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ABSTRACT

This analysis focuses on a low mass Higgs boson search with 1.7 fb−1 of data. The

focus is on Higgs events in which it is produced in association with a W or Z boson.

Such events are expected to leave a distinct signature of large missing transverse

energy for either a Z→ νν decay or a leptonic W decay in which the lepton goes

undetected, as well as jets with taggable secondary vertices from the H→ bb decay.

Utilizing a new track based technique for removing QCD multi-jet processes as well

as a neural network discriminant, an expected limit of 8.3 times the Standard Model

prediction at the 95% CL for a Higgs boson mass of 115 GeV/c2 is calculated, with

an observed limit of 8.0*SM.
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CHAPTER 1

INTRODUCTION

The study of science, and physics in particular, has been largely motivated by a

fascination with the most extreme conditions in our universe. The motion of planetary

objects were studied in detail by very early civilizations, eventually giving birth to the

laws of gravitation developed by Newton. However, on a minute scale, the composi-

tion of matter was still very hazy. Philosophers in early Greece developed the idea of

reducing matter until a single indivisible object was obtained. This concept was slow

to develop scientifically, as a lack of technology and knowledge prevented a probing of

matter on the atomic scale. Much study of the properties and classification of matter

was performed in subsequent centuries, but it wasn’t until Mendeleev’s periodic table

was formally presented in 1869 that a clear description of atoms and their basic at-

tributes took form. However, the discovery of the electron by J.J. Thompson in 1897,

and the probing of the atomic nucleus by Ernest Rutherford’s gold foil experiment

clearly demonstrated that matter consists of more than just the elements. Additional

experimental discoveries and the mathematical formulation of theories throughout the

years have given us a much more sophisticated view of the universe on the smallest

of scales.
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The field of particle physics is dedicated to the study of the fundamental build-

ing blocks of matter and the laws that govern them. In this field, there is nothing

more sacred than the Standard Model. The Standard Model is the culmination of

all research concerning the most basic structure of matter, and the current (although

incomplete) answer to one of the oldest intellectual questions, “What makes up the

world around us?”. Immense progress in physics has been made in the last century.

Each monumental experimental and theoretical discovery has helped to replace mys-

tery with understanding, shaping the landscape of elementary particles and the ways

in which they interact.

The universe as we know it consists of two types of particles called fermions

and bosons, which are categorized by the intrinsic quantum property known as spin.

Fermions possess a spin of 1/2, and are the elementary constituents of all matter.

Fermions are further separated into objects known as quarks and leptons. There are

six types of leptons, including the electrically charged electron, muon and tau particles

which increase in mass respectively. Each is separated into its own generation with an

electrically neutral and nearly massless neutrino as displayed in Table 1.1. While all

leptons can interact through what is known as the Weak force, only those with electric

charge experience the Electromagnetic force for obvious reasons. These interactions

will be described in detail later in the next chapter.

Quarks, the other type of fermion, are the constituents of nuclei in atoms (protons

and neutrons), as well as a vast array of shorter lived bound states known as mesons

(2 quark state) and baryons (3 quark state). Like the leptons, there are six types

of quarks placed into three generations of increasing mass. Additionally like the

leptons, the two quarks in each generation have different charges, but consist of
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Charge Leptons

−1
0

(

electron(e)
νe

) (

muon(µ)
νµ

) (

tau(τ)
ντ

)

Quarks

+2/3
−1/3

(

up(u)
down(d)

) (

charm(c)
strange(s)

) (

top(t)
bottom(b)

)

Table 1.1: The three generations of quarks and leptons

the fractional charges + 2
3

and −1
3
. While this concept of a fractional charge seems

strange initially, protons, neutrons and electrons were originally considered to all be

fundamental particles with charges +1, 0, and -1 respectively. It was only later that

the theory of quarks was developed, in which the proton and neutron consist of three

quark bound states in which the charges add up to +1(uud) or 0(udd). Quarks can

interact both Weakly and Electromagnetically like the leptons, but in addition to

electric charge, quarks possess a unique charge called color. This additional charge

imposes a force between quarks so great that they can only exist in bound states with

other quarks, as seen in the nuclei of atoms previously referenced. This is known as

the Strong interaction.

The final building block of the Standard Model are the integer spin bosons. They

govern the physics of interactions between fermions, as well as themselves. The Elec-

tromagnetic, Weak and Strong force experienced by quarks and leptons are mediated

by the “force-carrying” photon, W and Z particles, and gluon. The bosons generate

phenomena in our universe through their interactions with matter in a number of

ways. The electromagnetic force propagated by the photon produces visible light,
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electricity, and radio waves to name a few. While the massless photon can travel an

infinite distance, the Weak force, mediated by the W and Z bosons, is a very short

range force, due to the large masses of it’s mediators. The Weak force fuels the sun

through nuclear fusion, producing energy in the conversion of up quarks to down

quarks through the radiation of a W boson. The effects of the Weak force are seen

in radioactive decay as well. The Strong force is responsible for the “particle zoo”

you will come across in any particle physics book. The five lightest quarks combine

with one another into a vast number of mesons and baryons, with varying degrees of

lifetime. On the other hand, the top quark, a single particle with a mass nearly as

great as a gold atom, decays so quickly into a bottom quark that there is no time for

hadronization via the strong force. The gravitational force, the first to be understood

from a classical physics perspective, has not been incorporated into the Standard

Model.

Force Bosons Mass

Electromagnetic photon (γ) 0 GeV
c2

Strong gluons (g) 0 GeV
c2

Weak W± 80.4 GeV
c2

Z0 91.2 GeV
c2

Table 1.2: Properties of gauge bosons in the Standard Model
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CHAPTER 2

ELECTROWEAK UNIFICATION AND THE HIGGS
MECHANISM

The Standard Model and its treatment of physics in terms of elementary particles

has enjoyed major success in its ability to yield an intuitive picture of fundamental

processes and produce experimentally verifiable predictions. The 19th century gave

rise to Maxwell’s equations, which successfully unified electricity and magnetism into

a single force, and the first hints of the Weak force through nuclear β-decay. However,

the power and potential of these developments were truly realized when the physics of

interactions began to be understood solely through the exchange of particles. These

interactions are described by the construction of Feynman diagrams and the Feynman

rules associated with them. For example, an interaction between an electron and a

muon is mediated by the exchange of a neutral boson, also known as a neutral current.

This process has both electromagnetic and weak contributions through the exchange

of a γ or Z0. Charged currents are also possible via the exchange of the weak W boson,

as in the case of a muon decaying into an electron and two neutrinos. These processes

are represented by their respective Feynman diagrams in Figure 2.1. It should be

noted that these diagrams do not represent the kinematic motion of the particles

involved, but the flow of the process. Each line and vertex yield a mathematical
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contribution to the process, which can be utilized to calculate useful experimentally

verifiable quantities.

-e

+e

0/Zγ
 e
µj

 muon
µj

-µ

+µ

-µ

µν

-W -e

eν

  muon
µJ

  e
µJ

Figure 2.1: Feynman Diagrams representing the interaction of elementary particles
through the exchange of force carrying bosons

2.1 ElectroWeak Unification

Quite possibly the greatest theoretical triumph of the Standard Model of particle

physics has been ElectroWeak unification [1] [2]. The development of particle physics

and the Standard Model led to the understanding of symmetries in weak and elec-

tromagnetic interactions. These are referred to as gauge symmetries, and utilize the

currents of the interactions coupled with group theory. The foundation of the theory

of Weak interactions is strongly related to that of quantum electrodynamics. The cur-

rent of an electron interacting electrodynamically is constructed from it’s incoming

and outgoing wavefunctions, according to

jfi
µ = −eΨfγµΨi (2.1)
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where Ψ = u(p)e−p·x, describing an electron with energy E and momentum p, while γ

represents the Dirac γ-matrices. The invariant amplitude of an interaction mediated

by the photon, such as electron-muon scattering would be given by

M =
e2

q2
(jµ)e1(jµ)e2 (2.2)

from the electromagnetic currents present in the left-hand Feynman diagram of Fig

2.1, with q = pf − pi.

The theoretical construction of the Weak interaction was first devised as a way of

interpreting nuclear β-decay. A number of similarities were observed between itself

and muon interactions, prompting Enrico Fermi to define a new coupling constant

GF , analogous to the e2

q2 in the previously referenced electromagnetic interaction. The

construction of the invariant amplitude in a Weak interaction proceeds in a similar

fashion, with Weak currents representing the flow of particles as in the case of muon

decay, illustrated in the right-hand Feynman diagram of Fig 2.1. The similarities

between electromagnetic and weak interactions prove to be much more than a mere

coincidence, and careful analysis of the lepton species is a starting point to ultimately

unifying these interactions.

An important feature of neutrinos is the orientation of the spin quantum number

in relation to its direction of motion. This is known as handedness, and only left-

handed (spin angular momentum vector pointing opposite the direction of motion)

neutrinos have been observed. The electron and electron neutrino can therefore be

split up into a left-handed doublet and a right-handed singlet.
(

νe

e−

)

L

(

e−
)

R
(2.3)
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Focusing on Weak currents in left-handed electron neutrino interactions, an isospin

triplet consisting of the positive, negative and neutral currents (Ji
µ) can be constructed

to generate an SU(2)L group

[T a, T b] = iεabcT
c (2.4)

where T i =
∫

J i
0(x)d

3x. While in the current form, the weak neutral current still has

a right-handed component, this is avoided by including the electromagnetic current,

and enlarging the group. If Q is the charge operator, generating the U(1)EM group,

a weak hypercharge current can be introduced such that

Q = T 3(NC) +
Y

2
jem
µ = J3(NC)

µ +
1

2
jY
µ (2.5)

where Y is the weak hypercharge. There now exists an SU(2)L X U(1)Y group in which

the weak and electromagnetic interactions have been unified. [1] However, just as the

electromagnetic interaction is propagated by the photon, the electroweak interaction

must contain couplings to vector bosons. Introducing electroweak fields W a
µ and Bµ

with isospin coupling g and hypercharge coupling g′

2
, the form of the electroweak

interaction is produced.

−ig(Ja)µW a
µ − i

g′

2
(jY )µBµ (2.6)

The fields W a
µ representing weak isospin and Bµ representing weak hypercharge

combine to yield physically observable mass eigenstates.

W±
µ =

W 1
µ ±W 2

µ√
2

(2.7)

Zµ = −BµsinθW +W 3
µcosθW (2.8)

Aµ = BµcosθW +W 3
µsinθW (2.9)
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The Weinberg angle, represented by θW , relates the weak coupling strengths, the

measurement of which by experiments at Fermilab and CERN would predict the

masses of the W and Z bosons, later verified by the direct production of W and Z

particles by the UA1 and UA2 experiments at CERN in 1983. The experimental val-

idation of the predictions produced by electroweak theory make it one of the greatest

triumphs in the history of physics, but there is another prediction made by the theory

that has yet to be discovered experimentally. The Higgs boson has been the subject of

multiple searches for over 30 years, eluding observation in every experimental effort.

This new particle is a manifestation of the theories need to explain the existence of

massive W and Z bosons, discussed in the following section.

2.1.1 Massive Bosons and the Higgs Mechanism

This group structure is the foundation of electroweak unification, but does not

have a mechanism that can provide bosons with mass. The Standard Model requires

massive Weak bosons, an experimentally verified fact. This problem was solved by

Weinberg and Salaam, incorporating a spontaneous breaking of the gauge symmetry

to give mass to the W and Z while leaving the photon massless. [2] The Lagrangian

(L = T − V ) formulation of the theory is invariant with respect to local gauge

transformations, preserving the symmetry of the isospin and hypercharge groups.

Introducing the Lagrangian [3]

L = (∂µφ)†(∂µφ) − µ2φ†φ− λ(φ†φ)2 (2.10)

with complex scalar field φ = φ1+ıφ2√
2

results in local minima for the potential at

φ2
1+φ

2
2 = ν2 = −µ2

λ
. The ν term represents the vacuum expectation value which under

a the simple symmetric potential illustrated in Fig 2.2(a) has a minima at zero, which
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one might naively expect. However, Fig 2.2(b) is also a symmetric potential, but with

non-zero minima. The ground state is not obvious, and in fact, it is arbitrary. At this

Figure 2.2: Examples of symmetric potentials

point, a spontaneous choice of φ is made, providing a non-zero vacuum expectation

value, and the symmetry is “spontaneously broken” by the choice of a ground state.

The 2-dimensional scalar field follows the same principle. Making the global gauge

transformations, φ1(x
µ) = ν + η(xµ) and φ2(x

µ) = α(xµ), we receive the following

form of the Lagrangian.

L =
1

2
(∂µη)

2 +
1

2
(∂µα)2 − 1

2
(2λν2)η2 − λνη(η2 + α2) − 1

4
λ(η2 + α2)2 +

1

4
λν2 (2.11)

The 4 latter terms represent the potential, with the η2 term and lack of an α2

term having very exciting and intriguing implications. These are the mass terms,

with mη =
√

2λν2 and mα = 0. The spontaneous breaking of the global symmetry

has provided a massive boson, and a massless scalar boson. The massless scalar is

known as a Goldstone boson, which appears whenever a symmetry is spontaneously

10



broken according to Goldstone’s theorem. This unobserved boson is undesirable, and

the theory needs a mechanism to remove it.

The breaking of a global symmetry has been performed, and techniques from

Quantum Electrodynamics can now be used to make local gauge transformations. The

field undergoes a gauge transformation, and the covariant derivative is introduced.

Aµ → Aµ +
1

e
∂µβ (2.12)

φ(x) → φ(x)eıβ(x) (2.13)

Dµ = ∂µ − ıeAµ (2.14)

Additionally, we can rewrite φ, whose φ1+iφ2√
2

form has an imaginary component, in

polar coordinates such that φ(x) = H(x)eβ(x). Finally, defining H relative to the

vacuum expectation ν, the gauge fields and covariant derivative can be plugged into

the QED Lagrangian.

H(x) =
ν + h(x)√

2
(2.15)

L =
1

2
(∂µh)

2−λν2h2+
1

2
e2ν2A2

µ−λνh3− 1

4
λh4+

1

2
e2A2

µh
2+νe2A2

µh−
1

4
FµνF

µν (2.16)

The breaking of the U(1) gauge symmetry is complete and studying the final La-

grangian, both an h2 and A2
µ term are present. In other words, there are mass terms

corresponding to a vector boson Aµ and scalar boson h of mA = eν and mh =
√

2λν2.

This technique is what is now known as the Higgs mechanism, introducing a new

massive scalar boson into the theory. The mass terms are dependent on ν, and the

non-zero value of the ground state is responsible for the massive bosons. This is not

the full story however, as the process must be repeated for the SU(2) group as well.
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2.1.2 SU(2) Symmetry Breaking and Standard Model Impli-
cations

The spontaneous symmetry breaking of the SU(2) isospin group follows a simi-

lar procedure, beginning with an isospin doublet of complex scalar fields where the

hypercharge is +1.

φ =

(

φ+

φ0

)

=

(

φ1 + ıφ2

φ3 + ıφ4

)

(2.17)

Again, the partial derivative in the Lagrangian (eq 2.10) must be replaced by a co-

variant derivative. Studying the electroweak interaction in equation 2.6, the covariant

derivative will take a similar form.

Dµ = ∂µ − ı
g′

2
Y Bµ − ı

g

2
τaW

a
µ (2.18)

Gauge transformations are subsequently performed as in the U(1) case, and upon

adding in the familiar h(x) field, the isodoublet consists of a single neutral field.

φ(x) =

(

φ+

φ0

)

=

(

0
ν+h(x)√

2

)

(2.19)

Substitution of the covariant derivative and gauge transformed potential into the

Lagrangian yields a large number of terms which correspond to different interactions

of the fields (i.e vertices in the Feynman formulation). However, the most striking

terms represent the W and Z vector bosons.

By requiring that the photon be massless, it can be shown that the spontaneous

breaking of the symmetry yields massive vector bosons as well as a massive Higgs

scalar boson.

In fact, the Higgs field can be utilized within Standard Model theory to provide

mass to all fermions as well. The Higgs field couples to mass, and it can be shown

that the mass of all fundamental particles is related to the vacuum expectation value.
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Boson Mass Term Mass

W± 1
8(νg)2(W µ

1 + ıW µ
2 )(W1µ − ıW2µ) = (νg

2 )2W+µW−
µ mW = νg

2

Z0 ν2

8 (g′Bµ − gW µ
3 )(g′Bµ − gW3µ) = 1

2 (ν
2

√

g2 + g′2)2ZµZµ mZ = ν
2

√

g2 + g′2

γ0 None! mγ = 0

Table 2.1: Terms in the SU(2) Lagrangian representing the mass of the bosons.

However, this cannot be used to predict the masses of the fermions, because the

magnitude of the coupling term is unique and arbitrary for each fermion in the context

of the Standard Model theory.

me =
1√
2
geν mu =

1√
2
guν md =

1√
2
gdν (2.20)

However, this is not the case with the W and Z bosons. The couplings in electroweak

theory are related by the Weinberg angle mentioned in section 2.1, which is an ex-

perimentally observable quantity. Measurements have yielded a value of ν=246 GeV.

tanθW =
g′

g
cosθW =

mW

mZ

(2.21)

High-energy neutrino beam experiments at CERN and Fermilab first determined

the Weinberg angle, which was used to calculate both the mass of the Z and the

W. These Weak bosons were later directly produced by colliding beam experiments,

verifying the predictions of the Standard Model. There is, however, one piece of Elec-

troweak theory that has eluded experimental observation. The Higgs boson, which

was introduced as a result of the broken symmetry, should exist as an observable if
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the Higgs mechanism is correct. However, the mass of the Higgs cannot be deter-

mined theoretically. Its mass is determined by its self-coupling to the Higgs field, and

therefore can only be measured.

2.2 Grand Unification and Supersymmetry

Electroweak unification and the Standard Model have had great success in pre-

dicting future physics and in describing the subatomic world. However, it is far from

a complete description of all physics. There is no mechanism with which to unify

the electroweak and strong forces, and gravity is excluded entirely. Theories which

propose to unify the electroweak and strong forces are called Grand Unified Theories

(GUT). While many of the ideas and details of these theories are outside the scope

of this discussion, it is worthwhile to discuss how Grand Unification affects the Higgs

mechanism. In the simplest example of a GUT, the SU(3)color×SU(2)×U(1) group

structure is unified into a single SU(5) group. Below some large energy scale, this

SU(5) symmetry is broken, leaving us with the Standard Model group structure. In

the Standard Model, there are couplings associated with each group that determine

the strength of interactions. Grand Unification proposes to merge these couplings at

energies of the order 1016 GeV. This concept, while enticing, brings about problems

of it’s own. For the Standard Model to be valid, certain constraints are implemented

on the possible range of Higgs masses. These constraints are calculated from theory,

using the experimentally determined masses of electroweak force carriers as inputs,

as well as the mass of the top quark. Assuming a top mass of 175 GeV/c2, Figure

2.3 [4], displays a range of possible cutoff energies where the Standard Model breaks

down and other physical theories must take its place for a particular Higgs mass.
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Figure 2.3: Energy Scale at which the Standard Model breaks down for particular
Higgs masses

In order for a theory to make physical sense, it must be renormalizable. Since vir-

tually all theories cannot be constructed exactly, perturbation theory is relied upon

to add higher order corrections to theories. If a theory is not renormalizable, infini-

ties are introduced and it becomes invalid. As Figure 2.3 demonstrates, the value

of the Higgs mass in the context of the Standard Model must be much less than

the energy region proposed in a GUT. In fact, any Higgs mass larger than about 1

TeV leads to the violation of unitarity with probabilities exceeding 1, which clearly

cannot be the case in any true physical model. For the Standard Model to remain

renormalizable, and to be valid at the energy scale of Grand Unification, the theory

begins to become impossible to maintain, as the calculation of radiative corrections

become increasingly difficult and unlikely to be able to salvage the model. This is

what is known as the gauge hierarchy problem, and is one of the primary reasons
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to believe that the Standard Model is just a low-energy sub-set of a larger theory.

One of the most discussed of these larger theories is referred to as Supersymmetry.

Supersymmetry attempts to unify the Strong and Electroweak forces by introducing

a superpartner for every Standard Model fermion and boson. These new particles are

much more massive than their standard model partners. The partner of a fermion will

be a supersymmetric boson and vice-versa. [5] These new particles are introduced in

order to expand on the experimentally verified low-energy Standard Model and allow

for Grand Unification of the Electroweak and Strong couplings at an extremely large

energy scale. A necessity in supersymmetry, in addition to the new superpartners, is

the introduction of multiple Higgs scalars. [6] Focusing on the Minimal SuperSym-

metric Model(MSSM), there are predicted to be five Higgs particles. These include

the charged H+ and H− as well as the neutral scalars H, A and h. The Higgs scalar

h is expected to be of lower mass than the others, and behaves in a similar fashion

to that of the Standard Model Higgs boson.

2.3 Experimental Limits and Theoretical Constraints

Much work has been put into the search for the Higgs boson. While all previous

attempts to detect the signature of a physical process involving the Higgs have been

unsuccessful, the results of these experiments are invaluable to all future searches.

In the early 1970’s, electroweak theory was still in need of experimental validation.

While interactions involving the W had been indirectly observed, the predicted Z

neutral current had not. The Gargamelle bubble chamber at CERN first observed the

Weak neutral current in 1973, giving experimental validation to the theorized Z. Soon

thereafter, measurements of the Weinberg angle at CERN and Fermilab predicted the
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W mass to be about 80 GeV/c2 and the Z to be slightly higher, at about 90 GeV/c2.

They were later directly produced at CERN in the SPS proton anti-proton collider,

being detected and measured by the UA1 and UA2 experiments. The next generation

of colliding beam accelerators were being built at this time, hoping to to uncover the

final pieces of the Standard Model and anything beyond. Hope was high that the

Higgs boson would be discovered, offering yet another experimental validation of

electroweak unification.

2.3.1 Experimental Limits

The construction and operation of the Large Electron Positron Collider(LEP) at

CERN [7] and of the Tevatron at Fermilab [8] have produced many measurements

of electroweak phenomena as well as other physical processes. Measurements of the

Z mass, as well as increasingly precise measurements of the top quark and W mass

are used within Standard Model theory to predict the most probable mass region for

the Higgs. LEP began colliding electrons and positrons in 1989 at a center of mass

energy equal to that of the Z boson. The beams were accelerated around a large

circular ring, colliding at 4 specific locations where the products of the collisions

could be measured by the L3, OPAL, DELPHI and ALEPH detectors. The first

run, known as LEP1, ran from 1989-1995 and directly produced millions of Z events.

It should be noted that the SLD experiment at the SLAC linear e+e− collider has

also played a significant role in the measurement of the Z mass, as well as the Weak

mixing angle sin2θW . These results have been combined to form an incredibly precise

current value of mZ=91.1875 ± .0021 GeV/c2. [9] In the meantime the CDF and

D0 collaborations at the Tevatron had collected enough data from proton anti-proton
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collisions to announce the discovery of the top quark in 1995 at an unprecedented mass

of about 175 GeV/c2 [10] [11]. LEP began operation again in 1995 with enhanced

energy capabilities. LEP2 as it is called, started collecting data at
√
s = 2MW ,

producing a highly accurate measurement of the W mass, utilizing the mechanisms

shown in Figure 2.4.

-e

+e

0/Zγ

-W

+W

-e

+e

ν

-W

+W

Figure 2.4: WW Production

With the latest measurements of the Z, W and top, it became increasingly probable

that the Standard Model preferred a low mass Higgs. Since the Higgs mass is unknown

due to it’s self-coupling, LEP2 had large mass regions to cover. The production

channel with the most likely chance of success was believed to be the production of

an off-mass shell Z, immediately radiating a Higgs as shown in Figure 2.5.

If
√
s = MZ + Mh, an excess of events consistent with the production of Higgs

would be seen. While the Z may decay a number of ways including a quark anti-

quark pair, a di-lepton pair (e+e−,µ+µ−,τ+τ−), or two neutrinos, a low-mass Higgs (

< 135 GeV/c2) is expected to decay to a bb pair most of the time. [12] LEP2 scanned

across energy regions above the Z mass in the hope that a signal would be observed.

For example, one of the most powerful channels involves the Z→ νν process. This
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Figure 2.5: ZH Production

process has a distinctive feature of two boosted b-jets and a large energy imbalance

from the invisible neutrinos. The energy and momentum of the b-jets can then be

used to reconstruct the Higgs boson from which they decayed. Physicists at all 4 LEP

experiments analyzed data using novel techniques, continuing to place more strict

limits on the mass of the Higgs. In mid-2000, no evidence of Higgs production had

been observed and construction of the Large Hadron Collider(LHC) was scheduled to

begin later that year.

In the final energy region explored by LEP, an excess of events began to develop

consistent with ZH production at MH≈115 GeV/c2 [13]. Unfortunately, time had run

out for LEP, and despite pleas for extended running times to study the excess in detail,

LEP was permanently shut down and construction of the LHC begun. Analysis of

data from ALEPH, DELPHI, L3, and OPAL led to a final lower mass limit of 114.4

GeV/c2. In fact, the expected limit in the absence of a signal was calculated to

be 115.3 GeV/c2, but was lowered by the excess of events observed, mostly by the

ALEPH collaboration. [14] No firm experimental limit had been placed on the Higgs

mass before LEP, and none has been placed since then. Using LEP as a guide, it is up
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Figure 2.6: The significance of event excess at LEP as data was collected in 2000

to the current and future generation of accelerators, detectors and particle physicists

to continue the search, and finally find or eliminate the elusive Higgs boson.

2.3.2 Theoretical Constraints

While LEP has placed an lower limit on the Higgs mass, no experiment as of

now has been able to collect the data required to place an upper limit. However,

measurements of the W and top mass continue to decrease in uncertainty through
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the use of increased statistics and refined analysis techniques by the D0 and CDF

collaborations. These latest results as seen in Figure 2.7, have increasingly constrained

the most likely mass region of a Standard Model Higgs boson. The masses of Weak

bosons receive corrections in the form of loop diagrams. A W or Z can momentarily

break into a fermion anti-fermion pair. The top quark, being the most massive fermion

by far, dominates these corrections. In addition, a weak boson can break into a loop

with itself and a Higgs. The loop diagram indicates that the less massive the W is, the

Figure 2.7: Theoretical constraints on the Higgs mass

more likely it is that the Higgs has large mass. Therefore, more precise measurements

of the W and top lead to tighter constraints on the probable mass of the Higgs in
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the context of the Standard Model. Recent measurements of the W and top have

pulled theoretical constraints lower in mass with increased probability, enhancing

the intriguing thought that perhaps the excess of events at LEP was more than an

aberration. With the Tevatron running better than ever and the construction and

commissioning of the LHC nearing completion, we can look to the near future of

particle physics with optimism and excitement.

W

H

W WW

t

b

W

Figure 2.8: Loop Diagrams involving the W boson

2.4 Higgs Physics at the Tevatron

While most of the physics community looks to the LHC as the future of Higgs

physics, and deservedly so, members of the D0 and CDF community are attempting

to catch everyone off-guard by discovering a Standard Model Higgs. Although the

amount of data projected to be collected at the LHC will dwarf that of the Tevatron,

there are some advantages to be had at a pp collider like the Tevatron, particularly

for a low-mass Higgs scalar. The quality of data accumulated has been excellent, and

physicists are developing new analysis techniques based on the actual performance
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of the detectors and past experience with Higgs physics at CDF and D0. The LHC

is scheduled to begin operation in late 2008, so the time is now for the Tevatron to

make enough improvements as to become sensitive to the Higgs.

2.4.1 Associative Higgs Production

Higgs production at the Tevatron is expected to occur a number of ways as dis-

played in Figure 2.9. This figure displays the production cross-section of the three

primary Higgs production mechanisms at the Tevatron as a function of the Higgs

mass. The cross-section is a measure of the probability that a particular physical

process will occur, given the center of mass energy of the interacting particles. Al-

though gluon fusion(gg→H) produces Higgs events at a substantially larger rate than

all other processes, the amount of QCD background in this particular channel is much

too great for there to be any hope of isolating a signal for low Higgs masses. Back-

grounds are events that look very similar to a process of interest(signal) making it

more difficult, or in some cases impossible, to study. Therefore, Higgs physics at the

Tevatron utilizes the production of a vector boson in association with a Higgs. While

the expected number of events is much less than that of gluon fusion, vector bosons

decay leptonically a certain fraction of the time, leaving behind unique features such

as isolated high-energy tracks and/or large deposits of energy in the calorimeters or

muon chambers. In addition neutrinos, which are invisible to the detector, can be

produced. Under this scenario, there will be a large energy imbalance in the direc-

tion transverse to the beamline. These features are used to define datasets of events

consistent with the leptonic decay of a W or Z, which largely reduces the number of

uninteresting events that can easily overwhelm a signal.
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Figure 2.9: The expected production cross sections of Higgs events at the Tevatron

In addition to the primary production mechanism, Higgs analysis is also defined

by the manner in which the Higgs is expected to decay. Figure 2.10 displays the decay

rates as a function of the Higgs mass. For Higgs masses less than about 135 GeV/c2,

the primary decay products will be a bb pair. Above this mass, WW decay begins

to dominate. Regions above 200 GeV/c2 suffer from extremely low production rates

and are not considered in Higgs analysis at the Tevatron at this time.

2.4.2 Moderate Mass Higgs Production

A Higgs boson above ≈ 135 GeV/c2 will decay primarily to a pair of W’s. Higgs

bosons produced by gluon fusion, unable to be used in a H → bb analysis due to

enormous irreducible backgrounds, can be utilized in a higher mass analysis when both

W’s are required to decay leptonically. In this analysis, 2 oppositely charged leptons

are required, in addition to missing energy from the neutrinos. The major background

is diboson WW production because it is difficult to select a set of cuts that remove

these events without losing signal. Other backgrounds such as Drell-Yan γ → l+l−
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Figure 2.10: Log scale of Higgs branching ratios vs. Higgs mass

production and tt events play a smaller role in this analysis. Another analysis that

can play a smaller role for a moderately massive Higgs boson involves WH production

where the Higgs decays to WW. If all W’s are required to decay leptonically, the final

state of l+l−l±ννν is a very distinct signal with small backgrounds. However, this

process only occurs a small fraction of the time, and will be difficult to identify with

the amount of data that the Tevatron is projected to collect. Another option involves

requiring two leptons with identical charge in addition to two jets. W bosons decay

to quarks more often than they do leptonically, and requiring like-signed leptons

removes many backgrounds that must decay to oppositely charged leptons. This will

occur more often than the tri-lepton process, but still suffers from a very low event

rate. In the mass region around 160 GeV/c2, where the H → WW branching ratio

peaks, there is a large sensitivity to a Higgs signal. Through the combination of these

analyses from both experiments, the Tevatron should be able to exclude Higgs masses
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in this mass range at the 95% CL if there is no signal present. It is believed that this

can be done with less than the entire projected dataset of 8 fb−1 per experiment.

2.4.3 Light Higgs Production

A Standard Model Higgs boson with mass less than 135 GeV/c2 is expected to

decay to a bb pair a majority of the time. The b-quark decay products will proceed to

fragment into a spray of particles called a jet, which is then measured by the detector.

However, there are many other processes that could yield a similar final state. Higgs

analyses are difficult in the absence of large integrated luminosity (amount of data

accumulated) due to the number of processes that mimic a Higgs signal. In this mass

region, Higgs studies are split into three main analyses. All require two jets that can

be reconstructed to form the mass of the Higgs.

• The ZH → llbb analysis requires either an e+e− pair or a µ+µ− pair that form

the mass of the Z. While this is a particularly “clean” search region with no

high-energy neutrinos in the signal final state and many distinguishing features,

it suffers from a low cross section times branching ratio when compared to other

Higgs search channels.

• The WH → lνbb channel searches for events with an e or µ lepton and an

imbalance in transverse energy from the neutrino. WH production has a larger

cross section than ZH, but the signal to background ratio is worse in this channel.

• The ZH → ννbb analysis studies events with a large imbalance of energy in the

transverse direction due to unmeasurable neutrinos and no identifiable leptons.

In addition, there is a significant enhancement in signal from WH production

where the lepton in the event fails to be detected.
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The event selection for all of these analyses are orthogonal and results can be com-

bined to produce an overall sensitivity to a Higgs signal at masses between 110-150

GeV/c2. In addition, due to the limited amount of data projected to be collected

by each experiment at the Tevatron, CDF and D0 have proposed to combine results,

essentially doubling the statistical power of each analysis. However, even with all of

these enhancements to signal sensitivity, extracting the Higgs amongst large back-

grounds will be difficult. The standard technique used bu analyses such as these

involves cutting out events by requiring certain thresholds in kinematic and topo-

logical variables, optimizing the number of expected signal events over the square

root of background events ( S√
B

). A dijet mass is then reconstructed from two jets

in the event, and that distribution is fitted in an attempt to isolate a signal. This

Figure 2.11: Example Dijet Mass distribution from a CDF WH → lνbb analysis

27



method is beneficial in that a well understood quantity with a strong intuitive appeal

is being fit. However, the current reconstructed dijet mass resolution of the Higgs is

inferior to what physicists at the Tevatron had hoped to achieve. This, in addition

to the need for increased b-tagging efficiencies and other factors, have led CDF and

D0 to design new analysis techniques that hope to improve signal acceptance and

background rejection. The development of such techniques is a primary focus of this

dissertation, and are described in detail in chapter 9.
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CHAPTER 3

EXPERIMENTAL APPARATUS

As of today, experimental study of physics concerned with the Higgs Boson is

restricted to the CDF and DØ collaborations at Fermilab. Assuming the experi-

mental lower limit of 114.4 GeV/c2 set by LEP, only the proton-antiproton beams

provided by the Tevatron can provide enough center of mass energy to produce the

Higgs Boson. The Collider Detector at Fermilab consists of many subdetectors, each

with components specifically engineered to provide useful information pertaining to

the physics of proton-antiproton collisions. The beams provided by the Tevatron in

conjunction with CDF have provided an astounding environment to probe new and

exciting physics at its most fundamental level.

3.1 The Tevatron

Until the first collisions take place in the Large Hadron Collider at CERN, the

Tevatron [8] at Fermilab remains the most energetic particle accelerator in the world.

Two beams are accelerated to a final energy of 0.98 TeV, one of which consists of

entirely of protons, the other of its antimatter twin the antiproton. These beams

circulate around the Tevatron in opposite directions, colliding with a center of mass
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Figure 3.1: Tevatron accelerator chain. A sketch of the accelerator chain used at the
Fermi National Accelerator Laboratory. Contained is the chain that leads to collisions
at CDF.

energy of 1.96 TeV at two interaction points, surrounded by the CDF and DØ de-

tectors. The process of generating the highly energetic beams of the Tevatron is a

multi-stage process, encompassing the creation of a focused proton beam, the pro-

duction of antiprotons, and 5 separate accelerators.

The process of producing beams in the Tevatron begins by creating Hydrogen

ions. H− is created from H2 gas, by attracting the nucleus towards a metal surface
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with an electric field. The hydrogen then picks up electrons from plasma near the

surface of the metal. The now negatively charged ions are brought to 750 keV by

traveling through an electrically static Cockroft-Walton accelerator, and are guided

to the Linac for further acceleration.

The Linac is a linear accelerator, which utilizes a radio frequency (RF) electromag-

netic field, as static electromagnetic fields cannot be sustained and will break down

when attempting to accelerate the ions to high energies. The RF electromagnetic

field generated by alternating current will provide the ions with a series of acceler-

ating boosts while traveling the length of the 150 meter Linac, reaching an energy

of 400 MeV. While a RF field provides a solution to the problems cited for static

direct current fields, the ions must now be guarded from the RF field as they enter

a region in phase that would provide a counteractive force. Drift tubes are utilized

to accomplish this, and must be spaced appropriately to accommodate increases in

velocity. The oscillating field will not only pump energy into the ions, but group

them into bunches separated by the stable phase region in the field called a bucket.

Before being transferred to the third link in the accelerator chain, the ions are passed

through carbon foil, which strips the Hydrogen of its electrons producing the bare

protons needed for the final three apparatuses.

While the previous increases in energy have been administered via linear accel-

eration, a different approach is more suitable for creating the enormous energies the

Tevatron will ultimately possess. Continuing to provide more and more energy to

protons linearly would require an unrealistically long accelerator. To address this

problem, all latter stages use circular synchotrons to accelerate the proton nuclei.
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Therefore, the same path can be used continuously as protons travel the circumfer-

ence of a ring. Synchotrons must synchronize the electric field accelerating the protons

with a magnetic field which curve the trajectory of the protons around a ring. The

Booster is such an accelerator, which brings the protons up to an energy of 8 GeV

during a series of thousands of rotations. The oscillation frequency of the electric

field is continually increased to coincide with the accelerating velocity of the protons,

which results in the ability to reuse the same beam pipe multiple times. This design

is also utilized by the final two accelerating rings, but with even greater energies.

Increasing the proton energy even further requires the use of a larger ring. There-

fore, the 8 GeV protons are sent to the Main Injector which at 3.3 km, is about 7

times the circumference of the Booster. Here the protons are brought up at an en-

ergy of 120 GeV for the purpose of manufacturing antiprotons. The beam is sent to

the antiproton source, producing a number of byproducts which result from the high

energy collision of protons with a nickel target, including antiprotons. Antiprotons

are separated from other particles by a magnetic field, which bend the negatively

charged baryons, selecting those with 8 GeV of energy. This process is easily the

limiting factor in the production of beams for use in the Tevatron, as approximately

1 or 2 antiprotons will be collected for every 100,000 protons sent to the target. The

antiprotons which are collected are sent to the Debuncher for cooling and to reduce

momentum spread, then to the Accumulator to stack multiple pulses from the De-

buncher, and finally, when a sufficient amount of antiprotons have been stored, the

bunch proceeds to the Main Injector where the original incoming protons were sent
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from. Here both protons and antiprotons are brought to an energy of 150 GeV, tak-

ing advantage of the same accelerating system but traveling in opposite directions, a

convenient property of their identical mass and opposite charge.

Proton and antiproton bunches are then injected into the Tevatron. The Tevatron

is larger than the Main Injector with a circumference of 6.3 kilometers, and makes use

of a system of superconducting magnets to maintain the enormous energies provided.

The magnets in the Tevatron are a niobium/titanium alloy kept at extremely cold

temperatures (≈ 4K) required for superconductivity. A dipole setup is utilized to

steer beam around the ring of the Tevatron, while a magnetic quadrupole structure

focuses the beam to prevent a degrade in luminosity or loss of the beam entirely. The

final energy of each beam in the Tevatron is 980 GeV, corresponding to a center of

mass energy of 1.96 TeV. Once a fully prepared beam is ready, the Tevatron initiates

collisions at two points where the CDF and DØ detectors are located. The beams

are steered towards one another at these two points, and cross paths at the center of

a detector where the collision(s) is analyzed by the detector in question.

While much of the long acceleration chain is geared towards ramping up beam

energy, of great importance is the ability to produce large luminosities. Major up-

grades were designed and implemented with respect to Run I of the Tevatron, greatly

increasing the ability to produce large datasets. Run II of the Tevatron boasts greater

collision frequency and more proton-antiproton bunches in addition to the increase in

energy. The Tevatron operates with 3 trains of protons and antiprotons, each contain-

ing 12 bunches spaced by 396 ns intervals. Gaps between the trains allow for ample

time to abort a beam without causing damage to the Tevatron or the detectors.

Greater instantaneous luminosities enhance the probability of a proton-antiproton
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collision, and increase the potential datasets for the detectors when integrated over

time. Over the course of Run II, more and more protons and antiprotons have been

successfully packed into bunches, continually increasing the rate of data acquisition

for the experiments with record luminosities for a hadron collider.

3.2 The Collider Detector at Fermilab

The Collider Detector at Fermilab [15] is a collection of many sub-detectors work-

ing together to extract as much information as possible from the collisions occurring

at the interaction point it surrounds. Each component of CDF is designed and located

so as to maximize the ability to measure specific properties of interesting physics in

high quality collisions. For instance, the silicon detectors are located closest to the

beamline, and is placed directly on the beampipe to extract high-precision tracking

measurements needed to understand physics occurring shortly after the primary inter-

action. The Muon detectors on the other hand are placed outside of the calorimeters

so as to only measure long-lived, weakly interacting charged particles escaping the

rest of CDF, and only require lower precision tracking. They need only to locate a

single short track which points back to more sophisticated tracking, and are designed

accordingly. All pieces of CDF are utilized in locating and reconstructing the most

interesting proton-antiproton collisions, allowing the analyzers to probe new physics

and produce high quality measurements of physical phenomena. All components are

essentially symmetric in the plane transverse to the beamline, but change with respect

to how central (closest to primary point of interaction) or forward they are located.
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Figure 3.2: Side-view schematic of the CDF detector.

3.2.1 Solenoid

To accurately reconstruct the momenta of charged particles with CDF’s track-

ing, it is necessary to apply a strong magnetic field to bend the trajectory of the

high energy particles expected. This is accomplished with a 5m long superconduct-

ing solenoid positioned outside of the CDF tracking detectors. Wrapping around the

radius of the outer tracking chamber, the solenoid produces a uniform 1.4 Tesla mag-

netic field parallel to the beamline. Charged particles produced in a proton-antiproton

collision will bend orthogonally to the field as they traverse CDF’s tracking, produc-

ing a curvature to their trajectory which is directly related to the momentum of the

reconstructed track. Additionally, it is possible to determine the charge of the particle

by the direction of the curvature in the magnetic field.
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Figure 3.3: A simplistic portrayal of how particles behave within the CDF detector.

3.2.2 Silicon Tracking

Placed directly on the beam pipe, closest to the aftermath of a proton-antiproton

collision are the silicon detectors. The silicon detector [16] is divided into three layered

sub-systems. Layer00 is the first sub-system, with the innermost layer positioned at

a radial distance of 1.35 cm around the beampipe. This layer must withstand the

greatest amount of radiation of any part of the detector, and is comprised of single

sided silicon wafers designed to tolerate the large bias voltages necessary. Layer 00

allows for enhanced resolution on the impact parameter associated with collisions,

and offers a layer of protection for the second silicon sub-system.

The SVX II is comprised of 5 layers of double-sided silicon. In each layer, one side

is axial, aligned to offer radial and transverse tracking information (r-φ), while the
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Figure 3.4: The CDF Run II silicon detectors. On the left is a side view of half
of the CDF Run II silicon detectors on a scale in which the z coordinate is highly
compressed. On the right is an end view.

other side is stereo, aligned to offer additional information related to the momentum

of tracks in the z-direction (parallel to the beam). This is accomplished by positioning

the silicon at a 90 deg angle to the axial side for layers 1,2 and 4, and at a 2 deg stereo

angle for layers 3 and 5. The 5 layers extend from 2.4 cm away from the beam, out

to 10.7 cm, and offer lengthwise tracking out to |η| < 2.4

The outermost silicon detector is the Intermediate Silicon Layer (ISL) [17], pro-

viding additional tracking between the SVX II and the Central Outer Tracker (COT).

The ISL occupies the radial area of 20 to 28 cm from the beamline, and consists of

two double-sided layers of silicon. The first layer extends out to |η| < 1.0, while

the second offers tracking out to |η| < 2.0. The entire silicon system offers precise
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Figure 3.5: CDF tracking.

3-dimensional tracking close to the point of interaction. The impact parameter res-

olution is on order 40 µm, and is essential in locating the secondary vertices often

associated with long-lived particle decay, such as with b mesons.

3.2.3 Central Outer Tracker

Surrounding the silicon system is a large cylindrical drift chamber, composed of

thousands of drift wires. The COT [18] [19] extends radially from 40 to 132 cm relative

to the beamline and is 3.1 m in length. The chamber is filled with an Argon/Ethane

‘fast’ gas, and many layers of wires, subdivided into 8 superlayers. Each layer consists

of a number of cells, containing sense wires with a positive voltage of ≈ 3kV acting

as an anode, potential wires outside and in between each layer with a lower positive
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Figure 3.6: Equipotential lines in a COT cell.

voltage (≈ 2kV ), and are divided by cathode field panels. There are variable voltages

(< 400V ) among the sense and potential wires in order to create a uniform drift field

in each cell. As a charged particle passes through any given cell, it leaves a trail of

e−-ion pairs. The ions drift towards the sense wires, igniting an avalanche of charge

within a few radii of the wire. A pulse of current is sent down the wire, signaling a

hit on that particular wire. The amount of time between the initial collision and the

signal pulse is related to the charged particles distance from the wire, offering spatial

information more resolute than the distance between sense wires. The trajectory of a

charged particle is mapped out by a series of hits on the wires in the COT. Bending

due to the magnetic field, the transverse momentum of the track is calculated as

pT = qBr, where B = 1.4T , q is the charge of the particle, and r is the radius of

curvature. Momentum resolution of tracks in the COT changes as a function of pT ,

and is calculated as σpT
/p2

T = 1.7 × 10−3.
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3.2.4 Calorimeters

Momenta measurements from CDF tracking are often used to measure objects

such as high PT charged leptons, but cannot measure neutral particles such as neu-

trons which are often associated with jet activity. Once particles have traversed the

COT, their energy can be collected and measured with detectors called calorimeters.

Calorimetry at CDF is located outside of the solenoid and is divided into central and

plug (forward) regions. The central region stretches from the center of the detec-

tor out to |η| < 1.1, while the plug calorimetry forms the bookends of the detector,

collecting the energy of particles at high pseudo-rapidity (3.6 > |η| > 1.1). The

composition of the calorimetry creates a grid of calorimeter ‘towers’, with each tower

occupying approximately 15 degrees in φ and 0.11 in η in the central region. The plug

towers are more variable in size, growing from φ ≈ 7.5−15 degrees and |η| ≈ 0.1−0.2

as |η| increases from 1.1 to 3.6.

Two types of calorimeters exist for the collection of energy from different par-

ticle types. Electromagnetic and hadronic calorimeters are designed specifically to

collect energy from photons and electrons or hadronic particles such as pions and

neutrons respectively. Electromagnetic (EM) calorimeters [20] are located in front of

the hadronic calorimeters, and are composed of layers of lead, separated by scintil-

lator designed to collect light and focus it towards photomultiplier tubes. Electrons

undergo bremsstrahlung radiation, while photons typically convert into an e+e− pair

when entering EM calorimeters. A cascade effect manifests as photons pair convert

and e± radiate until the vast majority of scintillation light has been collected and

residual electrons and positrons have lost sufficient energy and ionize. The radiation

length (X0) is the average distance an electron travels in a given material before only
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Figure 3.7: An illustration of the electromagnetic and hadronic calorimetry in CDF.

1/e of its energy remains. The total EM calorimeter extends to nearly 20 radiation

lengths so as to contain all energy from an EM shower. An additional Shower Max-

imum Detector is located at slightly less than one third the total depth of an EM

tower, which is the expected maximum of the EM showers spread. Its purpose is to

improve the spatial resolution on the position of the shower, and to profile its shape.

While electrons and photons will tend to deposit a majority of their energy in

the EM, hadronic particles have different properties and undergo a showering process

which takes much longer to evolve. Hadronic energy loss will occur primarily through

nuclear collisions with the absorbing medium and ionization. This type of cascade

will often begin in the EM calorimeter, but extend into the hadronic calorimeter [21]

for the majority of a showers energy deposition. Iron is utilized as the absorbing

41



material in these calorimeters, with scintillator placed in between layers as before.

The longer showering process motivates a larger amount of material, and longer length

of layers between scintillator. The length of a hadronic shower is characterized by

its interaction length, the average distance traveled for a hadron to experience a

nuclear interaction with surrounding material. Interaction lengths are much longer

than radiation lengths, and although the hadronic calorimetry is composed of much

more material, it is only 4.5 interaction lengths deep in the central region and 7 in

the plug. Energy resolution of particles and showers is vital to data analysis at CDF.

The resolution of the calorimetry was measured with a test beam, and is different for

EM, HAD, central and plug [22] calorimeters. The measured energy resolution of the

EM is 14%
√
ET ⊕ 2% in the central region and 16%

√
E ⊕ 1% in the plug, while the

hadronic energy resolution is 75%
√
E in the central region and 80%

√
E ⊕ 5% in the

plug.

3.2.5 Muon Detectors

The outermost detectors in CDF are the muon systems [23]. Muons do not in-

teract strongly with the calorimeters like electrons due to their much larger mass,

and will typically only deposit a small amount of minimum ionizing energy. Pass-

ing through the inner portions of the detector, muons can be identified by leaving a

short trail in small tracking chambers outside of the bulk of the detector. The muon

detectors consist of four rectangular gas chambers, positioned parallel to the beam-

line, recording the φ position of a particle exiting the detector. Additionally, due to

large drift time in the muon chambers, there are layers of scintillator which provide

more accurate timing information. Since all other particles produced in a given event
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Figure 3.8: CDF Muon detectors.

will likely be stopped in the calorimetry, it is highly efficient to locate a muon by

requiring that a short muon ’stub’ from a muon chamber point to a high PT track

in the COT. The Muon system is divided into subdetectors which provide coverage

for particular |η| regions. The most central region (0.0 < |η| < 0.6) is covered by

the Central Muon detector (CMU) and Central Muon Upgrade (CMP). The Central

Muon Extension (CMX) adds additional measurement capabilities for moderately

central muons at (0.6 < |η| < 1.0), and the Barrel Muon Upgrade (BMU) extends

from 1.0 < |η| < 1.5.
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3.2.6 Cherenkov Luminosity Counter

The goal of the Tevatron accelerator is not only to provide high energy beams to

the detector experiments, but to pack as many protons and antiprotons as possible

into the 36 bunches circulating the ring. Luminosity in proton-antiproton colliders is

defined as

L =
nbunchesNpNpf

2π(σ2
p + σ2

p)
F

(

σl

β

)

Greater luminosity in the beams enhances the probability of producing more high

quality collisions, providing larger datasets for analysis. As stated in the definition,

luminosity depends of many quantities, some of which are constant at the Tevatron.

The number of bunches (n=36) and revolution frequency (f≈ 48kHz) are constant,

while Np and Np vary depending on how many protons and antiprotons are packed

into the initial beams, and will continually decrease for the duration of the lifetime of

the beams. The Form factor F
(

σl

β

)

is about 0.7, and σp and σp represent the spatial

standard deviation of the beams at the interaction point in the detector.

Measuring the instantaneous luminosity of beams at the Tevatron is of vital im-

portance, as it must be integrated over time to calculate the total amount of data in

a sample. This is a crucial component in making accurate predictions and measure-

ments in analysis of the data. The CLC (Cherenkov Luminosity Counter) [24] are

cone-shaped detectors filled with isobutane positioned near the beamline. Cherenkov

light is collected by the detector from inelastic proton-antiproton scattering, measur-

ing the average number of interactions for each bunch crossing (µ). The luminosity

can be calculated directly from this quantity, since the inelastic cross section (σin)
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and bunch crossing frequency (fBC) are known constants.

L =
µfBC

σin

3.3 Data Acquisition

The Tevatron has produced trillions of pp collisions for analysis by the CDF and

DØ collaborations. While the large luminosities provide enormous amounts of data

for analysis, the rate of recorded data must be controlled due to limited resources

and practicality. Bunch crossings occur at a rate of 2.5 MHz, and with each event

amounting to approximately 250 kB of data, over a terabyte of disk space would be

required every 2 seconds. However, the probability that a proton-antiproton collision

will result in truly interesting physics is small, hence the need for large luminosities,

making the majority of events useless to record. A ‘trigger system’ is utilized by CDF

to identify useful physics events and control the rate of data recorded. The trigger

system at CDF is broken into 3 separate levels, with the processing time increasing

by orders of magnitude in each phase. The overall system reduces the flow of data

to a rate of about 50 Hz, making the data actually written to tape much easier to

manage and analyze.

3.3.1 Level One Trigger

Data from each crossing of the proton-antiproton bunches first passes through fast

hardware designed specifically to identify particular aspects of a physics event. With

bunch crossings occurring every 396 ns, the hardware must process information from

components of the detector in this amount of time. Specific hardware is designed

to identify interesting activity in different parts of the detector. For instance, the
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eXtrememly Fast Tracker (XFT) searches for high PT tracks by utilizing information

from the COT. Electronic pulses on the wires in the gas chamber are analyzed by

‘finder’ hardware, which search for hit patterns in one of the COT’s superlayers and

proceed to forward this information to the Linker system. The Linker hardware

collects hit information from multiple finders, searching for patterns consistent with

a single track traveling through multiple layers of the tracking chamber. Tracks at

the linker level are characterized by their PT , directly related to a track’s curvature

in the magnetic field, and its φ position in the detector. The information at this

point is restricted solely to propagation in the transverse direction, only utilizing

data from the axial layers of the COT. The upgraded XFT improves upon this design

by incorporating tracking from the stereo layers, which yield additional information

in the direction of the beamline. High luminosities at the Tevatron have motivated

this upgrade, as the number of tracks in any given event greatly increases with the

number of proton-antiproton interactions per bunch crossing. Multiple low momenta

overlapping tracks can fake the signature of a single high momenta track, which

raises the trigger rate by accepting unwanted events. Hardware designed to find hit

patterns in the stereo layers is sent to electronics which associate tracks identified by

the Linker system to stereo layer hits. Good tracks will not only be identified by the

linker, but will also have a set of hits from the stereo finders that are consistent with

a true charged particle traversing the detector with some momentum parallel to the

beamline. The tracking information is finally combined with data from additional

trigger hardware associated with electromagnetic calorimetry and muon systems for

the purpose of electron or muon identification.
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There are many other triggers which each look for different characteristics of an

event, such as large energy deposition in a number of calorimeters or a large imbalance

in energy. Overall, the level one trigger system reduces the rate of data dramatically

by accepting events at a rate of about 50 kHz.

3.3.2 Level Two Trigger

Events accepted by the level one trigger proceed to the second stage of the trigger

system for further analysis. Hardware is utilized at this stage as well, but more time

is allocated for detailed analysis of the event due to the reduced event rate. Analysis

of events can include silicon information, calorimeter clustering for jet and electron

identification and more complex tracking reconstruction. A 20 µs time window is

available at level 2 to analyze the data and decide whether an event should be passed

to the final trigger level. Events pass the second trigger level at a rate of about 300

Hz.

3.3.3 Level Three Trigger

The level three trigger is software-based, consisting of 300 dual-processor com-

puters which fully reconstruct an event for analysis. These triggers are optimized

to efficiently accept physics of interest while reducing the rate of background. In

this analysis, the level three trigger searches for missing energy greater than 35 GeV,

and two jets greater than 10 GeV, with one of the jets required to be central in the

detector. This event signature accepts a large portion of the signal, while rejecting

the largest backgrounds at a much higher rate. Level 3 triggers for other CDF anal-

yses may search for different event characteristics, depending on the physics analysis

which will ultimately be performed. The data for events passing this trigger level
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are written to tape and permanently recorded. The final data rate is about 50 Hz, a

factor of 50,000 less than the frequency of bunch crossings at the Tevatron.
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Figure 3.9: Graphical representation of the flow of CDF data through the trigger and
DAQ system.
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CHAPTER 4

ANALYSIS OVERVIEW

The subject of this dissertation is a search for the Standard Model Higgs boson in

the ZH → ννbb channel. The Z → νν decay makes this a fairly unique high-energy

physics analysis, as half of the final state products escape the detector, and can only

be roughly reconstructed by an imbalance in energy of measurable objects. Even in

this case only the Z-system is being inferred, and any information on the individual

neutrinos is completely lost. While certain aspects of this mode are undesirable

and problematic, there are also advantages that make this particular channel a very

exciting prospect for the observation of Higgs at CDF. The Z → νν decay mode has

a branching ratio approximately 3 times as high as Z → e+e− and Z → µ+µ− decays

combined, which is extremely valuable in the case of Higgs analysis where the cross

section is so small. Additionally, a contribution from the WH → lνbb channel also

adds to the signal expectation for the event selection utilized by this analysis. The

dedicated WH analysis at CDF requires an identified electron or muon candidate

plus a moderate amount of missing transverse energy from the neutrino (typically

about 20 GeV) to reconstruct the W. However, lepton identification is not a fully

efficient process, and a reasonably large amount of WH events do not pass event

selection when a lepton (electron or muon) is required. However, this analysis has a
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method to recover some of these events, since the only requirement with respect to

vector boson identification is a large amount of missing transverse energy. A lepton

veto is implemented to keep the two Higgs analyses orthogonal. Thus this analysis

becomes not just a search for ZH, but for WH as well, boosting the potential for large

sensitivity to a Standard Model Higgs processes.

4.1 Event Reconstruction

The main decay products relevant to Higgs analysis at CDF all leave unique sig-

natures in the detector which are used to characterize an event. Different components

of CDF specifically designed for the purpose of identifying interesting physics objects

work together to characterize the aftermath of a proton-antiproton collision. The

measurements produced by all of these components are absolutely essential to wade

through the trillions of collisions and produce analyses which are reasonably sensitive

to signals which can be on the order of a single event.

4.1.1 Electrons

High energy electrons play a crucial role in a large number of analyses at CDF, as

leptons are the single most important identifier of W and Z bosons. Electrons can be

produced in other ways, but yield unique signatures when they are a decay product of

a W or Z. These electrons often appear as a single track in the COT pointing towards

a large amount of energy deposition in the electromagnetic calorimeters. Electrons

identified by the CEM (Central Electromagnetic) calorimetry tend to be better mea-

sured and are able to take advantage of better tracking due to it’s low pseudorapidity

of |η| < 1.1. The PEM (Plug Electromagnetic) calorimetry can identify more forward

electrons in the range of (2.0∼> |η| > 1.1)
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A number of quality requirements are made for identifying good electron can-

didates. These are different depending on whether the electron candidate is in the

central or plug region of the detector. The main difference is driven by the loss of

tracking efficiency in the COT at large η. Instead of making tracking requirements

related to the COT as in the CEM, PEM electrons are required to have a track in

the silicon detectors. Electron ID for this analysis follows the guidelines outlined

for top quark analysis at CDF. The main requirements are an ET ≥ 20 GeV in the

electromagnetic calorimeter, a track that originates within 60 cm of the center of the

detector, an isolation1 less than 0.1, and the Had/EM energy being less the about

0.055, although this cut changes for CEM electrons as a function or energy. A num-

ber of additional quality cuts are made, but these are different for central and plug

electrons. The full set of cuts are listed in table 4.1.

4.1.2 Muons

While both muons and electrons are unique physics objects which are crucial to

identifying electroweak physics, they behave quite differently in the detector. While

both are charged particles that can be identified with tracking, muons will typically

only deposit some minimum ionizing energy in the calorimeters unlike electrons. The

muon detectors discussed in section 3.2.5 are utilized by extrapolating a track in COT

to the muon “stub”. As is the case with electrons, an isolation requirement (Iso ≤

0.1) is made, and additional quality cuts are implemented to improve purity. These

cuts are listed in table ??. Cuts below the line are specific to certain muon detectors.

Tight muons are defined as those identified by the CMUP or CMX muon chambers.

1isolation is the energy around the main electron cluster in a cone of ∆R < 0.4 divided by the
total energy in the electromagnetic cluster associated with the electron candidate
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Selection Central (CEM) Plug (Phoenix)

ET ≥ 20GeV ≥ 20GeV
HAD/EM ≤ (0.055 + (0.00045 × E)) ≤ 0.05
Isolation ≤ 0.1 ≤ 0.1
Track Z0 ≤ 60cm ≤ 60cm
Track PT ≥ 10GeV/c

COT Axial Segments ≥ 3
COT Stereo Segments ≥ 2

Silicon Hits ≥ 3
Lshr ≤ 0.2
E/P ≤ 2.0forPT ≤ 50GeV/c
χ2 ≤ 10.0 ≤ 10.0

Q × ∆x CES −3.0 ≤ Q × ∆x ≤ 1.5
∆z CES ≤ 3.0cm
∆R PES ≤ 3.0cm

Phoenix Match TRUE

Table 4.1: Requirements for identifying electron candidates. Events with identified
electrons are vetoed.

Loose muons include the ‘fill in the gap’ muon detectors, including the BMU detector.

Also included are CMIO muons, which are candidates with a central COT track and

minimum ionizing calorimeter deposition, but no muon stub. Muon selection with

both the tight and loose classification are used in this analysis for different purposes,

which are discussed in detail in sections 5.3 and 8.2.

4.1.3 Jets

These are the most common physics objects identified at CDF, as they are the

easiest to produce. Jets are the measurable by-products of many different processes.

High energy quarks can be produced in a number of ways, including direct pair

production, decay of a vector boson or higher order QCD diagrams. Additionally, high

energy gluons can be produced directly from the main pp physics or gluon radiation

by the final state quarks. These individual quarks and gluons begin a fragmentation
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Selection Cut

PT > 20GeV/c
EHAD < 6 + max(0, (p − 100) · 0.028) GeV
EEM < 2 + max(0, (p − 100) · 0.0115) GeV

EIso
T /PT < 0.1

Track Z0 < 60cm
COT Axial Segments ≥ 3
COT Stereo Segments ≥ 2
Impact Parameter d0 < 0.2cm(0.02w/siliconhits)

χ2 < 2.3

CMU ∆x < 7cm
CMP ∆x < 5cm
CMX ∆x < 6cm

CMX ρCOT > 140cm
BMU ∆x < 9cm

CMIO EEM + EHAD > 0.1GeV

Table 4.2: Requirements for identifying muon candidates. Additional matching re-
quirements are imposed depending on which muon type the candidate is.

process fueled by the strong force. The strong force between colored particles grows

with distance unlike forces such as gravity and electromagnetism. A free quark will

almost immediately proceed to rip a quark out of the vacuum through pair production,

forming a hadron and leaving another free quark as a catalyst for the same effect.

This process continues, forming a spray of mesons and baryons containing the overall

energy and momentum vector of the original parton (quark or gluon). On average, jets

are more poorly measured than electrons and muons, as the energy of the original

parton is spread amongst multiple particles, and the showering and energy loss of

hadronic particles in the calorimeters is primarily due to atomic collisions rather than

ionization as in an electromagnetic shower. However, while not as well measured, jets

are extremely important in characterizing events, and jets resulting from b quark
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production in particular have special properties that are valuable to low mass Higgs

searches.

Jets are measured in the calorimeter by utilizing a clustering algorithm called

JetClu. [25] First, all calorimeter towers with a measured energy above 1 GeV are

listed as seed towers. Preclusters are subsequently formed with groups of 3 towers

in φ by adding adjacent seed towers with decreasing ET with respect to the central

towers in the precluster. The preclusters are then utilized as the base for forming

clusters, by producing a cone around the center in ∆R (
√

∆φ2 + ∆η2). A cone size

of 0.4 in ∆R is used in this analysis. All towers in the cone with energy greater than

100 MeV are then added to the cluster. The cluster centroid is then recomputed and

reclustering occurs iteratively until a stable cluster is formed. If overlapping clusters

share greater than 50% of their energy, they are merged together. Once the algorithm

reaches a point where there are well separated clusters, they are defined as jets for

analysis.

The “Raw” energy measured for a jet by the clustering algorithm must be cor-

rected for a number of effects inherent to detector response and the overall physics of

an event producing a jet. Data produced by test beams and monte carlo studies have

determined a number of effects which are corrected for to improve the reconstruction

of physics produced in pp collisions. [26] The effects compensated for by corrections

in this analysis are as follows.

• η-dependence: The CDF calorimetry, while essentially homogeneous in the

transverse plane other than cracks between calorimeter towers, responds differ-

ently to jets depending on their pseudorapidity. Corrections to jets are applied

with respect to their η position in the detector to remove variations caused by

55



instrumental effects. Studies were performed utilizing dijet balancing methods

with one jet in the best understood region of calorimetry ((0.6 > |η| > 0.2))

being used to scale jets in other regions of the detector.

• Multiple Interactions: While it is extremely unlikely that two pp interactions in

the same event will both result in interesting physics, it is common for there to

be multiple minimum bias pp collisions separate from the main interaction of

interest. Multiple interactions can be identified by additional primary vertices

located away from the main vertex associated with high energy jets or leptons.

These minimum bias interactions can result in additional energy being deposited

in the calorimeters, motivating a correction for jets according to the number of

primary vertices in an event. This effect is greater for jets with larger cone sizes.

• Absolute Jet Energy Scale: These corrections are designed to relate the response

of particles in the calorimeter back to the momenta of the original hadrons in the

jet. Jets can consist of many different types of particles such as π0’s which pri-

marily interact electromagnetically (CEM, PEM), and particles which interact

hadronically such as neutrons, protons and π±’s. Detailed studies have gen-

erated mapping functions between calorimeter response and hadron-level jets

to provide the absolute jet energy scale corrections used in this analysis. Cor-

recting jets for these effects are extremely important, as accurate Monte Carlo

models are essential for making predictions and characterizing the reconstructed

objects from the main physics processes produced in collisions.
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4.1.4 Missing Transverse Energy

The missing transverse energy or 6ET is an extremely important quantity in all elec-

troweak analyses. The momentum of the main interacting particles in a pp collision

should be essentially zero in the direction transverse to the beamline. Conservation of

momentum places powerful constraints on the kinematics of the fundamental partons

involved in a reconstructed event. The 6ET in an event is calculated by summing the

energy deposition vectors of all calorimeter towers in the detector. Taking into con-

sideration the z position of the primary interaction vertex, the x and y , or transverse

components of the sum are used the calculate the 6ET in an event. In a scenario in

which all objects were perfectly measured in the detector, this quantity would sum

to zero due to momentum conservation. The most useful application of this quantity

however, is the case in which one of the particles in the underlying physics process

is undetectable by CDF. Neutrino’s very rarely interact with matter, and the prob-

ability of them leaving a detectable signature in a calorimeter is extremely small.

Therefore, the 6ET is an excellent way to infer the presence of a neutrino in a physics

event. After summing the energy deposition from measurable objects, there often is

an imbalance which is characteristic of some of the event momentum being lost due

to a neutrino. After full event reconstruction and the 6ET being corrected for the z

position of the primary vertex, the corrections applied to identified jets are considered

as well. Corrections to the jet energy scale better reconstruct an event, and applying

these correction to the 6ET as well will improve it’s resolution relative to the true

neutrino PT . The 6ET is solely a transverse vector, so the transverse components of

the corrections to jet ET are subtracted from the 6ET vector.
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The 6ET is a critical quantity in this analysis for many reasons. The signal processes

involve one or two final state neutrinos, so the experimental expectation is that most

events of this type will produce a very large amount of missing energy. Therefore,

it is crucial to have an accurate measurement of this quantity, as it holds a large

amount of the kinematic information present in the event. In addition, the data for

this analysis is collected on a 6ET trigger, making the understanding of its magnitude,

direction and relation to other event quantities crucial.

4.1.5 Secondary Vertex Identification

The production of Higgs in association with a vector boson has a very small

cross section with respect to all major backgrounds. However, the branching ratio of

H → bb is large for low Higgs masses, which is an extremely beneficial feature due

to the special properties of b hadrons. The silicon tracker described in section 3.2.2

is the closest component of CDF to the beamline, and has the ability to identify and

reconstruct secondary vertices (vertex displaced from the primary vertex) which are

characteristic of hadron decay. Specifically, hadrons created from b quark production

are ideal candidates for these measurements. The particle states formed with b quarks

travel a finite distance, often decaying within the resolution of the silicon detector.

Hadrons formed with charm quarks decay more quickly (travel shorter distances) than

bottom hadrons, and hadrons consisting of only strange, up or down quarks typically

decay quickly through an electromagnetic process or have much longer lifetimes and

escape the silicon before decaying. Therefore, secondary vertices reconstructed by the
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silicon detectors provide invaluable information for analyses attempting to create a

purified data sample consisting primarily of processes involving b quarks.

Two separate algorithms are utilized in this analysis to identify secondary vertices.

The first, labeled “SecVtx”, requires at least 2 good silicon tracks within the cone of

a jet [27]. The algorithm searches for a significant displaced vertex with respect the

primary interaction point. This vertex is characteristic of a b hadron decaying into

particles consisting of lighter quarks. Once a secondary vertex has been identified,

the distance from the primary vertex can be calculated (Lxy or Lxyz), as well as a

number of other useful quantities such as the vertex mass. These quantities can be

used to determine the quality of the vertex, or how likely it is that the secondary

vertex is, in fact, associated with the decay of a b hadron. This analysis utilizes the

“Tight” SecVtx requirements, for reasons discussed in the analysis section.

The second tagging algorithm used for bottom identification is “Jet Probabil-

ity” [28]. This method uses a different strategy for identifying displaced vertices.

Silicon tracks are evaluated by the closest point of spatial approach to the primary

vertex, which is known as the impact parameter (d0), along the trajectory of the jet

momentum. The probability of a track being inconsistent with originating from the

primary vertex is calculated. The probabilities of multiple tracks are combined to

from an overall probability, which is interpreted as the likelihood that a jet does not

contain secondary vertices from a long-lived hadron. Therefore, a low value of the jet

probability variable is of interest when attempting to purify a data sample for physics

involving b quarks. The“loose” convention is adopted for studies and analysis, which

corresponds to a jet probability of less than 5%.
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Figure 4.1: Figure illustrating a displace vertex typical of b jet decay.

4.2 Properties of Signal Processes

This analysis attempts to provide a probe into the massive amounts of data CDF

has collected, with the purpose of extracting as sensitive a measure of the Standard

Model Higgs boson as possible. As mentioned previously in this chapter, the specific

decay channel considered is the ZH → ννbb process, with a significant boost in signal

from WH → lνbb in which the lepton is unidentified. Therefore, the ideal Higgs

candidate will be measured as two high ET jets with measured secondary vertices,
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which should reconstruct to form the Higgs mass.
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In addition, an ideal event will produce a large amount of 6ET , recoiling such that the

momentum vector of the dijet system is pointed away from the Z → νν momenta.

This analysis is constructed to take advantage of the specific physics involves in

ZH → ννbb events, and by developing an event selection in which these properties

are considered, a large amount of background can be rejected while keeping a good

portion of the signal available for the possibility of measurement.
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Figure 4.2: The ZH → ννbb and WH → lνbb processes

The WH process has many similar qualities to the main ZH signal. While an

event selection optimized for ZH will have a lower selection efficiency for WH, this

process has a larger cross section at the Tevatron so that a substantial portion of the

total signal yield will consist of this particular process. Not surprisingly, the feature
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of accepting both W and Z physics for the purpose of signal measurement means that

both W and Z background processes must be considered, as well as others.
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CHAPTER 5

DATA SAMPLE AND EVENT SELECTION

5.1 Event Triggers

The data for this analysis is collected on triggers designed to search for events

with properties similar to that of the main signal process. The CDF trigger system,

as described in chapter 3, is split into three levels which calculate event quantities in

increasing detail with the third trigger level representing a fully reconstructed event

similar to those at the analysis level. The level one trigger is designed to accept

events with a 6ET greater than 25 GeV. This is performed by summing the energy in

calorimeter towers to get a reasonable estimate of the 6ET . Due to the extremely small

time window in which this L1 6ET must be calculated, the calorimeter sum has limited

resolution and is not fully efficient until the fully reconstructed ‘offline’ 6ET reaches

values much larger than 25 GeV. The level 2 trigger searches for clusters of energy

in the calorimeters representative of jets. The level 2 algorithm will accept events

in which two clusters of energy are reconstructed above an ET threshold of 10 GeV.

An additional requirement for this particular trigger was introduced for later runs at

CDF to decrease the trigger rate. One of the reconstructed clusters must be at an |η|

< 1.1, which reduces the rate while remaining highly efficient for signal. The event
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selection in this analysis places a slightly tighter cut on at least one of the jets, so

that no trigger bias is introduced.

The level three trigger can take advantage of a full event reconstruction to more

accurately measure the 6ET in an event. A threshold of 6ET > 35GeV is applied to

events passing the L1 and L2 triggers. Therefore, the final event selection reflects the

trigger requirements imposed on the collected data. Overall, events selected by the

trigger are required to have a missing transverse energy of at least 35 GeV as well as

at least two jets, which is an event signature similar to what one might expect from

a typical ZH event. Table 5.1 displays the specific level 3 trigger used for events in a

particular run range.

RunRange Trigger Description

141544-195805 Met > 35 GeV and at least 2 10 GeV Jets

195809-223177 In addition, at least 1 Jet with |η| < 1.1

223233-235232 Trigger turned off if Inst. Lumi. > 190

235389-236255 Dynamically Prescaled

236256-237795 Trigger turned off if Inst. Lumi. > 190

Table 5.1: Triggers used to collect data in different periods of data acquisition

5.2 Cleanup of Missing ET Data Sample

Due to the nature of events collected by Missing ET triggers, it is advisable

to remove a large portion of the dataset that do not contain interesting physics.

Studies of data collected at CDF have shown that these type of events are largely

caused by effects such as beam halo, muon bremsstrahlung, cosmic rays and detector
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inefficiencies[29]. A series of quality cuts motivated by these studies are implemented

in data and Monte Carlo to cleanup unwanted events collected by the MET35 triggers.

• At least one Z-Vertex with class > 11

• At least one track in the central tracking system with COT hits and PT > 0.5

• Require that at least 10% of the sum of all jet ET is deposited in the electro-

magnetic calorimetry.

• Require that the total track PT over ET of all jets divided by the number of

jets is greater than 0.1.

1

Njet

Njet
∑

j=1

∑

PT

ET

> 0.1 (5.1)

• Jets that fall within 0.5 < η < 1.0 and 1.04 < φ < 1.74 are often mismeasured.

This region, known as the chimney, contain a large of instrumentation and often

produces a second jet measured low, as can be seen in figure 8.1. Events with

jets falling in this region are vetoed.

• Tests of QCD modeling are performed in a region in which the 6ET is aligned

with the second jet. A large number of jets passing selection in this region are

located at |η| < 0.1. These events are removed in this region since the 6ET is

likely due to the instrumental effect of a large crack at η = 0. Studies of Pretag

data (data prior to tagging requirements) show that this effect is not present in

the signal region.

In addition to removing events with fake 6ET , some event cuts are utilized to

account for the efficiency turn-on of the triggers[30].
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• Jets in the event are required to be separated by a cone of ∆R > 1.0 to avoid

cluster merging.

• A centrality requirement of |η| < 0.9 on at least one jet is applied due to the

central jet trigger requirement.

• A cut is placed on the missing transverse energy in the event. The 6ET in the

event must be recalculated after applying corrections to jets in the event. Only

jets with a raw ET > 10.0 GeV and |η| < 2.0 are corrected. The Missing

ET is then corrected by the difference between raw and corrected ET for each

jet. While the trigger threshold for the uncorrected 6ET is set at 35 GeV, the

efficiency is low for events with this corrected 6ET . Therefore, a threshold of 50

GeV in corrected MET is set for an event to be accepted.

The trigger study cited above has parameterized the efficiency curve as a function

of the corrected missing ET , and this is accounted for in all monte carlo signal and

background. The efficiency at the 6ET threshold is calculated to be 83%, becoming

about 94% efficient at 60 GeV and 99% efficient at 70 GeV.

5.3 Event Selection

In addition to trigger driven requirements, other cuts are placed on events to

remove background. These are designed to isolate the kinematic region which is most

likely to contain Higgs events, and least likely to be overwhelmed by background.

• Events with 2 and only 2 jets with ET > 20 GeV and |η| < 2.0(Tight) are

accepted.
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• If a third jet is found at high |η| (2.0 < |η| < 2.4) having a corrected ET > 20

GeV, the event is vetoed.

• In Higgs events, the leading jet is expected to be more energetic than that of

most backgrounds. A leading jet requirement of 45 GeV is placed on all events.

• Events with identified high-energy electrons and muons are not accepted, as

these are potential candidates for orthogonal WH searches. We implement the

standard high-PT definition of tight or loose leptons as a veto. However, we

define a control region to test trigger efficiencies and multivariate distributions

as events with an identified high PT muon. This is discussed in detail in section

8.2.

• A cut is placed on events in which ∆φ(6ET -Lead Jet) < 0.8. This cut is highly

efficient for signal, and removes a portion of QCD background.

• The final cut placed on events is determined by the displacement between the

6ET and the second jet. The region in which the 6ET is aligned with the second jet

consists almost entirely of multijet QCD production and is defined by ∆φ(6ET -

2nd Jet) < 0.4. A separate kinematic region defined by a cut of ∆φ(6ET -2nd

Jet) > 0.8 is used for the final signal region and for studies of electroweak Monte

Carlo backgrounds.

5.4 b-Tagging

The long lifetime of b hadrons producing the reconstructible secondary vertices

described in section 4.1.5 is essential to low mass Higgs analysis. Tagging jets that
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appear to have a secondary vertex is an excellent way to control light flavor back-

grounds in an analysis in which the signal is expected to have b content. Utilizing

silicon tracking information and the SecVtx algorithm, tight and loose tags are as-

signed to jets passing event selection, creating the heavy flavor enriched samples that

we are interested in. We define four separate tagging categories to utilize in modeling,

or data to model comparisons. The first category involves events in which both pri-

mary tight jets have tight SecVtx tags. This data should consist primarily of events

with two b jets, consistent with what one would expect from a Higgs signal. This

sample will provide the most sensitivity in this analysis, due to its high efficiency

for signal events compared to the largest backgrounds. If events do not satisfy this

tagging requirement, events with one tight SecVtx tag as well as a second jet with

Jet Probability of less than 5% are placed in a second tagging category. The back-

ground rate is expected to be slightly larger in this sample, while the signal yield

is slightly smaller. The third tagging category is defined as events with only one

tight SecVtx tag. Data falling into this category will provide the base of our heavy

flavor QCD model. The procedure for extracting models from this data sample is

described in detail later. If events do not satisfy any of these requirements, a single

loose SecVtx tag is searched for. The purpose of this sample is to provide validation

for the modeling of light flavor data which have been mis-reconstructed as having a

secondary vertex. The tight version of the SecVtx algorithm is used to remove the

highest quality tagging information, so that the remaining data consists of physics

which would only be tagged after loosening tagging requirements. These events are

rich in events with false tags, and provide a good source of testing the modeling of

various kinematic distributions. Finally, events satisfying no tagging requirement are
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labeled as un-tagged, and are utilized in multivariate training, described in Section

9.2.
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CHAPTER 6

MODELING OF PHYSICAL PROCESSES

6.1 Higgs Signal

While this analysis is primarily geared towards a search for ZH → ννbb, a signif-

icant boost in Higgs signal from WH → lνbb events is expected in which the lepton

is unidentified. The search for Higgs production in a 6ET +jets data sample is focused

on a low mass Higgs boson. The theoretical production cross section of ZH and WH

drops as the mass of the Higgs increases, as well as the theoretical branching ratio of

H → bb [31] [32]. We therefore focus on the limited mass range in which we expect to

have some sensitivity. Table 6.1 displays the total expected number of signal events

to be produced for all relevant masses.

The theoretical production rates for events in which a Higgs boson is produced is

extremely small compared to the backgrounds passing trigger requirements. Monte

Carlo VH samples were generated with PYTHIA [33] for masses ranging from 110-150

GeV/c2. Event selection cuts greatly reduce the event yield, which is then further

reduced by the requiring secondary vertex tags on both jets in an event. These event

reduction techniques described in Section 5 are all much more efficient for the signal,

increasing our ability to ultimately attempt to fit the physics process of interest.
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Mass BR(H → bb) σ(ZH) ∗ BR(Z → νν)pb Events

110 .77 .025 33.4
115 .73 .022 27.9
120 .68 .019 22.4
130 .53 .014 12.9
140 .34 .011 7.1
150 .18 .008 2.4

Mass BR(H → bb) σ(WH) ∗ BR(W → lν)pb Events

110 .77 .069 92.4
115 .73 .059 74.9
120 .68 .051 60.3
130 .53 .038 35.0
140 .34 .029 16.8
150 .18 .019 5.8

Table 6.1: Signal events produced in 1.7 fb−1 prior to event selection or trigger effi-
ciencies

Table 6.2 displays the number of ZH and WH events expected after all selection has

been performed with respect to Standard Model cross sections and branching ratios.

ZH → ννbb (Events) WH → lνbb (Events)

Mass Vtx + Prob Tag Double Vtx Tag Vtx + Prob Tag Double Vtx Tag
110 0.63 0.78 0.46 0.57
115 0.54 0.68 0.41 0.49
120 0.46 0.59 0.32 0.39
130 0.30 0.38 0.21 0.25
140 0.17 0.20 0.10 0.14
150 0.07 0.08 0.04 0.05

Table 6.2: Mean Signal event expectations in 1.7 fb−1 after event selection and trigger
parametrization
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ZH → ννbb efficiency WH → lνbb efficiency

Mass Prob+Vtx Tag 2 Vtx Tags Prob+Vtx Tag 2 Vtx Tags

110 2.35% 2.56% 0.62% 0.69%
115 2.50% 2.75% 0.68% 0.72%
120 2.64% 2.96% 0.69% 0.76%
130 2.92% 3.22% 0.75% 0.80%
140 3.18% 3.43% 0.76% 0.91%
150 3.39% 3.59% 0.85% 0.91%

Table 6.3: Selection efficiency for Higgs events in the signal region.
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CHAPTER 7

BACKGROUNDS

A 6ET +jets Higgs search contains the exciting prospect of accepting both ZH

and WH events with the same selection criteria. However, this of course means that

there are many different backgrounds that will be accepted in the data as well. A

thorough understanding of background compositions and kinematic shapes is crucial,

motivating rigorous attempts to develop the model of each background process using

methods that will accurately represent data consisting of many different types of

physics.

7.1 Monte Carlo Models

7.1.1 Top pair production

q

q

g

W

t

b

b

W

t

Figure 7.1: Feynman diagram of top pair production at the Tevatron
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Top pair production provides one of largest contributions to the double tag cate-

gories in this analysis. The Monte Carlo based tt model includes all decay channels,

and was generated with PYTHIA. Lepton+jets and dilepton tt events both provide

energetic jets as well as Missing ET , as both contain at least one neutrino. While

multiple leptons or jets must be unidentified for tt events to pass selection and are

accepted a much lower efficiency than signal events, the actual expected event yield

is much higher due to the large production cross-section.

7.1.2 Single Top
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Figure 7.2: The s-channel and t-channel single top production mechanisms. The s-
channel process is more relevant in the double tag sample, as it has the same final
state as WH.

Single top Monte Carlo includes only events in which the W decays leptonically.

Two single top processes, s-channel and t-channel, will contribute to the single tag

data samples. Single top in the double tag samples is likely to consist mostly of s-

channel, due to the fact that one of the b jets in t-channel events is typically at large
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rapidity and not taggable. Monte Carlo for these processes were generated with with

MadEvent [34] with PYTHIA [33] providing the showering.

7.1.3 Diboson
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Figure 7.3: Examples of diboson production at the Tevatron.

Diboson events include ZZ,WZ and WW production. The physics of these events

are very similar to the signal, as they both involve the decay products of bosons

recoiling off of one another. The Monte Carlo diboson samples include all decay

channels, although the majority of double tag events accepted involve WZ→ lνbb and

ZZ→ ννbb events. These samples were generated with PYTHIA.

7.1.4 W/Z + Heavy Flavor

Events in which a W or Z boson is produced in association with heavy flavor par-

tons are the largest background component next to heavy flavor QCD and mistags in
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Figure 7.4: Examples of processes resulting in a vector boson plus heavy flavor quarks

the single tag sample. Models for these backgrounds are developed using a large num-

ber of different Monte Carlo samples, generated by ALPGEN [35] with PYTHIA [33]

providing the showering. Z→ νν+bb/cc+np samples and W samples were generated

for multiple processes containing different numbers of partons produced in the main

physics process. Single and double tag shapes for these processes are developed by

adding each parton sample weighted by its generated cross section and efficiency for

passing event selection.

wnp = σ(gen) ∗ ε (7.1)

Once the contributions from all parton samples have been normalized with respect to

one another, an overall normalization is calculated for the total amount of integrated

luminosity in the data. This normalization is scaled from the Method II predictions

developed in CDF Run I [36]. Using the same W+bb+np Monte Carlo samples, the

weighted acceptance calculations above are summed for the present selection criteria

as well as the Method II selection criteria. The ratio of these provides a scaled
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efficiency. Finally, the W+h.f. background is predicted by scaling the Method II

prediction by the efficiency ratio as well as the ratio of integrated luminosity in the

two analyses.

NMET+Jets =
Lumdata

LumMII

∗ εMET+Jets

εMII

∗NMII (7.2)

The Z+bb/cc+np background is also scaled for the Method II expectation in a similar

fashion, accounting for the differences in cross section and branching ratio.

7.2 Data Driven Models

7.2.1 QCD Model

The largest background to Higgs signal in this analysis is QCD multi-jet produc-

tion. Mismeasured jets and semileptonic decay can produce large amounts of missing

transverse energy in the detector, mimicking a Higgs-like signature. Previous studies

have shown that hundreds of millions of heavy flavor events must be simulated in

order to gather enough statistics to model this background with Monte Carlo events.

Therefore, the background model for this process is produced directly from the data.

After the standard event selection has been applied, the 1 tight tag data sample is

used as the base of our QCD model. This data sample is comprised mostly of QCD jet

production, but also includes contributions from other physics processes. In particu-

lar, light flavor processes which have been mistagged contribute approximately 30% to

this data set in the signal region. Real heavy flavor top and electroweak processes also

contribute to this data sample. The shapes of these other events must be subtracted

from all relevant distributions at their expected normalizations, which are shown in

Table 7.2. In addition, the untagged jet has been weighted to compensate for biases

introduced by tagging. This procedure has been tested in the QCD dominated region
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outlined in section 8.1. While the kinematics are different when the Missing ET is not

aligned with either jet, the procedure of developing a double tag QCD model from

single tag data has been validated within the systematic uncertainties assigned to the

model.

The normalization of our QCD model is allowed to float in all fits performed. The

heavy flavor QCD in comparison plots between data and our background model is

normalized to the data minus all other background expectations for the purpose of

shape comparisons. It is critical that the shapes of our QCD model are accurate for

the fitting procedure utilized to set limits in the double tagged data samples. Many

comparisons are made in 3 separate tagging categories in the signal region, as well

as in the QCD dominated region. We find that this data based model appropriately

reconstructs the physics of heavy flavor QCD within the systematic uncertainties

assigned to it. The details of this study are contained in section 8.1.

7.2.2 Mistags

In addition to the heavy flavor backgrounds expected in our signal samples, there

is an additional contribution expected from light flavor jets that are mistagged. The

shapes and normalization of these events are derived from the data before tagging

requirements are implemented by applying the Mistag Matrix[37][38] to all relevant

events. Negative tags, or jets in which the secondary vertex appears to travel to-

ward the primary vertex, are used to make predictions regarding positive light flavor

mistags. The Mistag Matrix utilizes several event and jet specific quantities to deter-

mine the probability that a light flavor taggable jet will be mistagged. The quantities

utilized are displayed in Table 7.1.
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1 Jet ET

2 Jet η

3 # of silicon tracks in Jet

4 ΣET of all Jets

5 # of z vertices

6 Primary vertex z position

Table 7.1: Quantities utilized by the Mistag Matrix

After applying the Mistag Matrix, a weight is assigned to each taggable jet in

a particular event. Therefore, our model is constructed from the Pretag data by

weighting events according to their mistag probability. Single tag weights are the

sum of taggable jet probabilities from the Mistag Matrix of both jets for a given

event. Due to the probabilities calculated by SecVtx and Jet Probability mistag

matrices being correlated, this is compensated for on an event-by-event basis for

double tagged events. Since double SecVtx events are selected first, tight SecVtx

mistag probabilities are multiplied for the lead and second jet to produce a double

mistag probability. In tight SecVtx plus Jet Probability events, the event mistag

weight is calculated as follows:

Pevent = P SECV TX
Jet1 ∗P JetProb

Jet2 ∗ (1−P SECV TX
Jet2 ) +P SECV TX

Jet2 ∗P JetProb
Jet1 ∗ (1−P SECV TX

Jet1 )

(7.3)

The mistag normalization is calculated as the sum of the respective probabilities

in each tagging category.
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7.3 Event Expectations

The total event yield in the data for different data samples is a mixture of the

various backgrounds described in the previous section. Table 7.2 displays the expec-

tations for these processes in 1.7 fb−1. As previously stated, the heavy flavor QCD

background is allowed to float when fitting for a Higgs signal. In addition to our fi-

nal tagging categories, we include an additional data sample of exclusive single loose

SecVtx tags for validation of the falsely b-tagged light flavor background.

Background 1 Loose Tag 1 Tight Tag Vtx + Prob Tag 2 Vtx Tag

tt 6.1 ± 0.8 21.6 ± 2.7 8.1 ± 1.5 8.2 ± 1.3
single top 4.3 ± 0.6 18.4 ± 2.5 4.5 ± 0.8 4.7 ± 0.8
WZ/WW 3.6 ± 0.5 6.6 ± 0.9 1.4 ± 0.3 1.2 ± 0.2

ZZ 1.8 ± 0.3 3.9 ± 0.5 2.0 ± 0.4 2.3 ± 0.44
W+h.f. 19.5 ± 8.0 53.7 ± 21.6 8.8 ± 3.8 6.9 ± 2.9

Z+h.f./Z→ ττ 17.9 ± 7.3 44.4 ± 18.1 8.2 ± 3.6 8.0 ± 3.4
Mistags 294.3 ± 53.4 214.9 ± 24.5 8.3 ± 2.4 1.5 ± 0.3

Total non-QCD h.f. 343.8 ± 54.3 363.5 ± 37.0 41.3 ± 6.0 32.9 ± 4.8

Data 427 702 62 48

Table 7.2: Event expectations for background processes after event selection. The
difference between the total expectation and data is due to heavy flavor multi-jet QCD,
which is fit to data.
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Background 1 Loose Tag 1 Tight Tag Vtx+Prob Tag 2 Vtx Tag

tt 0.053% 0.182% 0.081% 0.074%
s-chan top (W→ lν) 0.401% 1.230% 0.91% 0.099%
t-chan top (W→ lν) 0.231% 1.186% 0.10% 0.028%

WZ 0.044% 0.081% 0.024% 0.020%
WW 0.002% 0.004% > 0.001% > 0.001%
ZZ 0.032% 0.007% 0.031% 0.032%

W→ µν+bb 0.030% 0.120% 0.031% 0.027%
W→ τν+bb 0.046% 0.173% 0.048% 0.036%
W→ eν+bb 0.017% 0.069% 0.017% 0.014%
W→ µν+cc 0.023% 0.041% 0.006% 0.001%
W→ τν+cc 0.011% 0.053% 0.011% 0.002%
W→ eν+cc 0.010% 0.021% 0.003% 0.001%
W→ µν+c 0.040% 0.031% > 0.001% > 0.001%
W→ τν+c 0.011% 0.009% > 0.001% > 0.001%
W→ eν+c 0.010% 0.011% > 0.001% > 0.001%

Z+bb 0.071% 0.258% 0.082% 0.083%
Z+cc 0.032% 0.060% 0.009% 0.002%

Table 7.3: Selection efficiency for various background processes.
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CHAPTER 8

CONTROL REGIONS

8.1 QCD Control Region and Data-Based Modeling

The largest class of events passing trigger requirements in the 6ET +Jets data

sample involve dijet events in which the Missing ET is aligned with the second jet.

The missing energy in these events can be generated by severe mismeasurement of

one of the jets, or by neutrinos and/or muons generated in semileptonic decays of

heavy flavor hadrons. The 6ET is required to be within 0.4 radians (≈ 23o) of the

second jet, while all other event cuts which define the signal region remain the same.

The motivation of this control region is to understand the ability to model heavy

flavor QCD processes using data, and to apply appropriate systematic uncertainties

on the shapes of kinematic and topological distributions which can be propagated

into the signal region. Since 50 GeV of 6ET must be generated along the second jet,

this particular region consists of highly energetic jets which are mostly back-to-back.

In addition, light flavor QCD processes tend to be more energetic than heavy flavor,

leading to shape differences between events with true heavy flavor tags and those

which consist of mistags. We therefore use the single tight SecVtx data as the base

of our heavy flavor QCD model. This particular data sample is highly susceptible to

instrumental effects, such as cracks in the detector. Figure 8.1 displays the excess
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of events caused by the chimney region and 90 degree crack. While the chimney

region is removed for all data, events with |η| < 0.1 are removed only in the region

in which the Missing ET is aligned with the second jet. These cuts remove the two

most obvious instrumental sources of 6ET when making data to model comparisons in

the QCD dominated region.
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Figure 8.1: η vs. φ in region where 6ET is aligned with the second jet. Instrumental
regions such as the chimney and 90 degree crack show large excesses of events in the
Pretag data.

8.1.1 Shape Subtraction and Event Weighting

To model double tagged heavy flavor QCD using single tag data, there are some

effects which must be accounted for to successfully reproduce relevant distributions.

The efficiency of tagging a real heavy flavor jet changes as a function of jet ET ,η, and

number of vertices, producing jets that tend to be more central than those in which

no tagging requirements are made. The efficiencies for tagging a jet as a function of

ET , η and number of vertices is shown in figure ??.

83



Jet Et (GeV)
20 40 60 80 100 120 140 160 180 2000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Loose SecVtx
Tight SecVtx

SecVtx Tag Efficiency for Top b-Jets

Jet Eta
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.20

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Loose SecVtx
Tight SecVtx

SecVtx Tag Efficiency for Top b-Jets

Number of Vertices
1 2 3 4 5 60

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Loose SecVtx
Tight SecVtx

SecVtx Tag Efficiency for Top b-Jets

Figure 8.2: Tagging efficiency as a function of ET , η and number of vertices.

The efficiency for tagging a jet peaks around a jet ET of 60 GeV and is lower for less

or more energetic jets. This can be compensated for by parameterizing these tagging

efficiencies, and weighting single tag events appropriately. On an event-by-event basis,

the jet ET and η of the untagged jet in the single tag data sample is utilized to produce

a weight which is the product of tagging efficiencies for that particular jet, as well

as the number of vertices in the event. We apply this weighting scheme to produce

a heavy flavor QCD model in the double tight SecVtx data. In the Tight SecVtx

plus Jet Probability sample, we find that no weighting is necessary as a function

of Jet ET , as these distributions are well modeled within systematic uncertainties.
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Therefore, a separate model is built for this data sample with only vertex and η

efficiencies utilized. The parameterizations have been calculated from top quark b

jets. The single tag data sample also contains a large amount of mistagged light flavor

events which must be removed to produce pure heavy flavor shapes. Therefore, the

shapes of mistagged light flavor events are subtracted out of the single tag data at

their predicted normalization. The resultant shape is used to model double-tagged

heavy flavor processes in the region where the 6ET is aligned with the second jet. A

modified version of this technique is applied in the signal region, where contributions

from heavy flavor top and electroweak processes must be subtracted from the data in

addition to mistags.

Data Sample Event Count Mistag Prediction

2 Tight SECVTX Tags 1248 52.2 ± 12.0
1 Tight SECVTX Tag + 1 Loose Jet Prob 2113 254.6 ± 121.1
1 Tight SECVTX Tag 14035 4620.5 ± 779.5
PreTag 110018 N/A

Table 8.1: Events accepted as well as mistag predictions in the region in which Missing
ET is aligned with the second jet.

8.1.2 Estimation of Light Flavor QCD

While requiring two secondary vertex tags greatly reduces the amount of light

flavor present in a data sample, some percentage of falsely tagged light flavor events

remain. The mistag matrix, which uses jet and event information to determine a

probability that a jet is a mistag, is utilized to determine the shape and normalization

85



of the light flavor contribution to a tagged sample. Past analyses have used two

different methods to model light flavor background in a double tag sample.

• The first method uses a single tagged data sample and applies the mistag matrix

to the untagged jet. This technique attempts to predict the shape and normal-

ization of events with two mistagged jets, and events with one real heavy flavor

tag and a mistagged light flavor jet. However, the enhancement of heavy flavor

content due to starting with a previously tagged sample leads to an overesti-

mation of the light flavor content, due to the fact that heavy flavor jets are

more likely to produce negative tags. This can be compensated for by running

the mistag matrix on heavy flavor Monte Carlo to predict the amount of heavy

flavor falsely categorized as mistagged.

• The second method uses a pretagged data sample by applying the mistag matrix

to both jets in each event. Multiplication of mistag weights is then used to

predict the light flavor content in a double tag data sample. Pretag data is

heavily dominated by light flavor physics processes, and any overestimation of

double mistagged events due to heavy flavor is negligible.

Applying the mistag matrix to the untagged jet in a single tag sample increases

the predicted light flavor content by a large amount. The effects of heavy flavor in

the single tag sample on the mistag prediction cannot be quantified in a data based

analysis, but it is expected to be a large effect given the differences in negative tag

categories displayed in table 8.2. The effect of heavy flavor jets in data sample appears

to greatly increase the number of negative tags, as the number of negative tags found

after a positive vertex has been measured is much greater than when both jets are
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negatively tagged. Studies of distributions in the region in which the 6ET is aligned

with the second jet show the best agreement by utilizing the latter of the previously

mentioned mistag techniques. This mistag convention is adopted for all remaining

analysis.

Data Sample 2 Negative Tags Positive Tag + Negative Tag

SecVtx Tag + Jet Probability 231 1426
Double SecVtx Tag 27 257

Table 8.2: Amount of negative tags observed in region where missing ET is aligned
with second jet. Table displays both the number events with 2 negative tags, and single
tight SECVTX events in which the other jet was negatively tagged.

8.1.3 Heavy Flavor QCD Systematic Uncertainties

The utilization of a data-driven model requires the development of unique system-

atic uncertainties to properly ascertain the ability to model heavy flavor QCD shapes.

After careful studies, the following systematics are found to be most appropriate.

• Separate systematic shapes are developed by varying the single mistag shape

and normalization within its uncertainty. Two systematic QCD models are

built with these shapes subtracted out of the single tag data varied by the

uncertainty(±) on the normalization.

• Tagging efficiencies as a function of η and PT are varied within their uncertain-

ties for untagged jets in the single-tagged data.

• Separate heavy flavor models are developed for single tag events in which only

the lead jet is tagged, and when only the second jet is tagged. This systematic
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is developed to compensate for any additional tagging efficiencies or differences

in kinematics between single and double tag samples.

These sources of uncertainty are combined by calculating the deviation from the

nominal model for all systematics bin-by-bin, and adding these values in quadrature.

This error is then divided in half and symmeterized. In addition, due to the nature

of data based systematics, which can be prone to statistical fluctuations and regions

where errors are over or underestimated, we apply a smoothing technique to com-

pensate for these effects. A running 3-bin algorithm is utilized. Starting from the

first bin of a given histogram, the average systematic error of the first three bins is

calculated. The error of the middle bin is set to this value. This process is continued

by shifting over one bin and repeating the same process. This process is found to

be sufficient in producing reliable systematic uncertainties. Figures 8.3 and 8.4 dis-

play data to model comparisons for useful kinematic quantities used relevant to this

analysis. More event variables can be found in Appendix A The heavy flavor QCD

is normalized to data in these plots for the purpose of shape comparisons. The black

hashes represent the uncertainty on the background model.
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Figure 8.3: Event variables in region where missing ET is aligned with second jet.
Black hashes represent the total systematic and statistical error of background model.
Data consists of events with 1 tight SECVTX and 1 Jet Probability tagged jet. Upper
left: Missing ET ; upper right: ∆R Lead-2nd Jet; lower left: Dot product of track and
calorimeter MET; lower right: Dijet mass.
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Figure 8.4: Event variables in region where missing ET is aligned with second jet.
Black hashes represent the total systematic and statistical error of background model.
Data consists of events with 2 tight SECVTX tagged jets. Upper left: Missing ET ;
upper right: ∆R Lead-2nd Jet; lower left: Dot product of track and calorimeter Met;
lower right: Dijet mass.
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8.2 Electroweak MC control regions

In the signal region where the 6ET is not aligned with either jet, backgrounds with

high 6ET arising from W+jets, Z+jets, tt̄, and diboson production are anticipated.

The Missing ET can arise due to unidentified leptons as well as real neutrinos from

W → `ν and Z → νν. Processes with muons contribute especially since their mini-

mum ionizing energy leaves a Missing ET signature in the calorimeter, which would

not be accounted for if the muon was not identified, and its muon PT was not used

to correct the 6ET .

While we reject events with tight and loose leptons in order to minimize the

background, some contribution of this background remains. Additionally, Z+ b-quark

jets with Z → νν̄ and ZZ → νν̄bb̄ will also be present.

Cross-checks of the modeling of these backgrounds in our signal region can be

performed using an electroweak Monte Carlo control region. In this region, all of the

same kinematic cuts are imposed as is done in the Higgs signal selection, however, the

presence of at least one “tight” muon is required, where tight only includes CMUP

and CMX muons. The PT of the muon is not used to correct the 6ET , which simulates

the effect on the 6ET of not identifying the muon. In this control region, since the

6ET cut is 50 GeV, there is essentially no QCD background resulting from fake lep-

tons. This QCD estimate has been calculated in previous WH analyses, which uses

a similar event selection. Although there is about a 20% QCD contribution to the

WH event selection for one or more b-tags, the event yield falls quickly as a function

of 6ET . Above 50 GeV, the QCD background is less than a few percent. In addition,

approximately 75% of the QCD background involves electron events. Therefore, the

region can be fully modeled using Monte Carlo (other than mistags). If there were a
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significant amount of QCD in this region, it would likely appear as an excess in the

low Missing ET bins of the 6ET distribution, which is testable.

This control region makes several important crosschecks. It tests whether the

6ET trigger turn-on curve is modeled properly in Monte Carlo, and whether event

event selection criteria avoid trigger inefficiencies due to the jet ET trigger turn-

on curves. It tests the normalization for Monto Carlo processes as well by making

comparisons of the number of expected events with observed events. It tests our

modeling of kinematic distributions used for our Neural Network. The data - MC

comparison is shown in Table 8.3. The systematic uncertainty has been calculated as

at least 13.4% from normalization uncertainties. However shape based systematics

such as jet energy scale and trigger uncertainties have not been evaluated for these

events. The data - MC normalization has reasonable agreement. There is a slight

excess of data, which is covered by the low side estimate of the uncertainty.

Comparisons of distributions utilized in the analysis for this control region are

displayed in figure 8.5. The amount of data collected in this control region is ap-

proximately 14% higher than the prediction of the Monte Carlo backgrounds. The

background is normalized absolutely, so the data will tend to have an excess averaged

over all the bins.

The statistics in this control region are low when requiring a b-tag, so the selection

is also loosened to before the b-tag requirement. This sample is predominantly W+l.f.

The Monte Carlo in the ‘Pretag’ sample is normalized to the data, and comparisons

of jet 1 ET , jet 2 ET , and Missing ET distributions show no signs of mismodeling

from trigger turn-on effects, as seen in figure 8.6.
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Sample Number of events in 1.7 fb−1

Mistags 26.4 ± 3.0
tt̄ 22.1 ± 2.9

W+bb 15.3 ± 6.1
Wc 7.8 ± 3.1

W+cc 5.8 ± 2.3
Z → ττ 1.6 ± .6
WW 3.0 ± .4
Z+hf 2.9 ± 1.2
WZ 1.4 ± .2
ZZ 0.5 ± .1

Single-top s-channel 4.5 ± .6
Single-top t-channel 3.7 ± .5

Total Expected 94.5 ± 12.7

Observed 108

Table 8.3: Electroweak MC control region defined as data passing all our cuts but
also containing a high PT muon. The uncertainties quoted on normalizations do not
include JES and trigger systematics.
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Figure 8.5: Event variables in events with an identified tight muon and at least
one SecVtx tagged jet.. Black Hashes represent the normalization uncertainty on
all backgrounds. Upper left: Missing ET ; upper right: Dijet Mass; lower left: Dot
product of track and calorimeter Met; lower right: ∆R Lead-2nd Jet
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CHAPTER 9

ARTIFICIAL NEURAL NETWORKS

The difficult nature of Higgs analysis at the Tevatron is highlighted by a number

of features. The low production cross-section is, of course the main difficulty. The

limited amount of data to be collected in the full Tevatron dataset means only a

handful of the highest quality Higgs events are likely to be available. As has been

stated previously, the main backgrounds to Higgs all possess significantly greater

production rates, making a counting experiment impossible. The third feature of

Higgs analysis is that these backgrounds for the most part tend to look very much

like a Higgs signal once reconstructed. Unlike analysis of top quarks, which tend to

be much more energetic and discernible from its primary background, the multitude

of different backgrounds, many of which display very similar kinematic features to

the signal, dilute the ability to fit for a Higgs signal in with its most distinguishing

feature, the reconstructed dijet mass. Therefore the development of artificial neural

networks has been pursued to increase the potential for the isolation of a Higgs signal.

Artificial neural networks have the advantage of evaluating an event globally with

several variables, taking into account their correlations to provide a single number

which indicates how signal-like or background-like an event is. Two separate neural
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networks have been trained for different purposes in this analysis, enhancing the

ability to reject background and possibly measure a Higgs signal.

9.1 Track Met and Track-based Neural Network

The largest backgrounds in the 6ET +jets dataset are the result of QCD processes

with jet energies not being fully measured by the calorimeter. This leads to events

with large calorimeter 6ET which can be mistaken for real electroweak processes which

have high energy neutrinos. Since 60% of jet energy is in the form of charged particles,

the Central Outer Tracker (COT) can provide an additional estimator of the 6ET , by

summing up the momenta of charged particles. This “trackMet” estimator should

be uncorrelated to the calorimeter 6ET for events where there is not real 6ET , and

correlated for events where there is real 6ET from neutrinos. A new technique has

been developed to discern real from fake 6ET using multiple track based quantities.

An artificial neural network was trained to classify ZH signal events against untagged

QCD data events. The inputs are based on the sum PT of all tracks, the sum PT of

tracks originating from the primary vertex, the number of vertices, the missing PT

of the vector sum of the tracks, and the highest PT track. Several versions of these

quantities are calculated with different PT cuts on the tracks, and different track

selection requirements. The different PT requirements provide more or less sensitive

to the low PT underlying event and extra interactions. The track selection cuts yield

subsets of tracks that are cleaner or more central. The track-based NN discriminant

is trained on our full signal selection, with a zero b-tag requirement. The network

training was performed by MLPFit, combining these track based variables into a

single function. The data sample is our full 1.7 fb−1 dataset. The Monte Carlo is 1
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fb−1, with the vertex multiplicity distribution re-weighted to match the data. The

NN output shows excellent separation as is seen in Figure 9.1.

The track-based NN is validated in several high 6ET control regions : one dominated

by electroweak processes modeled from Monte Carlo, one dominated by mistagged

QCD dijets in the QCD control region, one using tagged QCD dijets in the QCD

control region, one using untagged data in the signal region. More information about

these control regions can be found in these respective sections of this dissertation. In

Figure 9.2, the trackMet NN output is shown for events with the same kinematic re-

quirements as the signal region. The pretagged electroweak control region validates a

high statistics W+jets data sample. The tagged electroweak control region validates

a lower statistics sample which has contributions from a variety of heavy flavor pro-

cesses. The mistag control region requires a loose SecVtx tag, and does not require a

muon, therefore it is dominated by QCD light flavor jets which are mistagged. Fig-

ure 9.3 displays the trackMet NN output for QCD control regions where the selection

of objects is the same as our signal region, except that 6ET is aligned with the sec-

ond jet. This is shown for two different double-tagged scenarios. Figure 9.4 displays

the trackMet NN output for our signal region. This also shows excellent separation

of mismeasured QCD events from the ZH signal. W events do not show as much

separation from QCD events due to the fact that there is often a high PT track that

produces some amount of fake 6ET . The utilization of this track-based discriminant

is described in the next section.
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Figure 9.1: Track Met Neural Network Output from training NN to separate ZH
signal from QCD background.
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Figure 9.2: Track Met Neural Network Output for 2 different data sets. Top: Track-
met NN output for events in electroweak control region with 1 tight SecVtx tag.
Bottom: Trackmet NN output for events with no leptons but with one loose SecVtx
tag, and no tight tags.
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Figure 9.4: Track Met Neural Network Output for our two double-tagged signal
regions. Top: SecVtx + SecVtx; bottom: SecVtx + Jet Prob.
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9.2 Artificial Neural Network Discriminant

To take advantage of multiple kinematic and topological features of events in this

analysis, an Artificial Neural Network has been developed as a discriminant. The

utilization of a multivariate technique provides a means to loosen cuts compared to

traditional mass fitting analyses. The loosening of cuts increases the amount of sig-

nal expected in this analysis, and additionally provides larger background statistics

to take advantage of in fits of the neural network discriminant. Four different sam-

ples are used in the training process. A mixture of 40% tt and 60% untagged data

is trained against 40% WH and 60% ZH. The untagged data consists largely of light

flavor multi-jet QCD. Individual neural networks were trained for 115 GeV/c2 Higgs

mass and mass points between 110-150 GeV/c2 at intervals of 10 GeV/c2 to opti-

mize the sensitivity over a range of possible Higgs masses. The neural network has

been tested in control regions to verify that heavy flavor processes are successfully

reproduced. An optimization study was performed with 9 event quantities to deter-

mine the best configuration for the neural network. [39] Neural network training is

performed for each variable individually (1 input node), and the variable with the

lowest training error is selected. The procedure is then repeated by training with the

previously selected variable as well as each of the unselected variables in a 2 input

node structure. Variables are continually added in this manner until an improvement

in training error of less than 0.5% is observed. Nine event quantities were examined

in this optimization procedure. They are listed below in the order in which they were

selected.

• Variable 1 - The Invariant Mass of the Dijet System. (Input 1)

103



• Variable 2 - The Track-based discriminant (Track Met Neural Network) which

distinguishes real from fake Missing ET . (Input 2)

• Variable 3 - Missing Et corrected for the Level 5 Et of the Lead and Second Jet.

(Input 3)

• Variable 4 - Dot Product of calorimeter based Missing ET and resulting Missing

PT from the sum of event track momenta. (Input 4)

• Variable 5 - |∆R| between the jets. (Input 5)

• Variable 6 - Lead Jet ET . (Best unselected variable)

• Variable 7 - Second Jet ET . (Not Selected)

• Variable 8 and 9 - Fox Wolfram Moments 1 and 2. Observables which charac-

terize the shape of an event.[40] (Not Selected)

The neural network training was performed by JetNet using the RootJetnet [41]

interface and consists of 5 input nodes, 5 hidden nodes and 1 output node. The neural

network output of various processes are displyed in figures 9.5 and 9.6 Comparisons

of the neural network output have been performed in the QCD dominated region as

well as in muon data. Additionally, comparisons are made in the single loose tagged

data. We find the output to be well modeled within systematic uncertainties. Figures

9.7-9.13 display input variables for the 3 signal region tagging categories, as well as

the neural network output for the control regions.
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Figure 9.5: Neural network shapes for Monte Carlo background processes. The x-axis
represents the output of the network, with events close to 1.0 categorized as signal-like
and events close to 0.0 being background-like.
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Figure 9.6: Neural network shapes for signal and data-based background processes.
The x-axis represents the output of the network, with events close to 1.0 categorized
as signal-like and events close to 0.0 being background-like.
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Figure 9.7: Figures for 1 loose tag in signal region. Error bands represent uncertainty
on QCD model plus mistag uncertainty. Upper left: Missing ET ; upper right: ∆R
Lead-2nd Jet; lower left: Dot product of track and calorimeter Met; lower right: Dijet
Mass.
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Figure 9.8: Figures for tight SecVtx + Jet Probability events in signal region. Error
bands represent uncertainty on QCD model plus symmeterized JES uncertainty on
Monte Carl backgrounds. Upper left: Missing ET ; upper right: ∆R Lead-2nd Jet;
lower left: Dot product of track and calorimeter Met; lower right: Dijet Mass.
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Figure 9.9: Figures for double tight SecVtx events in signal region. Error bands
represent uncertainty on QCD model plus symmeterized JES uncertainty on Monte
Carl backgrounds. Upper left: Missing ET ; upper right: ∆R Lead-2nd Jet; lower left:
Dot product of track and calorimeter Met; lower right: Dijet Mass.
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Figure 9.10: Neural Network Output in QCD control region. Black hashes represent
the total systematic and statistical error of background model. Left: Double tight
SecVtx tagged NN in QCD control region; Right: Tight SecVtx plus Jet Probability
NN in QCD control region ;
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Figure 9.11: Neural Network Output on log scale in QCD control region. Left:
Double tight SecVtx tagged NN in QCD control region; Right: Tight SecVtx plus
Jet Probability NN in QCD control region ;
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Figure 9.13: NN for single loose SecVtx tagged events in signal region.
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CHAPTER 10

SYSTEMATIC UNCERTAINTIES

Due to imperfections in modeling the various physics processes in this analysis,

we assign a number of systematic uncertainties. Our final discriminant is a one-

dimensional Artificial Neural Network output, for which have distributions for a range

of MC-based and data-based contributions to the data sample. The normalization

and shape are fluctuated for these distributions according to which contribution is

expected to be affected by the given systematic.

• In Monte Carlo based models, there is an uncertainty associated with the scale

of jet energies. To account for this, a shape systematic has been developed

by shifting the jet energy scale of all Monte Carl up and down by one sigma.

Higher ET jets will increase the jet multiplicity for a given ET cuts, resulting

in more 2-jet events, but also possibly rejecting events due to the 3-jet veto.

Also, since 6ET is corrected due to the difference between raw and corrected

jets, events may be promoted or demoted to the signal region due to the 6

ET cut. Since there are competing effects, propagation of both up and down

jet energy scale uncertainties into the Neural Network are performed separately,

without symmetrizing them. The acceptance change and shape change are both

considered in the systematic model of the Neural Network distribution.
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• An uncertainty in the calculated luminosity for Monte Carlo based processes

leads to a change in event yield of ± 6% [42].

• A 2% uncertainty in acceptance is assigned to the Parton Distribution Fuctions

(PDF’s) of Monte Carlo models. Since this is a relatively small uncertainty,

the systematics from existing studies which have evaluated the uncertainty on

backgrounds and signal [43] are used.

• A 40% uncertainty is assigned to the normalization of the W and Z plus heavy

flavor production backgrounds, as is used in other WH and ZH → llbb analyses.

Cross section errors of 10% are given to top production and 11.5% for diboson.

• Due to measured differences between Monte Carlo and data, b-tagging efficien-

cies are known to be too high in simulated data. Studies documented in ref. [44]

assign jets with Jet Probability < 5% a scale factor of 0.846±0.017(stat)±.066(syst)

while tight b-tagged jets are assigned a scale factor of 0.95±0.01(stat)±.04(syst) [45].

• The lepton veto, is assigned an uncertainty of 2%. Since this is a small uncer-

tainty, existing studies [46] are adequate to evaluate this systematic.

• Signal samples in which Initial State Radiation(ISR) and Final State Radia-

tion(FSR) are independently increased and decreased for a Higgs mass of 120

GeV/c2 were utilized to generate alternate Higgs signal models. The percent

change in signal efficiency is displayed in table 10.1 for each sample. The av-

erage of the two double tagged categories is used as an uncertainty for each

ISR/FSR systematic.
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ZH WH

JP+Vtx Tag 2 Vtx Tag Ave. JP+Vtx Tag 2 Vtx Tag Ave.

ISR Up -2.0% -1.4% -1.7% -2.3% +3.0% +0.4%

ISR Down +5.7% +4.2% +5.0% +5.9% +3.9% +4.9%

FSR Up +4.2% +4.0% +4.1% +0.7% +4.2% +2.5%

FSR Down +1.5% -0.8% +0.4% +1.1% +9.2% +5.2%

Table 10.1: Change in signal efficiency for initial and final state radiation systematic
samples.

• For the mistagged background estimate uncertainty, alternate NN shapes are

generated. Uncertainties to the mistag probability for each taggable jet in an

event are considered. These errors add and subtract to the nominal mistag

estimates, summing over all mistagged jets in all events in order to generate

alternate NN output shapes.

• Shape systematics are applied to the data-based QCD model using the proce-

dure outlined in sections 8.1.3 and 7.2.1.

• Uncertainties on the trigger efficiency vary as a function of 6ET . The errors

assigned to the trigger turn-on measured in ref. [30] are used to create up and

down shape systematics for all Monte Carlo based signal and background.
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CHAPTER 11

95% CONFIDENCE LEVEL LIMITS ON STANDARD
MODEL HIGGS PRODUCTION

A fit of the data is performed independently in the two b-tagged signal samples in

order to determine the QCD background contribution necessary for making compar-

isons in the signal region. The fitting procedure, allows each background to fluctuate

by its uncertainties in order to fit the data. The fit returns the fluctuation on each

background due to each systematic. Therefore, comparisons of input background ex-

pectations to the actual background contributions can be made. The initial estimate

of the QCD background is given by subtracting all known background contributions

from the data. This initial estimate is set to be unconstrained in the fit. Backgrounds

are allows to fluctuate according to all uncertainties. Fitting with the null hypothesis

or test hypothesis results in less than a 3% difference in the QCD fit value. In the

actual expected and observed limit calculations, the signal is of course allowed to

float. Table 11.1 shows expected background compared to fit backgrounds in the two

signal regions.

To extract the 95% confidence level limit, the mclimit[47] progam is used. Mclimit

uses the NN output as the figure of merit for fitting. The goal of this procedure

is to evaluate the compatibility of the data of interest with the background model
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SecVtx + JP expected observed 2 SecVtx expected observed

tt 8.1 ± 1.5 8.2 8.2 ± 1.3 8.1

single top 4.5 ± 0.8 4.6 4.7 ± 0.8 4.6

WZ/WW 1.4 ± 0.3 1.4 1.2 ± 0.2 1.2

ZZ 1.5 ± 0.4 1.5 1.7 ± 0.3 1.7

W+h.f. 8.8 ± 3.7 10.0 6.9 ± 2.9 6.5

Z+h.f. 8.8 ± 3.7 10.0 8.2 ± 3.4 7.8

Mistags 8.3 ± 2.4 8.3 1.5 ± 0.3 1.5

QCD fraction 20.7 ± 10.4 16.5 15.6 ± 8.6 16.3

Table 11.1: Fit for QCD fraction. This shows the input backgrounds and uncertain-
ties, and the fit values obtained from mclimit.

prediction for that dataset. More specifically, this method is a reliable figure of

merit for determining the expected sensitivity of an analysis to the signal given a

background hypothesis. Once this expectation has been determined, the data is fit

with the purpose of setting a 95% Confidence Level (CL) limit, or 2σ certainty that the

signal is not present in the data sample above some cross-section or expected signal

event yield. The procedure for determining the expected and observed sensitivity

begins with the bin-by-bin expectations, or predictions of all backgrounds in the

binned histogram chosen as the discriminant. In the case of this analysis, the neural

network output described and illustrated in section 9.2 provides the binned shapes

for the backgrounds, while the normalization priors and displayed in table [?]. All

background predictions in each bin are considered by

bbij =

nbsources
i
∑

k=1

F b
ikBijk (11.1)

with nbsources
i representing the number of individual background processes considered

in channel i, F b
ik representing the floating scale factor on background k in channel i
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and Bijk being the shape of background k, meaning the relative normalization in each

bin j for channel i.

To compute the probability of observing a collected dataset dij, a fit is performed

which maximizes the Poisson probability that it is observed given the background

hypothesis. The function to be minimized for channel i is

Lb = −ln





nbins
i
∏

j=1

e−bb
ij (bbij)

dij

dij

·
n

bsources
i
∏

k=1

1√
2πσik

e

−(Fb
ik

−1)2

2σb
ik

2



 (11.2)

with σb
ik representing the systematic uncertainty on the normalization of of back-

ground k in channel. The minimization procedure is performed by the MINUIT [48]

program.

An alternate hypothesis for the data can be built by considering both signal and

background. The fitting function in this case will also include bin-by-bin contributions

from a signal.

Ls+b = −ln





nbins
i
∏

j=1

e−(sij+bb
ij (sij + bsij)

dij

dij

·
n

bsources
i
∏
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1√
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ik
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2σb
ik
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 (11.3)

The background in terms of the floating parameters are given by

bsij =

nbsources
i
∑

k=1

F s
ikBijk (11.4)

for the signal hypothesis. The signal rate may be allowed to float in fits of the sig-

nal+background hypothesis. A likelihood ratio can be constructed as a test statistic,

such that

Q =
P (data|Hs+b)

P (data|Hb)
(11.5)

where Hb is the null hypothesis and Hs+b contains some new physics. The mini-

mization of the χ2 function

−2lnQ = χ2(data|Hs+b) − χ2(data|Hb) = ∆χ2 (11.6)
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must be done separately for both hypotheses. The confidence level for excluding

the signal+background hypothesis is then given by

CLH1 = PH1(Q ≤ Qobs) (11.7)

where CLH1 = 0.05 would correspond to 95% confidence that a signal is not

present in the given data sample above the predicted cross-section or expected rate.

The NN output for the tight SecVtx plus Jet Probability and the double tight

SecVtx tagging categories are shown in Figures 11.1 and 11.2 respectively. The two

tagging classes are treated as independent samples in mclimit, however, they have

correlated systematic errors. The uncertainties for both normalization and shape

systematics (see Section 10) are handled by mclimit. We run mclimit in the mass

range from 110-150 GeV/c2 . Table 11 shows the a priori 95% CL limits along with

the ±1σ and ±2σ range of limits. These are presented as a ratio of the limit divided

by the Standard Model cross section. The observed limit with the CDF data sample

is shown in the final column of the table.
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Tight SecVtx + Jet Probablility b-tagged
Higgs Boson a priori limits
Mass (GeV/c2) −2σ −1σ median +1σ +2σ Obs
110 6.6 9.0 12.8 18.6 26.2 20.9
115 7.4 10.0 14.3 21.0 30.3 18.8
120 8.7 11.8 16.7 24.5 35.2 21.8
130 13.2 18.0 25.6 37.5 53.7 23.9
140 23.3 31.0 44.2 64.8 90.1 38.9
150 58.4 77.4 109.2 157.4 222.1 79.6

Double Tight SecVtx b-tagged
Higgs Boson a priori limits
Mass (GeV/c2) −2σ −1σ median +1σ +2σ Obs
110 4.7 6.3 9.0 13.0 18.0 8.6
115 5.2 7.1 10.2 14.9 20.9 8.1
120 6.3 8.6 12.3 18.1 25.5 9.8
130 10.0 13.3 18.9 27.5 39.3 18.3
140 16.2 22.2 31.4 45.6 64.1 28.7
150 43.4 58.5 80.9 118.7 167.3 70.2

Combined Tagging Samples
Higgs Boson a priori limits
Mass (GeV/c2) −2σ −1σ median +1σ +2σ Obs
110 3.7 5.2 7.4 10.7 15.1 9.6
115 4.3 5.8 8.3 12.1 17.0 8.0
120 5.1 7.0 9.9 14.4 20.6 9.5
130 7.8 10.7 15.3 21.9 30.6 12.8
140 13.0 17.8 25.1 35.9 49.9 20.0
150 32.8 44.5 63.3 91.3 129.0 44.3

Table 11.2: The 95% CL limits as calculated by mcLimit. The numerical values give
the ratio of the limit divided by the Standard Model prediction. Systematic errors
are included in the calculation. The right-hand column gives the observed limit with
CDF’s 1.7 fb−1 data sample.
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Figure 11.1: The N.N.D. output for Tight SecVtx plus Jet Probability tagged events.

)2Neural Network Output (115 GeV/c
0 0.2 0.4 0.6 0.8 10

5

10

15

20

25

)2Neural Network Output (115 GeV/c
0 0.2 0.4 0.6 0.8 10

5

10

15

20

25

Double Vertex Tag (Signal Region)
)-1CDF Run II Preliminary (1.7 fb

Ttbar
W+h.f.
Z+h.f
Single Top
WZ/WW
ZZ
Mistags
QCD
Bckgnd Err
VH*8 (115 GeV)
Data

Figure 11.2: The N.N.D. output for double Tight SecVtx tagged events.
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CHAPTER 12

CONCLUSION

The search for a Standard Model Higgs boson at the Tevatron has made immense

progress since the first collisions of Run II took place. Large amounts of effort have

been aimed at increasing the acceptance of Higgs signal events and developing in-

novative new techniques to reject background. This analysis has introduced a new

track-based discriminant for rejecting the large multi-jet QCD background, which

provides a means to loosen selection criteria and increase the expected Higgs yield

without being overwhelmed by increased background rates. The development and

implemtation of a neural network discriminant provides additional separation for not

only the QCD background, but for top and electroweak processes as well. These ele-

ments are crucial in a search for the Higgs, as the signal rate is extremely small with

large amounts of background. Additionally, techniques to derive multi-jet QCD mod-

els directly from CDF data have been developed to circumvent the immense difficulty

of producing large QCD Monte Carlo datasets. The data-based approach provides

an accurate desciption of heavy flavor QCD processes, and the statistical power of

this technique only increases as more data is accumulated. Using these new analysis

techniques have provided a significant boost in sensitivty, yielding the current CDF
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limit on Higgs production in this channel as 8.0 × SM with an expected value of

8.3 × SM for a 115 GeV/c2 Higgs boson.

While this channel alone has a large potential for the observation of an excess

of events consistent with a Higgs signal once more data has been included, the true

power of Higgs analysis at the Tevatron is only realized when the results of all analysis

efforts are combined together. CDF and DØ have combined the results from the

recent analyses, with data ranging from 1 to 2 fb−1 depending on on the channel and

experiment. The results of this combination are displayed in Figure 12.1[49].
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Figure 12.1: The combined sensitivity to a Standard Model Higgs for both the CDF
and DØ collaborations. The sensivity is displayed as the expected and observed
limits over the Standard Model expectation as a function of Higgs mass.
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Results from the Tevatron are inching very close to excluding a Higgs boson in

the mass region of 160 GeV/c2 at the 95% confidence level. Improvements to the

H → WW analysis and the addition of new data should make this possible within

a year from now (June 2008). Many improvements to the lower mass Higgs analyses

are underway as well, which promise to push the current expected limit of 3.3× SM

for a Higgs mass of 115 GeV/c2 even closer to the Standard Model expectation.

Improvements to secondary vertex tagging, increased signal acceptance and more

advanced mutlivariate discriminants are in the works, making the observation of the

Higgs boson at the Tevatron a real possibility.
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APPENDIX A

ADDITIONAL DISTRIBUTIONS

In addition to checks of input variables to the neural network (shown in the pre-

vious sections), we have also studied a variety of other kinematic and topological

distributions. These are shown for both control regions, and the three tagging cate-

gories of the signal region.
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Figure A.1: Figures for 1 tight SECVTX + JP tags in region where Missing ET is
aligned with second jet. Upper left: ∆φLeadJet−MET ; upper right: ∆φSecondJet−
MET ; lower left: Lead Jet η; lower right: Second Jet η.
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Figure A.2: Figures for tight + JP tags in region where Missing ET is aligned with
second jet. Upper left: Lead Jet Et; upper right: Second Jet Et; lower left: Fox
Wolfram Moment 1; lower right: Fox Wolfram Moment 2.
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Figure A.3: Figures for 2 tight SECVTX tags in region where Missing ET is aligned
with second jet. Upper left: ∆φLeadJet−MET ; upper right: ∆φSecondJet−MET ;
lower left: Lead Jet η; lower right: Second Jet η.
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Figure A.4: Figures for 2 tight SECVTX tags in region where Missing ET is aligned
with second jet. Upper left: Lead Jet Et; upper right: Second Jet Et.; lower left: Fox
Wolfram Moment 1; lower right: Fox Wolfram Moment 2.

129



 Met-Lead Jetφ∆
1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.20

10

20

30

40

50

60

 Met-Lead Jetφ∆
1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.20

10

20

30

40

50

60

Single Vertex Tag (EWK/Top Sample)

)-1CDF Run II Preliminary (1.7 fb

W+h.f.
Mistags
Ttbar
Single Top
Diboson

ττ→Z_h.f./Z
Bckgnd Err
Data

 Met-2nd Jetφ∆
0 0.5 1 1.5 2 2.5 30

2
4
6
8

10
12
14
16
18
20
22

 Met-2nd Jetφ∆
0 0.5 1 1.5 2 2.5 30

2
4
6
8

10
12
14
16
18
20
22

Single Vertex Tag (EWK/Top Sample)

)-1CDF Run II Preliminary (1.7 fb

W+h.f.
Mistags
Ttbar
Single Top
Diboson

ττ→Z_h.f./Z
Bckgnd Err
Data

ηLead Jet 
-2 -1.5 -1 -0.5 0 0.5 1 1.5 20

5

10

15

20

25

30

ηLead Jet 
-2 -1.5 -1 -0.5 0 0.5 1 1.5 20

5

10

15

20

25

30

Single Vertex Tag (EWK/Top Sample)

)-1CDF Run II Preliminary (1.7 fb W+h.f.
Mistags
Ttbar
Single Top
Diboson

ττ→Z_h.f./Z
Bckgnd Err
Data

ηSecond Jet 
-2 -1.5 -1 -0.5 0 0.5 1 1.5 20

2
4
6
8

10
12
14
16
18
20
22

ηSecond Jet 
-2 -1.5 -1 -0.5 0 0.5 1 1.5 20

2
4
6
8

10
12
14
16
18
20
22

Single Vertex Tag (EWK/Top Sample)

)-1CDF Run II Preliminary (1.7 fb W+h.f.
Mistags
Ttbar
Single Top
Diboson

ττ→Z_h.f./Z
Bckgnd Err
Data

Figure A.5: Figures for single tag muon data. Upper left: ∆φ(MET, jet1); upper
right: ∆φ(MET, jet2); lower left: Lead Jet eta; lower right: Second Jet eta.
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Figure A.6: Figures for single tag muon data. Upper left: Lead Jet Et; upper right:
Second Jet Et; lower left: Fox Wolfram Moment 1; lower right: Fox Wolfram Moment
2;
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Figure A.7: Figures for 1 loose tag in signal region. Upper left: ∆φLeadJet−MET ;
upper right: ∆φSecondJet −MET ; lower left: Lead Jet η; lower right: Second Jet
η.
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Figure A.8: Figures for 1 loose tag in signal region. Upper left: Lead Jet Et; upper
right: Second Jet Et; lower left: Fox Wolfram Moment 1; lower right: Fox Wolfram
Moment 2;
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Figure A.9: Figures for 1 tight SECVTX plus Jet Probability tag in signal region.
Upper left: ∆φLeadJet−MET ; upper right: ∆φSecondJet−MET ; lower left: Lead
Jet η; lower right: Second Jet η.

134



Lead Jet Et (GeV)
40 60 80 100 120 140 160 180 200 220 2400

5

10

15

20

25

30

Lead Jet Et (GeV)
40 60 80 100 120 140 160 180 200 220 2400

5

10

15

20

25

30

Vertex + Probability Tag (Signal Region)

)-1CDF Run II Preliminary (1.7 fb
Ttbar
W+h.f.
Z+h.f
Single Top
WZ/WW
ZZ
Mistags
QCD
Bckgnd Err
VH*8 (115 GeV)
Data

Second Jet Et (GeV)
40 60 80 100 120 140 1600

10

20

30

40

50

Second Jet Et (GeV)
40 60 80 100 120 140 1600

10

20

30

40

50

Vertex + Probability Tag (Signal Region)

)-1CDF Run II Preliminary (1.7 fb
Ttbar
W+h.f.
Z+h.f
Single Top
WZ/WW
ZZ
Mistags
QCD
Bckgnd Err
VH*8 (115 GeV)
Data

Fox Wolfram Moment 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

2

4

6

8

10

12

14

Fox Wolfram Moment 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

2

4

6

8

10

12

14

Vertex + Probability Tag (Signal Region)

)-1CDF Run II Preliminary (1.7 fb
Ttbar
W+h.f.
Z+h.f
Single Top
WZ/WW
ZZ
Mistags
QCD
Bckgnd Err
VH*8 (115 GeV)
Data

Fox Wolfram Moment 2
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

2

4

6

8

10

12

14

16

18

Fox Wolfram Moment 2
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

2

4

6

8

10

12

14

16

18
Vertex + Probability Tag (Signal Region)

)-1CDF Run II Preliminary (1.7 fb
Ttbar
W+h.f.
Z+h.f
Single Top
WZ/WW
ZZ
Mistags
QCD
Bckgnd Err
VH*8 (115 GeV)
Data

Figure A.10: Figures for 1 tight SECVTX tag + Jet Probability tag in signal region.
Upper left: Lead Jet Et; upper right: Second Jet Et; lower left: Fox Wolfram Moment
1; lower right: Fox Wolfram Moment 2;

135



 Met-Lead Jetφ∆
1 1.5 2 2.5 30

2
4
6
8

10
12
14
16
18
20
22
24

 Met-Lead Jetφ∆
1 1.5 2 2.5 30

2
4
6
8

10
12
14
16
18
20
22
24

Double Vertex Tag  (Signal Region)
)-1CDF Run II Preliminary (1.7 fb

Ttbar
W+h.f.
Z+h.f
Single Top
WZ/WW
ZZ
Mistags
QCD
Bckgnd Err
VH*8 (115 GeV)
Data

 Met-2nd Jetφ∆
1 1.5 2 2.5 30

2

4

6

8

10

 Met-2nd Jetφ∆
1 1.5 2 2.5 30

2

4

6

8

10

Double Vertex Tag  (Signal Region)
)-1CDF Run II Preliminary (1.7 fb

Ttbar
W+h.f.
Z+h.f
Single Top
WZ/WW
ZZ
Mistags
QCD
Bckgnd Err
VH*8 (115 GeV)
Data

η Lead Jet 
-2 -1.5 -1 -0.5 0 0.5 1 1.5 20

2

4

6

8

10

12

14

η Lead Jet 
-2 -1.5 -1 -0.5 0 0.5 1 1.5 20

2

4

6

8

10

12

14

Double Vertex Tag  (Signal Region)
)-1CDF Run II Preliminary (1.7 fb

Ttbar
W+h.f.
Z+h.f
Single Top
WZ/WW
ZZ
Mistags
QCD
Bckgnd Err
VH*8 (115 GeV)
Data

ηSecond Jet 
-2 -1.5 -1 -0.5 0 0.5 1 1.5 20

2

4

6

8

10

ηSecond Jet 
-2 -1.5 -1 -0.5 0 0.5 1 1.5 20

2

4

6

8

10

Double Vertex Tag  (Signal Region)
)-1CDF Run II Preliminary (1.7 fb

Ttbar
W+h.f.
Z+h.f
Single Top
WZ/WW
ZZ
Mistags
QCD
Bckgnd Err
VH*8 (115 GeV)
Data

Figure A.11: Figures for 2 tight SECVTX in signal region. Upper left: ∆φLeadJet−
MET ; upper right: ∆φSecondJet−MET ; lower left: Lead Jet η; lower right: Second
Jet η.
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Figure A.12: Figures for 2 tight SECVTX tags in signal region. Upper left: Lead Jet
Et; upper right: Second Jet Et; lower left: Fox Wolfram Moment 1; lower right: Fox
Wolfram Moment 2.
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Figure A.13: Additional Neural Network Discriminants. Upper left: 110 GeV/c2 2
tight SECVTX tags; upper right: 110 GeV/c2 Tight SECVTX + Jet Probability
tag; lower left: 120 GeV/c2 2 tight SECVTX tags; lower right: 120 GeV/c2 Tight
SECVTX + Jet Probability tag.
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Figure A.14: Additional Neural Network Discriminants. Upper left: 130 GeV/c2 2
tight SECVTX tags; upper right: 130 GeV/c2 Tight SECVTX + Jet Probability
tag; lower left: 140 GeV/c2 2 tight SECVTX tags; lower right: 140 GeV/c2 Tight
SECVTX + Jet Probability tag.
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Figure A.15: Additional Neural Network Discriminants. Left: 150 GeV/c2 2 tight
SECVTX tags; Right: 150 GeV/c2 Tight SECVTX + Jet Probability tag.
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APPENDIX B

MOST SIGNAL-LIKE HIGGS EVENTS

A list of the most signal-like NN events are displayed in Table B.1. The most

signal-like event has a NN output value of 0.886698. The breakdown of events in this

bin are shown in Tables B.2 and B.3. Our most signal-like tight secvtx + jetprob

event has a NN output of 0.887 and its bin (14) has a S:B of 1:9. The most signal-like

tight secvtx + tight sectvx event has a NN output of 0.867 and its bin (13) has a

S:B of 1:10. Various event displays of the most signal-like Higgs event are shown in

figures B.1-B.5.

(Run, Event) Type NN Out Mjj (GeV) Met (GeV) TrackMet NNOut

(184957, 962706) T+T 0.8004 83.517 144.62 1.01028
(177624, 409702) T+JP 0.8363 90.134 75.466 1.06492
(191727, 6339054) T+JP 0.8192 92.815 105.82 1.05492
(200536, 4538872) T+JP 0.8866 103.25 87.932 1.14904
(202399, 1194677) T+T 0.7726 95.182 55.936 1.02202
(222250, 2474844) T+T 0.8672 100.57 85.535 1.04985
(230782, 2230670) T+JP 0.8099 102.17 54.719 1.0321
(236255, 25082019) T+JP 0.8714 99.425 127.92 1.04084

Table B.1: Most signal-like events with NN output > 0.75.
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Background Expected events Percentage

Z+h.f 0.214 25.8
TTBAR 0.186 22.5
W+h.f 0.181 21.8
single-top 0.064 7.7
WZ/WW 0.027 3.2
ZZ 0.054 6.5
Mistags 0.052 6.3
QCD 0.051 6.1

Total 0.829 100

ZH 0.070 74.8
WH 0.024 25.2
total VH 0.094 100

Table B.2: Background composition of bin (bin 14) where we have our most signal-like
event in tight+jet prob sample in data (run=200536, event=4538872).

Background Expected events Percentage

Z+h.f 0.704 27.0
TTBAR 0.602 23.1
W+h.f 0.428 16.4
single-top 0.288 11.0
ZZ 0.262 10.0
QCD 0.182 6.97
WZ/WW 0.089 3.41
Mistags 0.053 2.04

Total 2.61 100

ZH 0.171 66.8
WH 0.085 33.2
total VH 0.256 100

Table B.3: Background composition of bin containing most signal-like event in
Vtx+Vtx output distribution (bin 13).
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DATA Event : 4538872  Run : 200536 | Prescaled: 4,6,13,26,27,29,33,35,46,57,62
Unprescaled: 4,6,13,19,23,26,27,29,32,33,34,35,37,46,53,55,57,60,62

Missing Et
Et=76.0 phi=0.1
Jet Collection:
JetCluModule

Particles: first 5
pdg    pt    phi   eta
 13    13.7  3.0  0.4
 13    12.6  3.1 -0.1
 13    10.9  5.0 -0.6

Jets(R = 0.7): first 5
Em/Tot  et    phi   eta
 0.4    83.7  2.9  0.1
 0.1    22.9  5.0 -0.7

Figure B.1: Lego display of most signal-like event.
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Et =  59.10 GeV

DATA Event : 4538872  Run : 200536 | Prescaled: 4,6,13,26,27,29,33,35,46,57,62
Unprescaled: 4,6,13,19,23,26,27,29,32,33,34,35,37,46,53,55,57,60,62

Missing Et
Et=76.0 phi=0.1

List of Tracks
Id    pt    phi   eta

Cdf Tracks: first 5
221   -13.7  3.0  0.4
222    13.3  2.9  0.4
247   -12.6  3.1 -0.1
223   -11.4 -1.3 -0.6
224    10.9 -1.3 -0.6

To select track type
SelectCdfTrack(Id)

Svt Tracks: first 5
  2   -90.4  3.0
  4    22.6  2.9
  6   -12.1  4.9
  3   -11.3  3.1
  8    11.3  5.0

To select track type
SelectSvtTrack(Id)

Particles: first 5
pdg    pt    phi  eta
 13    13.7  3.0  0.4
 13    12.6  3.1 -0.1
 13    10.9  5.0 -0.6
To list all particles
ListCdfParticles()

Jets(R=0.7): first 5
Em/Tot et    phi  eta
0.4    83.7  2.9  0.1
0.1    22.9  5.0 -0.7
To list all jets
ListCdfJets()

Figure B.2: COT display of most signal-like event.
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DATA Event : 4538872  Run : 200536 | Prescaled: 4,6,13,26,27,29,33,35,46,57,62
Unprescaled: 4,6,13,19,23,26,27,29,32,33,34,35,37,46,53,55,57,60,62

Figure B.3: RZ display of most signal-like event.
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DATA Event : 4538872  Run : 200536 | Prescaled: 4,6,13,26,27,29,33,35,46,57,62
Unprescaled: 4,6,13,19,23,26,27,29,32,33,34,35,37,46,53,55,57,60,62

Figure B.4: Calorimeter display of most signal-like event.
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Level 1 Level 2 Level 3

   4 L1_JET10_v-1
   6 L1_JET10__SUMET90_v-1
  13 L1_TWO_TRK2_DPHI90__CMU1.5_PT1.5_v-2
  19 L1_JET5_PS50_v-1
  23 L1_MB_XING_PS1M_v-2
  26 L1_TRK5.5_TRK2.5__CJET5_v-2
  27 L1_TWO_TRK2__TWO_CJET5_v-3
  29 L1_MET15__TWO_TRK2_v-2
  32 L1_TRK4_PS0_v-2
  33 L1_TWO_TRK2.5_OPPQ_DPHI135_SUMPT6.5_PS2_v-1
  34 L1_TRK10_LUMI_0_40_v-1
  35 L1_TWO_TRK10_DPHI20_DPS_v-1
  37 L1_TWO_TRK2_PS200_v-4
  46 L1_MET25_v-1
  53 L1_MB_CLC_PS10K_v-2
  55 L1_TOF_14_MIP__CLC_PS10K_v-1
  57 L1_TWO_TRK6_DPHI30__TWO_CJET5_v-2
  60 L1_TWO_TRK2_DPHI90_UPS_v-1
  62 L1_TWO_TRK2_OPPQ_DPHI135_SUMPT5.5_FPS_v-1

   9 L2_BJET15_D120_v-5
  10 L2_B_CHARM_HIGHPT_v-4
  11 L2_B_CHARM_L1_FPS_v-1
  12 L2_B_CHARM_LOWPT_CMU1.5_PT1.5_90DPHI180_v-1
  30 L2_CJET10_JET10_L1_MET25_v-4
  63 L2_MET35_v-1
  93 L2_TAU10_PT10__MET20_v-6
 109 L2_TWO_JET15_ETA1.5__TWO_TRK2_D100_DPS_v-6
 113 L2_TWO_TRK10_D0_DPHI20_L1_DPS_v-1
 114 L2_TWO_TRK2_D100__MET15_DPS_v-5
 117 L2_Z_BB_DPS_v-4

   2 B_CHARM_HIGHPT_L1_PS2_v1
   3 B_CHARM_L1_FPS_v2
   4 B_CHARM_LOWPT_CMU_v1
  69 HIGH_PT_BJET_v14
  70 HIGH_PT_BJET_LOOSE_DPS_v7
  91 MET35__CJET__JET_v4
  92 MET45_v5
  93 MET_BJET_DPS_v6
 151 TAU_MET_v9
 166 Z_BB_L2_DPS_v4

Blue - prescaled, Black - unprescaled

DATA Event : 4538872  Run : 200536 | Prescaled: 4,6,13,26,27,29,33,35,46,57,62
Unprescaled: 4,6,13,19,23,26,27,29,32,33,34,35,37,46,53,55,57,60,62

Figure B.5: Trigger display of most signal-like event.
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