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Deutsche Zusammenfassung

”
Die Technik von heute ist das Brot von morgen -
die Wissenschaft von heute ist die Technik von morgen.“

Richard von Weizsäcker

Die Teilchenphysik ist heutzutage eine Wissenschaft, die in großem Maße Elemente aus ver-
schiedenen Fachrichtungen, wie der Mathematik und der Informatik, nutzt, um neue Er-
kenntnisse über den Ursprung des Universums, seiner Bestandteile und die Interaktion dieser
Bestandteile zu gewinnen. Aus einer Vielzahl an Experimenten weiß man, dass die Materie
und auch die Antimaterie im Universum aus Elementarteilchen, den Quarks und den Lepto-
nen, aufgebaut ist. Die Quarks können jedoch nicht als freie Teilchen existieren und kommen
daher nur als gebundene Zustände, den Hadronen, in der Natur vor. Es gibt zwei Arten von
Hadronen, die aus drei Quarks bestehenden Baryonen und die Mesonen, die aus einem Quark
und einem Antiquark aufgebaut sind.

Eine besondere Rolle spielen hierbei die neutralen Mesonen K0, D0, B0 und Bs, da die-
se in ihre Antiteilchen oszillieren können. Die Eigenschaften der K0- und B0-Oszillationen
wurden im Laufe der letzten Jahre an vielen Experimenten, vor allem an den B-Fabriken
BABAR und BELLE, mit großer Genauigkeit bestimmt [1–3]. Bs-Oszillationen wurden auf
Grund ihrer hohen Oszillationsfrequenz jedoch erst im Jahr 2006 am Tevatron beobachtet.
Dort wurde am CDF II Experiment die zur Zeit präziseste Messung der Oszillationsfrequenz
des Bs Mesons vorgenommen :

∆ms = 17.77 ± 0.10 ± 0.07 ps−1 [4].

Die zeitaufgelöste Messung der Bs-Oszillationen ist der erste Schritt zur Bestimmung der mi-
schungsinduzierten CP-Verletzung. Diese entsteht durch Interferenzeffekte zwischen Zerfällen
von oszillierten und nichtoszillierten Bs-Mesonen in Endzustände, die CP-Eigenzustände sind.
Um die CP-Verletzung zu messen, benötigt man neben der Kenntnis der Oszillationsfrequenz
auch ein gutes Verständnis über die Leistungsfähigkeit des Algorithmus, der zur Bestimmung
des b Flavors zum Produktionszeitpunkt, im folgenden Tagging genannt, verwendet wird. Die
Leistungsfähigkeit, im Weiteren mit T abgekürzt, beschreibt die effektive Statistik, die einer
Analyse unter Verwendung des Tagging-Algorithmus zur Verfügung steht. Sie ist das Produkt
aus der Effizienz ǫ des Algorithmus und der vorhergesagten Dilution D, die ein Maß für die
Wahrscheinlichkeit einer richtigen Entscheidung des Algorithmus darstellt.

T = ǫD2 (1)

Der leistungsstärkste Algorithmus, der momentan am CDF II-Experiment verwendet wird,
ist der Same Side Kaon Tagging-Algorithmus. Er erreicht eine Leistungsfähigkeit von ca. 4%.
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Die Leistungsfähigkeit des Algorithmus wird im Allgemeinen mittels Monte Carlo Simula-
tionen abgeschätzt und muß auf echten Daten verifiziert und kalibriert werden.Im Rahmen
dieser Arbeit wurde eine Methode zur Kalibrierung neuer Tagging-Algorithmen mittels der
Bs-Oszillation entwickelt und erstmals auf Daten getestet. Um dies zu realisieren wurde zu-
erst eine komplette Oszillationsanalyse durchgeführt. Für die Bestimmung der Oszillations-
frequenz ∆ms mussten verschiedene Voraussetzungen erfüllt werden. Diese Voraussetzungen
können an Hand der Signifikanz des Bs-Oszillationssignals motiviert werden:

S =

√

ǫD2

2
e−

(∆ms·σcτ )2

2
NS√

NS +NB
(2)

Dabei stehen NS und NB für die Anzahl an Signal-, bzw. Untergrundereignissen der selek-
tierten Bs-Mesonen und σcτ ist die Auflösung der Lebensdauermessung.

Man benötigt für eine maximal signifikante Messung von ∆ms somit eine optimale Selektion
an Bs Mesonen, eine gute Auflösung der Lebensdauer und einen leistungsfähigen Tagging-
Algorithmus. Der erste Teil dieser Arbeit befasste sich mit der Optimierung der Selektion
exklusiv rekonstruierter Bs-Mesonen. Exklusiv heißt, der Zefallskanal des Bs-Mesons ist ein-
deutig bestimmt und alle Teilchen der Zerfallskette werden vollständig rekonstruiert. In dieser
Arbeit werden drei verschiedene Zerfallskanäle des Bs-Mesons untersucht:

- Bs → Dsπ und Ds → K∗K

- Bs → Ds3π und Ds → K∗K

- Bs → Ds3π und Ds → 3π

Des Weiteren wurden die Ergebnisse für die Optimierung der folgenden Zerfallskanäle, die
alle in der Karlsruher B-Physik Gruppe studiert wurden [5,6], in die Analyse integriert:

- Bs → Dsπ und Ds → φπ

- Bs → Dsπ und Ds → 3π

- Bs → Ds3π und Ds → φπ

Um die große Anzahl an Parametern und Funktionen, die für die Analyse dieser Kanäle und
die Oszillationsanalyse erforderlich sind, einfach handhaben zu können, wurde eine modulare
Programmstruktur entwickelt. Diese Programmstruktur ist nicht nur die Grundlage für diese
Analyse, sondern wird inzwischen auch in der B-Meson-Spektroskopie [7] und für die Bestim-
mung der Lebensdauerdifferenz ∆Γ im Bs-System eingesetzt.

Die Optimierung der Selektion von Bs-Mesonen wurde mit Hilfe von neuronalen Netzwerken
durchgeführt. Diese besitzen im Gegensatz zur herkömmlichen schnittbasierten Optimierung
den Vorteil einer komplexen Selektion im n-dimensionalen Phasenraum der Variablen und
berücksichtigten somit die Korrelationen der Variablen, welche für die Trennung von Signal
und Untergrund verwendet werden. Für die Auswertung der Leistungsfähigkeit der neurona-
len Netze wird die Signifikanz der Bs-Selektion NS√

NS+NB
durch Fits an die Massenverteilungen

der Zerfallskanäle bestimmt. In dieser Analyse wurden ungefähr 4600 Bs Signalereignisse aus
einem Datensatz mit einer integrierten Luminosität von ca. 1 fb−1 rekonstruiert.
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Dabei konnte die Signifikanz der Bs-Selektion je nach betrachtetem Zerfallskanal um 15-90%
im Vergleich zur schnittbasierten Methode gesteigert werden.

Die Lebensdauermessung des Bs-Mesons ist eine weitere notwendige Zutat zur Bestimmung
der Oszillationsfrequenz. Dazu wurde im Anschluß an die Optimierung derBs-Meson-Selektion
die Lebensdauer des Bs-Mesons, der Massenmittelwert und die Signalbreite des Bs-Mesons
mittels eines ungebinnten Maximum-Likelihood-Fits gemessen. Die Ergebnisse dieses Fits
stimmen im Rahmen der Unsicherheiten mit den Weltmittelwerten überein.

Die bei der Lebensdauermessung bestimmten Ergebnisse bilden die Grundlage für die ∆ms-
Messung. Diese wird ebenfalls mittels eines ungebinnten Maximum-Likelihood-Fits bestimmt.
Die zugehörige Likelihood Funktion kann wie folgt ausgedrückt werden :

L =
∏

i

(1− fb) ·
1

NS

(

1 + ξiDi cos(∆msti)

1 + |ξi|
· e−

ti
τ

)

⊗ G(ti − t′, σt,i) · ǫ(ti) · PS(mi)

+ fb · (1 + ξiDbg) · PB(ti) · PB(mi) (3)

Hier steht fb für den Anteil an Untergrundereignissen und NS ist die Normierung des Si-
gnalanteils. Die Größe ξ gibt für jedes Ereignis die Vorhersage an, ob das Bs-Meson oszilliert
hat oder nicht. Sie wird aus der Entscheidung des Tagging-Algorithmus und der Ladung des
Bs-Mesons zum Zerfallszeitpunkt bestimmt. Der Signalanteil der Likelihoodfunktion besteht
aus dem Oszillationsterm, der durch eine Faltung mit der gauß’schen Auflösungsfunktion der
Lebensdauermessung verschmiert ist, und der limitierten Akzeptanz, die durch die Effizi-
enzfunktion ǫ(t) beschrieben wird. Der Untergrundanteil der Likelihoodfunktion besteht aus
den Wahrscheinlichkeitsdichten der Massen- und Lebensdauerverteilungen und der Korrektur
auf mögliche Asymmetrien des Tagging-Algorithmus. Dabei ist Dbg die Untergrund-Dilution,
auch sie wird im Maximum-Likelihood Fit bestimmt. Für das Tagging wurde neben dem Same
Side Kaon Tagging-Algorithmus ein neuer auf neuronalen Netzwerken basierender Tagging-
Algorithmus im Maximum-Likelihood-Fit eingesetzt. Dieser Tagging-Algorithmus wurde in
der Karlsruher B-Physik Gruppe entwickelt und besitzt eine Effizienz von 100%, d.h. für je-
des Ereignis wird eine Tagging-Entscheidung geliefert.

Die Ergebnisse der ungebinnten Maximum-Likelihood-Fits für die Kombination der optimier-
ten Selektion der Bs-Mesonen aus den Zerfallskanälen Bs → Dsπ, Ds → φπ,K∗K, 3π sind

∆ms = 17.89+0.13
−0.14 ps

−1 für den Same Side Kaon Tagging-Algorithmus

∆ms = 17.86±0.12 ps−1 für den Karlsruhe Neuronalen Netzwerk Tagging-Algorithmus

Die Zerfallskanäle Bs → Ds3π, Ds → φπ,K∗K, 3π wurden für den kombinierten Fit nicht
berücksichtigt, da die Tagging-Information für den Karlsruhe Neuronalen Netzwerk Tagging-
Algorithmus auf den untersuchten Daten nicht vorhanden ist. Die hier präsentierten Ergebnis-
se für die Oszillationsfrequenz sind im Rahmen der statistischen Unsicherheiten kompatibel
mit der in [4] gemessenen Oszillationsfrequenz von ∆ms = 17.77 ± 0.10± 0.07 ps−1.
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Da im Rahmen dieser Analyse eine Asymmetrie im Zerfallskanal Bs → Ds, Ds → φπ für
Bs- und B̄s-Mesonen zum Zerfallszeitpunkt festgestellt wurde und die gemessenen Oszillati-
onsfrequenzen in diesem Kanal für die unterschiedlichen Tagging-Algorithmen um 0.8 ps−1

abweichen, wurden zwei unterschiedliche Szenarien für die anschließende Kalibrierung un-
tersucht. Das erste Szenario besteht aus der Kombination aller untersuchten Zerfallskanäle
Bs → Dsπ. Im zweiten Szenario wurde nur die Kombination der Zerfallskanäle Bs → Dsπ,
Ds → K∗K und Bs → Dsπ, Ds → 3π untersucht.

Zur Kalibrierung des Tagging-Algorithmus wird die Methode des Amplitudenscans verwendet.
Dazu führt man in den Oszillationsterm der Likelihood-Funktion eine zusätzliche Amplitude
A ein :

1 + ξiDi cos(∆msti)

1 + |ξi|
→ 1 + ξiADi cos(∆msti)

1 + |ξi|

Im Gegensatz zum normalen Amplitudenscan wird in dieser Arbeit die Amplitude nur für die
im ungebinnten Maximum-Likelihood Fit gemessene Oszillationsfrequenz bestimmt, anstatt
über viele Oszillationsfrequenzen zu scannen, Die Amplitude ist nun ein Maß für die wirkli-
che Leistungsfähigkeit des Tagging-Algorithmus. Sie skaliert die vorhergesagte Dilution. Die
wirkliche Leistungsfähigkeit des Tagging-Algorithmus ergibt sich zu :

T = ǫD2 = ǫ 1
n

∑n
i=1(ADi)

2

n ist die Anzahl der Ereignisse der Bs-Meson-Selektion.

Aus den gemessenen Amplituden konnten nun die kalibrierten Leistungsfähigkeiten für die
unterschiedlichen Szenarien bestimmt werden. Man erhält folgende Ergebnisse :

Szenario 1 : Bs → Dsπ und Ds → φπ,K∗K, 3π

T = 4.4 ± 3.0% für den Same Side Kaon Tagging-Algorithmus

T = 4.8 ± 3.1% für den Karlsruher Neuronalen Netzwerk Tagging-Algorithmus

Szenario 2 : Bs → Dsπ und Ds → K∗K, 3π

T = 5.7 ± 5.1% für den Same Side Kaon Tagging-Algorithmus

T = 7.5 ± 5.7% für den Karlsruher Neuronalen Netzwerk Tagging-Algorithmus

Die angegebenen Unsicherheiten sind nur statistischer Natur, da systematische Unsicherhei-
ten auf Grund der Dominanz der statistischen Unsicherheiten vernachlässigt werden können.
Die Ergebnisse für den Karlsruher Neuronalen Netzwerk Tagging-Algorithmus sind bereits
jetzt vielversprechend, und die Kalibration soll in Kürze auf einem Datensatz mit einer
integrierten Luminosität von ca. 2 fb−1 wiederholt werden. Außerdem werden die Bs →
Ds3π-Zerfallskanäle in die bisherige Analyse integriert, sobald die Tagging-Information für
den Karlsruher Neuronalen Netzwerk Tagging-Algorithmus für diese Kanäle auf den Daten
erhältlich ist.
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Des Weiteren muß das Problem der Asymmetrie im Zerfallskanal Bs → Ds, Ds → φπ ver-
standen werden, um die Kalibrierung der Tagging-Algorithmen weiter zu verbessern. Er-
reicht dann der Karlsruher Neuronale Netzwerk Tagging-Algorithmus seine vorhergesagte
Leistungsfähigkeit von 9%, bedeutet dies eine Verdopplung gegenüber der Leistungsfähigkeit
bisheriger Tagging-Algorithmen.

Der erste Test der Kalibrierung von Tagging-Algorithmen mittels Bs-Oszillationen zeigt, dass
die in dieser Arbeit entwickelte Methode funktioniert und in Zukunft für die Messung der
mischungsinduzierten CP-Verletzung verwendet werden kann.
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Introduction

The field of elementary particle physics is one of the cornerstones for comprehending the
basic principles the universe is based on. In elementary particle physics recent experiments
use gigantic accelerators and detectors to resolve distances as small as a billionth of the size
of an atom and to reproduce the events happening nanoseconds after the big bang. Our
current knowledge of the basic components of the universe and their interactions is described
by the standard model of particle physics. Matter and antimatter in our universe consist of
elementary particles, the quarks and the leptons. Quarks do not exist as free particles but
as bound quark states, called hadrons. There are two different kinds of hadrons, the baryons
consisting of three quarks and the mesons composed of a quark anti-quark pair. A special kind
of mesons are the neutral mesons K0, D0, B0 and Bs. They are the only mesons which are
able to oscillate into their own antiparticle and back. The oscillation frequency corresponds
to the mass difference of the two mass eigenstates of the particle. The mass eigenstates of the
meson resemble those of a system of two coupled pendula of the same length. The solution
where the pendula oscillate in phase corresponds to a light mass eigenstate and the solution
where the pendula oscillates with a phase difference of 180◦ corresponds to a heavy mass
eigenstate. Today the properties of the meson oscillation have been measured precisely in
the K0/K̄0 and B0/B̄0 system [1–3]. In 2006 Bs oscillations have first been observed at the
Tevatron. The CDF II experiment provides at present the best measurement of the oscillation
frequency ∆ms = 17.77 ± 0.10 ± 0.07 ps−1 [4]. And most recently the first evidence for D0-
D̄0 oscillations has been seen at the B factories at the BABAR [8] and BELLE [9] experiments.

The time-resolved measurement of the Bs oscillation is the starting point of many inter-
esting analyses. The next important effect one wants to study after the measurement of the
Bs oscillation is the mixing induced CP violation in the Bs/B̄s system. The mixing induced
CP violation has its origin in the interference of amplitudes of the mixed and unmixed decay
to final states common to Bs and B̄s. To measure the mixing induced CP violation one needs
a flavor tagged time dependent analysis. Therefore the flavor of the b quark at production
time is determined by a flavor tagging algorithm. The recent flavour tagging algorithm used
at the CDF II experiment has a tagging power of about four percent [10]. The tagging power
is the effective statistics corresponding to the number of events with a perfect tag. Many of
the current analyses are hindered by the low tagging power. Therefore a new flavor tagging
algorithm was developed in our physics group combining all information used in previous tag-
ging algorithms with the help of artificial neural networks. The new flavor tagging algorithm
has been tested on simulated Monte Carlo samples and a tagging power of about nine percent
has been estimated [11].
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The main goal of this thesis is to prepare the Bs mixing analysis for the calibration of the
tagging algorithms. Calibrating the tagging algorithm means the determination of the true
tagging power on data by measuring the mixing frequency and the corresponding amplitude
of the time dependent asymmetry at this frequency. It is the first time the calibration of
tagging algorithms is attempted in a Bs mixing analysis. Furthermore it is the first test to
estimate the potential of the new flavor tagging algorithm on data.

The structure of the thesis reflects the necessary course of action for the mixing analysis
and the successive calibration of the tagging algorithm. The first chapter gives a summary
of the theory of Bs oscillations. In the second chapter the accelerator complex at the Teva-
tron and the CDF II experiment are described. The third chapter points out the statistical
methods used throughout the thesis focusing on the maximum likelihood method and the
principles of artificial neural networks. The fourth chapter explains the acquisition of the
data and Monte Carlo samples and presents the fitter framework used for the mixing analy-
sis. In the fifth chapter the physics of flavor tagging, the tagging algorithms currently used
at the CDF II experiment and the new Karlsruhe neural network tagging algorithm are de-
scribed. The sixth chapter deals with the optimization of the exclusive selection of Bs mesons.
Hence six different decay channels of the Bs meson, namely the decays Bs → Ds(3)π with
Ds → φπ,K∗K, 3π, are studied. In order to provide an optimal selection of Bs mesons to
the final mixing fit, artificial neural networks are used instead of a cut based approach. Fur-
thermore the probability density functions used for the part of the final maximum likelihood
function concerning the mass space are introduced. The parameters for these functions are
then determined by binned mass fits. After the selection of the Bs meson candidates and the
mass fits, the description of the probability density function of the lifetime space is the next
necessary ingredient for the mixing analysis. The characterization of the lifetime space and
the measurement of the proper decay time of the Bs meson in the studied decay channels are
subject to chapter seven. Finally the ingredients needed for the mixing analysis as presented
in the previous chapters are put together in chapter eight. Thereupon the mixing frequency
∆ms is measured by performing an unbinned maximum likelihood fit. Afterwards the tagging
algorithms are calibrated at the measured mixing frequency. In chapter nine the results for
the mixing frequency and the calibrated tagging algorithms are summarized and an outlook
is given.



Chapter 1

Theoretical Overview

1.1 The Standard Model

The standard model of elementary particle physics [12–15] is up to now the best theory to
comprehend the properties of particles and their interactions. Its mathematical description
underlies the local symmetry SU(3)C × SU(2)L ×U(1)Y . The Lagrangian is invariant under
gauge transformations in this symmetry. In the standard model the interactions of particles
are mediated by the gauge bosons, spin-one particles. The particles with spin 1/2 are called
fermions. The physical gauge bosons can be expressed in terms of the gauge fields of the
symmetry groups :

SU(3)→ Gα=1..8
µ , SU(2)→ Wα=1..3

µ and U(1)→ Bµ� the gluon, which mediates the strong force :
Gα

µ, α = 1, ..., 8� the W boson, the charged gauge boson of the weak interaction :
W±

µ = 1√
2
(W 1

µ ± iW 2
µ)� the Z boson, the neutral gauge boson of the weak interaction :

Z0
µ = cos(θW )W 3

µ − sin(θW )Bµ� the photon, responsible for the electromagnetic interaction :
Aµ = sin(θW )W 3

µ + cos(θW )Bµ

with the weak mixing angle sin(θW ) = 0.23122(15) [16]

The fermions can be divided into quarks and leptons. The leptons only couple to the weak and
if charged to the electromagnetic force. The quarks however posses an additional quantum
number, the color charge and therefore participate in strong interactions. Tables 1.1 and 1.2
summarize basic properties of fermions and gauge bosons1 2.

1In this thesis, energy, momentum and mass are given in GeV. 1 GeV= 1.602176462(63) · 10−10 J. The
units kg m/s and kg for momentum and mass can be obtained by the division by c, respectively c2, where
c= 299792458 m/s is the speed of light.

2In the standard model the neutrino masses are set to zero. However various experiments show that their
masses are not zero [17–21] and therefore the standard model has to be extended [22].

13
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Quarks Leptons

flavor m [GeV] q [e] flavor m [MeV] q [e]

up u (1.5− 3.0) × 10−3 +2/3 electron e 0.51099892 ± (4× 10−8) -1
down d (3.0− 7.0) × 10−3 −1/3 el. neutrino νe < 4.6× 10−4 0

charm c 1.25± 0.09 +2/3 muon µ 105.658369 ± 0.000009 -1
strange s (95± 25)× 10−3 −1/3 muon neutrino νµ < 0.19 0

top t 174.2 ± 3.3 +2/3 tau τ 1776.99+0.29
−0.26 -1

bottom b 4.20± 0.07 −1/3 tau neutrino ντ < 18.2 0

Table 1.1: Overview of the properties of the elementary fermions [16]

Name m [GeV] q[e] Interaction

Photon γ 0 0 electromagnetic
W± 80.403 ± 0.029 ± 1 weak
Z0 91.1876 ± 0.0021 0 weak

Gluon 0 0 strong

Table 1.2: Summary of the properties of the gauge bosons [16]

In order to generate the mass of quarks, charged leptons and the gauge bosons without
loosing the local gauge invariance of the Lagrangian, one introduces the Higgs mechanism.
It is described by a scalar field φ with a non-vanishing vacuum expectation value in the
electroweak standard model. This field is realized by the Higgs boson and the mechanism
of spontaneous symmetry breaking then generates the masses of the particles mentioned
above [23].

1.2 The CKM Matrix

The different families of fermions are connected via the charged W± gauge bosons. This
charged current is the only mechanism in the Standard Model which allows for flavor changes
and can be written as [24] :

Jcc
µ =





ν̄e

ν̄µ

ν̄τ



 γµ
1− γ5

2





e
µ
τ



+
∑

r,g,b





ū
c̄
t̄



 γµ
1− γ5

2
VCKM ·





d
s
b





where VCKM is the 3× 3 transformation matrix between quark mass eigenstates and flavor
eigenstates, called Cabibbo-Kobayashi-Maskawa matrix. In its most general form it can ex-
pressed by [25,26] :

VCKM =





Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb





As the elements Vij of the CKM matrix are complex, they generate 18 free real parameters.
If there are only three quark families the CKM matrix is a general unitary matrix with the
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requirement VCKMVCKM
† = 1. This reduces the number of free parameters to 9.

Of the 9 parameters, 5 can be absorbed in one global phase and 4 relative phases between
the u,c,t and d,s,b quarks. Those phases are all subject to convention and have no physical
meaning. Thus the CKM matrix can be described by 4 real parameters, one phase parameter
and three rotation angles in flavor space. The standard parameterization, noted below, uses
phases that leave Vud and Vcd real [27] :

VCKM =





c13 s12c13 s13e
−iδ13

−s12c23 − c12s13s23eiδ13 c12c23 − s12s13s23eiδ13 c13s23
s12s23 − c12s13c23eiδ13 −c12s23 − s12s13c23eiδ13 c13c23





with cij = cos θij and sij = sin θij , where θij are the rotation angles and δ13 is the complex
phase. An angle of historical importance is θC = θ12, the Cabibbo angle, that describes the
mixing between the first two generations.

A more popular parameterization of the CKM matrix is the Wolfenstein parameterization,
which uses the parameters [28] :� λ = sin θC� η = sin θ13 sin δ13/Aλ

3� ρ = sin θ13 cos δ13/Aλ
3� A = sin θ23/λ

2

An expansion of λ up to the third order leads to the following description :

VCKM =







1− λ2

2 λ Aλ3(ρ− iη)
−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1






+O(λ4)

The unitarity of the CKM matrix requires the following conditions for the matrix elements
to be fulfilled :

3
∑

i=1

VijV
∗
ik = δjk =

3
∑

i=1

VjiV
∗
ki j=1..3, k=1..3

The most frequently used unitarity condition is the product of the first and third column of
the CKM matrix :

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 (1.1)

Dividing equation 1.1 by Aλ3 ≈ −VcdV
∗
cb and using the Wolfenstein approximation yields :

(ρ+ iη)− 1 + (1− ρ− iη) = 0

This corresponds to the graphical representation of the unitarity triangle displayed in figure
1.1. The coordinates of the corners of the triangle are (0, 0), (1, 0) and (ρ̄, η̄), with

ρ̄ = (1− λ2

2
)ρ , η̄ = (1− λ2

2
)η
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(ρ,η)

β

(1,0)(0,0)

α

γ

R b R t

Figure 1.1: Unitarity triangle in the commonly used
Wolfenstein representation

The sides of the triangle, apart the side along the real axis which is normalized to unity, are
specified by :

Rb =
∣

∣

∣

V
td

V ∗

tb

V
cd

V ∗

cb

∣

∣

∣
=

√

ρ̄2 + η̄2

Rt =
∣

∣

∣

V
ud

V ∗

ub

V
cd

V ∗

cb

∣

∣

∣ =
√

(1− ρ̄)2 + η̄2

The angles can be defined as [16] :

α = arg
(

− V
td

V ∗

tb

V
ud

V ∗

ub

)

, β = arg
(

−V
cd

V ∗

cb

V
td

V ∗

tb

)

, γ = arg
(

−V
ud

V ∗

ub

V
cd

V ∗

cb

)

Because the CKM matrix elements are fundamental parameters of the standard model, their
precise determination is an important task in the field of particle physics. This is achieved by
overconstraining the unitary triangle through independent experimental measurements of the
sides and angles. Using these measurements one is able to validate the standard model and
constrain the impact of physics beyond the standard model to flavor changing interactions. In
figure 1.2 the current status of the experimental constraints on the parameters of the unitarity
triangle is shown. The values for the Wolfenstein parameters and the CKM matrix elements,
derived by a global fit to the experimental data, are [29,30] :

VCKM =





0.97383+0.00024
−0.00023 0.2272+0.0010

−0.0010 (3.96+0.09
−0.09)× 10−3

0.2271+0.0010
−0.0010 0.97296+0.00024

−0.00024 (42.21+0.10
−0.80)× 10−3

(8.14+0.32
−0.64)× 10−3 (41.61+0.12

−0.78)× 10−3 0.999100+0.000034
−0.000004





λ = 0.2272 ± 0.0010 A = 0.818+0.007
−0.017

ρ̄ = 0.221+0.064
−0.028 η̄ = 0.340+0.017

−0.045
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Figure 1.2: Constraints on the parameters of the uni-
tarity triangle in the ρ̄-η̄ plane before the measure-
ment of ∆ms [16].

1.3 Meson Oscillations

Mesons consist of a colored quark and an antiquark of the corresponding anti-color, e.g. red
and anti-red. Therefore the meson is colorless. A special class of mesons are pairs of neutral
charge-conjugate mesons, which can oscillate into each other via flavor changing weak interac-
tion transitions. These are K0/K̄0(s̄d/sd̄), D0/D̄0(cū/c̄u), B0/B̄0(b̄d/bd̄) and B0

s/B̄
0
s (b̄s/bs̄).

The following section explains the oscillation phenomenology of the Bs in detail, but it will
also be valid as a general description for the other meson oscillations.

1.3.1 Oscillation Phenomenology

The non-relativistic Schrödinger equation for a charge-conjugate meson pair is :

i∂tψ = Hψ

with a general non-hermitian Hamiltonian [31]

H = M− i

2
Γ =

(

m11 − i
2Γ11 m12 − i

2Γ12

m∗
12 − i

2Γ∗
12 m22 − i

2Γ22

)

CPT invariance requires m11 = m22 = m and Γ11 = Γ22 = Γ.
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The indices 1 and 2 of the Hamiltonian represent the orthogonal and normalized base vectors :

|B0
s 〉 =

(

1
0

)

, |B̄0
s 〉 =

(

0
1

)

The solutions of the Schrödinger equation for meson pairs are the same as for the mechan-
ical analogon of two coupled pendula of the same length and correspond to a short-lived,
heavy eigenstate Bs,H and a long-lived, light eigenstate Bs,L. These mass eigenstates can be
expressed in terms of the flavor eigenstates by the equations

|Bs,L〉 = p|B0
s 〉+ q|B̄0

s 〉

|Bs,H〉 = p|B0
s 〉 − q|B̄0

s 〉

with the normalization |p|2 + |q|2 = 1 and the ratio ηm defined as :

ηm =
q

p
= −2

m∗
12 − i i

2Γ∗
12

mH −mL − i
2(ΓH − ΓL)

Introducing the dimensionless parameters x,y and the scaled time variable T

x =
mH −mL

Γ
=

∆m

Γ
, y =

ΓH − ΓL

2Γ
=

∆Γ

2Γ

Γ =
1

2
(ΓH + ΓL), T = Γt

the time evolution of an arbitrary initial state

|ψ(0)〉 = a|B0
s 〉+ ā|B̄0

s 〉

can be written as [32]

|ψ(t)〉 = e−imt−T/2
[

(a|B0
s 〉+ ā|B̄0

s 〉) cos
(

(x− iy)T
2

)

+i
( ā

ηm
|B0

s 〉+ aηm|B̄0
s 〉
)

sin
(

(x− iy)T
2

)

]

(1.2)

The experimental observable is the decay rate to a flavor specific final state X and X̄ at a
given time T. It can be obtained by multiplying |ψ(t)〉 with 〈X|H, respectively 〈X̄ |H and
then integrating the amplitudes over the phase space :

ṄB0
s→X(t) = N0

∫

dPS|〈X|H|ψ(t, ā = 0)〉|2 =
1

2
N0e

−T ΓX(cosh yT + cosxT ) (1.3)

ṄB0
s→X̄(t) = N0

∫

dPS|〈X̄ |H|ψ(t, ā = 0)〉|2 =
1

2
N0|ηm|2e−T ΓX(cosh yT − cos xT ) (1.4)

with the partial width for a non oscillating meson

ΓX =

∫

dPS|〈X|H|B0
s 〉|2 =

∫

dPS|〈X|H|B̄0
s 〉|2
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Using the equations above, the asymmetry, showing the difference of the numbers of mesons
and anti-mesons as a function of the scaling lifetime, can be expressed via

a(T ) =
ṄX→X − ṄX→X̄

ṄX→X + ṄX→X̄

∣

∣

∣

∣

∣

T

=
(1− |ηm|2) cosh yT + (1 + |ηm|2) cos xT

(1 + |ηm|2) cosh yT + (1− |ηm|2) cos xT
(1.5)

This equation is fundamental to the determination of the mixing frequency. The measurement
of the time-dependent asymmetry is used to extract ∆m and is explained in chapter 8 of this
thesis.

q̄

q

b̄

W+

t̄, c̄, ū

W−

t, c, u b

q̄

q

b̄ W−

t, c, u

W+

t̄, c̄, ū

b

Figure 1.3: Box diagrams contributing to the B0
q − B̄0

q mixing. The label q represents either
a d (B0) or a s (B0

s ) quark

1.3.2 Standard model predictions for B0
q oscillation

The Hamiltonian H can be divided into a strong, electromagnetic part H0 and a weak inter-
action perturbation Hw. In the Wigner-Weisskopf approximation [33] the leading term for
H12,21 is 〈B0

q |H|B̄0
q 〉, which corresponds to the box diagrams shown in 1.3. An approximate

evaluation of these diagrams using the Feynman rules yields to [34] :

m12 = − G2
F

12π2
eiφCP V 2

tbV
∗2
tq m

2
WmBq [f

2
Bq
Bq] · [S(m2

t /m
2
W ) · ηQCD] (1.6)

∆m = 2|m12| =
G2

F

6π2
|V ∗

tbVtq|2m2
WmBq [f

2
Bq
Bq] · [S(m2

t /m
2
W ) · ηQCD] (1.7)

∆Γ ≈ −m12 ·
3π

2S(m2
t /m

2
W )

m2
b

m2
W

[

1 +
8

3

m2
c

m2
b

VcbV
∗
cq

VtbV
∗
tq

+O
(

m4
c

m4
b

)

]

(1.8)

Here S(m2
t/m

2
W ) denotes the Inami-Lim function [35]

S(x) = x

[

1

4
+

9

4(1 − x) −
3

2(1− x)2 −
3x2 lnx

2(1 − x)3
]

ηQCD is a perturbative QCD correction to the Inami-Lim function. In a consistent renormal-
ization scheme the values are S ≈ 2.3 and ηQCD ≈ 0.55 [36]. fBq is the B decay constant
and Bq is the vacuum insertion correction. The largest theoretical uncertainty is introduced
by f2

Bq
Bq. At present the best result for this value is calculated from lattice gauge theory.
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The ratio ∆Γ/∆m can be estimated with the relation ∆m ·∆Γ = 4Re(m12Γ
∗
12) [32] and the

equations 1.7 and 1.8 to be
∆Γ

∆m
=

2y

x
≈ −3π

2

m2
b

m2
t

≈ 1

250

Expressing |V ∗
tbVtd| in the Wolfenstein parameterization leads to

|V ∗
tbVtd| =

√

λ6A2[(1− ρ̄)2 + η̄2] +O(λ10)

Inserting this in equation 1.7 shows that ∆md describes a circle around (1, 0) in the ρ̄ − η̄
plane. For a better constraint on the unitarity triangle, one can use the ratio

∆ms

∆md
=
mB0

s
f2

B0
s
B0

s

mB0f2
B0B0

∣

∣

∣

∣

Vts

Vtd

∣

∣

∣

∣

2

=
mB0

s

mB0

ξ2
∣

∣

∣

∣

Vts

Vtd

∣

∣

∣

∣

2

In this ratio the theoretical uncertainties nearly cancel out, leaving only contributions from
ξ2, which can be extracted from lattice QCD with a precision around 5% to a value of
ξ = 1.21+0.047

−0.035 [37]. With the recent measurement of ∆ms = 17.77 ± 0.10 ± 0.07 ps−1 [4] of
the CDF II collaboration and the world average values of ∆md = 0.507 ± 0.005 ps−1 [38],
m(Bd)/m(Bs) = 0.98390 [39], one obtains |Vts/Vtd| = 0.2060±0.0007(stat+sys)+0.0081

−0.0060(theory)
[4].

1.3.3 Status of oscillation measurements

Recently the current status of the measurements of meson oscillations have changed drasti-
cally, especially in the D and B meson system. The newest results come from the B factories,
BABAR and BELLE, which have seen first evidence for D0-D̄0 oscillations [8,9]. In table 1.3
the latest measurements of the parameters of the meson systems, respectively the theoretical
expectations if no measurements exists, are summarized.

The figures 1.4 to 1.7 display the normalized number of mesons (anti-mesons) and the time
dependent asymmetry plotted against the scaled time variable T. These figures clearly point
out the differences in the meson systems, e.g. the very fast oscillating B0

s -system or the very
slow oscillating D0-system, where the oscillation is hardly visible.

K0/K̄0 D0/D̄0 B0/B̄0 B0
s/B̄

0
s

τ [ps] 89.53 ± 0.05 0.4101 ± 0.0015 1.530 ± 0.009 1.466 ± 0.059
51140 ± 210

Γ[ps−1] 5.584 × 10−3 2.438 0.654 0.682
|y| 0.9984 0.0131 ± 0.0032 [9] < 0.01∗ [40] ≈ 0.1∗ [41]

∆m[ps−1] (5.292 ± 0.009) × 10−3 < 0.12 0.507 ± 0.005 17.77 ± 0.10 [4]
x 0.9477 < 0.05 0.7757 26.05

|ηm|2 0.99348 ± 0.00024 ≈ 1∗ [40] 1...1.002∗ [40] ≈ 1∗ [40]

Table 1.3: Current parameters of the four neutral oscillating meson pairs. Values are taken
from [16], unless specified. Standard model predictions are indicated with an asterisk.
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Figure 1.4: K0/K̄0 mixing. The number of K0 and K̄0 as function of T (left).
The asymmetry a = (NK0 − NK̄0)/(NK0 + NK̄0) (right). Values of x = 0.9477,
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Figure 1.5: D0/D̄0 mixing. The number of D0 and D̄0 as function of T (left). The
asymmetry a = (ND0 − ND̄0)/(ND0 + ND̄0) (right). These plots were generated
with a large x = 0.05, y = 0.013 and |ηm|2 = 1.
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parameters x = 0.7757, y = 0 and |ηm|2 = 1.
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Chapter 2

The CDF II Experiment

The Fermi National Accelerator Laboratory (Fermilab) is situated about 70 km west of
Chicago in Batavia/Illinois. It is host to the Tevatron, a proton-antiproton (pp̄) collider,
which operates at a center of mass energy of 1.96 TeV, currently the highest energy for pp̄
collisions. At the interaction regions of the proton and antiproton beams the two multipurpose
detectors DØ and CDF (Collider Detector at Fermilab) are located.

2.1 The Accelerator

2.1.1 The Accelerator Complex

To achieve the acceleration of protons and antiprotons to a beam energy of 980 GeV, a chain
of accelerators is used. The Fermilab accelerator complex is shown in figure 2.1 and consists
of the following parts [42] :� Cockcroft-Walton pre-accelerator :

In the Cockcroft-Walton pre-accelerator negatively charged hydrogen ions are produced
by surface ionization effects. Those ions are then accelerated to an energy of 750 keV
and injected into the linear accelerator. The device is shown in figure 2.2 .� LINear ACcelerator (LINAC) :

The LINAC is a 150 m long linear accelerator. It is made of cavities in which the
hydrogen ions are accelerated by oscillating radio frequency (RF) fields up to an energy
of 400 MeV. At the end of the LINAC the hydrogen ions are grouped into bunches
automatically because of the geometry of the RF fields. The hydrogen ions are then
transferred to the Booster. A picture of the LINAC is presented in figure 2.3 .� Booster :

The Booster is a circular accelerator with a radius of 75 m. At the entrance of the
booster the electrons of the hydrogen ions are stripped off while passing a carbon foil,
so that only bare protons remain. The protons are then accelerated to a kinetic energy
of 8 GeV. This is achieved by a sequence of kicks from RF cavities.

23
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Figure 2.1: Schematic view of the Fermilab accelerator chain.

Figure 2.2: The Cockcroft-Walton
accelerator. Figure 2.3: The LINAC.
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Figure 2.4: The Main Injector (light blue magnets at
the bottom) and the Recycler (green magnets on top).

In each revolution around the Booster the protons gain about 500 keV in kinetic energy.
Additional protons are injected to increase the intensity of the proton beam. Then the
beam is passed on to the Main Injector.� Main Injector :

The Main Injector, a 3 km circumference synchrotron is used for several different func-
tions. It accelerates the protons to an energy of 150 GeV. Secondly it provides protons
with an energy of 120 GeV for the antiproton production. In addition it receives the
antiprotons from the antiproton source and accelerates them to an energy of 150 GeV.
Subsequently it injects protons and antiprotons into the Tevatron. It also provides
particle beams to several fixed target and neutrino experiments. A part of the Main
Injector ring is displayed in figure 2.4 .� Antiproton Source :

To create antiprotons the 120 GeV proton beam from the main injector is directed
onto a nickel target. During the collision of the protons with the nickel atoms many
secondary particles are created, among those the antiprotons. The antiprotons are then
focused into a beam with a Lithium lens. Afterwards the antiprotons are filtered from
the other particles by sending the beam through a pulsed magnet. Because the proton
beam from the Main Injector is bunched, the antiprotons coming off the target are also
bunched and will have a large spread in energy.
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To reduce this energy spread and to debunch the antiproton beam, the Debuncher ac-
celerator uses different RF phases in the cavities. After the Debuncher the antiprotons
are piled up in the Accumulator Synchrotron. This is achieved by momentum stacking
successive pulses of antiprotons from the Debuncher over several hours or days. The
Accumulator Synchrotron uses both RF and stochastic cooling systems for this process.
If enough antiprotons are accumulated, they are directed to the Main Injector.� The Tevatron

The final stage of the accelerator chain is the Tevatron synchrotron. Its ring has a
radius of 1 km and consists of approximately 1000 superconducting magnets, each of
them operating at a temperature of 4.3 Kelvin and generating a magnetic field of 4.2
Tesla. During the operation of the Tevatron 36 bunches of protons and antiprotons
are simultaneously in the ring and are accelerated to the final center of mass energy of
1.96 TeV. Each bunch contains about 3×1011 protons respectively 9×1010 antiprotons.
After the beams reach their full energy, they are focused further and brought to collision
in interaction regions, where the two experiments, CDF II and DØ are located. Each
collision reduces the number of particles in the beam so that after a certain period of
time, called store, protons and antiprotons have to be reinjected from the Main Injector.
The duration of a store is usually about one day.� The Antiproton Recycler

The Antiproton Recycler was the latest addition to the accelerator chain in the year
2004. It was placed in the Main Injector ring and operates at a fixed energy of 8 GeV. It
functions as a post-Accumulator ring by receiving antiprotons from the Accumulator if
the stacking rate decreases. Thus it allows the Accumulator to operate at an optimum
antiproton intensity regime. Because it is built of permanent magnets, the recycler has
the advantage of surviving even a power glitch and thus keeping the stash of stored
antiprotons. Figure 2.4 shows a part of the Antiproton Recycler.
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2.1.2 Accelerator performance

The quantity in which one measures the performance of an accelerator is the luminosity. The
interaction probability of two particles with each other is described by the cross-section σint.
The interaction rate within the detector can be written as :

Ṅ = σintL

where L is the luminosity. The luminosity defines how the particles in the proton and anti-
proton bunches interact and can be expressed as follows [43] :

L = F (
σl

β∗
)
fNbNpNp̄

2π(σ2
p + σ2

p̄)

where f is the revolution frequency, Np and Np̄ are the number of protons, respectively anti-
protons, in the bunch, Nb is the number of bunches, σ2

p and σ2
p̄ are the standard deviations

of the beam size at the interaction point, F ( σl

β∗
) is a form factor, dependent on the bunch

length σl, and the beta function β∗ at the interaction point. In table 2.1 the values for the
parameters of the accelerator in Run II are listed. The performance of an experiment can be
determined by the integration of the luminosity over the time of a data taking period. To
estimate the number of events of a given process, one multiplies the integrated luminosity
with the cross section σ of this process :

N = σ ×
∫

L

Until the year 2007 a peak luminosity of about 2.8 × 1032cm−2s−1 has been achieved and
an integrated luminosity of about 2.5fb−1 has been delivered from the Tevatron to the CDF
II detector. The figures 2.5 and 2.6 show the development of the integrated and the peak
luminosity since the start of Run II in 2002.

Parameter Value for Run II

revolution frequency f [kHz] 47.713

number of protons per bunch Np ∼ 3× 1011

number of anti-protons per bunch Np̄ ∼ 9× 1010

number of bunches Nb 36

average beam size σ [µm] ∼ 30

bunch length σl [m] 0.37

bunch spacing [ns] 396

beta function β∗ 35

form factor F 0.7

Table 2.1: Accelerator parameters for the Tevatron Run II [43,44]
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Figure 2.5: CDF II integrated Luminosity delivered from the Tevatron (red)
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2.2 The CDF Detector

The CDF II Detector (Collider Detector at Fermilab) is a multipurpose collider detector [45].
It detects particles produced in the pp̄-collisions and measures their properties. A cutaway
view of the whole detector is displayed in figure 2.7. Within the solenoid the detector consists
of a tracking system and a time-of-flight detector (TOF) for particle identification. A detailed
view of the inner parts is shown in figure 2.8. Outside the solenoid, calorimeters and muon
chambers are situated. The superconducting solenoid operates at 1.4 Tesla and the direction
of its magnetic field is parallel to the beamline. The direction of the proton travelling along the
beamline determines the z axis of the CDF coordinate system. Because the CDF experiment
is left-right symmetric as well as cylindrically symmetric, one uses the azimuthal angle φ
around the beamline and the polar angle θ from the beamline. Typically the pseudorapidity
η is used instead of the polar angle θ :

η = − ln tan
θ

2

Figure 2.7: Cutaway view of the CDF II detector.
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Figure 2.8: Cutaway view of the inner part of the CDF II detector.
The acronyms are explained in the corresponding paragraphs of this
chapter.

2.2.1 Tracking System

The tracking system of the CDF II detector is composed of four parts, the Layer 00 (L00),
the Silicon Vertex Detector (SVXII), the Intermediate Silicon Layer (ISL) and the Central
Outer Tracker (COT). To illustrate the η coverage of the tracking system a view of the r-z
plane is shown in figure 2.9.� Layer 00 : It is a single-sided silicon microstrip detector glued directly to the beampipe.

The average radius is r = 1.6 cm, the length is about 80 cm and it has an η coverage
of |η| <= 4.0. Because of its closeness to the particle beam, it improves the B tagging
efficiency and the precision of track measurements, especially the impact parameter
resolution.� SVX II : The SVX II serves both to measure tracks with a high precision and to detect
secondary vertices at inner radii. It extends from a radius of r = 2.1 cm to r = 17.3
cm and is composed of three barrels with a length of 29 cm. These barrels cover a
pseudorapidity range up to |η| = 2. The barrels each consist of five layers, which are
divided into twelve wedges. All layers have axially aligned strips on one side to measure
the φ coordinate. The layers 0, 1 and 3 have 90-degree stereo strips on the other side
for a measurement of the z coordinate. The strips on layers 2 and 4 however use small-
angle stereo strips instead of 90-degree stereo strips. Those strips are tilted only by 1.2◦,
which allows for a combination of the stereo and z coordinates to reduce the ambiguities
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in the hit reconstruction. It ameliorates the resolution of the impact parameter and the
azimuthal angle φ of tracks. Thereby the decay vertex of long lived unstable particles
can be reconstructed with high spatial resolution.� ISL : The ISL has a length of 195 cm. It consists of one layer located in the central
region of the detector at r = 22 cm, and two layers in the forward/backward region at
r = 20 cm and r = 28 cm. The central layer covers |η| < 1 and the forward/backward
layers cover 1.0 < |η| < 2.0. Both layers are double-sided silicon microstrip detectors
designed the same way as the layers 2 and 4 of the SVX II. The main purpose of the
ISL is to provide enhanced linking of tracks between SVX II and COT in the central
region.� COT [46,47] : The outermost part of the tracking system is the Central Outer Tracker
(COT), which is situated between r = 40 cm and r = 137 cm, and covers |η| < 2. It
is a cylindrical drift chamber containing 2520 cells, divided into eight superlayers. The
number of cells in each superlayer ranges from 168 for SL1 to 480 for SL8. Four super-
layers have wires parallel to the beam (axial superlayers), whereas the other four have
wires, that are tilted by 2 degrees with respect to the z-direction (stereo superlayers).
Each cell has a wire plane made of 12 sense wires and 13 potential wires, made of gold
plated tungsten, and two additional shaper wires at either end. Altogether there are
63000 sense and potential wires, extending over a length of 310 cm. The gas mixture
Ar-Ethane-CF4 (50:35:15) and the short drift distance of 0.88 cm enable the operation
of the COT at drift times of about 100 ns. The shortness of the drift time is impor-
tant to avoid the overlap of tracks from different beam crossings. A charged particle
traversing the COT generates electron-ion pairs along its path. The electrons induce
an electric signal in the sense wire, which is read out by an ASDQ (amplifier, shaper
discriminator and charge encoding) chip [48]. Because of its large radial extension, the
transverse momentum resolution is superior to the silicon detectors. In addition the
density of tracks is smaller compared to the silicon detectors, leading to a better purity
of the track reconstruction.

2.2.2 Particle Identification

The capability to distinguish between kaons, protons, electrons, muons and pions on a track
level basis can be an essential input to many kinds of physics analyses. Two different types
of measurements are placed at the disposal by the CDF II detectors within the solenoid.
One measurement uses the energy loss of charged particles in matter, primarily caused by
ionization or atomic excitation. The energy loss of particles in matter is described by the
Bethe-Bloch equation, which is used for the parameterization of an universal curve in the
COT, see figure 2.11. The universal curve then serves as an estimator of the energy loss for a
given βγ = p

m . This estimate is compared to the measured energy loss and a probability for
the assumed particle hypothesis is calculated. The energy loss of a particle in the COT is not
measured directly. It is determined by measuring the pulse width of the signal in the COT.
The pulse width is logarithmically dependent to the total charge deposited on the sense wire
and therefore proportional to the energy loss :

∆t ∼ logQ ∼ dE

dx
(2.1)
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Figure 2.9: r-z view of a quarter of the tracking system

In general the energy loss of particles in the silicon detector could be used for particle iden-
tification. This has been studied in [49] , but was never implemented due to the fact, that
a good particle identification is only possible at very low momentum in the silicon detector.
The other measurement utilizes the measurement of the particle’s time of flight in the Time-
of-Flight (TOF) detector. The TOF is located between the superconducting magnetic coil
and the COT at r = 140 cm. It consists of 216 scintillator bars, which have a length of 280
cm. A photomultiplier is mounted at the end of each bars. The time-of-flight measurement
of a particle requires information about the production time t0. Hence one has to match the
measured TOF signal to a corresponding track and reconstruct the primary vertex position
as well as the momentum of the track. Then the particle can be identified by calculating the
invariant mass

m =
p

c

√

c2(tTOF − t0)2
L2

− 1 (2.2)

with the pathlength L of the track calculated from the distance between the location of the
primary vertex and the position of the measured TOF signal in the scintillator bar. In figure
2.10 the separation power of the TOF measurement for different particles and the separation
power of COT dE/dx as a function of the track momentum is displayed.

2.2.3 Calorimeters

The CDF II calorimetry system is located outside the solenoid, see figure 2.8. It uses sampling
calorimeters, which measure the particles and jet energies by absorbing all particles except
muons and neutrinos. The system is divided into five independent calorimeters [46] :� Central Calorimeters :

– Central Electromagnetic Calorimeter CEM, Pb/scintillator sampling calorimeter,
covers |η| < 1.1

– Central Hadronic Calorimeter CHA, Fe/scintillator sampling calorimeter,
covers |η| < 0.9
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Figure 2.11: Universal curve of the COT dE/dx
for positive tracks

– Endwall Hadronic Calorimeter WHA, Fe/scintillator sampling calorimeter,
covers 0.8 < |η| < 1.2� End plug Calorimeters :

– Plug Electromagnetic Calorimeter PEM, Pb/scintillator sampling calorimeter,
covers 1.1 < |η| < 3.6

– Plug Hadronic Calorimeter PHA, Fe/scintillator sampling calorimeter,
covers 1.2 < |η| < 3.6

2.2.4 Muon Detector System

The muon system is the outermost part of the CDF II detector. It consists of four detectors
made of scintillators and proportional chambers, that cover a region of |η| < 2. The track
segment of muons measured in the muon chambers is called muon stub. This stub is matched
to a track in the COT and then combined to form a muon candidate. The identification of
muons is quite pure, because only a few kaons and pions reach the muon chambers. Muon
fake rates are at a level of a few percent. An overview of the muon chamber properties is
given in table 2.2.

CMU CMP CMX IMU

|η|-range ≤ 0.6 ≤ 0.6 0.6-1.0 1.0-2.0
drift tube length [cm] 226 640 180 363
max. drift time [ns] 800 1400 1400 800
min. muon pt [GeV] 1.4 2.2 1.4 1.4-2.0

Table 2.2: Design parameters of the muon chambers [45,46]
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2.3 The Run II Trigger System

At the current state of operation of the Tevatron (36 × 36 bunches) the crossing rate is 2.5
MHz in the CDF II detector. This leads to an enormous data flow of ∼ 0.5 TB/s, which is
impossible to store since the maximum write speed of a tape is about 100 Hz and all available
tapes ∼ 2000 TB would be filled in about an hour. This necessitates a drastic data reduction
by throwing out events which are not interesting for further physical studies. These events
are called minimum bias events. The minimum bias events have a production cross section
that is four (ten) magnitudes, higher than the production cross section for bottom quarks
(top quarks). To increase the fraction of interesting events a preselection is essential. The
preselection of interesting events is accomplished in the CDF II trigger system [50]. The
trigger is assembled of three successive subsystems (Levels), which based on trigger tables
decide if an event passes or not. The trigger tables contain trigger paths, which possess a set
of rules defining requirements for the events. In the following section a short overview of the
general properties of the CDF II trigger system is given. The data flow in the CDF II trigger
system is shown in figure 2.12 and the mode of operation of the Level 1 and Level 2 trigger is
displayed in figure 2.13. The Two Track Trigger (TTT), which is important for the exclusive
reconstruction of B decays, is discussed in a later chapter of this thesis (see section 4.2.1.).

2.3.1 Level 1 Trigger

The Level 1 trigger uses information of all detector components, except the silicon vertex
detector (SVX), read out after each beam crossing. The data from the SVX is kept in a
pipeline for further processing in the Level 2 trigger. The other event information is used
to form coarse versions of physics objects, referred to as trigger primitives. These primitives
are identified by the eXtremely Fast Tracker (XFT), which reconstructs tracks by comparing
the hit data to a list of pre-defined COT hit patterns. This gives a rough measurement of
the transverse momentum pT and the azimuthal angle φ of a track. In addition the XFT
tracks are matched to muon chamber hits and calorimeter clusters. The time for a Level 1
trigger decision is about 5µs, which is longer than the time between two successive bunches.
Therefore the information of the detector subsystems is stored in a pipeline at the front-end
electronics. The limit of the acceptance rate of the Level 1 trigger is ∼ 50 kHz.

2.3.2 Level 2 Trigger

The Level 2 trigger is an asynchronous system, which is able to store the information of up
to four events in its buffer. Only about one event in 20000 passes the Level 1 and Level 2
trigger. The Silicon Vertex Tracker (SVT) is implemented in the Level 2 trigger and uses the
information supplied by the Level 1 XFT as a seed. It extrapolates the XFT tracks to the
SVX by adding silicon hit clusters and employing pattern-matching algorithms. The result
are SVT tracks with measurements of the impact parameter d0, the transverse momentum pT

and the azimuthal angle φ. The resolution of the impact parameter d0 is about σd0 ∼ 47µm
and is shown in figure 2.15. It is a combination of the transverse size of the beam profile
and the intrinsic SVT impact parameter resolution. This good impact parameter resolution
provides the possibility to distinguish between particles from the primary vertex and displaced
vertices, as illustrated in figure 2.14. Thus one can enrich samples with long lived particles,
e.g. b hadrons, by requiring impact parameters of d0 > 100 µm for a least two SVT tracks.
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2.3.3 Level 3 Trigger

The Level 3 trigger is a software trigger installed on a special PC cluster, called L3 Farm. It
receives data from the previous triggers with a rate of about 600-800 Hz. The Level 3 trigger
performs a full reconstruction of the event and further improves the resolution of pT , φ and
d0. The L3 decision can be based on the full event topology, enabling cuts on Lxy, invariant
masses etc.. The events accepted by the Level 3 trigger are first stored on disk in a storage
area and later written to tape for analysis. At the end of the trigger chain about one event
in 120000 survive all trigger requirements, leaving an output rate of ∼ 100 Hz.

L2 trigger

Detector

L3 Farm

Mass
Storage

L1 Accept

Level 2:
Asynchronous 2 stage pipeline
~20µs latency
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Figure 2.14: SVT impact param-
eter resolution including the 33µm
beamspot
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SVT track
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Figure 2.15: Definition of the track im-
pact parameter d0 for a SVT track



Chapter 3

Statistical Methods

3.1 Parameter Estimation

A common problem in particle physics and other quantitative sciences is the determination of
parameters from measurements with errors. Ideally a measurement always gives exactly the
same outcome if it is repeated under the same conditions. But this is not realized in nature,
because we have to take effects like finite resolution of the experimental apparatus, thermal
fluctuations or quantum effects into consideration, which cannot be controlled. Therefore one
needs an optimal procedure to receive an accurate result for the parameter estimation from
a given set of measurements. The criteria for these methods are consistency, unbiasedness,
efficiency and robustness. One method commonly used for parameter estimation is the max-
imum likelihood method. This method is a very important component of this thesis and will
be explained in detail in the following sections.

3.1.1 The Maximum Likelihood Method

Principles of the Maximum Likelihood Method [51]

Considering a set of n independent measurements ~x1,~x2,. . .,~xn of the one- or multidimensional
variable ~x following a probability density f(~x|~a), with the unknown set of parameters ~a, one
can write the joint probability density function as

L(~a) = f(~x1|~a) · f(~x2|~a) · · · f(~xn|~a) =
n
∏

n=1

f(~xi|~a) (3.1)

The function L(~a) is called likelihood function and gives the probability to measure ~xi for a
predefined set of parameters ~a. The value ~̂a, that maximizes the function L(~a), is the best
estimate for the parameter ~a. This can be expressed by the condition

∂L(ak)

∂ak
= 0 for all k (3.2)

It is advantageous to use the logarithm of L(~a), because the values of L(~a) can be very small
and therefore cause numerical instabilities on computers. The logarithm is a monotonous
function, thus leaving the minimum of L(~a) at the same position. Equation 3.2 can be
rewritten as

∂(lnL(ak)

∂ak
= 0 for all k (3.3)

37
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This leads to the definition of the negative log likelihood function

F (~a) = − lnL(~a) = −
n
∑

i=1

ln f(~xi|~a) (3.4)

which has to be minimized to estimate â. Sometimes the definition of F (~a) includes an
additional factor of 2 to make it comparable to the method of least squares. During the
process of minimization one has to take care that the probability density function f(~x|~a) is
always normalized :

∫

f(~x|~a) d~x = 1 for all ~a (3.5)

The maximum likelihood method features several characteristics in the limit of an infinite
number of measurements n→∞ [52,53]:� It is asymptotically consistent. The estimator â of the parameter a converges to the

true value a0 :
lim

n→∞
â = a0� It is asymptotically unbiased.� It is asymptotically efficient. That implies that no unbiased estimator has a smaller

variance than the estimator obtained with the maximum likelihood method.� The function L(~a) approaches a multidimensional gauss function in the asymptotic limit
and the variance of the estimator â is zero.

Error calculation

In the case of the asymptotic limit one can expand the negative log likelihood function F (~a)

around its minimum, where ~a = ~̂a and dF
da

= 0, resulting in

F (~a) = F (~̂a) +
1

2
·
∑

i,k

∂2F

∂ai · ∂ak
· (ai − âi)(ak − âk) + · · · (3.6)

= F (~̂a) +
1

2
·
∑

i,k

Gij · (ai − âi)(ak − âk) + · · · (3.7)

with ~a = (a1, a2, · · · , an) and G the inverse of the covariance matrix V of ~a. The inverse
covariance matrix V−1 has the form of the Hesse matrix H and can be used as an approxi-
mation of G in the non-asymptotic case.

If there is only one parameter a, the evaluation of F (a) around the minimum a = â± r · σ in
the asymptotic limit yields to

F (â± r · σ) = F (â) +
1

2
r2 (3.8)

and the standard deviation σ arises from the comparison of L(a) to the gauss function

σ(â) =

(

d2F

da2

∣

∣

∣

∣

â

)− 1
2

(3.9)
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The case of many parameters can be discussed in a similar way. One defines the minimum of
the function F (~a) with respect to all other parameters aj , j 6= i

Fmin(ai) = minF (~a) (3.10)

The rσ standard deviations then can be written as

Fmin(âi ± r · σ) = F (~̂a) +
1

2
r2 (3.11)

Deviations from the asymptotic behavior of the negative log likelihood function are approxi-
mated by asymmetric errors

Fmin(âi + σr) = F (~̂a) +
1

2
(3.12)

Fmin(âi − σl) = F (~̂a) +
1

2
(3.13)

The Maximum Likelihood Method for Binned Data

If there is a large number of measurements, it is useful to represent the frequency distribution
of the data in a histogram. The x axis of a one-dimensional histogram is divided into J
intervals, called bins. To simplify the following expressions a constant bin-width of ∆x =
x1−x0

J is assumed. The measured content of bin j is

nj =

∫ x0+∆xj

x0+∆x(j−1)

n
∑

i=1

δ(x− xi) dx (3.14)

with
∑J

j=1 nj = n. Fitting the probability density f(x|a) to the data points in each of the
bins J leads to the fitted bin content

fj(a) =

∫ x0+∆xj

x0+∆x(j−1)
f(x|a) dx (3.15)

Assuming the entries nj in each bin are random variables that follow a Poisson distribution
with expectation value µj

P(nj|µj) =
µnjeµj

nj!
(3.16)

µj(a) = n · fj(a) ≈ n · f(x0 + ∆x(j − 0.5)|a) ·∆x (3.17)

the likelihood, respectively the negative log likelihood function, can be written as

L(a) =

J
∏

j=1

µ
nj

j e
−µj

nj!
(3.18)

F (a) = −
J
∑

j=1

ln

(

µ
nj

j e−µj

nj!

)

= −
J
∑

j=1

nj lnµj +
J
∑

j=1

µj +
J
∑

j=1

lnnj! (3.19)
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If the expected number of events in each bin is large, then we may approximate the Poisson
distribution by a Gaussian distribution with variance σ2

j = µj

P(nj|µj) =
1√

2πσj

e
− (nj−µj )2

2σ2
j (3.20)

In this approximation the negative log likelihood takes the shape of a χ2 distribution with k
degrees of freedom. k is the difference between the number of bins J and the number of fitted
parameters.

F (a) = −
J
∑

j=1

ln





1√
2πσj

e
− (nj−µj )2

2σ2
j



 =
1

2

J
∑

j=1

(nj − µj)
2

µ2
j

+ const. (3.21)

To check the performance of a fit, one can use the ratio χ2/k. This ratio should be ≃ 1 for a
good description of the data points by the fitted function f(x|a).

Minimization algorithms

The minimization of functions is a problem one has to face if one applies the maximum
likelihood method to estimate fit parameters. This is a key issue in this thesis, because the
maximum likelihood method is used in the determination of ∆ms as well as in the mass and
lifetime fitting procedures. Throughout this thesis the fitting package MINUIT, implemented
in ROOT, is used. The package MINUIT contains tools for the determination of the minimum
value of a multi-parameter function and the analysis of the shape of this function around its
minimum. The standard minimization algorithm is MIGRAD. It uses the variable metric
method, which solves the minimization problem for a function F (~x), where the gradient
vector g(~x) = ∇xF (~x) is available, but the Hesse matrix H is not known explicitly. The
algorithm updates the estimate of H at each iteration using the changes on ~x and ~g made on
that iteration. It is based on the following approximation

~g(~xk + ∆~x) ≈ ~g(~xk) + Hk∆~x (3.22)

The direction of search ∆~x can be calculated from

Hk∆~x = −~gk (3.23)

The next approximation of ~x follows from a one dimensional minimization in the direction of
∆~x

~xk+1 = ~xk + zmin∆~x (3.24)

where zmin denotes the minimum of the one dimensional function f(z) = F (~xk + z ·∆~x)

Introducing the matrix Uk one can rewrite the improved approximation of H

Hk+1 = Hk + Uk (3.25)

The matrix Uk can be chosen so that Hk+1 fulfils the relation

Hk+1(~xk+1 − ~xk) = ~gk+1 − ~gk (3.26)



3.2. ARTIFICIAL NEURAL NETWORKS 41

This can be expressed in terms of the vector ~δ and ~γ

Hk+1
~δ = ~γ (3.27)

with ~δ = ~xk+1 − ~xk and ~γ = ~gk+1 − ~gk.

The relation quoted in equation 3.27 does not determine the matrix Uk unambiguously. The
most effective formula is the BFGS formula, named after Broydon, Fletcher, Goldfarb and
Shanno. A detailed derivation of this formula can be found in [54–57]. The BFGS formula
relates to :

Hk+1 = Hk −
(Hk

~δ)(Hk
~δ)T

~δT Hk
~δ

+
~γ~γT

~γT~δ
(3.28)

In the case of a one dimensional minimization, discussed in equation 3.24, the BFGS formula
corresponds to

Hk+1 = Hk +
~gk~g

T
k

~gT
k ∆~x

+
~γ~γT

zmin · ~γT ∆~x
(3.29)

The program package MINUIT [58,59] contains not only tools for minimization but in addi-
tion tools to analyze the parameter errors. The error matrix calculated in MIGRAD yields
usually good results. The error calculation in MIGRAD fails for non-linear problems or if the
convergence to the minimum occurs too fast. An other tool to obtain the parameter errors is
MINOS. MINOS is designed to work in non-linear cases and is a must if asymmetric errors
are required, e.g. in case of non-parabolic behavior of the negative log likelihood function, see
equations 3.12 and 3.13. Unlike MIGRAD, MINOS does not calculate the errors by using the
curvature at the minimum and assuming a parabolic shape. But it needs a good minimum
and a beforehand calculation of the error matrix as initial values. Therefore it is common
to run MIGRAD prior to MINOS. The algorithm varies the parameter ai with respect to all
parameters ~a in order to find the two values (positive and negative error) for which the mini-
mum of the function F (~a) has the values F (â) + r. The default value for r is r = 1, implying
a 2σ asymmetric error. In this thesis usually the error matrix is obtained from MIGRAD,
otherwise the use of MINOS is stated explicitly.

3.2 Artificial neural networks

Neural networks are sophisticated and powerful tools for problems in the domain of classi-
fication and prediction. The idea of artificial neural networks originates from researches in
Artificial Intelligence, where it was attempted to model basic neural function of the brain.
The brain consists of a very large number ≃ 109 of interconnected neurons. The neuron is a
specialized cell, composed of an input structure (the dendrites), a cell body and an output
structure (the axon), illustrated in figure 3.1. The dendrites of one neuron are linked by
synapses to the axons of an other neuron. If the total signal received at the cell body from
the dendrites exceeds a certain threshold, the neuron fires an electro chemical signal along
the axon. The intensity of this signal depends on the synaptic efficiency. The layout of a
biological neuron can be used as a blue print for an artificial neuron. The artificial neuron
j, as displayed in figure 3.2, has a an input vector ~x, corresponding to the dendrites in the
biological neuron. The input is connected via weights wij, that have the same function as the
synaptic efficiency.
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Figure 3.1: Sketch of the anatomy of a neuron
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Figure 3.2: Layout of an artificial neu-
ron

These weights are summed up in the neuron and an additional bias µj, controlling the thresh-
old of the neuron, is subtracted. The output oj of the neuron j is calculated by the activation
function f . A commonly used activation function is the sigmoid function

S(x) =
2

1 + e−c·x − 1 (3.30)

It maps the interval [−∞,+∞] to [−1, 1] and has the property −S(x)=S(−x). In figure 3.3
examples of the sigmoid for different values of c are shown. The model for an artificial neuron
formulated in the last section can be expressed by the equation :

oj = S

(

∑

i

wijxi − µj

)

(3.31)

The single artificial neuron is already capable of performing the boolean AND, OR and NOT
operations. It cannot be used as a XOR operator, because this operator is unlike the operators
mentioned before not linearly separable. To overcome this problem one can arrange many
artificial neurons, e.g. in a feed forward network.
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Figure 3.3: Examples of the sigmoid func-
tions for different values of c
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3.2.1 The Feed Forward Neural Network

The feed forward neural network is one of many possible neural network topologies. It is
called feed forward, because the information is only processed in the direction from input to
output. The usual topology of the network consists of three types of layers : the input layer,
the hidden layer and the output layer. Each layer consists of a distinct number of neurons,
further referred to as nodes. The input layer has as many nodes as input variables are present.
Each node of the input layer is linked to the nodes of the hidden layer. The choice of the
number of nodes in the hidden layer is not completely arbitrary. If it has too many nodes,
the network will be able to memorize everything by heart. Too few nodes will result in a
network, that is not able to grasp all characteristics of a problem. In the case of a binary
classification the output layer consists of only one node. The use of an additional bias node
with a constant value of one in the input layer can enhance the performance of the network.
A schematic view of the topology of a three layer neural network is illustrated in figure 3.4 .
The network output o of a simple three layer feed forward network with the input vector ~x,
N input nodes and M nodes in the hidden layer, can be calculated via

o = S





M
∑

j

vjS

(

N
∑

i

wijxi − µj

)



 (3.32)

where vj are the weights of the connection between the hidden layer to the output node, wij

corresponds to the weights from the input layer to the hidden layer and µj is the bias value.

3.2.2 Training of a neural network

To train a network one needs training patterns, e.g. historical or simulated data, where the
true classification is known. For a binary classification the true values can be e.g. one for
signal or zero for background. The training relates to method of back propagation learning,
in which the output is calculated for every input vector and compared to the true value.
The comparison is done by calculating a cost function E, which describes the deviation of
the desired value to the network output. The goal of back propagation is to minimize the
cost function for all N training samples, by varying the weights connecting the nodes of
different layers. Examples for cost functions are the squared difference of the true value and
the network output

E =
N
∑

i=1

(oi − ti)2 (3.33)

or the entropy function, which is used in NeuroBayes® [60]

E =
N
∑

i=1

− ln

(

1

2
(1 + oi · ti)

)

(3.34)

where oi and ti are the network output, respectively the target value, of the i-th training
pattern. The minimization of the cost function is a very complex task. This is due to the fact
that the cost function depends strongly on the combination of weights and thus its surface
has a complex shape in a multidimensional parameter space. In order to find the minimum
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of the cost function, one can use the method of steepest descent [52]. Thereby the change of
each weight is opposite to the direction of the cost function

∆wij = −η ∂E
∂wij

(3.35)

with η the learning rate. The learning rate determines how fast the weights are changed. If
η is too big or if bad starting values for the weights are used, the algorithm will fail and not
only the training of the neural network, but also the neural network itself will not be optimal.

3.2.3 Interpretation of the network output

The performance of a neural network can be evaluated by introducing the variables purity
P and efficiency ǫ. The purity specifies the number of selected signal events compared to all
selected events. Whereas the efficiency describes the ratio of selected signal event to all signal
events in the whole sample. Then purity and efficiency can be expressed via the equations

P (nnout) =
NS( >nnout)

(NS +NB)( >nnout)
(3.36)

ǫ(nnout) =
NS( >nnout)

NS
(3.37)

here NS denotes the number of signal events and NB the number of background events.
nnout corresponds to the output of the neural network. To select a working point for the
neural network, one usually plots the the purity versus the efficiency as displayed in figure
3.5. The optimal working point is the point closest to the coordinate (1, 1). If the network
is trained optimally one can scale the network output to the interval [0, 1] and interpret it
as probability. This assumption can be checked by plotting the purity versus the network
output. It is correct, if the purity is a linear function of the network output, as shown in
figure 3.6. One can prove this statement by writing down the mean contribution to the square
of the cost function, see equation 3.33, for the input patterns with the neural network output
nnout

E = P (nnout) · (1− nnout)2 + (1 − P (nnout)) · ((−1) − nnout)2 (3.38)

The first term of this equation is the signal contribution with purity P and target value for
the output of 1. The second term describes the background contribution with purity (1-P)
and a target of -1. The training is optimal if the cost function is minimal, leading to

dE

d(nnout)
= 0 → P (nnout) =

(nnout + 1)

2
(3.39)

3.2.4 NeuroBayes®
NeuroBayes® [60] is a sophisticated software for the work with neural networks. It is based
on Bayes’ theorem and consists of a three layer feed forward neural network. It was developed
at the University of Karlsruhe and further evolved at the spin off company <phi-t>®. The
program package provides tools for binary classification problems as well as for the prediction
of probability density functions. All neural networks specified in this thesis are based on the
NeuroBayes® package. In this section the basic features of NeuroBayes®, that are important
to a binary classification, are described.
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Figure 3.5: Example of a purity-
efficiency plot to determine a working
point.
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Figure 3.6: The signal purity plotted
against the output of the neural net-
work.

Bayes’ theorem

Bayes’ theorem [61] states the following relation, connecting the conditional probability of B,
given A, P (B|A), with the conditional probability of A, given B, P (A|B).

P (A|B) = P (B|A) · P (A)

P (B)
(3.40)

where P (A) is the prior probability of A, which is independent of the prior probability P (B)
of B. This can be expressed as well in a physical context. The a posteriori probability P (A|B)
then denotes the probability of a theory for the observed data, and P (A|B) is the likelihood
to measure the data assuming the theory. In the case of the binary decision of a neural
network, its output can be interpreted as a Bayesian a posteriori probability. In addition
NeuroBayes® is able to make an event-by-event prediction of the full a posteriori probability
density function.

Preprocessing of Variables

The preprocessing of input variables is a method, which can help in locating the minimum
of a cost function. In the NeuroBayes® package a global and an individual preprocessing is
implemented. The global preprocessing at first flattens the distribution of the input variables,
maps them to the interval [-1,1] and then transforms them into Gaussians with mean 0 and
width 1. Because of correlations of the variables to the target as well as to themselves, the
variables are decorrelated by rotating the covariance matrix until it is a diagonal unit matrix.
The individual preprocessing treats special properties of single variables. Examples for the
use of individual preprocessing are� input distributions with a δ function or in case of events with undefined variables� discrete variables that can be divided into ordered or unordered classes
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relations to the target by a spline fit

Furthermore the significances of the input variables are calculated during the preprocessing.
This calculation is done iteratively. At first one variable after the other is removed and the
loss of total correlation is ascertained. In the next step the variable with the smallest loss of
information when omitted is eliminated. This is repeated until all correlations to the target
are determined. Finally one obtains a list of significance of the input variables to the target.
A detailed description of this method can be found in [5].

Regularization

There are several methods of regularization to optimize the training of a neural network. One
method is to reduce the number of free parameters by removing insignificant connections or
nodes during the training and therefore enhancing the signal to noise ratio. Another method
is to add a penalty term to the cost function in order to suppress oscillations around minima.
The new cost function can be written as

Ẽ = E + τP = E + τ · 1
2

∑

i

w2
i (3.41)

The penalty term punishes the neural network for large weights resulting in a network with
smaller weights. This is also called weight decay, because in absence of any input the weights
will tend to decrease exponentially. The benefits of this method are the reduction of the
impact of random fluctuation of the input data and the prevention of oscillatory behavior of
the network.



Chapter 4

Analysis Outline

4.1 Overview of the Analysis

The time-dependent measurement of the Bs oscillation is, due to the large mixing frequency of
the Bs meson, a challenging task. This chapter gives an overview of the ingredients necessary
for the determination of ∆ms. There are several prerequisites one has to consider :� One has to identify data containing long lived B mesons. This is achieved by using the

Two Track Trigger for the preselection of data.� The flavor of the Bs meson at production time needs to be determined. Therefore
various tagging algorithms are applied to the data.� The Bs meson decaying into a flavor eigenstate has to be reconstructed in order to
obtain the flavor of the Bs at the decay time.� The proper decay time of the Bs meson has to be measured.

The ingredients for the ∆ms measurement listed above form the basic structure of the fol-
lowing chapters of this thesis as summarized in figure 4.1. To finally determine the mixing
frequency, one combines all available information in a likelihood function. The likelihood
function for an event has the following fundamental form :

L = (1− fb) · PS(ξ, t, σt) · PS(m) + fb · PB(ξ, t) · PB(m) (4.1)

with fb = NB

NB+NS
denoting the fraction of background events. The subscript S, respectively

B, mark the signal and the background contributions to the likelihood function. ξ denotes
the tagging decision. t is the proper decay time and σt the decay time resolution. m is the
reconstructed mass of the Bs meson candidate. The terms PS(ξ, t, σct) and PB(ξ, t) describe
the probability density functions of the lifetime space including the mixing term and PS,B(m)
corresponds to the description of the mass space. It is crucial for this analysis to model the
constituents of this likelihood function as accurately as possible. The composition of the
likelihood is the focus of the chapters 6 to 8. The cornerstone of the mixing analysis is the
fitting framework which provides the methods for the binned and unbinned fits of various
quantities, as well as for the mixing fit.

47
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Selection of Exclusive Bs Mesons

B Tagging

Data Selection 

Figure 4.1: Road-map of the ∆ms measurement.

4.1.1 Mixing probability

The probability of a Bs meson oscillating into a B̄s meson at a given time t is the initial point
of this analysis. It can be derived from equation 1.4 to be

PBs→B̄s
=

Γ

2
e−Γt(1− cos(∆mst)) (4.2)

with the assumptions, that |ηm|2 is one and the lifetime difference of the BH and BL is zero :

∆Γ = 0→ y = 0→ cosh yT = 1

The time dependent asymmetry (equation 1.5) then simplifies to

a(T ) = cos ∆mst (4.3)

The mixing probability has to be modified to take into account the effects of the experimental
resolution of the proper decay time measurement and performance limitations of the flavor
tagging algorithms. These modifications are introduced in chapter 8 of this thesis at the point
of the detailed description of the mixing term of the likelihood function.
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4.1.2 Significance of the ∆ms Measurement

The significance S of the ∆ms measurement can be calculated from the Fourier transformation
or the maximum likelihood method. It can be expressed via the following formula

S =

√

ǫD2

2
e−

(∆ms·σcτ )2

2
NS√

NS +NB
(4.4)

where D denotes the dilution of the tagger and ǫ the efficiency of the tagger defined in section
5.1.1. σct is the decay time resolution. NS is the number of signal events and NB the number
of background events.

The expression above can be divided into three parts, that mirror the contributions of the
tagging, the lifetime resolution to the ∆ms measurement and the selection of exclusively re-
constructed Bs mesons. The first part is proportional to the square root of the tagging power
T = ǫD2. This quantity is the figure of merit for a tagger. It denotes the statistical effective-
ness of a tagger. The second part of the significance takes the event-by-event resolution of
the proper decay time into account. The contribution of this term increases with the mixing
frequency. The last term describes the significance of the selected exclusively reconstructed
Bs meson. The methods to enhance this term are subject to chapter 6 of this thesis.

4.2 Data Selection and Event Reconstruction

The data used for this thesis was recorded between February 2004 and February 2006 at the
CDF II Experiment. The total integrated luminosity nearly reaches 1 fb−1. In table 4.1
the three datasets forming the complete data are listed. All data were required to pass the
Two Track Trigger and the good run selection. The good run selection is a list containing
flags set by the shift crew during the data taking and after the completion of a run. These
flags show whether all detector components and triggers were working according to their
parameters during this run. This analysis makes use of the good run list provided by the
DQM group [62]. For this analysis the requirements of this list are basically a working tracking
system and SVT trigger system.

dataset (CDF internal notation) data acquisition period integrated luminosity [pb−1]

xbhd0d Feb 2002 to Aug 2004 341
xbhd0h Dec 2004 to Sep 2005 397
xbhd0i Oct 2005 to Feb 2006 253

all datasets 991

Table 4.1: Summary of the datasets used in this analysis.
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4.2.1 The Two Track Trigger

The Two Track Trigger is the core part for the selection of the data used for this analysis.
It relies on the track information provided by the XFT and the SVT. The basic principle of
the Two Track Trigger is the selection of a track pair displaced from the primary interaction
vertex. The requirements for an event to pass the Two Track Trigger are :� a minimum of two XFT tracks with transverse momentum pt > 2 GeV and the difference

in the angle φ of both tracks ∆φ1,2 < 135◦ at the Level 1 trigger stage.� a least two SVT tracks with pt > 2 GeV, 100µm < |d0| < 1 mm, χ2
SV T < 25,

Lxy > 200 µm and 2◦ < φ1,2 < 90◦ are required at Level 2 of the trigger chain.� at Level 3 the Level 2 trigger decision are confirmed by the offline reconstruction.

In order to meet the demands of taking data in different luminosity scenarios, additional
requirements are introduced at the Level 2 trigger stage. This is implemented by the Two
Track Trigger subpaths :� B LOWPT : the low-pt scenario

at least two SVT tracks with p1
t + p2

t > 4.0 GeV� B HIGHPT : the high-pt scenario
at least two oppositely charged SVT tracks with p1

t + p2
t > 6.5 GeV� B CHARM : at least two SVT tracks with p1

t + p2
t > 5.5 GeV

In periods of high luminosity it may be necessary to prescale these trigger paths. This
decreases the deadtime of the trigger system and frees bandwidth for other trigger paths.
The prescaling of trigger paths consists in accepting one out of N= 1/p events that have
passed the trigger requirements. The factor p is the prescale factor, which is a dynamical
quantity adjusted according to the luminosity. It is stored in a data base further accessible
via the offline software.

4.2.2 Event Reconstruction

The data delivered by the Two Track Trigger can not yet be used for a high level physics
analysis. It has to be processed by reconstruction algorithms provided by the CDF II offline
software.

Tracking

At first tracks have to be reconstructed from the measurement of hits in the tracking system
of the CDF II detector. There are several different tracking algorithms implemented in the
CDF II offline software. The following list of algorithms corresponds to the sequence of their
usage in the CDF II offline software :� COT tracking : The algorithm reconstructs tracks of particles that have traversed the

entire drift chamber. The reconstructed tracks have a high purity, because the track
density in the drift chamber is low. Therefore only a small number of duplicate tracks
are reconstructed. The COT tracking algorithm is limited to tracks of a minimum
transverse momentum of 0.5 GeV and an |η| < 1.



4.2. DATA SELECTION AND EVENT RECONSTRUCTION 51� Outside In (OI) tracking : The OI algorithm extrapolates the tracks from the COT
back to the silicon and adds corresponding hits along the reference trajectory. Because
COT tracks are used as seed, this algorithm has the same geometrical limitations as the
COT tracking. The advantage of the OI algorithm is the gain in the impact parameter
and z position resolution compared to the pure COT tracks.� Silicon Standalone (SISA) tracking : The SISA algorithm uses exclusively silicon mea-
surements to reconstruct tracks. It is able to reconstruct lower transverse momentum
tracks pt > 0.2 GeV than the OI and COT algorithms. Furthermore tracks within the
full coverage of the silicon detector |η| ≤ 2 are reconstructed. The drawback of this
algorithm is the requirement of two silicon 3D hits in the four available layers. This
decreases the efficiency of the algorithm due to holes in the coverage of the SAS layers.� Silicon Forward (FWD) tracking : The FWD algorithm uses a similar strategy as the
SISA algorithm. It reconstructs tracks from one 3D hit and one r-φ hit instead requiring
two three dimensional silicon hits. To reduce the combinatorics and the CPU time usage
in the track reconstruction, the minimum transverse momentum is set to be larger than
0.8 GeV.� Inside Out (IO) tracking : The IO algorithm extrapolates tracks from the silicon detector
into the COT. In comparison to the SISA and FWD algorithms the IO algorithms
improves the momentum resolution and decreases the fake track rate. This is due to the
increased track length, the additional measurements in the COT and the confirmation
of the silicon tracks by the COT.

A detailed description of the tracking algorithms can be found in [63].

The raw tracks reconstructed by the tracking algorithms are then used to calibrate the mag-
netic field and the material description of the detector on the invariant mass of the J/ψ. First
the GEANT material map used for the track fitting [64] is corrected. Then the value for the
magnetic field used in the calculation of the track momentum from the track curvature is cal-
ibrated on the world average value for the J/ψ mass. This procedure removes the momentum
dependence of the reconstructed J/ψ mass [65]. Furthermore the COT covariance matrix is
rescaled because of the underestimation of the measurement errors of the track reconstruc-
tion in the COT. After the rescaling the tracks are refitted according the particle hypothesis
expected in the reconstructed final state. The refit of the tracks picks up the rescaled COT
tracks and adds the according hit measurements of L00 of the silicon vertex detector. A
Kalman fitter implemented in the KalTrack package [66] is usually used for the track refit.

Reconstruction of a Bs event

The package BottomMods [67, 68] of the CDF II offline software is used to reconstruct a Bs

meson. The package provides a modular structure which can be easily adapted to reconstruct
different decays. The input of the first module usually consists of low level objects like
reconstructed tracks. The output of each module is propagated to the input of the next
module in the reconstruction chain. The output of the last module of the reconstruction
chain is a list of Bs candidates for an event. The first step of the reconstruction requires
tracks that posses a successful helix fit and a physical error matrix for the track parameters.
The next step is the refitting of tracks with either a pion or kaon mass hypothesis.
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These tracks are stored as collections of stable particle candidates and serve as an input
for the reconstruction of unstable particles. The vertex fit for all necessary vertices in the
examined decay chain uses the CTVMFT package [69]. It calculates the vertex positions, the
invariant masses, the four momenta of all involved particles and the corresponding covariance
matrices. To reduce the computation time of the time consuming vertex fit, a soft preselection
on the estimated invariant mass of a track pair can be applied before the vertex fit. After
performing the vertex fit one can add further constraints to reduce the number of the selected
Bs candidates. At this stage the trigger requirements have to be fulfilled as well. The
information of the reconstructed Bs candidates is stored in the BStntuple framework. This
framework contains all information of the vertex fits obtained during the reconstruction of
the Bs candidates for a given event. In order to reduce the size of the Two Track Trigger
dataset, it is converted to the ROOT Ntuple format and only the Bs decays one is interested
in are selected. Furthermore the use of ROOT Ntuples is independent of the CDF II software
and allows to analyze the data in the widely used ROOT framework.

4.3 Monte Carlo Simulation

The analysis of Bs oscillations requires simulated B events as an input in many situations.
The training of the neural networks used in the selection of exclusively reconstructed Bs

mesons depends on a reliable description of Bs meson decays. Furthermore the templates
of the background shapes for the binned and unbinned mass fits are derived from simulated
events. Finally one obtains the efficiency function for fits in the lifetime space from simulated
signal events.

To generate the necessary Monte Carlo samples one can chose between two event genera-
tors [70]. The PYTHIA [71] event generator creates bb̄ pairs via several production mech-
anisms. The most prominent are flavor creation, flavor excitation and gluon splitting pro-
cesses [72]. The corresponding Feynman graphs for these processes are displayed in the figures
4.2, 4.3 and 4.4. To optimize the speed of the generation of simulated events, the underlying
event structure of each event is fixed while the b-hadrons are redecayed into selected final
states. To redecay the b-hadrons the EvtGen program package [73] is used. In order to
simulate the detector one uses the cdfSim software [74]. After the detector simulation the
simulated data has the same structure as real data. The simulation of the Two Track Trigger
is handled by the program TrigSim++ [75], which includes amongst others the simulation of
the SVT. The simulated events then undergo the same reconstruction procedure as real data
described in section 4.2.2.

Another possibility of obtaining simulated events is to use BGEN as an event generator [76].
In contrast to PYTHIA the events simulated by the BGEN event generator only consists
of a b-hadron without the opposite b quark and the fragmentation tracks. The advantage
of BGEN is the possibility to obtain large Monte Carlo samples in a short period of time.
The BGEN Monte Carlo samples are mainly used for analyses where no opposite b quark or
fragmentation tracks are needed.
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Figure 4.3: Pair creation with gluon emission (left) and flavor excitation (right) diagrams .
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Figure 4.4: Gluon splitting diagram (left) and events classified as gluon splitting but of flavor-
excitation type (right).
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4.4 The Fitter Framework

The underlying concept of the fitter framework is to provide a flexible structure applicable
for many analysis. It is designed in a modular concept, so one does not need to edit the entire
fitter code for different purposes but only has to include additional modules. An overview of
the basic composition of the fitter framework is given in figure 4.5.

In case of the Bs oscillation analysis, the fitter framework mainly serves as a general tool
to facilitate the handling and bookkeeping of the fit functions used for the various decay
modes. Because of the six decay channels studied in this analysis, it is necessary to keep
track of nearly 500 parameters for the combined mixing fit. Therefore one has to take care of
the transfers of fitting parameters between the Mode Class, the Fitter and MINUIT. In the
ModeClass the methods for the likelihood functions as well as for the binned fits of the mass
spectra are contained. Because the ModeClass includes all properties of the decay mode, the
creation of a supplementary ModeClass is sufficient for the addition of other decay modes
to the fitter framework. In order to simplify the fitting procedure a single Mode Class valid
for all studied decay channels is used in this analysis. The AbsMode Class is the common
interface for all Mode Classes to the Fitter.

The Fitter itself reads in the parameters for each mode and copies them to a map suited
for the process of minimization in MINUIT. The name of each parameter serves as a key for
the map and is the identifier for the parameter in MINUIT. If parameters have the same name
in different modes, they are regarded as a common parameter for the minimization. This pro-
vides a flexible structure in which one can decide whether a parameter should be common
or not. Examples for common parameters are the mixing frequency or the lifetime of the
Bs meson. MINUIT then minimizes the likelihood requested by the steering executable and
returns the fit result to the Fitter. The Fitter copies the parameters obtained from MINUIT
back to the original parameter list and thereby restores the previous order of the parameters.
This process is illustrated in figure 4.6. This framework is currently used not only for the
Bs mixing analysis but as well for the analysis of the B∗∗

s , the B∗∗ and further for the ∆Γ
analysis in the decay Bs → J/ψφ.
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Figure 4.5: Overview of the components of the fitter framework.
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Chapter 5

B Flavor Tagging

5.1 General Properties of B Flavor Tagging

A crucial ingredient not only for the measurement of ∆ms, but as well for the measurement
of mixing-induced CP violation in the B meson system is the B flavor tagging. It is used to
determine the flavor of the B meson at production time. In figure 5.1 a schematic view of
a Bs event is displayed. This event is divided into two hemispheres, the same side and the
opposite side. The same side is defined by the reconstructed Bs meson. The opposite site
contains the remaining b quark, which can hadronize into a B0

s , a B0, a B+ or b baryons.
The performance of the flavor tagger is quantified by the dilution and the efficiency.

5.1.1 Dilution and Efficiency

The dilution describes how often the tagging decision returned by the tagging algorithm is
correct. It is 0 for a random tagging decision and 1 for a perfectly working tagger. One can
define the dilution as the difference between the number of correct tagging decisions NRS and
wrong decisions NWS normalized to all tagging decisions.

D =
NRS −NWS

NRS +NWS
=

2 ·NRS

NRS +NWS
− 1 = 2 · PRS − 1 (5.1)

fragfrag

B0
s

Ds

b

vertex
decay K

b
lepton jet

K
π

primary vertex
B hadron

Figure 5.1: Schematic view of a Bs event. The same side hemisphere is defined by the
fully reconstructed Bs meson (right part of the plot). The opposite side hemisphere
contains the hadrons and jets coming from the fragmentation process of the remaining
b quark (left part of the plot).
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where PRS is the probability for a correct tagging decisions.

The efficiency of a tagger can be expressed by the ratio of events with a tagging decision
to all events.

ǫ =
NRS +NWS

NRS +NWS +NNT
(5.2)

with NNT the number of events, where no tagging decision is given by the tagging algorithm.

5.1.2 Opposite Side Tagging

The b flavor of the opposite side B meson can be identified by several different methods, like
kaon, lepton, jet charge or vertex charge tagging, The main problem of opposite tagging arises
from the fact that the hadronized B meson if neutral can oscillate into its anti particle. This
affects taggers that determine the flavor of the b at decay time. Further problems are the
separation into hemispheres and the acceptance.

W−

q̄

b

q̄

c

ν̄l

l−

W+

q̄

s

νl

l+

Figure 5.2: The cascade decay b→ c→ s

Leptons

One method to tag the flavor of the opposite side b quark is to identify the lepton coming from
a semileptonic b hadron decay. The charge of the lepton is directly correlated to the flavor
of the b quark. A positively charged lepton corresponds to a anti-b quark and negatively
charged lepton to a b quark. The main error source apart from B oscillation is the cascade
decay b(b̄) → c(c̄) → l+(−), which leads to a swapped tagging decision at decay time. The
branching ratio for the decay b→ clν is of same order as for the decay c→ slν. An example
of a cascade decay is shown in figure 5.2.

Kaons

The cascade decay of the b quark is exploited in the opposite side Kaon tagging. Because the
cascade decay favored by the CKM matrix ends in a s or anti-s quark, it is often accompanied
by a Kaon. One can then determine the b flavor at decay time by identifying the charge of
the Kaon. A K+ corresponds to a b quark and a K− to b̄ quark at production time.
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Figure 5.3: Fragmentation processes of the same side b quark

Jet Charge

Jets are produced in the process of fragmentation of quarks into hadrons. Therefore one can
utilize the correlation of the jet charge to the initial quark as a tagging information. This
is done by calculating a weighted sum of the charges of all tracks contained in the jet. The
jet charge tagger is almost independent of the opposite side b hadron type and its decay. Its
main disadvantage is the complicated task of assigning tracks to the right jet.

Vertex Charge

The method of vertex charge tagging can only be applied to charged opposite side b hadrons.
To determine the b flavor one needs to reconstruct the tracks originating from the B decay
vertex. The b flavor then corresponds to the sum of the charges of these tracks. A negative
vertex charge indicates a b quark, a positive vertex charge a anti-b quark. The downside of
this method is its bad efficiency. This is due to the fact that the reconstruction of the decay
vertex of the opposite b hadron is challenging.

5.1.3 Same Side Tagging

The idea of same side tagging is to determine the flavor of the same side b quark at the
production time by identifying the fragmentation tracks. In the case of a reconstructed
B0

s (B0
d) meson, one searches for a Kaon (Pion) track. The Kaon (Pion) emerges from the

remaining quark of the hadronization of the B meson and an additional u-ū pair from the
vacuum. The charge of the Kaon (Pion) then correlates to the flavor of the b, e.g. a K−

corresponds to b quark. Examples of a fragmentation processes on the same side are displayed
in figure 5.3.

5.2 B Flavor Tagging at CDF II

B flavor tagging at the CDF II experiment is more challenging than in a clean e+-e− en-
vironment. The dominant b quark production mechanism at the CDF II experiment is the
production of b-b̄ pairs. In the hadronic environment there are not only the b-b̄ pairs one is
interested in, but also a huge number of background tracks. These background tracks orig-
inate from fragmentation remnants or multiple interaction per beam crossing. Furthermore
the b-b̄ pairs are generally not produced back to back, so that a separation into hemispheres
is very difficult. In figure 5.4 this situation is represented for a typical event at the CDF II
experiment.
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Figure 5.4: CDF II event display of a simulated b-b̄ pair, hadronizing into a B̄0
s meson

and a B0
d meson.

In the following the different tagging methods currently used at the CDF II experiment in
the Bs oscillation analysis are pointed out and then the Neural Network B Flavor Tagger,
that was recently developed by the Karlsruher CDF B group, is introduced.

The flavor taggers currently implemented in the Bs oscillation analysis [4] are :� on the opposite side the tagging information of kaon, lepton and jet charges are combined
using an ANN to determine the opposite tag. The tagging power of the combined tagger
is T = ǫD2 = 1.8% [77].� the same side tag consists of the combination of the kaon particle identification likelihood
and kinematic quantities of the kaon into a tagging variable V using an ANN. The track
with the largest V and close in phase space to the Bs candidate is selected as tagging
track. The effectiveness of the same side tagger is T = ǫD2 = 3.7(4.8)% for the hadronic
(semileptonic) decay sample [10]. The different tagging powers can be explained by the
differences in the composition of hadronic and semileptonic samples.� if both same and opposite tags are available, the information is combined under the
assumption that the tags are uncorrelated. The predicted dilution of the combination
of the tags can be expressed by

tag sign is equal tag sign is opposite

D =
D1 +D2

1 +D1 ·D2
D =

D1 −D2

1−D1 ·D2

If the two tagging decisions disagree, the tagging decision with the larger dilution is
taken.
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5.2.1 Karlsruhe Neural Network B Flavor Tagger

The main idea of the tagger is to combine all available tagging information into a single
tagging information using several neural networks. All neural networks implemented in this
tagger make use of the NeuroBayes® package. The structure of the tagger is based upon
the BSAURUS package [78] developed at the DELPHI experiment. The determination of the
tagging information can be divided into two major components. At first the tagging decision
is obtained on a track level basis. Afterwards this information is used to retrieve the tagging
information on event level. This paragraph only gives a brief summary of the principles of
the tagger. A more detailed description can be found in [11].

Flavor Tagging on Track Level

The determination of the tagging decision on the track level consists of two parts. The first
part is the identification of tracks coming from the decay of the opposite b hadron and the
reconstruction of the opposite side secondary vertex. The second part includes the flavor
tagging for same and opposite side tracks. All tracks used for a tagging decision on track
level have to pass the following precuts :� the track is not used in the exclusive reconstruction of a B meson� pt > 400 MeV� d0 < 5 mm� the distance ∆z0 between the current track and z0 of all tracks originating from the

same side B meson has to be less than 2 cm at the point of the closest approach of the
track to the origin of the coordinate system

The tracks are subsequently used as an input of the first B track neural network. This network
is trained for the identification of tracks originating from the B decay chain. The output of
the first network serves as an input to the secondary vertex neural network and the second B
track neural network. The secondary vertex neural network only accepts the four tracks with
the highest neural network output from the first B track neural network and combines them
into six vertex candidates. The information for the best vertex candidate is passed on to the
next network. The second B track neural network has the same purpose as the first B track
neural network, but it is trained with the additional information of the first B track network
and the opposite side secondary vertex.

The next level of the tagging algorithm is the flavor tagging part on track level. The first
network at this stage is the ’Lepton from B’ neural network, which only uses tracks passing
precuts on the lepton identification variables. This network decides if a lepton comes from a
B decay chain. If the probability for a lepton passes a certain cut, the track is used in the
lepton flavor neural network. The task of the lepton flavor network is to identify the flavor
of the b quark using the correlation of the charge of track to the b flavor and to separate
leptons of the B decay chain from the D decay chain. Therefore the network mainly uses
lepton identification quantities and track information relating to the secondary vertex.
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The last stage of the flavor tagging on track level is the main flavor network. It is the core
component of the track level tagging and combines the output of the second B track network,
the secondary vertex network, the ’lepton from B’ network and the lepton flavor network into
a single flavor probability of the track. An overview of the different networks and the basic
workflow of the tagging procedure on track level is shown in figure 5.5.

Secondary Vertex NN

2. B track NN

1. B track NN

Main Flavor NN

Lepton from B NN

Likelihood Ratio

Lepton Flavor NN

All tracks after precuts

Figure 5.5: Workflow of the flavor tagger on track level.

Flavor Tagging on Event Level

To obtain a tagging decision on event level, one has to combine the information provided by
the main flavor network on the track level into a single probability. This is done in a likelihood
ratio under the assumption that the probabilities of each track are independent. In addition
to this likelihood ratio, more quantities for tagging on event level are available. The opposite
vertex charge is calculated as a weighted sum of the charges of all tracks in an event with the
B track probabilities used as weights. Another quantity is the tagging decision provided by
the jet charge tagger. As further additional information the two best leptons, the best same
side kaon and the best opposite side kaon are used. The quantities mentioned above and the
likelihood ratio form the input variables for the combined tag network as displayed in figure
5.6. The output of the combined tag network then gives the final tagging probability for an
event. The performance of this tagging procedure is estimated on Monte Carlo samples. The
result [11] for the tagging power is

T = ǫD2 = 9.31% (5.3)
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This improves the tagging power compared to existing taggers by a factor of two. It is the
ambition of this thesis to check this large enhancement on data. This is done by measuring
the amplitude and the error on the amplitude in the mixing analysis as described in chapter
8 of this thesis.

Likelihood Ratio

Jet Charge Tagger

Vertex Charge

Flavor TagNetwork

Tag 

Combined

2 best leptons

best same side K

best opposite side K

Figure 5.6: Flowchart of the flavor tagger on event level.
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Chapter 6

Exclusive Bs Mesons Selection

6.1 Motivation

The importance of a good selection of the exclusively reconstructed Bs meson is clearly
apparent from the significance of the ∆ms measurement, see equation 4.4. This chapter
discusses the improvement of the NS√

NS+NB
term of the significance by introducing neural

networks for the selection of signal events. The use of neural networks instead of cut based
methods has several benefits. The cut based approach tries to optimize the signal significance
by varying cuts on one single variable while all other are kept fixed. The cut based selection
corresponds to a rectangular selection in the space spanned by the variables. However a
neural network is able to combine all the information of the variables in an optimal way,
because its selection forms a more complex shape in the space of the variables and thereby
considers the correlations between the variables. The aim of this chapter is to show the gain
in significance of the ∆ms measurement using neural network based selections instead of cut
based selections.

6.2 Optimizing the Selection of Exclusive Bs Mesons

The optimization process for the selection of exclusively reconstructed Bs mesons requires a
profound understanding of the properties of the examined decay channels. This section is
divided into three major parts.

Decay Mode Branching Ratio

Bs → Dsπ (3.8 ± 0.3(stat.)± 1.3(syst.)) × 10−3 [79]
Bs → Ds3π (8.4 ± 0.8(stat.)± 3.2(syst.)) × 10−3 [79]

Ds → φπ 2.16 ± 0.28%
φ→ KK 49.2± 0.6%

Ds → K∗K 2.5 ± 0.5%
K∗ → Kπ ∼ 100%

Ds → 3π 1.22 ± 0.23%

Table 6.1: Summary of the hadronic decay modes studied in the analysis. Unless specified
the world averages of the branching fractions are given [16].

65
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Figure 6.1: Example of a typical mass spectrum for the decay of a Bs meson. Here the decay
Bs → Dsπ, Ds → K∗K is shown.

The first part describes the Bs decay modes and the general properties of the invariant mass
spectra. The second part explains the training of the neural networks. Finally the unbinned
and binned maximum likelihood fits to the mass spectra are performed and the results are
presented in the third part. This analysis only considers the hadronic decay modes of the Bs

meson listed in table 6.1. The three pions of the Ds3π decay mode originate in almost all
cases from an intermediate a1(1260). The a1(1260) is a very broad resonance and decays over
a1(1260) → ρπ → πππ. The three pions coming from a Ds have a different decay topology.
They are final states of the following decays through intermediate meson states : Ds → ρπ,
f0(980)π, f2(1270)π, f ′0(1370)π → πππ

6.2.1 The Mass Spectra of the Bs Decay Channels

The mass spectra used for the binned fits of the studied Bs decay channels range from 4.7
to 6.0 GeV, because the invariant mass of the Bs is 5.369 GeV, and all information relevant
for the background parameterization is contained in this mass window. In this analysis the
mass range of [4.7, 6.0] GeV is called wide mass range. The narrow mass range used for all
the unbinned fits is [5.3, 6.0] GeV. The signal significance is calculated in the mass range of
[5.32, 5.42] GeV corresponding to an approximately 2.5σ window. In this paragraph only the
common features of the mass spectra of all decay channels are outlined. An example for the
shape of a mass spectrum is displayed in figure 6.1. The details of the fit functions used to
model the mass spectra and the exact composition of the mass spectra for each decay mode
are described in paragraph 6.2.3.
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Figure 6.2: Feynman diagrams for the tree level contribution of the decays Bs → Ds(3)π

Signal Contributions

The Bs meson decay into Ds(3)π has two signal contributions, the cabibbo favored decay
Bs → Ds(3)π and the cabibbo suppressed decay Bs → DsK(ππ). The ratio of the cabibbo

favored to the cabibbo suppressed decays is expected to be |Vud|2
|Vus|2 ∼ 20. The events of the

cabibbo suppressed decay are counted as signal events for all studied decay modes. The tree
level Feynman diagrams for both signal contributions without the intermediate meson states
are displayed in figure 6.2. The intermediate meson states of the cabibbo suppressed decay
Bs → DsKππ are not well understood. One assumes the following intermediate states for
the Monte Carlo production of cabibbo suppressed decays :

- Bs → DsρK

- Bs → DsK1

- Bs → DsD.

Background Contributions

The background contributions to the mass spectra can be divided into three categories :� The first category of background events consists of fully reconstructed decays of hadrons
mimicking the decay topology of the studied Bs decays. In these cases a wrong particle
hypothesis has been assigned to one particle in the final state. The particles contributing
to the background in the channels used for this analysis are the Λb and the B0 :

- Λb → Λc(3)π
Λc → pKπ
Λc → pππ

- B0 → D(3)π
D → Kππ

The B0 and Λb contributions are of great importance to the unbinned maximum like-
lihood fits, because both have similar physical properties as the Bs. Furthermore this
assures that the oscillation of B0 mesons is accounted for the unbinned maximum like-
lihood function of the mixing fit.
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are called partially reconstructed events. In this analysis the partially reconstructed
decays are subdivided into the following three classes :

- Bs → D∗
s(3)π

D∗
s → Dsγ

- Bs → Ds ρ (ππ)
ρ→ ππ0

- Bs → DsX

The X denotes all possible combinations of particles with the Ds meson coming from the
decays of the Bs meson, except the D∗

sπ and the Dsρ decay modes. The semileptonic
decays Dslν are also contained in the DsX category. Due to the missing particles the
invariant mass of these decays is smaller than the Bs mass. Therefore the partially
reconstructed decays only contribute to lower part of the wide mass range. They are
neglected in the unbinned maximum likelihood fits, which are only performed in the
narrow mass range.� Background events from track combinations that pass all requirements for a Bs but do
not originate from a Bs meson, are called combinatorial background. The combinatorial
background is the largest background contribution to the mass spectra in all studied
mass ranges. This contribution can be strongly reduced by the use of a neural network
selection or a good cut based selection of the events.

6.2.2 Training and Application of Neural Networks

in the Selection of Exclusively Reconstructed Bs Mesons

General Strategy

The strategy used for the training of the neural networks is the same for all studied Bs decay
channels. Only the channel Bs → Ds3π, Ds → φπ possesses a peculiarity, namely two addi-
tional boost networks. The method of a boost training is explained in [6]. To separate signal
from background events in the exclusive decay modes of the Bs mode, one uses two input
classes for the training. The first input class consists of signal events, generated with a Monte
Carlo event generator. The second input class is formed of background events obtained from
a data sample. This is due to the lack of a Monte Carlo simulation that is able to model the
combinatorial background correctly in the complex hadronic environment. The background
events are taken from the upper sideband of the mass spectrum. Therefore one can assure
that the background events only consists of combinatorial background. Further one assumes
that the background of the upper sideband holds as a good description of the background in
the signal region.

After the preparation of data and Monte Carlo samples, one has to determine reasonable
input variables for the neural network. The neural network then is trained with these input
variables and the training patterns provided by the data and Monte Carlo samples in the
’Teacher’. The output of this training is written to an expert file, called expertise. This
expertise is used by the ’Expert’ to classify a given data sample by calculating the neural
network output.
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Figure 6.3: Schematical representation of the classification procedure using NeuroBayes®.

The cut on the neural network output determines a working point for the final selection of Bs

mesons. In this analysis one is interested in the working point that maximizes the significance
S = S√

S+B
of the studied decay channel. In figure 6.3 a schematic overview of the strategy for

the application of neural networks to the exclusive reconstruction of Bs mesons is displayed.

Preparing the Data and Monte Carlo Files for Training

The Monte Carlo samples for the signal events are generated by BGEN, except the samples for
the decay Bs → Dsπ, Ds → φπ. This decay uses PYTHIA as an event generator. To mimic
the effects of trigger prescaling in the Monte Carlo sample, run-averaged prescale factors for
the different trigger paths are used. For all data and MC samples throughout this analysis a
set of cuts independent of the particular final state is applied :� Number of COT Stereo/Axial Hits ≥ 10/10� Number of Silicon Stereo + Silicon Axial Hits ≥ 3� all tracks have pt > 0.35 GeV� Bs meson passes one of the B LOWPT, B CHARM or the B HIGHPT trigger paths.

In the case of Monte Carlo events only Level 2 trigger paths are checked due to the lack
of a Level 3 simulation.

To further reduce the size of data samples used for the training of neural networks a set of
preselection cuts is applied. These cuts aim at eliminating a large fraction of background
events, without cutting away a significant number of signal events. In order to train a neural
network these cuts have to be applied to the Monte Carlo signal events as well. The pre-
selection cuts are summarized in table 6.2. The background events of the upper sideband
are selected from the data samples after the the preselection cuts have been applied. The
choice of the mass range for the upper sideband in the interval [5.55,6.55] GeV is arbitrary. A
detailed study on the influence of the upper sideband selection to the output of the network
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has been performed in [5] and no significant effect has been observed. The mass ranges of the
upper sideband are listed in table 6.3. In figure 6.4 an example of a signal and background
sample for the training of the neural network is shown.

preselection Bs → Dsπ modes Bs → Ds3π modes
cuts on Ds → φπ Ds → K∗K Ds → 3π Ds → φπ Ds → K∗K Ds → 3π

χ2
rφ(Bs) < 20 < 20 < 20 < 20 < 20 < 20

χ2
rφ(Ds) < 20 < 20 < 20 < 20 < 20 < 20

Lxy/σLxy(Bs) > 2 > 2 > 2 > 2 > 2 > 6
σLxy(Bs) [cm] - - - < 0.015 < 0.015 -
Lxy/σLxy(Ds) > 2 > 2 - > 2 > 2 > 6
|d0(Bs)| [cm] < 0.02 < 0.02 < 0.009 < 0.01 < 0.012 < 0.015
pt(Bs) [GeV] > 5.5 > 5.5 > 5.5 > 5.5 > 5.0 > 4.0
pt(πBs) [GeV] > 1.0 - > 0.4 - - -
min pt [GeV] > 0.35 > 0.4 > 0.4 > 0.35 > 0.35 > 0.35

Lxy(Bs ← Ds) [cm] - - [−4, 4] - > −0.05 > −0.1
|∆m(Kππ,D−)| [GeV] - > 0.024 - - > 0.024 -

q(KK∗) · q(KDs) - < 0 - - < 0 -
inv. mass m3πBs

[GeV] - - - - - < 2.5

Table 6.2: Summary of preselection cuts for all Bs → Ds(3)π decay modes.

Bs → Dsπ modes Bs → Ds3π modes
Ds → φπ Ds → K∗K Ds → 3π Ds → φπ Ds → K∗K Ds → 3π

mass range [GeV] 5.6− 5.9 5.55 − 5.85 5.6− 6.55 5.6 − 6.55 5.6− 5.8 5.6− 5.9

Table 6.3: Mass ranges for the upper sideband used for the network trainings.

Selection of Input Variables for the Neural Network

The choice of variables for the training is not completely random. The variables used for
the training are subject to several conditions. They have to discriminate between signal and
background and their description has to be consistent in the data and Monte Carlo samples.
The ’Teacher’ implemented in the NeuroBayes® software package helps in the selection of
the variables. In general one selects variables already used in a cut based analysis or variables
that show a good discrimination between signal and background. The output of the training
by the ’Teacher’ contains a list of the correlations of the variables to the target and among
each other. Furthermore the significance of each variable is included in this list. The next
step in the selection of variables is to remove highly correlated variables or variables that only
add a small amount of new information to the neural network. The general rule is to keep the
number of training variables as low as possible to improve the generalization capabilities of
the neural network. In case of the optimization of the selection of exclusively reconstructed
Bs mesons one has to check if the neural network learns to separate signal from background
events or only distinguishes the events by their invariant masses.
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Figure 6.4: Example of a data and and a MC sample used for the training of the neural
network in the channel Bs → Dsπ, Ds → K∗K. For a better illustration the Monte Carlo
signal is scaled down to a fifth of the original distribution.

A detailed study of variables indicating a mass dependence and their influence to the training
of neural networks can be found in the thesis [5]. In table 6.4 a summary of variables used
in the training of neural networks for all channels is given. The meaning of each variable is
explained in Appendix A. In Appendix B a compilation of the training results is presented.
The channels Bs → (3)π, Ds → K∗K and Bs → (3)π, Ds → 3π and their particular
characteristics are discussed in the following. For all other channels one can refer to [5,6] for
detailed studies of the network variables and the properties of the corresponding decays.

The decays Bs → Ds(3)π, Ds → K∗K and Bs → Ds3π, Ds → 3π

The decays of the one pion and the three pion channel are treated the same way for all vari-
ables regarding the Ds → K∗K decay. In theses channels the Bs signal is mainly polluted
with B0 events. This is due to the resemblance of final states of the decay B0 → D(3)π
and Bs → Ds(3)π. The stable decay products of these modes are Kπππ for the B0 and
KKππ for the Bs. Therefore the only difference during the reconstruction of a Bs is the
wrong identification of a pion as a kaon. To reduce the number of B0, a cut on the mass
difference of the Ds and D is performed. A further possibility to decrease the number of B0

is the use of particle identification variables for the neural network training. This is yet not
implemented in this analysis, because at the time of these studies the variable description in
the Monte Carlo samples disagreed with the data. The remaining fraction of the B0 events
in the signal region is < 5% (one pion mode) and < 10% (three pion mode) depending on the
neural network cut.
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Beside the commonly used variables, like χ2, Lxy, pt, d0, two more variables are interest-
ing in the case of the K∗ decay : the helicity angle and the K∗ invariant mass. The helicity
angle θhel of the kaon coming from the K0 decay is the angle measured in the K∗ rest frame
between the direction of the kaon and the direction of the Ds meson. The helicity distribu-
tions for Monte Carlo signal and combinatorial background events for the decay Bs → Dsπ,
Ds → K∗K are shown in figure 6.5. The angular distribution for the signal follows a cos2(θhel)
function, whereas the background events are nearly uniformly distributed. The cos2 shape of
the angular distribution can be explained by the spin composition of the Ds decay :

Ds → K∗ K , K∗ → K π
J = 0 → 1 0 , 1 → 0 0

The invariant mass of the K∗ is as well a good variable for the separation of signal and back-
ground, illustrated in figure 6.6. The absolute value of the deviation of the measured invariant
mass and the world average value, taken from [16], serves as an input variable for the neural
networks. Further variables make use of the invariant masses of the pions originating from the
Bs and their angular correlations, which are also common variables to the decay Bs → Ds3π,
Ds → 3π.

In the Bs → Ds3π, Ds → 3π decay mode the combinatorial background is very high due
to the huge number of possible combinations of the six tracks of the final state pions. To
decrease the number of background events one can exploit the information provided by the
a1 resonance and the various intermediate meson states of the Ds → 3π decay. Therefore
the invariant mass distributions of the three pion vertex and the invariant masses of different
pion combinations originating from the three pion vertex or Ds are used as input variables for
the neural network. In figure 6.7 the invariant mass distribution of the three pion vertex is
shown. The invariant mass mπ2

Ds
,π3

Ds
of the four momentum pπ2

Ds
,π3

Ds
= (pπ2

Ds
+ pπ3

Ds
) serves

as a good example for the importance of the intermediate meson states of the Ds decay. In
this case the main signal contributions come from the f0(980) meson as represented in figure
6.9. Thereby one has to mention that it was recently realized that a mass of 1000 MeV was
wrongly assigned to the f0(980) meson in the generation of the Monte Carlo sample. An
additional interesting variable is the angle between the momentum of the three pion vertex
and the plane spanned by the momenta of two pions coming from the Bs decay. This angle
is further denoted by θ(~n(π1

Bs
,π2

Bs
), ~p(3π)) and an example of its distribution for signal and

background events is given in figure 6.8 .
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Figure 6.5: Helicity angle of the kaon for
the decay Bs → Dsπ, Ds → K∗K for MC
signal and upper sideband background.
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Figure 6.6: Invariant mass of the K∗ for
the decay Bs → Dsπ, Ds → K∗K for MC
signal and upper sideband background.
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Figure 6.7: Invariant mass of the 3π vertex
for the decay Bs → Ds3π, Ds → K∗K for
MC signal and upper sideband background.
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Figure 6.8: Distribution of
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Bs → Ds3π, Ds → K∗K for MC sig-
nal and upper sideband background.
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Bs → Dsπ modes Bs → Ds3π modes
variable name Ds → φπ Ds → K∗K Ds → 3π Ds → φπ Ds → K∗K Ds → 3π
Lxy/σLxy

(Bs)
√ √ √ √ √ √

σLxy
(Bs)

√ √ √

Lxy/σLxy
(Ds)

√ √ √

Lxy(Bs ← Ds)
√ √ √ √ √ √

χ2
3D(Bs)

√ √ √ √

χ2
3D(Ds)

√ √ √

χ2
rφ(Bs)

√ √ √ √ √

χ2
rφ(Ds)

√ √ √ √

pt(Bs)
√ √

pt(Ds)
√ √ √

pt(πBs
)

√ √ √

pt(π
1
Bs

)
√ √

pt(π
2
Bs

)
√

pt(π
3
Bs

)
√

pt(K
1
φ)

√

pt(K
2
φ)

√

min pt

√ √ √ √

|d0(Bs)|
√ √ √ √ √ √

|d0(Ds)|
√ √ √

lts. d0/σd0
(K1

φ)
√

lts. d0/σd0
(πK∗)

√

lts. d0/σd0
(πBs

)
√

lts. d0/σd0
(πn

Ds
)

√

min d0/σd0

√ √ √

min lts. d0/σd0
√ √

min d0(π
1
Bs
, π2

Bs
, π3

Bs
)

√

max d0(π
1
Bs
, π2

Bs
, π3

Bs
)

√

helicity angle K1
φ

√

helicity angle KK∗

√ √

CMS angle πBs

√

θ(~n(π1

Bs
,π2

Bs
), ~p(3π))

√ √ √

mφ→KK

√ √

|mK∗ −mK∗(PDG)|
√ √

inv. mass m2
π1

Ds
π2

Ds

√

inv. mass m2
π1

Ds
π3

Ds

√

inv. mass m2
π2

Ds
π3

Ds

√

inv. mass mπ1

Ds
π2

Ds

√

inv. mass mπ1

Ds
π3

Ds

√

inv. mass mπ2

Ds
π3

Ds

√

inv. mass mπ1

Bs
π2

Bs

√ √ √

inv. mass mπ1

Bs
π3

Bs

√

inv. mass mπ2

Bs
π3

Bs

√

min(m12
πBs

,m23
πBs

)
√ √ √

max(m12
πBs

,m23
πBs

)
√ √ √

min(m12
πDs

,m23
πDs

)
√

max(m12
πDs

,m23
πDs

)
√

inv. mass m3πBs

√ √

mdiff
√

∆R(Ds, πBs
)

√

Table 6.4: Variables used in the neural network trainings
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6.2.3 Fitting the Mass Spectra

To evaluate the performance of the neural networks and to determine the parameters for the
mixing likelihood function, one fits the mass spectra using the following probability density
function. The function is designed to be used as a general function valid for all studied
Bs → Ds(3)π decay modes. The probability density function in the mass space can be
written as

P (m) = N · ((1− fb) · PS(m) + fb · PB(B)) (6.1)

with fb = NB

NS+NB
being the background fraction in the fitted mass range and N the overall

normalization.

The Bs signal is modeled by a single Gaussian function. The shape of the cabibbo sup-
pressed decay is described by the convolution of a Gaussian and an exponential function.

PS(m) = (1− fCabibbo) · PSignal + fCabibbo · PCabibbo (6.2)

PSignal = G(m,µSignal, σSignal) (6.3)

PCabibbo = NCabbibo ·
(

e
− m

τCabibbo ⊗ G(m,µCabibbo, σCabibbo)
)

(6.4)

where fCabibbo denotes the fraction of the cabibbo suppressed decay and NCabibbo is the nor-
malization.

The background probability density function can be expressed by the composition of the
combinatorial background, the partially reconstructed decays and the B0 and Λb contribu-
tions.

PB(m) = fcomb · Pcomb + fpart · (1− fcomb) · Ppart (6.5)

+(1− fpart) · (1− fcomb) · (fΛPΛb
+ (1− fΛ) · PB0)

with fcomb being the fraction of the combinatorial background and fpart the fraction of par-

tially reconstructed decays. fΛ =
NΛb

NΛb
+N

B0
is the ratio of Λb decays to B0 decays.

The combinatorial background is modeled using the sum of an exponential and a constant
offset.

Pcomb = Ncomb ·
(

(1− fconst) · e−λ(m−mc) + fconst

)

(6.6)

here fconst denotes the constant offset and mc = 0.5 · (mhigh −mlow), where mhigh and mlow

are the upper and lower bounds of the mass range of the fit. Ncomb normalizes the function.

The partially reconstructed decays are fitted by the sum of a Gaussian function and a linear
function.

Ppart = fgaus · Pgaus + (1− fgaus) · Plin (6.7)

= fgaus · G(m,µ, σ) + (1− fgaus) ·
[

2Nlin

(c−mlow)2
· (c−m)θ(c−m)

]

c denotes the cutoff parameter for the linear function. fgaus describes the fraction of the
Gaussian function to the linear function in the partially reconstructed decays. Nlin normal-
izes the linear part of the function to one.
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Figure 6.10: Binary tree of the general mass fit function

The shape of the physics background contribution of the Λb and the B0 is described by
the same function, the sum of a Gaussian function and the convolution of a Gaussian and an
exponential function. It is a purely phenomenological description and the parameters have
no physical meaning.

PΛb
= NΛb

(

·e
− m

τΛb ⊗ G(m,µ1,Λb
, σ1,Λb

) + G(m,µ2,Λb
, σ2,Λb

)

)

(6.8)

PB0 = NB0 ·
(

e
− m

τ
B0 ⊗ G(m,µ1,B0 , σ1,B0) + G(m,µ2,B0 , σ2,B0)

)

(6.9)

where NB0 and NΛb
are the normalizations.

In figure 6.10 the binary tree structure of the general function is illustrated to show the
relations of signal and background fractions and the corresponding probability density func-
tions.
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Before the fits are performed, one has to obtain some of the fractions and parameters from
Monte Carlo templates. This is due to the low statistics of the studied exclusive Bs decay
modes and therefore the simultaneous determination of these parameters by a single fit is
unfeasible. The parameters and fractions obtained by the fits to the Monte Carlo templates
are fixed in all further fits, except in case of the Bs → Ds3π, Ds → K∗K and Bs → Ds3π,
Ds → 3π decay modes. In these modes the description of the partially reconstructed decays
in the Monte Carlo samples is not sufficient to describe the data. Therefore the parameters of
the partially reconstructed decays are used as starting values and are varied within specified
limits. A complete compilation of the Monte Carlo templates used for this purpose can be
found in Appendix C. Because no simulation for the combinatorial background exists, the
fraction of combinatorial background events and the parameters for the background shape
are directly obtained in the fit.

For the final mixing fit one needs an optimal selection of exclusively reconstructed Bs mesons.
Therefore the working point of the neural network, characterized by the maximum signifi-
cance, is determined by a sequence of cuts on the neural network output. For each cut on
the neural network output the mass spectrum is fitted in the wide mass range with the cor-
responding parameters and fractions received from the fits to the Monte Carlo templates. In
figure 6.11 the significance as a function of the cut on the output of the neural network is
displayed for the decay Bs → Dsπ, Ds → K∗K. The corresponding result of the binned fit
at the selected working point is represented in figure 6.12 .

nnout
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cut based analysis
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Figure 6.11: Significance as a function of the cut on the network output for the decay Bs →
Dsπ, Ds → K∗K
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Figure 6.12: Invariant mass spectrum for the decay Bs → Dsπ, Ds → K∗K and the binned
fit result for a cut on the neural network output, nnout> 0.92.

To evaluate the performance of the neural networks, the results of the binned fits for the
neural network selections are compared to the results of a cut based analysis. The cuts for
the cut based analysis are taken from [80] and summarized in table 6.7. In tables 6.5 and
6.6 the yields, the signal to background ratios, the significances, the fit results for the back-
ground fraction, the mass and the width of the Bs are listed for the binned mass fits applied
to the network selection and the cut based selection of the data in the wide mass range. A
complete compilation of the binned mass fits for all studied decay channels can be reviewed
in Appendix D.1.1.

The results obtained by the binned fits clearly indicate the better performance of the neural
network selection compared to the cut based selection. The figure of merit, the significance

NS√
NS+NB

, is improved by about 15-90%.

Because all unbinned maximum likelihood fits are performed in the narrow mass range, the
results for the background fractions obtained by the binned mass fits are recalculated. The
new fractions are listed in the tables 6.8 and 6.9 and serve as fixed input quantities to the
unbinned maximum likelihood fits.
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Bs → Dsπ modes
Ds → φπ Ds → K∗K Ds → 3π

cut on nnout 0.68 0.92 0.48
NS (neural net) 1871 ± 48 969± 42 722 ± 40
NS (cut based) 1505 ± 46 711± 34 551 ± 36
NB (neural net) 211± 16 396± 27 590 ± 18
NB (cut based) 281± 17 318± 22 534 ± 16

NS/NB (neural net) 8.9 ± 0.7 2.5± 0.2 1.2± 0.1
NS/NB (cut based) 5.4 ± 0.4 2.2± 0.2 1.0± 0.1

NS/
√
NS +NB (neural net) 41.0 ± 0.7 26.2 ± 1.0 19.9 ± 0.9

NS/
√
NS +NB (cut based) 35.6 ± 0.8 22.2 ± 0.9 16.7 ± 0.9

Bs mass [MeV] 5366.4 ± 0.6 5367.8 ± 0.9 5365.8 ± 1.3
Bs width [MeV] 20.9 ± 0.6 20.3 ± 1.1 20.6 ± 1.3

fb 0.857 ± 0.003 0.912 ± 0.004 0.949 ± 0.003

fraction Λb/Bs - 9.2% 6.2%
fraction B0/Bs - 6.7% -

Table 6.5: Results of the binned fits for the Bs → Dsπ modes in the wide mass range

Bs → Ds3π modes
Ds → φπ Ds → K∗K Ds → 3π

cut on nnout 0.90 0.99 0.99
NS (neural net) 616± 29 260± 21 197 ± 24
NS (cut based) 427± 36 184± 23 -
NB (neural net) 272± 16 159± 13 160 ± 13
NB (cut based) 1152 ± 34 335± 18 -

NS/NB (neural net) 2.3 ± 0.2 1.6± 0.2 1.2± 0.2
NS/NB (cut based) 0.4 ± 0.1 0.6± 0.1 -

NS/
√
NS +NB (neural net) 20.68 ± 0.8 12.7 ± 0.9 10.4 ± 1.1

NS/
√
NS +NB (cut based) 10.7 ± 0.9 8.1± 1.0 -

Bs mass [MeV] 5366.6 ± 0.7 5361.7 ± 1.5 5366.3 ± 1.4
Bs width [MeV] 13.2 ± 0.7 15.9 ± 1.7 12.7 ± 1.6

fb 0.925 ± 0.004 0.932 ± 0.005 0.971 ± 0.004

fraction Λb/Bs - 9.5% 17.3%
fraction B0/Bs - 8.5% 25.2%

Table 6.6: Results of the binned fits to the Bs → Ds3π modes in the wide mass range
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Bs → Dsπ modes Bs → Ds3π modes
cuts on Ds → φπ Ds → K∗K Ds → 3π Ds → φπ Ds → K∗K
χ2

rφ(Bs) < 15 < 8 < 6 < 15 < 8

χ2
rφ(Ds) < 14 < 15 < 15 < 15 < 10

σLxy(Bs) [cm] < 0.04 < 0.04 < 0.04 < 0.04 < 0.04
Lxy

σLxy
(Bs) > 7 > 9 > 13 > 11 > 18

Lxy

σLxy
(Ds) > 2 > 2 > 2 > 11 > 15

Lxy(Bs ← Ds) [cm] > −0.02 > −0.02 > −0.01 > −0.005 > 0.01
|d0(Bs)| [cm] < 0.006 < 0.006 < 0.006 < 0.007 < 0.005
pt(Bs) [GeV] > 5.5 > 5.5 > 6.0 > 6.0 > 5.0
pt(πBs) [GeV] > 1.2 > 1.3 > 1.5 - -
min pt [GeV] > 0.35 > 0.40 > 0.40 > 0.45 > 0.35
mKK [GeV] [1.013,1.028] - - [1.010,1.031] -

|∆m(Kπ,K∗)| [GeV] - < 0.055 - - < 0.050
|∆m(KKπ,Ds)| [GeV] - < 0.025 - - -
|∆m(Kππ,D−)| [GeV] - > 0.024 - - > 0.024
|∆m(Kππ,Kπ)| [GeV] - - > 0.160 - -

∆R(Ds, πBs) - < 1.5 < 1.5 - -

Table 6.7: Overview of the cuts used in the cut based analysis for all Bs → Ds(3)π decay
modes. For the decay Bs → Ds3π, Ds → 3π no cut based analysis exists.

Bs → Dsπ modes
Ds → φπ Ds → K∗K Ds → 3π

fb 0.332 0.601 0.771

fraction Λb/Bs - 8.8% 5.7%
fraction B0/Bs - 5.3% -

Table 6.8: Recalculated fractions of the Bs → Dsπ decay modes in the narrow mass range.

Bs → Ds3π modes
Ds → φπ Ds → K∗K Ds → 3π

fb 0.599 0.717 0.699

fraction Λb/Bs - 7.9% 5.9%
fraction B0/Bs - 7.4% 0.4%

Table 6.9: Recalculated fractions of the Bs → Ds3π decay modes in the narrow mass range.
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To validate the proper implementation of the probability density function modeling the mass
space in the fitting framework toy experiments are used. In each toy experiment an unbinned
maximum likelihood fit to simulated data is performed. Because the same general function is
utilized in all the decay modes, the input parameters for the simulation of the toy experiments
are taken from the binned fit function of the Bs → Dsπ, Ds → K∗K decay. Two different sets
of simulated data are used for the toy experiments. One consists of 3000 simulated events to
reflect the statistics of a Bs → Ds(3)π decay in the narrow mass range. The other has 30000
simulated events in order to remove possible statistical fluctuations. The toy experiments
are repeated 5000 times and afterwards the deviation of the true input parameter to the
fitted parameter normalized to the error of the fitted parameter is evaluated. This quantity
is called pull. The pull distribution should be consistent with a Gaussian function with mean
zero and width one, if the fit is unbiased. The results obtained for a Gaussian fit to the
pull distributions are listed in tables 6.10. They are compatible with the expectation and
one can conclude that the fit results are unbiased. In figures 6.13 and 6.14 examples of pull
distributions are displayed.

Number of events per toy experiment
3000 30000

Bs mass Mean −0.008 ± 0.014 0.035 ± 0.014
Width 0.995 ± 0.010 0.982 ± 0.010

Bs width Mean −0.083 ± 0.014 −0.065 ± 0.014
Width 0.948 ± 0.010 0.971 ± 0.010

Table 6.10: Results of the toy Monte Carlo experiments for the pull distributions of the fitted
mass and width of the Bs meson
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Figure 6.13: Pull distribution of the mass and Gaussian fit for 5000 toy experiments with
3000 events per experiment.
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Figure 6.14: Pull distribution of the width and Gaussian fit for 5000 toy experiments with
3000 events per experiment.



Chapter 7

Lifetime Fit

The determination of the proper decay time and its resolution for the different Bs decay
modes is a necessary requirement for the mixing fit, because the mixing corresponds to the
modulation of the proper decay time distribution. This chapter summarizes the properties of
the proper decay time and its resolution. It describes the unbinned maximum likelihood fit
simultaneously performed in the lifetime and mass space. Finally the fit results of the studied
decay channels of the Bs meson are presented.

7.1 Proper Decay Time

The proper decay time of the Bs is defined as the decay time in its rest frame. It is obtained
by measuring the decay length in the x-y plane Lxy and correcting this length for the Bs

Lorentz boost in the laboratory frame by 1
βγ =

mBs

pt
. In this analysis the world average value

for the Bs mass is taken, mPDG
Bs

= 5.369 GeV [16]. The formula for the proper decay time
corresponds to

t =
Lxym

PDG
Bs

cpt
(7.1)

The resolution of the proper decay time can be written as

σt =

(

mPDG
Bs

cpt

)

σLxy ⊕
(

ct

pt

)

σpt (7.2)

The first term describes the quality of the decay length measurement, which is mainly deter-
mined by the vertex resolution and the decay topology. This analysis uses an event-by-event
reconstruction of the primary vertex instead of using an average beam position. Thereby the
decay length resolution is improved. The second term depends on the momentum resolution
of each candidate. The contribution of the momentum resolution is small compared to the
decay length resolution when studying fully reconstructed hadronic decays modes. This ar-
gument does not hold for semileptonic decays, because they have a bad momentum resolution
due to the missing neutrino momentum. In this thesis the momentum resolution term is
neglected and the expression for the decay time resolution reduces to

σt =
mPDG

Bs

cpt
σLxy (7.3)

83
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7.1.1 Scale Factor Determination for the Proper Decay Time Resolution

The problem of the determination of the scale factor for the proper decay time resolution arises
due to the fact that not all properties concerning the vertex reconstruction are understood.
The proper decay time resolution is calculated from the uncertainty on the Bs vertex and the
event-by-event primary vertex of the pp̄ interaction. From samples unbiased in decay length,
e.g. data collected with the J/ψ di-muon trigger, an underestimation of the proper decay
length resolution is observed . Usually the correction of this underestimation is included
in the fitting procedures by determining a scale factor from sidebands that contain a large
fraction of prompt events. In the case of the Two Track Trigger these contributions are
largely suppressed. Therefore the scale factor is obtained from prompt D(3)π samples that
share most of the properties of the Two Track Trigger data samples. To extract the scale
factor a sequence of several procedures is applied to the data. The calibration sample is binned
in different variables on which the scale factor has large dependencies. These variables are
∆R(D,π), the isolation I, η, z, χ2 for the Dπ topology and I, z, χ2 for the D3π topology.
∆R(D,π) is the distance between the D track and the π track in the φ-η plane and can be
calculated via the relation

∆R(D,π) =
√

∆φ(D,π)2 + ∆η(D,π)2 (7.4)

The isolation is defined as the ratio of the transverse momentum of the Bs to the sum of all
transverse momenta of tracks inside a cone with ∆R(Bs, track)

I =
pt(Bs)

∑

i pt(tracki)
(7.5)

In this thesis ∆R(Bs, track) is 0.7 and the tracks inside the cone are required to have a min-
imum pt of 0.35 GeV. The scale factor variation with respect to one variable is fitted by a
parabola and the parabolic correction is applied to the proper decay time resolution. This is
repeated for each variable until the scale factor is consistent with 1.0. The correction proce-
dure follows the ordering of the variables as listed above and the event-by-event scale factors
can be expressed via the following formulas.

For the Dπ topology

s =
(

p∆R
0 + p∆R

1 ∆R+ p∆R
2 ∆R2

)

(7.6)

·
(

pI
0 + pI

1I + pI
2I

2
)

·
(

pη
0 + pη

1η + pη
2η

2
)

·
(

pz
0 + pz

1z + pz
2z

2
)

·
(

pχ2

0 + pχ2

1 χ2 + pχ2

2 χ2
)

For the D3π topology

s =
(

pI
0 + pI

1I + pI
2I

2
)

(7.7)

·
(

pz
0 + pz

1z + pz
2z

2
)

·
(

pχ2

0 + pχ2

1 χ2 + pχ2

2 χ2
)
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The parameters p for the different datasets used in this analysis are listed in the tables 7.1
to 7.4 . Examples of the scale factor distributions for different datasets are displayed in the
figures 7.1 and 7.2. The need for two sets of parameters for the scale factor determination
has its origin in the two different versions of the reconstruction software used in the xbhd0d
and xbhd0h+i datasets. The average scale factor for signal like events is about 1.4-1.6 for the
hadronic Bs decay modes, which is consistent with the scale factor one can determine in the
J/ψ data. Therefore the uncorrected proper decay time resolution in the Two Track Trigger
data is underestimated. The scale factor obtained by the procedure described above is applied
to the proper decay time resolution at all times. The new proper decay time resolution is

σ′t = s · σt (7.8)

In the following the prime is dropped and the scaled proper decay time resolution is denoted
with σt.

∆R I η z χ2

p0 1.853 1.259 0.9790 0.99469 0.91398
p1 −0.642 −0.519 0.0046 −0.00062 0.02723
p2 0.217 −0.200 0.0928 0.00001 −0.00055

Table 7.1: Parameters p for the scale factor of the Dsπ decay modes, xbhd0d dataset [81].

∆R I η z χ2

p0 1.275 1.369 0.988 0.995 1.262
p1 −0.281 −0.802 0.012 −0.001 0.038
p2 0.053 0.368 0.063 0.00001 −0.001

Table 7.2: Parameters p for the scale factor of the Dsπ decay modes, xbhd0h and xbhd0i
datasets [82].

I z χ2

p0 1.442 0.99007 0.85712
p1 0.355 −0.00016 0.02806
p2 −0.409 0.00002 −0.00071

Table 7.3: Parameters p for the scale factor of the Ds3π decay modes, xbhd0d dataset [81].

I z χ2

p0 1.379 0.995 1.219
p1 −0.910 −0.001 0.035
p2 0.487 0.00001 −0.001

Table 7.4: Parameters p for the scale factor of the Ds3π decay modes, xbhd0h and xbhd0i
datasets [82].
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Figure 7.1: Scale factor distributions for signal like events of the
decay Bs → Dsπ, Ds → K∗K.
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Figure 7.2: Scale factor distributions for signal like events of the
decay Bs → Ds3π, Ds → K∗K.
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7.2 The Lifetime Fit

The lifetime probability function can be written as

P (t) = (1− fb)PS(t) + fbPB(t) (7.9)

with fb being the background fraction. It is designed in a general way like the mass proba-
bility density function for the use in all Bs → Ds(3)π decay modes.

The probability density function for the true lifetime is described by an exponential decay

P True
S (t) =

1

τ
e−

t
τ (7.10)

To include the finite resolution of the detector one has to convolute the true life time dis-
tribution with the detector resolution approximated by a Gaussian function centered around
zero and width σt

PS(t) = e−
t
τ ⊗ G(t− t′, σt) (7.11)

Because of the cuts on the impact parameter and decay length during the Two Track Trigger
selection, a bias in the lifetime measurement is introduced. The bias is further enhanced due
to cuts on variables depending on d0 and Lxy during the preselection of data and later by the
neural network selection. To correct for this bias one has to determine an efficiency function as
a function of the proper decay time. The efficiency function can be derived from a Monte Carlo
sample. It is the ratio of the proper decay time distribution after trigger decision and cuts are
applied and the sum over the expected proper decay time distribution for all generated events.

The expected proper decay time distribution is described by the convolution of the true
proper decay time with the event-by-event resolution. The efficiency function can be written
as

ǫ(t) =
g(t) after trigger and cuts
∑

i e
− t

τ ⊗ G(t− t′, σt,i)
(7.12)

The complete description of the signal proper lifetime distribution arises to

PS(t) =
(

e−
t
τ ⊗ G(t− t′, σt)

)

· ǫ(t) (7.13)

To determine an analytical expression for the normalization of equation 7.13, the efficiency
function is fitted with the following phenomenological description

ǫ(t) =

2
∑

i=0

Nǫ,i · e−
t
τi (βi + t)2 · θ(t− βi) (7.14)

The main drawback of this phenomelogical modeling is the difficulty to find a reasonable
minimum. In order to obtain fit results the fit is repeated several times with random starting
values and the set of parameters with the best χ2/ndf for the fit function is chosen. In
figure 7.3 an example of a fit to the efficiency function is shown for the decay Bs → Dsπ,
Ds → K∗K. The efficiency functions of all channels can be found in Appendix C.2.1 .
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Figure 7.3: Example of the parameterized fit to the efficiency function for the decay Bs →
Dsπ, Ds → K∗K.

The description of the probability density function for background events in the lifetime space
is structured the same way as in the mass space.

PB(t) = fcomb · Pcomb + fpart · (1− fcomb) · Ppart (7.15)

+(1− fpart) · (1− fcomb) · (fΛPΛb
+ (1− fΛ) · PB0)

Because all unbinned fits are performed in the narrow mass range, the contributions of the
partially reconstructed decays are neglected. The background probability density function
then reduces to

PB(t) = fcomb · Pcomb + (1− fcomb) · (fΛPΛb
+ (1− fΛ) · PB0) (7.16)

All background contributions are modeled by an exponential decay convoluted with a Gaus-
sian function

Pcomb,Λb,B0 = Ncomb,Λb,B0 ·
(

e
− t

τ
comb,Λb,B0 ⊗ G(t, µcomb,Λb,B0 , σt

comb,Λb,B0 )

)

(7.17)

with Ncomb,Λb,B0 being the normalization.

This description is purely phenomenological and does not reflect any physical properties,
e.g τcomb,Λb,B0 is not the proper lifetime of the particle. Figures 7.4 to 7.6 show fits to the dif-
ferent background contributions of the lifetime obtained from Monte Carlo samples (Λb, B

0)
and the upper sideband (combinatorial background) for the decay Bs → Dsπ, Ds → K∗K.
The fit results for the other decay modes are given in Appendix C.2.2.
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To prepare the input parameters concerning the lifetime of the mixing fit, one performs a
simultaneous fit in lifetime and mass space. Including the probability density function of
the mass in the unbinned lifetime fits one receives additional information that allows for a
better determination of the lifetime. Because the mass and lifetime variables are regarded
as uncorrelated, the probability density functions of the signal and background contributions
for mass and lifetime space decouple. The maximum likelihood function can be expressed by

L =
∏

i

P (mi, ti) =
∏

i

(1− fb) · PS(ti) · PS(mi) + fb · PB(ti) · PB(mi) (7.18)

The likelihood functions fulfills the normalization relation for every event

∫

m

∫

t
P (m, t) dm dt = 1 (7.19)

The parameters for the Λb and the B0 lifetime contributions obtained by the fits to the
background Monte Carlo samples are kept fixed for the unbinned fits. Because the param-
eterization of the lifetime distribution of the upper side band background is not optimal,
see figure 7.6, the parameters of the fit to the upper sideband serve as start values for the
unbinned fits. All other parameters and fractions are derived of the mass fits and are fixed in
the simultaneous unbinned maximum likelihood fit in mass and lifetime space. The fit results
are listed in tables 7.5 and 7.6. The measured lifetimes are compatible with the world aver-
age values for the flavor specific lifetimes determined by the Heavy Flavor Averaging Group
(HFAG) [83]. In figures 7.7 and 7.8 projections of the fit results to the lifetime and mass
space are displayed for the decay Bs → Dsπ,Ds → K∗K. A complete compilation of the fit
results for all decay modes can be found in Appendix D.2.1.

To probe the implementation of the unbinned maximum likelihood fit of the lifetime in the
fitter framework, a toy experiment study has been performed. The results for the toy exper-
iment studies with 5000 toy experiments and each experiment containing 3000, respectively
30000 events, are summarized in table 7.7. The pull distributions are in good agreement with
the expectation of a normal distribution with mean zero and width one.

Bs → Dsπ modes
Ds → φπ Ds → K∗K Ds → 3π

Bs ct [µm] 449.7 ± 13.8 467.7 ± 22.0 402.3 ± 24.2
Bs mass [MeV] 5366.2 ± 0.6 5367.7 ± 1.0 5365.0 ± 1.3
Bs width [MeV] 21.1 ± 0.5 21.5 ± 0.9 22.1 ± 1.3

Table 7.5: Results of the unbinned lifetime fits for the Bs → Dsπ modes.
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Bs → Ds3π modes
Ds → φπ Ds → K∗K Ds → 3π

Bs ct [µm] 461.7 ± 23.1 481.4 ± 38.5 387.3 ± 41.5
Bs mass [MeV] 5366.4 ± 0.7 5362.4 ± 1.4 5366.3 ± 1.3
Bs width [MeV] 15.5 ± 0.7 14.9 ± 1.4 12.9 ± 1.2

Table 7.6: Results of the unbinned lifetime fits for the Bs → Ds3π modes.

Number of events per toy experiment
3000 30000

Bs ct Mean −0.028 ± 0.014 −0.069 ± 0.014
Width 1.002 ± 0.010 0.993 ± 0.010

Bs mass Mean 0.017 ± 0.014 0.013 ± 0.014
Width 1.009 ± 0.010 0.980 ± 0.010

Bs width Mean −0.027 ± 0.014 −0.076 ± 0.014
Width 0.960 ± 0.010 0.960 ± 0.010

Table 7.7: Results of the toy Monte Carlo experiments for the pull distributions of the proper
decay time, mass and width of the Bs meson.



Chapter 8

Mixing Fit

In the previous chapters all necessary ingredients for the Bs mixing analysis have been de-
scribed. These components are now put together to form the probability density function
used in the mixing likelihood function and in the amplitude scan method.

8.1 The Mixing Likelihood

The probability density function as mentioned in section 4.1 consists of the mixing terms
including the lifetime description and the mass terms.

P = (1− fb) · PS(ξ, t, σt) · PS(m) + fb · PB(ξ, t) · PB(m) (8.1)

The mass term P (m) for signal and background contributions has been subject to chapter
6 and remains unchanged in the mixing likelihood. But the lifetime term P (t, σt) used in
chapter 7 for the probability density of the lifetime space has to be modified to include the
oscillation of the Bs meson in the exponential decay. The mixing term for the oscillating
signal is expressed by

PS(ξ, t, σt) =
1

NS

(

1 + ξD cos(∆mst)

1 + |ξ| · e− t
τ

)

⊗ G(t− t′, σt) · ǫ(t) (8.2)

with ξ denoting if the Bs meson has mixed or not. This is calculated by multiplying the
tagging decision by the charge of the pion (three pion vertex). D is the predicted tagging di-
lution, NS the normalization and ∆ms corresponds to the mixing frequency of the Bs meson.
The analytic expression for the normalization NS can be found in [84].

Assuming the background components in the upper sideband do not oscillate, the descriptions
of tagging and lifetime decouple. The predicted dilutions have no meaning for non-oscillating
background contributions that do not contain any b quark, e.g. the combinatorial background.
To incorporate possible flavor tagging asymmetries for the background a dilution-like fit pa-
rameter is introduced, the so called background dilution Dbg. The background probability
for the tagging and lifetime part can be written under the assumption of an equal number of
positively and negatively tagged candidates in the background as

PB(ξ, t) = (1 + ξDbg) · PB(t) (8.3)

93
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The complete maximum likelihood function for the determination of the mixing frequency
∆ms corresponds to

L =
∏

i

(1− fb) ·
1

NS

(

1 + ξiDi cos(∆msti)

1 + |ξi|
· e−

ti
τ

)

⊗ G(ti − t′, σt,i) · ǫ(ti) · PS(mi)

+ fb · (1 + ξiDbg) · PB(ti) · PB(mi) (8.4)

The probability density functions PS and PB are normalized to the same value according to

∑

ξ=−1,0,1

∫

m

∫

t
PS(m, t, ξ, σt) dm dt =

∑

ξ=−1,0,1

∫

m

∫

t
PB(m, t, ξ) dm dt (8.5)

For the final mixing fit all parameters for the mass and lifetime components determined in
the previous fits are kept fixed. The mixing frequency and the background dilution are the
only free parameters in the mixing fit. The tagging decision and the predicted dilution of each
candidate is given by the same side tagger or the Karlsruhe neural network tagger. The mixing
fits are performed separately for each tagging algorithm. One expects the mixing frequency
to be 17.77 ps−1 [4]. The fits for the mixing frequency are carried out in two different ways.
The decay modes are fitted separately as well as in various combinations with each other. For
the combined fits the mixing frequency and the background dilution are common parameters
to all decay modes included in the fit. The results for the mixing frequency of the combined
fit and the fit for the Bs → Dsπ , Ds → K∗K decay mode agree in both applied tagging
algorithms. However in the case of the Bs → Dsπ , Ds → φπ decay mode the results for the
different taggers are not compatible within the uncertainties. The results for this decay mode
are also less significant as expected from the large significance in the exclusive reconstruction
of the Bs mesons. Therefore the maximum likelihood functions for this channel are evaluated
in more detail. It was discovered that a few events have a very large contribution to the
log likelihood function and therefore mainly determine the minimum of the log likelihood
function. In figure 8.1 the likelihood ratio for such an event with contradicting minima for
both taggers is displayed. The likelihood ratio is defined as

LR = −2 lnL(1)− 2 lnL(0) (8.6)

where L(1) denotes the mixing likelihood and L(0) is the null hypothesis, which corresponds
to the maximum likelihood function without the mixing term.

The fact that only a few events determine the mixing frequency leads to the conclusion that
the maximum likelihood fit is susceptible to statistical fluctuations and wrongly measured or
predicted input variables of the likelihood function.

Furthermore an asymmetry concerning the flavor of the Bs meson at decay time has been
observed for the Bs → Dsπ , Ds → φπ decay mode. In figures 8.2 and 8.3 the difference in
the likelihood ratios are visible in the separate Bs and B̄s samples. The asymmetry is too
large to be explained by differences of particles and antiparticles during the reconstruction or
in the tagging algorithms and it has not been observed in the other decay modes. Because
the neural network selection used for the decay Bs → Dsπ , Ds → φπ, is taken from [5],
this decay channel was not studied in detail in this thesis. A further investigation of the
Bs → Dsπ, Ds → φπ decay channel is under way.
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Figure 8.1: Likelihood ratio as a function of ∆ms

for a single event (run=199042, event=8793379) for
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All results of the unbinned maximum likelihood fit of the mixing frequency are summarized
in table 8.1 and graphically represented in figure 8.4. The likelihood ratios of the separate
mixing fits for the Bs → Dsπ, Ds → φπ and Ds → K∗K decay modes are displayed in figures
8.5 and 8.6. The likelihood ratios of the combined fits are shown in figure 8.7 and 8.8.

Bs → Dsπ ∆ms [ps−1] Dbg × 10−3 ∆ms [ps−1] Dbg × 10−3

Ds → SSKT SSKT KANNT KANNT

φπ 17.94+0.24
−0.22 −2.8± 42.3 18.69+0.17

−0.20 13.3 ± 36.8

φπ (Bs) 17.92+0.20
−0.22 −18.8 ± 57.9 18.06+0.23

−0.24 −8.4 ± 50.4

φπ (B̄s) 16.90+0.30
−0.32 15.6 ± 61.8 18.86 ± 0.16 40.8 ± 53.5

K∗K 17.84 ± 0.17 27.1 ± 33.4 17.85+0.15
−0.14 43.5 ± 28.7

combined φπ, K∗K, 3π 17.89+0.13
−0.14 15.3 ± 17.8 17.86 ± 0.12 12.1 ± 15.5

combined K∗K, 3π 17.86+0.16
−0.18 19.2 ± 19.6 17.84 ± 0.12 11.8 ± 17.1

Table 8.1: Results of the mixing fit.
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Figure 8.4: Graphical representation of the results obtained by the mixing fit.
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The implementation of the fit model in the fitter framework is validated using toy Monte
Carlo experiments. The results of the toy Monte Carlo experiments can be found in table 8.2
and the pull distributions are displayed in figure 8.9 and 8.10. The uncertainty on ∆ms in
case of toy experiments with 3000 generated events is underestimated, because the negative
log likelihood function is asymmetric in the minimum. However the error used to calculate
the pull is a MIGRAD error, which assumes a parabolic behavior of the negative log like-
lihood function in the minimum. The underestimation of the uncertainty vanishes for toy
experiments using 30000 generated events as the negative log likelihood function approaches
a parabolic shape in its minimum.
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Number of events per toy experiment
3000 30000

∆ms Mean −0.008± 0.016 −0.018 ± 0.015
Width 1.104 ± 0.014 1.017 ± 0.011

Table 8.2: Results of the toy Monte Carlo experiments for the pull distributions of the Bs

mixing frequency.

s m∆σ)/s,true m∆ - s, fit m∆(
-10 -8 -6 -4 -2 0 2 4 6 8 10

ar
b

it
ra

ry
 u

n
it

s

0

50

100

150

200

250

300

350

400
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for 5000 toy experiments with 3000 events per exper-
iment.

s m∆σ)/s,true m∆ - s, fit m∆(
-4 -3 -2 -1 0 1 2 3 4 5

ar
b

it
ra

ry
 u

n
it

s

0

20

40

60

80

100

120

140

160

180

200

220

Figure 8.10: Pull distribution of ∆ms and Gaussian
fit for 5000 toy experiments with 30000 events per
experiment.



8.2. THE AMPLITUDE SCAN METHOD 99

8.2 The Amplitude Scan Method

The amplitude scan method provides the opportunity to probe for the mixing frequency in
the case of low statistics. Furthermore one can easily combine different measurements and
determine the sensitivity and the limits for the results of the mixing analysis. The amplitude
scan is based on the idea of scanning over a range of frequencies to determine the mixing
frequency. Therefore a Fourier-like coefficient, called amplitude A, is introduced the signal
term of the maximum likelihood function

PS(ξ, t, σt) =
1

NS

(

1 + ξAD cos(∆mst)

1 + |ξ| · e− t
τ

)

⊗ G(t− t′, σt) · ǫ(t) (8.7)

During the amplitude scan all parameters are kept fixed in the maximum likelihood function
and the amplitude A is determined for the given frequency. The amplitude should be one at
the mixing frequency ∆ms and zero otherwise. The shape of the resonance peak in the signal
region is expected to follow a Breit-Wigner function. The width of the Breit-Wigner function
is determined by the lifetime of the Bs mesons. A bias in the proper decay time distribution
introduces an undershoot at both sides of the amplitude peak. The exclusion limit at a 95%
confidence level is defined as the largest value of the mixing frequency below which all other
frequencies are excluded and it can be expressed by

A+ 1.645 · σA < 1 (8.8)

The sensitivity at a 95% confidence level for the amplitude scan is defined as

1.645 · σA = 1 (8.9)

In figures 8.12 and 8.13 the amplitude scans for the combined fit of the decay modes Bs →
π,Ds → φπ,K∗K, 3π are displayed for both taggers. The sensitivity of the same side kaon tag-
ger is 25.0 ps−1 and 29.2 ps−1 for the Karlsruhe neural network tagger. The exclusion limit is
17.0 ps−1 for the same side kaon tagger and 17.5 ps−1 for the Karlsruhe neural network tagger.

Furthermore the amplitude can be used to calibrate the tagging algorithm. The amplitude is
determined in the same way as in the amplitude scan method. But instead of scanning over
a range of frequencies, one fixes the mixing frequency to the value obtained in the previous
unbinned maximum likelihood fit and only performs the fit once at that frequency. If the
predicted dilution of the tagger is over- or underestimated the amplitude will deviate from
one at the mixing frequency. It is the first attempt to calibrate tagging algorithms using the
Bs oscillation measurement. The calibrated tagging power can be expressed as

T = ǫD2 = ǫ
1

n

n
∑

i=1

(ADi)
2 (8.10)

with n being the number of events in the signal region and Di the predicted dilution for an
event. An example for the distribution of the squared predicted dilution for both tagging
algorithms is given in figure 8.11.
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The results for the fitted amplitudes and the calibrated tagging power are listed in table 8.3.
No systematic uncertainties are given as the statistical uncertainties are dominant in the case
of the fitted amplitudes [4]. The problems observed in the results of the unbinned mixing fit
of the Bs → Dsπ , Ds → φπ decay channel for the taggers are propagated to the results of
the amplitude scan. The differences in the mixing frequencies for single channels influences
the results of a combined amplitude scan. This is due to the fact that the fitted amplitudes
at a given frequency add up as follows

A =
∑

i

Ai

σ2
Ai

σA with
1

σ2
A

=
∑

i

1

σ2
Ai

(8.11)

In the case of the Bs → Dsπ , Ds → φπ decay mode and the Karlsruhe neural network tagger,
the amplitude scan probes at the combined mixing frequency of 17.86 ps−1, yet the frequency
determined by the single maximum likelihood fit is 18.69 ps−1. The amplitude for the single
fit at this frequency is 0.87± 0.31 but 0.57± 0.29 at the probe frequency of the combined fit.
This explains the low amplitude of the Karlsruhe neural network tagger for the combined fit
of all Bs → Dsπ decay modes.

The results obtained for the calibrated tagging power agree with the expectations of about 4%
for the same side kaon tagger and about 9% for the neural network tagger. However the large
uncertainties prohibit the conclusion which tagging algorithm is superior. The results can be
improved by adding more data as up to now the uncertainty of the amplitude is dominated
by statistics. In this thesis everything has been prepared to include the missing Bs → Ds3π
decay modes in the mixing analysis and the tagging calibration. This was prevented by lim-
ited availability of computer resources, as the process of implementing the newly developed
neural network tagger in the data needs a lot of computing power.

Bs → Dsπ A SSKT A KANNT T SSKT T KANNT
Ds →

combined φπ, K∗K, 3π 0.97 ± 0.33 0.69± 0.22 4.4± 3.0% 4.8± 3.1%
combined K∗K, 3π 1.08 ± 0.48 0.84± 0.32 5.7± 5.1% 7.5± 5.7%

Table 8.3: The fitted amplitudes and the corresponding tagging powers.
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Chapter 9

Conclusion and Outlook

The idea of using Bs oscillations to calibrate different tagging algorithms has been the main
aim of this thesis. To achieve this goal a complete Bs mixing analysis is necessary. For the
full mixing analysis several prerequisites have been met.� A fitting framework was created with the intention of an easy handling of many decay

modes and the corresponding fit functions. The framework is not only used in this thesis,
but serves as cornerstone for many other analyses in our group, e.g. the observation of
orbitally excited Bs mesons [7].� The next step towards the measurement of the Bs mixing frequency is the optimization
of the selection of exclusive Bs mesons. In the thesis six different fully reconstructed
hadronic decay modes of the Bs meson have been studied, namely the decays Bs →
Ds(3)π with Ds → φπ,K∗K, 3π. Thereby previous neural network selections of the
decay Bs → Dsπ with Ds → φπ, 3π and Bs → Ds3π with Ds → φπ taken from [5, 6]
have been updated and combined with new selections of the decays Bs → Ds(3)π with
Ds → K∗K and Bs → Ds3π with Ds → 3π. Altogether about 4600 Bs signal events
have been found by using neural networks in the final selection compared to about 3400
signal events in the previously used cut based analysis.� A further requisite for the determination of the Bs mixing frequency is the description
of the probability density functions of the mass and lifetime space in the maximum
likelihood function of the mixing fit. The values measured for the Bs mass and the Bs

lifetime in the studied Bs decay channels are in good agreement with the world average
values [16]. In the mixing fit these values are used as fixed input parameters.� For the necessary b flavor tagging at production time a newly developed Karlruhe neural
network tagging algorithm has been implemented in the analysis and compared to the
best available tagging alogrithm at the CDF II experiment, the same side kaon tagging
algorithm.

The mixing frequency of the Bs meson is determined by the unbinned maximum likelihood
mixing fit of the combination of the three decay modes, Bs → Dsπ, Ds → φπ,K∗K, 3π. The
Bs → Ds3π decay modes are not included in the combined fit as the datasets used in thesis
do not yet contain the tagging information of the Karlsruhe neural network tagger.
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The final result for the mixing frequency ∆ms of the combined fit is

∆ms = 17.89+0.13
−0.14 ps

−1 for the same side kaon tagger

∆ms = 17.86 ± 0.12 ps−1 for the Karlsruhe neural network tagger

Both results are compatible with the mixing frequency of 17.77± 0.10(stat)± 0.07(sys) ps−1

measured in [4].

In order to calibrate the different tagging algorithms the amplitude is fitted at the mea-
sured mixing frequency. The fitted amplitude determines the tagging power ot the flavor
taggging algorithm. The tagging power is calculated from the fitted amplitude, the efficien-
cies and the predicted dilutions of the tagging algorithms. One obtains the following values
for the tagging power of the tagging algorithms

T = 4.4 ± 3.0% for the same side kaon tagger

T = 4.8 ± 3.1% for the Karlsruhe neural network tagger

As the measured mixing frequency in the Bs → Ds, Ds → φπ decay mode is shifted by
approximately 0.8 ps−1 compared to the mixing frequency determined in the combined fit, the
fitted amplitude becomes smaller and the calibrated tagging power is impaired. Therefore the
tagging powers are additionally determined in a combined fit excluding the Bs → Ds, Ds →
φπ decay mode. The results of the tagging powers improved but have larger uncertainties
due to smaller statistics. The results of the tagging powers are

T = 5.7 ± 5.1% for the same side kaon tagger

T = 7.5 ± 5.7% for the Karlsruhe neural network tagger

This is the first time a calibration of tagging algorithms using Bs oscillations has been at-
tempted and the Karlsruhe neural network tagger has been tested on data. The Karlsruhe
neural network tagger is already quite promising yet has to be further evaluated with more
data in order to reduce statistical uncertainties.

Furthermore all prerequisites have been met to include the Bs → Ds3π decay modes in the
calibration of the tagging power as soon as the Karlsruhe neural network tagger is available for
these modes. The calibration was done with a data sample of 1 fb−1 and the complete mixing
analysis including the calibration will be repeated soon on the newly processed data sample
of an integrated luminosity of about 2 fb−1. The main effort to improve the tagging power
has yet to be the full understanding of the observed problems in the Bs → Dsπ, Ds → φπ
decay mode. If the calibrated tagging power of the newly developed Karlruhe neural network
tagger can reach its predicted value of 9.31% the tagging power will be nearly twice as good
compared to the tagging power of currently available tagging algorithms. Therefore all analy-
ses using flavor tagged Bs mesons will profit of a doubled statistics. The further improvement
of tagging algorithms will help to understand more of the properties of the Bs meson system,
e.g. allow for the measurement of mixing induced CP violation. It is the beginning of a new
chapter for Bs meson physics which started with the recent measurement of the Bs mixing
frequency.



Appendix A

List of Variables

Lxy(P ) Decay length of the particle P

Lxy/σLxy(P ) Decay length significance of the particle P

σLxy(P ) Error of the decay length of the particle P

Lxy(P ← C) Decay length between Parent P and child C

χ2
3D(P ) Three–dimensional χ2 of the vertex fit for the particle P

χ2
rφ(P ) Two–dimensional χ2 of the vertex fit for the particle P

|d0(P )| Impact parameter of the particle P

d0/σd0(P )| Impact parameter significance of the particle P

min d0(π
1
Bs
, π2

Bs
, π3

Bs
) Minimum of the impact parameters of all pions tracks from the Bs

max d0(π
1
Bs
, π2

Bs
, π3

Bs
) Maximum of the impact parameters of all pions tracks from the Bs

min d0
σd0

Minimum of the impact parameter significances of all tracks

lts. d0(P ) Lifetime signed impact parameter of the particle P (see fig. A.1)

lts. d0/σd0(P ) Lifetime signed impact parameter significance of the particle P

lts. d0/σd0(π
n
Ds

) Lifetime signed impact parameter significance of the n-th (n=1,2,3) pion

originating from the Ds meson.

min lts. d0/σd0 Minimum of the lifetime signed impact parameter significances of all tracks

pt(P ) Transverse momentum of the particle P
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min pt Minimum of the transverse momenta of all tracks

helicity angle K1
φ Cosine of the angle between the three momentum of the Ds meson ~p(Ds)

and the three–momentum ~p(K1) of the first of the two kaons from the decay φ→ KK
boosted to the rest frame of the φ meson (the “helicity angle”)

helicity angle KK∗ Cosine of the angle between the three momentum of theDs meson ~p(Ds)
and the three–momentum ~p(K) of the kaon from the decay K∗ → Kπ boosted to the
rest frame of the K∗ meson (the “helicity angle”)

CMS angle πBs Angle between the three–momentum of the Bs meson ~p(B) and the three–

momentum ~p(πB) of the pion from the decay Ds → πππ boosted to the Bs mesons rest
frame

θ(~n(π1
Bs

,π2
Bs

), ~p(3π)) Angle between the three–momentum of the three pion vertex and the

normal vector of the plane spanned by the momenta of the two pions π1
Bs

and π2
Bs

, (see
fig. A.2)

θ(~n(π1
Bs

,π2
Bs

), ~p(3πvtx) = ∢(~n, ~p(3πvtx))

~n =

{

~p(π1
Bs

)× ~p(π2
Bs

) , if mπ1
Bs

π2
Bs
> mπ2

Bs
π3

Bs

−(~p(π1
Bs

)× ~p(π2
Bs

)) , if mπ1
Bs

π2
Bs
≤ mπ2

Bs
π3

Bs

∆R(Ds, πBs) Opening angle (in sterad) between the Ds meson and the π from the decay
Bs → Dsπ

q(P ) Charge of the particle P

inv. mass mP 1P 2 invariant mass of the four momentum p = pP 1 + pP 2. P 1 and P 2 denote

different particles, e.g. π1
Ds

and π2
Ds

inv. mass m2
P 1P 2 squared invariant mass of the four momentum p = pP 1 + pP 2

min(m12
P ,m

23
P ) minimum of the invariant masses of the four momenta p12 = pP 1 + pP 2 and

p23 = pP 2 + pP 3

min(m12
P ,m

23
P ) maximum of the invariant masses of the four momenta p12 = pP 1 + pP 2 and

p23 = pP 2 + pP 3

inv. mass m3πBs
invariant mass of the three pion vertex

mdiff ratio of the invariant mass of the three pion vertex and the mass difference of the Bs

and the Ds meson mdiff =
m3πBs

mBs−mDs



107

Primary Vertex

 (B)p

 (track)p

0d

Figure A.1: Definition of the lifetime–signed impact parameters for a track in an event with

a B decay : lts. d0 = | ~d0| signum(~d0 ~pB)
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), ~p(3π)) for the decay Bs → Ds3π. Here the

3π vertex is denoted as a1.
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Appendix B

Compilation of Training Results

This compilation consists of the plots and tables obtained in the training of the Bs channels.
They show the correlation matrix, the significance table, the plot of the separation of signal
and background and the plot of the purity as a function of network output.

The entries ρij of the correlation matrix for all pairs of variables xi, xj are calculated us-
ing the following quantities as input :� the covariance matrix C for N variables including the target.

Cij =
1

n

∑

events

(xi − 〈xi〉) · (xj − 〈xj〉) (B.1)

with n the number of training events and 〈x〉 the expectation value of x� the variance of the variable x : V [xi]

This leads to the correlation coefficients

ρij =
Cij

√

V [xi]
√

V [xj ]
(B.2)

The plot of the purity versus the network output should indicate a linear behavior of the
purity for a successful training :

P (nnout) =
(nnout + 1)

2
(B.3)

109



110 APPENDIX B. COMPILATION OF TRAINING RESULTS

-1

-0.5

0

0.5

1

1 2 3 4 5 6 7 8 9 10 11 12 13

13

12

11

10

9

8

7

6

5

4

3

2

1

correlation matrix of input variables
Rank Name Sign. [σ] Index

- target - 1
1 Lxy/σLxy (Bs) 159.21 2
2 |d0(Bs)| 62.46 3
3 pt(πBs) 30.72 5
4 χ2

3D(Bs) 26.09 4
5 helicity angle K1

φ 14.51 6
6 Lxy(Bs ← Ds) 13.85 10
7 mφ→KK 12.48 7
8 |d0(Ds)| 11.97 12
9 min pt 11.54 11
10 χ2

3D(Ds) 10.11 8
11 Lxy/σLxy (Ds) 9.27 9
12 lts. d0/σd0

(K1
φ) 3.16 13

Figure B.1: Correlation matrix and significance table of the training variables for the decay
Bs → Dsπ,Ds → φπ, φ→ KK.
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Figure B.2: Plots obtained after the NeuroBayes® training for the decay Bs → Dsπ,Ds →
φπ, φ → KK. The purity as a linear function of the network output (upper plot) and
separation of signal and background (lower plot).
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Figure B.3: Correlation matrix and significance table of the training variables for the decay
Bs → Dsπ,Ds → K∗K,K∗ → Kπ.
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Figure B.4: Plots obtained after the NeuroBayes® training for the decay Bs → Dsπ,Ds →
K∗K,K∗ → Kπ. The purity as a linear function of the network output (upper plot) and
separation of signal and background (lower plot).
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Figure B.5: Correlation matrix and significance table of the training variables for the decay
Bs → Dsπ,Ds → πππ.
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Figure B.6: Plots obtained after the NeuroBayes® training for the decay Bs → Dsπ,Ds →
πππ. The purity as a linear function of the network output (upper plot) and separation of
signal and background (lower plot).



113

-1

-0.5

0

0.5

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

22
21
20
19
18

17
16
15

14
13

12

11
10

9
8

7
6
5

4
3

2
1

correlation matrix of input variables

Rank Name Sign. [σ] Index

- target - 1
1 Lxy/σLxy (Bs) 400.44 4
2 max(m12

πBs
, m23

πBs
) 259.40 18

3 χ2
rφ(Bs) 132.8 2

4 Lxy(Bs ← Ds) 94.53 8
5 pt(Bs) 89.65 5
6 mdiff 66.10 22
7 σLxy (Bs) 65.58 3
8 min d0(π

1
Bs

, π2
Bs

, π3
Bs

) 55.97 15
9 |d0(Bs)| 45.84 21
10 max d0(π

1
Bs

, π2
Bs

, π3
Bs

) 45.17 16
11 mφ→KK 42.66 14
12 θ(~n(π1

Bs
,π2

Bs
), ~p(3π)) 33.27 20

13 inv. mass mπ1

Bs
π2

Bs

31.27 19

14 min(m12
πBs

, m23
πBs

) 25.3 17

15 pt(K
2
φ) 24.84 13

16 pt(π
2
Bs

) 19.56 10
17 pt(π

3
Bs

) 15.8 11
18 Lxy/σLxy (Ds) 14.31 7
19 pt(π

1
Bs

) 14.13 9
20 χ2

rφ(Ds) 8.13 6
21 pt(K

1
φ) 7.16 12

Figure B.7: Correlation matrix and significance table of the training variables for the decay
Bs → Ds3π,Ds → φπ, φ→ KK.
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Figure B.8: Plots obtained after the NeuroBayes® training for the decay Bs → Ds3π,Ds →
φπ, φ → KK. The purity as a linear function of the network output (upper plot) and
separation of signal and background (lower plot).
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Figure B.9: Correlation matrix and significance table of the training variables for the decay
Bs → Ds3π,Ds → K∗K,K∗ → Kπ.
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Figure B.10: Plots obtained after the NeuroBayes® training for the decay Bs → Ds3π,Ds →
K∗K,K∗ → Kπ. The purity as a linear function of the network output (upper plot) and
separation of signal and background (lower plot).
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Figure B.11: Correlation matrix and significance table of the training variables for the decay
Bs → Ds3π,Ds → πππ.
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Figure B.12: Plots obtained after the NeuroBayes® training for the decay Bs → Ds3π,Ds →
πππ. The purity as a linear function of the network output (upper plot) and separation of
signal and background (lower plot).
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Appendix C

Compilation of Fit Templates

C.1 Fit Templates in Mass Space

C.1.1 Cabibbo suppressed signal
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Figure C.1: MC fit template for the
cabibbo suppressed decay of Bs →
Dsπ, Ds → φπ
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Figure C.2: MC fit template for the
cabibbo suppressed decay of Bs →
Dsπ, Ds → K∗K
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Figure C.3: MC fit template for the
cabibbo suppressed decay of Bs →
Dsπ, Ds → 3π
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Figure C.4: MC fit template for the
cabibbo suppressed decay of Bs →
Ds3π, Ds → φπ
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Figure C.5: MC fit template for the
cabibbo suppressed decay of Bs →
Ds3π, Ds → K∗K
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Figure C.6: MC fit template for the
cabibbo suppressed decay of Bs →
Ds3π, Ds → 3π

C.1.2 DsX background
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Figure C.7: MC fit template for the
DsX background contribution of the
Bs → Dsπ, Ds → φπ decay mode
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Figure C.8: MC fit template for the
DsX background contribution of the
Bs → Dsπ, Ds → K∗K decay mode
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Figure C.9: MC fit template for the
DsX background contribution of the
Bs → Dsπ, Ds → 3π decay mode

inv. mass [GeV]
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Figure C.10: MC fit template for the
DsX background contribution of the
Bs → Ds3π, Ds → φπ decay mode
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Figure C.11: MC fit template for
the DsX background contribution of
the Bs → Ds3π, Ds → K∗K decay
mode
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Figure C.12: MC fit template for the
DsX background contribution of the
Bs → Ds3π, Ds → 3π decay mode

C.1.3 Λb background
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Figure C.13: MC fit template for the
Λb contribution of the Bs → Dsπ,
Ds → K∗K decay mode
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Figure C.14: MC fit template for the
Λb contribution of the Bs → Dsπ,
Ds → 3π decay mode
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Figure C.15: MC fit template for the
Λb contribution of the Bs → Ds3π,
Ds → K∗K decay mode
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Figure C.16: MC fit template for the
Λb contribution of theBs → Ds3π,
Ds → 3π decay mode
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C.1.4 B0 background
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Figure C.17: MC fit template for the
B0 contribution of the Bs → Dsπ,
Ds → K∗K decay mode
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Figure C.18: MC fit template for the
B0 contribution of the Bs → Ds3π,
Ds → K∗K decay mode
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Figure C.19: MC fit template for the
B0 contribution of the Bs → Ds3π,
Ds → 3π decay mode
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C.2 Fit Templates in Lifetime Space

C.2.1 Efficiency Function
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Figure C.20: Parameterized fit to
the efficiency function for the decay
Bs → Dsπ, Ds → φπ
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Figure C.21: Parameterized fit to
the efficiency function for the decay
Bs → Dsπ, Ds → K∗K
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Figure C.22: Parameterized fit to
the efficiency function for the decay
Bs → Dsπ, Ds → 3π
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Figure C.23: Parameterized fit to
the efficiency function for the decay
Bs → Ds3π, Ds → φπ
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Figure C.24: Parameterized fit to
the efficiency function for the decay
Bs → Ds3π, Ds → K∗K
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Figure C.25: Parameterized fit to
the efficiency function for the decay
Bs → Ds3π, Ds → 3π

C.2.2 Background Contributions to the Proper Decay Time

Combinatorial Background
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Figure C.26: Fit to the ct distribu-
tion of the upper sideband for the
decay Bs → Dsπ, Ds → φπ
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Figure C.27: Fit to the ct distribu-
tion of the upper sideband for the
decay Bs → Dsπ, Ds → K∗K
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Figure C.28: Fit to the ct distribu-
tion of the upper sideband for the
decay Bs → Dsπ, Ds → 3π
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Figure C.29: Fit to the ct distribu-
tion of the upper sideband for the
decay Bs → Ds3π, Ds → φπ
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Figure C.30: Fit to the ct distribu-
tion of the upper sideband for the
decay Bs → Ds3π, Ds → K∗K
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Figure C.31: Fit to the ct distribu-
tion of the upper sideband for the
decay Bs → Ds3π, Ds → 3π

Λb Background
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Figure C.32: Fit to the ct distribu-
tion of a Λb MC sample for the decay
Bs → Dsπ, Ds → K∗K
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Figure C.33: Fit to the ct distribu-
tion of a Λb MC sample for the decay
Bs → Dsπ, Ds → 3π



124 APPENDIX C. COMPILATION OF FIT TEMPLATES

ct [cm]
-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

en
tr

ie
s 

p
er

 0
.0

04
 c

m

0

2

4

6

8

10

12

14

16

18

Figure C.34: Fit to the ct distribu-
tion of a Λb MC sample for the decay
Bs → Ds3π, Ds → K∗K
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Figure C.35: Fit to the ct distribu-
tion of a Λb MC sample for the decay
Bs → Ds3π, Ds → 3π

B0 Background
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Figure C.36: Fit to the ct distribu-
tion of aB0 MC sample for the decay
Bs → Dsπ, Ds → K∗K
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Figure C.37: Fit to the ct distribu-
tion of aB0 MC sample for the decay
Bs → Ds3π, Ds → K∗K
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Figure C.38: Fit to the ct distribu-
tion of aB0 MC sample for the decay
Bs → Ds3π, Ds → 3π
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Compilation of Fit Results

D.1 Binned Fits

D.1.1 Mass Fits
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Figure D.1: Invariant mass spectrum
for the decay Bs → Dsπ, Ds → φπ and
the binned fit result for a cut on the
neural network output, nnout> 0.68.
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Figure D.2: Invariant mass spectrum
for the decay Bs → Dsπ, Ds → φπ
and the binned fit result for a cut based
analysis.
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Figure D.3: Invariant mass spectrum
for the decay Bs → Dsπ, Ds → K∗K
and the binned fit result for a cut on the
neural network output, nnout> 0.92.
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Figure D.4: Invariant mass spectrum
for the decay Bs → Dsπ, Ds → K∗K
and the binned fit result for a cut based
analysis.
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Figure D.5: Inv. mass spectrum for the
decay Bs → Dsπ, Ds → 3π and the
binned fit result for a cut on the neural
network output, nnout> 0.48.
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Figure D.6: Invariant mass spectrum
for the decay Bs → Dsπ, Ds → 3π
and the binned fit result for a cut based
analysis.
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Figure D.7: Invariant mass spectrum
for the decay Bs → Ds3π, Ds → φπ
and the binned fit result for a cut on the
neural network output, nnout> 0.90.
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Figure D.8: Invariant mass spectrum
for the decay Bs → Ds3π, Ds → φπ
and the binned fit result for a cut based
analysis.
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Figure D.9: Invariant mass spectrum
for the decay Bs → Ds3π, Ds → K∗K
and the binned fit result for a cut on the
neural network output, nnout> 0.99.
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Figure D.10: Invariant mass spectrum
for the decay Bs → Ds3π, Ds → K∗K
and the binned fit result for a cut based
analysis.
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Figure D.11: Invariant mass spectrum
for the decay Bs → Ds3π, Ds → 3π
and the binned fit result for a cut on the
neural network output, nnout> 0.99.

D.2 Unbinned Fits

D.2.1 Projections of the Fit Results to the Mass and Lifetime Space
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Figure D.12: Projection of the un-
binned fit result to the lifetime space
for the decay Bs → Dsπ, Ds → φπ
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Figure D.13: Projection of the un-
binned fit result to the mass space for
the decay Bs → Dsπ, Ds → φπ
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Figure D.14: Projection of the un-
binned fit result to the lifetime space
for the decay Bs → Dsπ, Ds → K∗K
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Figure D.15: Projection of the un-
binned fit result to the mass space for
the decay Bs → Dsπ, Ds → K∗K
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Figure D.16: Projection of the un-
binned fit result to the lifetime space
for the decay Bs → Dsπ, Ds → 3π
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Figure D.17: Projection of the un-
binned fit result to the mass space for
the decay Bs → Dsπ, Ds → 3π
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Figure D.18: Projection of the un-
binned fit result to the lifetime space
for the decay Bs → Ds3π, Ds → φπ
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Figure D.19: Projection of the un-
binned fit result to the mass space for
the decay Bs → Ds3π, Ds → φπ
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Figure D.20: Projection of the un-
binned fit result to the lifetime space
for the decay Bs → Ds3π,Ds → K∗K
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Figure D.21: Projection of the un-
binned fit result to the mass space for
the decay Bs → Ds3π, Ds → K∗K
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Figure D.22: Projection of the un-
binned fit result to the lifetime space
for the decay Bs → Ds3π, Ds → 3π
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Figure D.23: Projection of the un-
binned fit result to the mass space for
the decay Bs → Ds3π, Ds → 3π
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