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ABSTRACT

We present results of a search for single top quark production in pp collisions using a

dataset of approximately 1 fb−1 collected with the DØ detector. This analysis considers

the muon+jets and electron+jets final states and makes use of Bayesian neural networks to

separate the expected signals from backgrounds. The observed excess is associated with a

p-value of 0.081%, assuming the background-only hypothesis, which corresponds to an excess

over background of 3.2 standard deviations for a Gaussian density. The p-value computed

using the SM signal cross section of 2.9 pb is 1.6%, corresponding to an expected significance

of 2.2 standard deviations. Assuming the observed excess is due to single top production, we

measure a single top quark production cross section of σ(pp̄ → tb+X, tqb+X) = 4.4±1.5 pb.
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PREFACE

This dissertation is a detailed description of the search for single top quark production using

Bayesian neural networks. In Chapter 1, the Standard Model and top quark physics are

briefly discussed. Also, the motivation for studying single top quark production is given.

Chapter 2 describes the acceleration chain of protons and anti-protons and the DØ detector.

The identification of physics objects is explained in Chapter 3. Chapter 4 describes the data

set we used. Chapter 5 discusses single top and background modeling, which mostly relies on

Monte Carlo simulation. Event selection criteria and expected event numbers after selection

are described in Chapter 6. Chapter 7 gives an exposition of the theory and application

of Bayesian neural networks. This chapter starts with the basic concepts of (conventional)

neural networks and proceeds to explain how to combine Bayesian statistics and neural

networks. In addition, Markov Chain Monte Carlo methods, which are used to implement

Bayesian neural networks, are described. Chapter 8 explains details of the analysis and

result. To validate our result, we performed a statistical test. The interpretation of the test

is given in the conclusion.
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CHAPTER 1

Introduction

All top quarks discovered and observed at the Tevatron at Fermilab were produced with

the anti-top quark through the strong interactions. The Standard Model predicts that top

quarks can be produced singly through the weak interactions. This dissertation describes a

search for single top quark production and the evidence we found for the existence of this

interaction. To discuss the importance of single top quark production, we begin with the

fundamental theory, the Standard Model.

1.1 Standard Model

Particle physicists have developed a theory called the Standard Model (SM) [1, 2, 3, 4, 5, 6],

which describes all elementary particles and their interactions. The SM is a quantum field

theory based on gauge symmetries. It is a very elegant theoretical framework that has

successfully passed very precise tests. However, the gravitational interaction is not yet part

of this framework.

1.1.1 Quarks and Leptons

There are two types of elementary particles. The first are the basic building blocks of matter.

The second are particles that generate interactions. The “matter” particles are fermions and

fall into two classes: quarks and leptons. Both quarks and leptons are spin -1
2

particles, and

therefore obey Fermi-Dirac statistics. As indicated in Fig. 1.1, quarks and leptons are each

arranged in three generations, containing particles of similar properties but differing in mass.

For each particle there exists an associated anti-particle.

There are six different flavors of quarks, labeled (in order of increasing mass) up, down,

strange, charm, bottom, and top. Quarks carry fractional electrical charges of +2
3

or -1
3
.
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Figure 1.1: Properties of fermion particles: quarks and leptons. Spin is given in units of ~,
electric charge is given in units of the absolute value of the electron charge.

Quarks are never observed as single particles but form bound states called hadrons of either

three quarks to form baryons, or by pairing a quark with an antiquark to form mesons.

Protons (made up of two up-quarks and one down-quark) and neutrons (made up of two

down-quarks and one up-quark) are the most common examples of baryons. Pions (π0, π±)

and kaons (K±, K0, K̄0) are the most common types of mesons.

There are three different flavors of charged leptons carrying a charge of -1: electron (e−),

muon (µ−), and tau (τ−). While electrons exist in all atoms, muons and taus can only be

observed in energetic processes like cosmic ray showers, or in high energy particle collisions.

There are three neutral leptons, called neutrinos (ν), each associated with a charged lepton:

νe, νµ, and ντ . Neutrinos interact extraordinarily weakly with matter and their masses are

negligibly small.

1.1.2 Interactions

A fundamental interaction (or force) is a mechanism by which particles interact with each

other. In nature, there are four fundamental interactions: gravitation, electromagnetism,
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the weak interactions, and the strong interactions. Particle interactions are described in

terms of exchanges of interaction particles, bosons having spin 1. The photon mediates

the electromagnetic interaction, the three weak bosons are the exchanged particles in weak

interactions, and the eight gluons are the mediating bosons in the strong interactions.

The Standard Model is a Quantum Field Theory (QFT) in which the interactions manifest

certain symmetries. Using the framework of Lagrangian field theory, the theory is required

to be invariant under a group of local phase changes (local gauge invariance). A local

phase depends on the spacetime coordinate. In order to ensure gauge invariance of such a

Lagrangian, gauge fields are introduced. These gauge fields lead to spin-1 bosons that are

the mediators of the interactions.

Electromagnetic Interactions

Historically, the electromagnetic interactions were the first to be formulated in the framework

of a calculable (renormalizable) QFT by Tomonaga, Feynman, and Schwinger in the 1940s.

Quantum Electrodynamics (QED) describes the electromagnetic interactions by requiring

gauge invariance under U(1) group transformations. U(1) denotes a group of unitary

one-dimensional matrices, describing space-time dependent rotations in a complex plane.

The requirement of gauge invariance gives rise to the photon field and the photons as the

corresponding mediator of the electromagnetic interactions. Because the photon is massless

the interaction has infinite range. The photon couples to all particles that carry electrical

charge, like quarks and charged leptons. The strength of the interaction is proportional to

the magnitude of the dimensionless fine structure coupling constant, which is equal to

αEM =
e2

4π
≈ 1

137
, (1.1)

at low momentum transfer.

Weak Interactions

The weak interactions [3] give rise to beta decays and associated radioactivity, such as

n → p + e− + ν̄e. (1.2)

The range of the interactions is short due to the high mass of the mediating gauge bosons

(W±, Z0) [7]:

mW± = 80.425± 0.038 GeV, (1.3)
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mZ0 = 91.1876± 0.0021 GeV. (1.4)

A QFT combining the electromagnetic with the weak interaction was first developed by

Glashow, Weinberg, and Salam (GWS theory, Nobel Prize in 1979). Later ’t Hooft and

Veltman were able to prove that the theory is renormalizable. Electroweak theory combines a

U(1) group with an SU(2) group, and requires invariance under SU(2)⊗U(1) transformations.

SU(n) describes groups of special unitary n × n matrices. Local gauge invariance under

SU(2) group transformations introduces three massless spin-1 gauge fields W 1, W 2, and W 3.

Adding the U(1) group introduces another gauge field B1. The W 3 and B1 mix quantum

mechanically to give rise to the experimentally observed photon (γ) and Z0:

γ = W 3 sin θW + B1 cos θW , (1.5)

Z0 = W 3 cos θW −B1 sin θW , (1.6)

where θW is called the weak mixing angle or Weinberg angle. Unlike QED, the underlying

group of the electroweak theory is non-Abelian since not all the generators of the group

commute with each other.

Up to this point the electroweak theory is very simple and elegant. Yet it is incomplete,

since all particles of the theory are massless. Additionally, mass terms cannot be introduced

into the Lagrangian describing the system, since this would destroy the local gauge invariance

of the Lagrangian. This problem is resolved by the Higgs mechanism, which introduces

spontaneous symmetry breaking of the Higgs scalar field potential, thereby giving mass to

the gauge bosons (W and Z) and the quarks and leptons.

Strong Interactions

Quantum Chromo Dynamics (QCD) [8] is the QFT describing the strong interactions. It

is based on an SU(3) gauge field, which leads to 8 mediating massless gauge bosons called

gluons. Quarks carry a new type of “charge” called color. Each (anti)quark can carry a

(anti)red, (anti)green, or (anti)blue color charge. Gluons carry a combination of a color and

anticolor charge. As carriers of the color charge, gluons can couple to each other. This is

a consequence of the non-Abelian character of the gauge theory. Quarks and gluons are

collectively referred to as partons.

One interesting feature of QCD is that the strength of the coupling increases with
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decreasing energy scale, i.e. at low energies and long distances the interaction becomes too

strong to be treated within the framework of perturbation theory. This leads to confinement,

which implies that all objects carrying color can never be found as free particles in nature

because they are confined in color-neutral hadrons. The quarks that combine into baryons

or mesons are referred to as valence quarks, and they constantly interact with each other by

exchanging gluons. Since gluons can couple to each other, they can emit more gluons that

can further split into virtual quark-antiquark pairs called sea quarks.

Experimentally, quarks and gluons are manifested as jets of color-neutral hadrons. This

means that if a single parton emerges from a particle collision, gluons will be radiated which

subsequently produce quark-antiquark pairs to form a parton shower. Ultimately the partons

combine into a jet of hadrons moving in the direction close to that of the original parton.

This final step is called hadronization.

The strong coupling constant, αs, can be expressed to leading-log in Q2 [8] as:

αs(Q
2) =

12π

(11c− 2nf ) log(Q2

Λ2 )
, (1.7)

where Q expresses the magnitude of the momentum transferred in the interaction, nf

indicates the number of quark flavors (6 in the SM), and c is the number of quark colors (3

in the SM). Λ is the QCD scale parameter, defined as:

Λ2 = µ2
R exp

−12π

(11c− 2nf )αs(µ2
R)

. (1.8)

The parameter µR is an arbitrary renormalization scale introduced to regulate divergences

in the perturbative calculation of αs. Eq. (1.7) shows that the strength of the coupling

decreases with increasing momentum transfer Q2. Therefore, quarks and gluons are said

to be asymptotically free when probed at high energies. Theoretical work on asymptotic

freedom by Gross, Politzer, and Wilczek was rewarded with the 2004 Nobel Prize. On the

other hand, as Q2 approaches Λ, the coupling becomes large and perturbative calculations

are no longer possible.

1.1.3 Electro Weak Symmetry Breaking

The electroweak theory is based on the realization that the quantum of light, the photon, and

the quanta of β decay, the W± bosons, are intimately related. Just as isospin, a symmetry
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of strong interactions, identifies the neutron and proton as partners, a new symmetry, weak

isospin, identifies an electron and its neutrino as partners.

The electroweak symmetry is far from exact. The W and Z bosons are among the heaviest

known elementary particles, while the photon is the lightest, though they are related by this

symmetry. Similarly, the neutrino and the electron can hardly be confused, even though

they are partners.

How is the electroweak symmetry broken? A magnetic field, for example, applied to

an atom breaks its rotational symmetry, or heating up a crystal until it melts breaks the

discrete symmetry of the lattice. The theory requires that electroweak symmetry be broken

in a similar, though more intricate manner. Without the electroweak symmetry breaking

(EWSB), the W± and Z, and all the quarks and leptons would be massless. If any progress

is to be made in understanding these masses, the source of EWSB must be discovered. It is

one of the core questions in high-energy physics.

Mathematically there are several ways to break the electroweak symmetry.

In one approach, a number of scalar particles are introduced. Some of the degrees of

freedom provided by three particles are absorbed by the W and Z bosons thus giving them

mass. The remaining degrees of freedom appear as new particles; in the simplest realization

just one such particle – the Higgs boson.

A second possibility, called supersymmetry, predicts the existence of many new particles,

among them a number of scalars like the Higgs boson. While there is no direct evidence for

supersymmetry there is strong theoretical motivation for it. There is also some supporting

circumstantial evidence from extrapolating the electroweak and strong couplings to high

energies, where the three couplings coalesce – if supersymmetry effects are included – as

they should if there is a grand unification of these forces at high energy.

A third possibility, referred to as strongly coupled EWSB, introduces no new particles

but requires that their role is played by new features of the strong interactions. The

corresponding theory is commonly referred to as technicolor.

1.1.4 The Standard Model Higgs

The simplest form of EWSB is realized with a doublet of complex scalar fields that introduce

four new degrees of freedom of which a single neutral scalar particle, the Higgs boson, remains

after symmetry breaking.
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At hadron colliders, Higgs bosons can be produced via four different production mecha-

nisms:

• gluon fusion, gg → H, which is mediated at lowest order by a heavy quark loop;

• vector boson fusion (VBF), qq → qqH;

• associated production of a Higgs boson with weak gauge bosons, qq → W/ZH (Higgs

Strahlung, Drell-Yan like production);

• associated Higgs boson production with heavy quarks, gg, qq → ttH, gg, qq → bbH

(and gb → bH).

The lowest order production cross sections for the four different processes are shown in

Fig. 1.2 for the Tevatron collider as a function of the Higgs boson mass. The dominant

production mode is the gluon-fusion process. In the low mass region it amounts at leading

order to about 20% of the gluon-fusion cross section, whereas it reaches the same level for

masses around 800 GeV/c2. At the Tevatron pp̄ collider, the contribution of the associated

W/ZH production mode is also important and Higgs boson searches exploit this production

mode.

The most relevant decays of the SM Higgs boson are summarized in Ref. [9, 10]. For

masses below about 130 GeV/c2, decays to fermion pairs dominate, of which the decay

H → bb̄ has the largest branching ratio. Decays to τ+τ−, cc̄ and gluon pairs (via loops)

contribute less than 10%. For such low masses the decay width is less than 10 MeV/c2. For

larger masses the W+W− and ZZ final states dominate and the decay width rises rapidly,

reaching about 1 GeV at mh = 200 GeV/c2 and even 100 GeV/c2 at mh = 500 GeV/c2.

The direct search for the Higgs boson at the e+e− collider LEP has led to a lower bound on

its mass of 114.4 GeV/c2 [11]. Indirectly, high precision electroweak data constrain the mass

of the Higgs boson via their sensitivity to loop corrections. Assuming the overall validity of

the Standard Model, a global fit [12] to all electroweak data leads to mh = 114+69
−45 GeV/c2.

On the basis of the present theoretical knowledge, the Higgs sector in the Standard Model

remains largely unconstrained. While there is no direct prediction for the mass of the Higgs

boson, an upper limit of ≈ 1 TeV/c2 can be inferred from unitarity arguments [13].

Further constraints can be derived under the assumption that the Standard Model is valid

only up to a cutoff energy scale Λ, beyond which new physics becomes relevant. Requiring
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Figure 1.2: Leading order production cross sections for a Standard Model Higgs boson as a
function of the Higgs boson mass at 1.96 TeV at the Tevatron pp̄ collider. In the cross section
calculation the CTEQ6L1 parton distribution function parametrization has been used.

that the electroweak vacuum be stable and that the Standard Model remains perturbative

allows one to set upper and lower bounds on the Higgs boson mass [14, 15]. For a cutoff

scale of the order of the Planck mass, the Higgs boson mass is required to be in the range

130 < mh < 190 GeV/c2. If new physics appears at lower mass scales, the bound becomes

weaker, e.g., for Λ = 1TeV/c2 the Higgs boson mass is constrained to be in the range

50 < mh < 800 GeV/c2.

Upper bounds, obtained by the Tevatron experiments CDF and DØ for the cross sections

of event topologies motivated by Higgs boson production in the SM are shown in Ref. [16].
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Figure 1.3: Top quark pair production via the strong interaction: (a) quark-antiquark
annihilation; (b) gluon fusion. At the leading order (LO) there are three Feynman diagrams
which contribute to the latter process.

1.2 The Top Quark

In 1995, the discovery of the top quark was announced by DØ and CDF experiments at

Fermilab [17, 18]. After nearly 20 years since the discovery of the b quark, physicists observed

an isospin partner of a third generation down-type quark. The top quark indicates most of the

properties of an up-type quark, interacting via the weak and strong forces, having a charge

of +2/3e, and being a spin 1/2. On the other hand, it exhibits several unique properties. It

has a very short life time and a very large mass. Its life time is about 0.4×10−24 s, which is

shorter than the characteristic hadronization time scale ∼ 3.0×10−24 s. Therefore, top bound

states do not have time to form, and the top quark can be studied as a free particle [19].

The mass of the top quark is measured to be 171.4± 2.1 GeV [20]. It is much heavier than

the next to heaviest quark, the b quark, which has a mass of about 5 GeV.

The top quark is produced in pp collisions mostly via the strong interactions along with

its antiparticle (tt pair production). At
√

s = 1.8 TeV (Run I) top pairs were produced 90%
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of the time via the quark-antiquark annihilation process (qq), and the remainder of the time

via gluon-gluon process (gg). In Run II, the fraction of the qq process decreases to 85%.

Within the SM the top quark decays into W + b ∼ 100% of the time. The W decays with

the following branching ratio (BR):

W+ e+ν µ+ν τ+ν ud cs
BR 1/9 1/9 1/9 3/9 3/9

For tt pair production the event topologies are:

• Dilepton channel (lνlνbb): events for which both W’s decay into e or µ. This is expected

to occur with a branching ratio of 4/81, i.e., ∼ 5% of the final states.

• Lepton + jets channel (lνqqbb): events in which one W decays into e or µ, the other

into a quark pair. This occurs with a branching ratio of 24/81, i.e. in ∼ 30% of the

events.

• All-jets channel(qqqqbb): events in which both W’s decay into quark pairs. This occurs

with a branching ratio of 36/81, i.e. in ∼ 44% of the events.

An event with a τ and another lepton is typically not considered as part of the dilepton

channel since τ decays further. The dilepton channel comprises µµ+jets, µe+jets, or ee+jets,

and two neutrinos in each event. The main difficulty of this channel lies in reconstructing two

W bosons because there is only one missing transverse energy measured in the detector. The

all jet channel consists of two b jets from two top quark decays and four or more light quark

jets from the W boson decays. To identify the jets from each decayed top quark correctly,

sophisticated statistical methods are demanded. The lepton+jets channel is relatively easier

than other channels in tt measurements since it has a clean W boson from the lepton and

missing transverse energy and fewer jet combinatorics. DØ and CDF observed about one

hundred tt events in Run I. The measurement of the cross section and mass by DØ and CDF

are:

σ = 5.9± 1.7 pb, mt = 172.1± 7.1 GeV (DØ ) [21],

σ = 6.5+1.7
−1.4 pb, mt = 176.0± 6.5 GeV (CDF) [22].

The combined mass is:
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mt = 174.3± 5.1 GeV [23, 24].

In RunII, the DØ and CDF experiments have made a large number of precision top quark

measurements and the results are:

σ = 6.4+1.3
−1.2(stat)± 0.7(sys)± 0.4(lumi) pb (DØ) [25],

σ = 7.3± 0.5(stat)± 0.6(sys)± 0.4(lumi) pb (CDF) [26],

mt = 171.4± 2.1 GeV [20].

1.3 Single Top Quark

The Standard Model predicts that top quarks can be created in pairs via the strong force, or

singly via the electroweak interaction. The second production mode is referred to as single

top quark production and takes place mainly through the s or t channel exchange of a W

boson. Another single top production, the tW mode occurs when a b quark radiates a W.

However, this process has a negligible cross section at the Tevatron and we will not discuss

it further. Figure 1.2 illustrates the leading order Feynman diagrams of s and t channel

productions. Each process is described below.

• s channel production: This process involves quark anti-quark annihilation with an off-

shell W ∗ boson and produces a top quark and a b quark. The s channel is referred to

as the tb mode which includes both tb, tb and only contains the 2→2 process at leading

order.

• t channel production: This process includes a 2→2 part with a b quark from the proton

sea in the initial state, and a dominant 2→3 part, where an extra bb anti-quark appears

in the final state explicitly. It is also called W -gluon fusion for the 2→3 process and

allows a study of the charge-current weak interaction of the top quark. We refer to the

t channel process as tqb, which includes tqb, tqb, tq, and tq.

1.3.1 Motivation to Study Single Top Production at Hadron
Colliders

Studying single top production is important because it can be used to investigate top quark

properties that are not accessible through tt measurements alone. Several reasons to study

single top production are described below.
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Figure 1.4: Two dominant processes for single top quark production at the Tevatron: (a) s
channel process (signal is W + b + b). (b) t channel process (signal is W + b + b + q).

• The study of single top quark production provides the only window into measuring the

Cabibbo-Kobyashi-Maskawa (CKM) matrix element [27] Vtb, which is closely tied to

the number of quark generations.

• Measuring the spin polarization of single top quarks can be used to test the V-A

structure of the top weak charged current interaction.

• Single top events represent an irreducible background to several searches for SM or

non-SM signals, for example, Higgs boson searches.

• The presence of various new SM and non-SM phenomena may be inferred by observing

deviations from the predicted rate of the single top signal.

Measurement of Vtb

Top quark decays into a W boson and a down-type quark. The flavor of the down-type

quark is determined by the CKM matrix. Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 d
s
b

 =

 d′

s′

b′

 .

To measure Vtb in the Standard Model, one strong assumption is required: there are only

three quark generations in nature. Then the unitarity of the CKM matrix implies

|Vub|2 + |Vcb|2 + |Vtb|2 = 1,

and Vtb is restricted to

0.9990 ≤ |Vtb| ≤ 0.9993.
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With this assumption, the ratio of top decays into b quarks and of top decays into all quarks

has been measured at the Tevatron [28]

B(t → Wb)

B(t → Wq)
=

|Vtb|2

|Vtd|2 + |Vts|2 + |Vtb|2
= 0.94+0.31

−0.24 .

If we do not assume three generations, then Vtb will be virtually unconstrained:

0.08 ≤ |Vtb| ≤ 0.9993, |Vtb| � |Vts| , |Vtd| .

The interpretation of the direct measurement of Vtb depends on the ratio σm/σt. Here, σm

is the measured cross section for single top and σt is the theoretical cross section for single

top. If the ratio differs from one, indicating a cross section different from the Standard

Model expectations, then the CKM matrix element Vtb must deviate from unity and the

likely explanation might be observation of new physics. Therefore, one of the purposes of a

direct measurement of Vtb is to search for new physics.

Measurement of Spin Polarization

The single top quark is produced through a left-handed interaction and therefore it is

expected to be highly polarized. Since no hadronization occurs, spin correlations survive in

the final decay products. Hence, single top quark production offers an opportunity to observe

the polarization and to test the remarkable SM predictions. It has been shown [29] that the

top quark spin in each event follows the direction of the down-type quark momentum in

the top quark rest frame. This is the direction of the initial d̄-quark for the s channel, and

mostly the direction of the final d-quark for t channel single top production. It has been

pointed out [30] that the above result follows directly from the properties of the polarized

top decays when single top production is considered as top quark decay going “backwards

in time.” The decay differential width of a polarized top quark to a bottom quark and two

leptons or two light quarks is given by a very simple formula in the Standard Model
1

Γ

dΓ

d cos θ∗fp

=
1

2
(1 + Kf cos θ∗fp),

where θ∗fp is the angle between the momentum direction of one of the final fermions f in the

top rest frame and the direction of the top quark polarization vector. The coefficients Kf

are equal to 1 for the down-type fermions l+, d and s quarks, and to −0.31 for the up-type

fermions νl, u and c quarks [31]. This means that the down-type fermions are the best
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top quark spin analyzers. The next-to-leading order (NLO) corrections do not change this

property significantly. NLO corrections to the lepton factor Kl are very small, −0.0015αs [32]

and to the quark factor Kd,s they are about −6% [33].

From consideration of single top production as a decay going “backwards in time”, one

can easily conclude that the best variable to observe maximal top spin correlations between

single top production and subsequent decay is the angle between the aforementioned d-quark

direction in the production processes and the charged lepton (or d, s-quark) direction from

the top decay in the top rest frame.

Finally, measurements of the charged-current couplings of the top quark may probe any

nonstandard structure of the couplings and therefore provide hints of new physics. Especially

any deviation in the (V –A) structure of the Wtb coupling would lead to a violation of the

spin correlation properties [34, 35].
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CHAPTER 2

Accelerator and Detector

The Tevatron collider, located at the Fermi National Accelerator Laboratory (Fermilab),

provides proton and antiproton collisions with a center-of-mass energy of 1.96 TeV. It is the

world’s highest energy accelerator and the only place to study top quark physics directly. Two

general purpose detectors (DØ and CDF) are placed at intersecting regions in the Tevatron

where collisions take place. These detectors are designed to identify particles produced

from the collisions using 36×36 proton and antiproton bunches, and 396 ns between bunch

crossings. This analysis uses data collected by the DØ detector, which consists of a central

tracking system, a calorimeter, and a muon system. In the following sections, we describe

the Tevatron accelerator and the DØ detector.

2.1 Tevatron Accelerator

To achieve a center-of-mass collision energy of 1.96 TeV, a series of steps to accelerate

beams of protons and antiprotons is required [36, 37, 38]. The Tevatron complex has five

main accelerators and storage rings linked together.

• The Pre-Accelerator

• The Linac

• The Booster

• The Main Injector

• The Antiproton Source

• The Tevatron
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Figure 2.1: Schematic view of the Fermilab accelerator chain.

The Pre-Accelerator

The acceleration chain begins with the proton source in the pre-accelerator. Negatively

charged hydrogen atoms are brought up to an energy of 750 keV using a Cockcroft-Walton

accelerator. To accelerate charged particles, one of the simplest ways is to place the particles

within a constant electric field, generated by two electrodes with different potential. The

Cockcroft-Walton accelerator produces a 750 kV potential difference by charging capacitors

in parallel from an AC voltage source and discharging them in series and increases the energy

of H− ions from 18 keV to 750 keV.

The Linac

Since very large energy differences lead to sparking between the electrodes, electrostatic

accelerators can only be used for a limited energy range. To accelerate H− ions from the

pre-accelerator further, a linear accelerator (Linac) is used. The Linac uses alternating
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radiofrequency (RF) fields. A charged particle exposed to an RF field will experience no

net acceleration because the accelerating and decelerating phases of the field will cancel one

another. However, in the Linac, H− ions are shielded by RF cavities during the decelerating

phases of the RF field so the acceleration can be made non zero. After passing through the

Linac, bunches of 400 MeV H− ions are transferred into the Booster.

The Booster

A circular synchrotron accelerator, called the Booster, is used for further acceleration. The

Booster is the first synchrotron in the chain of accelerators and uses dipole electromagnets

to steer charged particles into a circular path of fixed radius. In the Booster the H− ions are

stripped of their electrons leaving protons only. The protons are accelerated up to 8 GeV

and pass to the Main Injector.

The Main Injector

The main injector accelerates protons coming from the booster and antiprotons coming from

the antiproton source from 8 GeV to 150 GeV. It also delivers 120 GeV protons to the

antiproton source.

The Antiproton Source

120 GeV protons are made to collide with a nickel target to produce 8 GeV antiprotons.

The target consists of 10 cm diameter nickel disks separated by copper cooling disks. In

approximately one out of every 100,000 collisions, an antiproton is produced. The antiprotons

are sent to the debuncher ring, and a process called stochastic cooling is used to reduce the

momentum spread of the particles. They are temporarily stored in the accumulator and

inserted into the main injector.

The Tevatron

The Tevatron is the final stage in the chain of proton and antiproton acceleration. It uses

superconducting niobium/titanium magnets to provide magnetic fields of up to 4 Tesla,

allowing for acceleration to a center-of-mass collision energy of 1.96 TeV. Bunches from the

main injector are coalesced into a single bunch and passed into the Tevatron. In each store,

36 bunches of both protons and antiprotons are injected and travel in opposite directions
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while sharing the same beam pipe. Collisions occur at DØ and CDF regions by means of

focusing magnets, which tighten the diameter of the proton and antiproton beams to 40 µm.

The proton and antiproton beams cross one another at each detector every 396 ns [39].

2.2 DØ Detector

The DØ detector [40, 41] consists of three major components: a central tracking system that

provides precision vertex and momentum measurements, a liquid-argon/uranium calorimeter

that measures particle energies, and a muon system.

2.2.1 Coordinate System

In the DØ detector, the coordinate system is right-handed. The direction of the proton beam

is defined as the positive z-axis, and the positive y-axis is pointing upwards. In most cases,

cylindrical coordinates are used. The polar angle θ = 0 coincides with the positive z-axis,

and the azimuthal angle φ = 0 with the positive x-axis, pointing away from the center of the

Tevatron. The polar angle is more commonly described by the pseudorapidity η:

η = − ln

[
tan

θ

2

]
(2.1)

The pseudorapidity approximates the true rapidity in the limit of m � E,

y =
1

2
· ln

[
E + pz

E − pz

]
. (2.2)

Zero pseudorapidity corresponds to particles emitted at 90◦ relative to the beamline, and

high values of |η| correspond to forward or backward going particles.

2.2.2 Tracking System

The tracking system consists of two subsystems, the Silicon Microstrip Tracker (SMT) [42],

surrounded by the Central Fiber Tracker (CFT) [43], contained within a 2T superconducting

solenoid. These systems are new for Run II. With this tracking system, DØ can measure

momenta of charged particles more precisely, the primary collision vertex with a resolution

of 35 µm along the z axis, and the trajectory of particles with a large range of pseudorapidity

(|η| < 3).

19



Figure 2.2: Schematic view of the Run II DØ detector.
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Figure 2.3: SMT disk and barrel design.

Silicon Microstrip Tracker (SMT)

The silicon microstrip tracker (SMT) is designed to provide high resolution tracking. The

basic detection unit is an n-type silicon wafer with p-type or n+-type parallel microstrips

across the surface. When charged particles pass through n-type wafers, they ionize the

silicon and produce current flows, measured by the microstrips. These are known as “hits”

and provide the position of the ionization in one dimension. The thickness of the wafer is

300µm and the pitch between adjacent strips is 50µm.

The SMT has a barrel system consisting of four layers of silicon wafers measuring the

r−φ coordinate and disk structures of twelve wedge detectors measuring the r−z as well as

r−φ coordinates. Six barrels and disks, called “F-disk”, are arranged alternately, capped at

the ends by additional groups of 6 F-disk detectors and 4 large diameter H-disks (Fig. 2.3).

All silicon sensors are doublesided except for the sensors of layer 1 and 3 of the outermost

barrels. In layers 2 and 4, microstrips have a stereo angle of 2◦ and layers 1 and 3 have

microstrips oriented at 90◦ stereo. In F-disks, silicon microstrips have ±15◦ orientation.
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H-disks are made of 24 wedges and each wedge consists of two single sided wedges glued

back-to-back, with an effective 15◦ stereo angle.

Central Fiber Tracker (CFT)

The second nearest detector to the pp collision point outside the SMT is the central

fiber tracker (CFT) which enables track reconstruction and momentum measurement of

all charged particles at |η| < 2.0. It uses scintillating fibers to detect the passage of charged

particles. The fibers emit light as particles travel through them. This light reaches the

visible light photon counters (VLPCs) through waveguides. A VLPC is a silicon avalanche

photodetector with an operating temperature of 9 K. A VLPC is an ideal readout device

because it provides high gain, fast reset time, and excellent quantum efficiency.

The scintillating fibers are arranged in eight concentric cylinders ranging in radius from 20

cm to 52 cm. The diameter of a fiber is 835 µm and the two inner cylinders are 1.66 m long,

while the remaining cylinders are 2.52 m long. Each cylinder has two ribbons containing two

layers of 128 fibers. The second layer is offset from the first by half a diameter, as in (Fig.

2.4). In the cylinder, one ribbon is aligned along the z axis, and another ribbon is aligned

at a stereo angle of ±3◦ (Odd numbered cylinders use +3◦ and even numbered cylinders use

-3◦).

2.2.3 Preshower Detector

The preshower detector [44, 45] is designed to enhance electron identification and the

calorimetric measurement by sampling the shower multiplicity after traversing the material

in the solenoid. It is used as an extension to the calorimeter and as a final layer to the central

tracking. The central preshower detector (CPS) with a coverage of |η| < 1.3 is located in

the 51 mm gap between the solenoid coil and the central cryostat at a radius of 72 cm. The

CPS consists of triangular scintillator strips with one axial layer and two stereo layers. (Fig.

2.5) shows a cross sectional view of the geometry. Between the CPS and the solenoid a thin

lead radiator (1 radiation length) encased by two stainless plates is tapered.

The forward preshower detector (FPS) covers a range of 1.4 < |η| < 2.5 and is located

on the inner face of each of the end calorimeter cryostat. The FPS is made of two layers

of double layered scintillator strips, separated by a 11 mm thick lead-steel plate. The first

layer is called the minimum ionizing particle (MIP) layer and the second layer, behind the
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Figure 2.4: a) Location of the Central Fiber Tracker (CFT). b) Closeup view of axial and
stereo layers.

lead plate, is known as the shower layer. Heavy charged particles will register a hit only in

the MIP layer. However, electrons will leave a similar hit in the MIP layer and will begin to

shower in the shower layer, creating a cluster of energy. Photons leave no signal in the MIP

layer, but produce a shower signal in the shower layer.

2.2.4 The Calorimeter

The DØ calorimeter measures the energies of electron, photon and jets. It cannot detect

neutrinos and identifies only a minimally-ionizing particle signature for muons. The

calorimeter consists of three units, a central calorimeter (CC) which covers up to η ≈ 1.0,

and a pair of end cap calorimeters (EC), which provide energy measurements in the region

1.4 < η < 4.0.

Each calorimeter region is segmented into many cells containing an absorber medium,

an active medium, and a copper readout pad (Fig. 2.7). The surface of the pad is held
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Figure 2.5: Cross section and layout geometry of CPS and FPS scintillator strips.

at a positive voltage to collect the ionization; particles entering a cell are slowed down by

the absorber and ionize the active medium. The readout pad measures a current from the

ionizing particles which is proportional to the energy deposited in that cell. Liquid argon

is used as the active medium because of the good radiation hardness, the flexibility offered

in segmenting the calorimeter into transverse and longitudinal cells, and the relatively low

cost for readout electronics. However, the use of liquid argon requires the calorimeters be

housed in a massive containment vessel (cryostat), which leads to regions of uninstrumented

material, and inaccessibility of modules during operation.

In the CC, there are three types of modules: an electromagnetic section (EM), a fine

hadronic section (FH), and a coarse hadronic section (CH). The EM section is designed

to measure the energy of electromagnetic particles and photons precisely. It works on the

principle that a collision between an absorber, which is a relatively thin (several mm) uranium

plate, and an incident particle will induce a shower of particles. The EM calorimeter is further

divided into four layers. The first two layers measure the longitudinal shower development

near the beginning of the shower. The third layer is placed where the shower is expected to
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Figure 2.6: Isometric view of the central and two end calorimeters.

reach its maximum and has twice the usual segmentation in both η and φ to provide more

precise location of EM showers. The fourth layer completes the EM coverage at 20 radiation

lengths.

The hadronic calorimeters (FH and CH) work similarly. Showers are produced by the

collisions of hadrons with an absorber. The FH section has a thicker (≈ 6 mm) uranium

plate absorber and consists of three layers used to measure the further penetrating hadronic

showers. The CH section has a thick (≈ 5 cm) copper or stainless steel plate absorber and

consists of a single thick layer used to effectively contain the remaining energy in the particle
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Figure 2.7: Schematic view of two calorimeter cells.

shower.

The EC calorimeter has the same sections as the CC, but is divided into inner, middle,

and outer portions. The inner portion contains four EM layers, and several FH and CH

layers. The middle portion is made up of FH and CH regions, while the outer portion

contains only a CH module.

The calorimeter cells are constructed in a pseudo-projective set of readout towers (Fig.

2.8), with the center of each cell in a given tower lying along the same line to the interaction

point, but with the cell boundaries perpendicular to the beam axis. The tower size is

generally set at ∆η = 0.1, ∆φ = 0.1.

2.2.5 Muon System

Muons traverse several meters of dense material in the calorimeter without hadronic

interactions but leave MIP signals, insufficient for measuring their energy. To detect muons

DØ has two types of muon detectors [46] outside the calorimeter: scintillators and drift

chambers. Both detectors have three layers which are labeled A, B, and C, from the
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Figure 2.8: Schematic view showing the calorimeter segmentation pattern. The shading
pattern indicates cells for signal readout. The radial lines show the detector pseudo-rapidity
intervals.
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Figure 2.9: The DØ muon system.

innermost to the outermost. The scintillators provide precision timing measurements by

triggering on events involving a muon. The drift chambers measure the position of the muon

and its momentum. Between the first and second layers of the muon detectors, a 109 cm,

1.8 T toroidal magnet is situated to aid measurement of muon momenta.

The coverage of the system extends to |η| < 2, split into two regions at |η| < 1 called the

central region and at 1 < |η| < 2 called the forward region. (Fig. 2.9) illustrates the layer

structure and separation into the central and forward regions.

Scintillation Counters There are two layers of scintillation counters in the central region,

called the Aφ layer within the toroid, and a cosmic layer outside the toroid. Each scintillation
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counter has four walls surrounding the detector and produces a fast readout for triggering

and associating muons with the correct bunch crossing. The cosmic layer is also used to

reject cosmic ray muons.

The forward region of the muon system [47] includes three layers of scintillation counters.

The A layer is within the toroid, while the B and C layers lie outside the toroid. Each

scintillation layer is covered with a layer of scintillator pixels which cover a surface of 4.5◦

in φ and 0.1 in η.

Drift Tubes The central muon system includes proportional drift tubes (PDTs) arranged

in three layers. The A layer is made up of four decks (sublayers) and located between the

calorimeter and the toroid. The B, C layers contain three decks and are placed outside the

toroid. The PDTs use a gas mixture of 84% argon, 8% methane, and 8% CF4, and provide

a maximum drift time of 500 ns. Because of the support structures of the detector, drift

tube coverage in the central bottom region is incomplete. However, about 90% of the central

region is covered by two layers of PDTs and nearly 55% with all three layers. Muon positions

can be measured within PDTs with an uncertainty of 1 mm.

The forward region makes use of three layers of mini drift tubes (MDTs) consisting of

1 cm2 cells. The MDTs, which exhibit more radiation hardness and a faster response time,

are new in RunII while the central system reuses PDTs from RunI. Four (for the A layer)

or three (for the B and C layers) decks of MDTs are mounted along the field lines of the

toroid. As is the case with the central system, the A layer sits before the toroid and the B,C

layers are after the toroid. The MDTs use different gas from the PDTs, a 90%-10% mixture

of CF4-CH4, and have a maximum drift time of 60 ns. The hit position resolution from the

MDTs is about 0.7 mm.

Each forward system includes shielding around the beam pipe. The shielding is made of

a 51 cm thick slab of iron to absorb hadronic and electromagnetic radiation, followed by 15

cm of polyethylene to absorb neutrons, and 5 cm of lead to block gamma rays.

2.2.6 Luminosity Monitor

The luminosity monitor (LM) is designed to provide precise Tevatron luminosity at the

DØ interaction region. Accurate measurement of luminosity is very important because the

precision of a cross section measurement depends on it. The secondary purpose of the LM
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is to provide diagnostic information of accelerator performance.

The LM is located between the EC calorimeter and the FPS detectors at z = ±140

cm and consists of 24 wedges of scintillator read out by photomultipliers. The coverage

extends from 2.7 to 4.4 in pseudorapidity. Particles from collisions create hits at each set

of scintillators approximately in coincidence. These coincidences provide for a counter that

fires on any beam crossing with a pp collision, and beam halo products passing through the

detector will appear distinctly separated.

The fundamental unit of time for measuring luminosity is called a luminosity block and

each block is indexed by a luminosity block number (LBN) which increases monotonically.

2.2.7 DØ Trigger

Proton antiproton collisions take place every 396 ns at DØ, a rate of over 2.5 MHz and yields a

single hard scatter on average. Even though all the DØ detectors have fast readouts, they are

still not fast enough to read all events occuring inside the detector. Besides the probabilities

of interesting events in the detector are very low, and the DØ data acquisition (DAQ) system

is only capable of writing data at approximately 50 Hz to the data storage. All these factors

require an efficient trigger system. The DØ trigger system consists of three levels with each

imposing selection criteria (cuts) on physics objects. The Level 1 (L1) trigger system is a set

of hardware based triggers from individual subdetectros. Events that fulfill L1 requirements

are sent to the Level 2 (L2). The L2 uses both software and hardware. Here, basic physics

objects are constructed and the first global decision is made. In Level 3, event reconstruction

is done based on software algorithms only.

Level 1 trigger The central tracking, calorimeter, and muon systems have their own L1

triggers that search for objects consistent with detector signatures of elementary particles.

The L1 central track trigger (CTT) using the CFT and central preshower readout while

the L1 muon trigger looks for a charged particle track with momentum exceeding a given

threshold. The L1 calorimeter trigger looks for energy deposition exceeding a given threshold.

The combined L1 triggers provide a trigger event rate of 1.6 kHz.

Level 2 trigger The L2 system has two distinct stages. The first stage called the

preprocessor stage identifies objects from individual detector subsystems, as does the L1
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system. In the second stage (global stage), event-wide triggers based on the combined data

from all subsystems are generated. Here, the correlation between objects such as leptons

and tracks is examined first time. The L2 reduces the trigger rate to 1kHz.

Level 3 trigger The L3 trigger is implemented entirely in software that provides

limited event reconstruction and makes a trigger decision using all the event information.

Approximately 100 computer (farm) nodes handle the job. Each node collects a fully digitized

event that passes the L2 trigger and provides a final trigger decision. Algorithms are used

to create and cut on the individual objects, such as a minimum momentum for muons or

non-physics objects, such as vector sums of transverse energy. Finally, events meeting the

L3 trigger requirements are written to tape at a rate of 50 Hz. Each event is approximately

50 Mbytes in size.
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CHAPTER 3

Event Reconstruction

The DØ detector is designed to distinguish and define fundamental objects such as tracks,

electrons, muons, and jets. However, the raw data from the detector are just digitized

pulse height and time information. These data must be processed by event reconstruction

algorithms to produce physics objects and their properties, representing the particles that

originated from a pp collision. The collection of reconstruction algorithms is referred to as

d0reco and this process is called object identification.

Event reconstruction is also required for Monte Carlo (MC) simulated events. This

analysis uses signal and background generated from MC techniques as input of Bayesian

neural networks. Therefore, agreement between real (often referred to as “data”) and MC

events is very important.

This chapter discusses how the detector subsystems are used to reconstruct physics

objects, and gives a description of corrections which make MC events agreement with real

data, on the average.

3.1 Tracks

Charged particles traversing the SMT and CFT detectors leave traces in the form of small

energy deposits in many layers, called hits. The DØ tracking algorithm reconstructs a

particle track from the collection of hits in any given event. Since there are tracks from

secondary collisions, random electric noise, and an event producing many charged particles

in a small range of η, it is very difficult to recognize which hit is formed from which track.

There are several approaches to reconstruct tracks from hits: histogramming track finding

(HTF), alternative algorithm (AA), and a combination of the HTF and AA called global

track reconstruction (GTR).
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Histogramming Track Finding (HTF)

The HTF method [48] finds SMT hits or CFT hits, maps the hits in x-y coordinates into a

new parameter space defined by coordinates φ-ρ (where φ is the azimuthal angle, and ρ the

curvature of a track). In the φ-ρ space, a track candidate will produce a peak and random

hits will be distributed uniformly.

A 2D Kalman filter, which is similar to a least square fit, fires to identify real tracks.

The second transformation adds z coordinate information and is performed from r-z space to

z◦-C space (where z◦ is the intersection of the track along the beam axis and C is the track

inclination defined as dz/dr). A peak is found again in the z◦-C space, and the 3D Kalman

filter is used to fit the remaining hits. Finally, the newly formed tracks are extrapolated.

Alternative Algorithm (AA)

The AA algorithm begins by generating a pool of track candidates using the hits in the SMT.

The algorithm selects all sets of three hits which lie along a path originating from the beam

spot. It then extrapolates the path of the track outward to either the next layer of the SMT

or to the CFT to calculate the point where the track should have crossed the next layer.

The algorithm checks whether there is a hit near that location, and then extrapolates to the

next layer, and repeats the procedure. At each layer a χ2 of hits with respect to the track

is calculated and the hit becomes associated with the track if its χ2 is less than a certain

value. If there is no hit in the layer, the algorithm continues and records a “miss” for this

track. At the end of this procedure, a list of tracks is produced along with hits, misses, and

χ2-s.

Next, a list of vertices is constructed from tracks propagated back to the beam axis.

These vertices are used to look at the track candidates that have only CFT hits. The same

extrapolation procedure is used but starting in the CFT with the constraint that tracks

originated at one of the vertices. CFT-only tracks have been used in several analyses and

provide higher efficiency, although at some expense of resolution.

Global Track Reconstruction (GTR)

The GTR algorithm uses the reconstructed tracks from both the HTF and AA algorithms

as inputs. A standard Kalman fit is applied to these tracks, and the final set of tracks in the

event is defined.
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3.2 Primary Vertices

The primary vertex (PV) [49] is defined as the initial pp collision point of the hard scattering

in three dimension. The precise determination of the PV is critical for reconstruction of

physics objects, and for discrimination against low energy inelastic pp collisions.

The location of the PV is reconstructed by means of an adaptive primary vertex

algorithm. This algorithm consists of three main steps.

Track Selection

Tracks with pT > 0.5 GeV and at least two SMT hits are assigned to a vertex.

Vertex Fitting

In the first pass, χ2 for each track hypothesis is computed. Tracks providing the largest

contributions to the χ2 are removed one by one until the overall χ2 is less than 10.

In the second pass, the track dca (transverse distance of closest approach) significance

is calculated with respect to the position of these first-pass vertices. Only tracks with less

than 5σ (dca/σ(dca) < 5) are fitted to the final PV.

Vertex Selection

The final vertex is calculated from the remaining tracks. In the case where more than one

vertex is found, the pT distributions of the tracks associated with each vertex are used to

define a probability that each track originated at the particular vertex. The vertex with

the largest weighted product of track probabilities, which has the lowest minimum bias

probability, is identified as the PV.

3.3 Electrons

An electron deposits energy in the calorimeter and also makes a track in the central tracking

system [50]. Information from the two subdetectors is used to reconstruct an electron, which

proceeds in two stages. The first stage involves a cluster formed in the calorimeter. At the

second stage, confirmation is sought from the central tracker.

A simple cone algorithm forms electromagnetic clusters of towers in the electromagnetic

section of the calorimeter. These towers are included within a cone of radius 0.4 around
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the highest energy tower. Since an electron is expected to deposit most of its energy in the

first layers of the calorimeter, genuine EM showers will have a large EM fraction EMF =

EEM/Etot where EEM is the cluster energy in the EM section of the calorimeter and Etot is

its total energy within the cone.

To test the consistency of the cluster’s shower with the hypothesis that it is an electron,

each shower is attributed a χ2
cal based on seven variables comparing the values of the energy

deposited in each layer of the EM calorimeter and the total energy of the shower with

expected shower profiles from the MC simulation. Additionally, the cluster is required to be

isolated. The isolation

fiso =
Etot(∆R < 0.4)− EEM(∆R < 0.2)

EEM(∆R < 0.2)
, (3.1)

where ∆R =
√

∆η2 + ∆φ2, must be small. Finally, an electron likelihood [51] is defined

based on seven variables including both calorimeter and tracking information. In this

analysis, the following selection criteria are used:

• EMF > 0.9

• χ2
cal < 50

• fiso < 0.15

• Likelihood > 0.85

3.4 Muons

Muons do not produce showers in the calorimeter. Therefore, they are reconstructed using

information from the muon system and the central tracking detector [52]. The muon

system can identify muons with high purity solely from tracks. To improve the momentum

resolution, the track in the muon system is required to be matched with a track found by

the tracking system. The starting point for muon reconstruction is the formation of straight

line track segments from hits in each layer of the muon system. After that, conforming

scintillator hits in the same layer are matched. If A-layer segments (inside the toroid) and

BC-layer segments (outside the toroid) are consistent, it is possible to make momentum
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measurement from the curvature induced by the toroid magnet. Muon candidates formed

this way are called local muons.

To describe the type of segments found in an event, a variable nseg is defined. A muon

with an A-layer has |nseg| = 1, a muon with a B or C-layer has |nseg| = 2, and a muon with

both segments has |nseg| = 3. The nseg value is positive if the muon segment is matched to

a central track.

Muons are also categorized depending on the location and types of hits in the muon

system. These classifications are referred to as “tight”, “medium”, and “loose”. Tight

muons require drift tube and scintillator hits both inside and outside the toroid, and result

from a local muon track match. Medium muons require drift tube and scintillator hits

out side the toroid. In the bottom region, where muon detector coverage is reduced, this

requirement is relaxed. Loose muons require only one reconstructed segment. More detailed

description of the muon classification is given in Ref. [53].

In this analysis, the requirements for muon reconstruction are as follows:

• At least two A-layer wire hits

• At least one A-layer scintillator hit

• At least two wire hits in the B and C-layers combined

• At least one scintillator hit in the B and C-layers combined

• A matched track to the central tracking systems, SMT and CFT

To remove muons produced by cosmic rays, we require

• A, B, and C-layer scintillation times < 10 ns from the bunch crossing time

• dca < 0.2 cm if there are no SMT hits

• dca < 0.02 cm if there is at least one SMT hit

• ∆z(central track, PV) < 1 cm

Finally, muons must be well isolated. This requirement favors a muon that has come

from W boson decay, and not from heavy flavor decay. To remove muons from heavy flavor

decays, we require
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• ∆R(µ, jet) > 0.5

• Track halo isolation =
∑

∆R<0.5

ptrk
T /pµ

T < 0.2

• Calorimeter halo isolation =
∑

0.1<∆R<0.4

Ecell
T /pµ

T < 0.2

3.5 Jets

Quarks and gluons cannot exist alone as free particles. They hadronize into many colorless

particles due to color confinement. These particles are detected as showers within a narrow

cone in the calorimeter, called jets [54].

Since jets are not fundamental objects, they must be modeled. This is done by DØ

in RunII using the T42 algorithm and the improved legacy cone algorithm (ILCA) [53].

The T42 algorithm removes noisy cells before reconstructing the calorimeter objects. The

algorithm accepts an isolated cell as a “signal-like” cell if the energy deposited in the cell is

above a threshold of 4σ, or above 2.5σ and in addition the energy of a neighboring cell is

above 4σ, where σ is the mean width of noise in the cell.

Once noisy cells are removed from the towers seeds are founded, that is represented by

calorimeter towers above a minimum seed threshold. The ILCA selects calorimeter towers

with transverse energy > 0.5 GeV as seeds, and collects all calorimeter towers within a cone

of radius ∆R = 0.5 around the seed. If the cone has transverse energy greater than 1GeV,

it is defined as a jet candidate. The central axis of the jet candidate is an ET weighted

midpoint of the towers. Next, a new cone is drawn around the new direction and the towers

within the new cone are used to calculate the new central axis of the jet candidate, which is

compare to the central axis of the old jet candidate. This process continues until the jet axis

does not change appreciately or the maximum number of iterations (50) is reached. In the

final step, the jet finding algorithm decides whether to merge or split jets that share energy.

If the shared energy is less than 50% of the individual jet energies, jets are split into two

distinct ones, otherwise they are merged.

After the jets have been reconstructed, criteria (quality cuts) are applied to distinguish

electromagnetic particles from real jets. The specific selection criteria are summarized below.

• To remove electromagnetic particles a cut on the fraction of the total calorimeter energy
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in the jet cone contained in the EM region is applied at 0.05 < fEM < 0.95, where

fEM = EEM/Etotal

• Since the noise level is higher in the coarse hadronic calorimeter, a cut on the fraction

of the jet energy deposited in the coarse hadronic calorimeter is applied at fCH < 0.4,

where

fCH = ECH/Etotal. This cut is designed to remove fake jets which are clustered around

noise.

• A jet is required to be isolated from all electromagnetic clusters, ∆R > 0.5.

• To remove jets clustered partially from noisy cells (hot cells), a cut on the ratio of the

energy in the most energetic cell of a jet to that of the second most energetic cell (fhot)

is applied at fhot < 10.

• n90 is defined as the number of calorimeter towers in a jet that contain 90% of the total

energy of the jet. To remove jets clustered from a single hot hower, n90 is required to

be greater than 1.

Jet Energy Scale

The jet energy measured in the calorimeter is not equal to the energy of the parton from

which the jet is presumed to have arisen. This is due to non-linearities, noise, dead material,

and showering effects in the calorimeter. Therefore, the energy of the calorimeter jet must

be corrected to estimate the parton energy.

The DØ experiment uses the jet energy scale (JES) algorithm to correct the detector

response: JES attempts to correct the reconstructed jet energy, Ereco, back to the particle

level energy that is the jet energy before the interaction with the calorimeter, Ecorr [55]. The

correction can be written as

Ecorr =
Ereco −O

R× S
, (3.2)

• Energy Offset O: energy in the clustered cells from electronic noise, pile-up, the

underlying event, multiple interactions, and noise from radioactive decay of the

uranium in the calorimeter. The offset correction is measured by averaging over
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minimum bias data samples and averaging over φ, and is given as a function of detector

η (that is, y measured from the coordinant origin) and instantaneous luminosity.

• Calorimeter Response R: R is a measure of the calorimeter response to a jet. It

is less than one because of energy loss in the detector before the calorimeter and the

poorer response of calorimeters to hadrons than electrons. In addition, the measured

jet energy can be distorted due to the non-linear response of the calorimeter to the

particle energies, a different response of the calorimeter to different particles, and un-

instrumented regions of the detector or dead material. This response (R) is determined

using the transverse energy balance in back-to-back photon+jet events. The transverse

energy of the photon is measured very precisely and provides the target transverse

energy for the jet. This correction is derived as a function of the jet energy and

detector η.

• Showering Corrections S: This is a measure of the energy that radiates outside of the

cone during the shower development in the calorimeter. Furthermore, the solenoid field

can change a particle’s trajectory. The correction is determined from the jet profiles in

the photon+jet sample by comparing the transverse energy balance for varying cone

radii.

3.6 b Quark Jets

Identifying jets from the hadronization of b quarks is very important because many interesting

particles such as top quarks decay into a b quark (almost 100%). Hadrons containing b

quarks have much longer life time than light hadrons. They can travel a few milimeters

in the detector before decaying. The identification of jets from b quarks is refered to as b

tagging. DØ develped a few different algorithms to distinguish b jets from light jets [56].

One, the neural netwok b tagging algorithm, combines seven variables from the existing

algorithms and provides the best b tagging performance. Variables used in the network are

listed below.

• Decay length significance of the Secondary Vertex

• Weighted combination of the tracks’ impact parameter significance
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• Probability that the jet originates from the primary vertex

• χ2 per degree of freedom of the secondary vertex

• Number of tracks used to reconstruct the secondary vertex

• Mass of the secondary vertex

• Number of secondary vertex found in the jet

3.7 Missing Transverse Energy

Since a neutrino is the least interacting particle, it does not leave any trace in the detector.

The presence of a neutrino in the final state can be detected only from the imbalance of

the energy in the transverse plane. The missing transverse energy, 6ET , is defined as the

vector sum of the energies deposited in the fine hadronic and electromagnetic calorimeter

cells minus the lepton pT vector such that there is no net transverse momentum in the event.
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CHAPTER 4

Data Samples

The data sample was collected between August 2002 and December 2005, with run numbers

151,817–213,063 inclusive. We have nearly 1 fb−1 of good quality data in each of the electron

and muon channels, as shown in Tables 4.1 and 4.2.

The data we are using have been reconstructed with version p17.09.03 of the DØ

production code. They have been obtained from the DØ Common Samples Group’s data

skims.

Table 4.1: Integrated luminosities by trigger version for the electron channel.

Electron Channel Integrated Luminosity [pb−1]

Trigger Version Trigger Name Delivered Recorded Good Quality
v8.0 – v9.0 EM15 2JT15 6 5 5
v9.0 – v10.0 EM15 2JT15 48 42 25
v10.0 – v11.0 EM15 2JT15 20 18 10
v11.0 – v12.0 EM15 2JT15 79 72 63
v12.0 – v13.0 E1 SHT15 2J20 273 251 227
v13.0 – v13.3 E1 SHT15 2J J25 80 73 55
v13.3 – v14.0 E1 SHT15 2J J30 354 325 294
v14.0 – v15.0 E1 SHT15 2J J25 290 271 234

Total Integrated Luminosity 1,150 1,056 913

The electron channel trigger requires at least one electron and at least two jets. The

muon channel trigger requires one muon and at least one jet. A description of the electron

and muon triggers used is given below.
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Table 4.2: Integrated luminosities by trigger version for the muon channel.

Muon Channel Integrated Luminosity [pb−1]

Trigger Version Trigger Name Delivered Recorded Good Quality
V8.0 - V9.0 MU JT20 L2M0 7 6 6
V9.0 - V10.0 MU JT20 L2M0 48 42 25
V10.0 - V11.0 MU JT20 L2M0 21 19 11
V11.0 - V12.0 MU JT20 L2M0 79 74 65
V12.0 - V13.0 MU JT25 L2M0 277 255 231
V13.0 - V13.2 MUJ2 JT25 56 39 31
V13.2 - V13.3 MUJ2 JT25 LM3 26 22 16
V13.3 - V14.0 MUJ2 JT30 LM3 382 277 252
V14.0 - V14.2 MUJ1 JT25 LM3 0 0 0
V14.2 - V14.3 MUJ1 JT25 ILM3 25 23 21
V14.3 - V15.0 MUJ1 JT35 LM3 265 248 214

Total Integrated Luminosity 1,187 1,006 871

Electron Trigger

• EM15 2JT15

– Level1: One EM calorimeter tower with ET > 10 GeV and two jet calorimeter

towers with ET > 5 GeV.

– Level2: One EM object with ET > 10 GeV and electromagnetic fraction > 0.85.

Also two jet objects with ET > 10 GeV.

– Level3: One EM object with ET > 15 GeV and a shower shape consistent an EM

object. Also, two jet objects with ET > 15 GeV.

• E1 SHT15 2J20

– Level1: One EM calorimeter tower with ET > 11 GeV.

– Level2: No requirement.

– Level3: One EM object with ET > 15 GeV and a shower shape consistent an EM

object. Also, two jet objects with ET > 20 GeV.

• E1 SHT15 2J J25
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– Level1: One EM calorimeter tower with ET > 11 GeV.

– Level1: One EM object with ET > 15 GeV.

– Level2: No requirement.

– Level3: One EM object with ET > 15 GeV and a shower shape consistent an EM

object. Also, two jet objects with ET > 20 GeV. One of the jets is also required

have ET > 25 GeV.

• E1 SHT15 2J J30

– Level1: One EM calorimeter tower with ET > 11 GeV.

– Level1: One EM object with ET > 15 GeV.

– Level2: No requirement.

– Level3: One EM object with ET > 15 GeV and a shower shape consistent an EM

object. Also, two jet objects with ET > 20 GeV. One of the jets is also required

have ET > 30 GeV.

Muon Trigger

• MU JT20 L2M0

– Level1: One muon with scintillator and wire hit and one calorimeter tower with

ET > 5 GeV.

– Level2: One muon object.

– Level3: One jet object with ET > 20 GeV.

• MU JT25 L2M0

– Level1: One muon with scintillator and wire hit and one calorimeter tower with

ET > 5 GeV.

– Level2: One muon object.

– Level3: One jet object with ET > 25 GeV.

• MUJ2 JT25
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– Level1: One muon with scintillator and wire hit and one calorimeter tower with

ET > 5 GeV.

– Level2: One muon object and a jet object with ET > 8 GeV.

– Level3: One jet object with ET > 25 GeV.

• MUJ2 JT25 LM3

– Level1: One muon with scintillator and wire hit and one calorimeter tower with

ET > 5 GeV.

– Level2: One muon object and a jet object with ET > 8 GeV.

– Level3: One jet object with ET > 25 GeV and a muon object with pT > 3 GeV.

• MUJ2 JT30 LM3

– Level1: One muon with scintillator and wire hit and one calorimeter tower with

ET > 5 GeV.

– Level2: One muon object and a jet object with ET > 8 GeV.

– Level3: One jet object with ET > 30 GeV and a muon object with pT > 3 GeV.

• MUJ1 JT25 ILM3

– Level1: One muon with scintillator and wire hit and one calorimeter tower with

ET > 5 GeV.

– Level2: One muon object and a jet object with ET > 8 GeV.

– Level3: One jet object with ET > 25 GeV and an isolated muon object with pT

> 3 GeV.

• MUJ1 JT35 LM3

– Level1: One muon with scintillator and wire hit and one calorimeter tower with

ET > 5 GeV.

– Level2: One muon object and a jet object with ET > 8 GeV.

– Level3: One jet object with ET > 35 GeV and a muon object with pT > 3 GeV.
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CHAPTER 5

Signal and Background Estimation

Our search for single top quark production relies on simulated single top quark and

background events.

5.1 Single Top Event Generation

Single top (signal) events are generated using the CompHEP-SingleTop Monte Carlo event

generator [57]. SingleTop produces events whose kinematic distributions match those from

NLO calculations. The top quark mass is set to 175 GeV, the parton distribution function

set (pdf set) is CTEQ6L1, and the scales are m2
t for the s-channel and (mt/2)2 for the t-

channel. The top quarks and the W bosons from the top quark decays were decayed in

CompHEP-SingleTop to ensure the spins are properly transfered. PYTHIA [58] was used to

add the underlying event and initial- and final-state radiation. TAUOLA [59] was used to

decay tau leptons, and EVTGEN [60] to decay b hadrons.

5.2 Modeling Backgrounds

The backgrounds to the single top signal can be separated into two categories, physics

backgrounds and instrumental backgrounds. Physics backgrounds share the same event

signature as signal events, with an isolated high pT lepton, two or more jets, and missing

transverse energy, 6ET . The largest physics background is the production of a W boson

together with two or more jets. This background is referred to as “W+jets”.

Another physics background is top pair production, tt. This background includes two

W bosons from the decay of the two top quarks. When both W bosons decay leptonically,

which gives rise to “dilepton” events, two quarks, two leptons, and two neutrinos are present
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in the final state. The other case where one of the W bosons decays hadronically and the

other decays leptonically produces “lepton+jets” events.

The instrumental background is multijet events produced by the strong interactions.

Its event signature differs from that of the single top signal in that it has no real missing

transverse energy from neutrinos. However, event misreconstruction may give rise to enough

fake 6ET to allow some of these events to pass the selection criteria. In case of electron

events, one of the reconstructed jets has a large electromagnetic fraction causing it to be

mis-identified as an electron. Muon events have a gluon splitting into a bb pair in which one

of the B mesons decays semi-leptonically and produces a muon.

5.3 Background Generation

5.3.1 Top Pair Production

The tt samples are generated using ALPGEN [61] and PYTHIA for subsequent generation

of final state radiation, fragmentation and decay into stable particles. The top quark mass

is set to 175 GeV, the renormalization and factorization scale Q2 is m2
t + P 2

T (jets) and the

pdf set used is CTEQ6L1.

Table 5.1: Event numbers, cross section, and weights for tt MC events.

Sample Events Cross Section [pb] Weight

tt→l + jets+0lp 481572 71.15 0.039
tt→l + jets+1lp 336400 29.85 0.036
tt→l + jets+2lp 332347 10.25 0.016

tt→ll+0lp 738761 19.18 0.014
tt→ll+1lp 161300 7.939 0.011
tt→ll+2lp 171411 2.636 0.005

Table 5.1 shows event numbers, cross section, and weights for all tt samples.

46



5.3.2 W+jets

In the W+jets sample generation, ALPGEN is used for the hard scatter calculation and

PYTHIA for subsequent generation of final state radiation, fragmentation and decay into

stable particles. The set of parton distribution functions used are CTEQ6L1. The parton-

level selection on the lepton is |η| < 10, while the selections for jets are pT > 8GeV and |y| <
3.5. The minimum distance between two jets is ∆R(j1, j2) = 0.4, while no cut is applied on

the minimum distance between a jet and the lepton. The renormalization and factorization

scale is m2
W + P 2

T (W ). EVTGEN is used to provide the various branching fractions and

lifetimes for B-hadrons.

To get a reliable estimate of the flavor composition, separate samples are generated for

the various combinations of quark flavors. The samples are classified as follows:

• W + light jets, events with light flavor partons (udsg) as well as W+c+light flavor

events where c quark is considered massless

• W + cc + light jets, events with two c quarks which are massive

• W + bb + light jets, events with two b quarks

When generating events in each jet multiplicity bin, a matching of partons and jets is

necessary in order to eliminate the double counting of events. This matching procedure

also reduces the sensitivity of the parton-level cross sections, predicted by ALPGEN, to

the parton generation cuts. The matching procedure used in this analysis is called MLM

matching, proposed and named after M. L. Mangano [62].

MLM Jet-Parton Matching

Events that do not satisfy the following conditions, are rejected from the MC samples:

• The number of jets before hadronization is required to be equal to the number of

partons

• Jets are required to be matched if they have pT > 15 GeV and there is a parton with

∆R < 0.7 from the jet.

Table 5.2 shows event numbers, cross section, and weights for all W+jets samples.
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Table 5.2: Event numbers, cross section, and weights for W+jets MC events.

Sample Events Cross Section [pb] Weight

W+0lp 7844750 4574 2.15
W+1lp 1053000 1273 0.68
W+2lp 1250500 298.5 0.34
W+3lp 621000 70.56 16.4
W+4lp 582250 15.83 0.07
W+5lp 41750 11.29 0.13

W+cc+0lp 481572 71.15 0.039
W+cc+1lp 336400 29.85 0.036
W+cc+2lp 332347 10.25 0.016
W+cc+3lp 372248 18.39 0.020

W+bb+0lp 738761 19.18 0.014

W+bb+1lp 161300 7.939 0.011

W+bb+2lp 171411 2.636 0.005

W+bb+3lp 163674 1.742 0.003

5.3.3 Multijet Events

Multijet production is the only instrumental background in this analysis. The multijet

background is modeled using real events which pass all selection cuts except the isolation

cut for muons or likelihood cut for electrons.

5.4 Trigger Simulation

Monte Carlo modeling of the DØ trigger system can be done either by using the DØ

TrigSim program, or by folding into Monte Carlo simulated events the per-electron, per-

muon and per-jet probability of satisfying individual trigger conditions at Level 1 (L1),

Level 2 (L2) and Level 3 (L3) [53]. The probability of a single object (electron, muon, jet)

48



to satisfy a particular trigger requirement is measured in data. Single object efficiencies are

in general parameterized as a function of the kinematic variables (pT , η, and φ) of the online

reconstructed objects.

Although correlations and overlap between triggers are automatically taken into account

using the first method, currently, the Monte Carlo modeling of trigger objects and trigger

quantities is not precise enough to be reliable. Therefore the second method based on trigger

efficiencies derived from data is used in this analysis.

The approach used to combine single object trigger efficiencies to calculate the probability

of an event to satisfy a specific trigger is described in Ref. [63] and briefly summarized below.

The total event probability is calculated as the product of the probabilities for the event to

satisfy the trigger conditions at each triggering level,

P (L1, L2, L3) = P (L1)P (L2|L1)P (L3|L1, L2), (5.1)

where P (L2|L1) and P (L3|L1, L2) represent the conditional probability for an event to

satisfy a set of criteria given it has already passed the requirements imposed at the previous

triggering level(s). Conditional probability is defined by

P (a|b) =
P (a, b)

P (b)
. (5.2)

The total probability of an event to satisfy a set of trigger requirements is obtained

assuming that the probability for a single object to satisfy a specific trigger condition is

independent of the presence of other objects in the event. Under this assumption, the

contributions from different types of objects to the total event probability can be written as

P(object1 and object2) = P (object1)P (object2). (5.3)

Furthermore, under this assumption, the probability (P) for at least one object to satisfy a

particular trigger condition, out of a total of N objects present in an event, is given by

P = 1−
N∏

i=1

(1− Pi), (5.4)

where Pi represents the single object probability (the probability for an electron to fire a jet

trigger and vice versa is also considered in the corresponding product).
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The total trigger efficiency is calculated as the luminosity weighted average of the event

probability associated with the trigger requirements contained in each trigger list.

The probability of a single object to satisfy a particular trigger requirement is measured

using the following general procedure. The first step consists of identifying a sample of

events, unbiased with respect to the trigger requirement under study. Offline reconstructed

objects are then identified in the events. The efficiency is obtained by calculating the fraction

of these offline reconstructed objects that satisfy the trigger condition under study.

5.5 Monte Carlo Corrections

Monte Carlo events generated with ALPGEN (or CompHEP) and PYTHIA are processed

using the DØGSTAR or GEANT based detector simulator [64]. The resulting output of

the Monte Carlo simulations has the same format as the data, and the same reconstruction

routines are applied to both. However, the simulated events have to be modified to better

describe real events. The efficiencies of the object reconstruction and associated correction

factors are discussed in the following sections.

5.5.1 Primary Vertex

The primary vertex efficiency is measured with real and Monte Carlo Z → µµ events. The

correction factor is defined as the ratio of the two efficiencies. In this analysis, no correction

factor for the Monte Carlo primary vertices is applied.

5.5.2 Electrons

Electron correction factors are measured using Z → ee data and Monte Carlo events. One

electron is required to pass tight selection cuts and the electron efficiency is measured with

the other electron. This is called the tag-and-probe method. The ratios of the data and

Monte Carlo efficiencies are used to weight the Monte Carlo events. The correction factor

for electrons is considered a product of two independent factors: reconstruction and track

match plus likelihood cuts,

fe−ID =
εData
Reco

εMC
Reco

×
εData
TrackMatchLikelihood|Reco

εMC
TrackMatchLikelihood|Reco

. (5.5)
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Figure 5.1: Reconstruction efficiency of primary vertex.

5.5.3 Muons

The detector resolution of muon Monte Carlo events is overestimated, while simulated

electrons have well-modeled resolution. To account for such overestimation the reconstructed

Monte Carlo muons need to be “smeared” to ensure that the resolution matches that of real

muons. The momentum smearing can be expressed as

(
q

pT

)′

→ q

pT

+

(
A +

B

pT

)
×G, (5.6)

where the parameter G is a random number generated from a Gaussian distribution centered

at 0 and a width of 1. The parameters A and B are measured for muons with an SMT track

hit in two regions (η < 1.6 and η > 1.6) and for muons without an SMT hit. The muon

track is defined by the charge and radius of curvature, which is proportional to q/pT , thus

the natural quantity to smear is q/pT .

After the smearing is applied, the tag-and-probe method described in the previous section

is used to measure the muon correction factor which is defined as the product of three

independent factors for reconstruction, track matching, and isolation.
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fµ−ID =
εData
Reco

εMC
Reco

×
εData
Track|Reco

εMC
Track|Reco

×
εData
Isolation|Track

εMC
Isolation|Track

. (5.7)

5.5.4 Jets

In jet identification and reconstruction, several data and Monte Carlo corrections are applied

to compensate for differences. The main issue is that the jet energy resolution is too good

in the MC events and there is a small offset not corrected by the jet energy scale correction.

The energies of the Monte Carlo jets are smeared to make their resolution match that of real

jets.

5.5.5 Tag Rate Functions

The neural network tagger (see Sec. 3.6) is not used to identify b jets in Monte Carlo events

since the tagger and tracking reconstruction in Monte Carlo events are not well modeled. To

manage such problems, DØ derived Taggability Functions and Tag-Rate Functions (TRF)

for b jet, c jet, and light jet in an event. Taggability Functions estimate the chance that a

jet could be tagged. This requires at least two associated tracks with pT > 1 GeV for jets.

After the Taggability Functions are applied the TRF is used to calculate the probability that

a jet is b tagged.

The TRF for data is measured using two independent data samples. The first data

sample is required to have one muon found inside of a jet cone. This requirement is expected

to select events including semi-leptonic b decay. The second sample requires at least two

jets of which one must have a jet impact parameter probability less than 0.5. The neural

network tagger and soft lepton tagger are used to construct a system of eight equations and

eight unknowns. The system is then solved yielding tagging efficiencies as a function of ET

and detector η.

The b tagging efficiencies with Monte Carlo events are also simulated. The Taggability

Function and TRF are measured as a function of jet pT and η, and the ratio of data and

Monte Carlo efficiency is calculated to obtain the correction factors.

In addition to b tagging efficiency, the neural network tagger measures c jet tagging

efficiency using a similar approach. The c jet tagging efficiency is also a function of jet pT

and η.
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Light jets are sometimes mistagged by the neural network tagging algorithm. This rate

is derived from the negative tag-rate. The negative tag-rate is the probability with which a

jet resulting from light flavor partons is mis-identified as a b jet. This is measured in real

events with little bias towards heavy-flavor events.
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CHAPTER 6

Event Selection

The main purpose of the event selection is to find W -like events containing an isolated

lepton, missing transverse energy, and one to four jets with high transverse momentum. The

selection cuts applied to the data are described below. Samples after this selection will be

used in further analysis steps of sophisticated discrimination techniques.

• Good quality [65] (for data)

• Pass trigger: offline electrons and muons in the data are matched to the object that

fired the appropriate trigger for that run period and triggerlist

• Good primary vertex: |zPV| < 60 cm with at least three tracks attached

• Missing transverse energy 15 < 6ET < 200 GeV

• One, two, three or four jets with pT > 15 GeV and |η| < 3.4

• The leading jet is required to have pT > 25 GeV and |η| < 2.5

• The second leading jet is required to have pT > 20 GeV

• There must be fewer than three noise jets

• Jet triangle cut |∆φ(leading jet, 6ET )| vs. 6ET : from 1.5 to π radians when 6ET = 0 GeV,

and 6ET from 0 to 35 GeV when |∆φ| = π rad

The electron channel selection:

• Only one tight electron with ET > 15 GeV and |ηdet1| < 1.1

1ηdet= - ln
[
tan θdet

2

]
where θdet is the polar angle as measured from the center of the detector.
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• No second loose electron with ET > 15 GeV

• No tight muon with pT > 18 GeV and |ηdet| < 2.0

• Electron coming from the primary vertex: |∆z(e, PV)| < 1 cm

• Electron triangle cuts |∆φ(e, 6ET )| vs. 6ET :

– from 2 to 0 rad when 6ET = 0 GeV, and 6ET from 0 to 40 GeV when |∆φ| = 0 rad

– from 1.5 to 0 rad when 6ET = 0 GeV, and 6ET from 0 to 50 GeV when |∆φ| = 0 rad

– from 2 to π rad when 6ET = 0 GeV, and 6ET from 0 to 24 GeV when |∆φ| = π rad

The muon channel selection:

• Only one tight muon with pT > 18 GeV and |ηdet| < 2.0

• No tight electron with pT > 15 GeV and within |ηdet| < 2.5

• Muon coming from the primary vertex: |∆z(µ, PV)| < 1 cm

• Muon triangle cuts |∆φ(µ, 6ET )| vs. 6ET :

– from 1.1 to 0 rad when 6ET = 0 GeV, and 6ET from 0 to 80 GeV when |∆φ| = 0 rad

– from 1.5 to 0 rad when 6ET = 0 GeV, and 6ET from 0 to 50 GeV when |∆φ| = 0 rad

– from 2.5 to π rad when 6ET = 0 GeV, and 6ET from 0 to 30 GeV when |∆φ| = π rad

Orthogonal samples selection (for measuring the multijet backgrounds):

• All the same selection cuts as listed above except for the tight lepton requirements

• Electron channel — only one loose-but-not-tight electron

• Muon channel — only one loose-but-not-tight muon
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Table 6.1: Numbers of events for the electron and muon channels after selection.

Numbers of Events after Selection

Electron Channel Muon Channel
1 jet 2 jets 3 jets 4 jets 5+ jets 1 jet 2 jets 3 jets 4 jets 5 jets

Signal MC
tb 6,908 19,465 9,127 2,483 595 3,878 12,852 6,458 1,809 401
tqb 8,971 22,758 12,080 3,797 1,092 8,195 21,066 11,193 3,489 835
tb+tqb 15,879 42,223 21,207 6,280 1,687 12,073 33,918 17,651 5,298 1,236

Background MC
tt̄→ll 7,671 29,537 26,042 12,068 5,396 5,509 24,595 21,803 9,788 3,442
tt̄→l+jets 522 5,659 22,477 27,319 14,298 232 3,376 16,293 22,680 8,658
Wbb̄ 26,611 13,914 9,011 3,848 1,434 27,764 14,488 9,427 3,874 1,204
Wcc̄ 21,765 13,453 7,562 2,252 591 32,712 19,047 10,141 3,051 663
Wjj 134,660 61,497 34,162 8,290 1,750 147,842 66,201 36,673 9,169 1,502

Pretag data
Multijets 11,565 6,993 4,043 1,317 431 897 658 462 151 48
Signal data 27,370 8,220 3,075 874 223 17,816 6,432 2,590 727 173

ZeroTag data
Multijets 11,319 6,659 3,802 1,210 390 866 604 409 128 36
Data 26,925 7,833 2,831 752 178 17,527 6,122 2,378 599 125

OneTag data
Multijets 246 322 226 93 34 31 51 49 21 8
Signal data 445 357 207 97 35 289 287 179 100 38

TwoTags data
Multijets — 12 15 14 7 — 3 4 1 4
Signal data — 30 37 22 10 — 23 32 27 10
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CHAPTER 7

Bayesian Neural Networks

The identification of the signal processes over background processes is a very important task

in high energy physics. In order to improve in signal/background discrimination, high energy

physicists have used various multivariate statistical techniques. Nowadays, a neural network

is one of the most used tools because it can handle problems with many parameters and

provide good classification results.

A neural network [66] is an approach using the inductive strategy to estimate models

from data. This estimation process is referred to as “learning” or “learning from data”.

Here, learning implies obtaining representation of data or finding patterns in the data which

can be used for several purposes such as predicting future events or classification.

How learning operates can be modeled in many different ways with many different

perspectives. One of the most successful approaches to describe physical processes is

multivariate input-output mapping:

y = f(x, θ), (7.1)

where x corresponds to a group of input variables, y to the output or target variables, and

θ to a set of unknown model parameters. In this context, learning is regarded as parameter

estimation to obtain a description of the conditional distribution p(y|x, θ) on the basis of

instances presented to us.

Conventional methods of learning in neural networks are interpreted as an implementa-

tion of the statistical procedure of maximum likelihood. Such approaches can suffer from

several deficiencies which will be discussed later. On the other hand, The Bayesian school of

statistics [67] is based on a different view of learning, in which probability is used to represent

uncertainty about the relationship being learned.
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In this analysis, we use Bayesian neural networks [68] to extract maximum information

from the data. This chapter gives an introductory account of Bayesian methods and their

application to neural networks, with the focus on underlying principles. Section 7.1 describes

basic concepts of neural networks. Section 7.2 gives an outline of the theory of Bayesian

statistics. Section 7.3 describes basic idea of Bayesian neural networks. Finally, details of

Markov Monte Carlo and implementation of Bayesian neural networks are given in Section

7.4.

7.1 Basic Concepts of Neural Networks

The most commonly used neural networks are multilayer perceptron networks, also known

as “feedforward” or “backpropagation” networks. This class of networks consists of a number

of simple processing units, organized in layers. Every unit in a layer is connected to all the

units in the previous layer. These connections are not all equal, each connection may have

a different weight. The weights on these connections encode the knowledge of a network.

Often the units in a neural network are also called nodes. In this network, the information

moves in one direction, from the input nodes, through the hidden nodes and to the output

nodes.

The network is a non-linear function y(x; w), where x are input variables and w are

parameters generally referred to as weights,

y(x; w) =
1

1 + e−f(x;w)
, (7.2)

where

f(x; w) = b +
∑

j

vjhj(x), (7.3)

hj(x) = tanh(aj +
∑

i

uijxi). (7.4)

Here, i runs over the inputs x1...xI and j runs over the hidden units. uij is the weight on the

connection from input unit i to hidden unit j; similarly, vj is the weight on the connection

from hidden unit j to output unit. The aj and b are the biases of the hidden and output

units, respectively. These weights and biases are the parameters of the network represented

by w.
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The output of the function y can be interpreted as the probability of input variable

x that belongs to a given class. In the process of learning or training neural networks,

one determines the values for w using a set of examples, referred to as training data, and

build decision rules to assign class membership for inputs. The training data provide the

relationship between input x and a target t. Thus, the neural networks learn a model of the

relationship between x and t, and give an output y close to the target value t.

Typically an objective function or error function, defined as a function of w, is used to

measure how well the network, with its weights set to w, solves the task. The error function

is a sum of terms, for each input/target pair {x, t}, measuring how close the output y is to

the target t. The training is an exercise in function minimization - i.e., adjusting w in

such a way as to find a w that minimizes the error function. Many function minimization

algorithms make use not only of the error function, but also its gradient with respect to

the parameters w. For neural networks the backpropagation algorithm [66] efficiently

evaluates the gradient of the output y with respect to the parameters w, and thence the

gradient of the error function with respect to w.

Eq. (7.5) shows the sum-of-squares error function which is one of the simplest and most

commonly used objective functions,

E(w) =
1

2

N∑
i=1

|y(xn; w)− tn|2. (7.5)

Minimizing this error function with respect to w leads to an estimate w∗ which can be used

to make predictions for new values of x by evaluating y(x; w∗).

7.1.1 Limitation of (Conventional) Neural Networks

A well-known problem with error function minimization is that complex and flexible models

can over-fit the training data, leading to poor generalization. Indeed, when the number of

parameters equals the number of data points, the least squares solution for a model can

achieve a perfect fit to the training data while having very poor performance on new data.

This behavior is characterized by values of the parameters w that have large positive and

negative values finely tuned to the individual noisy data. The corresponding function y(x; w)

typically exhibits strong oscillations as a function of x. While over-fitting can be avoided by

limiting the complexity of the model, this too can lead to poor generalization if the model
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is insufficiently flexible to capture the underlying behavior of the data. However, we often

have to work with data of limited size and yet we wish to be able to use flexible models

with many adjustable parameters. We shall see that the phenomenon of over-fitting is a

pathological property of point estimation, and that by adopting a Bayesian viewpoint we

can apply complex models to small data which minimize the problems of over-fitting.

7.2 Bayes’ Theorem

We are quite used to the idea of dealing with uncertainty in our lives. For instance, we

might believe that it is unlikely to rain tomorrow if the last few days have been sunny.

However, if we discover that a cold front is about to arrive, we might revise our views and

decide that is is in fact quite likely to rain. Here we are discussing subjective beliefs, and

the way they are modified when we obtain more information. We might seek to put such

reasoning on a more formal footing, and to quantify our uncertainty by encoding the degrees

of belief as real numbers. Ref. [69] shows that, provided we impose some simple consistency

requirements, then these numbers obey the rules of conventional probability theory. In other

words, if we use a value of 1 to denote complete certainty that an event will occur, and 0 to

denote complete certainty that the event will not occur, with intermediate values representing

corresponding degrees of belief, then these real values behave exactly like probabilities.

Once our beliefs have been represented as probabilities they can be manipulated using

two simple rules. Consider a pair of random variables A and B each of which can take on a

number of discrete values. We denote by P(a,b) the joint probability that A = a and B =

b. Using the product rule this joint probability can be expressed in the form

P (a, b) = P (b|a)P (a). (7.6)

Here P (b|a) denotes the conditional probability, in other words the probability that B = b

given that A = a. We can similarly consider a conditional probability of the form P (a|b). The

quantity P(a) in Eq. (7.6) denotes the marginal probability, in other words the probability

that A = a irrespective of the value of B. The second relation between probabilities that we

need to consider is the sum rule given by

∑
b

P (a, b) = P (a). (7.7)

60



where the sum is over all possible values of b. From the product rule we obtain the following

relation

P (a|b) =
P (b|a)P (a)

P (b)
, (7.8)

which is known as Bayes’ theorem. Using the sum rule, we see that the denominator in Eq.

(7.8) is given by

P (b) =
∑

a

P (b|a)P (a), (7.9)

and plays the role of a normalizing factor, ensuring that the probabilities on the left hand

side of Eq. (7.8) sum to one. For continuous rather than discrete variables, the probabilities

are replaced by probability densities, and summations are replaced by integrations.

We can consider P (a) to be the prior probability of A = a before we observe the value of

B, and P (a|b) to be the corresponding posterior probability after we have observed the value

of B. Posterior probabilities play a central role in pattern recognition, and Bayes’ theorem

allows them to be re-expressed in terms of quantities which may be more easily calculated.

As we shall see, we can treat the problem of learning in neural networks from a

Bayesian perspective simply by application of the above rules of probability. This leads

to a unique formalism which in principle is simple to apply, and which can lead to some very

powerful results. We shall also see, however, that the application of Bayesian inference to

realistic problems presents many difficulties which require careful analytical approximations

or sophisticated numerical approaches to resolve.

7.3 Bayesian Neural Networks

Conventional neural network training procedures adjust the weights and biases in the network

so as to minimize a measure of error on the training data, most commonly, the sum of the

squared differences between the network outputs and the targets as described in the previous

section. Minimization of this error measure is equivalent to maximum likelihood estimation.

Finding the weights and biases that minimize the chosen error function is commonly

done using some gradient-based optimization method, such as backpropagation. There are

typically many local minima, but good solutions are often found despite this.
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In the Bayesian approach to neural network learning, the weights and biases, w, in neural

networks are learned (trained) based on a set of training data, (x(1), t(1)), ..., (x(n), t(n)), giving

examples of inputs, x(i), and associated targets, t(i). The result of Bayesian learning is a

probability distribution over model parameters that expresses our beliefs regarding how likely

the different parameter values are given the training data. To start the process of Bayesian

learning, we must define a prior distribution, P (w), for the parameters, that expresses our

initial beliefs about their values, before any data has arrived. When we observe data, this

prior distribution is updated to a posterior distribution;

P (w|(x(1), t(1)), ..., (x(n), t(n))) =
P ((x(1), t(1)), ..., (x(n), t(n))|w)P (w)

P ((x(1), t(1)), ..., (x(n), t(n)))
. (7.10)

The posterior distribution combines the likelihood function, which contains the information

about w derived from observation, with the prior, which contains the information about

w derived from our background knowledge. The introduction of a prior is a crucial step

that allows us to go from a likelihood function to a probability distribution, and thereby

allows learning to be performed using the apparatus of probability theory. The prior is also

a common focus for criticism of the Bayesian approach, as some people view the choice of a

prior as being arbitrary.

One objective of Bayesian neural network (BNN) learning is to find the predictive

distribution for the target values in new data, x(n+1), given the inputs for that data, and the

inputs and targets in the training data. The predictive distribution is defined by

P (t(n+1)|x(n+1), (x(1), t(1)), ..., (x(n), t(n)))

=
∫

P (t(n+1)|x(n+1), w)P (w|(x(1), t(1)), ..., (x(n), t(n)))dw. (7.11)

However, in our analysis we define Bayesian neural networks by the function

y(x) =

∫
y(x; w)P (w|(x(1), t(1)), ..., (x(n), t(n)))dw. (7.12)

Since the distribution of the inputs is not being modeled, the likelihood is given by

P (t|x, w) =
n∏

i=1

P (t(i)|x(i), w), (7.13)
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where for classification models, the likelihood function is taken to be

P (t|x, w) =
n∏

i=1

y(x(i), w)t(i) [1− y(x(i), w)]1−t(i) . (7.14)

The neural network output y can be interpreted as probability that the target is 1. Similarly,

probability for t=0 is 1-y. It is assumed that the training events are independent.

7.3.1 Priors

We must define the prior for the model parameters, which we express by a hierarchical

model with a set of common hyperparameters, say γ.

If the wk are independent given γ, we will have

P (w) = P (w1, ..., wp) =

∫
P (γ)

p∏
i=1

P (wi|γ)dγ. (7.15)

The prior density for the parameters, w, is written as P (w|γ), where the prior density for

the hyperparameters themselves is P (γ). With this hierarchical prior, the posterior density

is given by

P (w, γ|(x(1), t(1)), ..., (x(n), t(n))),

∝ P (γ)P (w|γ)
n∏

i=1

P (t(i)|x(i), w, γ). (7.16)

Consider the network function given in Eqs. (7.2) ∼ (7.4). Let the parameters in a

particular group of parameters be u1, ..., uk and let them have Gaussian distributions with

mean zero and standard deviation σu. It is convenient to represent this standard deviation

in terms of the corresponding “precision”, defined to be τu = σ−2
u . We take the distribution

for the parameters in the group to be

P (u1, ..., uk|τu) = (2π)−k/2τ k/2
u exp(−τu

∑
i=1

u2
i /2). (7.17)

The precision is given a Gamma distribution with some mean, wu, and shape parameter

specified by αu, with density

P (τu) =
(αu/2wu)

αu/2

Γ(αu/2)
τα/2−1
u exp(−τuαu/2wu). (7.18)
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In the previous notation, τu is a component of γ. The values of wu and αu may be considered

fixed.

The evaluation of the BNN involves an integral over weight space, which is a challenging

task. The only feasible approach to perform this integral is to use Markov chain Monte

Carlo methods to sample from Eq. (7.12). The following section describes the theory and

application of Markov chain Monte Carlo methods.

7.4 Markov Chain Monte Carlo (MCMC)

The Monte Carlo method, which is used extensively in high energy physics, was developed

to use random numbers to compute integrals. Suppose we wish to calculate a complicated

integral ∫ b

a

h(x)dx. (7.19)

We decompose h(x) into the product of a function f(x) and a probability density function

p(x),

∫ b

a

h(x)dx =

∫ b

a

f(x)p(x)dx = E[f(x)], (7.20)

so that the integral can be expressed as an expectation of f(x) with respect to the probability

density p(x). If we draw random numbers, x1, ..xn from the density p(x), then

∫ b

a

f(x)p(x)dx ' 1

n

n∑
i=1

f(xi). (7.21)

This is referred to as Monte Carlo integration. A Markov chain is one way to draw

random numbers from a density p(x).

7.4.1 Theory of Markov Chains

A Markov chain is a series of random variables, X(0), X(1), X(2), ..., in which the distribution

of X(n+1) depends only on X(n). More formally,

Pr(X(n+1) = sj|X(0) = sk, ..., X
(n) = si) = Pr(X(n+1) = sj|X(n) = si), (7.22)

where X(n) denotes the value of a random variable at time step n. The range of possible

X values defines the state space. For a Markov random variable the only information
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about the past needed to predict the future is the current state of the random variable. The

transition probability, P (i, j) = P (i → j), is the probability that a process in state si moves

to state sj in a single step,

P (i, j) = P (i → j) = Pr(X(n+1) = sj|X(n) = si). (7.23)

Let

πj(n) = Pr(X(n) = sj), (7.24)

denote the probability that the chain is in state j at time n, and let π(n) denote the vector

of the state space probabilities at step n. We start the chain by specifying a starting vector

π(0). Often all the elements of π(0) are zero except for a single element corresponding to

the process starting in that particular state. As the chain progresses, the probability values

get spread out over the state space.

The probability that the chain is in state si at time (or step) n + 1 can be formulated as

sums over the probability of being in a particular state at the current step and the transition

probability from that state into state si,

πi(n + 1) = Pr(X(n+1) = si),

=
∑

k

Pr(X(n+1) = si|X(n) = sk) · Pr(X(n) = sk),

=
∑

k

P (k → i)πk(n) =
∑

k

P (k, i)πk(n). (7.25)

Define the probability transition matrix P as the matrix whose i, jth element is

P (i, j), the probability of moving from state i to state j, P (i → j). Eq. (7.25) becomes

π(n + 1) = π(n)P. (7.26)

Using the matrix form, we can show that [70, 71]

π(n) = π(0)Pn. (7.27)

Defining the n-step transition probability p
(t)
ij as the probability that the process is in state

j given that it started in state i t steps ago,
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p
(t)
ij = Pr(X(n+t) = sj|X(n) = si), (7.28)

it immediately follows that p
(t)
ij is just the ij-th element of Pt.

Finally, a Markov chain is said to be irreducible if there exists a positive integer such

that p
(t)
ij > 0 for all i, j. That is, all states communicate with each other, as one can always

go from any state to any other state (although it may take more than one step). Likewise,

a chain is said to be aperiodic when the number of steps required to move between two

states (say x and y) is not required to be a multiple of some integer. Put another way, the

chain is not forced into some cycle of fixed length between certain states.

An invariant (or stationary) distribution over the states of a Markov chain is one that

persists forever once it is reached. More formally, the distribution given by the probabilities

π∗ is invariant with respect to the Markov chain with transition probabilities P, if

π∗ = π∗P. (7.29)

A Markov chain can have more than one invariant distribution. If P is the identity matrix,

for example, then any distribution is invariant. A finite Markov chain always has at least

one invariant distribution.

We are interested in constructing Markov chains for which the distribution we wish to

sample from, given by π∗, is invariant. Often, we will use time reversible homogeneous

Markov chains that satisfy the more restrictive condition of detailed balance - that if a

transition occurs from a state picked according to the probabilities given by π∗, then the

probability of that transition being from state j to state k is the same as the probability of

it being from state k to state j. In other words, for all j,

P (j, k)π∗j = P (k, j)π∗k. (7.30)

This also shows that π∗ is an invariant distribution. However, it is possible for a distribution

to be invariant without detailed balance holding.

For our purposes, it is not enough merely to find a Markov chain with respect to which

the distribution we wish to sample from is invariant. We also require that the Markov chain

be ergodic - that the probabilities at time t, π(t), converge to this invariant distribution as

t → ∞, regardless of the choice of initial probabilities π(0). An ergodic Markov chain

66



can have only one invariant distribution, which is also referred to as its “equilibrium”

distribution. Some Markov chains “converge” not to a single distribution, but rather to

a cycle of distributions. These periodic chains are not ergodic by this definition.

7.4.2 Metropolis Algorithm

One problem with applying Monte Carlo integration is in obtaining samples from some

complex probability distribution p(x). Attempts to solve this problem are the roots of MCMC

methods. In particular, they trace to attempts by mathematical physicists to integrate very

complex functions by random sampling (Metropolis and Ulam 1949, Metropolis et al. 1953,

Hastings 1970), and the resulting Metropolis-Hastings algorithm [72].

Suppose our goal is to draw samples from some distribution p(θ) where p(θ) = f(θ)/K,

where the normalizing constant K may not be known, and very difficult to compute. The

Metropolis algorithm (Metropolis and Ulam 1949, Metropolis et al. 1953) generates a

sequence of draws from this distribution as follows:

1. Start with any initial value θ0 satisfying f(θ0) > 0.

2. Using the current θ value, sample a candidate point θ∗ from some jump density

q(θ1; θ2), which is the probability of returning a value of θ2 given a previous value of θ1. This

distribution is also referred to as the proposal or candidate-generating distribution. The

only restriction on the jump density in the Metropolis algorithm is that it be symmetric,

i.e., q(θ1; θ2) = q(θ2; θ1).

3. Given the candidate point θ∗, calculate the ratio of the density at the candidate (θ∗)

and current (θt−1) points,

α =
p(θ∗)

p(θt−1)
=

f(θ∗)

f(θt−1)
. (7.31)

Notice that because we are considering the ratio of p(x) under two different values, the

normalizing constant K cancels out.

4. If the jump increases the density (α > 1), accept the candidate point (set θt = θ∗) and

return to step 2. If the jump decreases the density (α < 1), then with probability α accept

the candidate point, else reject it and return to step 2.

We can summarize the Metropolis sampling as first computing

α = min(
f(θ∗)

f(θt−1)
, 1), (7.32)
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and then accepting a candidate point with probability α (the probability of a move). This

generates a Markov chain (θ0, ..., θk, ...), as the transition probabilities from θt to θt+1

depends only on θt and not (θ0, ..., θt−1). Following a sufficient burn− in period (of, say, k

steps), the chain approaches its stationary distribution and (as we will demonstrate shortly),

samples from the vector (θk+1, ..., θk+n) are samples from p(x).

Hastings [72] generalized the Metropolis algorithm by using an arbitrary transition

probability function q(θ1, θ2) = Pr(θ1 → θ2), and setting the acceptance probability for

a candidate point as

α = min(
f(θ∗)q(θ∗, θt−1)

f(θt−1q(θt−1), θ∗)
, 1). (7.33)

This is the Metropolis−Hastings algorithm. Assuming that the proposal distribution

is symmetric, i.e., q(x, y) = q(y, x), recovers the original Metropolis algorithm.

7.4.3 Gibbs Sampling

The Gibbs sampler, also known as the heatbath algorithm, is conceptually the simplest of the

Markov chain sampling methods, but has come into prominence only recently, with the work

of Geman and Geman [73] and Gelfand and Smith [74]. It is widely applicable to problems

where the variables take on values from a small finite set, or have conditional distributions

of a parametric form that can easily be sampled from.

Suppose we wish to sample from the joint distribution for X = (X1, ..., Xn) given by

P (x1, ..., xn), where the range of the Xi may be either continuous or discrete. The Gibbs

sampler does this by repeatedly replacing each component with a value picked from its

distribution conditional on the current values of all other components. This process can be

seen as generating a realization of a Markov chain that is built from a set of base transition

probabilities Bk, for k = 1, ..., n, with

Bk(x, x′) = P (x′k|{xi : i 6= k})
∏
i6=k

δ(xi, x
′
i), (7.34)

i.e., Bk leaves all the components except xk unchanged, and draws a new xk from its

distribution conditional on the current values of all the other components. This is assumed

to be a feasible operation. These base transitions are usually applied in sequence, as in Eq.

(7.34), though at each step we could instead pick a Bk at random from some pre-specified
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distribution, as in Eq. (7.34). To complete the definition of the Markov chain, we also must

specify some initial distribution, p0(x), but the hope is that this choice will not be critical.

When the Bk are applied in sequence, the algorithm can be described as simulating a

homogeneous Markov chain, X(0); X(1); X(2), ..., with transition matrix T = B1...Bn. The

procedure for generating X(t) from X(t−1) can be expressed as follows:

Pick X
(t)
1 from the distribution for X1 given x

(t−1)
2 , x

(t−1)
3 , ..., x

(t−1)
n .

Pick X
(t)
2 from the distribution for X2 given x

(t)
1 , x

(t−1)
3 , ..., x

(t−1)
n .

...

Pick X
(t)
i from the distribution for Xi given x

(t)
1 , ..., x

(t)
i−1, x

(t−1)
i+1 , ..., x

(t−1)
n .

...

Pick X
(t)
n from the distribution for Xn given x

(t)
1 , x

(t)
2 , ..., x

(t)
n−1.

Note that the new value for Xi−1 is used immediately when picking the next value for Xi.

To show that the Gibbs sampling algorithm works, we must first verify that all the

Bk leave the desired distribution invariant. Intuitively, this is clear. Since Bk leaves the

components xi for i 6= k unchanged, the desired marginal distribution for these components

is certainly invariant. Furthermore, the conditional distribution for xk in the new state given

the other components is defined to be that which is desired. Together, these ensure that

if we started from the desired distribution, the joint distribution for all the Xi after Bk is

applied must also be the desired distribution.

7.4.4 The Hybrid Monte Carlo Algorithm

The hybrid Monte Carlo algorithm [75] combines the Metropolis algorithm and sampling

techniques based on dynamical simulation. The output of the algorithm is sample points

drawn from a specified distribution.

The hybrid Monte Carlo algorithm is expressed in terms of sampling from the canonical

distribution. However, the algorithm can be used to sample from any distribution. The

canonical distribution over the phase space of q and p is defined to be

P (q, p) ∝ exp(−H(q, p)), (7.35)

where q is a position variable which has n real-valued components; p is a momentum variable,

which has corresponds one-to-one to the n real-valued components q. H(q, p) = E(q)+K(p)
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is the Hamiltonian function which gives the total energy. E(q) is the potential energy

and K(p) is the kinetic energy. In this application q will be the set of network parameters

(weights and biases).

Hamiltonian dynamics will explore the whole region of phase space with a given constant

value of H. However, such transitions are not sufficient to produce an ergodic Markov chain

since regions with different values of H are not visited. To access regions with different

values of H, p is updated using Gibbs sampling.

In practice, Hamiltonian dynamics cannot be simulated exactly, but can be approximated

by some discretization using finite time steps called the leapfrog method [68].

p̂i(τ +
ε

2
) = p̂i(τ)− ε

2

∂E

∂qi

(q̂(τ)), (7.36)

q̂i(τ + ε) = q̂i(τ) + ε
p̂i(τ + ε

2
)

mi

, (7.37)

p̂i(τ + ε) = p̂i(τ +
ε

2
)− ε

2

∂E

∂qi

(q̂(τ + ε)). (7.38)

Such a leapfrog step consists of a half step for the pi, a full step for the qi, and another

half-step for the pi. For some time period, ∆τ , and step size, ε, L = ∆τ/ε steps are applied

in order to reach the target time.

Given values for the leapfrog stepsize, ε, and the number of leapfrog steps, L, the hybrid

Monte Carlo algorithm is performed as follows:

1) From the current state, (q, p) = (q̂(0), p̂(0)), L leapfrog steps with a stepsize of ε are

applied to reach the state (q̂(εL), p̂(εL)).

2) Negate the momentum variables,

(q∗, p∗) (q̂(εL),−p̂(εL))

3) In the Metropolis algorithm, accepting the candidate state (q∗, p∗) with probability

min(exp(−(H(q∗, p∗)−H(q, p))),1),

and otherwise letting the new state be the same as the old.
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7.4.5 Implementing Bayesian Neural Networks using MCMC

In summary, the BNN output for new data is computed using Eq. (7.12). which can be

approximated by the average value of the function y(x; w) over a sample of values from the

posterior using the Markov chain Monte Carlo method described above.

To sample using the hybrid method, momentum variable pi is introduced. The hybrid

Monte Carlo generates a candidate state, and the Metropolis algorithm accepts or rejects

this candidate based on the change in total energy, H(q, p) = E(q) + K(p). After this step,

the hyperparameter is updated by Gibbs sampling.
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CHAPTER 8

Analysis

8.1 Introduction

This chapter describes the application of Bayesian neural networks (BNN) to the single top

quark search.

In the BNN analysis we attempt to approximate a one-to-one function of

Pr(S|x) =
f(x|S) prior(S)

f(x|S) prior(S) + f(x|B) prior(B)
, (8.1)

the probability that an event characterized by the variables x belongs to the signal class,

S. The densities f(x|S) and f(x|B) are the probability density functions for the signal

and background, respectively, while prior(S) and prior(B) are the corresponding class prior

probabilities. A cut on the probability Pr(S|x), or weighting events by it [76], minimizes the

probability to misclassify events. Since any one-to-one function of Pr(S|x) is equivalent to

Pr(S|x), in practice, we construct an approximation to the discriminant

D(x) =
f(x|S)

f(x|S) + f(x|B)
, (8.2)

built using equal numbers of signal and background events. We approximate the discriminant

D(x) with BNN as described in Chapter 7, in particular, Eq. (7.12).

The signal consisted of an admixture of s and t channel single top Monte Carlo (MC)

events, in the Standard Model (SM) ratio, and the background an admixture of tt̄ and

W+jets MC events plus real QCD events, also mixed in the predicted proportions. We use

the terms signal and background as shorthand for these admixtures.

8.1.1 Analysis Road-Map

An important step in the BNN analysis is to construct an accurate approximation to Eq.

(8.2). However, before that can be done a set of variables x must be found that provide
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some measure of discrimination between the signal and background. We know a priori what

the fundamental observables are:

1. the missing transverse energy 2-vector ( /ET , /ET φ);

2. the lepton 4-vector (ET , η, φ,mass), taking the mass = 0;

3. the jet 4-vector (ET , η, φ,mass), assuming massless jets, and jet-type, either 1 for b-jets

or 0 for non-b-jets, for jet multiplicities nj = 2, 3 or 4 jets.

The number of degrees of freedom is therefore 2+3+4×nj, which ranges from 13 (for 2 jets)

to 21 (for 4 jets). (Since we have assumed the masses to be zero, we can drop one degree of

freedom per 4-vector.) If, for each jet multiplicity bin, we were able to compute the signal

and background densities f(x|S) and f(x|B), in terms of these degrees of freedom, we would

be done. The principal virtue of this approach is that no variable selection is needed and the

variables are optimal by construction. Alternatively, we can use physical intuition and insight

to construct, from the fundamental degrees of freedom, variables that capture discriminating

aspects of the signal vis-à-vis the background. Obviously, these derived variables contain no

more information than is contained in the original degrees of freedom. The reason for using

derived variables is practical: it may be easier to construct accurate approximations to D(x)

using the derived variables rather than the underlying degrees of freedom.

The Bayesian neural network analysis starts with the standard set of Single Top Group

derived variables and culls them to useful subsets for subsequent analysis. We used the

standard set of “train” Root files for training and the standard “yield” files to obtain

results [77]. From this starting point, the BNN analysis reported here proceeded as follows.

1. For each of the 12 analysis channels, (µ, e) × (1-tag, 2-tag) × (2, 3, 4) − jet, elimi-

nate variables deemed poorly modeled using p-values computed using a discrepancy

measure akin to the Kolmogorov-Smirnov (K-S) statistic, but which is designed for

histogrammed data.

2. For each of the 12 analysis channels:

• rank the remaining variables according to their discrimination importance using

the RuleFit algorithm [78];
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• select the Nvar best variables and build a discriminant D(x) using the Bayesian

method, described in Chapter 7, and

• verify that the Bayesian estimate of D(x) is adequate.

3. Compute the posterior density of the single top cross section using binned likelihoods

formed from the BNN output distributions:

• combine different tag and jet multiplicity channels for both lepton flavors,

and optimize the bin and channel combination using a SM signal+background

ensemble;

• study the bias of the method for the single top cross section measurement using

different non-SM signal+background ensembles and

• compute the expected and observed posterior densities for each of the 12 analysis

channels as well as the optimum channel combination and determine the cross

sections.

4. Compute a p-value that quantifies the significance of the result using a background-only

ensemble.
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8.2 Variable Selection

The standard set of variables, used by the Single Top Group, are the result of an analysis

of the signal and background Feynman diagrams [79, 80] and a study of single top quark

production at next-to-leading order [81]. The variables fall into three categories: object

kinematics, event kinematics, and variables based on angular correlations. The complete

initial set of variables is shown in Table 8.1. Jets are sorted in pT and index 1 refers to the

leading jet in a jet category: “jetn” (n=1,2,3,4) corresponds to each jet in the event, “tagn”

to b-tagged jets, “untagn” to non-b-tagged jets, “bestn” to the best jet and “notbestn” to all

but the best jet. The best jet is defined as the one for which the invariant mass M(W, jet)

is closest to mt = 175 GeV.

However, for each of the 12 (lepton, tag, jet-bin)-channels only sub-sets of these variables

were used as inputs to the Bayesian neural networks. Each sub-set contained variables that

were both well modeled and useful as a discriminant.

8.2.1 Checking Modeling of Variables

It is clearly necessary that the variables used be well modeled. In principle, this requires

that we check that the Nvar-dimensional densities f(x|S) and f(x|B) are correct. Since this

is exceedingly difficult to do, in practice we check their 1-dimensional projections. While

this is not sufficient to guarantee that the densities are correctly modeled it is at least a

necessary condition.

The standard way to eliminate a poorly modeled variable is to do a goodness-of-fit test:

we compare its histogram, derived from the model, with that of the data, compute a measure

of discrepancy between it and the data histogram and from the discrepancy the associated

p-value. If the p-value is judged to be small enough, the hypothesis that the histograms

agree is rejected. Unfortunately, there are many ways in which two histograms can differ,

each suggesting a different discrepancy measure and a different p-value and it is far from

obvious which, if any, measure is sufficient for the task. However, whatever the discrepancy

measure it should satisfy the following requirements: 1) it yields a p-value for which smaller

values indicate greater evidence against the hypothesis being tested and 2) Prob(p-value)

= Uniform(0,1), that is, the distribution of p-values, assuming the hypothesis to be true,

should be flat.
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For histograms, the second condition holds only approximately if the p-values for the

Kolmogorov-Smirnov (K-S) and χ2 discrepancy measures are computed using the standard

routines, available, for example, in Root. Therefore, to be safe, we chose to calculate, by

direct Monte Carlo simulation, the distributions of these and two other discrepancy measures.

These empirically derived distributions were then used to compute p-values for each variable.

For each variable, in each of the 12 channels, we compared the data histogram with the

corresponding model histogram, comprising a sum of signal and background distributions.

Variables with a K-S p-value below ∼ 0.1 were rejected.

Examples of the results of these calculations are shown in Fig. The first plot in Fig. 8.1

shows the distribution of the best modeled variable, pT (jet3), in the (electron, 1-tag, 4-jet)

channel, along with 4 different p-values. The second plot shows the distribution and p-values

for the least well modeled variable, cos(jet1, alljets)alljets, in this channel, while the third plot

shows the results for the variable Missing ET whose p-value is near the K-S p-value rejection

threshold.

Figure 8.1: First plot: distributions and p-values for the best modeled variable, pT (jet3),
in the (electron, 1-tag, 4-jet) channel. Second plot: distributions and p-values for the worst
modeled variable, cos(jet1, alljets)alljets. Third plot: distributions and p-values for the variable
Missing ET , which has a K-S p-value near the rejection threshold. The 3rd and 4th p-values
pertain to the discrepancy measures Dminp = |C−F |(min p-value) and Dmax = max|C−F |,
respectively, where C and F , respectively, are the observed and expected counts in the
associated local discrepancy, as defined in APPENDIX A. Note that each of the 4 p-values
is based on a specific kind of discrepancy between two histograms. Therefore, the 4 p-values
need not and indeed, do not, agree exactly.
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8.2.2 Reducing Number of Variables

For BNN method, the computational burden increases rapidly with the dimensionality of the

input data. Therefore, it pays to keep the dimensionality as low as possible. To that end, we

eliminated those variables judged to provide insufficient signal/background discrimination.

This was done separately for each of the 12 channels using an algorithm called RuleFit [78]

to rank the importance of each variable. For each channel, we used RuleFit to create a set

of trees that discriminate between the full signal and the full background. Each branch of

every tree yields an “If-Then-Else” rule (that is, cuts), a weighted sum of which is created.

RuleFit finds the set of coefficients in the linear sum that maximizes the discrimination

between the two classes of events. Each coefficient in the linear sum is used as the weight

of the corresponding rule. Roughly speaking, the importance of a variable is some measure

proportional to the product of the number of times the variable appears in a rule and its

weight. Variables with ranking less than ∼ 10 (on a scale of 0-100) were removed from

further consideration.

The resulting sets of well modeled variables used in this analysis, ranked according to

the Rulefit importances, are shown in Figs.
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Table 8.1: Initial list of variables, in three categories: object kinematics; event kinematics
and angular variables. For the angular variables, the subscript indicates the reference frame.

Initial list of variables

Object Kinematics Event Kinematics
pT (jet1) Aplanarity(alljets,W )
pT (jet2) M(W ,best1) (“best” top mass)
pT (jet3) M(W ,tag1) (“b-tagged” top mass)
pT (jet4) HT (alljets)
pT (notbest1) HT (alljets−best1)
pT (tag1) HT (alljets−tag1)
pT (untag1) HT (alljets,W )
pT (lepton) HT (jet1,jet2)
η(jet1) HT (jet1,jet2,W )
η(jet2) M(alljets)
η(lepton) M(alljets−best1)

M(alljets−tag1)
Angular Correlations M(jet1,jet2)

∆R(jet1,jet2) M(jet1,jet2,W )
cos(best1,lepton)besttop MT (jet1,jet2)
cos(best1,notbest1)besttop MT (W )
cos(tag1,alljets)alljets Missing ET

cos(tag1,lepton)btaggedtop Q(lepton)×η(untag1)

cos(jet1,alljets)alljets

√
ŝ

cos(jet1,lepton)btaggedtop Sphericity(alljets,W )
cos(jet2,alljets)alljets Centrality(alljets)
cos(jet2,lepton)btaggedtop H(alljets)
cos(lepton,Q(lepton)×z)besttop H(jet1,jet2)
cos(lepton,besttopframe)besttopCMframe

cos(lepton,btaggedtopframe)btaggedtopCMframe

cos(notbest,alljets)alljets

cos(notbest,lepton)besttop

cos(untag1,alljets)alljets

cos(untag1,lepton)btaggedtop

cos(tag1,lepton)lab

cos(jet1,lepton)lab

cos(jet2,lepton)lab

∆R(lepton,jet1)
∆R(lepton,jet2)
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8.3 BNN Training and Verification

8.3.1 Training

For each channel, the structure of each neural network is fixed: each contains Nvar inputs,

with Nvar ∼ 20, and H = 20 hidden nodes. The numbers Nvar and H define a 1+(Nvar+2)H-

dimensional parameter space each point w of which corresponds to an instance of a neural

network function. Using a training set T = (x(1), t(1)), ..., (x(n), t(n)), consisting of an

admixture of 10,000 s + t signal events and 10,000 QCD, W+jets and tt̄ background events,

mixed in the correct proportion, we constructed a posterior density p(w|T ) over the network

parameter space (see Chapter 7). A random sample of K = 100 networks was drawn from

the posterior density using the Markov Chain Monte Carlo technique described in Chapter

7. The samples used are approximation of the discriminant, Eq. (8.2), via a Bayesian neural

network, y(x), defined by

y(x) =

∫
y(x; w) p(w|T ) dw,

≈ 1

K

∑
k

y(x; wk). (8.3)

In a previous BNN analysis, we allowed precisions of the prior density for each network

parameter to adapt to the noise level in the training data. However, we found that when the

training data are very noisy, the prior densities can become excessively broad and the MCMC

sampling (see Chapter 7) yields networks with parameters having large values that scatter

over a large range. This leads to discriminant distributions that are excessively jagged and

therefore bad approximations to the discriminant, Eq. (8.2).

We therefore chose to limit the average size of network parameter values and thereby

favor smoother approximations to Eq. (8.2). For each of the 12 channels, we trained a single

neural network as implemented in the JETNET program [82], with Nvar inputs and H hidden

nodes, using back-propagation [66]. As explained in Chapter 7 that algorithm typically finds

a local maximum in the likelihood function in the neighborhood of the origin of the parameter

space. We used averages of the parameter values of that network as the standard deviations

of the prior densities that enter the posterior density p(w|T ). The details are provided in

APPENDIX B. This choice of prior densities prevented the network parameters from being

driven to large values because of excessive noise in the training sample. Consequently, the
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approximations to the discriminant D(x) were much smoother, yielding a much improved

BNN performance.
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8.3.2 Verification

As noted above, the K = 100 networks are sampled from the posterior density p(w|T )

using the Markov chain method. It is therefore necessary to check for the convergence of

the Markov chain as discussed in Ref. [83]. For each channel, we created a set of plots

shown in the top rows in Figs. 8.6-8.17. For each channel, we chose different variables from

each of the three categories: object kinematics, event kinematics, and angular correlations.

If the BNN function models the discriminant function D(x) accurately then one would

expect the sum of the BNN weighted signal and background densities to reproduce the

unweighted signal density. This is what we found. The good agreement seen between the

signal distribution, g(x), (shown by the black dots) and the sum of the BNN-weighted signal

and background distributions, fn(x|S) + fn(x|B), (the red histogram) suggests that the

Markov chains had converged. The bottom rows of the same figures show the corresponding

BNN outputs normalized to unity, and plots of S/
√

B, S/
√

S + B, and signal efficiency

(εS) versus background efficiency (εB). The spikes in the BNN outputs are due to the low

statistics in the fake-lepton sample. In general, all these plots indicate that the BNNs are

well-behaved.
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Figure 8.6: Rows: top = verification plots, bottom = BNN outputs normalized to unity
(green: background, blue: signal), and the S/

√
B, S/

√
S + B, and signal efficiency (εS)

versus background efficiency (εB) curves, for the electron, =1 tag, =2 jet channel.
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Figure 8.7: Rows: top = verification plots, bottom = BNN outputs normalized to unity
(green: background, blue: signal), and the S/

√
B, S/

√
S + B, and signal efficiency (εS)

versus background efficiency (εB) curves, for the electron, =1 tag, =3jet channel.
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Figure 8.8: Rows: top = verification plots, bottom = BNN outputs normalized to unity
(green: background, blue: signal), and the S/

√
B, S/

√
S + B, and signal efficiency (εS)

versus background efficiency (εB) curves, for the electron, =1 tag, =4jet channel.
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Figure 8.9: Rows: top = verification plots, bottom = BNN outputs normalized to unity
(green: background, blue: signal), and the S/

√
B, S/

√
S + B, and signal efficiency (εS)

versus background efficiency (εB) curves, for the electron, =2 tag, =2jet channel.
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Figure 8.10: Rows: top = verification plots, bottom = BNN outputs normalized to unity
(green: background, blue: signal), and the S/

√
B, S/

√
S + B, and signal efficiency (εS)

versus background efficiency (εB) curves, for the electron, =2 tag, =3jet channel.
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Figure 8.11: Rows: top = verification plots, bottom = BNN outputs normalized to unity
(green: background, blue: signal), and the S/

√
B, S/

√
S + B, and signal efficiency (εS)

versus background efficiency (εB) curves, for the electron, =2 tag, =4jet channel.
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Figure 8.12: Rows: top = verification plots, bottom = BNN outputs normalized to unity
(green: background, blue: signal), and the S/

√
B, S/

√
S + B, and signal efficiency (εS)

versus background efficiency (εB) curves, for the muon, =1 tag, =2 jet channel.
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Figure 8.13: Rows: top = verification plots, bottom = BNN outputs normalized to unity
(green: background, blue: signal), and the S/

√
B, S/

√
S + B, and signal efficiency (εS)

versus background efficiency (εB) curves, for the muon, =1 tag, =3jet channel.
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Figure 8.14: Rows: top = verification plots, bottom = BNN outputs normalized to unity
(green: background, blue: signal), and the S/

√
B, S/

√
S + B, and signal efficiency (εS)

versus background efficiency (εB) curves, for the muon, =1 tag, =4jet channel.
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Figure 8.15: Rows: top = verification plots, bottom = BNN outputs normalized to unity
(green: background, blue: signal), and the S/

√
B, S/

√
S + B, and signal efficiency (εS)

versus background efficiency (εB) curves, for the muon, =2 tag, =2jet channel.
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Figure 8.16: Rows: top = verification plots, bottom = BNN outputs normalized to unity
(green: background, blue: signal), and the S/

√
B, S/

√
S + B, and signal efficiency (εS)

versus background efficiency (εB) curves, for the muon, =2 tag, =3jet channel.
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Figure 8.17: Rows: top = verification plots, bottom = BNN outputs normalized to unity
(green: background, blue: signal), and the S/

√
B, S/

√
S + B, and signal efficiency (εS)

versus background efficiency (εB) curves, for the muon, =2 tag, =4jet channel.
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8.4 BNN Outputs

The BNN output distributions obtained by applying the BNN functions, D(x), to the set

of simulated events, and normalized to the observed integrated luminosity of 0.9 fb−1, are

shown in Figs. 8.18-8.19 for the twelve different analysis channels.

Figure 8.18: Bayesian neural network outputs for the electron channel. [Rows: top =1 tag,
bottom =2 tags, columns: left =2 jets, middle =3 jets, right =4 jets.]
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Figure 8.19: Bayesian neural network outputs for the muon channel. [Rows: top =1 tag,
bottom =2 tags, columns: left =2 jets, middle =3 jets, right =4 jets.]
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8.5 Cross Check Samples

In order to validate every step of the Bayesian neural network analysis, cross-check samples

were used to decide whether the background model and data are in agreement after applying a

Bayesian neural network function. Two cross-check samples are defined as follows: “W+jets”

(2 jets, 1 b-tag, HT < 175 GeV), and “tt̄” (4 jets, 1 b-tag, HT > 300 GeV). These samples

are designed such that one of them has mostly W+jets events and almost no tt̄, and the

other is mostly tt̄ and has almost no W+jets. This allows us to test whether or not each part

of the background model is adequately described. Figures 8.20 and 8.21 show the Bayesian

neural network output distributions for these cross-check samples. We see good agreement

between the predicted background and the observed data in both the samples, for each of

the electron and muon channels. We thus conclude that the background model describes the

data well within uncertainties.

W+jets cross check samples

Figure 8.20: BNN outputs from W+jets cross check samples for the electron (left) and muon
(right) channels.

tt̄ cross check samples
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Figure 8.21: BNN outputs from tt̄ cross check samples for the electron (left) and muon
(right) channels.

101



8.6 Measuring Single Top Cross Section

We next apply Bayesian statistics as discussed in Ref. [84] to compute the posterior

probability density of the single top cross section given an observed distribution of counts.

We form a binned likelihood using the BNN output distributions and consider the sum of

tb and tqb processes as the signal. All systematic effects described in are included taking

into account the correlations. The measured tb + tqb cross section is defined by the mode of

the posterior density and a one-standard deviation uncertainty by the 68.3% area enclosed

around the mode. An estimate of the sensitivity of our analysis is obtained from expected

results for which we use a fake dataset, based on our signal and background model, in which

the “observed” count in each bin of the BNN output distributions is set equal to the sum of

the expected signal and background counts. When we use real data, that is, the observed

distribution of counts, we call the corresponding results the observed results.

8.6.1 Optimization Studies

We studied different ways in which to use the BNN output distributions in order to get the

best expected results. For the fake dataset, we generated pseudo-data events from a SM

signal+background ensemble assuming a tb + tqb cross section of 2.9 pb. When generating

this ensemble, all systematic uncertainties were taken into account as discussed in Ref. [85].

We considered the following four ways to use the BNN output distributions from the different

channels:

• Case A: 25 uniform bins across all twelve channels.

• Case B: 25 uniform bins across all channels, but discarding the four-jet channels. Since

the S/B is the least in the four-jet channels, we wanted to check if these channels were

contributing largely to noise rather than to a useful increase in acceptance.

• Case C: all twelve channels, with 25 uniform bins in the 1-tag channels and coarser

(10) bins in the 2-tag channels, because these channels have very low yields.

• Case D: all twelve channels, with 25 uniform bins, but with a cut applied to the BNN

output corresponding to maximum S/
√

B for each channel, as obtained from the S/
√

B

curves in Figs. 8.6-8.17.
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Overlay plots of the measured cross sections (σtb+tqb), uncertainties (∆σtb+tqb), and

significances (σtb+tqb/∆σtb+tqb), including all systematic effects, for the above four cases are

shown in Fig. 8.22. We see that there is negligible difference in distributions for the first

three cases, whereas, there is a slight deterioration of performance in case D. We, therefore,

considered case A, namely 25 uniform bins across all twelve channels for the rest of the

analysis. We also checked that for this choice of binning, the truncation of the Gaussian

distribution for the two shape-changing effects (JES and TRF) is negligible in the Bayesian

analysis. The sampled Gaussian distributions are shown in Fig. 8.23.

Figure 8.22: Distributions of the measured cross sections (σtb+tqb), uncertainties (∆σtb+tqb),
and significances (σtb+tqb/∆σtb+tqb), including all systematic effects, for four different bin and
channel combination options overlayed.
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Figure 8.23: The Gaussian distributions (with zero mean and unit standard deviation)
sampled for the JES and TRF systematics in the Bayesian analysis.
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8.6.2 Determining the Bias

We used the best channel combination determined above, namely, all twelve channels with

25 uniform bins, to estimate the bias in our measurement of the single top cross section

(σtb+tqb). For this, three ensembles of pseudo-data events were produced from the signal

and background models, with single top cross sections in the range 0-10 pb, but assuming

a SM ratio between the tb and tqb production cross sections (0.88/1.98 = 0.44). About 200

pseudo-data events were generated at the following tb + tqb cross section values:

1. Ensemble A: σtb+tqb = 7.9 pb (2.76×SM)

2. Ensemble C: σtb+tqb = 2.0 pb (0.70×SM)

3. Ensemble D: σtb+tqb = 5.7 pb (2.00×SM)

When generating these sets of ensembles, the systematic effects were not included unlike

what was done in the study described in section. But, when computing the posterior density

for each pseudo-dataset, all systematic effects with correlations were included. Distributions

of the measured cross sections for each ensemble are shown in Fig. 8.24.

The bias in the tb + tqb cross section is determined from a straight-line fit to the mean

of the distributions versus the input cross sections used to generate each ensemble type. We

see from Fig 8.25 that the slope of the line is about unity with an offset close to zero. We

thus conclude that the bias in our measurement is negligible and can be ignored henceforth.

Figure 8.24: Distributions of the measured cross sections (peaks of Bayesian posterior
density) from the non-SM ensembles. The arrow shows the mean of each distribution.

105



Figure 8.25: Ensemble response versus input cross section used to generate the ensemble.
The ensemble response is obtained from the mean of the distributions in Fig. 8.24.
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8.6.3 Expected Results

Having optimized the binning of the BNN output distributions using ensembles, and

checked for biases in our measurements, we computed the expected results by setting the

“observed” count in each bin of the BNN output distributions to the sum of expected SM

signal+background. The results for the electron, muon and e + µ channels with all tag

and jet multiplicities combined, are shown in Table 8.2 with no systematics and with all

systematic effects included, with correlations. The resulting posterior density plots are shown

in Fig. 8.26.

Table 8.2: Expected results for the electron, muon and combined channels.

All tag and jet multiplicities combined
(using 25 uniform bins)

Lepton channel σ ±∆σ σ/∆σ
No systematics

Electron (e) 2.9± 1.5 2.0
Muon (µ) 2.9± 1.7 1.7
e + µ 2.9± 1.2 2.5

All systematics
Electron (e) 2.7± 1.8 1.5
Muon (µ) 2.7± 2.2 1.2
e + µ 2.7± 1.5 1.8
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Figure 8.26: Distributions of the expected posterior probability density as a function of
the tb + tqb single top cross section with (a) no systematics, and (b) all systematics, and
combining the tag and jet multiplicities for different lepton combinations.
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Figure 8.27: Results of the expected measurements in the twelve channels individually
and combined. The numbers in parentheses in the right-most column are the expected
significances defined as σtb+tqb/∆σtb+tqb.
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8.6.4 Observed Results

Finally, we present the single top cross section measurements using real data. The results for

the electron, muon and e+µ channels with all tag and jet multiplicities combined, are shown

Table 8.3 with no systematics and including all systematic effects. The resulting posterior

density plots are shown in Fig. 8.28. A comparison of the observed measurements across the

twelve channels individually, and combined, is shown in Fig. 8.29.

Table 8.3: Observed results for the electron, muon and combined channels.

All tag and jet multiplicities combined
(using measured data, and 25 uniform bins)
Lepton channel σ ±∆σ σ/∆σ

No systematics
Electron (e) 3.1± 1.4 2.2
Muon (µ) 3.4± 1.7 2.0
e + µ 3.2± 1.1 2.9

All systematics
Electron (e) 4.6± 2.0 2.3
Muon (µ) 4.5± 2.3 2.0
e + µ 4.4± 1.5 3.0
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Figure 8.28: Distributions of the posterior probability density as a function of the tb + tqb
single top cross section with (a) no systematics, and (b) all systematics, using the measured
data and combining the tag and jet multiplicities for different lepton combinations.

Figure 8.29: Measurements in the twelve channels individually, and combined.
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8.7 Probabilities and Signal Significance

Having measured the expected and observed single top (tb + tqb) cross sections, we use

an ensemble of background-only samples, generated with all systematic effects included, to

compute p-values. We define the p-value to be the probability to obtain a measured cross

section equal to or higher than a reference value. Figure 8.30 shows the distribution of cross

sections from the background-only ensemble. Using the SM signal cross section of 2.9pb, we

obtain a p-value of 1.6%, which corresponds to a 2.2 standard deviation expected significance.

Using the observed measurement of 4.4pb, we obtain a p-value of 0.08%, which corresponds

to a significance of 3.2 standard deviations.

Figure 8.30: Distribution of cross sections from background-only ensemble with full system-
atics included.

We also use the SM signal ensemble to compute the probablity of measuring the single

top cross section equal to 4.4pb or higher, which is a rough measure of how likely it is to

measure a cross section of 4.4pb if the single top cross section were truly 2.9 pb. It is a

p-value associated with the (new) null hypothesis: the single top cross section is 2.9 pb.

Figure 8.31 shows the distribution of cross sections from the ensemble, from which we obtain

the above probability as 13.7%, which corresponds to a 1.1 standard deviation fluctuation.

We therefore have no compelling reason to reject the hypothesis that the single top cross

section is as predicted by the Standard Model.
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Figure 8.31: Distribution of cross sections from SM signal+background ensemble with full
systematics included.
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8.8 Summary and Conclusions

We used Bayesian neural networks to separate single top quark signals from background in a

sample of lepton+jets events selected from nearly 1 fb−1 of Run II data. The BNN output

distributions across twelve independent channels were combined using a binned likelihood

and the single top (tb + tqb) cross section measured using a Bayesian method. We obtained

the following result:

σ (pp̄ → tb + tqb + X) = 4.4+1.6
−1.4 pb.

This results in a p-value of 0.08%, corresponding to a 3.2 standard deviation significance. The

p-value from the SM value of 2.9 pb for the signal cross section is 1.6%, which corresponds

to a 2.2 standard deviation expected significance. Figure 8.32 shows the observed BNN

distribution summed over all 12 channels, superimposed on the summed signal + background

model. We note the good agreement between observed data and model.

Figure 8.32: The observed BNN output distribution
summed over all 12 channels superimposed on the
summed signal + background model. The plot on the
right is a zoom of the region near a BNN output of 1.
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APPENDIX A

Discrepancy Measures

The standard way to verify that the modeling of a variable is satisfactory is to compare its

distribution, as predicted by the model, with the observed one. We assume, as usual, that

these distributions are given as histograms and that the hypothesis to be rejected is that the

two histograms agree. One defines a measure of discrepancy d between the two histograms

such that larger values of d signify greater evidence against the hypothesis. For an observed

discrepancy dobs, one computes the p-value = Prob(d > dobs|Model). If the p-value is judged

to be too small, one rejects the hypothesis that the two histograms agree and therefore that

the variable is well-modeled. This calculation of course requires knowledge of the distribution

of the discrepancy measure d under the assumed model.

The two most commonly used discrepancy measures for 1-dimensional histograms are

the Kolmogorov-Smirnov (K-S) and χ2 statistics. The K-S statistic is defined by d =

max |c(d|Data)−c(d|Model)|, where c(d|Data) and c(d|Model), respectively, are the observed

and predicted cumulative distribution functions (cdf) of the discrepancy measure d. The χ2

statistic is given by χ2 =
∑

i(Ni−fi)
2/fi where Ni is the observed count in the ith bin and fi

is the expected count. There are standard routines to compute p-values for both statistics.

However, the p-value reported for the K-S discrepancy measure is reliable only if the measure

is calculated using un-binned data. For the χ2 p-value to be valid the counts per bin must

have an approximately Gaussian distribution.

We can avoid both restrictions, however, if we use the exact distributions of the

discrepancy measures. The distributions can be derived empirically using an ensemble of

K(= 20, 000) histograms sampled from the model histogram with each bin count sampled

independently according to Ni ∼ Poisson(Ni|fi). The corresponding ensemble of K

discrepancies are then sorted into ascending order. Given an observed discrepancy dobs,
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the p-value is given by (K − n)/K, where n is the ordinal value of the largest value of d, in

the ordered sequence, for which d ≤ dobs
1. Figure A.1 shows the K-S p-values, as calculated

by us, for each variable pertaining to the (electron, 1-tag, 2-jet)-channel. Similar plots are

available for the other eleven channels.

Local Discrepancies

The K-S and χ2 discrepancy measures are only two of (presumably) infinitely many measures

one could calculate, each quantifying a different kind of discrepancy between two histograms.

Since our goal, ultimately, is to find an excess over background, we were motivated to explore

a different measure of discrepancy. We define a local discrepancy as a contiguous sequence of

bins in which the observed count in each bin differs, in the same direction, from the expected

count. Any such deviation is potentially evidence against the hypothesis that the model and

data agree. However, since we expect many local discrepancies to arise purely by chance,

even if the hypothesis were true, we need a way to assess whether any one of them provides

significant evidence against it.

Let C be the observed count in a local discrepancy and F the corresponding expected

count. In the spirit of the K-S measure, we take d = |C−F | as the measure of the discrepancy

between the model and the observed histogram. We do not distinguish between an excess

or a deficit, hence the absolute value in the definition of the discrepancy measure d.

The most obvious way to pick the most significant local discrepancy is to pick the one

with the largest value of the discrepancy measure d, thus defining the discrepancy measure

Dmax = max |C − F |. A possible shortcoming of this measure is that a large value of

d = Dmax may prove to be less significant in a probabilistic sense than a smaller value. It

is perhaps more reasonable to pick the local discrepancy that is the least likely under the

hypothesis being tested (generally, referred to as the null). We take least likely to mean that

the p-value associated with the local discrepancy and defined by p-value ≡ Pr(x ≥ C|F ) =∑
x≥C Poisson(x|F ) is the smallest of all local discrepancies. Note that if we have a deficit,

that is, C < F , we define the p-value by p-value ≡ Pr(x ≤ C|F ) =
∑

x≤C Poisson(x|F ).

This defines the discrepancy measure Dminp = |C − F |(min p-value).

Consider the table below, which shows details of two local discrepancies from a compar-

1We found it useful to compute the ordinal value n using a binary search. This was done to reduce the
computation time of the p-values.
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ison of two histograms.

F C d = |C − F | p-value
12.91 26 13.09 0.0009
46.92 29 17.92 0.0034

The second local discrepancy has the larger d, but since its p-value is greater than that of

the first it represents a deviation from the model histogram that is more likely under the

hypothesis that the two histograms agree and hence less significant. Therefore, although the

first discrepancy is smaller we consider it to be the more significant discrepancy.

The distribution of the most significant local discrepancy and associated p-values are

estimated using the same algorithm as for the K-S and χ2 discrepancy measures. Some

results are shown in Fig. 8.1.
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Figure A.1: (Electron,1-tag,2-jet)-channel variables ordered according to quality of modeling,
quantified by the K-S p-value. The larger the p-value, the less reason one has to reject the
hypothesis that the associated variable is poorly modeled, provided of course the kind of
discrepancy measured by the K-S statistic is the most appropriate. A different discrepancy
measure could yield a different conclusion.
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APPENDIX B

Prior Width Estimates Using JETNET

For each of the 12 channels, the standard deviations of the (Gaussian) priors for the BNN

were held fixed during the MCMC sampling of the posterior density, p(w|T ), of the network

parameters. This was done to keep the parameter values from growing too large. In the

previous BNN analysis, these parameters became very large because the priors were allowed

to adapt to the noise level of the training data. This is a reasonable thing to do, in principle.

However, if the training data are particularly noisy an adaptive prior can cause problems, as

we discovered. By keeping the standard deviations of the priors fixed, at some appropriate

values, this problematic behavior was avoided.

Our goal is to produce smooth, accurate, approximations to the discriminant D(x) in Eq.

(8.2). Small values of the network parameters tend to produce smoother approximations. If

the values are too large this yields jagged and therefore poor approximations. However, if

the weights are too small one risks losing discrimination power. Therefore, some reasonable

choice for the characteristic scale of the network parameter values must be made. The

appropriate scales were derived from a single network trained, using the back-propagation

algorithm (a variant of gradient descent) as implemented in the JETNET program, for each

of the twelve channels separately. The network structure of the JETNET-trained networks

was identical to that used for the BNNs, as were the training data. Their output distributions

are shown in Figs. B.1 and B.2.

For each of the 12 JETNET-trained networks (one per channel) the RMS with respect to

zero for each of the three groups of network parameters—input weights, output weights, and

hidden and output biases—was calculated. For each channel, the three RMS values served

as the standard deviations of each of the three corresponding sets of zero mean Gaussians

that served as priors for the BNN. The three standard deviations used, for each of the twelve
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channels, are shown in Tables B.1 and B.2.

Figure B.1: Neural network output distributions for the electron channel as obtained using
the JETNET neural network program. The blue histogram is for the sum of all backgrounds,
and the red one is for the tb + tqb signal. Rows: top = EqOneTag, bottom = EqTwoTag;
columns: left = EqTwoJet, middle = EqThreeJet, right = EqFourJet.

Table B.1: The standard deviations for the input-to-hidden weights, σu, hidden-to-output
weights, σv, and all biases, σa,b obtained from a single neural network, JETNET, for the
electron channel.

Electron channel
EqOneTag EqTwoTag

EqTwoJet EqThreeJet EqFourJet EqTwoJet EqThreeJet EqFourJet
σu 0.24 0.22 0.21 0.24 0.20 0.26
σv 0.80 0.75 0.71 0.75 0.62 0.98
σa,b 0.41 0.38 0.26 0.37 0.24 0.30
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Figure B.2: Neural network output distributions for the muon channel as obtained using the
single network JETNET algorithm. The blue histogram is for the sum of all backgrounds,
and the red one is for the tb + tqb signal. Rows: top = EqOneTag, bottom = EqTwoTag;
columns: left = EqTwoJet, middle = EqThreeJet, right = EqFourJet.

Table B.2: The standard deviations for the input-to-hidden weights, σu, hidden-to-output
weights, σv, and all biases, σa,b obtained from a single neural network, JETNET, for the
muon channel.

Muon channel
EqOneTag EqTwoTag

EqTwoJet EqThreeJet EqFourJet EqTwoJet EqThreeJet EqFourJet
σu 0.22 0.22 0.22 0.25 0.22 0.29
σv 0.77 0.73 0.75 0.80 0.75 0.87
σa,b 0.35 0.31 0.26 0.30 0.44 0.36
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APPENDIX C

Plots After Selection
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Figure C.1: The transverse momentum of jet 1 for events with two jets (left column), three
jets (center column), and three jets (right column), for electron/1tag (first row), muon/1tag
(second row), electron/2tags (third row), and muon/2tags (fourth row). The plot at the
bottom of the figure shows the distribution for the electron and muon channels combined,
for 2, 3, and 4 jets combined, and for 1 and 2 tags combined.

123



(jet2) [GeV]
T

p
0 50 100 150

Yi
el

d 
[c

ou
nt

s/
10

G
eV

]

0

50

100

150

200 -1DØ Run II Preliminary 0.9 fb
e+jets

==1 tag
==2 jets

(jet2) [GeV]
T

p
0 50 100 150

Yi
el

d 
[c

ou
nt

s/
10

G
eV

]

0

50

100

150

200

(jet2) [GeV]
T

p
0 50 100 150

Yi
el

d 
[c

ou
nt

s/
10

G
eV

]

0

20

40

60

80 -1DØ Run II Preliminary 0.9 fb
e+jets

==1 tag
==3 jets

(jet2) [GeV]
T

p
0 50 100 150

Yi
el

d 
[c

ou
nt

s/
10

G
eV

]

0

20

40

60

80

(jet2) [GeV]
T

p
0 50 100 150

Yi
el

d 
[c

ou
nt

s/
10

G
eV

]

0

10

20

-1DØ Run II Preliminary 0.9 fb
e+jets

==1 tag
==4 jets

(jet2) [GeV]
T

p
0 50 100 150

Yi
el

d 
[c

ou
nt

s/
10

G
eV

]

0

10

20

(jet2) [GeV]
T

p
0 50 100 150

Yi
el

d 
[c

ou
nt

s/
10

G
eV

]

0

50

100

-1DØ Run II Preliminary 0.9 fb
+jetsµ

==1 tag
==2 jets

(jet2) [GeV]
T

p
0 50 100 150

Yi
el

d 
[c

ou
nt

s/
10

G
eV

]

0

50

100

(jet2) [GeV]
T

p
0 50 100 150

Yi
el

d 
[c

ou
nt

s/
10

G
eV

]

0

20

40

60 -1DØ Run II Preliminary 0.9 fb
+jetsµ

==1 tag
==3 jets

(jet2) [GeV]
T

p
0 50 100 150

Yi
el

d 
[c

ou
nt

s/
10

G
eV

]

0

20

40

60

(jet2) [GeV]
T

p
0 50 100 150

Yi
el

d 
[c

ou
nt

s/
10

G
eV

]

0

5

10

15

20

25 -1DØ Run II Preliminary 0.9 fb
+jetsµ

==1 tag
==4 jets

(jet2) [GeV]
T

p
0 50 100 150

Yi
el

d 
[c

ou
nt

s/
10

G
eV

]

0

5

10

15

20

25

(jet2) [GeV]
T

p
0 50 100 150

Yi
el

d 
[c

ou
nt

s/
10

G
eV

]

0

5

10

15 -1DØ Run II Preliminary 0.9 fb
e+jets

==2 tags
==2 jets

(jet2) [GeV]
T

p
0 50 100 150

Yi
el

d 
[c

ou
nt

s/
10

G
eV

]

0

5

10

15

(jet2) [GeV]
T

p
0 50 100 150

Yi
el

d 
[c

ou
nt

s/
10

G
eV

]

0

5

10
-1DØ Run II Preliminary 0.9 fb

e+jets
==2 tags
==3 jets

(jet2) [GeV]
T

p
0 50 100 150

Yi
el

d 
[c

ou
nt

s/
10

G
eV

]

0

5

10

(jet2) [GeV]
T

p
0 50 100 150

Yi
el

d 
[c

ou
nt

s/
10

G
eV

]

0

2

4

6

8

10 -1DØ Run II Preliminary 0.9 fb
e+jets

==2 tags
==4 jets

(jet2) [GeV]
T

p
0 50 100 150

Yi
el

d 
[c

ou
nt

s/
10

G
eV

]

0

2

4

6

8

10

(jet2) [GeV]
T

p
0 50 100 150

Yi
el

d 
[c

ou
nt

s/
10

G
eV

]

0

2

4

6

8

10 -1DØ Run II Preliminary 0.9 fb
+jetsµ

==2 tags
==2 jets

(jet2) [GeV]
T

p
0 50 100 150

Yi
el

d 
[c

ou
nt

s/
10

G
eV

]

0

2

4

6

8

10

(jet2) [GeV]
T

p
0 50 100 150

Yi
el

d 
[c

ou
nt

s/
10

G
eV

]

0

5

10
-1DØ Run II Preliminary 0.9 fb

+jetsµ
==2 tags
==3 jets

(jet2) [GeV]
T

p
0 50 100 150

Yi
el

d 
[c

ou
nt

s/
10

G
eV

]

0

5

10

(jet2) [GeV]
T

p
0 50 100 150

Yi
el

d 
[c

ou
nt

s/
10

G
eV

]

0

5

10
-1DØ Run II Preliminary 0.9 fb

+jetsµ
==2 tags
==4 jets

(jet2) [GeV]
T

p
0 50 100 150

Yi
el

d 
[c

ou
nt

s/
10

G
eV

]

0

5

10

(jet2) [GeV]
T

p
0 50 100 150

Yi
el

d 
[c

ou
nt

s/
10

G
eV

]

0

200

400

-1DØ Run II Preliminary 0.9 fb
 channelµe+
1-2 tags
2-4 jets

(jet2) [GeV]
T

p
0 50 100 150

Yi
el

d 
[c

ou
nt

s/
10

G
eV

]

0

200

400

Figure C.2: The transverse momentum of jet 2 for events with two jets (left column), three
jets (center column), and three jets (right column), for electron/1tag (first row), muon/1tag
(second row), electron/2tags (third row), and muon/2tags (fourth row). The plot at the
bottom of the figure shows the distribution for the electron and muon channels combined,
for 2, 3, and 4 jets combined, and for 1 and 2 tags combined, i.e., all the channels we have
used for this analysis. 124
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Figure C.3: The transverse momentum of the electron or muon for events with two jets
(left column), three jets (center column), and three jets (right column), for electron/1tag
(first row), muon/1tag (second row), electron/2tags (third row), and muon/2tags (fourth
row). The plot at the bottom of the figure shows the distribution for the electron and muon
channels combined, for 2, 3, and 4 jets combined, and for 1 and 2 tags combined, i.e., all the
channels we have used for this analysis. 125
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Figure C.4: The missing transverse energy for events with two jets (left column), three jets
(center column), and three jets (right column), for electron/1tag (first row), muon/1tag
(second row), electron/2tags (third row), and muon/2tags (fourth row). The plot at the
bottom of the figure shows the distribution for the electron and muon channels combined,
for 2, 3, and 4 jets combined, and for 1 and 2 tags combined, i.e., all the channels we have
used for this analysis. 126
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Figure C.5: The opening angle ∆R(jet1, jet2) for events with two jets (left column), three
jets (center column), and three jets (right column), for electron/1tag (first row), muon/1tag
(second row), electron/2tags (third row), and muon/2tags (fourth row). The plot at the
bottom of the figure shows the distribution for the electron and muon channels combined,
for 2, 3, and 4 jets combined, and for 1 and 2 tags combined, i.e., all the channels we have
used for this analysis. 127
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