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Introduction

Non-leptonic two-body charmless decays of neutralB mesons (B0
(s) → h+h

′−, where h is a charged pion
or kaon) are very interesting for the understanding of flavor physics and CP violation mechanism in
the b-meson sector. Their rich phenomenology offers several opportunities to explore and constrain the
parameters of the quark-mixing matrix (i. e., Cabibbo-Kobayashi-Maskawa, CKM). These processes
allow to access the phase of the Vub element of the CKM matrix (γ angle), and to test the reliability
of the Standard Model and hadronic calculations. The presence of New Physics can be revealed by
its impact on their decay amplitudes, where new particles may enter in penguin diagrams. The
B0 → K+π− is the first process involving the b quark where direct CP violation has been observed.

The measurements obtained at e+e− colliders (ARGUS, CLEO, LEP, and more recently, BABAR

and Belle experiments) already provided a wealth of results for B0 and B+ mesons.

The upgraded Collider Detector at the Fermilab Tevatron (CDF II), with its large production of
b-hadrons is in principle an ideal environment for studying these rare modes. In addition to providing
further large samples of B0 and B+ mesons in a different experimental environment, it provides the
exciting opportunity of studying the charmless decays of other b-hadrons that are unaccessible (or
much less accessible) in other experiments. A variety of techniques have been proposed to constrain
the CKM parameters or probe effects of New Physics [5, 6, 7, 8] exploiting a combination of observables
from B0

s and B0 , B+ mesons.

The B0
s → K+K− decay, observed for the first time in the previous version of the analysis pre-

sented in this thesis [1], offers several and interesting strategies to extract useful information from
the comparison between its observables and those of its U-spin related partner B0 → π+π− [5]. By
combining the information from measurements of rates of B0 → π+π− and B0

s → K+K− decays it is
possible to constrain the hadronic uncertainty to determine the phase γ. It will be very interesting to
compare this measurement, where the contribution of penguin amplitudes is large, to a theoretically
cleaner (tree level) determination of γ from the B → DK decays [9, 10]. A significant discrepancy
would be an hint of New Physics contribution in penguin amplitudes. The power of this technique
will increase considerably when the comparison will be performed between the time-dependent CP
violating asymmetries.

Another interesting example in this category consists of combining the information of rates and
direct CP asymmetries of U-spin–related decays B0 → K+π− and B0

s → K−π+ [7, 8]. This al-
lows a stringent test of the Standard Model origin of the O(10%) direct CP asymmetry observed in
B0 → K+π− [11], which is not matched by a similar effect in the B+ → K+π0 decay, which differs
only by the spectator quark. This raised discussions about a possible exotic source for the CP vi-
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2 Introduction

olation in the B0 → K+π− decay [12, 13, 14]. Any significant disagreement between the measured
partial rate asymmetries of strange and non-strange b-meson Kπ decays should be strong indication
of New Physics.

The B0
s → K−π+ is still unobserved and the current experimental upper limit B(B0

s → K−π+) <
5.6 × 10−6 @ 90% CL [1] from CDF is very close to (sometimes lower than) the current theoretical
expectations [15, 16, 17]. The comparison of this branching fraction, sensitive to CKM angle values
of α and γ [19], with theoretical predictions provides valuable information for tuning the phenomeno-
logical models of hadronic B0

(s) meson decays and for optimizing the choice of their input parameters.
Therefore, in this context the measurement of the decay rate of the B0

s → K−π+ and the measurement
of its direct CP asymmetry becomes crucial.

The amplitudes of penguin-annihilation and exchange diagrams, in which all initial-state quarks
undergo a transition, are difficult to predict with current phenomenological models. In general they
may carry different CP-violating and CP-conserving phases with respect to the leading processes,
thereby influencing the determination of CKM-related parameters. The B0 → K+K− and B0

s →
π+π− decays proceed only through these kinds of diagrams. A simultaneous measurement of their
decay rates (or improved constraints on them) would provide valuable estimates of the magnitude of
these contributions [18].

Simultaneous measurements of B0
(s) → h+h

′− observables, in most cases, exploit the U-spin sym-
metries to partially cancel out or constrain hadronic uncertainties and probe the electroweak and QCD
structure. U-spin symmetry is not exactly conserved in the Standard Model and the magnitude of its
violation is not precisely known but most authors estimate a O(10%) effect. The B0

(s) → h+h
′− system

is a privileged laboratory since it offers the simultaneous opportunities of using U-spin assumptions
and, at the same time, of checking their validity by measuring the symmetry breaking-size, from the
interplaying of several U-spin–related observables.

This rich set of measurements requires however to overcome several experimental difficulties: re-
construction of rare signals (B(B0

(s) → h+h
′−) ∼ O(10−5)) hidden by an enormous background;

separation of different overlapping decay modes with similar kinematics based on limited particle
identification capabilities; and accurate control of efficiencies of complex event selections. The tech-
niques to deal with these experimental issues are the main subject of this thesis. This thesis describes
how these issues have been solved in the analysis of a sample of B0

(s) → h+h
′− decays collected by

CDF experiment, corresponding to an integrated luminosity of 1 fb−1. This work required substan-
tial refinements with respect to the early B0

(s) → h+h
′− analysis based on

∫ Ldt = 180 pb−1[1] and
provides a significantly improved precision and many new results. The precision achieved in the B0

sector now matches the best existing measurements, while the new results obtained in the B0
s sector

are unique to this work, and represent significant steps into a previously unexplored territory.

The main results are:

� A precise measurement of direct CP asymmetry in the B0 → K+π− decays and of relative
branching fraction of B0 → π+π− decays.

� A precise measurement of the B0
s → K+K− relative branching fraction, which provides one the

first experimental insight on the magnitude of the SU(3) breaking. This is a necessary test and
ingredient for the U-spin–based method of extracting the CKM parameters, like γ angle [5, 20].
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� First observation of the B0
s → K−π+ decay mode and measurement of its relative branching

fraction and direct CP-violating asymmetry allowing the first test of [7, 8].

� First observation of the Λ0
b → pK− and Λ0

b → pπ− decay mode, which were included in the
analysis as possible physics backgrounds to the other channels. The branching fractions and
direct CP asymmetries of these modes will also provide useful information in the future.

� Improved upper limits on the relative branching fractions of B0 → K+K− and B0
s → π+π−

modes, which receive contribution from penguin-annihilation amplitudes. These measurements
have implications for both the knowledge of CKM sector of the Standard Model and the phe-
nomenology of non-perturbative hadronic contributions in non-leptonic B0

(s) meson decays.

The thesis is organized as follows.

Chapter 1 describes the theoretical framework of non-leptonic B0
(s) → h+h

′− decays, with a simple
overview of the CP violation mechanism within the Standard Model and of the most used phenomeno-
logical approaches in the evaluation of strong interaction contributions. The chapter contains also a
review of the theoretical expectations and the current experimental measurements along with a dis-
cussion about the importance of studying such decays.

Chapter 2 contains a general description of the Tevatron collider and of the CDF II detector.

Chapter 3 is devoted to the description of the data sample used for the measurement and the
method used in extracting the signal from the background. Particular attention is dedicated to the
on-line trigger selection, which is crucial to collect a sample enriched in B0

(s) → h+h
′− decays.

Chapter 4 shows how the information from kinematics and particle identification was used to
achieve a statistical discrimination amongst modes to extract individual measurements. The available
resolutions in mass or in particle identification are separately insufficient for an event-by-event sepa-
ration of B0

(s) → h+h
′− modes. The choice of observables and the technique used to combine them is

an important and innovative aspect of the analysis described in this thesis.

Chapter 5 is devoted to the accurate determination of the invariant mass lineshape. This is a
crucial ingredient for resolving overlapping mass peaks. This chapter details all resolution effects with
particular attention at the tails due to the emission of low-energy photons from charged kaons and
pions in the final state (FSR). For the first time the effect of FSR has been accurately accounted for
in a CDF analysis.

Chapter 6 describes how kinematic and PID information, discussed in chap. 4 and chap. 5 were
combined in a maximum Likelihood fit to statistically determine the composition of the B0

(s) → h+h
′−

sample. This kinematics-PID combined fit has been developed and performed for the first time at
CDF in the analysis presented in this thesis and this methodology was later inherited by several other
analyses.

Chapter 7 is devoted to the study of the isolation variable, which is a crucial handle to enhance the
signal-to-background ratio in the off-line selection. It exploits the property that the b-hadrons tend
to carry a larger fraction of the transverse momentum of the particles produced in the fragmentation,
with respect to lighter hadrons. Since the simulators do not accurately reproduce the fragmentation
processes, this chapter is devoted to the study of the control data sample of B0

(s) → J/ψX decays to
probe the characteristics of this variable.
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Chapter 8 describes an innovative procedure used to optimize the selection to minimize the sta-
tistical uncertainty on the quantities one wishes to measure. The procedure is based on the fit of
composition described in chap. 6.

Chapter 9 reports the results of the fit of composition described in chap. 6 and the cross-checks
performed to verify the goodness of the fit of composition.

In order to translate the parameters returned from the fit into physics measurements the relative
efficiency corrections between the various decay modes need to be applied. Chapter 10 is devoted to
the description of these corrections.

Chapter 11 describes the measurement of the detector-induced charge asymmetry between posi-
tively and negatively charged kaons and pions, due to their different probability of strong interaction
in the tracker material using the real data. This allows to extract the acceptance correction factor for
the CP asymmetries measurement without any external inputs from the simulation, and to perform
a powerful check of whole analysis.

Chapter 12 describes the main sources of systematic uncertainties and the method used to eval-
uate the significance of the results on rare modes. The final results of the measurements and their
interpretation are discussed in chap. 13.

I personally presented the results of this thesis for the first time at “The 11th International Con-
ference on B-Physics at Hadron Machines” (BEAUTY 2006) held to Oxford (UK) from September
25 − 29th, 2006 (published in Nuclear Physics B (Proc. Suppl.) [2]1). They are currently under
internal CDF review for publication.

1The measurements quoted in [2] are slightly outdated with respect to those presented in this thesis.



Chapter 1

CP violation and charmless B

decays

In this chapter we focus our attention on the theoretical frame. In particular we discuss the connections
between CP violation in the Standard Model and the charmless two body B decays B0

(s) → h+h
′− where

h is a charged pion or kaon [21]. These decays are a privileged laboratory to improve our understanding
of the CP violation mechanism in the Standard Model and, simultaneously, to probe possible effects of
New Physics.

1.1 Introduction

The CP violation, i.e. the non-invariance of the weak interactions with respect to a combined charge-
conjugation (C) and parity (P) transformation, dates back to year 1964, when this phenomenon was
discovered through the observation of KL → π+π− decays [22], which exhibit a branching ratio at
the 10−3 level. This surprising effect is a manifestation of indirect CP violation, which arises from
the fact that the mass eigenstates KL,S of the neutral kaon system, which shows mixing, are not
eigenstates of the CP operator. The KL state is governed by the CP-odd eigenstate, but also contains
a small fraction of the CP-even eigenstate, which may decay through CP-conserving interactions into
the π+π− final state. These CP-violating effects are described by the observable:

εK = (2.280± 0.013)× 10−3 × eiπ/4. (1.1)

CP-violating effects may also arise at the decay-amplitude level, thereby yielding direct CP violation.
This phenomenon, which leads to a non-vanishing value of the quantity Re(ε′K/εK), was established
in 1999 by the NA48 (CERN) and KTeV (FNAL) collaborations [23]; the measured values are:

Re(ε′K/εK) =

{
(14.7± 2.2)× 10−4 (NA48 [24])
(20.7± 2.8)× 10−4 (KTeV [25]).

(1.2)

The understanding of CP violation, and therefore of flavour physics, is particularly interesting since
“New Physics”, i.e. physics lying beyond the Standard Model, typically leads to new sources of flavour

5
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and CP violation. Furthermore, the origin of the fermion masses, flavour mixing, CP violation etc. lies
completely in the dark and is expected to involve New Physics, too. Interestingly, CP violation offers
also a link to cosmology. One of the key features of our Universe is the cosmological baryon asymmetry
of O(10−10). As was pointed out by Sakharov [26], the necessary conditions for the generation of such
an asymmetry include also the requirement that elementary interactions violate CP (and C). Model
calculations of the baryon asymmetry indicate, however, that the CP violation present in the Standard
Model seems to be too small to generate the observed asymmetry. On the one hand, the required
new sources of CP violation could be associated with very high energy scales, as in “leptogenesis”,
where new CP-violating effects appear in decays of heavy Majorana neutrinos. On the other hand,
new sources of CP violation could also be accessible in the laboratory, as they arise naturally when
going beyond the Standard Model.

Before searching for New Physics, it is essential to understand first the picture of flavour physics
and CP violation arising in the framework of the Standard Model, where the Cabibbo–Kobayashi–
Maskawa (CKM) matrix – the quark-mixing matrix – plays a key rôle [27, 28]. The corresponding
phenomenology is extremely rich. In this decade, there are huge experimental efforts to further explore
CP violation and the quark-flavour sector of the Standard Model. In these studies, the main actor is
the B-meson system, characterized by the following valence-quark contents:

B+ ∼ ub̄, B+
c ∼ cb̄, B0

d ∼ db̄, B0
s ∼ sb̄,

B− ∼ ūb, B−c ∼ c̄b, B
0

d ∼ d̄b, B
0

s ∼ s̄b.
(1.3)

In contrast to the charged B mesons, their neutral counterparts B0
q (q ∈ {d, s}) show – in analogy to

K0–K̄0 mixing – the phenomenon of B0
q–B

0

q mixing. The subscript d in the B0
d and B

0

d is often omitted

(B0 ≡ B0
d and B

0 ≡ B0

d) through this thesis. In 2001, CP-violating effects were discovered in B decays
with the help of B0 → J/ψKS modes by the BABAR and Belle Collaborations [29], representing the
first observation of CP violation outside the kaon system. This particular kind of CP violation, which
is by now well established, originates from the interference between B0–B

0
mixing and B0 → J/ψKS,

B
0 → J/ψKS decay processes, and is referred to as “mixing-induced” CP violation. In the summer

of 2004, also direct CP violation was observed in the B0 → K+π− decay [11], thereby complementing
the measurement of a non-zero value of Re(ε′K/εK) [24, 25].

In general, the key problem for the theoretical interpretation is related to strong interactions, i.e.
to “hadronic” uncertainties. In the B-meson system, there are various strategies to eliminate the
hadronic uncertainties in the exploration of CP violation (simply speaking, there are many B decays).
Moreover, we may also search for relations and/or correlations that hold in the Standard Model but
could well be spoiled by New Physics.

In this chapter we will focus our attention on the privileged laboratory provided by the B0
(s) →

h+h
′− decays. When the distinction between the different decay modes (B0 → π+π−, B0 → K+π−,

B0
s → K−π+, B0

s → K+K−, etc.) is not relevant, the expression B0
(s) → h+h

′− (h, h′ = π or K) is
used to collectively indicate all of them 1. Unless otherwise stated, throughout this thesis, C-conjugate
modes are implied and branching fractions (B) indicate CP-averages, that is,

B(B → f) ≡ Γ(B → f) + Γ(B → f)
2ΓB

,

1The same assumption is valid for the Λ0
b → ph− decays (h, h′ = π or K).
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where Γ(B → f) is the partial decay-width of a particle B into a final state f , ΓB represents the
natural width.

1.2 CKM matrix and CP violation

In the framework of the Standard Model of electroweak interactions, which is based on the sponta-
neously broken gauge group

SU(2)L × U(1)Y
SSB−→ U(1)em, (1.4)

CP-violating effects originate from the charged-current interactions of quarks, having the structure

D → UW−. (1.5)

Here D ∈ {d, s, b} and U ∈ {u, c, t} denote down- and up-type quark flavours, respectively, whereas
the W− is the usual SU(2)L gauge boson. From a phenomenological point of view, it is convenient
to collect the generic “coupling strengths” VUD of the charged-current processes in eq. (1.5) in the
Cabibbo–Kobayashi–Maskawa (CKM) matrix [27, 28]:

V̂CKM =

⎛
⎜⎝ Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞
⎟⎠ . (1.6)

From a theoretical point of view, this matrix connects the electroweak states (d′, s′, b′) of the down,
strange and bottom quarks with their mass eigenstates (d, s, b) through the following unitary trans-
formation: ⎛

⎜⎝ d′

s′

b′

⎞
⎟⎠ =

⎛
⎜⎝ Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞
⎟⎠ ·
⎛
⎜⎝ d

s

b

⎞
⎟⎠ . (1.7)

V̂CKM is a unitary matrix. This feature ensures the absence of flavour-changing neutral-current
(FCNC) processes at the tree level in the Standard Model, and is hence at the basis of the famous
Glashow–Iliopoulos–Maiani (GIM) mechanism [30]. If we express the non-leptonic charged-current
interaction Lagrangian in terms of the mass eigenstates appearing in (1.7), we arrive at

LCC
int = − g2√

2

(
ūL, c̄L, t̄L

)
γμ V̂CKM

⎛
⎜⎝ dL

sL

bL

⎞
⎟⎠W †μ + h.c., (1.8)

where the gauge coupling g2 is related to the gauge group SU(2)L, and the W (†)
μ field corresponds

to the charged W bosons. Looking at the interaction vertices following from eq. (1.8), we observe
that the elements of the CKM matrix describe the generic strengths of the associated charged-current
processes, as we have noted above.

Figure 1.1 shows the D → UW− vertex and its CP conjugate. Since the corresponding CP
transformation involves the replacement

VUD
CP−→ V ∗UD, (1.9)
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CP violation could – in principle – be accommodated in the Standard Model through complex phases
in the CKM matrix. The crucial question in this context is, whether we may actually have physical
complex phases in that matrix.

Figure 1.1: CP-conjugate charged-current quark-level interaction processes in the Standard Model.

1.2.1 Phase Structure of the CKM Matrix

We have the freedom to redefine the up- and down-type quark fields in the following manner:

U → exp(iξU )U, D → exp(iξD)D. (1.10)

If we apply such transformations to eq. (1.8), the invariance of the charged-current interaction La-
grangian implies the following phase transformations of the CKM matrix elements:

VUD → exp(iξU )VUD exp(−iξD). (1.11)

Using these transformations to eliminate unphysical phases, it can be shown that the parametrization
of the general N × N quark-mixing matrix, where N denotes the number of fermion generations,
involves the following parameters:

1
2
N(N − 1)︸ ︷︷ ︸

Euler angles

+
1
2
(N − 1)(N − 2)︸ ︷︷ ︸

complex phases

= (N − 1)2. (1.12)

If we apply this expression to the case of N = 2 generations, we observe that only one rotation
angle – the Cabibbo angle θC [27] – is required for the parametrization of the 2 × 2 quark-mixing
matrix, which can be written in the following form:

V̂C =

(
cos θC sin θC
− sin θC cos θC

)
, (1.13)

where sin θC = 0.22 can be determined from K → π�ν̄ decays. On the other hand, for N = 3
generations, the parameterization of the corresponding 3 × 3 quark-mixing matrix involves three
Euler-type angles and one complex phase. This complex phase allows to accommodate CP violation
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in the Standard Model, as was pointed out by Kobayashi and Maskawa in 1973 [28]. The corresponding
picture is referred to as the Kobayashi–Maskawa (KM) mechanism of CP violation.

A “standard parametrization” for the three-generation CKM matrix takes the following form:

V̂CKM =

⎛
⎜⎝ c12c13 s12c13 s13e

−iδ13

−s12c23 − c12s23s13eiδ13 c12c23 − s12s23s13eiδ13 s23c13

s12s23 − c12c23s13eiδ13 −c12s23 − s12c23s13eiδ13 c23c13

⎞
⎟⎠ , (1.14)

where cij ≡ cos θij and sij ≡ sin θij . Performing appropriate redefinitions of the quark-field phases,
the real angles θ12, θ23 and θ13 can all be made to lie in the first quadrant. The advantage of this
parametrization is that the generation labels i, j = 1, 2, 3 are introduced in such a manner that the
mixing between two chosen generations vanishes if the corresponding mixing angle θij is set to zero.
In particular, for θ23 = θ13 = 0, the third generation decouples, and the 2 × 2 submatrix describing
the mixing between the first and second generations takes the same form as (1.13).

1.2.2 Further Requirements for CP Violation

As we have just seen, in order to accommodate CP violation within the Standard Model framework
through a complex phase in the CKM matrix, at least three generations of quarks are required. How-
ever, this feature is not sufficient for observable CP-violating effects. To this end, further conditions
have to be satisfied, which can be summarized as follows [31]:

(m2
t −m2

c)(m
2
t −m2

u)(m
2
c −m2

u)(m
2
b −m2

s)(m
2
b −m2

d)(m
2
s −m2

d)× JCP �= 0, (1.15)

where

JCP = |Im(ViαVjβV ∗iβV
∗
jα)| (i �= j, α �= β) . (1.16)

The mass factors in eq. (1.15) are related to the fact that the CP-violating CKM phase could be
eliminated through an appropriate unitary transformation of the quark fields if any two quarks with
the same charge had the same mass. Consequently, the origin of CP violation is closely related to
the “flavour problem” in elementary particle physics, and it cannot be understood in a deeper way,
unless we have fundamental insights into the hierarchy of quark masses and the number of fermion
generations.

The second element of eq. (1.15), the “Jarlskog parameter” JCP [31], can be interpreted as a
measure of the strength of CP violation in the Standard Model. It does not depend on the chosen
quark-field parametrization, i.e. it is invariant under (1.11), and the unitarity of the CKM matrix
implies that all the combinations |Im(ViαVjβV ∗iβV

∗
jα)| are equal to one another. Using the standard

parameterization of the CKM matrix introduced in (1.14), we obtain

JCP = s12s13s23c12c23c
2
13 sin δ13. (1.17)

The experimental information on the CKM parameters implies JCP = O(10−5), so that CP-violating
phenomena are hard to observe. However, new complex couplings are typically present in scenarios for
New Physics. Such additional sources for CP violation could be detected through flavour experiments.
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1.2.3 Experimental Information on |VCKM|
In order to determine the magnitudes |Vij | of the elements of the CKM matrix, we can use the following
tree-level processes:

� Nuclear beta decays, neutron decays ⇒ |Vud|.

� K → π�ν̄ decays ⇒ |Vus|.

� ν production of charm off valence d quarks ⇒ |Vcd|.

� Charm-tagged W decays (as well as ν production and semileptonic D decays) ⇒ |Vcs|.

� Exclusive and inclusive b→ c�ν̄ decays ⇒ |Vcb|.

� Exclusive and inclusive b→ u�ν̄ decays ⇒ |Vub|.

� t̄→ b̄�ν̄ processes ⇒ (crude direct determination of) |Vtb|.

If we use the corresponding experimental information, together with the CKM unitarity condition,
and we assume that there are only three generations, we obtain the following 90% C.L. limits for the
|Vij | elements [32]:

|V̂CKM| =

⎛
⎜⎝ 0.9739–0.9751 0.221–0.227 0.0029–0.0045

0.221–0.227 0.9730–0.9744 0.039–0.044
0.0048–0.014 0.037–0.043 0.9990–0.9992

⎞
⎟⎠ . (1.18)

Figure 1.2 illustrates the resulting hierarchy of the strengths of the charged-current quark-level pro-
cesses: transitions within the same generation are governed by the CKM matrix elements of O(1),
those between the first and the second generation are suppressed by CKM factors of O(10−1), those
between the second and the third generation are suppressed by O(10−2), and the transitions between
the first and the third generation are even suppressed by CKM factors of O(10−3). In the standard
parameterization (1.14), this hierarchy is reflected by

s12 = 0.22 	 s23 = O(10−2) 	 s13 = O(10−3). (1.19)

1.2.4 Wolfenstein Parameterization of the CKM Matrix

For phenomenological applications, it would be useful to have a parameterization of the CKM matrix
that makes the hierarchy arising in (1.18) – and illustrated in fig. 1.2 – explicit [33]. In order to
derive such a parameterization, we introduce a set of new parameters, λ, A, ρ and η, by imposing the
following relations:

s12 ≡ λ = 0.22, s23 ≡ Aλ2, s13e
−iδ13 ≡ Aλ3(ρ− iη). (1.20)

If we now go back to the standard parameterization (1.14), we obtain a parameterization of the CKM
matrix as a function of λ (and A, ρ, η), which allows to expand each CKM element in powers of the
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Figure 1.2: Hierarchy of the quark transitions mediated through charged-current processes.

small parameter λ. If we neglect terms of O(λ4), we obtain the famous “Wolfenstein parameterization”
[33]:

V̂CKM =

⎛
⎜⎝ 1− 1

2λ
2 λ Aλ3(ρ− iη)

−λ 1− 1
2λ

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

⎞
⎟⎠+O(λ4), (1.21)

which makes the hierarchical structure of the CKM matrix very transparent and is an important tool
for phenomenological considerations.

For several applications, next-to-leading order corrections in λ play an important rôle. Using the
exact parameterization following from (1.14) and (1.20), they can be calculated straightforwardly by
expanding each CKM element to the desired accuracy in λ:

Vud = 1− 1
2
λ2 − 1

8
λ4 +O(λ6), Vus = λ+O(λ7), Vub = Aλ3(ρ− i η),

Vcd = −λ+
1
2
A2λ5 [1− 2(ρ+ iη)] +O(λ7),

Vcs = 1− 1
2
λ2 − 1

8
λ4(1 + 4A2) +O(λ6), (1.22)

Vcb = Aλ2 +O(λ8), Vtd = Aλ3

[
1− (ρ+ iη)

(
1− 1

2
λ2

)]
+O(λ7),

Vts = −Aλ2 +
1
2
A(1− 2ρ)λ4 − iηAλ4 +O(λ6), Vtb = 1− 1

2
A2λ4 +O(λ6).

It should be noted that
Vub ≡ Aλ3(ρ− iη) (1.23)

receives by definition no power corrections in λ within this prescription. If we introduce the generalized
Wolfenstein parameters

ρ̄ ≡ ρ
(

1− 1
2
λ2

)
, η̄ ≡ η

(
1− 1

2
λ2

)
, (1.24)

we may simply write, up to corrections of O(λ7),

Vtd = Aλ3(1− ρ̄− i η̄). (1.25)
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Moreover, we have to an excellent accuracy

Vus = λ and Vcb = Aλ2, (1.26)

as these quantities receive, respectively, only corrections at the λ7 and λ8 level.In comparison with
other generalizations of the Wolfenstein parameterization found in the literature, the advantage of
(1.22) is the absence of relevant corrections to Vus and Vcb, and that Vub and Vtd take forms similar
to those in (1.21). As far as the Jarlskog parameter introduced in (1.16) is concerned, we obtain the
simple expression

JCP = λ6A2η, (1.27)

which should be compared with (1.17).

1.2.5 Unitarity Triangles of the CKM Matrix

The unitarity of the CKM matrix, which is described by

V̂ †CKM · V̂CKM = 1̂ = V̂CKM · V̂ †CKM, (1.28)

leads to a set of 12 equations, consisting of 6 normalization and 6 orthogonality relations. The latter
can be represented as 6 triangles in the complex plane, all having the same area, 2AΔ = JCP. Let us
now have a closer look at these relations: those describing the orthogonality of different columns of
the CKM matrix are given by

VudV
∗
us︸ ︷︷ ︸

O(λ)

+VcdV
∗
cs︸ ︷︷ ︸

O(λ)

+VtdV
∗
ts︸ ︷︷ ︸

O(λ5)

= 0 (1.29)

VusV
∗
ub︸ ︷︷ ︸

O(λ4)

+VcsV
∗
cb︸ ︷︷ ︸

O(λ2)

+VtsV
∗
tb︸ ︷︷ ︸

O(λ2)

= 0 (1.30)

VudV
∗
ub︸ ︷︷ ︸

(ρ+iη)Aλ3

+VcdV
∗
cb︸ ︷︷ ︸

−Aλ3

+ VtdV
∗
tb︸ ︷︷ ︸

(1−ρ−iη)Aλ3

= 0, (1.31)

whereas those associated with the orthogonality of different rows take the following form:

V ∗udVcd︸ ︷︷ ︸
O(λ)

+V ∗usVcs︸ ︷︷ ︸
O(λ)

+V ∗ubVcb︸ ︷︷ ︸
O(λ5)

= 0 (1.32)

V ∗cdVtd︸ ︷︷ ︸
O(λ4)

+V ∗csVts︸ ︷︷ ︸
O(λ2)

+V ∗cbVtb︸ ︷︷ ︸
O(λ2)

= 0 (1.33)

V ∗udVtd︸ ︷︷ ︸
(1−ρ−iη)Aλ3

+V ∗usVts︸ ︷︷ ︸
−Aλ3

+ V ∗ubVtb︸ ︷︷ ︸
(ρ+iη)Aλ3

= 0. (1.34)

Here we have also indicated the structures that arise if we apply the Wolfenstein parameterization by
keeping just the leading, non-vanishing terms. We observe that only in eq. (1.31) and eq. (1.34), which
describe the orthogonality of the first and third columns and of the first and third rows, respectively,
all three sides are of comparable magnitude, O(λ3), while in the remaining relations, one side is
suppressed with respect to the others by factors of O(λ2) or O(λ4). Consequently, we have to deal
with only two non-squashed unitarity triangles in the complex plane. However, as we have already
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indicated in eq. (1.31) and eq. (1.34), the corresponding orthogonality relations agree with each other
at the λ3 level, yielding

[(ρ+ iη) + (−1) + (1− ρ− iη)]Aλ3 = 0. (1.35)

Consequently, they describe the same triangle, which is usually referred to as the unitarity triangle of
the CKM matrix.

(a) (b)

Figure 1.3: The two non-squashed unitarity triangles of the CKM matrix: (a) and (b) correspond to
the orthogonality relations (1.31) and (1.34), respectively. In Asia, the notation φ1 ≡ β, φ2 ≡ α and
φ3 ≡ γ is used for the angles of the triangle shown in (a).

If we take the next-to-leading order terms of the Wolfenstein expansion into account, we will have
to distinguish between the unitarity triangles following from eq. (1.31) and eq. (1.34). Let us first have
a closer look at the former relation. Including terms of O(λ5), we obtain the following generalization
of (1.35):

[(ρ̄+ iη̄) + (−1) + (1− ρ̄− iη̄)]Aλ3 +O(λ7) = 0, (1.36)

where ρ̄ and η̄ are as defined in (1.24). If we divide this relation by the overall normalization factor
Aλ3, and introduce

Rb ≡
√
ρ2 + η2 =

(
1− λ2

2

)
1
λ

∣∣∣∣VubVcb

∣∣∣∣ (1.37)

Rt ≡
√

(1− ρ)2 + η2 =
1
λ

∣∣∣∣VtdVcb
∣∣∣∣ , (1.38)

we arrive at the unitarity triangle illustrated in fig. 1.3(a). It is a straightforward generalization of the
leading-order case described by (1.35): instead of (ρ, η), the apex is now simply given by (ρ̄, η̄). The
two sides Rb and Rt, as well as the three angles α, β and γ, will show up at several places throughout
these thesis. Moreover, the relations

Vub = Aλ3

(
Rb

1− λ2/2

)
e−iγ , Vtd = Aλ3Rte

−iβ (1.39)

are also useful for phenomenological applications, since they make the dependences of γ and β explicit;
they correspond to the phase convention chosen both in the standard parameterization (1.14) and in
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the generalized Wolfenstein parameterization (1.22). Finally, if we take also (1.20) into account, we
obtain

δ13 = γ. (1.40)

Let us now turn to eq. (1.34). Here we arrive at an expression more complicated than (1.36):[{
1− λ2

2
− (1− λ2)ρ− i(1− λ2)η

}
+
{
−1 +

(
1
2
− ρ
)
λ2 − iηλ2

}
+{ρ+ iη}

]
Aλ3 +O(λ7) = 0.

(1.41)
If we divide again by Aλ3, we obtain the unitarity triangle sketched in fig. 1.3(b), where the apex is
given by (ρ, η) and not by (ρ̄, η̄). On the other hand, we find a tiny angle

δγ ≡ λ2η = O(1◦) (1.42)

between the real axis and the basis of the triangle, which satisfies

γ = γ′ + δγ, (1.43)

where γ coincides with the corresponding angle in fig. 1.3a.

Whenever we will refer to a “unitarity triangle” (UT) in the following, we mean the one illustrated
in fig. 1.3(a), which is the generic generalization of the leading-order case described by (1.35). As
we will see below, the UT is the central target of the experimental tests of the Standard Model
description of CP violation. Interestingly, also the tiny angle δγ can be probed directly through
certain CP-violating effects that can be explored at hadron colliders, in particular at CDF and LHCb.

1.3 Non-leptonic decays of B mesons

The B-meson system consists of charged and neutral B mesons, characterized by the valence quark
contents in (1.3). The characteristic feature of the neutral Bq (q ∈ {d, s}) mesons is the phenomenon
of B0

q–B̄
0
q mixing, which will be discussed in sec. 1.5. As far as the weak decays of B mesons are

concerned, we distinguish between leptonic, semileptonic and non-leptonic transitions. The B0
(s) →

h+h
′− charmless decays belong to the non-leptonic transitions.

The most complicated B decays are the non-leptonic transitions, which are mediated by b →
q1 q̄2 d (s) quark-level processes, with q1, q2 ∈ {u, d, c, s}. There are two kinds of topologies contributing
to such decays: tree and penguin diagrams topologies. The latter consist of gluonic (QCD) and
electroweak (EW) penguins. In fig. 1.4, the corresponding leading-order Feynman diagrams are shown.
Depending on the flavour content of their final states, we may classify b→ q1 q̄2 d (s) decays as follows:

� q1 �= q2 ∈ {u, c}: only tree diagrams contribute;

� q1 = q2 ∈ {u, c}: tree and penguin diagrams contribute;

� q1 = q2 ∈ {d, s}: only penguin diagrams contribute.

In order to analyse the non-leptonicB decays, one uses low-energy effective Hamiltonians, which are
calculated by making use of the “Operator Product Expansion”, yielding transition matrix elements
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(a)

(b)

(c)

Figure 1.4: Feynman diagrams of the topologies characterizing non-leptonic B decays: trees (a), QCD
penguins (b), and electroweak penguins (c).

with the following structure:

〈f |Heff |i〉 =
GF√

2
λCKM

∑
k

Ck(μ)〈f |Qk(μ)|i〉 . (1.44)

The technique of the operator product expansion allows to separate the short-distance contributions
to this transition amplitude from the long-distance ones, described by perturbative quantities Ck(μ)
(“Wilson coefficient functions”) and by non-perturbative quantities 〈f |Qk(μ)|i〉 (“hadronic matrix
elements”), respectively. As before, GF is the Fermi constant, whereas λCKM is a CKM factor and
μ denotes an appropriate renormalization scale. The Qk are local operators, which are generated
by electroweak interactions and QCD, and govern “effectively” the decay in question. The Wilson
coefficients Ck(μ) can be considered as scale-dependent couplings related to the vertices described by
the Qk.

For the exploration of CP violation, the class of non-leptonic B decays that receives contributions
both from tree and from penguin topologies plays a key rôle. In this important case, the operator
basis is much larger than the case where a pure “tree” decay is considered. If we apply the relation

V ∗urVub + V ∗crVcb + V ∗trVtb = 0 (r ∈ {d, s}), (1.45)

which follows from the unitarity of the CKM matrix, and “integrate out” the top quark (which enters
through the penguin loop processes) and the W boson, we may write

Heff =
GF√

2

⎡
⎣∑
j=u,c

V ∗jrVjb

{
2∑
k=1

Ck(μ)Qjrk +
10∑
k=3

Ck(μ)Qrk

}⎤⎦ . (1.46)
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Here we have introduced another quark-flavour label j ∈ {u, c}, and the Qjrk can be divided as follows:

� Current–current operators:

Qjr1 = (r̄αjβ)V–A(j̄βbα)V–A

Qjr2 = (r̄αjα)V–A(j̄βbβ)V–A.
(1.47)

� QCD penguin operators:

Qr3 = (r̄αbα)V–A

∑
q′(q̄
′
βq
′
β)V–A

Qr4 = (r̄αbβ)V–A

∑
q′(q̄
′
βq
′
α)V–A

Qr5 = (r̄αbα)V–A

∑
q′(q̄
′
βq
′
β)V+A

Qr6 = (r̄αbβ)V–A

∑
q′(q̄
′
βq
′
α)V+A.

(1.48)

� EW penguin operators (the eq′ denote the electrical quark charges):

Qr7 = 3
2 (r̄αbα)V–A

∑
q′ eq′(q̄

′
βq
′
β)V+A

Qr8 = 3
2 (r̄αbβ)V–A

∑
q′ eq′(q̄

′
βq
′
α)V+A

Qr9 = 3
2 (r̄αbα)V–A

∑
q′ eq′(q̄

′
βq
′
β)V–A

Qr10 = 3
2 (r̄αbβ)V–A

∑
q′ eq′(q̄

′
βq
′
α)V–A.

(1.49)

The current–current, QCD and EW penguin operators are related to the tree, QCD and EW penguin
processes shown in fig. 1.4. At the renormalization scale μ = O(mb), the Wilson coefficients of the
current–current operators are C1(μ) = O(10−1) and C2(μ) = O(1), whereas those of the penguin
operators are O(10−2) [34, 35]. Note that penguin topologies with internal charm- and up-quark
exchanges are described in this framework by penguin-like matrix elements of the corresponding
current–current operators, and may also have important phenomenological consequences [36, 37].

Since the ratio α/αs = O(10−2) of the QED and QCD couplings is very small, we would expect
näıvely that EW penguins should play a minor rôle in comparison with QCD penguins. This would
actually be the case if the top quark were not “heavy”. However, since the Wilson coefficient C9

increases strongly with mt, we obtain interesting EW penguin effects in several B decays. EW
penguins have an important impact on the B → Kπ system [38].

The low-energy effective Hamiltonians discussed above apply to all B decays that are generated by
the same quark-level transition, i.e. they are “universal”. Consequently, the differences between the
various exclusive modes of a given decay class arise within this formalism only through the hadronic
matrix elements of the relevant four-quark operators. Unfortunately, the evaluation of such matrix
elements is associated with large uncertainties and is a very challenging task. In this context, “fac-
torization” is a widely used concept.

1.3.1 Factorization of Hadronic Matrix Elements

The concept of factorization of the hadronic matrix elements of four-quark operators into the product
of hadronic matrix elements of quark currents has a long history [39]. Interesting recent developments
are the following:
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� “QCD factorization” [15], which is in agreement with the old picture that factorization should
hold for certain decays in the limit of mb 	 ΛQCD [40], provides a formalism to calculate the
relevant amplitudes at the leading order of a ΛQCD/mb expansion.

� Another QCD approach to deal with non-leptonic B-meson decays – the “perturbative hard-
scattering approach ” (pQCD) – was developed independently in [41], and differs from the QCD
factorization formalism in some technical aspects.

� An interesting technique for “factorization proofs” is provided by the framework of the “soft
collinear effective theory” (SCET) [42], which has received a lot of attention in the recent
literature and led to various applications.

� Non-leptonic B decays can also be studied within the QCD light-cone sum-rule approaches [43].

A detailed description of these topics would be very technical and is beyond the scope of this thesis.
However, for the discussion of the CP-violating effects in the B-meson system, we must only be
familiar with the general structure of the non-leptonic B decay amplitudes and not with the details
of the techniques necessary to deal with the corresponding hadronic matrix elements. The data will
establish how well factorization and the concepts sketched above are actually working.

An alternative approach that has been pursued extensively is to use flavor symmetries to extract
hadronic matrix elements from experimental data and then use them to predict flavor symmetries-
related channels principle. In this way it is possible to eliminate all the uncertainties connected to
factorization and the infinite mass limit.

SU(2) isospin symmetry − Use of isospin relations is based on expansions in mu,d/Λ ∼ 0.03� 1.
Several methods proposed for determining α and γ rely on the isospin symmetry, which is
conserved to a few percent accuracy. However, in B0

(s) → h+h
′− decays, the effectiveness of this

approach is currently limited by the number of unknown isospin parameters. Even with a more
complete experimental information, it would still be important to complement this strategy with
information on amplitudes from SU(3) or factorization. Otherwise, the possible presence of new
physics effects may remain undetected in full fits of SU(2) amplitudes [44].

SU(3) symmetry − SU(3)-based amplitude relations are obtained by combining the ms/Λ ∼ 0.3�
1 expansion parameter with those of the SU(2) symmetry. Several Standard Model strategies
based on SU(3) symmetry have been proposed to cancel out the hadronic uncertainties. Still,
the limited number of currently precise measurements available makes it necessary to introduce
additional “dynamical assumptions” to further reduce the number of hadronic parameters. These
assumptions usually rely on the additional knowledge of the strong matrix elements from the
factorization approach.
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1.4 Direct CP Violation

Let us consider a non-leptonic decay B̄ → f̄ that is described by the low-energy effective Hamiltonian
in (1.46). The corresponding decay amplitude is given as follows:

A(B̄ → f̄) = 〈f̄ |Heff|B̄〉

=
GF√

2

⎡
⎣∑
j=u,c

V ∗jrVjb

{
2∑
k=1

Ck(μ)〈f̄ |Qjrk (μ)|B̄〉+
10∑
k=3

Ck(μ)〈f̄ |Qrk(μ)|B̄〉
}⎤⎦ . (1.50)

For the CP-conjugate process B → f , we have

A(B → f) = 〈f |H†eff|B〉

=
GF√

2

⎡
⎣∑
j=u,c

VjrV
∗
jb

{
2∑
k=1

Ck(μ)〈f |Qjr†k (μ)|B〉+
10∑
k=3

Ck(μ)〈f |Qr†k (μ)|B〉
}⎤⎦ . (1.51)

If we now use that strong interactions are invariant under CP transformations, insert (CP)†(CP) = 1̂
both after the 〈f | and in front of the |B〉, and take the relation

(CP)Qjr†k (CP)† = Qjrk (1.52)

into account, we arrive at

A(B → f) = ei[φCP(B)−φCP(f)]

×GF√
2

⎡
⎣∑
j=u,c

VjrV
∗
jb

{
2∑
k=1

Ck(μ)〈f̄ |Qjrk (μ)|B̄〉+
10∑
k=3

Ck(μ)〈f̄ |Qrk(μ)|B̄〉
}⎤⎦ , (1.53)

where the convention-dependent phases φCP(B) and φCP(f) are defined through the relations

(CP)|B〉 = eiφCP(B)|B̄〉, (CP)|f〉 = eiφCP(f)|f̄〉. (1.54)

Consequently, we may write

A(B̄ → f̄) = e+iϕ1 |A1|eiδ1 + e+iϕ2 |A2|eiδ2 (1.55)

A(B → f) = ei[φCP(B)−φCP(f)]
[
e−iϕ1 |A1|eiδ1 + e−iϕ2 |A2|eiδ2

]
. (1.56)

Here the CP-violating phases ϕ1,2 originate from the CKM factors V ∗jrVjb, and the CP-conserving
“strong” amplitudes |A1,2|eiδ1,2 involve the hadronic matrix elements of the four-quark operators.
In fact, these expressions are the most general forms of any non-leptonic B-decay amplitude in the
Standard Model, i.e. they do not only refer to the ΔC = ΔU = 0 case described by (1.46). Using
(1.55) and (1.56), we obtain the following CP asymmetry:

ACP ≡ Γ(B̄ → f̄)− Γ(B → f)
Γ(B̄ → f̄) + Γ(B → f)

=
|A(B̄ → f̄)|2 − |A(B → f)|2
|A(B̄ → f̄)|2 + |A(B → f)|2

= − 2|A1||A2| sin(δ1 − δ2) sin(ϕ1 − ϕ2)
|A1|2 + 2|A1||A2| cos(δ1 − δ2) cos(ϕ1 − ϕ2) + |A2|2 . (1.57)
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We observe that a non-vanishing value can be generated through the interference between the two
weak amplitudes, provided both a non-trivial weak phase difference ϕ1 − ϕ2 and a non-trivial strong
phase difference δ1− δ2 are present. This kind of CP violation is referred to as “direct” CP violation,
as it originates directly at the amplitude level of the considered decay. It is the B-meson counterpart
of the effects probed through Re(ε′/ε) in the neutral kaon system, and recently established only in
the B0 → K+π− decay [11].

Since ϕ1 − ϕ2 is in general given by one of the UT angles – usually γ – the goal is to extract
this quantity from the measured value of ACP. Unfortunately, hadronic uncertainties affect this
determination through the poorly known hadronic matrix elements present in (1.50). In order to deal
with this problem, we may proceed along one of the following two avenues:

(i) Amplitude relations can be used to eliminate the hadronic matrix elements. We distinguish
between exact relations, using pure “tree” decays of the kind B+ → K+D [9, 10] or B+

c → D+
s D

[45], and relations which follow from the flavour symmetries of strong interactions, i.e. isospin
or SU(3)F, and involve B(s) → ππ, πK,KK modes [46].

(ii) In decays of the neutral B0
q mesons, interference effects between B0

q–B̄
0
q mixing and decay pro-

cesses may cause “mixing-induced CP violation” (see sec. 1.5.4). If a single CKM amplitude
governs the decay, the hadronic matrix elements cancel in the corresponding CP asymmetries;
otherwise we have to use again amplitude relations. The most important example is the decay
B0
d → J/ψKS [47] (see sec. 1.5.4).

1.5 Neutral B mesons

�W−W+

q̄

b

b̄

q

�
W+

W−

s̄

b

b̄

s

Figure 1.5: Box diagrams contributing to B0
q -B

0

q flavor mixing.

Within the Standard Model, B0
q–B̄

0
q mixing (q ∈ {d, s}) arises from the box diagrams shown in

Fig. 1.5. Because of this phenomenon, an initially, i.e. at time t = 0, present B0
q -meson state evolves

into a time-dependent linear combination of B0
q and B̄0

q states:

|Bq(t)〉 = a(t)|B0
q 〉+ b(t)|B̄0

q 〉, (1.58)
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where a(t) and b(t) are governed by a Schrödinger equation of the following form:

i
d
dt

(
a(t)
b(t)

)
= H ·

(
a(t)
b(t)

)
≡
[(

M
(q)
0 M

(q)
12

M
(q)∗
12 M

(q)
0

)
︸ ︷︷ ︸

mass matrix

− i
2

(
Γ(q)

0 Γ(q)
12

Γ(q)∗
12 Γ(q)

0

)
︸ ︷︷ ︸

decay matrix

]
·
(
a(t)
b(t)

)
.

The special form H11 = H22 of the Hamiltonian H is an implication of the CPT theorem, i.e. of the
invariance under combined CP and time-reversal (T) transformations.

It is straightforward to calculate the eigenstates |B(q)
± 〉 and eigenvalues λ(q)

± of (1.59):

|B(q)
± 〉 =

1√
1 + |αq|2

(|B0
q 〉 ± αq|B̄0

q 〉
)

(1.59)

λ
(q)
± =

(
M

(q)
0 − i

2
Γ(q)

0

)
±
(
M

(q)
12 −

i

2
Γ(q)

12

)
αq, (1.60)

where

αqe
+i
(
Θ

(q)
Γ12

+n′π
)

=

√√√√ 4|M (q)
12 |2e−i2δΘ

(q)
M/Γ + |Γ(q)

12 |2
4|M (q)

12 |2 + |Γ(q)
12 |2 − 4|M (q)

12 ||Γ(q)
12 | sin δΘ(q)

M/Γ

. (1.61)

Here we have written

M
(q)
12 ≡ eiΘ

(q)
M12 |M (q)

12 |, Γ(q)
12 ≡ eiΘ

(q)
Γ12 |Γ(q)

12 |, δΘ(q)
M/Γ ≡ Θ(q)

M12
−Θ(q)

Γ12
, (1.62)

and have introduced the quantity n′ ∈ {0, 1} to parametrize the sign of the square root in (1.61).

Analytical (QCD sum-rules) and numerical (lattice simulation) calculations of mixing amplitudes
allow estimating values of the mass and decay matrix elements:

M
(q)
12 ∝ (V ∗tqVtb)

2ei[π−φCP(B0
q )] (1.63)

where φCP(Bq) is a convention-dependent phase, defined in analogy to (1.54). It is found that
Γ(q)

12 /M
(q)
12 ≈ O(m2

b/m
2
t )� 1. Consequently, the expansion of (1.61) at first order yields

αq =

[
1 +

1
2

∣∣∣∣∣ Γ(q)
12

M
(q)
12

∣∣∣∣∣ sin
(
Θ(q)
M12
−Θ(q)

Γ12

)]
e
−i
(
Θ

(q)
Γ12

+n′π
)
. (1.64)

The deviation of |αq| from unit measures the CP violation in the mixing transition. The expected mag-
nitude of the corresponding asymmetry, |αq|4−1

|αq|4+1 = O(10−4) is strongly suppressed in the Standard Model.
It is difficult to measure, but represents also an interesting probe of New Physics, that may signifi-
cantly enhance the asymmetry.

1.5.1 Mixing Parameters

From an experimental point of view it is interesting to define some parameters related to the time
evolution process mentioned in the previous section. The masses of the eigenstates of (1.59) are
indicated with M (q)

H (“heavy”) and M (q)
L (“light”). It is then useful to introduce

Mq ≡ M
(q)
H +M

(q)
L

2
= M

(q)
0 , (1.65)
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as well as the mass difference

ΔMq ≡M (q)
H −M (q)

L = 2|M (q)
12 | > 0, (1.66)

which is by definition positive. While B0
d–B̄

0
d mixing is well established and

ΔMd = (0.507± 0.004) ps−1 (1.67)

known with impressive experimental accuracy [48], only lower bounds on ΔMs were available, for
many years, from the LEP (CERN) experiments and SLD (SLAC) [49]. In the fall of 2006, CDF
collaboration reported the observation of B0

s -B
0

soscillations from a time-dependent measurement of
the oscillation frequency:

ΔMs = [17.77± 0.10(stat)± 0.07(syst)] ps−1. (1.68)

The decay widths Γ(q)
H and Γ(q)

L of the mass eigenstates, which correspond to M
(q)
H and M

(q)
L ,

respectively, satisfy

ΔΓq ≡ Γ(q)
H − Γ(q)

L =
4 Re
[
M

(q)
12 Γ(q)∗

12

]
ΔMq

, (1.69)

whereas

Γq ≡ Γ(q)
H + Γ(q)

L

2
= Γ(q)

0 . (1.70)

There is the following interesting relation:

ΔΓq
Γq
≈ − 3π

2S0(xt)

(
m2
b

M2
W

)
xq = −O(10−2)× xq, (1.71)

where S0(xt ≡ m2
t/M

2
W ) [50] is the “Inami–Lim” function, which can be written – to a good approx-

imation – in the Standard Model as [51]

S0(xt) = 2.40×
[ mt

167GeV

]1.52
, (1.72)

and where

xq ≡ ΔMq

Γq
=

{
0.771± 0.012 (q = d)
O(20) (q = s)

(1.73)

is often referred to as the B0
q–B̄

0
q “mixing parameter”.2 Consequently, ΔΓd/Γd ∼ 10−2 is negligibly

small, while ΔΓs/Γs ∼ 10−1 may be sizeable. As was reviewed in Ref. [52], the state of the art of
calculations of these quantities is given as follows:

|ΔΓd|
Γd

= (3± 1.2)× 10−3,
|ΔΓs|

Γs
= 0.12± 0.05. (1.74)

Recently, the first results for ΔΓs were reported from the Tevatron, using the B0
s → J/ψφ channel:

|ΔΓs|
Γs

=

{
0.12± 0.09 (CDF [53])
0.18± 0.14 (D0 [54]).

(1.75)

2Note that ΔΓq/Γq is negative in the Standard Model because of the minus sign in (1.71).
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1.5.2 Time-Dependent Decay Rates

The time evolution of initially, i.e. at t = 0, pure B0
q - and B̄0

q -meson states is given by

|B0
q (t)〉 = f

(q)
+ (t)|B0

q 〉+ αqf
(q)
− (t)|B̄0

q 〉 (1.76)

and
|B̄0
q (t)〉 =

1
αq
f

(q)
− (t)|B0

q 〉+ f
(q)
+ (t)|B̄0

q 〉, (1.77)

respectively, with

f
(q)
± (t) =

1
2

[
e−iλ

(q)
+ t ± e−iλ(q)

− t
]
. (1.78)

These time-dependent state vectors allow the calculation of the corresponding transition rates. To
this end, it is useful to introduce

|g(q)
± (t)|2 =

1
4

[
e−Γ

(q)
L t + e−Γ

(q)
H t ± 2 e−Γqt cos(ΔMqt)

]
(1.79)

g
(q)
− (t) g(q)

+ (t)∗ =
1
4

[
e−Γ

(q)
L t − e−Γ

(q)
H t + 2 i e−Γqt sin(ΔMqt)

]
, (1.80)

as well as

ξ
(q)
f = e−iΘ

(q)
M12

A(B̄0
q → f)

A(B0
q → f)

, ξ
(q)

f̄
= e−iΘ

(q)
M12

A(B̄0
q → f̄)

A(B0
q → f̄)

. (1.81)

Looking at (1.63), we find
Θ(q)
M12

= π + 2arg(V ∗tqVtb)− φCP(Bq), (1.82)

and observe that this phase depends on the chosen CKM and CP phase conventions specified in (1.11)
and (1.54), respectively. However, these dependences are canceled through the amplitude ratios in
(1.81), so that ξ(q)f and ξ(q)

f̄
are convention-independent observables. Whereas n′ enters the functions

in (1.78) through (1.60), the dependence on this parameter is canceled in (1.79) and (1.80) through the
introduction of the positive mass difference ΔMq (see (1.66)). Combining the formulas listed above,
we eventually arrive at the following transition rates for decays of initially present B0

q or B̄0
q mesons,

i.e. at t = 0:

Γ(
(–)

B0
q (t)→ f) =

[
|g(q)
∓ (t)|2 + |ξ(q)f |2|g(q)

± (t)|2 − 2 Re
{
ξ
(q)
f g

(q)
± (t)g(q)

∓ (t)∗
}]

Γ̃f , (1.83)

where the time-independent rate Γ̃f corresponds to the “unevolved” decay amplitude A(B0
q → f), and

can be calculated by performing the usual phase-space integrations. The rates into the CP-conjugate
final state f̄ can straightforwardly be obtained from (1.83) by making the substitutions

Γ̃f → Γ̃f̄ , ξ
(q)
f → ξ

(q)

f̄
. (1.84)

1.5.3 “Untagged” Rates

The expected sizeable width difference ΔΓs may provide interesting studies of CP violation through
“untagged” Bs rates (see Ref. [55] and [56]–[57]), defined as

〈Γ(Bs(t)→ f)〉 ≡ Γ(B0
s (t)→ f) + Γ(B̄0

s (t)→ f), (1.85)
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and are characterized by the feature that we do not distinguish between B0
s or B̄0

s mesons. If we
consider a final state f to which both a B0

s and a B̄0
s may decay, and use the expressions in (1.83),

we find
〈Γ(Bs(t)→ f)〉 ∝ [cosh(ΔΓst/2)−AΔΓ(Bs → f) sinh(ΔΓst/2)] e−Γst, (1.86)

with

AΔΓ(Bs → f) ≡ 2Re ξ(s)f

1 +
∣∣ξ(s)f

∣∣2 . (1.87)

We observe that the rapidly oscillating ΔMst terms cancel, and that we may obtain information about
the phase structure of the observable ξ(s)f , thereby providing valuable insights into CP violation.

1.5.4 CP Asymmetries

A particularly simple – but also very interesting – situation arises if we restrict ourselves to decays of
neutral Bq mesons into final states f that are eigenstates of the CP operator, i.e. satisfy the relation

(CP)|f〉 = ±|f〉. (1.88)

Consequently, we have ξ(q)f = ξ
(q)

f̄
in this case, as can be seen in (1.81). Using the decay rates in

(1.83), we find that the corresponding time-dependent CP asymmetry is given by

ACP(t) ≡ Γ(B̄0
q (t)→ f)− Γ(B0

q (t)→ f)
Γ(B̄0

q (t)→ f) + Γ(B0
q (t)→ f)

=
[Adir

CP(Bq → f) cos(ΔMqt) +Amix
CP (Bq → f) sin(ΔMqt)

cosh(ΔΓqt/2)−AΔΓ(Bq → f) sinh(ΔΓqt/2)

]
, (1.89)

with

Adir
CP(Bq → f) ≡ 1− ∣∣ξ(q)f

∣∣2
1 +
∣∣ξ(q)f

∣∣2 , Amix
CP (Bq → f) ≡ 2 Im ξ

(q)
f

1 +
∣∣ξ(q)f

∣∣2 . (1.90)

Because of the relation

Adir
CP(Bq → f) =

|A(B̄0
q → f̄)|2 − |A(B0

q → f)|2
|A(B̄0

q → f̄)|2 + |A(B0
q → f)|2 , (1.91)

this observable measures the direct CP violation in the decay Bq → f , which originates from the
interference between different weak amplitudes, as in eq. (1.57). On the other hand, the interesting
new aspect of (1.89) is due to Amix

CP (Bq → f), which originates from interference effects between
B0
q–B̄

0
q mixing and decay processes, and describes “mixing-induced” CP violation. Finally, the width

difference ΔΓq, which may be sizeable in the Bs-meson system, provides access to AΔΓ(Bq → f)
introduced in (1.87). However, this observable is not independent from Adir

CP(Bq → f) and Amix
CP (Bq →

f), satisfying [
Adir

CP(Bq → f)
]2

+
[
Amix

CP (Bq → f)
]2

+
[
AΔΓ(Bq → f)

]2
= 1. (1.92)

In order to calculate ξ(q)f , we use the general expressions (1.55) and (1.56), where e−iφCP(f) = ±1
because of (1.88), and φCP(B) = φCP(Bq). If we insert these amplitude parameterizations into (1.81)
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and take (1.82) into account, we observe that the phase-convention-dependent quantity φCP(Bq)
cancels, and finally arrive at

ξ
(q)
f = ∓ e−iφq

[
e+iϕ1 |A1|eiδ1 + e+iϕ2 |A2|eiδ2
e−iϕ1 |A1|eiδ1 + e−iϕ2 |A2|eiδ2

]
, (1.93)

where

φq ≡ 2 arg(V ∗tqVtb) =

{
+2β (q = d)
−2δγ (q = s)

(1.94)

is associated with the CP-violating weak B0
q–B̄

0
q mixing phase arising in the Standard Model; β and

δγ refer to the corresponding angles in the unitarity triangles shown in Fig. 1.3.

In analogy to eq. (1.57), the calculation of ξ(q)f is also affected by large hadronic uncertainties.
However, if one CKM amplitude plays the dominant rôle in the Bq → f transition, we obtain

ξ
(q)
f = ∓ e−iφq

[
e+iφf/2|Mf |eiδf

e−iφf/2|Mf |eiδf

]
= ∓ e−i(φq−φf ), (1.95)

and observe that the hadronic matrix element |Mf |eiδf cancels in this expression. Since the require-
ments for direct CP violation discussed above are no longer satisfied, direct CP violation vanishes in
this important special case, i.e. Adir

CP(Bq → f) = 0. On the other hand, this is not the case for the
mixing-induced CP asymmetry. In particular,

Amix
CP (Bq → f) = ± sinφ (1.96)

is now governed by the CP-violating weak phase difference φ ≡ φq−φf and is not affected by hadronic
uncertainties. The corresponding time-dependent CP asymmetry takes then the simple form

Γ(B0
q (t)→ f)− Γ(B̄0

q (t)→ f̄)
Γ(B0

q (t)→ f) + Γ(B̄0
q (t)→ f̄)

∣∣∣∣∣
ΔΓq=0

= ± sinφ sin(ΔMqt), (1.97)

and allows an elegant determination of sinφ.

1.6 How could new physics enter?

Using the concept of low-energy effective Hamiltonians introduced in sec. 1.3, we may address this
important question in a systematic manner [58]:

� New Physics may modify the “strength” of the Standard Model operators through new short-
distance functions which depend on the New Physics parameters, such as the masses of charginos,
squarks, charged Higgs particles and tan β̄ ≡ v2/v1 in the “minimal supersymmetric Standard
Model” (MSSM). The New Physics particles may enter in box and penguin topologies, and are
“integrated out” as the W boson and top quark in the Standard Model.

� It should be emphasized that the New Physics may also involve new CP-violating phases which
are not related to the CKM matrix.
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� New Physics may enhance the operator basis, so that operators which are not present (or strongly
suppressed) in the Standard Model may actually play an important rôle. In this case, we
encounter, in general, also new sources for flavour– and CP–violation.

The B-meson system offers a variety of processes and strategies for the exploration of CP violation.
There are processes with a very different dynamics that are – in the Standard Model – sensitive to the
same angles of the UT. In the presence of New Physics contributions, the subtle interplay between
the different processes could well be disturbed. New Physics could enter through the exchange of new
particles in the box diagrams, or through new contributions at the tree level (B0

q–B̄
0
q mixing). On

other hand New Physics has typically a small effect when Standard Model tree processes play the
dominant rôle. However, New Physics could well have a significant impact on the decay amplitudes
where new particles may enter in penguin diagrams.

Just in this context charmless hadronic two body decays B0
(s) → h+h

′− constitute both a probe of
electroweak structure of Standard Model as well as a testing ground for our understanding of QCD
dynamics and then a powerful probe to investigate New Physics effects.

1.7 Phenomenology of B0
(s) → h+h

′− modes

Non-leptonic two-body charmless decays are the most interesting processes to study flavor physics
in the b-meson sector. The large mass of the b-meson allows for a plethora of open channels, which
provide multiple ways for testing the consistency of the Standard Model interpretation of CP violation.
For each channel, observables include the CP-averaged branching fractions, the direct CP-violating
asymmetries and, for certain decays of neutral mesons, the mixing-induced CP-violating asymmetry.

In the years 1998–2000, the CLEO experiment established the relevant role of penguin amplitudes
measuring for the first time B(B0 → K+π−)/B(B0 → π+π−) � 4 whereas if only tree processes
were to contribute, B(B0 → K+π−)/B(B0 → π+π−) ∝ |Vus|2/|Vud|2 ≈ O(λ2) ≈ 0.05 was expected.
Today, it is common to think of penguin amplitudes as an opportunity to be exploited rather than as
a limitation, because the increased complexity implies also an enriched phenomenology: higher-order
penguin processes may provide access for New Physics phases, induced by virtual contributions of new
particles in the loops. The B0

(s) → h+h
′− decays can be used to determine the values of the CKM-

related quantities, which may differ from the ones extracted from other tree-level dominated processes,
possibly indicating non-Standard Model CP-violating phases. In addition, the B0

(s) → h+h
′− decays

can provide valuable information on low-energy strong dynamics in B0
(s) meson decays.

The phenomenology of non-leptonic charmless two-body decays of b-mesons offers rich opportu-
nities for increasing our understanding of the CP violation, and the precise measurements obtained
recently at dedicated e+e− colliders already provided demonstration of the central role of these decay
modes. While rich experimental data are available for B0 and B+ mesons from the ARGUS, CLEO,
and LEP experiments, and, more recently, from the BABAR and Belle experiments, no hadronic charm-
less decays of B0

s mesons into pions or kaons are accessible at these facilities.3 The upgraded Collider
Detector at the Fermilab Tevatron (CDF II) is an ideal environment to study hadronic charmless

3ARGUS stands for “A Russian German US” Collaboration, LEP for Large Electron Positron collider.
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decays of B0
s (along with B0 and B+) mesons into charged final states and to exploit the very promis-

ing physics potential of the Bs system. Consequently, Bs physics is in some sense the “El Dorado”
for B experiments at hadron colliders. In fact only simultaneous measurement of B0, B+ and B0

s

observables can fully exploit U-spin symmetries to cancel out hadronic uncertainties and probe the
electroweak and QCD structure.

Amplitudes of B0
(s) → h+h

′− decays are dominated by b̄ → ū (tree-type) and b̄ → s̄(d̄) (penguin-
type) quark transitions (see figs. 1.6–1.9). The observed decay-rates are O(10−5) and smaller because
the former processes involve leading-order diagrams that are CKM suppressed (|Vub| � |Vcb|), while
the latter involves higher-order diagrams.

�
W+

d, s

b̄

d, s

ū

d̄, s̄

u

�
W+

d, s

b̄

d, s

d̄, s̄

u

ū

Figure 1.6: Color-allowed (left panel) and color-suppressed (right panel) tree (T) diagram contributing
to B0

(s) → h+h
′− decays.

�
W

g

d, s

b̄

d, s

ū, d̄, s̄

u, d, s

d̄, s̄

Figure 1.7: QCD-penguin (P) diagram contributing to B0
(s) → h+h

′− decays.

Several strategies based on flavor symmetries were proposed to control the hadronic uncertainties
in the predictions of B0

(s) → h+h
′− amplitudes. In the following, we first focus the discussion on the

U-spin flavor-symmetry because it has a specific interest in the context of this analysis and second we
study the phenomenology of individual B0

(s) → h+h
′− mode.

1.7.1 Amplitude relations from U-spin flavor symmetry

The U-spin symmetry is a sub-group of the SU(3) flavor symmetry under which d quarks transform
into s quarks. The B0 → π+π− and the B0

s → K+K− decays are an example of completely U-spin-
symmetric channels. Relations (1.98)–(1.101) show an extended set of U-spin-symmetric decay modes
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�W

Z0/γ

d, s

b̄

d, s

d̄, s̄

ū, d̄, s̄

u, d, s

�
W

Z0/γ

d, s

b̄

d, s

ū, d̄, s̄

u, d, s

d̄, s̄

Figure 1.8: Color-allowed (PEW, left panel) and color suppressed (PC
EW, right panel) electroweak

penguin diagram contributing to B0
(s) → h+h

′− decays.

�W
d, s

b̄

u

d̄, s̄, ū

d, s, u

ū

�W
d, s

b̄

u, d, s

d̄, s̄, ū

d, s, u

ū, d̄, s̄

Figure 1.9: W -exchange (E, left panel) and penguin-annihilation (PA, right panel) diagram contribut-
ing to B0

(s) → h+h
′− decays.

along with their amplitudes (indicated following the classification of figs. 1.6–1.9)

B0 → π+π−︸ ︷︷ ︸
T+P+ 2

3PC
EW+PA+E

d←→ s B0
s → K+K−︸ ︷︷ ︸

T+P+ 2
3PC

EW+PA+E

(1.98)

B0 → K+π−︸ ︷︷ ︸
T+P+ 2

3PC
EW

d←→ s B0
s → K−π+︸ ︷︷ ︸
T+P+ 2

3PC
EW

(1.99)

B0 → K+π−︸ ︷︷ ︸
T+P+ 2

3PC
EW

d
spect.←→ s B0

s → K+K−︸ ︷︷ ︸
T+P+ 2

3PC
EW+PA+E

(1.100)

B0 → π+π−︸ ︷︷ ︸
T+P+ 2

3PC
EW+PA+E

d
spect.←→ s B0

s → K−π+︸ ︷︷ ︸
T+P+ 2

3PC
EW

(1.101)

The “spect.” superscript labels relations in which U-spin-symmetry is applied only to the “spectator”
quark, i. e., the valence quark of the B0

(s) meson that does not participate to the weak, quark-level
process governing the decay. In these cases, where the U-spin transformation regards only the spectator
quark, two decay modes can be treated as U-spin partners only if the effect of annihilation and exchange
diagrams (see fig. 1.9), in which both quarks of the B0

(s) meson participate to the weak transition, is
assumed negligible. This assumption can be verified experimentally by measuring the rates of other
B0

(s) → h+h
′− decays (see sec. 1.7.7).
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U-spin symmetry is not exactly conserved in the Standard Model. The magnitude of its violation,
due to both factorizable and non-factorizable hadronic matrix elements, is not precisely known but
most authors estimate a O(10%) effect. The factorizable part of the violation can be calculated
from QCD methods, such as light-cone sum-rules [59]; the full violation, however, that includes non-
factorizable components, can only be inferred from data, by comparing amplitudes of U-spin-related
modes.

1.7.2 B0 → π+π−

This decay is a transition into a CP eigenstate with eigenvalue +1, and originates from b̄ → ūud̄

processes. Its decay amplitude can be written as follows [5]:

A(B0
d → π+π−) = λ(d)

u (AuT +AuP) + λ(d)
c AcP + λ

(d)
t AtP. (1.102)

where AuT is due to current–current contributions, and the amplitudes AjP describe penguin topologies
with internal j quarks (j ∈ {u, c, t}). These penguin amplitudes take into account both QCD and
electroweak penguin contributions. The quantities

λ
(d)
j ≡ VjdV ∗jb (1.103)

are the usual CKM factors. If we make use of the unitarity of the CKM matrix (eq. (1.45)) and apply
the Wolfenstein parameterization, generalized to include non-leading terms in λ, we obtain:

A(B0
d → π+π−) = C [eiγ − deiθ] , (1.104)

where the overall normalization C and

deiθ ≡ 1
Rb

[
AcP −AtP

AuT +AuP −AtP

]
(1.105)

are hadronic parameters. The formalism discussed in sec. 1.5.4 then implies

ξ
(d)
π+π− = −e−iφd

[
e−iγ − deiθ
e+iγ − deiθ

]
. (1.106)

The hadronic parameter deiθ, which suffers from large theoretical uncertainties, does not enter (eq. (1.106))
in a doubly Cabibbo-suppressed way. This feature is at the basis of the famous “penguin problem”
in B0 → π+π−, which was addressed in many papers (see, for instance, Ref. [60]). If the penguin
contributions to this channel were negligible, i.e. d = 0, its CP asymmetries were simply given by

Adir
CP(Bd → π+π−) = 0 (1.107)

Amix
CP (Bd → π+π−) = sin(φd + 2γ) SM= sin(2β + 2γ︸ ︷︷ ︸

2π−2α

) = − sin 2α. (1.108)

Consequently, Amix
CP (Bd → π+π−) would allow us to determine α. However, in the general case, we

obtain expressions with the help of eq. (1.90) and eq. (1.106) of the form

Adir
CP(Bd → π+π−) = G1(d, θ; γ) (1.109)

Amix
CP (Bd → π+π−) = G2(d, θ; γ, φd); (1.110)
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for explicit formulas, see Ref. [5]. We observe that actually the phases φd and γ enter directly in the
Bd → π+π− observables, and not α. Consequently, since φd can be fixed through the mixing-induced
CP violation in the “golden” mode Bd → J/ψKS, we may use Bd → π+π− to probe γ.

The branching fraction of the B0 → π+π− mode was measured and the values are reported in
tab. 1.1. The B-Factories also measured the time-dependent CP asymmetries The current measure-
ments are given as follows:

Adir
CP(B0 → π+π−) =

{
+0.21± 0.09± 0.02 (BABAR [61])
+0.55± 0.08± 0.05 (Belle [62])

(1.111)

Amix
CP (B0 → π+π−) =

{
−0.60± 0.11± 0.03 (BABAR [61])
−0.61± 0.10± 0.04 (Belle [62]).

(1.112)

The BABAR and Belle results are not fully consistent with each other, although the experiments are
now in better agreement. In Ref. [48], the following averages were obtained:

Adir
CP(B0 → π+π−) = +0.38± 0.07 (1.113)

Amix
CP (B0 → π+π−) = −0.61± 0.08. (1.114)

The central values of these averages are remarkably stable with time. Direct CP violation at this level
would require large penguin contributions with large CP-conserving strong phases, thereby indicating
large non-factorizable effects.

From an experimental point of view a third measurement of the time-dependent CP asymmetries
of the B0 → π+π− would be desirable to solve the the B-Factories discrepancy.

BABAR Belle CLEO CDF
B(B0 → π+π−) 5.5± 0.4± 0.3 5.1± 0.2± 0.2 4.5+1.4+0.5

−1.2−0.4 3.9± 1.0± 0.6
B(B0 → K+π−) 19.1± 0.6± 0.6 19.9± 0.4± 0.8 18.0+2.3+1.2

−2.1−0.9 −
B(B0 → K+K−) < 0.5 @ 90%CL < 0.41 @ 90%CL < 0.8 @ 90%CL < 1.8 @ 90%CL
B(B0

s → π+π−) − − − < 1.7 @ 90%CL
B(B0

s → K−π+) − − − < 5.6 @ 90%CL
B(B0

s → K+K−) − − − 33± 6± 7

Table 1.1: Summary of branching fractions in unit 10−6 of B0
(s) → h+h

′− decays for BABAR [63], Belle
[64, 65], CLEO [66], CDF [1].

1.7.3 B0 → K+π−

The B0 → K+π− decay channel receives contributions both from tree and from penguin topologies.
Since this decay originates from a b̄→ s̄ transition, the tree amplitude is suppressed by a CKM factor
λ2Rb ∼ 0.02 with respect to the penguin amplitude. Consequently, B0 → K+π− is governed by QCD
penguins; the tree topologies contribute only at the 20% level to the decay amplitude. The diagrams
contributing to B0 → K+π− can straightforwardly be obtained by just replacing the anti-down quark
emerging from the W boson through an anti-strange quark of the diagram of the B0 → π+π−. The
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hadronic matrix elements entering B0 → π+π− and B0 → K+π− can be related through the SU(3)
flavour symmetry of strong interactions and the additional assumption that the penguin annihilation
and exchange topologies contributing to B0 → π+π−, which have no counterpart in B0 → K+π−

and involve the “spectator” down quark, play actually a negligible rôle [67]. Following these lines, we
obtain the following relation in the Standard Model:

HB ≡ 1
ε

(
fK
fπ

)2 [ B(B0 → π+π−)
B(B0 → K+π−)

]
= −1

ε

[Adir
CP(B0 → π+π−)
Adir

CP(B0 → π+π−)

]
≡ HAdir

CP
, (1.115)

where

ε ≡ λ2

1− λ2
= 0.053, (1.116)

and the ratio fK/fπ = 160/131 of the kaon and pion decay constants describes factorizable SU(3)-
breaking corrections. The quantities HB and HAdir

CP
introduced in this relation can be written as

follows:

HB = G3(d, θ; γ) = HAdir
CP
. (1.117)

where we have sufficient information to determine γ, as well as (d, θ) [5, 67, 68] from the interplay
of the observables of the B0 → π+π− and B0 → K+π− (the time dependent CP asymmetries for
the B0 → π+π− are currently experimentally accessible to the B-Factories [48], see sec. 1.7.2). In
Ref. [69], the results following from HB and HAdir

CP
give results that are in good agreement with one

another.

Another interesting example of interplaying between separate experimental information to probe
New Physics effects is given by the comparison between the direct CP asymmetry of B0 → K+π− and
that of its U-spin partner B+ → K+π0. In the B0 → K+π− and B+ → K+π0 decays, EW penguins
contribute in color-suppressed form and are hence expected to play a minor rôle. In this limit, of
vanishing color-suppressed tree and EW penguin topologies, CP asymmetry of the B+ → K+π0 is
expected to be equal to the direct CP asymmetry of the B0 → K+π− modes [12, 13, 14]. Since the
experimental values of both asymmetries can be accessed and they do not agree [48]

Adir
CP(B+ → K+π0) = +0.047± 0.026 (1.118)

Adir
CP(B0 → K+π−) = −0.095± 0.013 (1.119)

the direct CP violation in B+ → K+π0 has also received a lot of attention. The lifted color suppression
could, in principle, be responsible for a non-vanishing difference:

ΔA ≡ Adir
CP(B+ → K+π0)−Adir

CP(B0 → K+π−)
exp
= +0.14± 0.03. (1.120)

ΔA shows a deviation of 4.7σ from 0. While it has been argued in the past that the asymmetries
in these two modes should be equal in the standard model due to isospin symmetry, this is not
anymore considered a reliable test [70, 71, 72]. In view of the large uncertainties, no more stringent
test is provided at this point. Nevertheless, it is tempting to play a bit with the CP asymmetries
of the B+ → K+π0 and B0 → π0KS decays and in particular the measurement on its ideal partner
B0
s → K−π+ can shed light on the source of the direct CP violation in the B0 → K+π− counterpart

and solve the puzzling above described.
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1.7.4 B0 → K+K−

The B0 → K+K− mode receives contributions from penguin-annihilation and exchange diagrams,
in which all initial-state quarks undergo a transition. These diagrams are difficult to predict with
current phenomenological models. Since this decay is similar to the B0

s → π+π− we will infer on both
in sec. 1.7.7. Here we anticipate that this decay has not yet been observed and the experimental upper
limits at 90% CL are reported in tab. 1.1.

1.7.5 B0
s → K−π+

The B0
s → K−π+ decay, which is the U-spin partner of the B0 → K+π− decay, has been indicated

by several authors as a source of rich opportunities of investigation.

In 2000 Gronau and Rosner proposed an SU(3)-based strategy to measure the CKM phase γ

[73, 74] with the help of the B0
s → K−π+ mode. Experimentally, their proposal is accessible since

it involves only time-integrated measurements of partial rates of untagged B0
(s) and B+ decays into

kaons and pions. But, from the theoretical stand-point, it needs some unknown corrections, due to
rescattering effects and PC

EW contributions. Gronau and Rosner indicated the B0
s → K−π+ mode as

the key to reduce one of the major sources of theoretical uncertainty, i. e., the parameter associated
to the ratio between tree and penguin amplitudes (P/T) [74]. Using the spectator-U-spin symmetry,
which transforms the U-spin partners decays B0

s → K−π+ and B0 → K+π− into another pair of
U-spin partners, B0

s → K+K− and B0 → π+π−, the authors devise a method to precisely measure
P/T, provided separate measurement of B0

s → K−π+ and B
0

s → K+π− decay rates are made.

The B0
s → K−π+ is still unobserved. The expectations for its branching fraction and direct CP

asymmetry are reported in tab. 1.2. Regarding the decay rate the different theoretical approaches are
in agreement within the large uncertainties associated. Only the SCET gives a lower central value
more in agreement with the current experimental upper limit B(B0

s → K−π+) < 5.6×10−6 @ 90% CL
[1] from CDF. Also the expectations for the direct CP asymmetry varies in a large range as a function
of the approach used and also in this case the theoretical uncertainties are very large. Without entering
the details of the calculations details we note that they depend on several hadronic parameters and
on the element of UT like α and γ.

In this context the measurement of the decay rate of the B0
s → K−π+ decay and the measurement

of its direct CP asymmetry becomes crucial. It is important to note that the CP asymmetry of this
mode may be large, so it may be the second mode after the B0 → K+π− where it is possible observe
direct CP violation effects in the B-mesons system. In 2005 in Ref. [8] Lipkin, inspired by an earlier
work of Gronau [7] in 2000, pointed out an interesting model independent relation between the direct
CP asymmetry of the B0

s → K−π+ and that one of the B0 → K+π− decay, which may verify is the
ACP(B0 → K+π−) is described by the Standard Model or is due to New Physics effects.

The observation of a O(10%) direct CP violation in the B0 → K+π− decay [11] is not supported
by an expected similar effect in the B+ → K+π0 decay, which differs only by the spectator quark
(see sec. 1.7.3). This raised interpretations about this disagreement being a possible indication of
New Physics (see section sec. 1.7.3). Lipkin suggests that partial decay-rates in B0

s → K−π+ pro-
vide a stringent test that necessarily confirms or rules out the presence of New Physics involved in
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B0 → K+π− amplitudes. This approach exploits an accidental cancellation between CKM factors
involved in B0 → K+π− and B0

s → K−π+ decays, which yields equal expected direct CP asymme-
tries in these decays. In fact, penguin (tree) amplitudes dominate the B0 → K+π− (B0

s → K−π+)
process; in the B0

s decay, the penguin amplitude is suppressed, with respect to its B0 counterpart, by
exactly the same factor that enhances the amplitude of the interfering tree amplitude. This accidental
correspondence is valid only within the framework of the Standard Model, thereby any significant
disagreement between the measured partial rate asymmetries of strange and non-strange b-meson Kπ
decays is strong convincing indication of New Physics.

Gronau and Lipkin predict that:

|A(B0
s → K−π+)|2 − |A(B

0

s → K+π−)|2 = |A(B
0 → K−π+)|2 − |A(B0 → K+π−)|2 (1.121)

where A is the decay amplitude. In terms of decay width the relation (1.121) becomes:

Γ(B0
s → K−π+)− Γ(B

0

s → K+π−) = Γ(B
0 → K−π+)− Γ(B0 → K+π−). (1.122)

All these transitions involve the product of a pion form factor and a kaon form factor. These form
factors are all equal in the U-spin symmetry limit and differences arising from symmetry breaking have
been analyzed [7]. The tree-penguin interference term relevant to direct CP violation is proportional
to the product of four form factors, one of which is a point-like form factor of the meson created from
a qq̄ pair produced at the weak vertex of the tree diagram and the other three are hadronic. The
dominant symmetry-breaking in these products between Bd and Bs decays is in the difference between
the products of a point-like kaon and a hadronic pion form factor for Bd decay and of a point-like
pion and a hadronic kaon form factor for Bs decay. This symmetry-breaking was neglected here, but
note that the error introduced is expected to be real and not change the relative phase of diagrams
which is crucial for CP violation. The error can also be estimated from simple models or determined
from other experiments[7]. Since the individual tree and penguin contributions to U-spin conjugate
Bd and Bs decays are very different and their branching ratios and lifetimes are different, the equality
of eq. (1.121) does not apply to the expressions ACP commonly used to express CP violation. Instead
we have

ACP(B0
s → K−π+) = −ACP(B0 → K+π−)× B(B0 → K+π−)

B(B0
s → K−π+)

× τ(B0
s )

τ(B0)
(1.123)

where B denotes branching ratio and τ denotes lifetime.

The relevance of this test resides in its nearly complete independence of models. No flavor symme-
try are required, but only charge-conjugation invariance for all final state rescattering. In addition,
the large asymmetries expected in the B0

s → K−π+ decay make this test relatively easy, from an
experimental point of view, once B0

s → K−π+ decays will be observed.

All these observables can be measured simultaneously by hadronic machine experiment, with no
external experimental information, so this makes it the best place to explore the origin of direct CP
violation.

1.7.6 B0
s → K+K−

The B0
s → K+K− decay is a b̄ → s̄ transition, and it involves tree and penguin amplitudes, as the

B0 → π+π− decay mode [5]. However, because of the different CKM structure, the latter topologies
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QCDF SCET pQCD
B(B0 → π+π−) 8.9+4.0+3.6+0.6+1.2

−3.4−3.0−1.0−0.8 5.4± 1.3± 1.4± 0.4 6.5+6.7
−3.8

B(B0 → K+π−) 16.3+2.6+9.6+1.4+11.4
−2.3−6.5−1.4−4.8 20.1± 7.4± 1.3± 0.6 20.4+16.1

−8.4

B(B0 → K+K−) 0.013+0.005+0.008+0.000+0.087
−0.005−0.005−0.000−0.011 — —

ACP(B0 → K+π−) +4.5+1.1+2.2+0.5+8.7
−1.1−2.5−0.6−9.5 −0.06± 0.05± 0.06± 0.02 −0.10+0.7

−0.8

B(B0
s → π+π−) 0.024+0.003+0.025+0.000+0.163

−0.003−0.012−0.000−0.021 — 0.57+0.16+0.09+0.01
−0.13−0.10−0.00

B(B0
s → K−π+) 10.2+4.5+3.8+0.7+0.8

−3.9−3.2−1.2−0.7 4.9± 1.2± 1.3± 0.3 7.6+3.2+0.7+0.5
−2.3−0.7−0.5

B(B0
s → K+K−) 22.7+3.5+12.7+2.0+24.1

−3.2− 8.4−2.0− 9.1 18.2± 6.7± 1.1± 0.5 13.6+4.2+7.5+0.7
−3.2−4.1−0.2

ACP(B0
s → K−π+) −6.7+2.2+2.9+0.4+15.2

−2.1−3.1−0.2−15.5 +20± 17± 19± 5 +24.1+3.6+3.0+1.2
−3.9−3.3−2.3

Table 1.2: The CP-averaged branching ratios (×10−6) of B0
(s) → h+h

′− decays and the direct CP
asymmetry (in %) of the B0 → K+π− and B0

s → K−π+ decays obtained from QCDF [15], pQCD
[16, 71], SCET [17] approach. The errors for these entries correspond to the uncertainties in the input
hadronic quantities, from the scale-dependence, and the CKM matrix elements, respectively.

play actually the dominant rôle in the B0
s → K+K− channel. In analogy to eq. (1.104), we may write

A(B0
s → K+K−) =

√
ε C′
[
eiγ +

1
ε
d′eiθ

′
]
, (1.124)

where ε was introduced in eq. (1.116), and the CP-conserving hadronic parameters C′ and d′eiθ
′

correspond to C and deiθ, respectively. The corresponding observables take then the following generic
form:

Adir
CP(Bs → K+K−) = G′1(d

′, θ′; γ) (1.125)

Amix
CP (Bs → K+K−) = G′2(d

′, θ′; γ, φs), (1.126)

in analogy to the expressions for the CP-violating B0 → π+π− asymmetries in eq. (1.109) and
eq. (1.110). Since φd = 2β is already well measured and φs is negligibly small in the Standard
Model – or can be determined through B0

s → J/ψφ should CP-violating New Physics contributions
to B0

s–B̄
0
s mixing make it sizeable – we may convert the measured values of Adir

CP(Bd → π+π−),
Amix

CP (Bd → π+π−) and Adir
CP(Bs → K+K−), Amix

CP (Bs → K+K−) into theoretically clean contours in
the γ–d and γ–d′ planes, respectively.

The B0 → π+π− decay is actually related to B0
s → K+K− through the interchange of all down

and strange quarks. Consequently, each decay topology contributing to B0 → π+π− has a counterpart
in B0

s → K+K−, and the corresponding hadronic parameters can be related to each other with the
help of the U -spin flavour symmetry of strong interactions, implying the following relations [5]:

d′ = d, θ′ = θ. (1.127)

Applying the former, we may extract γ and d through the intersections of the theoretically clean γ–d
and γ–d′ contours. As discussed in Ref. [5], it is also possible to resolve the twofold ambiguity for
(γ, d), thereby leaving us with the solution of γ. Moreover, we may determine θ and θ′, which allow
an interesting internal consistency check of the second U -spin relation in eq. (1.127). An alternative
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avenue is provided if we eliminate d and d′ through the CP-violating Bd → π+π− and Bs → K+K−

observables, respectively, and extract then these parameters and γ through the U -spin relation θ′ = θ.

This strategy is very promising for the hadronic machines experiments, where it is possible to
access simultaneously the B0 → π+π− and B0

s → K+K− observables. As far as possible U -spin-
breaking corrections to d′ = d are concerned, they enter the determination of γ through a relative
shift of the γ–d and γ–d′ contours; their impact on the extracted value of γ therefore depends on
the form of these curves, which is fixed through the measured observables. The extracted value of γ
would be very stable under such effects. Let us also note that the U -spin relations in eq. (1.127) are
particularly robust since they involve only ratios of hadronic amplitudes, where all SU(3)-breaking
decay constants and form factors cancel in factorization and also chirally enhanced terms would not
lead to U -spin-breaking corrections [5]. On the other hand, the ratio |C′/C|, which equals 1 in the
strict U -spin limit and enters the U -spin relation

Amix
CP (Bs → K+K−)
Adir

CP(Bd → π+π−)
= −
∣∣∣∣C′C
∣∣∣∣2
[ B(Bd → π+π−)
B(Bs → K+K−)

]
τBs

τBd

, (1.128)

is affected by U -spin-breaking effects within factorization. An estimate of the corresponding form
factors was performed in Ref. [59] with the help of QCD sum rules |C′/C| = 1.76+0.15

−0.17 , which is an
important ingredient for a Standard Model prediction of the CP-averaged B0

s → K+K− branching
ratio [18]. Following these lines, the prediction

B(Bs → K+K−) = (35± 7)× 10−6 (1.129)

was obtained in Refs. [18, 75] from the CP-averaged B0 → K+π− branching ratio. This prediction
has to be compared with the current experimental measurement from CDF [1]:

B(B0
s → K+K−) = (33± 5.7± 6.7)× 10−6, (1.130)

and the other theoretical expectations reported in tab. 1.2.

Descotes-Genon, Matias, and Virto recently proposed a new approach to the calculation of B(B0
s →

K+K−) that complements the benefits of the QCD factorization expansion (QCDF) with those of the
SU(3) symmetry relations to control the 1/mb corrections [76]. The measured rate of the B0 → K0K̄0

process [77] is connected to the B0
s → K+K− rate, using a combination of U-spin and isospin argu-

ments and fully evaluating SU(3) breaking within QCDF. The resulting prediction for the branching
fraction is B(B0

s → K+K−) = (20 ± 9) × 10−6 within the Standard Model. The uncertainty of this
method is dominated by the experimental uncertainty on B(B0 → K0K̄0), which is expected to be
further reduced with future measurements from the B-Factories.

The experimental accuracy is still too poor for a statistically significant discrimination between
the hypotheses of large U-spin violation or exact U-spin validity. However, the current B0

s → K+K−

decay rate exceeds the predictions of Khodjamirian et al., suggesting large U-spin breaking in this
process. A more precise measurement of this branching fraction becomes crucial to shed light on the
size of U -spin-breaking.

The B0
s → K+K− mode is also a golden mode to extract ΔΓs. In the Standard Model the

B0
s → K+K− channel is predicted to be a 95% CP even decay [68, 52], this means that the mea-

surement of the B0
s → K+K− lifetime provides in a very straightforward way the lifetime of the
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light mass eigenstate cτ(B0
s → K+K−) = 1/Γ(s)

L . By the comparison of this measurement with
other independent measurements (for example Γ(s)

H and Γ(s)
L from angular analysis of B0

s → J/ψφ

mode) and the theoretical expectations [52] it is possible check the Standard Model predictions and
to probe New Physics. A preliminary measurement of the lifetime of B0

s → K+K− mode was already
performed by CDF [78]:

τL = 1.53± 0.18± 0.02 ps, (1.131)

which, combined with the world average flavor-specific B0
s meson lifetime [48], yielded the following

measurement of the width-difference in the B0
s -system for CP-eigenstates:

ΔΓCP
(s)

ΓCP
(s)

= −0.08± 0.23± 0.03. (1.132)

This measurement is still limited by statistical uncertainty therefore a more precise estimate of this
parameter is desirable to probe inside this field.

1.7.7 B0
s → π+π−

Amplitudes of penguin-annihilation and exchange diagrams, in which all initial-state quarks undergo a
transition, are difficult to predict with current phenomenological models. Their contribution needs to
be neglected, for instance, when assuming spectator-U-spin relations (e. g., B0 → K+π− ←→ B0

s →
K−π+). And QCDF predictions are also affected by extremely large uncertainties due to the empirical
corrections necessary to control soft end-point divergences. But, in general, PA and E topologies may
carry different CP-violating and CP-conserving phases with respect to the leading processes, thereby
influencing the determination of CKM-related parameters from widely-used decays as B0 → π+π−.

In the Standard Model, the decays B0 → K+K− and B0
s → π+π− proceed only through PA and

E diagrams. A measurement of their decay rates (or improved constraints on them) would thereby
provide valuable estimates of the magnitude of PA and E contributions. Theoretical predictions
estimate the branching fractions of B0 → K+K− and B0

s → π+π− modes in the 10−7–10−8 range
are reported in [79, 80, 81] and in tab. 1.2. While the B0 → K+K− mode is reconstructible also
at the B-Factories, currently only CDF has access to the B0

s → π+π− decay mode. This is a big
opportunity for hadronic machines since only a simultaneously measurement of strength of both
processes allows to extract the hadronic parameters entering in this diagrams [18]. The current upper
limit from CDF [1] are: B(B0 → K+K−) < 1.8 × 10−6 @ 90% CL reported also in tab. 1.2, and
B(B0

s → π+π−) < 1.7× 10−6 @ 90% CL. Additional experimental information on their magnitude is,
therefore, particularly desirable.
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Chapter 2

The experimental apparatus

This chapter briefly describes the Tevatron collider accelerator and the CDF II detector, focusing on
the subsystems most important for b-physics such as the tracking system. For an exhaustive description
of the experimental apparatus, refer to Ref. [83].

2.1 The Tevatron collider

The Fermilab Tevatron collider is the last and highest energy accelerating stage located at Fermi Na-
tional Accelerator Laboratory (a.k.a FNAL or Fermilab), about 50 km West from Chicago (IL) in the
US. The Tevatron is a circular proton synchrotron 1 km in radius. While operating in collider mode,
it collides bunches of protons circulating clockwise against antiprotons accelerated counter-clockwise,
both at energies of 980 GeV. The energy available in the centre-of-mass after the collision is thus√
s =1.96 TeV, currently the highest in the world.

The Tevatron produced its first pp̄ collisions in 1985 and since then has undergone extensive upgrades
and improvements. The performance of the Tevatron collider is evaluated in terms of two key pa-
rameters: the available center-of-mass energy,

√
s, and the instantaneous luminosity, L. The former

defines the accessible phase-space for the production of resonances in the final states. The latter is
the coefficient of proportionality between the rate of a given process and its cross-section σ:

rate [events s−1] = L [cm−2s−1] × σ [cm2].

The time-integral of the luminosity (integrated luminosity) is therefore a measure of the expected
number of events, n, produced in a finite time T :

n(T ) =
∫ T

0

Lσdt. (2.1)

Assuming an ideal head-on pp̄ collision with no crossing angle between the beams, the instantaneous
luminosity is defined as

L = 10−5 NpNp̄Bfβγ

2πβ∗
√

(εp + εp̄)x(εp + εp̄)y
H(σz/β∗) [1030cm−2s−1]. (2.2)

37
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L depends on the following Tevatron parameters: the number of circulating bunches in the ring (B =
36), the revolution frequency (f = 47.713 kHz), the Lorentz relativistic factor (boost, βγ = 1045.8
at 980 GeV), the average numbers of protons (Np ≈ 250 × 109) and antiprotons (Np̄ ≈ 25 × 109)
in a bunch, an empiric “hourglass” factor (H = 0.6–0.7), which is a function of the ratio between
the longitudinal r.m.s. width of the bunch (σz ≈ 60 cm) and the “beta function” calculated at the
interaction point (β∗ ≈ 31 cm), and the 95% normalized emittances of the beams (εp ≈ 18π mm mrad
and εp̄ ≈ 13π mm mrad after injection).1

At the Tevatron the limiting factor of the luminosity is the availability of antiprotons because it
is difficult to produce and to compact them into bunches and to transfer them efficiently through
the subsequent accelerator stages. The Tevatron provides beams for experiments in different modes
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Figure 2.1: Illustration of the Fermilab Tevatron collider.

(fixed-target, collider, etc.). For the purpose of the present analysis, we will describe the proce-
dure for obtaining a continuous period of collider operation using the same collection of protons and
antiprotons, called a store. Further details can be found in Ref. [84].

1The hourglass factor is a parameterization of the longitudinal profile of the beams in the collision region, which

assumes the shape of an horizontal hourglass centered in the interaction region. The beta function is a parameter

convenient for solving the equation of motion of a particle through an arbitrary beam transport system. The emittance

ε measures the phase-space occupied by the particles of the beam. Three independent two-dimensional emittances are

defined. The quantity
√

βε is proportional to the r.m.s. width of the beam in the corresponding phase plane. On-

line measurements of the transverse emittances are performed at the Tevatron with various methods, including flying

through the beam a 7 μm wire and by measuring the cascade of losses, which is proportional to the beam intensity, or

detecting the synchrotron light radiated by the particles at the edge of a dipole magnet.



2.1 The Tevatron collider 39

Store Number

 T
o

ta
l 

L
u

m
in

o
si

ty
 (

p
b

-1
)

0

500

1000

1500

2000

2500

3000

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

1 4 7 10 1 4 7 101 4 7 1 4 7101 7 10
2002 2003 2004 2005 2006 2007Year

Month

Delivered
To tape

(a)

Store Number

 I
n

it
ia

l 
L

u
m

in
o

si
ty

 (
E

3
0

)

0

50

100

150

200

250

300

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

1 4 7 10 1 4 7 101 4 7 1 4 7101 7 10
2002 2003 2004 2005 2006 2007Year

Month

(b)

Figure 2.2: Integrated luminosity as a function of the time (or store number) (a). Initial luminosity
as a function of the time (or store number) (b).

2.1.1 Proton beam

H− ions are produced by ionization of gaseous hydrogen and boosted to 750 keV by a commercial
Cockroft-Walton accelerator. Then they are injected in a 150 m long linear accelerator Linac which
increases their energy to 400 MeV. A carbon foil is used to strip the electrons from the H− before the
resulting protons are injected to the Booster. The Booster (see fig. 2.1) is a rapid cycling synchrotron
(radius of 75.5 m) that accelerates the protons up to 8 GeV and compacts them into bunches. The
protons are then transfered to a synchrotron, called the Main Injector, which brings their energy to
150 GeV: this is the beginning of the process of final injection into the Tevatron called ’shot’. Inside
the Main Injector several bunches are coalesced into one for Tevatron injection. The last stage of the
process is the transfer to the Tevatron, a synchrotron which employs superconducting Nb-Ti alloy
filaments embedded in copper as magnet coils. The magnetic field of 5.7 T keeps the protons on an
approximately circular orbit while they reach the final energy of 980 GeV.

2.1.2 Antiproton beam

While the energy of the protons bunches circulating in the Main Injector reaches 120 GeV, they are
slammed to a rotating 7 cm thick nickel or copper target. Spatially wide-spread antiprotons are
produced and focused into a beam via a cylindrical lithium lens which separates p̄ from other charged
interaction products. The emerging antiprotons have a bunch structure similar to that of the incident
protons and are stored in a Debuncher. It is a storage ring where the momentum spread of the p̄ is
reduced while maintaining a constant energy of 8 GeV, via stochastic cooling stations. Many cycles
of Debuncher cause the destruction of the bunch structure which results in a continuous beam of
antiprotons. At the end of the process the monochromatic antiprotons are stored in the Accumulator
(see fig. 2.1) which is a triangle-shaped storage ring where they are further cooled and stored until
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the cycles of the Debuncher are completed. When a current sufficient to create 36 bunches with the
required density is available, the p̄ are injected into the Main Injector. Here their energy is raised to
150 GeV and they are transferred to the Tevatron where 36 bunches of protons are already circulating
in opposite direction.

2.1.3 The collision

When 36 bunches of both protons and antiprotons are circulating in the Tevatron, the energy of the
machine is increased in about 10 seconds from 150 to 980 GeV and the collisions begin at the two
interaction points: DØ (where the homonym detector is located) and BØ (home of CDF II). Special
quadrupole magnets (low-β squeezers) located at both extremities of the detectors along the beam
pipe “squeeze” the beam to maximize luminosity inside the detectors. A roughly Gaussian distribu-
tion of the interaction region along the beam axis is achieved (σz ≈ 28 cm) and its center is shifted on
the nominal interaction point by the fine tuning of squeezers. The transverse shape of the interaction
region has an almost circular spatial distribution with a diameter of σT ≈ 30 μm. Luminosity lifetime
is increased by using electrostatic separators which separate transversely the proton and antiproton
bunches except at the collision regions. Then the ’scraping’ takes place, a procedure which shapes the
beam transverse profile to its optimized configuration, in order to avoid detector damages due to the
tails of the p(p̄) distributions entering the active volumes. The scraping is done by moving iron plates
which act as collimators in the transverse plane toward the beam and sweep away the transverse beam
halo. When the beam profile is narrow enough and the conditions are safely stable the detectors are
powered and the data taking starts. This is the end of the injection procedure called ’shot’.
The inter-bunch crossing is 396 ns and this defines an overall time constant which influences the
whole detector design: on this parameter depends the choice of the active parts, the design of the
readout electronics, the structure of the trigger etc.. The number of overlapping interactions N for
each bunch crossing is a Poisson-distributed variable dependent on the instantaneous luminosity and
on the number of colliding bunches. At Tevatron peak luminosities of L ≈ 10 × 1031 cm−2s−1 N̄ is
approximately 2.
Each time that at least one of the CDF II triggers fires, an event is labeled with an increasing num-
ber. Events are grouped into ’runs’ ; a run is a period of continuous2 operation of the CDF II Data
Acquisition. Most parameter of the CDF II operations (e. g., the position of the beam) are stored in
the database on a run-averaged format.
While collisions are taking place the luminosity decreases exponentially3 because of the beam-gas and
beam-halo interactions. In the meantime, antiproton production and storage continues. When the an-
tiproton stack is sufficiently large (� 1012 antiprotons) and the circulating beams are degraded (∼ 14
hours) the detector high-voltages are switched off and the store is dumped. The beam is extracted
via a switch-yard and sent to an absorption zone. Beam abortion can occur also accidentally when
the temperature of a superconducting magnet shift above the critical value and the magnet quenches
destroying the orbit of the beams. The typical time between the end of a store and the beginning of
collisions of the next one is typically 2 hr. During this time CDF II usually performs calibrations of

2Many different cases can require the DAQ to be stopped and restarted including the need to enable or disable a

subdetector, a change in the trigger Table, a problem in the trigger/DAQ chain etc..
3The decrease is about a factor of 2.5-5 for a store (∼ 10-20 hrs), depending from the initial luminosity also.
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the sub-detectors and test runs with cosmics.

2.1.4 Tevatron Status

The stated goal of Tevatron Run II was (1996) the accumulation of 2 fb−1 at
√
s = 2 TeV with

instantaneous luminosity peaks up to 2 × 1032 cm−2s−1. The current performance is well beyond
these expectations. The centre-of-mass energy is 1.96 TeV, the peak luminosity exceeds regularly
2× 1032 cm−2s−1 (with a record of 2.85× 1032 cm−2s−1, 18 February 2007) and the crossing time is
equal to 396 ns. From February 2002 to March 2006, ≈ 1.2 fb−1 were recorded on tape but the most
stringent data quality requirements shrank the sample to 1 fb−1 to be used for this analysis. Tevatron
delivered until today about ≈ 3 fb−1 (on tape ≈ 2.5 fb−1 ).

2.2 The CDF II detector

The CDF II detector is a large multi-purpose solenoidal magnetic spectrometer surrounded by 4π fast,
projective calorimeters and fine-grained muon detectors. It is installed at the BØ interaction point of
the Tevatron (see fig. 2.1) to determine energy, momentum and, whenever possible, the identity of a
broad range of particles produced in 1.96 TeV pp̄ collisions. Several upgrades modified the design of
the original facility commissioned in 1985.4 The most extensive upgrade started in 1995 and led to
the current detector whose operation is generally referred to as Run II.

2.2.1 Coordinates and notation

CDF II employs a right-handed Cartesian coordinates system with the origin in the B0 interaction
point, assumed coincident with the center of the drift chamber. The positive z-axis lies along the nom-
inal beam-line pointing toward the proton direction (east). The (x, y) plane is therefore perpendicular
to either beams, with positive y-axis pointing vertically upward and positive x-axis in the horizontal
plane of the Tevatron, pointing radially outward with respect to the center of the ring.

Since the colliding beams of the Tevatron are unpolarized, the resulting physical observations are
invariant under rotations around the beam line axis. Thus, a cylindrical (r, φ, z) coordinates system is
particularly convenient to describe the detector geometry. Throughout this thesis, longitudinal means
parallel to the proton beam direction (i.e., to the z-axis), and transverse means perpendicular to the
proton direction, i.e., in the (x, y) ≡ (r, φ) plane.

Since the protons and antiprotons are composite particles, the actual interaction occurs between
individuals partons (valence or sea quarks and gluons) contained within them. Each parton carries
a varying fraction of the (anti)proton momentum, not known on a event-by-event basis. As a con-
sequence of the possible imbalance in the longitudinal components of the momenta of interacting
partons, possible large velocities along ẑ for the center-of-mass of the parton-level interaction may
occur. In the hadron collisions environment, it is customary to use a variable invariant under ẑ boosts

4Originally, the CDF acronym was meant for Collider Detector Facility.



42 Chapter 2. The experimental apparatus

Figure 2.3: Elevation view of one half of the CDF II detector.

as an unit of relativistic phase-space, instead of the polar angle θ. This variable is the rapidity defined
as

Y =
1
2
ln
[
E + pcos(θ)
E− pcos(θ)

]
, (2.3)

where (E, �p) is the energy-momentum four-vector of the particle. Under a ẑ boost to an inertial frame
with velocity β, the rapidity of a particle transforms linearly, according to Y → Y ′ ≡ Y + tanh−1(β),
therefore Y is invariant since dY ≡ dY ′. However, a measurement of rapidity still requires a detector
with accurate identification capabilities because of the mass term entering E. Thus, for practical
reasons, it is often preferred to substitute Y with its approximate expression η in the ultra-relativistic
limit (p >> m), usually valid for products of high-energy collisions:

Y → η +O(m2/p2), (2.4)

where the pseudo-rapidity η ≡ −ln[tan(θ/2)] is only function of the momenta. As the event-by-event
longitudinal position of the actual interaction is distributed around the nominal interaction point with
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30 cm r.m.s width, it is useful to distinguish the detector pseudo-rapidity, ηdet, measured with respect
to the (0,0,0) nominal interaction point, from the particle pseudo-rapidity, η, measured with respect
to the z0 position of the real vertex where the particle originated5.

Other convenient variables are the transverse component of the momentum with respect to the
beam axis (pT), the “transverse energy” (ET), and the approximately Lorentz-invariant angular dis-
tance ΔR, defined as

�pT ≡ (px, py)→ pT ≡ p sin(θ), ET ≡ E sin(θ), and ΔR ≡
√
η2 + φ2. (2.5)

2.2.2 Overview

CDF II is designed for measurements of a broad range of final states in pp̄ collisions at high energy.
A comprehensive description of the CDF II detector and its subsystems is given in Ref. [83].
CDF II (see fig. 2.3) is a three-story, 5000-ton approximately cylindric assembly of sub-detectors, ∼ 15
m in length, ∼ 15 m in diameter. The flow of final state particles in energetic hadronic collisions is well
described by quantities of (pseudo)rapidity, transverse component of the momentum with respect to
the beam axis and azimuthal angle around this axis. Consequently CDF II detector was designed and
constructed with an approximately cylindrically symmetric layout both in the azimuthal plane and in
the “forward” (z > 0) - “backward” (z < 0) directions with spatial segmentation of its subcomponents
roughly uniform in pseudorapidity and azimuth.
CDF II is composed of several specialized sub-systems each one designed to perform a different task.
Its capabilities include high resolution charged particle tracking, electron and muon identification, low
momentum π/K separation, precise secondary vertices proper time measurements, finely segmented
sampling of energy flow coming from final state hadrons, electrons or photons, identification of ν’s via
transverse energy imbalance.
A 1.4116 T solenoidal magnetic field is maintained in the region r < 150 cm |z| < 250 cm by
circulating a 4650 A current through 1164 turns of a Nb-Ti/Cu superconducting coil. The field is
oriented along the positive ẑ direction and is uniform at the 0.1% level in the |z| < 150 cm volume
where tracking measurements are made (see fig. 2.4). The tiny non-uniformities, mapped out during
detector construction, are treated as a small perturbation within the track fitting software. The field
is continuously monitored via NMR probes during data taking and any deviation from the mapped
values is applied as a correction to measured track momenta. The threshold to escape radially the
magnetic field for a particle is pT > 0.3 GeV/c while the trajectory of a pT = 30 GeV/c particle
deviates only 1.6 cm from a straight path of 150 cm. The solenoid is 4.8 m in length, 1.5 m in radius,
0.85 X0 in radial thickness6 and is cooled by forced flow of two-phase helium. Outside the coil the field
flux is returned through a steel yoke to avoid having the fields interfere with the proper operations of
the calorimeter’s PMTs.
The detector is divided conventionally into two main polar regions. In the following we shall refer to
the detector volume contained in the |ηdet| < 1 as the central region, while the forward region indicates
the detector volume comprised in 1 < |ηdet| < 3.6.

5An idea of the difference is given by considering that ηdet ≈ η ± 0.2 if the particle was produced a z = 60 cm from

the nominal interaction point
6This has to be intended for normally incident particles.
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2.2.3 Tracking system

Three-dimensional charged particle tracking is achieved through an integrated system consisting of
three silicon inner subdetectors and a large outer drift-chamber, all contained in a superconducting
solenoid. The 1.41 T magnetic field and the 130 cm total lever arm provide an excellent tracking
performance (see fig. 2.4).
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Figure 2.4: Elevation view of one quadrant of the inner portion of the CDF II detector showing the
tracking volume surrounded by the solenoid and the forward calorimeters.

In the central region (|ηdet| <∼ 1), 7 silicon samplings (one in the (r, φ) view plus six in the (r, φ, z)
view), and 96 chamber samplings (48 (r, φ) plus 48 (r, z)) are available between 1.6 and 132 cm. In
the forward and backward regions (1 <∼ |ηdet| <∼ 2), 8 silicon samplings (one in the (r, φ) view plus
seven in the (r, φ, z) view) are available between 1.6 and 29 cm, along with partial information from
the chamber.

The high number of samplings over the 88 cm lever arm of the chamber ensure precise determination
of curvature, azimuth, and pseudo-rapidity of the tracks in the central region. The chamber provides
also track seeds for pattern-recognition in silicon.

The core of the silicon detector is the Silicon VerteX detector (SVXII). It provides five three-
dimensional measurements that extend the lever arm by 41.5 cm toward the beam thus allowing
more precise determination of the trajectories and identification of decay-vertices displaced from the
beam-line. The SVXII has an outer and an inner extension.

The outer extension, i. e., the Intermediate Silicon Layers (ISL), provides a single (double) three-
dimensional silicon measurement in the central (forward-backward) region, at intermediate radial
distance from the chamber. The ISL allows efficient linking between tracks reconstructed in the
chamber and hits detected in the SVXII, and extends the track finding at pseudo-rapidities 1 <∼
|ηdet| <∼ 2, where the chamber coverage is marginal.

The inner extension, i. e., the Layer ØØ (LØØ), is a light-weight silicon layer placed on the
beam-pipe. It recovers the degradation in resolution of the reconstructed vertex position due to
multiple scattering on the SVXII read-out electronics and cooling system, installed within the tracking
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volume. The LØØis made of state-of-the-art radiation-tolerant sensors, and it will extend the lifetime
of the whole system when the effects of radiation damage will degrade the performance of the inner
SVXII layers. The integrated design of the tracking system allowed commonality of components
among subdetectors (read-out chip, support structures, etc.) thus simplifying the construction and
the operation.

The total amount of material in the silicon system, averaged over φ and z, varies roughly as 0.1X0
sin(θ)

in the |ηdet| <∼ 1 region, and roughly doubles in 1 <∼ |ηdet| <∼ 2 because of the presence of cables,
cooling bulk-heads, and portions of the support frame.7 The average amount of energy loss for a
charged particle is roughly 9 MeV. The total heat load of the silicon system is approximately 4 kW.
To prevent thermal expansion, relative detector motion, increased leakage-current, and chip failure due
to thermal heating, the silicon detectors and the associated front-end electronics are held at roughly
constant temperature ranging from −6◦C to −10◦C for LØØ and SVXII, and around 10◦C for ISL,
by an under-pressurized water and ethylene-glycol coolant flowing in aluminum pipes integrated in
the supporting structures.8

Layer ØØ (LØØ)

Layer ØØ (LØØ) is the innermost layer of the microvertex silicon detector [85]. It consists of one
layer of single sided AC-coupled silicon sensors which covers the beryllium beam pipe along 80 cm
longitudinally. The state-of-the-art 7.85 cm long silicon sensors of LØØ can be biased to very high
(O(500 V)) voltages allowing to maintain a good signal-to-noise ratio even after high integrated
radiation dose (O(5 MRad)). The radiation hardness of such sensors allowed their installation at radii
of 1.35 and 1.62 cm supported by a mechanical structure in direct contact with the beam pipe. The
LØØ strips are parallel to the beam axis allowing the first sampling of the track within the r − φ
plane, the inter-strip pitch is 25 μm but the read-out strip are alternated with floating ones resulting
in 50 μm of readout pitch.
The signals of the 13,824 channels are fed via special optical fiber cables to the front-end electronic
which is placed in a region separated from the sensors and less exposed to the radiation. The operation
temperature of this device is around 0oC maintained by a forced flux of under-pressurized9 gas through
tiny aluminum pipes installed in between the sensor and the beam-pipe. The cooling circuit increases
the total mass of the LØØ which is about 1%X0 where pass the cooling pipes and reduces to 0.6%X0

where only sensors contribute.

Silicon VerteX detector II (SVXII)

The Silicon VerteX detector II (SVXII) [86] is a fine resolution silicon microstrip vertex detector which
provides five 3D samplings of a track between 2.45 and 10.6 cm of radial distance from the beam (see
fig. 2.4). Its cylindrical geometry coaxial with the beam is segmented along z into three ’mechanical
barrels’ for a total length of 96 cm which provides complete geometrical coverage within |ηdet| < 2 (see

7The symbol X0 indicates the radiation length.
8The pressure of the cooling fluid is maintained under the atmospheric pressure to prevent leaks in case of damaged

cooling pipes.
9The pressure of the cooling fluid is maintained under the atmospheric pressure to avoid dangerous leaks of fluid in

case of damaged cooling pipe.
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fig. 2.5(a)). Each barrel consists of twelve azimuthal wedges each of which subtends approximately10

30o. One wedge of a given barrel comprises 5 concentric and equally spaced layers of silicon sensors
installed at radii 2.45 (3.0), 4.1 (4.6), 6.5 (7.0), 8.2 (8.7), and 10.1 (10.6) cm from the beam as shown
in (see fig. 2.5(b)).
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Figure 2.5: Schematic illustration of the three instrumented mechanical barrels of SVXII (a) and of
the cross-section of a SVXII barrel in the (r, φ) plane (b).

Sensors in a layer are arranged into independent readout units, called ’ladders’ (or electrical
barrels). The ladder components are two double sided rectangular 7.5 cm long sensors and the
hybrid which is a multilayer board where all the front end electronics, biasing circuits and fan-out are
allocated. The two silicon sensors, accurately aligned along their major axis, are glued end-to-end on
a carbon-fiber support, with wirebonds connections joining the strips on one sensor to the strips of
the next. It results in strips with an effective length of 15 cm in turn wirebonded to the front-end
electronics of the hybrid which is mounted at one end of the carbon fiber support. Two ladders are
longitudinally juxtaposed head-to-head within a barrel’s layer, in order to leave the two hybrids at
the two outside extremities of the barrel.
The active surface consists of double-sided, AC-coupled silicon sensors having microstrips implanted
on a 300 μm thick, high resistivity bulk. Bias is applied through integrated polysilicon resistors.
There are three different possible sort of strip orientations in each sensor’s side: r − φ (axial) strips
oriented parallel to the beam axis, small angle stereo (SAS) strips whose orientation is tilted by 1.2o

with respect to the beam axis and the 90o stereo strips which lie in the transverse plane. All the five
layers have axial strips on one side, three of the other sides have 90o stereo and two have SAS strips.
The charge pulse from each strip flows to a channel of SVX3D, the radiation-hard front-end chip
[87]. SVX3D operates readout in “sparse-mode” which means that only signals above a threshold
are processed. SVX3D samples the pedestal event-by-event and subtracts it from the signal. The
discriminated differential pulse from each one of the 405,504 channels is preamplified, ADC-converted
to a digital string and fed through neighbor-logic11 to the DAQ chain. The measured average signal-

10There is a small overlap between the edges of two adjacent wedges, which helps in wedge-to-wedge alignment.
11In presence of a channel over threshold also the signal of the neighbor channels is accepted allowing clustering of

the hits.
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to-noise ratio is S/N ≥ 10, with a single hit efficiency greater than 99%.
To prevent thermal expansion, relative detector motion, increased leakage current and chip failure
due to thermal heating the SVX II is held at roughly constant temperature of 10-15oC through the
operation of a water-glycol cooling system whose pipes run all below the detector. The average
material of SVX II corresponds to 5%X0.

Intermediate Silicon Layers (ISL)

The Intermediate Silicon Layer [88] detector is a silicon tracker placed at intermediate radial distance
between the SVXII and the drift chamber (see fig. 2.4). The polar coverage extends to |ηdet| < 2. In
the central region ISL consist of a single layer of silicon installed over a cylindrical barrel at radius of
22 cm. In the forward region, two layers of silicon are placed on concentric barrels at radii of 20 and
28 cm. Each silicon layer is azimuthally divided into a 30o wedge structure matching that of SVXII.
The basic readout unit is the ISL ladder which is similar to the SVXII ladder but consists of three,
instead of two, sensors wirebonded in series resulting in a total active length of 25 cm.
ISL employs 5.7× 7.5 cm2 double sided AC-coupled 300 μm thick sensors. Each sensor has axial strips
on one side and SAS strips on the other. As in SVXII, signals from the 303,104 channels are read by
SVX3D chips. Average mass of the detector is 2%X0 for normally incident particles.

Central Outer Tracker (COT)

The outermost tracking volume [89] of CDF II is a large open cell drift chamber called the Central
Outer Tracker (COT).
The COT has a coaxial bi-cylindrical geometry and extends, within the central region, from 44 to
132 cm radially from the beam axis. The chamber contains 96 radial layers of 0.40 μm diameter
gold-plated tungsten sense (anode) wires arranged into 8 “superlayers”. Each superlayer samples the
path of a charged particle at 12 radii (spaced 0.762 cm apart) where sense wires are strung. Four
superlayers have their constituent sense wires oriented parallel to the beam axis in order to measure
the hit coordinates in the r − φ plane. These are radially interleaved with four stereo superlayers
having wires canted at angles of either +3o or −3o with respect to the beamline. Combined readout
of stereo and axial superlayers allows the measurement of the r − z hit coordinates.
Each superlayer is azimuthally segmented into open drift cells. A drift cell, as shown in fig. 2.6,
contains a row of 12 sense wires alternating with thirteen 0.40 μm diameter gold-plated tungsten
potential wires which control the gain on the sense wires, optimizing the electric field intensity. The
cathode of the detection circuit is the field panel which closes the cell along the azimuthal direction. It
is made of gold on a 0.25 mm thick Mylar sheet and defines the fiducial volume of a cell. The electric
field strength is 2.5 kV/cm. Innermost and outermost radial extremities of a cell are closed both
mechanically and electrostatically by the shaper panels, which are Mylar strips carrying field-shaping
wires attached. The architecture of the cell allows the containment of a possible broken wire inside
only one cell and its dimensions bound to 0.9 cm the maximum drift distance.
Wire planes are not aligned with r̂. A 35o azimuthal tilt is provided in order to offset the Lorentz
angle of the drift paths which results from the combined effect of crossed electrical and magnetic field
and the characteristics of the gas mixture. Moreover the tilted-cell geometry helps in the drift-velocity
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Figure 2.6: A 1/6 section of the COT end-plate (a). For each super-layer is given the total number
of cells, the wire orientation (axial or stereo), and the average radius [cm]. The enlargement shows
in details the slot were wire planes (sense) and field sheet (field) are installed. Sketch of an axial
cross-section of three cells in super-layer 2, (b). The arrow shows the radial direction.

calibration as every high-pT (radial) track samples the full range of drift distances within each super-
layer. Further benefit of the tilt is that the left-right ambiguity12 is cleared-up for track coming from
the origin since the ghost track in each superlayer appears rotated of a large azimuthal angle becom-
ing unfittable by pattern recognition. The volume of the COT is filled with a Ar(50%)/Ethane(50%)

gas mixture. Drift electrons follow approximately azimuthal trajectories at speed v ≈ 100 μm/ns.
The resulting maximum drift time is about 100 ns, well smaller than the inter-bunch spacing 396 ns,
providing the read-out and processing of the COT data available for the Level 1 trigger.
The analog pulses from the 30,240 sense wires flow to preamplifiers where are amplified and shaped.
The discriminated differential output encodes charge information in its width to be used for dE/dx
measures and is fed to a TDC which records leading and trailing edge of the signals in 1 ns bins. COT
has 99% efficiency on tracks with measured single hit resolution σhit � 175 μm and pT resolution is
σpT/p

2
T � 0.13% GeV/c−1. The material of the COT is about 1.6% X0 for tracks at normal incidence.

2.2.4 Tracking performance

The only physics objects used in this analysis are the tracks. Within an uniform axial magnetic field
in vacuum, the trajectory of a charged particle produced with non-zero initial velocity in the bending
plane of the magnet is described by an helix. The arc of an helix described by a charged particle in the
magnetic volume of CDF is parameterized using three transverse, and two longitudinal parameters:

C – signed helix (half)-curvature, defined as C ≡ q
2R , where R is the radius of the helix. This is

directly related to the transverse momentum: pT = cB
2|C| ;

ϕ0 – φ direction of the particle at the point of closest approach to the z-axis;

12Each pulse on a given wire has a two fold ambiguity corresponding to the two incoming azimuthal drift trajectories.

The signals from a group of nearby radially wires will satisfy the configuration for two tracks, one from the actual

particle trajectory and another “ghost track” originated by the two fold ambiguity.
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d0 – signed impact parameter, i. e., the distance of closest approach to the z-axis, defined as d0 ≡
q(
√
x2
c + y2

c −R), where (xc, yc) are the coordinates of the center-guide;

λ – the helix pitch, i. e., cot(θ), where θ is the polar direction of the particle at the point of its
closest approach to the z-axis. This is directly related to the longitudinal component of the
momentum: pz = pT cot(θ);

z0 – the z coordinate of the point of closest approach to the z-axis.

The trajectory of a charged particle satisfies the following equations [90]:

x = r sin(ϕ)− (r + d0) sin(ϕ0) (2.6)

y = −r cos(ϕ) + (r + d0) cos(ϕ0) (2.7)

z = z0 + sλ, (2.8)

where s is the projected length along the track, r = 1/2C, and ϕ = 2Cs + ϕ0. The reconstruction
of a charged-particle trajectory consists of determining the above parameters through an helical fit
of a set of spatial measurements (“hits”) reconstructed in the tracking detectors by clustering and
pattern-recognition algorithms. The helical fit takes into account field non-uniformities and scattering
in the detector material.

For this analysis, only COT-seeded silicon tracks were used, because the pattern recognition al-
gorithms that use stand-alone silicon information would have given marginal contribution for two
reasons. First, the impact of silicon stand-alone tracking becomes important in the region 1 <∼ |η| <∼ 2
where the COT coverage is incomplete. This region of acceptance is already excluded in our analysis,
since the trigger that collects B0

(s) → h+h
′− events uses the COT information (see sec. 3.2). Secondly,

the algorithms for silicon stand-alone tracking were not yet optimized as of this analysis.

All tracks were first fit in the COT and then extrapolated inward to the silicon. This approach
guarantees fast and efficient tracking with high track purities. The greater radial distance of the COT
with respect to the silicon tracker results in a lower track density and consequent fewer accidental
combination of hits in the track reconstruction. A concise overview of the tracking algorithms is given
in the following, see Ref. [91] for more details.

COT performance

All the channels of the COT are properly working. Its efficiency for tracks is typically 99%. The
single-hit resolution is 140 μm, including a 75 μm contribution from the ≈ 0.5 ns uncertainty on
the measurement of the pp̄ interaction time. Internal alignments of the COT cells are maintained
within 10 μm using cosmic rays. Curvatures effects from gravitational and electrostatic sagging are
under control within 0.5% by equalizing the difference of E/p between electrons and positrons as a
function of cot(θ). The typical resolutions on track parameters are: σpT/p

2
T ≈ 0.0015 (GeV/c)−1,

σϕ0 ≈ 0.035◦, σd0 ≈ 250 μm, σθ ≈ 0.17◦, and σz0 ≈ 0.3 cm for tracks fit with no silicon information
or beam constraint.
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Performance of the silicon detectors

The silicon information improves the impact parameter resolution of tracks which, depending on the
number (and radial distance) of the silicon hits, may reach σd0 ≈ 20 μm (not including the transverse
beam size). This value, combined with the σT ≈ 30 μm transverse beam size, is sufficiently small
with respect to the typical transverse decay-lengths of heavy flavors (a few hundred microns) to allow
separation of their decay-vertices from production vertices. The silicon tracker improves also the stereo
resolutions up to σθ ≈ 0.06◦, and σz0 ≈ 70 μm, while the transverse momentum and the azimuthal
resolutions remain approximately the same of COT-only tracks.

2.3 Other CDF II subdetectors

In this section the subdetectors not used in this analysis are briefly discussed.

2.3.1 Time of Flight detector

The Time of Flight detector (TOF) is a cylindrical array made of 216 scintillating bars [92] and it
is located between the external surface of the COT and the cryostat containing the superconducting
solenoid. Bars are 280 cm long and oriented along the beam axis all around the inner cryostat surface
at an average radial distance of 138 cm. Both longitudinal sides of the bars collect the light pulse
into PMT and measure accurately the timing of the two pulses. The time between the bunch crossing
and the scintillation signal in these bars defines the β of the charged particle while the momentum is
provided by the tracking. PID information is available through the combination of TOF information
and tracking measurements. The measured mean time resolution is now 110 ps. This guarantees a
separation between charged pions and kaons with pT

<∼ 1.6 GeV/c equivalent to 2σ, assuming Gaussian
distributions. Unfortunately, in high (L � 5 × 1031 cm−2s−1) luminosity conditions, the occupancy
of the single bars determines a degradation in efficiency, which is about 60% per track.

2.3.2 Calorimeters

Outside the solenoid, scintillator-based calorimetry covers the region ηdet ≤ 3.6, and is devoted to
the measurement of the net energy deposition of photons, electrons and hadrons using the shower
sampling technique.
The basic structure consists of alternating layers of passive absorber and plastic scintillator. Neutral
particles and charged particles with a transverse momentum greater than about 350 MeV/c are likely
to escape the solenoid’s magnetic field and penetrate into the CDF II calorimeters. Here particles
undergo energy loss, striking the absorber material, and produce daughter particles which also interact
in a cascade process, giving rise to a shower of particles. Showers propagate through many layers
of absorber before they exhaust their energy generating a detectable signal, roughly proportional to
the number of particles in the shower, within the active scintillator layers. The sum of the signals
collected by all the sampling active layers is proportional to the energy of the incident particle.
The CDF II calorimeters are finely segmented in solid angle around the nominal collision point,
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and coarsely segmented radially outward from the collision point (in-depth segmentation.) Angular
segmentation is organized in projective towers. Each tower has a truncated-pyramidal architecture
having the imaginary vertex pointing to the nominal interaction point and the base is a rectangular
cell in the (ηdet, φ) space. Radial segmentation of each tower instead consists of two compartments,
the inner (closer to the beam) devoted to the measure of the electromagnetic component of the shower,
and the outer devoted to the measure of the hadronic fraction of energy. These two compartments
are read independently through separated electronics channels.
A different fraction of energy release in the two compartments distinguishes photons and electrons
from hadronic particles. CDF II calorimetry is divided in several independent subsystems presented
in the following subsections.

Central region: CEM, CHA, WHA

The radial extension of the calorimeters in the central region is 1.73 m < r < 3.5 m. The Central
ElectroMagnetic calorimeter (CEM) [93] is constructed as four azimuthal arches (NE, NW, SE, SW)
each of which subtends 180o and is divided into twelve 15o wedges. A wedge consists of 31 layers
of 5 mm thick polystyrene scintillator interleaved with 30 aluminum-clad lead 3.2 mm thick sheets,
divided along ηdet into ten towers (Δηdet ≈ 0.11 per tower). To maintain a constant thickness in
X0, compensating the sin(θ) variation between towers, some lead layers are replaced with increasing
amounts of acrylic as a function of ηdet

13. Light from each tower is collected by sheets of acrylic
wavelength shifter at both azimuthal tower boundaries and guided to two phototubes per tower. The
spatial resolution of the CEM is about 2 mm. The outer two towers in one wedge (known as chimney
towers) are missing to allow solenoid access, for a resulting total number of 478 instrumented towers.
At a radial depth of 5.9X0, which is approximately the depth corresponding to the peak of shower de-
velopment, the CEntral Strip multi-wire proportional chambers (CES) measure the transverse shower
shape with ∼ 1.5 cm segmentation. A further set of multi-wire proportional chambers, the Central
Pre-Radiator (CPR) [94] is located in the gap between outer surface of the solenoid and the CEM.
It monitors eventual photon conversions started before the first CEM layer. Phototube gains are
calibrated once per store using an automated system of Xenon or LED light flashers.
The hadronic compartment is the combination of two sub-systems: the Central HAdronic (CHA)
and Wall HAdronic (WHA) [95] calorimeters. Analogously as in the CEM, in both systems four
“C”-shaped arches contain 48 wedges. Each CHA wedge is segmented into 9 ηdet towers matching in
size and position the CEM towers. The WHA wedge instead consists of 6 towers of which three are
matching CHA towers. Radially a CHA tower is constructed of 32 layers of 2.5 thick steel absorber
alternating with 1.0 cm thick acrylic scintillator. WHA towers structure is similar but there are only
15 layers of absorber which is 5.1 cm thick.

The total thickness of the electromagnetic section corresponds to approximately 19X0 (1λint, where
λint is the pion nuclear absorption length in units of g cm−2), for a relative energy resolution σE/E =
13.5%/

√
E sin(θ) ⊕ 2%.14 The total thickness of the hadronic section corresponds to approximately

13The number of lead layers varies from 30 in the innermost (|ηdet| ≈ 0.06) tower to 20 in the outermost (|ηdet| ≈ 1.0).
14The first term is called the “stochastic” term and derives from the intrinsic fluctuations of the shower sampling

process and of the PMT photo-electron yield. The second term, added in quadrature, depends on the calorimeter

non-uniformities and on the uncertainty on the calibrations. All energies are in GeV.



52 Chapter 2. The experimental apparatus

4.5λint, for an energy resolution of σE/E = 50%/
√
E sin(θ) ⊕ 3% for the central, and σE/E =

75%/
√
E sin(θ)⊕ 4% for the end-wall.
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Figure 2.7: Schematic illustration of an azimuthal sector of the central electromagnetic calorimeter
(a). Elevation view of one quarter of the plug calorimeter (b).

Forward region: PEM, PHA

The coverage of the 1.1 ≤ |ηdet| ≤ 3.6 region relies on the scintillating tile Plug calorimeter [96] which
is composed of two identical devices, one installed in ηdet > 0 region and the other in the ηdet < 0.
Each of these two halves has electromagnetic and hadronic compartments (see fig. 2.7(b)).
In each half the absorber of the Plug ElectroMagnetic calorimeter (PEM) consists in 23 “doughnuts”-
shaped lead plates, 2.77 m in outer diameter, which have a central hole where the beam pipe is
allocated. Each plate is made out of 4.5 mm thick calcium-tin-lead sandwiched between two 0.5 mm
thick stainless-steel sheets. Between the absorber plates are inserted the 4 mm thick scintillator tiles
organized azimuthally in 15o triangularly-shaped wedges. The signal of each tile is collected indepen-
dently by embedded wavelength-shifter fibers which guide it to the photomultipliers. A preshower
detector consist of a thicker (10 mm) amount of scintillator installed in the first layer of PEM, while
shower maximum sampling is performed at radial depth of ∼ 6X0 by two tilted layers of scintillator
strips (pitch 5 mm).
Each half of the hadronic compartment, Plug HAdronic calorimeter (PHA), is azimuthally subdivided
in 12 wedge-shaped modules each subtending 30o. In depth each module consists of 23 layers of
5 cm thick iron absorber alternated with 6 mm scintillator layers. Within each sampling layer the
scintillator is arranged in tiles similar to those used in the PEM.

The total thickness of the electromagnetic section corresponds to approximately 21X0 (1λint), for
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an energy resolution of σE/E = 16%/
√
E sin(θ)⊕ 1%.15 The total thickness of the hadronic section

corresponds to approximately 7λint, for an energy resolution of σE/E = 74%/
√
E sin(θ)⊕ 4%.

2.3.3 Muon systems

CDF II is equipped with scintillating counters and drift tubes [97] installed at various radial distances
from the beam to detect muons and shielded by the iron structure of the inner detector. Scintillators
serve as trigger and vetoes while the drift chambers measure the φ coordinate using the absolute
difference of drift electrons arrival time between two cells, and the z coordinate by charge division.
These systems cover the whole range of pseudorapidity |ηdet| < 2 and are used only to identify the
penetrating muon reconstructing a small segment of their path (stub) sampled by the chambers. The
momentum measurement is performed by pointing back the stub to the corresponding, track in the
COT. The shield is constituted by the iron of the calorimeter, the return yoke and further steel
walls intended to filter out the punch-through of hadrons. Different muon sub-systems cover different
geometrical regions. In the |ηdet| < 0.6 region moving outward from the beam we encounter the inner
CMU (Central MUon detector) chambers at radial distance of 3.5 m. Approximately 5.4λint(π) of
material16 separate the luminous region from the CMU resulting in about 1/220 high energy hadrons
traversing the calorimeter unchecked. In order to recognize and discard them, the CMP (Central
Muon uPgrade) chambers lie in the same ηdet region separated radially from the CMU by a 60 cm
thick wall of steel achieving a rejection of 95% of the fake muons.
The muon coverage in the 0.6 < |ηdet| < 1 volume is ensured by the CMX (Central Muon eXtension)
chambers, embedded in scintillator counters and placed at radius of 3.5 m. The Intermediate MUon
(IMU) detectors are instead drift tubes covering the pseudorapidity range of 1 < |ηdet| < 2.0.
CDF II triggers on muons only emerging at |ηdet| < 1.5 where the muon coverage is segmented with
sufficient granularity to survive high occupancies. The granularity of muon devices in the forward
regions is less fine and not adequate for triggering, but sufficient for offline muon assignation to high
pT tracks going through that region.

2.3.4 Cherenkov Luminosity Counters

The luminosity (L) is inferred from the average number of inelastic interactions per bunch crossing
(N) according to N × fb.c. = σpp̄−in. × ε× L, where the bunch-crossing frequency (fb.c.) is precisely
known from the Tevatron RF, σpp̄−in. = 59.3 ± 2.3 mb is the inelastic pp̄ cross-section resulting
from the averaged CDF and E811 luminosity-independent measurements at

√
s = 1.8 TeV [98], and

extrapolated to
√
s = 1.96 TeV, and ε is the efficiency to detect an inelastic scattering.

The Cherenkov Luminosity Counters (CLC) are two separate modules, covering the 3.7 <∼ |ηdet| <∼
4.7 range symmetrically in the forward and backward regions [99]. Each module consists of 48 thin,
110–180 cm long, conical, isobutane-filled Cherenkov counters. They are arranged around the beam-
pipe in three concentric layers and point to the nominal interaction region. The base of each cone,
6–8 cm in diameter and located at the furthest extremity from the interaction region, contains a

15See footnote at pag. 51 for an explanation of terms.
16This defines also a pT threshold for muons reaching the CMU which is approximately 1.4 GeV/c.
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conical mirror that collects the light into a PMT, partially shielded from the solenoidal magnetic
field. Isobutane guarantees high refraction index and good transparency for ultraviolet photons.
With a Cherenkov angle θC = 3.4◦, the momentum thresholds for light emission are 9.3 MeV/c for
electrons and 2.6 GeV/c for charged pions. Prompt charged particles from the pp̄ interaction are
likely to traverse the full counter length, thus generating large signals and allowing discrimination
from the smaller signals of particles emitter at the same angle due to the beam halo or to secondary
interactions. In addition, the signal amplitude distribution shows distinct peaks for different particle
multiplicities entering the counters. This allows a measurement of N with 4.4% relative uncertainty
in the luminosity range 1031 <∼ L <∼ 1032 cm−2s−1. This accuracy, combined with the 4% relative
uncertainty on the inelastic pp̄ cross-section, results in an instantaneous luminosity measured with
5.9% relative uncertainty. This uncertainty does not affect the results of this analysis since ratios of
branching fractions, instead of absolute branching fractions, are measured.

2.4 Trigger and Data Acquisition system

Since the interaction rate at the Tevatron collider is well beyond the current maximum storage rate,
the task of separating the great majority17 of background events from the tiny fraction of interesting
events is of crucial importance. This goal is achieved by the trigger system which evaluates the partial
information provided by the detector in real time and discards the uninteresting events.
The Tevatron running at 396 ns of interbunch spacing has a collision rate of about 2.53 MHz. The
writing of events on permanent memories cannot proceed faster than 100 Hz. For practical reasons
the CDF II trigger has been designed as a multi-stage system in order to reduce the acquisition rate
allowing to record only the events with a physical interest. Its architecture is modular and divided
into three levels, represented in fig. 2.8. Each level receives the data event from the previous one and,
provided with more accurate detector information and more time for processing, chooses to discard it
or to send it to the next level. Level-1 receives the data directly from the detector front end electronics.
Events passing the Level-3 are stored to permanent memory.

Since the read-out of the entire detector needs about 2 ms on average, after the acquisition of one
event, another approximately 5,000 interactions would occur and remain unrecorded. The percentage
of events rejected solely because the trigger is busy processing previous events is referred to as trigger
deadtime.

Level-1

A trigger divided in three stages does not remove the problem to deal with the Tevatron crossing
rate of more than 2.53 MHz, the problem is now re-routed to the Level-1 stage. In order to avoid
deadtime caused by the trigger processing time, the Level-1 has to sustain the clock of the Tevatron.
In a complex detector as CDF II, it is unconceivable an effective trigger architecture able to process
data and make a decision in less than 396 ns. The impasse is overcome with a fully pipelined front-end
electronics for the whole detector. The signal of each channel is stored, every 396 ns, in a buffer of a

17The b production cross section is, for example ∼ 1,000 times smaller than the generic pp̄ inelastic one. High pT

physics as vector bosons or top physics suffers even smaller signal-to-background ratios at production.
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42-cell long pipeline. This means that the Level-1 has 396×42 ns � 16 μs to make its decision before
the content of the buffer is deleted. The actual latency of the Level-1 is 5.5 μs, as was designed for a
crossing time of 132 ns.

At Level-1, a synchronous system of custom-designed hardware process a simplified subset of data
in three parallel streams to reconstruct coarse information from the calorimeters (total energy and
presence of single towers over threshold), the COT (two-dimensional tracks in the transverse plane),
and the muon system (muon stubs in the CMU, CMX, and CMP chambers). A decision stage combines
the information from these low-resolution physics objects, called “primitives”, into more sophisticated
objects, e. g., track primitives are matched with muon stubs, or tower primitives, to form muon,
electron, or jet objects, which are subjected to basic selections.18

The eXtremely Fast Tracker (XFT) is a custom processor that identifies two-dimensional tracks
in the (r, φ) view of the COT (transverse plane) in time with the Level-1 decision. It uses pattern
matching to first identify short segments of tracks and then to link them into full-length tracks [100].
If a coincidence between segments crossing four super-layers is found, two-dimensional XFT-tracks
are reconstructed by linking the segments. The segments are compared with a set of about 2,400
predetermined patterns corresponding to all tracks with pT � 1.5 GeV/c originating from the beam
line. The track-finding efficiency and the fake-rate with respect to the off-line tracks depend on the
instantaneous luminosity, and were measured to be ε ≈ 96%, and 3%, respectively, for tracks with pT �
1.5 GeV/c at L � 1031 cm−2s−1. The observed momentum resolution is σpT/p

2
T ≈ 0.017(GeV/c)−1,

and the azimuthal resolution is σϕ6 ≈ 0.3◦, where ϕ6 is the azimuthal angle of the track measured at
the sixth COT super-layer, located at 106 cm radius from the beam line.

Currently are implemented about 56 different Level-1 different combinations of requirements with
an output rate of 18 KHz.

Level-2

The Level-2 trigger performs two subsequent operations. The Event building produces in output the
event as reconstructed with Level-2 detector information, and the Decision combines outputs from
Level-1 and Level-2 to evaluate whether to flag or not the event for Level-3 processing.

The Event building process is done in parallel. Calorimetric information is used to perform cluster-
ing and identification of hadronic jets. Simultaneously, the Silicon Vertex Trigger (SVT), a dedicated
processor, combines XFT track informations with SVXII hits. It measures 2D track parameters with
almost offline level quality for tracks with pT > 2 GeV/c. The key improvement of the SVT track
with respect to the XFT track is the measurement of the track impact parameter. The event building
has 10 μs to complete its task.

In the Decision stage some selection algorithms, customized for each different combinations of
requirement, run on four dedicated CPUs and process the available information from Level-1 and
Level-2 in less than 10 μs.

The maximum latency of Level-2 is 20 μs for each event. The current number of different combi-
nations of requirements at Level-2 are about 116 and the output rate is about 300 Hz.

18A particle jet is a flow of observable secondary particles produced in a spatially collimated form, as a consequence

of the hadronization of partons produced in the hard collision.



56 Chapter 2. The experimental apparatus

Level-3

This stage is implemented exclusively by software. About 400 commercial processors running in paral-
lel reconstruct the event provided by Level-2 at full detector resolution. Level-3 codes are very similar
to the offline reconstruction codes. About 140 trigger paths are implemented at Level-3. Moreover
Level-3 distributes the information to on-line monitoring consumers and data logger programs. The
Level-3 decision to write on tape happens after the full reconstruction of the event is completed and
the integrity of its data is checked in less than 10 ms. Typical size for an event is 150 kbyte. Maximum
storage rate is about 20 Mbyte/s. At Level-3 the number of different combinations of requirements
is about 185. The available output rate passed from 75 Hz (40% tracking, 30% jet and photon, and
30% lepton).

The trigger deadtime never exceeded 5%, and its integrated value in the data used for this analysis
was below 1%.
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Figure 2.8: Functional block diagram of the CDF II trigger and data acquisition system.

2.4.1 Silicon Vertex Trigger (SVT)

The main advantage of investigating B physics in an hadronic environment like the Tevatron is the
very large (O(50 μb) [111], to be compared with O(nb)) b-flavour production cross section at the
e+e− machines. However the large b-cross-section has to be compared with the total inelastic pp̄ cross
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section which is about 1,000 times larger. This means that b events are overwhelmed by an amount of
uninteresting background events larger by three orders of magnitude. A further complication is that
the b production cross section is a steep exponentially decreasing function of the pT of the produced B.
This results in b events populating mainly the soft region of the pT spectrum (4-5 GeV/c) which is the
region where also most of the background is distributed. In the CDF II case, this problem is enhanced
by the characteristics of the detector which was originally designed to optimize its performances in
the central region where high-pT decay products of particles such as W±, Z0, top are searched.
The task of improving the unfavorable ratio between b events and background is two-fold. An on-line
selection is in charge to select samples enriched on b-flavours. Once this is done, sophisticated off-line
algorithms allow to further purify the sample from the background events.
CDF trigger strategy in Run I was to take advantage of the excellent lepton identification capabilities
to implement lepton-based triggers able to select semileptonic B decays andB → J/ψ+X → [l+l−]+X
decays19. At off-line level CDF used the silicon vertices detector to reconstruct secondary vertexes
allowing further skimming of b-enriched samples. This was possible because b-hadrons produced at
Tevatron have enough high pT to travel several hundredths of microns (∼ 450 μm for a B meson)
through the detector before the decay. It results in large mean valued distributions of their impact
parameters with respect to the beam axis. However such a lepton based trigger is not very efficient
and excludes a whole bunch of rarer hadronic decays, such as B0

(s) → h+h
′−, B0

(s) → D−(s)π
+, etc.

which are among the most promising for CP violation measurements.
The basic purpose of SVT is to anticipate the step of secondary vertexes identification from the off-line
to the trigger level. This allows the on-line selection of b-events over the short-lived background with
larger yield than by using only the leptonic triggers. In order to achieve this it is necessary to measure
the impact parameter on-line. SVT performs this task, reaching a resolution on fitted track parameter
comparable to the off-line resolution, with a time constraint of less than 10 μs which is the maximum
time allowed at Level-2 event building. A brief description of the SVT architecture follows in order
to explain how this task is achieved [101].

SVT at work

Reconstructing decay vertices on-line is technically challenging and it requires the reconstruction of
high resolution tracks at high event-rates. SVT measures the impact parameters of the charged
particles, which is faster than reconstructing their decay vertices, and provides also information on
the lifetime of the decaying particle. The COT tracks are not measured with the desired resolution,
therefore SVT needs SVX II data to be available. Due to this need, its natural location within the
trigger chain is at Level-2. At this stage, the 2D COT tracks previously reconstructed by XFT are
available and the event rate is sufficiently low to allow the readout of the silicon detector. XFT tracks
are provided together with the silicon hit information coming from SVX II front-end electronics. The
design of a silicon front-end electronics capable to readout the more than 400,000 SVXII channels
within the time constraint of the Level-2 trigger was a challenging task which turned to be successful.
In fact one of the main impediments to the realization of an SVT-like system in Run I was the too
readout of the silicon detector.

19The mentioned decays are a fraction of about the 20% of the total B width.
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The output of SVXII is fed to the Hit Finder. This set of processors reconstructs the clusters
on SVXII layers and calculates the coordinates of the charge-barycenter in each cluster. Hit Finder
processing speed sustains the output rate of the SVXII front-end and calculated hit coordinates are
sent in parallel to the Hit Buffer and to the Associative Memory (AM). Simultaneously, XFT track
parameters are transmitted both to the Hit Buffer and the Associative Memory.

AM is the device devoted to pattern recognition. The Level-2 latency time does not allow SVT to
adopt the off-line-like pattern recognition strategy based upon solving the whole system of constrained
equations. AM uses instead a technique based on highly parallelized comparison between XFT-SVXII
data and preselected patterns. The channels of each silicon layer are grouped into superstrips. A
typical superstrip size is ∼ 250 μm, while the detector typical full resolution is about 25 μm. The
task of the AM is then reduced to perform pattern recognition using a coarser spatial resolution. This
reduces combinatorics to combination of hits within the same superstrip. A road is defined as one
possible combination of excited superstrips (one per layer) through the silicon layers.
In principle, it would be possible to store in the AM all possible roads for whatever configuration of real
tracks, then compare them to the sequence of hits coming from the Hit Finder and to the 2D tracks
reconstructed by XFT. An SVT track would be identified when the matching of a pre-stored road
with the XFT track together with the hit list occurs. In practice, an efficiency ε ∼ 95% is achieved
storing in the AM only a subset (∼ 33, 000 roads) of the all possible patterns. This allows the AM
to operate the comparison in parallel remaining within the Level-2 time constraints. The maximum
output of the AM is 64 roads per event, each one having a maximum of 8 hits per superstrip.

This Hit Buffer device is a buffer which stores the XFT track and the Hit Finder information
during the AM processing. When AM comparison is completed the Hit Buffer sends to the Track
Fitters only the stored data corresponding to the roads matched by the AM.

The Track Fitters are a system of processors operating in parallel devoted to fit tracks with final
resolution. Each processor receives the roads found by the AM, the hit coordinates and the XFT
parameters from the Hit Buffer. It combines the information and reconstructs one or more tracks
within the same road by a linearized fit procedure.

The SVT outputs are the reconstructed parameters of the two-dimensional tracks in the transverse
plane: ϕ0, pT, and the impact parameter, d0. The list of parameters for all found tracks is sent to
Level-2 for trigger decision.

The SVT measures the impact parameter with σd0,SVT ≈ 35 μm r.m.s. width, with an average
latency of 24 μs, 9 μs of which being spent waiting for the start of the read-out of silicon data. This
resolution is comparable with the off-line performance for tracks not using LØØ hits, and yields a
distribution of impact parameter of prompt tracks with respect to the z axis with σd0 ≈ 47 μm (see
fig. 2.9) when combined with the transverse beam-spot size.20 The SVT efficiency is higher than 85%.
This efficiency is defined as the ratio between the number of tracks reconstructed by SVT and all
XFT-matched off-line silicon tracks that are of physics analysis quality.

20Prompt tracks are those associated to particles produced in the hard pp̄ interaction.
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Figure 2.9: Impact parameter distribution as measured by the SVT.

2.5 Operations and data quality

The proper operation of the detector and the quality of the on-line data-taking is continuously ensured
by “crews” of five members of the CDF Collaboration plus one technician who alternate on duty with
eight-hours shifts, plus several subdetector experts available on request. The on-line crew, in commu-
nication with the Tevatron crew, ensures smooth data-acquisition, monitors the crucial parameters
of all subdetector, and intervenes in case of malfunctions. The average data-taking efficiency is 85%.
The inefficiency is approximately equally shared in a 5% arising at the beginning of the store, when
the detector is not powered while waiting for stable beam conditions, a 5% due to trigger deadtime,
and a 5% due to unexpected detector or DAQ problems.

When no beam is present, cosmic-rays runs are taken, or calibrations of the subdetector are done.
During the Tevatron shut-down periods, the crew coordinates and helps the work of experts that
directly access the detector.

Each time that at least one of the trigger paths fires, an “event” is labeled with a progressive num-
ber. Events are grouped into runs, i. e., periods of continuous data-taking in constant configurations
of trigger table, set of active subdetectors and so forth.21 Several parameters of the operations (e. g.,
beam-line position and slope, set of calibrations, etc.) are stored in the database on a run-averaged
format.

All data manipulations occurring some time after the data are written to permanent memories are
referred to as off-line processes, as opposed to the on-line operations which take place in real time,
during the data-taking. The most important off-line operation is the processing with a centralized
production analysis that generates collections of high-level physics objects suitable for analysis, such
as tracks, vertices, muons, electrons, jets, etc. from low-level information such as hits in the tracking

21The data acquisition might need to be interrupted and recovered for several motivations, including the need for

enabling or disabling a subdetector, the need for a change in the trigger table, a problem in the DAQ chain and so forth.
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subdetectors, muon stubs, fired calorimeter towers, etc. [102]. During the production, more precise
information about the detector conditions (e. g., calibrations, beam-line positions, alignment constants,
masks of malfunctioning detector-channels, etc.) and more sophisticated algorithms are used than
those available at the Level-3 of the trigger. The production may be repeated when improved detector
information or reconstruction algorithms become available: this typically occurs once or twice every
year. The reprocessing uses large farms of commercial processors that reconstruct approximately 107

events per day employing approximately 2–5 s per event with 1 GHz CPU.22 The added information
increases the event size by typically 20% after production.

To ensure homogeneous data-taking conditions, each run undergoes a quality inspection. On-line
shift operators, off-line production operators, and subdetector experts certify in what fraction of data
the running conditions for all relevant subdetectors are compliant to physics-quality standards.

When detectable problems of the detector occur, the data-taking is quickly stopped, so very short
runs are likely to contain corrupted data. Runs with fewer than 108 live Tevatron clock-cycles, or
fewer than 104 (103) Level-1 (Level-2) accepts, or containing data corresponding to an integrated
luminosity

∫ Ldt < 1 nb−1 are excluded from physics analysis. On-line shift operators further exclude
the runs in which temporary or test trigger tables were used.23 Runs whose data underwent problems
or software crashes during the production are excluded off-line.

Accurate integrated luminosity measurements are ensured in physics-quality data by requiring the
CLC to be operative during the data-taking and by verifying that a set of luminosity and beam-
monitor probe quantities are within the expected ranges. Shift operators ensure that Level-1 and
Level-2 trigger operate correctly and that the rate of SVXII data corruption errors is smaller than
1%.24 SVT experts verify that the on-line fit and subtraction of the beam position is done correctly
and that the SVT occupancy is within the expected limits. In addition, higher level quantities, such
as event yields of J/ψ → μ+μ−, D0 → K−π+, and D∗+ → D0π+ decays are monitored on-line and
are required to be within the expected ranges. For analyses that use COT information, the minimum
integrated luminosity required is 10 nb−1 and the fraction of noisy COT channels is required to be
below 1%.

22The event size, and the processing-time increase roughly linearly with the instantaneous luminosity.
23It is sometimes necessary to test new configurations of the trigger selections in a real data-taking condition to

monitor trigger rates, performance and so on.
24The read-out of the silicon detector and the proper integration of the information in the on-line infrastructure is a

complex operation which, occasionally, leads to a certain fraction of data to be improperly processed.



Chapter 3

Sample selection and signal

extraction

This chapter describes the main stages of the process used to extract the B0
(s) → h+h

′− decays (referred
to as ’signal’) from other events (’background’). First we describe the on-line trigger selection which
is crucial to collect events most likely containing B0

(s) → h+h
′− decays. Second we describe a simple

off-line improvement of this trigger selection to extract a visible B0
(s) → h+h

′− signal (referred to
as ’baseline selection’) and finally we describe the optimized selection. This last step is aimed at
obtaining the sample such that the statistical uncertainties on the quantities one wishes to measure
are minimized. This chapter report only the final results of the last step (final sets of cuts used in
this analysis) since the optimization procedure uses the fit of composition, described in chap. 6. An
exhaustive description of the selection optimization process is described in chapter chap. 8.

3.1 B0
(s) → h+h

′− decays at CDF

The analysis uses the data collected between February 2002 (run 138809) and March 2006 (run 212133).
After the application of the standard CDF data-quality requirements (see sec. 2.5), the sample size
corresponds to an integrated luminosity of

∫ Ldt � 1 fb−1.

The topology of a B0
(s) → h+h

′− decay is very simple. Two charged pseudo-scalar mesons (π+π−,
K+π−, K−π+, K+K−) or a proton/anti-proton plus a pseudo-scalar meson (p̄π+, pπ−, p̄K+, pK−)
from the decay of a long-lived B0

(s) meson or Λ0
b baryon generate two oppositely-curved tracks inter-

secting in a space-point a few hundreds microns away from the location of the pp̄ interaction where
the B0

(s) meson or Λ0
b meson was produced.

Such a simple topology poses a first experimental challenge: rare (B ≈ 10−5) processes, confused in
a background O(109) times larger, need to be selected on-line, relying uniquely on tracking resources,
since the trigger bandwidth available at CDF II it is not sufficient to record all events. The signature
of B0

(s) → h+h
′− decays lacks the most used discriminating features. No leptons are present to exploit

the good CDF muon and electron identification capability, nor narrow intermediate resonances (e.g.,
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a φ meson) can be used to provide additional kinematics constraints.

The B0
(s) → h+h

′− final states contain only pions and kaons which, unfortunately, are also the
most common particles present in the background. However, if the momentum of the B0

(s) meson
has sufficiently large component in the plane transverse to the beam-line, the displacement between
production and decay positions of the B0

(s) meson can be measured with the silicon tracker. This
provides a highly discriminating quantity for background rejection.

Prior to discussing the details of trigger and off-line selection, it is useful to define some relevant
quantities used in the analysis. All quantities are calculated in the laboratory frame, and are illustrated
in fig. 3.1. For the present description we neglect the curvature of particles with momentum O(GeV/c).

primary
interaction
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secondary
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vertex

fake
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vertex

LT > 0

LT < 0
�pT(1)

�pT(2)

pT(B)
d0(2)
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Figure 3.1: Illustration of a pp̄ event containing a B0
(s) → h+h

′− decay, projected into the transverse
plane. Ellipses indicate vertices, arrows indicate the transverse momenta (i. e., the direction) of
charged particles. Nothing is to scale.

Transverse plane − the plane perpendicular to the proton beam direction, in which the profile
region is approximately Gaussian with r.m.s. σpT ≈ 30 μm

Transverse momentum (�pT ) − the projection of the momentum vector onto the transverse plane.
This quantity is the simplest discriminant between heavy-flavor signals and background because,
in pp̄ collisions, charged particles from b-hadron decays have average transverse momenta higher
than particles from generic QCD-backgrounds. Another useful quantity used in the selection is
the scalar sum of the transverse momenta of the two particles ΣpT ≡ pT(1) + pT(2).

Primary vertex − the space-point of the reconstructed primary pp̄ interaction, where the b-quark,
once produced, quickly hadronizes to a b-hadron pair.

Secondary vertex − the space point in which the decay of a long-lived particles occurs. The compo-
nents of its displacement with respect to the primary vertex in the transverse plane are indicated
by the vector �xv = �βTγct = (�pT/m)ct, for a particle of mass m and momentum p that decays
at time t after its production.

Transverse decay-length (LT)− the displacement of the secondary vertex with respect to the
primary one, projected onto the transverse momentum vector of the decaying particle (�pT(B)).
The transverse displacement of the secondary vertex (�xv) may not be collinear with �pT(B)
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because of the measurement uncertainties. Thus, the transverse decay-length,

LT ≡ �pT · �xv
pT

, (3.1)

is usually preferred to �xv as an estimator of transverse decay-length travelled before decay. This
quantity is typically positive for a true long-lived decays, while it is negative or positive with
almost equal probability for decays from a fake secondary vertex or for combinations of prompt
tracks, although in the latter case its value is comparable with its resolution.

Impact parameter (d0) − the component of the distance of closest approach between a track and
the primary vertex in the transverse plane. This is a signed quantity defined as

d0 ≡ ẑ · (�pT ∧ �xv)
pT

, (3.2)

where the scalar product with the unit vector pointing toward the proton direction (ẑ) determines
its sign and the symbol “∧” indicates the cross product. The impact parameter is typically
different from zero for products of long-lived decays, while it is comparable with the convolution
of its resolution and the transverse size of the beam for particles produced in the vicinity of the
primary vertex (prompt background).

Azimuthal opening angle (Δϕ0) − the opening angle between the two outgoing particles pro-
jected in the transverse plane. The distribution of this quantity in B0

(s) → h+h
′− decays depends

on the distributions in impact parameter and transverse momentum. However, it has generally
a slowly-varying shape for signal candidates, while it shows two enhancements around 0◦ and
180◦ for background candidates. Pairs of quasi-collinear tracks are found in hadronic jets, due
to light-quark fragmentation, or in highly occupied regions of the detector, due to combinations
of fake tracks; pairs of azimuthally-opposed tracks are found in back-to-back jets of generic QCD
background.

3.2 Displaced-Tracks Trigger

The data have been collected with the Displaced-Tracks Trigger. The Displaced-Tracks Trigger is
composed by several trigger paths. A trigger path is a well defined sequence of Level-1, Level-2, Level-
3 requirements. The specific trigger paths used for this analysis can be grouped, due to their similar
kinematic requirements, in two main groups: B PIPI and B PIPI HIGHPT.
The B PIPI HIGHPT has higher thresholds on the transverse momentum than the B PIPI trigger path.
The purpose of having two separate triggers with different transverse momentum requirements is
to keep alive the triggers as much as possible at high instantaneous luminosities. At luminosities
L � 50 × 1030 cm−2s−1, the Level-1 of the Displaced-Tracks Trigger causes a trigger dead-time
larger than the design limit of 5%. The introduction of trigger paths like B PIPI HIGHPT, with higher
momentum thresholds, are required to avoid saturation of the bandwidth available.
The Tevatron instantaneous luminosity increased thanks to improvements of the accelerator complex
performance, achieving values L � 170 × 1030 cm−2s−1 in the last part of data collected for this
analysis, close to the design value of 200× 1030 cm−2s−1. It has been necessary to further reduce the
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trigger accept-rates by applying a prescale factor. Prescaling a trigger by a factor N means accepting
1 event every N valid events. To better use the trigger bandwidth, a dynamic prescale (DPS) has
been added to particularly high trigger accept-rates. The DPS adjusts the prescale factor N according
to the instantaneous luminosity, since the instantaneous luminosity of the store decreases with time.
This is due to the interactions of the proton and anti-proton bunches with the residual gas in the
beam-pipe and due to the degradation process of the transverse section of bunches in many hours of
collisions. The dynamic prescale factor decreases along the store to keep the trigger bandwidth fully
occupied.

In the following, we outline just the trigger requirements for the B PIPI and B PIPI HIGHPT trigger
paths.

3.2.1 The B PIPI and B PIPI HIGHPT path

Level-1

At Level-1 the only tracking data available comes from the XFT. XFT measures the pT, ϕ6 and charge
q of each track (2D). The azimuthal angle is measured at a radial distance corresponding to the super-
layer 6 of the COT and it is labeled ϕ6. These are the only handles available at Level-1 to disentangle
the signal from the background. Two XFT tracks having pT larger than 2.04 GeV/c are required. A
natural request is also the opposite sign of the two XFT tracks: q(1) · q(2) < 0. In addition, track
pairs due to light-quark fragmentation in back-to-back jets are rejected with the 0◦ < Δϕ6 < 135◦

requirement on the azimuthal opening angle between tracks. The requirement Δϕ6 > 0 is forced
because of the B PIPI path at Level-1 is shared with other hadronic trigger paths which require a
small azimuthal opening angle (see sec. 3.2.2). Further conditions on transverse momenta of the tracks
has to be imposed to reduce the Level-1 accept-rate. The solution is to leave the individual thresholds
at 2.04 GeV/c but constrain the scalar sum

∑
pT of the transverse momenta to be larger than 5.5

GeV/c. The B PIPI rate at L � 60× 1030 cm−2s−1 is 25 kHz at Level-1.

Level-2

At Level-2, the azimuthal opening-angle requirement is further tightened with respect to the previous
trigger stage to 20◦ < Δϕ0 < 135◦, to reduce the fraction of events with light-quark background. At
Level-2 the SVX II hits are available and SVT receives the XFT track and refit them in the silicon
providing impact parameter information. The B PIPI trigger requires a pair of oppositely-curved SVT
tracks that satisfy a minimal linearized-fit quality requirement: χ2

SVT < 25 [104].1 A lower threshold
in impact parameter d0 is required to enrich the sample in b-decays, which exhibit typical values of
d0 ∼ 150 μm. An upper threshold is dictated by hardware constraints, then the trigger requirement is:
100 μm <| d0 |< 1000 μm. The impact parameter requirement is the single most selective requirement.
It reduces the trigger accept-rate by a factor ∼ 100, while still keeping ∼ 50% efficiency on signal. The
spatial resolution of SVT in identifying secondary vertices is further exploited: positive decay-length
of the B0

(s) candidate is required, LT(B) > 200 μm, along with a |d0(B)| < 140 μm requirement
on its impact parameter. The latter imposes that the candidate originates from the primary vertex,

1The efficiency of the χ2
SVT < 25 requirement on unbiased samples is approximately 97%.
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rejecting sequential B → DX → h+h
′−X decays. Events with LT(B) < −200 μm are retained as

well for background studies. The B PIPI rate at L � 60× 1030 cm−2s−1 is 25 Hz at Level-2.

Level-3

The Level-1 and Level-2 criteria are reapplied on Level-3 tracks. In addition, a requirement on the
longitudinal separation between the two tracks at the point of their minimum distance from the
beam is applied: |Δz0| < 5 cm. This significantly reduces the fraction of combinations of two tracks
descending from particles produced in distinct primary vertices (pile-up events). A |η| < 1.2 re-
quirement on tracks excludes events with particles outside the XFT fiducial acceptance. The Level-3
mass-resolution, comparable with the off-line resolution, allows a loose 4.0 < mππ < 6.0 GeV/c2 re-
quirement on the reconstructed invariant ππ-mass of the particle pair. This is adequate for reducing
the Level-3 accept-rate, while keeping events populating a sufficiently wide mass-spectrum for signal
and background studies. The B PIPI rate at L � 60× 1030 cm−2s−1 is 0.7 Hz at Level-3.

The B PIPI HIGHPT trigger path applies the same requirements of the B PIPI, but tightening few
of them. At Level-1 it requires both tracks to have pT > 2.46 GeV/c and scalar sum of the transverse
momenta

∑
pT > 6.5 GeV/c. At Level-2 it confirms, on SVT tracks, the scalar sum of the transverse

momenta
∑
pT > 6.5 GeV/c and tightens the transverse momentum requirement to pT > 2.5 GeV/c.

At Level-3 has exactly the same requirements as B PIPI.
The B PIPI HIGHPT accept-rate at L � 100 × 1030 cm−2s−1 is 14 kHz, 10 Hz, 0.2 Hz at Level-1,
Level-2, Level-3, respectively.

The overall acceptance of the B PIPI trigger selection is � 2% for B0
(s) → h+h

′− decays in which
the B0

(s) meson has transverse momentum pT > 4 GeV/c.

3.2.2 Other Displaced-Tracks Triggers

This is a concise description of the B CHARM path, implemented to efficiently collect multi-body heavy-
flavor decays, such as B0

(s) → D−(s)π
+, D∗+ → D0π+ and prompt D0 → h+h

′− used as control samples
for the present measurement. At Level-1 the B CHARM and B PIPI paths share common requirements;
this explains why, in the B PIPI path, the Δϕ0 > 20◦ requirement was applied only at Level-2,
although the information needed for this requirement was available since Level-1. At subsequent
levels, the B CHARM selection is similar to the B PIPI one but it has different thresholds on the impact
parameter of the SVT tracks (|d0| > 120 μm), on the azimuthal opening angle (2◦ < Δϕ0 < 90◦), and
it does not contain any requirement on the impact parameter of the B candidate. Like in the B PIPI

case, the dynamic prescale and the introduction of additional trigger paths (B CHARM HIGHPT trigger),
was required to cope larger luminosities. This is similar to the B PIPI HIGHPT path respectively, it
has tighter requirements on the transverse momenta of XFT tracks (pT > 2.46 GeV/c), and on their
scalar sum (

∑
pT > 6.5 GeV/c) at Level-1.
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Quantity Units B PIPI B PIPI HIGHPT

pT(1), pT(2) GeV/c > 2.0 > 2.5
Δϕ0 Degrees [20◦, 135◦] [20◦, 135◦]∑
pT GeV/c > 5.5 > 6.5

|d0(1)|, |d0(2)| μm [100, 1000] [100, 1000]
|d0(B)| μm < 140 < 140
|LT(B)| μm > 200 > 200
|η(1)|, |η(2)| − < 1.2 < 1.2
mππ GeV/c2 [4.0, 7.0] [4.0, 7.0]

Table 3.1: Summary of the most relevant trigger requirements.

3.2.3 Trigger performance

An illustration of the impact of the trigger selection on the signal-to-background ratio for B0
(s) →

h+h
′− decays is shown in fig. 3.2. A production cross-section times branching fraction σpp̄→B0

(s)+X
×

B(B0
(s) → h+h

′−) ≈ 30 μb× 3× 10−5 ≈ 1 nb is assumed for the signal, and a total inelastic pp̄ cross-
section σpp̄ = 60 mb at

√
s = 1.96 TeV. The illustration points out the key rôle of SVT at Level-2 of

Figure 3.2: Cross-section times branching-fraction times detection efficiency for B0
(s) → h+h

′− decays
compared with the cross-section times efficiency for generic inelastic pp̄ background, as a function of
the selection requirements.

the trigger chain. Thanks to the on-line requirements on impact parameter, decay transverse length,
impact parameter of B candidate etc., SVT improves the signal-to-noise ratio of about two orders
of magnitude and it allows to collect (to write on tape) events most likely containing B0

(s) → h+h
′−
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decays. This is essential to obtain at off-line level a rich sample of B0
(s) → h+h

′− decays.

3.3 Extraction of the B0
(s) → h+h

′− signal

The first step of the off-line analysis consists in applying a baseline selection to the events collected by
the B PIPI and B PIPI HIGHPT trigger paths. Trigger requirements are reapplied using high-resolution
off-line quantities to remove the B0

(s) → h+h
′− candidates not satisfying the trigger selection.

3.3.1 Tracks

This analysis is based on tracks. Tracks are reconstructed by the standard CDF II production exe-
cutable using LØØ, SVXII, ISL and COT hits, the detailed magnetic map of the tracking volume, and
taking into account the measured angular and translation mis-alignments among LØØ, SVXII, ISL,
COT and the beam-line. Since the measurements described in this thesis are not a lifetime-based,
but they are decay rate measurements and since the lifetime information enters only in the selection
(see sec. 3.5) through the cuts on impact parameter and decay transverse length the improvement
due to the LØØ hits is marginal. This was verified repeating the analysis including/removing the
LØØ silicon hits from the reconstruction. We found an improvement on the statistical uncertainty
of desired physics observables of ≈ few%, due to a small improvement of the signal-to-noise ratio
when the LØØ silicon hits are included in the reconstruction. At the time of this thesis, the SVXII
and ISL detector simulation was validated and extensively tested in many CDF analyses, while the
LØØ simulation was not well understood yet. We therefore used only tracks whose reconstruction
included silicon hits of SVXII, ISL. Mis-alignments and noise hits in the silicon detectors and in the
COT cause a contamination of fake or mis-reconstructed tracks. The fraction of such undesirable
tracks was reduced by applying a set of standard criteria: we selected tracks reconstructed using at
least 5 hits in at least two axial and two stereo COT super-layers. Each track was also required to
be associated to hits in at least 3 r − φ SVX layers and to result from a converged helix-fit with a
positive error matrix.

The default 3-D silicon tracking code uses a stepwise fit that starts from a COT track pointing to
the silicon detector fiducial volume and progressively adds hits within the search road2 as the fit moves
from the outer silicon radii to the inner radii. The tracking algorithms which provide the standard
CDF track collections are named OI, OIS, OIZ. The OI (Outside In) tracking algorithm starts from
the COT precursor tracks and only r−φ silicon hits are added by the progressive track fit. If three or
more r−φ hits are found silicon tracking proceeds toward the more complex algorithms OIS (Outside
In Stereo) and OIZ (Outside In Z). Starting from the COT track and r − φ hits found by the OI
tracking, the OIS algorithm adds only SAS r − z (Small Angle Stereo) hits as the fit progresses from
outer to inner radii. If SAS hits and at least two 90◦z r − z hits are added simultaneously to the OI
tracks we obtain the third type of tracks named OIZ tracks. The standard CDF prescriptions require
to use the collections tracks OI, OIS, OIZ, but in the present analysis only the OIZ track collections
are used since they have a better resolution on r−z-plane with respect to the other tracks collections.

2Silicon hits are searched in a 4σ-wide extrapolation of the COT track in the silicon layers, where σ are the uncer-

tainties on the estimated track parameters.
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The requirement of tracks with sufficient r − z information reduces the contamination from those
coming from two distinct heavy-flavors in the event, which have sizable impact parameter but are
separated along the z direction. This additional requirement has a ∼ 90% efficiency on signal yield
while it reduces the background by a factor � 2.

The error matrix of the track fit in the COT is estimated by default disregarding the effect of
multiple scattering in the COT. According to the standard CDF prescriptions, we compensated for
this approximation by refitting the tracks, after rescaling the covariance matrix of the COT track with
an appropriate set of empirical scale factors. The rescaled COT track is used to seed the refit of the
combined COT-SVXII tracks. The refitting uses the algorithm based on the Kalman filtering [105] and
includes energy-loss corrections for kaons, pions and protons, according to the chosen mass assignment
for each particle. The refitting procedure, the tracking alignments, and the GEANT description of
the detector material have been carefully studied and validated by independent analyses for the
measurement of b-hadron masses [106].

3.3.2 Trigger confirmation

Since SVT tracks are reconstructed with a different fitting algorithm with respect to the off-line tracks,
the sample selected by the off-line analysis may contain candidates which did not satisfy the trigger
selection (“volunteers”). Since the Monte Carlo does not reproduce volunteers, we need to exclude
them also from data. They were excluded by requiring the matching3 between the off-line track pair
forming the B0

(s) → h+h
′− candidate and two SVT tracks in each event; then the complete set of

trigger requirements was applied to the SVT quantities of the matched tracks, thus repeating the real
trigger decision in the off-line analysis.

3.3.3 Reconstruction of B0
(s) → h+h

′− candidates

Fully reconstructed decays of b-hadrons are expected to appear as peaking structures on an otherwise
smooth invariant mass spectrum. The off-line reconstruction of B0

(s) → h+h
′− candidates was solely

based on tracking, disregarding any form of particle identification. In each event, the two particle
invariant mass was computed for all possible pairs of oppositely-curved tracks satisfying the criteria
described in sec. 3.3.1 and 3.3.2. We used the measured momenta and we arbitrarily assigned the
charged-pion mass to both tracks. The two tracks were constrained by the vertex fit algorithm to
originate from a common vertex in the 3-D space. In case of a converged vertex-fit with satisfactory
quality, the pair was promoted to a B0

(s) → h+h
′− candidate, and retained for further processing, if its

invariant ππ-mass is within the interval 4.0 < Mππ < 7.0 GeV/c2. During reconstruction, we applied a
baseline selection, reapplying the trigger selection on off-line quantities (see tab. 3.2). In addition, we
rejected tracks reconstructed outside the SVT fiducial acceptance (|η| ≤ 1), and pairs with a positive
product of impact parameters. The invariant ππ-mass distribution of the resulting sample is shown
in fig. 3.3. A bump appears at masses around the nominal B0

(s) meson masses. A simple binned χ2-fit
of the distribution to a Gaussian function for the signal, over a negative exponential plus a constant
function for the background, provides an estimate of ∼ 14, 500 signal events. The signal is centered

3The algorithm required proximity in curvature and azimuthal opening angle between SVT tracks and off-line tracks.
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at about 5.25 GeV/c2, with about 35 MeV/c2 r.m.s. deviation, and ≈ 0.2 signal-to-background ratio
at the peak.

The distribution in fig. 3.3 is an important achievement at an hadron collider. B0
(s) → h+h

′−

decays, with O(10−5) branching fractions, are reconstructed, and this is made possible even at level
of trigger selection by the SVT. This is the largest total number of events in the world, but a tighter
selection is needed for the analysis.

Quantity of the track Units Requirement
Axial Si hits − ≥ 3
Axial COT SL (hits/SL) − ≥ 2 (≥ 5)
Stereo COT SL (hits/SL) − ≥ 2 (≥ 5)
Reco. algorithm − OI,OIS,OIZ
pT GeV/c > 2.0
|η| − < 1.0
|d0| μm [100, 1000]
Quantity of the candidate
q(1)× q(2) e2 −1
d0(1)× d0(2) μm2 < 0
LT μm > 300∑
pT GeV/c > 5.5

|d0| μm < 140
Δϕ0 Degrees [20◦, 135◦]
mππ GeV/c2 [4.0, 7.0]

Table 3.2: Summary of the off-line trigger confirmation selection.

3.4 Further variables

In the off-line analysis, the discriminating power of the B0
(s) meson isolation and of the information

provided by the 3D reconstruction capability of the CDF tracking was used, allowing a great improve-
ment in the signal purity.

Isolation of the B meson (I(B))

One of the useful variable used to discriminate the B0
(s) → h+h

′− signals from the background in the
off-line selection is the ”isolation”. Given their hard fragmentation, b-hadrons tend to carry a larger
fraction of the transverse momentum of the particles produced in the fragmentation, with respect to
lighter hadrons [108]. We used an estimator of the fraction of momentum carried by the b-meson:

I|R=1(B) =
pT(B)

pT(B) +
R∑

i�=j:B →j
pT(i)

, (3.3)
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Figure 3.3: Invariant ππ-mass distribution obtained by applying off-line the trigger confirmation
selection. A Gaussian (signal) plus exponential (background) fit function is overlaid.

where the sum in the right-hand term of the denominator runs over all fragmentation tracks, iden-
tified as tracks (other than those of the B candidate decay-chain) satisfying standard track-quality
requirements and found in a local region around the flight direction of the B candidate. Such region
is parameterized as a cone in the (η − φ) space, unitary in radius (R =

√
φ2 + η2 = 1), whose apex

is the primary vertex and the axis collinear with �pT(B) (see fig. 7.1). When the decay products of
the b-meson are contained in the cone, I(B) is just the fraction of transverse momentum within the
cone carried by the b-meson.4 Candidates with large isolation are more likely to be b-mesons than
candidates with low isolation.

The introduction of the isolation adds further complexity in the analysis: its distribution depends
on the mechanism of hadronization of the b-quark, which is not described by the signal-only simulation
discussed in sec. 4.1. We therefore uses real data to characterize this new observable (see chap. 7).

3-D vertex quality (χ2
3D)

Vertexing includes a large amount of information and it is sensitive to many issues, including align-
ments, geometry and track parameter errors. A quantity that summarizes all information of the
three-dimensional vertex fit quality is the χ2 of the vertex fit. The χ2

3D is the minimum χ2 resulting
from the vertex fit minimization, when in the minimization all 3-D tracking information from the
drift chamber and silicon detectors is used. This variable rejects a large amount of combinatorial
background with an high efficiency for the signal.

4Since we use R = 1 all through this thesis, we henceforth simply wirite I(B) ≡ I|R=1(B).
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3.5 Final selections

In this section we report the final results of the selection optimization process described in detail in
chap. 8. The cuts optimization procedure is based on the fitter described in the following chapters and
then for a better understanding we postpone its description after a full explanation of the technique
developed to disentangle the different B0

(s) → h+h
′− signals.

We chose the selection with the aim to optimize the expected statistical uncertainty individually
for each observables that we want to measure. In the present analysis we use two different selections:
“loose selection or loose cuts” optimized to minimize the statistical uncertainty on the measurement of
the direct CP-asymmetry ACP(B0 → K+π−) and “tight selection or tight cuts” optimized to improve
the probability of discovery and limit setting of the B0

s → K−π+ mode. The adjectives loose and tight
refer to the fact that the selection optimized to observe the rare B0

s → K−π+ mode is tighter than
that one optimized to measure the direct CP-asymmetry in the B0 → K+π− mode. For simplicity
in this thesis we refer to these selections, using simply these two adjectives. The loose selection
is also well suited to measure all the observables related to the large-yield modes (B0 → π+π−,
B0
s → K+K−), while the tight selection is well-suited to measure all the observables related to rare

modes (B0
s → π+π−, B0 → K+K−, Λ0

b → pπ−, Λ0
b → pK−).

In the optimization process entered the following variables: the transverse decay length of the B
candidate (LT), the impact parameter of the B candidate (d0(B)), the impact parameter of both
tracks (d0), the isolation of the B candidate (I(B)) and the 3-D vertex quality (χ2

3D(B)).

The final selections are reported in tab. 3.3. Both final samples contain just one B0
(s) → h+h

′−

candidate per event. The invariant mass distributions of the candidates (with the pion mass assigned
to both tracks) are shown in fig. 3.4.
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Figure 3.4: Invariant ππ-mass distribution of the events passing the loose selection (a) and the tight
selection (b). A Gaussian (signal) plus exponential (combinatoric background, light grey) plus a
smeared Argus (physics background, dark grey) fit function is overlaid. For Argus function definition
see text or Ref. [109].
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Quantity of the track Units Loose Tight
Axial Si hits − ≥ 3 ≥ 3
90◦ − z Si hits − ≥ 2 ≥ 2
Axial COT SL (hits/SL) − ≥ 2 (≥ 5) ≥ 2 (≥ 5)
Stereo COT SL (hits/SL) − ≥ 2 (≥ 5) ≥ 2 (≥ 5)
Total COT hits − ≥ 42 ≥ 42
Reco. algorithm − OIZ OIZ
pT GeV/c > 2.0 > 2.0
|η| − < 1.0 < 1.0
|d0| μm [100, 1000] [120, 1000]
Quantity of the candidate
q(1)× q(2) e2 −1 −1
d0(1)× d0(2) μm2 < 0 < 0
LT μm > 300 > 350∑
pT GeV/c > 5.5 > 5.5

|d0| μm < 80 < 60
I − > 0.5 > 0.525
χ2

3D − < 7 < 5
|η| − < 1.0 < 1.0
Δϕ0 Degrees [20◦, 135◦] [20◦, 135◦]
mππ GeV/c2 [4.0, 7.0] [4.0, 7.0]

Table 3.3: Summary of the optimized selections

Owing to the extremely selective criteria used to isolate the final sample, a detailed understanding
of the background is challenging. Contributions to the background include an unknown mixture of
rare events from heavy-flavors, light-quarks, resolution tails and so forth. A detailed simulation would
require prohibitive amounts of CPU. However, the invariant ππ-mass distribution already provides a
first insight on the background composition. There are two different kinds of backgrounds:

combinatorial background − it is mostly composed of random pairs of charged particles, displaced
from the beam-line, accidentally satisfying the selection requirements. Its dominant sources
include generic QCD background of light-quark decays, lepton pairs from Drell-Yan processes,
pairs of mis-measured tracks, combinations of a mis-measured track with a track from an heavy-
flavor decay, or combinations of two tracks originated from two independent heavy-flavor decays
of the event (bb̄ and cc̄ production). This is consistent with the smooth, slowly decreasing
invariant ππ-mass distribution in the signal sample for masses above 5.5 GeV/c. In this region, as
well as in the signal region, the combinatorial component is the prominent source of background.

Partially-reconstructed heavy-flavor decays − (referred as “physics background”) a change in
the slope of the mass distribution of the signal sample, at masses just smaller than the signal
mass, indicates the presence of an additional background source. This contribution is readily
interpreted as mis-reconstructed b-hadron decays. These are multi-body b-hadron decays (e. g.,
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B0 → ρ∓π±, B0 → ρ−K+, B0
s → ρ∓π±, B0

s → ρ+K− and many others), in which only two
tracks were reconstructed, resulting in the typical shoulder-shape, that is suppressed around
5.15 GeV/c2, because their contribution is kinematically limited to the mππ < mB0

(s)
region.

To give a rough estimate of the signal yield and of the purity of these samples, two simple χ2-binned
fits were performed. A Gaussian shape was assumed to parametrize the “signal” peak, while two
different distributions were used to parameterize the distinct background components: an exponential
for the combinatorial background and an Argus function5 convoluted with a Gaussian distribution
centered at zero with a width equal to the mass resolution (≈ 22 MeV/c2) for the physics background
component.

We estimate a yield of 6509± 159 B0
(s) → h+h

′− events with a standard deviation σ = 39.0± 0.8
MeV/c2, and a purity S/B ≈ 8.3 at the peak, for the loose cuts, while we estimate a yield of 4918±209
B0

(s) → h+h
′− events with a standard deviation σ = 38±1 MeV/c2, and a purity S/B ≈ 13 at the peak,

for the tight cuts. The observed width of the B0
(s) → h+h

′− signal is approximately 38 MeV/c2, much
larger than what expected from the simulation for a single (e.g.,B0 → π+π− or B0 → K+π−) decay
≈ 22 MeV/c2. This indicates that the B0

(s) → h+h
′− signal is the overlap of signals from different B0

and B0
s decay modes with unknown proportions. Theoretical and experimental knowledge at the time

of this analysis (see tabs. 1.1 and 1.2) predicts sizable contributions for B0 → π+π−, B0 → K+π−

and B0
s → K+K−mode, and five, as yet unobserved modes B0 → K+K−, B0

s → π+π− B0
s → K−π+,

Λ0
b → pπ−and Λ0

b → pK−. Since the theoretical expected branching frations of the rare signals
B0
s → K−π+, Λ0

b → pπ−, Λ0
b → pK− modes are large enough, we expect to observe for the first time

these three modes. These are located in the right tail of the B0
(s) → h+h

′− signal peak, in the mass
region 5.38 < mππ < 5.52 GeV/c2. The analysis was performed following a blind procedure, where all
significant plots and physical numbers were hidden until the analysis was approved officially by the
Collaboration. For these reasons the mass region 5.38 < mππ < 5.52 GeV/c2 was excluded from the
fit of fig. 3.4. However this one-dimensional binned fit is only a qualitative tool to estimate the yield
and the purity of the final optimized samples in a quick way. The Gaussian distribution to describe
the total signal peak is inadequate to describe the overlapping of the different signals.

In order to obtain the desired branching fraction measurements, it is necessary to separate the
contributions of the different signal components. The measurement of the composition of the B0

(s) →
h+h

′− signal is the goal of this analysis, and it is described in this thesis. In chap. 4, we see that
a separation on an event-by-event basis is not possible, and we introduce the statistical approach
that combines information from PID and kinematics into an unbinned multivariate likelihood fit to
determine the contribution of each mode. It includes also the choice of the kinematic observables and
the description of the achieved PID performance.

5Argus(x; c, m) = 1
Norm

· [xe−c( x
m

)2
√

1 − ( x
m

)2] if x ≤ m, Argus(x; c, m) = 0 if x > m. See Ref. [109].
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Chapter 4

Separation of individual

B0
(s)
→ h+h

′− modes

The reconstructed B0
(s) → h+h

′− signal contains several B0 and B0
s meson decay-modes. We need

to discriminate each contribution to extract the measurements of branching fractions. The available
resolution in mass and in particle identification is insufficient for an event-by-event separation. This
chapter is devoted to the description of how the information from kinematics and particle identification
was used to achieve a statistical discrimination amongst the individual modes.

4.1 CDF II simulation

We used the official CDF II simulation to study the features of the two body charmless B0
(s) → h+h

′−

decays. This simulation is used in several parts of the analysis and it is a crucial tool of our analysis.
Here, we summarize only the general features of the standard CDF II simulation, without technical
details. For a better understanding, we prefer to describe them in the chapters where they are actually
used.

We used the bgenerator package to generate large samples of b-hadron decays [110]. bgenera-

tor simulates the production and the decay of b-hadrons only: no fragmentation products, collision
remnants, or pile-up events are present in the simulated data. This package provides less complex
events, particularly suited for a fast processing with the detector simulation, but no information about
QCD backgrounds or fragmentation can be extracted from the simulated samples. Conversely this
information is available in full pp̄ interaction generators, like pythia, but its use in precision measure-
ments would require extensive checking and likely complex tuning. Furthermore, a huge amount of
computing power would be needed to generate background samples of adequate size for this analysis,
with O(109) rejection factors of background. Hence we chose the simpler, and more reliable, approach
of using Monte Carlo simulation for the signal, while extracting the information on background from
collision data.

75
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We simulated B0
(s) → h+h

′− decays taking into account varying detector and trigger configuration
during the data-taking period: changes of the silicon coverage, of the XFT and the SVT configurations,
as well as of the Two-Track Trigger trigger selection. The average prescale factors (see sec. 3.2) for
the B PIPI and B PIPI HIGHPT trigger paths are approximately equal in the period in which our data
were collected, and since the B PIPI HIGHPT data are a subsample of those collected with the B PIPI

path, the kinematics of the decay can be considered as a purely B PIPI topology. We verified directly
on data that our decays are actually distributed with a purely B PIPI kinematics. Figure 4.1 shows
the data distribution of the scalar sum of momenta

∑
pT (a) and transverse momentum of both

tracks pT (b) obtained removing all requirements. No discontinuity at the values
∑
pT = 6.5 GeV/c

and pT(track) = 2.5 GeV/c is visible from this distributions in spite of the huge statistics in these
plots. It is only visible a change of slope in the distribution of

∑
pT (fig. 4.1(b)) at the value
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Figure 4.1: Check on real data of a purely B PIPI topology, removing all off-line requirements. Dis-
tribution of the scalar sum of momenta

∑
pT (a), and transverse momentum of both tracks pT (b).

See text.

∑
pT = 3.5 GeV/c. This results by the combination of the trigger cuts: pT > 2 GeV/c for both

tracks and
∑
pT > 5.5 GeV/c (see sec. 3.2.1).

The beam-line, the detector and the trigger performance corresponding to the configuration of
each run are simulated in the Monte Carlo. We generated 10 million events for each of the following
decays B0 → π+π−, B0 → K+π−, B0

s → K−π+, and B0
s → K+K−, for each of the rare modes

(B0 → K+K−, B0
s → π+π−), the baryonic backgrounds (Λ−b → pπ−, Λ0

b → pK−) and the partially
heavy flavors decays (B0 → ρ∓π±, B0 → ρ−K+, B0

s → ρ∓π±, B0
s → ρ+K− and B+ → ρ−π+,

B+ → ρ0K+).

We generated single B+, B0, B0
s and Λ0

b mesons with a flat rapidity distribution in the range
|y(B)| < 1.3, while the pT(B) input distribution was taken from an external histogram containing
a smooth fit to the data published in CDF Run II measurement [111], according to the standard
CDF prescription. The pT input spectrum of Λ0

b was assumed equal to the B-meson spectrum.
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Fragmentation was turned off. Decays were forced to B0
(s) → h+h

′− using the evtgen package [112];
B−B oscillations were inhibited (Δmd = Δms = 0), and the lifetime difference in the B0

s system was
set to zero (ΔΓs/Γs = 0). The generated sample was processed with the realistic trigger and geant

simulation, and then reconstructed using the same executable used for real data.

4.1.1 Monte Carlo validation

In order to evaluate whether the Monte Carlo simulation describes the data reliably, we performed a
comparison between real data and the Monte Carlo. To extract unbiased distributions of the signal
quantities, we made a background subtraction: for each quantity, we subtracted the distributions for
background candidates from the distributions for signal plus background candidates. The signal plus
background candidates are defined as those found in the invariant-mass range |mππ − μ| < 2σ where
μ = 5251.0 MeV/c2 and σ = 38 MeV/c2 are respectively the parameters returned from the simple fit
performed in sec. 3.5. For the background candidates, we assumed that their contribution below the
signal peak is dominated by pairs of random tracks satisfying the selection requirements (combinatorial
background). We sampled this component using candidates at masses higher with respect to the signal
peak since candidates at lower masses may include partially reconstructed B0

(s) meson decays, such
as B0 → ρ+π− → [π+γ]π−, which are kinematically excluded from the signal region;1 we therefore
used, as background candidates, those in the mass range |mππ − (μ+ 10σ)| < 2σ. The distribution of
background candidates was rescaled to the number of background events expected below the signal.
In the simulation, each B0

(s) → h+h
′− contribution is weighted according to the measured branching

fractions of the already observed modes and the theoretical expectations for those not yet observed.
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Figure 4.2: Background-subtracted pT(B)-distribution in B0
(s) → h+h

′− decays. Data (points with
error bars) are compared with Monte Carlo simulation (filled histogram). Selection optimized to
measure ACP(B0 → K+π−) (a), to observe B0

s → K−π+ mode (b) (see tab. 3.3). No isolation
requirement was applied.

1See sec. 3.5 and sec. 6.4 for further details on the background composition.
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We compared the distributions of several observables of the two outgoing particles (transverse
momentum, and impact parameter), and of the candidate (transverse momentum, sum of transverse
momenta of outgoing particles, azimuthal opening angle, transverse decay-length, impact parameter,
three dimensional vertex quality). We used the selections described in tab. 3.3 without the isola-
tion requirement since the simulation does not reproduce the fragmentation processes (see chap. 3).
The agreement between simulation and data is satisfactory for all the observables, indicating that
the simulated sample describes the data with good accuracy. Figure 4.2 shows an example of the
comparison.

The final selections (see tab. 3.3) used in this analysis have the additional requirement of the isola-
tion cut. The isolation distribution depends strongly on pT(B) (see chap. 7), therefore a requirement
on this variable sculpts the pT(B) distribution. Figures 4.3(a) and (b) and fig. 4.4 show the compar-
ison between the simulation (without the isolation cut) and the data selected using all requirements
(included isolation) for the pT(B) distribution, respectively for the sample selected with loose cuts
(with I > 0.5) and tight cuts (with I > 0.525). The discrepancy is due to the isolation requirement
as we show in chap. 7, where the isolation features are studied accurately. To not introduce any
bias in the Monte Carlo distributions, the pT(B) spectrum of the simulation was reweighted to the
pT(B) spectrum observed in the data. The reweighting functions were extracted by the comparison
between the data distributions with the isolation requirement and the simulated distributions without
the isolation requirement. We parameterized the histogram ratio with the following function F (see
figs. 4.3(c) and (d)):

F(pT(B); a0, a1, a2, a3) = a0 · Erf(a1(pT(B)− a2)) + a3 (4.1)

where a0, a1, a2, a3 are free parameters in the fit and Erf(x) = 2√
π

∫ x
0
e−t

2
dt. After the reweighting

the agreement between data and the simulated distributions is satisfactory. Figure 4.5 shows the
comparison between the pT(B) reweighted Monte Carlo distributions and the data distributions for
different variables.
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Figure 4.3: Background-subtracted pT(B)-distribution in B0
(s) → h+h

′− decays. Data (points with
error bars) with isolation requirement are compared with Monte Carlo simulation (filled histogram)
without isolation requirement (a,b). Ratio between data histogram with the isolation requirement
and Monte Carlo histogram without isolation requirement is shown in (c,d). Data (points with error
bars) with isolation requirement are compared with the reweighted Monte Carlo distribution (filled
histogram) to keep into account the isolation sculpting (e,f). Loose (a,c,e) and tight (b,d,f) selection.
In (c,d) the fit function is overlaid.
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Figure 4.4: Comparison of background-subtracted distributions in B0
(s) → h+h

′− decays and equiv-
alent Monte Carlo distributions

∑
pT (a), LT (b), Δϕ0 (c), d0(B) (d), χ2

3D (e), d0(1) (f), d0(2) (g),
pT(1) (h), pT(2) (i). Data with the isolation requirement (points with error bars) are compared with
Monte Carlo simulation without isolation requirement (filled histogram). These plots refer to the loose
selection. Similar disagreement is observed for the tight selection.
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Figure 4.5: Comparison of background-subtracted distributions in B0
(s) → h+h

′− decays and equiv-
alent Monte Carlo distributions

∑
pT (a), LT (b), Δϕ0 (c), d0(B) (d), χ2

3D (e), d0(1) (f), d0(2) (g),
pT(1) (h), pT(2) (i). Data (points with error bars) are compared with reweighted Monte Carlo sim-
ulation (filled histogram). These plots refer to the loose selection. Similar agreement is observed for
the tight selection.
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4.2 B0
(s) → h+h

′− modes

In spite of the excellent CDF II mass-resolution, the B0
(s) → h+h

′− decay-modes are too closely spaced
in mass to be resolved; they overlap in a single peak (σ ≈ 38 MeV/c2), broader than the expected
mass resolution for an individual decay (σ ≈ 22 MeV/c2). Only the momenta of charged particles are
measured, while their masses are arbitrarily assigned to compute the invariant mass of the track pair.
Unfortunately, whatever mass assignment we choose (a single one for all modes), the invariant-mass
distributions of modes with mis-assigned masses are inevitably broadened. Even with an infinitely
precise mass resolution, their reconstructed invariant-mass would vary as a function of the momenta
of the outgoing particles. We chose the charged pion mass for both outgoing particles. Figure 4.6
shows the expected invariant ππ-mass distribution of the B0

(s) → h+h
′− decay-modes, resulting from

the Monte Carlo simulation of each mode normalized using the branching fractions derived from the
current experimental knowledge and theoretical predictions. The mis-assigned invariant ππ-mass of
the B0 → K+π− mode peaks at about 45 MeV/c2 lower than the nominal B0 meson mass, while the
invariant ππ-mass of the B0

s → K−π+ mode peaks at a value about 45 MeV/c2 higher, although 45
MeV/c2 lower than the nominal B0

s meson mass. The mis-reconstructed B0
s → K+K− decays centers

at the B0 meson mass, because the B0-B0
s mass difference approximately compensates the effect of

mis-identifying both kaons. While the mass r.m.s. width is approximately 22 MeV/c2 for the properly
reconstructed B0 → π+π− mode, the widths of other modes appear larger (about 30 MeV/c2), as a
consequence of wrong mass assignment.
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Figure 4.6: Invariant ππ-mass distribution of the simulated B0
(s) → h+h

′− decay modes.

The simulated invariant ππ-mass distribution of each mode shows the difficulty of the measure-
ments of the deacay rates. We need to disentangle the contribution of each involved process, making
sure to exploit all the available information provided by the detector. The following sections of this
chapter are devoted to the description of how we can use the kinematic information to disentangle the
B0

(s) → h+h
′− modes and to the description of the CDF II capabilities in the identification of charged
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particles in the final states.

4.3 Kinematic separation

We exploit the kinematic differences to discriminate amongst decay modes. These differences are
small, since the ≈ 90 MeV/c2 difference between B0

s and B0 masses, and the ≈ 350 MeV/c2 difference
between kaon and pion masses are small, compared with the typical energy of each outgoing particle
in the decay rest-frame (E ≈ 2.5 GeV).

Evaluating the different invariant masses resulting from all possible mass assignments to the par-
ticle pair (i. e., π+π−, K+π−, π+K−, and K+K−) for each event, induces unavoidable and large
correlations between the Likelihood terms, with complications for their description and use in the
fitting procedure [113]. In addition, this choice would considerably increase the number of observables
needed in the Likelihood function. If the contributions from the other modes (e. g., Λ0

b → pπ−) are
considered, additional observables add up to the set of fit observables. On the other hand, choosing
a single mass-assignment capable of discriminating the modes better than other assignments is disad-
vantageous. The resulting separation power remains limited whatever assignment is chosen, because
not all the available kinematic information is efficiently exploited.

In a decay of a particle into two bodies of momenta �p1 and �p2 and masses m1 and m2, the invariant
mass of the decaying particle satisfies the following relation:

m2
m1m2

=
(√

m2
1 + p2

1 +
√
m2

2 + p2
2

)2

− (�p1 + �p2)2. (4.2)

Similarly, the invariant mass of the pair resulting from a different mass assignment to the outgoing
particles is

m2
m1m2

=
(√

m2
1 + p2

1 +
√
m2

2 + p2
2

)2

− (�p1 + �p2)2, (4.3)

where the incorrect mass m1 (m2) is assigned to the particle with momentum �p1 (�p2) with, in general,
m1 �= m2 �= m1 �= m2. The difference between the mis-reconstructed and the true mass of the pair
can be written as:

m2
m1m2

−m2
m1m2

= (m2
1 +m2

2)− (m2
1 +m2

2) + 2 ·
(√

p2
1 +m2

1 ·
√
p2
2 +m2

2 −
√
p2
1 +m2

1 ·
√
p2
2 +m2

2

)
(4.4)

The relation (4.4) allows writing the invariant mass of the decay, m2
m1m2

, for any mass assignment to
the outgoing particles (m1,m2), as a function of three variables: an invariant mass m2

m1m2
obtained

from a single arbitrary choice of mass assignment, and the momenta of the outgoing particles p1 and
p2. After choosing a single mass-assignment for all events, thus obtaining the observable m2

m1m2
, of

which the p.d.f. is function, the Likelihood term corresponding to a given decay-mode is easily written
in terms of the nominal B0, B0

s or Λ0
b mass (i. e., the value of mm1m2 obtained with the correct mass

assignment for the given mode), and of the momenta of outgoing particles p1 and p2. Our choice of
the charged-pion mass (mπ) for the two particles yields

m2
ππ = m2

m1m2
+(m2

π+m2
π)−(m2

1+m2
2)+2·

(√
p2
1 +m2

π ·
√
p2
2 +m2

π −
√
p2
1 +m2

1 ·
√
p2
2 +m2

2

)
(4.5)
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For each event (i. e., for each set of observed mm1m2 = mππ and p1 and p2), eq. (4.5) takes different
forms, depending on the decay mode one is referring to. For the B0 → K+π− mode, for instance,
m1 = mK+ , m2 = mπ− or viceversa by construction, hence m2

m1m2
= mB0 .

The dedicated B0
(s) → h+h

′− trigger selects particles with transverse momenta larger than 2 GeV/c.
In this regime, the limit of relativistic decay-products is sufficiently accurate, m2

1,2,m
2
1,2 � p2

1,2, thus
eq. (4.5) can be expanded in the Taylor series up to O(m2/p2):

m2
ππ ≈ m2

m1m2
+
(

1 +
p1

p2

)(
m2
π −m2

2

)
+
(

1 +
p2

p1

)(
m2
π −m2

1

)
. (4.6)

Neglecting terms of order O(m2/p2), eq. (4.5) is function only of the ratio of p1/p2 and not of the
individual momenta p1 and p2. For this reason it is convenient to write eq. (4.5) as a function of the
“momentum imbalance” p1/p2 and of a second variable such that p1 and p2 are univocally determined
once the momentum imbalance and this variable are known. The ideal candidate is the scalar sum of
momenta of the particles, ptot = p1 + p2. In this way the momentum imbalance appears explicitly in
the relation and the momentum information is summarized using a set of quantities (p1/p2, ptot) less
correlated than (p1, p2). In principle one could use the approximated eq. (4.6) instead of the exact
eq. (4.5) and describe the kinematic of the decays using only two variables (mππ, p1/p2). However,
when the contributions from Λ0

b → ph− decays are not negligible, the relativistic approximation is
less accurate. In case of the proton the terms O(m2/p2) cannot be neglected. For example in Ref. [1],
where the contribution from Λ0

b → ph− decays was negligible, the relation (4.6) was used to describe
the kinematics of the B0

(s) → h+h
′− decays, using only two variables (mππ, p1/p2).

The advantage of this approach consists in the fact that all kinematic information is summarized
in just three, loosely correlated, variables (mππ, p1/p2 and ptot), while a larger number of strongly-
correlated variables would have been needed if all mass assignments had been used in the Likelihood.
Also, eq. (4.6) means that m2

ππ is determined mainly by p1/p2, with only a small correction related
to ptot.

Charge-kinematics flavor tagging

By combining charge information with kinematic information, one can gain separation power between
K+π− and K−π+ (also between ph− and p̄h+) final states.

We label the outgoing particles according to the increasing magnitude of their momenta, index “1”
labels the charge (q1), mass (m1), and momentum (�p1) of the lower momentum particle in the decay,
index “2” labels the corresponding quantities of the higher momentum particle. Then we define a
“signed momentum-imbalance” as

α =
(

1− p1

p2

)
× q1, (4.7)

which takes values in the finite interval [−1, 1]. Equation (4.5) can be rewritten in terms of α and ptot
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as:

m2
ππ = m2

m1m2
+ 2m2

π − (m2
1 +m2

2)

+ 2

√(
1− |α|
2− |α|ptot

)2

+m2
π ·
√(

1
2− |α|ptot

)2

+m2
π

− 2

√(
1− |α|
2− |α|ptot

)2

+m2
1 ·
√(

1
2− |α|ptot

)2

+m2
2 (4.8)

where m1 (m2) is the mass of the lower (higher) momentum particle and where

p1 =
1− |α|
2− |α|ptot (4.9)

p2 =
1

2− |α|ptot (4.10)

Table 4.1 reports the analytical expressions for the average invariant ππ-mass of the decay, as a
function of the signed momentum imbalance α and the scalar sum of momenta of the particles ptot, for
each specific mode. The formulas are obtained by solving eq. (4.8) for mππ, and replacing all masses
with the nominal values appropriate to each decay mode. For each mode, and for every value of α
and ptot, the observed ππ-invariant mass is distributed as the mass resolution templates extracted in
sec. 6.3, owing to the detector resolution smearing of the natural width of the B0

(s) meson. The mean of
the distribution is labeled asM2(α, ptot) ≡ E[m2

ππ(α, ptot)], where E[x] indicates the expectation value
of the random variable x (see tab. 4.1). The mean of the invariant-mass distribution,M(α, ptot), shifts
as a function of the signed momentum imbalance and the scalar sum of particles momenta. The gain
in information due to this mass-momentum correlation over the simpler invariant mass information
comes from the differences among shifting patterns amongst the different modes. The distributions
of invariant ππ-mass as a function of the signed momentum-imbalance for simulated B0

(s) → h+h
′−

decays are shown in figs. 4.7 and 4.8. In spite of the smearing effect of the mass resolution, the
different trends of the different modes are visible. Differences between B0 → K+π− and B

0 → K−π+

decays, between B0
s → K−π+ and B

0

s → K+π− decays and between Λ0
b → pπ−(Λ0

b → pK−) and
Λ

0

b → pπ+(Λ
0

b → pK+) are also visible. The latter are used to measure the CP-violating decay-rate
asymmetry in these modes. The shape of the B0 → π+π−(B0

s → π+π−) mode is obviously a straight
line centered at the B0(B0

s ) meson mass, since the chosen mass assignment is correct for this mode.
A small kinematic separation is expected between B0 → π+π− and B0

s → K+K− modes, because the
B0
s → K+K− curve is also approximately constant, and it overlaps the B0 → π+π−curve. However,

an increased separation between these two modes is provided by the PID information, since both
particles in final states are different.

The separation power among the modes given by the ptot variable is small, order O(m/p), and since
it is not possible to visualize in a three-dimensional space a four-dimensions surface (mππ, α, ptot and
z−axis), in the illustrations only the correlations between the invariant ππ-mass and α are plotted.
ptot has a limited separation power for the signal modes, but it provides a mild discrimination between
all signals and background (see sec. 6.5) and in combination with α, it gives an univocal determination
of (p1, p2) necessary to exploit the PID information (see sec. 6.6).
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mode M2[p1(α, ptot), p2(α, ptot)] α < 0

B0 → π−K+ m2
B0 + (m2

π −m2
K) + 2 ·

√
p21 +m2

π ·
(√

p22 +m2
π −
√
p22 +m2

K

)
B

0 → K−π+ m2
B0 + (m2

π −m2
K) + 2 ·

√
p22 +m2

π ·
(√

p21 +m2
π −
√
p21 +m2

K

)
B0/B

0 → K−K+ m2
B0 + 2 · (m2

π −m2
K) + 2 ·

(√
p21 +m2

π ·
√
p22 +m2

π −
√
p21 +m2

K ·
√
p22 +m2

K

)
B0/B

0 → π−π+ m2
B0

B
0
s → π−K+ m2

B0
s

+ (m2
π −m2

K) + 2 ·
√
p21 +m2

π ·
(√

p22 +m2
π −
√
p22 +m2

K

)
B0

s → K−π+ m2
B0

s
+ (m2

π −m2
K) + 2 ·

√
p22 +m2

π ·
(√

p21 +m2
π −
√
p21 +m2

K

)
B0

s/B
0
s → K−K+ m2

B0
s

+ 2 · (m2
π −m2

K) + 2 ·
(√

p21 +m2
π ·
√
p22 +m2

π −
√
p21 +m2

K ·
√
p22 +m2

K

)
B0

s/B
0
s → π−π+ m2

B0
s

Λ0
b → π−p m2

Λ0
b

+ (m2
π −m2

p) + 2 ·
√
p21 +m2

π ·
(√

p22 +m2
π −
√
p22 +m2

p

)
Λ

0
b → pπ+ m2

Λ0
b

+ (m2
π −m2

p) + 2 ·
√
p22 +m2

π ·
(√

p21 +m2
π −
√
p21 +m2

p

)
Λ0

b → K−p m2
Λ0

b
+ 2m2

π − (m2
K +m2
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(√
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π ·
√
p22 +m2

π −
√
p21 +m2

K ·
√
p22 +m2

p

)
Λ

0
b → pK+ m2

Λ0
b

+ 2m2
π − (m2

p +m2
K) + 2 ·

(√
p21 +m2

π ·
√
p22 +m2

π −
√
p21 +m2

p ·
√
p22 +m2

K

)
mode M2[p1(α, ptot), p2(α, ptot)] α > 0

B
0 → π+K− m2

B0 + (m2
π −m2

K) + 2 ·
√
p21 +m2

π ·
(√

p22 +m2
π −
√
p22 +m2

K

)
B0 → K+π− m2
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√
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√
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K
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(√
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√
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K

)
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B0
s

+ (m2
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π −
√
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K
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B

0
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√
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√
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Λ
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√
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Table 4.1: Upper table: M2(α, ptot) for α < 0 (i.e. the negative particle carries smaller momentum).
Lower table: α > 0 (i.e. the positive particle carries smaller momentum). For simplicity, the formulas
in the tables are written as functions of p1 and p2, instead of α and ptot.
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Figure 4.7: Invariant ππ-mass of the simulated B0
(s) → h+h

′− and Λ0
b → ph− decays as a function of
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The same features are more evident in fig. 4.9, where the distributions of figs. 4.7 and 4.8 are
mππ-averaged within each bin (profile plots) to remove the effect of mass-resolution smearing. A
general feature of these plots is that slopes are enhanced at the boundaries of the α domain (|α| ≈ 1),
suggesting that the kinematic separation is more effective in the decays where the momenta of the
final particles are strongly unbalanced.
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4.4 Particle Identification (PID)

Hadron identification is difficult at CDF II, since the detector was designed for high-pT physics mea-
surements [114]. The TOF is the only detector entirely devoted to this function, but its performance
is marginal for particles with momenta greater than 2.0 GeV/c. Similarly, specific ionization from
the silicon tracker is of little help, because its identification power is only effective for particles with
pT

<∼ 800 MeV/c.2 For charged particles with pT � 2 GeV/c, a reasonably effective separation can
be obtained from the rate of energy loss through ionization (dE/dx ) in the gas that fills the active
volume of the drift chamber.

The average total energy-loss per unit length of a particle (heavier than the electron) of charge q
traversing a gas volume with velocity cβ is approximated by the Bethe-Bloch formula [115]〈

dE
dx

〉
=

4πNe4

mec2β2
q2
[
ln
(

2mec
2β2γ2

I

)
− β2 − δ(β)

2

]
, (4.11)

where N is the electron density in the medium, me (e) is the electron mass (charge), I is the mean
excitation energy of the medium atoms, and δ(β) is the correction that accounts for the density
effect at high velocities. To a good approximation, the most probable dE/dx value of a charged
particle is a function of its velocity. If the momentum of the particle is measured, the mass can
also be determined. In the COT, the signal induced on each sense-wire depends on the amount of
ionization charge produced by the passage of the charged particle near the wire. It is measured in
nanoseconds because it is encoded as the digital pulse-width between the leading and the trailing-edge
time of the hit. Multiple samplings along the trajectory of the charged particle allow a more reliable
estimation of dE/dx , which has usually a broad distribution. The COT samples a maximum of 96
dE/dx measurements per track, from which a 80% truncated mean is calculated to avoid the adverse
effect of long positive tails in the estimation of the average dE/dx .

The empirical equation that better models the COT average energy-loss as a function of velocity
is the following variant of the Bethe-Bloch curve:〈

dE
dx

〉
=

1
β2

[
c1 ln
(

βγ

b+ βγ

)
+ c0

]
+ a1(β − 1) + a2(β − 1)2 + C, (4.12)

with ai, b, cj , and C parameters extracted from data. The above function has all the features that are
present in the Bethe-Bloch curve (eq. (4.11)). The parameters c0 and c1 represent the intensities of
the 1/β2 fall and of the relativistic rise. The parameter b is associated with the COT gas properties,
e. g., mean excitation energy of the gas atoms, etc.. The parameters a1 and a2 provide a further
adjustment, especially in the low βγ region.

The individual charge collections output by the COT are subject to several corrections (hit-level
corrections), applied in the off-line production (sec. 2.5), to eliminate a number of detector related con-
ditions: hit merging, electronic pedestal subtraction, path-length correction high-voltage correction,
z correction, angle and drift distance corrections, wire correction, super-layer correction, and pressure
correction. An exhaustive description of these corrections can be found in [4, 116] In addition to the
hit-level corrections [116] an accurate calibration of the uniformity of the dE/dx response in time

2A separation equivalent to the one between two equal Gaussian distributions spaced by one standard deviation

apart is obtained for kaons and pions at this momentum.
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(a) (b)

Figure 4.10: Experimental dE/dx as a function of βγ. The fit function eq. (4.12) is overlaid (continuous
line). Negative particles (a), positive particles (b). The electrons are in red, the muons are in green,
the kaons in yellow, the pions in blue and the protons in magenta.

and over the chamber volume was required. These were determined using track-oriented parame-
ters (like ϕ0, η, hit multiplicity and time) which allowed complementary corrections accounting for
some “macroscopic” effects (i.e. the track length dependence). This improved the PID performance
in terms of separation power to distinguish different classes of particles and reduced the effects due
to the correlations between the dE/dx response of tracks. Understanding the dE/dx correlations is
crucial to avoid bias in the estimate of physical observables.

The details of the calibration procedure are reported in [4], in the next sections we will describe
only the relevant results: the dE/dx performance and the templates used to model the dE/dx response
[119], and what we needed to change for the purpose of the present analysis.

4.4.1 dE/dx calibration samples

To perform the calibration and to parameterize the templates to model the dE/dx response of each
particle, the real data were used, exploiting the rich available control samples. In order to describe
correctly the signal and the background we need a model for all particle types.

pions and kaons − For pions and kaons an huge sample of � 1.5 × 106 D0 → K−π+ decays from
the decay chain D∗+ → D0π+ → [K−π+]π+ was used. This sample was described in sec. 5.5
since it was used as control sample in the parameterization of the invariant mass distribution.
In this context it is even more important, in fact the final states of B0

(s) → h+h
′− modes

and of the dominant backgrounds contain charged kaons and pions, therefore this copious and
pure sample is ideal for calibration and parameterization. Moreover, this sample was collected
by the B CHARM(B CHARM HIGHPT) triggers (see sec. 3.2.2), a path belonging, along with the
B PIPI(B PIPI HIGHPT) path, to the Displaced-Tracks Trigger. A large fraction of trigger re-
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quirements is common to these two paths. Most trigger-dependent effects on the dE/dx of
B0

(s) → h+h
′− final states are automatically accounted for the calibration and for the templates

parameterization.

protons − A sample of Λ0 → pπ− decays was used to calibrate the proton response. These two-
body decays were reconstructed with the same prescription of the B0

(s) → h+h
′− decays, (see

sec. 3.3) and were collected using the same B PIPI(B PIPI HIGHPT) trigger path (see sec. 3.2). It
is important to notice that the Λ0 → pπ− decays are volunteers in the B PIPI(B PIPI HIGHPT)
trigger path, because one of two tracks in the final state (in most of cases the pion) does not
satisfy the trigger requirements. This is due to the small energy available in the Λ0 rest frame
(mΛ0 −mp −mπ � 38 MeV/c2) and because of mB0 ≈ 5mΛ0 . The trigger requirements on the
transverse momentum of the particle pT > 2 GeV/c, on the scalar sum of the transverse momenta
of the particles

∑
pT > 5.5 GeV/c and on the invariant ππ-mass requirement 4 < mππ <

7 GeV/c2 suppress almost totally the signal. For these reasons, the trigger cuts confirmation
was required only for the proton.

The invariant pπ-mass distribution of the resulting samples selected with the requirement sum-
marized in tab. 4.2 are shown in fig. 4.11. A simple binned χ2-fit of the distribution to a double
Gaussian function for the signal, over a straight line function for the background, provides an
estimate of about 124,000 signal events. The signal is centered at about 1115.79 GeV/c2, with
about 1.19 MeV/c2 average r.m.s. deviation, and ≈ 70 signal-to-background ratio at the peak.
The kinematics allows a total separation between Λ0 → pπ− and Λ

0 → pπ+.

electrons and muons −We used a sample of electrons coming from γ conversions to parameterize
the dE/dx templates. A small fraction of electrons in the B0

(s) → h+h
′− background is expected

from semileptonic decays of heavy flavors. For particles with transverse momentum greater than
2 GeV/c and with the available dE/dx response the muons can be considered indistinguishable
from pions. This assumption was verified complementing the sample of pions, kaons and protons
with a sample of muons from a sample of J/ψ → μ+μ− decays. For this reason and since a
large fraction of muons is unlikely, the background of muons and pions in this analysis will be
considered as an unique background of pions.

4.4.2 dE/dx residual

The dE/dx residual (in mA mass hypothesis) of a charged particle with momentum p and observed
specific energy-loss dE/dx obs, is defined as

δA =
dE
dx obs

− dE
dx A

, (4.13)

where dE/dxA is the expected dE/dx , determined from the function eq. (4.12) evaluated at βγ =
p/mA.
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Quantity of the track Units Requirement
pT(p) GeV/c > 2.0
|η(p)| − < 1.0
|d0(p)| μm [100, 1000]
Quantity of the candidate
q(p)× q(π) e2 −1
d0(p)× d0(π) μm2 < 0
corr((d0(p), d0(π))) μm < 51
LT cm > 0.85∑
pT GeV/c > 1.1

|d0| μm < 70
|z0(p)− z0(π)| cm < 2
χ2

T − < 10
mππ GeV/c2 [0.1, 1.5]

Table 4.2: Summary of the off-line selection used to reconstruct the Λ0 → pπ− decays.
corr((d0(p), d0(π))) is a variable related to the correlation between the proton and the pion impact
parameters. It selects a region in the two-dimensional space ((d0(p), d0(π))), for more details see
[119, 120].
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Figure 4.11: Invariant Kπ-mass of the D0 → K−π+ reconstructed from D∗+ → D0π+ → [K−π+]π+

decays passing the selection summarized in tab. 5.4 (a). Invariant pπ-mass for the Λ0 → pπ− decays
passing the selection summarized in tab. 4.2 (b).

4.4.3 Separation power

Given a PID-related observable, (the dE/dx residual, for instance) the identification performance
relies on the difference in the distributions of the chosen observable between the classes of events to be
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identified. Such difference is generally expressed in terms of a separation between those distributions.
The achieved separation power depends on the variable used to measure it, and a wise choice of the
variable (or set of variables) may enhance the actual separation. To find the optimal variable, we
checked a few combinations of observed dE/dx , expected dE/dx , and dE/dx resolutions. We chose to
use dE/dx residuals with pion mass hypothesis, δπ, since no significant enhancements in separation
were found by using other variables.

We evaluated the separation using the sample of kaons and pions from candidates with mass
within ±2σ from the nominal D0 mass. Following the approach described in Ref. [121], the resulting
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Figure 4.12: Distribution of dE/dx around the average pion response for negatively (a) and positively-
charged (b) particles. Pions (continuous black line) and kaons (dashed red line) from D0 → K−π+

decays.

separation between pions and kaons from the D0 → K−π+ decays is 1.53σ for positively-charged
particles, and 1.50σ for negatively-charged particles, approximately constant in the momentum range
of interest 2 <∼ p <∼ 20 GeV/c. Since the separation power depends on the specific proportions among
classes of events present in the sample, the above values hold only for samples with approximately
equal contributions from pions and kaons.

4.4.4 Correlations

Figure 4.13 shows the distribution of the residual for kaons (with kaon hypothesis) as a function of the
residual for pions (with pion hypothesis) and the same two-dimensional distribution of the residual
for protons (with proton hypothesis) as a function of the residual for pions (with pions hypothesis).
A non-zero, positive correlation is visible from the shape of the distributions, corresponding to a
correlation coefficient ρ � 6.6% for kaons and pions from D0 → K−π+ decays and ρ � 7.9% for
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Figure 4.13: Residual for pions (with pion hypothesis) as a function of the residual for kaons (with
kaon hypothesis) (a,b). Residual for pions (with pion hypothesis) as a function of the residual for
protons (with proton hypothesis) (c,d).

protons and pions from Λ0 → pπ− decays.3 This correlation is dangerous for the present analysis.
While a small separation power only degrades the statistical uncertainty on the relative fractions of
the different signal modes, a large correlation strongly biases the central values. Therefore this effect
was carefully studied and parameterized.

With an ideal PID detector, no correlation is expected between independent measurements. A non-
vanishing correlation indicates the presence of residual dE/dx gain variations from event to event. An
uncorrected gain variation would induce a correlation between the observed ionizations of distinct par-
ticles, through the inevitable correlations present in the calibration sample. The sources of correlation

3The correlation coefficient in this case is ρ =
E[δπ×δK(p)]−E[δπ ]×E[δK(p)]

σδπ ×σδK(p)
, in which E[x] indicates the expected

value of x, and σ are sample standard-deviations.
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can be divided into two groupes:

Global effects – these are all the effects unrelated to the kinematics. Suppose the dE/dx shows gain
variations as a function of the instantaneous luminosity: dE

dx = dE
dx (βγ,L). Then, since the kaon

and the pion from a D0 decay are reconstructed in the same event (e. g., in the same conditions
of luminosity), their observed dE/dx would appear correlated by the common dependence on
luminosity. This may apply to a variety of global variables, such as time, pressure or temperature
of the gas, and so forth.

Local effects – these are all effects related to kinematics. Suppose that the dE/dx shows gain
variations as a function of the azimuthal angle of emission of the particle: dE

dx = dE
dx (βγ, ϕ0).

Then, since the azimuthal angle of a kaon and a pion from a D0 decay are correlated by the
kinematic of the decay and by the selection cuts, their observed dE/dx would become correlated.
This may apply to a variety of local variables, such as η, z0, hit multiplicity, etc.

We investigated the combined effect of all possible residual gain variations by allowing for a generic,
time-dependent common-mode fluctuation c(t) that affects and correlates the observed dE/dx values
of the tracks in the event. In particular, we extracted the variance (σ2

c ) of the distribution of the
common mode, as an estimator of the size of the correlation. We denote the probability distribution
of the dE/dx residual for pions (with pion mass-hypothesis) as ℘π(δπ), with standard deviation σπ. A
similar notation is used for kaons. If δπ and δK were independent variables, the probability distribution
of their sum (δK + δπ) would satisfy

℘(δπ + δK) = ℘π(δπ) ∗ ℘K(δK), (4.14)

in which the symbol ∗ indicates the Fourier convolution product.4 Similarly, their difference δπ − δK
would be distributed as

℘(δπ − δK) = ℘π(δπ) ∗ ℘−K(−δK), (4.15)

where ℘−K(−δK) is the distribution of the negative residual for kaons (dE
dx K

− dE
dx obs

), whose variance
satisfies the condition σ2

K = σ2
−K . Since the variance of a convolution product is the sum of variances

of the convoluted distributions, the standard deviations of the distributions of sum and difference are
equal:

σπ+K = σπ−K =
√
σ2
π + σ2

K . (4.16)

On the other hand, if the two residuals are correlated by a common-mode fluctuation, the observed
residual (δobs) is written as the sum of the intrinsic, uncorrelated residual with the common-mode
shift:

δobs
π = δπ + c and δobs

K = δK + c. (4.17)

Therefore, the sum of the observed residuals, δobs
π + δobs

K = δπ + δK + 2c, is distributed as

℘(δobs
π + δobs

K ) = ℘π(δπ) ∗ ℘K(δK) ∗ ℘c(2c), (4.18)

whereas their difference, δobs
π − δobs

K = δπ + c− δK − c = δπ − δK , is distributed as

℘(δobs
π − δobs

K ) = ℘π(δπ) ∗ ℘−K(−δK). (4.19)
4Henceforth, “convolution” always denote the Fourier convolution product.
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Equations (4.18) and (4.19) show that, in presence of a common mode, the sum of residuals has
greater variance than their difference, σ2

π+K > σ2
K−π. The standard deviation of the correlation is

easily obtained:

σc =
1
2

√
σ2
π+K − σ2

π−K . (4.20)

Following eq. (4.20), we used the distributions of sum and difference of the observed residual to
estimate the magnitude of time-dependent common modes. For Λ0 → pπ− decays, the standard
deviation of the time-dependent common-mode is:

σc =
1
2

√
σ2
π+p − σ2

π−p. (4.21)
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Figure 4.14: Distribution of the sum (black continuous line) and difference (red dashed line) of residuals
for a kaon (in kaon hypothesis) and a pion (in pion hypothesis) from a D0 decay.
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4.4.5 Model of the dE/dx distributions

Using the dE/dx information in a Likelihood fit requires modeling the distributions of the desired
observables. It is convenient to stress the difference between observed dE/dx quantities, i. e., those
affected by common-mode fluctuations, and intrinsic quantities, the quantities which would have been
observed if the correlations were not present. Since the intrinsic residuals and the correlation are, by
construction, independent variables (see eq. (4.17)), the (known) distribution of the observed residuals
is the convolution of their unknown distributions:

℘(δobs) = ℘(δ + c) = ℘(δ) ∗ ℘(c). (4.22)

The model of the intrinsic residuals, ℘(δ), and of the correlations, ℘(c), were extracted from the
distributions of the observed residuals, ℘(δobs), of pions and kaons from D0 decays. We expanded each
term of the right-hand side of eq. (4.22) in sum of Gaussian distributions, and we fit the distributions
of the observed residuals to extract the unknown parameters. In practice, the first three terms of the
expansion were sufficient to model accurately the intrinsic residuals and correlations:

℘K(δK) = q′ · GK′(δK) + q′′ · GK′′(δK) + (1− q′ − q′′) · GK′′′(δK) (4.23)

℘π(δπ) = p′ · Gπ′′(δπ) + p′′ · Gπ′′(δπ) + (1− p′ − p′′) · Gπ′′′(δπ) (4.24)

℘c(c) = r · Gc′(c) + (1− r) · Gc′′(c) (4.25)

where we used the following notation for the Gaussian distribution:

Gs(x) = G (x;μs, σs) =
1

σs
√

2π
e
− (x−μs)2

2σ2
s .

Independent parameterizations were assumed for the distributions of intrinsic residuals for positively
and negatively-charged particles. Mean (μ), variance (σ2) and fraction of each Gaussian were deter-
mined with a simultaneous, binned ML fit of the following combinations of observed residuals:

℘K(δobs
K ) = ℘(δK) ∗ ℘(c) = (GK′ + GK′′ + GK′′′) ∗ (Gc′ + Gc′′) (4.26)

℘π(δobs
π ) = ℘(δπ) ∗ ℘(c) = (Gπ′ + Gπ′′ + Gπ′′′) ∗ (Gc′ + Gc′′) (4.27)

℘(δobs
π + δobs

K ) = (Gπ′ + Gπ′′ + Gπ′′′) ∗ (GK′ + GK′′ + GK′′′) ∗ (G2c′ + G2c′′) (4.28)

℘(δobs
π − δobs

K ) = (Gπ′ + Gπ′′ + Gπ′′′) ∗ (G−K′ + G−K′′ + G−K′′′), (4.29)

where the relative normalization factors (p, q, r) were included in the fit, but omitted above for a
clearer notation. If in the equations above (eqs. (4.23)–(4.29)) we replace the kaon index (K) with
the proton index (p) we obtain the equivalent relations to model the probability density functions
of protons and pions from Λ0 → pπ− decay. In this case we parameterized a different correlation
function with respect to the D0 → K−π+ case since we used a different sample.

The technique used to extract the parameters of the dE/dx templates, of the intrinsic residuals and
correlation, is based on an iterative method of one-dimensional binned fits of the distributions of δobs

π ,
δobs
K , δobs

π +δobs
K and δobs

π −δobs
K . The details of the parameterization can be found in [117, 118, 4, 119].
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Figure 4.15: Distribution of observed dE/dx residual (℘(δobs) = ℘(δ + c) = ℘(δ) ∗ ℘(c)), for pions
(with pion mass hypothesis) (a,b), for kaons (with kaon mass hypothesis) (c,d) and for protons (with
proton mass hypothesis) (e,f). The results of the fit to the functions in eq. (4.27) and eq. (4.26) are
overlaid (blue, solid line).
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Figure 4.16: dE/dx probability density for the intrinsic residuals ℘(δ) (blue solid line) and the corre-
lation ℘(c) (dashed red line) for pions (with pion mass hypothesis) (a,b), for kaons (with kaon mass
hypothesis) (c,d) and for protons (with proton mass hypothesis) (e,f). In the illustration ℘(δ) is
correctly normalized to 1, while ℘(c) is normalized to 1/20.
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Figure 4.17: Distribution of the sum (a,b) and the difference (b,d) of the residuals for a kaon (in kaon
hypothesis) and a pion (in pion hypothesis) from D0 → K−π+ decay and of residuals for a proton
(in proton hypothesis) and a pion (in pion hypothesis) from Λ0 → pπ− decay. The results of the fit
to the functions in eq. (4.28) and eq. (4.29) are overlaid (blue, solid line).

Figures 4.15 and 4.17 show a satisfactory agreement between the chosen model and the distributions
of the observed residuals and correlations. Although we allowed for independent residual distributions
for kaons, pions and protons (negative and positive particles) the extracted shapes are similar, all
showing non-Gaussian positive tails. The differences between the residuals of positively and negatively-
charged particles are tiny. These small differences between kaons and pions and between positively
and negatively-charged particles have been ascribed to a systematic dependence of the dE/dx response
on track curvature, caused by the geometric and electrostatic asymmetry of the COT drift-cells. For a
given Lorentz boost, the trajectories of charged particles with different masses or charge have different
curvatures, and are sensitive to the systematic effects in the efficiency of charge-collection of the COT
sense-wires.
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Figure 4.16 shows the extracted probability density functions for the intrinsic residuals and for
correlation. We extracted two models for the correlation function: one from the D0 → K−π+ sample
and the other one from the Λ0 → pπ− sample. Both models show a non negligible correlation, as
expected from the distributions of the sum and the difference of the residuals. These correlation
functions show small differences. The correlation function extracted from pions and kaons from
D0 → K−π+ decays has a tighter RMS than the correlation extracted from protons and pions from
Λ0 → pπ− decays. The core of the distribution is centered at zero for D0 → K−π+ decays, while it
is shifted by ≈ 0.06 ns for Λ0 → pπ− decays (see fig. 4.18).
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Figure 4.18: Correlation probability density functions for pions and kaons from D0 → K−π+ decays
(a), for pions and protons from Λ0 → pπ− decays (b).

4.4.6 Sample dependence of correlation

The correlation was introduced in the previous section by allowing a generic, time-dependent common-
mode fluctuation that affects and correlates the dE/dx values in the event. We saw that the correlation
can originate from either “global effects” and “local effects” (see sec. 4.4.4). We want point out that
the correlation shape depends on the sample used to extract its parameterization, while the intrinsic
residuals are independent of the sample.

We know that the correlation can be sample dependent, because it is due to the local effects
related to the kinematics of the process (for example the azimuthal opening angle (Δϕ0) distribution
is different for the B0

(s) → h+h
′−, D0 → K−π+and Λ0 → pπ− decays), but the gain variations of the

dE/dx response due to the kinematics differences are reduced greatly by the track-based corrections
and then we expect very small differences due to the different kinematics of the processes.

It is important to notice that the correlation shape is different if we consider two or more sub-
samples of the same kinematic process. This is due to the fact that the correlation is the parameteri-
zation of a time-dependent common-mode fluctuation and it is extracted by averaging over the whole
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data sample, in our case the D0 → K−π+ and Λ0 → pπ− decays in 1 fb−1 of integrated luminos-
ity. For this reason if we take two different samples, for example the D0 → K−π+ decays and the
B0

(s) → h+h
′− decays in 1 fb−1 of integrated luminosity, and if we assume that the correlation due

to the different kinematics is negligible, we expect to find the same correlation only if the efficiency
ratio of data collection for two samples is a constant over time. Although the calibration sample
(D0 → K−π+ decays) used to calibrate and to model the dE/dx response of pions and kaons and
the B0

(s) → h+h
′− decays was collected using two very similar configuration of the Displaced-Tracks

Trigger (see sec. 3.2), B CHARM (B CHARM HIGHPT) for D0 → K−π+ and B PIPI (B PIPI HIGHPT) for
B0

(s) → h+h
′− decays, the efficiency ratio is not perfectly constant during the time.

The entire procedure to extract the dE/dx probability density functions is finalized to param-
eterize the intrinsic residuals for pions, kaons and protons and the probability density functions of
the correlation in the different calibration samples. Since the correlation shape has some small but
non-negligible variations due to the sample dependence while the intrinsic residuals is independent of
the sample, in the fit of composition (see chap. 6) to separate the individual channels we will use the
℘ of the intrinsic residuals while we will fit the correlation shape to be insensitive to these sample
variations.
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4.4.7 PID observable: kaonness

Particle identification information was summarized in a single observable for each charged particle,
the “kaonness” κ, defined as

κ =
dE/dx obs − dE/dxπ
dE/dxK − dE/dxπ

. (4.30)

The average of this quantity is, by construction, zero for pions and one for kaons, with almost
momentum-independent distribution for both types of particles (see fig. 4.19). This is particularly
convenient in our case, since all B0

(s) → h+h
′− modes have only pions and kaons in their final states,

and also the background composition is expected to be dominated by these particles.
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Figure 4.19: The kaonness κ for pion and kaons from D0 → K−π+ decays reconstructed from D∗+ →
D0π+ → [K−π+]π+ decays. Negative particles (a), positive particles (b).

To appreciate the separation power of the dE/dx response among the signal modes we simulated
the B0

(s) → h+h
′− and Λ0

b → ph− decays in agreement with the dE/dx p.d.f. extracted in the previous
section and the momenta distributions extracted from the Monte Carlo for both particles. Following
the same notation of sec. 4.3 where we labeled the outgoing particles according to increasing momenta,
index “1” labels the charge (q1), mass (m1), momentum (�p1) and kaonness (κ1) of the lower momentum
particle in the decay, index “2” labels the corresponding quantities of the higher momentum particle,
we can look at the two-dimensional probability density function ℘(κ1, κ2). According with charge-
kinematics flavor tagging (see tab. 4.1) we divided the decays in two categories: α > 0 (namely q1 > 0)
and α < 0 (namely q1 < 0). Figures 4.20 and 4.21 show the probability density function ℘(κ1, κ2) for
the B0

(s) → h+h
′− and Λ0

b → ph− decays in the space α > 0. To obtain the equivalent distribution
for α < 0 it is sufficient to invert κ1 ↔ κ2.
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Figure 4.20: Probability density function ℘(κ1, κ2) for the B0 → h+h
′− decays in the space α > 0.

To obtain the equivalent distribution for α < 0 it is sufficient to invert κ1 ↔ κ2. Similar probability
density functions are obtained for B0

s meson meson decys.
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Figure 4.21: Probability density function ℘(κ1, κ2) for the Λ0
b → ph− decays in the space α > 0. To

obtain the equivalent distribution for α < 0 it is sufficient to invert κ1 ↔ κ2.
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The effective separation among final states consisting in particle pairs, like in our case (between
π+π− and K+K−, between π+K− and K+π−) corresponds to 1.5σ ·√2 � 2.1σ. This achievement is
important. In particular if we consider that the kinematics and the dE/dx are perfectly complementary
and they allow a very good separation among the individual modes. For example the kinematic
separation power between the B0 → π+π− and B0

s → K+K− modes is almost null (see figs. 4.7 and
4.8), while the dE/dx power separation is maximum , about 2σ (see fig. 4.22). In the chap. 6 we will
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Figure 4.22: Probability density function ℘(κ1, κ2) for the B0
(s) → h+h

′− decays in the space α > 0.
To obtain the equivalent distribution for α < 0 it is sufficient to invert κ1 ↔ κ2.

describe the fit of composition: all the available information from kinematic and PID observables will
be condensed in a Likelihood function to exploit the global separation power between each modes.
Before describing the fit of composition, in chap. 5 we will discuss a crucial ingredient to disentangle
the different decay modes: the invariant mass line shape.



Chapter 5

Mass templates

This chapter is devoted to the accurate determination of the invariant mass line shape. This is a
crucial ingredient for extracting the physical observables of interest, in particular, when there are two
or more closely spaced signals to be separated like in our case. Therefore we studied in detail all the
resolution effects with particular attention to the tails at low masses due to the emission of low-energy
photons from charged kaons and pions in the final state (Final State Radiation, FSR). We developed
our own Fast Monte Carlo as a way to include the most recent QED calculations and to allow easy
tuning of the finer details of the mass line shape.

5.1 Introduction

An important ingredient of kinematic fits of samples containing one or more decay modes is the accu-
rate knowledge of the invariant mass distribution of each signal mode. This is particularly important
when there are two or more closely spaced signals to be separated. The results may strongly de-
pend on the detailed shape on the invariant mass distribution, thus an accurate description of the
mass line shape, including the tails, is crucial to obtain correct results. This is just the case of the
rare B0

s → K−π+ decay mode, expected to appear on the tail of more abundant decay modes as
B0 → K+π−, B0 → π+π− and B0

s → K+K−.

Past studies comparing the CDF Monte Carlo mass resolution to real data found only approximate
agreement, with data showing somewhat worse resolution and larger tails [1, 122]. Some kind of tuning
of the simulation was required to reproduce the data. The issue is complicated by the emission of low-
energy photons from charged particles in the final state (Final State Radiation, FSR), which distorts
the distributions of kinematic variables due of the unreconstructed photon momentum. This effect
modifies the distribution of the invariant mass of each signal mode, generating a tail at low masses.

In this chapter we describe the software tool we developed to obtain reliable line shapes of invariant
mass peaks at least in the simplest and most common cases. The first ingredient is a simple Monte
Carlo describing the kinematics of the decay; the second a detailed parameterization of the resolution
functions of individual track parameters; the third ingredient is the simulation of FSR based on
accurate formulas from recent QED calculations [123, 124, 125]. These formulas are the same used

109
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in measuring precision branching fractions for two–body B0 → h+h
′− modes in a recent BABAR

publication [63]. These QED formulas are claimed to be more accurate [124], for the applicable
decays, than currently available simulations packages like photos [126]. The idea is to use this Monte
Carlo program to generate distributions of mass and other kinematic variables for resonances for which
large samples of real data are available. By comparing the results with a few real data samples, we
can fit for the parameters of the resolution functions of individual track parameters until we get a
good description of the data.

This approach is expected to be more reliable than the methods used in the past [1, 3, 4], based
on tuning the mass distribution itself on some reference signal, and then trying to extrapolate the
results to a different signal. The present approach, instead, is based on tuning the resolution track
quantities (e. g., track curvature) and it is independent from the reference signal chosen. In particular
this approach guarantees an easy and safe extrapolation of the mass line shape of interest since the
invariant mass resolution depends directly on these quantities in the same way for each decay mode
given the momentum distribution and the mass of mother particle.

Using a standalone code in place of a full simulation makes it easy to keep it up to date.

5.2 Invariant mass distribution from CDF II simulation
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Figure 5.1: Invariant mass of the simulated B0 → π+π− and B0 → K+π− signals without FSR
effects. Fit function is overlaid. A similar distribution is obtained for all signal modes.

The invariant mass distribution returned from CDF II simulation for B0
(s) → h+h

′− decays repre-
sents the initial step of the accurate study of the mass line shape described in this chapter. The FSR
has not been introduced in the CDF II simulation, since the currently available simulation packages
like photos [126] are not reliable for B and D hadronic decays.

Figure 5.1 shows the simulated invariant mass distribution of a single signal mode, computed
assigning the correct mass hypothesis to both particles in the final state (ππ,Kπ,KK, pK, pπ). These
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distributions are fitted using a sum of two Gaussians:

℘(m;N, f1, μ1, σ1, μ2, σ2) = N ·
[
f1

1√
2πσ1

e
− 1

2

(
m−μ1

σ1

)2

+ (1− f1) 1√
2πσ2

e
− 1

2

(
m−μ2

σ2

)2]
(5.1)

where the means of the two Gaussians, μ1 and μ2, the standard deviations, σ1 and σ2, the relative
fraction of the first Gaussian with respect to the second one, f1, and the absolute normalization N ,
are determined by the fit. Table 5.1 summarizes the results of the fit. The model parameterizes
accurately the resolution shape. We obtained a dominant Gaussian component (f1 ≈ 89%) with a
width of about 22 MeV/c2 and a second wider Gaussian component (f2 = 1−f1 ≈ 11%) with a width
of about 44− 45 MeV/c2. The distributions do not show any relevant non-Gaussian asymmetric tails
since the FSR effects are not included in the simulation.

mode f1 [%] μ1 [MeV/c2] σ1 [MeV/c2] μ2 [MeV/c2] σ2 [MeV/c2] μ̂ [MeV/c2]
B0 → π+π− 89.3± 0.8 5281.7± 0.1 21.8± 0.1 5274.5± 0.7 44.6± 1.1 5280.9± 0.1
B0 → K+π− 89.3± 1.2 5281.9± 0.1 21.6± 0.2 5277.8± 0.8 41.7± 1.3 5281.5± 0.1
B0 → K+K− 89.6± 1.2 5282.1± 0.1 21.1± 0.2 5282.8± 0.7 39.3± 1.2 5282.2± 0.1
B0
s → π+π− 89.1± 0.9 5371.9± 0.1 22.2± 0.1 5364.9± 0.8 44.8± 1.2 5371.1± 0.1

B0
s → K−π+ 88.0± 1.2 5372.3± 0.1 21.8± 0.2 5369.4± 0.7 40.6± 1.1 5372.0± 0.1

B0
s → K+K− 89.8± 1.2 5372.3± 0.1 21.6± 0.2 5372.6± 0.7 40.7± 1.3 5372.3± 0.1

Λ0
b → pπ− 90.4± 0.9 5624.9± 0.1 22.1± 0.1 5623.4± 0.7 44.9± 1.4 5626.2± 0.1

Λ0
b → pK− 89.3± 1.3 5626.8± 0.1 21.7± 0.2 5627.6± 0.7 40.2± 1.3 5626.8± 0.1

Table 5.1: Fit results on the invariant mass distribution of the simulated modes computed with
the correct mass assignment to both particles. Every loss correction was performed using the pion
hypothesis for both tracks.

Since we fitted μ1 and μ2 as two separate parameters, and since the returned value for μ2 is slightly
different from μ1, we quoted the average value μ̂ = f1μ1 + (1− f2)μ2, reported in the last column of
tab. 5.1, to estimate the average of the invariant mass distribution for each signal mode. From the
comparison between μ̂ and the input mass values reported in tab. 5.2 of the simulation, we observed
a slight (but non negligible) discrepancy. Such a discrepancy, O(2− 3 MeV/c2), is expected. In fact,

mode m [MeV/c2]
B+ 5279.0
B0 5279.4
B0
s → π+π− 5369.6

B0
s → K−π+ 5369.6

B0
s → K+K− 5369.6

Λ0
b 5624.0

Table 5.2: Summary of the input masses in the simulation.

the simulation is done in two steps. In the first step, the events are generated and are processed to
simulate the transit of the particles in the detector material. All the silicon layers, all the wires in
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the drift chamber and every part of the detector are simulated accurately. In the second step, the
simulated events are reconstructed, like real data, by the off-line reconstruction code. This off-line
code applies a track by track correction for the energy lost in the material, according to a chosen mass
assignment (see sec. 3.3.1). When analyzing real data, at reconstruction time, we did not know what
kind of particles we have, so we assigned arbitrarily the pion mass to all tracks. Thus for all modes
in which the final state is different from the ππ case, we introduced an artificial shift in the invariant
mass distribution of our signals, both for simulation and data, because of the wrong mass hypothesis.
This bias can be measured by reprocessing the simulated events with the correct mass hypothesis for
both tracks (see tab. 5.3), as, in this case, we know event by event the correct particle assignment.
From the difference between the simulated events processed, first with the pion mass hypothesis for
both tracks (like the real data), and second with the exact mass hypothesis for both tracks, we obtain
the mass shift due to this effect. This information will be used in the fit of composition (see chap. 6)
to cancel the bias on the mass difference among signals (the global mass scale is treated separately,
see sec. 9.4.3 and 12.2).

mode ππ (a) correct (b) δKal (c)
B0 → π+π− 5280.9± 0.1 5280.9 ± 0.1 −
B0 → K+π− 5281.5± 0.1 5280.4 ± 0.1 1.1
B0 → K+K− 5282.2± 0.1 5280.1 ± 0.1 2.1
B0
s → π+π− 5371.1± 0.1 5371.1 ± 0.1 −

B0
s → K−π+ 5372.0± 0.1 5370.9 ± 0.1 1.1

B0
s → K+K− 5372.3± 0.1 5370.2 ± 0.1 2.1

Λ0
b → pπ− 5626.2± 0.1 5624.5 ± 0.1 1.7

Λ0
b → pK− 5626.8± 0.1 5624.2 ± 0.1 2.6

Table 5.3: Mean value μ̂ of the invariant mass in simulated events. All the masses in the table are
computed using the correct mass hypothesis for both tracks. Both tracks are processed with pion mass
assignment (a), with the correct mass assignment to compensate the energy losses in the material (b).
Invariant mass shift δKal due to the uncorrected mass assignment in the refitting (c)=(a)-(b). The
unit is MeV/c2.

Even when tracks are refitted using the correct mass hypothesis and the energy losses are com-
pensated correctly (see column (c) of tab. 5.3), an additional residual shift from the input values still
remains. This residual shift depends on several factors. This appears only in the simulated samples
but not when we process real data. The compensation of energy losses in the material was tuned accu-
rately using large sample of real data K0

s → π+π−, B± → J/ψK±, J/ψ → μ+μ− and Υ(4S)→ μ+μ−

decays [106, 107], so that the absolute mass scale in the data is reproduced accurately. When, instead,
we process the simulated events, using the off-line code tuned on real data, we put in evidence that
the energy losses in the material are not reproduced within the precision level obtained with real data.
The corrections do not compensate perfectly the simulated energy losses. This discrepancy depends
on the particle mass. In fact it is about ≈ 2 MeV/c2 for the B0 → π+π− mode and it becomes
≈ 0.2 MeV/c2 for the Λ0

b → pK− mode.

This residual discrepancy does not affect the fit of composition of real data (see sec. 6.3) and we
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will not apply any correction. In fact, for the B0
(s) mesons and Λ0

b baryon, we will use as input masses
the masses measured by CDF in Run II [106]. Using the masses measured with the same apparatus
and reconstruction code as for B0

(s) → h+h
′− events allows the cancellation of common systematic

uncertainties due to a possible overall shift of the CDF II mass scale.

5.3 Fast Monte Carlo Simulation (FMC)

We wrote a Fast Monte Carlo Simulation (FMC) specifically for this work based on the official CDF
Monte Carlo (MC). The FMC consists in a C++ code which generates the decays of a generic B(D)
meson (indicated by the letter H), into two scalar or pseudo-scalar mesons P1P2 (H → P1P2) 1.
The particle H is decayed in its rest frame. Then the three-dimensional momenta of decay products
�p ∗1 and �p ∗2 are boosted to obtain the corresponding quantities in the laboratory frame (�p1 and �p2)
according to the two-dimensional distribution of rapidity and transverse momentum of the particle H
in the laboratory frame. In the case of the b-meson we used a flat rapidity distribution in the range
|y(B)| < 1.3, while the pT(B) input distribution was taken from an external histogram containing
a smooth fit to the data published by CDF Run II measurement [111]. This is the same procedure
adopted by the the official CDF Monte Carlo.

The track parameters in the laboratory frame have to be smeared according to the resolution
functions that we extract from the official CDF simulation and if necessary tuned with real data. The
strategy consists of: 1) tuning the resolution functions of FMC using the information from the CDF
Monte Carlo; 2) implementing the FSR into the FMC; 3) comparing the FMC with some reference
signal from real data (e. g., D0 → K−π+ decays); 4) in case of discrepancy between FMC and this
reference signal, performing a finer tuning of resolution functions with real data.

5.3.1 Smearing of curvature k

The trajectory of a particle with momentum p and charge Ze in a constant magnetic field �B is a
helix, with radius of curvature R and pitch angle θ (λ = cot θ)2. The radius of curvature and the
momentum component perpendicular to �B are related by:

p sin(θ) = 0.3ZBR, (5.2)

where p is GeV/c, B is in Tesla and R in meters. If the distribution of the measurements of the
curvature k ≡ 1/R is approximately Gaussian, the curvature error for a large number of uniformly
spaced measurements on the trajectory of the charged particle in a uniform magnetic field can be
approximately by

(δk)2 = (δkres)2 + (δkms)2, (5.3)

where δk is the total curvature uncertainty, δkres is the curvature uncertainty due to the finite mea-
surement resolution and δkms is the curvature uncertainty due to multiple scattering.

1Λ0
b → ph− decays do not belong to the class of H → P1P2 decays and they will be treated in a different way.

2λ = cot(θ) is the helix pitch, where θ is the polar direction of the particle at the point of its closest approach to the

z-axis. This is directly related to the longitudinal component of the momentum: pz = pT cot(θ)
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If many (≥ 10) uniformly spaced position measurements are made along the trajectory in a uniform
medium [32]

δkres =
ε

L′2

√
720
N + 4

∝ constant, (5.4)

where N is the number of points measured along track, L′ is the projected length of the track into
the bending plane and ε is the measurement error for each point, perpendicular to the trajectory. If
a vertex constraint is applied at the origin of the track, the coefficient under the square root becomes
320. δkres is independent of the curvature.

The contribution to the resolution due to the multiple scattering is approximately [32]

δkms ≈ (0.16)(GeV/c)Z
Lpβ sin2 θ

√
L

X0
∝ k

β sin θ
, (5.5)

where p is the momentum in GeV/c, Z is the charge of the incident particle in units of e, L is the total
track length, X0 is the radiation length of the scattering medium (in units of length) and β is the
kinematic variable v/c. δkms can be considered approximately proportional to the curvature k, since
for pions and kaons with transverse momentum greater than 2 GeV/c, β is assumed equal to one, and
since the pseudo-rapidity of both tracks is |η| < 1, namely sin θ > 0.648 with < sin θ >= 0.91 . Then
the contribution due to multiple scattering is approximated as:

δkms ≈ constant · k. (5.6)

Therefore, in our sample, the curvature uncertainty can be parameterized by the approximate
formula:

δk ≈ A ·
√

1 +B · k2. (5.7)

where A and B are parameters to be determined.
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Figure 5.2: Curvature residual as a function of the true curvature of the simulated events for B0 →
π+π−, B0 → K+π− and B0 → K+K− modes. Negative tracks (a), positive tracks (b).
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Using the MC we can access simultaneously the distributions of the smeared quantities after the
full simulation chain of the detector and the “true” quantities before the experimental smearing. We
used a sample of 10M generated events of B0 → π+π−, B0 → K+π− and B0 → K+K− modes
(see sec. 4.1), yielding about 80,000 events of each mode after the selections (trigger and off-line
reconstruction). The specific decay has no particular relevance in this context, and we used the whole
sample of tracks as a single sample. Figure 5.2 shows the curvature residual r = k − kt, where k is
the smeared curvature and kt is the true curvature, as a function of kt for negative (a) and positive
tracks (b). The curvature resolution depends on the curvature value, and we fitted the distribution of
the variable r in 10 kt slices using a single Gaussian distribution:

Nk · G (r;μk, σk) = Nk · 1√
2πσk

e
− 1

2

(
r−μk

σk

)2

, (5.8)

where Nk is the absolute normalization, μk and σk are respectively the mean and the standard
deviation of the Gaussian. The resulting values of σk are reported in fig. 5.3 respectively for negative
(a) and positive tracks (b) and are fitted with the function described in eq. (5.7) as a function of
kt. A and B are extracted from these fits separately for negative and positive tracks. The values
χ2/ndof = 12.4/8 and χ2/ndof = 8.2/8 demonstrate the goodness of our model.
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Figure 5.3: Curvature uncertainty as a function of the true curvature for simulated events of B0 →
π+π−, B0 → K+π− and B0 → K+K− modes. Negative tracks (a), positive tracks (b).

The model with a single Gaussian is sufficient to reproduce the relationship between the δk and k
but it is not sensitive to possible non-Gaussian deviations of the curvature resolution function. From
tab. 5.1 we expect a deviation of the order of 10%. Although we have a large statistics in the MC, it
is not sufficient to show this effect in each curvature slice with sufficient precision, especially for large
values of curvature. Therefore, to parameterize accurately the deviation from the Gaussian model, we
used the rescaled variable r′

r′ =
k − kt
σk(kt)

=
r

σk(kt)
. (5.9)
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r′ by definition is independent on the curvature kt and it allows to parameterize the non-Gaussian
effects with a single fit. Figure 5.4 reports the distribution of the r′ variable. Three Gaussians were
necessary to achieve a good parameterization:

N ′k · [f1 G (r′;μ′k1, σ
′
k1) + f2 G (r′;μ′k2, σ

′
k2) + (1− f1 − f2) G (r′;μ′k3, σ

′
k3)] . (5.10)

N ′k is the absolute normalization, f1(2) is the relative fraction of the first (second) Gaussian and μ′ki
and σ′ki are respectively the mean and the standard deviation of the ith Gaussian.
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Figure 5.4: Resolution function of the rescaled curvature r′ = (k − kt)/σk(kt) of simulated events for
B0 → π+π−, B0 → K+π− and B0 → K+K− modes. Negative tracks (a,c), positive tracks (b,d).
Liner scale (a,b) and logarithmic scale (c,d).

In our FMC simulation, we first smeared the r′ variable according to the parameters fi, μki and σki
of the triple Gaussian extracted, and then changed variable r′ → r to obtain the smeared curvature
k. We performed two independent smearings for negative and positive tracks.
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We verified that the curvature resolution depends mainly on the curvature k and that the effect
of λ and ϕ0 dependences are much smaller. They have a negligible influence on the invariant mass
distribution, thus their effect on the curvature resolution was neglected.

5.3.2 Smearing of λ and ϕ0
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Figure 5.5: λ (a) and ϕ0 (b) residual as a function of the true curvature of the simulated events. λ
(c) and ϕ0 (d) resolution as a function of the true curvature of the simulated events, the fit function
is overlaid.

In order to simulate the measurement of the helix pitch λ ≡ cot θ, and of the azimuthal angle
ϕ0 we parameterized the resolution σλ and σϕ0 as a function of curvature using the same technique
described in the previous section. We verified that the tails of these distributions have a negligible
effect on the invariant mass distribution and we therefore ignored them in our model. Also in this
case the dependences of the resolution on λ and ϕ0 were neglected as they are much smaller effects.
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In case of λ and ϕ0 smearing, no difference in charge was found and to further increase the statistics,
negative and positive tracks were added up.

Figures 5.5(a) and (b) show the residuals λ − λt and ϕ0−ϕ0t, where λ and ϕ0 are the smeared
quantities and λt and ϕ0t are the true quantities in the MC, as a function of the true curvature kt. We
fitted the residual distributions in 15 kt slices using a single Gaussian distribution. The fitted values
of σλ and σϕ0 are reported in figs. 5.5(c) and (d) respectively and we empirically parameterized them
with linear functions:

σλ(kt) = a0 + a1 kt and σϕ0(kt) = b0 + b1 kt. (5.11)

a0(b0), a1(b1) are free parameters in the fit. The quality of the fit is slightly worse than in the curvature
case that was derived from a physical model but it is still satisfactory for our purpose.

5.3.3 Smearing of the impact parameter d0
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Figure 5.6: d0 residual as a function of the true curvature of the simulated events (a). d0 resolution
as a function of the true curvature of the simulated events (b), the fit function is overlaid.

In addition to smearing the track parameters k, λ and ϕ0, we also needed to smear the impact
parameter d0. While d0 is not important variable of direct interest here, it is important because of its
correlation with the other kinematic variables. Most heavy flavor samples are selected using cuts on
d0 or related quantities, so it is necessary to have an appropriate simulation of the d0 distributions.

To smear the impact parameter we followed the same procedure used for λ and ϕ0. Figure 5.6 shows
the residual distribution of d0−d0t as a function of the true curvature kt (a) and the parameterization
of σd0 in curvature slices with a linear function (b).
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5.3.4 Comparison FMC vs MC

In order to check if the FMC simulation reproduces all the features of the MC, a comparison of
the most relevant kinematic distributions (mass, pT(B),

∑
pT, LT, Δϕ0, d0(B), d0(1), d0(2), pT(1),

pT(2)) was performed. For this check we used the decay mode B0 → π+π−.

FMC events have been reweighted to match the observed pT distribution of the B–meson in the
full MC. This is done to avoid the need of a precisely matching the pT dependence on the detector
acceptance, since the mass line shape is sensitive to small changes of the pT(B) spectra.

Figure 5.7 shows this comparison for the invariant mass distribution and the value χ2/ndof =
87.5/49 indicates a good agreement between the two distributions. This confirms that the invariant
mass resolution shape is determined by the tracks parameters uncertainty, and that possible correla-
tions between two tracks can be neglected. This is important for our purpose, because we want to
calibrate on a mass peak (D0 → K−π+) and export the calibration to the B0

(s) → h+h
′− via the

single track resolutions. The results show that the source of the observed 10% non–Gaussian tails of
the invariant mass distribution is the tail of the curvature resolution function. Comparison of other
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Figure 5.7: Comparison between the invariant mass distribution of the B0 → π+π− events simulated
with the the official CDF Monte Carlo (filled yellow histogram) and with the Fast Monte Carlo
simulation (points with error bars). Linear scale (a), logarithmic scale (b).

kinematics variables (see fig. 5.8) also show a satisfactory agreement.
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Figure 5.8: Comparison of the distributions of the single mode B0 → π+π− simulated with the Fast
Monte Carlo Simulation (points with error bars) and the official CDF Monte Carlo simulation (filled
histogram). pT(B) (a)

∑
pT (b), LT (c), Δϕ0 (d), d0(B) (e), d0(1) (f), d0(2) (g), pT(1) (h), pT(2) (i).
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5.4 Final State Radiation

We simulated the soft photon emission in our FMC, using the QED calculations described in Ref. [124].
We summarize here the main formulas used.

5.4.1 QED calculations
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Figure 5.9: Illustration of electromagnetic contributions to the H0 → P+
1 P
−
2 process with a real

photon in the final state: bremsstrahlung.
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Figure 5.10: Illustration of electromagnetic contributions to the H0 → P+
1 P
−
2 process with a virtual

photon: one-loop vertex correction and P1(2) self-energy.

The most convenient infrared-safe observable related to the process H0 → P+
1 P
−
2 , where H0 is a

pseudo-scalar meson (B0 orD0) and P+(−)
1(2) are scalar or pseudo-scalar particles, is the photon-inclusive

width
Γincl

12 (Emax) = Γ(H0 → P+
1 P
−
2 + nγ)

∣∣∑
Eγ<Emax (5.12)

namely the width of the process H0 → P+
1 P
−
2 accompanied by any number of (undetected) photons,

with total missing energy
∑
Eγ less or equal to Emax in the H0 meson rest frame. At any order in

perturbation theory Γincl
12 can be factorized into two theoretical quantities: the so-called non-radiative

width, Γ0
12, and the corresponding energy-dependent e.m. correction factor G12(Emax),

Γincl
12 (Emax) = Γ0

12 G12(Emax) . (5.13)

The energy dependence of G12(E) is unambiguous and universal (i.e. independent on the short-
distance dynamics which generate the decay) up to terms which vanish in the limit E → 0. On
the contrary, the normalization of G12(E) is arbitrary: it is always possible to move part of the finite
(energy-independent) electromagnetic corrections from Γ0

12 to G12(E). Only the product in eq. (5.13)
corresponds to an observable quantity.
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From the purely experimental point of view, the only relevant aspect of the G12(E) factors is
their energy dependence. This allows to evaluate the missing-energy distribution, or the soft-photon
spectrum, dΓincl

12 (E)/dE. The E → 0 singularity of this distribution is not integrable if evaluated at
any fixed order in perturbation theory; however, the all–order resummation of the leading infrared
singularities leads to an integrable distribution [124]. In our case, the differential decay rate of the
process H0 → P+

1 P
−
2 + nγ with respect to the total photons energy E can be written as:

dΓincl
12 (E)
dE

=
2α
π

|b12|Γ0
12

E

(
2E
mH0

) 2α
π |b12| [

1 +O
(

E

mH0
,
α

π

)]
(5.14)

where α is fine structure constant and β and b12 are the coefficients defined as:

β2 =
[
1− (r1 + r2)

2
] [

1− (r1 − r2)2
]
, ri =

mi

mH0
, (5.15)

b12 =
1
2
− 4−Δ2

1 −Δ2
2 + 2β2

8β
ln
(

Δ1 + β

Δ1 − β
)

+ (1→ 2) ,

(5.16)

where Δ1(2) = 1 + r21(2) − r22(1), and mH0 ,m1,m2 are respectively the masses of H0, P+
1 and P−2 .

Concerning the angular distribution of the bremsstrahlung photons (see fig. 5.9), the differential
decay rate up to O(α) terms can be written:

d2Γ(H0 → P+
1 P
−
2 γ)

dEγ d cos θγ
=

α

2π
1
β

Γ0
12

Eγ
R12 (5.17)

where Eγ and θγ denote, respectively, the photon energy and the angle between photon and P+
1

momenta in the H0 meson rest frame, and in this case β has a different definition:

β2 =
[
1− (r1 + r2)2

1− 2z

] [
1− (r1 − r2)2

1− 2z

]
, z =

Eγ
mH0

. (5.18)

The R12 coefficients assume the following explicit form

R12 =
1− r21 − r22 − 2z

t1t2
− r21
t21
− r22
t22

(5.19)

in terms of the kinematic variables

t1,2 =
1
2

[
1 +

r21,2
1− 2z

∓ cos θγ

]
. (5.20)

Figure 5.11 (a,b,c) shows the distribution of eq. (5.17) for the emission of a real photon respectively
for the B0 → π+π−, B0 → K+π−, and B0 → K+K− modes. The photon direction is, mostly, nearly
collinear or anti-collinear to the direction of P+

1 momentum in H0 rest frame. The differential decay
rate is invariant under the transformation cos θγ → − cos θγ for symmetrical final states like π+π−

or K+K−. This implies that the probability of a photon to be emitted in the same direction of P+
1

(namely cos θγ > 0) is equal to the probability of being emitted in the opposite direction (namely
cos θγ < 0). Instead, in final states with different kind of particles, like B0 → K+π−, the photon
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has a larger probability to be emitted in the direction of the lighter particle (in our case the pion) as
fig. 5.11(b) shows. The size of this asymmetry is related to the mass difference m1 −m2 relative to
the mass mH0 , through the coefficients R12.

Equation (5.17) is divergent for Eγ → 0 and for cos θγ → ±1, and its integral is also divergent and
cannot be integrated in both energy and angular domains. The first singularity is due to the infrared
divergence, since the eq. (5.17) was calculated only for real contributions (bremsstrahlung photons,
see fig. 5.9), while the second divergence is due to the relativistic conservation of four-momentum.
The photon has zero mass and therefore it cannot be emitted exactly collinear or anti-collinear to the
direction of the emitting particle.
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Figure 5.11: Differential decay rate for the bremsstrahlung process H0 → P+
1 P
−
2 γ with respect to the

photon energy Eγ and the cosine of angle between photon and P+
1 momenta in the H0 meson rest

frame. B0 → π+π− (a), B0 → K+π− (b), B0 → K+K− (c).

Equation (5.14) is the soft-photon spectrum dΓincl
12 (E)/dE, and although it has a singularity for
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E → 0 it is integrable, since it was evaluated by all-order resummation of the leading infrared singu-
larities (bremsstrahlung plus virtual photons , see figs. 5.9 and 5.10).

From the phenomenological point of view both equations (eq. (5.17) and eq. (5.14)) only make
sense if the information on detection threshold for photons (or maximum missing energy) Emax is
available. Without this information, an unambiguous comparison between theory and experiments,
and also the combination of different experimental results, cannot be performed. For this reason
eq. (5.14) is well defined only in a determined integration domain [0, Emax]. In practice, in our case
of relative branching fractions measurements, it is sufficient to make sure that the cut–off Emax is set
large enough to have effects only outside of the mass window used in the analysis.

5.4.2 Putting everything together

Our FMC simulates a generic H0 → P+
1 P
−
2 decay in the rest frame of the H0 meson and then it

boosts in the laboratory frame the momentum of the P+(−)
1(2) particle (see sec. 5.3). For simplicity we

used the same notation of sec. 5.4.1. We indicate with (E∗1(2), �p
∗
1(2)) the four-momentum of the decay

product P+(−)
1(2) in the rest frame of the meson H0 while the same quantities in the laboratory frame

will be indicated by (E1(2), �p1(2)). Regarding the photon, we used only the quantities in the rest frame
of H0 meson and they are indicated without the star: E is the total missing energy of the undetected
photons defined in eq. (5.14). Eγ and cos θγ are respectively the energy of the bremsstrahlung photon
and the cosine of the angle between himself and P+

1 momentum defined in eq. (5.17).

To include the FSR in the FMC we made the following approximations.

� Emission of a single leading photon, E = Eγ . Processes with nγ > 1 are suppressed by factor
of α.

� We used the eq. (5.14) dΓincl
12 (Eγ)
dEγ

= 2α
π
|b12|Γ0

12
Eγ

(
2Eγ

mH0

) 2α
π |b12|

to generate the energy spectrum of
the soft photon, integrating the distribution between Eγ → 0 and Eγ = Emax. The cut-off Emax

depends on the decay mode we want to analyse and its choice is motivated by the acceptance
fit interval in the invariant mass distribution.
The fit of composition (described chap. 6) is performed in the invariant mass region 5.0 <

mππ < 5.8 GeV/c. The inclusion of the soft photon emission produces a long lower-mass tail
in the invariant mass distribution and this must be well–defined within this range. We chose
a cut-off Emax = 0.5 GeV, large enough so that the radiative tail is well defined in the mass
interval, but still smaller than the kinematic energy cut-off mB0

(s)
−mh+ −mh′− .

In this thesis we quote only branching fraction ratios, like B(B0 → π+π−)/B(B0 → K+π−), and
we are interested only in the line shape of the distribution and not in the absolute normalization
of the soft photon emission.

� We assumed the direction of the photon as collinear (50% of cases) or anti-collinear (50% of
cases) with P+

1 momentum direction in H0 rest frame (see sec. 5.4.1). This violates the total
momentum conservation, but it works fine for practical purposes. The 50% probability to be
collinear/anticollinear is accurate for the decay modes with same particles in the final state, but
it is still a good approximation also in the other cases, like B0 → K+π− and B0

s → K−π+.
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� We preserved conservation of total energy. If (E′∗1(2), �p
′∗
1(2)) is the particle four-momentum after

the photon emission in the H0 rest frame, and the particle 1 is emitting, we can write:

– E′∗1 = E∗1 − Eγ ;
– p ′∗1 =

√
(E′∗1 )2 −m2

1;

– p̂ ′∗1 = p̂ ∗1 ;

– E′∗2 = E∗2 and �p ′∗2 = �p ∗2

where p̂ = �p/|�p| and p = |�p|.

To obtain all kinematic distributions of the generic H0 → P+
1 P
−
2 decay with the soft photon emission,

it is sufficient to boost the four-momenta of the particles (E′∗1(2), �p
′∗
1(2))→ (E′1(2), �p

′
1(2)) in the laboratory

frame with the same prescription described in sec. 5.3.

5.5 Testing the model with real data

Having included a detailed model of the CDF II detector resolution, and an accurate description of
the soft photon emission effects in our FMC simulation, we are ready to compare it to data in order to
check its accuracy. To this purpose, we used a real data sample of D0 → K−π+ decays, collected by
the B CHARM trigger (see sec. 3.2.2), and reconstructed in the decay chain D∗+ → D0π+ → [K−π+]π+

.

primary vertex
D∗+ decay

D0 decay

LT

(soft) π+

π+

K−

Figure 5.12: Schematic sketch of the D∗+ → D0π+ → [K−π+]π+ decay chain in the plane transverse
to the proton beam direction.

Following Ref. [122], signal reconstruction (see fig. 5.12) was based solely on tracking and on the
information of the identity of D0 decay-products provided by the charge of the soft pion. One D0 →
K−π+ and one D

0 → K+π− candidate were formed for each pair of oppositely-curved tracks found in
the XFT fiducial region (|η| < 1). Further requirements on the product of the track impact parameters
(d0(K) × d0(π) < 0 cm2), on the D0 candidate transverse momentum (pT(D0) > 5.5 GeV/c), on its
transverse decay-length (LT(D0) > 300 μm), and on its impact parameter (|d0(D0)| < 140 μm)
were applied to suppress a 10% contribution [127] from non-prompt D∗+ decays. Candidates with
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reconstructed invariant mass within 200 MeV/c2 of the world–average D0 mass [32] were combined
with a third charged particle with pT > 0.4 GeV/c (soft pion) to form a D∗+ → D0π+ candidate.
The charged pion mass is assigned to the like-sign pair of particles. The difference between the
reconstructed D∗+ and D0 masses was required to be within [0.1435, 0.1472] GeV/c2 corresponding
to an interval of ±3σ from the nominal value of 0.1454 GeV/c2 to reduce backgrounds (combinations
of true D0 decays with random tracks, random three-track combinations that satisfy the selection
requirements, etc.). The selection results in about 1.5 × 106 signal decays. The invariant Kπ-mass

Quantity of the track Units Requirement
pT(π), pT(K) GeV/c > 2.0
pT(πs) GeV/c > 0.4
|η(π)|, |η(K)| − < 1.0
|d0(π)| , |d0(K)| μm [120, 1000]
Quantity of the candidate
q(π)× q(K) e2 −1
d0(π)× d0(K) μm2 < 0
pT(D0) GeV/c > 6
LT(D0) μm > 300∑
pT(K,π) GeV/c > 5.5

|d0(D0)| μm < 140
|d0(D∗+)| μm < 80
χ2
rφ − < 20

Δϕ0(K,π) Degrees [2◦, 90◦]
mD∗+ −mD0 GeV/c2 [0.1435, 0.1472]

Table 5.4: The D∗+ → D0π+ → [K−π+]π+ selection. To distinguish the “soft” pion originated from
the D∗+ decay from the pion originated from the D0 decay, they are labeled respectively as πs and π
in the table.

distribution is shown in fig. 5.15.

To perform an accurate comparison between data and FMC even in the tails, we used tight selection
cuts. We chose a tight D0 mass window (1.820 < mKπ < 1.900 GeV/c2) to avoid the contamination
from mis-reconstructed decays in other modes (see fig. 5.13). At lower masses, there are D0 → K+K−

decays (B � 3.9×10−3) in which a kaon is mis-assigned the pion mass, and D0 → K−π+π0 (B � 13%)
decays in which a π0 is not reconstructed. At higher masses the situation is different, since the radiative
tail of the D0 → π+π− decays (B � 1.4× 10−3), in which a pion is mis-assigned the kaon mass [122],
contaminates almost uniformly the mass region chosen to perform the test.

To verify the accuracy of our mass line shape model, we used the FMC simulation to parameterize
the invariant Kπ-mass distribution of the D0 → K−π+ decays. We generated a sample of D∗+ →
D0π+ → [K−π+]π+ events, corresponding to about 700,000 candidates after the selection described
in tab. 5.4. To have similar kinematics and to perform an identical kinematic selection we extended
the two-body FMC simulation described in sec. 5.3, to a three-body FMC simulation, which is, in this
case, a sequential chain of two two-body decays D∗+ → D0π+ plus D0 → K−π+.
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Figure 5.13: Invariant Kπ-mass distribution of simulated D0 → h+h
′− modes using the FMC simula-

tion. 1.500 < mKπ < 2.100 GeV/c2 (a), 1.800 < mKπ < 1.950 GeV/c2 (b). In the figure we assumed
B(D0→π+π−)
B(D0→K−π+) = 0.03594 and B(D0→K+K−)

B(D0→K−π+) = 0.0992 from Ref. [122].

The mass line shape of the D0 → K−π+ signal mode was parameterized from FMC using the
following p.d.f.:

℘s(m; �θ) = fbulk[f1G (m;mD0 + δ1, σ1) + (1− f1)G (m;mD0 + δ2, σ2)] (5.21)

+(1− fbulk)T (m; b, c,mD0 + δ1),

where:

G (m;μ, σ) =
1√
2πσ

e−
1
2 (m−μ

σ )2

, (5.22)

T (m; b, c, μ) =
1
K
eb(m−μ) · Erfc(c(m− μ)), (5.23)

K =
∫ m2

m1

eb(m−μ) · Erfc(c(m− μ))dm, (5.24)

Erfc(x) = 1− Erf(x) =
2√
π

∫ +∞

x

e−t
2
dt. (5.25)

We used a sum of two Gaussians to parameterize the bulk of the distribution, while the long lower-
mass tail due to the soft photon emission was parameterized with the function T (m; b, c, μ). fbulk

is the relative fraction of the double Gaussian bulk with respect the total (bulk plus tail), while
1 − fbulk is the fraction of the tail term. f1 is the relative fraction of the more abundant Gaussian,
labeled with the index 1, with respect to the sum of two Gaussians, while σ1(2) is the the width of the
Gaussian 1(2). δ1(2) is the mass shift from the input mass value of the D0 (mD0 = 1.8646 GeV/c2)
in the FMC simulation. The soft photon emission makes the mass distribution asymmetric, and the
means of the Gaussians cannot be considered as being the same. For this reasons mD0 is fixed in
the parameterization while δ1(2) is free to vary. In particular the parameterization returned similar
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values for δ1 and δ2, so we used a single parameter δ = δ1 = δ2. The parameters vector is defined
as �θ ≡ {fbulk, f1, σ1, σ2, δ1, δ2, b, c} and it is extracted by fitting the FMC simulated invariant mass
distribution. Figure 5.14 shows the parameterization of the invariant mass distribution simulated
using the FMC while the parameters are reported in tab. 5.5.
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Figure 5.14: Mass template of the D0 → K−π+ decays. Parameterization of the invariant Kπ-mass
distribution for the D0 → K−π+ decays using the Fast Monte Carlo. Linear scale on y-axis (a),
logarithmic scale on y-axis (b).

Parameter Units Value
fbulk − 0.918± 0.005
f1 − 0.490± 0.051
σ1 [MeV/c2] 6.88± 0.10
σ2 [MeV/c2] 9.02± 0.15
δ = δ1 = δ2 [MeV/c2] −0.61± 0.13
b [GeV/c2]−1 52.8± 2.1
c [GeV/c2]−1 49.9± 1.1

Table 5.5: Parameterization of the invariant Kπ-mass of the D0 → K−π+ simulated events. See
fig. 5.14.

After extracting the parameterization of the D0 → K−π+ signal from the FMC we performed a
binned-χ2 fit of the data in invariant Kπ-mass with the following p.d.f.:

N · ℘(mKπ;N, fs, a0) = N ·
(
fs ℘s(mKπ; �θ) + fd ℘d(mKπ;μd, σd) + (1− fs − fd) ℘b(mKπ; a0)

)
,

(5.26)
where the absolute normalization N , the relative signal fraction fs, the background shape a0 were
determined by the fit. ℘s(mKπ; �θ) is the signal p.d.f. correctly normalized in the mass fit domain
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Parameter Units (I) (II) Δ [%]
fbulk − 0.918 0.910± 0.032 0.87
f1 − 0.490 0.490
σ1 [MeV/c2] 6.88 6.71± 0.02 2.47
σ2 [MeV/c2] 9.02 9.63± 0.02 6.76
δ = δ1 = δ2 [MeV/c2] −0.61 −0.61
b [GeV/c2]−1 52.8 52.8
c [GeV/c2]−1 49.9 49.9
fs − 0.9719± 0.0003 0.9824± 0.0004 1.08
a0 − −2.4± 0.3 −4.7± 0.4 48
Δm [MeV/c2] 0.798± 0.008 0.804± 0.008 0.74
χ2/ndof − 1254.3/50 60.7/47

Table 5.6: Fit on D0 → K−π+ data. (I) The signal shape is completely fixed from the FMC, we fitted
only parameters fs, a0, δm. (II) Some parameters of the signal shape are free to vary: fs, a0, δm plus
fbulk, σ1, σ2 (II). Δ = (I)−(II)

(I) . See fig. 5.15.

[1.820, 1.900] GeV/c2 and it was completely determined from the FMC (see above eq. (5.21)). The
functions ℘d and ℘b are

� ℘d(mKπ;μd, σd) = 1∫ 1.900
1.820

1√
2πσd

e
− 1

2 (
mKπ−μd

σd
)2
dmKπ

( 1√
2πσd

e
− 1

2 (
mKπ−μd

σd
)2),

� ℘b(mKπ; a0) = 1∫ 1.900
1.820 (1+a0mKπ)dmKπ

(1 + a0mKπ).

℘d(mKπ;μ, σ) parameterizes the O(10−3) contamination of the doubly-Cabibbo-suppressed mode
D0 → K+π− [128]. The uncorrected mass assignment to the decay products inflates the width of
the mass distribution by about a factor ten, with respect to the Cabibbo-favored mode D0 → K−π+

reconstructed with the correct mass assignment. μd and σd were extracted from the simulation and
are fixed in the fit. fd is defined as

fd = fsRd

∫ 1.900

1.820

1√
2πσd

e
− 1

2 (
mKπ−μd

σd
)2
dmKπ, (5.27)

where Rd = B(D0 → K+π−)/B(D0 → K−π+) = 4.05 ·10−3 was measured by CDF [128]. ℘b(mKπ|a0)
is the background parameterization (linear function), correctly normalized in the mass fit domain. To
keep into account the global mass scale shift we fitted an additional parameter Δm by substituting
mKπ → mKπ + Δm.

We start by fitting the invariant Kπ-mass distribution of the D0 → K−π+ decays, by using a
signal shape completely fixed by the parameterization extracted from the FMC (tab. 5.5). Only the
parameters N , fs, a0 and the global mass scale Δm were allowed to vary. The results of this fit are
reported in column (I) of tab. 5.6 while in figs. 5.15(a) and (b) the fit function is superimposed on
data. Due to the very high statistics χ2/ndof = 1254.3/50 of this fit is poor, but the curve describes
the data with a precision unprecedented in previous CDF comparisons between data and simulation
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MC. There is no evidence of any presence of an additional tail in the data, a long standing discrepancy.
These observations seem to suggest that previously observed mismatches were due to the lack of a
good model of soft photon radiation. The large sample of about 1.5M of candidates, provides large
sensitivity even to small deviations from the expected mass shape. We performed a second fit, in which
we left free to vary three additional parameters related to the signal shape fbulk, σ1, σ2. The results
are reported in column (II) of tab. 5.6 while in figs. 5.15(c) and (d) the fit function is superimposed
on the data. The χ2/ndof = 60.7/47 of this fit is now very good and the agreement between the
FMC and the data is satisfactory. The parameters of the signal shape fbulk, σ1, σ2 differ from those
extracted from FMC of just a few percents (see column Δ of tab. 5.6).

When we allow the additional parameters of the signal shape to vary the background level changes.
It is difficult to extract better parameters without a greater knowledge of the background. However
the discrepancies of the nominal FMC parameters are so small that it does not appear worthwhile to
attempt any tuning unless one needs to model samples containing order 105− 106 signal events, while
the samples we are interested in are just order 103.

Since our FMC simulates the entire decay chain D∗+ → D0π+ → [K−π+]π+ we repeated same
checks performed on D0 → K−π+ also on D∗+ → D0π+ decay. These confirmed our accurate
understanding of the D∗+ mass line shape with approximately the same precision found on the D0

mass [129]. In this case (H± → P±1 P
0
2 + nγ), the formulas used to simulate the FSR are similar, but

not equal to those used in this thesis (H0 → P+
1 P
−
2 + nγ) and can be found in Ref. [124].
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Figure 5.15: Check of the mass line shape template using a data sample of D0 → K−π+ decays
from reconstructed D∗+ → D0π+ → [K−π+]π+. Invariant Kπ-mass distribution. The signal p.d.f.
℘s(mKπ; �θ) is completely fixed from FMC in (a,b), the parameters σ1, σ2, fbulk of ℘s(mKπ; �θ) are free
to vary in the fit in (c,d). Linear scale on y-axis (a,c), logarithmic scale on y-axis (b,d).
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Chapter 6

Fit of composition

This chapter describes how the kinematic and PID information, discussed in previous chapters was
combined in a maximum Likelihood fit to statistically determine the composition of the B0

(s) → h+h
′−

sample.

6.1 Discriminating observables

A good choice of the discriminating observables is crucial to fully exploit the available information
and to keep a simple analytic expression of the Likelihood. The goal is to get most of the available
information using the minimum number of observables. In addition, the more independent the chosen
observables are, the simpler is factorizing and modeling the joint probability density.

We represent the kinematic and PID information using the following five discriminating observ-
ables:

1. mππ – invariant mass of the pair of final state particles with pion mass assignments;

2. α – signed momentum imbalance between the two particles;

3. ptot – scalar sum of the particle momenta;

4. κ1 – kaonness (function of the dE/dx ) of the lower-momentum particle;

5. κ2 – kaonness of the higher-momentum particle.

Particle identification information was summarized with one observable for each charged particle, the
“kaonness” κ, defined as (see also sec. 4.4.7)

κ =
dE/dx obs − dE/dxπ
dE/dxK − dE/dxπ

. (6.1)

133
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6.2 Likelihood function

The Likelihood function L is the product of the Likelihoods Li of all events:

L (�θ) =
N∏
i=1

Li(�θ|�xi) (6.2)

where the index i runs over the events. N is the total number of events passing the final selection, �θ
is the vector of parameters that we want to estimate, �x is the vector of the discriminating observables
�xi = {mππ, α, ptot, κ1, κ2}i.
The Likelihood of each event is written as the sum of a signal term and a background term:

Li = b ·L bck
i + (1− b) ·L sig

i . (6.3)

The index sig (bck) labels the part of the function that describes the signal (background) term; b is
the fraction of background events and 1− b is the fraction of the B0

(s) → h+h
′− plus Λ0

b → ph− events

((b ∈ �θ)). The Likelihood of the signal events is factorized as a product of three p.d.f.’s:

L sig =
s∑
j=1

fj · ℘mj (mππ|α, ptot) · ℘pj (α, ptot) · ℘PID
j (κ1, κ2|α, ptot), (6.4)

in which the index j runs over the twelve expected components: B0 → π+π−, B0 → K+π−, B
0 →

K−π+, B0
s → K−π+, B

0

s → K+π−, B0
s → K+K−, B0 → K+K−, B0

s → π+π−, Λ0
b → pπ−,

Λ
0

b → pπ+, Λ0
b → pK−, Λ

0

b → pK+ 1. The parameters fj are their fractions (of the total signal),
and are determined by the fit. From the (s− 1) independent fractions resulting by the normalization
condition,

fs = 1−
s−1∑
j=1

fj , (6.5)

we determined the yield of each mode. We conventionally label as ℘m the term that describes the
invariant-mass distributions (“mass term”), ℘p the term that describes the momentum distributions
(“momentum term”), and ℘PID the term that models the dE/dx density (“PID term”). This factor-
ization is not trivial since the three terms of the p.d.f. are inter-related by the dependencies between
mass, momentum, and dE/dx observables.

The Likelihood of the background factorizes in a similar way to the signal term, and it consists of
the sum of two contributions:

L back =
∑
l=A,E

fl · ℘ml (mππ|α, ptot) · ℘pl (α, ptot) · ℘PID
l (κ1, κ2|ptot, α), (6.6)

where the index l runs over the different kinds of background, combinatorial (l = E) and physics (l =
A) background. The parameters fl are their fractions (of the total background) and are determined
by the fit. From the normalization condition results fE = 1− fA.

In Equations (6.3)–(6.6) the functional dependence on the vector �θ was omitted, since in the
equations we wrote explicitly some terms of this vector, as fi, fA and b.

1C-conjugate modes are considered distinct for decays in Kπ , pπ and pK final states that are distinguishable on the

basis of the final particle types.
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6.3 Probability density function of the signal mass term

As studied in the previous chapters the invariant ππ-mass distribution of the non-ππ components
depends on the mass shift, which is a function of the momentum imbalance α and of the scalar sum of
the momenta ptot of the decay products. It is due to mis-assigned masses of the outgoing particles, as
discussed in sec. 4.3. We accounted for this effect by writing a ππ-mass p.d.f. which is conditional for
a given momentum imbalance and scalar sum of the momenta. An other fundamental aspect is the
effect of the finite momentum resolution of the detector which includes also the soft photon emission
in the final state, as discussed in chap. 5.

Following the same strategy as in sec. 5.5, we parameterized the invariant mass distribution mj ,
computed with the correct mass assignment (j = B0 → π+π− =⇒ mj = mππ; j = B0 → K+π− =⇒
mj = mKπ; etc.), using the following p.d.f. (see eq. (5.21)):

℘mj (mj) = f jbulk

[
f j1G (mj ;mH0

j
+ δj1, σ

j
1) + (1− f j1 )G (mj ;mH0

j
+ δj2, σ

j
2)
]

+(1− f jbulk)T (mj ; bj , cj ,mH0
j

+ δj1) (6.7)

where:

G (m;μ, σ) =
1√
2πσ

e−
1
2 (m−μ

σ )2

(6.8)

T (m; b, c, μ) =
1
K
eb(m−μ) · Erfc(c(m− μ)) (6.9)

K =
∫ m2

m1

eb(m−μ) · Erfc(c(m− μ))dm (6.10)

Erfc(x) = 1− Erf(x) =
2√
π

∫ +∞

x

e−t
2
dt. (6.11)

in which the index j runs over all components. We used a sum of two Gaussians to parameterize the
bulk of the distribution, while the long lower-mass tail due to the soft photon emission is parameterized
with the function in eq. (6.9). f jbulk is the relative fraction of the double-Gaussian bulk with respect
to the total (bulk plus tail), while 1− f jbulk is the fraction of the tail term. f j1 is the relative fraction
of the more abundant Gaussian labeled with the index 1 with respect to the sum of two Gaussians,
while σj1(2) is the the width of the Gaussian 1(2). δj1(2) is the mass shift from the mass value of the
hadron H0

j (j = B0 → π+π− =⇒ mH0
j

= mB0 ; j = B0
s → K+K− =⇒ mH0

j
= mB0

s
; etc.). The values

of the parameters {fbulk, f1, σ1, σ2, δ1, δ2, b, c}j are fixed in the fit; they were extracted from the FMC
simulation (chap. 5) which accurately accounts all resolution effects.

We simulated each decay component j and we parameterized the invariant mass distribution. The
probability density function in eq. (6.7) is correctly normalized to one in the mass interval [m1,m2] for
each component. Figures 6.1–6.4 show the invariant mass kinematic templates for all theB0

(s) → h+h
′−

and Λ0
b → ph− decay modes. For the Λ0

b → ph− modes we turned off the soft photon emission because
of the presence of a proton in the final state. The theoretical equations of sec. 5.4.1 used to include the
Final State Radiation in the FMC simulation are valid only if the final state of the decay is composed
by two pseudo-scalar particles. The expected yield of Λ0

b → ph− decays are about a factor 10 smaller
than the B0 → π+π− yield, thus we neglect the effect of the FSR (already small) for these rare modes.
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Figure 6.1: Invariant mass distribution of the simulated B0
(s) → π+π− (black), B0 → K+π− and

B0
s → K−π+ (red), B0

(s) → K+K− (blue) histograms. On the left linear scale, on the right logarithmic
scale.
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Figure 6.2: Invariant mass distribution of the simulated B0 → h+h
′− decays . On the left linear scale,

on the right logarithmic scale. The template is overlaid.
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Figure 6.3: Invariant mass distribution of simulated B0
s → h+h

′− decays . On the left linear scale, on
the right logarithmic scale. The template is overlaid.
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Figure 6.4: Invariant mass distribution of the simulated Λ0
b → ph− decays . On the left linear scale,

on the right logarithmic scale. The template is overlaid.
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The p.d.f of the signal mass term ℘mj (mj) was written, in eq. (6.7), as a function of different mass
observables mj , for each decay mode (j) we have a different invariant mass variable. In sec. 4.3 we
discussed how to write the different mass assignments mj as a function of a single invariant mass
observable mππ and the momenta observables α and ptot. For each component jth we can compute
the correct invariant mass mj but also the invariant ππ-mass mππ, and then we can write:

mj − 〈mj〉 = mππ − 〈mππ〉,
mj −MH0

j
= mππ −Mj(α, ptot), (6.12)

where Mj(α, ptot) is the expected average-value of the invariant mass computed with the pion hy-
pothesis for both particles at any given momentum imbalance α and scalar sum of momenta ptot (see
tab. 4.1 in sec. 4.3). With this substitution we can write the probability density of the signal mass
term as follows:

℘mj (mππ|α, ptot) = f jbulk

[
f j1G (mππ;Mj(α, ptot;mH0

j
+ δj1), σ

j
1)

+(1− f j1 )G (mππ;Mj(α, ptot;mH0
j

+ δj2), σ
j
2)
]

+(1− f jbulk)T (mππ; bj , cj ,Mj(α, ptot;mH0
j

+ δj1)). (6.13)

For each observed value of invariant ππ-mass, of momentum imbalance α, and of scalar sum of mo-
menta ptot, we assumed the mass distributed with the function described in eq. (6.7) spread around the
specific average-value expected at that momentum imbalance and scalar sum of momenta,M(α, ptot).
Each candidate with an invariant ππ-mass mππ, momentum imbalance α and scalar sum of momenta
ptot, contributes to the mass p.d.f. of the jth signal mode with the term reported in eq. (6.13).

Input masses

For each decay mode, we included the analytic expression ofMj(α, ptot) shown in tab. 4.1, which de-
pends on the masses mB0 , mB0

s
, mΛ0

b
, mK , mπ and mp as external inputs. We used the world average

values [32] for the masses of charged pion and kaon and for the mass of the proton. For the B0
(s) mesons

and Λ0
b , we used the masses measured by CDF in Run II: mB0 = 5279.63± 0.53 (stat .)± 0.33 (syst .)

MeV/c2, mB0
s

= 5366.01±0.73 (stat .)±0.33 (syst .) MeV/c2 andmΛ0
b

= 5619.7±1.2 (stat .)±1.2 (syst .)
MeV/c2 [106]. Using the masses measured with the same apparatus and reconstruction code as for
B0

(s) → h+h
′− data allows to cancel common systematic uncertainties. Therefore, only the statisti-

cal uncertainty on the measurement of b-hadron masses of Ref. [106] contributes to the systematic
uncertainty on our measurement (see sec. 12.3).

The input masses of the B0
(s) mesons and Λ0

b baryon cannot be used directly in the analytic
expression of Mj(α, ptot) shown in tab. 4.1, but they have to be corrected for the bias introduced
by the energy loss correction, occurring during the track reconstruction algorithm, see sec. 5.2. The
official offline reconstruction code compensates for the energy losses of all tracks through the detector
material using a standard pion mass hypothesis 2. This step introduces a bias on the invariant mass
when one or both final particles are not pions. We evaluated in sec. 5.2 the effect of this bias on the

2This is not the same thing as assigning the pion mass to tracks when computing the invariant mass of a system of

particles.
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invariant mass distribution. The invariant mass of each component j is shifted by a quantity δjKal,
reported in tab. 5.3. Thus in the analytic expression of Mj(α, ptot) shown in tab. 4.1, we replaced
mH0

j
→ mH0

j
+ δjKal where the index j runs over all the possible signal modes.

Momentum dependence of the mass resolution

Up to this point, we treated the invariant mass resolution as independent of the momentum observ-
ables, but in reality, the invariant mass resolution depends on the momentum of the mother particle
and therefore, on the momenta of the decay products. We explicitly introduced this dependence to
keep into account the changes of the mass resolution as a function of our momentum observables α
and ptot (about 2 MeV/c2 as a function of α and about 5 MeV/c2 as a function of ptot, spanning the
range 5.5 <∼ ptot

<∼ 35 GeV/c).

The choice of α and ptot as variables in the fit rather than equivalent p1 and p2 variables turns out
to be very convenient in this case, because α and ptot are almost independent observables, and this is
reflected in the factorizability of the momenta mass resolution dependence. The mass resolution can
be written as the product of two independent functions of α and ptot: σ(α, ptot) ≈ σα(α) · σptot(ptot).

In our case, the invariant mass distribution is not a simple Gaussian function. It is the sum of
a double-Gaussian bulk (σj1(2) is the width of the Gaussian 1(2)) and a long lower-mass tail due to
the soft photon emission T (see eq. (6.13)). To parameterize these effects we generated samples of
B0

(s) → h+h
′− and Λ0

b → ph− decays, using a modified Fast Monte Carlo Simulation (see sec. 5.3),
in which the invariant mass distribution was generated as a Gaussian function and not like ℘mj (mj).
This was achieved by turning off the soft photon emission in the final state and the non-Gaussian
contribution to the curvature resolution, since we were interested in the global dependence of the
mass resolution on α and ptot. Thus we fitted the invariant mass distribution slices as a function of α
and ptot respectively, with a Gaussian distribution, and then we fitted the α and ptot shapes for each
signal decay mode. Figure 6.5 shows the invariant mass resolution in the Gaussian approximation,
respectively as a function of α and ptot for B0 → π+π− and B0 → K+π− decay mode. The α

dependence was parameterized with a fourth order degree polynomial while the ptot dependence with
a straight line. The two dependencies are factorizable to a good approximation.

The values σj1 and σj2 extracted in the parameterization of ℘mj (mj) (see eq. (6.7)) are averaged
along all momenta: σj1 → σj01 and σj2 → σj02. Then we introduced the (α, ptot) dependence in the fit
and the new momentum dependent values for σj1 and σj2 to insert in eqs. (6.7) and (6.13) become:

σj1 = σj01 ·
(

1 +
aj1
σj01

α+
aj2
σj01

α2 +
aj3
σj01

α3 +
aj4
σj01

α4

)
·
(

1 +
bj1
σj01

(ptot − 〈ptot〉ptot)
)

σj2 = σj02 ·
(

1 +
aj1
σj02

α+
aj2
σj02

α2 +
aj3
σj02

α3 +
aj4
σj02

α4

)
·
(

1 +
bj1
σj02

(ptot − 〈ptot〉ptot)
)

(6.14)

where the index j runs over all possible signal modes, pol4=
∑4
i=0 ai ·α, pol1=

∑1
i=0 bi · ptot, 〈ptot〉ptot

is the average ptot value.

All the possible effects related to a dependence of the Final State Radiation on α and ptot were
neglected since they are second order effects and much smaller than the momentum variation of the
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Figure 6.5: Dependence of the mass resolution on the momentum observables α and ptot for the
B0 → π+π− and B0 → K+π− decays. (a,c) mass resolution versus α parameterized with a fourth
order degree polynomial (pol4), even terms are fixed to 0 for B0 → π+π−, B0 → K+K−, B0

s → π+π−,
B0
s → K+K−. (b,d) mass resolution versus ptot parameterized with a first order degree polynomial

(pol1).

double Gaussian bulk of the invariant mass distribution.

6.4 Probability density function of the background mass term

In sec. 3.5 we described the main backgrounds which contribute to our data sample. We divided them
in two different kinds: the combinatorial background (E) and physics background (A).
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6.4.1 Combinatorial background (E)

In order to choose an appropriate functional form for the p.d.f of the combinatorial background,
we studied samples of two generic random tracks extracted from the same B0

(s) → h+h
′− data. We

looked at the distributions of the events passing the final selection (continuous line in fig. 6.6, labeled as
“signal sample”) and the corresponding distribution of the events with “opposite-χ2

3D” requirement.
The opposite-χ2

3D sample contains events that pass the final selections of tab. 3.3 except for the
requirement on the 3-D vertex quality, which is inverted to χ2

3D > 35 for the loose selection and
inverted to χ2

3D > 20 for the tight selection (see fig. 6.6, dashed line). The opposite-χ2
3D sample is

enriched of “unphysical” decays, i. e., decays which have two tracks with an identical kinematics on
the transverse plane to the B0

(s) → h+h
′− modes but coming from two distinct heavy-flavors in the

event, which have sizable impact parameter but are separated along the z direction. These thresholds
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Figure 6.6: Invariant mππ-mass distribution of the events passing the final optimized selection (con-
tinuous line). Loose cuts (a) and tight cuts (b). Invariant mππ-mass distribution of events passing the
final optimized selection with an opposite requirement on the 3-D vertex quality (point with error),
χ2

3D > 35 (a), and χ2
3D > 20 (b). The exponential fit function is overlaid.

were chosen to remove as much as possible the contamination of B0
(s) → h+h

′− signal events and to
obtain a reasonable statistics of background events. The invariant-mass shape of these random pairs
of tracks is not completely independent of their χ2

3D; thus, the opposite-χ2
3D sample provides only

an useful qualitative model (exponential) of the shape of the combinatorial background of the signal
sample. For these reasons the invariant mππ-mass of the combinatorial background was modeled with
a decreasing exponential, whose slope is dominated by the events lying at higher masses than the peak
(right-hand side of the signal):

℘mE (mππ|α, ptot; cE) =
1∫ b

a
ecEmππdmππ

· ecEmππ , (6.15)

and in the central fit, the slope cE of the combinatorial background mass shape is free to vary.
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6.4.2 Physics background (A)
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Figure 6.7: Invariant ππ-mass distribution of simulated B → ρπ/ρK decay modes and of the sum of
all simulated B → ρπ/ρK modes, the fit function (eq. (6.16)) is overlaid (a). Comparison of simulated
B → ρπ/ρK background modes and B0

(s) → h+h
′−(Λ0

b → ph−) signal modes (b).

A change of the slope of the mass distribution of the signal sample, at masses just below the
signal mass, clearly indicates an additional background source with an LT distribution biased towards
positive values. This contribution is readily interpreted as mis-reconstructed b-hadron decays. These
are multi-body b-hadron decays, where only two tracks were reconstructed, resulting in the typical
shoulder-shape, that is suppressed around 5.15 GeV/c2, because their contribution is limited to the
mππ < mB0

(s)
−mπ region for kinematic reasons.

The main contribution to the partially-reconstructed heavy flavor decays is due to the coming
from decay modes B+ → h+

1 h
−
2 h

+
3 , B0 → h+

1 h
−
2 h

0
3 and B0

s → h+
1 h
−
2 h

0
3, where h = π or K. In

particular, they include also all the decay modes involving an intermediate resonance as a ρ or a K∗

meson plus a pion or a kaon: B+ → ρ−π+, B+ → ρ0K+, B0 → ρ∓π±, B0 → ρ−K+, B0
s → ρ∓π±,

B0
s → ρ+K− (where ρ → ππ) and B+ → K∗0π+, B+ → K∗+π0, B0 → K∗+π−, B0 → K∗0π0

(where K∗ → Kπ) and many others. Many branching fractions of the decays involving the B+ and
B0 mesons were measured at the B-Factories [48] while those of the B0

s mesons are still unknown
with large theoretical uncertainties. A huge amount of computing power would be needed to generate
physics background samples of adequate size for analyses like ours, with O(109) rejection factors on
background. Hence we chose the simpler, and more reliable, approach of extracting the information
on physics background from data, fitting its invariant mass distribution in the fit of composition.

In order to choose an appropriate functional form for the p.d.f of the physics background, we
simulated some of the decays listed above, in particular those involving the ρ meson resonance which
represent about 50% of the low-mass bump (see fig. 3.4). The invariant ππ-mass distribution of
the simulated events is shown in fig. 6.7. We summed the contributions according to their relative
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branching fractions. For the B+ and B0 we used the measured values from [48], for the yet unmeasured
B0
s modes we used the theoretical predictions [15] and for fs and fd we used the latest measurements

from [48].

� B(B+ → ρ−π+) = (8.7+1.0
−1.1)× 10−6;

� B(B+ → ρ0K+) = (4.25+0.55
−0.56)× 10−6;

� B(B0 → ρ∓π±) = (24.0± 2.5)× 10−6;

� B(B0 → ρ−K+) = (15.3+3.7
−3.5)× 10−6;

� B(B0
s → ρ∓π±) = (0.002− 0.015)× 10−6;

� B(B0
s → ρ+K−) = (24.5+15.2

−12.9)× 10−6.

The mππ distribution of B → ρπ/ρK was modeled with the convolution of a resolution function, a
Gaussian centered in zero with the width of an individual signal mode (σexp ≈ 22 MeV/c2), and an
Argus function [109], whose cut-off falls just on the left-hand side of the B0

(s) → h+h
′− peak:

℘mA (mππ|α, ptot;mA, cA) = G (mππ; 0, σexp) ∗A (mππ;mA, cA), (6.16)

A (mππ;mA, cA) =

⎧⎪⎨
⎪⎩

1
KA
·
[
mππ ·

√
1−
(
mππ

mA

)2
· e−cA·

(
mππ
mA

)2
]

if mππ < mA,

0 if mππ > mA,

(6.17)

where the normalization KA is:

KA =
∫ mA

a

mππ ·
√

1−
(
mππ

mA

)2

· e−cA·
(

mππ
mA

)2

dmππ with a ≤ mA. (6.18)

Since we expect a similar distribution for all the partially-reconstructed heavy flavor decays which
contribute to the physics background, we decided to use the p.d.f reported in eq. (6.16) to model the
physics background with the parameters mA, cA free to vary. As a further cross-check, we verified
that a simple one-dimensional fit of just the mass shape of the B0

(s) → h+h
′− candidates yields, for

the Argus function, similar estimated parameters as the full composition fit.

6.5 Probability density function of the momentum term

6.5.1 Signal momentum term

The momentum p.d.f. is extracted from the simulated signal samples described in sec. 4.1. Since
the signed momentum-imbalance (α) and the scalar sum of momenta (ptot) are not independent
observables, we used a joint p.d.f., ℘pj (α, ptot; �θ), to model their distribution. Selection requirements
and kinematic correlations between the outgoing particles cause the domain and shape of the α

distribution to vary as a function of ptot. In fact, both momenta (p1 and p2) are necessarily larger
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Figure 6.8: Distribution of the scalar sum of the momenta as a function of the signed momentum
imbalance in the B0 → π+π− simulated decays (a). The joint (α, ptot) template is overlaid (b).

than 2 GeV/c, and their sum is larger than 5.5 GeV/c, because of the trigger requirements on their
transverse momenta. This translates into the following conditions on α and ptot:

p1 = ptot

(
1− |α|
2− |α|

)
> 2 GeV/c and ptot > 5.5 GeV/c. (6.19)

The other constraint on momentum, p2 = ptot/(2 − |α|) > 2 GeV/c, is automatically satisfied if
eq. (6.19) holds. The domain of the joint p.d.f. is defined by the requirements of relation (6.19) and
it is shown in fig. 6.8(a). The joint p.d.f. is written as the probability density of the scalar sum of
momenta, ℘(ptot), times the conditional probability density of the signed momentum-imbalance at
given ptot, ℘(α|ptot). We empirically chose a parameterization of both densities, whose parameters
were determined by means of a two-dimensional, binned, maximum Likelihood fit of the simulated
distributions. An event, whose candidate has an observed scalar sum of momenta ptot and an observed
momentum-imbalance α, contributes to the momentum p.d.f. of the jth signal mode with the term:

℘pj (α, ptot) = ℘j(ptot)× ℘j(α|ptot)

=
1
Kj

(
ecjptot

4∑
l=0

al,jp
l
tot

)
×
[

6∑
m=0

bm,jα
m

(
ptot − 2
ptot − 4

)m]
, (6.20)

where the ptot density is the product of an exponential function times a 4th-degree polynomial, whereas
the conditional p.d.f. of α is a 6th-degree polynomial in α scaled by a factor (ptot−2)/(ptot−4) deriving
from the constraint on the domain of α given by eq. (6.19). The index j of the a, b, and c parameters
denotes their dependence on the decay mode. The odd b terms are set to zero for decays into π+π−

and K+K− final states, where the α distributions are symmetric because the two outgoing particles
have the same mass. The normalization factor Kj for each mode is calculated with a numerical
two-dimensional integration of the p.d.f. in the appropriate domain of α and ptot.
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Figure 6.8(b) shows the distribution of the scalar sum of momenta as a function of the momentum
imbalance of the simulated B0 → π+π− mode. Similar distributions are obtained for all signal modes.
These are fit to the functions of eq. (6.20) to obtain the momentum templates. We checked the
agreement between the model the and data by overlaying the templates to the α-distributions of
simulated data, sampled in different ptot ranges and viceversa.

6.5.2 Background momentum term
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Figure 6.9: Invariant ππ-mass sidebands (red) used to parameterize the momentum mass term (a).
Distribution of the scalar sum of momenta as a function of the signed momentum imbalance of the
background decays. Joint (α, ptot) template as determined for background is overlaid (b).

As for the signal, we used a joint p.d.f. that parameterizes simultaneously the distribution of
momentum imbalance (α) and of the scalar sum of momenta (ptot). The p.d.f. is further split in
the density of the scalar sum, ℘(ptot), times the conditional density of the momentum imbalance,
℘(α|ptot). We empirically chose the shapes of both densities, whose parameters were determined
from data with a binned, two-dimensional binned fit of the distributions for candidates from the
mass sidebands. For the combinatorial background we used the higher mass sideband to extract the
momentum p.d.f., while for the physics component the situation is more complicate, since in the lower
mass sideband there is an unknown mixture of two components. The contamination of the physics
background under the B0

(s) → h+h
′− mass region is only a few %, then we decided to use the same

p.d.f to parameterize both background components: ℘pA(α, ptot) = ℘pE(α, ptot) = ℘pbck(α, ptot). We
parameterized the joint distribution ℘pbck(α, ptot) using the selections reported in tab. 3.3 and the
data mass sidebands are defined in mππ ∈ [5.000, 5.125]∪ [5.600, 6.200] GeV/c2 where the signal mass
region mππ ∈ [5.120, 5.600] GeV/c2 was removed. The relative weight between the combinatorial and
physics background was preserved since the mass range fit is mππ ∈ [5.000, 5.800] GeV/c2.

An event with an observed scalar sum of momenta ptot and an observed momentum-imbalance α
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contributes to the momentum p.d.f. of the background with the following term:

℘pbck(α, ptot) = ℘(ptot)× ℘(α|ptot) =

1
K

[
1 +
(
ptot − λ

a

)2
]−s

e[−ν tan−1( ptot−λ
a )] ×

6∑
m=0

bmα
m

(
ptot − 2
ptot − 4

)m
,(6.21)

where the ptot density is a Pearson type-IV distribution [131], while the α conditional density is
a 6th-degree polynomial of the α variable scaled by the usual factor (ptot − 2)/(ptot − 4).3 Since
the momentum distribution of background is not expected to vary between positively and negatively-
charged particles, the shape of the α distribution was forced to be symmetric by setting the odd b terms
to zero. The normalization factor K is calculated through a numerical two-dimensional integration of
the p.d.f. in the appropriate domain of α and ptot.

Figure 6.9(b) shows the distribution of the scalar sum of momenta as a function of the momentum
imbalance of background events. The fit function of eq. (6.21) is overlaid. We checked the agreement
between model and data by overlaying the template to the α-distribution of the background events,
sampled in different ptot ranges.

6.6 Probability density function of the PID term

6.6.1 Signal PID term

The p.d.f. of the PID information can not be factorized in the probability densities of the two particles,
because of the correlation between the observed dE/dx values (see sec. 4.4.4). We therefore wrote a
two-particle, joint p.d.f. that incorporates the probability densities of the intrinsic dE/dx observables
of each particle, and of the correlation function.

We used the shapes of the intrinsic residuals and correlation determined in sec. 4.4.5 to write the
p.d.f., which results from a convolution integral plus a transformation of variables. The convolution
combines the intrinsic dE/dx residuals of both particles in the final state l and m (δl and δm) through
the p.d.f. of correlation, ℘c(c), yielding the following p.d.f. for the jth mode:

℘j(δobs
l , δobs

m ) = ℘H→lm(δobs
l , δobs

m ) = [℘l(δl)× ℘m(δm)] ∗ ℘c(c) =
∫ +∞

−∞
℘l(δl − c)℘m(δm − c)℘c(c)dc,

(6.22)
which, at this stage, is independent of momenta. The index j, which runs over all components, is
splitted in three indices H → lm because the PID term depends only on the identity of particles in
the final states of the jth mode and not on the initial mother particle H = B0, B0

s or Λ0
b . The indices

l,m = K±, π±, p or p̄ determine the choice of the shapes for intrinsic residuals within the integral
The p.d.f. in eq. (6.22) is function of a different set of observables for each mode, e. g., if α > 0:
(δπ+ , δπ−)4 for the B0 → π+π− case, (δK+ , δπ−) for the B0 → K+π− case; if α < 0: (δπ− , δπ+) for
the B0 → π+π− case, (δπ− , δK+) for the B0 → K+π− case and so on.

3The Pearson type-IV distribution is useful to approximate a broad class of asymmetric distributions with extensive

tails.
4δA is the dE/dx residual in mA mass hypothesis, see sec. 4.4.2.
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To avoid possible biases related to using different sets of observables in different terms of the Likeli-
hood function δl and δm [113], we rewrote the Likelihood in terms of a single observable, the kaonness
κ, see sec. 4.4.7. Changing variable from residual to kaonness induces an additional dependence on
momentum in the PID term. In fact, for each particle type, the following relation holds:

δ = (κ− 〈κ〉)
(

dE
dx K

− dE
dx π

)
≡ (κ− 〈κ〉) Δ (6.23)

where Δ indicates the difference between the expected dE/dx values evaluated in kaon and pion mass-
hypothesis, which is function of momentum. The advantage to use the kaonness in lieu of the residuals
in different hypothesis is that the kaonness is defined for all kind of particles in the same way. In fact
the residuals in all mass hypothesis are function of kaonness and momentum particle. The joint p.d.f.
as a function of κ is

℘lm(κobs
1 , κobs

2 ) =
∫ +∞

−∞
℘(δl − c)℘(δm − c)

∣∣∣∣∣ ∂(δl, δm)
∂(κ1, κ2)

∣∣∣∣∣℘c(c)dc, (6.24)

where δ ≡ δ(κ) and the notation κobs
1 , κobs

2 to indicate the particles is described in sec. 6.1. After
writing out the Jacobian, the above equation becomes

℘lm(κobs
1 , κobs

2 ) =
∫ +∞

−∞
℘(δl − c)℘(δm − c)Δ1Δ2℘c(c)dc. (6.25)

The transformation from residual to kaonness brings the momenta into the probability density through
the differences of expected dE/dx values, Δ1(α, ptot) and Δ2(α, ptot). Hence, the correct expres-
sion of the joint p.d.f. function of κ becomes a conditional probability density at given momenta:
℘lm(κobs

1 , κobs
2 ) −→ ℘lm(κobs

1 , κobs
2 |α, ptot).

An event in which δl and δm are the observed dE/dx residuals of the particle pair, contributes to
the jth signal mode of the PID p.d.f. with the following term:

℘PID
j (κobs

1 , κobs
2 |α, ptot) = ℘PID

l,m (κobs
1 , κobs

2 |α, ptot) =
1
Kj

∫ +∞

−∞
℘l(δl − c)℘m(δm − c)Δ1Δ2℘c(c)dc,

(6.26)
which includes Kj = 1/

∫ +∞
−∞ ℘j(κobs

1 , κobs
2 |α, ptot)dκobs

1 dκobs
2 as a normalization factor. The explicit

expression of the p.d.f. was evaluated analytically; we omit here its explicit expression because of its
length and lack of visually intelligible features.

6.6.2 Background PID term

The PID p.d.f. for background uses the same joint two-particle p.d.f. as for the signal. The term
corresponding to each possible pair of particle types (l,m) in background, is weighed by a factor wlwm.
Each weight wl is proportional to the fractional contribution of particles of type l to the background,
and it is a free parameter in the fit. We allowed for independent kaon, proton, electron and pion (or
muon) contributions, and for positive and negative particles for the combinatorial background, while,
for physics background, we allowed for independent kaon and pion contributions, averaging on the
particle charge, since in this case we do not expect electrons and protons in the final state and any
asymmetry between positive and negative particles. Muons and pions were not differentiated since
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their contributions are indistinguishable; the ≈ 1.5 ns dE/dx resolution is insufficient to resolve the
difference between their ionization rates, which is inappreciable because of the small difference in mass
mπ±−mμ � 34MeV/c2. This does not affect the signal composition, since muon contamination in the
signal peak is negligible, if any, due to the small rates expected for B0

(s) meson decays in muon pairs
[132], and muons from semileptonic heavy-flavor decays do not have a peaking distribution in mass.
We used the model of residuals and correlation for kaons and pions and protons described in sec. 4.4.5.
A candidate decaying to particles with κobs

1 and κobs
2 observed “kaonnesses”, sum of observed scalar

momenta ptot, and observed momentum imbalance α, contributes to the PID term of the Likelihood
of background with the following probability density function:

℘PID
A(E) =

∑
l,m

w
A(E)
l wA(E)

m [℘l,m(κobs
1 , κobs

2 |α, ptot) + ℘m,l(κobs
1 , κobs

2 |α, ptot)]. (6.27)

The explicit expression of ℘l,m(κobs
1 , κobs

2 |α, ptot) is shown in eq. (6.26). While in the signal case the l,m
indices run over kaons, pions and protons (K±, π±, p and p̄) according to the decay of B0

(s) → h+h
′−

and Λ0
b → ph−, in the above equation they include also electrons (e±) for the combinatorial background

(E), while for physics background l,m indexes run over kaons, pions (K, π) only, where wA
K+ = wA

K−

and wA
π+ = wA

π− .

6.6.3 B0
(s) → h+h

′− correlation

We have observed in a few occasions that the probability density function of the correlation is sample
dependent (see sec. 4.4.6), while the probability density function of the intrinsic residuals are expected
to be the same by construction for the different data samples. We decided to use the templates of
the intrinsic residuals unchanged and to let the correlation p.d.f. to be determined by the fit of
composition, by letting the corresponding five parameters of the Gaussian correlation functions free
to vary, rather than using the nominal value extracted from the D0 → K−π+ decays reconstructed
from D∗+ → D0π+ → [K−π+]π+ decays (see sec. 4.4).

Although the disagreements between the correlations shape of different samples were within the
systematics associated to the PID templates (see sec. 12.7), we preferred to take advantage of the large
statistics available in the current B0

(s) → h+h
′− sample to better estimate the correlation, yielding a

reduction of the systematic uncertainty in exchange for a modest increase of statistical uncertainty
(≈ 2%).

Hence the PID p.d.f. in eq. (6.26) is a function of 5 fit parameters:

℘l,m(κobs
1 , κobs

2 |α, ptot)→ ℘l,m(κobs
1 , κobs

2 |α, ptot; dc1, μ
c
1, σ

c
1, μ

c
2, σ

c
2) (6.28)

where dc1, μ
c
1, σ

c
1, μ

c
2, σ

c
2 are the parameters which describe the double Gaussian of the correlation p.d.f.

of eq. (4.25). dc1 is the relative fraction of the Gaussian 1 (dc2 = 1−dc1), while μc1(2), σ
c
1(2) are respectively

the mean and the width of the Gaussian 1(2).
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Isolation of B0 and B0
s mesons

This chapter is devoted to the measurement of the distribution for the B0 and B0
s , as a function

of momentum, of the isolation variable. This is a fundamental handle to enhance the signal-to-
background ratio in the off-line selection. This, however, implies an additional amount of work since
the Monte Carlo physics generators do not reproduce accurately its features. We need to evaluate
how the isolation requirement modifies the transverse momentum distribution of the B0

(s) meson for
an accurate parameterization of kinematic templates. We need to estimate the efficiency for the
optimization selection process and to convert the fit results into a measurement of branching fraction.
We focused our attention on the study of the control data sample of B0

(s) → J/ψX decays to probe the
characteristics and peculiarities of this variable.

7.1 Isolation

One of the most powerful variables to improve the B0
(s) → h+h

′− purity in the off-line selection is the
”isolation”. Given the hard fragmentation, b-hadrons tend to carry a larger fraction of the transverse
momentum than the particles produced in the fragmentation [108]. The “isolation of the B candidate”
is an estimator of the fraction of momentum, available from the b-quark fragmentation, carried by the
b-meson:

I|R=1(B) =
pT(B)

pT(B) +
R∑

i�=j:B →j
pT(i)

, (7.1)

where the sum in the right-hand term of the denominator runs over all tracks (other than those of
the B candidate decay-chain) satisfying standard quality requirements and found in a local region
around the flight direction of the B candidate. Such region is chosen to be a cone in the (η−φ) space,
unitary in radius (R =

√
φ2 + η2 = 1), whose apex is the primary vertex and the axis is collinear with

�pT(B) (see fig. 7.1). When the decay products of the b-meson are contained in the cone, I(B) is just
the fraction of transverse momentum within the cone carried by the b-meson.1 Candidates with large
values of the isolation are more likely to be a real b-mesons than candidates with a low isolation.

1Since we use R = 1 all through this thesis, we henceforth simply write I(B) ≡ I|R=1(B).
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Figure 7.1: Illustration of the fragmentation of a b-quark into a b-hadron. The isolation cone is shown
in red, the directions of the charged particles produced in the fragmentation are shown in yellow.
Nothing is to scale.

The introduction of the isolation adds further complexity to the analysis: its distribution depends
on the mechanism of hadronization of the b-quark, which is not described by the signal-only simulation
discussed in sec. 4.1. The isolation depends on: 1) the multiplicity and momenta of the charged-
particles not belonging to the b-meson decay-chain and produced in the b-quark fragmentation, or in
the underlying event, or in possible pile-up events; 2) the transverse momentum of the b-meson, since
the sharing of transverse momentum between the b-meson and its neighboring particles depends on the
energy of the b-meson itself.2 This has some consequences. First, the isolation is independent of the
decay mode of the b-meson, but it depends on its production mechanism. We therefore expect different
isolation distributions for the B0 and B0

s mesons, which are produced through different fragmentation
processes. A second consequence is the need to study the isolation using real data, since typical pp̄
collision simulators, as pythia, cannot reproduce reliably the details of the b-quark fragmentation.
In addition, the dependence on the transverse momentum of the b-meson needs to be considered.

In the next sections we will analyse the characteristics and peculiarities of the isolation using fully
reconstructed B0

(s) meson decays available in CDF data. We will measure the efficiencies εiso(B0)
and εiso(B0

s ) as a function of the transverse momentum pT(B) and as a function of different set of
requirements. In particular, we will focus on the requirements used in the present analysis I(B) > 0.5
and I(B) > 0.525.

7.2 Choice of the control samples

We chose fully reconstructed decays since we need to determine the transverse momentum and the
direction of the B0

(s) meson. Samples collected by the same trigger as the B0
(s) → h+h

′− decays,
and with similar final states, like the exclusive B0

(s) → D−(s)π
+ decays, would be desirable. However,

common thresholds on transverse momentum between the B PIPI (which collects B0
(s) → h+h

′−

decays) and the B CHARM (which collects B0
(s) → D−(s)π

+ decays) trigger paths are responsible of an

2QCD measurements show that the fraction of energy carried by a charged particle in a jet does not depend linearly

on the energy of the jet itself.
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higher turn-on point of the pT(B) distribution of the B0
(s) → D−(s)π

+ with respect to the B0
(s) → h+h

′−

modes. A two-body decay-product carries a larger average-fraction of the momentum of the decaying
particle than the product of a multi-body decay. Thus, b-mesons in the B PIPI path typically had lower
transverse momenta than in the B CHARM path. While a ≈ 40% (30% after the isolation requirement)
fraction of the B0

(s) → h+h
′− candidates have transverse momenta below 6 GeV/c, the B0

(s) → D−(s)π
+

candidates are removed from this region of the spectrum by the trigger bias.

We therefore used the fully reconstructed B0
(s) → J/ψX decays in the data collected by the di-muon

trigger. This trigger selects events enriched in J/ψ → μ+μ− decays by requiring azimuthal matching
between two oppositely-curved XFT-tracks with pT > 1.5 GeV/c and two non-adjacent track-segments
in the CMU detectors. The lower threshold on the transverse momenta of the muons allows to
reconstruct B0

(s) meson with transverse momenta distributions extending down to pT(B) ≈ 2−3 GeV/c
(see figs. 7.2(a) and (b)). The decays used to measure the isolation efficiency are:

� B0 → J/ψK∗(892)0 → [μ+μ−][K+π−],
with approximate total branching fraction 7.7× 10−5;

� B0
s → J/ψφ(1020) → [μ+μ−][K+K−],

with approximate total branching fraction 2.6× 10−5.
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Figure 7.2: Background-subtracted pT(B)-distributions of the B0 → J/ψK∗0 (a) and B0
s → J/ψφ

decays (b).

B0 → J/ψK∗0 and B0
s → J/ψφ modes (see fig. 7.3) were reconstructed in data collected by the

di-muon trigger, following a standard CDF procedure [106, 144]. We relaxed only the requirement on
the transverse momentum of B0

(s) mesons (pT(B) > 2 GeV/c) and we compensated the degradation
of the signal purity by tightening the pT requirements on the K∗0 and φ. Table 7.1 summarizes the
selection criteria. Of the two possible mass assignments in the K∗0 reconstruction, K+π− and K−π+,
we chose the one yielding the invariant mass closer to the K∗0 mass [32]. This choice is wrong in about
36% of the cases (see tab. 7.2) and it produces the long visible tails in the invariant mass distribution
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primary vertex

B0 (B0
s) decay

L
T

J/ψ decay

K∗0(φ) decay

μ+

μ−
K+

π−(K−)

Figure 7.3: Illustration of the B0 → J/ψK∗0 → [μ+μ−][K+π−] (B0
s → J/ψφ → [μ+μ−][K+K−])

decay topology in the transverse plane.

of the B0 → J/ψK∗0 candidates (see fig. 7.4(a)). This is not a real problem for the study of the
isolation and will be discussed in sec. 7.3.1.

Figures 7.4(a) and (b) show the invariant-mass distribution resulting from the selection of tab. 7.1.
We reconstructed about 7,800 B0 → J/ψK∗0 decays with a signal-to-noise ratio ≈ 12 at the peak,
and about 1,100 B0

s → J/ψφ decays with a signal-to-noise ratio ≈ 20 at the peak. The background
is almost uniform and is dominated by random four-track combinations that accidentally satisfy the
selection requirements and random two-track combinations associated with a real J/ψ meson.

Variable Units B0 → J/ψK∗0 B0
s → J/ψφ

pT(μ) GeV/c > 1.5 > 1.5
pT of non-ψ daughter GeV/c pT(K), pT (π) > 0.4 pT(K), pT(K) > 0.4
pT(non-ψ) GeV/c pT(K∗0) > 2.0 pT(φ) > 2.0
pT(B) GeV/c > 2.0 > 2.0
LT(B)/σLT(B) − > 4.5 > 4.5
σLT(B) μm < 400 > 400
J/ψ mass GeV/c2 3.017 < mμμ < 3.177 3.017 < mμμ < 3.177
Non-ψ mass GeV/c2 0.842 < mKπ < 0.942 1.010 < mKK < 1.030
χ2

T(B) − < 225 < 225
P(Bvertex) − > 10−4 < 10−4

Table 7.1: The B0
(s) → J/ψX selection. “Non-ψ” denotes the K∗0 (φ) resonance in the B0 (B0

s )
decays.

7.3 Measurement of the isolation efficiency

If we have a sample of N b-mesons decays where Ns(b) = N · fs(b) is the total number of the signal
(background) events and fs(b) is the fraction of the signal (background) events with respect to N , we
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Figure 7.4: Invariant J/ψKπ-mass distribution of the B0 → J/ψK∗0 candidates (a); invariant
J/ψK+K−-mass distribution of the B0

s → J/ψφ candidates (b).

define the efficiency of the I(B) > 0.5 ( or 0.525) cut as

εiso(B) =
N iso
s

Ns
=
f iso
s

fs
, (7.2)

where N iso
s ≤ Ns (f iso

s ≤ fs) is the number (fraction) of decays in which the isolation of the b-meson
is larger than 0.5 (or 0.525). We extracted εiso(B) with a joint fit of the mass distribution of events
passing the isolation cut (f iso

s ), and failing the same cut (fs − f iso
s ). This was done both for the

B0 → J/ψK∗0 and the B0
s → J/ψφ decay mode separately.

The yields were fit by maximizing a Likelihood function that uses the information contained in two
observables: the invariant mass of the B candidate (mB , see fig. 7.5), and a boolean variable (“flag”)
that is true if the candidate satisfies the isolation requirement I(B) > 0.5 (or 0.525). The Likelihood
L is a function of the vector �θ = (θ1, . . . , θn) of n unknown parameters, and is written as follows:

L (�θ) =
N∏
i=1

Li(�θ) =
N∏
i=1

⎧⎪⎨
⎪⎩

fsε
s
isoL

sig
i + fbε

b
isoL

bck−iso
i I(B) > Icut;

fs(1− εsiso)L sig
i + fb(1− εbiso)L bck−noiso

i I(B) ≤ Icut.

(7.3)

For each mode, the two-variate (mB and flag) fit was implemented by minimizing the quantity
−2 ln(L ). For each event passing (failing) the requirement, the first (second) branch of the above
Likelihood function was used. In eq. (7.3), the product runs over the observed number of events N .
The expected fractions of signal (fs) and background (fb = 1−fs) events, and the isolation efficiencies
on signal (εsiso) and on background (εbiso) were determined by the fit. The p.d.f. used in the Likelihood
that describe signal (L sig

i ) and background (L bck−iso
i and L bck−noiso

i ) distributions are described in
next sections.
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7.3.1 Probability density functions

The invariant-mass distribution of B0 → J/ψK∗0 is described by the sum of two Gaussian probability
distributions with the same mean and different standard deviations:

L sig = ℘(mB ; �θ) =
f1
K1

e−
1
2 (

mB−μ

σ1
)2 +

1− f1
K2

e−
1
2 (

mB−μ

σ2
)2 , (7.4)

where the mean of the two Gaussians, μ, the standard deviations, σ1 and σ2, the relative fraction of
the first Gaussian with respect to the second one, f1, are parameters determined by the fit, and the
normalization constants, Ki =

∫ b
a
e
− 1

2 (
mB−μ

σi
)2
dmB , depend on the mass-range of the fit, a < mB < b.

The use of a double Gaussian model to parameterize the invariant mass distribution of the B0 →
J/ψK∗0 decays was necessary to keep into account the non negligible fraction of swapped K∗0 → Kπ

decays, where the kaon mass was assigned to the pion and the pion mass was assigned to the kaon
in the reconstruction of the K∗0. The fraction of swapped candidates was studied accurately using
the full simulation in the standard CDF analysis and it depends strongly on the selection. Ref. [106]
estimates a 10% of swapped component while Ref. [144] using a different off-line selection estimates a
20% for this fraction. However these values cannot be compared directly with the fraction returned
by our fit (about 37% (see tab. 7.2)) since our selection is looser than the ones in Refs. [106, 144]
because we need to reach low transverse momentum values. Moreover our simple model absorbs in the
second wider Gaussian the non Gaussian tails of the mass distribution due to the resolution effects.
These effects are reproduced precisely by the full simulation and they are included in the standard
CDF analysis.
Improving the mass distribution model with the generation of a large Monte Carlo sample of B0 →
J/ψK∗0, knowing exactly the fraction of swapped candidates and the precise parameterization of the
invariant mass distribution does not provide any improvement on the measurement of the isolation
efficiency. In fact any isolation independent systematic effect is canceled out in the ratio of signal
fractions, since it contributes equally to numerator and denominator.

The invariant-mass distribution of the B0
s → J/ψφ candidates is described with a Gaussian prob-

ability distribution:

L sig = ℘(mB ; �θ) =
1
K
e−

1
2 (

mB−μ

σ )2 , (7.5)

where the mean, μ, and the standard deviation, σ, are parameters determined by the fit, and the
normalization constant, K =

∫ b
a
e−

1
2 (

mB−μ

σ )2dmB , depends on the mass-range of the fit, a < mB < b.

We described the background shape with a linear function as empirical probability distribution.
Since the invariant-mass distribution of background events may depend on the isolation (see fig. 7.5),
we used two different probability functions:

L bck−iso = ℘(mB ; �θ) =
1
K1

(1 + c1mB) and L bck−noiso = ℘(mB ; �θ) =
1
K2

(1 + c2mB), (7.6)

where L bck−iso is used for candidates with I(B) > 0.5 (or 0.525) and L bck−noiso for candidates with
I(B) < 0.5 (or 0.525).

7.3.2 Likelihood fit

The vector of the unknown parameters, �θ, was estimated for each mode, independently, to determine



7.3 Measurement of the isolation efficiency 157

]2-mass[GeV/cπKψInvariant J/
5.18 5.2 5.225.245.26 5.28 5.3 5.325.345.36 5.38

2
C

an
d

id
at

es
 p

er
 5

 M
eV

/c

0

200

400

600

800

1000

1200

1400

1600

1800

]2-mass[GeV/cπKψInvariant J/
5.18 5.2 5.225.245.26 5.28 5.3 5.325.345.36 5.38

2
C

an
d

id
at

es
 p

er
 5

 M
eV

/c

0

200

400

600

800

1000

1200

1400

1600

1800

(a)

]2-mass[GeV/c-K+KψInvariant J/
5.2 5.25 5.3 5.35 5.4 5.45 5.5 5.55 5.6

2
C

an
d

id
at

es
 p

er
 1

0 
M

eV
/c

0

100

200

300

400

500

600

]2-mass[GeV/c-K+KψInvariant J/
5.2 5.25 5.3 5.35 5.4 5.45 5.5 5.55 5.6

2
C

an
d

id
at

es
 p

er
 1

0 
M

eV
/c

0

100

200

300

400

500

600

(b)

Figure 7.5: Invariant J/ψKπ-mass distribution of the B0 → J/ψK∗0 candidates passing (black his-
togram), and failing (red filled histogram), the I(B) > 0.5 cut (a). Invariant J/ψK+K−-mass dis-
tributions of the B0

s → J/ψφ candidates passing (black histogram), and failing (red filled histogram)
the I(B) > 0.5 cut (b).

fs – the estimate of the signal fraction in the sample, fb = 1− fs;

f1, μ, σ1 and σ2 (or μ and σ) – the estimate of mass distribution of signal in B0 → J/ψK∗0 (or
B0
s → J/ψφ) mode;

εs
iso – the estimate of the efficiency of the I(B) > Icut requirement on signal events;

εb
iso – the estimate of the efficiency of the I(B) > Icut requirement on background events;

c1 and c2 – the estimate of the parameters of the mass distribution of background.

Using the simultaneous fit of eq. (7.3) is convenient. Since several parameters (fs, εsiso, ε
b
iso, f1, μ, σ1,

σ2, c1, and c2) are shared between the two branches of the Likelihood, optimal use of the available
information is achieved by determining these parameters simultaneously. In addition, using common
parameters helps the convergence of the maximization of the Likelihood in a condition of low statistics
and low purity subsamples of candidates failing the isolation requirement. Lastly, several systematic
effects cancel out in the ratio of signal yields between the two samples.

Figures 7.6 and 7.7 show the invariant-mass distributions of the B0
(s) → J/ψX samples, with the

fit functions overlaid. Table 7.2 contains the results of the fits for the requirement I(B) > 0.5 and
I(B) > 0.525 respectively.
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Figure 7.6: Invariant mass distributions of B0
(s) → J/ψX candidates without (a, b), passing (c, d),

and failing (e, f) the isolation requirement I(B) > 0.5. B0 → J/ψK∗0 (a, c, e), B0
s → J/ψφ (b, d, f).

Fit functions are overlaid (blue, solid line).
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Figure 7.7: Invariant mass distributions of B0
(s) → J/ψX candidates without (a, b), passing (c, d),

and failing (e, f) the isolation requirement I(B) > 0.525. B0 → J/ψK∗0 (a, c, e), B0
s → J/ψφ (b, d,

f). Fit functions are overlaid (blue, solid line).
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B0 → J/ψK∗0 B0
s → J/ψφ

εsiso [%] 82.9± 0.5 82.7± 1.3
εbiso [%] 46.8± 0.9 46.6± 1.8
fs [%] 59.7± 0.7 55.3± 1.3
f1 [%] 64± 5 −
μ [MeV/c2] 5279.2± 0.2 5366.6± 0.3
σ1 [MeV/c2] 8.6± 0.4 −
σ2 [MeV/c2] 20.2± 1.7 −
σ [MeV/c2] − 9.7± 0.3

B0 → J/ψK∗0 B0
s → J/ψφ

εsiso [%] 79.8± 0.6 78.3± 1.4
εbiso [%] 41.1± 0.9 42.2± 1.8
fs [%] 59.9± 0.7 55.4± 1.3
f1 [%] 66± 5 −
μ [MeV/c2] 5279.2± 0.2 5366.6± 0.3
σ1 [MeV/c2] 8.7± 0.4 −
σ2 [MeV/c2] 21.1± 1.8 −
σ [MeV/c2] − 9.8± 0.3

Table 7.2: Fit results for I(B) > 0.5 on the left, for I(B) > 0.525 on the right. N = 13064 events of
B0 → J/ψK∗0 and N = 2041 events B0

s → J/ψφ have been fitted.

7.4 pT-dependent effects

To study the dependence of the isolation efficiency on the transverse momentum of the B0
(s) mesons

we performed additional fits in different pT(B) bins. The results are reported in tab. 7.3. The current
statistics of the B0

s → J/ψφ decays is limited and it does not allow to further refine the bins range.
In particular the range of the first bin, pT(B) ∈ [2, 6] GeV/c, useful to extract the isolation efficiency
at low transverse momentum, cannot further be reduced with the current statistics. The situation
will improve as the data samples increase in size (today CDF already recorded on tape ≈ 2.5fb−1). In
the last column of tab. 7.3 we reported the ratio between the isolation efficiencies of the B0 and B0

s

mesons as a function of the transverse momentum. While the single εiso(B0
(s)) efficiency is strongly

pT(B) dependent, the ratio εiso(B0)/εiso(B0
s ) is a constant compatible with the unit. High pT(B)

pT range [GeV/c] εiso(B0 → J/ψK∗0) [%] εiso(B0
s → J/ψφ)[%] εiso(B0)/εiso(B0

s )
2 < pT(B) < 6 62.4± 2.4 59.6± 5.3 1.05± 0.10
6 < pT(B) < 10 75.9± 0.9 76.8± 2.2 0.99± 0.03
10 < pT(B) < 14 89.6± 0.8 88.6± 1.8 1.01± 0.02
14 < pT(B) < 18 94.9± 0.7 97.0± 1.6 0.98± 0.02
18 < pT(B) < 30 97.4± 0.8 97.8± 1.9 0.99± 0.02

Table 7.3: Isolation efficiency (I(B) > 0.5) as a function of pT(B) from B0
(s) → J/ψX decays.

values correspond to high isolation efficiency values.

Since the pT(B)-distribution of the B0
(s) → J/ψX decays is harder than the pT(B)-distribution

of the B0
(s) → h+h

′− decays (see fig. 7.8(a)), we expect different efficiency values and we cannot use
the numbers of sec. 7.3 to extrapolate the acceptance corrections. We could choose to measure the
quantity of interest in different pT(B)-bins as we did already in tab. 7.3, and then to average those
with the new pT(B)-distribution. This strategy, however, requires samples with high statistics in
order to refine the pT(B) granularity and to obtain bins in the pT(B)-distribution can be considered
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constant.
Though CDF II collected the second largest B0

s → J/ψφ sample in the world, this statistics is insuf-
ficient to refine adequately the pT(B) spectrum for our purpose. In particular the statistics at low
transverse momentum pT(B) < 6 GeV/c is limited. For this reason we used an alternative approach
for measuring the isolation efficiency. We reweighted the pT(B) distribution of the B0

(s) → J/ψX de-
cays to the pT(B) distribution of the B0

(s) → h+h
′− decays and we fitted the reweighted B0

(s) → J/ψX

data directly to determine the average isolation efficiency for the B0
(s) → h+h

′− decays.
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Figure 7.8: Background-subtracted pT(B)-distribution of B0
(s) → h+h

′− decays (black points) is
compared with pT(B)-distribution of B0

(s) → J/ψX decays (red squares of the filled histogram) (a).
Reweighting function between the two distributions (b).

To parameterize the weight-function that transforms the pT(B)-spectrum of the B0
(s) → J/ψX

decays into the pT(B)-spectrum of the B0
(s) → h+h

′−decays, we used a mixture of B0 → J/ψK∗0

(fig. 7.2(a)) and B0
s → J/ψφ (fig. 7.2(b)) decays with the same fraction of B0(B0

s ) mesons observed in
the B0

(s) → h+h
′− decays [1] corresponding to about 74%(26%). Figure 7.8(a) shows the comparison

between the two spectra, the black histogram is the side-band subtracted pT(B)-spectrum of the
B0

(s) → h+h
′− decays while the filled yellow histogram is the side-band subtracted pT(B)-spectrum

of the B0
(s) → J/ψX decays with the same composition of the B0

(s) → h+h
′− in terms of the B0 and

B0
s fractions. Figure 7.8(b) shows the result of the ratio between the two histograms parameterized

using a polynomial function. This weight-function w(pT(B)) can be evaluated for each ith event:

wi = w(pT(B)i). (7.7)

Section 7.3 describes the standard Likelihood function (eq. (7.3)) used to measure the isolation effi-
ciency in a sample of known composition (see eqs. (7.4)–(7.6)). To perform a reweighted Likelihood
fit the Likelihood has to be modified. The weight-function has to be normalized to the total num-
ber N of decays to avoid a bias of the estimate of the parameter errors. We define the normalized
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weight-function:

Wi = W (pT(B)i) = wi
N

N∑
j=1

wj

(7.8)

where the index i(j) runs over the observed number of events in our sample of N candidates. Then
we can reformulate the Likelihood keeping into account the pT(B) reweighting:

L (�θ) =
N∏
i=1

[Li(�θ)]Wi (7.9)

where Li is the same as in eq. (7.3).

7.4.1 Fit of the reweighted B0
(s) → J/ψX samples

Figures 7.9 and 7.10 show the invariant-mass distributions of the reweighted B0
(s) → J/ψX samples,

with the fit functions overlaid. Table 7.4 contains the results of the fits applied to the reweighted
samples of the different B0

(s) → J/ψX modes respectively for I(B) > 0.5 and I(B) > 0.525.

B0 → J/ψK∗0 B0
s → J/ψφ

εsiso [%] 72.4± 0.8 72.4± 1.9
εbiso [%] 30.9± 0.7 29.2± 1.4
fs [%] 42.1± 0.7 40.0± 1.3
f1 [%] 49± 14 −
μ [MeV/c2] 5278.9± 0.2 5366.2± 0.4
σ1 [MeV/c2] 7.7± 1.0 −
σ2 [MeV/c2] 16.0± 2.2 −
σ [MeV/c2] − 10.3± 0.4

B0 → J/ψK∗0 B0
s → J/ψφ

εsiso [%] 68.7± 0.8 66.7± 1.9
εbiso [%] 26.0± 0.7 25.4± 1.4
fs [%] 42.6± 0.8 40.1± 1.3
f1 [%] 62± 11 −
μ [MeV/c2] 5279.0± 0.2 5366.2± 0.4
σ1 [MeV/c2] 8.5± 0.7 −
σ2 [MeV/c2] 18.8± 3.1 −
σ [MeV/c2] − 10.3± 0.4

Table 7.4: Isolation efficiencies (I(B) > 0.5 on the left, I(B) > 0.5 on the right) estimated from the
B0

(s) → J/ψX samples. The pT(B)-spectrum of B0
(s) → J/ψX decays has been reweighted to the

pT(B)-spectrum of the B0
(s) → h+h

′− decays. N = 13064 events of B0 → J/ψK∗0 and N = 2041
events B0

s → J/ψφ have been fitted.
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Figure 7.9: Invariant mass distributions of the B0
(s) → J/ψX candidates without (a, b), passing (c,

d), and failing (e, f) the isolation requirement I(B) > 0.5. B0 → J/ψK∗0 (a, c, e), B0
s → J/ψφ(b, d,

f). The pT(B)-spectrum of B0
(s) → J/ψX decays has been reweighted to the pT(B)-spectrum of the

B0
(s) → h+h

′− decays. Fit functions are overlaid (blue, solid line).
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Figure 7.10: Invariant mass distributions of the B0
(s) → J/ψX candidates without (a, b), passing (c,

d), and failing (e, f) the isolation requirement I(B) > 0.525. B0 → J/ψK∗0 (a, c, e), B0
s → J/ψφ(b,

d, f). The pT(B)-spectrum of B0
(s) → J/ψX decays has been reweighted to the pT(B)-spectrum of

the B0
(s) → h+h

′− decays. Fit functions are overlaid (blue, solid line).
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7.4.2 Isolation efficiency ratio εiso(B0)
εiso(B0

s )

The results of the fit of composition have to be corrected using the isolation efficiency, εiso, averaged
over the transverse momentum of theB0

(s) meson. We extracted εiso from the results of tab. 7.4 (pT(B)-
spectrum of B0

(s) → h+h
′− decays), separately for the B0 and B0

s meson decays. The resulting relative
isolation efficiency with its statistical uncertainty is:

εiso(B0)
εiso(B0

s )

∣∣∣∣I(B)>0.5

B0
(s)→h+h′−

= 1.000± 0.028 and
εiso(B0)
εiso(B0

s )

∣∣∣∣I(B)>0.525

B0
(s)→h+h′−

= 1.030± 0.032. (7.10)

These values are statistically compatible with 1 and, along with other relative efficiency corrections
described in chap. 10, will be used to translate the uncorrected fit parameters into physics measure-
ments.

In addition, from the results of tab. 7.2 (pT(B)-spectrum of B0
(s) → J/ψX decays) we also extracted

the relative isolation efficiency:

εiso(B0)
εiso(B0

s )

∣∣∣∣I(B)>0.5

B0
(s)→J/ψX

= 1.003± 0.016 and
εiso(B0)
εiso(B0

s )

∣∣∣∣I(B)>0.525

B0
(s)→J/ψX

= 1.019± 0.019. (7.11)

The degradation of the statistical uncertainty from (7.11) to (7.10) is expected. This is due to the effect
of the reweighting from the pT(B)-spectrum of the B0

(s) → J/ψX decays to the one of B0
(s) → h+h

′−

decays. As far as I know, this is the most accurate measurement of its kind. It will be interesting to
repeat this measurement with the larger data samples already available at CDF ≈ 2.5 fb−1 (5–6 fb−1

by year 2009) to measure a possible discrepancy from unit and, in particular, a possible dependence
on the pT(B) distribution of this efficiency ratio.

7.4.3 pT(B) dependence of the isolation

Using the large sample of B0 → J/ψK∗0 we performed additional studies on the isolation variable.
So far we studied only the efficiency ratio between the B0 and B0

s mesons and we extracted the
acceptance correction averaging on the whole transverse momentum domain. But another important
issue cannot be neglected. This is directly related to the strong dependence of the isolation efficiency
when a cut is applied: the pT(B) distribution is sculpted (see fig. 7.11).

We measured the efficiency ratio between B0 and B0
s in two different configurations of pT(B)

spectrum and we did not find any significant difference from the unit (also in different pT(B)-bins, see
tab. 7.3). Moreover we observed that the pT(B)-spectra of B0 → J/ψK∗0 and B0

s → J/ψφ decays do
not show any significant differences (see fig. 7.12). This justifies the extraction of the efficiency curve
as a function of the transverse momentum using only the large sample of B0 → J/ψK∗0 decays and
to assume this efficiency curve identical to the one of B0

s case. Using the technique of the reweighted
Likelihood fit, we measured the isolation efficiency in different pT(B)-bins and we reported the results
in tab. 7.5 for the isolation requirement I(B) > 0.5 (or 0.525). Since the fits have been performed in
bins of momentum, in the table we also reported the average value 〈pT(B)〉 of each momentum bin.
Figure 7.13 shows the measured values as function of transverse momentum. They were fitted to the
following function:

a0 · Erf(a1(pT(B)− a2)) + a3 (7.12)
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Figure 7.11: Background-subtracted pT(B)-distribution in B0
(s) → h+h

′− decays with (black points
with error bars) and without (red squares with error bars of the filled yellow histogram) isolation
requirement I(B) > 0.5 (a) and I(B) > 0.525 (b).
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Figure 7.12: Background-subtracted pT(B)-distribution in B0
(s) → J/ψX decays. pT(B)-spectrum of

B0 → J/ψK∗0 (black points) is compared with pT(B)-spectrum of B0
s → J/ψφ (red squares of the

filled histogram).

where a0, a1, a2, a3 are free parameters in the fit and Erf(x) = 2√
π

∫ x

0
e−t2dt is an error function.

This function describes well the shape of the efficiency observed in the data. For large values of the
transverse momentum it reaches a plateau of approximately 95%, while at low transverse momentum
values it decreases quickly towards zero. Since the statistics at low transverse momentum is limited
also in the B0 → J/ψK∗0 decays, we cannot refine the first large bin pT(B) ∈ [2, 6] GeV/c.
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pT range [GeV/c] 〈pT(B)〉 [GeV/c] ε0.5iso [%] ε0.525iso [%]
2 < pT(B) < 6 4.63 60.4± 2.6 56.0± 2.5
6 < pT(B) < 7 6.48 65.8± 2.0 63.0± 2.2
7 < pT(B) < 8 7.5 75.3± 2.0 70.5± 2.1
8 < pT(B) < 9 8.5 79.5± 1.7 74.9± 1.8
9 < pT(B) < 10 9.5 81.7± 1.6 77.8± 1.7
10 < pT(B) < 11 10.5 87.4± 1.6 84.7± 1.7
11 < pT(B) < 12 11.5 89.2± 1.4 85.3± 1.6
12 < pT(B) < 13 12.5 92.3± 1.4 89.2± 1.6
13 < pT(B) < 14 13.5 90.6± 1.5 89.2± 1.8
14 < pT(B) < 15 14.5 94.2± 1.4 93.5± 1.5
15 < pT(B) < 20 18.2 95.3± 0.8 93.6± 0.9

Table 7.5: Isolation efficiency as a function of pT(B) from B0 → J/ψK∗0 data with the pT(B)-
spectrum reweighted to the B0

(s) → h+h
′− one. The efficiency has been measured for I(B) > 0.5 and

I(B) > 0.525

With the efficiency curves extracted from the data, we reweighted the pT(B)-spectrum of the
simulation to reproduce the effect of the isolation requirement. Figure 7.14 shows the agreement
between the pT(B) distribution of the side-band subtracted data with the isolation requirement applied
and the Monte Carlo simulation reweighted to account for the isolation effect. The agreement is
satisfactory for our purpose.
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Figure 7.13: Isolation efficiency as a function of pT(B) extracted from B0 → J/ψK∗0 decays with the
pT(B)-spectrum reweighted. I(B) > 0.5 (a) and I(B) > 0.525 (b). Fit functions are overlaid (blue,
solid line) (See tab. 7.5).
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Figure 7.14: Background-subtracted pT(B)-distribution in B0
(s) → h+h

′− decays with isolation re-
quirement I(B) > 0.5 (a), I(B) > 0.525 (b). Data (points with error bars) are compared with Monte
Carlo simulation (filled histogram). The efficiency isolation as a function of pT(B) has been extracted
by the B0 → J/ψK∗0 decays, see fig. 7.13.

7.4.4 Isolation efficiency vs Icut

Another fundamental information concerns the isolation efficiency for different values of the require-
ment, since it is a necessary ingredient of the cuts selection optimization process (see chap. 8). The
isolation cut has been chosen to minimize the statistical uncertainty on the measurement ACP(B0 →
K+π−) (loose cuts) and to observe the B0

s → K−π+ mode (tight cuts) and its efficiency has to be
extracted from the real data. Using the same technique of the reweighted Likelihood fit we measured
the isolation efficiency for different values of the cut in a range from 0.1 to 0.9. We reported the results
in tab. 7.6 while in fig. 7.15(a) we plotted the values measured interpolated with a smooth curve. In
the region between I(B) > 0.4 and I(B) > 0.6, where we expect to find the optimal point from the
previous published version of this analysis [1], we refine the steps. In fig. 7.15(b), instead, we ex-
tracted the isolation efficiency directly from the B0

(s) → h+h
′− data (for signal and background). We

performed the one-dimensional fits (as described in sec. 3.5) of the invariant ππ-mass distribution at
different values of the cut Icut. We verify that the procedure described in this chapter is in agreement
with what we observed in our data.
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Icut εiso [%]
0.1 98.7± 0.2
0.2 98.6± 0.3
0.3 93.6± 0.5
0.4 86.5± 0.7
0.45 79.4± 0.7
0.5 72.4± 0.8
0.525 68.7± 0.8
0.55 64.3± 0.8
0.575 59.4± 0.8
0.6 54.7± 0.8
0.65 44.2± 0.8
0.7 34.4± 0.7
0.8 17.7± 0.6
0.9 5.6± 0.3

Table 7.6: Isolation efficiency from B0 → J/ψK∗0 data with the pT(B)-spectrum reweighted to the
B0

(s) → h+h
′− one.

I(B) cut
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Is
o

la
ti

o
n

 e
ff

ic
ie

n
cy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

I(B) cut
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Is
o

la
ti

o
n

 e
ff

ic
ie

n
cy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-
h’+ h→ (s)

0B

background

(b)

Figure 7.15: Isolation efficiency as a function of isolation cut I(B) > X extracted from B0 → J/ψK∗0

decays with the pT(B)-spectrum reweighted (see tab. 7.6) (a) and extracted directly from the B0
(s) →

h+h
′− data sample (b).
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Chapter 8

Fit-based cuts optimization

In this chapter we describe the procedure used to optimize the selection of the data sample. This is
aimed at minimizing the statistical uncertainty on the quantity we wish to measure. The procedure
is based on the fit of composition described in chap. 6, and provides two different selections. One is
optimized for the measurement of the direct CP asymmetry ACP(B0 → K+π−) and the other one for
the sensitivity for either discovery or limit setting for the still unobserved B0

s → K−π+ decay mode.

8.1 Unbiased selection optimization

Given a sample, an optimization of the selection is a procedure that selects a subsample. This
procedure minimizes (or maximizes) a given parameter (score function), whose value depends on
the selection. For example, when we perform a measurement of some physics quantity, a standard
optimization of the selection should provide the smallest (expected) statistical uncertainty on that
quantity. The optimization procedure must be performed in an unbiased way, i. e., it must not
influence the value obtained from the measurement, it must be free from arbitrary choices.

In principle, to perform an unbiased optimization of our measurement, we should repeat the entire
complex measurement procedure for all possible configurations of selection requirements. The optimal
selection should be that one minimizes the uncertainty on the measurement of interest. In practice,
the number of the possible selections is so large that this strategy can not be applied. It is therefore
necessary to find some convenient parameterization of the resolution as a function of different sets of
cuts. Thus, we can use this parameterization to predict the resolution on a given measurement for
many different sets of cuts without having to perform a full fit. We will describe the procedure in the
following

8.2 Minimum Variance Bound

A standard method used to estimate the expected resolution on a parameter determined with a
maximum Likelihood fit is the Minimum Variance Bound [133]. If L (�θ) is a Likelihood function and

171
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�θ = (θ1, . . . , θm) is the vector of parameters estimated by the fit, the In element Cov(θ̂i, θ̂j) (≡ σ2
i if

i = j) of the covariance matrix can be written as:

Cov(θ̂i, θ̂j) ≈ 1

−E
[
∂2 ln L (�θ)
∂θi∂θj

]
�θ=�̂θ

, (8.1)

where N is the total number of events, E[x] indicates the expectation value of x and θ̂i is the expected
value of the ith parameter. Equation (8.1) is useful because, under fairly mild conditions of regularity
of the problem, the MVB provides a convenient analytical calculation of the statistical power of an
estimator, before carrying out the measurement. Since relation (8.1) involves an expectation value,
i. e., an integration over the multi-dimensional observables space (�x, in the B0

(s) → h+h
′− case

�x = (mππ, α, ptot, κ1, κ2)), its evaluation may be impractical. For this reason before discussing the
B0

(s) → h+h
′− case, we will analyse in the next sections a simplified case: the measurement of the

relative fraction of a Gaussian signal peak over a flat background This simple case allows us to study
the MVB behavior as a function of the number S of signal events and of the number B of background
events.

8.3 Gaussian peak (S) over a flat background (B)

Suppose we want to measure the relative fraction of a single signal distributed with a Gaussian p.d.f.
over a flat background (see illustration in fig. 8.1(a)). If S(B) is the number of signal(background)
events, f = S/(S + B) is the signal fraction, 1 − f = B/(S + B) is the background fraction, the
Likelihood function can be written as:

L (f) = f G (x; 0, σ) + (1− f)
1
2c

(8.2)

where G (x;μ, σ) = 1
σ
√

2π
e−

(x−μ)2

2σ2 , 2c is the range of the x observable. We define also the parameter
b which denotes the height of the flat background: i. e., is the number of the background events per
unit of x (B = 2cb). In this simple case it is possible to write a simple expression for the MVB. By
substituting the Likelihood function of eq. (8.2) in the relation (8.1), and dividing by the fraction f ,
we obtain the expected relative resolution for the parameter f :

σf
f

=
1√
S

1√∫ +∞
−∞
[
2πσ2( bS )e

x2

σ2 +
√

2πσe
x2

2σ2

]−1

dx

. (8.3)

σf

f depends on the number of signal events S and on the ratio b
S and it is a function of the cuts

applied to the sample. Equation (8.3) depends only on well defined quantities like the height of the
background and not on the arbitrary window in x of the chosen variable. If the signal-to-background
ratio b/S is fixed, the relative resolution is proportional to depends as expected 1√

S
, as expected on

general grounds. The integral in eq. (8.3) cannot be computed analytically, but it is simple to estimate
its behavior in two cases, when b

S → 0 and when b
S →∞:⎧⎨

⎩
b
S → 0 σf

f ∝ 1√
S
,

b
S →∞ σf

f ∝ 1√
S
·
√

b
S .

(8.4)
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Figure 8.1: Illustration of a Gaussian signal peak over a flat background (a). Comparison between
the points calculated numerically using the σf

f expression from MVB for different values of b
S and the

approximated expression σf

f = 1√
S

√
z + w′ bS (solid line), where the constants z and w′ are determined

with an interpolation of the black points (b)

A simple function of S and b
S with the same asymptotic behavior of eq. (8.3) is:

σf
f

=
1√
S

√
z + w′

b

S
, (8.5)

where z and w′ are constants to be determined. To verify that the relation (8.5) describes correctly
the relation (8.3), we calculated numerically the value of σf

f

√
S assuming σ = 1 for different values of

b
S and we interpolated these points with the approximated relation (8.5). Figure 8.1(b) shows that the
approximation (blue line) interpolates well the points evaluated numerically with the exact formula
as a function of b

S (black points).

Relation (8.5) can be written as a function of the total number of background events in a given
range. We remind that b is the number of events in a unit range in the x window. It is sufficient to
define w = w′

2c , where 2c is the width of the domain of the x variable (see fig. 8.1(a)). Equation (8.5)
becomes:

σf
f

=
1√
S

√
z + w

B

S
. (8.6)

For this simple case we calculated the MVB and we found a functional form of S and B
S which

parameterizes accurately the MVB. This function has some interesting properties and it is worth
describing them:

� it is optimal because it was extracted from the MVB which is the better statistical uncertainty
estimate we can obtain performing an unbinned maximum Likelihood fit;

� it does not require an arbitrary choice of a range to define S and B. In fact if αS and βB are
respectively the number of the signal events and of the background events relative to another
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range we can write:

1√
S

√
z + w

B

S
=⇒ 1√

αS

√
z + w

βB

αS
=

1√
S

√
t+ k

B

S
(8.7)

where t = z
α and k = w β

α2 . If we vary the definition range for S and B we find a different set
of cuts to apply to our sample but the optimal point remains unchanged;

� the optimal set of cuts does not change if we consider as background only combinatorial back-
ground or the sum of the combinatorial background plus other signals different from the signal
we want to optimize. The reason is similar to the previous case:

1√
S

√
z + w

B

S
=⇒ 1√

S

√
z + w

B + αS

S
=

1√
S

√
(z + wα) + w

B

S
=

1√
S

√
t+ w

B

S
(8.8)

where the additional background is supposed to come from another mode, proportional to our
signal (S′ = αS);

� different measurements will have different values of z and w, we can therefore determine the
optimal set of cuts for each specific measurement.

We assume that this same functional form should adequately describe the behavior of the resolution
also in our measurement, where the background slope is more complicated and there are several
signals. In this approximation, for each individual case we just need to estimate the parameters z and
w. These can be extracted by performing a finite number of pseudo-experiments of the full analysis.
It is possible to generate some simulated samples of the data we want to measure, for different values
of B

S , and to plot σf

f versus B
S at fixed S, since the dependence of S of eq. (8.6) is known. From the

interpolation of these points we can extract z and w. At this point an optimization procedure would
simply need to evaluate the quantity S and B for all the combinations of the selection requirements.
The optimal selection would be the one that minimizes σf

f , because this gives the best resolution on
the measurement of relative branching fraction.

8.3.1 Search for a rare decay (S → 0) over a flat background (B)

The above discussion apply to the measurement of a large fraction f , in which we want to minimize
σf

f . In the case one wants to optimize the selection to maximize the sensitivity for the discovery or
rate limit setting for a rare decay mode the situation is different. In this analysis we followed the
general approach described in Ref. [134] where a frequentist definition of sensitivity of a search for new
phenomena is discussed. This is particularly suitable for optimization, being independent of a-priori
expectations about the presence of a signal, thus allowing the determination of a single set of cuts
that is optimal both for setting limits and for making a discovery. Ref. [134] suggests to characterize
the sensitivity of an experiment in the following way.

A test of the current best theory H0 in favor of an alternative theory Hm, where m indicates the
free parameters of the new theory (masses, coupling constants, cross sections, branching fractions,
etc.), is specified by defining the set of values of the experimental observables X that will make us
decide that H0 must be rejected (“critical region”); the significance level of the test, indicated by α, is
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the probability of rejecting H0 when it is indeed true; that is to say, α is the probability for X to fall
within the critical region, calculated under the assumption that H0 is true. α is a “small number”,
common practice for new physics discovery being to require α to correspond to the 5σ single tail of a
Gaussian distribution. The other element to be considered in a test is the probability that a discovery
is made. The classical way to express this is by the power function 1− β(m), that is, the probability
that X will fall in the critical region (=the probability that a discovery will be claimed) assuming
Hm is true, as a function of the parameters m. It is clearly desirable to have the greatest possible
power. A correct statistical practice requires to decide before the experiment the values of α and CL
(Confidence Level). Then one can proceed by quoting the region of the parameters m for which the
power of the chosen test is greater or equal to the Confidence Level chosen for the limits in case there
is no discovery:

1− βα(m) > CL. (8.9)

This region of m can be thought of as a region of parameters to which the experiment is “sufficiently
sensitive”.

Ref. [134] treats in detail the common problem of a counting experiment in presence of background
using this generic approach. Here we have a similar problem, but we perform an unbinned maximum
Likelihood fit to search for a rare decay as the B0

s → K−π+. In this case the observable of interest m
is the branching fraction (B) of a rare mode. We measure it using an unbinned maximum Likelihood
fit. One of the parameters returned from the fit is the number of signal events N , distributed with
a known p.d.f. in which the mean is determined by B, the expected number of background events
(supposed known), and the possible contribution of signal events SB:

℘(N |H0) = f(N, 0, B), (8.10)

℘(N |HB) = f(N,SB, B). (8.11)

For this problem, the definition of a critical region for the presence of non-zero signal SB takes the
form of a condition like

N > Nmin. (8.12)

Therefore, the test is completely defined once the desired significance level α is chosen. We can now
evaluate its power as a function of B, and determine the set of values for B such that eq. (8.9) holds.
Since the power of a test of the form N > Nmin grows monotonically with SB, eq. (8.9) leads to simple
inequalities of the form:

SB > Smin (8.13)

Therefore, all is needed to completely characterize the solution of our problem is the value of Smin,
that is in general a function of α, β, and B. We know from pseudo-experiments that the parameters
returned by our fit have Gaussian distributions. Therefore, condition (8.9) translates into the following
equation for Smin:

Smin = a σN (B, 0) + b σN (B,Smin), (8.14)

where σN (B, 0) and σN (B,Smin) are the statistical uncertainties of N returned from the fit with no
signal hypothesis (SB = 0) or signal hypothesis (SB). a and b are the number of standard deviations
corresponding to the one-sided Gaussian tests at significance α and β respectively. Since in the fit
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the statistical uncertainty is dominated by the number of background events for small signal, we
approximated σN (B,Smin) ≈ σN (B, 0), then eq. (8.14) becomes:

Smin = (a+ b) σN (B, 0). (8.15)

This expression holds for one specific set of selection criteria. Now, consider the common situation
where one has to decide on the set of cuts to be used in the analysis. In this case both the background
B and the number of expected signal events SB depend on the cuts (let us indicate the whole set
of cuts with the symbol t). In general, in order to decide which set of cuts t is best, one needs to
determine for every t the set of values B̃ to which the experiment is sensitive, by solving for B̃ the
inequality:

SB̃(t) ≥ (a+ b) σN (B(t), 0) (8.16)

and then to choose the cuts t yielding the most extended region. If ε is the efficiency of the chosen
set of cuts on the signal we can write:

SB(t) = ε(t) · Lint · σprod · B, (8.17)

where Lint is the integrated luminosity, σprod is the production cross section of the process and B is
the branching fraction being determined. In this case one can simply invert the above equation to
write down the minimum “detectable” (according to our criteria) branching fraction:

Bmin =
(a+ b) σN (B(t), 0)
ε(t) · L · σprod

= K · σN (B(t), 0)
ε(t)

(8.18)

Obviously, the maximum sensitivity is obtained when Bmin is smallest. The optimal choice of cuts does
not depend on the assumed branching fraction B. This is a very useful feature, since this parameter
is often unknown.

If we consider the simple case of the measurement of the yield of a rare signal distributed with a
Gaussian over a large background using a maximum Likelihood fit discussed in the previous section
we can extract the analytical expression for σN (B(t), 0). Using the same procedure and notation we
calculated the expected resolution σS on the number of signal events S when S → 0:

σN (B(t), 0) = σS→0 =
√

2πσ
√
b (8.19)

in which b denotes the height of the flat background. The resolution σS→0 depends only on b and,
as in the previous section, the relation (8.19) can be written as a function of the total number of
background events in a given x window 2c-wide:

σS→0 =
√
πσ

c

√
B. (8.20)

σS→0 is the expected resolution on the measurement of the number of signal events when S is very
small, and, as expected, it is function only of the background level B.
By substituting σN (B(t), 0) in eq. (8.18) in this simple case we obtain:

σB ∝ Bmin = K ′ ·
√
B

ε(t)
(8.21)
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where σB is the statistical uncertainty on the measurement of B (proportional to Bmin) which is the
quantity to minimize to obtain the best set of cuts to discover and setting the limit on the branching
fraction B of a new process. Equation (8.21) is valid only in Gaussian approximation, this means in
the limit of high statistics, namely in the limit of large B.

8.4 Optimization for B0
(s) → h+h

′−

The measurement of the branching fractions and of the direct CP asymmetries in the B0
(s) → h+h

′−

decay modes is a more complex version of the same kind of problem. If we look, for example, at the
invariant ππ-mass observable, the B0

(s) → h+h
′− signal is not distributed like a Gaussian, but it is

the sum of different contributions that are not even individually distributed as a Gaussian. Moreover
the background is the sum of two contributions: combinatorial (exponential function) and physics
background (convolution between an Argus function and a Gaussian). The Likelihood function de-
scribed in the chap. 6 is a complex function depending on 5 observables (�x = (mππ, α, ptot, κ1, κ2)).
Hence the analytical calculation of the MVB in this case is impractical. However, the simple expres-
sions of eqs. (8.6) and (8.21), extracted from the analysis of the MVB of a Gaussian peak over a flat
background in two limiting cases of large S and S → 0, suggest the possibility of a similar simpler
approximated parameterization. In general, we assumed that for the cases in which the analytical
calculation of the MVB is impractical, it is possible to parameterize it with an expression which pre-
serves the same dependence on S and B

S as we found in the case of a Gaussian signal peak over a flat
background. For this reason, to approximate the resolution in the B0

(s) → h+h
′− case we decided to

use two similar relations inspired to eqs. (8.6) and (8.21). We verify a posteriori their validity with
pseudo-experiments.

For the measurement of quantities related to the abundant modes (like B0 → π+π−, B0 → K+π−,
B0
s → K+K−) we parameterized the resolution σm (where m is the observable we wish to measure,

for example, ACP(B0 → K+π−), B(B0 → π+π−)/B(B0 → K+π−), etc.) with the following relation:

σm =
1√
S

√
zm + wm

B

S
, (8.22)

where zm e wm are constants to be determined from case to case according to the observable we want
to measure. S is the number of signal events, while B is the estimate of the background level. S and
B can be defined as the number of signal and background events in a well defined invariant ππ-mass
window. S and B can be normalized in an arbitrary way since zm e wm are arbitrary constants which
can reabsorb any such definition change (see sec. ??).

For the observables relative to a rare decay (like the branching fraction of B0
s → K−π+, B0

s →
π+π−, B0 → K+K− and Λ0

b → ph−) we used, instead, a parameterization of the MVB inspired to
eq. (8.21):

σm =
1
ε(t)

√
zm + wmB. (8.23)

Also in this case zm e wm are the constants to be determined and they depend on the measurement m
we want to perform. S and B are defined as in relation (8.22) while ε(t) is the total signal efficiency
for the selection t. This functional form is different from eq. (8.21) since the parameter zm can be
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different from 0. In the relation (8.21) σB → 0 when B → 0, and this is an obvious consequence
since also S → 0. In the B0

(s) → h+h
′− case, B indicates the number of background events of all the

B0
(s) → h+h

′− signal modes. If we consider the rare B0
s → K−π+ signal mode and if we optimize

the statistical uncertainty on the measurement of its branching fraction, the “background” from other
B0

(s) → h+h
′− modes (B0 → π+π−, B0 → K+π−, B0

s → K+K−) is proportional to the B0
s → K−π+

fraction which can not be eliminated. Then also if B → 0, a residual background remains and zm �= 0.
This makes it necessary to absorb this additional background in the score function.

To verify these assumptions and to extract the constants zm and wm for each measurement m
we performed several pseudo-experiments of the full analysis. Using the same p.d.f.s described in
chap. 6 we simulated the B0

(s) → h+h
′− data with an admixture of the expected dominant modes in

the proportions resulting from the experimental knowledge at the time of the analysis: B0 → π+π−

(17%), B0 → K+π− (63%) B0
s → K+K− (20%). For each observable m, we extracted the statistical

uncertainty σm by varying B
S and keeping fixed S, performing the complete unbinned maximum

Likelihood fit described in the chap. 6 to the simulated samples. Then we interpolated these points
using the function described above and we extracted the constants zm e wm. Figures 8.2(a) and (b)
show the agreement between the points and the score functions respectively for the measurement of
the direct CP asymmetry ACP(B0 → K+π−) and for the discovery of the B0

s → K−π+ mode. The
expressions of eqs. (8.22) and (8.23) describe well the shape of the statistical uncertainty returned
from the full maximum Likelihood fit as a function of S

B . We checked that also the 1√
S

dependence
is well approximated. We repeated a similar procedure generating samples with different numbers of
signal events S and the values found for zm and wm are resulted to be compatible with the 1√

S
shape.
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Figure 8.2: Statistical uncertainty on the measurement of the direct CP asymmetry ACP(B0 →
K+π−) as function of B

S at fixed S = 630 (NB0→K+π− = 630). Points are interpolated with the
function σACP of eq. (8.22) (a). Statistical uncertainty on the measurement of the branching fraction
B(B0

s → K−π+) times the efficiency ε(t) of the selection t as function of B (NB0
(s)→h+h′− = 1000 and

NB0
s→K−π+ = 0). Points are interpolated with function ε(t)σB =

√
zB + wBB (b).
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In general, one should optimize the selection for each measurement he wants to perform. In
our analysis there are several measurements related to the individual modes which contribute to the
B0

(s) → h+h
′− peak. However, changing the selection for each measurement implies changing the

efficiency values of the decays and then for each selection all templates of the Likelihood fit have to be
re-parameterized. Every time we modify the selection to optimize a measurement we need to repeat the
entire analysis process (templates parameterization, checks, systematics calculation, etc.) and that is
very impractical. We decided to use just two different sets of cuts, respectively optimized to minimize
the statistical uncertainty on the measurement of the direct CP asymmetry ACP(B0 → K+π−) and
to optimize the sensitivity for discovery and limit setting (see sec. 8.3.1) for the rare decay mode
B0
s → K−π+. We verified that the former set of cuts is also adequate to measure other decay rates

of the larger yield modes (B0 → π+π−, B0
s → K+K−), while the latter is well suited to measure the

decay rates and CP asymmetries related to rare modes (B0
s → π+π−, B0 → K+K−, Λ0

b → pπ− and
Λ0
b → pK−).

8.5 Optimized selection

In the optimization we varied the thresholds on the following discriminating quantities: d0 of the
two tracks descending from the candidate, LT(B), |d0(B)|, I(B) and χ2

3D(B). We avoided using
signal events from data to keep the optimization unbiased; for each jth configuration of the selection
requirements we evaluated the following quantities:

SjACP
=

1√
Sj

√
zACP + wACP

Bj
Sj

(8.24)

SjB =
1

ε(tj)

√
zB + wBBj . (8.25)

respectively for the measurement of ACP(B0 → K+π−) and the discovery of B0
s → K−π+. The

constants z and w were extracted from full pseudo-experiments as described in sec. 8.4. SjACP(B) are
function of the expected number of signal (Sj), background (Bj) events, and the total reconstruction
efficiency of the selection tj (ε(tj)) defined as follows:

Sj – the number of simulated B0 → K+π− decays that passed the jth configuration of the selection
requirements in the invariant ππ-mass window [5.140÷ 5.320] GeV/c2, normalized to the B0 →
K+π− (NB0→K+π− ≈ 0.63 NB0

(s)→h+h′−) decays observed in data after the baseline selection
(see tab. 3.2). This guarantees that, in each step of the optimization, signal and background
yields are correctly normalized. The chosen interval corresponds approximately to a window size
of ±2σ if we approximate the signal invariant ππ-mass distribution of the B0 → K+π− mode
with a Gaussian.

Bj – the number of background events passing the jth configuration of the selection requirements,
in the same mππ window defined for the signal yields Sj , underneath the signal peak. For each
jth configuration of the selection requirements Bj was estimated by fitting (one-dimensional
χ2-binned fit) the invariant ππ-mass distribution. We used a single Gaussian function to model
the total B0

(s) → h+h
′− signal and an exponential function to model the background. Bj was
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the integral of the latter function in the invariant ππ-mass window [5.140 ÷ 5.320] GeV/c2 for
the B0 → K+π− decays (eq. (8.24)) and [5.230 ÷ 5.410] GeV/c2 for the B0

s → K−π+ decays
(eq. (8.25)).

ε(tj) – the total reconstruction efficiency (trigger plus offline selection) of the signal events passing
the jth configuration of the selection requirements tj in the same ππ-mass window defined for
the B0

s → K−π+ decays [5.230÷ 5.410] GeV/c2. ε(tj) was estimated using the simulation.

Starting from the baseline selection listed in tab. 3.2, each requirement was tightened independently
of the others, scanning an adequate range of values. Table 8.1 shows the chosen ranges and step
widths for each requirement, which resulted in 293, 000 total selections. The effectiveness of the
procedure relies on the capability to reproduce the real efficiency, for background and for signal,
corresponding to each selection. Reliable efficiencies for background were ensured by our choice of
using real B0

(s) → h+h
′− data. For the signal, the validation of sec. 4.1.1 guarantees that the simulation

reproduces with sufficient accuracy the efficiencies used in the optimization, except for the isolation.
The efficiency of the isolation cut was extracted separately and assumed factorizable with the other
efficiencies. We extracted it from a control sample of real B+ → J/ψK+ decays reconstructed with
the method described in chap. 7. At the time of the optimization of the selection only a limited data
sample of B+ → J/ψK+ decays was available, about 5574± 91 candidates corresponding to the first
360 pb−1 of integrated luminosity collected by CDF II. For the purpose of optimization of the selection
we neglected possible differences between the B+, B0 and B0

s isolation distributions.

The optimal selections are reported in the last two columns in tab. 8.1.

Quantity Units Lower edge Higher edge Step width (I) (II)
Minimum LT μm 200 650 50 300 350
Min(|d0(1)|, |d0(2)|) μm 100 250 10 100 120
Maximum |d0(B)| μm 140 50 10 80 60
Minimum I(B)* − 0.4 1.0 0.1 0.5 0.525
Maximum χ2

3D(B) − 17 3 1. 7 5

Table 8.1: Quantities used in the optimization of the selection and ranges in which they were varied.
Results of the optimization procedure: optimum selection for the measurement of ACP(B0 → K+π−)
(I) and for the measurement of B(B0

s → K−π+) (II). *Since we expect the optimal point of the
isolation requirement I(B) > 0.5 the zone around this value was refined with the following steps:
I(B) > 0.475, 0.525, 0.55, 0.575, 0.625.

8.6 Performance of the optimization procedure

The procedure described in this chapter represents the standard technique one should use to optimize
the selection when the estimate of the physics observable of interest is performed with a maximum
Likelihood fit. In sec. 8.3 we summarized all properties of the score function extracted from the MVB
which makes it optimal for the purpose of optimizing the selection.
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In the first published step of this analysis [1], performed using the first part of CDF II data cor-
responding to 180 pb−1 of integrated luminosity, the selection was optimized using the score function√
S+B
S . This is optimal for a typical “counting experiment” since it is proportional to the statistical un-

certainty on the measurement of the signal yield σS . By the comparison of the selection optimization
procedure performed using

√
S+B
S and the score functions described in this thesis, a sizeable improve-

ment of the statistical uncertainty was obtained: the resolution on ACP(B0 → K+π−) improved by
4% while the resolution on B(B0

s → K−π+) improved by 12%.

In this analysis we used an additional variable (χ2
3D(B)) in the optimization procedure with respect

to the published analysis, so the statistical uncertainty improvement is actually larger: the resolution
on ACP(B0 → K+π−) improved by 10% while the resolution on B(B0

s → K−π+) improved by 27%.
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Chapter 9

Fit results and cross-checks

In this chapter we report the results returned from the fit of composition, not yet corrected for the
efficiency factors. We fit separately the sample selected with loose cuts and the one selected with tight
cuts. We also describe also the checks performed to test the fitting code.

9.1 Fit results

The fit of composition was applied to two B0
(s) → h+h

′− samples: the sample selected for the mea-
surement of ACP(B0 → K+π−) (loose cuts) and the one selected to measure the rare modes (tight
cuts) (see tab. 3.3). The sample selected with tight cuts is a subsample of the one selected with loose
cuts. We performed two individual fits of composition of the B0

(s) → h+h
′− data. All templates of

the p.d.f.s and checks are performed independently, like two independent analyses. In both cases we
used only candidates whose discriminating observables satisfied the following conditions.

� 5.000 < mππ < 5.800 GeV/c2: this mass range contains the whole B0
(s) → h+h

′− and Λ0
b → ph−

signal, and it allows a proper extrapolation of the background shape below the signal;

� −0.8 < α < 0.8: this range excludes boundary regions where the model of the corresponding
p.d.f. becomes inaccurate and may lead to undesired biases. This requirement removed just a
few events;

� ptot > 6.1 GeV/c: we excluded a few candidates with lower ptot values because of the difficulty
of describing accurately the steep turn-on of the ptot p.d.f.;

� −5 < κ1, κ2 < 5: candidates with extremely unlikely values of the observed dE/dx are excluded
to reduce the of contamination from fake tracks or tracks with corrupted dE/dx information.

The total number of events is N = 13502 for the loose selection and N = 8286 for the tight selection.

From the current expectations on production fractions and branching fractions involved, we expect
sizable contributions from three known modes, B0 → π+π−, B0 → K+π− and B0

s → K+K− and
possibly small contributions from five still unobserved modes, B0 → K+K−, B0

s → π+π−, B0
s →

183
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K−π+, Λ0
b → pπ−and Λ0

b → pK−. Their fractions with respect to the total signal were left free
to vary in the fit. Observation of the annihilation decay modes B0 → K+K− and B0

s → π+π−

is less likely because the typical theoretical predictions B(B0 → K+K−) = (0.01–0.21) × 10−6 and
B(B0

s → π+π−) = (0.027–0.155)× 10−6 [15] are small.

The physics observables related to the abundant modes (B0 → π+π−, B0 → K+π− and B0
s →

K+K−) are quoted from the fit of the sample selected with the loose cuts, while those of the rare
modes (B0

s → K−π+, B0
s → π+π−, B0 → K+K−, Λ0

b → pπ−, Λ0
b → pK−) are quoted from the fit of

the sample selected with the tight cuts. Both fits have the same number of free parameters except for
those modeling the shape of the dE/dx correlation (see sec. 6.6.3). Since in the same sample and for
the same kinematics we expect an identical correlation between the dE/dx response of both particles,
we first extracted the parameters dc1, μ

c
1, σ

c
1, μ

c
2, σ

c
2 from the fit of composition on the sample selected

with the loose cuts. In a second step, we fixed them in the fit of composition on the sample selected
with the tight cuts at the values previously estimated.

We minimized the quantity −2 ln(L ) defined as described in the previous chapter using the mi-

nuit numerical minimization package [130]. The results of the fit are shown in tab. 9.1, and the
corresponding correlation matrix is shown in sec. 9.2. Tables 9.2 and 9.3 summarize the most relevant
physics quantities and yields determined by the parameters returned from the fit. The statistical
uncertainties on these quantities have been calculated using the covariance matrix returned from the
fit.

The results determined by the fit of composition for loose and tight selections are in agreement
with the values obtained in the previous published version of this analysis, performed on a data sample
corresponding to 180 pb−1 [1, 4]. The statistical uncertainty of physics observables is significantly
decreased. With respect to the improvement given by the statistics we gained in resolution an ad-
ditional 16% for ÂCP(B0 → K+π−), 26% for the relative fraction of B0 → π+π−, and 21% for the
relative fraction of B0

s → K+K−. This remarkable result is due to the several crucial improvements
introduced in the current version of the analysis: a new discriminating variable (χ2

3D) in the selection
(chap. 8), a new optimization of the selection (chap. 8), more accurate mass templates (chap. 5), more
accurate PID model (chap. 4), etc..

Table 9.2 reports a significant result for the uncorrected direct CP asymmetry fit parameter
ÂCP(B0 → K+π−). The 2.3% statistical uncertainty is small and it is comparable with the best
existing measurements (chap. 13). In the next chapters we will evaluate the efficiency corrections and
the systematic uncertainties to confirm and quantify this significant result.

Table 9.2 also gives a clear hint of three new rare decay modes: B0
s → K−π+, Λ0

b → pK−,
Λ0
b → pπ−. The significance of these modes will be estimated in chap. 12 where we will verify that

our results remain significant after adding the systematic uncertainty in the evaluation of the total
significance.

Table 9.2 also reports the fit results for the uncorrected direct CP asymmetries ÂCP(Λ0
b → pK−)

and ÂCP(Λ0
b → pπ−). The statistical uncertainties are promising for a future extension of the analysis.

To translate these numbers into physics measurements we need to evaluate the efficiency corrections.
The presence of the proton in the final state requires further additional studies which are outside the
scope of the present analysis, and are the subject of a separate work.



9.1 Fit results 185

parameter loose tight parameter(#)
f̂B0→π+π− 0.160 ± 0.009 0.152 ± 0.008 1
f̂B0→K+π− 0.577 ± 0.010 0.567 ± 0.011 2
f̂

B0→K−π+ − f̂B0→K+π−
f̂

B0→K−π+ + f̂B0→K+π−
−0.092 ± 0.023 -0.089 ± 0.025 3

f̂B0
s→K−π+ 0.035 ± 0.006 0.040 ± 0.006 4

f̂
B0

s→K+π− − f̂B0
s→K−π+

f̂
B0

s→K+π− + f̂B0
s→K−π+

0.48 ± 0.19 0.39 ± 0.15 5

f̂B0
s→K+K− 0.186 ± 0.009 0.179 ± 0.008 −

f̂B0
s→π+π− 0.0004 ± 0.003 0.004 ± 0.003 6

f̂B0→K+K− 0.003 ± 0.004 0.011 ± 0.004 7
f̂Λ0

b→pK− 0.022 ± 0.003 0.027 ± 0.003 8
f̂Λ0

b→pK+ − f̂Λ0
b
→pK−

f̂Λ0
b→pK+ + f̂Λ0

b
→pK−

−0.29 ± 0.19 -0.36 ± 0.15 9

f̂Λ0
b→pπ− 0.015 ± 0.003 0.019 ± 0.003 10

f̂Λ0
b→pπ+ − f̂Λ0

b
→pπ−

f̂Λ0
b→pπ+ + f̂Λ0

b
→pπ−

0.06 ± 0.21 -0.02 ± 0.16 11

b̂ 0.481 ± 0.008 0.307 ± 0.008 12
ĉE -1.221 ± 0.124 -0.675 ± 0.109 14
ŵE
π+ 0.545 ± 0.017 0.506 ± 0.037 −

ŵE
e+ 0.036 ± 0.005 0.048 ± 0.012 −

ŵE
p 0.080 ± 0.025 0.095 ± 0.057 16

ŵE
K+ 0.337 ± 0.031 0.350 ± 0.072 −

ŵE
π− 0.533 ± 0.018 0.492 ± 0.036 −

ŵE
e− 0.030 ± 0.005 0.034 ± 0.010 −

ŵE
p̄ 0.132 ± 0.027 0.226 ± 0.064 17

ŵE
K− 0.304 ± 0.033 0.248 ± 0.075 −

f̂A 0.197 ± 0.016 0.502 ± 0.033 22
m̂A [GeV/c2] 5.135 ± 0.001 5.158 ± 0.001 23
ĉA 8.467 ± 3.45 0.429 ± 2.383 24
ŵA
π 0.728 ± 0.027 0.717 ± 0.019 27

ŵA
K 0.272 ± 0.027 0.282 ± 0.020 −

d̂c1 0.993 ± 0.005 0.993 (fixed) 32
μ̂c1 [ns] -0.171 ± 0.020 -0.171 (fixed) 33
σ̂c1 [ns] 0.087 ± 0.138 0.087 (fixed) 34
μ̂c2 [ns] 2.481 ± 0.055 2.481 (fixed) 35
σ̂c2 [ns] 0.0002 ± 10. 0.0002 (fixed) 36

Table 9.1: Results of fit of composition. Signal (background) related quantities are reported in the
upper (lower) section. The last column reports the legend to convert the parameter number into
physics quantity for interpreting the correlation matrix shown at pag. 188; the missing codes refer to
parameters which are not part of the set of primary fit parameters (�θ). C-conjugate modes are implied
except for the parameter in the third, fifth, tenth and twelveth row.
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observable loose tight

ÂCP(B0 → K+π−) = f̂
B0→K−π+ − f̂B0→K+π−
f̂

B0→K−π+ + f̂B0→K+π−
−0.092 ± 0.023 −0.089± 0.025

ÂCP(B0
s → K−π+) =

f̂
B0

s→K+π− − f̂B0
s→K−π+

f̂
B0

s→K+π− + f̂B0
s→K−π+

0.48± 0.19 0.39 ± 0.15

ÂCP(Λ0
b → pπ−) =

f̂Λ0
b→pπ+ − f̂Λ0

b
→pπ−

f̂Λ0
b→pπ+ + f̂Λ0

b
→pπ−

0.06± 0.21 −0.026± 0.16

ÂCP(Λ0
b → pK−) =

f̂Λ0
b→pK+ − f̂Λ0

b
→pK−

f̂Λ0
b→pK+ + f̂Λ0

b
→pK−

−0.29± 0.19 −0.36± 0.15

f̂
B0→K−π+ − f̂B0→K+π−
f̂

B0
s→K+π− + f̂B0

s→K−π+
−3.13± 1.43 −3.21 ± 1.53

f̂B0
s→K−π+

f̂B0→K+π−
0.061± 0.011 0.070 ± 0.010

f̂B0→π+π−
f̂B0→K+π−

0.277 ± 0.018 0.269± 0.017

f̂B0
s→K+K−

f̂B0→K+π−
0.323 ± 0.019 0.316± 0.018

f̂B0
s→π+π−

f̂B0→K+π−
0.0007± 0.005 0.008 ± 0.005

f̂B0→K+K−
f̂B0→K+π−

0.005± 0.008 0.019 ± 0.008

f̂Λ0
b
→pK−

f̂B0→K+π−
0.039± 0.006 0.049 ± 0.006

f̂Λ0
b
→pπ−

f̂B0→K+π−
0.027± 0.006 0.034 ± 0.005

f̂Λ0
b
→pπ−

f̂Λ0
b
→pK−

0.69± 0.19 0.71 ± 0.15

Table 9.2: Physics observables. The quantities reported in boldface are used to evaluate the final
measurements. C-conjugate modes are implied in the lower section of the table.
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mode loose tight

N (B0 → π+π−) + N (B
0 → π+π−) 1121 ± 63 875 ± 46

N (B0 → K+π−) + N (B
0 → K−π+) 4045 ± 84 3256 ± 66

N (B0 → K+π−) 2209 ± 64 1773 ± 52
N (B

0 → K−π+) 1836 ± 61 1483 ± 51
N (B0

s → K−π+) + N (B
0

s → K+π−) 247 ± 45 230 ± 34
N (B0

s → K−π+) 64 ± 30 70 ± 22
N (B

0

s → K+π−) 183 ± 34 160 ± 26
N (B0

s → K+K−) + N (B
0

s → K+K−) 1307 ± 64 1028 ± 47
N (B0

s → π+π−) + N (B
0

s → π+π−) 3 ± 22 26 ± 16
N (B0 → K+K−) + N (B

0 → K+K−) 22 ± 31 61 ± 25
N (Λ0

b → pK−) + N (Λ
0

b → pK+) 156 ± 24 156 ± 20
N (Λ0

b → pπ−) + N (Λ
0

b → pπ+) 109 ± 23 110 ± 18

Table 9.3: Yields returned from the fit of composition.

Table 9.2 is rich in physics. In the next chapters we will evaluate the relative efficiency corrections
and systematic uncertainties to translate them into physics measurements. In the next sections of this
chapter, we will look at the covariance matrix, fit projections, and other checks of the fitting code.
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9.2 Correlation matrix

The correlation matrices corresponding to the fits of composition are shown in this section. The
matrix reports the correlation coefficients, defined as ρij = Cov(θ̂i, θ̂j)/σ̂θ̂i

σ̂θ̂j
, where Cov(θ̂i, θ̂j) is

the off-diagonal element of the estimated covariance matrix of the fit. The legend for the fit parameters
is in third column of tab. 9.1. The correlation matrix is similar for the two fits. We looked at this
matrix to search for possible large correlations that may suggest a better choice of the fit parameters.

PARAMETER CORRELATION COEFFICIENTS ACP(B0->Kpi)

NO. 1 2 3 4 5 6 7 8 9 10 11 12 14 16 17 18 19 20 21 22 23 24 27 32 33 34 35 36

1 1.000

2 -0.336 1.000

3 -0.019 0.025 1.000

4 -0.281-0.078 0.012 1.000

5 0.116 0.019 0.002-0.358 1.000

6 -0.021-0.110 0.005-0.271 0.096 1.000

7 -0.102-0.456-0.009 0.057-0.030 0.035 1.000

8 -0.085-0.181 0.003-0.028-0.002-0.040 0.104 1.000

9 -0.022-0.032 0.010-0.002-0.025-0.003 0.030 0.140 1.000

10 -0.065-0.142 0.007 0.027-0.024-0.021 0.023-0.188 0.006 1.000

11 0.003 0.004 0.049-0.009-0.050 0.005-0.001 0.040-0.110-0.079 1.000

12 0.134 0.239-0.026-0.219 0.111-0.212-0.318-0.181-0.058-0.199 0.018 1.000

14 -0.111-0.157 0.023 0.174-0.085 0.151 0.307 0.091 0.035 0.037-0.010-0.556 1.000

16 -0.056-0.078 0.007-0.027 0.007 0.061 0.116-0.011 0.075-0.089 0.093-0.040 0.083 1.000

17 -0.042-0.065-0.027-0.024 0.027 0.075 0.082-0.015-0.072-0.069-0.065-0.044 0.092 0.111 1.000

18 -0.007-0.077-0.073 0.026 0.095-0.078 0.134 0.094 0.062-0.050-0.052-0.052 0.055 0.675 0.016 1.000

19 0.072-0.076 0.006 0.019-0.022 0.054 0.067 0.039 0.029 0.018 0.026-0.123 0.133 0.105 0.007-0.123 1.000

20 0.004-0.063 0.054 0.011-0.088-0.060 0.096 0.088-0.032-0.036 0.056-0.036 0.040 0.020 0.708 0.064 0.049 1.000

21 0.082-0.068 0.007 0.002-0.007 0.053 0.054 0.034-0.006 0.008-0.009-0.098 0.113 0.012 0.119 0.039 0.134-0.098 1.000

22 -0.125-0.203 0.025 0.203-0.100 0.192 0.305 0.137 0.046 0.120-0.015-0.616 0.814 0.074 0.089 0.050 0.150 0.039 0.127 1.000

23 -0.004-0.009 0.001 0.011-0.006 0.012 0.007 0.006 0.002 0.007 0.000-0.030 0.048 0.002 0.007-0.002 0.010 0.004 0.007 0.060 1.000

24 -0.014-0.044 0.006 0.044-0.022 0.068 0.035 0.017 0.008 0.029-0.003-0.127 0.196 0.032 0.041-0.017 0.045-0.013 0.045 0.267-0.201 1.000

27 0.195 0.131-0.009-0.118 0.053 0.011-0.227-0.159-0.040-0.053 0.006 0.292-0.373-0.038-0.021-0.164-0.047-0.136-0.027-0.412-0.021-0.021 1.000

32 -0.006 0.010 0.004 0.021-0.004-0.012-0.023 0.015 0.013 0.016 0.002-0.018 0.010-0.080-0.070-0.065 0.116-0.055 0.102 0.014 0.000-0.005-0.032 1.000

33 -0.424-0.069-0.004 0.036-0.014 0.021 0.167 0.044 0.023-0.006 0.007-0.093 0.099 0.161 0.142-0.105-0.084-0.107-0.088 0.101 0.002 0.014-0.231 0.446 1.000

34 -0.172 0.168 0.015 0.156-0.057-0.059-0.111-0.017 0.012 0.076-0.020-0.076 0.067-0.243-0.204-0.161-0.072-0.155-0.074 0.077 0.004 0.002-0.082 0.606 0.368 1.000

35 -0.018 0.010 0.000 0.019-0.004-0.007-0.018 0.007 0.009 0.009 0.000-0.015 0.010-0.049-0.044-0.034 0.003-0.034-0.008 0.012 0.000-0.001-0.019 0.839 0.390 0.467 1.000

36 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000-0.002-0.001 0.000-0.006 1.000

PARAMETER CORRELATION COEFFICIENTS BR(B0s->Kpi)

NO. 1 2 3 4 5 6 7 8 9 10 11 12 14 16 17 18 19 20 21 22 23 24 27

1 1.000

2 -0.436 1.000

3 -0.021 0.018 1.000

4 -0.260-0.089 0.009 1.000

5 0.077 0.017 0.026-0.248 1.000

6 -0.048-0.089 0.009-0.256 0.064 1.000

7 -0.005-0.424-0.010 0.051-0.026 0.035 1.000

8 -0.059-0.171 0.007-0.029-0.003-0.013 0.076 1.000

9 -0.014-0.038 0.010 0.004-0.035 0.011 0.038 0.143 1.000

10 -0.062-0.154 0.009 0.024-0.022-0.011 0.041-0.194 0.008 1.000

11 -0.005-0.008 0.034 0.003-0.043 0.011 0.005 0.039-0.111-0.006 1.000

12 0.083 0.214-0.029-0.157 0.077-0.217-0.266-0.199-0.092-0.199-0.026 1.000

14 -0.076-0.202 0.032 0.166-0.078 0.218 0.266 0.175 0.087 0.124 0.021-0.639 1.000

16 -0.003-0.018 0.017 0.027-0.009 0.049 0.039 0.000 0.080-0.026 0.067-0.081 0.123 1.000

17 0.022 0.016-0.032-0.013 0.040 0.033-0.032-0.029-0.065-0.031-0.074 0.015 0.004-0.031 1.000

18 -0.041-0.043-0.042 0.041 0.077-0.060 0.091 0.083 0.070-0.037-0.075-0.068 0.079 0.731-0.012 1.000

19 -0.037-0.075 0.011 0.064-0.039 0.079 0.089 0.069 0.057 0.060 0.039-0.221 0.257 0.211-0.025-0.089 1.000

20 -0.025-0.010 0.021 0.006-0.050-0.064 0.023 0.053-0.024-0.022 0.039 0.005-0.012-0.029 0.781-0.006-0.002 1.000

21 -0.014-0.048 0.007 0.027-0.013 0.065 0.049 0.047 0.003 0.029-0.006-0.135 0.160 0.025 0.194 0.020 0.054-0.061 1.000

22 -0.087-0.233 0.033 0.181-0.086 0.246 0.256 0.214 0.100 0.193 0.027-0.676 0.874 0.113-0.003 0.074 0.270-0.013 0.169 1.000

23 0.001-0.001 0.000 0.001-0.001 0.002-0.008 0.001 0.000 0.001 0.000 0.000 0.006 0.001 0.001-0.001 0.002 0.000 0.002 0.008 1.000

24 -0.020-0.062 0.008 0.059-0.025 0.089-0.013 0.060 0.026 0.063 0.006-0.146 0.288 0.033 0.019-0.002 0.078-0.018 0.069 0.339-0.133 1.000

27 0.043 0.105-0.017-0.087 0.041-0.049-0.104-0.142-0.058-0.075-0.011 0.286-0.397-0.018 0.072-0.123-0.130-0.049-0.060-0.414-0.003-0.116 1.000

Amongst the physics parameters (1 − 11), we found the largest correlation coefficients: ρ12 ≈
−33% between the fraction of B0 → π+π− and B0 → K+π−, ρ14 ≈ −28% between the fraction of
B0 → π+π− and B0 → K+K−, ρ27 ≈ −45% between the fraction of B0 → K+π− and B0 → K+K−.
These values can be explained with the limited separation power of the fit for those decays having
very similar kinematics and PID information and the constrain that the sum of all fractions must be
equal to one: the B0 → K+π− differs from B0 → π+π− and B0 → K+K− only for one pion/kaon in
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the final state. A similar explanation holds for ρ46 ≈ −27%, the correlation coefficient between the
fraction of B0

s → K−π+ and B0
s → π+π− modes. In addition, we found a large correlation (about

20%) between the fraction of background b (par. 12) and almost all the fractions of B0
(s) → h+h

′−

and Λ0
b → ph− decay modes, since a background fluctuation can influence the fractions of all modes,

in particular the fraction of the rare modes. This is connected to the fact that, as we will see in
sec. 12.6, the systematics associated to the background shape is dominant. We also notice a large
correlation between the parameters describing the combinatorial and the physics background. A
change of the combinatorial background obviously influences the shape and the normalization of the
physics background. All other correlations are small.

9.3 Fit projections

In order to test the goodness of our fit1 we compare the distributions of data with the joint p.d.f.
corresponding to the Likelihood function evaluated with the maximizing set of parameters �θ = �̂

θ. If
�x = x1, ..., xn is a generic vector of observables and ℘(�x|�θ) is the probability density function of the
observables �x we can define the projection onto the observable xi as the following one-dimensional
function:

℘i(xi; �θ) =
∫
℘(�x|�θ)dx1...dxi−1dxi+1...dxn, (9.1)

which is the predicted distribution for xi under the assumed values for the fit parameters, and can
be overlaid to the experimental data.This allows a way of detecting possible discrepancies between
the observed distributions and the model. Distributions of the discriminating observables with fit
projections overlaid are shown in figs. 9.1–9.6. The fit reproduces well all the observed distributions.
The distributions of individual components are also shown.

To better visualize the agreement between the PID discriminating observables and the data we
complemented the projections of κ1 and κ2 with the projections of their linear combination κ1+κ2 and
κ1 − κ2. This allows to check if the fit reproduces well the shape of the correlation function between
the dE/dx response of the two particles. We find that the fit reproduces accurately the data both
in the central part of the distribution, where the signal is present, and in the tails at lower (higher)
values of κ, where electrons (protons) due to background contribute.

Figures 9.4 and 9.5 report the distributions of the discriminating observables for candidates in the
signal region only (5.190 < mππ < 5.310 GeV/c2) for a further check on whether the fit properly
determines the sample composition below the signal peak. The same kind of check was repeated in
the Λ0

b → ph− mass region only (5.350 < mππ < 5.600 GeV/c2) in fig. 9.6.

1There is no a direct method for testing the goodness-of-fit of an unbinned maximum Likelihood fit. Different

approaches have been proposed in literature for this purpose, but none is rigorously correct [135].
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Figure 9.2: Fit projections onto the variables α, ptot, κ1 in all fit mππ range [5.000, 5.800] GeV/c2.
Loose cuts (a, c, e), tight cuts (b, d, f). See fig. 9.1 for the legend.
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Figure 9.3: Fit projections onto the variables κ2, κ1 + κ2 , κ1 − κ2 in all fit mππ range [5.000, 5.800]
GeV/c2. Loose cuts (a, c, e), tight cuts (b, d, f). See fig. 9.1 for the legend.
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Figure 9.4: Fit projections onto the variables α, ptot, κ1 in the signal mππ range [5.190, 5.310] GeV/c2.
Loose cuts (a, c, e), tight cuts (b, d, f). See fig. 9.1 for the legend.
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Figure 9.5: Fit projections onto the variables κ2, κ1 +κ2, κ1−κ2 in the signal mππ range [5.190, 5.310]
GeV/c2. Loose cuts (a, c, e), tight cuts (b, d, f). See fig. 9.1 for the legend.
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Figure 9.6: Fit projections onto the variables α, ptot, κ1, κ2, κ1 + κ2, κ1 − κ2 in the Λ0
b → ph− mππ

range [5.350, 5.600] GeV/c2. Tight cuts. See fig. 9.1 for the legend.
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9.4 Checks

The fitting code was extensively tested on ensembles of simulated pseudo-experiments of variable
size. We studied the fit under several configurations of the most critical parameters, such as the
contamination of background, absolute scale of the masses, kinematics and PID performance. An
exhaustive description of all these tests can be found in [3, 4]. Here we show only the distributions of
the “pulls” for the physics fit parameters where the pseudo-experiments were generated in the same
conditions of the current data samples. Some additional checks were performed using the data to gain
more confidence in our results.

9.4.1 Pulls

Fit parameter Pull mean Pull standard deviation χ2/d.o.f.
fB0→π+π−/fB0→K+π− −0.13± 0.05 0.92± 0.04 17.4/11
ACP(B0 → K+π−) 0.01± 0.05 1.01± 0.04 6.3/10
fB0

s→K+K−/fB0→K+π− −0.06± 0.05 1.05± 0.05 9.8/10
fB0

s→K−π+/fB0→K+π− −0.09± 0.05 1.01± 0.05 15.9/10
NB0

s→K−π+ −0.09± 0.05 1.01± 0.05 15.9/10
NB0

s→π+π− −0.14± 0.05 1.03± 0.05 4.5/8
NB0→K+K− −0.17± 0.05 1.00± 0.05 9.9/9
NΛ0

b→pπ− −0.21± 0.06 1.03± 0.06 15.6/12
NΛ0

b→pK− −0.15± 0.05 1.03± 0.04 12.4/10

Table 9.4: Results of the Gaussian fit of the pull distributions. C-conjugate modes are implied except
for the parameter in the second row.

To investigate the presence of a possible estimation bias, and the stability of the minimization
code we studied the distributions of the pulls of the fit. The pull of each fit parameter θi is defined
as:

P(θi) =
θ̂i − θi
σ̂θ̂i

, (9.2)

where θ̂i is the estimate of the parameter, and σ̂θ̂i
is the estimate of its uncertainty. We evaluated

the pulls using an ensemble of 400 pseudo-experiments that simulated the experimental circumstance
of the fit on B0

(s) → h+h
′− data. Each pseudo-experiment consisted of the simulated distributions

of the five discriminating observables (mass, momentum imbalance, scalar sum of momenta, and
dE/dx of both tracks) corresponding to 8286 total events. The distributions of each signal mode
and background component were generated according to the corresponding Likelihood term, using a
pseudo-random number generator. The fractions of each signal mode and of background fluctuated
from sample to sample according to a multinomial distribution with mean the set at true parameters
�θ. This properly accounts for the statistical fluctuations of signal and background fractions among
the different samples, while keeping the total number of events constrained. We fit the composition
of all pseudo-experiments using the same Likelihood function used for the data; we then derived the
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pull distributions of the relevant physics quantities from the estimated parameters and uncertainties
(see fig. 9.7).

The pulls are Gaussian-distributed with approximately unit variance and negligible bias (see
tab. 9.4) for each estimated parameter, which is not obvious with finite samples and complicated
probability densities. This ensures that the estimated uncertainty of each parameter σ̂θ̂i

to be such
that the range [θ̂i − σ̂θ̂i

, θ̂i + σ̂θ̂i
] contains the true value θi with about 68% probability. Note that

the pulls corresponding to ratios of fractions are not necessarily Gaussian-distributed because such
ratios are not primary fit parameters. Since the distribution of the ratio of two Gaussian-distributed
quantities has infinite variance, the Gaussian assumption for the pull distribution of ratios can only
be approximate.
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Figure 9.7: Distribution of the pulls of the most relevant fit parameters: (a) fB0→π+π−/fB0→K+π− ,
(b) ACP(B0 → K+π−), (c) fB0

s→K+K−/fB0→K+π− , and (d) fB0
s→K−π+/fB0→K+π− . Results of χ2-fits

to Gaussian functions are overlaid in red.
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9.4.2 Probability ratio plots

The fit of composition disentangles the individual signal components by combining kinematics (mππ,
α, ptot) and PID (κ1, κ2) information (see chap. 4). It is useful to visualize the effective total separation
power of the fit. This can be done by looking at the probability ratio variable:

PR =
℘B0→K+π−

℘B0→K+π− + ℘
B

0→K−π+

, (9.3)

where ℘B0→K+π− and ℘
B

0→K−π+ are the total p.d.f. respectively for the B0 → K+π− and B
0 →

K−π+ modes, and they are functions of the complete set of observables (mππ, α, ptot, κ1, κ2). PR
takes values within the interval [0, 1]. If we evaluate this variable with an event of B0 → K+π− PR
has an high probability to be close to 1, while if we take an event of B

0 → K−π+ PR tends to 0. Any
other event is distributed between 0 and 1. The probability ratio is a function of the discriminating
observables, then we can plot its distribution obtained using the fitted data sample and also the
distribution obtained by generating signals and background events directly from the total p.d.f.s of
the fit of composition. Figure 9.8(a) shows the comparison between the distribution of PR obtained
from the data (point with error bars) ad the distribution of PR obtained by generating events with
the p.d.f.s of the fit of composition. The different colors of the histogram show how the events of
B0 → K+π− (red), B

0 → K−π+ (blue), other signals and background (yellow) are distributed in the
variable PR. The agreement between data distribution and projection is satisfactory. In addition it
is possible to visualize the sizeable effective separation power between B0 → K+π− and B

0 → K−π+

which allows to perform a precision measurement of the direct CP asymmetry ACP(B0 → K+π−).

The same procedure can be repeated for any two signal components S1 and S2, or between an
individual signal S1 and all the other signals S2, S3, ..., SN plus all backgrounds, that we will indicate
with the label “rest”. In particular we can write:

PRS1S2 =
℘S1

℘S1 + ℘S2

(9.4)

PRS1rest =
℘S1

℘S1 + ℘rest
. (9.5)

℘S1 and ℘S2 are the total p.d.f.s respectively for the signal component S1 and S2. Instead ℘rest is
the sum of the total p.d.f.s of all other signals except S1 plus the total p.d.f.s of all backgrounds.
Each term of the ℘rest sum is weighted with the relative fraction estimated by the fit of composition
without the contribution of the signal S1. Figures 9.8 and 9.9 show the comparison between the data
distribution and the projection of the probability ratio in different cases. The agreement obtained is
satisfactory. By the comparison between a rare decay (like the B0

s → K−π+, Λ0
b → pπ−, Λ0

b → pK−)
and the background (in this case all other signals plus backgrounds) it is possible to visualize the
separation power of the fit in disentangling such decay from the rest.
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Figure 9.8: Distribution of the probability ratio (PR) in the signal mass region (5.1 < mππ < 5.6
GeV/c2). Distribution of ℘S1

℘S1+℘S2
(a,b,c,d) and of ℘S1

℘S1+℘rest
(e,f) where ℘S1(S2) is the probability for

each event to be a signal S1(S2) and ℘rest is the probability for each event to be all except the signal
S1 (other signals and backgrounds weighted with the measured relative fractions). The point with
the error bars show the distribution obtained on the fitted data sample while the histogram shows the
distributions obtained by generating signals and background events directly from the total p.d.f.s of
the fit of composition.
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Figure 9.9: Distribution of the probability ratio (PR) in the signal mass region (5.1 < mππ < 5.6
GeV/c2). Distribution of ℘S1

℘S1+℘rest
where ℘S1 is the probability for each event to be a signal S1 and

℘rest is the probability for each event to be all except the signal S1 (other signals and backgrounds
weighted with the measured relative fractions). The point with the error bars show the distribution
obtained on the fitted data sample while the histogram shows the distributions obtained by generating
signals and background events directly from the total p.d.f.s of the fit of composition.
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9.4.3 Additional fits

We performed some additional fits of the B0
(s) → h+h

′− data sample, and we compared them with
our central results of tab. 9.1 using the following expression:

Cadd =
|θ̂cen − θ̂add|

σ̂max
(9.6)

where θ̂cen and θ̂add are respectively the values of the parameter determined by the central fit (loose
selection) and by the additional fit. σmax is the largest error between those returned by the two fits
σmax = max(σcen, σadd). This is used as a conservative estimate of the uncertainty on the difference
between the two fits, because the correlation is positive (generally large) and one of the two fits exploits
only a portion of the information used by the other.

Ckine Cmass

f̂B0→π+π− 1.9 0.1
f̂B0→K+π− 2.1 0.2
f̂

B0→K−π+ − f̂B0→K+π−
f̂

B0→K−π+ + f̂B0→K+π−
0.07 0.02

f̂B0→K+K− − 0.1
f̂B0

s→π+π− − 0.04
f̂B0

s→K−π+ 0.4 0.1
f̂

B0
s→K+π− − f̂B0

s→K−π+

f̂
B0

s→K+π− + f̂B0
s→K−π+

0.7 0.05

f̂B0
s→K+K− 2.1 0.1

f̂Λ0
b→pπ− 2.0 0.03

f̂Λ0
b→pπ+ − f̂Λ0

b
→pπ−

f̂Λ0
b→pπ+ + f̂Λ0

b
→pπ−

0.2 0.02

f̂Λ0
b→pK− 0.8 0.002

f̂Λ0
b→pK+ − f̂Λ0

b
→pK−

f̂Λ0
b→pK+ + f̂Λ0

b
→pK−

0.3 0.01

Table 9.5: Comparisons between the central fit (loose selection), the equivalent fit that uses only the
kinematic information (Ckine), and the equivalent fit where we leave the global mass scale free (Cmass).
The Cadd quantity is defined in the text. Similar results are obtained for the tight selection.

Kinematic-only fit

We performed a fit of composition using only the kinematic information, by turning off the PID
information in the Likelihood function: we used only the information from the variables mππ, α
and ptot. Since the PID information (contained in κ1 and κ2 variables) and kinematics are crucial
independent ingredients of the analysis, we want to check for possible disagreements between these
two informations. Table 9.5 reports the comparison between the fits with the method explained above,
and the agreement obtained is satisfactory. Without the PID information the fit of composition loses
much separation power in disentangling among the signal components. In particular, using only the
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kinematic information it is very difficult to separate the B0 → π+π− and B0
s → K+K− modes, which

are very similar kinematically.

Global mass scale

Table 9.5 reports also the comparison between the central fit (loose selection) and a fit performed by
letting the global mass scale completely free in the fit. We added a new parameter δm to the fit by
making the substitution:

mB0 → mB0 + δm

mB0
s
→ mB0

s
+ δm

mΛ0
b
→ mΛ0

b
+ δm

where mB0 , mB0
s
, mΛ0

b
are the masses measured by CDF in Run II [106] and they are external inputs

of the analytic expression ofMj(α, ptot) (see sec. 6.3). The agreement between fits is satisfactory, and
the fitted value of the mass shift is compatible with zero within a small uncertainty δm = −0.3± 0.6
MeV/c2. This guarantees that the chosen global mass scale is accurate and that the fit of composition
measures it with a precision comparable to the current world best mass measurements of the b-mesons.
The systematic uncertainty associated to our limited knowledge of the global mass scale will be
evaluated in sec. 12.2 using this additional fit.
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Chapter 10

Relative efficiency corrections

In order to translate the parameters returned from the fit of composition into physics measurements
of branching fractions we need to apply the corrections for different efficiency of the selection for
the various decay modes. This chapter is devoted to the evaluation of these efficiency corrections
which were extracted from real data, whenever possible. The charge asymmetry correction for the CP
asymmetry measurements is described in chap. 11.

10.1 Definitions

In order to translate the results returned from the fit of composition into measurements of relative
branching fractions and CP asymmetries we need to apply corrections for the relative efficiencies of
the selection between the various decay modes. For each channel, the fraction output by the fit must
be corrected by an efficiency factor ε. Below we show how the efficiency corrections are applied to
the results determined by the fit. We divided the observables in two categories, depending on the
selection from which they were extracted. For the loose cuts we have:

B(B0 → π+π−)
B(B0 → K+π−)

=
f̂B0→π+π−

f̂B0→K+π−
· ε(B

0 → Kπ)
ε(B0 → ππ)

fs
fd
× B(B0

s → K+K−)
B(B0 → K+π−)

=
f̂B0

s→K+K−

f̂B0→K+π−
· ε(B

0 → Kπ)
ε(B0

s → KK)
.

205
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and for tight cuts we have:

fs
fd
× B(B0

s → K−π+)
B(B0 → K+π−)

=
f̂B0

s→K−π+

f̂B0→K+π−
· ε(B

0 → Kπ)
ε(B0

s → Kπ)

B(B0 → K+K−)
B(B0 → K+π−)

=
f̂B0→K+K−

f̂B0→K+π−
· ε(B

0 → Kπ)
ε(B0 → KK)

fs
fd
× B(B0

s → π+π−)
B(B0 → K+π−)

=
f̂B0

s→π+π−

f̂B0→K+π−
· ε(B

0 → Kπ)
ε(B0

s → ππ)

B(Λ0
b → pπ−)

B(Λ0
b → pK−)

=
f̂Λ0

b→pπ−

f̂Λ0
b→pK−

· ε(Λ
0
b → pK)

ε(Λ0
b → pπ)

.

The notation ε(B0
(s) → hh′), where the particles in the final state are labeled without the charge,

indicates the CP-averaged efficiency for the decay B0
(s) → h+h

′−. Conversely the notation ε(B0
(s) →

h+h
′−) indicates the non CP-averaged efficiency and it will be used in chap. 11, where the charge

asymmetry efficiency correction will be treated. The total reconstruction efficiency ε used in the above
relations factorizes as the product of four terms:

ε = εkin · cXFT · cFSR · εiso. (10.1)

εkin − this is the reconstruction efficiency (trigger and offline cuts). This term mostly accounts
for the acceptance effects. It includes the trigger efficiency and the efficiency of the off-line
reconstruction and selection. We extract the kinematic efficiency from Monte Carlo simulation.
Any geometric acceptance effect is properly taken into account, since the simulation reproduces
the kinematic distributions of the decays and it includes an accurate description of the detector
geometry. This term does not include the contribution of the isolation requirement and of
tracking efficiency which are treated separately.

cXFT − this correction takes into account the relative efficiency of the XFT trigger on charged kaons
and pions. This is not simulated in the Monte Carlo and it was extracted from real data.

cFSR − this correction takes into account the kinematic acceptance efficiency due to the presence of
the Final State Radiation. It is not simulated in the standard Monte Carlo and it was extracted
from a specialized FMC simulation (chap. 5).

εiso − this is the efficiency that a signal event satisfies the isolation cut. It was determined from real
data and it depends only on the initial meson type εiso(B0

(s) → h+h′−) = εiso(B0
(s)).

10.2 Kinematic efficiencies

In order to evaluate the total reconstruction efficiency εkin we used the realistic simulation described
in sec. 4.1. The CP-averaged kinematic efficiency, for each signal mode B0

(s) → h+h
′−, is defined



10.2 Kinematic efficiencies 207

as the ratio between the number of events passing the selection (Npassing) and the number of events
initially generated by the simulation (Ngeneration):

εkin =
Npassing

Ngeneration
. (10.2)

Using simulated samples is reliable for this purpose. The effects contributing to the kinematic efficiency
are well reproduced by the simulation and are similar among all the signal modes. Any possible small
systematic discrepancy between real data and the simulation vanishes in the efficiency ratio between
two different modes. Additional contributions arise from the different probability of interaction with
matter among positively-charged kaons(pions), and negatively-charged kaons(pions). Although several
CDF measurements confirm that the geant package reproduces accurately these effects, we measured
directly from real data the ratio of kinematic efficiency between the final states K+π− and K−π+

(see sec. 11.6.1 and chap. 11) due to the sensitivity of the direct CP asymmetry to this effect.

10.2.1 Lifetimes in the Monte Carlo

Since the signal selection relies on both impact parameter and transverse decay length cuts, the
assumed B lifetimes in the Monte Carlo have an impact on the kinematic efficiencies. We used the
PDG 2005 [32] value of cτ(B0) = 460± 4 μm for the B0 meson, and cτ(Λ0

b) = 368± 24 μm for the Λ0
b

baryon. For the lifetime of the B0
s going in the flavor specific K−π+ mode we used the PDG 2005 [32]

value measured on semileptonic decays: cτ(B0
s ) = 438± 17 μm. The choice of the cτ(B0

s → K+K−)
is less straightforward because it depends both on the CP content of this mode and on the value of
ΔΓs/Γs, which are not well known. We can write:

Γ(B0
s (t)→ K+K−) + Γ(B

0

s(t)→ K+K−) ∝ RHe
−Γ

(s)
H t +RLe

−Γ
(s)
L t, (10.3)

where RH (RL) is the relative fraction of “heavy” (“light”) mass eigenstate of this mode. However, the
B0
s → K+K− mode is expected in Standard Model [68] to be dominated by the “short” eigenstate

(BL
s CP-even), with a “long”eigenstate (BH

s CP-odd) contribution smaller than 5%. Therefore we
evaluated the value of cτ(B0

s → K+K−) used in our analysis using the following assumptions:

� the B0
s → K+K− decay mode is a 100% “short” eigenstate (BL

s CP-even);

� ΔΓs/Γs = 0.12± 0.06 from Standard Model expectation [52];

� according to the Standard Model the widths for B0
s and B0 mesons are equal, Γs = Γd.

From these assumptions we obtain:

cτ(B0
s → K+K−) =

c

Γshort
s

=
c

Γs + ΔΓs/2
=

c

Γd + 0.12 · Γd/2 (10.4)

= [434 ± 4 (Γd) ± 12 (ΔΓSM
s )] μm. (10.5)

We split the uncertainty on cτ(B0
s → K+K−) into the part due to the uncertainty on Γd, which con-

tributes 1%, and the part due to the 0.06 uncertainty on ΔΓs/Γs expected from the Standard Model.
The systematics on our results coming from the first source of uncertainty is discussed in sec. 12.9.1,
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the systematics related to the ΔΓs/Γs uncertainty is evaluated in sec. 12.9.2. The B0
s → π+π− life-

time was extracted under the same assumptions used for the B0
s → K+K−, therefore we assumed

equal cτ(B0
s → K+K−) = cτ(B0

s → π+π−).

Recently, both the CDF and DØ Collaborations [54, 53] measured ΔΓs/Γs using samples of fully
exclusive B0

s → J/ψφ decays. The experimental results for Γs and ΔΓs are in agreement with the
Standard Model expectations but the uncertainties are still larger than theoretical ones. Since there is
no reason to think that the Standard Model expectations for Γs and ΔΓs are wrong, we consider our
assumption still valid, to use the expected value for Γs and ΔΓs/Γs instead of the current experimental
value to evaluate the lifetime of B0

s → π+π− and B0
s → K+K− modes.

Table 10.1 reports the input lifetimes used to generate the simulated samples.

mode cτ [μm]
B+ 501
B0 460
B0
s → π+π− 434

B0
s → K−π+ 438

B0
s → K+K− 434

Λ0
b 368

Table 10.1: Summary of the input lifetimes in the simulation.

10.2.2 Kinematic efficiency corrections

The kinematic efficiency corrections extracted from the simulation are divided in two groups, according
to the two different selections. For the loose cuts we have:

εkin(B0 → Kπ)
εkin(B0 → ππ)

= 0.978± 0.004 (MC) (10.6)

εkin(B0 → Kπ)
εkin(B0

s → KK)
= 1.032± 0.004 (MC). (10.7)

For the tight cuts we have:

εkin(B0 → Kπ)
εkin(B0 → KK)

= 1.023± 0.004 (MC) (10.8)

εkin(B0 → Kπ)
εkin(B0

s → Kπ)
= 1.008± 0.004 (MC) (10.9)

εkin(B0 → Kπ)
εkin(B0

s → ππ)
= 0.971± 0.004 (MC) (10.10)

εkin(Λ0
b → pK)

εkin(Λ0
b → pπ)

= 0.982± 0.004 (MC). (10.11)

The uncertainty referred as (MC) is due to the finite statistics of the simulated samples used to
estimate the kinematic efficiency εkin and it corresponds to the Poisson fluctuation of the number
of events passing the selection. This uncertainty will be used to evaluate the relative associated
systematics (see sec. 12.8.1).
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10.2.3 Trigger bias corrections

A separate correction is needed to account for the different XFT efficiency to reconstruct charged
kaons and pions. This is due to the different specific ionization of pions and kaons in the COT volume
[122, 136]. In the typical momentum range of the B0

(s) → h+h
′− decay products, charged pions (with

typical Lorentz boost βγ ≈ 15) ionize more than charged kaons (βγ ≈ 4). The consequence is a larger
pulse width of pions than of kaons and, as a consequence a larger hit multiplicity of the pions in the
COT. The requirement of the XFT on the minimum number of axial COT hits reflects in a different
trigger efficiency for kaons than for pions. This introduces different relative efficiencies between the
B0

(s) → h+h
′− modes with different number of kaons and pions in the final state. This effect is not

reproduced by the CDF II simulation, and was instead measured by a study on XFT-unbiased prong
in three-body D+

(s) meson decays (D+ → K−π+π+, D+ → K+K−π+and D+
s → K+K−π+) triggered

on two tracks [122]. Using the XFT information associated to the non-triggered kaon (or pion), the
ratio between the number of kaons (pions) reconstructed off-line that would have passed the XFT
requirements NXFT and the total number of kaons (pions) reconstructed off-line Noff was measured
as a function of the transverse momentum:

εXFT =
NXFT

Noff
. (10.12)

For each charged particle having transverse momentum pT, the ratio of the XFT efficiency between
data and Monte Carlo simulation (cXFT) was fitted to a straight-line function of 1/pT:

cXFT(pT) =
εdata
XFT

εMC
XFT

= k0 +
k1

pT
, (10.13)

where εdata
XFT is the XFT-efficiency measured on real data, and εMC

XFT is the XFT efficiency extracted from
simulation. The parameters of the above formula are determined from binned χ2-fits as a function of
time (in terms of runs). Following Ref. [122], we applied the correction to the simulated samples. The
contribution to the final yield of each simulated B0

(s) → h+h
′− event was reweighed by the product

cXFT[pT(h)]× cXFT[pT(h
′
)] and the two factors were evaluated using the proper set of ki parameters

and the specific value of transverse momentum of the particle. The kinematic efficiencies reweighted
with the XFT-corrections with their uncertainties for the observables quoted using the loose selection
are:

εkin(B0 → Kπ)
εkin(B0 → ππ)

· cXFT(B0 → Kπ)
cXFT(B0 → ππ)

= 0.934± 0.004 (MC) +0.016
−0.019 (XFT)

εkin(B0 → Kπ)
εkin(B0

s → KK)
· cXFT(B0 → Kπ)
cXFT(B0

s → KK)
= 1.080± 0.004 (MC) +0.027

−0.013 (XFT).

Those for the tight selection are:

εkin(B0 → Kπ)
εkin(B0 → KK)

· cXFT(B0 → Kπ)
cXFT(B0 → KK)

= 1.072± 0.004 (MC)± 0.020 (XFT)

εkin(B0 → Kπ)
εkin(B0

s → Kπ)
· cXFT(B0 → Kπ)
cXFT(B0

s → Kπ)
= 1.008± 0.004 (MC) +0.000

−0.017 (XFT)

εkin(B0 → Kπ)
εkin(B0

s → ππ)
· cXFT(B0 → Kπ)
cXFT(B0

s → ππ)
= 0.927± 0.004 (MC)± 0.017 (XFT)

εkin(Λ0
b → pK)

εkin(Λ0
b → pπ)

· cXFT(Λ0
b → pK)

cXFT(Λ0
b → pπ)

= 0.929± 0.004 (MC)± 0.017 (XFT).
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Figure 10.1: XFT efficiency of positively-charged kaons (black points) and pions (red points) as a
function of 1/pT, as measured in D+

(s) meson decays [122]. Fit functions are overlaid (solid lines).

The uncertainty referred as (XFT), is due to the statistical and systematic uncertainty on the mea-
surement of the parameters ki of eq. (10.13). This uncertainty will be used to evaluate the relative
associated systematics (sec. 12.8.2).

10.2.4 FSR correction

The invariant mass template of each signal mode was extracted from an accurate study described
in chap. 5 where we kept into account also the effect due to the soft photon emission in the final
state (FSR). The mass template is defined only when an energy cut-off1 is given (see sec. 5.4.1 and
sec. 5.4.2) and for the present analysis we chose Emax = 0.5 GeV. Since in the fit of composition
we use only the invariant ππ-mass, the lower boundary mππ > 5 GeV/c2 has an asymmetric effect
on the radiative tails of each signal mode. In other words, in the invariant ππ-mass the signal peaks
are shifted from the position computed with the correct mass assignment towards the lower mass
boundary (see fig. 4.9), then, the radiative tail is long as a function of this shift in the mass window fit
5 < mππ < 5.8 GeV/c2. To keep into account this effect we simulated 107 events for all signal modes
with and without the FSR using the FMC simulation described in sec. 5.3. The correction due to the

1The cut-off Emax is the maximum energy of the photon emitted in the rest frame of the B meson.
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FSR (cFSR) is defined as the ratio between the number of events passing the selection including the
FSR (Non

FSR) and the number of events passing the selection excluding FSR (Noff
FSR):

cFSR =
Non

FSR

Noff
FSR

. (10.14)

The kinematic efficiencies reweighted with the XFT-corrections and corrected for the FSR factors are:

εkin(B0 → Kπ)

εkin(B0 → ππ)
· cXFT(B0 → Kπ)

cXFT(B0 → ππ)
· cFSR(B0 → Kπ)

cFSR(B0 → ππ)
= 0.936 ± 0.004 (MC) +0.016

−0.019 (XFT)(10.15)

εkin(B0 → Kπ)

εkin(B0
s → KK)

· cXFT(B0 → Kπ)

cXFT(B0
s → KK)

· cFSR(B0 → Kπ)

cFSR(B0
s → KK)

= 1.074 ± 0.004 (MC) +0.027
−0.013 (XFT).(10.16)

Those for the tight cuts are:

εkin(B0 → Kπ)

εkin(B0 → KK)
· cXFT(B0 → Kπ)

cXFT(B0 → KK)
· cFSR(B0 → Kπ)

cFSR(B0 → KK)
= 1.074 ± 0.004 (MC) ± 0.020 (XFT)(10.17)

εkin(B0 → Kπ)

εkin(B0
s → Kπ)

· cXFT(B0 → Kπ)

cXFT(B0
s → Kπ)

· cFSR(B0 → Kπ)

cFSR(B0
s → Kπ)

= 1.008 ± 0.004 (MC) +0.000
−0.017 (XFT) (10.18)

εkin(B0 → Kπ)

εkin(B0
s → ππ)

· cXFT(B0 → Kπ)

cXFT(B0
s → ππ)

· cFSR(B0 → Kπ)

cFSR(B0
s → ππ)

= 0.927 ± 0.004 (MC) ± 0.017 (XFT)(10.19)

εkin(Λ0
b → pK)

εkin(Λ0
b → pπ)

· cXFT(Λ0
b → pK)

cXFT(Λ0
b → pπ)

= 0.929 ± 0.004 (MC) ± 0.017 (XFT).(10.20)

The uncertainty due to the additional FSR correction is negligible with respect to the uncertainty
due to the finite statistics of simulation and due to the XFT effects, then we do not evaluate any
additional systematics associated to this correction.

The efficiency ratio corrections described above do not take into account the different efficiency
of the isolation on B0 and on B0

s . This additional correction affects only the observables related
to a B0

s meson decay mode normalized to a B0 meson decay mode and it was measured with fully
reconstructed B decays. Chapter 7 describes in detail the procedure to measure from real data the
efficiency correction due to the isolation requirement while sec. 10.4 reports only the results of that
work.

10.3 Results (not involving isolation efficiency and charge asym-

metry correction)

We now have all the corrections to the ratios of branching fractions which do not need the isolation
efficiency and charge asymmetry correction. We can extract the corresponding measurements. All
the associated uncertainties account for the statistical fluctuations due to finite samples only. The
corrections for the remaining measurements are treated in the rest of this chapter.

10.3.1 Ratio B(B0 → π+π−)/B(B0 → K+π−)

Using the kinematic, XFT and FSR efficiencies ε(B0→Kπ)
ε(B0→ππ) � 0.936 (see eq. (10.15)), we corrected the

fit results to extract the following measurement of relative branching fraction:

B(B0 → π+π−)
B(B0 → K+π−)

= 0.259± 0.017 (stat.). (10.21)
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10.3.2 Ratio B(B0 → K+K−)/B(B0 → K+π−)

Using the kinematic, XFT and FSR efficiencies, ε(B0→Kπ)
ε(B0→KK) � 1.074 (see eq. (10.17)), we corrected the

fit results to extract the following measurement of relative branching fraction:

B(B0 → K+K−)
B(B0 → K+π−)

= 0.020± 0.008 (stat.). (10.22)

10.3.3 Ratio B(Λ0
b → pπ−)/B(Λ0

b → pK−)

Using the kinematic, XFT and FSR efficiencies, ε(Λ
0
b→pK)

ε(Λ0
b→pπ)

� 0.929 (see eq. (10.20)), we corrected the
fit results to extract the following measurement of relative branching fraction:

B(Λ0
b → pπ−)

B(Λ0
b → pK−)

= 0.66± 0.14 (stat.). (10.23)

10.4 Efficiency of the B-isolation cut

The isolation of B meson depends on the multiplicity and momenta of the tracks produced in the
b-quark fragmentation, which is not described by the signal-only simulation discussed in sec. 4.1. We
therefore had to use real data to characterize this observable. Chapter 7 describes the measurement of
the isolation efficiency for the values of the cut used in the present analysis using fully reconstructed
B0

(s) → J/ψX decays. The results are summarized in sec. 7.4.2, here we reports only the efficiency
ratio values averaged on the transverse momentum distribution of the B0

(s) → h+h
′− decays:

εiso(B0)
εiso(B0

s )

∣∣∣∣I(B)>0.5

= 1.000± 0.028, (10.24)

εiso(B0)
εiso(B0

s )

∣∣∣∣I(B)>0.525

= 1.030± 0.032. (10.25)

Since we do not expect any difference for this efficiency ratio when we move from I(B) > 0.5 to
I(B) > 0.525 and since the measurements in eqs. (10.24) and (10.25) are strongly correlated (we can
not take the average), we corrected the results using the value with smaller statistical uncertainty:

εiso(B0)
εiso(B0

s )
= 1.000± 0.028. (10.26)

This statistical uncertainty will be used to evaluate the relative associated systematics (see sec. 12.8.3).

10.5 Results (involving isolation efficiency)

The isolation efficiency, along with the kinematic, XFT and FSR efficiencies of sec. 10.2.4, completes
the set of corrections used to obtain the remaining ratios of branching fractions. All the uncertainties
account only for the statistical fluctuations due to finite samples.



10.6 Further considerations 213

10.5.1 Ratio (fs/fd)× B(B0
s → K−π+)/B(B0 → K+π−)

Following eqs. (10.18) and (10.26), we corrected the fit results for the kinematic, XFT, FSR and the
isolation efficiencies, ε(B0→Kπ)

ε(B0
s→Kpi) � 1.008, to extract the following measurement of relative branching

fraction:
fs
fd
× B(B0

s → K−π+)
B(B0 → K+π−)

= 0.071± 0.010 (stat.). (10.27)

10.5.2 Ratio (fs/fd)× B(B0
s → K+K−)/B(B0 → K+π−)

Following eqs. (10.16) and (10.26), we corrected the fit results for the kinematic, XFT, FSR and the
isolation efficiencies, ε(B0→kπ)

ε(B0
s→KK) � 1.074, to extract the following measurement of relative branching

fraction:
fs
fd
× B(B0

s → K+K−)
B(B0 → K+π−)

= 0.347± 0.020 (stat.). (10.28)

10.5.3 Ratio (fs/fd)× B(B0
s → π+π−)/B(B0 → K+π−)

Following eqs. (10.19) and (10.26), we corrected the fit results for the kinematic, XFT, FSR and the
isolation efficiencies, ε(B0→Kπ)

ε(B0
s→ππ) � 0.927, to extract the following measurement of relative branching

fraction:
fs
fd
× B(B0

s → π+π−)
B(B0 → K+π−)

= 0.007± 0.004 (stat.). (10.29)

10.6 Further considerations

The corrections described in this chapter were extracted from real data when it was possible and
from simulation when it was strictly necessary. For this analysis we used the data-driven approach
and we used the simulation only to extract the kinematic efficiencies. These depend on differences in
geometric acceptance among the B0

(s) → h+h
′− modes and the simulation properly reproduces these

effects. In addition every small systematic effects cancel out in the ratio of branching fractions where
these corrections are involved. The resulting input from simulation is modest: the largest kinematic
correction amounts to a factor of about 3.2% (see eqs. (10.6)–(10.11)).
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Chapter 11

Charge asymmetry

In this chapter we describe the measurement of the detector-induced charge asymmetry between posi-
tively and negatively charged kaons and pions, due to their different probability of strong interaction in
the tracker material. This allows to extract the correction factor for the CP asymmetry measurement
directly from real data. Due to the high precision of the measurement, we extracted this correction
from data, performing a complete analysis on a large sample of D0 → K−π+ decays.

11.1 Introduction

In the measurement of CP asymmetry the only relevant acceptance effect is the detector-induced
charge asymmetry between positively and negatively charged kaons and pions, due to their different
probability of strong interaction with the tracker material. All other inefficiencies, such as the O(1%)
asymmetry between positively and negatively-charged particles induced by the COT cell-geometry,
cancel out in the ratio which defines the expression of the CP asymmetry. The terms related to the
detector-induced charge asymmetry are the ratios:

ε(B0 → K+π−)

ε(B
0 → K−π+)

and
ε(B

0

s → K+π−)
ε(B0

s → K−π+)
. (11.1)

Below we show how the efficiency corrections in eq. (11.1) are applied to the results determined by the
fit. We divided the observables in two categories, depending on the selection from which they were
extracted. For the loose cuts we have:

ACP(B0 → K+π−) =
B(B

0 → K−π+) − B(B0 → K+π−)

B(B
0 → K−π+) + B(B0 → K+π−)

=
f̂

B
0→K−π+ · ε(B0→K+π−)

ε(B
0→K−π+)

− f̂B0→K+π−

f̂
B

0→K−π+ · ε(B0→K+π−)

ε(B
0→K−π+)

+ f̂B0→K+π−

and for the tight cuts we have:

ACP(B0
s → K−π+) =

B(B
0
s → K+π−) − B(B0

s → K−π+)

B(B
0
s → K+π−) + B(B0

s → K−π+)
=

f̂
B

0
s→K+π− · ε(B0

s→K−π+)

ε(B
0
s→K+π−)

− f̂B0
s→K−π+

f̂
B

0
s→K+π− · ε(B0

s→K−π+)

ε(B
0
s→K+π−)

+ f̂B0
s→K−π+

Although some CDF measurements confirm that the geant [103] package reproduces accurately
these effects [122] we preferred to measure it directly from real data, to achieve the best precision and
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the confidence in the result needed for this delicate measurement. We measured the efficiency ratios
in eq. (11.1) using an unbiased sample of D0 → K−π+. By unbiased we mean that the D0 → K−π+

decays were reconstructed without requiring they were produced in the decay of a D∗+, which is
usual in CDF when a clean D0 sample is desired. The request of an additional charged pion in the
final state and of the explicit reconstruction of the D∗+ → D0π+ → [K−π+]π+ decay chain, would
generate an artificial asymmetry, since the CDF II tracking has a different efficiency for reconstructing
the tracks associated to π+ and π− with low momentum, which would introduce extra uncertainties.
For this reason we selected for our purpose about 106 prompt D0 → K−π+ decays and analysed them
with the same methods used for the B0

(s) → h+h
′− decays and described in this thesis. This is a

powerful check of all the analysis since we actually used the same reconstruction and fitting code of
the B0

(s) → h+h
′− analysis. In this way, we are at same time eliminating possible spurious effects

hidden in our procedure.

Since the Standard Model predicts a very small O(10−6) [142] direct CP asymmetry in the D0 →
K−π+ decay, and since the current experimental measurements1 [32] do not show any indication of a
deviation from this prediction, we assume that:

B(D
0 → K+π−)− B(D0 → K−π+)

B(D
0 → K+π−) + B(D0 → K−π+)

� 10−3. (11.2)

If we write relation (11.2) in terms of the measured relative fractions of D0 → K−π+ and D
0 → K+π−

and efficiency correction, we obtain:

B(D
0 → K+π−)− B(D0 → K−π+)

B(D
0 → K+π−) + B(D0 → K−π+)

=
f̂
D

0→K+π− · ε(D
0→K−π+)

ε(D
0→K+π−)

− f̂D0→K−π+

f̂
D

0→K+π− · ε(D0→K−π+)

ε(D
0→K+π−)

+ f̂D0→K−π+

� 10−3 (11.3)

from which we can extract the desired ratio ε(D
0→K+π−)

ε(D0→K−π+) with an uncertainty smaller than 10−3. To
keep into account the different momentum spectrum of decay products of a D0 meson with respect
to a B0

(s) meson, to extract ε(B0→K+π−)

ε(B
0→K−π+)

and ε(B
0
s→K+π−)

ε(B0
s→K−π+) , we need to re-weigh the two-dimensional

distribution of both particle momenta.

11.2 Reconstruction of the prompt D0 → h+h
′− sample

The sample of prompt D0 → h+h
′− decays used to study the charge asymmetry effects was collected

between February 2002 (run 138809) and March 2006 (run 212133), as B0
(s) → h+h

′− decays, by
the B CHARM and B CHARM HIGHPT triggers (see sec. 3.2.2), paths that belong, along with the B PIPI

and B PIPI HIGHPT paths, to the Displaced-Tracks Trigger. Therefore a large fraction of trigger
requirements is common to these two paths and most trigger-dependent effects are automatically
taken into account in the reconstruction and selection of the events. Prompt D0 → h+h

′− decays
have the same kinematic topology and the same final state as B0

(s) → h+h
′− decays.

The expected yield of prompt D0 → h+h
′− decays is very large, about 15 × 106 of D0 → K−π+

decays in a sample of integrated luminosity of
∫ Ldt � 1 fb−1. Handling such a large sample implies

1The current experimental sensitivity is O(10−2).
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practical difficulties, however a sufficient satisfactory precision on the measured asymmetry can be
obtained by processing only a limited amount of data. Therefore we processed only 15% of the
available data, sampling uniformly the runs over the whole range to keep into account possible time
dependent changes of the detector.

Quantity of the track Units Requirement
Axial Si hits − ≥ 3
90◦ − z Si hits − ≥ 2
Axial COT SL (hits/SL) − ≥ 2 (≥ 5)
Stereo COT SL (hits/SL) − ≥ 2 (≥ 5)
Total COT hits − ≥ 42
Reco. algorithm − OIZ
pT GeV/c > 2.0
|η| − < 1.0
|d0| μm [120, 1000]
Quantity of the candidate
q(1)× q(2) e2 −1
d0(1)× d0(2) μm2 < 0
LT μm > 300∑
pT GeV/c > 5.5

|d0| μm < 80
I − > 0.5
χ2

3D − < 7
|η| − < 1.0
Δϕ0 Degrees [2◦, 90◦]
mππ GeV/c2 [0.8, 2.2]

Table 11.1: Summary of the selection for D0 → h+h
′− decays.

To reconstruct the D0 → h+h
′− decays we applied the same prescription and we processed the

data using the same executable used to reconstruct the B0
(s) → h+h

′− decays (see chap. 3). The
requirements applied to select the D0 → h+h

′− decays are summarized in tab. 11.1. The selection
is the same used for the measurement of the direct CP asymmetry in B0 → K+π− mode (loose
cuts, see tab. 3.3), except for the small differences between the B PIPI and the B CHARM trigger
paths. The requirement on the minimum impact parameter for both tracks is d0 > 120 μm instead of
d0 > 100 μm, the azimuthal opening angle Δϕ0 is within [2◦, 90◦] instead of [20◦, 135◦], and obviously
the requirement on the invariant ππ-mass mππ is within [0.8, 2.2] instead of [4.0, 7.0] GeV/c2. Since
we cannot distinguish pions from kaons event by event, we computed the invariant mass of each
candidate with different mass assignments. Figure 11.1 reports the invariant ππ-mass and KK-mass
distribution of the candidates passing the selection cuts listed in tab. 11.1. Three signals are clearly
visible: on the left (low masses) the D0 → K+K− signal, at the center the D0 → K−π+ signal, on the
right (high masses) the D0 → π+π− signal. These are better resolved in mass than the B0

(s) → h+h
′−

decays. In fact the D0 meson has a smaller mass than neutral B mesons and is reconstructed with
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Figure 11.1: Invariant ππ-mass and KK-mass distribution of prompt D0 → h+h
′− candidates. Data

(a,c) and simulation (b,d).

a better mass resolution (about 8 MeV/c2 rather than 22 MeV/c2). In addition, the mass shift due
to the erroneous mass assignment is larger than in the B0

(s) → h+h
′− case. As in the B0

(s) → h+h
′−

case, two different background components are clearly visible. At higher masses (mππ > 1.9 GeV/c2

or mKK > 2.2 GeV/c2) one can see a combinatorial component, which contributes uniformly in all
mass region, while at lower masses, in addition to the combinatorial component, a large bump due to
partially-reconstructed multibody D0 and/or D+ decays is also visible .

We introduce two requirements to separate the D0 → K−π+ decays from other D0 → π+π− and
D0 → K+K− decays and from the partially-reconstructed background. We apply the cut mKK >

1.93 GeV/c2, where mKK is the invariant mass of the track pair computed by assigning the kaon mass
to both tracks (see figs. 11.1(c) and (d)). This cut removes all the D0 → K+K− decays, in addition
to removing almost all background due to partially-reconstructed D0 or D+ multibody decays. To
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remove the D0 → π+π− contribution, we require mππ < 1.82 GeV/c2. Figure 11.2 shows the invariant
ππ-mass distribution obtained after applying the selection listed in tab. 11.1 plus the two additional
mass requirements.
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Figure 11.2: Invariant ππ-mass distribution of prompt D0 → h+h
′− candidates with the additional

requirement mKK > 1.93 GeV/c2 and mππ < 1.82 GeV/c2.

11.2.1 Checking the content of non-prompt D0

A significant fraction of D0 in our sample may come from the decay of B mesons. The CP asymmetry
in the D0 → K−π+ decays could thus be biased by a possible CP asymmetry of B meson decays
from which the D0 originated [140, 141]. To evaluate the contamination of non-prompt D0 → K−π+

decays, we studied the distribution of the impact parameter d0 of the D0 candidates. Figure 11.3(b)
reports the simulated (we used the FMC described in sec. 5.3) distribution of the prompt D0 → K−π+

decays, fitted with a Gaussian function. The fit determined μ = 0.14±0.11 μm and σ = 24.5±0.1 μm.
A deviation from a Gaussian distribution on real data implies that our sample contains a component
of non-prompt D0 decays. We fitted the background-subtracted d0(D0) distribution of the data
with a sum of two Gaussian distributions, as shown fig. 11.3(a). The fit returns a contamination of
non-prompt decays f2 = 0.17 ± 0.01, a mean μ1 = μ2 = 0.87 ± 0.05 μm, and standard deviations
σ1 = 30.2± 0.1 μm and σ2 = 54.3± 0.7 μm. The resolution of the dominant Gaussian resulting from
the fit performed on data is larger than the value returned from the simulation by ≈ 23%: 30.2 μm
with respect to 24.5 μm from simulation. For the purpose to estimate the contribution of the non-
prompt D0 this discrepancy is not relevant, the only relevant thing is that the distribution of the
simulated prompt D0 → K−π+ decays is a Gaussian with good approximation.

The Standard Model prediction of CP asymmetry in the B-meson system is much smaller than
0.5%, and this is confirmed by the current experimental measurements [138, 139]. The DØ Collabo-



220 Chapter 11. Charge asymmetry

ration measured a dimuon asymmetry [140]:

N (bb̄→ μ+μ+X)−N (bb̄→ μ−μ−X)
N (bb̄→ μ+μ+X) +N (bb̄→ μ+μ+X)

= −0.0028± 0.0013 (stat .)± 0.0009 (syst .)

and the direct CP asymmetry [141]

B(B− → J/ψK−)− B(B+ → J/ψK+)
B(B− → J/ψK−) + B(B+ → J/ψK+)

= 0.0067± 0.0074 (stat .)± 0.0026 (syst .).

If we assume a conservative value of CP asymmetry in the B-mesons of 0.5%, the expected effect on
the D0 → K−π+ direct CP asymmetry is the product 17%× 0.5% which is less than 0.1%. Since we
expect an uncorrected CP asymmetry of the prompt D0 → K−π+ decays O(1%) we neglect the effect
of a possible CP asymmetry in the B-mesons system of the non-prompt D0 component.
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Figure 11.3: Impact parameter distribution ofD0 candidates. The background-subtracted distribution
reconstructed from real data (a) was fitted with a sum of two Gaussian distributions (blue continuous
line). Red dotted line is the non-prompt component returned from the fit. The distribution obtained
from the simulated sample (b) was fitted with a single Gaussian distribution.

11.3 Measurement of the charge asymmetry

We performed an unbinned, maximum Likelihood fit, to statistically determine the relative fractions of
D0 → K−π+ and D

0 → K+π− decays. The fitting technique has been described in detail in chap. 6,
in this section we will just outline some minor changes needed to adapt the fit to the D0 → h+h

′−

case. One important difference between the D0 → h+h
′− and the B0

(s) → h+h
′− case is the relative

rôle of PID and kinematics. While in the B0
(s) → h+h

′− case the two contribute almost equally, for the
D0 → h+h

′− the kinematics is dominant. In order to perform a thorough check of our B0
(s) → h+h

′−

analysis, we decided to perform on the D0 → K−π+ two separate fits, a kinematic-only fit and a
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PID-only fit. The kinematic fit is taken as our measurement of the efficiency correction, due to its
lack of sensitivity to systematic uncertainties in the PID parameterization, while the PID-only fit is
used for comparison, to check that there are no significant asymmetries in the PID parameterization
that might affect the B0

(s) → h+h
′− fit.

We use the same kinematic observables of the B0
(s) → h+h

′− fit (see sec. 6.1): mππ, α and ptot.

The kinematic-only fit disentangles very well the D0 → K−π+ and D
0 → K+π− signals, as can

be easily seen from fig. 11.5 where the two-dimensional plot of mππ vs α is shown. The PID fit id
described separately in sec. 11.5.

The Likelihood function L is expressed as the product of the Likelihood of each event Li:

L (�θ) =
N∏
i=1

Li(�θ|�xi), (11.4)

where the index i runs over the events, N is the total number of events passing the final selection,
�θ is the vector of parameters to be determined, �x is the vector of the discriminating observables
�xi = {mππ, α, ptot}i. The Likelihood of each event is written as the sum of a signal term and a
background term:

Li = b ·L bck
i + (1− b) ·L sig

i . (11.5)

The index sig (bck) labels the part of the function that describes the signal (background) term; b is
the fraction of background events and 1 − b is the fraction of the D0 → K−π+ plus D

0 → K+π−

events ((b ∈ �θ)). In terms of p.d.f. the Likelihood of the signal events is factorized as:

L sig = fD0→K−π+ · ℘mD0→K−π+(mππ|α, ptot) · ℘pD0→K−π+(α, ptot)

+ f
D

0→K+π− · ℘mD0→K+π−(mππ|α, ptot) · ℘p
D

0→K+π−(α, ptot). (11.6)

where the parameter fD0→K−π+ is the fraction with respect to the total signal of D0 → K−π+ mode
determined by the fit, while f

D
0→K+π− = 1 − fD0→K−π+ . The Likelihood of the background has a

similar factorization of the signal term, in this case there is only the contribution of the combinatorial
background:

L bck = ℘mbck(mππ|α, ptot) · ℘pbck(α, ptot). (11.7)

11.3.1 Probability density function of the signal mass term

When charged pion mass is assigned to both tracks the resulting invariant mass for the D0 → K−π+

and D
0 → K+π− decay modes is shifted to lower values than the true D0 mass. If the momenta of

both tracks are known, it is possible to calculate analytically this shift on a event-by-event basis. The
situation is identical to the B0

(s) → h+h
′− case, therefore we wrote the probability density function

for the mass term following the steps described in sec. 6.3. We parameterized the invariant mass
distribution mK−π+ and mK+π− , computed with the correct mass assignment (i. e., mK−π+ for the
D0 → K−π+ mode), using the p.d.f. of eq. (6.7) by substituting mH0 with mD0 (see also eq. (5.21)
in chap. 5). Figure 11.4 shows the invariant mass kinematic templates for D0 → K−π+ decay mode,
valid also for D

0 → K+π−. To move from ℘mD0→K−π+(mK−π+) and ℘m
D

0→K+π−(mK+π−) computed
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Figure 11.4: Invariant D0-mass distribution of simulated D0 → K−π+ decays with the additional
requirement mKK > 1.93 GeV/c2. Linear scale (a), logarithmic scale (b).

with the correct mass assignment to the probability density functions of the invariant ππ-mass, we
perform the substitution described in eq. (6.12):

mK−π+ −MD0 = mππ −MD0→K−π+(α, ptot)

mK+π− −MD0 = mππ −MD
0→K+π−(α, ptot), (11.8)

where MD0→K−π+(α, ptot) and M
D

0→K+π−(α, ptot) are the expected average-value of the invariant
mass computed with the pion hypothesis for both particles at given momentum imbalance α and scalar
sum of momenta ptot, see tab. 11.2 (see also tab. 4.1 of sec. 4.3). Using this substitution we can write
the probability density for the signal mass term ℘mD0→K−π+(mππ|α, ptot) and ℘m

D
0→K+π−(mππ|α, ptot).

The distributions of invariant ππ-mass as a function of the signed momentum-imbalance for sim-
ulated D0 → h+h

′− decays are shown in fig. 11.5. As in the B0
(s) → h+h

′− case, different trends for
the different decay modes are visible, but the differences, in this case, are larger and allow to better
disentangle the different contributions. The opposite slope between D0 → K−π+ and D

0 → K+π−

decays is evident. This is used to measure the CP-violating decay-rate asymmetry in these modes.
This large separation power provided by the kinematic information makes the use of PID information
unnecessary in this measurement.

11.3.2 Probability density function of the background mass term

We found that the empirical functional form that describes the invariant ππ-mass distribution of the
background candidates in the mass window centered on the signal region is an error function multiplied
by an exponential function. The exponential function parameterizes the shape of the combinatorial
background coming from pairs of random tracks accidentally satisfying the selection requirements,
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mode M2[p1(α, ptot), p2(α, ptot)] α < 0

D
0 → π−K+ m2

D0 + (m2
π −m2

K) + 2 ·
√
p21 +m2

π ·
(√

p22 +m2
π −
√
p22 +m2

K

)
D0 → K−π+ m2

D0 + (m2
π −m2

K) + 2 ·
√
p22 +m2

π ·
(√

p21 +m2
π −
√
p21 +m2

K

)
D0/D

0 → K−K+ m2
D0 + 2 · (m2

π −m2
K) + 2 ·

(√
p21 +m2

π ·
√
p22 +m2

π −
√
p21 +m2

K ·
√
p22 +m2

K

)
D0/D

0 → π−π+ m2
D0

mode M2[p1(α, ptot), p2(α, ptot)] α > 0

D0 → π+K− m2
D0 + (m2

π −m2
K) + 2 ·

√
p21 +m2

π ·
(√

p22 +m2
π −
√
p22 +m2

K

)
D

0 → K+π− m2
D0 + (m2

π −m2
K) + 2 ·

√
p22 +m2

π ·
(√

p21 +m2
π −
√
p21 +m2

K

)
D0/D

0 → K+K− m2
D0 + 2 · (m2

π −m2
K) + 2 ·

(√
p21 +m2

π ·
√
p22 +m2

π −
√
p21 +m2

K ·
√
p22 +m2

K

)
D0/D

0 → π+π− m2
D0

Table 11.2: Mass expressions for D0 → h+h
′− decays. Upper table: M2(α, ptot) for α < 0 (i.e. the

negative particle carries smaller momentum). Lower table: α > 0 (i.e. the positive particle carries
smaller momentum). For simplicity, the formulas in the tables are written as functions of p1 and p2,
instead of α and ptot.
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Figure 11.5: Invariant ππ-mass distribution for a sample of simulated prompt D0 → h+h
′− as a

function of momentum imbalance α (a). Additional requirements mKK > 1.93 GeV/c2 and mππ <

1.82 GeV/c2 (b). D0 → π+π− green, D0 → K−π+ blue, D
0 → K+π− red, D0 → K+K− pink.

while the error function accounts for the effect of the requirement mKK > 1.93 GeV/c2 in invariant
ππ-mass:

℘mback(mππ|α, ptot; c1, c2,m0) =
1
K
· e−c1(mππ −m0) · Erf(c2(mππ −m0) + 1) (11.9)

Erf(x) =
2√
π

∫ x

0

e−t
2
dt (11.10)

K =
∫ m2

m1

e−c1(mππ −m0) · Erf(c2(mππ −m0) + 1)dmππ. (11.11)
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The parameters c1, c2 and m0 are free to vary in the fit.

11.3.3 Probability density function of the momentum term
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Figure 11.6: Distribution of the scalar sum of momenta as a function of the signed momentum
imbalance in the simulated D0 → K−π+ decays (a) and background (b). Joint (α, ptot) template is
overlaid (b).

The momentum p.d.f.s relative to D0 → K−π+ and D
0 → K+π− signals are extracted from

the simulated samples while the momentum p.d.f. for background is extracted from real data, using
the high-mass sideband (mππ > 1.9 GeV/c2 in fig. 11.1(a)). To extract the templates we used the
same functional forms described in sec. 6.5.2. Figure 11.6 shows the distribution of the scalar sum of
momenta as a function of the momentum imbalance for signal events (a) and for background events
(b). The fit functions of eqs. (6.20) and (6.21), respectively for signal and background are overlaid.

11.4 Fit results

The fit was applied toD0 → K−π+ sample passing the selection summarized in tab. 11.1 plus the mass
requirements mKK > 1.93 GeV/c2 and mππ < 1.82 GeV/c2. In addition, we imposed the following
conditions:

� 1.57 < mππ < 1.82 GeV/c2: this mass range contains the whole D0 → K−π+ and D
0 → K+π−

signals, and it allows a proper extrapolation of the background shape below the signal;

� −0.7 < α < 0.7: this range excludes boundary regions where the model of the corresponding
p.d.f. becomes inaccurate and may lead to undesired biases. This requirement removed just a
few events;
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� ptot > 6.5 GeV/c: we excluded a few candidates with lower ptot values because of the difficulty
of describing accurately the steep turn-on of the ptot p.d.f..

Since the total number of events used in this fit is large, N = 730575, we divided the sample in
three subsamples with approximately the same size and we performed three separate fits. To divide
the sample we used the natural division given by the off-line production which processed the data in
three different datasets corresponding respectively to N0d = 191060, N0h = 313973 and N0i = 225542
events. The final results are the average on the individual fit results. Table 11.3 reports the results
returned of the fits performed on the three subsamples.

parameter 0d 0h 0i

N (D0 → K−π+) +N (D
0 → K+π−) 176887 ± 192 292915 ± 236 210699 ± 199

f̂D0→K−π+ 0.4957 ± 0.0013 0.4957 ± 0.0010 0.4963 ± 0.0012

f̂
D

0→K+π− 0.5043 ± 0.0013 0.5043 ± 0.0010 0.5036 ± 0.0012

f̂
D0→K+π− − f̂D0→K−π+

f̂
D0→K+π− + f̂D0→K−π+

0.00862 ±0.00268 0.00865 ± 0.00208 0.00730 ± 0.00245

Table 11.3: Results of kinematic-pnly fits on prompt D0 → K−π+.

For each subsample the uncorrected direct CP asymmetries, reported in the last line of tab. 11.3,
are compatible with an effect ≈ 0.8%, as expected. The statistical uncertainty for each subsample is
≈ 0.25%. Averaging over the subsamples we obtain: is:

f̂
D

0→K+π− − f̂D0→K−π+

f̂
D

0→K+π− + f̂D0→K−π+

= 0.00823± 0.00136 (stat .). (11.12)

As we will see in sec. 11.6 this resolution allows to measure this charge asymmetry with a better
precision than the previous CDF estimate performed using large samples of simulated events.

11.4.1 Fit projections

The distributions of the discriminating observables with the fit projections overlaid are shown in
fig. 11.7. The projections on the invariant ππ-mass distribution are satisfactory, while the projections
on the momenta discriminating observables α and ptot do not reproduce accurately the observed dis-
tributions. The model used to parameterize the joint probability ℘p(α, ptot) for signal and background
is simply not adequate for an high-statistics fit like this. The data sample fitted is much larger than
Monte Carlo sample used to parameterize the templates and, also, the functional forms used do not
describe well the shapes observed on data. The data distribution of α shows a cusp for α→ 0, while
the function used to parameterize the α shape has a continuous first derivative in α = 0. However, for
the measurement of charge asymmetry the approximate model of the joint probability of momentum
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variables is a negligible problem, since all Likelihood momentum terms under charge conjugation (par-
ticle ↔ anti-particle) are invariant except for a change variable α ↔ −α. This can be translated as
℘pD0→K−π+(α, ptot) = ℘p

D
0→K+π−(−α, ptot). Therefore, the imperfections in the kinematic templates

do not affect the asymmetry returned by the fit.
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Figure 11.7: Fit projection onto mππ, α and ptot variables for different subsamples. Grey region is
the background contribution.
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11.5 Cross-check: PID-only fit

As a cross check of the result obtained in the previous section, we performed an alternative fit of
the same quantity on the same data sample of prompt D0 → K−π+ decays, using only the PID
information. The dE/dx templates were individually parameterized for positively and negatively
charged kaons and pions (sec. 4.4) and this might introduce a bias in the measurement of the charge
asymmetry. In the fit of composition of B0

(s) → h+h
′− we used both kinematic and dE/dx information,

and it is therefore desirable to check that the possible charge asymmetry due to the dE/dx templates
is contained within the associated systematic uncertainty (sec. 12.7).

We used the same PID observables used in the B0
(s) → h+h

′− fit (see sec. 6.1): κ1, κ2, α and ptot.
The dE/dx -only fit needs also the information of the momentum of both particles. As in the previous
fit the Likelihood function L is expressed as the product of the Likelihood of each event Li:

L (�θ) =
N∏
i=1

Li(�θ|�xi), (11.13)

where the index i runs over the events, N is the total number of events passing the final selection,
�θ is the vector of parameters to be determined, �x is the vector of the discriminating observables
�xi = {κ1, κ2, α, ptot}i. The Likelihood of each event is written as the sum of a signal term and a
background term:

Li = b ·L bck
i + (1− b) ·L sig

i . (11.14)

The index sig (bck) labels the part of the function that describes the signal (background) term; b is
the fraction of background events and 1 − b is the fraction of the D0 → K−π+ plus D

0 → K+π−

events ((b ∈ �θ)). In terms of p.d.f. the Likelihood of the signal events is factorized as:

L sig = fD0→K−π+ · ℘pD0→K−π+(α, ptot) · ℘PID
D0→K−π+(κ1, κ2|α, ptot)

+ f
D

0→K+π− · ℘p
D

0→K+π−(α, ptot) · ℘PID

D
0→K+π−(κ1, id2|α, ptot). (11.15)

where the parameter fD0→K−π+ is the fraction with respect to the total signal of D0 → K−π+ mode
determined by the fit, while f

D
0→K+π− = 1 − fD0→K−π+ . The Likelihood of the background has a

similar factorization of the signal term, in this case there is only the contribution of the combinatorial
background:

L bck = ℘pbck(α, ptot) · ℘PID
bck (κ1, κ2|α, ptot). (11.16)

The PID p.d.f.s are exactly the same of those used for the B0
(s) → h+h

′− fit, and from this point
of view the D0 → K−π+ decay mode is strictly similar to the B0

s → K−π+ decay mode. They are
extensively explained in sec. 6.6.1 and 6.6.2.

11.5.1 Fit results for the dE/dx -only fit

We repeated the same procedure described in sec. 11.4 using the Likelihood described above. We fitted
the three subsamples, and in each fit we fixed the background fraction b to the value found in the
kinematic-only fit, because the separation power signal-background is mainly based on kinematics.
We fitted the relative fractions of D0 → K−π+ and D

0 → K+π− decay modes and the particle
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parameter 0d 0h 0i

f̂
D0→K+π− − f̂D0→K−π+

f̂
D0→K+π− + f̂D0→K−π+

0.0018 ± 0.0031 0.0034 ± 0.0024 0.0009 ± 0.0028

Table 11.4: Results of PID-only fits on prompt D0 → K−π+.

composition of the background. The results are shown in tab. 11.4. The three results are in agreement,
and the average uncorrected value of the direct CP asymmetry is:

f̂
D

0→K+π− − f̂D0→K−π+

f̂
D

0→K+π− + f̂D0→K−π+

∣∣∣∣∣
dE/dx

= 0.00207± 0.00157 (stat .). (11.17)

This alternative measurement of the uncorrected direct CP asymmetry must be compared with the
result extracted using only the kinematic information (eq. (11.12)). The difference between the central
values of the two fits is equal to 0.006 ± 0.002 (about 3σ) assuming independent errors. However,
the systematic uncertainty associated to the statistical uncertainty of the dE/dx templates param-
eterization is dominant over this statistical uncertainty. We can see from tab. 12.1 that the effect
of dE/dx systematics on the measurement of ACP(B0 → K+π−) is equal to 0.0064. This value is
already larger than the difference between the kinematic- and PID-only fits presented in this section.
This is a powerful cross check of the entire procedure used to parameterize the dE/dx templates.
Since this fit is completely unconstrained by the kinematics, it will be even more sensitive than the
B0

(s) → h+h
′− fit to the dE/dx systematics. The study described in this chapter shows the possibility

to control possible dE/dx bias with a great accuracy and therefore to produce even more accurate
ACP measurements with larger samples in the future.
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11.6 Charge asymmetry

In order to convert the asymmetry results determined by the fit into a measurement of CP asymmetry,
we need to apply a correction for the different relative efficiency between the D0 → K−π+ and
D

0 → K+π−decay modes:

B(D
0 → K+π−)− B(D0 → K−π+)

B(D
0 → K+π−) + B(D0 → K−π+)

=
f̂
D

0→K+π− · ε(D
0→K−π+)

ε(D
0→K+π−)

− f̂D0→K−π+

f̂
D

0→K+π− · ε(D0→K−π+)

ε(D
0→K+π−)

+ f̂D0→K−π+

. (11.18)

The only detector effect that can influence the asymmetry result is the different interaction probability
of the particle pairs K+π− and K−π+ with the detector material. This is mainly due to the larger
hadronic cross section of the K− with respect to the K+.

If we assume the Standard Model expectation O(10−6) [142] for the direct CP asymmetry in
D0 → K−π+ decays, we can write:

f̂
D

0→K+π− · ε(D
0→K−π+)

ε(D
0→K+π−)

− f̂D0→K−π+

f̂
D

0→K+π− · ε(D0→K−π+)

ε(D
0→K+π−)

+ f̂D0→K−π+

� 10−3. (11.19)

From this relation we can extract the value of efficiency ratio ε(D0→K−π+)

ε(D
0→K+π−)

directly from real data

without any Monte Carlo input using the fraction f̂ measured in the fit. The resulting value, averaged
over the subsamples 0d, 0h and 0i, is:

ε(D0 → K−π+)

ε(D
0 → K+π−)

= 0.9837± 0.0027 (11.20)

ε(D
0 → K+π−)

ε(D0 → K−π+)
= 1.0166± 0.0028. (11.21)

We quote only the statistical uncertainty returned from the fit, because all systematic uncertainties
due to the fit parameterization are expected to be much smaller than the statistical uncertainty. They
cancel out in the ratio between relative fractions. We neglect also the systematic uncertainty coming
from the Standard Model assumption ACP(D0 → K−π+) = O(10−6), since our statistical uncertainty
is O(10−3).

It is interesting to note that this value is in perfect agreement with a previous evaluation of the
same effect entirely based on Monte Carlo [122, 136]:

ε(D0 → K−π+)

ε(D
0 → K+π−)

∣∣∣∣∣
MC

= 0.9825± 0.0014 (stat.)± 0.0045(syst.). (11.22)

The statistical uncertainty of Monte Carlo based estimate is due to limited statistics of simulated
sample, while the systematic uncertainty is related to the capability of geant [103] in reproducing
the the detector-induced charge asymmetry. Using only a small subsample of prompt D0 → K−π+

decays we measured the efficiency ratio ε(D0→K−π+)

ε(D
0→K+π−)

with more precision than the Monte Carlo based
estimate obtaining an excellent agreement.
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11.6.1 Momentum correction

To keep into account the different momentum distribution of the D0 and B0
(s) decays we reweighted

the joint distribution of (α, ptot) using the B0
(s) → h+h

′− Monte Carlo. We first evaluated the

efficiency ratio ε(B0
s→K−π+)

ε(B
0
s→K+π−)

without any reweighting, and second reweighting the (α, ptot) distribution

of B0
s → K−π+ to that of D0 → K−π+. The ratio of these two quantities is applied as a multiplicative

correction to the values of eq. (11.20) and eq. (11.21), to account for the different D0 and B0
(s)

meson momentum spectrum. The small difference in the momentum (α,ptot) distribution between
B0 → K+π− and B0

s → K−π+ has a negligible effect. Thus we obtain the final acceptance corrections:

ε(B
0 → K−π+)

ε(B0 → K+π−)
=
ε(B0

s → K−π+)

ε(B
0

s → K+π−)
= 0.9871± 0.0027 (stat.) (11.23)

ε(B0 → K+π−)

ε(B
0 → K−π+)

=
ε(B

0

s → K+π−)
ε(B0

s → K−π+)
= 1.0131± 0.0028 (stat.). (11.24)

11.7 Results (involving charge asymmetry correction)

At this point we have all the corrections for those measurements involving the charge asymmetry
correction. We can extract the corresponding CP asymmetry measurements . All the associated
uncertainties account for the statistical fluctuations due to finite samples only.

11.7.1 Direct CP asymmetry in the B0 → K+π− and B0
s → K−π+ decay

Following eqs. (11.23) and (11.24), we corrected the fit results for the charge-asymmetry factor,
ε(B0→K+π−)

ε(B
0→K−π+)

= ε(B
0
s→K+π−)

ε(B0
s→K−π+) � 1.0131, to extract the direct CP asymmetries:

ACP(B0 → K+π−) =
B(B

0 → K−π+)− B(B0 → K+π−)

B(B
0 → K−π+) + B(B0 → K+π−)

= −0.086± 0.023 (stat.)(11.25)

ACP(B0
s → K−π+) =

B(B
0

s → K+π−)− B(B0
s → K−π+)

B(B
0

s → K+π−) + B(B0
s → K−π+)

= 0.39± 0.15 (stat.). (11.26)

11.7.2 Ratio fd
fs
× Γ(B

0→K−π+)−Γ(B0→K+π−)

Γ(B
0
s→K+π−)−Γ(B0

s→K−π+)

As mentioned in sec. 1.7.5 it is also important to quote the following quantity:

fd
fs

× Γ(B
0 → K−π+) − Γ(B0 → K+π−)

Γ(B
0
s → K+π−) − Γ(B0

s → K−π+)
=

f̂
B

0→K−π+ · ε(B0→K+π−)

ε(B
0→K−π+)

− f̂B0→K+π−

f̂
B

0
s→K+π− · ε(B0

s→K−π+)

ε(B
0
s→K+π−)

− f̂B0
s→K−π+

· ε(B0
s → K−π+)

ε(B0 → K+π−)
.

This quantity needs an additional correction, which can be factorized in the following way:

ε(B0
s → K−π+)

ε(B0 → K+π−)
=
ε(B0

s → Kπ)
ε(B0 → Kπ)

× εc(B0
s → K−π+)

εc(B0 → K+π−)
, (11.27)
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where ε(B0
(s) → hh′) indicates the CP-averaged efficiency for the B0

(s) → h+h
′− decay extracted in

sec. 10.2.4, and εc(B0
(s) → h+h

′−) factorizes the terms depending on the detector-induced charge
asymmetry. Since the difference in the momentum (α,ptot) distribution between B0 → K+π− and
B0
s → K−π+ is negligible we can write:

εc(B0
s → K−π+)

εc(B0 → K+π−)
=
ε(B

0 → K−π+)
ε(B0 → K+π−)

=
ε(B0

s → K−π+)

ε(B
0

s → K+π−)
. (11.28)

Following eqs. (10.18) and (10.26) and eqs. (11.23) and (11.24), we corrected the fit results for the kine-

matic, XFT, FSR and the isolation efficiencies, ε(B
0
s→Kπ)

ε(B0→Kπ) � 0.992 and ε(B0→K+π−)

ε(B
0→K−π+)

= ε(B
0
s→K+π−)

ε(B0
s→K−π+) �

1.0131, to extract the following ratio:

fd
fs
× Γ(B

0 → K−π+)− Γ(B0 → K+π−)

Γ(B
0

s → K+π−)− Γ(B0
s → K−π+)

= −3.00± 1.50 (stat.). (11.29)
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Chapter 12

Systematic uncertainties and

significance

This chapter describes the main sources of systematic uncertainty and the method used to evaluate the
significance of the results on rare decay modes.

12.1 Systematic uncertainties

The measurements described in this thesis focus on ratios of branching fractions of kinematically
similar decay modes. We expect that most systematic effects related to the individual modes, e. g.,
the uncertainty on the integrated luminosity of the sample, cancel in the ratio, thus resulting in a
smaller systematic uncertainty on the measured ratios. Only systematic effects with a different impact
on different modes were therefore considered. Furthermore, we ignored the systematic effects inducing
uncertainties significantly, i. e., a factor O(10), smaller than their largest counterparts, because their
contribution to the total systematic uncertainty is negligible.

To evaluate the systematic effects we used different strategies. In most cases, we adopted the
pseudo-experiment technique. For each is source of systematic effects s1 we generated different sets
of pseudo-experiments using the complete Likelihood function described in chap. 6 and the set of
parameters determined by the fit of composition. One set of pseudo-experiments assumes, for the
parameter s, the nominal value s0 used in the analysis (“central” analysis), while the other sets use
alternative configurations, in which s is varied within a realistic range, e. g., ±1σs when the source of
systematic uncertainty is the statistical uncertainty σs on the parameter s. The resulting systematic
uncertainty associated to s is the largest difference between the results of the analysis of the samples
with alternative configurations, and the results of the sample with the nominal configuration. The
number of pseudo-experiments used for each parameter s is around 100, unless otherwise specified.

Sections 12.2–12.9 contain the discussion on the dominant systematic uncertainties, while sec. 12.10
summarizes the effect of each measurement.

1The symbol s may indicate either a single parameter of a multidimensional parameter.

233
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12.2 Uncertainty on the global mass scale (mass scale)

The central analysis is performed by assuming a known global mass scale, in which we assigned to
the B0, B0

s and Λ0
b masses the values measured by CDF in Run II [106] (see sec. 6.3). Since the

invariant mass is used in separating signal modes, it is interesting to check how the fit behaves when
the mass scale is allowed to float and to evaluate the systematic uncertainty associated to this effect.
Section 9.4.3 describes an additional fit of composition performed on data with the global mass scale
left completely free to vary. We added a new parameter δm to the fit with the substitution:

mB0 → mB0 + δm

mB0
s
→ mB0

s
+ δm

mΛ0
b
→ mΛ0

b
+ δm

where mB0 , mB0
s
, mΛ0

b
are the masses measured by CDF [106] and they are external inputs of the

analytic expression of Mj(α, ptot) (see sec. 6.3). The global scale of the masses is determined to be
δm = −0.3 ± 0.6 MeV/c2 for the loose selection and δm = −0.7 ± 0.7 MeV/c2 for the tight selection.
The difference of −2 ln(L ) obtained between the fit with floating mass scale and the central fit is
−2Δ ln(L ) � −0.2 for the loose selection and −2Δ ln(L ) � −1.02 for the tight selection. The
estimated value of δm is just 0.5σ(1σ) different from zero for the loose(tight) selection. This indicates
no statistical evidence for a shift of the mass scale in data.2 The results with floating mass scale are
consistent with those of the central fit with δm = 0.

To evaluate the systematic uncertainty associated to our limited knowledge of the global mass
scale we generated an ensemble of pseudo-experiments where the global mass scale is shifted by the
quantity ±σδm

in either direction, extracted from the fit of composition performed on real data with
the mass scale δm floating. The systematic uncertainty associated to the global mass scale is the
largest difference between the results of the analysis of the samples with alternative configurations
δm = +σδm

and δm = −σδm
, and the results of the sample with the nominal configuration δm = 0.

12.3 Uncertainty on the nominal b-hadron masses (nominal

masses)

The B0, B0
s and Λ0

b masses are external inputs to the analytic expression ofMj(α, ptot) (see sec. 6.3).
In the central analysis they are fixed to the masses measured by CDF [106]. To evaluate the systematic
uncertainty associated to our limited experimental knowledge of nominal input masses we generated
ensembles of pseudo-experiments in which we independently varied the B0, B0

s and Λ0
b input masses

measured by CDF within ±1σ statistical uncertainty (see sec. 6.3). We included this effect considering
only the statistical uncertainty on the input values of masses, rather than the total uncertainty (sum
in quadrature of statistical and systematic uncertainty) since the CDF masses were measured using
the same apparatus and reconstruction code used in this analysis, and then all common systematic

2A fundamental property of the Likelihood ratio test-statistics prescribes that, for sufficiently regular Likelihoods

and in the asymptotic limit, the quantity −2Δ ln(L ) between two ML estimators with a difference n in dimensionality,

is distributed as a χ2 with n degrees of freedom [146].
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uncertainties cancel out. In fact the dominant systematic effects (tracker mis-alignments and incorrect
absolute-scale of the momentum) are independent of the details of the considered decay-mode, since
they are related only to the tracker performance. Thus, only the statistical uncertainties on the input
masses contribute to the systematic uncertainty of our analysis.

The eight possible combinations of B0, B0
s and Λ0

b masses were simulated by independently
increasing (decreasing) by one statistical standard deviation the masses measured in Ref. [106]:
mB0 = 5279.63 ± 0.53 (stat .) MeV/c2, mB0

s
= 5366.01 ± 0.73 (stat .) MeV/c2 and mΛ0

b
= 5619.7 ±

1.2 (stat .) MeV/c2. The largest discrepancy between the results of the analysis of the samples with
alternative masses configurations and the results of the sample with the nominal configuration was
taken as the systematic uncertainty.

12.4 Charge asymmetries of momentum p.d.f. (asymm. ℘p)

The momentum probability density functions (℘pj (α, ptot) and ℘pbck(α, ptot)) were extracted from sim-
ulated samples for all signal modes and from data mass sidebands for the background (see sec. 6.5).
Since the signed momentum-imbalance (α) and the scalar sum of the momenta (ptot) are not inde-
pendent observables, we used a joint p.d.f. to model their distributions. Section 6.5 describes all the
details of the parameterization. The b coefficients of eqs. (6.20) and (6.21) characterize the factorized
αptot−2
ptot−4 terms. In the parameterization we assumed that ℘p(α, ptot) = ℘p(−α, ptot) for decays into

π+π− and K+K− final states, where the α distributions are symmetric because the two outgoing
particles have the same mass, and for background. Technically this was done by setting the odd b

coefficients to zero in the parameterization of the central analysis. In order to take into account pos-
sible hidden asymmetries in the distributions due to any possible detector asymmetries reproduced
by the simulation, we repeated the analysis using an ensemble of pseudo-experiments in which we
re-parameterized the momentum probability density functions with asymmetric fit functions for all
signal modes and for background (i. e., leaving free to vary also the odd b coefficients). The system-
atic uncertainty associated is the difference between the results with the asymmetric configurations
for ℘pj (α, ptot) and ℘pbck(α, ptot) and the results with the symmetric nominal configuration.

12.5 Momentum p.d.f. of background (℘pbck model)

The momentum probability density function of background ℘pbck(α, ptot) was extracted from the data
mass sidebands (see sec. 6.5.2). In the central analysis we used the high mass sideband to extract
the momentum p.d.f. of the combinatorial background. For the physics background the situation is
more complicated, since in the low mass sideband there is an unknown mixture of these two com-
ponents. The contamination from physics background in the B0

(s) → h+h
′− mass region is only a

few%. Therefore we decided to use the same p.d.f to parameterize both background components.
We parameterized the joint distribution ℘pbck(α, ptot) using the selections reported in tab. 3.3 with
data mass sidebands defined within the region mππ ∈ [5.000, 5.125] ∪ [5.600, 6.200] GeV/c2 where
the signal mass region mππ ∈ [5.125, 5.600] GeV/c2 was removed. The relative weight between the
combinatorial and physics backgrounds was preserved since the mass window fit is within the mass
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Figure 12.1: Invariant ππ-mass distribution for candidates passing the loose selection (filled red),
passing the loose selection except the requirement on isolation I(B) > 0.5 and on 3-D vertex quality
χ2

3D(B) < 7 (not filled black) (a). Distribution of the scalar sum of momenta as a function of the
signed momentum imbalance for the background decays. Joint (α, ptot) templates as determined for
alternative background is overlaid (b).

interval mππ ∈ [5.000, 5.800] GeV/c2 (see sec. 6.5.2) and because we assumed an approximately flat
combinatorial background distribution. This strategy, used in the central analysis, may not be very
accurate because of the low statistics used in the parameterization (due to the very selective criteria
used to isolate the final samples). In order to assess a systematic uncertainty due to our limited
knowledge of the real distribution of the background momentum, we parameterized ℘pbck(α, ptot) in
an alternative way. We removed the requirements on isolation I(B) and 3-D vertex quality χ2

3D(B) to
increase the statistics of the mass sidebands. Since the dominant background under the signal peak
is combinatorial we parameterized only the right sideband mππ ∈ [5.600, 5.800] GeV/c2. Since the
isolation requirement sculpts the distribution of transverse momentum of the B candidates, and the
distribution of scalar sum of momenta ptot, the data-distributions without isolation requirement are
reweighted with the functions extracted in sec. 4.1.1 (see also chap. 7 for more details). The associated
systematic uncertainty is the difference between the results of the analysis of the samples generated
with this alternative configuration for ℘pbck(α, ptot) and the results of the sample with the nominal
configuration.

12.6 Uncertainty on the combinatorial background mass term

(℘mE model)

Since our central analysis assumed empirically an invariant ππ-mass model of the combinatorial back-
ground (E) distributed as an exponential function (see sec. 6.4) we assessed a systematic uncertainty
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Figure 12.2: Invariant ππ-mass distribution of the events passing the loose selection. A Gaussian
(signal) plus pol1 (a), pol2 (b), pol3 (b) and exponential (d) (combinatoric background, light Grey)
plus a smeared Argus (physics background, dark Grey) fit function is overlaid.

due to our limited knowledge of the real distribution. We repeated the fit of composition on ensembles
of pseudo-experiments where the exponential function ℘mE (see sec. 6.4) was substituted with different
polynomial shapes of increasing degree, up to the third one. The choice of these alternative shapes
has been dictated by the ability to provide good quality one-dimensional fits (χ2-test) to the invari-
ant ππ-mass mass distribution of real data. Figures 12.2 and 12.3 show these one-dimensional fits
respectively for the the sample selected with the loose cuts and the tight cuts. The largest difference
between the fit results obtained with the samples generated with these alternative models and those
obtained with the standard exponential model was quoted as systematic uncertainty.
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Figure 12.3: Invariant ππ-mass distribution of the events passing the tight selection. A Gaussian
(signal) plus pol1 (a), pol2 (b), pol3 (b) and exponential (d) (combinatoric background, light Grey)
plus a smeared Argus (physics background, dark Grey) fit function is overlaid.

12.7 dE/dx related systematics (dE/dx)

Sections 4.4 and 6.6 summarize how the fit of composition exploits the PID information in separating
the different signal modes and background. The model used to introduce this information in the
Likelihood is sophisticated, needing a large number of parameters. For example, the probability
density function which describes the B0 → K+π− signal mode results from a convolution integral
that combines the intrinsic dE/dx residuals of both particles (δK+ and δπ−) through the p.d.f. of
correlation, ℘c(c), yielding the following p.d.f. (see sec. 6.6):

α > 0 → ℘B0→K+π−(δobs
K+ , δobs

π− ) = [℘K+(δK+)× ℘π−(δπ−)] ∗ ℘c(c)
α < 0 → ℘B0→π−K+(δobs

π− , δobs
K+) = [℘π−(δπ−)× ℘K+(δK+)] ∗ ℘c(c).



12.7 dE/dx related systematics (dE/dx) 239

) [ns]-res(K
-10 -8 -6 -4 -2 0 2 4 6 8 10

F
re

q
u

en
cy

 p
er

 0
.1

 n
s

0

0.005

0.01

0.015

0.02

0.025

0.03

-K

(a)

) [ns]+πres(
-10 -8 -6 -4 -2 0 2 4 6 8 10

F
re

q
u

en
cy

 p
er

 0
.1

 n
s

0

0.005

0.01

0.015

0.02

0.025

0.03

+π

(b)

Figure 12.4: Distribution of observed dE/dx residual (℘(δobs) = ℘(δ+c) = ℘(δ)∗℘(c)), for negatively
charged kaons (with kaon mass hypothesis) (a), for positively charged pions (with pion mass hypoth-
esis) (b). The results of the fit to the functions in eq. (4.27) and eq. (4.26) are overlaid (blue, solid
line). The red band results from the overlapping of different curves generating with 100 different seed
values x0 from the template used in the standard analysis using the technique described in sec. 12.7.

Just this term of the Likelihood needs eight parameters for the three Gaussians of ℘K+ , eight param-
eters for the three Gaussians of ℘π− and five parameters for the two Gaussians of correlation ℘c(c),
for a total of 21 parameters. If we consider all kind of particles adding the parameters to model the
distribution of intrinsic residual of K−, π+, p and p̄ we obtain a total number of 53 parameters. All
these parameters have a statistical uncertainty which contributes to the systematic uncertainty on
our final measurements. In reality in our analysis the parameters which model the correlation are
free parameters in the fit of composition, therefore the total number is 53− 5 = 48, because each free
parameter already contributes to the statistical uncertainty.

The systematic uncertainty related to the statistical uncertainty on the determination of PID
probability density functions was assessed by repeating the fit of composition in which all PID pa-
rameters, described above, are randomly varied in a 1σ-radius multidimensional sphere. We varied
the parameters of the PID templates in all the possible directions generating randomly shifts in the
parameters multi-dimensional space. In order to statistically sample a sufficient number of directions
in this large dimensions space, we repeated the analysis for various seed values. For each seed value the
PID functions change in a different way and we can obtain a measurement of the effect of systematic
uncertainties on the analysis results.

If we indicate the PID parameter vector with θi ±Δθi
where i = 0, 1, ..., N (N is the total number of

parameters) we varied θi:

θi = θi + Δθi
· si+1 (12.1)

where si+1 is the ith random shift. To generate randomly a list of shifts si+1 we used the congruence
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method [145].

si+1 =
√
N · xi+1 · n√∑N−1

i=0 x2
i+1

(12.2)

where n = 1, 2, 3, ... is the number of statistical uncertainty Δθi
we want to use to evaluate the total

systematic uncertainty (in our case we assumed n = 1) and

xi+1 = −1 + 2
(a · xi + c)%m

m− 1
(12.3)

where a, c and m are fixed by choosing one of the most used tern for the congruence method, a = 40,
c = 3641 and m = 729 [145]. x0 is the seed value. The generated numbers xi are included within the
interval [−1, 1].

Figure 12.4 shows the distribution of the observed residuals for the negatively charged kaons and
the positively charged pions (we obtain similar distributions for the other particles). The blue solid
line is the template used in the central analysis while the red band, centered around data distribution,
is the overlap of 100 templates generating with 100 different x0 seeds with the technique described
above, in which all PID parameters are randomly varied in a 1σ-radius multidimensional sphere.
We repeated the fit of composition using this 100 different PID probability density functions. The
systematic uncertainty on the physics observables associated to the statistical uncertainty of the
templates parameterization is given by the r.m.s. of the distribution of the observables returned from
the fits of composition performed with different seeds. In other words if we consider, for instance,
the measurement of the direct CP asymmetry in the B0 → K+π− decay mode, for each PID seed
(x0)j we can perform a fit of composition on data and obtain a different result for this measurement
ACP(B0 → K+π−)j . The r.m.s. of distribution of ACP(B0 → K+π−)j is the systematic uncertainty
associated to our non perfect knowledge of the real distribution of PID templates on the measurement.

In this procedure we neglect the correlations between the PID parameters since the covariance
matrix of PID parameters is hard to extract. They are determined through an iterative procedure
(see sec. 4.4.5) and not using a single fit. Adding the correlations would imply a reduction of the final
systematic uncertainty since the correlations tend to compensate the uncertainty of one parameter
with respect to another one. The dE/dx related systematic uncertainty is one of the dominant in
our measurements (see tabs. 12.1–12.4 and figs. 12.5–12.7), but it is still smaller than the statistical
uncertainty, therefore we decide to do not include the correlations in the procedure and to quote a
conservative value for now.

12.8 Efficiency-related systematic effects

12.8.1 Effect of Poisson fluctuations in simulated samples (MC stat.)

The relative kinematic efficiency ratios (see sec. 10.2) used to convert the ratios of event yields in ratios
of branching fractions, were determined within O(0.4%) statistical uncertainties (see sec. 10.2.4). This
uncertainty is indicated with the symbol (MC) in eqs. (10.15)–(10.20). We re-evaluated each ratio
of branching fractions by using acceptance corrections fluctuated by one standard deviation in either
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direction. The difference between the resulting branching fraction and the central result was taken as
systematic uncertainty. See tabs. 12.1–12.4.

12.8.2 Uncertainty on the XFT-bias correction (XFT bias)

The functions used to correct the mismatch between data and Monte Carlo in reproducing the different
XFT triggering-efficiency for pions and kaons are extracted from data (see sec. 10.2.3). The statistical
uncertainty on the parameterization of these functions introduces a systematic uncertainty on our final
results. This uncertainty is indicated with the symbol (XFT) in eqs. (10.15)–(10.20). We re-evaluated
each ratio of branching fractions by using acceptance corrections fluctuated by one standard deviation
in either directions. The difference between the resulting branching fraction and the central result
was used as systematic uncertainty. See tabs. 12.1–12.4.

12.8.3 Uncertainty on the B-isolation efficiency (B-isol.)

The efficiency of the isolation requirement was measured with real data (see sec. 10.4 and chap. 7) with
a statistical uncertainty ≈ 2.8% and it contributes to a systematic uncertainty on the measurements
of ratios of branching fractions between B0

s and B0 decays. We re-evaluated the ratios of branching
fractions after fluctuating the relative isolation efficiency by one standard deviation in either directions.
The difference between the resulting branching fraction and the central result was used as systematic
uncertainty. See tabs. 12.1–12.4.

12.8.4 Charge asymmetry correction (charge asymmetry)

The efficiency ratio ε(B0→K+π−)

ε(B
0→K−π+)

= ε(B
0
s→K+π−)

ε(B0
s→K−π+) was measured with real data (see sec. 11.6.1 and

chap. 11) with a statistical uncertainty ≈ 0.3% and it contributes to a systematic uncertainty on the
related CP-asymmetry measurements. We re-evaluated the CP related measurements after fluctuating
this efficiency ratio by one standard deviation in either direction. The difference between the resulting
branching fraction and the central result was used as systematic uncertainty. See tabs. 12.1–12.4.

12.9 Lifetime-related systematic effects

12.9.1 Uncertainty on the nominal B0
(s) meson lifetimes (B0

(s) lifetime)

The selection of the samples used in this analysis relies on cuts on the impact parameter (d0) of both
tracks and on the transverse decay length of the B candidate (LT). Therefore we assessed a systematic
uncertainty due to the experimental uncertainty of the B0 and B0

s lifetime measurements. This affects
also the estimate of cτ(B0

s → K+K−) and cτ(B0
s → π+π−) since they were extracted from Γd and

ΔΓs/Γs in the central analysis (see sec. 10.2.1). The additional systematics due to the uncertainty on
ΔΓs/Γs was evaluated separately in sec. 12.9.2.

To evaluate the systematic uncertainty we generated two simulated samples, one where the B0

lifetime is increased by a factor 1σ [32] (cτ(B0) = 460+4 = 464 μm) and the B0
s lifetime is decreased
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by a factor 1σ [32] (cτ(B0
s ) = 438− 17 = 421 μm) and another one where the B0 lifetime is decreased

by a factor 1σ [32] (cτ(B0) = 460 − 4 = 458 μm) and the B0
s lifetime is increased by a factor 1σ

[32] (cτ(B0) = 438 + 17 = 455 μm). We re-evaluated the efficiency correction factors by using these
modified simulated samples. The largest difference between the resulting branching fraction obtained
and the central result was used as systematic uncertainty. See tabs. 12.1–12.4.

12.9.2 Uncertainty on ΔΓs/Γs (ΔΓs/Γs)

The measurements involving the B0
s → K+K− and B0

s → π+π− decays suffer from the additional
systematic uncertainty due to the limited experimental and theoretical knowledge of ΔΓs/Γs. To
quote the results in the central analysis we assumed the Standard Model expectation for the lifetime-
difference which has a 50% relative uncertainty (ΔΓs/Γs = 0.12 ± 0.06, see sec. 10.2.1). Such un-
certainty introduces an uncertainty of ±12 μm in cτ(B0

s → K+K−) and cτ(B0
s → π+π−). We

re-evaluated the efficiency correction factors by using additional simulated samples in which we fluc-
tuated the lifetime of the B0

s → K+K− and B0
s → π+π− modes by one standard deviation in either

direction (cτ(B0
s → K+K−) = cτ(B0

s → π+π−) = 446 μm and cτ(B0
s → K+K−) = cτ(B0

s →
π+π−) = 422 μm). The difference between the resulting branching fraction obtained and the central
result was used as systematic uncertainty. See tabs. 12.1–12.4.

12.10 Total systematic uncertainties

A synopsis of all the systematic uncertainties is reported in tabs. 12.1–12.4. The total systematic un-
certainty on each measurement has been determined as the sum in quadrature of the single systematic
uncertainties. When the systematic uncertainty is asymmetric, the largest value has been used in the
squared sum. In order to visualize the magnitude of systematic uncertainties (σi) contributing to each
measurement we represented them with circular charts, reported in figs. 12.5–12.7, in which the area
of each sector is proportional to σ2

i .
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source ACP(B0 → K+π−) B(B0→π+π−)
B(B0→K+π−)

fs
fd
× B(B0

s→K+K−)
B(B0→K+π−)

mass scale 0.0004 0.0036 0.0034

℘p asymm. 0.0001 0.0006 0.0030

dE/dx 0.0064 0.0129 0.0107

nominal masses 0.0054 0.0050 0.0050

℘m
E model 0.0027 0.0020 0.0020

℘p
bck model 0.0007 0.0010 0.0060

MC stat. − 0.0011 0.0012

charge asymm. 0.0014 − −

ΔΓs/Γs − − 0.0060

B0
(s) lifetime − − 0.0060

B-isol. − − 0.0097

XFT-bias − 0.0050 0.0080

TOTAL 0.009 0.0165 0.0208

Table 12.1: Summary of the systematic uncertainties for observables extracted using the loose selec-
tion.
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source fs
fd
× B(B0

s→K−π+)
B(B0→K+π−) ACP(B0

s → K−π+) fd
fs
× Γ(B

0→K−π+)−Γ(B0→K+π−)

Γ(B
0
s→K+π−)−Γ(B0

s→K−π+)

mass scale 0.0017 0.009 0.009

℘p asymm. 0.0020 0.020 0.045

dE/dx 0.0036 0.053 0.115

nominal masses 0.0029 0.020 0.060

℘m
E model 0.0040 0.034 0.040

℘p
bck model 0.0024 0.040 0.116

MC stat. 0.0003 − 0.012

charge asymm. − 0.001 0.042

ΔΓs/Γs − − −

B0
(s) lifetime 0.0001 − 0.065

B-isol. 0.0020 − 0.084

XFT-bias 0.0011 − 0.054

TOTAL 0.0074 0.080 0.224

Table 12.2: Summary of the systematic uncertainties for observables related to the B0
s → K−π+ mode

extracted using the tight selection.
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source B(B0→K+K−)
B(B0→K+π−)

fs
fd
× B(B0

s→π+π−)
B(B0→K+π−)

B(Λ0
b→pπ−)

B(Λ0
b→pK−)

mass scale 0.0009 0.0002 0.0040

℘p asymm. 0.0010 0.0022 0.0320

dE/dx 0.0033 0.0007 0.0502

nominal masses 0.0016 0.0003 0.0180

℘m
E model 0.0030 0.0015 0.0468

℘p
bck model 0.0040 0.0043 0.0060

MC stat. 0. 0. 0.0028

charge asymm. − − −

ΔΓs/Γs − 0. −

B0
(s) lifetime − 0.0001 −

B-isol. − 0.0002 −

XFT-bias 0.0001 0.0001 0.0120

TOTAL 0.0063 0.0052 0.0790

Table 12.3: Summary of the systematic uncertainties for observables related to other rare modes
extracted using the tight selection.
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dE/dx

nominal masses

 model
E
mp.d.f.
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ACP(B0 → K+π−)

mass scale

dE/dx

nominal masses

 model
E
mp.d.f.

MC stat.

XFT bias

B(B0→π+π−)
B(B0→K+π−)

dE/dx

 model
bck

p
p.d.f.

sΓ/sΓΔ

B life.

B isol.

XFT bias

fs
fd
× B(B0

s→K+K−)
B(B0→K+π−)

Figure 12.5: Circular chart of the systematic uncertainties (σi) contributing to the measurements
extracted using the loose selection. The area of each sector is proportional to σ2

i . Only the dominant
systematic uncertainties are labeled.
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Figure 12.6: Circular chart of the systematic uncertainties (σi) contributing to the measurements
extracted using the tight selection. The area of each sector is proportional to σ2

i . Only the dominant
systematic uncertainties are labeled.
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Figure 12.7: Circular chart of the systematic uncertainties (σi) contributing to the measurements of
yield of rare modes. The area of each sector is proportional to σ2

i . Only the dominant systematic
uncertainties are labeled.



250 Chapter 12. Systematic uncertainties and significance

12.11 Significance of the rare modes

A test of the current best theory H0 in favor of an alternative theory Hm, where m indicates the free
parameters of the new theory (i. e., branching fractions), is specified by defining the set of values of
the experimental observables X that will make us decide that H0 must be rejected (“critical region”);
the significance level of the test, indicated by α, is the probability of rejecting H0 when it is indeed
true. α is the probability for X to fall within the critical region, calculated under the assumption that
H0 is true. In the present thesis the significance level α is measured in Gaussian equivalent units (nσ
where n = 1, 2, 3, ...). The notation α = nσ correspond to nσ single tail of a Gaussian distribution:

α =
1√
2πσ

∫ +∞

nσ

e−
1
2

t2

σ2 dt. (12.4)

The common practice for claiming new physics discoveries is to require α larger than 5σ. For more
details see sec. 8.3.1.

In the present analysis we searched for five rare modes still unobserved: B0 → K+K−, B0
s →

K−π+, B0
s → π+π−, Λ0

b → pπ−, Λ0
b → pK−. We estimated the significance of new rare modes

by performing additional fits of composition on real data. For each rare mode (B0 → K+K−,
B0
s → K−π+,B0

s → π+π−, Λ0
b → pπ−, Λ0

b → pK−) we repeated the fit by fixing its relative fraction
to zero. Table 12.5 reports the values of −2 ln(L ) of each fits and its difference −2Δ ln(L ), referred
as Likelihood Ratio, with the central fit performed with all relative fractions of rare modes free to
vary. Since the the distribution of statistical uncertainty for each fit parameter are distributed very

fit −2 ln(L ) −2Δ ln(L ) α

central fit 71413.19 0 −
fB0→K+K− = 0 71420.02 7.83 2.6σ
fB0

s→π+π− = 0 71416.39 3.2 1.8σ
fB0

s→K−π+ = 0 71479.14 66.95 8.1σ
fΛ0

b→pπ− = 0 71478.95 65.76 8.1σ
fΛ0

b→pK− = 0 71520.46 107.27 10.3σ

Table 12.5: Significance of rare modes computed by performing additional fits of composition on real
data. For each rare mode (B0 → K+K−, B0

s → K−π+,B0
s → π+π−, Λ0

b → pπ−, Λ0
b → pK−) we

repeated the fit by fixing its relative fraction to zero.

closely as a Gaussian distribution (see sec. 9.4.1) the distribution of −2Δ ln(L ) is distributed with
good approximation as a χ2 distribution with 1 degree of freedom. In fact for sufficiently regular
Likelihoods and in the asymptotic limit, the quantity −2Δ ln(L ) between two Maximum Likelihood
estimators with a difference n in dimensionality, is distributed as a χ2 with n degrees of freedom
[146]. Table 12.5 reports the significance values found for each rare mode and the relative values for
−2 ln(L ) and the Likelihood Ratio −2Δ ln(L ). Significance values for B0

s → K−π+, Λ0
b → pπ−,

Λ0
b → pK− are found larger than 5σ, 8.1σ, 8.1σ and 10.3σ, respectively.

We verified that the distribution of the Likelihood Ratio −2Δ ln(L ) for each rare mode is regular
for values comparable with those reported in the third column of tab. 12.5. We generated about
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500 pseudo-experiments for each fit of composition reported in tab. 12.5 and fig. 12.8 shows the
distribution of −2Δ ln(L ). The limited number of pseudo-experiments allows to explore only regions
close approximately to significances of 3σ. Higher significance values are hard to explore, since they
require a large computing time considering such a sophisticated maximum Likelihood fit.

The method described above is a standard technique, however it does not keep into account
the systematic uncertainty in quoting the significance value. For this reason we used also an other
approach, which combines statistical and systematic uncertainty of each measurement, to evaluate
the significance. From the statistical point of wiew this approach is equivalent to that one described
above.

The statistical uncertainty to evaluate the significance in this new approach was estimated using
an ensemble of 500 pseudo-experiments in which no contribution from the rare signals (B0 → K+K−,
B0
s → K−π+,B0

s → π+π−, Λ0
b → pπ−, Λ0

b → pK−) was generated, while the relative fraction of all
rare modes was left free to vary in each fit of composition. Figure 12.9 shows the distributions of
yield determined by the fits of pseudo-experiments. The distributions were fitted with a Gaussian
distribution. The mean is centered at zero within the fit resolution while the width is the statistical
uncertainty on the yield measurement (σstat.

0 ) with the hypothesis of no rare signal modes in our
sample. If N is the yield measured on real data with the complete analysis, σstat.

N is its statistical un-
certainty and σsyst.

N is its systematic uncertainty (we assume the systematic uncertainty is distributed
as a Gaussian) we evaluated the significance, in Gaussian equivalent σ, in the following way:

α =
N√

(σstat.
0 )2 + (σsyst.

N )2
σ. (12.5)

Table 12.6 reports (last column) the significance values obtained using this approach that combines
statistical and systematic uncertainty. Table 12.6 also reports the values of σstat.

0 extracted from
the pseudo-experiments with no contributions due to the rare signals and the measurement of yield
N ± σstat.

N ± σsyst.
N for each rare signal modes performed in the present analysis.

We obtained three rare signal modes with significance larger than 5σ, B0
s → K−π+, Λ0

b → pπ−,
Λ0
b → pK− with significances 8.2σ, 6.0σ and 11.5σ respectively.

mode N ± σstat.
N ± σsyst.

N σstat.
0 α

B0 → K+K− 61± 25± 35 21 1.5σ
B0
s → π+π− 26± 16± 14 11 1.5σ

B0
s → K−π+ 230± 34± 16 23 8.2σ

Λ0
b → pπ− 110± 18± 16 9 6.0σ

Λ0
b → pK− 156± 20± 11 8 11.5σ

Table 12.6: Significance of the rare modes. The significance was estimated by combining the statistical
uncertainty on the measurement of each rare mode using an ensemble of pseudo-experiments with no
contributions from rare signal modes σstat.

0 and the systematic uncertainty σsyst.
N . See text for details.
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Figure 12.8: Likelihood Ratio distribution for B0 → K+K− (a), B0
s → π+π− (b), B0

s → K−π+

(c), Λ0
b → pπ− (d), Λ0

b → pK− (e) mode. We 500 pseudo-experiments. The blue arrow shows the
value of the Likelihood Ratio −2Δ ln(L ) determined with data (see third column of tab. 12.5). The
Likelihood Ratio value for B0

s → K−π+, Λ0
b → pπ− and Λ0

b → pK− is out of the plot range.
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Figure 12.9: Distribution of the number of events for B0 → K+K− (a), B0
s → π+π− (b), B0

s → K−π+

(c), Λ0
b → pπ− (d), Λ0

b → pK− (e) mode. We used an ensemble of 500 pseudo-experiments in which
no contribution from rare signal modes was generated while the relative fraction of all the rare modes
was left free to vary in each fit of composition.



254 Chapter 12. Systematic uncertainties and significance



Chapter 13

Results and discussion

This chapter presents the final results of this thesis and a discussion of their impact in the current
experimental and theoretical picture.

13.1 Final results

Using the fit results from chap. 9, the efficiency corrections from chap. 10 and the systematic uncer-
tainties from chap. 12 we obtain the measurements of branching fractions and time-integrated direct
CP asymmetries of two-body B0

(s) decays into charmless, charged pseudo-scalar mesons at CDF with
1 fb−1 of data. The results are summarized in tab. 13.1.

The results include the first observation of the B0
s → K−π+ decay mode and a measurement of its

branching fraction and of its direct CP asymmetry. This is the first direct CP measurement performed
in the B0

s meson system. Charmless decays of a b-baryon are also observed for the first time in the two
modes Λ0

b → pπ− and Λ0
b → pK−. Interesting results are also obtained for the B0 modes, including

a word-class measurement of the direct CP asymmetry of B0 → K+π−.

In the next sections we discuss each measurement in detail. A discussion on the prospects for the
future measurements at CDF is also included. For a better understanding we present the measurements
divided in three groups: 1) measurements of rare decays modes with a focus on B0

s → K−π+; 2)
measurements of the direct CP asymmetry in B0 → K+π− and B0

s → K−π+, with a discussion
about their comparison; 3) precise measurements of branching fractions of the B0 → π+π− and
B0
s → K+K− decay modes.

13.2 Search for rare decay modes

The search for rare decay modes was performed using the tight selection (see chap. 8), optimized to
maximize the probability of discovery and rate limit setting of the B0

s → K−π+ mode. The fit of
composition allowed for the presence of any component of the form B0

(s) → h+h
′− and Λ0

b → ph− with
the relative fraction as a free parameter. In the next sub-sections we present the results obtained from

255
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Mode N Quantity Measurement B(10−6)

B0 → K+π− 4045 ± 84
B(B0→K−π+)−B(B0→K+π−)

B(B0→K−π+)+B(B0→K+π−)
-0.086 ± 0.023 ± 0.009

B0 → π+π− 1121 ± 63
B(B0→π+π−)
B(B0→K+π−)

0.259 ± 0.017 ± 0.016 5.02 ± 0.33 ± 0.35

B0
s → K+K− 1307 ± 64 fs

fd
× B(B0

s→K+K−)

B(B0→K+π−)
0.347 ± 0.020 ± 0.021 25.8 ± 1.5 ± 3.9

B0
s → K−π+ 230 ± 34 ± 16 fs

fd
× B(B0

s→K−π+)

B(B0→K+π−)
0.071 ± 0.010 ± 0.007 5.27 ± 0.74 ± 0.90

B(B0
s→K+π−)−B(B0

s→K−π+)

B(B0
s→K+π−)+B(B0

s→K−π+)
0.39 ± 0.15 ± 0.08

fd
fs
× Γ(B0→K−π+)−Γ(B0→K+π−)

Γ(B0
s→K+π−)−Γ(B0

s→K−π+)
-3.00 ± 1.50 ± 0.22

B0
s → π+π− 26 ± 16 ± 14 fs

fd
× B(B0

s→π+π−)

B(B0→K+π−)
0.007 ± 0.004 ± 0.005 0.52 ± 0.29 ± 0.38

(< 1.3 @ 90% CL)

B0 → K+K− 61 ± 25 ± 35
B(B0→K+K−)
B(B0→K+π−)

0.020 ± 0.008 ± 0.006 0.39 ± 0.16 ± 0.12

(< 0.7 @ 90% CL)

Λ0
b → pK− 156 ± 20 ± 11

B(Λ0
b→pπ−)

B(Λ0
b
→pK−)

0.66 ± 0.14 ± 0.08

Λ0
b → pπ− 110 ± 18 ± 16

Table 13.1: Results on data sample selected with loose cuts (top) and with tight cuts (bottom).
Absolute branching fractions are normalized to the the world–average values B(B0 → K+π−) =
(19.4±0.6)×10−6 and fs = (10.4±1.4)% and fd = (39.8±1.0)% [48]. The first quoted uncertainty is
statistical, the second is systematic. N is the CP–averaged number of fitted events for each mode. For
rare modes both systematic and statistical uncertainty on N was quoted while for abundant modes
only statistical one.

the search for the rare modes: B0
s → K−π+, B0

s → π+π−, B0 → K+K−, Λ0
b → pK− and Λ0

b → pπ−.

13.2.1 B0
s → K−π+

We report the first observation of the decay mode B0
s → K−π+, with a yield:

N (B0
s → K−π+) = 230± 34 (stat .)± 16 (syst .), (13.1)

with a significance level 8.2σ. This corresponds to a relative branching fraction:

fs
fd
× B(B0

s → K−π+)
B(B0 → K+π−)

= 0.071± 0.010 (stat.)± 0.007 (syst.), (13.2)

where fs/fd is the ratio of production fractions of B0
s and B0 mesons from the hadronization of a

b-quark in pp̄ collisions. Using the world-average values B(B0 → K+π−) = (19.4 ± 0.6) × 10−6 [48]
and assuming for fs/fd the world-average value from pp̄ and e+e− collisions, fs = (10.4 ± 1.4)%, fd
= (39.8 ± 1.0)% [48], we extract the following absolute branching fraction:

B(B0
s → K−π+) = (5.27± 0.74 (stat.)± 0.90 (syst.))× 10−6, (13.3)

which is just below the current best limit, obtained from the previous version of the present analysis
B(B0

s → K−π+) < 5.6× 10−6 @ 90%CL [1].

Our result for B(B0
s → K−π+) is at the lower end of current theoretical expectations from QCDF

and pQCD approach, while the SCET approach shows a better agreement (see tab. 1.2). Beneke and
Neubert [15] predict B(B0

s → K−π+) = (10.2+6.0
−5.2) × 10−6 using the QCDF approach, in agreement
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with the results of Sun, Zhu, and Du, who include further power corrections and contributions from
electroweak annihilation [148]. Chiang and Zhou predict B(B0

s → K−π+) = (5 ± 1) × 10−6, based
on SU(3) flavor symmetries [149]. Similar values are predicted also by calculations based on pQCD,
Ali et al. predict B(B0

s → K−π+) = (7.6+3.3
−2.4)× 10−6 [16]. Yu, Li, and Lu expect B(B0

s → K−π+) =
(6.2–8.1) × 10−6, assuming the 70◦ < α < 130◦ range for the CKM phase α [19]. Williamson and
Zupan, using SCET, obtain B(B0

s → K−π+) = (4.9± 1.8)× 10−6 [17] in agreement with our result.

A sizable reduction of the systematic uncertainty is expected, along with the statistical, as the
data samples increase in size: the dominant sources of systematic uncertainty include the uncertainty
on the kinematic templates of the combinatorial background, the uncertainty in the determination
of dE/dx templates, the statistical uncertainty on the nominal values of B0

(s) meson masses used
in the Likelihood, and the statistical uncertainty on the isolation efficiency (see fig. 12.6). These
contributions are of statistical origin, thus expected to decrease as the size of calibration samples used
to determine them increases.

With the full statistics expected in CDF Run II (5–6 fb−1 by year 2009) the branching fraction of
B0
s → K−π+ mode will provide relevant input for tuning of phenomenological models relative to the

B0
(s) → h+h

′− decays. See also sec. 13.3.2 and 13.5.

13.2.2 B0
s → π+π−

From the observed yield of N (B0
s → π+π−) = 26± 16 (stat .) ± 14 (syst .) events, no evidence for the

pure-annihilation decay B0
s → π+π− was found. We obtain the measurement of relative branching

fraction:
fs
fd
× B(B0

s → π+π−)
B(B0 → K+π−)

= 0.007± 0.004 (stat .) ± 0.005 (syst .). (13.4)

By normalizing the above result to the B0 → K+π− branching fraction by using the world-average
value B(B0 → K+π−) = (19.4± 0.6)× 10−6 [48], and by assuming for fs/fd the world-average value
from pp̄ and e+e− collisions, fs = (10.4 ± 1.4)%, fd = (39.8 ± 1.0)% [48], we obtain the following
absolute branching fraction:

B(B0
s → π+π−) = (0.52± 0.29 (stat.)± 0.38 (syst.))× 10−6. (13.5)

Since the result is compatible with zero, we set a frequentist upper limit on the corresponding branching
fraction based on Gaussian distributions of the fit pulls (see sec. 9.4.1) and the Likelihood-Ratio (LR)
ordering, following Ref. [150]. Systematic uncertainties were added in quadrature to the statistical
uncertainty for a proper inclusion of systematic effects in the extraction of the upper limit. The
resulting 90% confidence level (CL) upper limit on the branching fraction of B0

s → π+π− mode is:

B(B0
s → π+π−) < 1.3 · 10−6 @ 90% CL. (13.6)

This result represents an improvement of approximately 20% with respect to the world-best limit,
coming from the previous version of this analysis B(B0

s → π+π−) < 1.7 × 10−6 at 90% CL [1]
and an improvement by more than two orders of magnitude with respect to the previous best limit
B(B0

s → π+π−) < 1.7 × 10−4 at 90% CL [151]. The small change from the previous limit is due to
the observed slight excess (≈ 2σ (stat .)).
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Our central value is close to the expectations from recent calculations. Ali et al. predict B(B0
s →

π+π−) = (0.57+0.18
−0.16)× 10−6 within the PQCD approach [16], in the same approach Li, Lu, Xiao, and

Yu calculate B(B0
s → π+π−) = (0.42 ± 0.06) × 10−6, but with Sudakov resummation, and including

contributions from electroweak and QCD penguin amplitudes [80]. Conversely, Beneke and Neubert,
using QCDF, predict smaller values, B(B0

s → π+π−) = (0.024+0.165
−0.024) × 10−6 [15], in agreement with

Yang et al., that also used QCDF but with a different solution to avoid end-point divergences, obtaining
B(B0

s → π+π−) = (0.124± 0.028)× 10−6 [81].

The CDF experiment is currently the only one capable to search for this decay mode. With the
continuous increase of the collected data sample it has the unique opportunity to obtain the first
observation of a decay proceeding exclusively through annihilation topology. The prospects for the
future are very interesting, with the statistics already available at CDF ≈ 2.5 fb−1 we will soon be
able to to explore the region predicted by the pQCD approach.

13.2.3 B0 → K+K−

From the observed yield of N (B0 → K+K−) = 61±25 (stat .) ±35 (syst .) events, no evidence for the
pure-annihilation B0 → K+K− decay was found. We obtain the measurement of relative branching
fraction:

B(B0 → K+K−)
B(B0 → K+π−)

= 0.020± 0.008 (stat .) ± 0.006 (syst .). (13.7)

By normalizing the above result to the world-average value B(B0 → K+π−) = (19.4 ± 0.6) × 10−6

[48], we obtain the following absolute branching fraction:

B(B0 → K+K−) = (0.39± 0.16 (stat.)± 0.12 (syst.))× 10−6. (13.8)

The precision and the central value of our result is comparable with the current measurements of
B-Factories:

B(B0 → K+K−) =

{
(0.04± 0.15 (stat .)± 0.08 (syst .))× 10−6 BABAR (227M BB̄) [63]
(0.09+0.18

−0.13 (stat .)± 0.01 (syst .))× 10−6 Belle (449M BB̄) [65].
(13.9)

Since the result is compatible with zero, we set a frequentist upper limit on the corresponding branching
fraction following the procedure detailed for the B0

s → π+π− limit (see sec. 13.2.2). The resulting
90% CL upper limit on the branching fractions of B0 → K+K− mode is

B(B0 → K+K−) < 0.7 · 10−6 @ 90% CL. (13.10)

This result represents an improvement of approximately 60% with respect to the upper limit, coming
from the previous version of this analysis B(B0 → K+K−) < 1.8 × 10−6 at 90% CL [1]. It is close
to B-Factories upper limits, B(B0 → K+K−) < 0.50 × 10−6 at 90% CL from BABAR [63]. and
B(B0 → K+K−) < 0.41× 10−6 at 90%CL from Belle [65].

The expected sensitivities are still far from probing the full range of theoretical expectations,
which, however, are affected by large uncertainties: Beneke and Neubert, for instance, predict B(B0 →
K+K−) = (0.013+0.087

−0.013) × 10−6 [15]. It is possible that the B0
s → π+π− decay mode will become

visible in advance of the B0 → K+K− mode.
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13.2.4 Λ0
b → pK− and Λ0

b → pπ−

We report the first observation of decay modes Λ0
b → pK− and Λ0

b → pπ−, with yields:

N (Λ0
b → pK−) = 156± 20 (stat.)± 11 (syst.), (13.11)

N (Λ0
b → pπ−) = 110± 18 (stat.)± 16 (syst.), (13.12)

with a significance level of 11.5σ for Λ0
b → pK− mode and of 6σ for Λ0

b → pπ−. The measurements of
branching fractions and direct CP asymmetries need additional work: the pT spectrum of Λ0

b baryon
is different from the pT spectrum of B0

(s) mesons, and a possible Λ0
b polarization could modify the

efficiency factors and then the kinematic templates; the Λ0
b isolation efficiency is likely to be different

from the B0
(s) efficiency; XFT efficiency for protons needs to be determined, as the detector-induced

charge asymmetry between positively and negatively charged protons. This work is outside the scope
of this analysis and it is the subject of a separate analysis. However we can easily extract from the
current analysis the measurement of relative branching fraction, where all these effects cancel in the
ratio:

B(Λ0
b → pπ−)

B(Λ0
b → pK−)

= 0.66± 0.14 (stat.)± 0.08 (syst.). (13.13)

This is in agreement with the prediction in [153].

CDF is currently the only experiment capable to perform the measurements of these decay modes.
Future measurement of the branching fractions and direct CP asymmetries of Λ0

b → pK− and Λ0
b →

pπ− will provide relevant input for tuning phenomenological models and probing the CKM mechanism
in the charmless decays of a b-baryon.

13.3 CP asymmetries

The measurement of the time-integrated direct CP asymmetries in the B0
(s) → h+h

′− decays was one
of the main goals of the present analysis since they offer an unique opportunity to probe the source
of CP violation mechanism in the Standard Model. The direct CP asymmetry in the B0 → K+π−

decay mode was measured using the ‘loose’ selection which was specifically optimized for this purpose.
The measurement of direct CP asymmetry in the B0

s → K−π+ decay mode, instead, was performed
using the ‘tight’ selection since the B0

s → K−π+ was observed for the first time in this way. Below
we present the results.

13.3.1 Direct CP asymmetry of B0 → K+π−

From the partial rate asymmetry between B
0 → K−π+ and B0 → K+π− decays we obtain the direct

CP asymmetry. In this measurement the flavor of the meson was not identified. We assumed that
all K+π− final states originate from B0 decays, and all K−π+ final states originate from B

0
decays

and that they are initially produced in equal numbers. We therefore neglect a possible contribution
from the doubly-Cabibbo-suppressed (DCS) decays (B0 → K−π+ and B

0 → K+π−), of possible
asymmetries in flavor mixing (B0 → B

0 → K−π+ and B
0 → B0 → K+π−), and of their combined

effect, since their size is not appreciable at the current level of experimental accuracy. The measured
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asymmetry is:

ACP(B0 → K+π−) =
B(B

0 → K−π+)− B(B0 → K+π−)

B(B
0 → K−π+) + B(B0 → K+π−)

= −0.086± 0.023 (stat.)± 0.009 (syst.).

(13.14)
Our measurement is different from 0 by 3.5σ (statistical and systematic uncertainties added in quadra-
ture) and it is compatible with the current world average (see fig. 13.1). The latest update of HFAG
[48] reports the most recent results:

ACP(B0 → K+π−) =

{
−0.107± 0.018 (stat .)+0.007

−0.004 (syst .) BABAR (383M BB̄) [155]
−0.093± 0.018 (stat .)± 0.008 (syst .) Belle (532M BB̄) [156].

(13.15)

The precision of our measurement is very close.

-0.2 -0.1 0 0.1

New Average  0.012±-0.097 

 Average-e+e  0.013±-0.100 

CDF  0.009± 0.023 ±-0.086 

Belle  0.008± 0.018 ±-0.093 

BaBar  0.005± 0.018 ±-0.107 

Cleo  0.020± 0.160 ±-0.040 

ACP(B0 → K+π−) = B(B
0→K−π+)−B(B0→K+π−)

B(B
0→K−π+)+B(B0→K+π−)

Figure 13.1: Current measurements of ACP(B0 → K+π−) reported on HFAG [48]. The yellow band
is the world average.

The systematic uncertainty is promising for future extension of this measurement to the new large
samples already being accumulated by CDF. In fact, the main contributions to the systematics are the
uncertainty in the determination of dE/dx templates and the uncertainty associated to our limited
knowledge of nominal input masses of the b-hadrons (see fig. 12.5). Their impact is already less than
O(1%), which is at the same level of the current measurements at the B-Factories, and can be reduced
with a larger calibration samples for the dE/dx templates and with an improved measurements of the
nominal input masses. The statistical uncertainty, which currently is still the dominant uncertainty
in this measurement, is expected to decrease by a factor of at least 2.5 with the full Run II sample
(5–6 fb−1).

Our measurement strengthens the statistical significance of the deviation with respect to the direct
CP asymmetry in the its charged partnerACP(B+ → K+π0) = +0.047±0.026 [48]. In the past, several
authors argued that the asymmetries in these two modes should be equal in the Standard Model due to
isospin symmetry [12, 13, 14], but today there are proposed explanations within the Standard Model
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[70, 71, 72] (see sec. 1.7.3). Explaining these direct CP asymmetries in the Standard Model is still
difficult and subject to sizeable uncertainties. The question about the possible non-Standard Model
origin of this large direct CP violation asymmetry observed in B0 → K+π− decay is still open. At
present, the most promising way to probe the source of this CP violation seems to be the comparison
of this asymmetry with the same measurement in its U-spin partner B0

s → K−π+. We report below
the measurement of this quantity.

13.3.2 Direct CP asymmetry of B0
s → K−π+

From the partial rate asymmetry between B
0

s → K+π− and B0
s → K−π+ decays we obtain the first

measurement of the direct CP asymmetry in a B0
s meson decay. As in the measurement of ACP(B0 →

K+π−) we neglected the contribution of doubly-Cabibbo-suppressed (DCS) decays (B0
s → K+π− and

B
0

s → K−π+), of possible asymmetries in flavor mixing (B0
s → B

0

s → K+π− and B
0

s → B0
s → K−π+),

and of their combined effect. The measured asymmetry is

ACP(B0
s → K−π+) =

B(B
0

s → K+π−)− B(B0
s → K−π+)

B(B
0

s → K+π−) + B(B0
s → K−π+)

= 0.39± 0.15 (stat .) ± 0.08 (syst .).

(13.16)
Our measurement is compatible with 0 at 2.3σ (taking into account statistical and systematic uncer-
tainties), but it is also compatible with the large positive CP asymmetry predicted by several models.
Because of the current large uncertainty both of measurement and the expectations, the measured
ACP(B0

s → K−π+) is in agreement with the values predicted by several and different approaches. Ali
et al. predict ACP(B0

s → K−π+) = (+24.1+3.6+3.0+1.2
−3.9−3.3−2.3)% [16] in the pQCD framework. Williamson

and Zupan estimate ACP(B0
s → K−π+) = (+20±17±19±5)% [17] in the SCET approach. Although

the QCDF prediction from Beneke and Neubert [15] ACP(B0
s → K−π+) = (−6.7+2.2+2.9+0.4+15.2

−2.1−3.1−0.2−15.5)%
gives a central value with a negative sign, the prediction and the experimental measurement are
marginally compatible because of large uncertainties.

The comparison of ACP(B0
s → K−π+) with other measured CP-asymmetries in B0

(s) → h+h
′−

decays is more stringent in performing tests of Standard Model or in probing New Physics effects
because of reduced uncertainties. For example, if we neglect the W -exchange and penguin-annihilation
diagrams contributing to B0

(s) → h+h
′− decays (see sec. 1.7.1), the decay rates and CP-asymmetries

in the B0
s → K−π+ and B0 → π+π− decays are related by SU(3) symmetry. In this limit [7, 74] we

expect:

ACP(B0
s → K−π+) = Adir

CP(B0 → π+π−), (13.17)

where Adir
CP(B0 → π+π−) is the direct CP asymmetry of the B0 → π+π− decay. Deviations from

eq. (13.17) are expected to be of the size of U-spin symmetry breaking. The current experimental
measurements of Adir

CP(B0 → π+π−) are not fully in agreement (see also sec. 1.7.2):

Adir
CP(B0 → π+π−) =

{
+0.21± 0.09 (stat .)± 0.02 (syst .) BABAR [61]
+0.55± 0.08 (stat .)± 0.05 (syst .) Belle [62].

(13.18)

However, eq. (13.17) seems in agreement with currently available data. A more precise measurement
of direct CP-asymmetry in B0

s → K−π+ could shed more light on this controversial issue, possibly
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together with a third measurement of Adir
CP(B0 → π+π−) from CDF from a time-dependent extension

of this analysis.

Gronau-Lipkin test

The B0 → K+π− and B0
s → K−π+ branching fractions are very different due to the different strong

and weak phases entering in the tree and penguin amplitudes, as discussed in chap. 1. However,
as shown by Gronau [7], the two relevant products of the CKM matrix elements entering in the
expressions for the direct CP asymmetries in these decays are equal, and, as stressed by Lipkin [8]
subsequently, the final states in these decays are charge conjugates, and the strong interactions being
charge-conjugation invariant, the direct CP asymmetry in B0

s → K−π+ can be related to the well-
measured CP asymmetry in the decay B0 → K+π− using U-spin symmetry. In this symmetry limit,
we have [7, 8]:

Γ(B0
s → K−π+)− Γ(B

0

s → K+π−) = Γ(B
0 → K−π+)− Γ(B0 → K+π−), (13.19)

ACP(B0
s → K−π+) = −ACP(B0 → K+π−)× B(B0 → K+π−)

B(B0
s → K−π+)

× τ(B0
s )

τ(B0)
. (13.20)

Following suggestions in the literature, these equations can be tested to search for possible New Physics
effects, which would very likely violate them. To that end, one can define the following two parameters
(using eq. (1.57) for the definition of CP asymmetry):

R3 ≡ Γ(B
0 → K−π+)− Γ(B0 → K+π−)

Γ(B
0

s → K+π−)− Γ(B0
s → K−π+)

, (13.21)

Δ ≡ ACP(B0 → K+π−)
ACP(B0

s → K−π+)
+
B(B0

s → K−π+)
B(B0 → K+π−)

× τ(B0)
τ(B0

s )
. (13.22)

The Standard Model predicts R3 = −1 and Δ = 0 assuming U-spin symmetry. Both Lipkin and
Gronau argue in their papers that the U-spin breaking has a small influence on these relations. In a
very recent paper [16] Ali et al. confirm the Gronau-Lipkin relations using the pQCD approach. In
fact, they predict how good quantitatively this symmetry is in the ratios R3 and Δ, using a detailed
dynamical theory of the U-spin symmetry violation. They found that these quantities are quite reliably
calculable [16]:

R3 = −1.00+0.10
−0.10, Δ = −0.00+0.07

−0.05, (13.23)

confirming the smallness of U-spin breaking effects.

We performed the test by measuring the R3 quantity. From the partial rate B
0

s → K+π−, B0
s →

K−π+, B
0 → K−π+ and B0 → K+π−decays, we extract the following measurement:

fd
fs
× Γ(B

0 → K−π+)− Γ(B0 → K+π−)

Γ(B
0

s → K+π−)− Γ(B0
s → K−π+)

= −3.00± 1.50 (stat .) ± 0.22 (syst .), (13.24)

where fs/fd is the ratio of production fractions of B0
s and B0 mesons from the hadronization of a

b-quark in pp̄ collisions. Assuming for fs/fd the world-average value from pp̄ and e+e− collisions, fs
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= (10.4 ± 1.4)%, fd = (39.8 ± 1.0)% [48], we obtain for R3:

R3 =
Γ(B

0 → K−π+)− Γ(B0 → K+π−)

Γ(B
0

s → K+π−)− Γ(B0
s → K−π+)

= −0.78± 0.39 (stat .)± 0.12 (syst .). (13.25)

The measured value for R3 favors the Standard Model over New Physics scenarios, but the experi-
mental uncertainty currently is too large to make a strong statement.

It is interesting to use eq. (13.22) to extract the Standard Model expectation for ACP(B0
s →

K−π+). If we use the world average for ACP(B0 → K+π−) = −0.097 ± 0.012 [48] (including the
measurement of this thesis), assume τ(B0

s )/τ(B
0) = 1, and use the ratio of branching fractions

measured in this thesis B(B0
s→K−π+)

B(B0→K+π−) = 0.272± 0.038 (stat .)± 0.046 (syst .), and Δ = −0.00+0.07
−0.05 from

eq. (13.23) (extracted from Ref. [16]) we obtain the prediction:

ACP(B0
s → K−π+)|SM = 0.36+0.13

−0.11, (13.26)

which is compatible with our measurement.

The measurements of B(B0
s → K−π+) and of ACP(B0

s → K−π+) performed in this thesis seem to
favor the Standard Model and in particular are in agreement with the Gronau-Lipkin relation which
connect the branching fractions and direct CP asymmetries of B0

s → K−π+ and B0 → K+π− decays.

Prospects

Although measurements are not extremely accurate at present, the situation will greatly improve with
full CDF Run II samples (5–6 fb−1 by year 2009). In the assumption that the Gronau-Lipkin relation
is true, we extracted the expectation of quantity σ(ACP(B0

s → K−π+))/ACP(B0
s → K−π+) where

σ(ACP(B0
s → K−π+)) is the statistical uncertainty on the measurement of ACP(B0

s → K−π+), which
is independent on the true value of this observable. Figure 13.2 reports this quantity as a function
of the integrated luminosity. To observe a significant value of ACP(B0

s → K−π+) we do not need
full Run II statistics. Using less than 4 fb−1 it will possible to observe at 5σ the CP asymmetry in
B0
s → K−π+ in the Standard Model hypothesis. Conversely, observation of a ∼ 0 asymmetry would

be a signal of New Physics with high statistical significance.

13.4 Precision branching fractions

The sample selected with loose cuts, optimized for the measurement of ACP(B0 → K+π−), also
provides good measurements of the branching fractions of the “large yield” modes B0 → π+π− and
B0
s → K+K−.

13.4.1 B0 → π+π−

From the observed yields of N (B0 → π+π−) + N (B
0 → π+π−) 1121 ± 63 decays and N (B0 →

K+π−) +N (B
0 → K−π+) = 4045± 84 decays we measured the ratio of branching fractions:

B(B0 → π+π−)
B(B0 → K+π−)

= 0.259± 0.017 (stat .)± 0.016 (syst .). (13.27)
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Figure 13.2: Expectation for the ratio between the statistical uncertainty σ(ACP(B0
s → K−π+)) and

ACP(B0
s → K−π+) as a function of integrated luminosity. This expectation is independent of the

true value for ACP(B0
s → K−π+) if we assume the Gronau-Lipkin relation true.

BABAR quotes only absolute branching fractions, while Belle complements its measurement also quot-
ing the ratio of branching fractions B(B0→π+π−)

B(B0→K+π−) = 0.26 ± 0.01 (stat .) ± 0.01 (syst .) [64] allowing
a direct comparison with our measurement. Using the world-average value B(B0 → K+π−) =
(19.4± 0.6)× 10−6 [48] we obtain the following absolute branching fraction:

B(B0 → π+π−) = (5.02± 0.33 (stat .) ± 0.35 (syst .))× 10−6. (13.28)

This result is compatible with the other existing experiments (see also fig. 13.3):

B(B0 → π+π−) =

{
(5.5± 0.4 (stat .) ± 0.3 (syst .))× 10−6 BABAR (227M BB̄) [63]
(5.1± 0.2 (stat .) ± 0.2 (syst .))× 10−6 Belle (449M BB̄) [64].

(13.29)

The agreement of this delicate measurement with the world average is a very important cross check
of the validity of the entire analysis described in this thesis, providing a convincing evidence of the
quality of the fit of composition used to disentangle the individual signal modes. It is worth noting that
the invariant ππ-mass distributions of the B0

s → K+K− and B0 → π+π− modes overlap completely
(see fig. 4.6). As a consequence, the relative fraction of B0 → π+π− with respect to the one of
B0
s → K+K− is entirely determined by the dE/dx information. Any spurious enhancement(reduction)

of the estimated B0
s → K+K− contribution due to an improper use of the dE/dx information would

decrease(increase) the B0 → π+π− contribution, resulting in an incorrect result for the ratio (13.27).

Besides its rôle as cross-check, this result is interesting in itself, especially in perspective if future
extension of the measurement to the full Run II statistics. We expect a reduction of a factor of
three of the statistical uncertainty on this ratio. The main contributions to the systematics are the
uncertainty in the determination of dE/dx templates and the uncertainty associated to our limited
knowledge of nominal input masses of the b-hadrons (see fig. 12.5). Their impact can be reduced
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with a larger calibration samples for the dE/dx templates and with an improved measurements of
the nominal input masses. It is therefore likely that CDF will produce in the future the world’s best
measurement of B(B0→π+π−)

B(B0→K+π−) .

3.5 4 4.5 5 5.5 6 6.5 7

New Average   0.22± 5.15 

 Average-e+e   0.24± 5.18 

CDF    0.3±   0.3 ±  5.0 

Belle    0.2±   0.2 ±  5.1 

BaBar    0.3±   0.4 ±  5.5 

CLEO    0.5±   1.4 ±  4.5 

B(B0 → π+π−)× 10−6

Figure 13.3: Current measurements of B(B0 → π+π−) × 10−6 reported on HFAG [48]. The yellow
band is the world average.

13.4.2 B0
s → K+K−

From the observed yields of N (B0
s → K+K−) +N (B

0

s → K+K−) = 1307± 64 decays and N (B0 →
K+π−) +N (B

0 → K−π+) = 4045±84 decays we measured the following ratio of branching fractions:

fs
fd
× B(B0

s → K+K−)
B(B0 → K+π−)

= 0.347± 0.020 (stat.)± 0.021 (syst.), (13.30)

where fs/fd is the ratio of production fractions of B0
s and B0 mesons from the hadronization of a

b-quark in pp̄ collisions. This measurement is based on the following assumptions (see sec. 10.2.1):

� the B0
s → K+K− mode is 100% “short” eigenstate (BL

s CP-even);

� ΔΓs/Γs = 0.12± 0.06 as by Standard Model expectation [52];

� equal widths for B0
s and B0 mesons Γs = Γd.

Using the world-average values B(B0 → K+π−) = (19.4 ± 0.6) × 10−6 [48] and assuming for fs/fd
the world-average value from pp̄ and e+e− collisions, fs = (10.4 ± 1.4)%, fd = (39.8 ± 1.0)% [48], we
obtain the absolute branching fraction:

B(B0
s → K+K−) = (25.8± 1.5 (stat .) ± 3.9 (syst .))× 10−6, (13.31)

in agreement with the determination from the first version of this analysis B(B0
s → K+K−) =

(33±5.7±6.7)×10−6 [1]. In the measurement of the absolute branching fraction the contribution of the
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systematic component is larger than the statistical, due to the 14% uncertainty in the determination
of fs/fd = 0.261 ± 0.036 [48], which is the dominant source of uncertainty in the evaluation of
this measurement. If we look at the measurement of the relative branching fraction of eq. (13.30)
the systematic and statistical components have the same size and the total uncertainty is just 8%.
In the relative measurement the dominant sources of systematic uncertainty include the statistical
uncertainty in the determination of PID probability density functions, the statistical uncertainty on
the isolation efficiency and the statistical uncertainty on the XFT-bias correction (see fig. 12.5). All
these uncertainties are of statistical origin, thus expected to decrease as the size of calibration samples
used to determine them increases.

This result for B(B0
s → K+K−) is in agreement with the current theoretical expectations. Beneke

and Neubert [15] predict B(B0
s → K+K−) = (22.7+27.5

−12.9)× 10−6 in the QCDF approach. Chiang and
Zhou predict B(B0

s → K+K−) = (19 ± 4) × 10−6, based on SU(3) flavor symmetries [149]. Similar
values are predicted also by calculations based on pQCD: Ali et al. predict B(B0

s → K+K−) =
(13.6+8.9

−6.8) × 10−6 [16]. Williamson and Zupan, using the SCET approach, claim the most accurate
prediction B(B0

s → K+K−) = (18.2± 6.8)× 10−6 [17], also in agreement with our result.
As mentioned also in sec. 1.7.6, Descotes-Genon, Matias, and Virto recently proposed a new calculation
of B(B0

s → K+K−) which complements the QCDF expansion with SU(3) symmetry relations to
control, for the first time also the 1/mb corrections [76]. The B0

s → K+K− decay rate is connected
to the B0 → K0K̄0 decay rate. The resulting prediction (in Standard Model assumptions) B(B0

s →
K+K−) = (20± 9)× 10−6 is also in good agreement with our result.

Extraction of γ from B0
s → K+K− and B0 → π+π−

Ref. [20] describes one of several examples in the literature of the importance of the measurement
of the B0

s → K+K− branching fraction. In this section we will briefly summarize the discussion
in [20]. Since the author used a slightly outdated result of this analysis for B(B0

s → K+K−) =
24.4± 1.4 (stat .)± 4.6 (syst .) [2], all numbers in this section, estimated with the experimental input
of B(B0

s → K+K−), refer to this outdated measurement, but for the purpose of illustrating the
consequence of the result of this thesis, this is completely equivalent to the available result.

In the Standard Model, using the unitarity of the CKM matrix, the transition amplitude of the
B0 → π+π− decay can be written as in eq. (1.104), as a function of γ, λ, C, φd and deiθ. γ is the
corresponding angle of the UT, λ the parameter of the Wolfenstein expansion of the CKM matrix, C
denotes a CP-conserving strong amplitude governed by the tree contributions, while the CP-conserving
hadronic parameter deiθ measures the ratio of penguin to tree amplitudes. The CP asymmetries using
the same notation as a functions of these parameters take the following form:

Adir
CP(Bd → π+π−) = G1(d, θ; γ) (13.32)

Amix
CP (Bd → π+π−) = G2(d, θ; γ, φd); (13.33)

where φd is the CP-violating B0–B̄0 mixing phase, which is given by 2β in the SM, with β denoting
another UT angle. This phase has been measured at the B-Factories with the help of the “golden”
decay mode B0 → J/ψKS [48]:

φd = (42.6± 2)◦. (13.34)
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Figure 13.4: The contours in the γ–d plane that follow from the central values of the BABAR and Belle
measurements of the CP asymmetries of the B0 → π+π− channel and the ratio of the CP-averaged
B0 → π+π−, B0

s → K+K− branching fractions. The dotted line corresponds to the HFAG average
for the direct CP violation in B0 → π+π−. The figure has been extracted from Ref. [20].

The general expressions in eq. (13.32) and eq. (13.33) allow to eliminate the strong phase θ, and to
evaluate d as a function of γ. Figure 13.4 from Ref. [20], shows the corresponding contours for the
central values of the BABAR and Belle results in eq. (1.111) and eq. (1.112). In order to guide the eye,
the figure also includes the contour (dotted line) representing the central value of the HFAG average
Adir

CP(Bd → π+π−) = +0.38 ± 0.07 for the direct CP violation in B0 → π+π− [48]. These contours
are exactly valid in the Standard Model.

In analogy to eq. (1.104), the corresponding decay amplitude for B0
s → K+K− decays can be

written as a function of a second set of parameters γ, λ, C′, φs and d′eiθ
′

(see eq. (1.124). C′ and
d′eiθ

′
are the B0

s → K+K− counterparts of the B0 → π+π− parameters C and deiθ, respectively. In
analogy to B0 → π+π−, the CP-asymmetries are function of these parameters:

Adir
CP(B0

s → K+K−) = G′1(d
′, θ′; γ) (13.35)

Amix
CP (B0

s → K+K−) = G′2(d
′, θ′; γ, φs), (13.36)

φs in the Standard Model is expected to be small (see sec. 1.7.6) and then it is assumed equal to 0 in
eq. (13.36). If we apply the U-spin symmetry, we obtain the following relations [5]:

d′ = d, θ′ = θ. (13.37)

As was also pointed out in Ref. [5], these relations are not affected by factorizable U-spin-breaking
corrections, i. e., the relevant form factors and decay constants cancel. Since the CP asymmetries
of the B0

s → K+K− decay have not yet been measured, Ref. [20] used the CP-averaged branching
fractions ratio between B0

s → K+K− and B0 → π+π− decay modes for the determination of γ, in
place of (13.35) and (13.36). This implies the presence of additional uncertainties due to the limited
knowledge of form factors and decay constants in the extraction of the additional contour in the γ–d
plane to solve the system. These quantities can be extracted from the theory and allows to extract γ.
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For this purpose it is useful to introduce the quantity

K =
1
ε

∣∣∣∣ CC′
∣∣∣∣2
[
mB0

s

mB0

Φ(mπ/mB0 ,mπ/mB0)
Φ(mK/mB0

s
,mK/mB0

s
)
τB0

τB0
s

] [B(B0
s → K+K−)

B(B0 → π+π−)

]
, (13.38)

where ε ≡ λ2

1−λ2 = 0.05, and where

Φ(x, y) ≡
√

[1− (x+ y)2] [1− (x− y)2], (13.39)

is the B → PP phase-space function, and the τB0
(s)

are the B0
(s) lifetimes. Applying the relations in

eq. (13.37), K becomes

K =
1
ε2

[
ε2 + 2εd cos θ cos γ + d2

1− 2d cos θ cos γ + d2

]
. (13.40)

CombiningK withAmix
CP (B0 → π+π−), which both depend on d cos θ, Ref. [20] obtains another contour

in the γ–d plane. The intersection of this contour with the previous one allows to determine γ. In
order to determine K from the CP-averaged branching ratios, the U-spin-breaking corrections to the
ratio |C′/C| (which equals 1 in the strict U-spin limit) must be determined. In contrast to the U-spin
relations in eq. (13.37), |C′/C| involves hadronic form factors in the factorization approximation:∣∣∣∣C′C

∣∣∣∣
fact

=
fK
fπ

FB0
sK

(m2
K ; 0+)

FB0π(m2
π; 0+)

(
m2
B0

s
−m2

K

m2
B0 −m2

π

)
, (13.41)

where fK and fπ denote the kaon and pion decay constants, and FB0
sK

(M2
K ; 0+) and FB0π(m2

π; 0
+)

parameterize the hadronic quark-current matrix elements. These quantities were analyzed using QCD
sum-rule techniques [59], yielding ∣∣∣∣C′C

∣∣∣∣QCDSR

fact

= 1.52+0.18
−0.14. (13.42)

Using the experimental value of B(B0 → π+π−) and B(B0
s → K+K−) with eq. (13.42) and adding

errors in quadrature, the numerical value for K is

K = 41.0± 10.3. (13.43)

Figure 13.4 also includes the contour obtained from the central values of K and Amix
CP (B0 → π+π−).

We see that the intersections with the Adir
CP(B0 → π+π−)–Amix

CP (B0 → π+π−) contour following from
the BABAR data give a twofold solution for γ (around 41◦ and 67◦), whereas we obtain no intersection
with the corresponding Belle curve. Consequently, the measured B0

s → K+K− branching fraction
somewhat disfavors the Belle result for the direct CP violation in B0 → π+π−. Using this approach
the numerical system can be solved and one obtains [20] the Standard Model solution γ = (66.6+4.3

−5.0)
◦.

It is also possible to explore the impact of non-factorizable U-spin-breaking corrections to eq. (13.37)
by introducing the following parameters:

ξ ≡ d′/d, Δθ ≡ θ′ − θ. (13.44)

Assuming generous U-spin-breaking effects ξ = 1± 0.15 and Δθ = ±20◦ the impact on the numerical
solution for γ is

γ = (66.6+4.3+4.0+0.1
−5.0−3.0−0.2)

◦,
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where the second and third errors refer to ξ and Δθ, respectively. γ is only moderately affected
by these uncertainties. This is a remarkable result and it is in good agreement with the UTfit and
CKMfitter Collaborations [159, 158], yielding respectively γ = (64.4± 4.2)◦ and γ = (59.0+9.2

−3.7)
◦ from

other inputs.

Prospects for time dependent measurements

The capability of collecting and reconstructing a large sample of B0
s → K+K− and B0 → π+π−

decays, demonstrated in this thesis, provides the opportunity to detect CP violation in these decays.
With the measurement of the CP violation in the B0

s → K+K− the use of the U-spin symmetry
can be minimized in the extraction of the angle γ, and internal consistency checks of the strategy
become available [5]. The CP violation in the B0

s → K+K− decay mode is also a powerful probe
of New Physics effects as described in [68, 82, 157]. In addition CDF can also access to the CP
violation in the B0 → π+π− decays, providing a useful third measurement to confirm the B-Factories
measurements in a different experimental environment.

This challenging measurement is a long-term goal of the analysis described in this thesis, and it
will need the full Run II statistics (5–6 fb−1 by year 2009). The recent measurement of B0

s flavor
oscillations [147] shows that all the needed ingredients for this measurement are available: an excellent
proper-time resolution of the CDF II tracker (between 70 and 100 fs−1), necessary to resolve the
sine and cosine terms of the B0

s → K+K− decay-rate asymmetry as a function of time; a good
performance, εD2 � 5.3%, in identifying the flavor of the b-meson at production, despite the difficult
environment of hadron collisions; and a precise measurement of the mass-difference Δms, a necessary
input parameter of the Fleischer strategy [5]. Assuming an effective signal to noise ratio S/B � 1
(depending on the selection), with the full Run II statistics (≈ 6 fb−1) we expect a measurement of
CP-violating asymmetries in B0

s → K+K− decays with a resolution in the range [0.15, 0.3]. These
asymmetries are sensitive to possible SUSY effects as described by Baek et al. in Ref. [157] and the
expected resolution for these measurements is sufficient to identify hints of New Physics.

13.5 U-spin-breaking effects

The predictions within the Standard Model on decay rates and CP-violating asymmetries of B0
(s) →

h+h
′− decays are dominated by large uncertainties due to non-exact phenomenological approaches

which try to describe the hadronic interaction. To improve their predictive power, different approaches
use several strategies, like the U-spin symmetry. The B0

(s) → h+h
′− decays are a privileged laboratory

where it is possible to use this symmetry in the theoretical calculations advantageously: measurements
of several of B0

(s) → h+h
′− observables allow to extract the parameters of interest and simultaneously

allow to check the validity of U-spin assumptions used. Ref. [20] shows some examples of this strat-
egy. As in sec. 13.4.2, we will briefly summarize the discussion in [20]. Since the author used a
slightly outdated result of this analysis for B(B0

s → K−π+) = 5.0 ± 0.75 (stat .) ± 1.0 (syst .) and
B(B0

s → K+K−) = 24.4± 1.4 (stat .)± 4.6 (syst .) [2], all numbers in this section, estimated with the
experimental input of B(B0

s → K−π+) and B(B0
s → K+K−), refer to these outdated measurements,

but for the purpose of illustrating the consequence of the result of this thesis, this is completely
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equivalent to the available result.

13.5.1 B0 → K+π− vs B0
s → K−π+ again

In analogy with the formalism of sec. 1.7.2 and 1.7.6 using the unitarity of the CKM matrix, the decay
amplitudes of B0 → K+π− and B0

s → K−π+ can be written as follows:

A(B0
d → π−K+) = −P [1− reiδeiγ] , (13.45)

A(B0
s → π+K−) = Ps

√
ε

[
1 +

1
ε
rse

iδseiγ
]
, (13.46)

where P(s) and r(s)eiδ(s) are CP-conserving hadronic parameters, which describe penguin amplitudes
and the ratio of trees to penguins, respectively. Using the U-spin flavour symmetry of strong interac-
tions, in analogy to eq. (13.37) it is possible to write the following relations:

rs = r, δs = δ. (13.47)

In the case of the relation between |Ps| and |P |, factorizable U-spin breaking corrections arise, which
are described by the following ratio of decay constants and form factors:∣∣∣∣PsP

∣∣∣∣
fact

=
fπ
fK

FB0
sK

(m2
π; 0

+)
FB0π(m2

K ; 0+)

(
m2
B0

s
−m2

K

m2
B0 −m2

π

)
. (13.48)

Using the recent QCD sum-rule results of Ref. [59] yields∣∣∣∣PsP
∣∣∣∣QCDSR

fact

= 1.02+0.11
−0.10. (13.49)

With the help of the U-spin symmetry one can write the following relation

ACP(B0
s → K−π+)

ACP(B0 → K+π−)
= −
∣∣∣∣PsP
∣∣∣∣2
[
mB0

mB0
s

Φ(mπ/mB0
s
,mK/mB0

s
)

Φ(mπ/mB0 ,mK/mB0)
τB0

s

τB0

] [B(B0 → K+π−)
B(B0

s → K−π+)

]
. (13.50)

This relation allows to obtain experimental insights into U-spin-breaking effects with the help of the
measurements of ACP(B0

s → K−π+) and B(B0
s → K−π+) performed in this thesis. The HFAG

world averages [48] have been used for ACP(B0 → K+π−) and B(B0 → K+π−), in particular the
measurement of ACP(B0 → K+π−) performed in this thesis has been included. Adding the errors in
quadrature, is possible to extract∣∣∣∣PsP

∣∣∣∣
exp

=
∣∣∣∣PsP
∣∣∣∣
√[rs

r

][ sin δs
sin δ

]
= 1.06± 0.28, (13.51)

where the non-factorizable U-spin-breaking effects to eq. (13.47) has been taken into account. An ex-
cellent agreement was obtained with eq. (13.49). The measurement of this quantity is rather imprecise
at present, but the situation will greatly improve with CDF full Run II samples (5–6 fb−1). When
the precision of experimental measurements will improve, this quantity will give valuable insights
into U-spin-breaking effects. Relation (13.50) is a different version of the Gronau-Lipkin relation of
eq. (13.20) obtained with a different approach.
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13.5.2 Ratio of branching fractions and SU(3)

If we replace the strange spectator quark of B0
s → K+K− by a down quark, we obtain the B0 →

K+π− decay, as mentioned in sec. 1.7.1. Consequently, the only difference between the corresponding
hadronic matrix elements is due to processes involving these spectator quarks: penguin annihilation
and exchange topologies, which contribute to B0

s → K+K−, but are absent in the B0 → K+π−

channel. These contributions, expected to play a minor rôle, can be probed through the B0 → K+K−

and the B0
s → π+π− decays [46]. The measurement of the upper limit on the CP-averaged branching

fraction of B0
s → π+π− from this thesis and CP-averaged branching fraction of B0 → K+K− (world-

average from this thesis and B-Factories measurement [48]) do not indicate any anomalous behavior
of these topologies thus they will be neglected in the following discussion.

Applying SU(3) flavour symmetry, we may then identify the B0
s → K+K− and B0 → K+π− decay

amplitudes, and obtain the simple relation between the CP-averaged branching fractions [20]:

B(B0
s → K+K−)

B(B0 → K+π−)
=
[
mB0

mB0
s

Φ(mK/mB0
s
,mK/mB0

s
)

Φ(mπ/mB0 ,mK/mB0)
τB0

s

τB0

](
fπ
fK

∣∣∣∣C′C
∣∣∣∣
fact

)2

. (13.52)

This relation allows to extract: ∣∣∣∣C′C
∣∣∣∣exp

fact

= 1.42± 0.14, (13.53)

from the real data. Within the uncertainties, this number agrees remarkably well with eq. (13.42),
and gives further confidence on the corresponding form factors and the smallness of non-factorizable
SU(3)-breaking effects. In analogy to relation (13.52), it is also possible to write

B(B0
s → K−π+)

B(B0 → π+π−)
=
[
mB0

mB0
s

Φ(mπ/mB0
s
,mK/mB0

s
)

Φ(mπ/mB0 ,mπ/mB0)
τB0

s

τB0

](
fK
fπ

∣∣∣∣PsP
∣∣∣∣
fact

)2

. (13.54)

Since the form-factor ratio

fπ
fK

∣∣∣∣C′C
∣∣∣∣
fact

=
FB0

sK
(m2

K ; 0+)
FB0π(m2

π; 0+)

(
m2
B0

s
−m2

K

m2
B0 −m2

π

)
(13.55)

is essentially equal to
fK
fπ

∣∣∣∣PsP
∣∣∣∣
fact

=
FB0

sK
(m2

π; 0
+)

FB0π(m2
K ; 0+)

(
m2
B0

s
−m2

K

m2
B0 −m2

π

)
, (13.56)

it is possible to arrive at the following relation, which does not depend on the form-factor ratios:

B(B0
s → K−π+) =

[B(B0
s → K+K−)

B(B0 → K+π−)

]
B(B0 → π+π−) = (6.5± 1.3)× 10−6. (13.57)

Instead of predicting this branching ratio, we can use eq. (13.57) to test for non-factorizable SU(3)-
breaking effects:

ΔNF
SU(3) ≡ 1−

[B(B0
s → K+K−)

B(B0
s → K−π+)

] [ B(B0 → π+π−)
B(B0 → K+π−)

]
= −0.26± 0.261. (13.58)

1Ref. [20] reports ΔNF
SU(3)

= −0.3± 0.4. We re-evaluated this quantity using the current available measurements and

canceling all common systematic uncertainties, thus obtaining a more precise result.
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The result is compatible with zero within current uncertainties. This relation is free from additional
systematic uncertainties like the uncertainty on the production fractions of the B0

s and B0 mesons fs
and fd, which is the dominant uncertainty in the current measurement of absolute branching fraction
of B0

s → K+K−. With full Run II samples, the extension of this analysis will therefore allow to check
this relation with high precision and provide valuable insights into U-spin breaking.

13.6 Conclusions

In this thesis I described the analysis of B0
(s) → h+h

′− decays at CDF performed to measure the
relative branching fractions of individual decay modes and the CP-violating asymmetry of B0 →
K+π− and B0

s → K−π+ decays. This analysis provided several results. I summarize them below.

I report the first observation of the decay mode B0
s → K−π+. This is the second decay of a B0

s

meson into two pseudo-scalar mesons to be observed (the first one was the B0
s → K+K−, in the

previous version of this analysis [1]). The measurement of the B0
s → K−π+ branching fraction and

direct CP-asymmetry have interesting consequences, as discussed in the previous sections. The com-
parison of the measured branching fraction with theoretical predictions provides valuable information
for tuning the phenomenological models of hadronic B0

(s) meson decays (SU(3) symmetries, QCDF,
SCET, QCD sum-rules, etc.) and optimizing the choice of their input parameters, in particular this
branching fraction is sensitive to CKM angle values of α and γ. Even more relevant is the measure-
ment of its direct CP-asymmetry, since, as suggested from several authors with several and different
approaches [7, 8, 16, 20], by the comparison with the CP asymmetry of its U-spin partner B0 → K+π−

is possible to perform a stringent test of Standard Model to probe hints of New Physics. We perform
the Gronau-Lipkin test and we find that with the current statistical uncertainty we cannot establish
a significant asymmetry, but the Standard Model prediction of large asymmetry is compatible with
our data and is favored over the possibilities of no asymmetry. It will be very interesting to pursue
the same check with more data, with ≈ 2.5 fb−1 that are already available at CDF, and in the next
future with full Run II samples of 5–6 fb−1 by year 2009.

I report an accurate measurement of the branching fraction B0
s → K+K−. As in the B0

s → K−π+

mode, the comparison of this branching fraction with theoretical predictions provides valuable infor-
mation for tuning the phenomenological models of hadronic B decays and in particular provides one
the first experimental insight on the magnitude of the SU(3) breaking, a necessary test and ingredient
for the U-spin-based method of extracting the CKM parameters, like γ angle [5, 20]. The CDF capabil-
ity of collecting a large sample of B0

s → K+K−, demonstrated in this thesis, provides the opportunity
to measure time-dependent CP asymmetries in this mode in the near future. These measurements
are only possible at hadrons collisions experiments and represent one of the most promising way to
probe New Physics effects. The intermediate experimental goal between the currently available high-
precision measurements of time-integrated rates and future time-dependent measurement of asymme-
tries, is the study of the time evolution of B0

s → K+K− decays. This provides crucial information on
the lifetime difference in the B0

s meson system, ΔΓs/Γs, as already demonstrated by a preliminary
result obtained using the technique developed in this thesis to disentangle the B0

s → K+K− signal
from other B0

(s) → h+h
′− modes [78].
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I report the first observation of the Λ0
b → pK− and Λ0

b → pπ− decay modes. They are the first
charmless decays of a b-baryon to be observed and open a new interesting field of study in which there
is little theoretical background.

The measurements on B0
s and Λ0

b decays are unique to CDF and this makes CDF a special place
where it is possible to probe this physics. In this analysis I also performed interesting measurements
on B0 sector. They are not unique in the current experimental panorama, but have also a great
relevance, since their contribution to the current world averages is comparable with that one of the
already existing measurements. I report a precise measurement of direct CP-asymmetry in the B0 →
K+π− decays. This measurement along with the CP-asymmetry in the B0

s → K−π+ are the first
measurements of this kind in hadronic collisions environment. I also report a precise measurement
of the relative branching fraction of B0 → π+π− decay. The prospects for these measurements are
very promising. In fact, using the methodology developed in this thesis we expect to perform soon
the world best measurements with the current available data sample ≈ 2.5 fb−1.

I also report improved upper limits on the branching fractions of B0 → K+K− and B0
s → π+π−

modes, which are determined by penguin-annihilation amplitudes. These measurements have im-
plications for both the knowledge of CKM sector of the Standard Model and the phenomenology
of non-perturbative hadronic contributions in non-leptonic B0

(s) meson decays. The B0
s → π+π− is

unique to CDF, and this channel is likely to be observed sooner than B0 → K+K−.

An important consequence of this work is the demonstration that precision measurements on
hadronic B decays are possible in hadronic environment, when good on-line and off-line tracking are
available.

The Tevatron is planned to operate (at least) through September 2009, delivering a total integrated
luminosity of 5–6 fb−1. During this time, the CDF experiment will continue exploiting the physics
opportunity of accessing jointly B0 and B0

s decays into two-body charmless mesons. This opportunity
is unique to CDF at least until the planned run of the KEKB collider at the center-of-mass energy of
the Υ(5S) resonance or the LHCb data-taking (2008) will start.
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