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Abstract

In Part I, three independent models of Fermilab’s Booster synchrotron are presented.

All three models are constructed to investigate and explore the effects of unavoidable ma-

chine errors on a proton beam under the influence of space-charge effects.

The first is astochastic noise model. Electric current fluctuations arising from power

supplies are ubiquitous and unavoidable and are a source of instabilities in accelerators

of all types. A new noise module for generating the Ornstein-Uhlenbeck (O-U) stochastic

noise is first created and incorporated into the existing Object-oriented Ring Beam Injection

and Tracking (ORBIT-FNAL) package. After being convinced with a preliminary model

that the noise, particularly non-white noise, does matter to beam quality, we proceeded to

measure directly current ripples and common-mode voltages from all four Gradient Mag-

net Power Supplies (GMPS). Then, the current signals are Fourier-analyzed. Based upon

the power spectra of current signals, we tune up the Ornstein-Uhlnbeck noise model. As a

result, we are able to closely match the frequency spectra between current measurements

and the modeled O-U stochastic noise. The stochastic noise modeled upon measurements

is applied to the Booster beam in the presence of the full space-charge effects. This noise

model, accompanied by a suite of beam diagnostic calculations, manifests that the stochas-

tic noise, impinging upon the beam and coupled to the space-charge effects, can substan-

tially enhance the beam degradation process throughout the injection period.

The second model is amagnet misalignment model. It is the first time to utilize the

latest beamline survey data for building amagnet-by-magnetmisalignment model. Given

as-found survey fiducial coordinates, we calculate all types of magnet alignment errors

(station error, pitch, yaw, roll, twists, etc.) are implemented in the model. We then follow

up with statistical analysis to understand how each type of alignment errors are currently

distributed around the Booster ring. The ORBIT-FNAL simulations with space charge
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included show that rolled magnets, in particular, have substantial effects on the Booster

beam. This survey-data-based misalignment model can predict how much improvement in

machine performance can be achieved if prioritized or selected realignment work is done.

In other words, this model can help us investigate different realignment scenarios for the

Booster. In addition, by calculating average angular kicks from all misaligned magnets,

we expect this misalignment model to serve as guidelines for resetting the strengths of

corrector magnets.

The third model for the Booster is atime-structured multi-turn injection model. Microbunch-

injection scenarios with different time structures are explored in the presence of longi-

tudinal space-charge force. Due to the radio-frequency (RF) bucket mismatch between

the Booster and the 400-MeV transferline, RF-phase offsets can be parasitically intro-

duced during the injection process. Using the microbunch multiturn injection, we carry

out ESME-ORBIT-combined simulations. This combined simulation allows us to investi-

gate realistic charge-density distribution under full space-charge effects. The growth rates

of transverse emittances turned out to be 20 % in both planes. This microbunch-injection

scenarios is also applicable to the future 8-GeV Superconducting Linac Proton Driver and

the upgraded Main Injector at Fermilab.

In Part II, the feasibility of momentum-stacking method of proton beams is investigated.

When the Run2 collider program at Fermilab comes to an end around year 2009, the present

antiproton source can be available for other purposes. One possible application is to convert

the antiproton accumulator to a proton accumulator, so that the beam power from the Main

Injector could be enhanced by a factor of four. Through adiabatic processes and optimized

parameters of synchrotron motion, we demonstrate with an aid of the ESME code that

up to four proton batches can be stacked in the momentum acceptance available for the

Accumulator ring. This momentum-stacking method is expected to be a part of Fermilab’s

SuperNuMI (SNuMI) project.
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Chapter 1
Introduction

dixitque Deus fiat lux et facta est lux

-Genesis 1:3

The subject of this dissertation1 is the investigation of enhanced beam degradation phe-

nomena in Fermilab’s Booster Synchrotron and Accumulator Storage Ring. Enhancement

of beam degradations, caused by unavoidable machine2 imperfections coupled to space

charge are simulated using four independent models including three Booster models and

one Accumulator model. This introductory chapter provides a synopsis of our work on

modeling of error-induced beam degradation phenomena in present and future accelerators

at Fermilab. Fermilab’s accelerator and computing facilities are extensively used in this

work.

1.1 Motivations

Advanced computational tools for the realistic modeling and reliable simulation of par-

ticle accelerators are needed for:

1 This dissertation is created by TEX kpathsea version 3.4.5.

2 We refer to an accelerator as a machine in this dissertation.

1
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(1) Lattice3 designs for future accelerators.

(2) Investigation of various operating scenarios with different parameters for present and

future machines.

(3) Investigation of beam instabilities and the adverse effects of machine-imperfections.

In all three applications, cost savings are realized through the better understanding and

predictive power that are provided by modeling tools. More realistic modeling and simula-

tion are now possible through recent advances in computer technology, such as Message-

Passing Interface (MPI) [1] for multiprocessor applications.

In order to explore and understand the effects of known machine errors on a beam, the

following four models are investigated:

(1) Stochastic noise model (for the Booster).

(2) Misalignment model (for the Booster).

(3) Time-structured multiturn injection model (for the Booster).

(4) Momentum-stacking model (for the Proton Accumulator).

The above-mentioned four accelerator models are motivated by accelerator physics is-

sues that affect current machine performance at Fermilab.

Booster Models: The accelerator physics mechanisms in the Booster that result in

beam losses at injection are of great importance. Beam losses in the Booster mostly occur

during the first 2∼ 3 msec of the machine cycle, and space-charge effects contribute to

these losses. However, given the operational beam intensity and injection energy, space-

charge effects alone cannot entirely account for the large beam losses. In our models, it is

demonstrated that other factors couple to space-charge effects, and together are responsible

for the large beam-losses in the Booster. These other factors include stochastic fluctuations

3 Lattice refers to a repetitive pattern of bending (dipole) and focusing (quadrupole) magnets in an accel-
erator.
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arising from noise in power supplies and misaligned beamline elements, and RF4-bucket

mismatch during the multiturn injection process.

Accumulator Model: The proton accumulator ring5 is under consideration as one of

the options for a future accelerator upgrade at Fermilab. This upgrade is to take place af-

ter the termination of the Run 2 collider program around the year 2009. The accumulator

upgrade calls for stacking multiple batches of the Booster proton beam in the present An-

tiproton Accumulator ring using the RF-stacking method. Using the momentum-stacking

method, a factor of four increase in the Fermilab Main Injector beam intensity could be

achieved (even in the presence of longitudinal space-charge effects).

1.2 Methodology

1.2.1 Computational Modeling Tools

We investigate the consequence of error-induced beam degradation in two Fermilab

accelerators: the Booster synchrotron and the Accumulator ring. Our computational mod-

eling involves multiparticle tracking in each ring. The macroparticles6 are tracked in a

self-consistent manner in six-7, or two8-dimensional phase spaces in the presence of longi-

tudinal (1-D), or transverse (2-D), or full (3-D) space-charge forces. The simulation yields

various beam parameters such as particle distributions and the evolution of beam emit-

tance. We use the ORBIT-FNAL package and ESME code in the modeling of the beams.

4 RF stands for Radio Frequency, used interchangeably with the term high frequency in accelerator
physics context.

5 In this context, we refer to a circular-type accelerator as a ring.

6In practice, it is not feasible to simulate and track the same number of particles as in actual machine
operation. As such, we use macroparticles, each of which represents some fraction of total charge in a
machine.

7 including both transverse and longitudinal phase space dimensions

8 including longitudinal phase space only
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The Object-oriented Ring Beam Injection and Tracking (ORBIT) [2], a three-dimensional

C++ computer package, has been developed by the accelerator physics group of the Spal-

lation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). The ORBIT-

FNAL code is a Fermilab version of ORBIT that has been developed for application to

Fermilab accelerators. During the course of modeling the Booster with the ORBIT-FNAL

package, various new features and methods have been developed and implemented. The

one-dimensional code ESME [3], authored by J. MacLachlan of Fermilab, is mainly de-

signed for modeling RF gymnastics and longitudinal beam dynamics. In our simulations,

the Booster lattice9 and machine parameters including space-charge forces are all used in

the stochastic noise model, the misalignment model, and a multiturn injection model.

1.2.2 Booster: Stochastic Noise Model

For the stochastic noise model for the Booster, we first designed and added a new noise

module to the ORBIT-FNAL package. This noise module can generate Ornstein-Uhlenbeck

stochastic noise, employing the Ornstein-Uhlenbeck (O-U hereafter) stochastic process [4]

and the Langevin-like stochastic differential equation [5]. In the first stage of modeling, we

simulate various parameters, including space-charge effects, to find out if dynamic (time-

dependent) noise has any adverse influence on the Booster beam at the time of injection.

The results from this initial model [6] simulation demonstrate that dynamic noise, com-

bined with the space-charge effects, leads to an enhancement in beam degradation in the

Booster. Moreover, our preliminary findings are consistent with what was found earlier

from an idealized and simplified model [7] of collective space-charge modes coupled with

dynamic noise. As we are certain that there is noise in the Booster Gradient Magnet Power

9 The term Lattice refers to the repetitive pattern of bending (dipole) and focusing (quadrupole) magnets
in an accelerator



1.2. METHODOLOGY 5

Supply (GMPS)10 system, we proceed to devise methods for measurement and analysis of

ripples in the electric current11 in the Booster GMPS. Repeated measurements and analyses

confirm that a substantial amount of noise is present in the GMPS system. We are also able

to extract stochastic noise parameters by a Fourier-analysis of our measurements. The new

noise module with stochastic noise parameters now can model and generate realistic power-

supply noise that can be applied to the Booster beam in the presence of space-charge. Our

stochastic noise model is the first simulation of the effects of noise (modeled on noise mea-

surements) on a beam in a real synchrotron over a long period of time. For more realistic

beam simulations, we inject and track 330,000 macroparticles with the new noise module

fully parallelized on several dozen processor nodes in local workstation clusters.

We conclude that when noise is combined with space-charge effects, synergism between

noise and machine errors induces enhancements in beam degradation in the Booster, thus

resulting in beam losses.

Figure 1.1 illustrates the processes involved in modeling Booster power-supply noise.

Figure 1.1: Modeling the effect of noise arising from the Booster power supply

10 We often refer to the Booster Gradient Magnet Power Supply (GMPS) of the Booster as just plain
Power Supply for convenience.

11 A more technical term for this kind of noise is electromagnetic interference.
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1.2.3 Booster: Misalignment Model

In constructing the Booster misalignment model, we employ the latest survey data

[8, 9], and investigate the effect of each type of alignment error. It is the first time that

the latest magnet survey data is used in modeling the Booster. This is done in collaboration

with the Fermilab Survey and Alignment Geodesy (SAG) Group. In general, during the

design stage of an accelerator, the required tolerance of magnet alignment error is deter-

mined by modeling and simulation. Since we are working on modeling misalignment for

the existing Booster machine (with the latest magnet survey data at hand), we proceed to

construct a magnet-by-magnet alignment model. Given the coordinates of survey fiducial

points, we first calculated the magnitudes12 and orientations13 of each type of alignment

error at each individual magnet. We then perform a statistical analysis to determine which

type of alignment errors are presently present in the Booster ring. After obtaining a good

understanding of the present distributions of all types of alignment errors in the Booster

magnet system, we upgrade the Error module of the ORBIT-FNAL accordingly. By includ-

ing the magnet-by-magnet alignment errors in the code, the ORBIT-FNAL is now capable

of simulating Booster alignment errors. To achieve the best accuracy, our model treats

each magnet individually (i.e. there are no identical magnets in our misalignment model).

Consequently, this survey-data-based alignment model can now predict the improvement

in machine performance that can achieved if some fraction of total magnets in the Booster

ring are realigned. Since a complete realignment is very time consuming, our misalign-

ment model can be used to prioritize which magnets should be corrected first in a magnet

realignment effort.

12 for translational alignment errors

13 for rotational alignment errors
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Our studies with the misalignment model indicate that in particular, misalignments of

rolled combined-function magnets14 have a sizeable effect on the beam (in the presence of

space-charge effects at injection energy).

Figure 1.2 in the following page illustrates how the misalignment modeling has been

implemented.

Figure 1.2: Modeling of the Booster Magnet Misalignment

1.2.4 Booster: Time-Structured Multiturn-Injection Model

In the Booster microbunch model, multiturn-injection methods with a train of mi-

crobunches are explored in the presence of longitudinal space-charge effects. This model-

ing is carried out with the aid of the ESME code. First, one microbunch is generated, and

14A combined-function magnet is for both bending and focusing charged-particle beams.
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then a train of four or five microbunches are injected into a synchronous RF bucket15 at dif-

ferent times.16 The synchronous injection is repeated over 11 injection turns with a certain

amount of phase shift. Because of the RF-bucket mismatch between the 400-MeV transfer

line and the Booster ring, uncontrolled phase shifts can be induced during the injection

process. The ESME simulation with this microbunch-injection model demonstrates that

there is no significant longitudinal beam loss for each injection method. Since this injec-

tion method is for a linac-to-ring transition, we can speculate that this microbunch-injection

method can also be applied to the injection method for a future 8-GeV-linac proton driver

and an upgraded Main Injector.

1.2.5 Proton Accumulator: Momentum-Stacking Model

Here we model a future proton Accumulator at Fermilab. In order to maximize the

proton beam intensity, proton pulses from the Booster can be debunched and accumulated

within the momentum acceptance of the Proton Accumulator ring. In the process of op-

timizing the desired performance of a Proton Accumulator, it is crucial to minimize the

emittance dilution that originates from longitudinal space-charge forces. This is accom-

plished by finding optimal synchrotron parameters.

The momentum-stacking model, including longitudinal space-charge effects, demon-

strates that up to four unbunched proton batches injected from the Booster can be stacked

up within the momentum acceptance of the present Antipoton-Accumulator ring.

Therefore, proton stacking can be used in the present Antiproton-Accumulator ring,

and it can be used as a Proton-Accumulator in a future Fermilab upgrade. An outline of the

proton-stacking process is illustrated in Figure 1.3.

15 a standing RF bucket

16 at different phase (∆θ). Common coordinates in longitudinal phase space are (θ, ∆E/ω0). The az-
imuthal angle for an entire ring is 2π. The phase (θ) coordinate can be converted to a time coordinate.
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Figure 1.3: Proton-stacking cycle

1.3 Dissertation Layout

The dissertation consists of two parts. In part I we focus on the three Booster models:

(1) stochastic noise model, (2) misalignment model, and (3) multiturn injection model with

microbunches. The measurement-based stochastic noise model is discussed in chapters 2,

3 and 4. The implementation and inclusion of the Ornstein-Uhlenbeck stochastic noise

model into the new noise module is presented in chapter 2. The experimental techniques of

measuring noise in the Booster power supplies are discussed in chapter 3. The ramifications

of the presence of real noise coupled to space-charge effects are discussed in chapter 4. The

misalignment model utilizing the most up-to-date survey data for each individual gradient

magnet is discussed in chapters 5 and 6. The multiturn injection model with microbunches

is discussed in chapter 7. The modeling of the Proton Accumulator ring is presented in Part

II. We investigate the feasibility of the proposed momentum-stacking method of proton

beams for the Accumulator as one of the choices for a future accelerator-upgrade plans at

Fermilab. The content of various chapters are illustrated in the block diagram of Figure 1.4.
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1.4 The Fermilab Accelerator Complex

The Fermilab accelerator complex consists of seven accelerators including the Elec-

trostatic Pre-accelerator, the Proton Linear Accelerator (Linac) , the 8-GeV Booster syn-

chrontron, the Main Injector synchrontron, the Tevatron synchrontron, the Proton Accu-

mulator ring, and the Debuncher. The accelerator complex also includes the Switchyard

and a number of beamlines. In this dissertation we only model the Booster and the Proton

Accumulator. These two accelerators are reviewed in the next two sub-sections.

1.4.1 Booster Synchrotron

Overview

The 8-GeV Booster synchrotron is the very first synchrotron in this chain of accelera-

tors. As necessary, additional details on specific systems of the Booster are described in

the next few chapters in Part I. Here, we introduce the main features of the Booster.

The Booster [10] is a rapid-cycling, 15-Hz alternating-gradient synchrotron with a mean

radius of 75.47 meters. A 400-MeV beam-line transfers the proton beam from the Linac

to the Booster. the beam is bent down vertically to a level of 15 feet below ground. The

Booster lattice is composed of 24-fold superperiods [11]. Each period (or magnet cell)

consists of four 10-foot long combined-function magnets, which serve both as bending

magnets and as main gradient magnets. There are a total of 96 main gradient magnets. The

combined-function magnets both focus and bend the beam around the design orbit. The

18 RF ferrite-tuned cavity17 resonators, located in several long straight sections, are used

to accelerate and to longitudinally focus a beam over the 33-msec ramping portion of a

sinusoidal current waveform.

17 The term ferrite refers to variable permeability materials for fast-tuned cavities. The ferrite-tuned
cavities are used when varying resonance frequencies are needed to follow the varying revolution frequency
of the beam.
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For the magnet system, a resonator power-supply system utilizes a 15-Hz DC-biased

sinusoidal current waveform to excite the main magnets which are connected in series.

The multiturn injection system increases the Booster intensity by accumulating successive

injection of Linac beams on top of each other. Proton beams at the extraction energy of

8.0 GeV can be extracted to two different locations: (1) to the Main Injector by way of the

MI-8 transferline, and (2) to a beam dump in the MI-8 line. An aerial view of the Booster

(which is located behind Wilson Hall) is shown in Figure 1.5 (a) [12].

(a) The Booster synchrotron (b) The Accumulator ring

Figure 1.5: Aerial views

Injection [13–15]

All of the Booster models presented in this dissertation involve processes that occur

during injection. Therefore, we include further details on the injection system into the

Booster.
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The extraction of H— ions at 400 MeV from the Linac begins after an area which is

referred to as the400-MeV area—this area begins after the last Coupled-Cavity-Linac

(CCL)18 RF cavity that is powered by klystron19 tank # 7.

As shown in Figure 1.6, the 400-MeV Linac beam can be directed into any of three

beamlines at the end of the Linac enclosure. Linac beam pulses, not deflected by the 400-

MeV chopper, are veered into one of two beam-dump lines: dump #1 and dump #2.

Figure 1.6: 400-MeV area

When the 40◦ spectrometer magnet (L:SPEC in Figure 1.6) is powered on, the beam is

directed todump#2, in which a wire scanner measures the beam momentum. This is used

to display the average momentum and momentum spread in the beamline. On the other

18 The Coupled-Cavity Linac (CCL) is a serial array of resonant cavities that are coupled together to form
a multicavity accelerating structure. The CCL operates at a higher accelerating gradient for acceleration of
beams. The velocity range is usually in the range of 0.4< β < 1.0. In 1993, the Fermilab linac was upgraded
from an energy of 200 MeV to 400 MeV with the CCL in order to reduce the space-charge effects.

19 A klystron is a high-gain radio-frequency amplifier.
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(a) Wire Scanner; Corrector Pack-
age; ORBUMP 3

(b) 400-MeV Chopper

Figure 1.7: Instruments located in the 400-MeV area:photo courtesy of the Booster group

hand, when the spectrometer magnet is off, the beam is directed to dump #1. This transport

line is used to measure the transverse emittances and is solely used for beam studies. The

third transfer line brings the beam to to the Booster. The transfer line will be referred to

in this dissertation as the400-MeV Transferline(or just the Transferline) leading to the

Booster.

The aforementioned 400-MeV chopper (see Figure 1.7) is a pulsed electric deflector

composed of a pair of parallel charged plates. It is located downstream of the last coupled-

cavity-linacRF cavity. The chopper selects what portion of the beam enters the Booster,

and is used to control the Booster, Main injector and Tevatron. The duration of chopper

pulse determines the number of Booster turns that are used. For the normal mode of opera-

tion (e.g. antiproton production) and for NuMI [16,17] operations, 11 turns of the Booster

beam are used. The portion of the beam that is deflected by the chopper and quadrupoles,

passes through the field region of a Lambertson magnet.
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The final section of the 400-MeV line is designed for lattice-parameter matching. In

the first part of the matching section, the transverse phase ellipse of the beam is rotated to

achieve efficient injection. In order to make a FDOODF20 configuration, seven quadrupoles

are used in the matching section. Another device that is located in the phase matching

section is a klystron-driven cavity which is called the Debuncher. The main function of the

Debuncher is to reduce the momentum spread of the beam. Prior to the injection process,

the Transferline lattice must be matched to that of the Booster.

Utilizing the last two quadrupoles21 (B:Q16 and B:Q17) in the Transferline, the lattice

match is fulfilled. These quadrupoles are replicas of the upstream lattice of long-straight

section 1. The Q16 and Q17 are focusing and de-focusing quadrupoles, respectively. The

duplicate quadrupoles are aligned with the main gradient magnets located just upstream of

the injection location.

To reduce the peak current in the Linac, a multiturn injection method is used for Booster

operation. Beams injected during the 11 injection turns are accumulated laterally in the

Booster aperture.

The Transferline intersects the Booster ring at the injection girder. At the girder, a DC

septum magnet, shown in Figure 1.8, eliminates the horizontal bend angle in the upstream.

The H— beam from the Linac is injected into the Fermilab Booster ring using a DC septum

magnet and four pulsed magnets that cause a localorbit-bump(ORBUMP). The DC sep-

tum magnet bends the incoming H— beam parallel to the circulating beam. The ORBUMP

1 and ORBUMP 2 magnets merge both incoming and circulating beams, after which they

pass through a carbon stripping foil. The ORBUMP 3 and ORBUMP 422 restore the cir-

culating orbit. The injected beam is then stacked on a trajectory lateral to the Booster

20By convention, F, D, and O represent a focusing magnet, a de-focusing magnet, and a drift section in
which there is no magnetic field, respectively.

21 These two quadrupoles are not shown in Figure 1.6

22 At present, the 3-ORBUMP method is in use as in Figure 1.9 [14,18]. The Figure 1.9 is created based
upon one of J. Lackey’s original drawings.
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Figure 1.8: Injection layout of 4-ORBUMP method

closed orbit—radial separation is about 8 cm. The circulating beam transverses through

the field-free region of the septum magnet without deflection. Both injected and circulating

beams pass through the upstream ORBUMP magnets. As shown in Figure 1.8 these dipole

magnets bend the circulating beam outward and the injected beam inward. Note that the

injected beam carries negative charge (H—), and the circulating beam positive charge (H+).

The injection trajectory places the beam on a carbon stripping foil located in between OR-

BUMP magnets. While H— ions and circulating beam pass through the stripping foil, both

electrons of each H— ion are stripped off, and the negative ions convert to protons. The

downstream ORBUMP magnets then curve the proton beam radially inwards, or towards

the closed orbit. The remaining unstripped H— ions, or H0 are directed outwards and end

in the H— detector: this process is termedinjection dump. The beam from the Linac is

injected into the Booster at the 45◦ [14] point (around the ring from the extraction point)

which is located at long straight-section 3.
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Figure 1.9: New injection layout of 3-ORBUMP method

1.4.2 Accumulator

The Accumulator is an antiproton source. It is a triangle-shaped storage ring for an-

tiprotons as shown in Figure 1.5 (b). It is housed in the same radiation enclosure as the

Debuncher, and its function is to accumulate antiprotons. Antiprotons are produced by di-

recting a proton beam on to the p-bar23 production target. The antiproton Accumulator is

a DC (unbunched) machine with a large momentum acceptance. We find that it is possi-

ble to accumulate several Booster proton batches in the present Antiproton-Accumulator

ring. Therefore, it is possible to use the present Antiproton-Accumulator ring as a Proton-

Accumulator for use in a future Fermilab upgrade. After the completion of this dissertation,

the plans for a Fermilab upgrade now includes the Recycler24 as illustrated by Figure 1.10.

Figure 1.10: An updated Proton-stacking method

23 We use the terms antiproton and p-bar interchangeably.

24As the Recycler is out of the scope of this dissertation, we do not discuss here.



Chapter 2
Booster Stochastic Noise Model

Make a joyful noise unto the Lord.

-Ps. 98:4, KJV

In this chapter we describe the design of a new stochastic noise module that is used for

modeling noise1 in the Booster power supply system. We first define stochastic processes

and some of the associated concepts. We then introduce the Ornstein-Uhlenbeck (O-U)

stochastic process. We follow with derivations of the statistical properties of the O-U pro-

cess that are implemented in the new noise module for the ORBIT-FNAL package. We

also describe how the new noise module generates the O-U stochastic noise and applies the

modeled noise to macroparticles2 in the simulation.

2.1 Motivation

Fluctuations that are observed in particle accelerator systems are expected as is common

in other natural systems. Here we define a collection of charged particles as thesystem,

1 In this context, we refer noise to electrical current fluctuations.

2 In the context of the simulation of charged-particle beams, a macroparticle represents a fraction of total
charge in an accelerator. We consider it to be arepresentativeparticle, or simulation particle.

18
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and all the beamline components for accelerating and guiding particles as theenvironment.

The system of charged particles then perceives the environment as a source of noise, or

fluctuations. External noise3 is intrinsic to particle accelerators due to unavoidable machine

imperfections; e.g., electric current ripples in power supplies, ground vibration motion, etc.

These noise sources have a significant impact on a beam. They cause a dilution of the

beam emittance, formation of beam halo, and enhance beam losses. The physical noise is

modeled as exponentially-driven Gaussian stochastic noise with the properties of the O-U

process [4, 7, 26]. We select the O-U process for our investigations into the influence of

external noise on the Booster beam.

2.2 Stochastic Process

A stochastic process4 ξ(t) is a process in which the variableξ does not depend on the

independent variablet in a predictable fashion. Here,W (ξ t) represents aprobability den-

sity function. A stochastic process is completely defined by the following set of probability

distributions:

• W1(ξ, t)dξ : probability of findingξ in the range of (ξ, ξ + dξ) at time t

• W2(ξ1, t1; ξ2, t2) dξ1dξ2: joint probability of findingξ in the range (ξ1, ξ1 + dξ1) at

time t1 and in the range (ξ2, ξ2 + dξ2) at timet2.

• . . . . . . . . .

• Wn(ξ1, t1; ξ2, t2; . . . ; ξn, tn)dξ1dξ2dξ3. . .dξn: joint probability of finding a series of

values ofξ in the rangesdξ1, dξ2, dξ3, . . ., dξn at timest1, t2, t3, . . ., tn.

3 External noise means fluctuations generated by a stochastic (random) process. The stochastic properties
of random force are well understood.

4 In this dissertation, we interchangeably use the terms stochastic process, stochastic function, random
process, random function, and process.
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The above functions should also obey the following conditions:

• Wn > 0

• Wn(ξ1, t1; ξ2, t2; . . . ; ξn, tn) is a symmetric function.5

• Wk(ξ1, t1; . . . ; ξk, tk) =
R

. . .
R

dξk+1 . . . dξn Wn(ξ1, t1; . . . ; ξn, tn), wherek < n.

2.2.1 Pure Stochastic Processes

A pure stochastic process occurs when two successive processes are not correlated at

all as shown in Eqn. (2.1). This implies that a pure process is a stochastic process without

memory. Pure processes are primarily used in mathematical models and are not typical in

the physical world.

W2( ξ1, t1 ; ξ2, t2 ) = W1( ξ1, t1 ) ·W1( ξ2, t2 ) (2.1)

2.3 Langevin Equation

In 1905, the theory of the Brownian movement was first formulated by Einstein and

Smoluchowski [19, 20]. In 1908, P. Langevin introduced the concept of the equation of

motion of a stochastic variable (i.e. the position coordinate of a Brownian particle). The

Langevin equation [5] was the first example of a stochastic differential equation.6 Langevin

writes the equation of motion for a Brownian particle according to Newton’s second law

5 For a symmetric function the value of the function does not change with an interchange of two of its
arguments: f(a,b) = f(b,a)

6 A stochastic differential equation is a differential equation with a stochastic (random) term. Therefore,
its solution is also a random function.
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with the assumption that a Brownian particle is subject to two forces.

m
d2x(t)

dt2
= − ζ

dx(t)
dt︸ ︷︷ ︸

systematic force: dissipation

+ F (t)︸︷︷︸
stochastic force: fluctuation

(2.2)

Here,m, x, andζ represent the particle mass, displacement, and the friction coefficient,

respectively. The first term (−ζ ẋ(t)7) on the right-hand side of Eqn. (2.2) represents the

viscous drag as a function of time, or dynamic friction. The second termF (t) represents

fluctuations which could be from white noise, or non-white noise8. Since we model phys-

ical noise,non-whitenoise, oroff-whitenoise is used in our investigation. The following

assumptions are made about the fluctuation partF (t):

(1) F (t) is a function of time only, and independent ofx(t).

(2) The variation rate ofF (t) is much faster than the velocity of a Brownian particle,

d x(t)/dt.

(3) 〈 F (t) 〉 = 0

The expressions above define the statistical properties ofF (t). There is a great advan-

tage in using Langevin equation instead of using the more complex Fokker-Plank Equation

(FPE).9 The Langevin’s method is much easier to understand than the FPE since it is based

upon the time evolution of a stochastic variable, whereas the FPE applies to the time evo-

lution of the probability distribution. As such, Langevin equation allows us to forgo the

7 The notations, ˙x andẍ, denotedx/dt andd2x/dt2, respectively.

8 White noiseis noise with a flat frequency spectrum.

9The probability density function is not conserved in the presence of stochastic force, so we can use the
Fokker-Plank Equation for a Brownian particle as follows:

∂P (ξ, t)
∂ t

= α
∂(ξP )

∂ξ
+D

∂2P
∂ξ2 ,

whereP = P (ξ, t), α is an average drift-velocity constant, andD is a diffusion constant.
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calculation of the diffusion coefficient, thus reducing mathematical complexity. In sum-

mary, Langevin equation allows us to build an effective but far more simplified model for

the Booster power-supply noise.

2.4 Markov Processes

Markov processes involve the use ofconditional probability. We define the conditional

probabilityP
(

ξ1 | ξ2, t
)
dξ2 as theprobability that givenξ1 one can findξ in the range

(ξ2, ξ2 +dξ2) at timet later.

W2(ξ1, ξ2, t) = W1(ξ1)P2(ξ1 | ξ2, t) (2.3)

In general, the following conditions need to be satisfied:

P2(ξ1 | ξ2, t) > 0Z
dξ2P2(ξ1 | ξ2, t) = 1

W1(ξ2) =
Z

W1(ξ1)P2(ξ1 |ξ2, t)dξ1


(2.4)

Accordingly, the Markov process is defined as follows [21]:

Pn
(

ξ1 t1, ξ2 t2, . . . , ξn−1 tn−1 | ξn tn
)

= P2( ξn−1 tn−1 | ξn tn ) (2.5)

The form of Eqn. (2.5) implies that all thePn for n > 2 can be derived, when onlyP2 is

known. That is,

Knowledge of the present is sufficient to determine the future.
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2.4.1 Ornstein-Uhlenbeck Stochastic Processes

The O-U process is a Gaussian-Markovian process with an exponentially decreasing

autocorrelation function and a finite autocorrelation time [4].

〈 ξ(t)ξ(t ′) 〉= A2 ·exp(−ωac|t − t ′|), (2.6)

in which ωac is an autocorrelation frequency, andA is a constant. O-U processes are

defined by

W1(ξ1 t) =
1

A
√

π/ωac
·exp

(
−1

2
ξ2

A2/2ωac

)
(2.7)

According to the Doob’s theorem [23], the O-U process is the only stochastic process with

all of the following properties:

(1) Gaussian process

(2) stationary process

(3) Markovian process

In order to construct a simplified stochastic noise model, it is necessary to make the most of

the Markovian property. Of all the stochastic processes, the Ornstein-Uhlenbeck stochastic

process is a convenient choice for modeling Booster noise. In particular, if a process is in-

variant to translations in time (e.g. a shift in time (τ)) then the process is called astationary

process[21,24]. For a stationary process we can make simplifications.

〈 ξ(t1 + τ)ξ(t2 + τ) · · · ξ(tn + τ) 〉= 〈 ξ(t1)ξ(t2) · · · ξ(tn) 〉 (2.8)

whereξ(t) is the stochastic function and〈 . . . 〉 is the statistical average. This above

implies:

(1) Since the underlying mechanisms causing the fluctuations do not change with time,
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the stochastic properties of a stationary process are conserved.

(2) The important parameter in the O-U stochastic process isrelative timeand not the

absolute time.

〈 ξ(t1− τ)ξ(t1) 〉= 〈 ξ(t1)ξ(t1 + τ) 〉 (2.9)

Therefore, the autocorrelation functionΓ(t, t ′) for a stationary process is a function of

|t− t ′| only.

(3) The ensemble average and the time average are the same, which leads to the ergodic

property.

2.5 Color of Noise

White Noise, Non-White Noise, and Colored Noise

In optics, the frequency spectrum of white light is flat. By analogy, the termwhite

noiseis used to describe noise with a flat frequency spectrum. White noise is not typically

present in a real world. Therefore, we can only use white noise in idealized mathematical

models for fast-fluctuating forces. The termcolored noiserefers to noise with a frequency

spectrum which rapidly decreases with increasing frequency. In the following subsections

we discuss some of the important stochastic parameters.

2.5.1 Autocorrelation Function

The mean and the standard deviation of a stochastic variableξ do not provide much

information on the process of interest. We are more interested in a measure of the in-

fluence ofξ(t) on ξ(t + ∆ t). This statistical quantity is referred to asautocorrelation
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functionΓ(t, t +∆t) [25].

Γ( t, t ′ ) = lim
T → ∞

1
T

Z T

0
dt ξ(t)ξ( t ′ ), (2.10)

where 0< t < t ′, andt ′ = t + ∆t. As in Eqn. (2.10), the autocorrelation function is a time

average of a product of stochastic variables att andt ′ over an arbitrary large time T. In the

case of external fluctuations, the variables of interest can vary appreciably for the duration

of the autocorrelation time [26]. Therefore, we consider noise with finite autocorrelation

time to be colored noise. For white noise [21], the autocorrelation function is,

〈 ξ(t) ·ξ(t ′) 〉= A2 ·δ( t − t ′ ), (2.11)

where 0< t < t ′, t ′ = t + ∆t, andδ(t) is the Dirac-δ function. As in Eqn. (2.11), when

a stochastic noise is uncorrelated in time, or the autocorrelation time approaches asymp-

totically to zero (τac → 0), the noise with a very short memory can be treated aswhite

noise. As was mentioned earlier, perfect white noise never occurs in nature, and is only

an idealized mathematical model.Colored noise, on the other hand, has a longer memory

span, so the autocorrelation functionΓ(t, t ′) can be an exponential function of time, but

not δ-correlated.

〈 ξ(t) ·ξ(t ′) 〉= A2 ·Γ( t, t ′ ), (2.12)

wheret ′ = t + ∆t, Γ( t, t ′ ) = exp( -ωac|t - t ′|), andA = SN·ωac = σ.

HereSN is the noise strength, andωac is theautocorrelation frequency(the reciprocal of the

autocorrelation time). The autocorrelation functionΓ( t, t ′ ) can be viewed as a measure

for the rapidity of the fluctuations (the memory time of the stochastic process under study.)

The span of the memory time determines the color of stochastic noise.
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2.6 Stochastic Properties of the Noise

Let us consider a 1st-order linear stochastic differential equation10 of the form of Langevin

equation.

η̇(t) =−ω ·η(t) + ξ(t),

whereη̇ =
dη
dt

, ω = ωac.
(2.13)

As explained in Eqn. (2.2), the second term in Eqn. (2.13) is from external fluctuations.

The fluctuations are external noise with finiteωac, or τac (i.e. O-U noise). Eqn. (2.13) is

Langevin equation, in whichη, ω, andξ are the stochastic function, autocorrelation fre-

quency, and O-U stochastic noise source, respectively. The O-U noiseξ is a function of

time, andω is a constant The autocorrelation function ofξ is given in Eqn. (2.12) for

the case of no spatial dependence. Ornstein and Uhlenbeck [4], Doob [23], and van Kam-

pen [21] use the integration method to find the statistical properties of colored noise, or

non-white noise from Langevin equation. We, on the other hand, solve Langevin equation

as a 1st-order differential equation. The general solution of a 1st-order inhomogeneous dif-

ferential equation is a linear superposition of a homogeneous solution (ηh) and a particular

solution (ηp).

η(t) = ηh(t)+ηp(t) (2.14)

A homogeneous solution for the differential equation (DE) is,

ηh(t) = η(0) ·exp(−ω t), (2.15)

A particular solution for the DE is:

ηp(t) = exp(−ω t) ·
Z t

0
ds·exp(+ω s) ·ξ(s) (2.16)

10 A stochastic differential equation is a differential equation in which the coefficients are random func-
tions of the independent variable, usually time.
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Hence,

η(t) = ηh(t)+ηp(t)

= η(0) ·exp(−ω t)+exp(−ω t) ·
Z t

0
ds·exp(ω s) ·ξ(s)

= η(0) ·exp(−ω t)+
Z t

0
ds·exp[−ω(t−s)] ·ξ(s)

(2.17)

From here, the stochastic process at the next time stept +∆t can be obtained.

η(t +∆t) = η(0) ·exp[−ω(t +∆t)]+
Z t+∆t

0
ds·exp[−ω · (t +∆t−s)] ·ξ(s)

= exp[−ω∆t] · {η(0) ·exp[−ωt]+
Z t

0
ds·exp[−ω(t−s)] ·ξ(s)

+
Z t+∆t

t
ds·exp[−ω(t−s)] ·ξ(s)}

= exp[−ω∆t] ·η(t)+
Z t+∆t

t
ds·exp[−ω(t + ∆t − s)] ·ξ(s)︸ ︷︷ ︸

H (t, t + ∆t)

(2.18)

Let H (t, t + ∆t) be the second term of Eqn. (2.18).

H (t, t + ∆t) ≡
Z t+∆t

t
ds·exp[−ω(t + ∆t − s)] ·ξ(s) (2.19)

We transform the variables of integration froms ands′ to s̃ ands̃′.

s̃≡ s− tZ t+∆t

t
ds−→

Z ∆t

0
ds̃

 (2.20)

and obtain

H (0, ∆t) =
Z ∆t

0
ds̃·exp[−ω(∆t− s̃)] ·ξ(s̃+ t)

= exp[−ω∆t] ·
Z ∆t

0
ds̃·exp[ωs̃] ·ξ(s̃+ t)

(2.21)



2.6. STOCHASTIC PROPERTIES OF THE NOISE 28

H 2(0, ∆t) = exp[−2ω∆t] ·
Z ∆t

0
ds̃·

Z ∆t

0
ds̃′ ·exp[ω(s̃+ s̃′)] ·ξ(s̃+ t) ·ξ(s̃′+ t) (2.22)

The statistical properties of a random variable can be investigated by the calculations of

various moments.

We calculate the first and the second central moments by averaging Eqns. (2.21) and (2.22)

over an ensemble of particles. The first two moments determine the complete statistical

properties of the noise because it is a Gaussian process. Gaussian white noise has zero

mean. For zero-mean Gaussian, the 1st moment vanishes.

〈 H (0,∆t) 〉= 0 (2.23)

Accordingly, keeping in mind that the O-U process is a stationary process, the 2nd moments

boil down to

〈 (H (0,∆t)−〈 H (0,∆t)〉)2 〉= 〈 H 2(0,∆t) 〉

= exp[−2ω∆t] ·
Z ∆t

0
ds̃

Z ∆t

0
ds̃′ ·exp[ω(s̃+ s̃′)] · 〈 ξ(s̃) ·ξ(s̃′) 〉

= A2exp[−2ω∆t] ·
Z ∆t

0
ds̃·exp[2ωs̃]

=
A2

2ω
· {1−exp[−2ω∆t]}

(2.24)

The O-U noise module can generate stochastic noise with a desired strength according

to the measurements (refer to section 4.3.3). This is done by using a scaling factorχ

to multiply Eqn. (2.24). This module is designed to generate O-U stochastic noiseη(t)

applied to macroparticles as a magnetic field perturbation term:autocorrelation time (τac),

time step (∆t), noise strength (A = σ)
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2.7 Overview of ORBIT/ORBIT-FNAL

The ORBIT/ORBIT-FNAL11 is a modularized C++code. It is mainly designed for

particle injection, tracking and a variety of beam dynamics calculations in high-intensity

proton rings. It is intended for detailed simulation of both realistic machine problems and

of idealized situations. The ORBIT? can track particles in 6D phase space by transporting

herds12 of interacting particles through a series of nodes representing elements, or diagnos-

tic devices in the accelerator lattice. During tracking, the ORBIT? can perform a variety

of actions (transfer matrix operation, space-charge calculations, streaming information to

output files, etc.) on macroparticles at specified nodes around the ring.

2.7.1 Physics Modules and SuperCode Shell

Since ORBIT? is a C++ open source code, it is designed to allow the development of

various programming modules in parallel. Depending on their research interests, module

developers can provide ORBIT? with additional physics modules. Physics modules operate

within the SuperCodedriver shell [27]. The followings can be accomplished with the

interactive programming shell:

(1) To execute interpreted script files as well as compiled physics modules.

(2) To customize simulation sequences within a script.

11 We will refer to ORBIT/ORBIT-FNAL asORBIT? for short.

12 A group of macroparticles is calledherd.
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2.8 Algorithm of the New Noise Module

In addition to 28 existing modules in total13, we add a new Noise module to the ORBIT-

FNAL package. First, the new noise module generates Gaussian white noise directly from

uniform random deviates. Combining this generated Gaussian white noise with inputs of

noise parameters, Gaussiannon-whitenoise can be generated.

2.8.1 Box-Muller-Like Transformation:

Non-White Noise Generation

The Box-Muller method [28,29] is used to generate independent Gaussian random de-

viates from independent uniform random deviates. However, by implementing algorithms

for Eqn. (2.24) in addition to the Box-Muller algorithm, the variant of the method is also

capable of generating exponentially-driven Gaussian colored noise. The method requires

a good uniform random number generator to generate independent uniformly-distributed

random numbers. First, a pair of random numbers between 0 and 1 is generated. As shown

in Figure 2.1 (a),α1 andα2 are independent random variables from the same rectangular

probability density function on (0, 1). Consider the random variables

β1 = (−2lnα1)
1
2 ·cos(2πα2)

β2 = (−2lnα1)
1
2 ·sin(2πα2)

 (2.25)

The coordinates of (β1, β2) are a pair of independent random variables from the same

normalized Gaussian distribution of zero mean. Becauseα1 andα2 are chosen in between

0 and 1, their logarithmic values are negative. The minus sign is thereby introduced to make

the argument positive inside the square root in Eqn. (2.25). The joint probability-density

13 We build ORBIT-FNAL from a CVS version of ORBIT of SNS dated December 2005
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function ofβ1 andβ2 are:

F (β1,β2) =
1
2π

·exp
[
−1

2
(β1

2+β2
2)

]
=

1√
2π

exp
[
−β1

2

2

]
· 1√

2π
exp

[
−β2

2

2

]
= F (β1) ·F (β2)

(2.26)

We just verified that the random variables (β1, β2) are independent. We can speculate

(a) unit square (b) unit circle

Figure 2.1: Box-Muller transformation

further that the probability density functionF (β1,β2) is constant on an unit circle. Also, a

random angle ofθ, which is uniformly distributed in the interval (0, 2π), can be defined as

below:

θ = arctan(β1/β2) (2.27)

As illustrated by Figure 2.1 (b), we define R2 as squared length of a radius as in Eqn. (2.28).

TheR2, which is a random number within a unit circle, can be used forα1, or α2 within a
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unit square.

R2 def= β2
1 +β2

2 (2.28)

As long as the value of R2 lies in the range of (0, 1), i.e., within a unit circle centered around

the origin, the pair of random deviates (β1 and β2) define the coordinates of a point inside

the unit circle. It is convenient to use three random deviates (β1, β2, and R) in place of the

trigonometric functions:

cosθ = β1/
√

R2

sinθ = β2/
√

R2

 (2.29)

From here, a pair of new random deviates (γ1 andγ2) can be defined:

γ1 =
β1√
R2
·
√
−2· lnR2

γ2 =
β2√
R2
·
√
−2· lnR2

 for white noise (2.30)

The above is for the case ofwhite noise. In the case ofnon-white noise, or colored noise

the second moments ofH (t, t +∆t), which has already been derived as in Eqn. (2.24), are

inserted inside the square root as follows:

γ1 =
β1√
R2
·
√
−2· 〈 H 2 〉 · lnR2

γ2 =
β2√
R2
·
√
−2· 〈 H 2 〉 · lnR2

 for non-white noise, or colored noise (2.31)

We can view what is derived in Eqn. (2.31) as the 2nd moments ofH (t, t + ∆t) mounted

on a carrier of the white-noise generator. Consequently, depending on the values of au-

tocorrelation time and time step, the module is fully capable of generating a wide spectra

of stochastic noise, ranging from white noise, near-white noise, off-white noise to colored

noise.
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2.8.2 Next Step

In the end, two Gaussian random deviates (γ1 and γ2) are obtained from two input

uniform deviates. In order to generate exponentially-driven Gaussian noise, the exponential

factor exp(−ω∆t) is first multiplied by the stochastic noiseη(t) at present timet. Then a

rms (root-mean-square) value ofH (0,∆t) is added to compute the noise at the next time

stept + ∆ t, as redescribed in Eqn. (2.31). The form of Eqn. (2.18) implies that to generate

η(t + ∆t), one needs to knowη(t) only. This takes advantage of the powerful Markov

property of the O-U process.

η(t +∆t) = exp(−ω ∆t) ·η(t)+Cw ·
√
〈 H (t, t +∆t)2 〉

= exp(−ω ∆t) ·η(t)+Cw ·
√
〈 H (0, ∆t)2 〉︸ ︷︷ ︸
γ1, or γ2

.
(2.32)

HereCw represents random deviates from a rectangular distribution, (or white noise). The

second term on the right-hand side of Eqn. (2.32) corresponds to the Eqn. (2.31).

2.8.3 Class Hierarchy

When adding a new module to the ORBIT-FNAL we need to pay attention on the class14

design. New noise-related classes created in the module need to fit into the existing class

hierarchies of the entire package. A lot of effort goes into the class design for this noise

module. Consequently, the new noise module is simple and effective, and is capable of

generating a broad spectrum of stochastic noise. Figure 2.2 illustrates the class hierarchy

of the noise module. There are four new methods implemented in the noise module:

(1) The addRandomNoiseNodefor inserting a noise node at a desired location around a

ring. The noise adder location is where the noise source is located. In the case of the

14In C++language, a class is a user-defined type. It contains member functions, or methods that manipu-
late data members declared inside a class.
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Figure 2.2: The class hierarchy in the Noise module:base class→ derived class

Booster, the source of noise is taken to be one of the Booster power supplies. (2) The

showNoise()method, which is for streaming the primary input noise parameters (autocor-

relation time, time step, and noise strength) and the secondary parameters, such as node

order, noise color (white, or non-white), etc. (3 and 4) noise-node activator and deactiva-

tor methods. These methods are available for use in a SuperCode script. Excerpts from the

Noise module descriptor file,Noise.modare shown in Figure 2.3.
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Figure 2.3: The methods implemented in the Noise module descriptor file

Figure 2.4 is a schematic showing the interconnection between Physics Modules and

the SuperCode Shell.

2.8.4 Features of the New Noise Module

Key features of the new Noise module are listed below:

(1) The new module is configured to generate a broad spectra of stochastic noise per user

input. (autocorrelation time, time step, andnoise strength)

(2) The module enables statistical properties of the random noise to be controlled via input

script file.

(3) The module is completely parallelized with the Message-Passing Interface (MPI).

(4) The module calculates a suite of beam diagnostic calculations:transverse rms emit-

tances, longitudinal rms emittance, transverse actions, longitudinal action, halo am-

plitudes, position amplitudes, and angle amplitudes.
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Figure 2.4: Connections between Physics Modules and SuperCode Shell: the items in dark
blue are new parallelized calculations implemented in each module.
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2.9 Method of Applying Noise to Macroparticles

In ORBIT?, a few different methods are available for reading in the lattice information

such as Twiss functions15 and transfer maps that are computed by MAD16 [30]. One of the

methods,buildTPlattice(. . .) , is for reading in a TEAPOT17-style lattice18 [31].

We first convert to a TEAPOT-style lattice from the MAD design lattice of the Booster

with the aid of SNS/ORNL’s Python scripts. During the course of converting the lattices

from one format to another, we are able to understand the new structure of the TEAPOT-

style lattice. We then upgrade the lattice-reading method tobuildTPlatticeI(. . .) accord-

ingly, such that the TeaPot module can fully understand the Fermilab’s Booster lattice in

TEAPOT format.

2.9.1 Internal Algorithm

The following steps describe how the upgraded TeaPot module applies stochastic noise,

generated from the Noise module, to macroparticles.

(1) The new method ofVoid buildTPlatticeI (. . . ) reads in lattice elements and their at-

tributes (length, magnet-face angles, field gradient, etc.) line by line.

(2) To each of the main gradient magnets of the Booster, one Booster power supply19 iden-

tifier is assigned. (iGMPS= 1, 2, 3, 4)

15When a beam is propagated through a series of magnets, its phase-space ellipse changes, keeping the
area preserved. The Twiss functions, or Twiss parameters (β, α, γ) characterize the orientation and shape of
phase-space ellipse.

16 MAD (Methodical Accelerator Design) is an accelerator-design tool for charged-particle optics in
alternating-gradient accelerators and beamlines.

17TEAPOT is an accelerator-modeling code handling all beamline elements as thin elements except for
drift. Upon reading a lattice file, TEAPOT converts all thick elements (lenses) to thin elements.

18A TEAPOT-style lattice is a lattice file containing all information of beamline elements written in
TEAPOT syntax.

19 GMPS (Gradient Magnet Power Supply)
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(3) After reading through the line for each individual main gradient magnet,kml, pole, and

skewvalues defined below are determined:

(a) kml: integrated multipole gradient

(b) pole: number of poles (dipole=2, quadrupole=4, sextupole=6, etc.)

(c) skew: skew index

(4) Sum up the magnetic field gradients of all orders.

(5) Reading in Twiss functions from the MAD calculation outputs.

(6) According to the sum of magnetic field gradients in all combinations, the type of each

magnet is determined. The types of the magnet element available in the module are:

(a) multipole (Mult)

(b) combined-function multipole (MultCF)

(c) bend (Bend)

(d) combined-function bend (BendCF)

(e) quadrupole (Quad)

(f) combined-function quadrupole (QuadCF)

(g) solenoid (Soln)

(h) kicker (Kick)

The names specified in the parentheses above are variable names used to represent the

type of each magnet element in the module. If the magnet-field gradient is set to zero,

then a magnet element is handled as adrift element.

(7) Insert a TeaPot-style magnet node that is determined in the previous step to which

the corresponding magnet is.All of the new TEAPOT-style magnet-node adders take
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one independent stochastic noise generator implemented in the new Noise module.

One noise generator is invoked by the associated GMPS identifier.We create and

incorporate the additional methods for the Booster lattice into the TeaPot module as

shown in Figures 2.5 and 2.6. For the Booster design lattice (version 1.1), all elements

are categorized into the following choices only:

Drift, Bend, BendCFand Mult

By means of providing the number of tracking steps for each type of magnet element,

the TeaPot module performs symplectic tracking, breaking up each element into shorter

lengths. The hard-edge fringe-field effects of the magnet elements are included. At the

location of each TeaPot node, the magnetic field gradient is perturbed by the amount of

input noise with a specified magnitude. Because current fluctuations are directly pro-

portional to magnetic-field fluctuations, the current ripple measurements are translated

into field fluctuations as in Eqn. (2.33).

K̃imag = Kimag+∆Kimag = Kimag·
(

1+∆K /Kimag

)
(2.33)

In the Booster design lattice, focusing and de-focusing gradient magnets have different gra-

dient strengthsK (KD, orKF ). The gradient strength20, (K ) is factored out to normalize∆K

with its own gradient strength. Then, the fluctuation of gradient strength arising from cur-

rent fluctuation is introduced as a perturbation term for each magnetic field calculation. As

a consequence, macroparticles will experience perturbed fields as they propagate through

each main gradient magnet element. It should be pointed out that a string of 24 gradient

magnets in a quadrant of the entire magnet system are connectedin series. (cf. chapter

3). As such, the field fluctuations due tocurrentfluctuations, or ripples, are preserved; that

is, there is no current attenuation.

20 KF = -0.0577069 andKD = 0.0542195 (1/m2).
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(a) Method for constructing a TeaPot-style lattice

(b) Method for inserting a TeaPot-style Bending magnet with a noise source

(c) Method for inserting a TeaPot-style Quadrupole magnet with a noise source

Figure 2.5: New TeaPot-style magnet-node adders to a ring (I)
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(a) Method for inserting a TeaPot-style Combined-Function Quadrupole
magnet with a noise source

(b) Method for inserting a TeaPot-style Multipole magnet with a noise source

Figure 2.6: New TeaPot-style magnet-node adders to a ring (II)



Chapter 3
Measurements of Noise Originating from

Booster Power Supplies

In the preceding chapter, we described a theoretical model of stochastic noise that is

implemented in the new noise module of ORBIT-FNAL. In this chapter, we first examine

the Booster Gradient-Magnet Power-Supply System (GMPSS). We then present methods of

measuring and analyzing noise originating from the GMPSS. The stochastic noise model

is then tuned to represent these measurements. In particular, the frequency spectrum of

the measured physical noise is used to tune the Ornstein-Uhlenbeck noise in our model.

Since the Booster power-supply noise is characterized by O-U stochastic noise parameters,

as introduced in Chapter 2, we extracted characteristic noise parameters from a series of

measurements. Consequently, our stochastic noise model provides a realistic representation

of the Booster noise originating from GMPSS.

3.1 Gradient-Magnet Power-Supply System

The Gradient-Magnet Power-Supply System (GMPSS) for the Booster synchrotron

powers a total of 96 main gradient magnets. A resonance system is selected in order to

42
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reduce the size and cost of the power-supply system. The Booster magnet system consists

of 48 LC-resonant magnet cells. Each individual magnet cell consists of a focusing magnet

(F), a de-focusing magnet (D), a choke, and a capacitor bank. Equivalent circuits for each

cell component are drawn in Figure 3.1. In the equivalent circuit, each gradient magnet

(focusing, or de-focusing magnet) is represented by an inductor (L). Figure 3.2 illustrates

the equivalent-circuit arrangement of 96 main gradient magnets and 4 GMPS’. In turn, 48

focusing and 48 de-focusing magnets are connected in series by common buses (front bus

and back bus). The gradient magnets are powered by 4 GMPS’ that are symmetrically

inserted in the LC-resonant system. Each GMPS drives current at a fundamental frequency

of 15 Hz through a string of 12 magnet cells. Hence, the GMPS voltages to ground (V+G

andV−G) can be kept as low as possible.

The GMPSS includes dual three-phase Silicon Controlled Rectifier (SCR) bridges con-

nected in series, and is fed by a 12-phase 13.8-kV bus with shunt (or stray) capacitors con-

nected to ground. A schematic of the SCR module built inside each GMPS unit is drawn

in Figure 3.3. The SCR module generates both AC and DC components of the GMPS cur-

rent as in Eqn. 3.2. Table 3.1 summarizes the structure of the Booster Gradient-Magnet

Power-Supply System.

Table 3.1: The Booster Gradient-Magnet System

Component No.
LC-resonant magnet cells 48
Focusing magnets 48
De-focusing magnets 48
Chokes 48
Capacitor Banks 48
GMPS 4
Gradient Magnets/ cell 2
Choke/ cell 1
Magnet cells/ GMPS 12

In this magnet excitation mode, a sinusoidal-wave current is superimposed on a mean
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current of about 500 A. Figure 3.4(a) shows the current waveform sampled directly from

the main bus line around the GMPS 1 unit. Frequency and period of the current are shown

in the shaded boxes. Figures 3.4(b) and (c) show ACNET (Accelerator Control NETwork)

lumberjack plots of peak current and minimum current. Here, the peak current is 967 (A)

and the minimum current is 103 (A). The DC output of the power supply is filtered with a

L-C network to smooth the differential-mode sawtooth waveform from the power supplies.

An additional magnet, referred to asa reference magnet, is connected in series with the

ring magnets to map and track the magnetic field in the Booster. The rate of change of

the magnetic field, B-dot (Ḃ), can be detected using a B-dot coil located in the gap of

the reference magnet. This B-dot coil samples the magnet-current transductor signal at

its maximum and minimum values. The maximum and minimum values of the magnet

current are set via the control system (B:VIMAX and B:VIMIN) as shown in Figure 3.4.

The Booster operates in fast-cycling mode implemented as a resonant system. The fast-

cycling operation involves a DC-biased sine-wave current at a frequency of 15-Hz. The

sinusoidal ramp of the magnetic field and current are,

B =
∞

∑
i=0

Bi cos(iω t +θi)

= Bdc − Baccos(30π t)

(3.1)

I =
∞

∑
i=0

Ii cos(iω t +θi)

= Idc − Iaccos(2πft)

= 535− 432 cos(30π t) (A),

(3.2)

where dc, ac, and f denote the DC and AC components, and the fundamental frequency of

15 Hz, respectively. Power supplies GMPS 1 and GMPS 2 are located in the West Booster

Gallery, and GMPS 3 and GMPS 4 are located in the East Booster Gallery. Figure 3.5

shows the rack of GMPS 1, GMPS 3 and GMPS 4 units located in the Booster gallery.
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Each of the Booster main magnets both steers (or bends) radially and focuses the beam

in transverse directions. As such, the Booster lattice is unique in that it is composed of

combined-function magnets. The magnets are placed on girders as shown in Figure 3.6(a).

Each magnet girder is composed of a focusing and a de-focusing magnet, a choke, a capac-

itor bank, a corrector package, a Beam-Position Monitor (BPM), and an ion pump.

3.1.1 Choke and Capacitor Banks

A large amount of energy is stored in the magnetic field in the Booster. Therefore,

large capacitor banks with DC chokes to pass the DC current are used. The capacitor banks

and chokes are distributed around the ring. A modular approach is used in which two

magnets together with their resonant capacitor and choke form one LC-resonant cell. A

second winding on each choke is used to provide coupling between resonant cells. The

winding ratio is one to one. Because of resonant system, energy is exchanged between

magnets and the capacitor bank, and the power supply makes up the energy loss in the

system. Hence, distributed capacitor banks and chokes proved to be the most economic

system. The magnitude of DC-biased rms current (Irms, mag) that is transmitted to a string
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of magnets is,

Ĩ2
mag= I2

rms, mag

=
1
2π

Z 2π

0
(Idc+ Iac, magcosθ)2dθ

=
1
2π

Z 2π

0
( 2π · I2

dc+
I2
ac, mag

2

Z 2π

0
(1 − cos2θ)dθ )

= I2
dc+

I2
ac, mag

2

Ĩmag=

√(
I2
dc+

1
2
· I2

ac, mag

)
= 616(A),

whereθ = ω t = 30π t

(3.3)

Choke current can be computed as follows:

LmagImag= LchokeIchoke

Ichoke=
Lmag

Lchoke
× Iac, mag

=
21.4 mH
42.0 mH

×432A

= 220(A)

Îchoke= Idc+ Ichoke= 755(A)

Ǐchoke= Idc− Ichoke= 315(A)

Ĩchoke= Irms, choke=

√
I2
dc +

1
2
· I2

ac, choke

= 557(A)

(3.4)
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Peak stored energy at each magnet is,

Êmag=
1
2
·LmaĝI

2
mag

=
1
2
· (21.4 mH)(967A)2

= 10.0 (kJ)

(3.5)

Thus, total peak stored energy at all magnets is,

Êmag, tot = 48 × 1
2
·LmaĝI

2
mag

= 480.0 (kJ)
(3.6)

Peak stored energy at each choke is,

Êchoke=
1
2

LchokêI
2
choke

=
1
2

(42.0 mH)(220 + 535A)2

= 12.0 (kJ)

(3.7)

Therefore, total peak stored energy at all chokes is,

Êchoke, tot = 48 × 1
2

LchokêI
2
choke

= 576.0 (kJ)
(3.8)

Table 3.2 summarizes the calculations that are associated with the LC-resonant cell. Two

magnet girders form one of twenty-four superperiods of the Booster. Figures 3.6 (b) and

(c) show tapered pole faces of a combined-function magnet when its physical aperture is

viewed from the beam direction.
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Table 3.2: Magnet Resonant Cell Components

LD−mag (D-magnet inductance) 10.7 (mH)
LF−mag (F-magnet inductance) 10.7 (mH)
Lchoke (choke inductance) 42.0 (mH)
Idc (DC-bias current) 535 (A)
Îmag (maximum magnet current) 967 (A)

Ǐmag (minimum magnet current) 103 (A)
Iac, mag (amplitude of magnet current) 432 (A)
Ĩmag (rms magnet current) 616 (A)
Îchoke (maximum choke current) 755 (A)
Ǐchoke (minimum choke current) 315 (A)
Ĩchoke (rms choke current) 557 (A)
Iac, choke (amplitude of choke current) 220 (A)
Êmag, tot (peak total energy at magnets) 480.0 (kJ)

Êchoke, tot (peak total energy at chokes) 576.0 (kJ)
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(a) 15-Hz Current waveform at GMPS 1

(b) minimum current (B:VIMIN) (c) maximum current (B:VIMAX)

Figure 3.4: ACNET (Accelerator Control NETwork) lumberjack plots of the Booster
GMPS currents. The ACNET device name is indicated on the left-hand side of
(b) and (c).

(a) GMPS rack (b) GMPS 3 and GMPS 4

Figure 3.5: GMPS units
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(a) Two Booster combined-function magnets on a girder

(b) physical aperture (c) Cross-sectional view of a F-magnet [14]

Figure 3.6: [(a)] Focusing and de-focusing magnets with capacitor banks on a girder;
[(b) and (c)] When viewed from the beam direction, tapered pole faces for
a combined-function magnet are shown.
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3.2 Noise Classification

3.2.1 Electromagnetic Interferences

Electromagnetic interference (EMI) [32] noise results from rapid changes in voltage

and current in a power supply. EMI noise transmissions are characterized as eitherradiative

or conductive. Conductive EMI noise, such as differential-mode (DM) and common-mode

(CM) noise, is usually several orders of magnitude higher than the radiative EMI and can

be more harmful. The differential-mode voltage (VDM) can be measured between source

lines, whereas the common-mode voltage (VCM) is measured between the power lines and

ground. Common-mode voltage fluctuations induce common-mode current, in addition to

the inherent current ripples arising from sudden potential changes in the power-supply sys-

tem. The EMI problem is thereby worsened and could result in larger current fluctuations,

or the system damage.

3.2.2 Common-Mode Noise and Differential-Mode Noise

The differential-mode noise is smoothed by a 15-Hz low-pass filter in each GMPS unit.

Therefore, only the common-mode noise is of concern in the Booster power and magnet

systems. As illustrated by Figure 3.7, if common-mode noise appearing on the ground line

is not sufficiently smoothed, it could have significant effects on the system. The common-

mode voltage (VCM) and differential-mode (VDM) voltage are calculated as follows:

VCM = V+G +V−G

VDM = V+G−V−G

 (3.9)
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Figure 3.7: Common-mode current and differential-mode current at the Booster GMPS

3.3 Measurement Techniques and Analysis of Common-

Mode Noise

The waveforms of bothV+G andV−G signals are measured at the two leads (terminals)

on the GMPS control rack. The common-mode noise and differential-mode noise are cal-

culated using the math-function keys available on the oscilloscope1. As shown in the

Figure 3.8, the waveforms ofV+ to ground (V+G) and the inverted voltage ofV− to ground

(-V−G) are overlaid (for easy comparison) on the same time scale. The waveforms ofV+G

andV−G should be 180 degrees out of phase. However, we see phase lags between the two

waveforms (V+G andV−G) as shown in Figure 3.8. In this experimental measurement, the

invertedV−G is first measured, and then subtracted fromV+G to obtain theVCM waveform.

For the calculation of differential-mode voltage (VDM), we add upV+G andV−G without

1The model name of the digital oscilloscope [33] used for the measurements is Agilent 54622A, and the
part number 54622-97014.
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inversion. Figures 3.10 and 3.11 showV+G, V−G, and well-smoothed differential-mode

noise at each GMPS. Figures 3.8 through 3.24 are image files saved directly from the os-

cilloscope at the time of the measurements. As indicated on the upper frame of each display

window shown in Figures 3.8 and 3.9, the voltage divisions are set to 500 mV/div and the

sweep speed is set to 20 ms/div. Figures 3.12, 3.13, 3.14, and 3.15 show the impulses of

power spectra from a Fourier analysis displayed against theV+G andV−G waveforms over

9 cycles. Here, 9 cycles correspond to the duration of 0.6 second.

Peak-to-peak measurements quantify the potential differences and phase lags between

two signals. Potential differences are displayed in Figures 3.16 through 3.19. Phase lags

are shown in Figures 3.20 through 3.23. We calculate the fractional difference in ampli-

tudes (| ∆V
V |) by taking the difference betweenV+G and invertedV−G and dividing byV+G.

Figures 3.16 through 3.19 show that there are substantial potential differences inV+G and

V−G for each GMPS. The built-in cursor function is used to measure the phase lag between

the two waveforms as shown in Figures 3.20 through 3.23. For GMPS 1, there is a phase

lag of 0.6 msec betweenV+G andV−G, and the amplitude ofV−G is about 20 % larger than

V+G. For GMPS 2, the phase lag is about 4 msec, and the fractional potential difference

is 47.4 %. We find that the phase lag and potential differences for each GMPS unit is

different. Table 3.3 summarizes the potential difference and the phase lag measured for

individual GMPS units.

Table 3.3: Difference in voltage amplitudes and phase lag at each GMPS

GMPS No. V+G (V) V−G (V) | ∆V
V | ∆X(msec)

GMPS 1 1.577 1.905 20.8 % 0.6
GMPS 2 3.232 1.699 47.4 % 4.0
GMPS 3 1.598 1.740 8.9 % 1.4
GMPS 4 1.581 1.743 10.2 % 4.6

In summary, the following are the two primary sources of common-mode noise:
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(1) phase lags (∆X) betweenV+G andV−G

(2) amplitude (potential) difference betweenV+G andV−G

Because of the common-mode noise, whenV+G andV−G are added (point-by-point) on

the scope, they do not cancel out each other. The ripples on each waveform add up and the

common-mode voltage stands out.

Figure 3.24 shows the current ripples measured on the main magnet bus running through

GMPS 1. Because the current signal is small, transducer electronics and a current amplifier

(TA22 Texas Instruments) are used to amplify the signals so they can be observed with

an oscilloscope. In comparison, Figure 3.25 shows the power spectrum of the O-U noise

generated from the new noise module of the ORBIT-FNAL package. We note that the

power spectrum of the modeled noise closely matches that of real noise. As shown in Fig-

ure 3.24, the power spectra of the current in the common bus are exponentially attenuated

above the 15-Hz resonance frequency domain. This illustrates that the bus current contains

non-white, or off-whitenoise.

3.3.1 Power Spectra of Noise: FFT Analysis

The measured common-mode voltages from all four GMPS units and the current signal

with ripples for GMPS 1 are Fourier-analyzed. To providereal-timeproof of the presence

of offending interference in the power-supply system, all the signals are analyzedon the fly

without being transported to any commercial software for the post-measurement analysis.

We are able to perform thereal-time analysis with the aid of the built-in FFT-function

feature on the scope in use. The Figures 3.8 through 3.24 are the real-time graphics saved

on the scope. The resolution of a resonant peak, or FFT bin size, is determined by the FFT

sampling rate and the number of points. The number of points on the scope that we use

is fixed at 2048. As such, the FFT sampling rates and the span of the frequency domain
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are controlled in accordance with the Nyquist sampling theorem. In addition, in order to

increase the resolution at the frequency peak, the Hanning window is selected over a flat-

top or a rectangular window. The following is a list of the FFT settings that we use on the

scope:

(1) FFT Sampling Rate,fs = 3.53 kSa/s

(2) FFT bin size,∆ f = 1.04 Hz

(3) Frequency-domain span = 1.67 kHz

(4) Horizontal scale = 167 Hz/div

(5) Vertical scale = 20 dB/div

According to the Nyquist sampling theorem, the oscilloscope that we use determines FFT

sampling rate from the chosen span of Frequency domain.

3.4 Equivalent Circuit Model

To find out whether there are any offending resonances floating around the Booster

magnet system, serving as noise amplifiers, the equivalent circuit modeling is also carried

out. Since a string of 24 magnets in a quadrant of the Booster magnet system are connected

in series, they are treated as a transmission line. We employed the B2 SPICE [34] A/D

Version 4, which is one of many versions of commercial SPICE simulators. Figure 3.26

shows the results of AC analysis of the equivalent circuits. The current is peaked at 15

Hz and a cluster of minor peaks are found in a few kHz range. It is suspected that the

offending resonances above 15 Hz, in higher frequency region, could amplify the offending

noise, when the noise frequencies coincide with those of resonances. The presence of the

resonances will enhance the formation of beam halo, eventually resulting in beam loss.
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Figure 3.8: The waveforms ofV+G and invertedV−G. Progressing from top to bottom,
each waveform shown on the oscilloscope display corresponds to GMPS [1]
through GMPS [4]. As indicated on the upper edge of each display, the voltage
division is set to 500 mV/div and sweep speed to 20 ms/div.
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Figure 3.9: The waveforms ofVCM are plotted against those ofV+G and invertedV−G.
Starting from top to bottom, each display corresponds to the GMPS [1] through
the GMPS [4]
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Figure 3.10: The upper waveform is differential-mode voltage (VDM). A pair of lower
waveforms areV+G and V−G. [Upper Figure] GMPS 1; [Lower Fig-
ure] GMPS 2

Figure 3.11: [Upper Figure] GMPS 3; [Lower Figure] GMPS 4
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Figure 3.12: [GMPS 1] [top] The waveform ofV+G and FFT power spectra; [bottom] The
waveform of invertedV−G and FFT power spectra

Figure 3.13: [GMPS 2] [top] The waveform ofV+G and FFT power spectra; [bottom] The
waveform of invertedV−G and FFT power spectra; The first resonance peak
in lower frequency domain is located at 15 Hz.
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Figure 3.14: [GMPS 3] [top] The waveform and power spectra ofV+G; [bottom] inverted
V−G

Figure 3.15: [GMPS 4] [top] The waveform and power spectra ofV+G; [bottom] inverted
V−G
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Figure 3.16: [GMPS 1] Peak-to-peak amplitudes (Pk-Pk(1) and Pk-Pk(2)) and frequency
of each voltage waveform

Figure 3.17: [GMPS 2] Peak-to-peak amplitudes and frequency of each voltage waveform
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Figure 3.18: [GMPS 3] Peak-to-peak amplitudes and frequency of each voltage waveform

Figure 3.19: [GMPS 4] Peak-to-peak amplitudes and frequency of each voltage waveform
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Figure 3.20: [GMPS 1] phase lag,∆X, is 0.6 ms

Figure 3.21: [GMPS 2] phase lag,∆X, is 4.0 ms

Figure 3.22: [GMPS 3] phase lag,∆X, 1.40 ms

Figure 3.23: [GMPS 4] phase lag,∆X, 4.60 ms
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Figure 3.24: [upper] Current ripples on a linear ramp of the sinusoidal waveform. The
currents are sampled directly from the magnet bus line at GMPS 1. [lower]
FFT impulses and 15-Hz current waveform of one cycle; the horizontal scale
is 167 Hz/div and the vertical scale is 20 dB/div.

Figure 3.25: The power spectra of Ornstein-Uhlenbeck noise is matched close to that of
measured current ripples in Figure 3.24.
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Figure 3.26: [SPICE simulation]: Current vs. Frequency: currents flowing through a string
of 12 magnet cells driven by one GMPS. Progressing from top to bottom, the
lines correspond to magnet cell [1] through magnet cell [12].



Chapter 4
Impact of GMPS Current Fluctuations on

the Booster Beam

In previous chapters, we constructed a realistic stochastic noise model of the Booster.

Here, we present and discuss a variety of beam dynamics calculations to investigate adverse

(but unavoidable) impact of GMPS current fluctuations on the Booster beam. We first

determine values of the stochastic parameters (autocorrelation time, time step, and noise

strength) that characterize the GMPS noise, according to the measurements and analyses

presented in the preceding chapter.

4.1 Determination of Characteristic Noise Parameters

4.1.1 Autocorrelation Time

In our stochastic noise model, the autocorrelation time (τac) represents the memory span

of noise in the physical time scale of interest. For example, in special relativity the Lorentz

factor (β = v/c) is used to represent velocity in units of the speed of light (c)1. By analogy,

1 c = 2.99792458× 108 m/s [36]

69
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in numerical calculations and modeling of stochastic noise the time step (∆t) normalized

by the autocorrelation time (τac) is used to represent a physically meaningful time scale. A

normalized time step (ωac∆t = ∆t/τac) appears in the argument of the exponential function

in Eqn. (2.23). The time step (∆t) that is multiplied by the autocorrelation frequency (ωac)

is in units of the autocorrelation time in our model. Our experimental measurements yield

an autocorrelation time for the GMPS current ripple in the range of a few miliseconds. In

our numerical simulations, this time scale corresponds to about 1,000 tracking turns of the

Booster beam at injection energy.

4.1.2 Time Step

Each GMPS drives current through a quadrant of the entire Booster gradient-magnet

system. A quadrant is a string of 24 main gradient magnets consisting of 12 resonant cells

which are connected in series. Current fluctuation (∆I/I ) originating from each GMPS is

transmitted to all magnets in each quadrant of the ring. Therefore, all of the 24 magnets

experience the same amount of current ripple. In our stochastic noise model, measured cur-

rent ripples transform into induced magnetic field fluctuations (cf. Eqn. 2.33), and impinge

upon a beam, varying at each tracking turn. Hence, the time step, or noise-sampling rate is

chosen to be one revolution time of 2.2µsec at injection energy.

4.1.3 Noise Strength

According to the measurements of amplitude of current ripples (∆I/I ), as shown in

Figure 3.24, the strength of the Booster GMPS noise is on the order of 10-4. Figure 4.1 (a)

illustrates how we calculate the amplitude of current ripples sampled from GMPS 1. The

deviation of actual current from the base current, or reference current, is measured. Each

of four random noise nodes inserted in the Booster ring generates independent stochastic

noise. The histograms of noise amplitudes in Figure 4.1 (b) are from each of four random
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noise nodes. To verify that the noise module generates the O-U stochastic noise with de-

(a) Current ripples on a sinusoidal ramp (b) Histogram of noise amplitudes at each ran-
dom noise node; RMS value of each distribution
is on the order of 10−4

Figure 4.1: Histogram of noise amplitudes

sired strength, rms values are calculated from each histogram of noise amplitude as shown

in the statistics box of Figure 4.1 (b). For the purpose of module verification, sample paths2

are plotted in Figure 4.2 with different autocorrelation time (τac) ranging from one revo-

lution period (T0) to 104×T0. As described earlier in subsection 4.1.2, the time step is

fixed at one revolution period at the Booster injection energy. Figure 4.2 demonstrates that

the autocorrelation time governs the pattern of sample path. It is therefore evident that

the patterns of all sample paths areirregular andnon-periodic; i.e., indeterministic. As

stated in subsection 4.1.1, the autocorrelation time of∼ 103×T0 is chosen as the Booster

autocorrelation time.

2 In this context, sample path means the O-U noise sampled at each tracking turn.
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(a) τac = 10−3× T0 (b) τac = T0

(c) τac = 10×T0 (d) τac = 100×T0

(e) τac = 103×T0 (f) τac = 104×T0

Figure 4.2: Sample paths of the Ornstein-Uhlenbeck noise over 1,000 tracking turns; the
autocorrelation time (τac) ranges from 10−3× T0 to 104× T0, whereT0 denotes
one revolution period.
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4.2 Simulation Parameters

The salient ORBIT? simulation parameters that are used in common for all Booster

modeling, including space-charge calculations, are listed in Table 4.1 below.

Table 4.1: Salient Booster simulation parameters for ORBIT? runs

No. of Injection Turns 11
No. of Maximum Macroparticles 330,000
Harmonic No. 84
Beam Kinetic Energy at Injection 400.0 (MeV)
Beam Intensity 6.0× 1010 / RF bucket
Transverse Beam Distribution bi-Gaussian
Ring Circumference 474.2 (m)
βx, in j | βy, in j (optics functions at injection) 6.274 / 19.312 (m)
αx, in j | αy, in j -0.122 / 0.024
Dx, 0 | Dy, 0 (dispersion functions) 2.581/ 0.0 (m)
x0, in j | y0, in j (injection beam centroids) 0.0 / 0.0 (mm)
Eo f f set (energy offset) 0.0 (GeV)
∆E / Ekinetic (relative energy spread of injected particles)3 5.1× 10−4

εx, rms, in j | εy, rms, in j (transverse rms emittances at injection) 1.76 / 1.76 (π-mm-mrad)
Vr f (RF voltage) 205.0 (kV/Turn)
W /B (effective beam-pipe radius/effective beam radius) 2.0
Longitudinal Space-Charge Bin No. 32
Transverse Space-Charge Bin No. 64 x 64
Smoothing Parameter ∼ 10-4

Min. No. of Particles/ Longitudinal Space-Charge Bin 16
Min. No. of Particles/ Transverse Space-Charge Bin 128
No. of Total Tracking Turns 1,000

In this context, when horizontal and vertical emittances of a beam are approximately

equal (εx ≈ εy), the beam is referred to be around beam. We make a careful choice of

simulation parameters according to the latest measurements and actual machine operation

3 The ORBIT? takes a parameter of energy spread in this way.
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Figure 4.3: ACNET figure of the Booster batch intensity through the entire cycle
(B:CHG0). The vertical scale is in the range of 0 and 10 in units of×1012.

parameters. One example is the Booster beam intensity. What Figure 4.3 shows is an

ACNET snapshot of the Booster batch intensity throughout a cycle. Upon completing

injection process, the batch intensity amounts to about 5× 1012 protons. Unless stated

otherwise explicitly, we inject idealround beamswith axisymmetry into the Booster ring

in all simulations to solely investigate the noise effect, coupled to the space charge, on a

beam. Optics functions (α(z), β(z), and γ(z)) are computed with the Booster lattice using

MAD (version 8.23), prior to ORBIT? simulations. The optics functions at the location

of an injection stripping foil (cf. Figure 1.8 and Table 4.1) are chosen as injection Twiss

parameters (αin j , βin j , and γin j ).
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4.3 Beam Diagnostic Calculations and Tracking Results

4.3.1 Parallelized Calculations

In practice, it is not feasible to simulate and track the same number of particles as in

actual machine operation. As such, we use macroparticles, each of which represents some

fraction of total charge in a machine. Because of statistical fluctuations, it is better to

include a sufficient number of macroparticles in simulation. With fixed space-charge bin

numbers of (64×64)×32, we calculate rms emittances from tracking different numbers of

total macroparticles. As illustrated by Figure 4.4, when the total number of macropaticles

amounts to above 330,000, after injection is complete, the rms emittance values converge

with stability. Therefore, considering computation time and the number of macroparticles

assigned to each space-charge bin, we determine that 330,000 macroparticles are adequate

for our investigation. Hence, each macroparticle represents∼ 105 real particles, or protons.

In order to facilitate tracking of a large number of macroparticles, we implement methods

of parallelizedbeam diagnostic calculations. Most of message-passing interfaces occur

in the transverse space-charge calculations. Herds of macroparticles are gathered from all

running processor nodes, so that the rule of thumb in statistics applies:

The more, the better.

For the Message-Passing Interface (MPI) library, we install the Local Area Multi-

computer (LAM) [37] version 7.1.1 under the Scientific Linux Fermi LTS release 4.4.

Macroparticle-tracking and beam-diagnostic calculations are conducted from production

runs on two local clusters at Fermilab;
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The first cluster is 2.8-GHz Pentium 4 Processors with a Myrinet network fabric, and

the second cluster is single 3.2-GHz Pentium 640 processors with an Infiniband fabric. The

processors on both of the two clusters have an 800-MHz front side bus (FSB)4. The node

performances are 1400 Megaflops5/node and 1729 Megaflops/node, respectively [38,39].

Figure 4.4: RMS emittances with a varying number of total macroparticles and fixed
space-charge bin numbers; progressing from top to bottom, each trace corre-
sponds with 11,000, 33,000, 110,000, 330,000, and 1,100,000 macroparticles
in total.

4 The front side bus (FBS) connects the processor (CPU) to the system memory. The faster the FSB is
the faster data can be transferred to the CPU.

5 A Megaflop is a measure of a computer’s speed expressed as a million floating-point operations per
second.
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4.3.2 Statistical Emittance: RMS (Root-Mean-Square) Emittance

In computational accelerator physics, the statistical emittances, orrms emittancesare

commonly used as a primary beam-diagnostic calculation. The transverse injection co-

ordinates in the ORBIT? are defined in real (physical) space as a function of azimuthal

coordinate (z). Hence, the horizontal coordinates include the effects of horizontal disper-

sion (Dx0(z)). On the other hand, no dispersion effect is included in the vertical coordinates

because vertical dispersion (Dy0(z)) is zero in the design lattice. Consequently, the follow-

ing relations are implicitly reflected in the macroparticle coordinates and the calculations

of rms emittances and moments in ORBIT?.

xr(z) = xβ(z)+Dx0(z) · ∆p
p0

yr(z) = yβ(z)
(4.1)

In Eqn. (4.1),xr(z) andyr(z) denote real-space coordinates, andxβ(z) andyβ(z) denote

betatron coordinates, andDx0(z) andP0 denote injection horizontal dispersion and design

momentum, respectively. The divergence angles, or slopes (x′ andy′) of the beam trajec-

tory are defined as a derivative of transverse position (x, or y) with respect to longitudinal

coordinate (z) as depicted in Figure 4.5. Here, we assume that the transverse momenta (Px

andPy) are much smaller than the longitudinal momentum (Pz) as illustrated in Figure 4.5.

Px,Py � Pz (4.2)

Then, each of the divergence angles can be represented by a normalized transverse mo-

mentum.
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Figure 4.5: Transverse and longitudinal momenta

x′ ≡ dx/dz= vx/vz = Px/Pz≈ Px/Pxz

y′ ≡ dy/dz= vy/vz = Py/Pz≈ Py/Pyz

(4.3)

If we consider two transverse planes ofx−zandy−zseparately as depicted in Figure 4.5,

we can define 2-D total momenta in each plane (Pxz andPyz). For instance, to compute the

horizontal divergence angle (x′), only horizontal and longitudinal momenta (Px andPz) are

included as in Eqn. (4.3). As such, we do not need to consider a 3-D total momentum(
Pxyz=

√
P 2

x +P 2
y +P 2

z

)
: i.e., only total momentum in each transverse plane is needed

for the calculations of each divergence angle. Like in Eqn. (4.1), the injection horizontal

angles of the ORBIT includes a dispersion term.

x′r(z) = x′β(z)+D′
x0(z) ·

∆p
p0

y′r(z) = y′β(z)
(4.4)

whereD ′
x(z) denote the slope of dispersion. The divergence angles are associated with
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transverse momenta as follows:Px = Pz ·x′ = (γβcm0) ·x′

Py = Pz ·y′ = (γβcm0) ·y′
(4.5)

As the ORBIT? employs the 2nd-order central moments6 in the rms emittance calculations,

we need to define the following quantities prior to defining rms emittances.



∆x ≡ x−〈 x 〉

∆y ≡ y−〈 y 〉

∆Px ≡ Px−〈 Px 〉

∆Py ≡ Py−〈 Py 〉

(4.6)

In case of the synchrotron motion,∆E(= E−Es) of energy offset andφ representing RF

phase are used. 

E? ≡ E/(ω0H)

∆E? ≡ E?−E?
s

δE? ≡ ∆E?−〈 ∆E? 〉

∆φ ≡ φ−〈 φ 〉,

(4.7)

with ω0 (= 2π f0) and H being angular revolution frequency and harmonic number, re-

spectively. Note that the normalization factor of 1/(ω0 H) is introduced to transform

synchrotron (or longitudinal) coordinates into a pair of canonical conjugate coordinates

6 When a mean value of variable is included in moments calculation, it is referred to as central moments.
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(E?, φ). Once we define the 2nd-order central moments7 of each coordinate in the 6-

dimensional space, we define column matricesM2, x M2, y, andM2, z.

M2, x =

∆xβ

∆x′β

 M2, y =

∆yβ

∆y′β

 M2, z =

δE

∆φ

 (4.8)

Here〈 x 〉 and〈 y 〉 are beam centroids and〈 (∆x)2 〉 and〈 (∆y)2 〉 denote〈 (x−〈 x 〉)2 〉

and〈 (y−〈 y 〉)2 〉, which are the 2nd central moments of a beam in each transverse plane.

With the column matrixM2, x, we can define 2× 2 Σ-matrices [11,40,41] in subspaces of

trace space: (xβ, x′β) and (yβ, y′β)

The off-diagonal elements are concerned with the correlation between position and

angle.

Σ(xβ, x′β)≡ 〈M2, xβ ·M
T
2, xβ

〉

=

 〈(∆xβ)2〉 〈∆xβ∆x′β〉

〈∆x′β∆xβ〉 〈(∆x′β)
2〉

 (4.9)

in which M T denotes a transpose matrix ofM .

εx, rms =
√

det Σ(xβ, x′β)

=
√
〈 (∆xβ)2 〉〈 (∆x′β)

2 〉− 〈 ∆xβ∆x′β 〉
2︸ ︷︷ ︸

correlation term

(4.10)

This quantity is also known asunnormalized rms emittance.

In ORBIT?, transverse rms emittances are defined in (xβ, Px/P0) and (yβ, Py/P0) phase

7 When a mean value of variable is included in moments calculation, it is referred to as central moments.
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spaces, following the MAD [30] convention:

Σ(xβ, Px) =

 〈(∆xβ)2〉 〈∆xβ∆Px〉

〈∆Px∆xβ〉 〈(∆Px)2〉

 (4.11)

εx, rms =
1

P0
·
√

det Σ(xβ, Px)

=
1

γβm0c
·
√
〈 (∆xβ)2 〉〈 (∆Px)2 〉−〈 ∆xβ∆Px 〉2, (4.12)

in which the transverse momenta (Px and Py) are normalized by the design momentum

(P0). As was stated earlier, if a unnormalized rms emittance is multiplied by the Lorentz

factors (βγ), it turns into a normalized rms emittance without momentum dependence. Con-

sequently, the trace-space rms emittance and phase-space rms emittance are related as in

Eqn. (4.13) below:

√
det Σ(xβ, x′β) =

1
γβm0c

·
√

det Σ(xβ, Px) (4.13)

The Eqns. (4.8) through (4.16) apply likewise to the vertical plane. As in Eqns. (4.13)

and (4.15), when beam kinetic energy increases the emittance shrinks. This is termed

adiabatic damping. Therefore, to define a truly invariant quantity that is to be preserved

regardless of the change in beam kinetic energy, the momentum dependence needs to be

removed from the emittance quantity. By eliminating the momentum dependence from the

unnormalized rms emittances, we can obtain a true invariant. This quantity is termednor-

malized rms emittance. Under ideal condition, i.e., in the absence of external perturbations,

such as nonlinear space-charge force and of couplings, the invariance of a normalized rms

emittance is to be preserved. In the longitudinal space, the rms emittance can be defined
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utilizing Σ(δE, φ) matrix.

Σ(δE, φ) =

 〈 δE 〉2 〈 δE∆φ 〉

〈 ∆φδE 〉 〈 ∆φ 〉2

 (4.14)

εz, rms =
1

ω0H ·P0

√
detΣ(δE, φ)

=
1

ω0H · γβm0c
·
√
〈(δE)2〉〈(∆φ)2〉−〈 δE∆φ 〉2

(4.15)

It should be noted that we employ conjugate longitudinal coordinates of
(

E/(ω0H), φ
)

.

The energy normalization factor of 1/(ω0H) is taken outside of the square root.



εx, n, rms = (βγ) · εx, rms

= (βγ) ·
√
〈(∆xβ)2〉 · 〈(∆x′β)

2〉−〈 ∆xβ∆x′β 〉2

= 1
m0c ·

√
〈(∆xβ)2〉 · 〈(∆Px)2〉−〈 ∆xβ∆Px 〉2

εy, n, rms = (βγ) · εy, rms

= (βγ) ·
√
〈(∆yβ)2〉 · 〈(∆y′β)

2〉−〈 ∆yβ∆y′β 〉2

= 1
m0c ·

√
〈(∆y)2〉 · 〈(∆Py)2〉−〈 ∆y∆Py 〉2

εz, n, rms = (βγ) · εz, rms

= 1
ω0H·m0c ·

√
〈(δE)2〉〈(∆φ)2〉−〈 δE∆φ 〉2

(4.16)

It is of practical help to bear in mind that for a proton beam at 400 MeV the value of

the Lorentz factor (βγ) is approximately 1.0, such that we can use the unnormalized rms

emittance and the normalized rms emittance with no distinction for the Booster beam at

injection energy. As a reference, the value of the Lorentz factor (βγ) at extraction energy

(8.0 GeV) is about 10.0. The units of emittance measurement areπ-mm-mradat Fermilab.
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By convention at Fermilab, beam emittances containing 95 % of the total particles are

commonly used:

εx, 95, rms≈ 6· σ2
x

βx
= 6· εrms (4.17)

This can be derived from Gaussian probability density distribution [42]. In summary, in

the case of a Gaussian beam, normalized rms emittances can be calculated as follows:ε n, rms = (βγ) · εrms

ε n, 95, rms ≈ 6· (βγ) · εrms,

(4.18)

in which 95, n, andrmsstand for 95 %, normalized, and root-mean-square, respectively.

4.3.3 Moments

In addition to the rms emittances, moments calculations are used to understand the

time evolution of rms beam sizes, or rms beam widths in transverse planes. Since it is

necessary to consider beam centroids (〈 x 〉 and〈 y 〉) in calculations, ORBIT? employs

central moments calculations. For the 1st moment calculations, because the central moment

calculation vanishes, instead we use beam centroids itself (〈 x 〉 and〈 y 〉) in each plane as

in Eqn. (4.19). It is assumed that the density profiles of a beam in transverse planes are

bi-Gaussian. We first inject a bi-Gaussian beam. Then, rms beam sizes (1σ) are obtained

from the 2nd moments calculation:

1st moments

〈 xr 〉

〈 yr 〉
(4.19)

2nd moments

σ2
x = 〈 (∆xr)2 〉

σ2
y = 〈 (∆yr)2 〉

(4.20)
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Moments of order higher than two are usually referred to as high-order moments.

4.3.4 Actions

Through action-angle transformation, the phase-space area (A) enclosed by the invari-

ant torus, or a closed phase-space curve [43] is equal to 2π times invariant action (J ):

Ax, y =
I

P (E, q)dq=
Z 2π

0
dθJx, y = 2πJx, y (4.21)

with q, P , E, θ, andJx, y being denote generalized transverse coordinates, conjugate mo-

menta, energy, angle, and transverse actions, respectively:

Az =
I

φdẼ =
Z 2π

0
dθJz = 2πJz, (4.22)

whereẼ is E/hω0, andφ andJz denote RF-phase angle and longitudinal action, respec-

tively. We define conjugate phase-space coordinates (x, Px) and (y, Py) as below:

Px ≡ αxx+βxx′

Py ≡ αyy+βyy′,
(4.23)

in whichx andy denote horizontal and vertical coordinates, andx′ andy′ denote horizontal

and vertical divergence angles, respectively. The Courant-Snyder invariant (Ics) [44] and

the action (J ) in phase space are related through the Courant-Snyder parameters (α, β, and

γ): ICS, x = x2 +(αxx+βx x′)2 = x2 +P 2
x = 2βx Jx

ICS, y = y2 +(αyy+βy y′)2 = y2 +P 2
y = 2βy Jy

(4.24)

J =
1
2π

·A (4.25)
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Let us define normalized phase-space coordinatesη andξ:

η ≡ x/
√

βx

ξ ≡
√

βx ·Px

(4.26)

Then, η2 + ξ2 = 2Jx is a circle with a radius ofR of
√

2Jx on the normalized phase space.

If we average the normalized coordinates over all macroparticles,〈 η2 〉 = 〈 ξ2 〉 = 〈 Jx 〉 = R 2/2 .

Therefore, a rms emittance is equivalent to 2 times average actionJx:

εx, rms = Acircle/π = 2· 〈 Jx 〉 (4.27)

The action can be a single-particle emittance in phase space. The average action of macropar-

ticles of a beam is thus considered to be a physical quantity comparable to the rms emittance

of a beam. The ORBIT? is now capable of performing parallelized calculation of average

actions at each tracking turn. Therefore, the action calculations can be cross-checked to

rms emittance calculations.

4.3.5 Longitudinal Space-Charge Calculations

Particle acceleration and longitudinal focusing take place at RF cavities. The transfor-

mation of longitudinal coordinates (∆E, φ) from one RF cavity (n) to the next cavity (n+1)

is carried out at RF cavity nodes:

∆En+1 = ∆En + eVr f

Ncav
(sinφn−sinφs)

φn+1 = φn + 2πηH
Ncavβ2Es

∆En+1,

(4.28)
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in whichη, H, φs, Vr f , Ncav, andEs are slip factor8, harmonic number, synchronous phase,

RF voltage, the number of RF cavities, and synchronous energy, respectively. At the loca-

tion of a longitudinal space-charge node, the effect of longitudinal space charge is applied

as a series of energy kicks, or momentum kicks. The energy kick, or additional energy gain

due to space charge is applied when macroparticles pass through RF cavities:

∆En+1 = ∆En +
eVr f

N
(sinφn − sinφs) +

eVsc

N
, (4.29)

in whichVsc is total space-charge voltage seen by particles in a beam.

In ORBIT? simulation, a longitudinal space-charge node first carries out binning the

macroparticles in longitudinal direction. After binning the longitudinal beam profile, the

node performs the calculation of space-charge potential (Vsc) with respect to their RF phase

coordinateφ in order to obtain line density (λsc) and bunching factor (Bf ):

Bf =
〈 λsc 〉

λ̂sc
, (4.30)

where〈 λsc 〉 andλ̂sc denote average line density and peak line density, respectively. As-

suming that a perfectly conducting smooth wall, the longitudinal space-charge field is as-

sociated with the line density gradient by

Esc =− q
4πε0

g0

γ
dλsc

dz
(4.31)

whereq, ε0, g0, andλsc denote charge, permittivity of free space, geometric factor [45],

and line density. The geometry factor (g0) is defined asg0 ≡ 1+ 2ln(W/B) with W and

B being effective beam-pipe wall radius and effective beam radius. A particle whose local

line density gradientdλsc/dz is subject to a space-charge potential (Vsc) in units of volts

8 The slip factor (η) is a measure of how much off-momentum particles slip in time, or phase relative to
a reference particle. The slip factor can be computed asη≡ 1

γ2
tr
− 1

γ2 , with γtr being transition gamma.
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per turn:

Vsc =
I

dsEs =− q
2ε0

g0R
γ2

dλsc

dz
(4.32)

whereR is the mean radius of the accelerator. When a herd of macroparticles propagate

through at each longitudinal space-charge node,Vsc is calculated from binned particles and

macroparticle information is updated accordingly:

∆En+1 = ∆En +
qVscDsc

2πR
(4.33)

with Dsc being the distance to the subsequent space-charge node. After an energy kick is

calculated for the phase of each macroparticle, the energy kick is applied to each individual

macroparticle. Then, the summation of each individual kick updates the energy spread, or

momentum spread:

∆Esc ∝ Z0 ·
dλsc

dz
1

2γ2(1+2ln(W/B)) (4.34)

in whichZ0, W, andB are free-space impedance, beam pipe radius, and beam radius.

4.3.6 Transverse Space-Charge Calculation: PIC Method

In order to carry out transverse space-charge calculations with drastic reduction of com-

puting time, we choose a macroparticle-tracking approach called Particle-In-Cell (PIC)

method. The PIC method begins first with binning macroparticles to a rectangular grid:

The PIC method superimposes a grid, or mesh on a bunch of macroparticles at each step.

After the binning, the number of macroparticles in each grid cell is counted. Then, the

space-charge force acting on each macroparticle is obtained by summing up the fields from

binned macroparticles representing charges in each grid.

Fsc, x(x, y) = K
N ∑N

1
x − xi

(x − xi)2 + (y − yi)2

Fsc, y(x, y) = K
N ∑N

1
y − yi

(x−xi)2 + (y − yi)2 ,

(4.35)
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in which K is perveance defined in Eqn. (4.36) andN is the number of macroparticles:

K =
q2λscr0

2β2γ3m0
, (4.36)

with r0, β, andγ being a classical radius of proton and the usual Lorentz factors. Once the

transverse space-charge forces are calculated, transverse space-charge angular kicks are

applied to each macroparticle:

∆x′ = Fsc, x ·Lkick ·λsc

∆y′ = Fsc, y ·Lkick ·λsc

(4.37)

with λsc andLkick being local line density and longitudinal length over which angular kicks

are applied. The forces are then applied as a momentum kick, or impulse to each individual

macroparticle. The computing time required for space-charge calculation depends both on

the number of macroparticles and the number of mesh cells, or the fineness of the grid.

While PIC particles are propagated through beamline elements by means of transport maps

provided by the MAD input files (cf. Figure 2.4), transverse kicks are applied to macropar-

ticles. We insert a total of 809 transverse space-charge nodes after each transfer matrix.In

our modeling and simulation, a total of 330,000 macroparticles are binned over 64× 64

node grids for transverse space-charge calculations. For the space-charge calculations,

communications between parallel processors are required. Finally, the method interpolates

the force from the grid back to each macroparticle. In the following subsections, we give

details of what kind of beam diagnostic calculations are available with the ORBIT?. These

diagnostic calculations play a key role of investigating any adverse influences on a beam,

resulting from inevitable machine imperfections.
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4.3.7 Space-Charge Effects in the Booster

One of the main features of ORBIT? is accurate and fast parallelized calculations of

1-D (longitudinal), 2-D (transverse), and 2.5-D (longitudinal and transverse) space-charge

calculations with macroparticles in a ring.

In an effort to reduce space-charge effects, Fermilab linac was upgraded in 1993 from

an energy of 200 MeV to 400 MeV. In Figures 4.6, 4.7, and 4.8, the ORBIT? simulations

demonstrate that after the injection beam kinetic energy was doubled, the space-charge-

induced beam degradations are significantly lowered in the Booster at injection. First,

Figures 4.6 and 4.7 demonstrate that the growths of the 2nd moments are substantially re-

duced by a factor of two at 400 MeV. Second, as illustrated by Figure 4.8, the rms emittance

growths due to the effects of full space charge at 400 MeV over 2 msec are significantly

weakened and reduced by a factor of two as well. Since the space-charge effect is depen-

dent upon beam intensities, the transverse rms emittances grow fast as the beam intensity

increases during the injection process in Figure 4.9. After the injection process is complete,

the transverse emittances tend to flatten out and grow slowly and steadily.
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(a) horizontal 2nd moments

(b) vertical 2nd moments

Figure 4.6: The evolution of 2nd moments of beams over the first 50 turns; the red trace
indicates a 200-MeV beam, and the blue trace is for a 400-MeV beam.
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(a) horizontal 2nd moments

(b) vertical 2nd moments

Figure 4.7: The evolution of 2nd moments in transverse planes arising from space-charge
effects over about 2 msec
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(a) over the first 50 turns

(b) over 1000 turns

Figure 4.8: The evolution of transverse rms emittances arising from space-charge effects
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(a) horizontal rms emittances

(b) vertical rms emittances

Figure 4.9: The evolutions of rms emittances with different beam intensities including 3-D
space-charge effects. The intensities indicated in the legend are the numbers
of protons per RF bucket.
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4.3.8 Impact of GMPS Current Fluctuations with Space Charge

After inserting random noise nodes, provided with characteristic stochastic noise pa-

rameters, into a Booster ring, macroparticles representing the Booster beams are tracked

over 1,000 turns in the presence of full space charge.

Figure 4.10 shows that the evolution of transverse rms emittances with the O-U noise9

coupled to the full space-charge effects (red) and with the space-charge effects alone (blue).

To estimate the emittance growth rate, the relative emittance growths
(∆ε

ε0

)
10 are calculated

starting from the injection completion (11th turn) through 1,000 turns, prior to the beam

acceleration; this corresponds to the first 2 msec of one cycle over 66.7 msec (15 Hz). In

the horizontal plane the relative emittance growth is about 7.5 %, and in the vertical plane

the growth is 9.3 %. A total of 330,000 macroparticles, or 30,000 macro particles per each

injection turn are simulated and tracked. Upon including O-U noise representing GMPS

noise, the process of beam degradation develops, and a more prominent halo formation is

found. As a cross-check with the rms emittance calculations, we also compute average

actions at each tracking turn including the noise and the full space-charge effects. The rms

emittances and average actions are overlaid in Figure 4.11. The calculations of both rms

emittances and actions manifest in such a good agreement that beam degradation is sub-

stantially enhanced due tosynergistic mechanismbetween GMPS-current fluctuations and

space-charge effects. Here, we use the termsynergistic mechanismmeaning that the total

effects of GMPS noise and space charge are larger than the sum of individual effects. If

we lower the Booster batch intensity by an order of one magnitude (5×1011) from the cur-

rent operational batch intensity under the same conditions, the emittance growths induced

by the GMPS noise and space-charge effects are not distinguishable from those of noise

alone in the absence of space charge as shown in Figure 4.12. It should be noted that the

9 Here, the O-U noise means the stochastic noise modeled on the GMPS noise measurements.

10 ε0 denotes initial emittance, and∆ε = |ε− ε0|
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space-charge effect is intensity dependent. Thus, if the beam intensity is lowered, so is

the space-charge effects. This is a clear signature that only when the space-charge effects

are substantial, so does the GMPS noise have a substantial impact on the Booster beam.

In addition to the primary beam diagnostic calculations of the rms emittance and average

action, we check the transverse couplings.

The calculations of the 2nd-order cross moments〈 x y 〉 for each case are presented in

Figure 4.13. A marginal amount of couplings are introduced due to the full space-charge

effects in Figure 4.13 (b). When the noise is included alone in the absence of the space

charge, couplings are somewhat noticeable in Figure 4.13 (c). When the noise and the

full space-charge effects are included, the transverse couplings are substantially amplified.

We therefore conclude that the noise impact on a beam is dependent upon the strengths

of the space-charge defocusing forces in the Booster. What Figure 4.14 illustrates is the

percentage of macroparticles that reside outside of a given average action including the

O-U noise and space charge.

Figure 4.15 compares the distributions of transverse single-particle actions (Jx andJy)

at the outset of injection and at the end of 1,000 turns. It is evident that noise-induced beam

degradation is enhanced as the time elapses. In Figure 4.16, the phase spaces and cross

section of beam particles at injection and at 1,000th turn. They show us that the projection

of divergence angles (x′ andy′) are not distorted noticeably due to the O-U noise coupled

to the space-charge effects. Whereas the rms values are increased in configuration space (x

andy) after 1,000 turns.
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(a) horizontal emittance

(b) vertical emittance

Figure 4.10: Transverse rms emittance growths starting from the outset of injection
through 1,000 tracking turns, or prior to ramping; the noise and space-charge
effects in red and the space-charge effects alone in blue. The beam intensity
per bucket is 6.0×1010 ppb, and the batch intensity is 5.0×1012 protons.
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(a) vertical plane

(b) horizontal plane

Figure 4.11: [left] horizontal rms emittance vs. horizontal action; [right] vertical rms emit-
tance vs. vertical action
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(a) horizontal emittance

(b) vertical emittance

Figure 4.12: Transverse emittance growths; the noise and space-charge effects in red and
the space-charge effects alone in blue. The beam intensity is 6×109 ppb, and
5×1011 protons in total.
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Figure 4.14: Fractional exclusion of macroparticles at a given average action. The blue
indicates at the 1stturn and the red indicates after 1,000 turns. The vertical
axis on the left plot is in linear scale, and the right is on logarithmic scale.

Figure 4.15: The distribution of actions (Jx andJy) at the 1st turn and after 1,000 turns.
O-U noise and 2.5D space-charge effects are included. Action distribution at
the 1st turn is in blue, and action distribution after 1,000 turns in red.
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Figure 4.16: Trace spaces and projected profiles in the planes of position and divergence
angle; [top] horizontal plane;[middle] vertical plane; [bottom] Beam cross-
section and profiles in the horizontal and vertical planes.
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4.3.9 Halo Magnitude

The computation of maximum extent of macroparticle coordinates in a beam at each

tracking turn is implemented in the Noise module. The Eqn. (4.38) includes only physical

coordinates (x andy) of a maximum-displaced macroparticle at the location of a random

noise node [7]. In this dissertation, we refer it to ashalo magnitude(RH).

RH, 2D =
√

x2 +y2
∣∣∣
Max

(4.38)

Figure 4.17 shows the halo magnitudes that are computed at the location of each random

noise node representing a GMPS in the Booster ring. Figure 4.18 illustrates the evolution of

halo magnitudes in green and smoothed data in blue. Due to the large oscillatory behavior

of the halo magnitudes, the data is smoothed. The smoothed curve in Figure 4.19 shows

us with clarity a growing pattern of a maximum-displaced macroparticle from the physical

center of a magnet aperture.

Figure 4.17: Halo magnitudes (Rmax) at each random noise node



4.3. BEAM DIAGNOSTIC CALCULATIONS AND TRACKING RESULTS 103

Figure 4.18: Halo magnitudes (Rmax): noise in the presence of the space-charge effects; the
blue trace in the background indicates smoothed curve with spline function.

Figure 4.19: Halo magnitudes (Rmax): noise along with space-charge effects (red) vs.
space-charge effects alone (blue)



Chapter 5
Magnet Misalignment Model

5.1 Introduction

The previous chapters describe the impact of power-supply current fluctuations on ma-

chine performance. In this chapter we focus on the impact of magnet alignment errors in

the Booster. Unlike other types of machine imperfections, alignment errors are unavoidably

present in all types of accelerators including linear accelerators (linacs) and synchrotrons.

We have constructed a magnet misalignment model in order to investigate the impact of

lattice-element alignment errors on a beam in the presence of space charge.

In advance of construction of a misalignment model, it is essential to carry out thorough

statistical analyses of the raw magnet alignment survey data. Theraw survey datais a

dataset of fiducial coordinates that are measured by the beamline survey team. From these

data, we can identify the orientations and alignment errors of each individual beamline

element. In the design stages of a new accelerator, all simulations are confined to setting

the alignment tolerances for the lattice elements. For an existing accelerator, we have

access to yearly-updated survey data. Therefore, we can build a realistic and up-to-date

misalignment model.

The Booster lattice is constructed with a number of different beamline elements. These

104



5.1. INTRODUCTION 105

include focusing and defocusing magnets, corrector packages, straight sections, RF cav-

ities, beam position monitors, beam loss monitors, etc. In this and the next chapter, we

focus on modeling the alignment errors for the ninety-six main gradient magnets1 in the

Booster lattice.

Our magnet misalignment model is used as follows:

(1) Through the survey-data analyses, we are able to gain a solid understanding of the most

up-to-date alignment issues for the Booster.

(2) It provides guidlines to set priorities and tolerances for future yearly realignment efforts

of individual beamline elements.

Once a year, during the long Booster shutdown period, the Survey Alignment and

Geodesy (SAG) Group of Fermilab conducts the survey and realigning work on the Booster

beamline components. Employing the latest survey data taken in spring 2005, we analyze

and calculate the magnitudes and orientations of the magnet misalignments of all types.

The data are used to gain an understanding of the types of alignment errors that are cur-

rently present, and how they are distributed around the Booster ring. The measurements

serve as the most up-to-date input data for realistic macroparticle-tracking simulations, and

includes a suite of beam diagnostic calculations. There are no identical gradient magnets in

our magnet misalignment model. Each magnet is treated as a unique and individual lattice

element with their own alignment errors.

We begin with a discussion of the survey methodology, details of the calculational

methods, and survey-data analysis results. The following acronyms are frequently used for

convenience and brevity.

1 For brevity, we will frequently refer a main gradient magnet asmagnethereafter.
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• SAG: Survey Alignment and Geodesy

• FSCS: Fermilab Site Coordinate Systems

• CF: Combined-Function (magnet)

• LSS: Long Straight Section

• SSS: Short Straight Section

• MSS: Mini Straight Section

• US: Up Stream

• DS: Down Stream

• (X̃, Ỹ, Z̃): the DUSAF coordinates

• (X, Y, Z): the Cartesian coordinates, or the Frenet-Serret

curvilinear coordinates2

5.2 Fermilab Site Coordinate Systems

In the early 1990s, a DUSAF3 coordinate system was established at Fermilab. The

DUSAF coordinate system is a right-handed coordinate system with the following defini-

tions [46,47]:

• Origin : The Fermilab Tevatron ring is divided into six sectors starting from A0

through F0. The origin of DUSAF coordinate system is at A0 as indicated in Fig-

ure 5.1.

• Ỹ-axis: It is also called NORTH axis. As depicted in Figure 5.1 with a red arrow, the

2 Assuming that torsion is zero, the coordinates of a particle on a design orbit in a circular accelerator
can be represented by~r = ~r0 +xx̂+yŷ.

3 Although the DUSAF coordinate system is selected for the Fermilab Site Coordinate System, the
origin of the name DUSAF refers to the four firms that participated in the original NAL site design
see: http://history.fnal.gov/visitors.html#DUSAF.
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positive Y direction is along the extension line towards theNeutrino areafrom the

origin at A0.

• X̃-axis: It is also called EAST axis. The positive X direction extends to the right and

perpendicular to the Y-axis.

• Z̃-axis: It is also called ELEVATION axis. The positive direction is upward from the

origin and orthogonal to both̃X- andỸ-axis.

Figure 5.1: An aerial view of the Fermilab site; photo courtesy of Fermilab

It should be noted that the DUSAF coordinate system used by SAG is different from

the Frenet-Serret curvilinear coordinate system [48] for circular accelerators and the Carte-

sian coordinate system for linear accelerators. We useX̃, Ỹ, andZ̃ to denote the DUSAF
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coordinates in order to differentiate them from the Frenet-Serret and Cartesian coordinates

(X, Y, Z). The coordinates defining the origin of the DUSAF coordinate system are as

follows:

• X̃ = 100000.000 ft. (= 30480.06096 m)

• Ỹ = 100000.000 ft. (= 30480.06096 m)

• Z̃ = 720.000 ft. (= 219.45644 m)

Z̃ = 720.000 ft. at A0 indicates that the elevation of A0 is 720 ft. above the DUSAF

Datum, which is an arbitrary datum. These arbitrary coordinates at origin are selected

in order to make all survey data points positive around the Booster ring for surveyor’s

convenience [49]. The Fermilab Site Coordinate System (FSCS), which is an assimilated

DUSAF coordinate system, is defined for the Booster magnet survey. Its origin and rotation

axes are located at A0, preserving the DUSAF coordinate system as nearly as possible. For

the unit conversion, the following conversion factor is consistently used.

1 meter = 39.97 US survey inches exactly4

5.3 Configuration of the Booster Magnet Cell

The Booster synchrotron has a circumference of 474.2 m. It contains 96 combined-

function main gradient magnets. There is a 24-fold symmetry in the Booster lattice. Each

period, or cell (defined as SAG) consists of two focusing magnets, two defocusing magnets,

two halves of a long straight section, one short straight section, and two mini straight

sections. The above-mentioned cell components are symmetrically positioned around the

midpoint of a short straight section. The lenghts of all cell components are tabulated in

Table 5.1.

4This unit conversion factor is for the surveyors, and is not the same as in SI (Système International
d’Unités; International System of Units). In SI, 1 inch = 0.0254 m exactly.
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Table 5.1: Longitudinal distance of the Booster lattice components

Circumference (C ) 474.2 (m)
Long Straight Section (LSS) 5.9784 (m)
Short Straight Section (SSS) 1.1753 (m)
Mini Straight Section (MSS) 0.4726 (m)
Longitudinal Distance between Fiducial Points5 2.9145 (m)
LSS : SSS : MSS 6.3 : 2.5 : 1.0

5.4 Booster Survey Network

The purpose of the Booster survey is to establish a precision control network for posi-

tioning each individual beamline component within the Fermilab Site Coordinate System

(FSCS) [47]. As depicted in Figures 5.2 and 5.3, the Booster control network (BooNet)

is a system of braced quadrilaterals between the floor monuments, wall monuments, pass

points, and tie-rods in the tunnel; between monuments, pass points, and tie-rods, a web-

like network is formed. The monuments, pass points, and tie-rods can be understood as

designated positions where coordinates are generated. Therefore, by distributing them all

around the Booster tunnel, we can form a strengthened Booster survey network.

5 The fiducialized longitudinal distance is assumed to be common to both defocusing and focusing mag-
nets.
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(a) A kern-based wall mount, a tie-rod, and plugs in the Booster tunnel; this photo is
at the courtesy of the survey alignment and geodesy (SAG) group of Fermilab

(b) A SMR mounted on a tie rod and a
tie adapter

(c) Spherically-Mounted Rectroreflector
(SMR) mounted on a brass plug

Figure 5.2: Horizontal and vertical mounts, tie-rod, and SMR
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The survey makes use of spherically-mounted retroreflectors (SMR) to improve the

performance of the laser-tracker system. The spherically-mounted retroreflectors in con-

junctions with a laser-tracker beam are used to locate various devices. A SMR is mounted

on a tie adapter supported by a tie-rod bolted into a wall. A pass point is either a permanent,

or temporary point installed on a wall, such that a SMR can be attached to it in addition to

the monuments. The monuments, tie-rods, and pass points can be considered to be a kind

of SMR mounts, or supporting frames [50]. Once SMRs are set up in the Booster survey

area, a laser tracker measures horizontal and vertical angles between a pair of mounted

SMRs. Figure 5.4 shows a laser tracker that is employed in the Booster survey.

Figure 5.4: An actual laser tracker SMX 4500 in use for survey work at Fermilab
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The BooNet was first established in July 1993, and was composed of both horizontal

and vertical networks. Before the recent upgrade, the network included a total of 48 floor

monuments and 26 tie-rods on the wall. A set of 24 vertical monuments (and another set

of 24 horizontal monuments) are equally spaced all around the Booster ring. The vertical

monuments, or tie-rods are anchored to the wall, and horizontal monuments are installed

on the floor. One horizontal and one vertical monument are positioned at the center of each

long straight section (a pair of horizontal and vertical monuments for each superperiod).

In December 2004, as a part of the Booster upgrade plan, the pre-existing Booster con-

trol network was densified and tied with additional 59 floor monuments and 125 pass points.

The BooNet densification is illustrated by Figure 5.5. Furthermore, the network was up-

Figure 5.5: Booster network densification viewed from top; the black dots indicate wall
monuments and floor monuments in the network.

graded with the aid of the modern technology instruments [51], such as a laser tracker6 and

a digital level7. All of three coordinates (Easting, Northing, and Elevation) of each beam-

line element are first measured with the laser trackers and SMRs. Afterwards, the elevation

(Z̃) data taken with the laser tracker are replaced with the data taken with the digital levels

of higher precision. The precision of the laser tracker is 0.5µm in the radial direction, and

6 The model name of the laser tracker is SMX 4500

7 The model name of the digital level is Leica NA 3003
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0.25µm in the vertical direction. In between annual survey activities, the vertical positions,

or elevations of tie-rods could change or deform over the year. Therefore, the vertical net-

work is remeasured during each shutdown period. There are four additional measurements

besides the network measurements:

(1) as-foundmeasurements of all of 384 (= 96× 4) magnet fiducial points, 48 BPMs

(Beam Position Monitors) and 19 RF cavities in the Booster. In this context,as-found

measurements imply survey readings with no adjustments and corrections.

(2) as-foundmeasurements of all dipole and quadrupole fiducial points in the 400-MeV

transferline.

(3) the determination of the upstream and downstream coordinates (X̃, Ỹ, andZ̃) of each

beamline component.

(4) archiving the FSCS coordinates of beamline components and further misalignment cal-

culations.

5.5 Magnet Fiducialization

A Booster main gradient magnet is a sector bending magnet (SBEND) with curva-

ture as depicted in Figure 5.6. The rotation angles of the entrance pole face and the exit

pole face are zero.Beamline surveyors fiducialize the main gradient magnet with survey

fiducial points as a rectilinear object. Figure 5.7 shows a fiducialized body of a main gra-

dient magnet. A proton beam travels through the gradient magnet from upstream end (US)

to downstream (DS) end. The side facing radially inward is referred to aswallside, and

the side facing radially outward is called theaisleside[52]. As illustrated by Figures 5.7

and 5.8, the four fiducial points are labeled as A, B, C, and D in a clockwise orientation

when viewed from top. According to the schematics of Figure 5.8, the offsets at upstream

and downstream of each magnet are calculated. The beam centerline is radially shifted out-
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ward by 0.053 inches with the defocusing magnet, and radially inward by 0.042 inches with

the focusing magnet [52]. A pair of fiducial points on the gradient magnet are separated by

15.016 inches in the transverse direction, and 114.747 inches in the longitudinal direction.

The span of the magnet coils is 113.741 inches, and the longitudinal length of the gradient

Figure 5.6: A top view of a main magnet of rectangular-bend-magnet (RBEND) type with
four fiducial points. The rectangular bend magnet is fiducialized as a rectilinear
object (enclosed by dotted lines). The curvature lines are not to scale.

Figure 5.7: A side view of a fiducialized portion of main gradient magnet of the Booster;
The blue arrow indicates the beam propagation direction.



5.6. TYPES OF MAGNET MISALIGNMENTS 116

Figure 5.8: Top views of the main gradient magnets of the Booster. A, B, C, and D indicate
four fiducial points. [upper] defocusing magnet [lower] focusing magnet

magnet is 3.1306 meters (=123.250 inches) ( i.e., from one end to the other end of the ex-

ternal steel frame of the magnet). This magnet is frequently referred to as a10-foot long

magnetat Fermilab. The magnet lengths for a focusing magnet and a defocusing magnet

are slightly different. However, the distances between fiducial points are intended to be the

same for all magnets.

5.6 Types of Magnet Misalignments

After each round of survey measurements, SAG creates a beamsheet file that con-

tains all the coordinates (̃X, Ỹ, Z̃) at each fiducial point of all beamline components of
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the Booster. By analyzing the raw survey data, the following types of alignment errors

(displacements and rotations) are calculated and identified at each gradient magnet;

• radial offset

• vertical offset

• longitudinal (station) offset (mini straight section and long straight section)

• pitch (X-rotation)

• yaw (Y-rotation)

• roll (Z-rotation)

• twist (Z-rotation with a large roll angle)

It should be noted that although we calculate rotational misalignments using the Fer-

milab Site coordinates (DUSAF coordinates), we follow the common naming convention

of the types of misalignments (pitch, yaw, and roll) according to their rotation axes in the

Frenet-Serret coordinates:X-rotation,Y-rotation, andZ-rotation

5.7 Methodology of Magnet Misalignment Calculations

This section gives details of how each type of alignment errors are computed from

the raw survey data. From the surveyor’s standpoint, the geometry of one magnet cell is

considered to be a series of 9 line segments (LSS/2, Defocusing magnet, MSS, Focusing

magnet, SSS, Focusing magnet, MSS, Defocusing magnet, and LSS/2) joined together,

instead of an arc. As 24 magnet cells constitute the entire Booster ring, the Booster ring

is modeled as a 216-sided polygon. By averaging over the coordinates of all upstream and

downstream coordinates at each main magnet, we find the Booster centroid, (X̃c, Ỹc, Z̃c)

as in Eqn. (5.1): thus, the polygon is centered at the Booster centroid. The black line in
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Figure 5.9: The configuration of one magnet cell; Twenty-four cells constitute a 216-sided
polygon of the Booster ring

Figure 5.9 represents each of three types of straight sections (MSS, SSS, and LSS), and the

red box represents either a focusing or defocusing magnet.

X̃c = 〈 X̃ 〉Booster=
1

96×4

96×4

∑
i=1

X̃i = 30396.877(m)

Ỹc = 〈 Ỹ 〉Booster=
1

96×4

96×4

∑
i=1

Ỹi = 30306.529(m)

Z̃c = 〈 Z̃ 〉Booster=
1

96×4

96×4

∑
i=1

Z̃i = 221.432(m)


(5.1)

HereX̃i , Ỹi , andZ̃i denote Fermilab Site Coordinates at each fiducial point on a main mag-

net. In Eqn. (5.1), because each of 96 main magnets have 4 fiducial points, each of three
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coordinates is summed over 384 fiducial points. This implies that by calculating the value

of Z̃c the fiducial elevation (̃X-Ỹ plane) of the Booster ring (〈 Z̃ 〉Booster) is determined in

the Fermilab Site Coordinate System. The value of〈 Z̃ 〉Boosteris 221.43197 (m). Since the

zero elevation is set at 720.000 (ft.) (= 219.45644 m), the average elevation for 96 gradient

magnets is the difference of the two values: that is, 1.97553 (m) above theZ̃0 at A0. Fur-

thermore, averaged coordinates at upstream and downstream of each gradient magnet are

computed.

X̃us =
(X̃A + X̃B)

2
+∆o f f set, X̃ds =

(X̃C + X̃D)
2

+∆o f f set

Ỹus =
(ỸA +ỸB)

2
+∆o f f set, Ỹds =

(ỸC +ỸD)
2

+∆o f f set

Z̃us =
(Z̃A + Z̃B)

2
, Z̃us =

(Z̃C + Z̃D)
2


(5.2)

In Eqn (5.2),∆o f f set denotes the offset between the physical centerline and the beamline

of each type of gradient magnet. The physical centerline is the centerline of physical aper-

tures of a magnet, and the beamline coincides with the design orbit. According to the J.

Walton’s logbook dated back in September 1973, when the Booster main gradient magnets

were physically installed for the first time, the offsets were introduced between a beam cen-

terline and a physical centerline of each magnet. This is determined based upon empirical

measurements [53]. As such, surveyors make corrections onas-foundmeasurement data

every year. The offset for a defocusing magnet is + 0.053 inches (= + 1.346 mm), and -

0.042 inches (= - 1.067 mm) for a focusing magnet. The radially outward direction is set

to be positive, radially inward direction to be negative. We define

∆X̃ = X̃ds− X̃us

∆Ỹ = Ỹds−Ỹus

∆Z̃ = Z̃ds− Z̃us

 (5.3)

In Figure 5.10, we first draw a horizontal axisX1 by extending a line from the upstream
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Figure 5.10: The cell components projected onto X1-axis for calculation purpose.

half of a long straight section (LSS/2) towards downstream components. We then draw a

vertical axisY1 perpendicular toX1 axis. From the Booster centroid, radial lines are drawn

to upstream end and downstream end of each line segment. Each of the station components

are projected onto the X1 axis, so that we can computeX1 andY1 coordinates. By defini-

tion, the angleΦB is equivalent to the bending angle of the corresponding magnet. Thus,

the angleΦB turns out to be the twice of angleθB.

Ψ = 180◦−ΦB

θ = (180◦−Ψ)/2

= ΦB/2

(5.4)

As we proceed to the downstream component from the first half of the long straight section,

the argument angles of trigonometric function are accumulated as described in Eqn. (5.5).

The set of equations below illustrate how the projectedX1 andY1 coordinates are com-

puted for each cell component. HereθD andθF denote bending angles of defocusing and
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focusing magnet, respectively.

X̃LSS/2 = LSS/2

ỸLSS/2 = 0

X̃D = X̃LSS/2 +Llong ·cos(θD/2)

ỸD = Llong ·sin(θD/2)

X̃MSS/2 = X̃D +MSS/2·cos(θD)

ỸMSS/2 = ỸD +MSS/2·sin(θD)

X̃F = X̃MSS/2 +Llong ·cos(θD +θF/2)

ỸF = ỸMSS/2 +Llong ·sin(θD +θF/2)

X̃SSS/2 = X̃F +SSS·cos(θD +θF)

ỸSSS/2 = ỸF +SSS·sin(θD +θF)

X̃F = X̃SSS/2 +Llong ·cos(θD +3·θF/2)

ỸF = ỸSSS/2 +Llong ·sin(θD +3·θF/2)

X̃MSS= X̃F +MSS·cos(θD +2·θF)

ỸMSS= ỸF +MSS·sin(θD +2·θF)

X̃D = X̃MSS+Llong ·cos(3·θD/2+2·θF)

ỸD = ỸMSS+Llong ·sin(3·θD/2+2·θF)

X̃LSS/2 = X̃D +LSS/2·cos(2·θD +2·θF)

ỸLSS/2 = ỸD +LSS/2·sin(2·θD +2·θF)



(5.5)

Figure 5.10 and a set of equations in Eqn. (5.6) illustrate how the radial distance of each
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line segment in a cell is computed from the Booster centroid.

RL =
1

sin(2π/24)
·

9

∑
i=1

X̃i ≈
12
π
·

9

∑
i=1

X̃i = 75.349(m)

RDus =
√

X̃2
LSS/2 +(RL−ỸDus)

2 = 75.409(m)

RDds =
√

X̃2
D +(RL−ỸDds)

2 = 75.493(m)

RFus =
√

X̃2
MSS+(RL−ỸMSS)2 = 75.503(m)

RFds =
√

X̃2
F +(RL−ỸF)2 = 75.527(m)


(5.6)

Because of the symmetrical magnet-cell configuration around the midpoint of a short straight

section, the computed values in Eqn. (5.6) are repeated after the midpoint. Once the radial

distances of each individual cell component from the Booster centroid are computed, the

radial offsets (∆r) from each segment radius (Ri) are determined as follows:

∆r =
√

(X̃i − X̃c)2+(Ỹi −Ỹc)2−Ri (5.7)

5.7.1 Translational Offsets (Displacements)

The translational offsets include radial offsets, vertical offsets, and longitudinal (station)

offsets. Of the three types of offsets, we categorize radial and vertical offsets as transverse

offsets. For the calculations of radial offsets, each module, or magnet cell is divided into 9

straight-line segments. The calculation scheme is described as follows:

1. Compute the average coordinates of East (X̃), North (̃Y) and Elevation (̃Z). These

are the coordinates of the Booster centroid:

(X̃c, Ỹc, Z̃c)

2. Calculate radial distances (RDus, RDds, RFus, RFds) at both US and DS of each type of

magnet (F- and D-magnet) from the ring center.
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3. Find the ideal orbit radii at both US and DS of each magnet. Because the configu-

ration of gradient magnets in each cell is D-F—F-D, the symmetry around the SSS

needs to be preserved. The only input for calculations is the ratio of bending angles

(Rθ = θF /θD = 0.8496) [10,54].

4. Calculate the radial offsets (∆r) from the ideal orbit radii at both US and DS of each

magnet.

Figure 5.11: Booster-ringwide radial offsets

Figure 5.11 shows the ringwide variations of radial offsets. The vertical axes represent

radial offsets in units of mm, and the horizontal axes represent station number. The upper

figure is for stations 1 through 12, and the lower figure is for stations 13 through 24. A pair

of red horizontal lines indicatingmean± 1 standard deviationare drawn to illustrate the

fraction of the total numbers of magnets which fall outside of the one standard deviation
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(STD) region. The STD is calculated as in Eqn. (5.8) to represent the entire distribution,

rather than a sampled distribution. We choose the sample size (N) of 96, which is the total

number of main magnets in the Booster. One standard deviation of the radial offsets is 2.53

mm.

STD=

√
∑i(xi −x)2

N
(5.8)

As mentioned earlier, the radial offsets are shown in Figure 5.11, Similarly, the ringwide

Figure 5.12: Booster-ringwide vertical offsets

variations of the vertical offsets are shown in Figure 5.12. Both Figures 5.11 and 5.12 are

plotted using the same range for the vertical. It is clear from the figures that the radial-offset

distribution are more widely spread than that of vertical offsets. One standard deviation for

the vertical offsets is 1.29 mm. The last type of translational error that exists at the Booster

magnets is the longitudinal offset. Figure 5.13 shows the ringwide variation of longitudinal
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offsets at each station. In Figure 5.14, each type of translational offsets is presented in a

histogram. For ease of comparison, the horizontal scales are the same in all three types of

translational offset histograms. In addition, the bin size of each histogram is indicated in

the title of the vertical axis. As the statistics boxes in each histogram show, the longitu-

dinal offsets are more widely dispersed than the transverse offsets. We first compute the

mean, rms (root-mean-square), and fractional rms for each distribution. We then introduce

thekurtosis(K ), which is a measure of shape distortion from a Gaussian distribution. As

defined in Eqn. (5.9), the kurtosis is the 4th central moments (µ4) normalized by the fourth

power of the rms value, or a square of variance (σ4). To set a kurtosis of a perfect Gaussian

Figure 5.13: Booster-ringwide station offsets
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(a) radial offsets (b) vertical offsets (c) station offsets

Figure 5.14: The distribution of transverse and longitudinal offsets. The vertical axis is for
the number of events, or frequency.

distribution to be zero, 3 !! is subtracted.

K =
µ4

σ4

∣∣∣
actual

− µ4

σ4

∣∣∣
Gaussian

=
(x−〈 x 〉)4

σ4

∣∣∣
actual

− 3 !!

(5.9)

Thus, a Gaussian distribution has a kurtosis of zero. Table 5.2 contains the above-mentioned

statistical parameters computed from the distributions of each type of the translational off-

set.

Table 5.2: The statistical parameters for the distributions of translational offsets

Mean (mm) RMS (mm) Kurtosis
radial offsets -0.672 2.528 0.171
vertical offsets 0.475 1.283 -0.334
station offsets 4.133 3.757 -0.504
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5.7.2 Rotational Alignment Errors

Alignment errors arising from magnet rotations around the X-axis, Y-axis, and Z-axis

are referred to aspitch, yawandroll , respectively. For the calculations of rotational errors,

we need to use the transverse and longitudinal distances between fiducial points on a main

gradient magnet. The following notations are thus used in this section:

• LAD: longitudinal distance between fiducial points A and D.

• LBC: longitudinal distance between fiducial points B and C.

• LAB: transverse separation between fiducial points A and B.

• LCD: transverse separation between fiducial points C and D.

• Llong: average longitudinal distance between fiducial points

Llong = (LAD +LBC)/2

• Ltr : average transverse separation between fiducial points

Ltr = (LAB+LCD)/2

• Θx: X-rotation angle (pitch)

• Θy: Y-rotation angle (yaw)

• Θs: Z-rotation angle (roll, twist)

During the course of our analysis of the 2005 survey data, we find a small amount of

difference between the wallside and aisleside lengths on each fiducialized magnet8. We

8 Because only the main gradient magnets are fiducialized, a fiducialized magnet means a fiducialized
main gradient magnet.
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therefore average the two fiducialized longitudinal distances on each magnet. We then uti-

lize the average lengths in the calculations of the angles of rotational errors at each magnet

location. Figure 5.15 shows the ringwide variation of the differential of longitudinal dis-

tance between fiducial points on every magnet (LAD (aisle side) -LBC (wall side)). The

ringwide variation of fiducialized longitudinal distance on each magnet is drawn in Fig-

ure 5.16. Figure 5.17 shows the histogram of the fiducialized longitudinal distance from all

96 main magnets. For the fiducialized transverse lengths, we average the transverse sep-

Figure 5.15: The ringwide variation in differential longitudinal distance between fiducial
points on each main gradient magnet. Each data point represents the differ-
ence between wallside longitudinal distance and aisleside longitudinal dis-
tance on each magnet.

arations at the US and DS ends of each magnet. Figure 5.18 shows the ringwide variation

of differential transverse distance on each magnet.
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Figure 5.16: The ringwide variation in average longitudinal distance (〈 Llong 〉) on each
main gradient magnet

Figure 5.17: The histogram of distribution of average fiducialized longitudinal distance on
each magnet
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In Figure 5.19, transverse distances at upstream and downstream are overlaid at each

magnet. Figure 5.20 shows the histogram of the transverse distances for all main magnets.

Once both longitudinal and fiducialized transverse lengths are computed, we proceed to

Figure 5.18: Ringwide variation of differential transverse distance (∆LAB and∆LCD) be-
tween fiducial points

Figure 5.19: Ringwide variation of transverse distance;LAB at upstream andLCD at down-
stream
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Figure 5.20: The histogram of distribution of fiducialized transverse distance on each mag-
net

compute the angles and rotational errors. Since the rotational angles are small, we make

approximations as in Eqn. (5.10). In particular, the roll angles are determined to be an

average of the US and DS angles.

〈 Llong 〉=
√

(∆X̃)2 + (∆Ỹ)2 + (∆Z̃)2≈
√

(∆X̃)2 + (∆Ỹ)2

〈 Ltr〉= (LAB + LCD)/2

Θx ≈ ∆Z̃/〈 Llong 〉

Θy ≈ ∆r/〈 Llong 〉

Θz, us≈ (Z̃B − Z̃A)/〈 Ltr 〉

Θz, ds≈ (Z̃C − Z̃D)/〈 Ltr 〉

Θz = (Θz, us+Θz, ds)/2



(5.10)

As was done for the translational offsets, the station-by-station variations of pitch, yaw, and

roll angles are plotted in Figures 5.21 through 5.23. Figure 5.24 shows histograms of each
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type of rotation angle.

Figure 5.21: Ringwide variation of magnet pitches

Figure 5.22: Ringwide variation of magnet yaws

Figure 5.23: Ringwide variation of magnet rolls
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(a) pitch angles (b) yaw angles (c) roll angles

Figure 5.24: The distributions of rotation angles of each type

Similar to Table 5.2, the statistical parameters of rotational errors are summarized in

Table 5.3 below. Magnets with roll angles larger than one standard deviation of 1.118

mrad are regarded to betwisted. The data points of twisted magnets are outside of the

red horizontal lines of standard deviation. Therefore, twisted magnets, or largely rolled

magnets can be identified in Figure 5.23. About 20 % of the total magnets fall into this

category.

Table 5.3: The statistical parameters for the distributions of rotational errors

Type Mean RMS Kurtosis
transverse magnet length 0.3815 (m) 0.1 (mm) 10.81
longitudinal magnet length 2.915 (m) 0.7 (mm) 2.762
pitch 0.006 (mrad) 0.248 (mrad) 2.693
yaw -0.082 (mrad) 0.469 (mrad) 2.584
roll -0.025 (mrad) 1.118 (mrad) 4.542
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5.7.3 What and How to Realign

In practice, it would be difficult to realign all of the magnets in the Booster tunnel.

Hence, it would be beneficial to identity and list groups of the most-misaligned magnets

for each type. We could then proceed to perform partial realignment work, if allowed. In

general, magnets with transverse offsets are not difficult to realign. Realigning of pitched

magnets is the easiest of all types. Yaw magnets would not be difficult to realign. It is

possible but challenging to unroll simple rolls, or rolled magnets with roll angles smaller

than one standard deviation. The worst case of all is realigning magnets with station errors.

This requires physically moving the magnet girders, rather than mere adjustments. In the

following section we list all the magnets identified with large alignment errors. Following

the surveyor’s magnet naming convention, the first number is the station number, and the

second is magnet number in each station. The magnet station number begins from the long

straight section 1 (LSS 1) at the foil location. The cell number increments by one, following

the direction of the proton beam ( the proton beam direction is the reference direction).

A total of 63 fiducial points on 37 main gradient magnets have radial offsets larger than

one standard deviation. The magnet numbers are listed in the order of increasing station

number.

• 1-1

• 3-4

• 5-1

• 6-2, 6-3, 6-4

• 7-1, 7-2, 7-3

• 8-1, 8-2, 8-3, 8-4

• 9-1, 9-2, 9-3, 9-4

• 10-1
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• 11-2

• 13-1, 13-2

• 14-1, 14-2, 14-3, 14-4

• 15-1, 15-2, 15-3, 15-4

• 18-4

• 19-1, 19-4

• 24-1, 24-2, 24-3, 24-4

It is found that a total of 63 fiducial points on 40 main gradient magnets have vertical offsets

larger than one standard deviation.

• 1-4

• 3-1, 3-2, 3-3

• 4-4

• 8-1, 8-2, 8-3, 8-4

• 9-1, 9-2

• 10-1, 10-2, 10-3, 10-4,

• 12-2, 12-3

• 13-1

• 14-4

• 15-1, 15-2, 15-3, 15-4

• 16-2, 16-3, 16-4

• 17-4

• 18-1, 18-2, 18-3, 18-4
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• 19-1

• 22-4

• 23-1, 23-2, 23-3, 23-4

• 24-1, 24-3U, 24-4

For the case of rotational errors, a total of 17 main gradient magnets are identified as

twisted, or largely-rolled magnets.

• 1-4

• 2-1, 2-3

• 3-1

• 4-3, 4-4

• 5-1

• 11-3

• 12-1, 12-2

• 15-1, 15-2

• 16-1, 16-2, 16-3

• 17-2

• 24-1
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5.7.4 List of Magnets to Resurvey

Following the surveyor’s notation, the fiducial points that need to be remeasured in the

next round of survey are listed in Table 5.4 and labeled as follows:

[ station number]− [ magnet number][ f iducial ID ]

Table 5.4: The list of magnets that need resurveying

1-4D 2-4D 4-4D
8-1A 8-1B 8-1C
8-1D

5.7.5 Types of Rolls

The roll angles, or tilt angles at US and DS of each magnet are computed. We find

four different types of rolled magnets, depending on the magnitude and orientation of roll

angles at US and DS in the Booster beamline. Table 5.5 contains the fractions of each case

of rolled magnets. The twist means large roll regardless of their roll orientation.

Table 5.5: The angle is averaged over US and DS roll angles for each magnet.

Orientation Total Twist
Same orientation 69 % 14 %
Opposite orientation 31 % 25 %
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5.8 Concluding Remarks

In summary this chapter discusses the calculations and analysis of all types of alignment

errors in the Booster main gradient magnets. It lays the framework upon which we build on

in the next chapter where the effects of alignment errors on the Booster beam are presented.



Chapter 6
Effects of Magnet Misalignments

In Chapter 5 we use the as-found survey measurement data to determine all types of

magnet alignment errors of each individual main gradient magnet. In this chapter we de-

scribe beam dynamics calculations using ORBIT? which include all types of magnet align-

ment errors in the presence of full space-charge effects. Our misalignment model is based

on the misalignment analyses presented in the preceding chapter. Therefore, we also ad-

here to the same notations and symbols throughout this chapter. We first discuss how the

ORBIT? reflects magnet-alignment errors in macroparticle-tracking simulations. We then

follow with investigations of their effects on the Booster beam.

6.1 Rigid Body Motion

In classical mechanics, a rigid body is defined as a system consisting of a large number

of point masses, such that the distance between pairs of point masses remain constant even

when the body is in motion or under the action of external forces. The magnet fiducial-

ization allows us to describe misaligned magnets as rigid body motion. Here we make an

assumption that the distances between fiducial points on a main gradient magnet remain

constant. Therefore, the magnet misalignment measured at fiducial points is considered as

139
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idealized rigid body motion.

6.1.1 Transformations of Macroparticle Coordinates

As was previously explained, the magnet alignment errors are calculated in the Fermi-

lab Site Coordinate System, whereas the ORBIT? tracks physical coordinates of macropar-

ticles in the Frenet-Serret coordinate system (cf. section 5.1). In other words, what the

ORBIT? tracks is the coordinates of each individual macroparticle, and not the physical

coordinates of each beamline element. For convenience in numerical modeling, we fix the

coordinate system on the rigid body of each beamline element. When a magnet is mis-

aligned, so is the coordinate system of the misaligned magnet including the origin. If we

put it in a different way, in the reference frame of a beamline element, the macroparticle

coordinates change in opposite direction, or orientation to the actual alignment errors; that

is, the notion ofpassive transformation[55] is employed. Through the passive transforma-

tion the misalignment model is simplified resulting in the exactly same physical effects on

the Booster beam. Figures 6.1 and 6.2 illustrate the active transformations and the passive

transformations of translational offsets and rotational offsets in thex−y plane.

Figure 6.1: Active transformations
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Figure 6.2: Passive transformations

As shown in Figure 6.3, upon entering the upstream face of a misaligned magnet, a

herd of macroparticles change their coordinates in a passive fashion. When exiting the

downstream face of a misaligned magnet, the ORBIT? restores the changes in macroparti-

cle coordinates that were made on the upstream face. This ensures that the macroparticles

are subject to the effects of magnet alignment errors while they are propagated through

each misaligned magnet. After leaving each misaligned magnet, and until encountering

a subsequent magnet with alignment errors, the macroparticles are free of the effects of

alignment errors. Note that in our misalignment model, alignment errors of straight ele-

ments1 are not considered; only alignment errors of gradient magnets. Consequently, the

effects of magnet misalignments on macroparticles are simulated as is the actual case in

the machine operation. Keeping this idea in mind, we transform macroparticle coordinates

in the amounts of translational offsets (δx, δy, δz) and rotational angles (δθx, δθy, δθz) as

1A straight element is a beamline element without magnetic field, such as drift elements, beam position
monitors, etc.
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Figure 6.3: Coordinate transformations at magnet faces reflecting alignment errors

calculated in Chapter 5.

In the case of the translational errors, the following transformations withR matrix are

performed as in Eqn. (6.1) and (6.2):

R (δx, δy, δz) =


1 − δx 0 0

0 1 − δy 0

0 0 1− δz

 (6.1)

The MT representing an actual transfer map for a misaligned magnet with translational

offsets is obtained as follows:

MT = R (δx, δy, δz) ·M ·R −1(δx, δy, δz)

= R (δx, δy, δz) ·M ·R (−δx,−δy,−δz),
(6.2)
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
x 7−→ x−δx,

y 7−→ y−δy,

z 7−→ z−δz,

(6.3)

whereM is anidealtransfer map supplied by MAD optics calculations prior to the ORBIT?

production runs. Here what is meant by optics calculations is the calculations of optics

functions, or lattice functions (β(z), α(z), γ(z), D(z), etc.) and transfer maps (M ) at each

beamline element in an ideal design lattice.

For the rotational errors, the rotation axes characterize the rotation matricesR (θ).

Thus, an actual transfer mapMR reflecting rotational alignment errors can be represented

as,

MR = R (δθ) ·M ·R −1(δθ)

R -1(δθ) = R (−δθ)
(6.4)

R (θx) =


1 0 0

0 cosθx −sinθx

0 sinθx cosθx

 R (−θx) =


1 0 0

0 cosθx sinθx

0 −sinθx cosθx



R (θy) =


cosθy 0 −sinθy

0 1 0

sinθy 0 cosθy

 R (−θy) =


cosθy 0 sinθy

0 1 0

−sinθy 0 cosθy



R (θz) =


cosθz −sinθz 0

sinθz cosθz 0

0 0 1

 R (−θz) =


cosθz sinθz 0

−sinθz cosθz 0

0 0 1





(6.5)



6.1. RIGID BODY MOTION 144

Since the frame of reference is on a misaligned magnet, as mentioned earlier, when a beam

enters a rotated magnet, the local coordinate system needs to be first transformed to be

aligned with the rotated magnet. Upon leaving the rotated magnet, the local coordinate

system needs to be restored. Letξ be a half of bending angle (ΘB/2). Using the similarity

transformation, a new transformation matrix for local coordinate change at a magnet can

be obtained as follows:

L(ξ) =


cosξ 0 sinξ

0 1 0

−sinξ 0 cosξ

 (6.6)

R(θx) = L−1(ξ) ·R (θx) ·L(ξ)

=


cosξ 0 −sinξ

0 1 0

sinξ 0 cosξ

 ·


1 0 0

0 cosθx sinθx

0 −sinθx cosθx

 ·


cosξ 0 sinξ

0 1 0

−sinξ 0 cosξ



=


cos2ξ+sin2ξcosθx sinξ ·sinθx cosξsinξ−cosξsinξcosθx

−sinξ ·sinθx cosθx cosξsinθx

cosξsinξ−cosξsinξcosθx −cosξ ·sinθx sin2ξ+cos2ξcosθx


(6.7)
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Given bending angles of defocusing (ΦB, D = 60.67 (mrad)) and fousing magnets (ΦB, F

= 71.35 (mrad)), and rotational offsets (θx, θy, θz), we can make paraxial approximations.

sin(ξ)≈ ξ, cos(ξ)≈ 1, sin(θ)≈ θ, cos(θ)≈ 1 (6.8)

Then,R(θx) reduces to

R(θx)≈


1 ξ ·θx 0

−ξ ·θx 1 θx

0 −θx 1

 (6.9)

In the same fashion, we can obtain a total transformation matrix at the entrance of a yawed

magnet.

R(θy) = L−1(ξ) ·R (θy) ·L(ξ)

=


cosθy 0 sinθy

0 1 0

−sinθy 0 cosθy

 (6.10)

For the case of rolled magnets, the following transformation is required at the entrance of

a magnet.

R(θz) = L−1(ξ) ·R (θz) ·L(ξ)

=


cosξ2cosθz+sinξ2 cosξsinθz cosξcosθzsinξ−sinξcosξ

−cosξsinθz cosθz −sinξsinθz

sinξcosξcosθz−cosξsinξ sinξsinθz sinξ2cosθz+cosξ2



≈


1 θz 0

−θz 1 −ξ ·θz

0 ξ ·θz 1


(6.11)

These 3× 3 rotational matrices transform position coordinates and momentum coordinates
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in the following manner:
x̃

ỹ

L̃?

 = R (θ)


x

y

L?




x̃′

ỹ′

p̃?

 = R (θ)


x

y

p?

, (6.12)

whereL? and p? denote a half of longitudinal magnet length at each face and normalized

momentum (p/p0), respectively. As mentioned earlier, after translational (R −1) or ro-

tational (R −1) coordinate transformation is carried out on the upstream face, followed

by transfer map (M ), the ORBIT? ensures that an inverse transformation(R −1)−1 or

(R −1)−1 is made on the downstream face. Consequently, macroparticles are subject to

misalignment-induced field errors only in between an upstream face and a downstream

face of a magnet. Once macroparticles leave a misaligned magnet, the particles are free of

alignment errors until they enter a subsequent misaligned magnet.

The form of Eqn. (6.4) implies is that alignment errors exist from an upstream face to

a downstream face of each misaligned element. In other words, macroparticles are subject

to the effects of alignment errors for the duration of transit time through each misaligned

element. It is clear that for a perfectly aligned beamline element an actual transfer map

reduces to an ideal transfer map, becauseR (θ) reduces to a 3× 3 identity matrix. This

means that one transfer map is simply used for a beamline element with no alignment er-

rors, or perfectly aligned element. In ORBIT?, the sequence of actions on a beam by one

misaligned magnet is a rotational, or translational transformation first, then propagation

follows through the magnet, and is completed by reverse transformation. In order to inves-

tigate the adverse effect of each type of alignment errors on a beam, we incorporate one

type of alignment errors at a time.
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6.2 Philosophy of Modeling Magnet Misalignments

A total of 48 focusing and 48 defocusing gradient magnets constitute the Booster de-

sign lattice and our Booster misalignment model. Magnets of the same type (either fo-

cusing or defocusing) were manufactured to be identical. However, in order to model the

present magnet misalignments, each of the main gradient magnets are modeled and treated

individually, such that no magnets are considered identical in our model. The following

specifications are reflected in our model:

(1) longitudinal length (〈 Llong 〉):

The wallside and aisleside lengths of each magnet are averaged to represent the longi-

tudinal length of each magnet.

(2) transverse width (Ltr ):

Since the ringwide variation ofLtr is sufficiently small (∆Ltr/Ltr = 0.0176 %), we use

the nominal length of 15.016 inches (= 0.38147 m) for upstream and downstream rolls.

(3) bending angles (ΘB, D andΘB, F ):

We calculate bending angles for defocusing and focusing magnets using different bend-

ing radii (ρD andρF ).

ΘB, D = < Llong >
ρD

ΘB, F = < Llong >
ρF

(6.13)

(4) translational offsets (displacements):

radial offsets (δx), vertical offsets (δy), and station (longitudinal) offsets (δz)

(5) rotational errors: pitch (δθx), yaw (δθy), roll (δθz) and twists (∆θz)2.

2We denote∆θz for an angular offset larger than 1 standard deviation of the total roll-angle distribution.
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6.3 Misalignment-Induced Field Errors

This section deals with the calculations of magnetic-field errors and angular kicks that

are induced by magnet alignment errors.

Using the magnetic field on the mid-plane, the magnetic-field coefficient of ordern is

defined.

Bn ≡
∂nBy

∂xn (6.14)

For instance,B0 = By, B1 = B′ = ∂By/∂x, B2 = B′′ = ∂2By/∂x2, and so on. The magnetic

field on the mid-plane (y = 0) can be represented using Taylor series expansion.

Bx(x, 0, z) = 0

By(x, 0, z) =
∞

∑
n=0

Bn ·xn

n!

Bz(x, 0, z) = 0

(6.15)

The integrated magnetic field of a main magnet can be represented by a multipole expan-

sion. Z
Bydz= By〈 Llong 〉

= 〈 Llong 〉(Byρ) ·
N

∑
n = 0

Knxn,
(6.16)

whereKn≡ Bn/(Bρ) is taken to be a multipole coefficient of ordern. As angular kicks can

be superimposed, the kicks can be represented in the form of the multipole expansion as



6.3. MISALIGNMENT-INDUCED FIELD ERRORS 149

follows:

∆x′ = ∆θ(x)

= 〈 Llong 〉
N

∑
n = 0

Kn(δx)n

=
B· 〈 Llong 〉

Bρ︸ ︷︷ ︸
dipole kick

+
B′ · 〈 Llong 〉 ·δx

Bρ︸ ︷︷ ︸
quadrupole kick

+
B′′ · 〈 Llong 〉 · (δx)2

Bρ︸ ︷︷ ︸
sextupole kick

+ . . .

(6.17)

Referring to Eqn. (6.17), we define a dipole and a quadrupole kick terms. Alignment-error

induced dipole field errors can give rise to angular dipole kicks.

∆θ
∣∣∣
dipole

=
∆B〈 Llong 〉

Bρ
, (6.18)

where∆B denotes induced dipole-field error. Angular quadrupole kicks are induced by

translational offsets (δx andδy).

∆x′
∣∣∣
quad

= θ(x + δx)−θ(x)

= 〈 Llong 〉 ·
B′

Bρ
·δx

= 〈 Llong 〉 ·K1 ·δx,

(6.19)

∆y′
∣∣∣
quad

= 〈 Llong 〉 ·K1 ·δy, (6.20)

whereK1, D and K1, F are multipole coefficients for defocusing and focusing magnets,

respectively.K1, D is given to be - 0.0577069 (m−2) andK1, F is + 0.0542195 (m−2) in the

Booster design lattice.

We begin with the field errors that are induced by magnet pitch. Note that as the Booster



6.3. MISALIGNMENT-INDUCED FIELD ERRORS 150

main magnet is a combined-function magnet, it could contain all orders of multipole com-

ponents. In our misalignment model for the Booster, we only take into account dipole and

quadrupole components. The higher-order multipole components, such as sextupoles and

octupoles, are not considered in our model because the design lattice (version 1.1) that we

employ for modeling is a linear lattice containing linear optical elements only. Thus, we

consider a bending-, or dipole-field component with a uniform vertical field. Angular kicks

(∆x′ and∆y′) are originated from induced magnetic fields arising from magnet misalign-

ments. Hence, we first derive induced magnetic fields in order to calculate the amount

of angular deflections. For a perfectly-aligned magnet, the magnetic field is given as
−→
B = (Bx, By, Bz), and for a misaligned magnet, the magnetic field is

−→
B? = (B?

x , B?
y , B?

z ).

Figure 6.4 illustrates the side view of a pitched magnet with a pitch angle ofδθx. When

viewed in radially outward direction, if a magnet is rotated counterclockwise, or the ele-

vation at downstream is positive, then the pitch angle (δθx) is taken to be positive. Fig-

Figure 6.4: A side view of a pitched magnet

ure 6.5 shows dipole-field lines for a pitched maget. With a perfectly-aligned magnet, the

magnetic-field components in horizontal and longitudinal directions are zero.

Bx = Bz = 0 (6.21)
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Figure 6.5: Field error due to pitch

B?
x = 0, ∆Bx = 0 (6.22)

Here∆Bx, ∆By and∆Bz are the magnetic field errors caused by the magnet pitch in each

direction. Once we know how much magnetic field errors are induced by each type of

alignment errors, we can calculate angular dipole and quadrupole kicks (∆x′ and∆y′). A

pitched magnet can induce dipole field error deviating from the designed vertical dipole

field. However, considering the order of calculated pitch angles, the induced field error is

negligible as described below:
−→
By = Byŷ

|
−→
By|= By ≥ 0

(6.23)

B?
y = Bycosθx

∆By =− By(1 − cosθx)

≈− 1
2

Byθ2
x ∼ 0

(6.24)

According to our analyses of survey data presented in Chapter 5, all types of rotational

angles are in the range of a fraction of a mrad. Figure 6.6 (b) shows thaty= sin(x) andy= x

are indistinguishable on logarithmic scale for angles smaller than 0.1 rad. Therefore, the
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paraxial approximation is sufficiently accurate for the rotational offsets of Booster magnets.

Hence, we make paraxial approximations as in Eqn. (6.25).

(a) angle larger than 1 rad (b) angle smaller than 0.1 rad

Figure 6.6: y = sin(x) andy = x; the blue trace is fory = sin(x), and the red trace fory = x.

sinθ≈ θ, cosθ≈ 1, tanθ≈ θ (6.25)

If we look into the longitudinal direction for a pitched magnet, the magnet pitch induces

x−y coupling as follows.

∆Bz =− Bysinθx ≈− Byθx (6.26)

We now turn to angular kicks arising from magnet rolls. Figure 6.7 illustrates dipole-

field error arising from a magnet roll.

A histogram of roll angles for all of 96 main magnets is shown in Figure 5.24 (c). The

distributions of roll angles for focusing and defocusing magnets are shown separately in

Figure 6.8. If a magnet is rotated around thez-axis clockwise when viewed from upstream

towards downstream, the roll angle is taken to be positive. The field errors due to magnet



6.3. MISALIGNMENT-INDUCED FIELD ERRORS 153

Figure 6.7: A rolled magnet viewed from the beam direction

rolls are
B?

y = Bycosθz

∆By =− By(1 − cosθz)

≈ − 1
2

Byθz
2 ∼ 0

(6.27)

Bx = − Bysinθz ≈ − Byθz

∆Bx ≈ − Byθz

(6.28)

Vertical angular dipole kick induced by∆Bx is:

∆y′
∣∣∣
roll , dipole

=
∆Bx

By

〈 Llong 〉
ρ

= − δθz ·
〈 Llong 〉

ρ
= − δθzΘB (6.29)

whereΘB is bending angle as defined in Eqn. (6.13), andρ andP0 are the bending radius

and design momentum3, respectively. These quantities are used to obtain magnetic rigidity

(Bρ).

Bρ = γm0βc/e= (10/2.9987) ·P0 (GeV/c) (6.30)

3The design momentum refers to the momentum of a particle on a design orbit.
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Figure 6.8: Distributions of roll angles in units of mrad: the left figure is for the 48 defo-
cusing magnets, and the right figure is for the 48 focusing magnets.

The magnet rigidity characterizes the stiffness of a beam from the bending magnet’s stand-

point. For the Booster beam at injection energy, the magnetic rigidity is 3.183 (Tesla-

meter), and for the beam at extraction the magnetic rigidity is 29.650 (Tesla-meter). Re-

ferring to Figure 6.7 and Eqn. (6.29), the orientation of each magnet roll determines the

direction of the vertical angular dipole kick (∆y′), or angular impulse. This is the rea-

son why rolled magnets are sorted out by the roll orientation in Chapter 5. Also, since

defocusing and focusing magnets have different bending radii, we calculate the average an-

gular kick for defocusing magnets and for focusing magnets separately. From Figure 6.8,
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〈 δθz, D 〉 and〈 δθz, F 〉 are 0.1221 (mrad) and - 0.1718 (mrad), respectively.

〈 ∆y′ 〉
∣∣∣
roll , dipole

=−
(
〈 δθz, D 〉 · 〈 ΘB, D 〉+ 〈 δθz, F 〉 · 〈 ΘB, F 〉

)
=− (1.221×10−4) · (60.67 mrad) + (1.718×10−4) · (71.35 mrad)

= 4.9 (µrad),
(6.31)

whereδθz, D, δθz, F , ΘB, D, andΘB, F are roll angles of defocusing magnets and focusing

magnets, and bending angles of defocusing magnets and focusing magnets, respectively.

Figure 6.9 shows angular kick distributions for each type of gradient magnet. One thing

Figure 6.9: Distributions of angular kicks arising from roll angles: the left figure is for the
distribution of dipole kicks for the 48 defocusing magnets, and the right figure
is for the 48 focusing magnets.

that we need to note in this calculation is that, since the bending radius of the focusing

magnet is larger than that of defocusing magnet, such that roll errors for focusing magnets

have a larger effect on the beam than the roll errors for defocusing magnets.
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The quadrupole components of a gradient magnet also contribute additional angular

deflections caused by translational offsets (δx and δy). Since defocusing and focusing

magnets have different multipole coefficients (KD andKF ) we calculate angular kicks from

defocusing magnets and focusing magnets, separately. Given average radial displacements

of 0.339 (mm) for defocusing magnets and 0.0819 (mm) for focusing magnets, as shown

in Figure 6.10, we calculate horizontal angular kicks as follows:

Figure 6.10: Distributions of radial offsets at gradient magnets: the left figure is for the
distribution of radial offsets for the 48 defocusing magnets, and the right
figure is for the 48 focusing magnets.
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〈 ∆x′ 〉
∣∣∣
o f f set, quad

= 〈 Llong 〉
(

K1, D〈δx 〉D +K1, F〈δx 〉F
)

= (2.9145 m) ·
{

(−0.0577069m−2)(−0.33865 mm)+(0.0542195m−2)(0.08185 mm)
}

≈ 70.0 (µrad)
(6.32)

For the case of vertical angular kicks, as shown in Figure 6.11, the average vertical

displacements are 0.05165 (mm) for defocusing magnets and 0.21562 (mm) for focusing

magnets. Hence, average vertical kick induced from quadrupole components is 25.4 (µrad).

Figure 6.11: Distributions of vertical offsets at gradient magnets: the left figure is for the
distribution of vertical offsets from 48 defocusing magnets, and the right is
from 48 focusing magnets.
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〈 ∆y′ 〉
∣∣∣
o f f set, quad

= 〈 Llong 〉
(

K1, D · 〈δy 〉D +K1, F · 〈δy 〉F
)

= 〈 Llong 〉 ·
{

K1, D · (0.05165 mm)+K1, F · (0.21562 mm)
}

≈ 25.4 (µrad)

(6.33)

From the average angular deflections, we can calculate average momentum kicks, or aver-

age transferred momentum, as discussed in section 4.3.2.

〈 ∆Px 〉
∣∣∣
quad, o f f set

≈ P0 · 〈 ∆x′ 〉
∣∣∣
quad, o f f set

= 954.263 (MeV/c) ·70.0 (µrad)

= 66.8 (keV/c)

〈 ∆Py 〉
∣∣∣
quad, o f f set

≈ 24.2 (keV/c)

(6.34)

At the Booster injection energy of 400 (MeV), the design momentumP0 is 954.263 (MeV/c).

All of the above angular deflections can be superimposed and impinge upon a beam. The

angular kicks arising from magnet alignment errors leading to closed-orbit distortions are

listed in Table 6.1 below.

Table 6.1: Average angular kicks induced by magnet alignment errors

alignment errors field component effects

pitch (δθx) x−y coupling
roll (δθz) dipole 〈 ∆y′ 〉 = 4.9 (µrad)

horizontal offsets (δx) quadrupole 〈 ∆x′ 〉 = 70.0 (µrad)
vertical offsets (δy) quadrupole 〈 ∆y′ 〉 = 25.4 (µrad)
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6.4 Effects of Magnet Misalignments

6.4.1 rms emittance growth

This section discusses the results of numerical calculations to diagnose beam degrada-

tions induced by magnet alignment errors (as presented in Chapter 5) under the influence

of space-charge effects. The numerical calculations show that, for pitched magnets the

emittance growth is about 2.2 % in the horizontal plane and 4.3 % in the vertical plane.

For magnets with station offsets the emittance growth is about 5.0 % in both planes. Fig-

ures 6.12, 6.13, and 6.14 show the transverse emittance growths due to alignment errors.

Each of the Figures depicts the emittance growths caused by alignment errors with and

without space-charge effects. It is clear that in the absence of the space-charge effects,

alignment errors do not have adverse effects on a beam. Only in the presence of space

charge do alignment errors enhance the beam degradations.
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(a) horizontal emittance

(b) vertical emittance

Figure 6.12: Transverse emittance growth due to station offsets; progressing from bot-
tom to top, station offsets alone, space-charge alone, and station offsets with
space-charge effects
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(a) horizontal emittance

(b) vertical emittance

Figure 6.13: Transverse emittance growth due to magnet pitch; progressing from bottom,
pitch alone, space-charge alone, and pitch with space-charge effects
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(a) horizontal emittance

(b) vertical emittance

Figure 6.14: Emittance growth due to rolls; progressing from bottom to top, rolls alone,
space-charge alone, and rolls with space-charge effects
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Figure 6.15: Emittance histogram for pitched magnets

Figure 6.15 shows the percentile (or fraction) of a beam at a specific emittance. The

blue trace indicates the initial distribution of emittances, and the red trace indicates the final

distribution of emittances after 1,000 tracking turns. In the left figure, the vertical axis of

percentile is on linear scale, whereas in the right figure is on logarithmic scale. Using a

logarithmic scale, the maximum extent of the transverse emittance is more distinguishable.

In case of yawed magnets, Figure 6.16 shows that one percent of total beam has an

emittance exceeding 40π-mm-mrad after 1,000 turns under the influence of space charge.

The maximum emittance reaches 90π-mm-mrad. For rolled magnets, Figure 6.17 shows

that one percent of the total beam has an emittance larger than 55π-mm-mrad after 1,000

turns under space charge effects.
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Figure 6.16: Emittance histogram for yawed magnets

Figure 6.18 shows, including magnets with station errors under space-charge effects,

one percent of total beam has an emittance larger than 40π-mm-mrad after the injection

period is complete. As stated earlier, once we identify simple rolls and twistors, we can

predict how much improvements can be achieved if selected group of rolled magnets are

realigned. Figure 6.19 distinctly demonstrates each scenario with rolled magnets. The

innermost trace is the case when all magnets are perfectly aligned. About 10 % of total

beam have 12π-mm-mrad. When simple rolls are realigned with twistors left intact, that

is only large rolls (twistors) are included, about 10 % of beam has emittance larger than

14 π-mm-mrad. Next, only twistors are realigned, or only simple rolls are included, 10 %

of beam has emittance larger than 18π-mm-mrad. Lastly, no realignment work is done,

in other words, including all existing rolls, 10 % of beam emittance larger than 22π-mm-

mrad.
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Figure 6.17: Emittance histogram for rolled magnets

Figure 6.18: Emittance histogram for station-errored magnets
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Leaving the twisted magnets intact, if simply-rolled magnets are realigned, much im-

provement can be made as far as the halo formation is concerned. Figure 6.19 shows the

fraction of macroparticles that lie outside of a given rms emittance with different magnet

realigning efforts. The upper plot is on linear scale of macroparticle percentage, and the

lower plot is shown on a logarithmic scale for clear distinctions between each case scenario

of realigning work. Since realignment of beamline elements is quite challenging and time-

consuming, it is necessary to prioritize misaligned magnets to realign. Therefore, it is of

great interest to predict how much improvement could be made after a selected set of mis-

aligned magnets are realigned. Although, at present it is not known how to repair twisted

(largely rolled) magnets, the ORBIT? runs show that twisted magnets are a contributing

factor to the halo formation as illustrated by Figure 6.19.
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(a) on linear scale

(b) on logarithmic scale

Figure 6.19: emittance histograms before and after realignments
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6.5 Concluding Remarks

Since the Booster main magnets are combined-function magnets, magnet misalign-

ments can induce both dipole- and quadrupole-field errors. The induced-field errors result

in angular kicks, or momentum kicks, which are superimposed and impinge upon the beam.

It is therefore evident that if we could realign any of the misaligned combined-function

magnets, then both quadrupole-field and dipole-field errors pertaining to each individual

misaligned magnet could be eliminated altogether.

From our misalignment modeling with the up-to-date beamline survey data, we con-

clude that the effects of magnet rolls and station offsets are larger than the other types

of alignment errors that are currently present in the Booster lattice. The aim of our mis-

alignment modeling is twofold: First, as a result of the beam dynamics calculations, it

is worthwhile to address selected magnet realignment efforts. As mentioned in section

6.4, priority should be given torolled focusingmagnets, and magnets with longitudinal

displacements. Second, as no correctors are included in our model, macroparticles are

tracked on no-corrector orbit. Instead of planning on magnet realigning efforts, the angular-

kick calculations can also help determine, or reset the strengths of corrector magnets (trim

dipoles).

In conclusion, we have addressed the benefit of a realignment of selected misaligned

magnets, and the benefit of resetting the strengths of corrector magnets in an effort to

improve Booster performance.



Chapter 7
Time-Structured Multiturn Injection and

Longitudinal Painting

Let’s paint the machines red!

In this chapter we discuss microbunch-injection methods that can be applied to the

present Booster synchrotron. Methods of synchronous injection into standing RF buckets

are investigated under the influence of space charge with the aid of the ESME [3] code.

First, the ESME code is briefly described. It is followed by a discussion of simulations for

the multiturn-injection models with time structure.

7.1 Introduction to the ESME Simulation Code

ESME is a Fortran program, authored by James MacLachlan of Fermilab, for macropar-

ticle1 tracking and modeling of RF gymnastics. The older versions are written in Fortran

1 In the context of numerical simulations for particle accelerators, a macroparticle means a simulation par-
ticle, or representative particle as individual sources of the space-charge field. Each macroparticle represents
the total charge of many real beam particles, or a fractional charge of a total beam charge in distributions in

169
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77, and the latest version is written in Fortran 95. For our injection modeling, the ESME

2003 is used throughout. The program ESME solves a pair of difference equations during

n-th turn of a synchronous particle. The synchronous particle is an ideal particle, or refer-

ence particle at the center of particle beams. The ideal particle passes the RF gaps at the

same RF phase at each turn; thus, there is asynchronismbetween the synchronous particle

and the RF electric field.

θi, n =
[(τs, n−1

τs, n

)
·θi, n−1 +2π ·

( τi, n

τs, n
−1

)]
Ei, n = Ei, n−1 +eV · (φs, n +H ·θi, n)−eV · (φs, n)

 (7.1)

Theθ, φ, E, τ andH denote RF phase, azimuth angle, energy, revolution period and har-

monic number, respectively.

7.2 400-MeV Linac Parameters

Salient parameters of the 400-MeV linac are listed in Table 7.1.

One thing to note in the Table 7.1 is the chopping factor [56]. The chopping factor is de-

fined as the ratio of full bunch length (Lbunch, f ull ) to RF wavelength (λr f ). In the case of the

400-MeV transferline, the length of a microbunch spans about 14 % of the RF wavelength

(λr f ) in the RF-phase space (Θ) in each individual 201-MHz2 RF bucket.

chopping factor=
Lbunch, f ull

λr f
(7.2)

energy (∆E)-azimuth(Θ) phase space. In our simulations, individual macroparticle that we include represents
on the order of 105 real particles. The macroparticles are then acted upon by the RF system of synchrotrons,
or storage rings, or linacs. One of the main capabilities of the ESME is the longitudinal space-charge calcu-
lation.

2 The actual linac RF frequency is 201.25 (MHz). Here we simply refer it to201-MHz RFfor conve-
nience.
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Table 7.1: Linac Parameters

Beam Species H−

Beam Kinetic Energy 400 (MeV)
RF Frequency 201.25 (MHz)
Full Bunch Length 0.7 (nsec)
Chopping Factor 0.14

δ
∣∣∣
max

= ∆p
p

∣∣∣
max

± 0.13 %

σδ 0.026 %
εl 1.0×10−3 (eV-s)
Intensity 1.25×109

7.3 Booster Synchrotron Parameters

The comprehensive parameters for the Booster ring at injection energy are given in

Table 7.2 on the next page. Some machine parameters listed in Table 7.2 are derived from

the parameters specified in the Booster design lattice (version 1.1).
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Table 7.2: Machine Parameters for Fermilab’s Booster at Injection

Ring Radius (〈R〉) / Ring Circumference (2π〈R〉= βc·T0) 75.47 / 474.2 (m)
Injection Kinetic Energy 400 (MeV)
Injection Momentum 954.263 (MeV/c)
Synchronous Energy (Es) 1.328 (GeV)
β (Lorentz factor) 0.7131
γ (Lorentz factor) 1.426
Revolution Period (T0) 2.2 (µsec)
Revolution Frequency (f0) 454.5 (kHz)
No. of Injection Turns 11
Injection Period 24.2 (µsec)
Cycle Time 66.7 (msec)
γtr 5.4696
α1 (momentum compaction factor) 0.0172
Phase-Slip Factor (|η|) 0.458
εtr, 95, n (95 % normalized transverse emittance) 12.0 (π-mm-mrad)
RF Frequency Range 38.18∼ 52.83 (MHz)
νx/νy (bare tunes) 6.7/ 6.8
betatron frequency (fβ,x, fβ,y) 318.2 / 363.6 (kHz)
Qs (synchrotron tune) 1.147×10−3

Ωs (synchrotron frequency) 3.28 (kHz)
Ts (synchrotron period) 305 (µsec)
βs (longitudinal beta function) 3.0×104 (m)
εl (longitudinal emittance) 0.25 (eV-s)
Batch Intensity 5.04×1012

Average Beam Current at Injection 420 (mA)
Effective beam radius 0.0325 (m)
Effective beam-pipe radius 0.0653 (m)
Bunching Factor (Bf ) (at injection) ∼ 0.4
∆P
P0

∣∣
max ± 0.15 %

σδ 3.0×10−4

βx,max/ βy,max 33.7/ 20.5 (m)
Dx,max/ Dy,max 3.2/ 0.0 (m)
Cell Type FOFDOOD (DOODFOF)
Cell Length 20.62 (m)
Gradient Magnets / cell 4
Total Gradient Magnets 96
Vr f , in j (RF voltage at injection) 205.0 (kV/Turn)
Phase Advance / cell 96 (deg)
ρD (bending radius for defocusing magnet) 48.034100 (m)
ρF (bending radius for focusing magnet) 40.847086 (m)
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Table 7.3: Sampled ESME Parameters for the Booster Simulation

Ring Radius 75.47 (m)
γ2

tr 29.9165
α1 (momentum compaction factor) 0.0172
No. of Injection Turns 11
Total Charge 6.0×1010

No. of Macroparticles ∼ 105

Beam Distribution Elliptical
effective beam radius 0.0325 (mm)
effective beam-pipe radius 0.0653 (mm)
Vr f 205.0 (kV/Turn)
Longitudinal Space-Charge Bin No. 512
FFT Bin No. 512

7.4 Microbunch Injection into the Booster

In most simulations, the beams are injected in the longitudinal phase space along a long

strip in the direction of RF phase [57]. An injected beam of this type is referred to as a

macrobunch. In contrast, we use a train of small bunches which are injected into a standing

(or stationary) RF bucket with a certain amount of bunch spacing. This type of injected

beam with a certain time structure is termed amicrobunch. For the case of the Booster,

each microbunch is 0.7 (nsec) in full length and is separated by 5 (nsec). The synchronous

injection repeats for 11 turns for the duration of 24.2 (µsec) with no beam notch.

7.5 Simulations of Microbunch Injection

In this section, we describe how multiturn microbunch injection for the Booster is sim-

ulated using the code ESME. First, we generate one microbunch with elliptical distribution
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from an initial ESME run. Then, we repeatedly populate the microbunch inside a station-

ary RF bucket to form a train of microbunches. With this time structure, we repeat the

5-microbunch injection over 11 injection turns. In simulation, we track macroparticles on

the order of 105 in longitudinal phase space through the ring lattice in the presence of the

longitudinal space-charge force.

7.5.1 Injection with RF-Phase Slip:

Uncontrolled Longitudinal Painting

When a linac-to-ring transfer takes place, RF-bucket mismatch, or longitudinal mis-

match can be parasitically induced. Here we refer to this kind of mismatch asparasitic

phase slipin phase space. In this dissertation, we define the longitudinal (RF-bucket)

mismatch factor ofRbm for the linac-to-ring transfer.

Rλr f

∣∣∣
in jection

=
λr f ,Booster

λr f ,Linac

∣∣∣
in jection

=
201.25 (MHz)
38.18 (MHz)

= 5.271

Rbm = Rλr f

∣∣∣
mod

= 0.271= 27.1 %

(7.3)

According to Eqn. (7.3), a Booster RF bucket can hold 5 microbunches of 201 (MHz)

injected from the 400-MeV transferline. The RF wavelength (λr f ) of the Booster is 26

(nsec) and that of the Transferline is 5 (nsec). The microbunch spacing of 5 (nsec) is

measured between the centers of adjacent RF buckets of 201 (MHz). By calculating a ratio

of RF-bucket wavelengths (Rλr f
), we determine the mismatch factor (Rbm). In case of the

Booster injection, the value ofRbm is determined to be 0.271. This corresponds to 1.355

(nsec). If the value ofRλr f
is an integer, then the whole number of sub-buckets are injected

into a standing RF bucket with no mismatch. However, when the value ofRλr f
is a non-

integer, parasitic phase slip can be induced during the multiturn injection process. Because

of the repeated arrival time errors (RF-phase lags) in subsequent injection turns, we include
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a phase lag of about 0.22◦ for the first turn as shown in Figures 7.1. In accordance with

ESME units for RF phase, the phase offset is calculated in units of degrees as in Eqns. (7.4)

and (7.5).

θo f f set=
360◦

H
× 1.355nsec

26nsec
≈ 0.22 ◦ (7.4)

Here,Lmbdenotes microbunch spacing, andH is the Booster harmonic number of 84. Next,

the bunch length is calculated in units of degrees:

Lmb =
360◦

84
× 5 nsec

26nsec
= 0.824◦

σθ =
1
5
×Lbunch, f ull = 0.14nsec= 0.023◦

(7.5)

According to the chopping factor of the 400-MeV transferline, the 201-MHz microbunch

has a full bunch length (5σ) of 0.7 (nsec). Hence, the rms bunch length of a microbunch is

approximately 0.14 (nsec), or 0.023◦. The last parameter to determine is the energy error.

We can compute the rms energy deviation (σ(∆E)) from the synchronous energy (Es) of

1.338 (GeV):

σ(∆E) = Es ·β2 ·σ(δ)

= (1.338GeV) · (0.7131)2 · (3×10-4)≈ 0.2 (MeV)
(7.6)

Once we know the maximum extent of the momentum deviation from measurements [58],

we can estimate the rms momentum spread:

∆P
P0

∣∣∣
max

=± 0.15 %

σδ ≡
δP
P0

∣∣∣
rms

= 0.03 %
(7.7)

The momentum, or energy spread is important in the injection modeling in that it is neces-

sary to match total emittance of all microbunches captured in a RF bucket to the emittance
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of a long bunch, or macrobunch. In our injection model, we particularly mean amac-

robunch, or long bunchby a bunched beam that are distributed uniformly in azimuthal

direction. While injected microbunches slip through in RF-phase direction at each turn, the

longitudinal phase space is gradually painted with the microbunches. In Figure 7.1, each

train of microbunches are colored differently, so that one can tell how longitudinal painting

proceeds at each injection turn.
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7.5.2 3-D Simulations of Microbunch Injection:

ESME-ORBIT Simulation

So far, we have discussed the 5-microbunch injection into the Booster using ESME

with parasitic longitudinal painting included. By transporting information of macroparticle

distribution inθ-∆E space from the ESME simulations into the ORBIT?, we carry out 3-D

space-charge simulations of microbunch injection under the influence of full space-charge

effects.

This ESME-ORBIT simulation method allows us to make the best of a variety of fea-

tures available for RF gymnastics in ESME and macroparticle tracking including both lon-

gitudinal and transverse effects of space charge in ORBIT?. Hence, ESME simulations of

time-structured multiturn injection can supply ORBIT? with realistic longitudinal distribu-

tions.

Figure 7.2 depicts the flow of the ESME-ORBIT-combined simulations for the mi-

crobunch injection into the Booster. Intrinsically, ESME is designed for ring simulations.

We, however, use a very small ring (〈R〉 < 1 (m)) with very large value of transition

gamma (γtr ≥ 106) to achieve an approximated linac simulation. By first generating one mi-

crobunch from the linac, we spawn a train of 5 microbunches to be injected into the Booster

at each turn. After a microbunch passes through the debuncher cavity located about 42.5

meters away from the Linac, the energy spread of a microbunch is reduced. A train of 5

microbunches is then injected into a Booster RF bucket. Over 11 injection turns, we it-

erate the 5-microbunch injection with phase offsets induced from RF mismatch including

1-D space charge force. Finally, a total of 55 microbunches fill in a Booster bucket with

no beam notch. About 9 % beam loss is observed after the microbunch injection process

is complete. The distributions of charge density and energy density after the completion

of injection process of 11 turns are shown in Figure 7.3 (a) and (b). For comparison, the

density profiles of a long bunch with uniform distribution in phase direction are shown in
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Figure 7.4. The charge and energy distributions from ESME outputs shown in Figure 7.3

(a) and (b) are matched to those of ORBIT input file shown in Figure 7.5 (e) and (f).

Figure 7.2: Procedures of ESME-ORBIT-combined simulations including space charge;
the SC stands for space charge.
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(a) Charge-density distribution of 5 microbunches after the completion of injection process

(b) Energy-density distribution of 5 microbunches after the completion of injection process

Figure 7.3: Longitudinal profiles of 5 microbunches after the injection process is complete
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Once the ORBIT takes in the longitudinal information from the ESME simulations, the

ORBIT tracks a herd of 330,000 macroparticles starting from 12-th turn through 1,000-

th turn with full space-charge nodes included. To achieve the multi-stage EMSE-ORBIT

simulation, as illustrated in Figure 7.2, the whole procedure requires about a dozen file pro-

cessing including unit conversions. For validation purposes, the profiles of 6-D coordinates

of input macroparticles are drawn in Figure 7.5. The transverse coordinates (x, x′, y, y′)

provided by a preliminary ORBIT run, and longitudinal coordinates (θ, ∆E) are obtained

from the ESME simulations with 5 microbunches. In ESME-ORBIT simulations, it is en-

(a) charge density distribution (b) energy density distribution

Figure 7.4: A long bunch of longitudinally uniform distribution

sured that the simulation conditions with microbunches are exactly the same as in those of

ORBIT-only simulations with longitudinally uniform distribution. Evolution of both hori-

zontal and vertical emittances are shown in Figures 7.6 and 7.7 in comparison with those

of a long bunch (or macrobunch). The horizontal emittance grows by 20 % and the vertical

emittance by 19 %. In contrast, with a long bunch with longitudinally uniform distribution,

transverse emittances grow less than 3 %.
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(a) horizontal position profile (b) horizontal angle profile

(c) vertical position profile (d) vertical angle profile

(e)charge density profile (f) energy profile

Figure 7.5: Validation of an ESME-ORBIT input file
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Figure 7.6: Evolution of horizontal emittances of 5 microbunches vs. macrobunch: mi-
crobunches are injected with phase slip in the presence of full space-charge
effects

Figure 7.7: Evolution of vertical emittances of 5 microbunches vs. macrobunch: mi-
crobunches are injected with phase slip in the presence of full space-charge
effects
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7.6 Concluding Remarks

Numerical calculations with ESME show that the RF mismatch between the 400-MeV

linac and the Booster can parasitically induce longitudinal painting in an uncontrolled fash-

ion. Thus, it would be rather advantageous to utilize RF harmonics of non-integer ratio

between machines. From ESME-ORBIT simulations with microbunches, the horizontal

emittance grows by 20 % and vertical emittance by 19 % during the injection period. As

Eqn. (4.31) explains, space-charge-induced electric field is proportional to the gradient of

charge line density. Accordingly, the charge-density distribution from 5-microbunch injec-

tion (cf. Figure 7.3 (a)) has larger space-charge effect than the uniform distribution (cf.

Figure 7.4 (a)).

We demonstrated the controlled longitudinal painting in RF-phase direction can be con-

sidered one way of intensity increase at the Booster injection energy. With a larger number

of injection turns (e.g., 300 turns) over a longer injection period (e.g., a few msec), the

longitudinal painting scheme can increase beam intensity more effectively. Furthermore,

with a dual RF harmonic system, we are able to lower the space-charge effect with higher-

intensity beams.

Furthermore, the time-structured multiturn injection with longitudinal painting scheme

can also be applied to the 8-GeV Super-Conducting RF (SCRF) linac proton driver and

the Main Injector. As a reference, several different injection scenarios with different RF

parameters for the Main Injector are presented on the website [63].



Chapter 8
RF Stacking of Protons in the Accumulator

Thus far we have constructed three independent models of the Booster synchrotron. In

this chapter we investigate the feasibility of the proposed method [64] of Radio-Frequency

(RF) stacking of protons in Fermilab’s accumulator. As done in the microbunch model

of the Booster in Chapter 7, we utilize numerical calculations using ESME. This RF-

stacking process applies various adiabatic RF gymnastics, such that we can achieve nearly

emittance-dilution-free stacking [65] in the momentum acceptance of the present Accumu-

lator. As stated in section 1.4.2, this is referred to as momentum stacking of protons in the

Accumulator

8.1 Introduction

When the Run2 collider program at Fermilab is terminated around the year of 2009,

the present antiproton1 sources can become available for other Fermilab programs. One

possible application is to convert the Antiproton Accumulator into a proton accumula-

tor [64, 66], so that the beam power from the Main Injector could be greatly enhanced.

1At Fermilab, the antiproton is frequently referred to aspbar (p) for convenience.

185
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The Accumulator has the unique feature of a very large momentum acceptance, which al-

lows the accumulations of several Booster batches of proton beams with small momentum

spread.

8.2 Overview of the Antiproton Accumulator

The Fermilab Accumulator is an 8-GeV storage ring that is designed for the collec-

tion, cooling, and storage of antiprotons. Antiprotons are produced by impinging a 120

GeV proton beam on an nickel-alloy target. They are collected through a lithium focusing

lens and the Fermilab Debuncher ring. The main purpose of the present Accumulator is to

accumulate antiprotons. This is achieved by means of momentum stacking of successive

pulses of antiprotons from the Debuncher for the duration of several hours, or days. Uti-

lizing both RF and stochastic cooling systems, the RF decelerates the first injected pulse

of antiprotons, starting from the injection energy of 8 GeV to the edge of the stack tail,

where high-momentum particles reside. The momentum cooling system sweeps the beam

accumulated by the RF and injection systems away from the edge of the stack-tail, and

decelerates it towards the densely-populated core of the stack. Additional cooling systems

maintain the antiprotons in the core with the desired momentum and minimize the trans-

verse beam sizes.

Unbunched, or DC beams of antiprotons are to be extracted from the Debuncher, and

transferred to the Accumulator line. The combination of a kicker system and a septum mag-

net in each ring transfers the DC beam in the horizontal plane. Extraction in the Debuncher

occurs just before another antiproton pulse arrives from the target. Figure 8.1 illustrates the

layout of the triangle-shaped Accumulator and the Debuncher rings.
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Figure 8.1: A layout of the Debuncher (inner triangle) and the Accumulator (outer triangle)
at Fermilab

8.3 Machine Parameters

A comprehensive set of parameters for the Accumulator ring are tabulated in Table 8.1.

One can notice that the Accumulator and the Booster are the same in circumference of 474

(m). The lattice of the Accumulator used for this study is the one at injection.
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Table 8.1: Selected Accumulator Parameters for Proton Stacking

Beam Specie H+

Circumference (βc·τ0) 474.1 (m)
Mean Radius 75.47 (m)
Beam Kinetic Energy 8.0 (GeV)
Total Energy 8.938 (GeV)
Design Momentum 8.889 (GeV/c)
γtr (Transition Gamma) 5.42173
Etr (Transition Energy) 5.0871 (GeV)
αc (Momentum Compaction Factor) 0.034
η (phase-slip factor) 0.023
β (normalized velocity) 0.994
γ (relativistic mass factor) 9.5263
Injected Beam Intensity 4× 1010 (protons per bunch)
Number of Bunches 84
Injected Beam Intensity 3.4× 1012 (protons per batch)
Number of stacked batches 3∼ 4
Total Beam Intensity after stacking 1.02∼ 1.36× 1013

Injected Beam Emittance 0.1 (protons per bunch, eV-s)
Emittance after stacking ≤ 0.5 (per bunch, eV-s)
Longitudinal Bunch Profile Elliptical
RF Frequency 53 (MHz)
Harmonic Number 84
Peak RF Voltage 250 (kV)
Synchrotron Tune 3× 10-3

Synchrotron Period 0.539 (msec)
Stationary Bucket Area 0.65 (eV-s)
Stationary Bucket Height 27 (MeV)
Deceleration Synchronous Phase,φs -3 ◦

Deceleration Time 30 (msec)
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8.4 Proton-Stacking Procedures

The simulation uses 1,000 macroparticles for each proton pulse to inject under the in-

fluence of the longitudinal space-charge effect. The longitudinal beam profile is elliptical.

Each of the RF-stacking processes consists of four stages as follows.

The 1st stage issynchronous injection. A batch of 84 proton bunches extracted from

the Booster are synchronously injected into stationary (or standing) RF buckets of 53 MHz

and 250 kV of the Accumulator. One of the captured 84 bunches is as shown in Figure 8.2.

The bucket contour is drawn in red in the figure of∆E-∆θ space. The dotted line drawn in

the background of the figure indicates a single RF waveform of 53 MHz in units of kV.

Figure 8.2: 1st pulse: synchronous injection

The 2nd stage isadiabatic RF-bucket transformation. When synchrotron parameters

vary slowly, satisfying theadiabatic conditiongiven as in Eqn. (8.1), we refer the process

to aadiabatic process[67].

α≡ 1
ωs

ω̇s

ωs
� 1, (8.1)

whereα, ωs, ω̇s, andνs are the adiabaticity, angular synchrotron frequency, time-derivative



8.4. PROTON-STACKING PROCEDURES 190

of angular synchrotron frequency, and synchrotron tune, respectively. The adiabaticity (α)

is a dimensionless parameter. This implies that the variation of parameters of synchrotron

motion is sufficiently slow, such that the longitudinal energy oscillation is negligible in

the process; in other words, the fractional change in the Hamiltonian is nearly zero, or

∂H/∂t ≈ 0. The longitudinal emittance can therefore be preserved. For this reason, the

adiabatic process is a key to emittance-dilution-free stacking. The stationary RF bucket is

adiabatically transformed to a moving RF bucket by altering synchronous phase (φs) from

0◦ to -3◦ (Figure 8.3). For a stationary bucket, a separatrix is symmetric around its center.

For a moving bucket, however, the separatrix becomes asymmetric. This process takes

about 0.1 msec.

Figure 8.3: 1st pulse: adiabatic transformation

The 3rd stage is adecelerationprocess. At a synchronous phase of -3.0◦ and RF voltage

of 250 kV, the beam is adiabatically decelerated by 150 MeV. This process takes about 30

msec (Figure 8.4).

The last stage of stacking the first pulse isadiabatic debunching. Towards the end of

the deceleration, while the synchronous phase adiabatically changes back to zero, the RF
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Figure 8.4: 1st pulse: deceleration

voltage is then also adiabatically decreased from 250 kV to zero. As a consequence, the

beam is slowly debunched (Figure 8.5). The last stage takes about another 30 msec.

Figure 8.5: 1st pulse: debunched beam

The above multi-stage processes are repeated for the 2nd pulse with the exception that
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the deceleration is now reduced to about 143 MeV. The newly injected beam pulse can be

added to the 1st pulse that was already deposited. The 2nd batch should be brought as near

to the 1st-injected pulse as possible without perturbing the 1st batch considerably. Through

this process, the beam intensity is doubled by stacking. During the deceleration process

the approaching RF bucket is likely to disturb pre-stacked unbunched beam pulses. This

requires laborious attempts to optimize the deceleration of RF waveform, 8.7, and8.8). The

2nd batch injection is similar to the first-batch injection, but smaller amount of deceleration

process is carried out. (Figures 8.6, 8.7, and8.8). After deceleration and RF bucket

Figure 8.6: 2nd pulse: synchronous injection

transformation are complete, the 2nd beam pulse is adiabatically debunched. After the

debunching, we circulate the DC beam for a while to reach the equilibrium state. The

third- and the fourth-batch injections proceed in a similar fashion, but with even smaller

amount of deceleration than that of 2nd batch. They are shown in Figures 8.9—8.13.

After the fourth-batch stacking is completed, the 53-MHz RF system is slowly switched

on with RF phase 0◦ to adiabatically recapture the beam (Figure 8.14). After the stacked

high-intensity beam is rebunched, RF bucket is slowly transformed from a stationary RF
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Figure 8.7: 2nd pulse: adiabatic RF-bucket transformation

Figure 8.8: 2nd pulse: debunched

bucket back to a moving bucket. And the moving bucket starts acceleration towards the

injection orbit for extraction. (Figure 8.15and8.16). This process would take about 60

msec. Once rebunched high-intensity beams reach to the injection orbit, it is extracted and

transferred to the Main Injector or the Recycler.
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Figure 8.9: 3rd pulse: synchronous injection

Figure 8.10: 3rd pulse: debunched

8.5 Simulation Results

In the preceding section, we have illustrated the procedure of momentum stacking of

proton beams in the longitudinal phase space in Figures from 8.2 through 8.16. In addi-

tion, for visualization of the entire momentum-stacking process, an animation has also been
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Figure 8.11: 4th pulse: synchronous injection

Figure 8.12: 4th pulse: deceleration

created and available on the web [69]. Figure 8.17 shows the energy-density distribution

after stacking four batches is complete. There are small gaps between adjacent debunched

beams. These gaps are unavoidable in order to minimize the effects of an approaching

moving RF bucket on the circulating DC beams in the course of deceleration. A lot of
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Figure 8.13: 4th pulse: debunched

Figure 8.14: RF recapture of a stack of 4 debunched beams

effort goes into the reduction of the gaps between successive batches by optimizing nu-

merous synchrotron and RF parameters (φs, Vr f , ∆E, deceleration time, recapture time,

etc.) Stacked beam profile in azimuthal space is illustrated by Figure 8.18. The horizon-
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Figure 8.15: Acceleration after RF recapture

Figure 8.16: Recaptured momentum-stacked beam at injection orbit

tal axis in this plot is in units of degree with the machine circumference considered to be

360◦. A small amount of high-energy stack-tails are also formed in the case of stacking 4

batches; it is, however, much smaller when only 3 batches are stacked. As can be found

in Figure 8.19, the azimuthal distribution, or charge-density distribution of stacked three
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Figure 8.17: Energy-density distribution of four debunched pulses

batches is nearly uniform.

8.6 Discussion

In order to stack high-intensity beams from a few beam pulses of lower intensity we

investigated the feasibility of the momentum-stacking method in the presence of the longi-

tudinal space-charge effect. At present, Fermilab is considering the option of transferring

stacked beams of high intensity from the Accumulator to the Recycler, or the Main Injector

that has large momentum acceptance. One main concern of momentum-stacking is the

emittance dilution. The formation of a small amount ofstack-tailcan be clearly seen in

Figure 8.17. It is caused by an approaching RF bucket affecting the existing circulating
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Figure 8.18: Charge-density distribution of four debunched pulses

DC beam during the 2nd, 3rd, and 4th injection process; this is usually referred to asphase-

displacement accelerationof DC beams. This tail is much smaller when only 3 batches are

stacked, since the energy gap between neighboring batches is less tight. There is a trade-off

between higher longitudinal beam intensity and smaller stack-tail.

The stack-tail must be dumped before it would enter the Main Injector. One way of elimi-

nating it is to have a momentum collimation in the beam transport line.

The emittance of the stacked beam must be within the acceptance of the Main Injector,

which is measured at about 0.7 eV-s when the batch intensity is 8.7× 1012. The acceptance

would be smaller at higher intensities. Therefore, the allowable emittance after stacking is

set to be 0.5 eV-s. This requirement can be met in 3-batch stacking but is more challenging

if 4 batches need to be stacked. Figures 8.20 through 8.23 show the evolutions of a few

of key parameters in synchrotron beam dynamics during the entire stacking process. The
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(a) Charge-density distribution

(b) Energy-density distribution

Figure 8.19: Profiles of stacked three batches
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evolutions of〈 θ 〉 and〈 E 〉 are shown in Figures 8.20 and 8.21. As the stacking of the

beams progresses the mean energy is slightly decreased. On the other hand, the energy

spread, or rms value of the energy increases as the stacking process proceeds, as shown in

Figure 8.22. Lastly, the bunching factor (Bf ), which was introduced in section 4.3.5, is also

calculated throughout the process. The bunching factor is calculated from line density (λ),

and it is one of the measures of the effect of the longitudinal space charge. As illustrated in

Figure 8.23, the bunching factor is centered around 0.42.

Figure 8.20: < θ > during the entire RF stacking process

The injection kicker has a mechanical shutter, which is unable to move at 15 Hz. For-

tunately, the effective range of the kicker field is small and has no effect on the circulating

beam when fired even without the shutter.
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Figure 8.21: < E > during the entire RF stacking process

Figure 8.22: The RMS values of energy during the entire RF stacking process
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Figure 8.23: The variation of Bunching factor (Bf ) during the entire RF stacking process
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8.7 Usage of the New Stochastic Noise Module and the Up-

graded TeaPot Module

We describe how to run ORBIT-FNAL package including the new stochastic noise mod-

ule and an upgraded TeaPot module. The usage of the noise module and the upgraded ver-

sion of TeaPot module is particularly oriented to the case of Fermilab Booster synchrotron.

The following is an exemplary SuperCode script for Fermilab Booster ring. The script con-

tains the nitty-gritty features of ORBIT? only. The lines associated with the noise module

and the TeaPot module are placed in shaded blocks.

// ____________________ Start of Script ____________________

//====================================================================

// [Author] Phil S. Yoon (syoon@fnal.gov)

// [Note]

// (1) An exemplary SuperCode script for running ORBIT-FNAL

// in parallel mode including RandomNoiseNodes.

// (2) Lattice parameters are based upon the Booster design lattice.

//====================================================================

Integer nRank = MPI_rank();

// === from the Booster MAD lattice v1.1 ===

Ring::lRing = 474.202753;//[m]

Ring::gammaTrans = 5.445513;

Ring::harmonicNumber = 84;

Real rhoD = 48.034101;//[m]

Real rhoF = 40.847086;

// === MacroParticle Injection ===
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nMacrosPerTurn = 30000;

Integer InjTurns = 11;

nMaxMacroParticles = InjTurns * nMacrosPerTurn;

Real QpBckt = 6.0e10;

nReals_Macro = QpBckt/Real(nMaxMacroParticles);

Real Vrf = 205.0;//[kV/T]

Real foilRho = 409.;//[ug/cm**2]

// === File Name ===

String subName, outF;

runName = ‘‘Booster’’;

subName = ‘‘.out’’;

outF = runName + subName;

OFstream fio( outF, ios::out );

///////////////////////////////////////

// Create a Synchronous Particle

///////////////////////////////////////

Real ESync = 0.400;//[GeV]

Real MSync = 1;

Integer Charge = 1;

addSyncPart( MSync, Charge, ESync );

mainHerd = addMacroHerd( nMaxMacroParticles );

///////////////////////////

// Create a Ring

///////////////////////////
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// a file of Twiss functions generated from MAD:

String MADTW = ‘‘booster_v11.tw’’;

// TeaPot-like lattice:

String MADLAT = ‘‘BST.LAT’’;

const Integer nstepTPD = 1, fringeD = 1;

const Integer nstepTPM = 4, fringeM = 1;

const Integer nstepTPQ = 4, fringeQ = 1;

const Integer nstepTPB = 10, fringeB = 1;

const Integer nstepTPS = 4, fringeS = 1;

const Integer nstepTPK = 4, fringeK = 1;

Void kick(){ }// leave the subroutine body empty.

// a new method for the Booster lattice:

buildTPlatticeI( MADTW, MADLAT,

nstepTPD, fringeD,

nstepTPM, fringeM,

nstepTPQ, fringeQ,

nstepTPB, fringeB,

nstepTPS, fringeS,

nstepTPK, fringeK,

kick );

Ring::nuX = 6.7; Ring::nuY = 6.8;

if( !nRank )

cerr << ‘‘\n\t\t\t * Finished reading TeaPot-like lattice files ... \n’’;

///////////////////////////////////////////////////////////////////////

// Transverse and Longitudinal Distribution Initializer Functions

///////////////////////////////////////////////////////////////////////
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betaXInj = 6.17585; alphaXInj = -0.0939789;

MXJoho = 100.;

Real epsX = 1.76;

epsXLimInj = epsX * (MXJoho + 1) * 2.0;

xTailFraction = 0.0; xTailFactor = 3.;

addXInitializer( ‘‘BiGaussX’’, JohoXDist );

betaYInj = 20.023; alphaYInj = -0.029;

MYJoho = 100.;

Real epsY = 1.76;

epsYLimInj = epsY * (MYJoho + 1) * 2.0;

y0Inj = 0.0; yP0Inj = 0.0;

yTailFraction = 0.0; yTailFactor = 3.;

addYInitializer( ‘‘BiGaussY’’, JohoYDist );

phiMinInj = -120.0; phiMaxInj = 120.0;

EOffset = 0.0;

deltaEFracInj = 5.1E-4;

addLongInitializer( ‘‘Uniform’’, UniformLongDist );

////////////////////////////

// Add a Foil Node

////////////////////////////

addFoil( ‘‘Foil’’, 2, -100.00, 100.00, -100.00, 100.00, foilRho );

useFoilScattering = 0;

if( !nRank ) cerr << ‘‘\n\t\t\t * Default foil node added. \n’’;
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//////////////////////////////

// Add a RF Cavity

//////////////////////////////

Real tFactor;

Integer nRFHarms = 1;

RealVector volts(nRFHarms), harmNum(nRFHarms), RFPhase(nRFHarms);

harmNum(1) = 1;

RFPhase(1) = 0.;

volts(1) = Vrf;

addRFCavity(‘‘RF(1)’’,4,nRFHarms,volts,harmNum,RFPhase);

/////////////////////////////////////////////////

// Add a Longitudinal Space-Charge Node

/////////////////////////////////////////////////

nLongBins = 32;

Real b_a = 2.;

Integer useAvg = 0;

Integer nMacroLSCMin = 128;

Integer useSpaceCharge = 1;

addFFTLSpaceCharge(‘‘LSC(1)’’,5,ZImped,b_a,useAvg,nMacroLSCMin,useSpaceCharge);

if(!nRank) cerr << ‘‘\n\t\t\t * added FFT LSpaceCharge node. \n’’;

////////////////////////////////////////////////

// Add a Transverse Space-Charge Node Set

////////////////////////////////////////////////

Integer nxBins = 64, nyBins = 64;

Real eps = 1.e-6;

Integer nMacroTSCMin = 16;
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addFFTTransSCSet(nxBins,nyBins,eps,nMacroTSCMin);

if( !nRank ) cerr << ‘‘\n\t\t\t * added FFT Transverse SC node set. \n’’;

///////////////////////////////////////////

// Add Noise Nodes

///////////////////////////////////////////

Real T_0 = 2.2E-6;

Real dT = T_0;

Real corrTime = 2.E-3;

Real Str = 5.0E-4;

Integer nsteps = 1;

addRandomNoiseNode(‘‘> NoiseNode [1]’’,139,’’Noise-1.out’’,’’Halo-1.out’’,

dT,corrTime,Str,nsteps);

if( !nRank ) cerr << ‘‘\n\t\t\t * added RandomNoiseNode [1]. \n\n’’;

addRandomNoiseNode(‘‘> NoiseNode [2]’’,2279,’’Noise-2.out’’,’’Halo-2.out’’,

dT,corrTime,Str,nsteps);

if( !nRank ) cerr << ‘‘\n\t\t\t * added RandomNoiseNode [2]. \n\n’’;

addRandomNoiseNode(‘‘> NoiseNode [3]’’,4379,’’Noise-3.out’’,’’Halo-3.out’’,

dT, corrTime,Str,nsteps);

if( !nRank ) cerr << ‘‘\n\t\t\t * added RandomNoiseNode [3]. \n\n’’;

addRandomNoiseNode(‘‘> NoiseNode [4]’’,6319,’’Noise-4.out’’,’’Halo-4.out’’,

dT,corrTime,Str,nsteps);
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if( !nRank ) cerr << ‘‘\n\t\t\t * added RandomNoiseNode [4]. \n\n’’;

///////////////////////////////////////////

// Add Moment and StatLat Nodes

///////////////////////////////////////////

addMomentNode(‘‘MomentNode(0)’’, 7, 2, ‘‘Moments.out’’);

activateMomentNode(1);

addStatLatNode(‘‘StatLatNode(0)’’, 8, ‘‘StatLats.out’’);

activateStatLatNode(1);

/////////////////////////////

// Overall Ring Info

/////////////////////////////

showStart(fio);

showFoil(fio);

//////////////////////////////

// Tick off the Timer

//////////////////////////////

Real et; timerOn();

Real time_start, time_stop, time_total;

time_start = MPI_Wtime0();

////////////////////

// Tracking

////////////////////

doTurn(1000);

////////////////////////////

// Streaming Information

////////////////////////////

OFstream outTP( ‘‘showTP.out’’, ios::out );
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showTurnInfo(fio); showTurnInfo(cerr);

showTP(outTP);

OFstream outN( ‘‘showNoise.out’’, ios::out );

showNoise(outN);

deactivateMomentNodes();

deactivateStatLatNodes();

fio.close();

quit

// ____________________ End of Script ____________________

By supplying three characteristic nois parameters to the random-noise adders, desired

stochastic noise can be generated. To generate stochastic noise with a different rms value

from that of the Booster noise, it might be necessary to tune up the strength parameter. The

above set of parameters are selected for the Booster power system only.

Two noise-related output files (Noise.out and Halo.out) are generated from an ORBIT

run including the Noise module and the TeaPot module. The format of theNoise.outfiles

(Noise-1.out, Noise-2.out, Noise-3.out and Noise-4.out) is two columns delimited by white

space. The first column is for tracking turn number and the second is for stochastic noise

at each turn. The format of theHalo.out files (Halo-1.out, Halo-2.out, Halo-3.out and

Halo-4.out) is one data set per line. Each line contains the values for (1) number of turns,

(2) accumulated azimuthal position (m), (3) Halo Amplitude I (AH, 1) (mm), and (4) Halo

Amplitude II (AH, 2) (mm).


AH, 1 =

√
x2 +y2

∣∣∣
Max

AH, 2 =
√

(x/
√

βx)2 +(
√

βx ·x′)2 +(y/
√

βy)2 +(
√

βy ·y′)2
∣∣∣
Max

,

whereβx andβy are beta functions.



Appendix 217

The next is a script for PBS (Portable Batch System)-LAM (Local Area Multicomputer)

job submission. Before using the PBS-LAM script, both PBS scheduler (e.g., Maui, or

Torque) and libraries of Local Area Multicomputer (e.g., LAM or OpenMPI) should be

available on the cluster. Depending on the local cluster configuration, the contents of the

PBS-LAM script are subject to modification.

Start of Script

#! /bin/bash -x

#=====================================================

# [Author] Phil S. Yoon (syoon@fnal.gov)

#

# An example of script for submitting a PBS-LAM run

#=====================================================

#PBS -S /bin/bash

#PBS -j oe

#PBS -m n

#PBS -M [your@email.address]

#PBS -l nodes=[requested number of nodes], walltime=[hh:mm:ss]

printf "\n Starting on ‘hostname‘ at ‘date‘ \n"

#==================================================

EXECUTION_DIR=/where/your/working/directory/is

APP=/where/your/executable/is

ARGS=/where/your/SuperCode/is

#==================================================

if [ -n "${PBS_NODEFILE}" ]; then

if [ -f ${PBS_NODEFILE} ]; then

# print the nodenames.
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# cat ${PBS_NODEFILE}

set -- ‘wc -l ${PBS_NODEFILE}‘

NP=$1

fi

fi

cd ${EXECUTION_DIR}

cat << EOF

EXECUTION_DIR: ${EXECUTION_DIR}

PBS_NODEFILE: ${PBS_NODEFILE}

PBS_O_WORKDIR: ${PBS_O_WORKDIR}

EOF

cat ${PBS_NODEFILE} > ${PBS_O_WORKDIR}/nodefile.$$

lamboot ${PBS_O_WORKDIR}/nodefile.$$

/path/name/to/mpirun N $APP $ARGS

lamhalt

# Print the End Time

printf "\n Ended at ‘date‘"

exit 0

End of Script


