbations. If we expand x(t) around κ1/ω
2
0, such as x(t) =

−κ1/ω
2
0 + x̄(t), the equation of motion for the difference x̄ is given by

d2x̄

dt2
+ ω2

0x̄ = − κn
(n− 1)!

(
x̄− κ1

ω2
0

)n−1

. (3.25)

We note that the right-hand-side includes the terms of all the powers of x̄ up

to n − 1. Hence, the nth order perturbation combined with the first order

perturbation effectively produces perturbations of all the orders up to nth. In

accelerator physics, this phenomenon is called feeddown effect: when a particle

passes off center through an nth order magnet, it feels multipole fields of all

the order up to nth. For instance, when a particle goes through a quadrupole

magnet and the particle’s mean position is off the center of the magnet, the

quadrupole magnet produces an effective dipole field and bends the mean

trajectory of the particle (Figure 3.3). The strength of this effective dipole

fields depend on the mean offset from the center of the quadrupole magnet.

Such an offset could be caused by the orbit change due to dipole field errors

or misalignments of the quadrupole magnets.
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Figure 3.3: A feeddown dipole field produced by a quadrupole magnet. When
a particle’s mean position is off the center of the quadrupole magnet, the
quadrupole magnet produces an effective dipole field whose strength depends
on the mean offset from the center of the magnet.
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3.1.6 Summary

In this section, we have reviewed particle motion in a simple oscillatory system,

which is under the perturbations of polynomial forces. By choosing pertur-

bations with similar mathematical forms as perturbative magnetic fields in a

synchrotron, we have derived a relatively clear understanding about the effects

due to such perturbative fields, which are summarized in Table 3.1.

3.2 Perturbations to Betatron Oscillations

In this chapter, so far, we have studied classical systems of simple oscillators,

which have perturbative forces similar to the forces of the magnets in the

synchrotron. In this section, we discuss various effects of perturbative magnetic

fields on beam particles’ motions. As will be seen, such considerations will

reproduce the results in Table 3.1. In particular, we study perturbations due

to a single thin magnetic element. From Hill’s equation (Equation 2.26), the

equation of motion in such a case is given by

x′′ +K0(s)x = −ΔBy(x, s̃0)�

(Bρ)

∞∑
n̄=−∞

δ(s− s̃0 − n̄C) , (3.26)

where K0 is the effective gradient of the unperturbed case, ΔBy(x, s̃0) is mag-

netic field of the perturbation, s̃0 (0 ≤ s̃0 < C) is location of the perturbation,

� is longitudinal length of the perturbation, n̄ is a dummy variable of the

summation, C is circumference of the synchrotron and δ(s − s̃0 − n̄C) is the

Dirac δ-function. We note that the Dirac δ-function indicates the perturbative

field is in a thin region and the summation describes periodicity of the system.

The Dirac δ-functions summed over all the revolution number is referred to

as periodic δ-function. In the following, from Equation 2.33, we denote the
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solution of homogeneous Hill’s equation by

x0(s) = A
√
β0(s̃) cos(2πν0n+ ψ0(s̃) + χ) , (3.27)

where β0(s), ψ0(s), and ν0 are the amplitude function, phase advance, and tune

when there is no perturbation. Discussions of the simple classical oscillators

indicate that the perturbative fields may change these parameters and may

also add additional terms to this solution x0.

3.2.1 Dipole Field Errors

In a synchrotron, dipole field errors produce first order perturbations to the

betatron oscillations. Major sources of the dipole field errors are construction

errors of the magnets, errors of magnets’ power supplies, tilts of the dipole

magnets, and the feeddown effects of higher order magnets such as a misaligned

quadrupole magnet in Figure 3.3. From the discussion of the simple oscillator

with the first order perturbation, in Section 3.1.1, we expect the dipole field

errors change the mean trajectories of the beam particles.

Simulation of a FODO Lattice System with a Dipole Error

To study influence of a thin dipole field error, we again use the simulation of

the FODO lattice system, which we discussed about in Section 2.2.3. Figure

3.4 shows simulated trajectory of a particle in a system of FODO lattices with

a dipole field error. In the figure, a thin dipole field error is at the location of

the focusing lens F5. When the particle goes through a thin dipole field, the

angle is changed by a constant value, in this case 10 μrad, but the position

remains the same. Red and blue lines represent the particle’s trajectories with

and without the dipole field error. The green line represents the average of
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Figure 3.4: A simulation of a particle’s trajectory in a system of the FODO
lattices with a dipole field error. When there is a dipole field error, the particle
undergoes betatron oscillations around a new central orbit (green line). The
new central orbit oscillates around the synchrotron but undergoes a sudden
change at the location of the error.
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the red lines. The green line indicates that, under the influence of the thin

dipole field error, the beam particles have a new central orbit and they undergo

betatron oscillations around this new central orbit. The situation is similar to

the discussion in Section 3.1.1. The change of the central orbit is a periodic

function of the longitudinal position, oscillating roughly one and half times

with a sudden change at the location of the dipole field error. The deviation

of the new central orbit from x = 0 tends to be large at locations where the

betatron amplitude function β(s) is large. We note that such a change of

the central orbit can be directly measured by BPM’s. Hence, compared to

the other higher order perturbations, dipole field errors could be found and

corrected relatively easily.

Solution Using Green’s Functions of Hill’s Equation

Here, we discuss mathematical details of the central orbit change due to a thin

dipole field error. When there is a thin dipole field error, from Equation 3.26,

the equation of motion is given by

x′′ +K0(s)x = −θ
∞∑

n̄=−∞
δ(s− s̃1 − n̄C) , (3.28)

where θ = ΔBy,0(s̃1)�/(Bρ) is bend angle of the dipole field error located

at s̃1 (0 ≤ s̃1 < C). One way to solve this equation is to use the matrix

formalism discussed in Section 2.3.4 (see for instance [7]). Here, instead, we

review a solution using Green’s function of Hill’s equation. By using the

Green’s function, calculation of the orbit change becomes straight forward.

The Green’s function is also useful later when we calculate driven motion of

the beam particles in Section 6.1.

The retarded Green’s function of Hill’s equation, G∞(s|s0), is defined
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by the following differential equation:

G′′
∞(s|s0) +K0(s)G∞(s|s0) = δ(s− s0) . (3.29)

We can construct the retarded Green’s function G∞(s|s0) from the solution of

homogeneous Hill’s equation [33]:

G∞(s|s0) = Θ(s− s0)
√
β0(s)β0(s0) sin(ψ0(s|s0)) , (3.30)

where Θ(s) is the Heaviside step function:

Θ(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 (s < 0)

1
2

(s = 0)

1 (s > 0)

. (3.31)

We note that derivative of the Heaviside step function is the Dirac δ-function:

dΘ(s)

ds
= δ(s) . (3.32)

Given this property of the Heaviside step function, it is a straight forward

calculation to check the function in Equation 3.30 satisfies Equation 3.29.

When the external force is a periodic function, like the case of the thin dipole

field error in Equation 3.28, the equation of motion can be also solved by using

periodic Green’s function GC(s|s0), defined by

G′′
C(s|s0) +K0(s)GC(s|s0) =

∞∑
n̄=−∞

δ(s− s0 − n̄C) , (3.33)

where the subscript C denotes the period of the system. The periodic Green’s

function GC(s|s0) is constructed with the retarded Green’s function G∞(s|s0)

[34]:

GC(s|s0) =

∞∑
n̄=−∞

G∞(s|s0 + n̄C)

=

√
β0(s̃)β0(s̃0)

2 sin(πν0)
cos(ψ0(s̃|s̃0) − πν0 sgn(s̃− s̃0)) , (3.34)
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where sgn(s) is sign function defined by

sgn(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1 (s < 0)

0 (s = 0)

1 (s > 0)

, (3.35)

and s̃ and s̃0 denote s and s0 modulo the circumference C as in Section 2.3.2.

From Equation 3.34, the periodicity of GC(s|s0), GC(s|s0) = GC(s + C|s0) =

GC(s|s0 + C), can be easily checked.

Given the Green’s functions, the particular solution of Equation 3.28,

x1(s), is calculated from the following integral:

x1(s) =

∫ ∞

−∞
ds0G∞(s|s0)

[
−θ

∞∑
n̄=−∞

δ(s0 − s̃1 − n̄C)

]

=

∫ C

0

ds0GC(s|s0) [−θδ(s̃0 − s̃1)]

= −θ
√
β0(s̃1)β0(s̃)

2 sin(πν0)
cos(ψ0(s̃|s̃1) − πν0 sgn(s̃− s̃1)) . (3.36)

We note that, when we use the retarded Green’s function, we have to integrate

the influence of the dipole field error from −∞ to ∞. Whereas, when we

use the periodic Green’s function, the same solution is given by the integral

within one period. From Equations 3.33 and 3.36, the orbit change due to a

thin dipole field error has the same functional form as the periodic Green’s

function. Hence, the properties of the new central orbit seen in Figure 3.4,

such as the dependence of the amplitude function and the sudden change at

the location of the source, come from the periodic Green’s function GC(s|s0).

In Equation 3.36, the sudden change of the new central orbit at the error

location is described by the term [−πν0 sgn(s̃ − s̃1)]. We will see the similar

sudden changes of parameters at the error sources in the cases of the higher

order perturbations, as well. We note that the new central orbit is inversely
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proportional to sin(πν0). Hence, the orbit change gets larger when the tune ν

gets close to an integer. In bad cases, we may lose particles if the new central

orbit is deviated too far from the ideal one. This is an example of phenomenon

referred to as resonance and is due to the periodicity of the system. The

resonance driven by the dipole field errors are referred to as integer resonance

or the first order resonance. When we design and operate synchrotrons, we

avoid the tune being too close to integers.

Multipole Dipole Field Errors

In a real synchrotron consisting of many elements, there are usually multiple

number of errors. When there are N1 dipole field errors at locations of s̃1,j

(j = 1, 2, . . . , N1) and their bend angles are given θj = ΔBy,0(s̃1,j)�/(Bρ), the

equation of motion (Equation 3.28) is modified to

x′′ +K0(s)x = −
N1∑
j=1

θj

∞∑
n̄=−∞

δ(s− s̃1,j − n̄C) . (3.37)

The particular solution of this equation is superposition of the orbit changes

due to all the dipole field errors. From Equation 3.36,

x1(s) = −
N1∑
j=1

θj
√
β0(s̃1,j)β0(s̃)

2 sin(πν0)
cos(ψ0(s̃|s̃1,j) − πν0 sgn(s̃− s̃1,j))

→ −
∫ C

0

ds̃1

ΔBy,0(s̃1)
√
β0(s̃1)β0(s̃)

2(Bρ) sin(πν0)
cos(ψ0(s̃|s̃1) − πν0 sgn(s̃− s̃1)) .

(3.38)

Here, the second expression is useful for a case when the dipole field errors are

distributed almost continuously. This equation indicates that, when there are

multiple dipole field errors, the net effect is determined by the error strengths,

the amplitude functions at the error locations, and the relative phase differ-

ences among the error locations.
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3.2.2 Quadrupole Field Errors

In a synchrotron, quadrupole field errors produce second order perturbations

to the betatron oscillations. The sources of the quadrupole field errors are

construction errors of the magnets, errors of magnets’ power supplies, and the

feeddown effects of higher order magnets. From the discussion of the second

order perturbation to a simple classical oscillator in Section 3.1.2, we can pre-

dict the quadrupole field errors change the betatron tune. In addition, because

of the correlation between the amplitude function and phase advance given in

Equation 2.31, the quadrupole field errors change the amplitude function of a

synchrotron, as well.

Tune Shift

Here, we discuss the change of the betatron tune (referred to as tune shift in

accelerator physics) due to a thin quadrupole field error. When there is a thin

quadrupole field error, the equation of motion is given by

x′′ +K0(s)x = −qx
∞∑

n̄=−∞
δ(s− s̃2 − n̄C) , (3.39)

where s̃2 (0 ≤ s̃2 < C) is location of the error and q = ΔBy,1�/(Bρ) is the

effective strength of the quadrupole field error. From Equations 2.7 and 2.8,

the error corresponds to the transfer matrix

Mq =

⎛
⎝ 1 0

−q 1

⎞
⎠ . (3.40)

Suppose the single turn transfer matrices of the location s̃2 are M0(s̃2 +C|s̃2)

without this quadrupole field error and M(s̃2 + C|s̃2) with this quadrupole

field error. With the transfer matrix of the quadrupole field error Mq, these
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two matrices are related by

M(s̃2 + C|s̃2) = M0(s̃2 + C|s̃2)Mq . (3.41)

From Equation 2.45, the matrix elements of M0(s̃2 +C|s̃2) and M(s̃2 +C|s̃2)

are given by

M0(s̃2 + C|s̃2)

=

⎛
⎝cos(2πν0) + α0(s̃2) sin(2πν0) β0(s̃2) sin(2πν0)

−γ0(s̃2) sin(2πν0) cos(2πν0) − α0(s̃2) sin(2πν0)

⎞
⎠ (3.42)

and

M(s̃2 + C|s̃2)

=

⎛
⎝cos(2πν) + α(s̃2) sin(2πν) β(s̃2) sin(2πν)

−γ(s̃2) sin(2πν) cos(2πν) − α(s̃2) sin(2πν)

⎞
⎠ , (3.43)

where β0(), α0(s), γ0(s), and ν0 are the Courant-Snyder parameters and tune

without this quadrupole field error and β(s), α(s), γ(s), and ν are those under

the influence of this quadrupole field error. By substituting these two equations

into Equation 3.41, we can get the relations among the old and new Courant-

Snyder parameters and tunes. By comparing the traces of the both sides in

Equation 3.41, we get

cos(2πν) = cos(2πν0) − 1

2
qβ0(s̃2) sin(2πν0) . (3.44)

Hence, up to first order of the effective quadrupole strength q, the tune shift

Δν is given by

Δν ≡ ν − ν0 � qβ0(s̃2)

4π
. (3.45)
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We note that, when the intrinsic tune ν0 is close to an integer or a

half-integer, the new tune determined by Equation 3.44 may not be real, de-

pending on magnitude and sign of qβ0(s̃2). If the quadrupole field error is

large enough to make the new tune imaginary, the particle’s motion becomes

unstable. Such instability driven by quadrupole field errors are referred to as

half-integer resonance or second order resonance. Not only when the tune is

exactly an integer or a half integer, there are ranges of the initial tune around

integers or half-integers, in which the new tune become imaginary and the par-

ticle’s motion becomes unstable. Such a region in space of the tune is referred

to as a stopband. The width of the stopband is determined by strengths of

errors.

So far, we have discussed that the particle’s motion may be unstable

when the tune is close to an integer of a half-integer. If we consider higher

order perturbations, there are more resonances. We also note that, due to a

finite spread of longitudinal momenta, particles within the beam have slightly

different tunes. Hence, the significance of the quadrupole field errors lies in

that, even if we design a synchrotron so that the tune is off the dangerous values

such as integers and half-integers, these errors may shift the tunes of some

particles into a undesired region, making those particles’ motions unstable.

Measurement and control of the tune is crucial for stability of the beam in a

synchrotron.

When there areN2 quadrupole field errors, whose locations and effective

gradients are given by s̃2,j (j = 1, 2, . . . , N2) and qj = ΔBy,1(s̃2,j)�/(Bρ), up

to first order of the effective gradients qj , the net tune shift is a superposition
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of the tune shifts due to all the quadrupole errors:

Δν �
N2∑
j=1

qjβ0(s̃2,j)

4π
→

∫ C

0

ds̃2
ΔBy,1(s̃2)β0(s̃2)

4π(Bρ)
. (3.46)

In contrast to the central orbit change due to multiple dipole field errors, given

in Equation 3.38, the net tune shift is determined by this simple superposition

is independent of the relative phase differences among the errors.

Simulation of a FODO Lattice System with a Quadrupole Error

Compared to the simple harmonic oscillations, one difference of the betatron

oscillations is the correlation between the amplitude and phase, given by Equa-

tion 2.31. Because of this correlation, the quadrupole field error, causing the

tune shift, changes the amplitude function and also phase advance. This can

be foreseen from the equation to determine the amplitude function, Equa-

tion 2.30. The quadrupole field error modified the effective gradient K0(s)

and, hence, changes the amplitude function which is determined from K0(s).

To study such influences of the quadrupole field error on the beam particles,

we again use the simulation of the FODO lattice system, similar to those in

Section 2.2.3.

Figure 3.5 shows a simulation of a particle’s trajectory in a system

consisting of FODO lattices, where the strength of the quadrupole magnet F5

is intentionally decreased by 5%. Red and blue lines represent the trajectories

with and without the influence of this quadrupole error, when the particle

starts from the same initial condition. The central orbit remains at x = 0 but

the envelope of the particle’s positions is modified, indicating the change of

the amplitude function.

The middle plot of Figure 3.5 shows the normalized change of the am-

plitude function as a function of the longitudinal position, (Δβ/β0)(s̃) ≡
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Figure 3.5: A simulation of a particle’s trajectory in a system of the FODO
lattices with a quadrupole field error. A quadrupole field error changes the
amplitude function and, hence, changes the envelope of the trajectory. In
the case of multiple particles, quadrupole field errors change the transverse
beam sizes. The middle and bottom plots show the normalized change of the
amplitude function (Δβ/β0)(s̃) and the change of the phase advance Δψ(s̃).
Much like the central orbit change due to dipole field errors, these quantities
oscillate along the system. We note that (Δβ/β0)(s̃) undergo a sudden change
at the error location. Whereas, Δψ(s̃) is shifted by a constant value at the
error location.
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(β(s̃) − β0(s̃))/β0(s̃). This quantity is referred to as beta-beat. The beta-

beat (Δβ/β0)(s̃) oscillates along the system and undergoes a sudden change

at the location of the quadrupole error. We note that the number of the oscil-

lations of the beta-beat is about three2. As we discussed in Section 2.2.3, the

maximum deviation of a single particle can be interpreted as the outermost

particle within the beam, determining the beam size. Hence, the quadrupole

field errors alter the beam size and may influence the luminosity of the collider.

The bottom plot of Figure 3.5 shows the change of the phase advance

as a function of the longitudinal position, Δψ(s̃) ≡ ψ(˜̃s) − ψ0(s̃). Here, the

reference point of the phase advance is in front of the quadrupole F1. Similar to

the beta-beta (Δβ/β0)(s̃), we call the quantity Δψ(s̃) phase-beat. Much like

the beta-beat, the phase-beat oscillates along the system and the number of

the oscillations is roughly three in this simulation. In contrast to the beta-beat,

the phase-beat has a constant difference between its upstream and downstream

values.

We note that these changes of the amplitude function and phase advance

cannot be measured with BPM’s in a naive manner. To measure such changes,

we have to excite and observe a certain mode of particles’ motion. An AC

dipole is one of such a tool to excite a mode of beam particles. This makes

a quite contrast to the change of the central orbit due to dipole field errors,

which can be directly measured with BPM’s. We discuss the measurement

based on the excitation of the beam particles’ motion in Chapter 4.

2Behaviors of the beta-beat, such as the sudden change at the error location, are quite
similar to the behaviors of the central orbit change due to a dipole field error, seen in Figure
3.4. However, the number of the oscillations along the system is twice for the beta-beat,
compared to the central orbit change.
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Beta-beat and Phase-beat

In this section, we discuss mathematical expressions of the beta-beat (Δβ/β0)(s̃)

and phase beat Δψ(s̃), due to a thin quadrupole field error. Some equations

in this section are also used when we discuss driven oscillations of the beam

particles in Chapter 6.

When we derived the tune shift due to a thin quadrupole field error,

we compared the single turn transfer matrices of the error location with and

without the influence of the quadrupole field error, M(s̃2 +C|s̃2) and M0(s̃2 +

C|s̃2) given in Equations 3.42 and 3.43. From these two matrices, we can also

get a relation between the perturbed and unperturbed amplitude function of

the error location, β(s̃2) and β0(s̃2). By repeating the same process at all the

locations in the synchrotron3, we get a relation between the perturbed and

unperturbed amplitude functions of an arbitrary location s̃:

β(s̃) sin(2πν)

=

⎧⎪⎨
⎪⎩
β0(s̃)

[
sin(2πν0) − qβ0(s̃2) sin(ψ0(s̃+ C|s̃2)) sin(ψ0(s̃2|s̃))

]
(s̃ < s̃2)

β0(s̃)
[
sin(2πν0) − qβ0(s̃2) sin(ψ0(s̃|s̃2)) sin(ψ0(s̃2 + C|s̃))] (s̃ > s̃2)

.

(3.47)

From this equation and Equation 3.44, giving the new tune ν, up to first order

of the effective quadrupole strength q, the beta-beat is given by

(
Δβ

β0

)
(s̃) � − qβ0(s̃2)

2 sin(2πν0)
cos(2ψ0(s̃|s̃2) − 2πν0 sgn(s̃− s̃2)) . (3.48)

3Suppose we know the unperturbed Courant-Snyder parameters of an arbitrary location,
β0(s), α0(s), and γ0(s). By propagating these two matrices to the other location s̃ with
Equation 2.50, we can calculate the perturbed and unperturbed single turn transfer matrices
of the new location s̃, M(s̃ + C|s̃) and M0(s̃ + C|s̃). Relations among the perturbed and
unperturbed Courant-Snyder parameters are determined by comparing the matrix elements
of these two matrices.
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Here, in the second expression, we rewrote qβ0(s̃2) with the tune shift Δ by

using Equation 3.45. The equation indicates that, when the betatron tune

is close to an integer or a half-integer, a quadrupole field error may diverge

particle motion in the synchrotron. This is another aspect of the second order

resonance. The sudden change of the beta-beat at the error location, seen

in Figure 3.5, is due to the term [−2πν0 sgn(s̃ − s̃2)] in the phase. We also

note that the phase of the the beta-beat is twice of the central orbit change in

Equation 3.36. This is from the orders of the perturbations.

The new betatron phase advance including the influence of the quadrupole

field error, ψ(s̃|s̃0), can be calculated from the definition of the phase advance,

Equation 2.31:

ψ(s̃|s̃0) =

∫ s̃

s̃0

ds̄

β(s̄)

�
∫ s̃

s̃0

ds̄

β0(s̄)

[
1 −

(
Δβ

β0

)
(s̄)

]

= ψ0(s̃|s̃0) −
∫ ψ0(s̃|s̃2)

ψ0(s̃0|s̃2)
dψ̄

(
Δβ

β0

)
(s̄(ψ̄)) , (3.49)

where, in the last expression, we used the relation ψ0(s̃|s̃0) =
∫ s̃

s̃0
ds̄/β0(s̄) and

changed the dummy variable from the longitudinal position s̄ to the phase

ψ̄ ≡ ψ0(s̄|s̃2). By performing this integral with the explicit form of the beta-

beat, given in Equation 3.48, the phase-beat due the quadrupole field error,

Δψ(s̃|s̃0) ≡ ψ(s̃|s̃0) − ψ0(s̃|s̃0), is given by

Δψ(s̃|s̃0) =
qβ0(s̃2)

4 sin(2πν0)

[
sin(2ψ0(s̃|s̃2) − 2πν0 sgn(s̃− s̃2))

− sin(2ψ0(s̃0|s̃2)2πν0 sgn(s̃0 − s̃2))
]

+
qβ0(s̃2)

4

[
sgn(s̃− s̃2) − sgn(s̃0 − s̃2)

]
. (3.50)

We note that the amplitude of the phase-beat is half of the amplitude of
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the beta-beat. The term 1
4
qβ0(s̃2)[· · · ] make the step structure of the phase-

beat between the upstream and downstream of the error location, seen in the

simulation of Figure 3.5. From Equation 3.45, the step size 1
2
qβ0(s̃2) is equal

to 2πΔν. When we measure the phase advance and compared to the ideal

case, such a step structure indicates the location of the quadrupole field error.

These results are summarized in Table 3.1.

Remarks on the Solution Using the Perturbative Expansion

Here, we try to solve Equation 3.39 by expanding the position x(s) around

the solution of the homogeneous Hill’s equation x0(s) (Equation 3.27): x(s) ≡
x0(s) + x2(s). Up to the first order of the effective gradient q, the equation to

determine x2(s) is given by

x′′2 +K(s)x2

= −qx0

∞∑
n̄=−∞

δ(s− s̃2 − n̄C)

= −qAβ0(s̃2)
1/2

∞∑
n̄=−∞

δ(s− s̃2 − n̄C) cos(2πν0n̄+ ψ0(s̃2) + χ) . (3.51)

The right-hand-side is a driving force with the same tune as the intrinsic tune

of the system ν0. Such a force gives a diverging solution, indicating the per-

turbative solution must be modified. Procedure of the modified perturbative

solution is similar to the case of the simple classical oscillator in Section 3.1.2.

When we have such a driving force to give a diverging solution, we first change

the tune, amplitude function, and phase advance based on Equations 3.45,

3.48and 3.50. After these changes, we can drop the term of the driving force

from the equation to determine the higher order position. Another example

will be discussed in Section 3.2.4
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3.2.3 Sextupole Fields

In this section, we discuss third order perturbation to the betatron oscilla-

tions due to sextupole magnetic fields. So far, we have considered motion of

a single particle within the beam, assuming the particle has the ideal longi-

tudinal momentum. However, distribution of the beam particles’ longitudinal

momenta has a finite spread (momentum spread of the beam). Because the

restoring force of the effective gradient K0(s) depends on the magnetic rigid-

ity (Bρ) = p/e, such deviations of the longitudinal momenta cause the tune

shifts and make distribution of the particles’ tunes finite (tune spread of the

beam). This phenomenon is referred to as Chromatic aberration (See for in-

stance [7, 8]). In the synchrotrons, Sextupole magnets are used to compensate

the tune spread due to the momentum spread. A synchrotron may also have

sextupole fields due to errors. From the discussion of the simple classical os-

cillator in Section 3.1.3, we can expect that the sextupole fields change the

central orbit and also drive modes whose tunes are twice of the intrinsic beta-

tron tune.

The magnetic field of a sextupole magnet is given by

Bx(x, y) = By,2xy (3.52)

By(x, y) =
1

2
By,2(x

2 − y2) . (3.53)

Schematic field lines of a sextupole magnet is shown in Figure 3.1(c). These

equations indicate that a sextupole magnetic field couples motions in the two

transverse planes. Here, we only consider the simplest case of y = 0 and,

then, a sextupole magnet produces a force proportional to square of x in the

horizontal plane. When there is a thin sextupole field, the equation of motion
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is given by

x′′ +K0(s)x = −1

2
k3x

2

∞∑
n̄=−∞

δ(s− s̃3 − n̄C) , (3.54)

where k3 ≡ By,2�/(Bρ) is effective strength of the sextupole magnet and s̃3 is

location of the sextupole magnet. We again solve this equation perturbatively

by expanding the position x(s) around the solution of homogeneous Hill’s

equation, x0(s) in Equation 3.27, x(s) ≡ x0(s)+x3(s). Up to the first order of

the sextupole magnet’s effective strength k3, the equation to determine x3(s)

is given by

x′′3 +K0(s)x3

= −1

2
k3x0(s)

2

∞∑
n̄=−∞

δ(s− s̃3 − n̄C)

= −1

4
k3A

2β0(s̃3)
∞∑

n̄=−∞
δ(s− s̃3 − n̄C)

− 1

4
k3A

2β0(s̃3)
∞∑

n̄=−∞
δ(s− s̃3 − n̄C) cos(2π(2ν0)n̄+ 2ψ0(s̃3) + 2χ) , (3.55)

where we used the formula in Equation 3.15 to rewrite x0(s)
2. We note that

the first term of the right-hand-side is effectively a thin dipole field error in

Equation 3.28. From the solution of the thin dipole field error, Equation 3.36,

and also the solution of the driven betatron oscillations discussed in Section
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6.1, Equation 6.2, the full solution, x(s) = x0(s) + x3(s), is given by

x(s) = A
√
β0(s̃) cos(2πν0n+ ψ0(s̃) + χ)

− k3A
2β0(s̃3)

3/2
√
β0(s̃)

8 sin(πν0)
cos(ψ0(s̃) − ψ0(s̃3) − πν0 sgn(s̃− s̃3))

+
k3A

2β0(s̃3)
3/2

√
β0(s̃)

16 sin(πν0)

× cos(2π(2ν0)n+ ψ0(s̃) + ψ0(s̃3) + πν0 sgn(s̃− s̃3) + 2χ)

− k3A
2β0(s̃3)

3/2
√
β0(s̃)

16 sin(3πν0)

× cos(2π(2ν0)n− ψ0(s̃) + 3ψ0(s̃3) + 3πν0 sgn(s̃− s̃3) + 2χ) . (3.56)

Hence, similar to the case of the simple classical oscillator in 3.1.3, the sex-

tupole changes the central orbit and drives modes with the tune 2ν0. We note

that the amplitude of the last mode is proportional to 1/ sin(3πν0). Hence,

the particle’s position may diverge when the tune is close to the condition

3ν0 = N , where N is an arbitrary positive integer. This is third order res-

onance. Because of the second and third terms, the sextupole magnet may

also cause the first order resonance like dipole magnets. These results are

summarized in Table 3.1.

3.2.4 Octupole Fields

Fourth order perturbations to the betatron oscillations are due to octupole

magnetic fields. From the discussions of the simple classical oscillator in Sec-

tion 3.1.4, we can expect that the octupole magnets cause the tune shift and

drive a mode with a tune 3ν0. Octupole magnets are employed in modern

synchrotrons to compensate for beam instabilities due to coherent motion of

beam particles, which can occur at very high intensity [35]. A synchrotron

may also have octupole magnetic fields due to error.
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The magnetic field of an octupole is given by

Bx(x, y) =
1

6
By,3(3x

2y − y3) (3.57)

By(x, y) =
1

6
By,3(x

3 − 3xy2) , (3.58)

whose schematic field lines are shown in Figure 3.1(d). We again consider only

the horizontal motion and, then, an octupole field produces a force propor-

tional to cube of x. The equation of motion is given by

x′′ +K0(s)x = −1

6
k4x

3
∞∑

n̄=−∞
δ(s− s̃4 − n̄C) , (3.59)

where k4 ≡ By,3�/(Bρ) is the effective octupole strength and s̃4 is location of

the octupole magnet. We again try to solve this equation perturbatively by

expanding the position x(s) around the solution of homogeneous Hills equation

x0(s) in Equation 3.27: x(s) ≡ x0(s) + x4(s). Up to the first order of the

parameter k4, the equation to determine the fourth order position x4(s) is

given by

x′′4 +K0(s)x4

= −1

6
k4x0(s)

3

∞∑
n̄=−∞

δ(s− s̃4 − n̄C)

= −1

8
k4A

3β0(s̃4)
3/2

∞∑
n̄=−∞

δ(s− s̃4 − n̄C) cos(2πν0n̄ + ψ0(s̃4) + χ)

− 1

24
k4A

3β0(s̃4)
3/2

∞∑
n̄=−∞

δ(s− s̃4 − n̄C) cos(2π(3ν0)n̄+ 3ψ0(s̃4) + 3χ) ,

(3.60)

where we used a formula of the trigonometric function, Equation 3.19, to

rewrite x0(s)
3. The first term in right-hand-side is an external force with the

intrinsic tune, indicating the perturbation changes the tune and the solution
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must be modified. By comparing this equation and Equation 3.51, the thin

octupole field effectively behaves like a thin quadrupole field with the strength

q = 1
8
k4A

2β0(s̃4), causing the tune shift, beta-beat, and phase beat. For

instance, the tune shift due to this octupole field is given by

Δν =
k4A

2β0(s̃4)
2

32π
. (3.61)

The beta-beat and phase-beat due to this octupole field are also given by

simply substituting the q = 1
8
k4A

2β0(s̃4) into 3.48, and 3.50. We note that

these changes depend on the parameter A, which describes the oscillation

amplitude of the leading order solution x0. This indicates that, for the beam

particles with different values of A, the octupole field acts differently and, for

instance, cause the tune spread. Because of the changes of the tune, amplitude

function, and phase advance, the leading order solution x0 is modified to

x0(s) = A
√
β(s̃) cos(2πνn + ψ(s̃) + χ) , (3.62)

where ν = ν0 +Δν, β(s̃) = β0(s̃)(1 + (Δβ/β0)(s̃)), and ψ(s̃) = ψ0(s̃) +Δψ(s̃)

denote the new tune, amplitude function, and phase advance. Once these

changes are included, we can drop the first term in the right-hand-side of

Equation 3.60 and, now, the fourth order position x4(s) is determined by

x′′4 +K(s)x4

= − 1

24
k4A

3β(s̃4)
3/2

∞∑
n̄=−∞

δ(s− s̃4 − n̄C) cos(2π(3ν)n̄+ 3ψ(s̃4) + 3χ) ,

(3.63)

where K(s) ≡ K0(s)+ 1
8
k4A

2β0(s̃4)
∑∞

−∞ δ(s− s̃4 − n̄C) is a modified effective

gradient. Again, by using the solution of the driven betatron oscillations in
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Equation 6.2, the full solution, x(s) = x0(s) + x4(s), is given by

x(s) = A
√
β(s̃) cos(2πνn+ ψ(s̃) + χ)

+
k4A

3β(s̃4)
2
√
β(s̃)

96 sin(2πν)

× cos(2π(3ν)n+ ψ(s̃) + 2ψ(s̃4) + 2πν sgn(s̃− s̃4) + 3χ)

− k4A
3β(s̃4)

2
√
β(s̃)

96 sin(4πν)

× cos(2π(3ν)n− ψ(s̃) + 4ψ0(s̃4) + 4πν0 sgn(s̃− s̃4) + 3χ) . (3.64)

Hence, similar to the case of the simple classical oscillator in 3.1.4, the oc-

tupole field changes the tune, amplitude function, phase advance, and also

drives modes with the tune 3ν. We note that the amplitude of the last mode

is proportional to 1/ sin(4πν). Hence, the octupole field may diverge the par-

ticle’s position, if the tune is close to the condition 4ν = N , where N is an

arbitrary positive integer. The phenomenon is referred to as fourth order res-

onance. Because of the second term, which is proportional to 1/ sin(2πν), the

octupole magnet may also cause the second order resonance like quadrupole

magnets. These results are summarized in Table 3.1.

3.3 Summary

In this section, we reviewed the perturbations to the ideal betatron oscillations,

due to dipole field errors, quadrupole fields, sextupole fields, and octupole

fields. We saw the quadrupole field errors change the amplitude function and

may affect the luminosity of the collider. We also saw that perturbative fields

drive certain oscillation modes associated to their orders. Similar to a classical

driven oscillator, for a certain value of the tune, one of such mode may diverge
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and cause particle losses. Such phenomena are referred to as resonances. To

avoid resonances, it is ideal to measure distribution of the perturbative fields

and, if possible, make corrections. The features derived in this chapter and

summarized in Table 3.1 will be crucial for their diagnosis. As seen in Chapters

6, 7, and 8, by exciting beam motion with an AC dipole, it is possible to observe

the various phenomena in Table 3.1 due to the perturbative fields.
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Chapter 4

Synchrotron Diagnostics with

an AC Dipole

Perturbative magnetic fields in a synchrotron due to imperfections and higher

order magnets, could degrade performance of a collider both in terms of its ulti-

mate luminosity and stability of the circulating beam. It is therefore desired to

constantly diagnose the synchrotron and find the sources of such perturbations.

The simplest magnetic field error, namely, the dipole field error simulated in

Figure 3.4 can change the particles’ central orbit and such a change can be

directly observed by using the BPM system in the synchrotron. The effects

due to most other perturbative magnetic fields, however, cannot be detected

directly with a BPM system, which measures only the average position, or

central orbit, of the beam particle. Imperfections like quadrupole field error,

simulated in Figure 3.5 may significantly perturb the collider’s amplitude func-

tion and thus impact its luminosity (Equation 1.4), while leaving the central

orbit unchanged. As indicated schematically in Figure 4.1, the difficulty in a

synchrotron’s diagnosis arises because the particles’ betatron oscillations are
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AC dipole

CDF

D0

Figure 4.1: Incoherent free oscillations (gray) and excited coherent oscillations
(black) of charged particles in the Tevatron. When coherent oscillations are
excited, the beam centroid oscillates like a single particle and the oscillations
can be observed by a BPM. An AC dipole is one of such tools to excite coherent
oscillations of the beam.
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“incoherent”: each beam particle undergoes transverse oscillations around the

synchrotron, which are at random phase differences compared to other beam

particles. Thus, while the amplitude function may be perturbed, central orbit

measured by a BPM system is unaffected.

The solution for successful diagnosis of synchrotron’s errors, such as the

beta-beat, is to excite coherent oscillations of the beam, as indicated in Figure

4.1. For instance, a kicker magnet, which produces an instantaneous dipole

field, gives an impulse to the particles and excites all beam particles into trans-

verse oscillations with the same initial phases, as the particles are perturbed

by the kick and then subsequently given restoring forces of the quadrupole

magnets (Figure 4.1). By observing such coherent oscillations, we can mea-

sure various parameters of the synchrotron. Examples of the measurements

based on the kicked beam can be seen in Section 2.7 of [36]. Application of

the kicker based measurements to the Tevatron is discussed in [37] and, in

fact, such kicker magnet systems are widely used in high energy synchrotrons

[38, 39, 40].

An AC dipole is another instrument to excite coherent beam oscillations

for the synchrotron diagnosis [4]. It produces a sinusoidally-varying dipole field

in phase with the beam particles’ betatron oscillations and excites coherent

driven oscillations of the beam. An AC dipole can produce sustained oscil-

lations for many revolutions of the beam around the synchrotron, enabling

more accurate measurements than oscillations available in fewer revolutions

after an instantaneous kick. Perhaps equally important, the AC dipole field

can be adiabatically ramped to full strength, introducing much smaller growth

in the beam emittance and the beam size compared to the excitation of the

kicker magnet. These properties of the AC dipole makes it a useful diagnostic

tool of a synchrotron. AC dipoles have been employed in the AGS and RHIC
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in BNL [4, 14, 15], CERN SPS [16, 17], and FNAL Tevatron [18, 19, 20].

There is an ongoing project to develop AC dipoles for LHC as well [22]. In

this chapter, we discuss the synchrotron diagnosis, mainly measurement of

the betatron amplitude function, using the kicker and AC dipole magnets and

compare these two magnets. Subsequent Chapters 6, 7, and 8 will demonstrate

more advanced measurements using the AC dipole.

4.1 Kick Excitation

Simulation of a Perfectly Linear Synchrotron

A conventional and common method to excite coherent oscillations is to use a

kicker magnet which produces an instantaneous dipole field and gives a single

impulse to the particles. Figure 4.2 shows a simulation of the particles’ mo-

tions after being excited by the kicker magnet, observed in the phase space

at the location of the kicker magnet. In the figure, the black points represent

individual beam particles and the white triangle represents the beam centroid

(the center of the charges), whose position is the only quantity we can measure

with a BPM. Before the excitation, each particle moves on an ellipse in this

phase space, as described in Figures 2.9 and 2.11. The shape of the parti-

cles’ phase space ellipse is determined by the Courant-Snyder parameters and,

hence, all the particles are on ellipses with the same shape. However, areas of

the ellipses and phases are different between particles and it is worth mention-

ing that the beam centroid stays at the same location, (x, x′) = (0, 0). When

a particle is deflected by a thin magnetic element, its angle is changed but

its position remains the same, and hence the particle are displaced vertically
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Figure 4.2: A simulation of kicked particles in a perfectly linear synchrotron.
The figures show snap shots of particles’ phase positions observed at the lo-
cation of the kicker magnet. The particles move coherently after the kick and
the beam centroid undergoes the elliptic motion like a single particle. The
amplitude function and phase advance can be determined from the amplitude
and phase of the beam centroid’s oscillations.
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in the phase space1. Because the kicker magnet’s dipole field is independent

of the particle’s position, it displaces all the particles vertically by the same

amount in phase space (compare the two plots on the top row). After the

excitation, each particle restarts elliptic motion from its new phase space po-

sition, and the beam centroid also undergoes the elliptic motion (gray ellipse)

as a single particle. At each BPM location, we can observe the turn-by-turn

oscillations of the beam centroid and determine the amplitude function (up to

a constant) and relative phase advances between BPM’s.

Simulation of a Synchrotron with a Tune Spread

In the simulation Figure 4.2, we assumed all the particles have the same tune

before and after the excitation. We note that, because of this assumption,

the particles did not lose the coherence of their motion and consequently the

beam’s elliptical motion in phase space could be observed over many revolu-

tions around the synchrotron. However, in real synchrotrons, this is never a

case. The particles within the beam have the tune spread due to the momen-

tum spread and/or the octupole fields. As a result, the kicked beam with a

finite tune spread will eventually lose its coherence among the particles (deco-

herence). Figure 4.3 shows the same simulation of the kicked beam as Figure

4.2 except one octupole field. As we discussed in Section 3.2.4, the octupole

field induces the amplitude dependent tune shift. Because of the octupole

field, the outer particles have smaller tunes. As seen in the figure, due to the

lags of the outer particles, the coherence of the particles is gradually lost and

the motion of the beam centroid damps down. Obviously, the speed of the

decoherence depends on the strength of the octupole field. In this simulation,

1The same argument was applied in the analysis of Section 2.1.2
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Figure 4.3: A simulation of kicked particles when there is an octupole field.
Because of the amplitude dependent tune shift due to the octupole field, the
particles gradually lose the coherence (decoherence). Due to the decoherence,
the oscillations of the beam centroid damp down and the beam size increases.
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we chose a value 1
6
By,3�β/(Bρ) � 2 × 10−3 mm−2, which is on the same order

as the total octupole field strength in the Tevatron at its injection energy. We

also note that, due to the decoherence, the particles occupy larger area in the

phase space and the beam’s transverse size increases. When the beam with

the initial rms size σ0 undergoes a kick excitation with (coherent) oscillation

amplitude ak, the rms beam size after the kick σk is given by (see for instance

Chapter 7 of [7])

σ2
k = σ2

0 +
1

2
a2
k . (4.1)

Because of such a growth in beam size, we cannot use the kicked beam for

physics experiments requiring high luminosity. The beam size growth also

makes it impossible to make consecutive excitations of the same beam, more

than a few times. To make measurements using the kicker magnet more than

a few times, we have to repeat injection and ejection of the beam every two

or three kick excitations. This process may be lengthy, particularly in a large

synchrotron like the Tevatron, where it takes a few minutes to accelerate the

beam to the highest energy.

Decoherence of Turn-by-turn Oscillations

Figure 4.4 shows turn-by-turn oscillations of the kicked beam, measured by

one BPM in the Tevatron. Because the BPM observes the position of the

beam centroid, as predicted from the simulation of Figure 4.3, the oscilla-

tions damp down due to the decoherence. In Figures 4.4(a) and 4.4(b), we

can see the speed of the decoherence varies depending on the synchrotron’s

condition. Figure 4.4(c) shows the case when the envelope has an additional

oscillatory structure. As discussed in [41], the damping speed of the decoher-

ence is determined by strengths of nonlinear fields (mostly octupole fields) and
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Figure 4.4: Turn-by-turn oscillations excited by a kicker magnet in the Teva-
tron under three different conditions. As expected from the simulation of Fig-
ure 4.3, the oscillations of the beam centroid damps down (decoherence). The
speed of the decoherence depends on the strength of the nonlinearity. When
the chromaticity is non-zero, the envelope also has the oscillatory structure.
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the oscillatory structure of the envelope, seen in Figure 4.4, is due to spread

of longitudinal momenta2.

The important point to emphasize here is that beam excitation mea-

surements, such as Figure 4.4 are performed in order to learn the optical

parameters of the synchrotron. However, to extract information of the optical

parameters from the significantly modulated data in Figure 4.4, we must con-

sider other effects such as the nonlinear fields and even the momentum spread

of beam particles, which defines a quality of the beam and has nothing to do

with the synchrotron’s magnet lattice3. Thus, the diagnostic tool can yield

ambiguous results because both beam and synchrotron effects are combined.

A Simple Model of Decoherence

We conclude this section with discussion about a simple mathematical model

of the kicked particles, giving an explanation to decoherence due to a tune

spread. When the particle is under the influence of the kicker magnet, the

equation of motion is given by

x′′ +K(s)x = −θkδ(s− s̃k) , (4.2)

where θk is the kick angle of the kicker magnet and s̃k (0 ≤ s̃k < C) denotes

the location of the kicker magnet. Because the particle is deflected only in one

revolution, the right-hand-side has only one delta function4. By integrating

the right-hand-side with the retarded Green’s function G∞(s|s0) in Equation

2As we discussed in Section 3.2.3, the effective gradient K(s) depends on the magnetic
rigidity (Bρ) = p/e and so the spread of the longitudinal momenta affects transverse motion
of an each beam particle differently.

3Although the decoherence is not desired when we measure parameters such as the am-
plitude function and phase advance, we can measure the chromaticity and the net octupole
field strength from the envelope of the turn-by-turn oscillations[41].

4The present circumstance is in contrast to that in Equation 3.28
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3.30, the particular solution after the kick (s ≥ s̃k) is given by

xk(nC + s̃) = −θk
√
β(s̃)β(s̃k) sin(2πνn + ψ(s̃|s̃k)) . (4.3)

We rewrite the solution of the homogeneous part, given in Equation 2.33, into

the following way:

x0(nC + s̃) = A0

√
β(s̃) cos(2πνn+ ψ(s̃|s̃k) + χ0) , (4.4)

where we chose the location of the kicker magnet s̃k as the reference of the

phase advance and A0 and χ0 are constants. The position of the particle

x(nC+ s̃) is the sum of these two terms: x(nC+ s̃) = xk(nC+ s̃)+x0(nC+ s̃).

Hence, the particle undergoes the betatron oscillations x0(nC + s̃) around the

coherent oscillations xk(nC + s̃), as depicted in Figure 4.1. As emphasized in

the introduction of this chapter, a BPM will be sensitive to only the coherent

oscillations, expressed by xk(nC + s̃), and not the betatron motion.

When we consider the particles within the beam, the distribution of

the constant phase χ0 is uniform. Hence, without the term of the coherent

oscillations xk(nC + s̃), the average position of the particles is zero. We note

that the total position x(nC+ s̃) = xk(nC+ s̃)+x0(nC+ s̃) can be also written

in the following way:

x(nC + s̃) = A
√
β(s̃) cos(2πνn+ ψ(s̃|s̃k) + χ) , (4.5)

where the constants A and χ are given by

A ≡
√
A2

0 + θ2
kβ(s̃k) + 2θkA0

√
β(s̃k) sinχ0

χ ≡ χ0 + arctan
θk

√
β(s̃k) cosχ0

A0 + θk
√
β(s̃k) sinχ0

. (4.6)

If we again consider multiple particles, here, the distribution of the constant

phase χ is not uniform because of the second term, even for the uniform dis-

tribution of χ0. This corresponds to the fact that the beam centroid oscillates
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after the kick. When the beam particles have a non-zero tune-spread due

to the nonlinear fields or the spread of longitudinal momenta, then the total

position x(nC + s̃) is modified to

x(nC + s̃) = A
√
β(s̃) cos(2π(ν +Δν(A))n + ψ(s̃|s̃k) + χ) , (4.7)

where Δν(A) is the deviation of the particle’s tune from the average tune

ν and each particle has a different value of Δν(A). Hence, for the beam

particles with a tune spread, the distribution of the phase is modified from χ

to 2πΔν(A)n + χ and it evolves with the revolution number n. Eventually,

when n is large enough, the distribution of the phases becomes uniform and, at

this asymptotic limit, the particles completely lose the coherence. This simple

derivation explains the behavior of the simulation in Figure 4.3, in which

the decoherence of particles in phase space was shown. In this way, with a

single turn kicker magnet, it is inherently impossible to perform measurements

of coherent oscillations over a larger period of time, and often measurement

accuracy is compromised. The ability of the experiments to fit data such in

Figure 4.4 for information of synchrotron’s parameters can be limited by such

short available measurement times.

4.2 AC Dipole Excitation

In this section, we discuss basic properties the AC dipole excitation and explain

advantages of the AC dipole over the kicker magnet. The AC dipole produces

a sinusoidally-varying dipole magnetic field, where sinusoidally-varying kick of

the field tuned to be in phase with betatron oscillations of the circulating beam

particles. The situation is analogous to a simple harmonic oscillator driven

by an external force, discussed in Section 3.1. From Equation 3.4, when a
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general oscillator is driven by an external force, the frequency of the resultant

oscillations is that of the external force and is independent of the intrinsic

frequency of the system5. Similarly, when the particles within the beam are

driven by the AC dipole, all the particles have the same oscillation tune, the

tune of the AC dipole. Hence, the driven beam does not have the problem of

the decoherence and the AC dipole can produce sustained oscillations without

increasing the beam size.

Turn-by-turn Oscillations of an AC Dipole Excitation

Figure 4.5 shows the turn-by-turn oscillations of the beam driven by the AC

dipole, measured by one BPM in the Tevatron. In contrast to the kicked

beams in Figure 4.4, the particles driven by the AC dipole do not have the

decoherence effect. With the AC dipole, we can produce sustained excitations

in any conditions of the synchrotron. As discussed earlier in Section 4.1, the

amplitude function and phase advance are determined from the amplitudes

and phases of the turn-by-turn oscillations observed by BPM’s. Hence, for the

measurements of these parameters, this ability of the AC dipole to produce

sustained oscillations is useful because more measurement time is available.

Figure 4.6 shows discrete Fourier spectra of the turn-by-turn data from

Figures 4.5 and 4.4(a). When calculating the discrete Fourier transformation,

we used 2,000 revolutions of data points for each cases. Here, the vertical axes

are scaled so that the peak hight represents the amplitude when the signal is

a pure sine wave. The horizontal axis is also scaled to represent the tune or,

equivalently, the frequency in unit of the revolution frequency of the beam.

The Fourier spectrum of the sinusoidally driven beam with an AC dipole is like

5Here, we are assuming the external force is adiabatically turned on and, as a result, the
mode corresponding to the solution of the homogeneous part is negligibly small.
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Figure 4.5: Measured turn-by-turn oscillations of the beam driven by an AC
dipole in the Tevatron. In contrast to the kicked beam in Figure 4.4, the driven
particles do not lose the coherence. By adiabatically ramping up and down
the amplitude of the AC dipole’s field, we can produce an excitation without
increasing the beam size.
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Figure 4.6: Measured discrete Fourier spectra of the driven beam with the AC
dipole (Figure 4.5) and kicked beam (Figure 4.4). The particles within the
driven beam has the same tune and so its Fourier spectrum is like the delta
function. Whereas the particles within the kicked beam has the tune spread
and so its Fourier spectrum has a finite width around the peak.

105



the Dirac δ-function, whereas that of the kicked beam has a finite spread. Such

may be expected because the decoherence of the kicked beam is cause by a

finite tune spread. As discussed in Section 3.2, it is possible to detect existence

of sextupole and octupole errors in a synchrotron by detecting the presence of

tunes besides the nominal betatron tune. Such errors due to nonlinear fields

would present themselves as new frequency peaks in the Fourier spectrum. For

such an analysis, the clean spectrum of the driven oscillations is more useful

than the spectrum of the kicked beam.

AC Dipole Excitation as Driven Harmonic Oscillations

As well known in classical mechanics and also seen in Equation 3.4, for a

particle beam, the amplitude of a driven oscillator depends on the difference

between the driving frequency and intrinsic frequency. The amplitude grows as

the driving frequency approaches the intrinsic frequency and it diverges when

the two frequencies are identical. Figure 4.7 shows the measured amplitudes of

the turn-by-turn oscillations, observed with one BPM in the Tevatron, for sev-

eral different tunes of the AC dipole. The data points in the figure are acquired

using an AC dipole in the Tevatron, excited at several different frequency.

Here, the tune of the AC dipole, denoted by νac, is the ratio between the AC

dipole’s frequency and the beam’s revolution frequency. In the Tevatron, the

frequency of the AC dipole is about 20 kHz and the revolution frequency of the

beam is about 47.7 kHz and so the tune of the AC dipole is about 0.425. In

this case, the amplitude is roughly proportional to 1/ sin |π(νac − ν)| [4]. The

curve represents the fit of this function to the data. As can be seen, the AC

dipole can produce large amplitude oscillations by moving its tune toward the

intrinsic tune. The achievement of large amplitudes is particularly important
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Figure 4.7: Measurement of the amplitude vs. the tune of the AC dipole
observed by one BPM in the Tevatron. Similar to the classical system of a
driven oscillator, the amplitude gets larger when the tune of the AC dipole
gets closer to the intrinsic tune of the system. The amplitude is roughly
proportional to the factor 1/ sin |π(νac − ν)|.
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to measure effects of nonlinear fields, as in Chapter 8.

Beam Size Growth Due to an AC Dipole Excitation

In Figure 4.5, the amplitude of the AC dipole’s field is linearly ramped up

and down. If these ramp up and ramp down are adiabatic, the beam size

is preserved during the excitation. Figure 4.8 shows measurements of the

beam profiles in the Tevatron after an AC dipole excitation followed by a kick

excitation. In this measurements, we made vertical excitations of the 150 GeV

proton beam in the Tevatron, first with the AC dipole and next with the kicker

magnet. After the each excitations, beam profiles are recorded with the flying

wire profile monitors6. The first row of the figure shows the initial profiles of

the proton beam in both horizontal and vertical planes. The second row shows

the profiles after the vertical excitation with an AC dipole. The amplitude of

the excited oscillations was about 4 mm at the BPM locations in the Tevatron’s

arc, where the amplitude function is about β(s) � 100 m. The amplitude of

the AC dipole’s field is ramped up and down in about 2,000 revolutions, as

the data in Figure 4.5. The figure indicates no beam size growth in this case.

The third row of the figure shows the profiles after the same beam is vertically

excited with a kicker magnet. The amplitudes of the excited oscillations was

roughly the same as the case of the AC dipole, about 4 mm. As expected, the

vertical beam size increased after the excitation, in this case.

Here, we estimate the adabatic condition of the ramp up speed of the

AC dipole’s field. Further details of the following discussion can be seen in

[43]. Suppose the amplitude of turn-by-turn oscillations excited by an AC

6The flying wire system measures the transverse beam profile [42]. The collisions of the
beam particles with the moving wire produce a spray of secondary particles. The beam
profile is determined by observing the intensity distribution of the secondary particles with
a scintillator.
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Figure 4.8: Measured proton beam profiles in the Tevatron after an AC dipole
excitation followed by a kick excitation. The amplitudes of the excited oscil-
lations are about 4 mm (in the Tevatron’s arc) in both cases. The first row
shows the initial profiles of the beam, and the second and third rows show
the profiles after the excitations with the AC dipole and kicker magnet. The
left column shows the beam profiles measured in the horizontal plane and the
right column shows the profiles measured in the vertical plane. The AC dipole
and kicker both applied excitations in the vertical plane. In contrast to the
kick excitation, the AC dipole excitation preserves the beam size.
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dipole is ad, when observed by one BPM. Then, the AC dipole also excites

a small mode with the tune of the free oscillations ν, which is referred to as

transient mode. When the amplitude of the AC dipole’s field is ramped up in

nr revolutions,the amplitude of the transient mode is estimated by [43]

atrans ≡ 1

πnr|δd| ad , (4.8)

where δd is the difference between the tune of the AC dipole and the tune

of the free oscillations7. Because the transient mode has the free oscillation

tune, the mode undergoes the decoherence and increases the beam size as the

kick excitation. Hence, the beam size growth due to an AC dipole excitation

can be also calculated from Equation 4.1, replacing the amplitude of the kick

excitation ak by atrans. If the original rms beam size is σ0, the rms beam size

after the AC dipole excitation σac is given by

σ2
ac = σ2

0 +
1

2
a2

trans = σ2
0 +

1

2π2n2
rδ

2
d

a2
d . (4.9)

We solve this equation for normalized beam size growth due to an AC dipole:

Δσac

σ0
≡ σac − σ0

σ0
�

(
ad/σ0

2πnrδd

)2

. (4.10)

Figure 4.9 shows the numerical calculation of this equation. Because diameters

of beam vacuum pipes vary over synchrotrons, depending on their rms trans-

verse beam sizes, we usually use the rms transverse beam size σ0 as a scale

of the AC dipole excitation. Measurements of a synchrotron’s nonlinear fields

typically require large excitations with 2-4σ0 amplitudes. Hence, AC dipoles

are usually designed to produce such large amplitude oscillations (Table 5.2).

7The amplitude of the transient mode is also proportional to sin(πδdnr). Because this
is a fast-oscillating term in a typical operational condition of the Tevatron’s AC dipole,
δdnr � 10, we simply assume the worst case, sin(πδdnr) = 1, in our estimate.
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For instance, from Table 5.2, the maximum amplitude produced by the Teva-

tron’s AC dipole is about 3σ0. In the Tevatron, a typical value of |δd| is about

0.01. When |δd| is smaller than 0.01, some particles within the beam may have

too large amplitudes and thus we may loose a part of the beam. Figure 4.9

indicates that, with these conditions ad = 3σ0 and |δd| = 0.01, the ramp up

of 1,000 revolutions corresponds to the beam size growth of less than 0.3%.

Hence, in the Tevatron, the ramp up of 1,000-2,000 revolutions is adiabatic

enough to ignore the beam size growth due to the AC dipole excitation.

4.3 Summary

In this chapter, we discussed the tools necessary to measure linear beam opti-

cal parameters, such as the amplitude function and phase advance, by exciting

coherent oscillations of the beam particles and observing motion of the beam

centroid with a BPM system. With the AC dipole, we can produce sustained

coherent oscillations without increasing the beam size, independent of con-

ditions such as strengths of nonlinear fields and a longitudinal momentum

spread. This makes a contrast to an excitation with a kicker magnet, which

undergoes the decoherence and increases the beam size, depending on such

conditions. An available long measurement time of the AC dipole excitation

helps data analyses. The non-destructive nature of the AC dipole is also use-

ful because the measurement interfere less with operations of a synchrotoron.

Applications of the AC dipole technique will be discussed in Chapters 7 and

8.
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Figure 4.9: Calculation of the beam size growth due to an AC dipole excitation
(Equation 4.10). This simple model predicts that 1,000 revolutions of the
ramp up is slow enough to suppress the beam size growth to less than 1%
when |δd| � 0.01 and the excited amplitude is ad � 5σ0.
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Chapter 5

Tevatron AC Dipole System

In Chapter 4, we discussed diagnosis of a synchrotron by observing coherent

oscillations of the beam particles excited by an AC dipole. The AC dipole

excites coherent oscillations with its sinusoidally oscillating dipole magnetic

field, in phase with the betatron oscillations of the beam particles. In the

present chapter, we discuss the AC dipole system design for the Fermilab

Tevatron, which has become the model for the CERN LHC.

5.1 System Overview

The essence of the Tevatron AC dipole system is the combination of an exist-

ing magnet and a low-cost audio amplifier. In the Tevatron, a vertical kicker

magnet has been utilized as a vertical AC dipole [20]. We desire excited oscil-

lations at a frequency near the tune of the free betatron oscillations ν. Here,

as discussed in Section 4.2, the tune of the AC dipole is the ratio between

the AC dipole’s frequency fac and the revolution frequency of the beam frev:

νac ≡ fac/frev. Because of the synchrotron’s periodicity, however, the am-
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Table 5.1: Parameters related to the AC dipole excitation in the Tevatron.

Parameter Injection Collision
Beam Energy [GeV] 150 980
RMS beam size in arcs [mm] 1.3 0.6

Minimum |νac − ν| 0.015 0.01
Maximum deflection angle [μrad] 15 3.5
Maximum amplitude in arcs [mm] 8.7 1.8
Maximum amplitude in arcs [σ] 7 3

plitude of the AC dipole excitation also grows when the AC dipole tune νac

approaches N + ν or N − ν, where N is an arbitrary positive integer (see

Section 6.1). In the Tevatron, the fractional part of the free oscillation tune ν

is about 0.58. Hence, we can make a large excitation with an AC dipole when

its tune νac is close to 0.58, 1.58, 2.58, · · · or 0.42, 1.42, 2.42, · · · . Because

the revolution frequency of the beam is about 47.7 kHz, the lowest operational

frequency of the Tevatron AC dipole is 0.42 × 47.7 kHz � 20 kHz.

The fact that the lowest allowed driving frequency is 20 kHz permits us

to use a high power consumer audio amplifier to power the AC dipole magnet.

Further, our design utilizes an existing iron-core kicker magnet in the Tevatron,

which, though of relatively high inductance, is able to respond at the required

20 kHz frequency. This may be contrasted with AC dipole systems in the BNL

RHIC which, because of the RHIC’s higher revolution frequency of 78 kHz,

must employ custom-built amplifiers and custom-built air-core dipole magnets

which can respond at such high frequency [14].

The maximum current of the Tevatron AC dipole is about 380 A and

it produces integrated field of 115 G m. At the injection and collision energies

of Tevatron, 150 GeV and 980 GeV, the integrated field of 115 G m is able
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to deflect the beam by 15 μrad and 3.5 μrad and to produce oscillations with

amplitudes of about 8.7 mm (6.7σ beam size) and 1.8 mm (3σ beam size)

in the Tevatron’s arcs (Table 5.1). The minimum difference between the AC

dipole’s tune and the free betatron oscillation tune, |νac − ν|, at which the

AC dipole may be safely operated, is determined by the tune spread. At the

injection and collision energies of the Tevatron, typical limits of |νac − ν| are

0.015 and 0.01, below which beam losses may occur.

Our audio amplifier system expects to drive a ∼8 Ω load, far greater

than the impedance of our kicker magnet. Therefore, the magnet must be in-

corporated into a resonant circuit to achieve the ∼8 Ω load and maximize the

current through the magnet. In this chapter, we discuss the AC dipole mag-

net, the audio amplifier, and the resonant circuit. We compare the predicted

performance of this system with measurements in the Tevatron. Finally, we

conclude the chapter with comparison of AC dipoles in high energy hadron

colliders: the Tevatron, RHIC, and LHC. The AC dipole design adopted here

can be readily utilized at the LHC [22].

5.2 Review of AC Circuits

In the present section, we use the so called phasor representation of an AC

circuit [44], to represent an AC amplifier, tuning circuit, and the load of the

dipole magnet. We derive some general considerations of how to match the

impedance of the existing dipole magnet in the Tevatron to that required for

the typical commercial audio amplifier.

A sinusoidal voltage V (t) and current I(t) can be expressed as the real
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part of complex functions Ṽ and Ĩ called phasors:

V (t) = �{Ṽ eiωt} = |Ṽ | cos(ωt+ arg Ṽ ) (5.1)

I(t) = �{Ĩeiωt} = |Ĩ| cos(ωt+ arg Ĩ) . (5.2)

Here, the angular frequency ω represents the frequency of the system. The

absolute values |Ṽ | and |Ĩ| represent the measured amplitudes of the voltage

and the current. When we consider voltage and current of a circuit element,

one of the phases, arg Ṽ or arg Ĩ, is arbitrary and we choose arg Ṽ = 0. In

this case, the phase arg Ĩ represents the phase lag of the current relative to

the voltage. In the same manner as for the DC resistance, the AC impedance

phasor Z̃ is defined as the ratio of Ṽ and Ĩ:

Z̃(ω) ≡ Ṽ

Ĩ
, (5.3)

which, in general, depends upon the circuit’s angular frequency ω.

The impedance of a general circuit can be considered as the sum of re-

sistive, inductive, and capacitative impedances. For a single resistor, inductor,

and capacitor, the phasor impedances are given by

Z̃R = R (5.4)

Z̃L = iωL = iXL (5.5)

Z̃C =
1

iωC
= −iXC , (5.6)

where XL = ωL and XC = 1/ωC are inductive and capacitative reactances.

When �{Z̃} � 
{Z̃}, the impedance is called resistive and when 
{Z̃} �
�{Z̃}, the impedance is called reactive. WhenN impedances Z̃j (j = 1, 2, · · · , N)

are connected in series or parallel, the effective impedances Z̃series and Z̃parallel
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can be calculated in the same ways as DC resistances:

Z̃series =
N∑
j=1

Z̃j (5.7)

Z̃parallel =

[
N∑
j=1

1

Z̃j

]−1

(5.8)

In the phasor representation, the time averaged power P is given by

P =
1

2
�{Ṽ Ĩ∗} =

1

2
|Ṽ ||Ĩ| cos(arg Ĩ) . (5.9)

Here, cos(arg Ĩ) is called the power factor. The power delivered to an impedance

Z̃ is increased either when the current amplitude |Ĩ| is increased or when the

power factor | cos(arg Ĩ)| approaches unity (i.e, the current is in phase with

the voltage).

In connecting a dipole magnet to an amplifier, it is often desirable to do

so through the transformer, as indicated in Figure 5.1. In the application of

the AC dipole, the transformer has the benefit of stepping down the voltage,

while keeping the power constant, and thus the current into the magnet can be

increased, which achieves a higher magnetic field in the magnet and a larger

beam deflection. In the phasor representation, the transformer’s equations are

also the same as for a DC circuit. A transformer with winding ratio N1:N2

transforms voltage, current, and impedance in the following way:

N1Ĩ1 = N2Ĩ2 (5.10)

Ṽ1

N1
=
Ṽ2

N2
(5.11)

Z̃eff

N2
1

=
Z̃

N2
2

, (5.12)

where indices 1 and 2 denote the primary (source) and secondary (load) sides

and Z̃ and Z̃eff are the impedance of the system and the effective impedance

seen by the source (Figure 5.1).
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Figure 5.1: A magnet connected to a power supply through a transformer. By
a transformer with winding ratio N1:N2, the effective impedance seen by the
power supply is changed from the original impedance of the magnet Z̃ to Z̃eff.
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In Section 5.5, we discuss methods to maximize the current |Ĩ2| into

the magnet by utilizing a transformer and an impedance matching resonant

circuit.

5.3 AC Dipole Magnet

The Tevatron AC dipole is a single turn magnet with an iron core and a

ceramic beam pipe. Figure 5.2 is the design drawing of the magnet’s cross

section. Because the gap between the pole faces is g = 7.91 cm (3.125 inch),

the conductors’ number of turns is N = 1, and the length of the magnet is

� = 1.89 m, from the ampère’s law (see for instance Section 4.3.1 of [45]), the

integrated field strength B� for magnet current I is given by

B� =
μ0NI�

g
= 0.30I G m/A . (5.13)

The quality of the magnetic field dB/B is estimated about 1% in any location

inside the magnet [46].

Figure 5.3 is the photograph of the Tevatron AC dipole magnet. As

seen in the photograph, the magnet is connected to the other components of

the system outside of the tunnel through two 22 m coaxial cables. Through

in situ measurements of frequency dependent impedances when the magnet

was connected to a voltage oscillator, we found that the combination of the

magnet and two cables has inductance L � 8.0 μH and resistance R � 90 mΩ

at f = 20.5 kHz. The inductive reactance of the combination is XL � 1.0 Ω at

this frequency. Since XL � R, the impedance of the magnet with the cables is

reactive at 20.5 kH. Out of 8.0 μH and 90 mΩ, 2.8 μH and 25 mΩ are from the

cables. At 20.5 kHz, the capacitative reactance of each cable is about 3.5 kΩ

and parallel to the magnet. Compared to the magnet resistance R � 90 mΩ
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Figure 5.2: Cross section of the Tevatron AC dipole magnet. Dimensions
are given in inches. ① Ceramic beam pipe. ② Current carrying conductors.
Current in these conductors produces a horizontal magnetic field and deflects
the beam vertically. ③ Iron yoke to improve the field quality. ④ Pole faces of
the dipole magnet. The gap between the pole faces is 7.91 cm (3.125 inch).
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Figure 5.3: Photograph of the Tevatron AC dipole magnet. The length of
the magnet is 1.89 m. The other components of the system are outside of
the tunnel and connected with two coaxial cables, shown at the center of the
photograph. The proton beam goes from left to right in the photograph.
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and inductive reactance ωL � 1.0 Ω, it is larger more than factor of 3 and

effectively the same as an open. Hence, the capacitance of the cables can be

ignored at this frequency.

5.4 Crown I-T8000 Audio Amplifier

The power supply of the Tevatron AC dipole is an 8 kW Crown I-T8000 audio

amplifier [47]. Because the magnet and cable have resistance of R � 90 mΩ,

when the delivered current is Ĩ, they dissipate 1
2
|Ĩ|2R of power. From energy

conservation, this dissipation cannot be larger than the output power of the

amplifier P � 8 kW. Hence, the maximum magnet current of the Tevatron

AC dipole system is Imax =
√

2P/R � 420 A.

The amplifier has limits in voltage and current. These limits depend

on the load impedance and also frequency. According to the specification

from the manufacturer [47], its output power becomes maximal when the load

impedance is resistive and its magnitude is 8 Ω. Then, voltage and current

limits are about 360 V and 45 A. These numbers indicate this amplifier is

a source with high voltage and low current. Because the impedance of the

AC dipole magnet and its cables is (0.09) + i(1.0) Ω at 20.5 kHz, the voltage

and current phasors are almost perpendicular in the magnet. When voltage

and current are not in phase, the power factor in Equation 5.9 decreases and

the maximum voltage and current must increase to 1.5 kV and 150 A to

produce 8 kW. It is therefore more practical to bring the voltage and current

in phase and increase the power factor. That is, the magnet is integrated into

a resonant circuit so that the load impedance matches the optimized value for

the amplifier.

The output power of the amplifier also depends on the pulse duration.
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Figure 5.4: Our measurements of the Crown I-T8000 amplifier’ output power
[47] vs. pulse duration and the produced magnet current vs. pulse length.
Both figures are for a 20.5 kHz sine wave. For the typical 140-150 ms mea-
surement cycle of the Tevatron AC dipole, the output power of the amplifier
and magnet current are about 6.5 kW and 380 A, a 19% decrease in power
and 10% decrease in current relative to the maximum possible output from
the amplifier.
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Figure 5.4 shows our measurements of the output power and magnet current

for different pulse durations. Because a typical measurement cycle with the

Tevatron AC dipole is about 140-150 ms (Figure 5.8), the output power and

magnet current are reduced to about 6.5 kW and 380 A.

5.5 Resonant Circuits

The Tevatron AC dipole magnet is integrated into a parallel resonant circuit to

optimize the impedance matching of the system to the Crown audio amplifier.

In this section we compare the optimizations with series and parallel resonant

circuits. As will be shown, the best circuit for our particular magnet impedance

and amplifier is a parallel resonant circuit.

5.5.1 Series Resonant Circuit

Figure 5.5 is the circuit diagram when an external capacitor is added in series

to the resistive and inductive load of the dipole magnet to form an RLC series

resonant circuit. The total impedance of the system is given by

Z̃ = R+ i(XL −XC) . (5.14)

If the capacitor satisfies the resonant condition XL = XC , the total impedance

is resistive and Z = R � 90 mΩ. To adjust the effective impedance seen by

the amplifier to the optimum 8 Ω, we have to use a transformer with large

winding ratio N1/N2 � 9.4:

Z̃eff =

(
N1

N2

)2

R � 8 Ω . (5.15)

Temporarily, we ignore the effect of the pulse length on the output power (see

Figure 5.4) and assume the amplifier can actually produce 8 kW. From Ohm’s
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N1 N2

Ṽ1 Ṽ2

Ĩ1 Ĩ2

Figure 5.5: Circuit diagram of the series resonant circuit. When the capacitor
satisfies the resonant condition XC = XL � 1 Ω, the impedance is Z̃ =
R � 90 mΩ. To adjust the effective impedance Z̃eff to the optimum 8 Ω, the
transformer must have a large winding ratio N1/N2 � 9.4. In general, a series
resonant circuit is suited for a source with high current and low voltage.
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law and the definition of the time averaged power Equation 5.9, the voltage

and current phasors in the primary side, Ṽ1 and Ĩ1, satisfy

Ṽ1 = Ĩ1Z̃eff (5.16)

P =
1

2
�{Ṽ1Ĩ

∗
1} . (5.17)

By solving these two equations for Ṽ1 and Ĩ1,

Ṽ1 =
N1

N2
ImaxR � 360 V (5.18)

Ĩ1 =
N2

N1
Imax � 45 A . (5.19)

Here, Imax =
√

2P/R � 420 A is the maximum current of the system and

we chose the arbitrary phase of the voltage to be zero, arg Ṽ = 0. From

the transformer’s equations 5.10 and 5.11, voltage and current phasors in the

secondary side, Ṽ2 and Ĩ2, are given by

Ṽ2 = ImaxR � 38 V (5.20)

Ĩ2 = Imax � 420 A . (5.21)

By comparing voltages and currents in both side, we can see high voltage and

low current of the amplifier are converted to low voltage and high current

in the magnet side. Although such a flip of high voltage to high current is

possible by using a transformer with large winding ratio, N1/N2 � 9.4, as a

predictable manner, the effect of magnetic flux leakage changes the effective

winding ratio and makes it difficult to reliably produce a transformer with a

large winding ratio in a predictable manner. It is therefore desirable to choose

a circuit design whose winding ratio is close to one-to-one.

126



5.5.2 Parallel Resonant Circuit

We repeat an exercise similar to the previous section but now for a parallel

resonant circuit. As will be seen, this design can produce the same amount of

magnet current, 420 A, by using a transformer whose winding ratio is close to

unity. Figure 5.6 is the circuit diagram of the Tevatron AC dipole system. A

capacitor C � 7.5 μF added in parallel to the magnet satisfies the resonant

condition and makes the system a parallel resonant circuit. From Equation

5.8 the total impedance of R, L, and C is given by

Z̃ =

[
1

R + iXL
+

1

−iXC

]−1

=
X2
CR+ i[X2

CXL − (R2 +X2
L)XC ]

R2 + (XL −XC)2
. (5.22)

As in the case of the series resonant circuit, the system becomes resonant when

imaginary part of the impedance Z̃ is zero. Because XL � R, the resonant

condition is roughly the same as the series resonant circuit:

XC =
R2 +X2

L

XL
� XL . (5.23)

When the resonant condition is satisfied, the total impedance is resistive and

its magnitude is 12 Ω:

Z̃ =
R2 +X2

L

R
� X2

L

R
� 12 Ω . (5.24)

A second capacitor Cfilter � 8 μF is added to filter low frequency noise of

the amplifier. Since its impedance phasor is perpendicular and smaller in the

magnitude compared to the total impedance Z̃, we ignore Cfilter in the following

analysis. When the AC dipole is integrated into the parallel resonant circuit,

the total impedance is not very different from the optimum 8 Ω even without

a transformer. The required winding ratio of the transformer to change the

effective impedance seen by the amplifier to 8 Ω is much closer to one compared
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Figure 5.6: Circuit diagram of the Tevatron AC dipole system. The capacitor
C � 7.5 μF satisfies the resonant condition XC � XL � 1.0 Ω at 20.5 kHz and
make the system a parallel resonant circuit. The other capacitor Cfilter � 8.0
μF filters low frequency noises from the amplifier and has virtually no impact
on the system around the resonant frequency. The transformer has winding
ratio N1 : N2 = 40 : 50 and converts the impedance from X2

L/R � 12 Ω to 8
Ω. Since most of the magnet current is enclosed in the loop of R, L, and C,
the secondary side is high voltage and low current as the voltage and current
limits of the amplifier.
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to the case of the series resonant circuit, N1/N2 � 0.82:

Z̃eff �
(
N1

N2

)2
X2
L

R
� 8 Ω . (5.25)

As in the previous section, we assume the amplifier outputs 8 kW and

calculate voltage and current in the primary side, Ṽ1 and Ĩ1. Using Ohm’s law

(Equation 5.16) and the definition of the time averaged power (Equation 5.9),

we have

Ṽ1 � N1

N2

ImaxXL � 360 V (5.26)

Ĩ1 � N2

N1

R

XL

Imax � 45 A . (5.27)

Because we match the load impedance to the amplifier by using a transformer,

the voltage and current in the primary side Ṽ and Ĩ are the same in both the

series and parallel resonant circuits. By using the transformer’s equations 5.10

and 5.11, the voltage and current phasors in the secondary side, Ṽ2 and Ĩ2, are

calculated:

Ṽ2 � ImaxXL � 420 V (5.28)

Ĩ2 � R

XL
Imax � 38 A . (5.29)

Here, Ĩ2 is the current coming out of the loop of the magnet and capacitor. The

magnet current Ĩmagnet is determined from the voltage Ṽ2 and the impedance

of the magnet with the cables R+ iXL:

|Ĩmagnet| =

∣∣∣∣∣ Ṽ2

R+ iXL

∣∣∣∣∣ �
∣∣∣∣
(
R

XL
− i

)
Imax

∣∣∣∣ � 420 A . (5.30)

Hence, we can produce the maximum current defined by the amplifier (Section

5.4) with the parallel resonant circuit. Figure 5.7 shows phasors of the voltage

and current in the series and parallel resonant circuit. In the parallel resonant
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Figure 5.7: Voltage and current phasors in the series and parallel AC dipole
circuits. In the series resonant circuit, high current is achieved by flipping high
voltage of the amplifier with a transformer. In the parallel resonant circuit,
voltage Ṽ2 and magnet current Ĩmagnet are almost perpendicular since the total
impedance is resistive and impedance of the magnet is reactive. Hence, be-
cause of the power factor (Equation 5.9), we can produce high current without
making large increase in power.
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circuit, because the total impedance Z̃ is resistive and the impedance of the

magnet is reactive, voltage and current in the magnet is almost perpendicular

and the power factor (Equation 5.9) becomes very small: cos(arg Ĩ) � 0.09.

Most of the magnet current is enclosed inside the loop consisting of the magnet

and the capacitor C, and only a component of Ĩmagnet which is parallel to

Ṽ2, Ĩ2, contributes to the power. This is why we can produce high current,

maintaining the high voltage and keeping the power constant, in the parallel

resonant circuit. Furthermore, because the transformer in the parallel resonant

circuit has a winding ratio of 0.82, the parallel resonant circuit is easier to

prepare than the series resonant circuit.

5.6 Performance of Tevatron AC Dipole

To adiabatically ramp up and ramp down the amplitude of the AC dipole

field, the input to the amplifier is produced with two waveform generators.

One (Stanford Research DS 345) produces a pure ∼20.5 kHz sine wave and

the other (Agilent 33250A) modulates the amplitude by a trapezoidal function.

Figure 5.8 shows the maximum current delivered to the AC dipole magnet and

its input signal. The figure shows the case when the frequency is 20.5 kHz and

the pulse duration is 150 ms. As seen in Figure 5.4, the maximum current

is about 380 A. Figure 5.9 is the Fourier spectrum of the magnet current in

Figure 5.8. The vertical axis is normalized so that the peak height represents

the maximum current when the current is a pure sine wave. From the figure,

the signal noise ratio is about 60 dB.

Until now, we have analyzed the system only at the resonant frequency

fres ≡ 20.5 kHz. When frequency is off by Δf from the resonant frequency
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Figure 5.8: The input to the amplifier and magnet current. The figure shows
the maximum current produced by the Tevatron AC dipole when frequency is
20.5 kHz and pulse length is 150 ms. The input is produced by modulating
amplitude of a sine wave with a trapezoidal envelope. These linear ramp up
and ramp down are adiabatic enough to preserve the beam size.
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Figure 5.9: Measured Fourier spectrum of the magnet current in Figure 5.8.
The spectrum is calculated from the data points when amplitude is maximum.
The vertical axis is scaled so that the peak height represents the oscillation
amplitude. The signal noise ratio is about 60 dB.
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fres, from Equation 5.22, the magnitude of the effective impedance is given by

|Z̃eff(fres + Δf)| � Z̃eff(fres)√
1 + 4Q2(Δf/fres)2

, (5.31)

where Z̃eff(fres) � 8 Ω is the effective impedance at the resonant frequency

and Q ≡ XL/R � 11 is the quality factor of our parallel resonant circuit. The

quality factor determines peak width of the impedance curve. For instance,

when Δf =
√

3fres/2Q � 1.6 kHz, the magnitude of the effective impedance

becomes half of the maximum value. In general, a system with high Q has

high maximum current and a narrow frequency range and vice versa. Figure

5.10 shows measurements of the effective impedances and maximum magnet

currents for different frequencies. Because of the low quality factor Q � 11, the

Tevatron AC dipole has a relatively wide operational frequency range, which

is useful in many beam studies we wish to perform.

5.7 Tevatron, RHIC, and LHC

AC dipoles have been employed in the Tevatron and RHIC and there is also an

ongoing project to build AC dipoles for the CERN LHC [22]. Since the LHC

has larger circumference than the Tevatron, the lowest operational frequency

of the LHC AC dipole is also in the audio range. Based on success of the

Tevatron AC dipole, the LHC AC dipoles will follow the Tevatron’s design

and will utilize existing kicker magnets and audio amplifiers.

Table 5.2 shows the relevant beam and synchrotron parameters related

to the AC dipoles in the RHIC, Tevatron, and LHC. From Equation 6.4, the

oscillation amplitude produced by an AC dipole decreases linearly with the

beam energy or the magnetic rigidity. This is significant because, for instance,

beam energies of the RHIC and LHC are different by a factor 28. However,
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Figure 5.10: Impedance and magnet current vs. frequency. As expected, the
impedance becomes maximum at 20.5 kHz and the peak value is about 8 Ω.
The low quality factor of the resonant circuit, Q � 11, makes the wide working
frequency range. Between 18 and 22 kHz, the Tevatron AC dipole can produce
50% of its maximum magnet current. The range corresponds to between 0.38
and 0.46 (or 0.54 and 0.62) in tune of the Tevatron.
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Table 5.2: Parameters related to the AC dipoles in the RHIC, Tevatron, and
LHC. Parameters of the RHIC are for the proton-proton collider mode. The
last row shows the required integrated field to produce oscillations with 4σ
amplitude at the maximum beam energy of each collider under the condition
when |νac−ν| = 0.01. Because of the small beam size and the large amplitude
function of their locations, the LHC AC dipoles are required only about 50%
larger integrated fields, relateive to AC dipoles in the RHIC and Tevatron.
As discussed in Section 5.1, there are more than one frequencies for an AC
dipole to excite the beam. Because an LHC AC dipole can operate at four
frequencies in audio range, 3, 8, 14, and 19 kHz, and also because the required
integrated field is not far from that for the Tevatron, LHC AC dipole have
similar designs to the Tevatron AC dipole.

Parameter RHIC Tevatron LHC
Maximum beam energy [GeV] 250 980 7000
Revolution frequency [kHz] 78 48 11

RMS beam size in arcs [mm] 0.75 0.6 0.3
Fractional Tune 0.69 0.58 0.3
Maximum β in arcs [m] 49 100 180
β at the AC dipole [m] 11 47 260

Frequency of the AC dipole(s) [kHz] 54 20
Integrated field (achieved) [G m] 105 115
Amplitude (achieved) 3σ 3σ
Possible frequencies of an AC dipole [kHz] 24, 54, · · · 20, 28, · · · 3, 8, · · ·
Integrated field for 4σ oscillation [G m] 135 140 200
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because of various other factors such as the smaller beam sizes in higher energy

synchrotrons and the amplitude function at the location of the AC dipole, the

desired integrated field of an AC dipole does not necessarily grow linearly

with the beam energy. In Section 4.2, we discussed a typical requirement an

AC dipole is to produce oscillations with 2-4σ amplitudes to study nonlinear

behavior of the beam. At the LHC, the typical transverse beam size is σ ∼
0.3 mm, to be compared with σ ∼ 0.75 mm in the RHIC, which reduces the

required oscillation amplitude by a factor of 2.5. Furthermore, because the

oscillation amplitude produced by an AC dipole also depends on the amplitude

function at the location of the AC dipole (see Equations 6.4 and 6.6), and

because the LHC AC dipoles will be located at high β locations relative to

the RHIC or Tevatron (see Table 5.2), the LHC AC dipoles gain a factor of√
260 m/11 m � 4.9 in the required integrated field. For these two reasons,

the LHC AC dipoles require only about 50% larger integrated field than the

AC dipoles in the RHIC and Tevatron.

As discussed in Section 5.1, the oscillation amplitude produced by an

AC dipole also depends on the difference between the AC dipole’s tune and

the free oscillation tune |νac − ν|. For purpose of comparison, in Table 5.2, we

used |νac − ν| = 0.01, which is the limit of the Tevatron at 980 GeV and a

number easy to be scaled. If the LHC has a small tune spread in the beam and

thus its AC dipoles can operate with |νac − ν| smaller than 0.01, the required

integrated field decreases and vice versa.

137



138



Chapter 6

Driven Motion of a Charged

Particle Beam

Because the circulating beam in a synchrotron experiences linear restoring

forces from quadrupole magnets, it is appropriate to envision beam particles

as simple harmonic oscillators, executing periodic motion in the transverse

plane as they orbit the synchrotron, with a natural frequency defined by the

magnet lattice and the longitudinal beam momentum. In such an analogy, the

AC dipole introduced in Chapter 4 is a tool to resonantly drive this periodic

motion, and we describe such beam’s motion as a driven harmonic oscillator,

with large amplitude motion possible when the driving frequency approaches

the beam’s natural frequency. When a beam particle is driven by an AC

dipole, its motion is not completely identical to the free oscillation, instead

the motion is analogous to the case when there is a thin quadrupole field error

[21]. This difference between the beam particles’ free and driven oscillations

affects the diagnostics of a synchrotron. Hence, in this chapter, we discuss

the beam particles’ motions excited by an AC dipole in detail based on [21],
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in order to properly determine desired parameters from observations of driven

motions.

6.1 Two Modes Driven by an AC Dipole

Because the beam sees an AC dipole only once in a revolution, the beam is

driven by a pair of driving terms with driving tunes νac and 1−νac (cf. Nyquist

sampling theorem). The driving term closer to the machine tune ν has a bigger

influence on a particle. Hence, in the following, the driving term closer to ν is

called the primary and the other is called the secondary. A symbol νd is used

for the primary driving tune (Figure 6.1):

νd ≡

⎧⎪⎨
⎪⎩
νac when |νac − ν| < |(1 − νac) − ν|

1 − νac when |(1 − νac) − ν| < |νac − ν| .
(6.1)

For example, the frequencies of the AC dipole and beam revolution in the

Tevatron are fac � 20.5 kHz and frev � 47.7 kHz and, hence, the tune of the AC

dipole is νac = 20.5/47.7 � 0.43. Because the machine tune of the Tevatron is

ν � 0.58, 1−νac � 0.57 is the primary driving tune and νac � 0.43 is secondary.

We note that machine tunes near 0.5 tend to exaggerate the influence of the

secondary driving term. The difference between the primary driving tune and

the machine tune, δd ≡ νd−ν, is an important parameter of driven oscillations.

As δd → 0, the influence of the primary driving term becomes dominant and

the secondary driving term can be ignored. In the Tevatron, the typical value

of |δd| is about 0.005-0.015 to prevent beam losses, and at this value of |δd|,
the secondary driving term a 6-18% effect on the amplitude function inferred

from AC dipole measurements, so must be accounted for correctly.

After the AC dipole has adiabatically ramped to full field, position of

140



Δd

am
pl

itu
de

0 1�Νd
1
2
Νd Ν 1

tune

Figure 6.1: Two driving terms of an AC dipole. A circulating beam is driven
by two driving terms of an AC dipole, νd and 1 − νd. Solid and dashed lines
represent amplitudes of modes driven by each driving terms. In typical oper-
ations of an AC dipole, realizable δd is limited by the tune spread of the beam
(shaded area).
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the driven beam xd(s) is given by1.

xd(nC + s̃)

� θac
√
βacβ(s̃)

4 sin(π(νd − ν))

× cos(2πνdn+ ψ(s̃|s̃ac) + π(νd − ν)sgn(s̃− s̃ac) + χd)

+
θac

√
βacβ(s̃)

4 sin(π(1 − νd − ν))

× cos(2π(1 − νd)n + ψ(s̃|s̃ac) + π(1 − νd − ν)sgn(s̃− s̃ac) − χd) . (6.2)

Derivation of this equation can be seen in [43, 48]. Here, θac is the maximum

kick angle of the AC dipole, βac is the amplitude function at the location of the

AC dipole, and χd is a constant phase. We can see the two terms in Equation

6.2 are symmetric between νd and 1−νd. These two terms represent two modes

excited by two driving terms of an AC dipole. In Equation 6.2, longitudinal

position s is expressed with n, C, and s̃, because phases in Equation 6.2

cannot be expressed with one continuous function of the longitudinal position

s. When a particle goes through the AC dipole, phases in each terms jump by

2π(νd − ν) and 2π(1 − νd − ν).

To quantify the influence of the secondary driving term, we use a pa-

rameter to describe the ratio between magnitudes of two modes:

λd ≡ sin(π(νd − ν))

sin(π(1 − νd − ν))
=

sin(πδd)

sin(2πν + πδd)
. (6.3)

As this parameter depends on not only δd but also the machine tune ν, the

magnitude of the secondary mode, relative to the primary mode, depends on

1The exact expression of xd includes transient modes which are inversely proportional
to the ramp up time and oscillate with the machine tune ν. If the ramp up is slow enough,
all of these modes are very small and decohere before the end of the ramp up. Hence, these
ignored modes do not affect the motion of the beam centroid but they may affect the beam
size.
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the machine tune as well. For instance, when |δd| = 0.01 and ν � 0.58 as in

a typical condition in the Tevatron, |λd| � 0.06. Whereas, when the machine

tune is ν � 0.3 like the LHC, the same |δd| = 0.01 gives about half of |λd|
compared to the Tevatron.

6.2 Optical Parameters of the Driven Motion

We note that Equation 6.2 can be written in the following compact form [21]:

xd(s) = Ad
√
βd(s) cos(ψd(s|s̃ac) + χd) . (6.4)

When we observe turn-by-turn oscillations of the driven motion, the following

equivalent form may be convenient:

xd(nC + s̃) = Ad
√
βd(s̃) cos(2πνdn + ψd(s̃|s̃ac) + χd) . (6.5)

Because Equation 6.4 has the same mathematical form as the free betatron

motion given in Equation 2.29, this expression is more convenient than Equa-

tion 6.2 when we compare the driven motion to the free betatron motion. Here,

Ad is a constant parameter with dimensions of (length)1/2, which is analogous

to the constant parameter A in Equation 2.29:

Ad ≡ θac
4 sin(πδd)

√
(1 − λ2

d)β(s̃ac) . (6.6)

The quantity βd(s) is a newly defined amplitude function of the driven motion:

βd(s) ≡ 1 + λ2
d − 2λd cos(2ψ(s̃|s̃ac) − 2πν sgn(s̃− s̃ac))

1 − λ2
d

β(s) . (6.7)

The quantity ψd(s|s̃ac) is a newly defined phase advance of the driven motion.

Similar to the free betatron motion, for two arbitrary longitudinal positions s
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and s0, the phase advance of the driven motion is defined with the amplitude

function

ψd(s|s0) ≡
∫ s

s0

ds̄

βd(s̄)
. (6.8)

The following equation gives a relation between phase advances of the driven

and free betatron motions, ψd(s̃|s̃ac) and ψ(s̃|s̃ac):

tan(ψd(s̃|s̃ac) − πνd sgn(s̃− s̃ac))

=
1 + λd
1 − λd

tan(ψ(s̃|s̃ac) − πν sgn(s̃− s̃ac))

=
tan(πνd)

tan(πν)
tan(ψ(s̃|s̃ac) − πν sgn(s̃− s̃ac)) . (6.9)

From this equation, we can see ψd(s̃ac + C|s̃ac) = 2πνd when ψ(s̃ac + C|s̃ac) =

2πν after a single revolution. Compared to Equation 6.2, when we combine

the two modes, the phase ψd(s|s̃ac) in Equation 6.4 is a continuous function

of s and does not have a discrete change at the location of the AC dipole. By

comparing the equations of the driven and free betatron motions, Equation

6.4 and 2.29, we can see the difference of these motions lies in the different

amplitude functions, βd(s) and β(s), and phase advances, ψd(s|s0) and ψ(s|s0).

As expected, in the limit νd → ν, λd becomes zero and βd(s) and ψd(s|s0)

converge to β(s) and ψ(s|s0).

Because Equation 6.4 for the driven motion has the same mathematical

form as Equation 2.29 for the free betatron motion, in real measurements, we

observe the driven motion’s parameters, βd(s) and ψd(s|s0), instead of the free

motion’s parameters, β(s) and ψ(s|s0). Thus, without careful interpretation

of data obtained with an AC dipole, one might interpret the “driven particle”

amplitude function as “free particle” amplitude function and is so doing 12%

error in the measurement of the amplitude function. We also note the relation

144



between δd and βd(s) is exactly the same as the relation between the tune shift

and new β(s) function when there is a thin gradient error [21]. Similarly, the

relation between δd and ψd(s|s0) is exactly the same as the relation between

the tune shift and the new phase advance when there is a thin quadrupole

field error. Hence, the operation of an AC dipole in a synchrotron would be

expected to excite a pattern of beam motion identical to the perturbation

due to a thin quadrupole field error. Like a quadrupole field error, the AC

dipole actually introduces a beta-beat pattern around the synchrotron whose

amplitude is 2λd for the amplitude function and λd for the phase advance.

Figures 6.2 and 6.3 show numerical calculations of βd(s)/β(s) and ψd(s|s̃ac)−
ψ(s|s̃ac), based on Equations 6.7 and 6.9, for different ψ(s|s̃ac) and δd. The two

plots in each figure are for different machine tunes: ν = 0.58 like the Tevatron

and ν = 0.3 like the LHC. In the figures, when ν = 0.58 and δd = ±0.01, we

can see the beating amplitudes are roughly 10% for βd(s) and 5% for ψd(s|s̃ac).

When ν = 0.3, the deviations of βd(s) and ψd(s|s̃ac) from β(s) and ψ(s|s̃ac) are

almost as half as when ν = 0.58. We can see, when ν = 0.58, curves are more

asymmetric between positive and negative sides of δd. The curves in Figures

6.2 and 6.3 represent the potential error in experimental measurements when

an AC dipole operated at a given δd is utilized.

Parameters corresponding to the other Courant-Snyder parameters, α

and γ, can be also defined as for the free betatron oscillation:

αd(s) ≡ −1

2

dβd(s)

ds
, γd(s) ≡ 1 + αd(s)

2

βd(s)
. (6.10)

The explicit forms of these parameters are given by

αd(s) =
1 + λ2

d − 2λd cos(2ψ(s̃|s̃ac) − 2πν sgn(s̃− s̃ac))

1 − λ2
d

α(s)

− 2λd sin(2ψ(s̃|s̃ac) − 2πν sgn(s̃− s̃ac))

1 − λ2
d

(6.11)
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Figure 6.2: Calculated amplitude functions of the driven and free betatron
motions, βd(s) and β(s). The ratio βd(s)/β(s) is calculated based on Equation
6.7 for different phase advance ψ(s|s̃ac) and δd = νd − ν when the machine
tune is ν = 0.58 like the Tevatron and ν = 0.30 like the LHC. As in the beam
influenced by a gradient error, βd(s) is beating relative to β. Compared to
ν = 0.3, when ν = 0.58, the deviations from β(s) is larger and curves are more
asymmetric between positive and negative sides of δd.
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Figure 6.3: Calculated phase advances of the driven and free betatron motions,
ψd(s|s̃ac) and ψ(s|s̃ac). The difference ψd(s|s̃ac) − ψ(s|s̃ac) is calculated based
on Equation 6.9 for different phase advance ψ(s|s̃ac) and δd = νd − ν when
the machine tune is ν = 0.58 like the Tevatron and ν = 0.30 like the LHC.
As in the beam influenced by a gradient error, ψd(s|s̃ac) is beating relative to
ψ(s|s̃ac). Compared to ν = 0.3, when ν = 0.58, the deviations from ψ(s|s̃ac)
is larger and curves are more asymmetric between positive and negative sides
of δd.
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and

γd(s) =
1 + λ2

d + 2λd cos(2ψ(s̃|s̃ac) − 2πν sgn(s̃− s̃ac) + 2 arctanα(s))

1 − λ2
d

γ(s) .

(6.12)

When βd(s), αd(s), γd(s), andAd are defined this way, they satisfy the Courant-

Snyder invariance:

A2
d = γd(s)xd(s)

2 + 2αd(s)xd(s)x
′
d(s) + βd(s)x

′
d(s)

2 . (6.13)

From this equation, in the phase space at one location of a circular accelerator,

a particle driven by an AC dipole moves on an ellipse, as in the free betatron

motion. However, since not only Ad but also βd(s), αd(s), and γd(s) depend

on δd, both the area and shape of the ellipse changes along with δd for the

driven motion. In the limit δd → 0, since βd(s), αd(s), and γd(s) converge to

β(s), α(s), and γ(s), shapes of the ellipses for the driven and free betatron

motions become identical. Fig 6.4 shows the several measurements of the phase

space ellipses of the driven motions measured with a pair of such BPM’s in

the Tevatron when the AC dipole is operated at several values of δd. In the

measurements, the beam is driven with different δd while the kick angle θac is

kept the same. As expected, shapes of the ellipses are different for different

δd.

6.3 Amplitude Response

The secondary driving term can also be observed directly by its induced asym-

metric amplitude response around the free oscillation tune. When the influ-

ence of the secondary driving term is negligible, by ignoring the smaller term

of Equation 6.2 or taking the limit λd → 0 in Equations 6.4, 6.6, and 6.7, the
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Figure 6.4: Phase space ellipses of the driven motion. The location is a low-β
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amplitude of the driven motion is by

a
(0)
d (s̃) ≡

∣∣∣Ad√βd(s̃)
∣∣∣
λd→0

=
θac

√
β(s̃ac)β(s̃)

4| sin(πδd)| . (6.14)

In this case, the amplitude depends on the primary driving tune νd only

through the term | sin(πδd)| and is symmetric around the free oscillation tune

ν. Such would be the case for a simple driven harmonic oscillator, where the

amplitude diverges as 1/(ω2
d − ω2

0) (Equation 3.4). From Equations 6.4, 6.6,

and 6.7, the amplitude fully including the influence of the secondary driving

term ad(s̃) is given by

ad(s̃) = a
(0)
d (s̃)

√
1 + λ2

d − 2λd cos(2ψ(s̃|s̃ac) − 2πν sgn(s̃− s̃ac)) . (6.15)

Here, the amplitude ad(s̃) depends on νd through the factor

[1 + λ2
d − 2λd cos(2ψ(s̃|s̃ac) − 2πν sgn(s̃− s̃ac))]

1/2 as well. If we expand ad to

the first order of δd,

ad(s̃) � a
(0)
d (s̃)

[
1 − π cos(2ψ(s̃|s̃ac) − 2πν sgn(s̃− s̃ac))

sin(2πν)
δd

]
. (6.16)

Hence, the secondary driving term makes the νd dependence of the amplitude

asymmetric around the machine tune ν. That is ad(s̃) depends on whether we

operate the AC dipole with δd < 0 or δd > 0. The magnitude of this asymmetry

at each location is determined by the factor cos(2ψ(s̃|s̃ac)− 2πν sgn(s̃− s̃ac)).

Figure 6.5 shows the measured amplitude of the driven motion for dif-

ferent νd at three BPM locations in the Tevatron. In the measurements, only

νd is changed and the current in the AC dipole magnet is kept the same and

thus the maximum kick strength θac is also kept the same. The dashed and

solid curves are the fits of Equations 6.14 and 6.15 to the data. The fit pa-

rameters are the factor θac[β(s̃ac)β(s̃)]1/2 and the free oscillation tune ν for

Equation 6.14 and θac[β(s̃ac)β(s̃)]1/2, ν, and the phase ψ(s̃|s̃ac) for Equation
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Figure 6.5: Measured amplitude of the driven motion vs. νd at three BPM
locations in the Tevatron. The current in the AC dipole is kept constant while
νd is changed. At locations where cos(2ψ(s̃|s̃ac)−2πν sgn(s̃− s̃ac)) is not close
to zero, the amplitude response is asymmetric around the free oscillation tune
ν and the fits ignoring the secondary driving term (dashed curves) are not well
matched to the data.
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6.15. In the first plot, when the particular location around the synchrotron

such that cos(2ψ(s̃|s̃ac) − 2πν sgn(s̃ − s̃ac)) is close to zero, both fits are not

far apart. However, in the second and third plots, close to locations around

the synchrotron when cos(2ψ(s̃|s̃ac) − 2πν sgn(s̃ − s̃ac)) is close to one, the

asymmetry around the free oscillation tune (ν � 0.5786) is large and the fit

ignoring the secondary driving term is not well matched to the data. We

can also see, in the second plot, the amplitude in the side νd > ν is larger

than that of the side νd < ν and the relation is inverted when the sign of

cos(2ψ(s̃|s̃ac) − 2πν sgn(s̃− s̃ac)) is flipped in the third plot.

In the fits in Figure 6.5, the free oscillation tune ν is a fit parameter

determined at each BPM location. Figure 6.6 shows the free oscillation tunes

determined as fit parameters at all BPM locations around the Tevatron. In

the figure, the solid curve is from the fits including the secondary driving term

and the dashed curve is from the fits ignoring it. Since the free oscillation

tune ν is a global parameter of a synchrotron accelerator, the variation of the

determined machine tunes over BPM’s shows inaccuracy of the measurements

and data analyses. The fact that the free oscillation tune ν is now stably fit

at a certain value when the two modes are included points to the validity of

the secondary driving term formalism presented here.

Because one of the fit parameter is θac[β(s̃ac)β(s̃)]1/2, from these fits

in Figure 6.5 including the secondary driving term, we can determine the

amplitude function of the free oscillations at each BPM location (up to a

constant). An advantage of this method is that we can also determine the free

oscillation tune. On the other hand, for this method, we have to know the

current in the AC dipole magnet accurately. Because the free oscillation tune

is an important parameter of a synchrotron, we usually have other instruments

to accurately measure the free oscillation tune [49]. If the free oscillation tune
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is well known, there is another way to extrapolate the amplitude function of

the free oscillations from data sets of the driven motions at several different

frequencies of the AC dipole, without depending on measurement of the current

in the AC dipole magnet. This analysis will be discussed in the next chapter.

6.4 Summary

Because of the synchrotron’s periodicity, the sinusoidally-varying AC dipole’s

field effectively produces the two driving tunes to the circulating beam parti-

cles. The existence of the two driving tunes makes the beam particles’ driven

motions different from their free oscillations, as if there is a thin quadrupole

field error at the location of the AC dipole, changing the amplitude function

and phase advance depending on the difference between the driving tune and

free betatron tune, δd. Figures 6.4 and 6.6 show such difference between the

driven oscillations and free oscillations can be observed in the Tevatron as

expected. If such difference is not properly accounted for, the measurement

of the amplitude function and phase advance with an AC dipole may have

significantly large errors, depending on δd.
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Chapter 7

Linear Optics Measurement

Using an AC Dipole

To sustain the luminosity of a collider, it is ideal to constantly monitor the

amplitude function at interaction points. When the amplitude function is seen

to change from its desired value, we have to make ring-wide measurement of

the amplitude function or phase advance to find locations of the errors.

To date, two methods are mainly used to measure the amplitude func-

tion in the two interaction regions of the Tevatron. One is the (differential)

orbit response measurement [51, 52], where we intentionally change the cen-

tral orbit by varying known dipole magnets and construct a detailed model

which reproduces the observed central changes. The parameters in the inter-

action region are inferred from the model. The other method uses the physics

detectors [53]: by reconstructing the locations of collision events, we can ob-

serve shape and location of the luminous region inside a detector and thus can

determine the amplitude function and emittance. This method assesses the

amplitude function only in the interaction region, however. Both methods are
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time-consuming, requiring many hours of experimental data acquisition and

lengthy off-line data analyses.

This chapter discusses techniques to measure linear optical parameters

of a synchrotron using the AC dipole. The techniques presented here utilize

the results of Chapter 6, in which a suite of measurements are made with the

AC dipole at several frequencies near the betatron tune. The measurements

require only a few minutes of time, permitting frequent feedback.

7.1 Diagnosis of an Interaction Region

Figure 7.1 shows a schematic layout of an interaction straight region in the

Tevatron. The two interaction regions in the Tevatron are identical. Between

a pair of the quadrupole triples, squeezing the transverse beam size and thus

maximizing the luminosity (Equation 1.4), there is no magnetic elements1. As

seen in Sections 2.2.3 and 2.3.4, in a drift space, the amplitude function is

described by a parabolic function:

β(s̃) = β∗ +
1

β∗ (s̃− s̃∗)2 , (7.1)

where β∗ is the minimum value of the amplitude function and s̃∗ is the location

of the beam waist, as depicted in Figure 7.1. In the design of a collider, the

beam waist is located at the center of a physics detector. Quadrupole field

errors change the amplitude function, including β∗ and the location of the

beam waist s∗, and thus may degrade the luminosity (Equation 1.4). Hence,

in operations of a collider, it is desired to monitor β∗ and s∗ as often as possible.

As depicted in the figure, there are two BPM’s in the straight region

1An exception is solenoids of the physics detectors. Because influence of these solenoids’
field is small [54], we simply ignore them in the following.
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Figure 7.1: Schematic layout an interaction region in the Tevatron. Between
the quadrupole triplets, squeezing the transverse beam sizes for collisions, no
magnetic element exists and particles travel on straight lines. In such a region,
the amplitude function changes as a parabolic function (Sections 2.2.3 and
2.3.4). From data of the two BPM’s, BPM1 and BPM2, we can reconstruct
the phase space mapping, and thus can determine the minimum value of the
amplitude function, β∗, and the beam waist location, s∗.
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between the quadrupole triplets2. Because particles travel on straight lines in

a magnet free straight region, we can measure the beam’s angle in this region

by using these two BPM’s. The beam angle at these two location, x′1 and x′2,

are given by

x′1 = x′2 =
1

2L
(x2 − x1) , (7.2)

where x1 and x2 are beam positions at BPM1 and BPM2, L is the distance

from the interaction point to each BPM. For the Tevatron, L = 7.483 m in

the horizontal plane and L = 7.363 m in the vertical plane. By simultaneously

observing position and angle for multiple revolutions, we can reconstruct the

phase space and, thus, the Courant-Snyder parameters[54, 56].

There are several analysis methods to determine the minimum value of

the amplitude function, β∗, and offset of the beam waist location from the

desired value, Δs∗, from data of the turn-by-turn oscillations, observed by the

two BPM’s in the interaction region. Here, we discuss an analysis to determine

β∗ and Δs∗ from the amplitudes and phases of these turn-by-turn oscillations.

In data of turn-by-turn oscillations, such as Figure 4.5, we can determine the

amplitude and phase by fitting a sinusoidal function to the data points. From

Equation 6.5, when the beam is driven by the AC dipole, the beam’s positions

observed by these two BPM’s are given by

xd(nC + s̃1,2) = Ad
√
βd(s̃1,2) cos(2πνdn + ψd(s̃1,2|s̃ac) + χd) , (7.3)

where s̃1 and s̃2 are locations of the two BPM’s, BPM1 and BPM2, and s̃1,2

is a shorthand notation indicating either s̃1 or s̃2. We rewrite this equation in

2The figure shows only one transverse plane and there are four BPM’s in total: two in
horizontal plane and two in vertical plane.
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the following way:

xd(nC + s̃1) = ad,1 cos(2πνdn+ χ̄d) (7.4)

xd(nC + s̃2) = ad,2 cos(2πνdn+ ψd(s̃2|s̃1) + χ̄d) . (7.5)

These amplitudes, ad,1 ≡ Ad
√
βd(s̃1) and ad,2 ≡ Ad

√
βd(s̃2), and phases,

ψd(s̃2|s̃1) and χ̄d ≡ ψd(s̃1|s̃ac) + χd, are the quantities directly determined

from data of the turn-by-turn oscillations. We note that, because the phase

χ̄d depends on an arbitrary phase χd, any physical quantity should be indepen-

dent of χ̄d and should only depend on the relative phase difference of the two

BPM locations ψd(s̃2|s̃1). Given these amplitudes and phases, the quantities

corresponding to β∗ and Δs∗ for driven betatron oscillations, β∗
d and Δs∗d, are

determined from the following equations:

β∗
d =

2ad,1ad,2 sin(ψd(s̃2|s̃1))

a2
d,1 + a2

d,2 − 2ad,1ad,2 cos(ψd(s̃2|s̃1))
L (7.6)

Δs∗d =
a2
d,1 − a2

d,2

a2
d,1 + a2

d,2 − 2ad,1ad,2 cos(ψd(s̃2|s̃1))
L . (7.7)

The constant Ad is also determined from these amplitudes and phases:

Ad =

√
ad,1ad,2 sin(ψd(s̃2|s̃1))

2L
. (7.8)

The last step to determine β∗ and Δs∗ of free betatron oscillations is

to make measurements of β∗
d and Δs∗d at several different frequencies of the

AC dipole and to extrapolate to the case δd = 0. Figure 7.2 shows β∗
d and

Δs∗d of several different δd, measured in one interaction region of the Tevatron,

referred to as B0 interaction region. The curves represent the fits to these data
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Figure 7.2: β∗
d and Δs∗d vs. δd. For the free betatron oscillations’ β∗ and s∗ can

be extrapolated from the driven oscillations’ β∗
d and Δs∗d of several different

frequencies. In the figure, β∗ and s∗ corresponds to the values when δd = 0.
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points using Equations 2.54, 2.55, 6.11, and 6.12:

β∗
d =

1

γd(s̃∗)

=
1 − λ2

d

1 + λ2
d + 2λd cos(2ψ(s̃∗|s̃ac) − 2πν sgn(s̃∗−s̃ac))

β∗ (7.9)

Δs∗d =
αd(s̃

∗)
γd(s̃∗)

= Δs∗ − 2λd sin(2ψ(s̃∗|s̃ac) − 2πν sgn(s̃∗−s̃ac))

1 + λ2
d + 2λd cos(2ψ(s̃∗|s̃ac) − 2πν sgn(s̃∗−s̃ac))

β∗ . (7.10)

In these equations, the free parameters are β∗, Δs∗, and ψ(s̃∗|s̃ac), which is the

phase advance from the location of the AC dipole to the location of the beam

waist. In the figure, we can see these functions fit well to the data points. The

extrapolated minimum value of the amplitude function and offset of the beam

waist location are β∗ = 0.34 m and Δs∗ = 0.086 cm.

7.2 Ring-wide Measurement

When the measured values of β∗ and Δs∗ are different from the desired values,

we have to make ring-wide measurements of the amplitude function or phase

advance to find locations of the error sources.

We again start from the equation to describe the position of the turn-

by-turn oscillations when the beam is driven by the AC dipole (Equation 6.5):

xd(nC + s̃) = Ad
√
βd(s̃) cos(2πνdn+ ψd(s̃) − ψd(s̃ac) + χd) . (7.11)

We suppose the reference of the longitudinal coordinate s̃ = 0 is location of

a particular BPM3. Then, the phase ψd(s̃) describes the phase advance of the

driven betatron oscillations from the location of this reference BPM to the

3We choose the first BPM encountered by the proton beam after it is injected into the
Tevatron.
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Figure 7.3: βd(s̃) vs. δd at six consecutive BPM locations. The legend shows
longitudinal position s of each BPM. The values of the amplitude function of
the free betatron oscillations, β(s̃) at each BPM locations are the values of the
fit curves when δd = 0.
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location s̃. As we did in the analysis of Section 7.1, by fitting this equation

to the data of the turn-by-turn oscillations observed by each of the BPM’s,

we can determine the amplitude Ad
√
βd(s̃) and phase ψd(s̃) − ψd(s̃ac) + χd

at all the BPM locations. Here, the constant Ad can be determined by using

the two BPM’s in the interaction straight region, as given in Equation 7.8.

We also note that the measured phase of the first BPM is −ψd(s̃ac) + χd

since ψd(0) = 0. Hence, from the turn-by-turn oscillations excited by the AC

dipole, we can determine the amplitude function and phase advance of the

driven betatron oscillations, βd(s̃) and ψd(s̃), at all the BPM locations.

Figure 7.3 shows βd(s̃) of several different frequencies of the AC dipole,

measured by the first six BPM’s after the reference BPM. The curves show the

fits of Equation 6.7 to the data points. The free parameters of the fits are the

amplitude function at the BPM location, β(s̃), and the phase advance from the

AC dipole’s location to the BPM location, ψ(s̃|s̃ac). In Figure 7.3, β(s̃) at each

BPM are the values of the fit curves when δd = 0. The figure indicates that,

if the difference of βd(s̃) and β(s̃) is not properly accounted, measurement of

the amplitude function may have large errors, depending on the longitudinal

position and δd. Figure 7.4 shows ring-wide β(s̃), measured in this way, and

also shows ring-wide βd(s̃) when δd = 0.01 and 0.04, as comparisons. As

discussed in Section 6.2, compared to β(s̃), βd(s̃) has a structure like the

beta-beat and the effect gets larger when the magnitude of δd gets larger.

As estimated in Section 6.2, even when δd = 0.01, the maximum difference

between β(s̃) and βd(s̃) is about 10 m, corresponding to 10%. Hence, if the

require measurement accuracy is better than this, we have to properly account

the difference between β(s̃) and βd(s̃).

Figure 7.5 shows ψd(s̃) of several different frequencies of the AC dipole,

measured by first six BPM’s after the reference BPM. In the figure, the phase
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plitude function of the free oscillations, β(s̃), the amplitude function of the
driven oscillations βd(s̃) has a structure like the beta-beta. The effect depend
on the magnitude of δd.
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Figure 7.5: ψd(s̃) vs. δd at six consecutive BPM locations (The same BPM’s
as Figure 7.3). The legend shows longitudinal position s̃ of the BPM locations.
The phase advance of the free oscillations ψ(s̃) can be extrapolated from the
phase advance of the driven oscillations ψd(s̃), measured at several different
frequencies of the AC dipole. The values of ψ(s̃) at each BPM locations are
the values of the fit curves when δd = 0.
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advance is given in units of rad/2π. The curves show the fits of Equation 6.9

to the data points. The free parameter of the fit is the phase advance from the

AC dipole’s location to the BPM location ψ(s̃|s̃ac). In the figure, the phase

advances of the free betatron oscillations to these BPM locations, ψ(s̃), are

the values of the fit curves when δd = 0. We can see, if the difference of ψd(s̃)

and ψ(s̃) is not properly accounted for, the measurement of the phase advance

may have large errors, depending on the longitudinal position and δd. Figure

7.6 shows deviation of the phase advance of the free betatron oscillations,

compared to its design value ψdesign(s̃), measured at all the BPM locations in

the Tevatron. Here, the phase advance ψ(s̃) is determined as in Figure 7.5,

from ψd(s̃) of several different AC dipole frequencies. For comparisons, Figure

7.6 also shows deviations of ψd(s̃) from ψdesign(s̃) when δd = ±0.02 and ±0.04.

Compared to ψ(s̃)−ψdesign(s̃), ψd(s̃)−ψdesign(s̃) has a structure like the phase-

beat and the effect gets larger when the magnitude of δd gets larger. Similar

to the case of the amplitude function measurement, accurate measurement

of the phase using the AC dipole requires to properly account the difference

between ψ(s̃) and ψd(s̃). We can also observe, for ψd(s̃)−ψdesign(s̃), the mean

value of the phase-beat undergoes a constant shift at the location of the AC

dipole. This is a characteristic effect of a quadrupole field error and the AC

dipole also produces a similar effect. The phase advance of the free betatron

oscillations ψ(s̃) − ψdesign(s̃) (black curve) also undergoes constant shifts at

the two locations around s̃ � 2,000 m and 4,000 m. These are due to real

quadrupole field errors at the location of the AC dipole. These two locations

corresponds to the two interaction regions of the Tevatron.
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Figure 7.6: ψ(s̃) − ψdesign(s̃) and ψd(s̃) − ψdesign(s̃) vs. longitudinal position.
Compared to the phase advance of the free oscillations, ψ(s̃), the phase advance
of the driven oscillations, ψd(s̃), has a structure like the phase-beta and also
undergoes a constant shift at the location of the AC dipole. The effect depend
on the magnitude of δd. The shifts of the free oscillations’ phase advance,
ψ(s̃) − ψdesign(s̃), around s̃ � 2,000 m and 4,000 m indicate existence of the
quadrupole field errors.
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7.3 Systematic Uncertainties

We conclude this Chapter with discussion about influence of systematic un-

certainties on the measurement of the amplitude functions. Most notably,

there are several error sources in the BPM measurements themselves, such as

the electronics noise, misalignment (offset and tilt), and nonlinear response.

Among these, the scaling error resulted from the tilt and nonlinearity are the

largest, and here we study the impact on our measurements of machine optics

from this type of systematic error sources [54, 56].

We suppose the two BPM’s, used to diagnose the interaction region,

have scaling errors. Then, in Equation 7.4 and 7.5, the amplitudes determined

from the observations of these two BPM’s change to (1+ε1)ad,1 and (1+ε2)ad,2,

where ε1 and ε2 are constant parameters to denote the scaling errors. When

the measured amplitudes change in this way, β∗
d(s̃) and s∗d(s̃) determined from

Equations 7.6 and 7.7 also change. Up to first order in ε1 and ε2, the changes

of β∗
d and s∗d are given by

β∗
d →

[
1 − 1

4
(ε1 + ε2)

2

]
β∗
d (7.12)

Δs∗d → Δs∗d +
L

2
(ε1 − ε2) . (7.13)

If the source of the scaling error is the BPM’s nonlinearity, for a typical BPM

in the Tevatron, the magnitude of the scaling error is less than a few percent

ε1, ε2 � 0.02 (see [27, 25]). From Equation 7.12, the influence is very small

since the effect is proportional to (ε1 + ε2)
2. For instance, to change measured

value of β∗ by 1%, one of the BPM must have as much as 20% scaling error.

Whereas, from Equation 7.13, measurement of the beam waist location is very

sensitive to these errors. For instance, if ε1 � 0.02 and ε1 � 0, the measured

s∗d and thus the extrapolated s∗ has an additional 7 cm. We note that the
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method using the physics detector [53] can measure the beam waist location

with better accuracy (less than ±1 cm). As a possible improvement in future,

the result from the physics detector may give constrains to the scaling errors

of the BPM’s in the Tevatron’s interaction regions.

In the measurement of the ring-wide amplitude function in Section 7.2,

we also used the two BPM’s in the interaction region to calculate the constant

Ad. With the same scaling error described by ε1 and ε2, the measured value

of this constant changes to

Ad →
[
1 +

1

2
(ε1 + ε2)

]
Ad . (7.14)

In the measurement, the amplitude function of the driven oscillations at each

BPM location, βd(s̃), is determined from square of the amplitude Ad
√
βd(s̃).

Hence, this scaling error changes the measured value of βd(s̃) to

βd(s̃) → [1 + (ε1 + ε2)]βd(s̃) . (7.15)

The equation indicates that the ring-wide amplitude function measurement,

discussed in Section 7.2, has global scaling error of ε1 + ε2, which is estimated

less than a few percent. Such is acceptable and, furthermore, does not af-

fect measurements of the relative amplitude function between any two points

around the synchrotron.

7.4 Summary

In this chapter, we discussed measurements of the Tevatron’s linear optical pa-

rameters using the AC dipole, both in the interaction region and in the entire

synchrotron. From the data of the AC dipole excitations at several different

frequencies of the AC dipole, we can extrapolate the parameters of the free
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oscillations in the limit δd → 0. In this way, we can make direct measurements

of the Tevatron’s linear optical parameters, relatively faster than the types

of measurements relying on the synchrotron’s model. In the presented mea-

surements here, no significant error is found. For the measurements presented

in this chapter, the largest error source is the BPM’s scaling error. Section

7.3 shows our measurements are not sensitive to typical scaling errors of the

BPM’s in the Tevatron, except the measurement of the beam waist location.
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Chapter 8

Nonlinear Optics Measurement

In Chapter 3, we discussed influences of perturbative magnetic fields to mo-

tions of beam particles in a synchrotron and these influences are summarized

in Table 3.1. Perturbative fields whose orders are higher than the second or-

der (quadrupole) may affect the stability of the beam in the synchrotron due

to resonance effects (see Chapter 3). Therefore, it is ideal if we can measure

influences of nonlinear fields in the synchrotron. In situ measurements, fur-

thermore, would be a significant advantage over dedicated experiments, such

as [57], to measure such nonlinear effects.

The AC dipole permits in situ measurements in a synchrotron, and fur-

thermore the large, sustained oscillations it produces should enable nonlinear

effects to become measurable. In this chapter, we discuss measurements of

nonlinear perturbations due to sextupole and octupole fields. In Section 8.1,

we discuss measurements of the perturbative effects due to sextupole fields

and, in the following Section 8.2, we discuss measurements of the perturbative

effects due to octupole fields. In both Sections 8.1 and 8.2, we focus on the

effects summarized in Table 3.1.
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8.1 Perturbation Due to Sextupole Field

Sextupole fields distort the central orbit of the beam particles, and also drive

modes with tune 2ν0. From Equation 3.56 and Table 3.1, these effects are

nonlinear and depend on the square of the constant A, which determines the

amplitude of the leading order free oscillations (Equation 2.29).

To observe such effects, measurements are performed with low intensity

(2-3×1011) proton beams of 150 GeV in the Tevatron. In the measurements,

the strength of a single sextupole magnet1 is set to various values and large

amplitude beam oscillations, produced by the vertical AC dipole in the Teva-

tron, are observed by a BPM system to detect the effects due to this controlled

sextupole magnet. In Section 8.1.1, we discuss measurements of the central or-

bit distortion due to this controlled sextupole and, in Section 8.1.2, we discuss

measurements of the modes with tune 2ν0 excited by this sextupole.

8.1.1 Central Orbit Distortion

Figure 8.1 shows an example of turn-by-turn oscillations in the vertical plane

excited with the vertical AC dipole in the Tevatron during the sextupole study.

In the figure, the initial vertical position of the central orbit before the AC

dipole excitation, yco,initial, is subtracted from the data. When the oscillation

amplitude grows, the average position of the oscillations changes (in this case

upward) due to the influences of sextupole fields. We calculate the difference

between the position of the initial central orbit and the position of the central

orbit while the amplitude of the AC dipole’s field is maximum, Δyco, which

1In measurements discussed in this section, coherent oscillations of beam particles are
always excited with the vertical AC dipole. Hence, the controlled sextupole in our measure-
ments is actually skew sextupole magnet which produces a force proportional to the square
of a particle’s vertical displacement from the center of the magnet.
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Figure 8.1: Orbit distortion due to sextupole fields observed in the turn-by-
turn oscillations of the AC dipole’s excitation. During the excitation, the
average position of the beam particles are shifted by Δyco from the initial
position of the central orbit due to the influence of sextupole fields.
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is described by the second term of Equation 3.56. We note that, when the

beam particles are driven with the AC dipole, the orbit distortion due to sex-

tupole fields is determined by the parameters of the driven oscillations defined

in Chapter 6, A2
d and βd(s̃3)

3/2, instead of the parameters of the free betatron

oscillations, A2 and β0(s̃3)
3/2. Here, s̃3 (0 ≤ s̃3 < C) is the location of the sex-

tupole magnet as in Equation 3.56. Because the constant Ad is proportional

to the current going through the AC dipole (Equation 5.13), the orbit distor-

tion due to sextupole fields is proportional to the square of the current going

through the AC dipole. We also note that, since the second term of Equation

3.56 is proportional to the effective strength of a sextupole magnet k3, and

since k3 is proportional to the current going through the sextupole magnet,

the orbit distortion due to a single sextupole magnets is linearly proportional

to the current going through the sextupole magnet.

Figure 8.2 shows distortions of the central orbit measured at all the

BPM locations in the Tevatron, when the average oscillation amplitude of the

AC dipole excitation is about 4.75 mm in the arc and the oscillation amplitude

at the location of the given sextupole magnet is about 4 mm. The measure-

ments were performed with the low intensity proton beam in the nominal

condition of the Tevatron at its injection energy 150 GeV, corresponding to

the magnetic rigidity (Bρ) � 500 Tm. We note that the rms beam size at this

energy is about 1.3 mm and the amplitude of the excited oscillations 4.75 mm

corresponds to roughly 3.5σ beam size. The dotted line and solid line rep-

resent the two cases of the current going through a given sextupole magnet,

0 A (the nominal value) and 30 A. The figure shows that the distortion of the

central orbit grows with the current going through the given sextupole magnet

and the case of 30 A also shows the cusp structure at the nearest BPM to the

sextupole magnet, as discussed in Section 3.2.1. For the sextupole magnet

174



sextupole location
Isextu � 0 A

Isextu � 30 A

0 1000 2000 3000 4000 5000 6000
�0.2

�0.1

0.0

0.1

0.2
F0 A0 B0 C0 D0 E0 F0

longitudinal position �m�

�
y c

o
�m

m
�

location in the Tevatron

Figure 8.2: Distortions of the central orbit due to a single sextupole magnet
when the current going through the sextupole magnet is the nominal 0 A and
when it is increased to 30 A. The current going through the AC dipole is 280 A,
corresponding to 5-6 mm oscillation amplitudes in the arc of the Tevatron. We
can see a cusp structure (see Section 3.2.1) near the location of the sextupole
magnet.
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used in these measurements, the amplitude function at the location is about

β(s̃3) � 94 m (design value), and the relation between the effective strength

k3 = By,2�/(Bρ) and the current going through the sextupole magnet Isextu is

given by [3]

k3 � 14 Isextu nrad/mm2 , (8.1)

where the current of the sextupole Isextu is in units of Ampere. This equation

indicates that, when the current of this sextupole magnet is Isextu � 30 A

and the oscillation amplitude at the location of this sextupole magnet is

Ad
√
β(s̃3) � 4 mm, this sextupole magnet is equivalent to a dipole mag-

net with deflection angle 1
4
k3A

2
dβ(s̃3) � 1.7 μrad. Hence, from either Equation

3.36 or Equation 3.56, under these conditions, the maximum central orbit dis-

tortion is expected to be about 80 μm at the locations of the BPM’s in the

arc, where the amplitude function is β(s) � 95 m. In the figure, we can see

this estimate is not far from the measurement. We note that, because some

sextupoles are used in the nominal condition of the Tevatron, the orbit dis-

tortion is not zero even when the current in the given sextupole Isextu is zero.

The figure indicates that the maximum orbit distortion due to these residual

sextupole fields are about 40 μm. This is the case when the oscillation am-

plitude is about 3.5σ beam size. We note that, with no AC dipole excitation,

beam particles are undergoing free betatron oscillations with the rms oscilla-

tion amplitude σ, determining the beam size σ. If we scale this 40 μm to the

case of 1σ beam size oscillations, the orbit distortion is about 3 μm, which is

only 0.2% of the beam size. Hence, the contribution to the beam size from

these residual sextupole fields can be negligible, as long as we keep the tunes of

the beam particles off the resonant condition ν0 = N , where N is an arbitrary

positive integer.
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Figure 8.3: Difference of the central orbit distortions when the current in the
given sextupole is 30 A and 0 A, normalized by the amplitude function. The
horizontal axis is also changed from the longitudinal position to the phase
advance. This figure shows only the effect due to the change of the given
sextupole magnet.
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Figure 8.3 shows the difference of the central orbit distortions in Figure

8.2, when the current in the given sextupole magnet is 30 A and 0 A. The

vertical axis is normalized by the amplitude function at each BPM location

and the horizontal axis is changed from the longitudinal position to the phase

advance measured from the first BPM. From the second term of Equation 3.56,

in this case, we predict a pure sinusoidal change with a constant amplitude

k3A
2
dβd(s̃3)

3/2

8 sin(πνd)
� 0.008 mm/m1/2 (8.2)

and the measurement agrees well to the prediction. In this figure, the cusp

structure at the nearest BPM to the source can be seen clearer than Figure

8.2 and this quantity on the vertical axis is useful to find locations of the error

sources.

The central orbit distortion due to a sextupole magnet is linearly pro-

portional to the current going through the sextupole magnet and is propor-

tional to the square of the current going through the AC dipole. To test this,

we set the current of the same sextupole magnet used in Figure 8.2 to several

different values, holding the AC dipole’s current at constant 280 A. Figure

8.4 shows measured central orbit distortions as functions of the current going

through the sextupole magnet, observed at three consecutive BPM’s in the

Tevatron. Because the central orbit distortion depends on the phase advance

through the term cos(ψ0(s̃) − ψ0(s̃3) − πν0 sgn(s̃ − s̃3)) (see the second term

of Equation 3.56), it may shift upward or downward depending on a location,

and indeed different responses to the sextupole effect are seen at the locations

of BPM#52, BPM#53, and BPM#54. We note that, at the locations of these

178



Iac dipole � 280 A

�40 �20 0 20 40 60
�0.15

�0.10

�0.05

0.00

0.05

0.10

0.15

sextupole current �A�

�
y c

o
�m

m
�

BPM�52 BPM�53 BPM�54

Figure 8.4: central orbit distortion vs. current of the sextupole magnet ob-
served at three BPM locations in the Tevatron. In the measurements, current
of the AC dipole is kept to a constant value, 280 A, and so the oscillation
amplitude of the leading order mode is kept to a constant value. Then, the
orbit distortion is linearly proportional to the current of the sextupole magnet.
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BPM’s,

cos(ψ0(s̃) − ψ0(s̃3) − πν0 sgn(s̃− s̃3)) (8.3)

�

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0.91 for ψ0(s̃) − ψ0(s̃3) � 130 deg (BPM#52)

−0.06 for ψ0(s̃) − ψ0(s̃3) � 199 deg (BPM#53)

−0.94 for ψ0(s̃) − ψ0(s̃3) � 160 deg (BPM#54) .

(8.4)

The amplitude of the central orbit distortion, modulated by the phase term

cos(ψ0(s̃)−ψ0(s̃3)−πν0 sgn(s̃−s̃3)) in Equation 3.56, is 80 μm, and is consistent

with observations. Because there are other sextupole magnets, the central

orbit distortion is not zero even when the current of the given sextupole magnet

is zero and hence the fit lines in Figure 8.4 are not crossing zero when the

sextupole’s current is zero. In this way, we can observe the central orbit

distortion due to a single sextupole magnet is linearly proportional to the

current in the sextupole magnet, as expected2.

The central orbit distortion due to sextupole fields is proportional to the

amplitude of the beam’s motion through the sextupole, as derived in Equation

3.56. As a result, the central orbit distortion should be proportional to the

square of the AC dipole’s current. To test this, we performed measurements in

which this same sextupole was activated similarly to measurements in Figure

8.4, but now the current of the AC dipole is set to several different values. Fig-

ure 8.5 shows the measured central orbit distortion for different values of the

AC dipole’s current, observed at the same three consecutive BPM locations,

BPM#52, BPM#53, and BPM#54. Because the central orbit distortion de-

2When we change a sextupole magnet, changes of dipole and quadrupole fields are in-
volved through the feeddown effects (Section 3.1.5) and the coupling between the two trans-
verse planes are also induced (Section 3.2.3). Hence, it is very hard to add only a nonlinear
field without changing linear properties of the synchrotron. The deviations of the data
points from the fits are expected due to such systematic changes of linear parameters when
we change the sextupole magnet.
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Figure 8.5: Central orbit distortion vs. current of the AC dipole observed
at three BPM locations in the Tevatron. In the measurements, current of
the given sextupole magnet is kept to a constant value, 30 A, and so the net
sextupole field in the synchrotron is kept the same. In such cases, the orbit
distortion is proportional to the square of the AC dipole’s current.
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pends on the phase advance, the central orbit may shift up or down, or may

not be affected depending on a location in the synchrotron. The central orbit

distortion goes to zero when the current of the AC dipole approaches zero.

The central orbit distortion is proportional to the square of the AC dipole’s

current and, hence,the square of the amplitude of the beam’s motion, Ad, as

expected.

8.1.2 Higher Tune Mode

From the third and fourth terms of Equation 3.56, sextupole fields are ex-

pected to drive modes whose tune is twice of the leading order oscillations.

The magnitudes of these modes are linearly proportional to the current of a

sextupole and are proportional to the square of the current going through the

AC dipole. In this section, we discuss measurements of such modes utilizing

the Fourier spectra of the beam particles’ oscillations excited by the AC dipole

similar to measurements in [58, 59, 60, 61].

We note that, when the leading order oscillations is the free betatron

oscillations, the modes driven by sextupole fields have the tune 2ν0 as shown

in Equation 3.56. When the leading order oscillations is the driven oscillations

excited by an AC dipole, the two modes have the tune 2νd, instead of 2ν0.

When the leading order oscillations is the driven oscillations, the amplitudes

of these two modes are proportional to parameters of the driven oscillations

A2
dβd(s̃3)

3/2 instead of A2β0(s̃3)
3/2, as in the case of the central orbit distortion.

We also note that, with one BPM, we can only observe the combined effects

corresponding to the third and fourth terms of Equation 3.56.

Figure 8.6 shows Fourier spectra of the turn-by-turn oscillations ob-

served at two BPM locations in the Tevatron, when the beam particles are
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driven by the AC dipole. The data is from the measurements in Figure 8.2,

namely, the beam is excited twice with the AC dipole powered at 280 A when

the sextupole magnet is set to 0 A and 30 A. We note that, for discrete

Fourier transformations, the spectrum is always symmetric around the mid

point and the upper and lower regions represent physically the same modes

(see for instance Appendix B-I of [8]). Peaks at νd and 1 − νd correspond to

the oscillations driven by the AC dipole3. Here, we are using a convention of

normalization, in which the sum of these two peak heights at νd and 1 − νd

is equal to the amplitude of the oscillations driven by the AC dipole. The

spectrum at BPM#52 shows that the peaks at 2νd and 1−2νd grows when we

increase the current in the given sextupole magnet from 0 A to 30 A. Whereas,

in the spectrum of BPM#53, the peaks at 2νd and 1− 2νd have much smaller

changes. The situation is analogous to the central orbit distortion seen in

Figure 8.4, where the effect depends on the phase advance term in Equation

3.56 and differs over locations of the BPM’s4.

The magnitudes of the modes with tune 2νd are linearly proportional

to sextupole fields. To observe this, we performed measurements in which

the beam was excited by the AC dipole powered at 280 A, and the sextupole

current was varied from -30 A to +45 A. Figure 8.7 shows the net oscillation

amplitudes of the two 2νd modes, when the current of the sextupole magnet

is are set to several different values, while the current of the AC dipole is kept

to a constant 280 A. These are in fact the same data as the measurements

in Figure 8.4. The lines in the figure represent linear fits to the data. As

3We note that these two peaks do not correspond to the primary and secondary driving
tunes discussed in Chapter 6. Both of the peaks in the Fourier spectrum include the effects
of both the primary and secondary modes of the driven oscillations.

4We note that the peaks at 3νd and 1 − 3νd correspond to the modes driven by oc-
tupole fields. The spectra show these peaks since octupole magnets are used in the nominal
condition of the Tevatron when the beam is at its injection energy 150 GeV.
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Figure 8.6: Fourier spectra of the oscillations driven by the AC dipole for
two different currents in the given sextupole magnet, observed at two BPM
locations in the Tevatron. Because sextupole fields drive modes with tune 2νd,
in the Fourier spectrum observed by BPM#52, the peaks at 2νd and 1 − 2νd
grow when the current in the given sextupole is increased. However the effect
depends on the phase advance, and so the peaks at 2νd and 1 − 2νd does not
grow at BPM#53, where the phase modulation cosine is approximately zero.
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Figure 8.7: Net amplitude of the two modes with tune 2νd vs. current of the
sextupole magnet, observed at three BPM locations in the Tevatron. In the
measurements, current of the AC dipole is kept to a constant value, 280 A, and
so the oscillation amplitude of the leading order mode is kept to a constant
value. As expected from Equation 3.56, the amplitude is linearly proportional
to the current of the sextupole magnet.
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already discussed, the slopes of the fits are different because the net effect of

the two modes depend on the phase advance. The intercepts in the figure

represents the effects of such residual sextupole magnets from elsewhere in the

Tevatron. In this way, we can see the magnitude of the modes with tune 2νd

has linear dependence on sextupole fields. We note that the deviations of the

data points from the fits are expected due to changes of linear parameters of

the synchrotron induced by the changes of the sextupole magnet.

As indicated in Table 3.1 and in Equation 3.56, the appearance of this

2νd mode should also depend upon the square of the amplitude of the beam’s

motion A2
d and, hence, the square of the AC dipole current. To test this,

we performed a test in which the current of the given sextupole is kept to a

constant value 30 A while the AC dipole excitation is varied between 70 A

and 280 A. Figures 8.8 and Figure 8.9 show that, when the current of the AC

dipole increases, the peaks at 2νd and 1 − 2νd indicating that these sextupole

modes driven are proportional to A2
d in Equation 3.56. As expected from

Equation 3.56, Figure shows the amplitude is proportional to the square of

the AC dipole’s current.

In this section, from Fourier spectra measured with BPM’s, we observed

sextupole fields drive the modes whose tune is twice of the tune of the leading

order oscillations. Through the measurements with the AC dipole in the Teva-

tron, we tested that the amplitudes of these modes are linearly proportional

to strength of sextupole fields and proportional to the square of the constant

Ad of the driven oscillations. The appearance of such modes in the Fourier

spectrum may be used as a quick diagnostic of the applied and parasitic sex-

tupole fields in a synchrotron, and the magnitudes of these Fourier peaks may

be quickly interpreted in terms of parasitic sextupole field strength.
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Figure 8.8: Fourier spectra of the oscillations driven by the AC dipole for
two different AC dipole’s currents, while current of a given sextupole magnet
is kept to a constant value, observed at two BPM locations in the Tevatron.
Sextupole fields drive the modes with tune 2νd and so the peaks at 2νd and
1 − 2νd grow with current of the AC dipole. Because the magnitudes of these
modes depend on the phase advance, the peak heights could be different such
as the locations of BPM#52 and BPM#53.
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Figure 8.9: Net amplitude of the modes with tune 2νd vs. current of the AC
dipole, observed at three BPM locations in the Tevatron. In the measurements,
current of the given sextupole magnet is kept to a constant value 30 A. As
expected from Equation 3.56, the amplitude is proportional to the square of
the AC dipole’s current. The difference of the slopes come from the phase
dependence of the net amplitude at the locations of the three BPM’s plotted.
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8.2 Perturbation Due to Octupole Field

In this section, we study the effects induced by octupole fields in an accelerator.

From the discussions in Sections 3.2.4 and 3.1.4, we expect that octupole fields

shift the tune ν of the accelerator and cause a beta-beating effect, much like

quadrupole field errors. Furthermore, octupole fields are expected to drive

modes with tune 3ν0. From Equations 3.61 and 3.64, these effects are nonlinear

and depend on cube of the constant A, which determines the amplitude of the

leading order free oscillations (Equation 2.29), such as summarized in Table

3.1.

To observe such effects in the Tevatron, we performed measurements

similar to those in Section 8.1 with low intensity (2-3×1011) proton beams of

150 GeV. The Tevatron has four groups of octupole magnets [3], and all the

octupoles in one group are controlled by a single power supply and produce

the same field. In the measurements performed here, the strength of a group of

octupole magnets, consisting of 18 octupole magnets, is set to various values,

and large amplitude oscillations of the beam particles are excited with the

vertical AC dipole to observe the perturbative effects due to this group of

octupole magnets. From Equation 3.48, the strength of the beta-beat depends

on the phase advance from the error source to the observation point, and so

the net effect may be weakened when there are multipole sources canceling

each others’ effects, much like interference of multiple waves5. Hence, among

three effects of octupole fields listed in Table 3.1, we discuss measurements

only of the tune shift in Section 8.2.1 and also discuss measurements of the

mode with tune 3ν0 in Section 8.2.2.

5The groups of octupole magnets in the Tevatron are in fact arranged, so that they do
not affect the amplitude function and phase advance and only cause the nonlinear tune shift.
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8.2.1 Tune Shift

In this section, we discuss measurement of nonlinear tune shift due to octupole

magnetic fields in the Tevatron, using the AC dipole. A tune shift due to

nonlinear field is also referred to as detuning. As discussed in Chapters 4 and

6, the tune of beam particles is analogous to the intrinsic frequency of a driven

harmonic oscillator system. When the beam is driven by a harmonic force such

as an AC dipole, the amplitude of the driven motion grows large as the driving

frequency approaches the intrinsic tune.

When a system has nonlinear forces which alter the intrinsic frequency

of a particle depending on the particle’s oscillation amplitude, such as forces of

octupole magnetic fields, the resonant response of the driven motion is modified

as seen in Figure 8.10 (see for instance Section 29 of [32]). This figure shows

schematic amplitude responses of the beam particles’ oscillations driven by

the AC dipole in cases with and without a nonlinear force causing detuning.

The black curve represents the amplitude response when particles with larger

oscillation amplitudes have higher tunes. Suppose, in such a system, we drive

the beam particles with an AC dipole from the lower side of the intrinsic

tune, νd < ν0. Here, the intrinsic tune of the system ν0 is the tune when an

oscillation amplitude of a particle approaches to zero. If we shift the driving

tune νd, keeping the amplitude of the AC dipole’s field the same, toward the

intrinsic tune ν0, the amplitude grows but this amplitude growth also shifts

the free oscillation’s tune higher. Hence, if the beam is driven in the lower

side of the intrinsic tune, the detuning makes the amplitude less compared to

the case without nonlinear fields causing the detuning (gray curve). In the

same synchrotron with the detuning, if we drive the beam with the AC dipole

from the upper side of the intrinsic tune ν0 < νd, the detuning makes the

190



Νd � Ν0

�0.04 �0.02 0.00 0.02 0.04
0

5

10

15

20

Νd � Ν0

am
pl

itu
de
�m

m
�

with detuning
without detuning

Figure 8.10: Schematic amplitude response of the beam driven by an AC
dipole with and without the detuning effect caused by an octupole field. The
curves represent the amplitudes of the driven beam for a fixed current of the
AC dipole. The black curve corresponds to the case when particles with large
oscillation amplitudes have larger free oscillation tunes. When the driving tune
is smaller than the intrinsic tune, νd < ν0, the detuning makes the amplitude
smaller compared to the case without the detuning and vise versa.
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amplitude larger compared to the case without nonlinear fields causing the

detuning (gray curve). In this case, if we lower the driving tune νd keeping

the amplitude of the AC dipole’s field, the particle’s amplitude diverges as

νd → ν0 since the free oscillations’ tune also moves higher.

Figure 8.11 shows a demonstration that the determine tune is affected

by large amplitude motion in octupole fields. In the upper plot, we performed

a measurement in which the beam is excited with the AC dipole seven times,

with different AC dipole’s frequency and the same AC dipole’s current. These

data may be fit for the free oscillations’ tune, which is the central position of

the resonance, as discussed in Section 6. Such a fit can be performed using

data from each BPM location around the ring, and is shown in the lower plot

of Figure 8.11. The solid curve in the lower plot shows the tunes determined in

this way, using all seven data points from the upper plot. Here, if the curve of

the amplitude response is deformed due to the detuning, the data point of the

maximum amplitude is affected most. The dashed curve represents the tune

determined in the same way as the solid curve, but using only the bottom six

data points. As expected, there is a slight shift (∼0.003) in determined tune.

We note that the expected uncertainty of the tune determined in this method

is on the order of ∼0.001, which is smaller than the difference between the

averages of solid line and dashed line, ∼0.003. Note that the lower graph in

Figure 8.11 plots the fitted tunes from 118 different BPM’s, each determined

from a graph like that in the upper graph in Figure 8.11. Thus, the shift

Δν = 0.003 is significant. Hence, in this way, we can observe the detuning

effect in the amplitude response of the driven motion.

Next, we show that the tune shifts observed at large AC dipole ampli-

tudes are in fact due to the octupole fields. In a separate test, we vary the

current of a group of octupole magnets, consisting of 18 octupole magnets, to
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Figure 8.11: Detuning affecting the determined tune from the amplitude re-
sponse of the driven motion. As done in Figure 6.6, the tune of the free
oscillations is determined at all the BPM’s, from the amplitudes of the driven
oscillations with different frequencies of the AC dipole and with the same
current of the AC dipole. The detuning affects the data of the maximum am-
plitude most, and dropping the point from the analysis shifts the determined
tune, more than the expected uncertainty of the measurements.
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various values. During this test, we excite the beam with the AC dipole, whose

current is set to a constant value of either 140 A or 280 A. For the octupole

magnets used in our measurements, the amplitude functions of their locations

are about β(s̃) � 90 m (design value). For the octupole magnets, the effective

strength of the octupole field k4 = By,3�/(Bρ) and the current going through

the octupole magnet Ioctu are related by [3]

k4 � 1.2 Ioctu μrad/mm2/m , (8.5)

where the current Ioctu is given in units of Ampere. This equation and Equation

3.64 indicate that, when the current of this group of octupole magnets is its

nominal 7 A, for a particle with an oscillation amplitude 1 mm, each octupole

magnet acts as a quadrupole magnet with the effective field gradient 1.05 ×
10−6 m−1 or equivalently a quadrupole magnet with the focal length 950 km.

Figure 8.12 shows the turn-by-turn oscillations of the beam driven by

the AC dipole, observed by a single BPM in the Tevatron, when the current

of the group of octupole magnets is either 1 A or 10 A. In the measurements,

the beam is driven from the lower side of the intrinsic tune (νd < ν0). At this

driving frequency, we would expect that detuning shifts the free oscillations’

tune higher for the beam with larger oscillation amplitudes. As indicated in

Figure 8.10, the amplitude of the driven oscillations in such a case is sup-

pressed compared to the case with no detuning effect. When the current of

the octupole magnets is 1 A, the detuning effect is relatively weak and the am-

plitude becomes roughly twice when the current of the AC dipole is increased

from 140 A to 280 A. Whereas, when the current of the octupole magnets are

increased to 10 A, the detuning effect becomes stronger and the amplitude of

the case when the AC dipole’s current is 280 A is suppressed.

Figure 8.13 shows a similar experiment, now repeated for the beam
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Figure 8.12: Turn-by-turn oscillations excited by the AC dipole, observed at
one BPM location in the Tevatron, when current in a given group of octupole
magnets is 1 A and 10 A. In both of the cases, the beam is driven from the
lower side of the intrinsic νd − ν0 = −0.015. When the detuning effect is
relatively weak (Ioctu = 1 A), the amplitude is linearly proportional to the
current in the AC dipole. When the detuning effect is stronger (Ioctu = 10 A),
the amplitude is suppressed for larger currents of the AC dipole. If the beam
is driven from the upper side of the intrinsic tune, the amplitude is enhanced
for larger currents of the AC dipole.
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Figure 8.13: Current of the AC dipole vs. amplitude of the driven oscillations,
multiplied by a factor sin |π(νd−ν0)|, measured with one BPM in the Tevatron.
The amplitudes are determined from the envelope of the linear ramp up of the
turn-by-turn oscillations, such as shown in Figure 8.12. Depending on whether
the driving νd is larger or smaller than the intrinsic tune ν0, the detuning
enhance or suppress the amplitude of the driven oscillations.
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driven below (νd < ν0) and above (νd < ν0) the intrinsic tune. Figure 8.13

shows the relation between the amplitude of the beam’s motion and the current

of the AC dipole when the current in the group of octupole magnets is 10 A6.

As expected, the amplitude is suppressed or enhanced depending on whether

the beam is driven from the lower or the upper side of the intrinsic tune. The

data in Figure 8.13 was acquired by one BPM in the Tevatron. From these

curves, we can determine the detuning for a given oscillation amplitude (See

for instance Section 29 of [32]). Figure 8.14 shows the detuning thus measured

at all the BPM locations in the Tevatron, when the current and driving tune

of the AC dipole is fixed to 280 A and νd − ν0 = −0.015 and the current in

the group of octupole magnets are changed from 1 A to 10 A. Under these

conditions, the amplitudes of the excited oscillations are about 5 mm in the

Tevatron arcs. Hence, from Equations 3.61 and 8.5, when the current in the

given group of octupole magnets are changed by 3 A, the estimated tune shift

is about 0.0015, which is roughly consistent with the gaps between curves. As

seen in Figure 8.12, for a fixed driving tune (νd < ν0) and a fixed current of

the AC dipole, the amplitude gets smaller when the current of the octupoles

gets larger. Because, as described in Equation 3.61, the detuning effect is

proportional to the square of the oscillation amplitude, not the current of

the AC dipole, the detuning effect becomes smaller when the current of the

octupoles becomes larger, and thus the gap between adjacent curves in Figure

8.14 becomes smaller for larger currents of the octupoles7.

6The beam’s amplitude has been multiplied by sin |π(νd − ν0)| to scale out differences
between the low- and high- side frequency chosen.

7The detuning in this figure is determined from the change of the amplitude response,
assuming the amplitude is proportional to 1/ sin |π(νd − ν)| � 1/|π(νd − ν)|. However, from
Equation 6.4, the amplitude of the beam particles’ driven oscillations depends on the tune
of the free oscillations through the other terms, such as the amplitude function of the driven
betatron oscillations βd(s). As discussed in Section 6.2, the amplitude function of the driven
oscillations βd(s) depends on the difference νd −ν and changes the amplitude as there is the
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Figure 8.14: Detuning effect measured at all the BPM locations in the
Tevatron, from the amplitude response of the driven oscillations. In the
measurements, the driving tune and current of the AC dipole are fixed to
νd − ν0 = −0.015 and 280 A. When the detuning effect becomes larger, the
amplitude function of the driven oscillations βd(s) is also changed, making the
deviations over BPM’s in the measurement.
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In this section, we studied the detuning effect due to octupole fields.

This tune shift grows with increasing amplitude of the oscillations driven by the

AC dipole. When the amplitude of the driven oscillations is increased under

presence of the detuning effect, the free oscillations’ tune either goes away

from the driving tune or comes close to the driving tune, and the amplitude

is either suppressed or enhanced, as shown in Figure 8.13. By observing such

changes of the driven oscillations’ amplitudes, we can measure the detuning

effect in the synchrotron.

8.2.2 Higher Tune Mode

Octupole magnetic fields drive modes whose tune is three times of that for

the leading order oscillations. The second and third terms of Equation 3.64

correspond to those modes but, when the leading order oscillations is the

driven oscillations, the tune is 3νd instead of 3ν and the factor A3β(s̃4)
2 must

be replaced with A3
dβd(s̃4)

2. From Equation 3.64, the magnitudes of these

modes driven by octupole fields are linearly proportional to octupole fields

and are proportional to cube of the beam’s oscillation amplitude Ad. In this

section, we discuss measurements to demonstrate such features of higher tune

modes.

Figure 8.15 shows Fourier spectra of driven oscillations observed at two

BPM locations in the Tevatron, for two cases of the current in the octupole

magnets. The same group of octupole magnets as Section 8.2.1 is used in the

measurements. The peaks at 3νd and 1− 3νd correspond to the modes driven

by octupole fields. We note that the height of these peaks depends on the

phase advance and hence differs between the two locations in the synchrotron.

beta-beat due to quadrupole field errors. In Figure 8.14, the growth of the deviations over
BPM’s in the measured detuning is due to this change of βd(s)
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Figure 8.15: Fourier spectra of the driven oscillations observed by two BPM’s
in the Tevatron, when current in the given octupoles is 1 A and 10 A. The
peaks at 3νd and 1 − 3νd correspond to the modes driven by octupole fields.
When the current of the octupole magnets are changed, change of the peaks
heights differs over the locations.
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At the location of BPM#93, these peaks grow when the current of the octupole

magnets is increased, whereas at the location of BPM#95, the peak heights

remain almost the same.

Figure 8.16 shows the relation between the current of the given octupole

magnets and the combined amplitude of the modes with the tune 3νd. Mea-

surements are done with low intensity proton beam of 150 GeV. As expected,

the figure shows that the net amplitude of these 3νd modes grows linearly with

the current of the octupole magnets but the slopes differ over BPM locations.

Figure 8.17 shows Fourier spectra of the driven oscillations observed at

the same two BPM locations, but for two different currents of the AC dipole.

When the current of the AC dipole is 70 A, no peak is observed at 3νd and

1− 3νd. When the current of the AC dipole is increased to 280 A, the spectra

show the peaks at 3νd and 1 − 3νd. Figure 8.18 shows the measured relation

between the net amplitudes of the 3νd modes and the current of the AC dipole.

As expected, the net amplitude of 3νd modes is roughly proportional to cube

of the AC dipole’s current. Similar to the case of Figure 8.17, the difference of

the slopes is due to the phase dependence of the net amplitude of these modes.

In this section, we observed that, when the beam is driven with the

AC dipole, octupole magnetic fields drive the modes with tune 3νd and these

modes appear as peaks at 3νd and 1− 3νd in the Fourier spectra of the driven

oscillations. We also showed that the net amplitude of these modes is linearly

proportional to the current of the octupole magnets and is also proportional

to the cube of the AC dipole’s current.
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Figure 8.16: Net amplitude of the modes with tune 3νd vs. current of the
octupole magnets, observed at three consecutive BPM locations in the Teva-
tron. In the measurements, current of the AC dipole is kept to a constant value
280 A. As expected from Equation 3.64, the amplitude is linearly proportional
to the current of the octupole magnets but differs over the locations.
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Figure 8.17: Fourier spectra of the driven oscillations observed by two BPM’s
in the Tevatron, when the current of the AC dipole is 70 A and 280 A. The
peaks at 3νd and 1 − 3νd correspond to the modes driven by octupole fields.
The difference of the peak heights comes from the phase dependence of the
net amplitude.
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Figure 8.18: Net amplitude of the modes with tune 3νd vs. current of the AC
dipole, observed at three BPM locations in the Tevatron. In the measurements,
the current of the given octupole magnets is kept to a constant 10 A. As
expected from Equation 3.64, the amplitude is proportional to cube of the AC
dipole’s current but the slopes are different over the locations.
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8.3 Summary

In this chapter, we discussed direct measurements of the nonlinear fields of

sextupole and octupole magnets and their influences on the transverse motions

of the beam in the Tevatron. As summarized in Table 3.1, the sextupole fields

result in the central orbit distortion and also drive higher tune modes, and

the octupole field cause the tune shift and also drive higher tune modes. We

showed that all of these effects can be directly observed when the beam is

driven to large amplitude oscillations with the AC dipole. Such simple tests

can be performed on a routine basis throughout the operation of a synchrotron

and are non-destructive to the beam.
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Chapter 9

Conclusions

High energy and high intensity charged particle accelerators have been suc-

cessful probes to study physics of subatomic particles. In modern circular

synchrotron accelerators, the charged particle beams are guided by bending

dipole magnets and accelerated by longitudinal electric fields of radio frequency

cavities. A collider synchrotron is a type of a circular accelerator, which accel-

erates two particle beams in counter-rotating directions and produces head-on

collisions of the beam particles. The Fermilab Tevatron has been the world’s

highest energy collider synchrotron, accelerating beams of protons and an-

tiprotons up to 1 TeV and producing head-on collisions of these particles with

the center-of-mass energy of 2 TeV. To produce higher energy particle beams

with the bending dipole magnets of a given strength, we need a synchrotron

with a larger radius, making the sizes of high energy accelerators in the present

day quite large. The particle beams in the Tevatron are guided by supercon-

ducting dipole magnets with the maximum filed of 4.4 T and yet its radius

must be as large as 1 km to form a circular trajectory.

In modern synchrotrons, transverse motions of the beam particles are
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stabilized with linear restoring forces of quadrupole magnets and, as a conse-

quence, the beam particles undergo transverse oscillations around the central

orbit, referred to as the betatron motion. The betatron motion of a beam

particle is determined by the Hill’s equation of motion, which is analogous to

an equation of motion for a simple harmonic oscillator, and is characterized

by the amplitude function and the phase advance. In a synchrotron, trans-

verse beam sizes are determined by this amplitude function as well as initial

distributions of the beam particles in the transverse planes, characterize by

the transverse emittances. If there are quadrupole field errors, the transverse

beam sizes are changed through modulations of the amplitude function and a

collider’s luminosity may be degraded. Hence, the primary purpose of a col-

lider’s diagnostics using the AC dipole is to measure the amplitude function

and to find locations of the quadrupole field errors.

Modern accelerators utilize magnets producing higher order nonlin-

ear fields, such as sextupole and octupole magnets, to compensate certain

multi particle effects. Imperfections of bending dipole magnets and focus-

ing quadrupole magnets also produce higher order nonlinear magnetic fields.

These nonlinear fields perturb the betatron motion of the beam particles, and

a perturbation becomes larger when the betatron frequency gets closer to a

certain frequency corresponding to the perturbation. The phenomenon is anal-

ogous to driven harmonic motion in classical mechanics and is referred to as

resonance. For instance, the sextupole magnetic fields shift the central orbit

of the beam particles, much like dipole field errors, and also drive modes with

frequency twice of the betatron frequency. These perturbative effects grow

when fractional part of the betatron tune becomes close to zero or one third.

The octupole magnetic fields modulate the amplitude function, the phase ad-

vance, and the betatron tune, much like quadrupole field errors, and also drive
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modes with frequency three times of the betatron frequency. These perturba-

tive effects grow when fractional part of the betatron tune becomes close to

half or one forth. If the betatron frequency is too close to one of the resonant

frequencies, the corresponding perturbative effect may become large, blowing

up the transverse beam size, or may even diverge, making the beam particles’

transverse motions unstable. For a slow cycled collider synchrotron like the

Tevatron, where the beam particles keep circulating and colliding about a day

(∼4 billion revolutions), it is ideal to know the distribution of the nonlinear

fields and to avoid the resonances, for stabilizing transverse motions of the

beam particles and for maximizing the integrated luminosity. For instance,

distributions of the sextupole fields and the octupole fields can be measured

by observing their corresponding perturbative effects.

An AC dipole is a diagnostic tool which produces a sinusoidally oscil-

lating dipole magnetic field with frequency close to the betatron frequency.

Under the presence of such a field, all the beam particles undergo coherent

driven oscillations around a synchrotron, which are analogous to the driven

harmonic oscillations in classical mechanics. By observing such oscillations

with a system of beam position monitors, we can measure ring-wide param-

eters of a synchrotron’s magnet lattice. Synchrotron diagnostics using the

AC dipole was first tested in BNL AGS [4], has been employed in the BNL

RHIC [14, 15], the CERN SPS [16, 17], and the FNAL [18, 19, 20, 21], and

will be also used in CERN LHC [22]. If we adiabatically ramp up and ramp

down the amplitude of the AC dipole’s oscillating field, before and after an

observation, we can produce large sustained oscillations with no emittance

growth. Compared to the kick excitation with the decoherence, the sustained

signal produced by the AC dipole excitation enables more precise data anal-

yses. The non-destructive nature of the AC dipole excitation allows multiple
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measurements using the same beam. This makes the AC dipole particularly

useful for tuning up a slow cycled synchrotron, compared to the destructive

kick excitation, for which we have to use the new beam every two to three

measurements. These properties of the AC dipole excitation, the analogy to

the classical driven oscillator, no decoherence, and no emittance growth, are

demonstrated in the Tevatron.

The AC dipole system in the Tevatron utilizes an existing kicker mag-

net, which has been already installed. Because the betatron frequency of the

beam particles in the Tevatron is approximately 20 kHz, the magnet is pow-

ered by a high power audio amplifier. To optimize the system for the audio

amplifier, a resonant circuit is formed with the magnet. By utilizing the ex-

isting magnet and the audio amplifier, the Tevatron’s AC dipole system is

constructed relatively inexpensively without sacrificing performance. For the

1 TeV beam in the Tevatron, the Tevatron’s AC dipole can produce oscillations

with amplitude of 2-3σ beam size. After our successful design and construction

of the Tevatron’s AC dipole system, we initiated collaborations with CERN

to develop similar AC dipole systems, utilizing existing kicker magnets and

higher power audio amplifiers for the CERN LHC.

Because of a synchrotron’s periodicity, an AC dipole excites not only a

mode with tune νac but also another mode with tune 1 − νac. The existence

of the two modes makes the driven betatron motion excited by an AC dipole

different from the free betatron motion excited by a kicker magnet, as if there

is a quadrupole field error at the location of the AC dipole. Hence, the driven

motion of the AC dipole is well characterized by introducing the new amplitude

function and the new phase advance, which are functions of the AC dipole’s

tune. This predicts rotation of the phase space ellipse depending on the AC

dipole’s tune and also asymmetric amplitude responses depending on locations
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with different phase advances. These effects are demonstrated in the Tevatron

and explained well with our model. From the analogy to the quadrupole field

error, if we simply ignore the difference between the driven and free betatron

motions, we observe the false beta-beat and the false phase-beat. The magni-

tudes of these effects depend on conditions of a synchrotron and, for instance,

the false beta-beat is 10-20% and the false phase-beat is about 0.05-0.10 rad

in typical conditions of the Tevatron. These effects can be removed, without

depending on a machine model, by simultaneously analyzing data sets of the

driven betatron motions with different frequencies of the AC dipole. In this

dissertation, we demonstrated applications of this technique to the Tevatron

in measurements of the ring-wide amplitude function and phase advance as

well as in measurements of the minimum value of the amplitude function and

the beam waist location in the interaction region.

When the sustained large oscillations of the AC dipole excitation are

recorded by a system of beam position monitors with an adequate resolution,

we can also directly observe nonlinear motions of the beam particles. We

performed studies to measure the effects in the Tevatron due to the sextupole

and octupole magnetic fields. The central orbit distortion due to sextupole

fields can be observed by comparing the average positions before and during

the AC dipole excitation. The detuning effect, mainly due to the octupole

magnetic fields, can be observed through modulation of the driven motion’s

amplitude. The other higher tune modes excited by the sextupole and octupole

magnets can be observed as peaks at the corresponding frequencies in the

Fourier spectrum of the AC dipole excitation. We demonstrated that these

effects can be observed as expected in the Tevatron.

In this dissertation, we demonstrated improved techniques to measure

linear and nonlinear lattice parameters in the Tevatron using the AC dipole.
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The established measurement techniques will be useful for the Tevatron to

maintain its performance and will be useful as well as for the LHC, where its

lattice must be controlled with an unprecedented level of precision not only

to raise the luminosity but also to protect the machine itself from its high

intensity beam.
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