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this thesis has been Regis Lefèvre, “my postdoc”. In addition to being a very meticulous physicist,

he has been a great co-worker, who has patiently spent hours answering my questions.

I am also grateful to the CDF collaboration. In particular, I want to thank Jacobo Konigsberg and

Rob Roser for their leadership as spokespersons. Their efforts, together with previous spokesper-

sons, have ensured the continued success of the CDF experiment. In addition, and more impor-

tantly, they have offered a personal, friendly, and easy going environment for all CDF people

making the collaboration into a big family, of which I am happy to be a member.

The person responsible for my entry into the exciting adventure of the research world is Enrique

Fernández. Thanks for that! As a teacher at the Universitat Autònoma de Barcelona, he was the
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Chapter 1

Introduction

Quantum Chromodynamics (QCD) is the gauge theory that governs the strong interactions be-

tween quarks and gluons inside hadrons like, for example, protons and neutrons. It shows two

well established characteristics, related to the non-abelian nature of the theory, that dominate its

phenomenology: asymptotic freedom and color confinement. The dependence of the strong cou-

pling, αs�Q2�, with the hard scale is such that it decreases with decreasing the distance between

partons. This allows to perform precise theoretical calculations at large energy transfer (short

distances) using perturbative QCD (pQCD). On the other hand, the strength of the interaction

increases with the distance between partons and thus colored quarks and gluons are forced to be

confined inside colorless hadrons.

At the Tevatron at Fermilab, protons and antiprotons collide at very high energy. In those col-

lisions, collimated jets of hadrons are produced along the direction of struck quarks and gluons

in the final state. The measurement of the inclusive jet production cross section for central jets

constitutes one of the pillars of the jet physics program since it provides a stringent test of pQCD

predictions over almost nine orders of magnitude. Thanks to the increase in the center-of-mass

energy at the Tevatron in Run II (from 1.8 to 1.96 TeV) the jet production rate is multiplied by a

factor of five for jets with transverse momentum, pjet
T , higher than 600 GeV, and the new measure-

ments extend the pjet
T coverage by 150 GeV compared to Run I. In addition, the CDF experiment

explores new algorithms to define jets, following the theoretical work that indicates that the cone-

based jet algorithm employed in Run I is not infrared safe and compromises a future meaningful

comparison with a pQCD calculation at NNLO.

The Tevatron jet data has been used in the past to determine the gluon distribution in the proton

1
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at high x. Jet measurements at large rapidities are important because they constrain the gluon

density in a region in pjet
T where no effect from new physics is expected.

The hadronic final states at 2 TeV are characterized by the presence of soft underlying emissions,

usually denoted as the underlying event, in addition to highly energetic jets of hadrons coming

from the hard interaction. The underlying event contains contributions from initial- and final-

state soft gluon radiation, secondary semi-hard partonic interactions and interactions between the

proton and anti-proton remnants that cannot be computed following perturbation theory. These

processes must be approximately described using phenomenological models tuned to the data.

Hence, a proper understanding of this underlying contribution is crucial to reach the desired pre-

cision in the measured cross sections.

This Ph.D. Thesis presents a measurement of the inclusive jet production cross section using the

new data collected by the CDF experiment in Run II. The longitudinally invariant kT algorithm,

infrared safe to all orders in pQCD, has been used in order to search for jets in the final state.

The measurement is compared to pQCD NLO calculations where non-perturbative effects from

the underlying event and the fragmentation of partons into jets of hadrons have been taken into

account.

The present work is organized as follows: Chapter 2 gives an introduction to the theory of strong

interaction and describes the main concepts of jet physics. Chapter 3 contains a description of the

Tevatron accelerator and the CDF detector. The details of the analysis are explained in Chapter 4.

Chapter 5 presents the final results and Chapter 6 is devoted to summary and conclusions.

At the end of the document three appendixes are included. Appendix A describes the Data Quality

Monitoring system implemented at CDF. The Appendix B presents Jet Shapes measurements

published in Run II from CDF. These precise measurements of the jet internal structure, sensitive

to non-perturbative effects, are important to guarantee a precise comparison between the jet cross

section measurements and the NLO calculations. Finally, the tables in Appendix C summarize

the results presented in this PhD. Thesis.



Chapter 2

QCD and Jets in pp̄ collisions

At present the most successful way to describe the measurements in high energy experiments

is summarized in the Standard Model. In this chapter a discussion about this model is pre-

sented, including how it describes the interaction between elementary particles and the formation

of hadronic jets. The chapter finalizes with a discussion about jet physics at hadron colliders.

2.1 The Standard Model

The Standard Model is an attempt to describe the properties and interactions of elementary par-

ticles. There are four known fundamental forces which govern the interaction of matter in our

universe: gravity, electromagnetism, weak and strong interactions. The Standard Model groups

the electromagnetic, weak and strong interactions in a quantum field theory based on group sym-

metries. These forces are mediated by the so-called carrier particles, which have integer spin (1),

obey Bose-Einstein statistics and are called gauge bosons. The electromagnetic force is mediated

via the exchange of massless photons, γ. The weak force is transmitted by exchange of three mas-

sive intermediate vector bosons, the W� and Z. The strong force is mediated via eight massless

gluons.

Besides gauge bosons, one observes a second type of fundamental particles. These particles have

half-integer spin and are called fermions. They follow Fermi-Dirac statistics and are constrained

by the Pauli exclusion principle. There are two fundamentally different types of fermions: leptons

and quarks. They both interact electroweakly, but only the quarks feel the strong force. The lepton

3
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family is constituted by electrons (e), muons (µ) and taus (τ) and their associated neutrinos, νe,

νµ and ντ, respectively. There are six massive quarks, or flavors: up (u), down (d), strange (s),

charm (c), bottom (b) and top (t). Out of the six quarks three of them (u,c,t) have a charge of

Q � 2�3 and are also known as up-type quarks. The other three quarks (d,s,b) are down-type and

carry an electric charge of Q ��1�3. The three up and down-type quarks can be paired to form

three ”sets” of quarks which have increasing mass. Each ”set” of quarks is called a generation, or

family. Table 2.1 summarizes the Standard Model forces carried and elementary particles.

Gauge Bosons W��Z0 Photon 8 Gluons

Mediator Interaction Weak Electromagnetic Strong

Quarks

�
u

d

� �
c

s

� �
t

b

�

Leptons

�
νe

e

� �
νµ

µ

� �
ντ

τ

�

Table 2.1: The Standard Model elementary particles and forces carried.

2.2 QCD Theory

One of the cornerstones of the Standard Model is Quantum Chromodynamics (QCD) that de-

scribes the strong interaction. Following the way opened by QED and Yang-Mills theories, QCD

was developed in 1973 [1] in the context of Quantum Field Theory based in SU(3) symmetry

group [2]. It is a non-abelian theory and the Lagrangian, that describes the strong interaction of

coloured quarks and gluons1, is given by:

1The charge associated with the strong interaction is the colour-charge. The colour property was introduced to

quarks satisfied the requirement of Pauli exclusion principle. Posterior experiment results proved the validity of colour

hypothesis
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LQCD � ∑
f lavour

q̄a�iγµDµ�mq�abqb� 1
4

FA
αβFαβ

A � (2.1)

where the sum runs over the six different flavors of the quarks. FA
αβ is the field strength tensor

derived from the gluon field AA
α as,

FA
αβ � �∂αAA

β �∂βAA
α�g f ABCAB

αAC
β �� (2.2)

and the indices A,B,C run over the eight colour degrees of freedom of gluon field. g is the

coupling constant, which determines the strength of the interaction between coloured quanta, and

f ABC are the structure constants of the SU(3) colour group. The third term in equation 2.2 shows

the non-abelian nature of QCD. This term describes the property of interaction between gluons,

resulting in the very different behavior of the strong interaction compared to the electromagnetic

interaction. This self-coupling is the reason for the strong coupling constant ,αs �
g2

4π , is large

at small energies (large distances) and decreases at high energies (small distance) as is shown in

figure 2.1.

Figure 2.1: The value of the running coupling constant, αS, as a function of the energy scale E.
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This characteristic running of αS is used to explain the observed behavior of the strong interaction:

� Asymptotic freedom: At high energies (small distance) the strong interaction proceeds via

colour field of reduced strength and the quarks and gluons behave as essentially free, non-

interacting particles.

� Confinement: At low energies (or large distance) the strength of the colour field is increas-

ing, since the potential behaves as V �r� � λr, and in this way the quarks and gluons can

never be observed as free particles. If two interacting partons are separated, the energy of

the field increases so much that it creates new interacting particles and at the end it is left

with colourless hadrons containing the partons. Therefore partons are not observed as free

particles.

It is important to note that the asymptotic freedom property allows the application of perturbation

theory to calculate cross section measurements in scattering processes where quarks and gluons

are involved. Moreover, this property explains the partial success of the naive Quark Parton Model

approach, which is going to be presented below.

2.3 Deep Inelastic scattering and the Quark Parton Model

Deep inelastic scattering (DIS) experiments have been important in the development of QCD

theory. The first series of this kind of experiments allowed us to study the internal structure of

hadrons and established the physical reality of quarks in the context of the Quark Parton Model,

the predecessor of QCD.

When the transfered momentum is much larger of 1 GeV 2, the process is in the DIS regime.

In this case, the target loses its identity completely and the resulting final states are complicated

multiparticle states whose study allows us to gain insight into the internal structure of the initial

target. Consider the scattering of a high energy charged lepton off a hadron target. Figure 2.2

illustrates the kinematics of a deep inelastic scattering eP � eX , where X means any hadronic

final state.

2If the particle momentum passed 1 GeV, according to de Broglie’s relation λ � h�p structures smaller than 1 fm

(size of the proton) can be resolved
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γ�Z0 �q�

P�p�

e��k�

X�p��

e��k��

Figure 2.2: Schematic view of a deep inelastic scattering reaction: the photon (or Z0 ) interacts with a quark inside

the proton.

At a given center-of-mass energy,
�

s, the kinematics of a DIS event are completely described by

two variables:

Q2 ��q2 � �k� k��2 and x �
Q2

2�p �q� � (2.3)

where k and k
�

are the 4-momenta of the ingoing and outgoing electron, respectively, and p is the

4-momentum of the incoming proton. The variable x is known as the Bjorken variable and can be

interpreted as the fraction of the proton four-momentum carried by the struck quark. Figure 2.3

shows the kinematic range of DIS events accessible by different experiments, included the one

probed by the Tevatron.

Figure 2.3: Kinematic range accessible by the Tevatron in Run I and various fixed target deep inelastic scattering

experiments.
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Using these variables, the DIS cross section for the process eP� eX can be written as:

d2σ�e�p�
dxdQ2 �

4πα2

xQ4

�
y2x �F1�x�Q

2���1� y� �F2�x�Q
2�	 y�1� y�x �F3�x�Q

2�
�
� (2.4)

where y is the ratio Q2�sx and the 
Fi� are the so-called proton structure functions. In order to

give a physical interpretation of these structure functions, one can make use of the Quark Parton

Model.

In the Quark Parton Model, which delivered the first description of the structure of protons and

other hadrons, the proton consists of three free point-like spin 1/2 particles, called the valence

quarks. One of the basic concepts of this model is that the eP interaction can be viewed as

incoherent scattering of electrons off partons inside the proton. This assumption can be justified

by the following argument. The interaction time t of the probe with the constituents of the proton

is inversely proportional to its virtuality Q2 (t ∝ 1�Q). Thus at large enough Q the interaction time

of the scattering process is much smaller than the lifetime of the fluctuations inside the proton.

Therefore, the probe sees free, i.e. non-self-interacting, constituents in the proton, also called

partons. Thus, the eP cross section can be formulated as an incoherent sum of elastic electron

parton scattering. Introducing the parton densities fi�x�, also called parton distribution functions

(PDFs), one obtains:

F1�x� �
1
2 ∑

i

e2
i fi�x� and F2�x� � ∑

i

e2
i x fi�x�� (2.5)

The term fi�x�dx gives the probability of finding a parton of type i in the proton carrying a fraction

between x and x�dx of the proton momentum and ei is the charge of the parton in units of electron

charge. In 1969, Bjorken argued that the structure functions at large Q2 and finite x are functions

of x alone. This behavior, represented by

Fi�x�Q
2�� Fi�x� (2.6)

is known as scale invariance or Bjorken scaling [3]. This behavior can be easily explained inside

the Quark Parton Model. If the particles within the proton are point-like, one would expect its

structure to be independent of the resolution power of the probe and thus Q2. This leads to the

fact that the parton densities and structure functions only depend on the variable x and not on
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Q2. The Bjorken scaling was showed very clear by experimental results on F2 measurements

from SLAC [4], confirming at first the Quark Parton Model. It should be mentioned that the

fractional charge of the partons and the number of three valence quarks in the proton were also

experimentally confirmed, in this last case using neutrino-nucleon scattering [5].

If the proton were solely to be constituted of charged quarks, the integration of the parton densities

over all partons inside the proton and over all the kinematic range of x should be equal to unity:

� 1

0
dx x∑

i

fi�x� � 1; (2.7)

but the experimental value turned out to be 0.5 [6]. The conclusion was that quarks carried

half of the nucleon momentum and the remainder must be carried by partons that do not feel

the electroweak force, namely gluons. This was the first evidence for gluons, leading to the

replacement of the Quark Parton Model by the QCD theory.

The appearance of gluons brought about a fundamental change of the dynamics inside the proton.

The quarks inside the proton radiate gluons, and these gluons can then radiate more gluons or split

into quark-antiquark pair, qq̄, which themselves radiate gluons with smaller momentum fraction,

and so on. The radiation of gluons results in a violation of the scaling behavior with a logarith-

mic dependence on Q2 which is also experimentally observed. The violation of Bjorken scaling

is naturally described by this example: a photon interacting with a quark at a certain Q2
0 probes

the proton with a finite resolution proportional to 1�Q2
0. If the photon probes the same quark at

a higher Q2, the quark might have radiated a gluon not visible at Q2
0 and the photon effectively

interacts with a quark carrying less momentum. The result is a dependence of the structure func-

tions on Q2. In addition, the gluon appearance promoted a change in the structure of the proton

to be three valences quarks (uud), which carry its electric charge and baryon quantum numbers,

gluons and a sea of light qq̄ pairs. An example of the parton distribution functions in the proton is

illustrated in figure 2.4, determined at Q=2 GeV. Notice that the valence quarks dominate a large

x and gluon dominates a low x.

Perturbative QCD (pQCD) does not predict the form of the PDFs but it is possible to obtain pre-

dictions about the variation with the scale. The processes that generate the parton interactions, to

first order in αs, are gluon radiation (q� qg), gluon splitting (g� gg) and quark pair production

(g � qq̄). The effect of all interactions is described by so called splitting functions: Pqq�x�z�,

Pgq�x�z�, Pgg�x�z� and Pqg�x�z�. Figure 2.5 illustrates these functions at leading order.
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Figure 2.4: Example of parton distribution functions at Q= 2 GeV for gluons (red), up (green), down (blue), and

strange (violet) quarks.

q�z�

g�z� x�

q�x�

Pqq�
x
z� � Pgq�

z�x
z �

g�z�

q�z� x�

q�x�

Pqg�
x
z� � Pqg�

z�x
z �

g�z�

g�z� x�

g�x�

Pgg�
x
z� � Pgg�

z�x
z �

Figure 2.5: The processes related to the lowest order QCD splitting functions. Each splitting function Pp� p�x�z�

gives the probability that a parton of type p convert into a parton of type p
�

, carrying fraction x/z of the momentum of

parton p.
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Each function Pp�p�x�z� represents the probability that a parton of type p radiates a quark or gluon

and becomes a parton of type p� carrying fraction x/z of the momentum of parton p. The splitting

functions have been calculated using perturbative QCD and the expressions associated to these

diagrams are:

Pqq�z� �
4
3

1� z2

1� z
� (2.8)

Pqg�z� �
1
2

�
z2 ��1� z�2� � (2.9)

Pgq�z� �
4
3

1��1� z�2

z
� (2.10)

Pgg�z� � 6

�
z

1� z
�

1� z
z

� z�1� z�

�
� (2.11)

The evolution of the parton densities in Q2 can be written in terms of these splitting functions:

dqi�x�Q2�

d log�Q2�
�

αs

2π

� 1

x

	
qi�z�Q

2�Pqq

	
x
z



�g�z�Q2�Pqg

	
x
z




dz
z
� (2.12)

dg�x�Q2�

d log�Q2�
�

αs

2π

� 1

x

�
∑

i

qi�z�Q
2�Pgq

	
x
z



�g�z�Q2�Pgg

	
x
z


�
dz
z
� (2.13)

where, the first equation describes the change of the quark densities with Q2 due to gluon ra-

diation and gluon splitting and, the second equation describes the change of the gluon density

with Q2 due to gluon radiation off quarks and gluons. These equations are called the DGLAP

(Dokshitzer, Grobov, Livatov, Altarelli and Paris) equations [7, 8]. The equations assume mass-

less partons and are hence only valid for gluons and the light quarks (u, d and s). The DGLAP

evolution are formally derived in the leading logarithm approximation (LLA), where terms of the

form αn
s � �lnQ2�n, which give the dominant contribution at large Q2 and large x, are summed to

all orders. In a field theory having asymptotic freedom such approximation proves to be asymp-

totically exact. Experiments can measure the parton densities at a given scale Q2
0 and the DGLAP

equations can give predictions for the values for each parton density at other scales Q2. As ex-

ample, figure 2.6 illustrates the structure function F2 in deep inelastic scattering from ZEUS and

fixed targets. Farther discussion about PDFs is given in section 2.5.
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Figure 2.6: The results for the structure function F2 versus Q2 for fixed x in DIS from ZEUS (points) and fixed target

experiments (triangles). The curves are NLO QCD fits. Scaling violations are observed.
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2.4 Hadron-hadron processes and QCD Factorization

An essential ingredient in the description of the DIS above is the concept of QCD Factorization,

which allows us to extract universal PDFs that can be employed in other hadron processes. The

QCD Factorization theorem stays that a given event can be factorized into short- and long-distance

related parts, where the long-distance physics is included in the PDFs.

The cross section for a hard scattering process initiated by two hadrons with four-momenta P1
and P2 can be written as:

σ�P1�P2� �∑
i� j

�
dx1dx2 fi�x1�µ

2
F� f j�x2�µ

2
F�σ̂i j�p1� p2�αs�µ

2
F��Q

2�µ2
F�� (2.14)

where the momenta of the partons which participate in the hard interaction are p1 � x1P1 and

p2 � x2P2. The σ̂i j is the parton-parton cross section and fi�x1�µ2
F� are the well-known PDFs

defined at a factorization scale, µF . This factorization scale µF is an arbitrary parameter. It can

be thought of as the scale which separates the soft and the hard processes. Thus a parton emitted

with small transverse momentum less than the scale µF is considered part of the hadron structure

and is absorbed into the parton distribution. Processes with transverse momentum larger than µF
is part of the parton-parton cross section. The scale µF is typically chosen to be of the order of

the hard scale Q, which characterizes the parton-parton interaction. Principally, any observable

should be invariant under variations of this scale. This is formally expressed as:

µ2 d
dµ2 Γ � 0 (2.15)

where Γ is the observable we are interested in. In the perturbative approach, this equation has to

be applied to the perturbative expansion of the observable,

Γ � Γ0 �αsΓ1 �α2
s Γ2 � ���� (2.16)

therefore, the equation transforms into

µ2 d
dµ2

N

∑
j�0

α j
sΓ j � O�αN�1

s �� (2.17)

showing that the variation of the observable with the scale is given by terms which were not

included in the perturbative expansion. The more terms included in the perturbative expansion,

the weaker the dependence on µ will be.
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Similar to QED, different types of divergences appear in the pQCD calculations. The renormaliza-

tion is the standard regularization procedure used to solve these divergences [9]. The procedure

is not unique, i.e. there is a renormalization scheme selection, which is chosen depending on

the properties of the parameters needed in the calculation. As in the factorization procedure, the

renormalization introduces a scale, µR, at which the renormalization is performed and any physical

observable should be invariant under variations of this scale. However, a theoretical dependence

is obtained in pQCD since the perturbative expansion is performed only to a given order.

2.5 Parton Distribution Functions

The partonic structure of hadrons plays a fundamental role in elementary particle physics. The

comparison of data with SM predictions, precision measurements of SM parameters, and searches

for signals of physics beyond the SM, all rely on the parton picture of hadronic beam particles.

As already mentioned, pQCD is not able to predict the x-dependence of the PDFs. PDFs at a given

scale Q2
0 are extracted from fits to data and DGLAP equations are used to predict PDFs to a higher

scale Q2. The PDFs are parametrized and the parameters are determined by a χ2 minimization

over data from different type of measurements: structure functions in deep-inelastic e, µ or ν
scattering, measurements of Drell-Yan production, W-asymmetry in pp̄ collisions and inclusive

jet cross sections. Different groups provide parameterizations of parton densities. Among others,

PDFs come from Martin, Roberts, Stirling and Thorne (MRST) group [10] and the “Coordinated

Theoretical-Experimental Project on QCD”( CTEQ Collaboration) [11].

2.5.1 MRST and CTEQ parametrizations

The MRST group uses the parametrization for quarks and gluons at a scale Q2
0:

x fi�x�Q
2
0� � Ai � xδi�1� x�ηi�1� εi

�
x� γix�� (2.18)

where fi is a particular parton density and Ai�δi�ηi�γi are the parameters to be fitted. The Q2

evolution is carried out using NLO DGLAP evolution equations. Not all the normalization factors

Ai are free parameters, but some are fixed from flavour or momentum sum rules. The charm

content of the sea quarks is generated by gluon splitting as governed by the DGLAP equations.
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The CTEQ group takes a very similar approach. For quark distributions the same functional form

as in equation 2.18 is chosen, whereas the gluon density is parameterized as:

xg�x�Q2
0� � A0 � xA1�1� x�A2�1�A3xA4�� (2.19)

In 1996, measurements of the inclusive jet cross section based on a CDF Run IA data sample of

19.5 pb�1 [12] showed a significant excess of the data over the available theoretical predictions

at high ET , see figure 2.7. A careful re-evaluation of uncertainties on PDFs indicated that the

apparent excess could be accommodated by a modified gluon distribution at high-x, and motived

the derivation from both collaborations of new PDFs, which specially gave higher weight to the

high ET CDF data points.

Figure 2.7: CDF Run I Cross section results compared to NLO calculations, using CTEQ3M PDFs set. The data are

significantly higher than NLO QCD prediction for ET � 250 GeV.



16 QCD and Jets in pp̄ collisions

CTEQ Collaboration presented the set of distributions known as CTEQ4 [13], where the gluon

contribution was increased at high-x. The NLO predictions using the resulting fit described CDF

data in all the ET range, as it is shown in figure 2.8. Since then, new parametrization have been

generated. The most recent set from CTEQ collaboration is the CTEQ6 [14]. In this case, the

parameterization for quarks and gluons is:

x f �x�Q2
0� � A0 � xA1�1� x�A2 eA3x�1� eA4x�A5 � (2.20)

with independent parameters for parton flavour combination uv � u� ū, dv � d� d̄ and gluons.

Figure 2.8: A comparison of the CDF Run I cross section to NLO calculations using CTEQ4M and CTEQ4HJ PDFs

sets. At high ET the data are well described by CTEQ4HJ, in which the gluon contribution at high-x was modified.
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The set called CTEQ6.1M [15] is the one used in this thesis for the nominal NLO calculations.

The dominant difference between the CTEQ6M and its predecessor, CTEQ5M sets, is the in-

creased gluon distribution in CTEQ6M at large values of x, while the quark distributions are

nearly unchanged. This translates into an increase in the fractional contributions of the quark-

gluon and gluon-gluon subprocesses in pp̄ collisions.

In the final results, the parametrization of the parton densities coming from the MRST group is

used too. One of the most recent set is denoted by MRST2004 [16], where the parameterization

for gluon is extended to:

xg�x�Q2
0� � Ag � xδg�1� x�ηg�1� εg

�
x� γgx��A� � xδ��1� x�η� � (2.21)

2.5.2 PDFs uncertainties

A Hessian method is used to evaluate the PDFs uncertainties. A brief description of the method

is given below, for more details see [17].

In the Hessian method, a large matrix (20�20 for CTEQ, 15�15 for MRST), with dimensions

equal to the number of free parameters in the fit, has to be diagonalized. The result is 20 (15)

orthogonal eigenvectors for CTEQ (MRST), denoted as ai, which provides the basis for the de-

termination of the PDFs uncertainties for any cross section. The Hessian matrix can be expressed

as:

Hi j �
1
2

∂2χ̂2

∂ai∂aj
� (2.22)

This matrix determines the behavior of χ̂2�a� in the neighborhood of the minimum. The point

a0 in the n-dimensional parameter space, where χ̂2�a� is minimum, is the best fit to the global

data set. Points in some small neighborhood of a0 are also acceptable fits. For each eigenvector

two displacements from a0, in the + and - directions along the vector, denoted a�i and a�i for the

ith eigenvector are considered. At these points, χ̂2 � χ̂2
0 �T 2 where χ̂2

0 � χ̂2�a0�=the minimum,

and T is a parameter called tolerance. Any PDFs set with χ̂2� χ̂2
0 � T 2 is considered to be an

acceptable fit to the global data set. In particular, the 2n PDFs sets a�i span the parameter space in

the neighborhood of the minimum. CTEQ group choses T2 �100 and MRST group uses T2 �50.

Any quantity Γ that depends on PDFs has a predicted value Γ0 � Γ�a0� and an associated, a priori

asymmetric, uncertainty δΓ. The + (-) uncertainties are calculated as:
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δΓ� �

�
n

∑
k�1

�max�Γ�a�i ��Γ�a
�
i ��Γ�a0���Γ�a0��

2

�1�2

(2.23)

and

δΓ� �

�
n

∑
k�1

�min�Γ�a�i ��Γ�a
�
i ��Γ�a0���Γ�a0��

2

�1�2

� (2.24)

In figure 2.9 the uncertainties on gluon and u-quark distributions are shown. The u-quark distri-

bution is tightly constrained for x 0.8, whereas the uncertainty on the gluon distribution can be

larger than a factor of 2 at high x.

Figure 2.9: Uncertainty on gluon and u-quark PDFs. The yellow bands represent the global uncertainty. The curves

are the ratios of the 40 eigenvector basis sets to the standard set, CTEQ6.1M.

2.6 pQCD calculation for jet production

The leading order calculations for the jet production include 2�2 parton scattering. The diagrams

that contribute are shown in figure 2.10. As illustrated in figure 2.11, the low ET cross section is

dominated by qg and gg scattering, whereas at high ET the important subprocesses are qg and qq

scattering.
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Figure 2.10: Diagrams for jet production at LO in a hadron collider. All the other lowest order jet production

diagrams are related to this set by crossing.

Figure 2.11: The subprocesses gg,gq and qq contributions to jet production in the central (left) and forward (right)

rapidity regions at
�

s=1.8 TeV calculated by CTEQ collaboration. Similar contributions are expected at 1.96 TeV.
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Mathematically, the inclusive jet cross section at parton level can be described [1] by matrix

element M as:
1

2πpT

d2σ̂
d pT dy

�
1
2ŝ

1
8π2

¯∑�M�2δ�ŝ� t̂ � û�� (2.25)

where ∑̄ denotes the average and sum over the initial and final state spins and colours respec-

tively 3. Expressions for the LO matrix elements squared ∑̄�M�2 are given in table 2.2, using

the following notation: parton1�p1� + parton2�p2�� parton3�p3� + parton4�p4�, ŝ � �p1 � p2�
2,

t̂ � �p1� p3�
2 and û � �p2� p3�

2. To give an idea of the relative importance of each process the

value of the ∑̄�M�2 at 90oin the center of mass (θ� � π�2, t̂ � û ��ŝ�2) is shown.

Nowadays, the jet cross section calculations are done at next-to-leading order (NLO) O(α3
S). The

NLO calculations include one-loop corrections to the LO process and real radiation corrections,

becoming a 2�3 process. Details about this calculation can be found in [18]. Unfortunately,

due to the number of diagrams involve in the next-to-next-to-leading order (NNLO) calculations,

which include two-loop corrections to Born, one-loop corrections to single real radiation terms

and double real radiation correction, the predictions at this level are not available yet.

2.7 Beyond NLO: MonteCarlo programs

As it was mentioned in previous section, complete perturbative calculations in QCD have been

performed only to NLO in most of the cases. However, higher-order terms cannot be neglected

in the case of soft-gluon radiation and collinear configurations. The leading contributions of

these soft and collinear topologies, and the corresponding enhanced virtual corrections, can be

identified and summed to all orders, improving the convergence of the perturbative series. Parton

shower is an approximated result in which such enhanced terms are taken into account to all

orders. It is implemented in computer simulations, called QCD Monte Carlo generator programs

(MC). The MC, not only include this parton shower, which allows partons to split into pairs of

other partons, but also a phenomenological model to produce colorless hadrons from the resulting

partons. The implementation and modeling of the parton shower and hadronization processes in

two of the most used MC programs, PYTHIA [19] and HERWIG [20], are presented below.

3Experimentally is impossible to measure the total jet cross section in an experiment since jets are counted only in

the fiducial volume of the detector. Thus experiments measure the differential cross section in jet transverse momen-

tum, pT , and jet rapidity, y, with y � 1
2 ln E�pz

E�pz
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process ∑̄�M�2�g4 θ� � π�2

qq
� � qq

� 4
9

ŝ2�û2

t̂2 2.22

qq̄� � qq̄� 4
9

ŝ2�û2

t̂2 2.22

qq� qq 4
9�

ŝ2�û2

t̂2 � ŝ2�t̂2

û2 �� 8
27

ŝ2

ût̂ 3.26

qq̄� q
�

q̄� 4
9

t̂2�û2

ŝ2 0.22

qq̄� qq̄ 4
9�

ŝ2�û2

t̂2 � t̂2�û2

ŝ2 �� 8
27

û2

ŝt̂ 2.59

qq̄� gg 32
27

t̂2�û2

t̂ û � 8
3

t̂2�û2

ŝ2 1.04

gg� qq̄ 1
6

t̂2�û2

t̂ û � 3
8

t̂2�û2

ŝ2 0.15

gq� gq �4
9

ŝ2�û2

ŝû � û2�ŝ2

t̂2 6.11

gg� gg 9
2�3� t̂ û

ŝ2 � ŝû
t̂2 � ŝt̂

û2 � 30.4

Table 2.2: LO jet production matrix elements squared ∑̄�M�2�g4. The third column gives the sizes of the contribution

from each process at θ� � π�2.

2.7.1 Parton shower

The parton shower in the MC serves two main purposes. The first one is to provide an estimation

of these higher-order corrections that are enhanced by large kinematic logarithms and second, to

generate high-multiplicity partonic states which can then be converted into the observed hadrons

by a hadronization mechanism.

Schematically, the parton shower is a random process. During showering, successive values of a

scale t, a momentum fraction z and an azimuthal angle φ are generated, together with the flavors

of the partons emitted. The evolution is based on the Sudakov form factors [21], which expresses

the probability that a parton does not branch between some initial maximum and minimum scale
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t. The branching processes: q� gq, g � gg and q� qq̄ are described by the DGLAP equations

introduced in section 2.3. Once a branching has occurred, say i � jk at scale ti, the evolution

of the daughter partons j and k has to be generated. At the simplest level, their evolution starts

at scale ti and the next values tj and tk are obtained using the appropriate Sudakov form factors.

Usually, t is proportional to the virtuality Q2, thus the virtualities of the daughters are constrained

by the kinematic relation
�

t j �
�

tk �
�

ti, where ti � E2
i �1� cos θi� being θi the opening angle

in the branching i� jk, and where an angular ordering is imposed. This means that the opening

angle θ j of any subsequent branching of parton j is less than θi.

The final outcome of successive branchings is a parton shower in which each initial parton from

the hard process is replaced by a jet of partons moving roughly in the same direction. The typical

scale of relative transverse momenta between partons at the end of the shower is set by the cutoff

t0 � ΛQCD, beyond that pQCD cannot be applied. All these quarks, antiquarks, and gluons are

not allowed to exist in isolation, as dictated by colour confinement. Thus, the next step in the

MC programs is to group these coloured partons into the observed colourless hadrons using a

phenomenological model referred to as hadronization.

2.7.2 Hadronization

Different models have been developed over the years to describe the hadronization phenomenon.

Each model contains several parameters that are tuned using experimental data.

One of the parameter to be tuned with experiments is t0. Ideally the hadronization should be

independent of t0. However, if the parameter increases, the shower finalizes before and there are

less partons to be hadronizated. Thus the hadronization model should ideally has a parameter t0
whose effect cancels when the parton shower and hadronization phases of jet fragmentation are

combined. In practice, cancellation will be imperfect owing to deficiencies of the model.

One general approach to hadronization, based on the observation that perturbation theory seems

to work well down to rather low scales, is the hypothesis of local parton�hadron duality, where

one supposes only that the flow of momentum and quantum numbers at the hadron level tends

to follow the flow established at the parton level. Hence, the flavour of the quark initiating a jet

should be found in a hadron near the jet axis.
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String model

The assumption of linear confinement provides the starting point for the string model [22, 23] . As

the q and q̄ partons move apart from their common production vertex, the physical picture is that

of a colour flux tube being stretched between the q and the q̄. If the tube is assumed to be uniform

along its length, this automatically leads to a confinement picture with a linearly rising potential.

As the q and q̄ move apart, the potential energy stored in the string increases, and the string may

break by the production of a new q�q̄� pair, so that the system splits into two colour-singlet systems

qq̄� and q�q̄. If the invariant mass of either of these string pieces is large enough, further breaks

may occur. In the string model, the string break-up process is assumed to proceed until only

on-mass-shell hadrons remain, each hadron corresponding to a small piece of string with a quark

on one end and an antiquark in the other. Charm and heavier quarks hence are not expected to

be produced in the soft fragmentation, but only in perturbative parton-shower branchings g� qq̄.

The baryons production is still a poorly understood area. In the simplest possible approach, a

diquark in a colour antitriplet state is just treated like an ordinary antiquark, such that a string

can break either by quark-antiquark or antidiquark-diquark pair production. If several partons are

moving apart from a common origin, the details of the string drawing become more complicated.

A schematic picture of the production of a multi-hadronic final state according to the string model

is shown in figure 2.12 (left). Notice that whenever a gluon splits perturbatively into a quark-

antiquark pair during the evolution of the parton shower, an additional string segmentation is

produced. On the other hand, gluons which remain at the end of the shower lead to kinks in the

string segment which connect them.

Cluster model

This model is quite different. The cluster hadronization model [24] is based on the colour pre-

confinement property of pQCD [25]. At the end of the parton shower evolution, the remaining

gluons are split non-perturbatively into qq̄ pairs. Neighbouring q and q̄ can be then combined

into singlets cluster with a typical mass of a couple of GeV. These clusters decay directly into two

hadrons unless they are too heavy, when they decay to two clusters, or too light in which case

the cluster decays to a single hadron. Experimentally it has been tested that this model describes

quite well the hadronic energy and transverse momentum distribution for final states. Figure 2.12

(right) shows the cluster hadronization model.
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Figure 2.12: Parton shower with string (on the left) and cluster (on the right) hadronization models.

2.8 Jet Phenomenology

The result of the parton shower and hadronization processes is a collimated flow of particles called

jets. To make quantitative comparison between theory and experiment, one must go beyond a

qualitative definition and use a precise algorithm to define jets. A jet algorithm is not uniquely

defined and the experimental results depends on the criteria used to reconstruct jets. Moreover,

a well designed jet algorithm must have some basic properties: It should be well-defined and

easy to calculate from the hadronic final state; it should be easy to calculate order-by-order in

perturbation theory, this means, it should be infrared and collinear safe; it should have a close

correspondence with the distribution of the final-state quarks and gluons that one is interested in.

Although the basic hard scattering processes studied in different types of collisions can be de-

scribed within the same theoretical framework, the overall event structure is quite different. For

example, in e�e� annihilation into hadrons, the initial state is purely leptonic and the entire final

state can be thought of an arising from the virtual boson which creates a qq̄. Therefore, all the

hadrons in the final state are associated with the hard scattering process. In contrast, in hadron-

lepton or hadron-hadron collisions, there are different contributions to the overall final state: only
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a fraction of the final-state hadrons is associated with the hard scattering process; there is a re-

mainder form part from the beam remnants; and eventual soft , i.e. small transverse momentum,

interactions of the remaining partons in the incident hadrons. Moreover, since only a fraction of

the initial energy of the incoming hadron takes part in the hard process, the angular distribution

of the final-state particles could be affected by the boost in the longitudinal direction. Therefore,

the jet algorithms have to be modified accordingly the kinematic and dynamics of each type of

collision. Over the years different algorithms have been proposed and used, some of them will be

reviewed in this section.

2.8.1 First jet algorithms

The first evidence for quark jets was seen by the Mark I detector [26] at the SPEAR storage ring

at SLAC, a e�e� collider at 3-7.4 GeV. The jet algorithm used was based on the definition of a

jet axis. The axis was chosen to be the direction such that the sum of the squares of the momenta

transverse to the axis, p�, was a minimum. To each event, there was a value of “sphericity”

assigned, which is defined as:

S �
3∑i�p

2
�

2∑i�p
2
i

where the summation is over all the detected particles. S approaches zer for events with jets

(bounded transverse momenta) and approaches one for events with large multiplicity and isotropic

phase-space particle distributions.

Approximately five years later, the TASSO collaboration at PETRA, a e�e� collider located at

DESY that could reach more than 30 GeV, were concentrating on looking for the gluon. At

that time, the gluon was one of the most interesting particles, theoretically expected but not yet

experimentally observed. Since the gluon is the gauge particle for strong interactions, a way to

produce a gluon was by the gluon bremsstrahlung process e�e�� qq̄g. Since the gluon, similar

to the quark, is expected to hadronize into a jet, this process leads to a three-jet event. A new

fast algorithm, also based on the determination of jet axis by minimizing the sum of the square

momenta, was designed by San Lan Wu and Georg Zobernig to find a way to discover the gluon

through these three-jet events [27]. Finally, it was in June 1979 when the TASSO Collaboration

presented the first three-jet event, a qq̄g state, using the Zobernig and Wu’s algorithm. At higher

orders in perturbation theory, the final state can consist of more than three jets. It turned out

that this algorithm was not well-suited to analyze these multijets events, and more generic jet

algorithms started to be formulated.
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At present there are essentially two classes of algorithms in use: cone-type algorithms and cluster-

type algorithms. Generally, the cone-type algorithms define the jets using fixed geometrical struc-

tures which are positioned in the angular space occupied by the particles in such a way that the

energy or the transverse energy is maximized. To specify an algorithm of this kind, the only

requirements are the geometrical definition of the ‘cone’, usually is a circle in the angular space

with a given radius, a momentum addition rule called the recombination scheme, and the criterion

to be followed if two or more of these ‘cones’ overlap. In contrast, the cluster-type algorithms are

characterized by successively finding pairs of particles that are ‘nearby’ in phase-space and merg-

ing them together, using also a recombination scheme, to form new ‘pseudo-particles’ which are

then considered in the next iteration, instead of the two original ones. The cluster-type algorithms

need a definition of distance to decide what ‘nearby’ particles means in a quantitative way. As an

additional requirement, usually some scale is needed to stop the iterative procedure and to define

the final jets from the pseudo-particles. Next, some of the cone-type algorithms and cluster-type

algorithms are presented, starting from the original versions and followed by their specific im-

plementations in the CDF experiment at Tevatron. It should be noted that in the discussion of jet

algorithms, the word ‘particles’ is applied to any set of four-momenta. It could also refer to the

partons in the theoretical calculation, or the energy deposits detected in calorimeter towers.

2.8.2 Cone-based algorithms

The cone-based algorithm is still the most popular at hadron colliders. The jets are character-

ized in term of variables that are invariant under boost along the beam axis. The variables are:

transverse momenta, pT , or the transverse energy, ET � E sinθ; azimuthal angle around the beam

direction, φ; and pseudo-rapidity, η � �ln�tan�θ�2�. The algorithm forms jets by associating

together particles whose trajectories lie within a circle of specific radius R in η�φ space.

The UA1 and UA2 cone-based algorithms

In the 80s, the UA1 and UA2 experiments were the firsts to use cone-based algorithms in a pp̄ col-

lider. The UA1 algorithm started ordering in decreasing transverse ET the cells of the calorimeter

with ET � ET�seed . The value used for ET�seed was 2.5 GeV. The cell with the highest transverse

energy initiated the first jet. The next cell was added to the first if it was within a distance R0=1. If

the cell was outside this radius then a new jet was initiated. This procedure was repeated until all

cells above the ET�seed threshold have been assigned to a jet. Finally, the cells with ET � ET�seed
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are then added to each jet if R � R0. In contrast UA2 used another approach. In the UA2 algo-

rithm the cluster did not have a limited size in η�φ space. Once all the calorimeter cells were

ordered in decreasing ET , starting for the highest one, all the neighboring cells were joined into

the cluster if the ET exceeded a given threshold. In that case, the threshold was 0.4 GeV.

The CDF cone-based algorithms: JetClu and MidPoint algorithms

Some years later, the CDF experiment started to use also a cone-based algorithm, the JetClu

algorithm. This begins defining a list of seeds, calorimeter towers with ET � 1 GeV. Each seed is

the starting geometric center for a cone. Thus, for a specific geometric center for the cone (φC�ηC)

the ‘particles’ i within the cone satisfy

ΔRiC �
�

�ηi�ηC�2 ��φi�φC�2  R� (2.26)

and the energy of the jet, using the snowmass convention [28], is defined as:

EC
T � ∑

i�Cone

Ei
T � (2.27)

Then the jet geometric center, defined as

ηC �
∑i�Cone Ei

T ηi

EC
T

and φC �
∑i�Cone Ei

T φi

EC
T

� (2.28)

is calculated. This new point in η� φ is then used as the center for a new trial cone. As this

calculation is iterated the cone center flows until a “stable” solution is found, i.e., until the centroid

of the energy depositions within the cone is aligned with the geometric axis of the cone.

Unfortunately, nothing prevents the resulting final stable cones from overlapping as shown in

figure 2.13. Therefore, a procedure must be included in the cone algorithm to specify how to split

or merge overlapping cones. These cones are merged if their shared transverse energy is larger

than a fixed fraction (e.g., f=75%) of the jet with smaller transverse energy; otherwise two jets are

formed and the common towers are assigned to the jet closer in η�φ space.
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Figure 2.13: Lego plot of an event with reconstructed jets using a cone-based algorithm. This example illustrates an

overlapping situation between two stable cones (red cluster).

After Run I, it was realized [29] that the iterative cone algorithm, as described above, is not

infrared safe when applied to parton-level calculations. If two cones overlap in such a way that

their centers can also be enclosed in one cone but there is little energy in the overlap region, then

it turns out, as illustrated in figure 2.14, that the outcome is different depending on whether or not

the overlap region contains a seed direction. This results in a logarithmic dependence on the seed

cell threshold which would give a divergent cross section if the threshold was taken to zero for

the purposes of making an idealized calculation. This divergence first shows up when there can

be three nearby partons, which for jets in hadron collisions is NLO in the three-jet cross section

and NNLO in the two-jet or inclusive one-jet cross sections. Moreover, this algorithm is sensitive

to collinear radiation in the event, where the seed finding depends of calorimeter granularity. It is

clear from figure 2.15 that the seed it is not considered anymore after its energy is split. In order

to address these theoretical difficulties, an additional step, before the merging/splitting procedure,

is included. The midpoint, in the η� φ plane, between each pair of stable cones separated by

less than 2R is added to the list of jets. The clustering algorithm is again iterated until stability is

achieved. This step gives the name to the jet algorithm: MidPoint algorithm [29].
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Figure 2.14: An illustration of infrared sensitivity in cone jet clustering. This example shows how the presence

of a soft radiation between two jets may cause a merging of the jets that would not occur in the absence of the soft

radiation.

Figure 2.15: An illustration of collinear sensitivity in jet reconstruction.

However, the merging/splitting procedure applied to resolve situations with overlapping cones

in data introduces an element of arbitrariness when the set algorithm is applied to theoretical

calculations. Current NLO inclusive jet cross section calculations require the addition of an ad hoc

parameter Rsep [30]. The theoretical calculations use a cone algorithm with an enlarged cone size

R
�

� Rsep �R, where Rsep is typically 1.3. In this way, theorists try to emulate effects of merging

cones applied experimentally in the data, that results into jets with transverse size (η�φ) larger

than R. The use of different values for Rsep introduces an uncertainty in the theoretical prediction

of the order of 5%.

2.8.3 The cluster-type algorithms

According to QCD evolution and the development of proton showers as described in section 2.7,

a sensible jet algorithm should cluster particles according to their relative transverse momentum

instead of spacial separation.
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The JADE algorithm

The JADE algorithm [31], implemented by JADE collaboration at PETRA experiment, was the

first cluster-type algorithm. It is very common in studies of jets in e�e� colliders in its original

form or via some modifications. The jet reconstruction procedure starts by calculating the distance

parameter mi j for all pairs of particles according to the expression

m2
i j � 2EiE j�1� cosθi j�� (2.29)

where Ei and Ej are the energy of particle i and j, and θi j is the angle between them. The

variable mi j is the invariant mass of one particle decaying into i and j under the approximation

that both particles are massless. The pair with the smallest mi j is combined into a single cluster

by the addition of their four-momenta. The procedure is repeated until all remaining pairs have

an invariant mass exceeding a preselected cut-off value, m2
i j � ycut M2, determined by a resolution

parameter ycut and a reference mass M. The final clusters represent the jets of the event. However,

with this distance parameter definition, the jet algorithm presents a problem when two soft gluons

can be emitted by two leading back-to-back quarks. These two soft gluons could be combined

with each other first, so that the final result is a “ghost jet” in a direction along which no original

parton can be found. Such behaviours end up representing a serious challenge in perturbative

calculations.

The kT -cluster algorithm

The kT algorithm was initially introduced in e�e� interactions to solve the difficulties of JADE

algorithm. It was based on the quantities

k2
T��i� j� � 2�1� cosθi j�min
E2

i �E
2
j �� (2.30)

where θi j defines the distance between particles. For a given hard scale, ycut , the particles are

clustered if kT��i� j� � ycut , and the algorithm iterates until all kT��i� j� are larger than ycut . This

algorithm also allows one to vary ycut event-by-event such that a fixed numer of jets is obtained

and the resulting distribution is employed to study QCD radiation.

The kT algorithm can be extended to e�p and pp interactions [32], for which an additional quan-

tity kT�i is introduced to cluster particles around proton remnants. In DIS (lab frame) and pp

collisions, where the collision does not define the center of mass, transverse energies and rapidi-

ties are used instead of energies and polar angles. The kT algorithm has been successful used at

LEP (e�e� collider) and HERA (e�p collider) but it is relatively new at hadron colliders.
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The CDF kT algorithm

CDF Run II experiment is using the Ellis-Soper inclusive mode [33] implementation of the

longitudinally-invariant kT algorithm. First, the variables

kT�i � p2
T�i and kT��i� j� � min�p2

T�i� p2
T� j� �ΔR2

i� j�D2� (2.31)

are computed for each particle and pair of particles respectively, where pT�i denotes the transverse

momentum of the i particle, ΔRi� j is the distance in y� φ space, between each pair of particle,

and D is a parameter that approximately controls the size of the jet. All the kT�i and kT��i� j� values

are collected into a single sorted list. In this combined sorted list, if the smallest quantity is

of the type kT�i, the corresponding protojet is promoted to be a jet and removed from the list.

Otherwise, if the smallest quantity is of the type kT��i� j�, the protojets are combined into a single

protojet by summing up their four-vector components. The procedure is iterated over protojets

until the list is empty. By construction, the algorithm is infrared safe and collinear safe to all

orders in pQCD. Since in this successive combination algorithm every particle is assigned to an

unique jet, a prescription to solve situations of overlapping is not needed, allowing a well defined

comparison to the theoretical predictions without introducing into the calculations the additional

parameter Rsep. The final geometry of a jet defined by this kind of algorithms is likely to be

more complex than from the cone algorithm, as illustrated figures 2.16 and 2.17. Note that, as

figure 2.17 shows, the number of jets reconstructed and their variables depend on the jet algorithm

applied.

Figure 2.16: An illustration of the final jet geometry using the cone or the kT algorithm.
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Figure 2.17: Lego plot of event 1860695 of run 185777. Towers with ET � 0�5 GeV/c are not displayed. The

number of jets and their energies, found using different algorithms, are reported.

2.9 Jet Physics at Hadron Colliders

The hadronic final states include contributions from the underlying event. These contributions

consist of particles arising from beam-beam remnants, initial and final state radiation, and possible

multiple parton interactions. The underlying event is in a non-perturbative QCD region. As in

the description of the hadronization process, MC programs include models to simulate this soft

component. These models are properly parametrized to describe experimental results. There is a

special parametrization of the underlying events called PYTHIA-Tune A, where basically there

is an increase of the initial-state radiation and the probability that the multiple parton interaction

produces two gluons with colour connections to the nearest neighbours. The Tune A was a result

of specific CDF Run I measurements [34]. Jet shape measurements are sensitive to the underlying

modeling and published CDF Run II results [35] (see appendix B) have shown that the jet shapes

are better described by PYTHIA-Tune A.
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In hadron-hadron collisions at high instantaneous luminosity additional pp̄ interactions per bunch

crossing might be present, which produce soft contributions to the measured jet energies, that

must be taken into account in the jet cross section measurements.





Chapter 3

CDF at Fermilab

The data for the analysis described in this thesis was taken with the Collider Detector at Fermilab

(CDF) located at the Fermi National Accelerator Laboratory. In the following sections, a brief

introduction to the Tevatron Collider and a description of the CDF detector are given, with a

particular attention to the detector components which are more relevant for the analysis.

3.1 The Tevatron Collider

The Tevatron Collider [36] located at the Fermi National Accelerator Laboratory (Fermilab)

in Batavia (Illinois, USA) is a proton-antiproton (pp̄) collider with a center-of-mass energy of

1.96 TeV. As shown in figure 3.1, this complex has five major accelerators and storage rings used

in successive steps, as is explained in detail below, to produce, store and accelerate the particles

up to 980 GeV.

The acceleration cycle starts with the production of protons from ionized hydrogen atoms H�,

which are accelerated to 750 KeV by a Cockroft-Walton electrostatic accelerator. Pre-accelerated

hydrogen ions are then injected into the Linac where they are accelerated up to 400 MeV by pass-

ing through a 150 m long chain of radio-frequency (RF) accelerator cavities. To obtain protons,

the H� ions are passed through a carbon foil which strips their electrons off. Inside the Booster

the protons are merged into bunches and accelerated up to an energy of 8 GeV prior to entering

the Main Injector. In the Main Injector, a synchrotron with a circumference of 3 km, the proton

35
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bunches are accelerated further to an energy of 150 GeV and coalesced1 together before injection

into the Tevatron.

The production of the antiproton beam is significantly more complicated. The cycle starts with

extracting a 120 GeV proton beam from the Main Injector onto a stainless steel target. This

process produces a variety of different particles, among which are antiprotons 2. The particles

come off the target at many different angles and they are focused into a beam line with a Lithium

lens. In order to select only the antiprotons, the beam is sent through a pulsed magnet which acts

as a charge-mass spectrometer. The produced antiprotons are then injected into the Debuncher, an

8 GeV synchrotron, which reduces the spread in the energy distribution of the antiprotons. After

that, the antiproton beam is directed into the Accumulator, a storage ring in the Antiproton Source,

where the antiprotons are stored at an energy of 8 GeV and stacked to 1012 particles per bunch.

The antiproton bunches are then injected into the Main Injector and accelerated to 150 GeV.

Figure 3.1: The Tevatron Collider Chain at Fermilab.

1coalescing is the process of merging proton bunches into one dense, high density, bunch
2The production rate, for 8 GeV antiprotons, is about 18 p̄�106 p
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Finally, 36 proton and antiproton bunches are inserted into the Tevatron, a double acceleration

ring of 1 km of radius, where their energy is increased up to 980 GeV. Proton and antiproton

bunches circulate around the Tevatron in opposite directions guided by superconducting mag-

nets and where their orbits cross at the two collision points, B0 and D0. These interactions are

observed by the CDF and D0 detectors, respectively.

In the absence of a crossing angle or position offset, the luminosity at the CDF or D0 is given by

the expression:

L �
fbcNbNpNp̄

2π�σ2
p �σ2

p̄�
F

	
σl

β�



� (3.1)

where fbc is the revolution frequency, Nb is the number of bunches, Np� p̄� is the number of protons

(antiprotons) per bunch, and σp� p̄� is the transverse and longitudinal rms proton (antiproton) beam

size at the interaction point. F is a form factor with a complicated dependence on beta function,

β�, and the bunch length, σl . The beta function is a measure of the beam width, and it is propor-

tional to the beam’s x and y extent in phase space. Table 3.1 shows the design Run II accelerator

parameters [37].

Parameter Run II

number of bunches (Nb) 36

revolution frequency [MHz] ( fbc) 1.7

bunch rms [m] σl 0.37

bunch spacing [ns] 396

protons/bunch (Np) 2�7�1011

antiprotons/bunch (Np̄) 3�0�1010

total antiprotons 1�1�1012

β� [cm] 35

Table 3.1: Accelerator parameters for Run II configuration.

Figure 3.2 and 3.3 show, respectively, the evolution in the integrated luminosity, defined as

L �
�

L dt, and the instantaneous luminosity delivered by Tevatron since the machine was

turned on up to February 2006. The progressive increase in the integrated luminosity and the con-

tinuous records in the instantaneous luminosity 3 prove the good performance of the accelerator.

3At February 2006, the record in the instantaneous luminosity was close to 1�8�1032cm�2s�1.
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Figure 3.2: Tevatron Collider Run II Integrated Luminosity. The vertical green bar shows each week’s total lumi-

nosity as measured in pb�1. The diamond connected line displays the integrated luminosity.

Figure 3.3: Tevatron Collider Run II Peak Luminosity. The blue squares show the peak luminosity at the beginning

of each store and the red triangle displays a point representing the last 20 peak values averaged together.
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3.2 CDF Run II detector

The CDF Run II detector [38], in operation since 2001, is an azimuthally and forward-backward

symmetric apparatus designed to study pp̄ collisions at the Tevatron. It is a general purpose,

cylindrical-shaped detector which combines:

� A tracking system, that provides a measurement of the charged particle momenta, event z

vertex position and detects secondary vertices.

� A Time-of-Flight system, to identify charged particles.

� A non-compensated calorimeter system, with the purpose of measuring the energy of charged

and neutral particles produced in the interaction.

� Drift chambers and scintillators to muon detection.

The detector is shown in figures 3.4 and 3.5. CDF uses a coordinate system with the positive

z-axis lies along the direction of the incident proton beam, φ is the azimuthal angle, θ is the

polar angle (measured from the detector center), and pT is the component of momentum in the

transverse plane. A description of all the systems starting from the devices closest to the beam

and moving outward is presented in the next sections, where the detectors most relevant in the

analysis are explained in more detail.

Figure 3.4: Isometric view of the CDF Run II detector.
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Figure 3.5: r�η side view of the CDF Run II detector.

3.2.1 Tracking and Time of Flight systems

The tracking and time of flight systems are contained in a superconducting solenoid, 1.5 m in

radius and 4.8 m in length, which generates a 1.4 T magnetic field parallel to the beam axis.

The part of the tracking system closest to the beam pipe is a silicon microstrip detector [39],

which must be radiation-hard due its proximity to the beam. It extends from a radius of r = 1.5

cm from the beam line to r = 28 cm, covering �η� � 2 and has eight layers in a barrel geometry.

The innermost layer is a single-sided silicon microstrip detector called Layer 00 which provides

a r�φ position measurement. The first five layers after the Layer 00 constitute the Silicon Vertex

Detector (SVXII) and the two outer layers comprise the Intermediate Silicon Layers system (ISL).

These seven layers are made of double-sided silicon sensors, giving r�φ and z position informa-

tion. The best position resolution achieved is 9 µm in SVXII and the impact parameter resolution,

including Layer 00, arrives to 40 µm at pT � 3 GeV/c.

Surrounding the silicon detector is the Central Outer Tracker (COT) [40], the anchor of the

CDF Run II tracking system. It is a 3.1 m long cylindrical drift chamber that covers the radial

range from 40 to 137 cm (�η� � 1). The COT contains 96 sense wire layers, which are radially
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grouped into eight “superlayers”, as inferred from the end plate section shown in figure 3.6.

Figure 3.6: Layout of wire planes on a COT endplate.

Each superlayer is divided in φ into “supercells”, and each supercell has 12 sense wires and a

maximum drift distance that is approximately the same for all superlayers. Therefore, the number

of supercells in a given superlayer scales approximately with the radius of the superlayer. The

entire COT contains 30,240 sense wires. Approximately half the wires run along the z direction

(“axial”). The other half are strung at a small angle (2Æ) with respect to the z direction (“stereo”).

The combination of the axial and stereo information allows us to measure the z positions. Parti-

cles originated from the interaction point, which have �η� � 1, pass through all 8 superlayers of

the COT.

The supercell layout, shown in figure 3.7 for superlayer 2, consists of a wire plane containing

sense and potential wires, for field shaping and a field (or cathode) sheet on either side. Both the

sense and potential wires are 40 µm diameter gold plated tungsten. The field sheet is 6.35 µm thick

Mylar with vapor-deposited gold on both sides. Each field sheet is shared with the neighboring

supercell.
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Figure 3.7: Layout of wires in a COT supercell.

The COT is filled with an Argon-Ethane gas mixture and Isopropyl alcohol (49.5:49.5:1). The

mixture is chosen to have a constant drift velocity, approximately 50 µm/ns across the cell width

and the small content of isopropyl alcohol is intended to reduce the aging and build up on the

wires. When a charged particle passes through, the gas is ionized. Electrons drift toward the

sense wires. Due to the magnetic field that the COT is immersed in, electrons drift at a Lorentz

angle of 35Æ. The supercell is tilted by 35Æ with respect to the radial direction to compensate for

this effect. The momentum resolution of the tracks in the COT chamber depends on the pT and

is measured to be approximately 0.15% GeV/c�1, with corresponding hit resolution of about 140

µm [41]. In addition to the measurement of the charged particle momenta, the COT is used to

identify particles, with pT � 2 GeV, based on dE/dx measurements.

Just outside the tracking system, CDF II has a Time of Flight (TOF) detector [42]. It is a barrel

of scintillator almost 3 m long located at 140 cm from the beam line with a total of 216 bars,

each covering 1.7o in φ and pseudorapidity range �η� � 1. Particle identification is achieved by

measuring the time of arrival of a particle at the scintillators with respect to the collision time.

Thus, combining the measured time-of-flight and the momentum and path length, measured by

the tracking system, the mass of the particle can then determined. The resolution in the time-of-

flight measurement is� 100 ps and it provides at least two standard deviation separation between

K� and π� for momenta p � 1.6 GeV/c.
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As a summary, figure 3.8 illustrates the Tracking and Time of Flight systems.

Figure 3.8: The CDF II tracker layout showing the different subdetector systems.

3.2.2 Calorimeter system

Surrounding the CDF tracking volume, outside of the solenoid coil, there is the calorimeter sys-

tem. The different calorimeters that compose the system are scintillator-based detectors and seg-

mented in projective towers (or wedges), in η�φ space, that point to the interaction region. The

total coverage of the system is 2π in φ and about �η�� 3�64 units in pseudorapidity.

The calorimeter system is divided in two regions: central and plug. The central calorimeter covers

the region �η� � 1�1 and is split into two halves at �η� � 0. The forward plug calorimeters cover

the angular range corresponding to 1�1 � �η� � 3�64, as it is shown in figure 3.9. Due to this

structure two “gap” regions are found at �η�� 0 and �η� � 1�1.



44 CDF at Fermilab

Figure 3.9: Elevation view of 1/4 of the CDF detector showering the components of the CDF calorimeter: CEM,

CHA, WHA, PEM and PHA.

Central Calorimeters

The central calorimeters consist of 478 towers, each one is 15o in azimuth by about 0.11 in

pseudorapidity. Each wedge consists of an electromagnetic component backed by a hadronic

section. In the central electromagnetic calorimeter (CEM) [43], the scintillators are interleaved

with lead layers. The total material has a depth of 18 radiation lengths (X0) 4. The central hadronic

section (CHA) [44] has alternative layers of steel and scintillator and is 4.7 interaction lengths

deep (λ0) 5. The endwall hadron calorimeter (WHA), with similar construction to CHA, is located

with half of the detector behind the CEM/CHA and the other half behind the plug calorimeter.

The function of the WHA detector is to provide a hadronic coverage in the region 0.9 � �η� �
1.3. In the central calorimeter the light from the scintillator is redirected by two wavelength

shifting (WLS) fibers, which are located on the φ surface between wedges covering the same

4The radiation length X0 describes the characteristic amount of matter transversed, for high-energy electrons to

lose all but 1�e of its energy by bremsstrahlung, which is equivalent to 7
9 of the length of the mean free path for pair

e�e� production of high-energy photons. The average energy loss due to bremsstrahlung for an electron of energy

E is related to the radiation length by
�

dE
dx

�
brems

� � E
X0

and the probability for an electron pair to be created by a

high-energy photon is 7
9 X0.

5An interaction length is the average distance a particle will travel before interacting with a nucleus: λ � A
ρσNA

,

where A is the atomic weight, ρ is the material density, σ is the cross section and NA is the Avogadro’s number.
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pseudorapidity region, up through the lightguides into two phototubes (PMTs) per tower.

The energy resolution for each section was measured in the testbeam and, for a perpendicular

incident beam, it can be parameterized as:

�σ�E�2 � �σ1�
�

E�2 ��σ2�
2� (3.2)

where the first term comes from sampling fluctuations and the photostatistics of PMTs, and the

second term comes from the non-uniform response of the calorimeter. In the CEM, the energy

resolution for high energy electrons and photons is σ�ET �
ET

� 13�5%�
ET
�1�5%, where ET =Esinθ being

θ the beam incident angle. Charge pions were used to obtain the energy resolution in the CHA

and WHA detectors that are σ�ET �
ET

� 50%�
ET
�3% and σ�ET �

ET
� 75%�

ET
�4%, respectively.

Plug Calorimeters

One of the major components upgraded for the Run II was the plug calorimeter [45]. The new

plug calorimeters are built with the same technology as the central components and replace the

Run I gas calorimeters in the forward region. The η� φ segmentation depends on the tower

pseudorapidity coverage. For towers in the region �η� � 2�1, the segmentation is 7.5o in φ and

from 0.1 to 0.16 in the pseudorapidity direction. For more forward wedges, the segmentation

changes to 15o in φ and about 0.2 to 0.6 in η.

As in the central calorimeters, each wedge consists of an electromagnetic (PEM) and a hadronic

section (PHA). The PEM, with 23 layers composed of lead and scintillator, has a total thickness

of about 21 X0 . The PHA is a steel/scintillator device with a depth of about 7 λ0. In both sections

the scintillator tiles are read out by WLS fibers embedded in the scintillator. The WLS fibers

carry the light out to PMTs tubes located on the back plane of each endplug. Unlike the central

calorimeters, each tower is only read out by one PMT.

Testbeam measurements determined that the energy resolution of the PEM for electrons and pho-

tons is σ
E � 16%�

E
�1%. The PHA energy resolution is σ

E � 80%�
E
�5% for charged pions that do not

interact in the electromagnetic component. Table 3.2 summarizes the calorimeter subsystems and

their characteristics.

The central and forward parts of the calorimeter have their own shower profile detectors: shower

maximum and preshower detectors. The Central Shower Maximum (CES) and the Plug Shower

Maximum (PES) are positioned at about 6 X0, while the Central Preradiator (CPR) and the Plug
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Calorimeter Coverage Thickness Energy resolution (E expressed in GeV)

CEM �η�� 1�1 18 X0
13�5%�

ET
�2%

CHA �η�� 0�9 4�7 λ0
50%�

ET
�3%

WHA 0�9 � �η�� 1�3 4�7 λ0
75%�

ET
�4%

PEM 1�1 � �η�� 3�6 21 X0, 1 λ0
16%�

E
�1%

PHA 1�2 � �η�� 3�6 7 λ0
80%�

E
�5%

Table 3.2: CDF II Calorimeter subsystems and characteristics. The energy resolution for the EM calorimeter is given

for a single incident electron and that for the hadronic calorimeter for a single incident pion.

Preradiator (PPR) are located at the inner face of the calorimeters. These detectors help on particle

identification, separating e�, γs and π0s.

3.2.3 Muons system

The muon system, which consists of sets of drift chambers and scintillators, is installed beyond the

calorimetry system as the radially outermost component of CDF Run II detector (r�3.5 m). The

muon system [46, 47] is divided into different subsystems, that cover the pseudorapidity range

�η� � 2�0: the Central Muon Detector (CMU), the Central Muon Upgrade Detector (CMP/CSP),

the Central Muon Extension Detector (CMX/CSX) and the Intermediate Muon Detector (IMU).

The z and φ coordinates of the muon candidate are often provided by the chambers while the

scintillator detectors are used for triggering and spurious signal rejection.

3.3 Luminosity Measurement

3.3.1 CLC detector

In CDF, the beam luminosity is determined using gas Cherenkov counters (CLC) [48] located

in the pseudorapidity region 3�7 � �η� � 4�7, which measure the average number of inelastic

interaction per bunch crossing. Each module consists of 48 thin, gas-filled, Cherenkov counters.

The counters are arranged around the beam pipe in three concentric layers, with 16 counters each,

and pointing to the center of the interaction region. The cones in the two outer layers are about
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180 cm long and the inner layer counters, closer to the beam pipe, have a length of 110 cm. The

Cherenkov light is detected with photomultiplier tubes.

3.3.2 Measurement of the luminosity

The average number of primary interactions, µ, is related to the instantaneous luminosity, L , by

the expression:

µ � fbc � σtot �L � (3.3)

where fbc is the bunch crossings frequency at Tevatron, on average 1.7 MHz for 36� 36 bunch

operations, and σtot is the total pp̄ cross section.

Since the CLC is not sensitive at all to the elastic component of the pp̄ scattering, the equation 3.3

can be rewritten using the inelastic cross section, σin, as:

L �
µ � fbc

σin
� (3.4)

where now µ is the average number of inelastic pp̄ interactions. The method used in CDF for

the luminosity measurement is based on the counting of empty crossings [49]. This method

determines µ by measuring the first bin of the distribution which corresponds to the probability of

having zero inelastic interactions, P0, through the relation:

P0�µ� � e�µ� (3.5)

which is correct if the acceptance of the detector and its efficiency were 100%. In practice, there

are some selection criteria, α, to define an “interaction”. An “interaction” is defined as a pp̄

crossing with hits above a fixed threshold on both sides of the CLC detector. Therefore, an empty

crossing is a pp̄ crossing with no interactions. Given these selection criteria, the experimental

quantity P0, called Pexp
0 
α�, is related to µ as:

Pexp
0 
µ;α� � �eεω�µ � e�εe�µ�1� � e��1�ε0��µ� (3.6)
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where the acceptances ε0 and εω�e are, respectively, the probability to have no hits in the combined

east and west CLC modules and the probability to have at least one hit exclusively in west/east

CLC module. The evaluation of these parameters is based on Monte Carlo simulations, and

typical values are ε0=0.07 and εω�e=0.12.

To obtain the luminosity measurement using the equation 3.4, the value of σin is still needed.

At the beginning of Run II, an extrapolation to 2 TeV of the value measured at
�

s= 1.8 TeV by

CDF [50] was used. The cross section would be σin=60.4 mb. To facilitate the comparison of

CDF and D0 cross section measurements in Run II, the collaborations agreed to use a common

inelastic cross section [51], σin=59.3 mb that is about 1.9% smaller than previous value. Since

CDF never modified the value used online and offline, the CDF quoted luminosity is multiplied

offline by a factor of 1.019.

Different sources of uncertainties have been taken into account to evaluate the systematic un-

certainties on the luminosity measurement [52]. The dominated contributions are related to the

detector simulation and the event generator used, and have been evaluated to be about 3%. The

total systematic uncertainty in the CLC luminosity measurements is 5�8%, which includes uncer-

tainties on the measurement (4�2%) and on the inelastic cross section value (4%).

3.4 Trigger and Data Acquisition

The average interaction rate at the Tevatron is 1�7 MHz for 36� 36 bunches. In fact, the actual

interaction rate is higher because the bunches circulate in three trains of 12 bunches in each group

spaced 396 ns which leads to a crossing rate of 2�53 MHz. The interaction rate is orders of mag-

nitude higher than the maximum rate that the data acquisition system can handle. Furthermore,

the majority of collisions are not of interest. This leads to implementation of a trigger system that

preselects events online and decides if the corresponding event information is written to tape or

discarded.

The CDF trigger system consists of three trigger levels, see figures 3.10 and 3.11, where the first

two levels are hardware based and the third one is a processor farm. The decisions taken by

the system are based on increasingly more complex event information. The two hardware levels

are monitored and controlled by the Trigger Supervisor Interface (TSI), which distributes signals

from the different sections of the trigger and DAQ system, a global clock and bunch crossing

signal.
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Figure 3.10: Block diagram showing the global trigger and DAQ systems at CDF II.
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Figure 3.11: Block diagram showing the Level 1 and Level 2 trigger systems.
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3.4.1 Level 1 trigger

The Level 1 trigger is a synchronous system with an event read and a decision made every beam

crossing. The depth of the L1 decision pipeline is approximately 4 µs (L1 latency). The L1 buffer

must be at least as deep as this processing pipeline or the data associated with a particular L1

decision would be lost before the decision is made. The L1 buffer is 14 crossings deep (5544 ns

at 396 ns bunch spacing) to provide a margin for unanticipated increases in L1 latency. The Level

1 reduces the event rates from 2.53 MHz to less than 50 kHz.

The Level 1 hardware consists of three parallel processing streams which feed inputs of the Global

Level 1 decision unit. One stream finds calorimeter based objects (L1 CAL), another finds muons

(L1 MUON), while the third one finds tracks in the COT (L1 TRACK). Since the muons and

the calorimeter based objects require the presence of a track pointing at the corresponding outer

detector element, the tracks must be sent to the calorimeter and muon streams as well as the track

only stream.

� The L1 CAL calorimeter trigger is employed to detect electrons, photons, jets, total trans-

verse energy and missing transverse energy, Emiss
T . The calorimeter triggers are divided into

two types: object triggers (electron, photons and jets) and global triggers (∑ET and Emiss
T ).

The calorimeter towers are summed into trigger towers of 15o in φ and by approximately

0.2 in η. Therefore, the calorimeter is divided in 24 x 24 towers in η�φ space [53]. The

object triggers are formed by applying thresholds to individual calorimeter trigger towers,

while thresholds for the global triggers are applied after summing energies from all towers.

� The L1 TRACK trigger is designed to detect tracks on the COT. An eXtremely Fast Tracker

(XFT) [54] uses hits from 4 axial layers of the COT to find tracks with a pT greater than

some threshold (� 2 GeV/c). The resulting track list is sent to the extrapolation box

(XTRP)[55] that distributes the tracks to the Level 1 and Level 2 trigger subsystems.

� L1 MUON system uses muon primitives, generated from various muon detector elements,

and XFT tracks extrapolated to the muon chambers by the XTRP to form muon trigger

objects. For the scintillators of the muon system, the primitives are derived from single hits

or coincidences of hits. In the case of the wire chambers, the primitives are obtained from

patterns of hits on projective wire with the requirement that the difference in the arrival

times of signals be less than a present threshold. This maximum allowed time difference

imposes a minimum pT requirement for hits from a single tracks.
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Finally, the Global Level 1 makes the L1 trigger decision based on the quantity of each trigger

object passed to it.

3.4.2 Level 2 trigger

The Level 2 trigger is an asynchronous system which processes events that have received a L1

accept in FIFO (First In, First Out) manner. It is structured as a two stage pipeline with data

buffering at the input of each stage. The first stage is based on dedicated hardware processor

which assembles information from a particular section of the detector. The second stage consists

of a programmable processors operating on lists of objects generated by the first stage. Each of

the L2 stages is expected to take approximately 10 µs giving a latency of approximately 20 µs.

The L2 buffers provide a storage of four events. After the Level 2, the event rate is reduced to

about 300 Hz.

In addition of the trigger primitives generated for L1, data for the L2 come from the shower

maximum strip chambers in the central calorimeter and the r�φ strips of the SVX II. There are

three hardware systems generating primitives at Level 2: Level 2 cluster finder (L2CAL), shower

maximum strip chambers in the central calorimeter (XCES) and the Silicon Vertex Tracker (SVT).

� The L2CAL hardware carries out the hardware cluster finder functions. It receives trigger

tower energies from the L1 CAL and applies seed and ‘shoulder” thresholds for cluster find-

ing. It is basically designed for jet triggers. More details about the cluster finder algorithm

in section 4.2.1.

� The shower maximum detector provides a much better spacial resolution than a calorimeter

wedge. The XCES boards perform sum of the energy on groups of four adjacent CES wires

and compare them to a threshold (around 4 GeV). This information is matched to XFT

tracks to generate a Level 2 trigger. This trigger hardware provides a significant reduction

in combinatorial background for electrons and photons.

� Silicon Vertex Tracker [56] uses hits from the r� φ strips of the SVX II and tracks from

the XFT to find tracks in SVX II. SVT improves on the XFT resolution for φ and pT and

adds a measurement of the track impact parameter d0. Hereby the efficiency and resolution

are comparable to those of the offline track reconstruction. The SVT enables triggering on

displaced tracks, that have a large impact parameter d0.
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3.4.3 Level 3 trigger

When an event is accepted by the Level 2 trigger, its data become available for readout distributed

over a couple of hundred of VME Readout Buffers (VRBs). The event has to be assembled from

pieces of data from the L2 system into complete events, this is the purpose of the Event Builder.

It is divided into 16 sub-farms, each consisting of 12-16 processor nodes. Once the event is built,

it is sent to one place in the Level 3 farm. The Level 3 trigger reconstructs the event following

given algorithms. These algorithms take advantage of the full detector information and improved

resolution not available to the lower trigger levels. This includes a full 3-dimensional track recon-

struction and tight matching of tracks to calorimeter and muon-system information. Events that

satisfy the Level 3 trigger requirements are then transfered onward to the Consumer Server/Data

Logger (CSL) system for storage first on disk and later on tape. The average processing time per

event in Level 3 is on the order of one second. The Level 3 leads to a further reduction in the

output rate, a roughly 50 Hz.

A set of requirements that an event has to fulfill at Level 1, Level 2 and Level 3 constitutes a

trigger path. The CDF II trigger system implements about 150 trigger paths. An event will be

accepted if it passes the requirements of any one of these paths and, depending of the trigger path,

it will be stored in a trigger dataset. A complete description of the different datasets at CDF Run II

can be found in [57].

In addition to impose the trigger requirements to select out interesting physics events, trigger can

be prescaled in the different levels. To prescale means to accept only a predetermined fraction of

events selected by a given trigger path.

3.5 Data Quality Monitoring

The CDF experiment has implemented a system to check the data quality of all subsystems in

real-time as well as after data are fully processed. This Data Quality Monitoring marks the status

of all the detector components for each run. For more information see appendix A.





Chapter 4

Inclusive Jet Cross Section

Measurement

In this chapter, the complete analysis of the inclusive jet cross section measurement using the

longitudinally invariant kT algorithm is described. The measurement is performed for jets with

pjet
T � 54 GeV/c in five different jet rapidity regions up to �yjet �� 2�1 1. The results are based on

1 fb�1 of CDF Run II data. The chapter starts explaining the event selection criteria, describes the

corrections applied to jet measurements, and finishes with a detailed discussion on the systematic

uncertainties.

4.1 Event selection

The event selection is done over data samples that include events taken with the CDF Run II

detector from the 2001 Summer up to November 2005. This corresponds to a luminosity of

approximately 1.2 fb�1.

4.1.1 Run selection

The event selection starts considering only runs included in the QCD good run list (see ap-

pendix A), where it is required that the calorimeter system and COT are working properly during

1The rapidity is defined as y � 1
2 ln�E�pz

E�pz
�
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the run. In addition, some runs with undetermined trigger prescale factors have been excluded:

� runs 192384, 192386, 195452 and 206951 for which the prescale was changed during the

runs.

� runs � 147870 only for ST5 dataset for which non-constant L2 prescales were used during

data taking.

The remaining integrated luminosity is 0�99 fb�1 for JET 20 to JET 100 datasets and 0�950 fb�1

for ST5 sample. It should be indicated that the ST5 sample is only used for trigger efficiency

studies (see section 4.2 for datasets description).

4.1.2 Jet selection criteria

All the events with at least one jet in the rapidity region �yjet � � 2�1 and with an uncorrected

transverse momentum, pjet
T�CAL, above 10 GeV/c are selected. In this analysis jets are defined with

the longitudinally invariant kT algorithm (see section 2.8.3). A D parameter of 0.7 is used. For

jets with 0�1 � �yjet �� 0�7, measurements with D set to 0.5 and 1.0 are also performed.

In order to remove beam related background and cosmic rays, the events are required to have

at least one primary vertex with �VZ �  60 cm and a missing ET significance value below a

threshold function, T �pjet
T�CAL�Leading jet��. The missing ET significance is defined as the ra-

tio Emiss
T �

�
ΣET , where Emiss

T denotes the missing transverse energy and ΣET the total transverse

energy. The threshold function is obtained from MC studies to maximize the efficiency and is

defined as:

T �p jet
T�CAL�Leading jet�� � minimum � 2�5�400 � pjet

T�CAL�Leading Jet� � 7 �� (4.1)

with T in GeV1�2 and pjet
T�CAL in GeV�c. As figure 4.1 illustrates, the transition to a constant cut

of 7 GeV1�2 occurs for pjet
T�CAL � 400 GeV/c. The efficiency is kept above 95%, see figure 4.2.

It should be mentioned that the pT binning has been selected according to the jet energy resolution

and increases as pjet
T increases to accommodate the limitation in statistics at very high pjet

T .
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Figure 4.1: Missing ET significance cut study using MC. The points represent the value of Missing ET significance

if a cut, that keep a 95% efficiency, is applied. The solid line shows the threshold function used in the analysis.
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The different rapidity regions have been chosen taking into account the layout of the CDF calorime-

ters according to dijet balance studies, see figure 4.3. The five regions are:

� 0 � �y jet �� 0�1: 90Æ gap.

� 0�1 � �yjet �� 0�7: central calorimeter.

� 0�7 � �yjet �� 1�1: central calorimeter and 30Æ gap.

� 1�1 � �yjet �� 1�6: 30Æ gap and plug calorimeter.

� 1�6 � �yjet �� 2�1: plug calorimeter.

In the whole rapidity range the jets are well contained inside the calorimeter and contributions

from proton and antiproton remnants inside the jet are not expected. In addition, the comparison

between data and MC in the dijet balance plot shows that they agree for �ηjet � � 2�1. At higher

η a disagreement bigger than 2% is observed. This could be partially attributed to defects on the

simulation of the energy losses across the calorimeter edges, and could also reflect the presence

of beam-halo related contributions that affect the most-forward calorimeter towers.

ηJet 
-3 -2 -1 0 1 2 3

ηJet 
-3 -2 -1 0 1 2 3

β

0.5

0.6

0.7

0.8
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1.2

1.3
trig/Ptprobe = Ptβ

jet50 data 5.3.1pre2
dijet50 MC 5.3.1pre2

R = 0.4

CDF Run 2 Preliminarytrig/Ptprobe = Ptβ

Figure 4.3: Dijet balance studies [58] using data and PYTHIA-Tune A MC. The results show the CDF calorimeters

layout with gaps at η=0 (θ=900) and η=1.2 ( approximately θ=300).
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4.2 Trigger Study

4.2.1 Jet Trigger datasets

The trigger datasets used in this analysis are Single Tower 5 (ST5), Single Tower 10 (ST10),

JET 20, JET 50, JET 70 and JET 100. The flow of the different datasets and the prescales are

shown in figure 4.4. All the prescales for jet triggers are done by accepting a fixed fraction of

events passing the corresponding trigger requirement.

� The Level 1 jet triggers use the L1 Calorimeter hardware. The two L1 jet triggers, ST5 and

ST10, require energy thresholds to the calorimeter towers (EM + HAD) above 5 GeV and

10 GeV, respectively. The ST5 includes a prescale factor of 20 or 50 (1 event accepted from

each 20 or 50 events, depending on the run period) , while ST10 is unprescaled.

� The Level 2 jet triggers are based on the L2 CAL hardware system. The clustering al-

gorithm basically combines continuous calorimeter towers with an energy higher than a

predetermined threshold. Each cluster starts with a tower above a “seed” threshold (3 GeV)

and all towers above a second lower “shoulder” threshold (1 GeV) that form a contiguous

region with the seed tower are added to the cluster. The size of the cluster expands until no

towers adjacent to the cluster have energy over the second threshold. A scheme of the clus-

ter finder algorithm can be found in figure 4.5. The four trigger datasets are collected using

cluster thresholds of 15, 40, 60 and 90 GeV, respectively, and nominal prescale factors of

12 or 25 for JET 20, 1 or 5 for JET 50 and 8 for JET 70.

� The Level 3 jet triggers select events that have at least one jet with ET higher than a prede-

termined threshold. The jets are reconstructed using a jet cone algorithm (see section 2.8.2)

with the parameter R set to 0.7. The jet energy thresholds, as the dataset names indicate,

are: 20 GeV for JET 20, 50 GeV for JET 50, 70 GeV for JET 70 and 100 GeV for JET 100.
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Event Data

L1 ST5 (20,50)

L2 CL15 (12, 25) CL40 (1,5)

L3  J20  J50 

Dataset: JET 20 JET 50

ST10

CL60 (8)  CL90 

 J70  J50 

JET 70 JET 100

Figure 4.4: Trigger flow for the jet triggers. Typical prescales used during data taking are given in parentheses.

Figure 4.5: The cluster finder algorithm starts selecting all the trigger towers above a seed threshold called “seeds”.

The seed with lowest η is chosen. In the case that two seed have the same η, the one with lowest φ is taken. The

neighboring towers to the seed with an energy over a second threshold, shoulder towers, are added to the first one. The

size of the cluster expands until no towers adjacent to the cluster have energy over the second threshold. The finder

process is repeated with the next seed.
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The measurements are limited to jet transverse momenta for which the trigger is fully efficient.

The trigger efficiencies at the different trigger levels (L1, L2 and L3) are determined using the

trigger flow for the jet triggers (see figure 4.4), in such a way that to evaluate the efficiencies of a

particular dataset, another dataset with lower energy thresholds is employed. Thus, the following

scheme is used:

� get ST5 (L1) efficiency obtained from high pT muon dataset.

� get CL15 (L2) and J20 (L3) efficiencies obtained from ST5 dataset.

� get CL40 (L2), J50 (L3) and ST10 (L1) efficiencies obtained from JET 20 dataset.

� get CL60 (L2) and J70 (L3) efficiencies obtained from JET 50 dataset.

� get CL90 (L2) and J100 (L3) efficiencies obtained from JET 70 dataset.

The trigger efficiencies for each level are shown in figures 4.6 and 4.7. For each dataset and jet

rapidity region, the global trigger efficiency is calculated by multiplying the corresponding L1,

L2 and L3 trigger efficiencies, as it is illustrated in figure 4.8. The value for which the global

trigger efficiency reaches 99% is initially considered. In order to avoid turn-on trigger effects

during the evaluation of the systematic uncertainties, due to the jet energy scale determination,

the pjet
T�CAL thresholds considered are increased by 5% with respect to the corresponding 99%

trigger efficiency point. Table 4.1 summarizes the different thresholds for the different datasets

and rapidity ranges.

dataset 99% pjet
T�CAL +5% of 99% pjet

T�CAL

ST5 24 / 24 / 25 / 30 / 31 26 / 26 / 27 / 32 / 33

JET 20 30 / 30 / 31 / 32 / 31 32 / 32 / 33 / 34 / 33

JET 50 57 / 57 / 61 / 68 / 70 60 / 60 / 65 / 72 / 74

JET 70 77 / 80 / 86 / 92 / 96 81 / 80 / 91 / 97 /101

JET 100 111 / 113 / 118 / 131 / 133 117 / 119 / 124 / 138 / 140

Table 4.1: Obtained pjet
T�CAL thresholds [GeV/c] for the different datasets and for different rapidity regions: �yjet � �

0�1 / 0�1� �y jet � � 0�7 / 0�7� �y jet �� 1�1 / 1�1 � �y jet �� 1�6 / 1�6 � �y jet � � 2�1 . The 99% global trigger efficiency

thresholds are reported in the second column. The 5% increased thresholds are reported in the third column.
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Figure 4.6: Trigger efficiency versus pjet
T�CAL for ST5 (L1 of ST5, JET 20 and JET 50 datasets) obtained using muon

dataset (top), for CL15 (L2 of JET 20 dataset) obtained using ST5 dataset (center left), for J20 (L3 of JET 20 dataset)

obtained using ST5 dataset (center right), for CL40 (L2 of JET 50 dataset) obtained using JET 20 dataset (bottom left)

and for J50 (L3 of JET 50 dataset) obtained using JET 20 dataset (bottom right).
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Figure 4.7: Trigger efficiency versus pjet
T�CAL for ST10 (L1 of JET 70 and JET 100 datasets) obtained using JET

20 dataset (top), for CL60 (L2 of JET 70 dataset) obtained using JET 50 dataset (center left), for J70 (L3 of JET 70

dataset) obtained using JET 50 dataset (center right), for CL90 (L2 of JET 100 dataset) obtained using JET 70 dataset

(bottom left) and for J100 (L3 of JET 100) obtained using JET 70 dataset (bottom right).
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Figure 4.8: Combined trigger efficiency (L1 � L2 � L3) versus pjet
T�CAL for JET 20, JET 50, JET 70 and JET 100 for

jets in the different �y jet � regions.

These trigger efficiency thresholds fix the pT bin range where each dataset is used. Figure 4.9 il-

lustrates the measured pjet
T�CAL distribution in the five rapidity regions after combining the different

datasets. In table 4.2 the dataset used in each bin of rapidity and pjet
T�CAL are listed in detail.
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Figure 4.9: Measured pjet
T�CAL distribution in the different rapidity regions up to �yjet �� 2�1.
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p jet
T�CAL �y jet �� 0�1 0�1 � �yjet �� 0�7 0�7 � �yjet �� 1�1 1�1 � �yjet �� 1�6 1�6 � �yjet �� 2�1

35 - 41 JET 20 JET 20 JET 20 JET 20 JET 20

41 - 47 JET 20 JET 20 JET 20 JET 20 JET 20

47 - 54 JET 20 JET 20 JET 20 JET 20 JET 20

54 - 62 JET 20 JET 20 JET 20 JET 20 JET 20

62 - 72 JET 50 JET 50 JET 20 JET 20 JET 20

72 - 83 JET 50 JET 50 JET 50 JET 50 JET 20

83 - 96 JET 70 JET 50 JET 50 JET 50 JET 50

96 -110 JET 70 JET 70 JET 70 JET 50 JET 50

110-127 JET 70 JET 70 JET 70 JET 70 JET 70

127-146 JET 100 JET 100 JET 100 JET 70 JET 70

146-169 JET 100 JET 100 JET 100 JET 100 JET 100

169-195 JET 100 JET 100 JET 100 JET 100 JET 100

195-224 JET 100 JET 100 JET 100 JET 100 JET 100

224-259 JET 100 JET 100 JET 100 JET 100 JET 100

259-298 JET 100 JET 100 JET 100 JET 100 JET 100

298-344 JET 100 JET 100 JET 100 JET 100 JET 100

344-396 JET 100 JET 100 JET 100 JET 100 JET 100

396-457 JET 100 JET 100 JET 100 JET 100 JET 100

457-527 JET 100 JET 100 JET 100 JET 100 JET 100

527-700 JET 100 JET 100 JET 100 JET 100 JET 100

Table 4.2: pjet
T bins and the corresponding datasets used for the measured pjet

T�CAL distribution in the different rapidity

regions.
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4.3 Pile-up Correction

The measured pjet
T�CAL includes contributions from multiple proton-antiproton interactions per

bunch crossing. The data used in the measurement were collected with an average instantaneous

luminosities of 41 �1030 cm�2s�1, which corresponds to an average of 1.5 inelastic pp̄ interaction

per bunch crossing. At the highest instantaneous luminosity the average is 5.9 interactions per

bunch crossing.

In CDF, these multiple interactions are identified by the presence of additional primary vertices.

For each jet in the event, the measured pjet
T�CAL is corrected for the effect of the pile-up by removing

a certain amount of transverse momentum, ε, per each additional primary vertex in the event:

pjet
T�CAL(Pile-up Corrected) � pjet

T�CAL� ε� �NV �1�� (4.2)

where NV is the number of primary vertices reconstructed in the event.

The quantity ε is determined from data for jets in the central calorimeter region by requiring that

the ratio of cross sections at low and high instantaneous luminosities does not show any pjet
T�CAL

dependence after applying the pile-up correction. The low instantaneous luminosity subsample

corresponds to instantaneous luminosities between 5 and 15 � 1030 cm�2s�1, while the high in-

stantaneous luminosity sample corresponds to instantaneous luminosities � 35 � 1030 cm�2s�1.

In all the cases, the obtained ratio is fit by a constant. Then the evolution of the χ2 of the fits is

drawn as a function of ε. The ε value that gives the minimum χ2 is chosen as the nominal correc-

tion. Going to lower (higher) values of ε, the first correction for which the χ2 has increased by

more than 9 units, 3 σ, is taken as the low (high) limit on ε and will be considered as systematic

uncertainties on this correction. Figures 4.10 and 4.11 show the ratios as a function of pjet
T�CAL for

different values of ε and the evolution of the χ2 of the fits. The normal value for ε was found to

be 1�86�0�23 GeV/c.

Similar studies have been carried out for jets in the different rapidities. In all cases, the ratio does

not show any pjet
T�CAL dependence when ε � 1�86 GeV/c is applied as is shown in figure 4.12. It

is important to mention that additional corrections are included in ε (see section 4.4.3) to account

for the different response in different rapidity regions in the calorimeter. Table 4.3 summarizes

the obtained values of ε together with the uncertainties for the different rapidity regions.
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Figure 4.10: Ratio of cross sections for different pile-up corrections in two bins of instantaneous luminosity, � 35 �
1030 cm�2s�1 and 5 to 15 �1030 cm�2s�1, for jets in the region 0�1 � �yjet �� 0�7. A fit to a constant is superimposed

to the data. The ε values are expressed as factors of 0.928 GeV/c that is the value used in studies with the MidPoint

algorithm. It was obtained as the average pT deposited by minbias events in cones of size 0.7 randomly drawn in the

central calorimeter [58].
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Figure 4.11: Ratio of cross sections for different pile-up corrections in two bins of instantaneous luminosity, � 35 �
1030 cm�2s�1 and 5 to 15 �1030 cm�2s�1, for jets in the region 0�1 � �yjet �� 0�7. A fit to a constant is superimposed

to the data. The ε values are expressed as factors of 0.928 GeV/c that is the value used in studies with the MidPoint

algorithm. It was obtained as the average pT deposited by minbias events in cones of size 0.7 randomly drawn in

the central calorimeter [58]. The bottom right plot is the evolution of the χ2 of the fits is drawn as a function of F

(ε = F� 0.928 GeV/c).
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Figure 4.12: Ratio of cross sections in two bins of instantaneous luminosity, when the pile-up corrections are

applied, for jets in the different �y jet � regions.

Rapidity region ε
�y jet �� 0�1 1�84�0�23 GeV/c

0�1 � �y jet �� 0�7 1�86�0�23 GeV/c

0�7 � �y jet �� 1�1 1�80�0�23 GeV/c

1�1 � �y jet �� 1�6 1�85�0�23 GeV/c

1�6 � �y jet �� 2�1 2�04�0�26 GeV/c

Table 4.3: ε values and their uncertainties for each rapidity region.
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4.4 MC studies

MC event samples are used to determine the corrections factors to unfold the measurements back

to the hadron level. The MC samples have been generated using PYTHIA 6.203, with the Tune A,

and HERWIG 6.4 MC generators. In both programs, the partonic interactions are generated using

leading-order QCD matrix element, including initial and final-states parton showers. CTEQ5L

parton distribution functions are used for the proton and antiproton. The generated samples are

passed through the CDF detector simulation package. Different MC samples with different thresh-

olds on p̂T were produced to ensure enough MC statistics in all the pjet
T regions. Special care was

taken to avoid any bias coming from the presence of the different p̂T thresholds in the MC.

Prior to unfolding the data with the MC samples (see section 4.5), several studies have been

carried out to examine carefully the calorimeter response and jet reconstruction in the simulation.

4.4.1 Raw variables comparison

First, the agreement between data and MC has been checked on the quantities most relevant for

this analysis. These variable are: the Z position of the primary vertex, the missing ET significance,

the jet φ, y and pT distributions and the number of towers inside the jet.

The comparison of the different variables, shown in figures 4.13 to 4.17, indicates that the CDF

simulation gives a reasonable description of the data for the jet rapidities considered. However, the

comparison of the multiplicity of the towers inside the jet for different rapidity regions indicates

that the MC tends to underestimate the number of towers associated to the jet. This is mainly due

to a non adequate simulation of the energy deposition in the calorimeter, in particular in the plug

regions. Nevertheless, it should be mentioned that the multiplicity of the towers inside the jet is

very sensitive to towers with very small energy (� 100 MeV).
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Figure 4.13: Distribution of the Z position of the primary vertex (top left), missing ET significance (top right), φ jet

(center left), y jet (center right), number of calorimeter towers inside the jet distribution (bottom left) and pT (bottom

right) for data (squares) and the corresponding MC samples (histogram) for jets in the rapidity region �yjet �� 0�1 with

p jet
T�CAL � 83 GeV/c. Only events with exactly 1 primary vertex are considered.
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Figure 4.14: Distribution of the Z position of the primary vertex (top left), missing ET significance (top right), φ jet

(center left), y jet (center right), number of calorimeter towers inside the jet distribution (bottom left) and pT (bottom

right) for data (squares) and the corresponding MC samples (histogram) for jets in the rapidity region 0�1 � �yjet �� 0�7

with p jet
T�CAL � 96 GeV/c. Only events with exactly 1 primary vertex are considered.
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Figure 4.15: Distribution of the Z position of the primary vertex (top left), missing ET significance (top right), φ jet

(center left), y jet (center right), number of calorimeter towers inside the jet distribution (bottom left) and pT (bottom

right) for data (squares) and the corresponding MC samples (histogram) for jets in the rapidity region 0�7 � �yjet �� 1�1

with p jet
T�CAL � 96 GeV/c. Only events with exactly 1 primary vertex are considered.
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Figure 4.16: Distribution of the Z position of the primary vertex (top left), missing ET significance (top right), φ jet

(center left), y jet (center right), number of calorimeter towers inside the jet distribution (bottom left) and pT (bottom

right) for data (squares) and the corresponding MC samples (histogram) for jets in the rapidity region 1�1 � �yjet �� 1�6

with p jet
T�CAL � 110 GeV/c. Only events with exactly 1 primary vertex are considered.
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Figure 4.17: Distribution of the Z position of the primary vertex (top left), missing ET significance (top right), φ jet

(center left), y jet (center right), number of calorimeter towers inside the jet distribution (bottom left) and pT (bottom

right) for data (squares) and the corresponding MC samples (histogram) for jets in the rapidity region 1�6 � �yjet �� 2�1

with p jet
T�CAL � 110 GeV/c. Only events with exactly 1 primary vertex are considered.
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As a result of these raw variable comparisons, more dedicated studies are necessary to test the

accuracy of the pjet
T reconstruction in the MC. In the next sections, the jet energy resolution

is studied using the bisector method [59], while the dijet balance is employed to understand the

energy scale with respect to the central calorimeter region, where it is known that the MC provides

a proper description of the data [58].

4.4.2 Bisector Method

The pT unbalance between the two leading jets in dijet events is sensitive to gluon radiation and

detector effects. The bisector method is based on the splitting of this pT unbalance in two com-

ponents according to the definition of a bisector axis. The comparison of these two components

provides an estimation of the jet energy resolution. The details of the method are explained below.

The dijet events are selected according to the following criteria:

� 2 and only 2 jets with pjet
T�CAL above 10 GeV/c.

� One jets in the rapidity region 0�1 � �yjet � � 0�7 and the other jet in the rapidity region

under study.

� 1 and only 1 primary vertex with �VZ �  60 cm.

� Missing ET significance criteria (see section 4.1.2).

The bisector axis is defined as the axis corresponding to the direction of the bisector of the 2 jets

in the transverse plane. The jet in the region 0�1 � �yjet �� 0�7 is chosen to be jet 1 and the other

jet is jet 2. In this context, the following quantities are then defined as it is shown in figure 4.18:

� pRAW1
T � pjet

T�CAL (jet 1) and pRAW2
T � pjet

T�CAL (jet 2).

� pMEAN
T �

�
pRAW1

T � pRAW2
T

�
�2, that is the average pjet

T�CAL of the dijet event.

� γ �
���φJET 1�φJET 2

�
�2
�� , γ is the angle between the jets and the bisector axis in the

transverse plane.

� Δp ��
T � ��pRAW1

T � pRAW2
T

�
cos�γ� , Δp ��

T is the part of the pT unbalance that is parallel

to the bisector axis in the transverse plane, the � factor in the Δp��
T definition is randomly

chosen to be either + or -. Due to this the distribution of Δp��
T is symmetric around 0.



4.4 MC studies 77

� Δp PERP
T �

�
pRAW1

T � pRAW2
T

�
sin�γ� , Δp PERP

T is the part of the pT unbalance that is perpen-

dicular to the bisector axis in the transverse plane.

Figure 4.18: Illustration of the bisector method variables. The pT vectors of the two leading jets in the transverse

plane are shown. γ is the angle between the jets and the bisector axis. Δp��T and ΔpPERP
T are the part of the pT unbalance

that are respectively parallel and perpendicular to the bisector axis.

The selected events are then separated in bins of the average pjet
T�CAL of the dijet event. This

pT binning is chosen to avoid bias in the mean and RMS values due to possible asymmetric

distributions. For each bin, the following variables are calculated:

� σ�� = rms of the Δp ��
T distribution, resolution mainly sensitive to physics effects on the pT

balance.

� σPERP = rms of the Δp PERP
T distribution, resolution sensitive to both detector and physics

effects on the pT balance.

� σD �
�

σ2
PERP�σ2

�� , assuming physics effects are democratic in φ this term should rep-

resent the detector effects only.

Figures 4.19 to 4.24 show the values of σ��, σPERP and σD as a function of the average pjet
T�CAL of

the dijet event for both data and MC, as well as the ratios data/MC for these quantities in each

rapidity region. As expected, the σ�� dependence on pT is much smaller than the σPERP one. The

σ�� values obtained in the MC are about 20% lower than the ones observed on data. This effect

may be linked to high order contributions not very well accounted for in the MC, which only
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includes leading-order matrix element plus parton shower. However, the crucial point here is the

level of agreement between data and MC that is observed for σD (figures 4.23 and 4.24).
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Figure 4.19: Bisector method study results: σ�� for DATA and MC for jets in different �y jet � regions.
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Figure 4.20: Bisector method study results: Ratio DATA / MC of the σ�� for jets in different �y jet � regions.
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Figure 4.21: Bisector method study results: σPERP for DATA and MC for jets in different �y jet � regions.
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Figure 4.22: Bisector method study results: Ratio DATA / MC of the σPERP for jets in different �y jet � regions.
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Figure 4.23: Bisector method study results: σD for DATA and MC for jets in different �y jet � regions.
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Figure 4.24: Bisector method study results: Ratio DATA / MC of the σD for jets in different �y jet � regions. The solid

line is the fit to a zero-order polynomial and the dashed lines show the �8% uncertainty considered.
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Figure 4.24 shows that for jets in the most central regions, �yjet � � 0�1 and 0�1 � �yjet � � 0�7,

the estimated detector resolutions in data and MC agree very well within �8%. Therefore, an

uncertainty of �8% on the jet energy resolution will be considered to deal with the associated

systematic uncertainty (see section 4.6). The bisector method shows that the resolution is un-

derestimated in the MC for jets in the regions 0�7 � �yjet � � 1�1 and 1�6 � �yjet � � 2�1, while it

is overestimated for jets within 1�1 � �yjet � � 1�6. Those two cases required different methods

to correct the discrepancy between data and simulation. In the following the different cases are

explained separately.

4.4.2.1 Correction for underestimated resolution in the simulation

The corrected resolution is obtained by smearing the resolution in the MC, σMC, by a Gaussian,

σG: σCORR
MC � σMC�σG, in order to get

σCORR
MC � σMC�F with F � 1� (4.3)

where the corresponding correction factor F is chosen in such a way that the σD values observed

in the MC after the smearing are the same than the ones found in the data. Figure 4.25 shows

the pjet
T resolutions in the different rapidity regions as obtained in the MC, σMC, by computing

directly the pT differences between the calorimeter jets and their associated hadron level jets.

The correction is applied simply by smearing the pjet
T�CAL values in MC by σG, defined as:

σG�p
jet
T�CAL� � σMC�p

jet
T�CAL� �

�
�F2�1�� (4.4)

Therefore, the new pjet
T�CAL smeared values are:

pjet
T�CAL�S � pjet

T�CAL �Δpjet
T�CAL� (4.5)

where Δpjet
T�CAL stands for the smearing contributions. Figures 4.26 and 4.27 show the data/MC

σD ratios for the values of F that were investigated in each of the 2 rapidity regions under study.

The final factors F that will be applied are 1.06 and 1.10 for jets in 0�7 � �yjet � � 1�1 and 1�6 �

�y jet � � 2�1 respectively, for which the data/MC ratios are consistent with 1 over the whole pT
ranges, and within the �8% systematic uncertainty considered .

In the following, the pjet
T�CAL values considered in the MC will be the ones obtained after the

smearing, i.e. the pjet
T�CAL�S values.
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Figure 4.25: pjet
T resolution obtained from the MC comparing hadronic and calorimetric jets for jets in different

�y jet � regions. The RMS of the �pjet
T�HAD� p jet

T�CAL� distribution is reported as a function of the � pjet
T�CAL �. The points

are fitted by 2nd order polynomials.

4.4.2.2 Correction for overestimated resolution in the simulation

For jets in the rapidity 1�1 � �yjet �� 1�6, the resolution in the MC is overestimated and the method

based on the smearing of the pjet
T�CAL values in the MC cannot be applied. In this case, a resolution

correction will be applied later via slightly modified unfolding factors (see section 4.5.2.1).

However, in order to know how different are the resolutions in data and MC, a similar study than

the one presented previously has been carried out. In this case, and only to do this study, the

smearing was done on the pjet
T�CAL in the data.

Figure 4.28 shows the data/MC σD ratios for the values of F that were investigated, where F has

been defined as before. Data and MC agree for F=1.05, therefore the factor that will be applied to

correct the resolution in the simulation is 1/1.05. As mentioned earlier, this will be done indirectly

via modified unfolding factors.
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Figure 4.26: Ratio data / MC in σD vs the average pjet
T�CAL of the dijet event as obtained from the bisector method

for jets in the region 0�7 � �yjet �� 1�1 after increasing the resolution by different factors F, from 1.03 to 1.07 by steps

of 0.01. The chosen factor is F=1.06. The solid lines are fits to zero-order polynomials and the dashed lines show the

�8% uncertainty considered.
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Figure 4.27: Ratio data / MC in σD vs the average pjet
T�CAL of the dijet event as obtained from the bisector method

for jets in the region 1�6 � �yjet �� 2�1 after increasing the resolution by different factors F, from 1.10 to 1.18 by steps

of 0.02. The chosen factor is F=1.10. The solid lines are fits to zero-order polynomials and the dashed lines show the

�8% uncertainty considered.
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Figure 4.28: Ratio data / MC in σD vs the average pjet
T�CAL of the dijet event as obtained from the bisector method

for jets in the region 1�1 � �yjet �� 1�6 after smearing the data by different factors F, from 1.03 to 1.07 by steps of 0.01.

The chosen factor is F=1.05. The solid lines are fits to zero-order polynomials and the dashed lines show the �8%

uncertainty considered.
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4.4.3 Dijet Balance

Once the jet momentum resolutions have been adjusted in the MC according to the ones measured

in the data, whenever it was necessary and possible as it was explained in previous section, the

description of the average calorimeter response to jets in the MC is tested. A sample of dijet

events is selected and the difference between the pT of the two jets is considered to evaluate the

jet energy scale relative to central jets.

The event selection is the following:

� 2 and only 2 jets with jet pjet
T�CAL above 10 GeV/c.

� One jet (trigger jet) in the detector η region 0�2 � ηJET
D � 0�6, the other jet (probe jet) in

the rapidity region under study.

� 1 and only 1 primary vertex with �VZ �  60 cm.

� Missing ET significance cut (see section 4.1.2).

The following quantities are defined:

� pTRIG
T � pjet

T�CAL (trigger jet) and pPROB
T � pjet

T�CAL (probe jet)

� pMEAN
T �

�
pPROB

T � pTRIG
T

�
�2

� ΔpF
T �

�
pPROB

T � pTRIG
T

�
�pMEAN

T

The selected events are again separated in bins of pMEAN
T . For each bin, the mean unbalance

fraction � ΔpF
T � is evaluated, and the quantity

β �
�
2�� ΔpF

T �
�
�
�
2�� ΔpF

T �
�

(4.6)

is computed. Event by event β is equivalent to pPROB
T �pT RIG

T . Figure 4.29 shows the data over

MC ratio: βDATA�βMC. For jets in the rapidity regions 0�1 � �yjet � � 0�7 and 0�7 � �yjet � � 1�1

the ratio βDATA�βMC is compatible with 1 over all the pT range, showing that the MC reproduces

very well the data. However, for jets in the central gap and in the two most forward regions,

it is different than 1. An additional correction is applied to the MC in order to force the ratio

βDATA�βMC to be equal to 1 over the whole pT range. The corrections are obtained fitting the

ratio by a polynomial. A constant is used for jets within �yjet � � 0�1, leading to:

pjet
T�CAL�cor � 1�011 � pjet

T�CAL� (4.7)
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For jets within 1�1 � �yjet � � 1�6 and 1�6 � �yjet � � 2�1 there are limited statistics for dijet

events at high pjet
T�CAL. Therefore, different linear functions have been considered to extrapolate

the correction to high pT :

pjet
T�CAL�cor � 1�006 � pjet

T�CAL�0�00014 � p2
T�CAL f or pjet

T�CAL � 110 GeV�c (4.8)

pjet
T�CAL�cor � 0�996 � pjet

T�CAL�0�00007 � p2
T�CAL f or pjet

T�CAL � 110 GeV�c (4.9)

and

pjet
T�CAL�cor � 1�001 � pjet

T�CAL�0�00020 � p2
T�CAL f or pjet

T�CAL � 125 GeV�c (4.10)

pjet
T�CAL�cor � 0�988 � pjet

T�CAL�0�00010 � p2
T�CAL f or pjet

T�CAL � 125 GeV�c (4.11)

for 1�1 � �yjet � � 1�6 and 1�6 � �yjet � � 2�1, respectivelly.
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Figure 4.29: Ratio βDATA�βMC vs � p jet
T�CAL � for jets in different �y jet � regions. The solid lines show the param-

eterizations that defined the nominal corrections. In the two most forward regions the dashed lines correspond to the

different parameterizations used to describe the ratio at high pjet
T�CAL. These different functions are considered in the

systematic uncertainties studies.
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4.4.4 Summary of MC corrections

Table 4.4 summarizes the corrections applied to the MC in the different rapidity regions to obtain

a better simulation of the jet energy resolution and average jet energy as determined using the

bisector method and the dijet balance studies.

Rapidity Bisector Method Dijet Balance

region σCORR
MC �σMC pjet

T�CAL�cor

�y jet �� 0�1 1.0 1�011 � pjet
T�CAL

0�1 � �yjet �� 0�7 1.0 1.0

0�7 � �yjet �� 1�1 1.06 1.0

1�006 � pjet
T�CAL�0�00014 � p2

T�CAL (pjet
T�CAL � 110 GeV�c)

1�1 � �yjet �� 1�6 0.95 or

0�996 � pjet
T�CAL�0�00007 � p2

T�CAL (pjet
T�CAL � 110 GeV�c)

1�001 � pjet
T�CAL�0�00020 � p2

T�CAL (pjet
T�CAL � 125 GeV�c)

1�6 � �yjet �� 2�1 1.10 or

0�988 � pjet
T�CAL�0�00010 � p2

T�CAL (pjet
T�CAL � 125 GeV�c)

Table 4.4: Corrections applied to the MC coming from the bisector method and dijet balance studies. Jet measured

in the central region, 0�1 � �yjet � � 0�7, are well described by the MC. In the same way, data and MC agree on the

jet energy resolution for jets within �yjet �� 0�1 and on the jet energy scale relative to central jets in the rapidity range

0�7 � �y jet �� 1�1.

4.5 Unfolding to the hadron level

Once the simulation has been evaluated and eventually corrected, the measured pjet
T�CAL distribu-

tions are corrected back to the hadron level using the MC.

Figure 4.30 shows the ratio between the measured pjet
T�CAL distribution and the one predicted by

PYTHIA-Tune A. The ratios show a shape in pjet
T which indicates that the pT distribution in the

data are not perfectly followed by the MC. The trend at high pjet
T might be explained by the fact

that CTEQ5L PDFs are used in PYTHIA-Tune A.

In order to avoid any bias on the correction factors due to the particular PDFs used during the
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generation of the MC samples PYTHIA-Tune A is reweighted to follow the measured jet pT

spectrum in the data. The ratio between the measured and predicted distributions is fitted to a

third order polynomial. Each event in the MC is then weighted by this third order polynomial

applied to p̂T .
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Figure 4.30: Ratio between the measured pjet
T�CAL distribution and the one predicted by PYTHIA-Tune A for jets in

different �y jet � regions. The ratios are fitted to 3rd order polynomials.

The unfolding is carried out in two steps. First, an average pjet
T correction takes into account on

average the energy losses of hadrons going through the non-compensated calorimeters (e�h �� 1�.

Second, an unfolding procedure is applied to correct the measurements for acceptance and smear-

ing effects, accounting for the efficiency of the selection criteria and for the jet reconstruction in

the calorimeter. Both steps are explained in the next sections.
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4.5.1 Average p jet
T correction

The pjet
T average correction is extracted using the following procedure:

� Jets are reconstructed at calorimeter and hadron levels in PYTHIA-Tune A MC.

� Pairs of calorimeter and hadron level jets are matched in y� φ space if their separation

ΔR �


ΔY 2 �Δφ2 is lower than 0.7. If more than one hadron level jet is within ΔR � 0�7,

the closest one is retained.

� The correlation � pjet
T�HAD � pjet

T�CAL � versus � pjet
T�CAL �, where pjet

T�HAD is the pT of the

hadron level jet and pjet
T�CAL is the pT of the calorimeter jet, is computed for matched pairs

of jets. It is then fitted to a fourth order polynomial. The corrected pT of the calorimeter jet

is then:

pjet
T�COR � P0 �P1 � pjet

T�CAL �P2 � pjet 2
T�CAL �P3 � pjet 3

T�CAL �P4 � pjet 4
T�CAL� (4.12)

The average quantities � pjet
T�HAD� pjet

T�CAL � and � pjet
T�CAL � are computed in bins of �pjet

T�HAD �

pjet
T�CAL��2. The obtained corrections are shown in figure 4.31.

10

20

30

40

50

|<0.1
CAL

JET|y |<0.7
CAL

JET0.1<|y

10

20

30

40

50

60

|<1.1
CAL

JET0.7<|y

> [GeV/c]JET
T,CAL

<p
200 400 600

|<1.6
CAL

JET1.1<|y

> [GeV/c]JET
T,CAL

<p
200 400 600

0

5

10

15

|<2.1
CAL

JET1.6<|y

> 
[G

eV
/c

]
JE

T
T

,C
A

L
 -

 p
JE

T
T

,H
A

D
<p

Figure 4.31: Average pT correction, � p jet
T�HAD � p jet

T�CAL � vs � p jet
T�CAL �, for jets in different �y jet � regions. The

correction is fitted to a 4th order polynomial (solid lines).
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4.5.2 Unfolding Procedure

The unfolding procedure is based again on PYTHIA-Tune A MC:

� The unfolding factors are defined bin-by-bin as:

U�p jet
T�COR�y

jet
CAL� �

d2�d pjet
T�HADdyjet

HAD

d2�d pjet
T�CORdy jet

CAL

� (4.13)

� The bin-by-bin unfolding factors are applied to the measured pjet
T distribution to unfold it

back to the hadron level:

NDATA UNFOLDED
JET �pjet

T�COR�y
jet
CAL� �U�p jet

T�COR�y
jet
CAL� �NDATA NOT UNFOLDED

JET �pjet
T�COR�y

jet
CAL�.

The unfolding factors are obtained by combining different samples of MC with different cuts on

p̂T . As in all the MC studies, special care has been taken at this point to avoid any bias due to the

presence of the p̂T thresholds. Selected MC samples for different pjet
T bins and rapidity regions

are reported in table 4.5. Figure 4.32 shows the unfolding factors.
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Figure 4.32: Bin-by-bin unfolding factors vs pjet
T�COR obtained using reweighted PYTHIA-Tune A for jets in different

�y jet � regions.
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p jet
T�COR �y jet �� 0�1 0�1 � �yjet �� 0�7 0�7 � �yjet �� 1�1 1�1 � �yjet �� 1�6 1�6 � �yjet �� 2�1

54 - 62 PYT18 PYT18 PYT18 PYT18 PYT18

62 - 72 PYT40 PYT18 PYT18 PYT18 PYT40

72 - 83 PYT40 PYT40 PYT18 PYT40 PYT40

83 - 96 PYT40 PYT40 PYT40 PYT60 PTY60

96 -110 PYT60 PYT60 PYT40 PYT60 PYT60

110-127 PYT60 PYT60 PYT40 PYT60 PYT90

127-146 PYT90 PYT90 PYT60 PYT90 PYT90

146-169 PYT90 PYT90 PYT90 PYT90 PYT120

169-195 PYT90 PYT120 PYT90 PYT120 PYT150

195-224 PYT120 PYT150 PYT120 PYT120 PYT150

224-259 PYT150 PYT150 PYT150 PYT120 PYT200

259-298 PYT200 PYT150 PYT150 PYT150 PYT200

298-344 PYT200 PYT200 PYT200 PYT200 -

344-396 PYT200 PYT200 PYT200 PYT200 -

396-457 PYT300 PYT300 PYT300 - -

457-527 PYT300 PYT300 PYT400 - -

527-700 PYT400 PYT400 PYT400 - -

Table 4.5: PYTHIA-Tune A MC samples used in each pjet
T�COR bin to evaluate the unfolding corrections in the

different rapidity regions.

4.5.2.1 Resolution correction

As it has been shown in section 4.4.2, the resolution for jets in the rapidity 1�1 � �yjet � � 1�6 is

overestimated in the MC. In this case, a smearing of the pjet
T�CAL values cannot be applied. An

alternative method has been used, where the unfolding factors are corrected in order to indirectly

take into account the discrepancy between data and MC on the jet momentum resolution. The

correction factors are extracted from the ratio of the pjet
T�HAD spectrum smeared by the nominal

MC resolution, σMC, and by the corrected resolution defined as σCORR
MC � σMC � �1�1�05� (see

section 4.4.2.2). The correction to be applied to the unfolding factors is about 3% and essentially

independent of pjet
T . Figure 4.33 shows the corrections together with the resulting final unfolding

factors.
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Figure 4.33: Resolution correction factors (left) and modified unfolding factors (right) vs pjet
T�COR for jets in the

region 1�1 � �yjet �� 1�6.

The method explained here to account for the discrepancies between data and MC on the jet

momentum resolution has been validated in the regions 0�7 � �yjet � � 1�1 and 1�6 � �yjet � � 2�1

where the resolutions in the MC are underestimated and where the nominal method is to smear

the MC pjet
T�CAL distribution directly. The two different correction methods produce compatible

results.

It should be noted that for the region 1�1 � �yjet �� 1�6 the dijet balance study is performed before

correcting the MC for the resolution. On the other hand, in the regions 0�7 � �yjet � � 1�1 and

1�6 � �yjet �� 2�1, the dijet balance studies are done after including the pjet
T�CAL smearing. This is

the correct way to proceed as resolution discrepancies between data and MC can slightly affect the

ratio βDATA�βMC. A detailed study was carried out in the region 1�6 � �yjet �� 2�1 to evaluate the

effect of applying the dijet balance correction before and after the resolution correction. The effect

is about 3% and will be included as an additional systematic uncertainty on the final measurement

for the region 1�1 � �yjet � � 1�6. This is rather conservative since the observed difference in jet

momentum resolution between data and MC in the region 1�6 � �yjet �� 2�1 is much bigger than

for jets within 1�1 � �yjet �� 1�6.
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4.6 Systematic Uncertainties

The following sources of systematic uncertainties have been considered for each cross section

measurements:

Jet Energy Scale

The jet energy scale uncertainty is estimated to be between�2% at low pjet
T to�2.7% at high pjet

T .

It mainly comes from the remaining uncertainties on the calorimeter response to single particles

and on the pT spectrum of the particles inside the jets [58]. To estimate the associated systematic

uncertainties in the cross section, the energy scale is varied in the reweighted MC. This introduces

uncertainties on the final measurements between �10% at low pjet
T and 40% to 60% at high pjet

T ,

depending on the rapidity region, as it is shown in figure 4.34, which dominate the total systematic

uncertainties.
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Figure 4.34: Systematic uncertainty (in percentage) on the measured inclusive jet cross sections as a function of

p jet
T associated to the uncertainty on the Jet Energy Scale for the different �yjet � regions.
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Dijet balance method and correction

Several source of systematic uncertainties on the dijet balance method have been studied:

� (a) The dijet balance method is based on exclusive dijet events. The veto required for the 3rd

jet introduces a�0.5% uncertainty on the jet energy scale in all the rapidity regions, except

for 0�1 � �yjet �� 0�7. This translates into an uncertainty on the cross section measurements

between �2% at low pjet
T and �10% at high pjet

T , see figure 4.35.

� (b) For jets in the region 1�1 � �yjet �� 1�6 and 1�6 � �yjet �� 2�1 different parametrizations

for the βDATA�βMC ratios have been considered (see figure 4.29). The associated systematic

uncertainties in the measurements are between 5% at low pjet
T and 20% at high pjet

T as it is

shown in figure 4.36.

� (c) As mentioned in section 4.5.2.1, in the region 1�1 � �yjet �� 1�6 a systematic uncertainty

of -3% is included to take into account variation in the dijet balance results due to the

uncorrected overestimated jet momentum resolution.

Jet Energy Resolution

A �8% uncertainty on the jet momentum resolution, as determined from the bisector method

study (see section 4.4.2), has been considered. In order to determine its effect in the measure-

ment, the pjet
T�HAD spectrum in the MC is smeared by it nominal resolution σMC and by a modified

resolution varied by �8% (σ�pjet
T�HAD�� 0�92 and σ�pjet

T�HAD�� 1�08). To unfold the correspond-

ing smeared spectra (NS1�00
JET , NS0�92

JET and NS1�08
JET respectively) back to the hadron level (NHAD

JET ), one

would consider the ratios:

CS1�00 � NHAD
JET �NS1�00

JET � CS0�92 � NHAD
JET �NS0�92

JET and CS1�08 � NHAD
JET �NS1�08

JET �

The systematic uncertainty coming from the resolution uncertainty is then related to the unfolding

factor ratios CS1�08�CS1�00 and CS0�92�CS1�00. In these ratios, NHAD
JET cancels out and one remains

with NS1�00
JET �NS1�08

JET and NS1�00
JET �NS0�92

JET . The relative differences between the smeared spectra then

give the systematic uncertainties which are about �2% to �12%, as figure 4.37 shows.
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Figure 4.35: Systematic uncertainty (in percentage) on the measured inclusive jet cross sections as a function of pjet
T

associated to the uncertainty on the Dijet Method procedure for the different �yjet � regions, except 0�1 � �yjet �� 0�7.
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Figure 4.36: Systematic uncertainty (in percentage) on the measured inclusive jet cross sections as a function of pjet
T

associated to the uncertainty on the Dijet Method correction for the regions 1�1 � �yjet �� 1�6 and 1�6 � �yjet �� 2�1.
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Figure 4.37: Systematic uncertainty (in percentage) on the measured inclusive jet cross sections as a function of

p jet
T associated to the uncertainty on the resolution for the different �yjet � regions.

Unfolding procedure

Two different sources of systematic uncertainties are considered:

� A possible remaining sensitivity of the unfolding factors to the jet pT spectrum is estimated

by the ratio of the unfolding factors as obtained from unweighted and weighted PYTHIA-

Tune A. As it is shown in figures 4.38, the effect is negligible up to about 400 GeV/c. For

higher pjet
T the systematic uncertainty is about �4% to �7%.

� The sensitivity to the hadronization model is accounted by the ratio of the unfolding fac-

tors from weighted PYTHIA-Tune A and HERWIG, where for the latter the same weighted

method than for PYTHIA-Tune A has been used. Figure 4.39 shows that the biggest devi-

ations are observed at lower pjet
T , where they are of the order of �2% to �8%.



98 Inclusive Jet Cross Section Measurement

-20

0

20 |<0.1JET|y |<0.7JET0.1<|y
S

ys
te

m
at

ic
 [

%
]

-20

0

20 |<1.1JET0.7<|y

 [GeV/c]JET
T

p
200 400 600

|<1.6JET1.1<|y

 [GeV/c]JET
T

p
0 200 400 600

-20

0

20 |<2.1JET1.6<|y

JE
S

 S
ys

te
m

at
ic

 U
n

ce
rt

ai
n

ty
[%

]
R

es
o

lu
ti

o
n

 S
ys

te
m

at
ic

 U
n

ce
rt

ai
n

ty
[%

]

 S
p

ec
tr

a 
S

ys
te

m
at

ic
 U

n
ce

rt
ai

n
ty

[%
]

JE
T

T
p

Figure 4.38: Systematic uncertainty (in percentage) on the measured inclusive jet cross sections as a function of

p jet
T associated to the uncertainty on the pT spectra for the different �y jet � regions.
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Figure 4.39: Systematic uncertainty (in percentage) on the measured inclusive jet cross sections as a function of

p jet
T associated to the uncertainty on the unfolding procedure for the different �yjet � regions.
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Pile-up correction

The pile-up corrections are changed within the systematic uncertainties obtained in the dedicated

study (see section 4.3). The effect in the cross section is about 2% as shown in figure 4.40.
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Figure 4.40: Systematic uncertainty (in percentage) on the measured inclusive jet cross sections as a function of

p jet
T associated to the uncertainty on the pile-up correction for the different �yjet � regions.

Selection criteria

Three different sources of systematic uncertainties related to the event selection criteria have been

considered.

� VZ cut: the �VZ � cut is varied by �5 cm in data and MC to account for possible remaining

differences in the tails of the vertex distribution. The associated systematic uncertainty is

0.3%.

� pjet
T cut: the lowest edge of each bin of the measured jet transverse momentum is varied

by �3% in both data and MC to identify a possible dependency due to any remaining

differences on the pjet
T spectrum in MC and data. The yields change by 30% to 60%, but

data and MC agree very well and, after unfolding, the remaining effect is only about 1%.
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� Missing ET Scale: the energy scale of the missing ET is varied by �10% in the data at

the same time that the jet energy scale is varied by �3% because the missing ET cut is

function of pjet
T . All possible combinations have been considered and the ones with the

biggest effects in each direction are used as a systematic uncertainty. This introduces an

uncertainty smaller than 1%.

The contribution of these systematic uncertainties are smaller than 1% , therefore they are

considered negligible.

Positive and negative deviations with respect to the nominal value are separated and then added in

quadrature. Figure 4.41 shows the total systematic uncertainty, totally dominated by the jet energy

scale uncertainty. Tables C.1 to C.5 (see appendix C) summarize the systematic uncertainties

coming from each contribution. An additional �5�8% normalization uncertainty coming from

the luminosity is not included.
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Figure 4.41: Total systematic uncertainty (in percentage) on the measured inclusive jet cross sections as a function

of p jet
T for the different �y jet � regions.



Chapter 5

Discussion of the Results

The comparison of the jet measurements with the NLO predictions is presented in this chapter.

The first section describes the theoretical calculations and their uncertainties. Next, the results are

shown and discussed.

5.1 NLO calculations

The NLO calculations are obtained from JETRAD program [60] with CTEQ6.1M PDFs. The

renormalization and factorization scales, µR and µF respectively, are set to µ0=max(pjet
T �2). The

effect of changing the scales has been studied and the difference on the theoretical predictions is

only few percent.

The uncertainties on the theoretical predictions are dominated by the uncertainties on the PDFs,

specially on the gluon contribution at high-x. To compute the PDFs uncertainties, the + and

- deviations along the 20 eigenvectors of CTEQ6.1M PDFs are considered. Figure 5.1 shows

the 20 eigenvectors for jets in 0�1 � �yjet � � 0�7. For each one, the two curves are the positive

and negative displacements. Asymmetric uncertainties are obtained by summing in quadrature

the maximal deviations in each direction associated to each of the 20 eigenvectors. For a given

pjet
T bin, calling P0 the nominal prediction and P�i (P�

i ) the prediction corresponding to the + (-)

deviation along eigenvector i (i going from 1 to 20), the global PDFs uncertainties are:

ΔP� �

�
20

∑
i�1

�
max�P�

i � P�
i � P0��P0

�2

�1�2

(5.1)
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and

ΔP� �

�
20

∑
i�1

�
min�P�

i � P�
i � P0��P0

�2

�1�2

� (5.2)

If P�
i and P�i give deviations of opposite directions with respect to P0, one will contribute to ΔP�

and the other to ΔP�. If P�
i and P�i give deviations in the same direction with respect to P0, only

the maximal deviation is considered in the corresponding direction: this eigenvector i will not

contribute to the opposite direction uncertainty. Figure 5.2 illustrates the global PDFs uncertainty

in the theoretical prediction.
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Figure 5.1: Fractional difference between the + and - displacements along the 20 eigenvectors and the standard

prediction, CTEQ6.1M, for jet in 0�1 � �y jet � � 0�7 region. The biggest uncertainty at high pT is related to the gluon

contribution, which is the eigenvector 15 in the framework of CTEQ6.1M PDFs.
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Figure 5.2: Systematic uncertainty (in percentage) on the inclusive jet cross sections predictions, as a function of

p jet
T , associated to the uncertainty on the PDFs for the different �yjet � regions.

5.1.1 Hadronization and Underlying event correction

pQCD NLO calculations for the inclusive jet production only have 2 or 3 partons in the final state.

The parton-level calculations do not take into account the non-perturbative effects related to the

underlying event and the fragmentation processes. Therefore, a correction is necessary for an

adequate comparison between the measured jet cross sections at the hadron level and the QCD

predictions.

PYTHIA-Tune A is used to estimate this correction. These global underlying event / hadroniza-

tion correction factors, CHAD, are obtained as the difference between the nominal pjet
T cross sec-

tions at hadron level and the ones obtained after turning off the multiple parton interaction (MPI),

which includes beam remnants, and the fragmentation into hadrons in the MC:

CHAD�p
jet
T �yjet� �

σ(Hadron level with MPI)
σ(Parton level no MPI)

�pjet
T �yjet�� (5.3)
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To estimate the different contributions, CHAD can be factorized as following:

CHAD � CHadron Level
MPI �CNo MPI

Frag � (5.4)

where:

� CHadron Level
MPI � �σ(Hadron level with MPI)���σ(Hadron level no MPI)� is the MPI correction ob-

tained at hadron level.

� CNo MPI
Frag � �σ(Hadron level no MPI)���σ(Parton level no MPI)� is the fragmentation correction

obtained without MPI.

To obtain those corrections, samples with more than 160 million events of PYTHIA-Tune A

MC with and without MPI have been used. Different p̂T MC samples are used in different pjet
T

bins checking carefully that there is no bias due to the p̂T cut by requiring coherence with lowest

p̂T samples. Figure 5.3 shows the obtained correction factors, where the fitted values are the one

used in the analysis, and its factorization into the two contributions as a function of pjet
T for jets

with 0�1 � �yjet � � 0�7. The correction decreases as pjet
T increases and at low pjet

T the value is

approximately 1.2. The corrections have been determined down to 54 GeV/c. At lower pjet
T the

correspondence between parton-to-hadron is not well defined and these non-perturbative correc-

tions can not be obtained. For this reason, the measurements and their comparison to NLO are

limited to pjet
T � 54 GeV/c.

To account for the systematic uncertainty coming from the modeling of the underlying event and

hadronization processes, CHAD have also been evaluated using HERWIG dijet samples. Figure 5.4

shows the CHAD corrections obtained from HERWIG together with the ones from PYTHIA-

Tune A in all the rapidity regions. The difference between PYTHIA-Tune A and HERWIG is

considered as the systematic uncertainty. The determination of CHAD from PYTHIA-Tune A are

taken as the nominal one because PYTHIA-Tune A reproduces the underlying event contribution

better than HERWIG as it is shown in appendix B.
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Figure 5.3: Global Underlying Event/Hadronization correction (top) and its factorization into the two contributions:

CHadron Level
MPI (left) and CNo MPI

Frag (right), for jets with 0�1 � �y jet �� 0�7.
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5.2 Inclusive Jet Production results

The measurements refer to hadron level jets using the kT algorithm with D=0.7 for jets with pjet
T �

54 GeV/c and in 5 rapidity regions up to �yjet �= 2.1. Figure 5.5 and tables C.6 to C.10 show the

measured inclusive jet cross sections as a function of pjet
T . For presentation, the different cross

sections are scaled by a given factor. The cross sections decrease over more than seven orders of

magnitude as pjet
T increases. The measurements are compared to pQCD NLO predictions, where

the theoretical calculations have been properly corrected to account for non-perturbative effects,

shown in figure 5.6.
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Figure 5.5: Inclusive jet cross sections measured using the kT algorithm with D=0.7 for jets with pjet
T � 54 GeV/c in
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indicate the total systematic uncertainty on the data. The measurements are compared to pQCD NLO calculations. The

dashed lines represent the PDFs uncertainties on the theoretical predictions. The �5.8% normalization uncertainty

coming from the quoted integrated luminosity is not included in the figure.
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Figure 5.6: Parton to hadron level corrections applied to the NLO calculations to correct for underlying event and

hadronization contribution in the different �yjet � regions. The shaded bands represent the systematic uncertainty coming

from the MC modeling.
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The ratios between the measurements and the QCD predictions, presented in figure 5.7, show a

good agreement over all pjet
T ranges in all rapidity regions. Additionally, the figure shows the

effect of using MRST2004 PDFs instead of CTEQ6.1M and the results of changing the scales by

a factor of 2. Values significantly smaller than µ0 are not considered because give unstable NLO

results. In the most forward region, the already smaller uncertainties in the data compared to that

in the NLO pQCD calculations show that the measurements will contribute to a better knowledge

of the parton distributions inside the proton.
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Figure 5.7: Comparison between the measurements and the pQCD calculations. The dots are the ratio Data/Theory

using CTEQ6.1M PDFs. The shaded bands indicate the total systematic uncertainty on the data and the dashed lines

represent the PDFs uncertainties on the theoretical predictions. The dotted lines present the ration of MRST2004 and

CTEQ6.1M predictions. The dotted-dashed lines show the ratio of the theoretical calculations with 2µ0 and µ0.
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For central jets, 0�1 � �yjet � � 0�7, the measurements are repeated using a D parameter equal

to 0.5 and 1.0. As D increases, the average size of the jet in η� φ space increases, and the

measurement becomes more sensitive to underlying event contributions. In this case the pile-up

correction, ε, per additional primary vertex are 1.18�0.12 and 3.31�0.47 GeV/C for D=0.5 and

D=1.0, respectively. Figure 5.8 and tables C.11 to C.14 present the measurements. The good

agreement still observed between the measured cross sections and the NLO pQCD predictions

indicates that the soft contributions are well under control. In this case the corrections applied to

the pQCD predictions at low pjet
T are CHAD=1.1 for D=0.5 and CHAD=1.4 for D=1.0.
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Figure 5.8: Inclusive jet cross sections measured using the kT algorithm with D=0.5 (left) and D=1.0 (right) for

jets with p jet
T �54 GeV/c and 0�1 � �yjet � � 0�7. The black squares represent the measured cross sections and the

shaded bands indicate the total systematic uncertainty on the data. The measurements are compared to pQCD NLO

calculations. The dashed lines represent the PDFs uncertainties on the theoretical predictions. The bottom plots show

the parton to hadron level corrections applied to the NLO calculations to correct for underlying event and hadronization

effects. The shaded bands represent the systematic uncertainty coming from the MC modeling.
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The results with D=1.0 can be compared with the ones presented by D0 collaboration during

Run I, measurements using the kT algorithm with D=1.0. The D0 results [61] showed a disagree-

ment of about 40% with NLO pQCD at low pjet
T , as it is shown in figure 5.9. The non-perturbative

effects could explained those results.

Figure 5.9: Inclusive jet cross sections from D0 at Run I using the kT algorithm.



Chapter 6

Summary and Conclusions

Results on inclusive jet production in proton-antiproton collisions at
�

s = 1.96 TeV, based on 1

fb�1 of CDF Run II data, have been presented in this Ph.D. Thesis. These inclusive measurements

constitute a stringent test of pQCD over more than 8 orders of magnitude in cross section and

probe distances down to 10�19 m. The measurements have been performed using the kT algorithm

in a wide kinematic range, for jets with pjet
T � 54 GeV/c and in the rapidity region �yjet � �2.1.

The measured cross sections have been compared to NLO pQCD calculations, properly corrected

to take into account non-perturbative effects.

The measurements are in a good agreement with NLO pQCD calculations. In particular, for

central jets and at high pjet
T no deviation with respect to the theory is found, meaning that there is

not signal for new physics. In the most forward region, the total systematic uncertainty on the data

is smaller than that on the theoretical calculations. Therefore, these new results will contribute to

a better understanding of the gluon PDFs at high x in the proton.

The measurements using different values of the D parameter have allowed us to evaluate the

understanding of the non-perturbative effects, important at low pjet
T . As D increases, the average

size of the jet in η�φ space increases, and the measurement becomes more sensitive to underlying

event contributions. The good agreement observed between the measured cross sections and the

NLO pQCD predictions, even with the D parameter set to 1, indicates that the soft contributions
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are well under control, and validates the use of the kT algorithm in a hadron collider. Therefore,

the measurements presented in this work encourage the use of this algorithm in future hadron-

hadron experiments, like the LHC.



Appendix A

Data Quality Monitoring system

A.1 Introduction

The CDF experiment has implemented a system to check the data quality of all the detector

components while data is being taken (online) and after the production process (offline). Based

on the information obtained with these online and offline monitoring systems, various lists of

Good Runs are defined and provided to the different physics groups.

A.2 Online DQM system

The Online DQM system is part of the CDF online monitoring [62]. The base of the online mon-

itoring is constituted by 10 different monitoring programs, which are in the CDF jargon called

consumers. These consumers are permanently running in parallel in the CDF control room and

receive, through the Consumer Server Logger (CSL), a copy of a subset of the events that have

passed the Level 3. The consumers fill diagnostic histograms, which show the time develop-

ment of certain quantities, and perform periodical statistical tests of the bin contents of those

histograms. The 10 monitoring programs are described below.

� YMon: During a physics run YMon receives Minimum Bias events. It makes plots of the

following quantities: Occupancies (% hits per channel per event), average energy per chan-

nel and energy distributions. These quantities allow us to monitor the rates and distributions

of each detector looking for bad channels, cards and power supplies.
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� TrigMon: It monitors various trigger quantities in each trigger bank (format in which

the trigger information is stored) looking for hot/failed channels, trigger bits fired, bunch

counter mismatches, photomultiplier spikes, etc.

� XMon: It is the responsible for monitoring the cross section for each Level 1, Level 2,

and Level 3 trigger. With this purpose, it measures cross sections versus instantaneous

luminosity and fits them, creating a list with all triggers that have a non-expected behavior

during the last 10-15 minutes of a run.

� LumMon: It is an online consumer that monitors the performance of the CLC and the

online luminosity measurements obtained with this detector. Moreover, based on the time

difference measured between East and West CLC modules, LumMon gives a measurement

of the position of the interaction.

� Stage0: It is a special class of online consumer which determines the COT calibration

constants critical for production and then writes them to the calibration Data Base.

� BeamMon: The purpose of BeamMon is to find the beamline and determine some proper-

ties of the beam spot.

� ObjectMon: Its purpose is to check Level 3 reconstructed objects like jets, electrons, photon

and muon candidates and tracks.

� SiliMon: SiliMon produces histograms, hit maps and silicon tracks, with the aim to study

the silicon performance efficiency as a function of time and to spot online running problems.

� SVXMon: It is the silicon monitoring consumer used for the online and offline diagnostics

of the CDF silicon tracker. For each silicon strip, SVXMon accumulates the number of hits

and the first four moments of the pulse height distribution to create plots of occupancies,

average pulse heights, distribution shapes, etc... with various detector granularity.

� SVTSPYMon: The source of data analyzed by SPYMon is not the usual data stream out

of the CSL, but that recorded by the SVT boards exclusively to monitor the integrity of the

SVT system in real time. In this respect, SVTSPYMon collects a large number of tracks in

a short period to detect possible SVT hardware faults, fit the beam profile and find SVXII

strip noise, etc.
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All the consumers have a HistoDisplay Graphic User Interface (GUI), that allows us to see the

different consumers outputs. Based on some of these online monitors outputs, a check list is

developed to characterize online the quality of the different systems during the run. The shift

crew is responsible to go through this list and, at the end of the run, to fill in a table with different

bits, set to 1 or 0, indicating whether the system in that run is determined to be good or bad,

respectively. This information is included in the Data Base.

A.2.1 Check list

The systems checked online are the following, where the name of the bits in the Data Base are

included in parentheses: Luminosity counters (CLC), Trigger (L1, L2, L3, SVT), Calorimeters

(CAL, CCAL, PCAL), ShowerMax detectors (SMX, CSMX, PSMX), Tracking and Time of flight

systems (COT, TOF), Muon system (CMU, CMP, CSP, CMX, CSX, IMU, ISU) and Silicon detec-

tors (SVX, ISL, L00). The checks for every system, which are 90% based on the YMon consumer,

are described below.

� All consumers are running and all the detectors have HV on.

� CLC: Check the occupancy plots in order to verify the good performance of the detector

(plots are not empty) and check if the beam position is inside limits. If everything is as

expected the CLC bit is set to 1.

� COT: Check the occupancy plots to look for possible failures in the COT electronics (time-

to-digital convertors). The bit is set to 0 if more than 8 cells with 0 occupancy are found.

� TOF: Check the occupancy plots to be sure that there is not too many dead channels. The

detector is considered to be working fine if there is less than 4 dead channels.

� Calorimeter system: Check the occupancy plots to monitor dead channels (PMT failure) or

hot channels. The detector is determined to be bad if there is any new dead channel or if

there are more than 12 consecutive hot channels. In the Data Base, the online status of the

different detectors are grouped in three different bits: CCAL (set as AND1 of CEM, CHA

and WHA status), PCAL (set as AND of PEM and PHA status) and CAL (set as AND of

CCAL and PCAL status).

1The logical AND operation compares different bits and if they are all “1”, then the result is “1”, otherwise, the

result is “0”
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� Shower Max detectors: Check the occupancy plots to monitor consecutive dead or hot

channels. For each detector the criteria changes slightly. In this way, the CES, CPR, PES,

PPR, and CCR detectors are marked bad if the number of consecutive dead (hot) channels

are bigger than 32(32), 32(32), 20(32), 20(32) and 10(10) respectively. In the same way

to the calorimeter system, the detectors are grouped in three different bits: CSMX (set as

AND of CES, CPR and CCR status), PSMX (set as AND of PES and PPR status) and SMX

(set as AND of CSMX and PSMX status).

� Muon System: Check the occupancy plots to monitor new dead and noisy channels (PMT

failure). CMU is considered OK if the number of dead channels are less than 16. In the case

of the CMP, CSP and CSX detectors the condition is not to find more than 4 contiguous

dead channels. For the CMX, the criteria is more strict, and the bit is set to 0 if any new

dead channel is found. Finally the IMU system (BMU, BSU, TSU) is considered to be

working properly if the number of new dead or noisy channels is  5.

� Trigger: Check that the trigger monitoring plots agree with templates provided to the shift

crew. Moreover, check if the rate of SVX data corruption errors is � 1%, otherwise, the L3

status bit is set to 0.

The responsibility of the Consumer Operator (CO), one of the shift crew, is to make entries in a

detector check list by going over the systems criteria after 30 minutes of the run starting, repeating

at least every 2 hours, and at the end of the run. Once the run has finished, the SiCo (Scientific

Coordinator) introduces the CO check list results (data quality online bits) in the Data Base, being

the responsible for marking good/bad every run.

A.2.2 DQM Monitor

Installed in the control room, and running in parallel with the consumers, there is a DQM Monitor

(DQMon). It is an ”early warning system” for data quality in events currently being read out of

the detector. At some level, it is an automated version of the CO, thus the DQMon monitors

and resumes the status of all the monitors and the same histograms to be checked by the CO

approximately every 10 seconds.
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Figure A.1 shows the DQMon Panel. Based on the Run Control Color code (red, yellow, blue and

green), DQMon displays the status of all the monitors and detector components. In addition the

panel shows the information produced by PhysMon about the last five physics runs2. In case that

any of the subsystem buttons turned red, an alarm is sounded and an alarm pop window appears.

The information about all the subsystem histograms is available, on this way the histograms in

red, which are the ones that triggered the alarm, can be identified. The DQM monitor also allows

to disables/enables the different systems. At the end of each run, DQMon produces a log file with

all the online bits set to 1 or 0 and recommends to mark the run as GOOD or BAD. It is important

to note that this DQMon log file is only a suggestion about the online bits setting. It is used as a

reference by the SiCo.

Figure A.1: DQMon panel installed in the control room that displays the status of all the monitors and detector

components based on the same criteria than the CO check list.

2PhyMon is a monitor that processes runs, file by file, and looks at things like electrons, muons, photons, Z’s, W’s,

J/Psi’s, and trigger efficiencies. Based on that objects PhysMon declares the run good or bad.
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The online DQM system is complemented with an offline monitoring system [63]. Like the

online DQM, the offline system uses histograms produced during the offline reprocessing (Pro-

duction+Validation) of the data, where the latest calibration and alignment constants are used, to

characterize offline the quality of detectors and the run.

Finally, based on the online and offline bits introduced in the Data Base for each run, different

Good Run Lists [64] are provided to the different physics groups taking into account the detectors

used in their analysis. In this way, the lists can be divided in three different categories: QCD

group (2 lists) , Top/ElectroWeak/Exotic group (18 lists) and B physics group (2 list).



Appendix B

Jet Shapes Studies

B.1 Jet Shapes measurements

The study of the jet shape is sensitive to the underlying event. The shape of the jet is dominated by

multi-gluon emission from the primary parton and it also constitutes a test of the parton shower

models and their implementation in the MC programs. Figure B.1 illustrates the integrated jet

shape definition Ψ�r�, that is the average fraction of the jet transverse momentum that lies inside

a cone of radius r concentric to the jet cone. Mathematically, it can be expressed as:

Ψ�r� �
1

Njet
∑ PT �0�r�

PT �0�R�
� 0 r  R� (B.1)

Figure B.1: Illustration of the integrated jet shape definition.
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Figure B.2 presents the CDF Run II measured integrated jet shape for jets defined using the

Midpoint algorithm with a cone size R=0.7 [35]. The measurements have been done for jets with

pjet
T in the region 37 GeV/c � pjet

T � 380 GeV/c and with 0�1 � �yjet � � 0�7. The measurements

have been compared to the prediction from PYTHIA-Tune A and HERWIG MCs. In addition,

two different PYTHIA samples have been used with default parameters, with and without multiple

parton interactions, in order to study the importance of a proper modeling of soft-gluon radiation.

The figure presents the jet shape measurements in two different ways. First, the integrated jet

shape for jets in the region 37 GeV/c � pjet
T � 45 GeV/c as a function of the fraction r/R. And

second, for a fixed radius r=0.3, the average fraction of the jet transverse momentum outside r=0.3

as a function of pjet
T .

Figure B.2: Measured integrated jet shape for jets with 0�1 � �yjet � � 0�7 compared to different MC predictions:

PYTHIA-Tune A (solid line), PYTHIA (dashed-dotted lines), PYTHIA-(no MPI) (dotted lines) and HERWIG (dashed

lines). On the left the integrated jet shape for jets in the pjet
T range 37 GeV/c � pjet

T � 47 as a function of the ratio

r/R. On the right, the average fraction of the jet transverse momentum outside r=0.3 as a function of pjet
T . Errors bars

indicates the statistical and systematic uncertainties added in quadrature.

The measurements show that both give a reasonable prediction, even thought PYTHIA-Tune A

predictions describe all of the data well while HERWIG produces too narrow jets at low pjet
T . The

comparison between PYTHIA and PYTHIA (no MPI) indicates that the contribution from the

multiple interactions on the jet shapes is relatively small but relevant at low pjet
T .
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Results Tables

systematic uncertainties (%) ��y jet � � 0�1�
p jet

T [GeV/c] jet energy scale βDATA�βMC resolution unfolding p jet
T -spectra ε

(a) (b) (c)

54 - 62 �10�3
�9�3

�1�4
�2�1 � � �2�8

�3�0 �8�2 �1�5 �1�8
�1�7

62 - 72 �9�9
�9�4

�1�7
�2�1 � � �2�8

�3�0 �7�1 �1�4 �1�6
�1�5

72 - 83 �9�6
�9�4

�1�9
�2�1 � � �2�9

�3�0 �6�2 �1�3 �1�4
�1�3

83 - 96 �9�4
�9�5

�2�1
�2�2 � � �2�9

�2�9 �5�4 �1�1 �1�3
�1�1

96 - 110 �9�5
�9�6

�2�3
�2�2 � � �2�9

�2�9 �4�7 �1�0 �1�1
�1�0

110 - 127 �9�8
�9�8

�2�5
�2�3 � � �3�0

�2�9 �4�2 �0�9 �1�0
�0�9

127 - 146 �10�4
�10�2

�2�7
�2�4 � � �3�1

�2�9 �3�7 �0�8 �0�9
�0�8

146 - 169 �11�2
�10�8

�2�8
�2�6 � � �3�1

�3�0 �3�2 �0�6 �0�8
�0�8

169 - 195 �12�4
�11�6

�2�9
�2�7 � � �3�3

�3�0 �2�8 �0�5 �0�7
�0�7

195 - 224 �13�9
�12�8

�3�0
�2�9 � � �3�4

�3�2 �2�5 �0�4 �0�6
�0�7

224 - 259 �15�5
�14�3

�3�1
�3�1 � � �3�7

�3�4 �2�2 �0�3 �0�6
�0�6

259 - 298 �17�4
�15�9

�3�3
�3�4 � � �4�0

�3�6 �2�0 �0�4 �0�5
�0�6

298 - 344 �19�5
�17�4

�3�6
�3�7 � � �4�3

�4�0 �1�8 �0�6 �0�5
�0�6

344 - 396 �22�1
�19�1

�4�0
�4�0 � � �4�8

�4�5 �1�6 �1�0 �0�4
�0�5

396 - 457 �25�7
�21�6

�4�6
�4�4 � � �5�4

�5�1 �1�4 �1�8 �0�4
�0�5

457 - 527 �31�3
�26�3

�5�3
�5�1 � � �6�1

�5�9 �1�3 �3�1 �0�3
�0�5

527 - 700 �43�7
�32�9

�7�3
�6�7 � � �7�4

�7�3 �1�1 �7�1 �0�3
�0�5

Table C.1: Systematic uncertainties (in percentage) on the measured inclusive jet differential cross section as a

function of pjet
T for jets in the region �y jet � � 0�1. The different columns follow the discussion in section 4.6. An

additional 5�8% uncertainty on the luminosity is not included.
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systematic uncertainties �%� �0�1 � �y jet � � 0�7�
p jet

T [GeV/c] jet energy scale βDATA�βMC resolution unfolding p jet
T -spectra ε

(a) (b) (c)

54 - 62 �9�5
�9�4 � � � �2�2

�2�5 �5�3 �0�6 �1�6
�1�6

62 - 72 �9�4
�9�1 � � � �2�1

�2�4 �4�7 �0�6 �1�5
�1�4

72 - 83 �9�4
�8�9 � � � �2�1

�2�4 �4�1 �0�5 �1�3
�1�3

83 - 96 �9�4
�8�9 � � � �2�0

�2�3 �3�7 �0�5 �1�2
�1�1

96 - 110 �9�6
�9�0 � � � �2�0

�2�2 �3�3 �0�5 �1�1
�1�0

110 - 127 �10�0
�9�3 � � � �1�9

�2�1 �3�0 �0�5 �1�0
�0�9

127 - 146 �10�6
�9�8 � � � �1�9

�2�1 �2�7 �0�5 �0�9
�0�8

146 - 169 �11�4
�10�6 � � � �1�9

�2�0 �2�4 �0�4 �0�8
�0�8

169 - 195 �12�6
�11�7 � � � �2�0

�2�1 �2�2 �0�4 �0�7
�0�7

195 - 224 �14�1
�13�1 � � � �2�1

�2�1 �2�0 �0�4 �0�7
�0�7

224 - 259 �16�0
�14�8 � � � �2�2

�2�3 �1�8 �0�3 �0�6
�0�6

259 - 298 �18�4
�16�7 � � � �2�5

�2�5 �1�7 �0�3 �0�6
�0�6

298 - 344 �21�3
�18�9 � � � �2�8

�2�9 �1�6 �0�3 �0�5
�0�6

344 - 396 �25�1
�21�4 � � � �3�4

�3�5 �1�5 �0�5 �0�5
�0�5

396 - 457 �30�3
�24�7 � � � �4�1

�4�2 �1�4 �0�8 �0�4
�0�5

457 - 527 �37�7
�29�3 � � � �5�1

�5�2 �1�3 �1�4 �0�4
�0�5

527 - 700 �52�3
�39�8 � � � �7�3

�7�3 �1�2 �3�6 �0�4
�0�5

Table C.2: Systematic uncertainties (in percentage) on the measured inclusive jet differential cross section as a

function of pjet
T for jets in the region 0�1 � �yjet �� 0�7. The different columns follow the discussion in section 4.6. An

additional 5�8% uncertainty on the luminosity is not included.
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systematic uncertainties �%� �0�7 � �y jet � � 1�1�
p jet

T [GeV/c] jet energy scale βDATA�βMC resolution unfolding p jet
T -spectra ε

(a) (b) (c)

54 - 62 �9�2
�9�9

�2�1
�2�3 � � �4�0

�3�8 �6�3 �2�0 �1�7
�1�6

62 - 72 �9�2
�9�3

�2�2
�2�3 � � �3�8

�3�7 �5�6 �1�9 �1�5
�1�4

72 - 83 �9�2
�9�0

�2�3
�2�3 � � �3�7

�3�5 �4�9 �1�8 �1�3
�1�3

83 - 96 �9�5
�9�0

�2�3
�2�3 � � �3�5

�3�4 �4�4 �1�8 �1�2
�1�2

96 - 110 �9�9
�9�3

�2�4
�2�4 � � �3�4

�3�3 �3�9 �1�7 �1�1
�1�1

110 - 127 �10�6
�9�8

�2�5
�2�5 � � �3�3

�3�2 �3�5 �1�7 �1�0
�1�0

127 - 146 �11�5
�10�7

�2�6
�2�6 � � �3�3

�3�1 �3�2 �1�7 �0�9
�0�9

146 - 169 �12�6
�11�7

�2�8
�2�7 � � �3�3

�3�2 �2�8 �1�6 �0�8
�0�8

169 - 195 �14�1
�13�0

�3�0
�2�9 � � �3�4

�3�3 �2�6 �1�6 �0�8
�0�8

195 - 224 �15�9
�14�6

�3�3
�3�2 � � �3�7

�3�5 �2�3 �1�7 �0�7
�0�7

224 - 259 �18�1
�16�5

�3�8
�3�6 � � �4�1

�3�9 �2�1 �1�8 �0�7
�0�7

259 - 298 �21�0
�19�2

�4�4
�4�1 � � �4�7

�4�5 �2�0 �2�1 �0�6
�0�6

298 - 344 �25�2
�22�7

�5�0
�4�8 � � �5�6

�5�3 �1�8 �2�4 �0�6
�0�6

344 - 396 �31�5
�26�9

�5�9
�5�6 � � �6�8

�6�4 �1�7 �3�0 �0�6
�0�6

396 - 457 �41�3
�31�0

�7�2
�6�6 � � �8�3

�7�7 �1�6 �3�8 �0�5
�0�5

457 - 527 �55�4
�38�3

�10�4
�7�7 � � �10�0

�9�1 �1�5 �5�0 �0�5
�0�5

Table C.3: Systematic uncertainties (in percentage) on the measured inclusive jet differential cross section as a

function of pjet
T for jets in the region 0�7 � �yjet �� 1�1. The different columns follow the discussion in section 4.6. An

additional 5�8% uncertainty on the luminosity is not included.
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systematic uncertainties �%� �1�1 � �y jet � � 1�6�
p jet

T [GeV/c] jet energy scale βDATA�βMC resolution unfolding p jet
T -spectra ε

(a) (b) (c)

54 - 62 �9�4
�8�6

�2�6
�2�4 � �0�0

�3�0
�2�9
�3�1 �6�7 �1�3 �1�8

�1�8

62 - 72 �9�5
�8�9

�2�5
�2�4 � �0�0

�3�0
�2�9
�3�0 �6�4 �1�1 �1�6

�1�5

72 - 83 �9�8
�9�3

�2�5
�2�5 � �0�0

�3�0
�2�9
�2�9 �6�1 �0�9 �1�4

�1�3

83 - 96 �10�2
�9�8

�2�5
�2�6 � �0�0

�3�0
�2�9
�2�8 �5�8 �0�8 �1�3

�1�2

96 - 110 �10�9
�10�5

�2�6
�2�6 � �0�0

�3�0
�3�0
�2�9 �5�6 �0�6 �1�2

�1�1

110 - 127 �11�7
�11�4

�2�7
�2�8 � �0�0

�3�0
�3�1
�3�0 �5�4 �0�4 �1�1

�1�0

127 - 146 �12�8
�12�6

�2�9
�3�0 � �0�0

�3�0
�3�4
�3�2 �5�2 �0�3 �1�1

�1�0

146 - 169 �14�5
�14�2

�3�3
�3�3 � �0�0

�3�0
�3�8
�3�6 �5�0 �0�1 �1�0

�0�9

169 - 195 �16�9
�16�2

�3�8
�3�7 � �0�0

�3�0
�4�3
�4�2 �4�8 �0�1 �1�0

�0�9

195 - 224 �20�3
�18�6

�4�4
�4�2

�0�7
�0�9

�0�0
�3�0

�5�1
�5�0 �4�7 �0�2 �0�9

�0�9

224 - 259 �24�7
�21�2

�5�2
�5�0

�2�6
�2�4

�0�0
�3�0

�6�2
�6�1 �4�6 �0�4 �0�9

�0�9

259 - 298 �29�9
�24�1

�6�2
�5�9

�6�3
�4�5

�0�0
�3�0

�7�8
�7�3 �4�4 �0�8 �0�9

�0�9

298 - 344 �37�2
�28�6

�7�3
�7�1

�12�6
�7�5

�0�0
�3�0

�9�8
�8�5 �4�3 �1�6 �0�9

�0�9

344 - 396 �61�2
�39�2

�8�7
�8�3

�22�7
�11�7

�0�0
�3�0

�12�4
�9�4 �4�2 �2�8 �0�9

�0�9

Table C.4: Systematic uncertainties (in percentage) on the measured inclusive jet differential cross section as a

function of pjet
T for jets in the region 1�1 � �yjet �� 1�6. The different columns follow the discussion in section 4.6. An

additional 5�8% uncertainty on the luminosity is not included.
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systematic uncertainties �%� �1�6 � �y jet � � 2�1�
p jet

T [GeV/c] jet energy scale βDATA�βMC resolution unfolding p jet
T -spectra ε

(a) (b) (c)

54 - 62 �11�6
�10�3

�2�3
�2�1 � � �1�7

�1�6 �3�2 �1�0 �2�1
�2�0

62 - 72 �10�9
�10�1

�2�4
�2�4 � � �1�6

�1�7 �3�3 �0�8 �1�8
�1�8

72 - 83 �11�0
�10�3

�2�6
�2�6 � � �1�5

�1�7 �3�4 �0�6 �1�7
�1�7

83 - 96 �12�0
�11�1

�2�8
�2�9 � � �1�5

�1�8 �3�5 �0�4 �1�6
�1�6

96 - 110 �13�7
�12�5

�3�2
�3�2 � � �1�5

�1�8 �3�6 �0�3 �1�5
�1�5

110 - 127 �16�2
�14�4

�3�7
�3�5 � � �1�6

�1�9 �3�7 �0�2 �1�4
�1�4

127 - 146 �19�2
�16�9

�4�3
�4�0 � � �1�8

�2�0 �3�7 �0�1 �1�4
�1�4

146 - 169 �22�8
�19�8

�5�0
�4�6 � � �2�1

�2�1 �3�8 �0�2 �1�4
�1�3

169 - 195 �27�7
�23�0

�6�0
�5�4

�1�3
�0�9 � �2�5

�2�3 �3�8 �0�5 �1�4
�1�3

195 - 224 �34�9
�26�7

�7�0
�6�4

�5�3
�5�6 � �3�0

�2�7 �3�8 �1�1 �1�4
�1�3

224 - 259 �46�0
�32�4

�8�1
�8�0

�11�0
�11�1 � �3�5

�3�3 �3�8 �2�1 �1�4
�1�3

259 - 298 �52�9
�44�5

�9�1
�10�5

�19�1
�17�5 � �3�9

�4�4 �3�8 �3�7 �1�4
�1�3

Table C.5: Systematic uncertainties (in percentage) on the measured inclusive jet differential cross section as a

function of pjet
T for jets in the region 1�6 � �yjet �� 2�1. The different columns follow the discussion in section 4.6. An

additional 5�8% uncertainty on the luminosity is not included.



126 Results Tables

d2σ
d p jet

T dy jet
��y jet � � 0�1�

p jet
T �GeV�c� σ� �stat��� �sys�� �nb��GeV�c�� CHAD parton� hadron

54 - 62 �14�5�0�5�2�0
�1�9��100 1�177�0�124

62 - 72 �6�68�0�08�0�85
�0�84��100 1�144�0�097

72 - 83 �2�87�0�05�0�35
�0�34��100 1�119�0�077

83 - 96 �1�24�0�02�0�14
�0�14��100 1�098�0�061

96 - 110 �5�31�0�11�0�60
�0�61��10�1 1�083�0�049

110 - 127 �2�33�0�06�0�27
�0�26��10�1 1�070�0�039

127 - 146 �9�36�0�12�1�10
�1�08��10�2 1�060�0�032

146 - 169 �3�63�0�06�0�45
�0�43��10�2 1�052�0�026

169 - 195 �1�39�0�01�0�19
�0�18��10�2 1�046�0�021

195 - 224 �5�22�0�06�0�77
�0�72��10�3 1�041�0�017

224 - 259 �1�79�0�03�0�29
�0�27��10�3 1�037�0�013

259 - 298 �5�92�0�11�1�08
�1�00��10�4 1�034�0�010

298 - 344 �1�78�0�06�0�36
�0�33��10�4 1�032�0�007

344 - 396 �4�68�0�28�1�08
�0�94��10�5 1�030�0�005

396 - 457 �1�29�0�12�0�34
�0�29��10�5 1�028�0�002

457 - 527 �2�47�0�50�0�80
�0�68��10�6 1�027�0�001

527 - 700 �2�13�0�95�0�97
�0�75��10�7 1�026�0�006

Table C.6: Measured inclusive jet differential cross section as a function of pjet
T for jets in the region �y jet � � 0�1.

An additional 5�8% uncertainty on the luminosity is not included. The parton-to-hadron correction factors,

CHAD�p
jet
T �yjet�, are applied to the pQCD predictions.
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d2σ
d p jet

T dy jet
�0�1 � �y jet � � 0�7�

p jet
T �GeV�c� σ� �stat��� �sys�� �nb��GeV�c�� CHAD parton� hadron

54 - 62 �14�0�0�20�1�6
�1�6��100 1�188�0�140

62 - 72 �6�14�0�12�0�66
�0�65��100 1�156�0�113

72 - 83 �2�69�0�02�0�29
�0�27��100 1�129�0�091

83 - 96 �1�14�0�01�0�12
�0�11��100 1�108�0�073

96 - 110 �4�90�0�04�0�51
�0�48��10�1 1�090�0�059

110 - 127 �2�08�0�02�0�22
�0�21��10�1 1�076�0�047

127 - 146 �8�51�0�04�0�95
�0�89��10�2 1�065�0�038

146 - 169 �3�33�0�02�0�40
�0�37��10�2 1�055�0�029

169 - 195 �1�23�0�01�0�16
�0�15��10�2 1�047�0�023

195 - 224 �4�53�0�02�0�65
�0�61��10�3 1�041�0�017

224 - 259 �1�57�0�01�0�26
�0�24��10�3 1�036�0�012

259 - 298 �4�87�0�06�0�91
�0�83��10�4 1�031�0�007

298 - 344 �1�43�0�02�0�31
�0�27��10�4 1�028�0�003

344 - 396 �3�69�0�10�0�94
�0�80��10�5 1�025�0�001

396 - 457 �7�18�0�34�2�20
�1�80��10�6 1�023�0�004

457 - 527 �1�16�0�13�0�44
�0�35��10�6 1�021�0�008

527 - 700 �8�97�2�40�4�75
�3�64��10�8 1�018�0�014

Table C.7: Measured inclusive jet differential cross section as a function of pjet
T for jets in the region

0�1 � �y jet � � 0�7 .An additional 5�8% uncertainty on the luminosity is not included. The parton-to-hadron cor-

rection factors, CHAD�p
jet
T �yjet�, are applied to the pQCD predictions.
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d2σ
d p jet

T dy jet
�0�7 � �y jet � � 1�1�

p jet
T �GeV�c� σ� �stat��� �sys�� �nb��GeV�c�� CHAD parton� hadron

54 - 62 �12�3�0�2�1�5
�1�5��100 1�169�0�125

62 - 72 �5�48�0�14�0�65
�0�65��100 1�143�0�103

72 - 83 �2�40�0�02�0�28
�0�27��100 1�120�0�085

83 - 96 �1�00�0�01�0�15
�0�11��100 1�102�0�070

96 - 110 �4�15�0�05�0�48
�0�46��10�1 1�087�0�057

110 - 127 �1�73�0�03�0�21
�0�20��10�1 1�075�0�047

127 - 146 �6�83�0�05�0�87
�0�82��10�2 1�064�0�038

146 - 169 �2�52�0�03�0�35
�0�33��10�2 1�056�0�031

169 - 195 �8�95�0�06�1�36
�1�26��10�3 1�048�0�024

195 - 224 �3�04�0�02�0�51
�0�47��10�3 1�042�0�019

224 - 259 �9�52�0�11�1�82
�1�68��10�4 1�037�0�014

259 - 298 �2�53�0�05�0�56
�0�51��10�4 1�033�0�009

298 - 344 �6�18�0�17�1�64
�1�49��10�5 1�030�0�005

344 - 396 �1�11�0�07�0�36
�0�31��10�5 1�027�0�001

396 - 457 �1�53�0�20�0�65
�0�50��10�6 1�025�0�003

457 - 527 �2�17�0�72�1�25
�0�88��10�7 1�023�0�007

Table C.8: Measured inclusive jet differential cross section as a function of pjet
T for jets in the region

0�7 � �y jet � � 1�1. An additional 5�8% uncertainty on the luminosity is not included. The parton-to-hadron correction

factors, CHAD�p
jet
T �yjet�, are applied to the pQCD predictions.
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d2σ
d p jet

T dy jet
�1�1 � �y jet � � 1�6�

p jet
T �GeV�c� σ� �stat��� �sys�� �nb��GeV�c�� CHAD parton� hadron

54 - 62 �11�0�0�3�1�4
�1�3��100 1�160�0�125

62 - 72 �4�40�0�15�0�54
�0�53��100 1�133�0�101

72 - 83 �1�82�0�06�0�22
�0�22��100 1�111�0�081

83 - 96 �7�22�0�37�0�90
�0�90��10�1 1�094�0�065

96 - 110 �2�98�0�05�0�38
�0�38��10�1 1�080�0�052

110 - 127 �1�14�0�03�0�15
�0�15��10�1 1�068�0�042

127 - 146 �4�10�0�04�0�60
�0�60��10�2 1�059�0�034

146 - 169 �1�39�0�02�0�22
�0�23��10�2 1�051�0�027

169 - 195 �4�19�0�04�0�78
�0�76��10�3 1�045�0�021

195 - 224 �1�15�0�02�0�25
�0�24��10�3 1�040�0�016

224 - 259 �2�73�0�09�0�73
�0�64��10�4 1�036�0�012

259 - 298 �5�18�0�23�1�68
�1�39��10�5 1�033�0�009

298 - 344 �7�99�0�61�3�31
�2�56��10�6 1�030�0�006

344 - 396 �1�05�0�22�0�71
�0�45��10�6 1�028�0�003

Table C.9: Measured inclusive jet differential cross section as a function of pjet
T for jets in the region

1�1 � �y jet � � 1�6. An additional 5�8% uncertainty on the luminosity is not included. The parton-to-hadron correction

factors, CHAD�p
jet
T �, are applied to the pQCD predictions.
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d2σ
d p jet

T dy jet
�1�6 � �y jet � � 2�1�

p jet
T �GeV�c� σ� �stat��� �sys�� �nb��GeV�c�� CHAD parton� hadron

�GeV�c� [nb/(GeV/c)] parton� hadron

54 - 62 �6�67�0�15�0�84
�0�75��100 1�132�0�104

62 - 72 �2�68�0�02�0�32
�0�30��100 1�116�0�087

72 - 83 �1�04�0�01�0�12
�0�12��100 1�100�0�072

83 - 96 �3�77�0�04�0�49
�0�46��10�1 1�086�0�058

96 - 110 �1�32�0�02�0�19
�0�18��10�1 1�072�0�045

110 - 127 �4�18�0�04�0�72
�0�65��10�2 1�059�0�033

127 - 146 �1�21�0�02�0�24
�0�22��10�2 1�047�0�022

146 - 169 �2�92�0�04�0�70
�0�61��10�3 1�035�0�012

169 - 195 �5�74�0�09�1�65
�1�38��10�4 1�024�0�003

195 - 224 �8�49�0�31�3�09
�2�42��10�5 1�013�0�005

224 - 259 �8�65�0�63�4�18
�3�08��10�6 1�003�0�012

259 - 298 �5�67�1�65�3�25
�2�80��10�7 0�993�0�018

Table C.10: Measured inclusive jet differential cross section as a function of pjet
T for jets in the region

1�6 � �y jet � � 2�1. An additional 5�8% uncertainty on the luminosity is not included. The parton-to-hadron correction

factors, CHAD�p
jet
T �yjet�, are applied to the pQCD predictions.
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d2σ
d p jet

T dy jet
�0�1 � �y jet � � 0�7� �D � 0�5�

p jet
T �GeV�c� σ� �stat��� �sys�� �nb��GeV�c�� CHAD parton� hadron

54 - 62 �10�5�0�2�1�2
�1�1��100 1�089�0�104

62 - 72 �4�81�0�03�0�54
�0�50��100 1�076�0�086

72 - 83 �2�09�0�01�0�23
�0�21��100 1�064�0�070

83 - 96 �0�91�0�01�0�10
�0�09��100 1�055�0�057

96 - 110 �3�95�0�04�0�42
�0�39��10�1 1�047�0�047

110 - 127 �1�71�0�02�0�18
�0�17��10�1 1�041�0�037

127 - 146 �0�71�0�01�0�08
�0�07��10�1 1�035�0�029

146 - 169 �2�76�0�02�0�32
�0�31��10�2 1�030�0�023

169 - 195 �1�04�0�01�0�14
�0�13��10�2 1�026�0�017

195 - 224 �3�87�0�02�0�57
�0�53��10�3 1�022�0�012

224 - 259 �1�34�0�01�0�23
�0�21��10�3 1�019�0�008

259 - 298 �4�26�0�04�0�83
�0�74��10�4 1�017�0�005

298 - 344 �1�22�0�02�0�28
�0�24��10�4 1�015�0�002

344 - 396 �3�16�0�09�0�82
�0�71��10�5 1�013�0�001

396 - 457 �6�30�0�32�1�96
�1�63��10�6 1�011�0�002

457 - 527 �1�01�0�12�0�40
�0�31��10�6 1�010�0�003

527 - 700 �0�83�0�23�0�44
�0�32��10�7 1�008�0�005

Table C.11: Measured inclusive jet differential cross section as a function of pjet
T for jets in the region

0�1 � �y jet � � 0�7 using D � 0�5. An additional 5�8% uncertainty on the luminosity is not included. The parton-to-

hadron correction factors, CHAD�p
jet
T �, are applied to the pQCD predictions.
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d2σ
d p jet

T dy jet
�0�1 � �y jet � � 0�7� �D � 1�0�

p jet
T �GeV�c� σ� �stat��� �sys�� �nb��GeV�c�� CHAD parton� hadron

54 - 62 �20�0�0�2�2�6
�2�3��100 1�372�0�227

62 - 72 �8�65�0�04�1�1
�1�0��100 1�296�0�171

72 - 83 �3�59�0�02�0�42
�0�39��100 1�236�0�129

83 - 96 �1�49�0�01�0�17
�0�16��100 1�190�0�098

96 - 110 �6�27�0�05�0�70
�0�65��10�1 1�155�0�075

110 - 127 �2�63�0�03�0�29
�0�27��10�1 1�127�0�057

127 - 146 �1�05�0�01�0�12
�0�11��10�1 1�105�0�044

146 - 169 �4�04�0�03�0�48
�0�45��10�2 1�088�0�034

169 - 195 �1�48�0�01�0�19
�0�18��10�2 1�075�0�026

195 - 224 �5�41�0�02�0�77
�0�73��10�3 1�065�0�019

224 - 259 �1�86�0�01�0�30
�0�28��10�3 1�057�0�013

259 - 298 �5�77�0�04�1�05
�1�00��10�4 1�050�0�008

298 - 344 �1�70�0�02�0�36
�0�32��10�4 1�045�0�003

344 - 396 �4�26�0�10�1�05
�0�93��10�5 1�041�0�003

396 - 457 �8�17�0�36�2�49
�2�06��10�6 1�038�0�009

457 - 527 �1�39�0�14�0�55
�0�42��10�6 1�036�0�015

527 - 700 �1�19�0�27�0�60
�0�46��10�7 1�033�0�027

Table C.12: Measured inclusive jet differential cross section as a function of pjet
T for jets in the region

0�1 � �y jet � � 0�7 using D � 1�0. An additional 5�8% uncertainty on the luminosity is not included. The parton-to-

hadron correction factors, CHAD�p
jet
T �, are applied to the pQCD predictions.
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systematic uncertainties (%) �0�1 � �y jet � � 0�7� �D � 0�5�
p jet

T [GeV/c] jet energy scale resolution unfolding p jet
T -spectra ε

54 - 62 �9�9
�9�2

�2�4
�2�3 �5�4 �0�6 �0�8

�0�8

62 - 72 �9�8
�9�0

�2�4
�2�2 �4�8 �0�6 �0�7

�0�7

72 - 83 �9�8
�8�9

�2�3
�2�2 �4�3 �0�6 �0�6

�0�7

83 - 96 �9�7
�8�9

�2�2
�2�1 �3�8 �0�6 �0�6

�0�6

96 - 110 �9�8
�9�0

�2�2
�2�1 �3�4 �0�6 �0�5

�0�5

110 - 127 �10�0
�9�4

�2�1
�2�0 �3�1 �0�6 �0�5

�0�5

127 - 146 �10�4
�9�9

�2�1
�2�0 �2�8 �0�6 �0�4

�0�4

146 - 169 �11�2
�10�8

�2�1
�2�0 �2�5 �0�5 �0�4

�0�4

169 - 195 �12�5
�11�9

�2�1
�2�1 �2�3 �0�4 �0�4

�0�4

195 - 224 �14�3
�13�3

�2�2
�2�2 �2�1 �0�3 �0�4

�0�3

224 - 259 �16�6
�15�0

�2�4
�2�4 �1�9 �0�2 �0�3

�0�3

259 - 298 �19�3
�17�0

�2�7
�2�7 �1�8 �0�1 �0�3

�0�3

298 - 344 �22�3
�19�4

�3�1
�3�2 �1�6 �0�1 �0�3

�0�3

344 - 396 �25�7
�22�1

�3�7
�3�8 �1�5 �0�2 �0�3

�0�3

396 - 457 �30�7
�25�5

�4�5
�4�6 �1�4 �0�5 �0�3

�0�3

457 - 527 �39�5
�29�7

�5�5
�5�6 �1�3 �1�3 �0�3

�0�2

527 - 700 �52�6
�37�7

�7�4
�7�3 �1�2 �4�2 �0�3

�0�2

Table C.13: Systematic uncertainties (in percentage) on the measured inclusive jet differential cross section as a

function of pjet
T , for jets in the region 0�1 � �yjet �� 0�7 and using D� 0�5. The different columns follow the discussion

in section 4.6. An additional 5�8% uncertainty on the luminosity is not included.
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systematic uncertainties (%) �0�1 � �y jet � � 0�7� �D � 1�0�
p jet

T [GeV/c] jet energy scale resolution unfolding p jet
T -spectra ε

54 - 62 �10�7
�9�4

�2�7
�2�7 �5�6 �0�4 �3�5

�2�9

62 - 72 �10�4
�9�3

�2�6
�2�5 �4�9 �0�4 �3�0

�2�6

72 - 83 �10�3
�9�2

�2�4
�2�4 �4�2 �0�4 �2�6

�2�4

83 - 96 �10�2
�9�2

�2�3
�2�3 �3�7 �0�4 �2�3

�2�2

96 - 110 �10�2
�9�3

�2�2
�2�2 �3�2 �0�4 �2�1

�2�0

110 - 127 �10�4
�9�6

�2�1
�2�1 �2�8 �0�4 �1�9

�1�8

127 - 146 �10�8
�10�1

�2�0
�2�0 �2�5 �0�4 �1�7

�1�7

146 - 169 �11�5
�10�8

�1�9
�1�9 �2�1 �0�4 �1�6

�1�6

169 - 195 �12�6
�11�8

�1�9
�2�0 �1�9 �0�4 �1�5

�1�4

195 - 224 �13�9
�13�1

�1�9
�2�0 �1�6 �0�3 �1�4

�1�3

224 - 259 �15�8
�14�7

�2�1
�2�2 �1�4 �0�3 �1�3

�1�3

259 - 298 �18�0
�16�6

�2�4
�2�5 �1�3 �0�2 �1�3

�1�2

298 - 344 �20�8
�18�8

�2�8
�2�9 �1�1 �0�2 �1�2

�1�1

344 - 396 �24�5
�21�4

�3�4
�3�6 �1�0 �0�2 �1�2

�1�1

396 - 457 �30�1
�24�7

�4�3
�4�4 �0�8 �0�5 �1�1

�1�0

457 - 527 �38�8
�29�5

�5�4
�5�4 �0�7 �1�1 �1�1

�1�0

527 - 700 �49�8
�37�6

�7�3
�7�2 �0�6 �3�4 �1�0

�0�9

Table C.14: Systematic uncertainties (in percentage) on the measured inclusive jet differential cross section as a

function of pjet
T , for jets in the region 0�1 � �yjet �� 0�7 and using D� 1�0. The different columns follow the discussion

in section 4.6. An additional 5�8% uncertainty on the luminosity is not included.
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