
Abstract of “Cryogenic Dark Matter Search (CDMS II) - Application of Neural Networks

and Wavelets to Event Analysis”, by Michael J. Attisha, Ph.D., Brown University, May

2006.

The Cryogenic Dark Matter Search (CDMS) experiment is designed to search for dark mat-

ter in the form of Weakly Interacting Massive Particles (WIMPs) via their elastic scattering

interactions with nuclei. This dissertation presents the CDMS detector technology and the

commissioning of two towers of detectors at the deep underground site in Soudan, Min-

nesota. CDMS detectors comprise crystals of Ge and Si at temperatures of 20 mK which

provide ∼keV energy resolution and the ability to perform particle identification on an event

by event basis. Event identification is performed via a two-fold interaction signature; an

ionization response and an athermal phonon response. Phonons and charged particles result

in electron recoils in the crystal, while neutrons and WIMPs result in nuclear recoils. Since

the ionization response is quenched by a factor ∼ 3(2) in Ge(Si) for nuclear recoils compared

to electron recoils, the relative amplitude of the two detector responses allows discrimina-

tion between recoil types. The primary source of background events in CDMS arises from

electron recoils in the outer 50 µm of the detector surface which have a reduced ionization

response. We develop a quantitative model of this ‘dead layer’ effect and successfully apply

the model to Monte Carlo simulation of CDMS calibration data. Analysis of data from

the two tower run March-August 2004 is performed, resulting in the world’s most sensitive

limits on the spin-independent WIMP-nucleon cross-section, with a 90% C.L. upper limit

of 1.6 × 10−43 cm2 on Ge for a 60 GeV WIMP. An approach to performing surface event



2

discrimination using neural networks and wavelets is developed. A Bayesian methodology

to classifying surface events using neural networks is found to provide an optimized method

based on minimization of the expected dark matter limit. The discrete wavelet analysis of

CDMS phonon pulses improves surface event discrimination in conjunction with the neu-

ral network analysis, giving a 20% improvement to the expected and final WIMP-nucleon

cross-section upper limits.
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Chapter 1

Introduction

At the time of writing in late 2005, the field of cosmology finds itself in a peculiar situation.

On one hand, there is a tremendous amount of concordance; the ΛCDM model provides

an unprecedented fit to experimental data, yet on the other hand, the model includes two

components that we know little about; dark matter and dark energy.

The fact that the luminous matter in the universe comprises . 1% of the total energy

density was first suggested by studies made by Zwicky in the early 1930’s [1]. The observed

velocity dispersion relations of eight galaxies in the Coma cluster suggested that the lumi-

nous matter comprised ∼ 0.5% of the total mass based solely on gravitational dynamics.

Analysis of rotation curves of spiral galaxies also reveals the presence of an unseen

mass component within each galaxy. Based on the luminous mass distribution, we would

expect that stars at radii where the luminous matter ends to have velocities of the form

v(r) ∼ 1/
√

r. Yet, repeated observations of many galaxies show that the stellar velocities

asymptote to v ∼ 100 − 300 km/s for arbitrarily large radii, suggesting the presence of a

large halo of unseen mass.

1
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Given these observations, the ‘missing mass’ could well be baryonic in nature, but

studies of Big Bang Nucleosynthesis (BBN) put strong limits on primordial production

of light elements given the observed abundances today. This suggests that the baryonic

component is ∼ 4% of the critical energy density (Ωb ≈ 0.04) - clearly too low for baryons

to form the majority of the matter in the universe. Furthermore, precision measurement

of the Cosmic Microwave Background (CMB) radiation, which provides a snapshot of the

baryonic matter distribution at ∼ 300, 000 years after the Big Bang, strongly supports the

BBN conclusion that Ωb ≈ 0.04.

Further studies of the CMB, combined with surveys of Type-Ia supernova, gravitational

lensing, and clusters/superclusters imply that the total matter energy density, Ωm ≈ 0.26

and hence, a non-baryonic matter component Ωnbm ≈ 0.22. Studies also show that Ωtotal ≈ 1

which includes a non-matter energy density of the universe (‘dark energy’), ΩΛ ≈ 0.74,

associated with the cosmological constant; i.e. the accelerating expansion of the universe.

The lines of evidence that point to these conclusions will be reviewed in more detail in

subsequent sections.

1.1 Evidence for Non-Baryonic Dark Matter

1.1.1 Galactic Rotation Curves

In a spiral galaxy, we would expect stars at radii beyond the visible matter distribution to

have a velocity distribution that scales as v(r) ∼ 1/
√

r. However, analysis of the rotation

curves (RCs) of spiral galaxies reveals that stellar velocities are constant at radii well ou-

side the region in which most of luminous material resides. The RCs are constructed by
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measurement of the 21cm H lines, and suggest the presence of an unseen dark matter halo

that extends out beyond the luminuous matter. Early measurements of galaxy RCs used

nebular emission lines (Hα) or stellar absorption lines (NaI, CaFe).

A comprehensive study of about 1100 optical and radio RCs, covering absolute mag-

nitudes from -16 to -22, and extending RC data out to 1.5-2 optical radii, was performed

by Persic, Salucci and Stel [2] in 1996. They show that spiral RCs can be parameterized

by a single parameter such as the galaxy’s luminosity, resulting in a ‘universal’ RC curve.

This implies several interesting scaling properties between the dark and luminous galactic

structure parameters: 1) The dark matter to luminous matter (Mdm/ML) mass ratio scales

inversely with luminosity; 2) The total halo mass scales as L0.5, 3) The central halo density

scales as L−0.7. These relationships have interesting implications for the role that the dark

matter plays during the formation of galaxies. Figure 1.1 shows the fitted RCs for galaxies

from the survey for eleven different absolute magnitudes.

Since elliptical and lenticular (S0) galaxies do not have such ordered orbital motions,

one cannot use rotation curves to examine their mass distribution. Instead, the galaxies can

be approximated as a gas in thermal equilibrium, allowing the comparison of the velocity

dispersion (‘temperature’) of stars σ2, with the temperature of the interstellar gas T . In

the absence of dark matter, these two populations reside in the same gravitational well, and

therefore we would expect T ∼ σ2. Therefore, the amount of dark matter can be estimated

by examining a divergence from this relationship. Typically, it is found that T ∼ σ1.45 [4].
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Figure 1.1: Best two-component fits to the universal rotation curve, taken from [2], for a
range of absolute magnitudes MI (each luminosity bin contains 50-100 galaxies). Dotted
lines show the disc (luminous material) contribution, and dashed lines show the implied
dark halo contribution. The optical radius Ropt is defined as the radius encompassing 83%
of the total integrated light.
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1.1.2 Galactic Clusters

In the study of clusters and superclusters of galaxies, one assumes that the matter is grav-

itationally relaxed; i.e. that the matter is virialized:

2Ek + U = 0 (1.1)

where Ek is the mean kinetic energy estimated from the velocity dispersion of the galaxies,

and U is the potential energy.

Both methods allow the calculation of the mass-to-light ratio of a galaxy cluster, which

in turn allows one to calculate the mean density of luminous matter:

ρg = Lg

〈
M

L

〉
(1.2)

where ρg is the density of the luminous matter in the galaxy as a fraction of the critical

density ρ0 = 3H2
0/8πG, Lg is the mean luminosity per unit volume produced by the galaxies,

and
〈

M
L

〉
is the mass-to-light ratio.

Typically, studies of galactic clusters find mass-to-light ratios in the hundreds of solar

units. For example, Faber and Gallagher (1979) studied seven clusters and reported a

median value of M/L ∼ 580 h (M�/L�) [5]. In 1998, the ESO Nearby Abell Clusters

Survey (ENACS) found M/L ∼ 400 h (M�/L�) for 29 clusters [6]; Girardi et al. (2000)

analyzed a sample of 105 nearby (z ≤ 0.15) clusters and found a typical mass-to-light ratio

of M/L ∼ 250 h (M�/L�) [7].

Generally, it is found that M/L for clusters is much higher than that for individual

galaxies by roughly a factor of ten. This suggests a great deal of hidden mass residing

somewhere in the cluster (in the galaxies themselves, or in the intergalactic regions, or



6

both). It is known from x-ray observations that around 10% of the mass of a galactic

cluster is in the form of hot gas. However, the presence of hot gas is not sufficient to explain

the apparent dynamical mass. Furthermore, as we shall see below, there are problems

reconciling the presence of the hidden matter with nucleosynthesis predictions, were all the

cluster mass baryonic.

The mass of a cluster can also be estimated using the same method as for elliptical

and lenticular galaxies described in the previous section. That is, by measuring the velocity

dispersion of the galaxies and the temperature of the intergalactic gas via its x-ray emission.

Clusters are, in fact, some of the most luminous x-ray sources in the sky and show x-ray

emission over extended, rather than point-like regions. A study performed by Girardi et

al. found good agreement between estimates based on the virial approach and the x-ray

approach [8], although these results generally agree to within a factor of two [9].

Clusters can also be studied via gravitational lensing (see Figure 1.2) [10]. This offers

the possibility of measuring the entire cluster mass (both dark and luminous parts) without

having to make the equilibrium and/or symmetry assumptions that are required for the

virial and x-ray methods described above.

Although strong lensing can place powerful constraints on the potential well of a cluster,

it is relatively rare. Weak lensing, however, will occur for all clusters, but is frequently

difficult to quantify, and sometimes impossible. Some recent studies have been able to

demonstrate the efficacy of the weak lensing technique on known clusters [11], and the

existence of several ‘dark clumps’ - where mass concentration is seen with no optical or

x-ray detection of a cluster - have been reported (for an example of a confirmed cluster, see

[12]).
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Figure 1.2: Schematic of wavefronts in the presence of a galaxy cluster. Depending upon the
lens configuration, the observer may see multiple strongly distorted images (strong lensing
arcs), single elliptical distorted images (arclets), or weakly distorted images with almost
no individual elongation (weak lensing). Weak lensing is often difficult (and sometimes
impossible) to quantify, but will occur at some level for every galaxy cluster. Figure taken
from [10].
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The combined observations of galactic clusters suggest masses that point to Ωm ∼

0.2− 0.3 (some results are summarized in Table 1.1 later in the chapter).

1.1.3 Big Bang Nucleosynthesis (BBN)

The temperature evolution of the very early universe, combined with our knowledge of

particle physics, tells us that nucleosynthesis of the light elements (A≤ 7) occurred within

the first few hundred seconds after the Big Bang such that by t ≈ 1000 s, the light ele-

ment abundances were fixed. Some of these abundances are subject to change during the

evolution of the universe (eg. by construction/destruction in stellar populations), but the

measurement of the present light elemental abundances can tell us a great deal about the

baryonic matter distribution in the moments shortly after the Big Bang.

At t & 0.1 s after the Big Bang, the neutrinos had decoupled and the relevant matter

consisted of protons and neutrons in thermal equilibrium via the weak interactions:

n + νe 
 p + e−, n + e+ 
 p + ν̄e (1.3)

While in thermal equilibrium, the neutron/proton ratio n/p ' 0.2. This equilibrium was

maintained until T ' 1.3×109 K (t ' 20 s), at which point the neutrons can only transform

into protons via β-decay, n → p + e− + ν̄e, which has a mean lifetime of ∼ 900 s. Once the

protons and neutrons dropped out of equilibrium the nucleosynthesis of the light elements

could begin.

The first link in the nucelosynthetic chain, howevever, p + n → D + γ, is ineffective

at high temperatures, since the photodestruction rate of the Deuterium (∝ nγe(2.2MeV)/T )

is much larger than the production rate (∝ nB) due to the large photon to baryon ratio
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Figure 1.3: Relative mass fractions of the light elements as a function of temperature for a
photon to baryon ratio of 2× 109. Figure taken from [14].

(nγ/nB & 109) [13]. Since, to build any element with A ≥ 3 Deuterium is needed, nucleosyn-

thesis cannot proceed until the production rate becomes stable against photodissociation

(this is sometimes referred to as the Deuterium bottleneck).

The net production of Deuterium becomes significant at around T ' 2×109 K (t ' 50s).

Once the Deuterium begins to form, the following reactions (which both have large cross-

sections) quickly mop up remaining neutrons into 4He:

D + D → 3He + n, 3He + D → 4He + p (1.4)

Figure 1.3 shows the evolution of the relative elemental abundances as a function of tem-

perature (and time). It can be seen that approximately 1000 seconds after the Big Bang,

the initial relative abundances of the light elements are fixed.
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The light element abundances all depend upon the baryonic density, and hence by accu-

rate measurement of the relative abundances, the baryonic matter density of the universe

can be obtained. In particular, the Deuterium abundance is very sensitive to the total

baryonic energy density, making it an ideal ‘baryonometer’.

One can perform a numerical integration of all the rate equations which results in the

predictions shown in Figure 1.4. The colored horizontal bands are the predictions based

on primordial synthesis. Experimental observations need to take into account that abun-

dances will have changed since primordial synthesis. For example, Hydrogen is processed

into Helium in stars, modifying the initial abundance into what we observe today. It can

sometimes be difficult to prove that extrapolated abundances from observation are truly

primordial, even when heavy element abundances are low.

The 4He abundance is everywhere close to 25% - one of the main predictions of the

BBN model described above. In order to obtain the 4He abundance more accurately, it

is necessary to take stellar production into account. This is usually done by examining

the metallicity of stars in HII regions (usually using the O or N abundance) since stars

with a higher metallicity have a slightly higher 4He abundance. The 4He mass fraction is

then obtained by extrapolating to zero metallicity; the resulting value is actually within the

observed range for some individual HII regions [15].

A similar method is used to estimate the primordial abundance of Deuterium. It is

very easily destroyed in stars, but cannot be made there; in fact there are no known astro-

physical sites for the production of Deuterium, making any observed D abundances robust

lower limits. The observed D abundances in the ISM and the solar system are assumed

to be somewhat less than primordial, and indeed higher abundances have been observed in
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Figure 1.4: Primoridial abundance of light elements as a function of the baryonic energy
density. The rectangles denote 95% confidence intervals for the experimental data, and
the vertical widths of the predictions denote the 95% confidence interval of the theoretical
predictions. The fraction of the critical density is calculated for a Hubble constant of 65
km s−1 Mpc−1. Figure taken from [14].
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Deuterium absorption in the spectra of high redshift quasars. These values should be close

to primordial since they occur at high z and in low-metallicity systems.

Lithium is somewhat more problematic. The 7Li abundance in old hot stars is found to

be close to uniform [16], but the presence of 6Li in some of the stars suggests that both 6Li

and 7Li were created prior to these stars’ formation. It thus becomes harder to extrapolate

to zero metallicity and consequently the estimate of the 7Li primordial abundance has an

error of ∼ 50% (see Figure 1.4).

The primordial abundance of 3He is very hard to estimate, since stars both make and

destroy this isotope. Complex models of stellar evolution are required in order to relate

observations to the primordial values. Often the combined abundance of (D + 3He) is used,

since most of the 3He that is created in stars is formed from Deuterium. In practice, stars

of different masses manage this conversion differently, but since all stars destroy Deuterium

to some extent and at least some 3He survives stellar processing, the observed (D + 3He)

abundance can be used to place an upper limit on the 3He abundance.

The above combined estimates of BBN currently predict that Ωbh
2 = 0.022 ± 0.003

[17], where h is the Hubble constant in units of 100 km s−1Mpc−1. Thus there is a strong

constraint upon the amount of baryonic matter in the universe, which, coupled with the

observations of Ωmh2 ≈ 0.15 detailed in the previous two sections, argue strongly for the

existence of non-baryonic dark matter.

1.1.4 Type-Ia Supernovae

The search for suitable cosmological distance markers is an important pursuit, and a host of

‘standard candles’ have been utilized over the years. A particular method that has recently
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proven to be highly effective is the observation of Type-Ia supernovae (SNe Ia), which are

highly luminous. SNe Ia events are used as standard candles since their luminosity is known

from the SN Ia model, and hence the distance can be inferred by the apparent magnitude.

They are also bright enough to be seen at high redshift where there is an appreciable

dependence upon cosmological parameters.

Type-Ia supernova are thought to occur for stars which do not exceed the Chandrasekhar

limit during their initial gravitational collapse (M < 1.4M�), and which have at least one

companion star. During collapse, the primary star collapses into a white dwarf which sub-

sequently accretes material from the companion. Eventually, this accretion will accumulate

enough mass for the star to exceed the Chandrasekhar limit for the star to undergo grav-

itational collapse into a neutron star. However, the energy released by turning 1.4M� of

Carbon to Iron instantly is enough to blow the star apart.

This particular set of events results in a collapse that occurs under relatively similar

conditions each time, since by the time of collapse the star’s H and He will have been

exhausted. The mass is well-defined due to the Chandrasekhar limit being reached and so

the total energy released is close to uniform (although there are slight differences depending

upon the way that the star burns during the final collapse).

Although SNe Ia events are relatively homogeneous, their use as standard candles be-

came particularly useful when the correlations between peak magnitude and/or light curve

shape and spectral features were fully realized [18] [19] [20]. For example, SNe Ia events

from stars with more 56Ni are hotter, brighter and have broader light curves [21]. SN Ia

events can also look very similar to other SNe events that are not truly Type-Ia (see Figure

1.5). Before SNe Ia events were categorized in this way, the systematic variations in peak
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Figure 1.5: Comparison of nearby SNe Ia and Ic events at maximum light. SNe Ic can
closely resemble SNe Ia with minor spectral differences (top pair), and Ia spectra after 2
weeks can look like Ic spectra at max (bottom pair). Figure taken from [22].
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Figure 1.6: Light curves and images for 5 of the galaxies imaged using the HST and re-
ported in [25]. Open circles represent ground-based data points; filled circles represent HST
(WFPC2) data points.

brightness were comparable to experimental errors.

Two teams have been compiling data on SNe Ia events; the Supernova Cosmology

Project (SCP) and the High-Z Supernova Search Team (HZSNS). Both study SNe Ia events

for a typical redshift range 0.15 < z < 1.2, allowing the direct study of H0, Ωm and ΩΛ.

The combined results of these studies show a strong preference for models with a positive

cosmological constant (ΛΩ > 0) [23] [24].
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Figure 1.7: Confidence region for HZSNS and SCP data, in the Ωm, ΩΛ plane. The SCP
result is based on 42 high-z SNe Ia, and the HZSNS result is based upon 16 SNe Ia, of
which 2 are present in the SCP 42 SNe sample. A sample of z < 0.15 objects are used to
constrain the fit and are taken from [19]. Figure taken from [26].
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Figure 1.8: Magnitude-redshift diagram for high-z SNe Ia measured by the SCP group.
Filled circles represent the 11 SNe reported in [25]. The solid line is the best-fit to the data,
assuming a flat universe. This result shows a strong preference for ΩΛ > 0.

A recent result from the SCP experiment [25] reported on 11 SNe at 0.35 < z < 0.86

measured using the Hubble Space Telescope (HST) (light curves for 5 of the galaxies shown

in Figure 1.6). Combined with earlier SCP data, the SNe yield measurements of Ωm =

0.25+0.07
−0.06(stat)± 0.04(sys) and ΩΛ = 0.75+0.06

−0.07(stat)± 0.04(sys), under the assumption of a

flat universe (Ωtotal = 1).

Figure 1.8 shows the magnitude of SCP-measured SNe Ia as a function of redshift, again

showing the strong preference for a cosmological constant. Figure 1.7 shows the confidence

regions for HZSNS and SCP data, taken from a 2003 review of their results [26].
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1.1.5 Cosmic Microwave Background

The Cosmic Microwave Background (CMB) is a remnant of the photon-baryon decoupling

that occurred around 300,000 years after the Big Bang. At this time, the photons are hot

enough (T & 3000 K) that they can ionize hydrogen, and the electrons ‘glue’ the baryons

to the photons via Compton scattering and electromagnetic interactions. The growth of

structure has already begun at this epoch, but infalling baryons in high-density regions

are resisted by photon pressure. Consequently, the primordial gravitational perturbations

create acoustic oscillations within the photon-baryon fluid due to compression in high-

density regions.

When the temperature drops below T ≈ 3000 K, the free electrons are captured, form-

ing atomic hydrogen. The photons at this ‘time of last scattering’ have a characteristic

temperature, but also have an increased (decreased) temperature when originating from a

region of compression (rarefaction) at the time of last scattering. The photons experience

gravitational redshifts from climbing out of the potential wells on the last scattering surface

and from any time variation in potentials along their trajectory (Sachs-Wolfe effect).

Hence, at the time of last scattering the acoustic oscillations are frozen, resulting in

photons originating from extrema of the oscillations. Usually, the temperature distribution

on the sky is expanded as a sum over spherical harmonics:

∆T (n̂)
T

=
∞∑
l=0

m=+l∑
m=−l

almYlm(θ, φ) (1.5)

where ∆T (n̂)/T is the temperature fluctuation when pointing at an arbitrary direction in

the sky n̂. The CMB power spectrum is therefore defined as the autocovariance function of
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Figure 1.9: Decomposition of the CMB spectrum and each component’s dependence upon
cosmological parameters. ΩK is the overall curvature of the universe (ΩK = 1− Ω0 − ΩΛ)
and Ω0 is the energy-density of the matter (= Ωm). The source of each component is
discussed in the text. Figure taken from [27].

the temperature fluctuations:

C(Θ) =
〈

∆T (n̂1)
T

∆T (n̂2)
T

〉
(1.6)

where cos Θ = n̂1 · n̂2. The angular power spectrum can be written in terms of Legendre

polynomials Pl and their coefficients Cl:

C(Θ) =
1
4π

∞∑
l=2

(2l + 1) ClPl(cos Θ) (1.7)

The power spectrum can be expressed as a function of either l or Θ, since l ∝ Θ−1. The

sum ignores the first two terms, since the l = 0 term is a monopole correction that is

unmeasurable, and the l = 1 term is a dipole term caused by our motion through space

relative to the frame in which the CMB is isotropic. These are generally treated separately

from the l > 1 terms which represent true fluctuations in the CMB.
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Figure 1.10: Sky map of the CMB as measured by the WMAP satellite [29]. This is an
‘internal linear combination’ map which combines data from each of the five frequency bands
in order to maintain unity response to the CMB while minimizing foreground contamination.

There are several components to the power spectrum, summarized in Figure 1.9 which

also shows each component’s dependency upon cosmological parameters. As already dis-

cussed, acoustic peaks are created at last scattering due to the oscillations being caught at

extrema. These peaks form a harmonic series in wavenumber based upon the sound horizon

at last scattering; km = mπ/s∗ for the mth peak, where s∗ is the sound horizon (these

acoustic peaks are shown in Figure 1.9 as the ‘effective temperature’). Since the physical

size of the acoustic horizon is set by simple physics, the acoustic peaks have an angular

size on the sky which depends upon the curvature of the universe. Therefore, the acoustic

spectrum is sensitive to both Ωm and ΩΛ.

The baryonic contribution to the effective mass of the baryon-photon fluid affects the

frequency of its oscillations, and changes the amount of gravitational compression expe-

rienced by the fluid in a potential well (baryonic drag). Hence, the compression peaks

are enhanced with increasing baryonic matter content, and consequently the relative peak
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Figure 1.11: WMAP angular power spectrum from first year data. The curve shows the
best fit model based on a combined data analysis as reported in [29]. The WMAP data are
consistent with the ACBAR and CBI measurements, as shown. The grey area at the left is
uncertainty due to cosmic variance.

heights of the acoustic spectrum can be used to determine the baryonic matter density Ωb.

The motion of the fluid also Doppler-shifts the frequency of the photons, creating os-

cillations in the power spectrum that are out of phase with the temperature oscillations.

Hence, the Doppler effect makes the acoustic peaks less prominent, especially when the

baryonic mass content is small. As the baryonic mass increases, the relative contribution of

the Doppler effect decreases and therefore we have another check on Ωb.

Thermal fluctuations are damped at small angular scales (‘damping’ in Figure 1.9).

The photon-baryon fluid is imperfect since the photons can random-walk through the fluid,

allowing diffusion between hot and cold regions at small scales. The damping scale depends
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only upon the thermal history and the baryonic matter density.

The trajectory of a photon leaving the surface of last-scattering experiences gravitational

redshifts and blueshifts as it traverses gravitational potentials. As the structure of the

universe evolves, these potentials also evolve and therefore the redshift that is experienced

by a photon leaving a potential well is not necessarily the same as the blueshift it experienced

when entering. This leads to a temperature fluctuation that is sensitive to the evolution of

structure, and is referred to as the integrated Sachs-Wolfe effect (ISW). This effect is usually

broken down into ‘early’ and ‘late’ components (see Figure 1.9). These represent potential

decays brought about by the background changing from radiation to matter dominated

(early ISW), and from the background changing from matter to Λ or curvature dominated

(late ISW).

The overall power spectrum is therefore very sensitive to Ωm, Ωb, ΩΛ and Ωtotal, and

an accurate measurement of the spectrum provides strong limits on these parameters. The

CMB sky was first mapped by the COBE satellite in 1992 [28] with a resolution of ∼ 7◦

FWHM. More recently, the WMAP satellite mapped the CMB to ∼ 0.5◦ resolution in 2003

(see Figure 1.10 and 1.11).

Using the WMAP data only, the cosmological parameters under the ΛCDM model are

(with 1σ errors): (Ωmh2, Ωbh
2, h) = (0.14 ± 0.02, 0.024 ± 0.001, 0.72 ± 0.05) and the age

of the universe t0 = 13.4± 0.3 Gyr [30]. This result implies that Ωb 6= Ωm at 5.8σ.

WMAP three year data released just prior to publication of this dissertation gives best

fit values for the ΛCDM model as (Ωmh2, Ωbh
2, h) = (0.127+0.007

−0.013, 0.0223+0.0007
−0.0009, 0.73+0.03

−0.03)

[31]. Assuming a flat universe, WMAP three year data combined with the Supernova Legacy

Survey (SNLS) data yields w = −0.97+0.07
−0.09 for the dark energy equation of state.
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Limits based on the combination of WMAP one year data with other observations are

detailed in the next section.

1.2 Summary of Current Limits on the ΛCDM Model

The WMAP results place strong constraints on the parameters of the ΛCDM model, and

since non-CMB measurements are now less reliable and precise than the CMB, they become

the limiting factor in setting combined limits on the model. In a combined analysis by

Tegmark et al. (2003) [32], WMAP data was combined with (200,000 galaxy) data from the

Sloan Digital Sky Survey (SDSS), the Two Degree Field Galaxy Redshift Survey (2dFGRS)

and with observations of galaxy clusters and of weak lensing.

Some results of this analysis are shown in Figures 1.12 to 1.14. The analysis concludes

that the data is consistent with the flat adiabatic ΛCDM model, but still provides variation

in terms of tensor fluctuations and/or massive neutrinos. It will be left to future observations

to provide stronger constraints on these values. However, the best fit ‘vanilla-lite’ model,

which includes only 5 parameters (others are fixed, such as w = −1, ns = 1) has the

following values:

(τ,ΩΛ, ωd, ωb, As) = (0.17, 0.72, 0.12, 0.024, 0.89) (1.8)

where τ is the reionization optical depth, ωd ≡ Ωdh
2, ωb ≡ Ωbh

2 and As is the scalar

fluctuation amplitude. The analysis also examines the fit when one allows these parameters

plus say, w or ns, to vary.

It is particularly interesting that one finds substantial agreement between data sets

(WMAP, SDSS, 2dFGRS, etc.) even when one of the data sets is removed from the analysis.
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Figure 1.12: 95% constraints in the (ωd, ωm) ≡ (Ωdh
2,Ωmh2) plane, taken from the analysis

in [32]. The acceptance regions are defined by the best fit to a 6-parameter ‘vanilla’ model
(τ,ΩΛ, ωd, ωb, As, ns).

i.e. no data set is indispensable, and the addition of any one of these data sets to the others

does not significantly improve the χ2 fit that results.

The existence of dark energy is now strongly supported by SNe Ia measurements, power

spectrum analyses such as [32] and study of late ISW [33]. The present dark energy density,

as measured by these observations, is ΩΛ = 0.70 ± 0.04. This result is consistent with a

dark energy density that remains constant in time (w = −1), but the uncertainty in the

value of w is at the 20% level.

Measurement of the Hubble parameter h results in remarkable agreement between

WMAP, SDSS and the HST key project measurement; h = 0.70+0.04
−0.03 (WMAP + SDSS),
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Figure 1.13: 95% constraints in the (Ωm,ΩΛ) plane, taken from the analysis in [32]. The
regions result from a 7-parameter fit (τ,ΩΛ, ωd, ωb, As, ns, w).

h = 0.72± 0.07 (HST key project [34]). The SDSS measurement of Ωm also agrees with the

pure WMAP value, which respectively are Ωm = 0.30±0.04 [32] and Ωm = 0.26±0.05 [30].

The agreement between the ΛCDM model and the wealth of experimental data is as-

tounding, yet there remain important outstanding questions. Firstly, we do not know why

the dark matter, dark energy and near-scale invariant seed fluctuations should exist, nor do

we know the nature of the physics responsible for their existence. The standard model does

not explain why baryogenesis occurred in the amount that it did (since the observed CP

violation seems to be too small), nor does it provide candidates for dark matter particles,

and nor does it explain why the neutrino masses are nonzero and small.

Limits on other parameters in the ΛCDM model also need to be further refined. For
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Figure 1.14: 95% constraints in the (Ωtotal, h) plane, taken from the analysis in [32]. The
regions result from a 7-parameter fit (τ,ΩΛ, ωd, ωb, As, ns, w). The dark-yellow region results
from adding a prior that τ < 0.3 to the fit, and the hatched band is required by the Hubble
key project data [35].

example, we still do not know whether w = −1 (which would certainly be preferred from a

theoretical perspective).

1.3 Non-Baryonic Dark Matter

That the majority of the matter in the universe is non-baryonic is supported by a wealth of

experimental data, summarized in Table 1.1 which shows a selection of recent measurements

of Ωm and Ωb. Given that this non-baryonic dark matter exists, we naturally wonder what

form it takes. What are the underlying physics that give rise to this matter? Can current
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Observation Measurement
Clusters (18 clusters, SZE) [36] Ωm ∼ 0.25
Clusters (17 clusters, baryon mass function) [38] Ωm = 0.24± 0.12 (for Ωtotal = 1)
Clusters (based on σ8 at z = 0.5− 0.8) [39] Ωm = 0.17± 0.05
Weak Lensing (75 deg2 survey) [40] Ωm ∼ 0.3
Type-1a SNe (42 SNe, z = 0.18− 0.83) [23] Ωm = 0.28+0.09

−0.08 (for Ωtotal = 1)
Type-1a SNe (8 SNe, z = 0.3− 1.2) [37] Ωm = 0.28± 0.05 (for Ωtotal = 1)
2dFGRS (power spectrum fit) [41] Ωm = 0.26± 0.03 *
2dFGRS (power spectrum fit inc. WMAP data) [41] Ωm = 0.31± 0.05
CMB (WMAP only) [30] Ωm = 0.27± 0.04 *
SDSS + WMAP + 2dFGRS joint analysis [32] Ωm = 0.30± 0.04
BBN (QSO D/H abundance) [42] Ωb = 0.042± 0.004 *
BBN (review) [43] Ωb = 0.039± 0.005 *
2dFGRS (power spectrum) [41] Ωb = 0.044± 0.006 *
CMB (WMAP only) [30] Ωb = 0.046± 0.002 *
SDSS + WMAP + 2dFGRS joint analysis [32] Ωb ∼ 0.049 *

Table 1.1: Experimental measurements of Ωm and Ωb. * means h = 0.7 has been assumed.

physics provide a suitable candidate particle, or are new physics needed?

Neutrinos

One of the first proposed solutions to the dark matter problem were neutrinos. Relic

neutrinos left over from the Big Bang would have been moving with relativistic velocities

when they dropped out of thermal equilibrium. Obviously, neutrinos would have to be

massive to constitute any or all of the dark matter, but it has now been established to a

high degree of certainty that neutrinos change from one flavor to another [44] and therefore

must be massive.

In order to be a significant part of the dark matter, the relic neutrinos would have to

exist in massive quantities (their number density would be similar to that of the photons).

Since the number of CMB photons is known, it can be deduced that [45]:

Ων ≈
mtot

30 eV
(1.9)
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where mtot is the total mass due to all flavors of neutrinos. Clearly, if neutrinos have mass

mν ≤ 1 eV they are unable to solve the dark matter problem.

Current cosmological limits (based on observed structure formation) suggest that the

neutrino fraction of dark matter fν < 0.12, although a zero value is preferred by some

analyses [32]. Atmospheric neutrino data suggests that fν & 0.004, since the neutrino

oscillations occur with a lower mass limit of ∼ 0.05 eV [46].

A more massive neutrino would provide sufficient mass, but due to their relativistic

nature, a universe populated by a large number of relic neutrinos would not generate the

observed small-scale structure in the universe. Neutrinos are therefore often referred to as

being a type of ‘Hot’ Dark Matter (HDM) - where ‘hot’ refers to their relativistic nature. A

universe dominated by neutrinos would form large structures first, with smaller structures

then resulting from the fragmentation of the larger objects. Thus it seems that there is a

need for non-relativistic, or ‘Cold’ Dark Matter (CDM).

Axions

Axions are neutral scalar (spin 0) particles associated with the breaking of the U(1) Peccei-

Quinn symmetry, which was introduced to solve the strong CP problem [47]. That is, the

QCD Lagrangian includes a term θ
16π2 Tr

(
FµνF̃

µν
)

which violates CP symmetry. There is

no a priori reason that we expect the coupling θ to be zero, and experimental observations

of the neutron dipole electric moment imply that θ < 10−9. This CP violation has not

been observed, and it is not yet understood why θ is so small (given that we might expect

a strong interaction parameter to be O(1)).

The global Peccei-Quinn symmetry was introduced to dynamically solve this problem,
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by introducing a new U(1) symmetry which is broken at some scale fa, resulting in a boson

(the axion) via the Goldstone theorem. One alternative solution is that θ may be zero at

the Planck scale, but small and nonzero at the weak scale.

Axions are good dark matter candidates, since if they exist they would have been pro-

duced in large numbers in the Big Bang, would be nonrelativistic, and would never have

been in thermal equilibrium with the rest of the matter.

The mass of the axion depends upon the scale of the U(1) symmetry breaking:

ma ∼ 10−5 eV × 1012 GeV
fa

(1.10)

It turns out that excessive emission of axions would over-cool stars, and observation of

the supernova SN1987 suggests an upper bound to the symmetry-breaking scale of fa &

109 GeV. Also, the requirement that Ωtotal ≤ 1 results in a lower bound of fa . 1012 GeV.

Thus the axion would have a mass in the range 10−5 eV to 10−2 eV.

Axions can couple to photons via fermion vacuum loops, so one way to detect their

presence is to use microwave cavities in magnetic fields. The axions convert to microwave

photons within the cavity, which is tuned to probe potential frequencies of the emitted

photons (and therefore to probe potential axion masses). Current experiments have probed

only a small amount of the potential mass range, but new experiments are forthcoming.

For a review, see [48].

WIMPs

The Weakly Interacting Massive Particle (WIMP) is a particularly interesting candidate

for dark matter in the universe. One problem with hypothesizing a new massive particle
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Figure 1.15: Schematic of the freeze out process that occurs when WIMPs drop out of
thermal equilibrium. The solid line represents the number density of the WIMPs were they
to not freeze out of thermal equilibrium; the dashed line shows the outcome of freeze out,
which depends upon the WIMP annihilation cross-section and the WIMP mass. Figure
taken from [49].

species is that if the particles are still in thermal equilibrium at present, their abundance,

n ∼ (m/T )3/2 exp(−m/T ) would be negligible due to the exponential factor.

One is forced either to suppose the existence of a particle that was never in thermal

equilibrium (as in the case of the axion), or to suppose a species whose interactions ‘freeze

out’ at a temperature such that m/T is not much greater than 1. It is this latter case that

leads to the WIMP, and it allows the species to have a significant relic abundance today.

In the early universe, the WIMP and its antiparticle (which we denote by χ and χ̄

respectively), are created and annihilated by one or more species X. i.e. χχ̄ ↔ XX̄. When

the temperature of the universe is larger than the mass of the WIMP, the number of WIMPs

and photons is roughly the same, due to constant creation and annihilation of the WIMP.
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However, once T ≤ mχ, the WIMP number density falls until the WIMP annihilation rate

drops below the expansion rate of the universe. At this point (typically TF ≈ mχ/20) the

WIMPs freeze out; they cannot annihilate and their density asymptotes to a constant value.

The resulting number density of WIMPs depends upon their annihilation cross-section

σA and velocity v, as shown in Figure 1.15. This leads to the freeze out condition 〈σAv〉n =

H (where H is the Hubble constant). The current WIMP energy density turns out to be

[45]:

Ωχh2 ' 3× 10−27 cm3 s−1

〈σAv〉
(1.11)

where the number in the numerator comes from considering Ωχ = (ρχ/ρc) and the above

freeze out condition.

Thus, if a new particle with weak-scale interactions were to exist in nature its cross

section would be σ ' α2/m2
weak which is σ ≈ 10−9 GeV−2 ≈ 1 pb. At the freeze out

temperature, the velocity would be a significant fraction of the speed of light (v ∼ c/5).

Putting all this into (1.11) we obtain Ωχh2 ≈ 0.3 - close to the value that we expect for

the dark matter. Therefore, by postulating new physics at the weak scale we are provided

a reliable solution to the dark matter problem.

This prescription puts limits upon the characteristics of the WIMP particle, but there

are many areas of new physics that could supply a possible WIMP candidate. Perhaps

the most natural comes from Supersymmetry (SUSY), which introduces new physics at

precisely the weak scale, and for which there is much motivation from particle physics.

Essentially, the Standard Model is extended to provide a supersymmetric partner for each

particle in the Standard Model. The electron is partnered by the bosonic ‘selectron’, the

gluon is partnered by the fermionic ‘gluino’, etc. The supersymmetric particles all have



32

much higher masses than those in the standard model, due to this new symmetry being

broken at some energy scale.

The parameter space for SUSY is huge (there are hundreds of free parameters in the

complete model), but under models that conserve R-parity (a new quantum number invoked

to ensure non-observed events such as fast proton decay do not occur) one typically finds

the lightest (and therefore most stable) supersymmetric particle, or LSP, is a good WIMP

candidate.

The requirement of R-parity conservation is usually extended to the minimal supersym-

metric model (MSSM), in which the LSP is the lightest ‘neutralino’. The neutralino is a mix

of four supersymmetric states: the bino (supersymmetric B), the wino (supersymmetric W )

and the two neutral Higgsinos. For recent reviews of SUSY dark matter, see [50] [51] [52].

1.4 WIMP Direct Detection

CDMS is one of many WIMP direct detection experiments that have been, or are, in oper-

ation (for a review, see [52]). All of these experiments search for WIMP-nucleon scattering

events, which occur with recoil energies of < 100 keV. In general, the detection rate of dark

matter recoils is of the form:

dR

dER
=

R0

E0r
e−ER/E0r (1.12)

where R0 is the total event rate, E0 is the most probable incident kinetic energy of a WIMP

of mass Mχ, ER is the recoil energy of the target particle, r is a dimensionless form of the

reduced mass; r = 4MχMT /(Mχ+MT )2, and MT is the mass of the target particle [53]. The

derivation of this spectrum assumes a stationary detector sitting in a Maxwell-Boltzmann
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distribution of WIMPs.

This basic spectrum, however, must be modified to take into account the following

effects:

1) The Earth-Sun system is moving relative to the dark matter halo, and the Earth

moves relative to the Sun.

2) There is an upper limit on the kinetic energy of a WIMP due to the escape velocity

of the galaxy.

3) A suppression of the nuclear cross section can occur due to the finite size of the target

nucleus (form factor suppression).

4) The WIMP-nucleon coupling may be dependent upon the spin of the nucleus, which

needs to be taken into account for nuclei with nonzero spin.

Taking into account the typical WIMP escape velocity of vesc ∼ 600 km s−1 and the

Earth’s velocity through the galaxy vE yields

dR(vE , vesc)
dER

=
1
k

[
dR(vE ,∞)

dER
− R0

E0r
e−v2

esc/v2
0

]
(1.13)

with

k =
[
erf
(

vesc

v0

)
− 2√

π

vesc

v0
e−v2

esc/v2
0

]
(1.14)

where v0 ≈ 230 km s−1 is the mean WIMP velocity. Since the effective v0 changes over the

year due to the Earth’s orbital motion (v0 ≈ 215 km s−1 in December, v0 ≈ 245 km s−1 in

June), one way to search for a WIMP signal would be to look for annual modulation of the

event rate. Since the modulation is ∼ 5% this requires high statistics and a way to distin-

guish between the variation of the WIMP signal and natural variation in the backgrounds.
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Figure 1.16: Differential recoil spectra for a 100 GeV WIMP incident on Si, Ge and Xe
targets, assuming a WIMP-nucleon cross section of σW−n = 10−43 cm2. Calculated using
formalism described in [53].

The detection rate equation (1.13) is well approximated by a form similar to that of

(1.12):

dR(vE ,∞)
dER

= c1
R0

E0r
e−c2ER/E0r (1.15)

where c1 and c2 both vary by 1-2% over the year and have mean values, c1 = 0.751 and

c2 = 0.561.

The rate spectrum (1.15) still assumes zero-momentum transfer, which necessitates the

inclusion of a nuclear form factor that depends upon the type of interaction (eg. spin-

dependent or spin-independent). It is also more instructive to use the WIMP-nucleon cross

section in order to compare event rates for different target nuclei.

Figure 1.16 shows example recoil spectra and integrated event rates in Si, Ge and Xe

targets. The dramatic decrease in event rate that occurs around 90 keV in Xe is a direct
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result of Helm form factor supression.

1.5 WIMP Direct Detection Experiments

The following sections review the different technological approaches to WIMP direct detec-

tion experiments.

1.5.1 Ge-Based Experiments

The first detectors used in dark matter searches were Ge-based detectors which grew from

the technology developed to look for neutrinoless ββ-decay. A strong electric field across a

high purity Ge detector was used to separate and collect the free charges that result from

an interaction in the crystal. These detectors were unable to discriminate between nuclear

and electron recoils and were severely limited by backgrounds. Nonetheless, the preliminary

limits on the existence of dark matter were set using these detectors, ruling out the Dirac

neutrino and cosmions as potential dark matter candidates. The most sensitive limits in this

regime were set by the Heidelburg-Moscow collaboration [54] and the IGEX collaboration

[55].

Cooling Ge crystals down to temperatures of 20-50mK allows the measurement of the

phonon signal that is also created in the crystal during an interaction event. The subsequent

generation of Ge detectors again used an electric field to extract and measure the free charge

created during a particle interaction, but also measured the lattice vibrations that occurred.

The measurement of both allows discrimination between electron and nuclear recoil types,

since the ionization is quenched for nuclear recoils in Ge. The recoil energy for both recoil

types can also be extracted on an event-by-event basis, and the energy resolution is typically
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on the order of a keV.

CDMS-I [56] and Edelweiss [57] comprised the first generation of such experiments. The

Edelwiss experiment has been operating 3 × 320 g Ge cryogenic detectors at the Modane

Laboratory, Fréjus, France since 2002. The experiment uses neutron transmutation doped

(NTD) thermistors to read the thermal phonon signal. New search results with an upgraded

7kg of detectors are expected in the near future.

CDMS-I was operated from 1996-2002 at the Stanford Underground Facility (SUF) at a

depth of 10m (muon flux ∼ 5 times lower than surface), and also used Ge NTDs to measure

the thermal phonon response. CDMS-II uses transition-edge-sensors (TESs) to measure the

athermal phonon signal; these detectors will be described in detail in Chapter 2.

At present, Ge-based experiments set the most sensitive limits on the spin-independent

WIMP-nucleon scattering cross section.

1.5.2 NaI-Based Experiments

WIMP detectors based on NaI began to be used in the mid 1990s. These detectors use

NaI crystals as scintillators attached to PMTs, which measure the scintillation light from a

particle recoil with scintillation yields of ∼ 0.3(0.09) for Na(I). The crystals must be high

purity in order for backgrounds to be manageable. Recoil types can be distinguished via

pulse shape discrimination (PSD), although below ∼ 30 keVee the distributions of the two

recoil types overlap making discrimination via PSD impossible.

Several experiments have used this technology: DAMA (Gran Sasso, Italy) used a PSD

approach on data from ∼ 100 kg of NaI detectors in 1996 [58]. The UK DM collaboration

operated a range of NaI crystals underground at the Boulby Mine from 1994-2004, and
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reported on results from a 1.3kg crystal in 1995 [59], and subseqently a 6kg crystal using

PSD in 1996 [60].

Since it is relatively easy to build very massive detectors from NaI, this makes the

technology ideal in searching for evidence of an annual modulation signal. To this end, the

DAMA experiment operated a total of ' 100 kg of NaI scintillator from 1995-2002 for a total

of 108,000 kg-days [61]. Analysis of this dataset shows an annually modulated variation in

the signal at 6.3σ CL, and is dominated from data from the lowest reported energy bins (2-4

keV). The number of counts in this bin is clearly modulated by ±1.6% and is at maximum

in June and mimimum in December. However, the presence of modulation would also be

expected in the 2-3keV and 3-4keV bins and independent fits to the counts in these bins

have not been performed. There are also many potential sources of systematics that would

be annually modulated, and it is not clear that these have been fully accounted for. For

example, the muon flux is known to modulate with such a period (as observed by MACRO).

Perhaps more importantly, the DAMA signal region has been explored by CDMS, Edel-

weiss and ZEPLIN, which all found no signal. There are systematic differences between

the experiments, but studies indicate that these differences cannot account for the observed

discrepancy. Since the ratio of the annual modulation amplitude to the direct WIMP rate

is dependent upon the choice of halo model, the model can be changed in an attempt to

reconcile these observations. However, this does not appear to resolve the conflict other

than for particularly extreme models and assumptions [62]. Since the DAMA experiment

is more sensitive to spin-dependent interactions (since both Na and I have nonzero nuclear

spin), it is possible that the WIMP-nucleon interaction is spin-dependent. This, however,

would also seem to be ruled out by recent results [63].
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1.5.3 Xe-Based Experiments

Experiments based on liquid Xe (LXe) have several important advantages. Firstly, the large

atomic number of the Xe nucleus provides a large event rate for WIMP-nucleon interactions,

and although the event rate suffers from significant form factor supression above 60 keVr,

this is mitigated by the rate at lower energies assuming that the threshold can be driven

below 20 keVr. Secondly, recoil types can be identified on an event-by-event basis as in

Ge detectors, but LXe detectors can be operated at 77K as opposed to 20mK. Thirdly,

the technology is eminently scalable, meaning that it is not much more difficult to build

a 100kg LXe detector than it is to build a 10kg LXe detector. Ge detectors, for example,

suffer in scalability due to the difficult fabrication process and the need to keep the detectors

contaminant-free.

When an interaction occurs in LXe, electron excitation of the Xe leads to scintillation

light, and the Xe becomes ionized. When there is no electric field present, the Xe ions

recombine to create a secondary scintillation signal. The first LXe-based experiments oper-

ated in such a manner, using PSD to discriminate between nuclear and electron recoils, since

the scintillation signals have different characteristic timings for each recoil type. ZEPLIN

I was such an experiment, had a fiducial mass of 3kg (total of 6kg) and ran for 90 live

days in 2001-2002 [64]. The DAMA group also operated a LXe detector at the Gran Sasso

laboratory [65].

Subsequent LXe experiments, which are currently in production, will operate in a dual

phase mode. That is, both the scintillation and ionization signals will be extracted sep-

arately. A strong (kV/cm) electric field across the liquid drifts the Xe ions to the liquid
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surface, which are then extracted into a Xe gas phase by a 4-10 kV/cm field. The extraction

field allows the electrons in the gas to undergo electroluminescence which creates another

scintillation signal. The relative timing of the two scintillation signals gives position (depth)

information, and although the scintillation and ionization signals are both quenched for nu-

clear recoils, they are quenched by different amounts such that the relative signal heights

can be used to identify the recoil type.

The dual phase approach is currently being initiated by ZEPLIN II [66], and by the

XENON collaboration [67].

1.5.4 Other Technologies

Several other WIMP detector technologies are currently being investigated.

The CRESST experiment operates CaWO4 crystals which yield both phonon and scin-

tillation signals. These detectors do not have the problem with surface recoil events that Ge

detectors have (see Chapter 2), but a low scintillation yield makes the technique challeng-

ing. The presence of three different nuclei for a potential WIMP to interact with also makes

operation difficult. CRESST II aims to build a 10kg detector consisting of 300g CaWO4

crystals [68].

The PICASSO experiment operates a chamber of superheated liquid fluorinated halo-

carbons to search for WIMP interactions. When an interaction occurs, it triggers a phase

transition and the formation of a gas bubble. The experiment is still in its preliminary

stages, but results with a 40g prototype operated in the SNO observatory have been pub-

lished [69]. The deadtime of the experiment can be rather large since the chamber has to
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be reset after each event, and the background is currently a limiting factor (there exist ra-

dioactive contaminents in the gel in which the fluorinated halocarbons are dispersed, which

leads to internal alpha particles).

The DRIFT experiment using a time-projection chamber containing CS2 gas at 50 Torr

and in a 1kV/cm electric field [70]. Interactions within the gas create free electrons which

subsequently create tracks. Since electron recoils typically extend further than nuclear recoil

tracks, discrimination of recoil types is possible. The experiment is also naturally suited to

search for annual modulation of the WIMP signal, since the directionality of the event can

be discerned. However, since the gas is at low pressure one would need a huge chamber to

have a significant detector mass. DRIFT is currently operating a 1 m3 prototype chamber,

with plans for a 10 m3 detector.



Chapter 2

CDMS Detectors

2.1 The ZIP Detector

CDMS employs low-temperature crystals of Ge and Si as detectors, providing ∼keV energy

resolution and an ability to perform particle identification on an event by event basis. The

detectors, known as ‘ZIP’s, perform this identification by determining the type of recoil

that a particle undergoes with the detector. Photons and charged particles interact by

recoiling from the atomic electrons of the crystal, whereas neutrons and WIMPs recoil from

the nuclei of the crystal. Hence, discrimination of WIMP events is reduced to identifying

the recoil type of an interaction within the detector.

An electron recoil within the crystal results in the creation of electron-hole pairs in direct

proportion to the energy deposited (ionization response), and a population of high energy

(THz) athermal phonons (phonon response). As the charge carriers recombine, whether

in the bulk or at the crystal surface, their total energy is released as a second population

of high energy phonons. Hence, an interaction with the detector results in a collection of

41
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Figure 2.1: A single ZIP detector inside it’s Cu housing. Each detector is cylindrical,
measuring 76mm in diameter and 10mm deep. In the photograph, the phonon sensor side
of the detector is uppermost, showing the Aluminum and Tungsten system used to measure
the detector’s phonon response (see Section 2.2)

athermal phonons that have a combined energy equal to the recoil energy of the interaction.

A nuclear recoil interaction results in the same process, except that the ionization response

is supressed by a factor ∼0.3 (0.5) in Ge (Si). The phonon response remains the same for

both recoil types. Hence, measuring the phonon and ionization reponse of the detector for

each event provides a determination of the recoil energy and recoil type.

The CDMS ZIP detectors are cylindrical, 1cm thick with a diameter of 76mm. One

face of the detectors contains the electronics used to measure the phonon response. This

system consists of Aluminum (Al) and Tungsten (W) films patterned into structures known

as Quasiparticle-Assisted Electrothermal-Feedback Transition-Edge-Sensors (QETs). Both

the ionization and phonon measurement systems are described below.
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2.2 Phonon Response

A particle recoil in the detector creates a population of high energy athermal phonons

with a spectrum peaked near to the Debye frequency (∼10 THz in both Ge and Si). These

phonons travel through the crystal undergoing anharmonic decay (a process in which a single

phonon spontaneously splits into two lower frequency phonons), and isotopic scattering.

Both processes conserve the total energy of the phonon population and have highly energy-

dependent rates:

ΓAD ∝
( νph

1 THz

)5
, ΓIS ∝

( νph

1 THz

)4
(2.1)

where νph is the phonon frequency [71].

Consequently, high frequency phonons will undergo many scatterings and decays before

they are able to travel significant distances. This quasidiffuse propagation occurs until the

phonon frequencies drop sufficiently for their mean free path to be larger than the mean

dimensions of the crystal, which is at ∼0.6(1.0)THz in Ge(Si). At this point the phonons

travel ballistically at ∼ 1−2 cm/µs until a surface is encountered. Phonons impinging upon

a bare crystal surface (the detector sides) are simply reflected back into the crystal with

no change in energy, whereas a phonon encountering the Al film that is part of the QET

system will be absorbed into the phonon measurement system if it has sufficient energy to

create a Cooper pair in the Al (Eph > 2∆Al). Hence, the initial phonon population will

diffuse into the Al film system on a timescale of a few µs.

The free charge carriers created by the particle recoil event are drifted across the crystal

by a potential difference of a few volts. As the charges drift they are accelerated by the

electric field and scatter with the lattice, and hence deposit energy into the phonon system.
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This is the Neganov-Luke effect [72] [73]. Furthermore, when the charge carriers recom-

bine at the surface electrode they deposit their energy into the phonon system, creating

‘relaxation phonons’.

The fraction of the interaction’s energy present in each population depends upon the

electric field applied across the crystal, the recoil type and the position of the interaction

within the crystal. The former two dependencies affect the energy of the phonon populations

via the Neganov-Luke effect, but the latter dependency is due to an interaction that occurs

between the quasidiffuse phonon population and the metal films for events sufficiently close

to the surfaces of the crystal. In this case, surface events result in a very rapid conversion of

the phonons into the ballistic regime, and hence the time scale upon which energy is injected

into the QET system is measurably faster for surface events than for bulk events. This has

important consequences for the rejection of events arising from surface contamination.

The QET sensor system consists of Al fins that transfer energy from the phonon sys-

tem into W Transition Edge Sensors (TESs). A high energy phonon arriving at the phonon

sensor side of the crystal is able to break a Cooper pair in the Al film, creating two quasipar-

ticles (CDMS detectors operate at 20 mK, well below the Al superconducting Tc of 1.2 K). A

fraction of the phonons arriving at the Al film have energy smaller than 2∆Al = 340µeV and

are unable to create quasiparticles. The energy from these sub-gap phonons is not collected

by the QET system and represents an unavoidable energy collection loss, estimated to be

∼10%(5%) in Ge(Si) [75]. The initial pair of quasiparticles created by an incident phonon

with sufficient energy decay down to the gap edge by shedding phonons, some of which

are able to create further quasiparticles (if Eq > 2∆Al). This cascade process transforms

one or more quasiparticles into a collection of quasiparticles all with energy equal to the Al
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Figure 2.2: Electronic band diagram of the QET system. Once quasiparticles in the Al in-
elastically scatter into the overlap region and subsequently into the W system, they become
trapped due to the lower energy gap.

band gap. However, the cascade also results in another collection of sub-gap phonons, and

approximately half the energy in the initial quasiparticles is lost in this way.

The quasiparticles diffuse through the Al fins until they reach an Al-W interface,

whereby they diffuse into the overlap region and into the W TES, where they become

trapped due to the lower band gap in W. The small increase in heat in the TES gives rise

to a large change in resistance, which is measured via a SQUID readout circuit inductively

coupled to the TES (described below).

The quasiparticle diffusion length depends on both the mean free path of the particles

and the thickness of the Al film; if the diffusion length is limited by the mean free path,

increasing the film thickness results in a linear increase in the diffusion length. However,

the Al-W film connection becomes less reliable as the thickness of the Al film increases,

so a balance between film reliability and losses from quasiparticles that do not reach the
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Figure 2.3: The arrangement of the Al films and W QET system, as described in the text.
The upper-left insert shows the 380 µm×50 µm Al fins feeding the 250 µm×1 µm W TES.
These are arranged into a 7×4 grid to form a 5 mm ‘unit cell’ (center insert). There are 37
unit cells in each quandrant, 148 unit cells on each ZIP detector. Each quadrant reads out
an independant signal.

W TES must be found [75]. The current generation of ZIPs use an Al film thickness of

300 nm. A further issue is that a greater coverage of Al on the surface results in higher

quasiparticle collection efficiency, but the distance that the quasiparticles have to travel

to become trapped in the W system becomes greater and consequently fewer particles are

absorbed. Diffusion simulations were performed for various numbers of Al fins of different

sizes [74] [75], resulting in the current generation of ZIPs with 380 µm × 50 µm Al fins

funnelling quasiparticles into a 250 µm × 1 µm W TES (See Figure 2.3). 28 of these

structures are arranged into a 7×4 array to form a 5mm ‘unit cell’. There are 37 unit cells

in each quadrant, giving a total of 148 unit cells on each ZIP detector.



47

Figure 2.4: Resistance of the W TES as a function of temperature for a Ge ZIP. The Tc

and transition width are typical for the detectors used in CDMS.

2.3 The Phonon Measurement System

Electrothermal Feedback

The energy that is collected by the Tungsten is read out by a TES operating in electrother-

mal feedback (ETF) mode. This means that the W TES is voltage biased, and is kept

on it’s superconducting transition. In this setup, the TES is essentially a very sensitive

thermometer, able to convert a change in the W temperature into a change in resistance,

and hence into a change in electric current by virtue of the bias voltage. Figure 2.4 shows

the resistance as a function of temperature for a typical TES.

Figure 2.5 depicts the thermal ‘circuit’ that the TES sensor forms with it’s surroundings.

The thermal conductivities between the W, crystal, and the cryostat are sufficiently large

that the phonon system of the W TES can be considered to be at the same temperature as

the fridge base temperature. i.e. the main thermal impedance comes from the W electron-

phonon thermal coupling. The thermal conductivity of this coupling is estimated to be
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Figure 2.5: Schematic of the phonon sensor’s thermal model

gep = nκTn−1. The heat flow in the TES can then be written as

cv
dT

dt
=

V 2
bias

RTES(T )
− κ(Tn − Tn

s ) (2.2)

where cv is the heat capacity of W, T is temperature of the W electron population, Vbias

is the bias voltage, RTES(T ) is the resistance of W as a function of temperature (i.e. as

shown in Fig. 2.4), κ is a coupling coefficient, and Ts is the temperature of the crystal and

cryostat. The power n must be empirically determined, and has been found to equal 5 [76].

In order to keep the TES in equilibrium (dT
dt = 0), the net power flow through it must

be equal to zero. Equation 2.2 shows how this is achieved by means of the bias voltage,

which via Joule heating, allows the TES to maintain an equilibrium temperature on it’s

superconducting transition edge at ∼ Tc. This power balance also underlies the negative-

feedback mechanism by which the TES measures energy.



49

Consider the event of a small change in the TES’s temperature when it is at equilibrium.

Equation 2.2 yields, via a first-order expansion

cv
d(δT )

dt
= −

V 2
bias

RTES(T )
dR

dT
δT − 5κT 4δT (2.3)

where δT is the change in temperature of the TES. This equation has a solution of the form

δT (t) ∼ e−t/τETF (2.4)

where τETF is

τETF =
cv

5T 4κ

1 + 1
5

T
R

dR
dT (1− T 5

s

T 5
0
)

=
cv

5T 4κ

1 + α
5 (1− T 5

s

T 5
0
)

(2.5)

Here T0 is the equilibrium temperature of the TES electron system, and α = d(log R)
d(log T ) is

a (unitless) measure of the slope of the R(T ) curve at the superconducting transition.

Therefore, if a small peturbation in temperature occurs, the TES responds by cool-

ing down in an exponential fashion. For δT > 0 the cool-down becomes faster for higher

temperatures since τETF becomes larger as the temperature moves away from it’s equilib-

rium value, and hence the temperature signal in the TES is a convolution of the incoming

quasiparticle flux and a decaying exponential with time constant τETF .

SQUID Readout Circuit

The current flowing in the TES circuit is read out by means of a SQUID readout circuit

inductively coupled to the TES circuit. SQUIDs (Superconducting Quantum Interference

Devices) are low impedence, low-noise devices ideally suited for the TES readout. Figure

2.6 shows the setup of the TES and SQUID circuits.

The SQUID circuit is connected to a feedback amplifier that is locked to a voltage drop

across the SQUID. When the current in the TES changes, the magnetic flux in the input
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Figure 2.6: Schematic of the TES (left) and SQUID (right) circuits used to measure the
phonon signal.

coil also changes, resulting in a change in the magnetic flux, and hence the voltage, across

the SQUID. This change in voltage drives the feedback amplifier which feeds a current back

into the feedback coil in order to cancel the changing magnetic flux in the SQUID.

The feedback to input coil turn ratio is 10, and the feedback resistance of Rfeedback =

1kΩ, giving a measured output voltage across the SQUID of Vout = 10× Is× 1kΩ, where Is

is the current through the TES. A small parasitic resistance Rpara is also present in series

with the TES. In general

Is =
Rbias

(RTES + Rpara + Rbias)
Ib (2.6)

althought the exact behaviour of Is will depend on the TES biasing condition. i.e. it’s

temperature relative to the superconducting transition.

Typical values of the resistances are Rbias = 20 mΩ, Rpara = 4mΩ. The resistance
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of the TES obviously depends on its temperature and the bias current’s value, but in it’s

normal state RTES ∼ 1 Ω, and when biased RTES ∼ 200 mΩ.

Figure 2.7 shows the behaviour of an ideal TES for (a) normal, (b) biased, and (c)

superconducting conditions.

(a) Normal. If the bias current Ib is sufficiently large, the W will be driven to a normal

state with a resistance of ∼ 1 Ω. Since in this case the TES resistance is much greater

than either the bias resistance or parasitic resistance, Equation 2.6 reduces to

Is = (Rbias/RTES)Ib (2.7)

(b) Biased. The bias current Ib is tuned such that the TES is held on it’s superconducting

transistion, and it is in this regime that electrothermal feedback occurs. As described

above, the power supplied through Joule heating equals the power lost to the cold

substrate, and hence the power dissipated in the TES remains constant in the biased

region.

(c) Superconducting. Once the bias current Ib drops below a critical current, the W

becomes superconducting. In this regime Ib ≈ Is (they are not quite equal due to the

small parasitic resistance).

Phonon Pulses

Each ZIP detector has four phonon sensors, such that each quadrant of the ZIP measures

a phonon signal individually (Figure 2.3, marked A, B, C, and D). i.e. the signal in each

quadrant respresents the integrated signal over all of the sensors in that quandrant. This

gives important position information on each event, by virtue of the relative timing of each
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Figure 2.7: Measured Ib-Is curves for an ideal TES. The panels show (top to bottom) the
current through the TES (Is), the resistance of the TES (RTES), and the power dissipated
by the TES (P ), as a function of the bias current (Ib). The regions shown are (a) normal,
(b) biased, and (c) superconducting.
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Figure 2.8: Example phonon pulses for a single event taken from real CDMS data. The
relative amplitudes and timing for each quadrant’s signal imply that the event’s x-y position
is situated in quadrant C.

of the phonon pulses. Figure 2.8 shows the four measured phonon pulses for a single event,

as measured by the CDMS data acquisition (DAQ) system (see Chapter 4 for more details

on the DAQ).

The combined timing and relative amplitude information in the four phonon pulses can

be used to extract position information about the event. For example, the event shown in

figure 2.8 has the largest amplitude in channel C, and the smallest in channel A (which

is diagonally opposite to C on the detector). The rise time of the channel C pulse is also

shorter than for channel A. It can then be seen that in terms of it’s x-y position, the event

occurred in quadrant C, slightly closer to quadrant B than quadrant D. We also have two

ways of assessing the position; one based on the relative delays, and one based on the

relative amplitudes.

Figure 2.9 shows the calculated position of gamma-calibration events for a Ge ZIP using

the two methods of position determination, which are defined as follows:
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Figure 2.9: Calculated position values for bulk electron recoil events from calibration data.
There are two methods by which position reconstruction can be performed: using relative
delays of the four phonon signals (left), or by using the relative amplitudes of the four
phonon signals (right). The source for this dataset was located such that the +x side of
this detector was more illuminated.

x-delay / y-delay The x-delay (y-delay) is defined as the time difference between the

start of the phonon pulse in the primary channel and the start of the pulse in the

horizontally (vertically) adjacent channel. e.g. the x-delay for the event in Fig. 2.8 is

the difference between the start times of the channel B pulse and the channel C pulse.

The y-delay for the same event is the difference between the start time of the channel

C pulse and the channel D pulse The start time is defined as the time taken for the

phonon pulse to rise to 20% of it’s final amplitude.

x partition / y partition The partition values are defined based on the amplitudes of

the pulses in each of the four channels:

x partition =
(PC + PD)− (PA + PB)

PA + PB + PC + PD

y partition =
(PA + PD)− (PB + PC)

PA + PB + PC + PD
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where PX is the total energy deposited into channel X.

Although both methods provide useful position information, there is an inherent non-

linearity present in the detector’s position response, resulting in a degeneracy in timing

information for events occuring close to the edge of the detector (i.e. at large radii). This

is primarily due to the path that phonons created at large radii take on their way to the

phonon sensors, although this effect is still far from completely understood (for more details

see [77]). There is a further non-linearity arising from the fact that the 4 TES sensors on a

single detector will all have slightly different values of Tc.

In order to standardize the phonon response, CDMS performs corrections to a selected

set of parameters in order to homogenize their values across the crystal. This is done via a

lookup table generated from bulk electron recoil events taken from calibration data. This

phonon correction process is more completely described in Chapter 4.

2.4 Ionization Response

A particle recoil event in the crystal causes free charge carriers to be created, since the

high-purity Ge and Si crystals become electrically insulating at temperatures below 4 K

(for Ge, 10 K for Si). It takes 3.0 eV (3.82 eV) to create an electron-hole pair in Ge (Si),

and so the ionization response can be measured by determining the total amount of charge

created in the interaction. An electric field of a few V/cm is applied across the detector,

causing the electrons and holes to drift to their respective electrodes. The charges are

then collected at electrodes located on each face of the detector. There are two potential

problems encountered during this process.
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Firstly, although the crystals are high-purity, there will inevitably be acceptor and donor

impurities present. In the CDMS ZIP detectors, impurities are about 1011 /cm3 in Ge and

1014 /cm3 in Si. At room temperature, these sites are fully ionized, and remain so as the

crystal is cooled down. They form shallow energy levels, effectively acting as traps for

electrons and holes drifting through the crystal. Hence, these sites can pose a significant

problem to the collection of a charge signal. To resolve this problem, the detectors are

‘baked’ prior to operation - that is, photons from blue LEDs are shined onto the crystals

for a period of hours for Ge, days for Si (this is done over the course of many small baking

sessions, since extended periods of baking can warm up the cryogenic system significantly).

This process of baking creates many electron-hole pairs within the crystal which drift into

and become trapped by the impurity sites. In this way, the impurity sites become filled, and

the detector is effectively neutralized. However, the neutralization state is unstable during

regular running due to the electric field applied across the detector, and consequently the

impurity sites gradually become empty again. Hence, the detectors must be flashed (with

the same LEDs) for a much shorter span of time during regular running. The actual rate

that the de-neutralization occurs depends on the event rate that the detectors see, but in

regular background (WIMP search) running we flash the detectors for a few minutes every

3-4 hours.

The second complication that arises is due to recoils that occur within the top few µm of

the crystal surface. These events can create charge carriers that are able to diffuse, against

the electric field, to the incorrect electrode. This results in a suppressed measurement of the

ionization energy, which, since a reduced ionization signature is representative of a nuclear

recoil, can lead to an electron recoil being misidentified as a nuclear recoil.
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Figure 2.10: Band structure at the Ge-α-Si interface. The α-Si provides a barrier against
charges created as a result of surface events that may diffuse against the field to the incorrect
electrode. The band gap of the α-Si (∼ 1.2 eV) is greater than that for Ge (0.743 eV)).

This ‘dead-layer’ effect can be reduced significantly by the addition of a thin layer (∼40

nm) of amorphous Si (α-Si) to the surface of the detector [78]. This provides a barrier against

charge diffusion into the incorrect electrode, since the band gap of the α-Si (∼ 1.2 eV) is

greater than that for Ge (0.743 eV) or Si (∼ 1.17 eV). This technique requires that the

bands be well centered (as shown in Figure 2.10) in order to provide the same potential

barrier to both electrons and holes.

Ionization Signal Measurement

The ionization signal is measured by means of a charge amplifier circuit, shown in Figure

2.11. The bias voltage Vb = 3V causes charges to drift across the detector, represented in
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Figure 2.11: The charge amplifier circuit used to measure the ionization response in a ZIP
detector. The detector is represented by the capacitor Cd.

the figure as Cd=300 nF. The drifting charges create a voltage across Cd, and the amplifier

responds by lowering it’s output voltage in order to maintain the JFET gate voltage at

a virtual ground. The output signal is given by Vf = Q/Cf , i.e. the circuit produces

a voltage pulse in which the pulse height depends linearly upon the total charge drifted

across the crystal. The feedback capacitor then discharges through the feedback resistor

with a time constant τ = RfCf ∼ 40µs. The coupling capacitor Cc is present in order

to isolate the JFET gate from the bias voltage, although it results in a fraction of charges

Figure 2.12: The inner and outer ionization channels on a ZIP detector. The inner and
outer radii are 35mm and 38mm respectively with a 1mm gap between the sections. The
inner electrode represents 85% of the volume.
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Figure 2.13: Example ionization pulses for a single event taken from real CDMS data.

Cc/(Cc + Cd) not appearing on the feedback capacitor. This is minimized for a large value

of the coupling capacitance; a value of 300 pF is used in order to avoid breakdown of the

capacitors while operating at cryogenic temperatures.

Each ZIP detector has two ionization measurement channels; an inner and outer elec-

trode (see Figure 2.12). This allows a fiducial volume cut to be made upon those events with

energy deposited primarily into the inner electrode’s volume. The outer electrode region

suffers from an decreased charge collection efficiency due to a non-uniform electric field,

and hence the analysis selects only events for which > 90% of the total ionization energy is

measured in the inner electrode.

Figure 2.13 shows ionization traces taken from a single event. Note that there is no

shape information present in the leading edge of the ionization pulses. The best estimate

of the event start time comes from the ionization pulse start time.
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2.5 Event Identification

As already described, a single detector event creates both phonon and ionization signals.

How the event traces are digitized and their energies extracted is described in Chapter 4;

here we define the quantities that CDMS uses in order to perform event identification and

discrimination.

As described above, the total energy contained in the phonon signal represents the recoil

energy of the event plus the phonons originating from the Neganov-Luke effect. Hence, the

recoil energy can be written as

Er = P − Vb

Eeh
Q = P − αQ (2.8)

where Er is the recoil energy, P is the total measured phonon energy, Q is the total measured

ionization energy, Vb is the bias voltage applied across the crystal (= a few volts), Eeh = 3.0

(3.82) is the energy in eV required to break an electron-hole pair in Ge (Si) and α = Vb/Eeh.

Since it is known that the creation of free charges is ∼ 1
3 (1

2) as efficient for nuclear recoils

compared to electron recoils in Ge (Si), we create a parameter known as the ionization yield

y =
Q

Er
=

Q

P − αQ
(2.9)

hence for electron recoils y ∼ 1, and for nuclear recoils y ∼ 1
3 (1

2) in Ge (Si).

The exact value of the ionization yield depends not only upon the target atoms, but

also on the recoil energy of the events [79]. In general, we expect the recoil types to form

bands, for which the mean and 1σ-width take the form

BandCenter : yband =
aEb

r

Er
(2.10)

BandWidth(1σ) : ∆yband =
c(aEb

r) + d

Er
(2.11)
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In practice, the bands are formed by fitting this functional form to calibration data on

a detector-by-detector basis (this process will be detailed in Chapter 6).



Chapter 3

The CDMS-II Experiment

3.1 The Soudan Underground Laboratory

The CDMS-II experiment is located on the 27th level of the Soudan Underground Labora-

tory in northern Minnesota, about 100 miles north of Duluth (see Figure 3.1). The former

iron mine ceased operation in 1963, and is now run by the state’s Department of Natural

Resources (DNR) as a joint experimental physics and tourist site. Level 27 contains two

primary chambers, with the CDMS experiment located in one and the MINOS collaboration

in the other. Tourism is a large part of the site; thousands of tourists visit the mine each

year for historical mine tours and science tours of both experiments. A yearly open house

event sees around 500 visitors visit the site on a single day to learn about both experiments.

Figure 3.2 shows the author presenting to a group of visitors during the 2005 open house

event.

CDMS-II began full operation at Soudan in mid-2003. The first data run was in oper-

ation from October 2003 - January 2004, used a single tower of 6 ZIP detectors (4 Ge, 2

62
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Figure 3.1: The Soudan mine, MN, where the CDMS-II experiment is located

Figure 3.2: The author, describing the CDMS-II experiment to a group of visitors on the
open house event, May 2005
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Figure 3.3: Layout of the CDMS-II experimental chamber and support areas.

Si) and will be referred to henceforth as ’Run 118’. The second data run ran from March

2004 - August 2004, used two towers for a total of 12 ZIP detectors (6 Ge, 6 Si), and will

be referred to as ’Run 119’. From late 2004, CDMS began to install an additional 3 tow-

ers, making 30 ZIPs in total. Associated cryogenic improvements were also installed, and

operation of the final Soudan data run is currently scheduled to begin in Spring 2006. This

work will focus on the 2-tower data run, Run 119.

Figure 3.3 shows the layout of the CDMS-II experimental chamber. The detectors,

associated shielding, refrigerator cryostat and front-end electronics are located in an RF-

shielded, Class-10,000 clean room. The Data Acquisition (DAQ) hardware and software is

located on the upper level in a mezzanine room with electronics connected down through

the upper wall of the clean room. Cryogenics and monitoring software for operation of the

dilution refrigerator are located on a separate cryogenics pad just outside the RF-shielded

room.
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In addition, CDMS has the use of a building at the surface of the mine, where a cluster of

computers is used to run the analysis software and backup data to tape. There is also remote

access to the cryogenic and data acquisition system from this building, which is extremely

important since access to the mine is limited during off-hours. The surface building and

the analysis farm are further described in Chapter 4.

3.2 Cryogenics

The ZIP detectors are held at a temperature of 40 mK by use of a Oxford Kelvinox S-400

dilution refrigerator. The refrigeration system consists of a series of concentric radio-pure

copper (oxygen-free electronic (OFE) copper) cans at different temperature stages, the inner

cans being progressively colder (see Figure 3.4).

The system nominally provides∼ 400 mW of cooling at 100 mK, increasing quadratically

with temperature. The main refrigerator housing is located outside of the experimental

shield (due to the difficulty of creating a radiopure fridge); the thermal connection to the

icebox is provided by a ∼2m coldfinger (shown in Figure 3.4). Radioactive background

produced by fridge components include 60Co from the stainless steel, and isotopes located

in the Indium vacuum seals and Silver solder.

Once the system has been cooled down to base temperature (which is nominally 10 mK

but in practice has been 40 mK), regular supplies of liquid Helium and liquid Nitrogen are

needed to keep the fridge cold (i.e. they are used to keep the Helium and Nitrogen baths

filled). Since mine access is limited to 10 hours a day, 6 days a week, it is necessary to

have the ability to monitor and control the fridge remotely. This is done via a software
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Figure 3.4: Outline of the CDMS dilution refrigerator setup. The main refrigerator housing
containing the He circulation loop is on the left, the icebox is shown in the center, and
the detector electronics are fed out through the ’E-stem’ section shown on the right. The
temperature stages are shown with nominal temperatures of 300K (red), 77K (yellow), 4K
(green), 600mK (cyan), 50mK (dark blue), 10mK (black).
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interface called ‘Intellution’ (Intelligent Solution), accessible from both the mine and the

surface building computers. This allows for many cryogenic operations (including liquid

transfers) to be performed from the surface. An ‘Intelligent Gas Handling’, or ‘IGH’ system

controls the cryogenics below 4K, that is, the systems that deal primarily with circulation

of the 4He/3He mixture.

3.3 Backgrounds and Shielding

Sources of Background

The dominant source of background is the natural radioactivity of the rock walls of the

experimental cavern and the materials surrounding the detector assembly. Photon back-

grounds arise from the decay chains of 238U, 232Th and 40K, which includes an airborne

component of 222Rn gas. The air Radon levels in the mine are substantially higher than

are present at the surface; the measured rate of 222Rn decays in the mine varies from 200

Bq/m3 in December to 600-800 Bq/m3 in June.

The Soudan Underground Laboratory sits at a depth of 2341 ft below the surface (911

ft below sea level), equivalent to 2090m of water overburden. This effectively reduces the

incident muon flux by a factor 5×104 compared to sea level rates, yielding a measured rate

of 2.21± 0.03× 10−3 muons m−2 s−1 [80].

The cavern and experimental assembly act as a source of neutrons, primarily resulting

from (α, n) reactions induced by alpha-decays from Uranium and Thorium chain elements.

The neutron rate from the rock due to such processes is 2.1± 0.2× 10−8 neutrons/g/s. The

spontaneous fission of 238U and 232Th contributes a further 2.7× 10−9 neutrons/g/s.
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Cosmic ray muons also act indirectly as a further source of neutrons. These neutrons are

generated by muon-induced spallation, muon capture, or by muon-generated electromag-

netic or hadronic showers. Muon-induced neutrons represent a substantially more prob-

lematic background than neutrons coming from radioactive decays, since they typically

have much greater energies and so more readily penetrate the shielding [81]. The flux of

muon-induced neutrons, however, is much lower than the (α, n) neutron flux.

Shielding

Figure 3.5 shows the shield setup for the CDMS experiment. The primary shielding is

cylindrically symmetric, and consists of three layers:

i) An inner layer of 8.6cm of polyethylene,

ii) A 22.5cm thick layer of lead, the innermost 4.5cm of which is 200 year-old (and hence

low-activity) lead, and

iii) An outer layer consisting of 40cm of polyethylene.

The inner layer of polyethylene is present since it helps to mediate neutrons that are cre-

ated within the shield. This shield reduces incident flux of neutrons (arising from natural

radioactivity) by a factor 1 × 106, and effectively neutralizes electromagnetic backgrounds

emanating from outside of the shield.

Surrounding the primary shield on all sides are forty 5cm-thick scintillator paddles, used

to reject detector events coincident with muon events occurring inside the paddles. Each

paddle contains a piece of plastic scintillator, a single Hamamatsu R329-02 photomultiplier

tube, and an acrylic light guide. The panels each measure approximately 76cm×114cm×5cm
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Figure 3.5: Schematic of the CDMS detector shielding. The uppermost image (side view)
shows the central icebox surrounded by the polyethylene and lead shields, with dilution
refrigerator affixed. The upper sections of the primary shield are colored differently in the
diagram since these are the parts that are lifted away in order to access the icebox (eg. for
detector installation).
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Figure 3.6: Top view of the (closed) CDMS icebox. The upper sections of the shield have
been removed to facilitate access (cf. Figure 3.5).

Figure 3.7: The muon veto scintillator panels surrounding the primary lead and polyethylene
shielding.
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(some are cut down slightly in order to fit around the fridge and electronics stems). The

muon veto system is able to ‘tag’ muons at the 99.98 ±0.02
0.03 % level. A muon is considered

tagged if an event above threshold is observed in one or more bottom veto scintillator

paddles, and a scintillator event is simultaneously seen in one or more side or top panels.

i.e. it is assumed that all muons that pass through the bottom panels must also pass through

the side and/or the top panels.

The veto system also includes a set of ‘pulsers’, by which a source of blue light is fed

into each scintillator paddle with optical fibers. This allows for periodic pulsing of the light

source (controlled by the DAQ) and hence for calibration checks of the veto system.

3.4 Detector Assembly and Cold Electronics

The ZIP detectors used in CDMS are 250g (100g) cylindrical crystals of high-purity Ge (Si),

with a diameter of 76 mm and a depth of 10 mm. Detectors are arranged into ‘towers’ of 6

detectors each, with the ZIPs in a vertical face-to-face arrangement. Figure 3.8 shows the

setup of a ZIP tower along with it’s associated cold electronics.

The SQUIDs and FETs are combined into a single card called a SQUET. There is a

single SQUET card for each ZIP detector. Several considerations led to the setup shown in

Figure 3.8.

The FET cards need to be located as close to the detectors as possible (to minimize

capacitance to ground) and need to be connected via tensioned wires to minimize micro-

phonic pickup. However, the FETs operate at 140 K and also dissipate ∼ 45 mW of power,

so this must be balanced with the need to have them close to the detectors. This heatload
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Figure 3.8: Assembly of the detector tower and cold electronics in the icebox. See text for
details of the setup.
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can be tolerated on the 4K stage. This setup means that the wiring between the FETs and

detectors must be heat-sunk to each intervening temperature stage, and consequently the

tower must bridge the various temperature stages.

The SQUIDs must be operated at � 9 K to be below their superconducting transition,

and although they too could be operated at the 4 K stage, they are placed at the 600 mK

stage in order to minimize the thermal noise from the associated bias resistors.

Due to radioactive backgrounds, fiberglass circuit boards cannot be used (source of

40K), and nor can stainless steel (source of 60Co). All circuit boards are made of multilayer

Kapton laminates, and thermal isolation between tower stages is provided by thin-walled

high purity carbon tubes. All solder joints are created using custom-made low-activity

solder [82].

Tower

Each tower consists of four hexagonal copper sections joined by three thin-walled graphite

tubes (the graphite represents the dominant heat-load between temperature stages, but is

sufficiently low as to not compromise the operation of the cryostat). The top stage of the

tower holds six SQUET cards, and the bottom holds six detectors. Due to the modular

design of the tower, it can be completely assembled on the bench in an above ground lab

and inserted into the icebox as a single unit.

The wires connecting the detectors to the SQUET cards are mounted on the sides of

the tower assembly. Conventional coaxial cables with a dielectric insulator are unsuitable

for this purpose, since it is possible for a buildup of charge to occur via the triboelectric

effect (where a difference in work function between two neighboring materials results in a
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Figure 3.9: A complete tower of 6 ZIP detectors awaiting icebox installation. The tower is
sitting in a purge chamber being fed old (low Radon) air. The SQUET cards have not yet
been installed on the top stage.

buildup of charge at the interface). Hence, the configuration used in the tower is a ‘vacuum

coax’ configuration where each wire is positioned inside a machined copper channel located

in the tower face. The wires used are NbTi superconducting wires, and are shielded with a

thin copper cover placed over the copper channel in the tower.

Striplines

The dominant considerations in designing the cables that connect to the SQUET cards to

room temperature are low thermal conductivity and ease of thermal sinking. The Soudan

icebox is designed to hold up to 7 towers, each containing 6 detectors, each of which require

50 wire connections to their SQUET card (20 for detector connections, 2 for LEDs used

for baking, 3 for FET heaters and 25 connected to ground). The striplines that are used
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Figure 3.10: Aerial view of the icebox with 2 towers of detectors installed. The striplines
can be seen entering via the fridge electronics stem, and attaching to the 12 SQUET cards
present on the towers (1 per detector).

are ∼300 cm in length, 2.5 cm across, and are fabricated from multiple shielded layers of

Copper and Kapton, housed in a flexible cable. Each has a 50-pin connector that attaches

to a SQUET card (so there is a single stripline per detector), and is fed out through several

Cu pressplates and shims which provide thermal sinking at the 4 K, 77 K and 300 K stages.

This design of the striplines allows a collection of up to 42 to be stacked and fed through

the shims together in a relatively small bundle.

3.5 Warm Electronics and Data Acquisition

The signals from the warm end of the striplines are connected to a series of Front-End Boards

(FEBs), one board per detector. A single FEB board can perform a host of operations:
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• A FEB has complete control over the state of it’s detector: i.e. it can perform all

the SQUID biasing required to operate the phonon sensors, biasing/grounding of the

charge sensors, etc.

• It is able to control the LEDs using for baking and flashing the detectors.

• It can send a large current pulse through to the SQUID to heat it locally and allow

trapped flux to escape (‘zapping’ the SQUID).

• It can activate the detector’s FET heater, required to warm the FET to 140K prior

to its operation.

• The FEB receives signals from the detector’s six channels (4 phonon, 2 ionization),

amplifies them and passes them down the electronics chain.

The FEBs perform amplification of the detector signals such that the signals become

∼1V in magnitude, and hence any noise gained by subsequent transmission of the signal

down the electronics chain will be much smaller than the noise already present (and ampli-

fied) from the cold electronics.

The detector signals are passed upstairs to the DAQ/Electronics room (see Figure 3.3)

to a series of Receiver-Trigger-Filter (RTF) boards. A single RTF board per detector

monitors the incoming signals for a pulse that is above the defined threshold value. This

trigger threshold value can be user-defined, and the boards can be set to trigger on phonon

signals only, charge signals only, or upon both phonon and charge signals. Trigger logic

information from all of the RTF boards is sent to a Trigger Logic Board (TLB), which sets

a global trigger bit based on the RTF triggers and it’s own settings.
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The detector signals from the RTF boards are constantly being sent though a set of

digitizers. These Struck SIS3301 digitizers operate at 65MHz, and the data is oversampled

at this rate to create digitized traces at 1.25MHz. The SIS3301s are 14-bit digitizers run

with a maximum digitization window of 5V (±2.5V). When a global trigger bit is set to 1

by the TLB, the digitized traces from all of the Strucks are stored on disk with a suitable

pre-trigger window. This is done for every detector, irrespective of which one(s) may have

caused the global trigger.

The trigger logic from the RTF boards is also stored in a history buffer board (Struck

SIS3400). This stores trigger logic for all detectors (i.e. was there a hit above threshold?)

in 1µs binning, for the past 1 second of running. When a global trigger occurs, this history

buffer information is written to disk along with the digitized event traces.

The signals from the collection of muon veto panels is read out along a completely

separate electronics chain. The signals pass to a set of Joerger VTR812 digitizers, which

sample at 5MHz. The digitized veto traces are also written to disk when the detector traces

are, i.e. when a global trigger occurs.

A parallel signal from the veto panels is routed through a set of logic-step signal threshold

boards which record trigger logic for the panels in a similar way as is done for the detector

signals. These trigger logic values are sent to, and recorded by, the same Struck SIS3400

used for the history buffer; hence veto trigger history information is also written to disk

along with the detector trigger history information when a global trigger occurs. Yet another

parallel set of veto trigger logic values is sent to a Joerger VS64 board which records hit

and trigger rates for diagnostic purposes.
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Figure 3.11: The Data Acquisition hardware in the DAQ/Electronics room. The upper-left
rack row contains the RTF boards (black), with the Struck digitizers in the racks below
(grey). The far-right section contains all of the veto electronics (green cables). This photo
was taken post-Run 119, after new hardware had been installed for the operation of 5 towers
of detectors.

The FEB, RTF and TLB boards are all controlled by computer using a General Purpose

Interface Board (GPIB). The interface between DAQ software and hardware is described in

Chapter 4.



Chapter 4

CDMS-II Analysis Chain

4.1 Overview

The CDMS-II Analysis Chain consists of two primary parts: the Data Acquisition (DAQ)

system located in the mine (see previous chapter), and the Soudan Analysis Cluster (SAC)

located in the ‘surface building’ a short distance from the mine.

Raw data is output to disk in the mine by the DAQ in the form of binary files with

a header/detail format. A specific header value denotes the start of an event, and any

number of other header values are then written to denote specific event information on

a detector-by-detector basis. This information includes digitized detector traces, livetime

values, event number, detector trigger history, and veto traces. Each header is followed by

details relevant to that header, the format depending on the type of detail in question. The

complete detector record is covered in Section 4.3.

Once raw data is written to disk, DAQ scripts queue it up to be backed up to a tape drive,

and simultaneously copy the file to the SAC surface computers. Auxiliary files containing

79
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information on the current data run are also copied to the surface, along with ‘status’ files

giving the SAC computing farm instructions on how to deal with the new data files it finds.

The SAC cluster ‘farms’ out jobs to machines in the cluster via a set of automatic perl

scripts, based on the contents of the status file found with each event file. Each job will

begin a session of DarkPipe, the CDMS-II analysis software (written in MATLAB). This

will produce a set of output data files containing event information to be used for analysis.

Once each data file in a given data series has been run through Darkpipe and has created

output files, all the output files are combined by a process called PipeCleaner. Thus the

final output is a handful of files representing quantities for the entire data series.

4.2 Involvement

Since this thesis details work done by many members of the CDMS collaboration, it is

necessary to note which work was done by the author. A similar section will follow in

Chapter 6 detailing the analysis work; here we note the work done on the analysis chain

and related hardware/software.

Generally speaking, the author held a role in CDMS as ‘processing czar’ for Runs 118

and 119. This responsibility has been passed on to the newly-formed DAQ, Data Quality

and Computing (DDC) group for subsequent data runs. The tasks performed from the

pre-Run 118 to the post-Run 119 period were as follows.

Prior to the start of Run 118, the DarkPipe and PipeCleaner software required extensive

upgrades for operation at Soudan, since the data acquisition hardware had changed from

CDMS-I operation at the Stanford Underground Facility (SUF), and the software needed
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to function for up to 7 towers of detectors. This work was primarily done by the author.

The farm scripts and online diagnostics were created and tested by the author and John-

Paul Thompson. Automated diagnostics routines and the Run 119 blinding scheme (to be

described) were implemented and tested by the author. Reprocessing of the Run 118 and

Run 119 datasets (∼ 4TB of raw data) was performed on the SUF computer cluster by

the author, assisted by collaboration members at Stanford. Finally, much of the post-Run

119 SAC farm upgrade to 30 dual-CPU machines, including the farm script upgrades and

necessary DarkPipe, PipeCleaner and diagnostics upgrades were handled by the author.

4.3 Data Acquisition System

Data Format

As described in Section 3.5, the occurrence of a global trigger as decided by the Trigger

Logic Board results in information on the event causing the trigger being written to disk.

The DAQ software writes a single event out via it’s event structure (to be described below).

The data contents of each event record are as follows:

SeriesNumber - SeriesNumber for the current data run, in the format 1ymmdd hhmm.

eg. for a dataset beginning on July 8th 2005, at 3:52pm, the SeriesNumber would be

150708 1552.

EventNumber - Events are written into files of 500 events per file. The Event number

is equal to (file number × 10,000) + sequential number within data file. e.g. Event-

Number=20056 is the 56th event in file number 2, or the 556th event overall.
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EventTime - Time of event’s global trigger in seconds since 12:00am Jan 1, 1970.

TimeBetween - Time since last event in ms.

LiveTime - Total livetime of the detectors that this event represents, in ms.

Trigger Info - A bitmask showing which detectors were above threshold and triggered for

this event. Random and global trigger bits are also represented in this value (see

below for details of random triggers).

Num Detectors - The number of operational ZIP detectors for this dataset.

Veto Times - A list of times for which any of the veto panels had a hit above threshold

(time before global trigger in ms, taken from veto history buffer).

Veto Masks - A corresponding list of bitmasks for the veto panel hits listed as the ‘Veto

Times’.

Trigger Times - A list of times for which any of the detectors had a hit above threshold

(time before global trigger in ms, taken from detector trigger history buffer).

Trigger Masks - A corresponding list of bitmasks for the detector hits listed as the ‘Trigger

Times’.

ZIP Address and Channel - DAQ board hardware addresses and channels used for each

detector.

ZIP Phonon Traces - List of ADC values read out by the digitizers for each zip (2048

14-bit values read out at 1.25MHz). A trace is given for each detector (irrespective of

which detector(s) caused the global trigger), for each of the four phonon channels.
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ZIP Charge Traces - The same output as the ZIP Phonon Traces, except that traces are

written for each detector for each of the two charge (ionization) channels.

ZIP Timing Info - Information on digitization timing (sampling rate, timing offsets, etc.)

Veto Address and Channel - DAQ board hardware addresses and channels used for the

veto panels.

Veto Traces - List of ADC values read out by the digitizers for each of the 40 veto panels

(1024 values read-out at 5MHz).

Veto Timing Info - Information on digitization timing (sampling rate, timing offsets,

etc.)

Each piece of information is associated with a logical record header value. The data is

stored as a binary file in a ‘linked list’ format. Figure 4.1 shows the data structure of a raw

data file.

The file header contains values describing the current data format version and a flag

dictating the endianness of the data (which end of a word the bits are read from, which

differs on Macintosh and PC/Linux-based systems). Each unique event header value has it’s

own format for the subsequent data, and these are used to store the types of data detailed

above.

Datafile Recording

A cluster of Linux-based PCs are used to combine the information from the various hardware

boards and write the file to disk in the format described in the previous section.
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Figure 4.1: Data structure of a CDMS raw event file. Details of the header contents are
described in the text.

The digitized detector signals from the Struck boards are sent to two machines, named

‘Tower 1’ and ‘’Tower 2’, via PCI-card interfaces (i.e. the signals from Tower 1 detectors go

to the ‘Tower 1’ PC, etc.). Similarly, the digitized veto traces from the Joerger boards are

sent to a machine named ‘Vetocrate’. A machine called ‘Builder’ combines the data from

Tower 1, Tower 2 and VetoCrate, along with the information from the history buffer, to write

the complete event files. Any other information needed to create the event file is obtained via
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the PCs that monitor and control the data-taking process (named, unsurprisingly, ‘Monitor’

and ‘Control’). Builder, Vetocrate, Tower 1 and Tower 2 communicate via Gigabit ethernet

connections.

A machine called ‘DataServe’ takes the datafiles and performs two operations: it backs

up the files to a tape drive, and it copies them to an analysis farm computer in the surface

building. Auxiliary files giving further information on the data series are also copied to the

surface along with the data files. The connection to the surface was by 100 Base-T for Run

119, but has been upgraded to Gigabit ethernet for future operation.

The Control PC is responsible for running the event builder routines on Builder. It also

issues all of the GPIB commands needed to bias the detectors, flash the LEDs used to bake

the detectors, etc. The Monitor PC runs the Graphical User Interface used to start and

stop data taking and flash LEDs. It also monitors information like trigger rates, and runs

several diagnostics programs designed to give realtime feedback on the current data.

4.4 Soudan Analysis Cluster

The Soudan Analysis Cluster (SAC) consists of a set of dual-CPU Linux-based PCs that run

the analysis software and perform other housekeeping tasks. The cluster has been upgraded

to a total of 36 dual-CPU machines post-Run 119, but here we describe the setup of the

cluster as it was for Run 118 and Run 119 - that is, 6 dual-CPU machines.

These 6 machines, named cdmsa-cdmsf, are each Pentium 1.25GHz systems with 1GB

of memory. cdmsb, cdmsc, cdmsd and cdmse are primarily used to run the analysis software

(DarkPipe and PipeCleaner). cdmsa and cdmsf perform various tasks required to operate
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the analysis farm, which are as follows:

cdmsa - Stores RQ and RRQ output files (see below), runs farm operation scripts, stores

CVS code repository, runs the cluster’s webserver.

cdmsf - Stores raw data files, backs data up to tape drive, runs the cluster’s netServer (see

below).

4.4.1 Farm Management and Data Processing

The primary operation of the analysis farm is to identify data files that need to be processed

and spawn a corresponding Matlab job on an available farm machine. The farm also needs

to keep track of which files have been processed successfully (and unsuccessfully). The

handling of these processes is performed via a perl script named SoudanPipe.

Each data file that exists on disk has a corresponding status file, the contents of which

are essentially a DarkPipe processing log that is also used to inform the analysis farm of

action to take on the data file, if any. The farm script, SoudanPipe, constantly polls all of

the status files present on the system, searching for the presence of particular keywords in

the files. The final keyword found in a status file is taken to be the status of that data file.

The status thus informs the farm as to what action to take upon the data file.

The most important status’ are ‘ready’ and ‘complete’. A status of ‘ready’ tells the farm

to begin to process the corresponding data file via a spawned DarkPipe MATLAB job on

an available machine. The ‘complete’ status does not require any immediate action on the

part of the farm, but if every data file in a series has a status of ‘complete’, then the farm

will start a PipeCleaner process if this has not been done already.
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The pathway from raw data files to completed output is as follows:

1. Each raw data file contains 500 events, and is given a file name in the format 1ym-

mdd hhmm Fxxxx, where xxxx is the sequential number of the data file. For example,

the first data file in a series beginning on March 25th, 2004 at 5:50pm would be named

140325 1750 F0001. The second file of this series would be named 140325 1750 F0002,

etc.

2. Each raw data file is processed through DarkPipe and several output files are created

containing RQ (‘reduced quantity’) values for each input data file. eg. processing

140325 1750 F0001 with DarkPipe would result in the creation of the following files:

• 140325 1750 F0001 DPTG (RQs pertaining to detector triggering)

• 140325 1750 F0001 DPVT (RQs containing veto quantities)

• 140325 1750 F0001 DPZ1 (RQs containing ZIP 1 quantities)

• 140325 1750 F0001 DPZ2 (RQs containing ZIP 2 quantities)

• .... etc.

So for the processing of each raw data file, there will be (z + 2) RQ files created as

DarkPipe output, where z is the total number of ZIP detectors operational. In general

RQ values are not calibrated to be in the correct units for energy quantities; this is

done in the next stage of processing. RQ files are also written to local machines, so

that in the event of cdmsa being down, the farm nodes can continue to process data

through DarkPipe. The SoudanPipe script is responsible for the aggregation of output

RQ files onto cdmsa.
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3. Once all of the raw data files have been processed in this manner, PipeCleaner com-

bines all of the RQ files into what are generally termed RRQ (‘relational reduced

quantity’) files. That is:

• 140325 1750 F0001 DPTG

• 140325 1750 F0002 DPTG

• 140325 1750 F0003 DPTG

• ...etc.

are merged to create 140325 1750 DPTG and so forth. Further calibrated quan-

tities are calculated from the RQ files and stored in a 1ymmdd hhmm DPR1 file.

Phonon-position corrected quantities (see Section 4.7) are similarly held in a 1ym-

mdd hhmm DPM1 file. These (z + 4) RRQ files represent the final output of the

analysis chain.

4. The RRQ files for one or more data series’ can then be loaded into a MATLAB

program called CAP (CDMS Analysis Package). CAP allows for the analysis of very

large datasets, and provides users with pre-defined cuts.

4.4.2 Online Monitoring Software

Since there can be, at times, more than 100 data files waiting to be processed by the analysis

farm, it is extremely useful to have a way to monitor farm activity. To this end, the action

of the SoudanPipe script is described, via a script named FarmStatus, on an XML-based

web page.
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Figure 4.2: The jobs tab of the farm monitoring page. This shows the current operation
of the analysis farm, along with process IDs and the time since the process began.

Whenever SoudanPipe polls a status file, it writes the current status of that file to a log

file. Similarly, whenever a DarkPipe processing job begins, completes, or results in an error,

real-time information on these processes is written to a log file. This allows the FarmStatus

script to describe, in close to real-time: 1) The current activity of the farm (which node

is processing which file and for how long), 2) The list of data files currently waiting to

be processed, 3) A log of completed DarkPipe and PipeCleaner processes, including error

messages where appropriate.

This information is collated into a set of XML-generated web pages, shown in Figures

4.2 - 4.6.

The set of farm monitoring pages has proved massively useful for users from all institu-

tions to keep track of processing at Soudan. There also exists a set of perl scripts on the

SAC cluster which allow a user to change the status of a large number of data files with a
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Figure 4.3: The todo tab of the farm monitoring page. This lists the data files which have
a status of ‘ready’ or ‘paused’ (used to put processing on hold).
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Figure 4.4: The done tab of the farm monitoring page. Displays recent activity of the
farm, including failed processing jobs (due to errors).

Figure 4.5: The disk tab of the farm monitoring page. This shows the available disk space
for all drives on the farm machines.
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Figure 4.6: The rrqs tab of the farm monitoring page. This page lists the data series’ that
have successfully been through PipeCleaner and have therefore completed all processing.
This list therefore shows data series’ that are available to be used for analysis.
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simple command.

4.5 Analysis Software

As already described, the DarkPipe software takes raw data and auxiliary files as input,

and outputs a set of RQ files. The code is managed via Concurrent Versioning System

(CVS), which allows for multiple users to write new code and ‘check-in’ changes to a central

repository. CVS also provides the ability to ‘tag’ particular releases, which we have used

as a way to fix our code for each round of processing. This is especially important and

useful when using many machines to perform processing, since each machine must be using

identical code.

An overview of the actual DarkPipe and PipeCleaner code can be found in Appendix

A, but here we examine three key routines.

ReadEvents

The ReadEvents routine is responsible for reading the raw data and creating a Matlab

structure which stores the same data. Since the raw data is located on a single machine,

the farm needs to be able to read from a raw data file remotely, or the file must be copied

across the network to be analyzed. Being able to read the data across the network has

several advantages: 1) The raw data can be read in chunks (i.e. any number of specific

event numbers can be read out), 2) The raw data can be compressed, saving disk space and

still be read out piecemeal, 3) The alternative of copying the data file across the network

would comprise a significantly greater network load.

The analysis farm is able to operate in this way by means of a network protocol called
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NetServer. This provides the above functionality via the use of a small program that can be

run on a single farm machine. Each netServer can handle requests from multiple machines;

empirically this has a limit of around 10 nodes (more than that and the netServer can run

into memory issues).

By means of the netServer, the ReadEvents routine is able to return the requested events

by searching for the relevant event headers. In regular DarkPipe running, the analysis of a

500-event data file is performed in chunks of 50 events at a time. That is, ReadEvents is

run ten times (and hence the netServer is accessed ten times), during the processing of a

single raw data file.

Generation of Noise Templates

The first 500 events taken in a data series are not triggered by a global trigger, but are

triggered at a random time. This allows the collection of events that represent the baseline

noise of each detector channel for each data series. Around 1% of events during the rest

of the data series are also randomly triggered to allow the study of changes in noise that

might occur during the data series. The random trigger events are tagged in the history

buffer by a specific bit in the mask.

The random triggers occurring at the start of the data series are used to generate noise

templates. Each of the 500 traces is examined for each detector channel individually, and

those that contain signal significantly above baseline noise are discarded from the sample.

The remaining random trigger events are averaged and a power spectral density of the noise

spectrum is stored.
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Optimal Filtering

Optimal Filtering is a signal analysis method used to estimate the time-offset and amplitude

of a signal by use of a pulse template. A real detector pulse can be written as

v(t) = As(t− t0) + n(t) (4.1)

where s(t) is the expected pulse represented by a template with a pulse start time at t = 0

and normalized to peak height of 1 (here it is shifted to start with an arbitrary time-offset

t0), A is the amplitude to be estimated, and n(t) is the noise present in the signal. Also,

let J(f) be the noise power spectral density of the signal. i.e.

J(f) = lim
T→∞

1
2T
|ñ(f)|2 (4.2)

where ñ(f) is the Fourier transform of n(t).

The quality of the fit provided by the signal template and amplitude values is given by

the χ2 of the fit:

χ2 =
∫ ∞

−∞
df
|ṽ(f)−Ae−iωt0 s̃(f)|2

J(f)
(4.3)

where s̃(f) is the Fourier transform of s(t).

We wish to determine the best-fit values of both A and t0, which is done by minimizing

the χ2 with respect to A and t0 respectively. It is useful to define the optimal filter by

φ̃(f) =
s̃∗(f)
J(f)

(4.4)

with Fourier transform φ(t). Minimizing χ2 with respect to t0 now yields

∂

∂t0
[φ(f) ∗ v(f)] (t0)

∣∣∣∣∣
t0= bt0

= 0 (4.5)
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In other words to find the best estimator t̂0 of the time offset t0, apply the filter φ(t) to the

trace and find the time of the peak. The best estimator for the amplitude is as follows:

Â =

∫∞
−∞ df eiω bt0 φ̃(f)ṽ(f)∫∞
−∞ df φ̃(f)s̃(f)

(4.6)

where t̂0 is the best estimator of t0 as described above.

Note that the numerator of Â is the convolution of the trace v(t) with the optimal filter

φ(t), evaluated at the time offset t̂0. As already noted, t̂0 corresponds to the time of the

peak in the trace once the optimal filter has been applied, so Â is just proportional to the

amplitude of that peak.

This method relies upon knowing the shape of the pulses that your detectors will see,

along with a good estimate of the noise in the detectors. MATLAB code showing the

optimal filter routine in practice can be found in Appendix B.

In Run 118-119, pulse templates for ionization signals were created by averaging over

a set of normalized calibration ionization signals. This is sufficient since the shape of the

ionization pulses do not change, and hence the shape of the pulse is determined by the

electronics used to measure the signal. ‘Crosstalk’ templates are also created, and used to

remove the small amount of signal present in the inner electrode channel due to the signal

in the outer electrode channel, and vice versa.

Pulse templates for the phonon signals are created from a generalized 2-pole pulse shape,

with predefined rise and fall times on a detector-by-detector, channel-by-channel basis.

Recent work [84] has demonstrated the need to model the timing of the phonon pulse in

more detail, providing greater phonon energy resolution and potentially greater precision

in the calculation of timing parameters. It is likely that this will be the method used to
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calculate the amplitude for phonon pulses in the future.

4.6 Blinding Scheme

In order to perform our analysis in an unbiased way, it is necessary to develop a blinding

scheme. Run 119 was the first CDMS run to be fully blinded - an overview of the scheme

is as follows:

• Half of the calibration data taken during the run was designated as ‘Open’ (defined

to be all data with an even SeriesNumber). This data was used to define cuts and

recoil bands.

• The remaining half of the calibration data was designated ‘Closed’ (odd SeriesNum-

bers). This data was used to estimate the efficiency of cuts and expected backgrounds

from the analysis.

• The WIMP search data had a blinding cut applied to it, such that any event that

could potentially be identified as a WIMP was removed from the analysis. This

allowed the WIMP search data to be studied without biasing ourselves with respect

to any potential WIMP candidate events. Once all cuts have been frozen and the

resulting efficiencies and backgrounds calculated, these blinded events are allowed

into the analysis for the first time.

The blinding cut, applied to the WIMP search data, removed events fulfilling all of the

following criteria:

• Anti-coincident with a muon veto event
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• Event located in the inner ionization electrode volume

• Recoil energy between 5-130keV

• Event lies within 3σ nuclear recoil band (defined range of ionization yield values)

• Event deposited energy above threshold in one detector only (single scatter)

Any possible WIMP candidate event would have to fulfil all of these criteria.

Chapter 6 will describe in detail the results of calculating cut efficiencies from the open

and closed calibration data, plus the results of ‘unblinding’ the WIMP search data. The

fraction of WIMP search events culled by the blinding cut was ∼ 0.5 − 1%. The analysis

was blind to this number prior to unblinding.

4.7 Data Reprocessing

There are several operations for which it is preferable to have all of the data run’s calibration

data available. Thus, once all data taking has ceased for a run, all of the data is reprocessed.

These operations are such that the only reprocessing that is required is a re-running of

PipeCleaner . Reprocessing is important for the following reasons:

• We would like to maximize the available statistics from the calibration data to define

the energy calibration.

• It is preferable to have maximal calibration statistics to perform the phonon position

correction algorithm (to be described below).

• The energy response of the detectors is non-linear, and this must be corrected (see

below).
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• Maximal calibration statistics is desirable for other calibration values, such as relative

phonon quadrant weighting (see Chapter 6).

• Particular errors or data issues may be identified during the course of a run, and these

can be corrected in the reprocessing.

For both Run 118 and Run 119, the reprocessing was performed on a cluster of computers

located at the Stanford Underground Facility (SUF), which was the location of the CDMS-I

experiment. This cluster also acted as the repository for the reprocessed data.

4.7.1 Phonon Position Correction

It is well-established that phonon timing parameters vary with position over the crystal [85].

Firstly, this is because Tc gradients exist across the crystal - that is, the four TES sensors

on a single ZIP do not all have the same value of Tc. The size of the gradient can vary up to

20-30mK, but it is always present due to the intense difficulty in fabricating multiple TESs

with the same Tc over a 76mm diameter wafer. This gradient causes variations in both the

amplitude and risetime of the phonon signal. Secondly, the mean number of scatterings

that a phonon will undergo before being absorbed by the phonon sensors increases with

crystal radius1. This number increases rapidly close to the outer edge of the crystal and is

responsible for a nonlinearity and subsequent degeneracy in the phonon position parameters.

Since the timing parameters of the phonon pulses are critical in rejecting surface events,

it is imperative that this effect be corrected. This correction must be performed in such a

way that the non-uniformities are removed, while the intrinsic depth information present in
1This follows from the crystal geometry and by considering that phonons are reflected from the crystal
sides.
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Figure 4.7: Phonon radial delay as a function of phonon x-partition for the selection of
events shown in red in Figure 4.8. This shows the non-linearity in the event position
reconstruction. All events are in ZIP 3 and are taken from 133Ba calibration data.

Figure 4.8: Phonon partition for 133Ba calibration events in Z3. The highlighted horizontal
slice of events in red is depicted in Figure 4.7.
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the phonon signal remains unaffected. This is done by making the response of the detector

to bulk electron recoil events independent of x-y position via a lookup table containing data

on event parameters as a function of position.

Figure 4.7 shows the radial delay value (as calculated from x-delay and y-delay) as a

function of the x-partition parameter. Both of these values are an estimate of position, but

it can be seen that events occurring at large radii suffer a degeneracy in these parameters,

irrespective of whether you use delay or partition to define the position. The position

correction will require a unique way to describe the position of an event, and hence both

phonon partition and phonon delay position estimations must be used.

The algorithm uses a lookup table, created from bulk electron recoil events taken from

calibration data. An overview of the creation and application of the lookup table is as

follows:

1. Create Lookup table using gamma calibration data:

• Select events from calibration data that are bulk electron recoils. This selection

is performed using the ionization yield parameter, which we can be sure will

select only bulk recoils when the value is close to 1.

• For each event, define it’s ‘position’ as the location in the 3-dimensional space

(px, py, dr), where px and py are the x and y phonon partition, and dr is the

r-delay, defined as
√

d2
x + d2

y.

• Find N nearest neighbors in (px, py, dr) space for the selected event. N is typi-

cally chosen to be ∼ 80.

• For each of the event parameters that are to be corrected, find the mean value of
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the parameter for each of the nearest neighbor events. For example, each ‘bin’

in the lookup table will have a mean value of the phonon risetime for events in

that bin.

• Making the detector response independent of position for the bulk electron recoil

events implies that events in each bin should have the same mean value for each

event parameter that is being corrected. Therefore a correction factor which will

scale event parameters to the same mean is stored as a function of (px, py, dr) for

each parameter. This completes generation of the lookup table.

2. Apply Position Correction:

• For every event in the new dataset being corrected (eg. WIMP search data), find

the table entry corresponding to the closest point in (px, py, dr) space.

• Scale each parameter for the event according to the correction factor stored in

the table derived from the gamma calibration for this position.

For more information on the phonon position correction algorithm, see [86].

4.8 Analysis Chain Upgrades

As the CDMS-II experiment is upgraded to a total of 30 ZIP detectors, improvements to

the analysis farm are required. These upgrades include:

• An expanded Soudan Analysis Cluster. The SAC has been upgraded with 30 rack

mounted, dual 1GHz Pentium machines donated from Fermilab. The machines that

were previously used as the analysis farm now operate only the farm scripts and
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netServers for the new farm. Since the network throughput will be that much greater,

cdmsf now operates two gigabit ethernet cards, each with it’s own IP address. The

farm scripts and monitoring software have been upgraded to handle the up-to-60 nodes

that will be running. In particular, the farm now has a dynamic hostlist, since it is

likely that nodes will be added and removed from the farm frequently.

• The farm’s automated diagnostics routines have been better integrated with the

DAQ’s own diagnostics software.

• The increased computer power needed for reprocessing will be handled by a farm of

several hundred machines at Fermilab. Even with the improved SAC cluster, running

the phonon position correction algorithm on the amount of data the subsequent run is

likely to generate will still take a long time. Obtaining a sufficient number of MATLAB

licenses for this operation, however, would cost a great deal and a workaround has

been found in the form of a compiled version of DarkPipe and PipeCleaner. This

compiled analysis code, orchestrated by Walter Ogburn, can be run without a license

on the Fermilab farm.



Chapter 5

Surface Event Analysis

As described in Chapter 2, the ionization yield y = Q
Er

= Q
P−αQ is used to discriminate

between electron recoil and nuclear recoil events. Recall that for bulk electron recoil events,

y ∼ 1, and for nuclear recoils y ∼ 1
3 (1

2) in Ge (Si). It has been found empirically that events

that deposit energy within the outer ∼ 50µm of the crystal surface suffer from a reduced

ionization response [85]. Electron recoil events that deposit energy in the outer few µm

have such a reduced ionization response that they appear in the nuclear recoil band.

Events in this ‘dead layer’ come from three sources: gammas interacting within the sur-

face layer, low-energy electrons ejected from nearby material by high-energy x-rays (‘ejec-

trons’), and electrons produced by radioactive beta decays from surface contamination. In

dark matter search data it appears that the greatest contribution to the WIMP signal region

is electrons (from beta emitters) that interact in a single detector. Electrons that scatter in

more than one detector can be rejected since WIMP signal acceptance cuts require energy

to be deposited in a single detector.

104
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As described in Chapter 2, the dead-layer effect was reduced significantly by the addi-

tion of a thin layer (∼40nm) of amorphous Si (α-Si) to the surface of the detector. The

amorphous layer provides a barrier against charge diffusion into the incorrect electrode (i.e.

electrons diffusing into the negative electrode, or holes into the positive electrode), since

the band gap of the α-Si is greater than that of Ge or Si. This technique has reduced the

physical size of the dead layer by a factor ∼3, but does not completely remove the effect.

The other way to combat the dead layer is to utilize the phonon signal risetime. It

appears that the phonon population for an event close to a metallic layer (in this case the

ionization electrodes) experiences a fast down-conversion of phonon energy to the range

where propagation becomes dominated by ballistic propagation. This creates a measurably

shorter risetime for the phonon signal arising from surface events [87].

5.1 Characterizing the Dead Layer

The dead layer effect is known to effectively reduce the ionization response for surface events,

since free charges created in the particle interaction have a chance of diffusing, against the

electric field, into the incorrect electrode. Empirically, it is also apparent that the phonon

energy collection efficiency is suppressed for surface events.

The ideal calibration source to probe the suppression of the ionization and phonon

responses would provide both bulk and surface events in the recoil energy range of 0-100

keV. Calibration of the Ge detector known as G31 (which eventually became T2Z5 in Run

119) was performed at UC Berkeley in 2002 using a 109Cd source.
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5.1.1 Radioactive Decay of 109Cd

109Cd decays via electron capture, which gives rise to an x-ray cascade. The resulting

109Ag∗ excited state at 88 keV decays with a half-life of 40 s. The de-excitation of the

88 keV 109Ag∗ state can follow several pathways.

Firstly, the excited nucleus can emit an 88 keV gamma - this occurs with a branching

ratio of 3.6%. The remaining 96.4% of the time, one of the atomic electrons undergoes

internal conversion. i.e. the nucleus charge distribution couples directly to the s-wave

orbitals of the atomic electrons. This leads to a de-excitation of the nucleus by the emission

of an atomic electron and the creation of an atomic shell vacancy. The resulting vacancy

then fills with an electron from a higher energy orbital either by x-ray emission, or by an

Auger process in which an additional atomic electron is emitted (this leaves another vacancy

and the above process repeats).

Hence the primary processes by which the 88 keV excited state of 109Ag∗ decays, are as

follows [88]:

1) (41% decays) Internal Conversion electron - 63 keV K-shell ejection. The subsequent

K-shell vacancy results in:

a) (80%) ∼22 keV photon1, plus ∼3 keV in photons and/or electrons.

b) (∼10%) ∼25 keV photon.

c) (∼10%) Auger processes with total electron energies of 25 keV.

2) (45% decays) Internal Conversion electron - ∼85 keV L-shell ejection. The subsequent
1Energies are approximate since there is a ∼ 1 keV variation depending upon which sub-orbital is involved

in the transition.
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Figure 5.1: Depth profiles of the primary electron and gamma/x-ray lines from 109Cd
when incident upon Ge. The electrons from a 109Cd source sample different depths of the
detector’s dead layer.

L-shell vacancy results in ∼3 keV in photons and/or electrons.

3) (11% decays) Internal Conversion electron - ∼88 keV (M/N/O)-shell ejection. The

subsequent (M/N/O)-shell vacancy results in small amount of additional photons

and/or electrons.

4) (3.6% decays) 88 keV photon.

A summary of all the photon and electron energies produced by the decay are shown in

Tables 5.1 and 5.2 respectively.

Figure 5.1 shows the depth profiles of the main 109Cd electron and gamma/x-ray lines

when incident upon Ge, as obtained from a GEANT 4 Monte Carlo simulation.

Therefore a combination of events sampling different depths of the crystal, and with well-

defined energies are emitted from the source. This provides an opportunity to quantitatively
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Photon Energy (keV) Branching Ratio Notes
2.63 0.18 M→L transition
2.81 0.09 M→L transition
2.98 5.0 M→L transition
3.21 3.6 M→L transition
3.57 0.36 M→L transition
21.99 28.9 L→K transition
22.16 54.5 L→K transition
24.93 13.7 M→K transition
25.60 2.72 (N/O)→K transition
88.03 3.6 Nuclear de-excitation gamma

Table 5.1: Table of photon energies arising from the decay of 109Cd, along with branching
ratios and notes on the source of each line. Taken from [88].

Electron Energy (keV) Branching Ratio Notes
3 81 L-shell vac. filled by (M/N/O)-shell Auger
4 53 L-shell vac. filled by (M/N/O)-shell Auger
18 6 K-shell vacancy filled by L→L-shell Auger
19 8.3 K-shell vacancy filled by L→L-shell Auger
21 2.8 K-shell vacancy filled by L→M-shell Auger
22 2.9 K-shell vacancy filled by L→M-shell Auger
24 0.3 K-shell vacancy filled by M→M-shell Auger
63 40.8 K-shell internal conversion electron
84 3.2 L-shell internal conversion electron
85 41.5 L-shell internal conversion electron
87 9.1 M-shell internal conversion electron
88 1.7 (N/O)-shell internal conversion electrons

Table 5.2: Table of electron energies arising from the decay of 109Cd, along with branching
ratios and notes on the source of each line. Taken from [88].
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Figure 5.2: Schematic of the G31 Monte Carlo setup. Detector, collimator and source
substrate are to scale. The hole in the Pb collimator is shown as a dotted line.

study the dead layer by comparing experimental data of the 109Cd calibration with a Monte

Carlo simulation of the calibration setup.

5.1.2 Analysis of G31 Calibration Data

This work focuses on two runs of the G31 calibration run at UC Berkeley; Run 296 which

used the 109Cd source to illuminate the ‘charge side’ of the detector (i.e. the side without

the phonon sensors), and Run 297 which used the same source to illuminate the phonon

sensor side of the detector. The source is a 1 mm thick, 76 mm diameter substrate with a

thin layer of 109Cd deposited upon it, covered in a 0.1 µm Au layer. The 109Cd has silver

backing. Both runs used a 6 mm thick lead collimator to illuminate a small region of the

detector surface, and situated the source 18.1 mm above the detector (center to center

measurement). See Figure 5.2 for a schematic of the setup.

The physical spectrum observed in the detector will differ from the 109Cd source details

listed in the previous section due to the Au layer, the Ag backing (which provides some

backscattered events), the Pb collimator (which will Compton scatter some events onto the
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Figure 5.3: 109Cd calibration data of the G31 detector, Run 296 (charge side). Overlayed
histogram shows event counts on a linear scale.

detector), and the Ge detector itself, which will backscatter around 30% of the incident

electrons in the energy range of interest.

Figure 5.3 shows the detector response for Run 296 (charge side). The electron energies

of 63 keV and 85 keV actually appear in the detector with recoil energies at ∼54 keV and

∼71 keV, while the 22 keV x-ray peak appears at 22 keV recoil. The electron lines appear

with ionization yield values centered below 1, while the 22 keV x-rays appear with values

around 1. Both the ionization and phonon responses of the detector are suppressed for

surface events. The data requires additional scaling to ensure that the 88 keV bulk gammas
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appear with an ionization yield of 1 and at 88 keV in recoil energy.

The suppression of the phonon response was also observed in the 241Am calibration of

the G32 detector at UC Berkeley. A positive correlation between the phonon energy and

phonon risetime of calibration events is also present in both G31 and G32 calibration data.

This is strong evidence that the reduction in phonon energy is a depth-dependent effect,

since it is well-established that the phonon risetime is depth-dependent.

A GEANT4 Monte Carlo simulation mirroring the experimental setup was created,

recording recoil energies and event depths for events interacting in the crystal. Where an

event deposits energy in multiple locations, the depth of the event is taken to be an energy-

weighted average of the sites where energy was deposited. The Monte Carlo code did not

attempt to simulate the 109Cd events that occur in coincidence - for example, a 22 keV

photon always follows a 63 keV electron. The particle generator simply fired the particles

listed in Tables 5.1 and 5.2 in the correct proportions.

The task is to find the ionization yield efficiency function εy(z), and the effective phonon

efficiency function εP (z), where z is the energy weighted average event depth taken from

the Monte Carlo output. We conjecture that these efficiency functions should be equal to

1 for z & 50µm, and that they should decrease as z tends towards zero. For a given choice

of εy(z) and εP (z), the analysis was performed in the following manner:

1) The effective ionization yield follows directly from the event depth. We know that all

events in the calibration data are electron recoils defined to have an ionization yield

of 1, but that the dead layer effect will reduce this yield for events depositing energy

in the top 50µm:

y = 1× εy(z) (5.1)
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2) The phonon response is defined using the Monte Carlo energy-weighted average depth

z, and recoil energy R:

P = εP (z)× (R + αyR) (5.2)

This follows from a) R = P − αQ, and b) y = Q/R. Recall that α is the bias voltage

divided by the energy required to create an electron-hole pair (see Chapter 2).

3) Noise can be added to y and P based on the detector’s noise response.

4) Define the ionization energy by: Q = yR.

5) The final effective recoil energy is then given by: Er = P − αQ.

Hence, the task is to find the εy(z) and εP (z) that provide the best fit to the data (using

y and Er). We chose to model the efficiency functions using the functional forms:

εy(z) = 1− Ce−(Az+B) εP (z) = 1− Ee−Dz (5.3)

where A, B, C, D and E are constants to be determined for each calibration run (we

don’t have an a priori reason for the efficiency functions to be the same on each side of

the detector). Other functions were studied, including a direct deconvolution of the data

to extract the depth dependence relation. The direct deconvolution was found to be too

unstable with this method, and a generalized mapping gave results very similar to that of

the functions above. The functions in (5.3) are representative of those that gave good fits

to the data.

The phonon efficiency function is set to a constant value below a particular depth thresh-

old, which was 15 µm for both Run 296 and Run 297 data. This improves the overall fit

to the data but is also motivated by the likely source of the phonon efficiency - that is,
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Figure 5.4: Ionization Yield efficiency functions εy(z), as derived from G31 data.

Figure 5.5: Phonon efficiency functions εP (z), as derived from G31 data. Run 297 (phonon
side) data has two phonon efficiency functions; the primary function is applied to 70% of
the Monte Carlo data, the secondary function is applied to the remaining 30% of the Monte
Carlo data (see text).
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Figure 5.6: Fit of Monte Carlo data (blue) to G31 Run 296 (charge side) calibration data
(red) around each of the primary peaks from the 109Cd source. This fit allows the calculation
of the ionization yield efficiency function, εy(z), independently of the phonon efficiency
function. Each plot is normalized to the total number of events in the recoil energy window.

an interaction between the initial phonon population and the surface metallic films of the

detector.

The observed ‘shadowing effect’ seen in the Run 297 data (see Figure 5.10) is also

successfully modelled by this method by supplying two phonon efficiencies which are applied

to two subsets of the data (see below).

The efficiency functions, as derived for both Run 296 and 297 calibration data, are

shown in Figures 5.4 and 5.5.

G31 Run 296 (Charge Side) Results

The fit to the data is shown in Figures 5.6 to 5.8. The values used in Eqn. (5.3) to obtain

these fits were A = 0.17, B = 0.7, C = 1.1, D = 0.09 and E = 0.36.

We have applied a non-linear correction to the recoil energy in G31 data in order to

ensure that the 88 keV gamma events appear with a mean ionization yield of 1. The 88

keV events are bulk events, as shown in Figure 5.1, so the phonon energy was transformed



115

Figure 5.7: G31 Run 296 (charge side) calibration data (red), and Monte Carlo data with
ionization yield and phonon efficiency functions applied (blue).

Figure 5.8: Counts by recoil energy (normalized to total number of counts in each data set)
for G31 Run 296 (charge side) calibration data (red), and Monte Carlo data with ionization
yield and phonon efficiency functions applied (blue).
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Figure 5.9: Fit of Monte Carlo data (blue) to G31 Run 297 (phonon side) calibration
data (red) around each of the primary peaks from the 109Cd source. This fit allows the
calculation of the ionization yield efficiency function, εy(z), independently of the phonon
efficiency function. Each plot is normalized to the total number of events in the recoil
energy window.

by the relation Pnew = τ(eP/τ − 1) with τ = 800 in order to place the 88 keV bulk recoils at

an ionization yield of 1. The recoil energy was then scaled linearly to put the 88 keV bulk

gammas back at a recoil energy of 88 keV.

A depth of 15 µm was used as a threshold for the phonon efficiency function - at depths

below 15 µm the efficiency becomes constant. This is necessary to get a reasonable fit to

the electron events while still getting agreement on the 22 keV x-ray distribution in Figure

5.7. The 15µm depth may indicate the size of the initial phonon ‘fireball’ that interacts

with the surface metallic films.

G31 Run 297 (Phonon Side) Results

The MC fit to the data is shown in Figures 5.9 to 5.11. Data taken in G31 Run 297 has

a ‘shadowing’ effect, where a subset of the data appears at a higher ionization yield and

at a lower recoil energy (see Figure 5.10). The shadowing effect is modelled by using two
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Figure 5.10: G31 Run 297 (phonon side) calibration data (red), and Monte Carlo data with
ionization yield and phonon efficiency functions applied (blue).

Figure 5.11: Counts by recoil energy (normalized to total number of counts in each data
set) for G31 Run 297 (phonon side) calibration data (red), and Monte Carlo data with
ionization yield and phonon efficiency functions applied (blue).
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different phonon efficiency functions. Both used a threshold of 15µm, below which the

efficiency is constant, as shown in Figure 5.5. Monte Carlo data was randomly selected so

that 70% of the events utilized the primary phonon efficiency function, and 30% used the

secondary function.

Despite the shadowing effect, the G31 Runs 297 data passes data quality checks which

would rule out detector problems. The phonon pulses for the shadow events have typical

χ2 values, and are not unusual aside from having a lower amplitude than expected. The

shadowing effect has not been observed in subsequent 241Am and 60Co calibrations on this

and other detectors, but these sources do not supply events that heavily sample the surface

as 109Cd does. It is possible that the shadowing effect is due to real detector physics - the

fraction of events that suffer from this effect (∼30%) is very close to the fraction of the ZIP

surface that is covered by the Al fins (25%).

The values used in (5.3) to obtain the fit for the yield efficiency function were A = 0.08,

B = 0.55 and C = 1.15. The primary phonon efficiency function uses D = 0.10 and

E = 0.22 - the secondary phonon efficiency function uses D = 0.15 and E = 1.60.

5.2 Study of Beta Backgrounds

The dead layer model developed in the previous section provides a good fit to the G31 109Cd

calibration data. Next we apply the analysis to simulation of 133Ba calibration data.

133Ba provides gamma ray lines at 303 keV, 356 keV and 384 keV, and is used to perform

the energy calibration in CDMS. It also provides a population of surface events comprised

of photons interacting at the surface, and ejectrons. Recall that an ejectron is a low-energy
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Figure 5.12: 133Ba calibration data for detector Z2. The 2σ electron recoil (upper) and
nuclear recoil (lower) bands are shown. Charge threshold and inner electrode cuts have
been applied.

electron ejected from nearby material by an x-ray photon.

Figure 5.12 shows 133Ba calibration data taken using the Ge ZIP Z2. The 2σ electron

recoil and nuclear recoil bands are shown, as calculated from (2.10) and (2.11). Details of

the creation of these bands can be found in Chapter 6.

The vast majority of events in Figure 5.12 appear in the electron recoil band, but that

there is a population of events that ‘rain down’ from the electron recoil band. These are

surface events that have a reduced ionization yield as a result of the dead layer effect. Gen-

erally, electron recoils appearing below the electron recoil band are referred to as ‘betas’,

although the population can actually include betas from radioactive contaminants, ejec-

trons, and photons interacting at the surface. Similarly, events appearing in the 2σ electron
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Figure 5.13: Simulation of 133Ba calibration data for detector Z2. The 2σ electron recoil
(upper) and nuclear recoil (lower) bands are shown. Charge threshold and inner electrode
cuts have been applied.

recoil band are referred to as ‘gammas’ although technically this includes some x-rays.

5.2.1 Simulation of 133Ba Calibration Data

A GEANT4 Monte Carlo simulation of one tower of 6 ZIP detectors was created, modeling

the calibration that took place during Run 118 at Soudan. In the simulation, the stack

of 6 ZIPs are surrounded by 2 mm of copper to model the detector housing. 2.5 million

events from a gamma source modeled after 133Ba were fired from a sphere surrounding the

entire geometry, and the recoil energy and depth of each event incident upon a detector

was recorded. The depth is again taken as an energy-weighted average of the depths where

energy is deposited.

Events with a depth greater than 50 µm are considered to be bulk events, since we
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assume that beyond this depth both the yield and phonon efficiency functions are equal to

one. The efficiency functions were applied using the procedure described in Section 5.1.2 to

obtain the effective ionization and phonon energies. Since we will be coadding the statistics,

it is assumed that an event is equally likely to be on either the charge or phonon side of the

detector and is randomly determined. The efficiency functions for that side are then used.

Figure 5.13 shows the simulated data for detector Z2 using the same cuts as was used

to produce Figure 5.12. The simulated dataset contains approximately twice the number

of events as the calibration dataset.

5.2.2 Comparison of Surface Event Rates

We would like to examine the depth dependence of particular types of events, and compare

their rates with those observed in the experimental data. The following types of events are

of interest:

• Single scatter events. These deposit energy above threshold (∼ 1 keV in ionization

energy) in one detector only. Single scatters that deposit energy in the top 1 µm will

contribute to the WIMP signal region due to a low yield efficiency value that puts the

event in the nuclear recoil band.

• Nearest-Neighbor Double (NND) events. These are events for which two neighboring

detectors both have simultaneous events above threshold.

• Beta-Beta Double (BBD) events. A subset of the nearest-neighbor double events for

which both events are defined as betas.
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Figure 5.14: Depth profiles of 5-100 keV events from the Monte Carlo simulation of 133Ba
calibration data for detectors Z2/Z3/Z5 combined. See text for description of event types.

The beta definition in this case follows by finding a suitable depth cutoff which matches

the observed ratio of gammas to betas found in the experimental data. A beta is hence

defined for the simulation data as an event with a depth of < 21 µm, which is consistent

with the value expected from the yield efficiency function.

Monte Carlo events in these categories are shown as a function of depth in Figure 5.14

for the Ge ZIPs Z2, Z3 and Z5 combined. Events are preselected to have a recoil energy

in the range 5-100 keV, and pass the inner electrode (cQin) cut. The count in the figure

is normalized to the total number of events passing these cuts. The 50 µm bin contains all

events with a depth > 50 µm.

As would be expected, nearest-neighbor double and beta-beta double events predomi-

nantly sample the ZIP surface. Single scatter events show a corresponding suppression of
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Event Type Monte Carlo Simulation Run 118 Calibration Data

β all 1.44% +0.04%
−0.03% 1.45% +0.06%

−0.05%

β singles 0.19% +0.01%
−0.02% 0.13% +0.02%

−0.02%

2σ Nucl. Recoil Band all 0.09% +0.01%
−0.01% 0.11% +0.01%

−0.01%

2σ Nucl. Recoil Band singles 0.002% +0.002%
−0.001% 0.005% +0.004%

−0.003%

Table 5.3: Percentage of events by type from simulation and calibration data [89] of 133Ba
source during Run 118 for detectors Z2, Z3 and Z5 combined. Events are preselected to
have recoil energy in the range 5-100 keV, be above the ionization threshold, and pass the
inner electrode cut. Total event numbers passing these cuts in each dataset are 361,478
(Monte Carlo) and 192,632 (Run 118 data). 1σ error values shown.

events very close to the surface.

Table 5.3 shows the percent of 133Ba calibration events types observed in the simulated

and the experimental data. A event in the simulation data is taken to appear in the nuclear

recoil band when it has an average depth < 1 µm. A beta is defined in the simulation data

as an event which has an average depth < 21 µm.

5.2.3 Summary

The simulated data is fit to both the total number of betas and the total number of nuclear

recoil band events seen in the Run 118 calibration data (first and third rows in Table

5.3). Having set these two free parameters, the number of beta singles and nuclear recoil

band singles predicted by the simulation match with the calibration data numbers within

statistics at the 1.5σ level. The fraction of beta events that are singles (0.13) and the

fraction of nuclear recoil band events that are singles (0.02) differ by a factor of 6 yet the

simulation is able to match both these numbers within statistics.

The development of the dead layer model on G31 calibration data and it’s subsequent

application to 133Ba data appears to vindicate the use of this model in conjuction with a
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GEANT4 Monte Carlo simulation. Analyses of local beta contamination sources in CDMS,

such as 210Pb and 40K, using this dead layer model are being performed by a group at the

University of Florida. The effectiveness of the model when applied to the 241Am and 60Co

calibrations of the G32 detector should also be studied.



Chapter 6

Run 119 Analysis

This chapter describes the results of the second CDMS-II data run taken at the Soudan

Underground Laboratory. The data run, referred to as Run 119, was in operation from

March - August 2004, and used 2 Towers of detectors, for a total of 12 ZIPs (6 Ge, 6 Si),

and a total mass of 1.5kg Ge, 0.6kg Si.

6.1 Run Overview

A total of 77.4 live-days of WIMP search data was taken over the course of Run 119, giving

a total of 116.1 kg days exposure on Ge and 46.44 kg days on Si. The 2-Tower setup is

shown in Figure 6.1, and the detectors were operated throughout the run at a bias voltage

of 3V for the Ge ZIPs, 4V for the Si ZIPs. Tower 1 had already been in operation for

several months at Soudan in Run 118 [90], and before that was operated in CDMS-I at the

Stanford Underground Facility. Hence, Tower 1 contains detectors that were already well

understood at the start of Run 119, but the Tower 2 detectors, although characterized at

125
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Figure 6.1: 2-Tower setup for Run 119. Tower 1 contains the detectors operated during
Run 118 at Soudan.

the test facilities prior to installation, had not been in operation at a deep site before.

A few minor problems with the cryogenics system were present throughout Run 118 and

Run 119 at Soudan. The main problem stemmed from a suspected Helium bath to OVC leak

which led to a fridge ‘burp’ once every 3-4 weeks. Each of these incidents expelled some of

the 3He/4He mixture and warmed the detectors to ∼1K, making data-taking impossible. It

took several hours after a burp to stabilize the cryogenic system and resume data acquisition.

During regular running, routine cryogenic operations consisted of two transfers to both

the liquid Helium and liquid Nitrogen bath per day. Usually, we would expect transfers to

be necessary every ∼18 hours, instead of every 12, but the LHe to OVC leak increased the

loss rate of the He and N baths. During the transfers, and every 4 hours otherwise, the

detectors were flashed with the LEDs (described in Chapter 2). The several weeks prior to

the start of the run consisted of many long LED baking sessions until the detectors were

sufficiently neutralized.

Almost two hundred calibration datasets were taken spread over the course of Run 119.

These were taken with one of the following sources:
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• A 2 µCi 133Ba source. The rate of this gamma source is low enough as to not create

pileup events in the detectors, yet high enough that the gamma lines at 303 keV, 356

keV and 384 keV are prominent in the detectors. These are the primary lines used

to perform the energy calibration of the ZIPs. Over one hundred 133Ba calibrations

were performed spread throughout the entire run.

• A 1 mCi 252Cf source. This source provides neutrons over the 0-100 keV recoil energy

range that we are interested in. It is primarily used to define the nuclear recoil band,

and hence the signal region (where we would expect to see WIMPs). Four neutron

calibrations were performed during Run 119. During each one thermal neutron ac-

tivation will occur, and consequently we see elevated gamma and beta background

rates immediately afterwards.

The 133Ba also acts as a source of calibration surface events. These occur as a result

of photons interacting in the surface of the detector, or (more likely) by kicking out an

electron from the surface of a detector which then interacts in a neighboring detector (an

‘ejectron’).

Figure 6.2 shows the cumulative livetime of WIMP search data taken over the course

of Run 119. A total of 7.57M events (before cuts) were taken in 133Ba calibration data

(average of 631k events per detector), with 214k events taken during 252Cf calibrations.

The 133Ba calibrations were fairly evenly distributed over the course of the run, with more

frequent and longer calibration runs being performed towards the end of the run (effect of

133Ba calibrations on WIMP search livetime can be seen in Figure 6.2).

Table 6.2 shows the total number of calibration events passing successive analysis cuts
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Figure 6.2: Cumulative livetime of WIMP search data over the course of Run 119. All the
WIMP search data is shown in blue, and only those events that pass the good event cut (to
be described) are shown in red.

(the details of which will be described in this chapter).

6.2 Involvement

Since this thesis details work done by many members of the CDMS collaboration, it is

necessary to note which work was done by the author. A similar section is found in Chapter

2 detailing the author’s role in the analysis chain; here we note the work done on Soudan

Run 119 analysis.

All the figures in this chapter (except where noted otherwise) were generated by the

author. The overall analysis is similar, but independent to the primary analyses performed

by other members of the CDMS collaboration. Primary responsibility for the individual

parts of the analysis, as it was first performed, was distributed throughout the collaboration
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on a voluntary basis. The author was responsible for creating the prepulse baseline cut and

the recoil band cut definitions (to be described).

6.3 Detector Performance

Noise Performance

Figure 6.3 shows typical power spectral density distributions for detector noise. This dis-

tribution was created from a sample of random trigger events taken at the start of a data

series. Events that contain coincident events are removed from the sample. The phonon

noise falls as 1/f at high frequencies. The charge noise is close to expected due to the as-

sociated electronics, although there are several high frequency noise sources most of which

are known to arise from connections to the fridge.

The total noise response of the detectors was also monitored by analysis of the ‘noise

blobs’. These are the calculated (via optimal-filtering, fixed start time) pulse amplitudes for

random trigger events. We should expect these distributions to be approximately gaussian

in shape. Noise blobs for Tower 1 and Tower 2 detectors are shown in Figures 6.4 and 6.5

respectively. The phonon resolution of Z1 is poor due to the TES having a variation across

the surface. Gaussian fits to the noise blobs provide the appropriate values to use for trigger

thresholds and to make single/multiple event cuts. Note that the noise performance of the

ionization channels is somewhat worse than for the phonon channels, and the level of this

noise will be the limiting factor in placing our analysis threshold.

The trend shown in Figure 6.6 demonstrates how the detector noise fluctuates over the

course of the run. The values shown are the pre-pulse baseline mean and standard deviation,
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Figure 6.3: Noise power spectral densities for detector Z3, taken at the end of Run 119.
The noise PSD shown here is fairly typical for the Run 119 detectors over the course of
the run. The upper plot shows the noise associated with the SQUID input coil on each of
the four phonon channels. The lower plot shows the inner and outer ionization electrode
channel noise, associated with the noise on the feedback capacitor.
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Figure 6.4: Noise blobs for the Tower 1 detectors. The events plotted are all randomly
triggered WIMP search events. i.e. the histograms above represent the fitted energy to
baseline noise. The figures show means and standard deviations from gaussian fits to the
noise blob distributions; these values are used to set trigger thresholds and to define single
and multiple cuts. The poor noise behavior of Z1 is due to it’s large Tc gradient.
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Figure 6.5: Noise blobs for the Tower 2 detectors. The events plotted are all randomly
triggered WIMP search events. i.e. the histograms above represent the fitted energy to
baseline noise. The figures show means and standard deviations from gaussian fits to the
noise blob distributions; these values are used to set trigger thresholds and to define single
and multiple cuts.
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Figure 6.6: Variation of the pre-trigger baseline (bs) and pre-trigger standard deviation
(std) in digitizer bins for all channels of Z3, shown for all WIMP search datasets over the
course of Run 119. 1 keV ∼ 14 digitizer bins in the phonon channels, 1 keV ∼ 4 digitizer
bins in the charge channels.
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averaged for each data series over the run. The noise is stable over the course of the run,

with an rms deviation of ∼ 0.01(0.007) keV from a constant baseline noise in the charge

(phonon) channels. Fluctuations in the phonon noise do not seem to be correlated with

fluctuations in the ionization noise, and fluctuations in the noise of a given phonon channel

does not seem to be correlated with noise fluctuations in other phonon channels. Individual

events that have values of the pre-pulse baseline standard deviation greater than 6σ above

the mean are cut out in our analysis (see Section 6.5.3); this figure is intended to show that

the noise is stable from data series to data series.

Trigger Efficiencies

Since the phonon noise is lower than the ionization noise, and the phonon baseline resolution

is lower than the ionization baseline resolution, we use the sum of the four phonon channels

on which to trigger all detectors. However, the RTF boards do not always flag a detector

trigger even though the actual phonon signal was above threshold.

If we only look at the triggering of the detector Z, we learn nothing about the times that

this detector didn’t trigger. We wish to measure the deposited energy in detector Z (via

the digitizer traces) and simultaneously examine whether or not the detector also triggered

(via the corresponding trigger bit in the history buffer).

The trigger efficiency in a given detector Z is calculated by first preselecting all events

for which a detector other than detector Z caused the global trigger. The trigger efficiency

of Z is then the fraction of events that had a phonon trigger in detector Z occurring within

50µs of the global trigger, as a function of the phonon energy in detector Z.

The trigger efficiencies are a consequence of the acquisition hardware operation, and not
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Figure 6.7: Phonon trigger efficiencies for Tower 1 detectors, as a function of the total
phonon energy in the detector.
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Figure 6.8: Phonon trigger efficiencies for Tower 2 detectors, as a function of the total
phonon energy in the detector.
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any underlying physics in the detectors. Some of the detectors have efficiencies that either

rise slowly to 100%, or do not reach 100%. This is due to a known bug in the RTF boards

used with these detectors; Z9 and Z11 being the worst in this respect.

The trigger efficiencies calculated from WIMP search data are shown in Figures 6.7 and

6.8. The trigger efficiencies for calibration data are calculated to be slightly higher than for

the WIMP search data, but we use the efficiencies shown when calculating the net efficiency

upon our WIMP signal region.

6.4 Detector Calibration

6.4.1 Energy Calibration

The energy calibration of the detectors is performed by matching the spectrum of 133Ba

calibration data to Monte Carlo (GEANT 4) predictions of the spectrum. Since the ioniza-

tion signal has a linear response in energy, and the phonon signal does not, the calibration

is performed by matching the ionization energy spectrum to the calibration data, and then

calibrating the phonon spectrum to match. We can do this since we know that the mean

ionization yield of the bulk gamma events is defined to be 1 (electron recoils). The non-

linearity of the phonon response is corrected as part of the set of phonon corrections (see

Section 6.4.3).

Figures 6.9 and 6.10 compare the results of Monte Carlo simulations to the 133Ba cal-

ibration data. Both Monte Carlo and calibration data have had an inner electrode cut

applied, and a noise term the same width as the corresponding noise blob has been added

to the Monte Carlo data, to simulate each detector’s energy resolution. In order to fit the
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Figure 6.9: Comparison of 133Ba calibration data (blue) with GEANT 4 Monte Carlo
simulation (red) for Tower 1 detectors. The dotted vertical lines denote the energies of
the primary 133Ba gamma lines at 303 keV, 356 keV and 384 keV. Monte Carlo simulation
performed by L. Baudis.
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Figure 6.10: Comparison of 133Ba calibration data (blue) with GEANT 4 Monte Carlo
simulation (red) for Tower 2 detectors. The dotted vertical lines denote the energies of
the primary 133Ba gamma lines at 303 keV, 356 keV and 384 keV. Monte Carlo simulation
performed by L. Baudis.
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Figure 6.11: Low energy WIMP search events in Z2 that are above threshold and pass the
good event cut (to be described). The 10.4 keV line results from an x-ray cascade after
electron capture on 68Ge. The histogram shows event counts on a linear scale.

Monte Carlo data to the calibration data, only the overall (linear) energy scale of each

detector is considered a free parameter. i.e. the relative rates and detector resolutions were

fixed.

The fit of the Monte Carlo to calibration data is extremely good, especially in the Ge

detectors. The low photoelectric scattering cross-section to Compton scattering ratio in Si

means that the primary lines are not as visible in the Si ZIPs.

A secondary check on the energy calibration can be performed by studying the activation

lines of the Ge detectors. One of the activation modes has a half-life long enough for the

line to be observable many months after the detectors are taken underground:

• 70Ge + n → 68Ge + 3n

• 68Ge →(E.C.)
68Ga + (x-ray cascade, total of 10.4 keV), τ1/2 = 270 days.
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Hence the 10.4 keV line can be examined in order to check the low energy calibration of

the detectors. Figure 6.11 shows the low energy WIMP search events in detector Z2, where

the 10.4 keV line can be seen clearly.

6.4.2 Ionization Position Correction

The ionization energy response of each detector has a position dependence at the ∼3% level.

The exact reason for this is unknown, although it is likely to be associated with Tc gradients

and/or the neutralization state of the detector.

We apply a simple linear correction using the phonon x- and y-delay values to remove

this dependence using 133Ba calibration data. Figure 6.12 shows the ionization energy of

events as a function of position, and it can be seen that there is a clear variation of ionization

energy with y-delay (the same variation occurs along the x-axis of the detectors). A linear

position-dependent transformation is applied to the ionization energy of events in both the

x and y directions, such that the 133Ba 356keV line appears at the correct energy at all

detector positions, as shown in Figure 6.12 for the y-axis correction.

6.4.3 Phonon Position Correction

The phonon signal must also be corrected for position variations across the crystal. The

process of the phonon position correction and the physics that necessitate it are described

in Section 4.7.1; here we show the results of applying the correction to Run 119 data.

Before the phonon lookup table can be defined and the phonon timing parameters

corrected, the phonon energy must be linearized. Figure 6.13 shows the recoil energy of

133Ba calibration events as a function of their ionization energy for one detector. Since
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Figure 6.12: Position correction of the ionization signal for Z2 calibration events. The
ionization energy is plotted against y-delay position, and it can be seen that the energy
of the primary 133Ba line is dependent upon position (uncorrected, left) at the ∼3% level.
A simple linear transformation is applied to remove this position dependence (corrected,
right). Figure by R. W. Ogburn.

(ionization energy) / (recoil energy) = (ionization yield) is defined to be equal to one

for electron recoil events, this curve is linearized to have a slope of one using the scaling

Pnew = τ(eP/τ − 1) with τ ∼ 103. The 133Ba data is used to define the transformation,

which is then applied to all data.

A similar transformation is applied to the phonon timing parameters prior to calculation

of the lookup tables, since the timing parameters also have an non-linear energy dependence.

This is shown for the phonon risetime in detector Z2, phonon channel B in Figure 6.14. Here

each timing parameter is corrected using a scaling of the form a+c(Er)b for every detector’s

phonon channel independently.

6.5 Cut Definitions

Since there are small differences between each of our detectors (variations in Tc gradients,

etc.), our analysis cuts are usually defined on a detector-by-detector basis. The cut usually
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Figure 6.13: Correction of the phonon energy nonlinearity in detector Z2 for 133Ba cali-
bration events. Since these events are known to be electron recoils, the slope (Ionization
Energy)/(Recoil Energy) = (Ionization Yield) is defined to be equal to 1.

Figure 6.14: Correction of the phonon risetime’s dependence upon energy in detector Z2,
phonon channel B, for 133Ba calibration events. Each timing parameter is corrected using
a scaling of the form a + c(Er)b. Figure by B. Serfass.
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has a general form, but the exact values will vary from ZIP-to-ZIP. The subsequent sections

describe our primary analysis cuts. Note: Where events are referenced as ‘passing a cut’,

this by convention means that these events will remain in the analysis when the cut is

applied. Events ‘failing a cut’ are removed from subsequent analysis.

As described in Section 4.6, half of the calibration data is used to set cuts while blind,

with the remaining calibration data being used to calculate cut efficiencies.

With the exception of the bad data cut, which necessarily must be defined for all data a

priori, the analysis cuts were all defined using a pre-selected subset of the calibration data.

This data (referred to as the ‘open’ calibration data) was simply chosen as being all those

calibration datasets with even-numbered data series numbers (the remaining odd-numbered

series were defined as the ‘closed’ set). This results in a near-equal split of the data, with

both the ‘open’ and ‘closed’ groups of data being fairly evenly spread across the data run.

The statistics in the neutron calibration data were low enough that it was decided not

to break up this dataset into open and closed subsets. This will introduce bias into the cuts

that are set using the neutron calibration data (the nuclear recoil band and phonon timing

cuts), but the reduction in statistics that would result by splitting up the dataset would

introduce uncertainties of a greater magnitude.

The open calibration data was used to define our analysis cuts and the closed calibra-

tion data used to determine initial cut efficiencies and estimate expected backgrounds. The

WIMP search data with the blinding cut applied (i.e. with events in the signal region

removed) was used to calculate further expected cut efficiencies and to examine any sys-

tematics between the calibration and WIMP search data. We shall return to the unblinding

process and calculation of background event leakage in Section 6.8.
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6.5.1 Data Quality and the Bad Data Cut

The identification of datasets that had one or more problems was performed in the following

way. A set of diagnostics were run on the entire dataset (blinded WIMP search & calibration

data). These diagnostics performed Kolmogorov-Smirnov (K-S) tests, using a template from

a subset of the relevant search data (i.e. a 133Ba data template was used to test 133Ba data,

etc.). Any dataset that significantly diverged from the template dataset on the basis of

these tests was flagged. Datasets that were flagged for several problems were dropped from

the list of good datasets. Analysis was also performed on the blinded WIMP search data

during the run, so that serious problems could be highlighted and/or addressed.

This approach highlighted the following:

• Five WIMP search datasets were removed from the good set list due to a) missing

veto traces (×2), b) bad triggering (×1), c) very low event count with poor K-S test

values (×1), d) very poor ionization noise in K-S test (×1).

• Four WIMP search datasets had higher than usual chi-squared values for the optimal

filter fit to the phonon pulses. The noise PSDs for these datasets, however, were

typical and in fact the phonon noise blob was narrower than usual. The decision was

made to keep these datasets in the good data list.

• Four WIMP search datasets had poor K-S test values for phonon delay and phonon

partition distributions. They were cut from the good dataset list.

• A handful of events spread over the run are missing global trigger values (due to a

problem with the DAQ). These individual events are cut based on their trigger mask

values.
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• Three 133Ba datasets had trouble with one or more Z6 phonon channels. Events from

those datasets in that detector were cut out.

• A WIMP search dataset was inadvertently still running when the fridge transfer

started (and hence the fridge temperatures became slightly elevated). The last few

hundred events of this series were cut.

• The end of a WIMP search dataset suffered from having the SQUIDs lose lock due to

a power trip on a pump. The events during this period were cut.

This selection process resulted in a complete list of good datasets which was used for

all subsequent cut definitions. A ‘bad data cut’ was also defined for the good datasets

containing a subset of events to be excluded from the analysis (i.e. the final four items in

the above list).

Previously quoted values of the total Run 119 livetime haven taken account of the

datasets listed above that were thrown out in their entirety, for example in Figure 6.2.

Application of the bad data cut to the remaining good datasets reduces the total livetime

of the good datasets from 77.44 days to 77.28 days.

6.5.2 Charge χ2 Cut

The ChiSq cut is designed to remove events for which a noise spike occurred in either of

the ionization traces. The optimal filter fit to the ionization pulse template provides a χ2

value which is used to perform this cut, using a simple cut of the form aQ2 + b, where Q is

the ionization energy, and a and b are constants to be determined on a detector-by-detector

basis. Figure 6.15 shows the form of the cut for an example detector.
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Figure 6.15: Definition of the Charge ChiSq cut for detector Z2. Open 133Ba data used to
define the cut is shown. Those events in red fail the cut, those in blue pass the cut.

6.5.3 Phonon Pretrigger Cut

Another cut designed to remove events which suffer noise glitches is the phonon pretrigger

cut. This cut removes events which have anomalously high values of the standard deviation

of the phonon pretrigger baseline (the ‘Pstd’ value). We expect the Pstd distribution to be

close to Gaussian, and use a value 3.85σ above the mean of a fitted Gaussian with which

to cull events. These values are defined for each phonon channel of each detector. Figure

6.16 shows an example phonon sensor’s Pstd values along with the location of the cut for

this sensor.

The combination of bad data cut, charge chi-squared cut and phonon pretrigger cut is

usually referred to as the ‘Good Event Cut’ (cGoodEv), in that only events that pass all

three cuts make it through into the analysis. Application of cGoodEv is a prerequisite for
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Figure 6.16: Definition of the Phonon Pretrigger Cut for detector Z3, Phonon channel A.
Open 133Ba data used to define the cut is shown. Events with higher Pstd values than the
vertical black line fail the cut.

performing any analysis of the data.

6.5.4 Charge Threshold Cut

The charge threshold cut removes events that could potentially be noise in the ionization

signal. It is set by considering the noise blobs in the inner electrode ionization signal and

cutting events for which this signal has an amplitude less than 6 standard deviations above

the fitted gaussian mean of the noise blob (see Figures 6.4 and 6.5). These cutoff values

vary in magnitude from best of 1.51keV in Z9 to worst of 2.85keV in Z12. Figure 6.17 shows

the application of the charge threshold cut in the (y, Er) plane. Thus it can be seen that the

charge threshold cut removes both events with low energy and events with low ionization

yield.
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Figure 6.17: Application of the Charge Threshold Cut for detector Z3. Open 133Ba data
used to define the cut is shown - the cut removes all events with an inner electrode ionization
energy of less than 1.35keV in this detector (the cut value is different but similar for other
detectors). This appears in the (y, Er) plane as a curved line (shown in black), below which
events are cut (blue events pass the cut, red events fail the cut). A Good Event Cut has
been applied to the data (= ∼cBad & cChiSq & cPstd)
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Figure 6.18: Application of the Inner Electrode Cut to Z3 for 133Ba data with cGoodEv
applied. Events that pass the cut are in blue, events in red fail the cut.
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6.5.5 Inner Electrode Cut

The outer electrode region of the detectors, which represents 15% of the detector volume,

suffers from poor charge collection and thus it is advantageous to remove events which

deposit energy primarily in this region. The inner electrode cut, cQin, typically removes

events that deposit greater than 0.5keV-1keV in the outer electrode, although the cut is

energy dependent as shown in Figure 6.18 for an example detector.

6.5.6 Saturated Pulse Cut

This cut removes events for which the phonon pulse is saturated. i.e. the signal is clipped by

the digitizer. Events for which this occurs could have sufficiently large ionization energies

to result in a low estimation of the recoil energy. These events typically occur at energies

> 1MeV and are removed from our analysis.

6.5.7 Muon Veto Anticoincident Cut

Events that occur in the detectors within a particular time window of an event above

threshold in the muon veto are cut in our primary analysis, since they are assumed to be

caused by muon interactions. The size of the time window is chosen based on the rate of such

events; Figure 6.19 shows the times of the most-recent above-trigger veto events relative to

the global trigger (this information is easily retrieved from the veto history buffer). The

times of the most recent veto events correspond to a trigger rate of ∼ 0.6 kHz.

The veto anticoincident cut, cVT, removes events for which there was a hit above thresh-

old in the muon veto in the 50µs before the global trigger. This value is chosen to safely

cover potential signals prior to the phonon pulse rising above threshold.



153

Figure 6.19: Time of events above threshold occurring within the muon veto, relative to the
global trigger at t = 0, for WIMP search data. The veto anticoincident cut removes events
where the time of the last veto hit occurs in the 50µs before the global trigger (vertical
black line).

6.5.8 Singles and Multiples Cuts

A ‘hit’, for both the single and multiple hit definitions, is defined as a 6σ outlier in the noise

blob distribution (see Figures 6.4 and 6.5). i.e. a single-scatter event is defined as one for

which the phonon energy is greater than 6σ above the mean of the noise blob, in one and

only one detector. A multiple event is similarly defined as an event for which the phonon

energy is greater than 6σ above the mean of the noise blob in more than one detector. Note

that this means that not all events are necessarily singles or multiples - there are some low

energy events above threshold that do not fit either cut definition.
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Figure 6.20: Gaussian fits to the ionization yield distribution for Open 133Ba data in Z2.
The fitted means and σs are used to fit the band centers and widths (see Fig. 6.22 and 6.23
respectively).

6.5.9 Electron and Nuclear Recoil Band Cuts

The definition of the electron and nuclear recoil bands is based on the theory of Lindhard

[79]. In general we expect each set of recoil types to form bands for which the mean and

1σ-widths take the forms shown in Equations (2.11) and (2.10). The calculation of the

constants a, b, c and d for each detector is performed as follows.

The data being used to define the band (133Ba data in the case of the electron recoil

band, 252Cf data in the case of the nuclear recoil band), is binned by recoil energy, and

a gaussian is fit to the ionization yield distribution for each energy bin (Figures 6.20 and

6.21). The means of each bin is fit to the relation in Equation (2.10) to provide estimates

for the values of a and b (Figure 6.22). Similarly, the σs of the fitted gaussians are fit to
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Figure 6.21: Gaussian fits to the ionization yield distribution for all 252Cf data in Z2. The
fitted means and σs are used to fit the band centers and widths (see Fig. 6.22 and 6.23
respectively).

Equation (2.11) to give values for c and d (Figure 6.23).

As with the other cuts, the open 133Ba data was used to define the electron recoil band,

but due to low statistics, the entire set of 252Cf data was used to define the nuclear recoil

band 1. Thus we are unable to perform an unbiased efficiency calculation on the nuclear

recoil band (since we used all of the data to create the cut), but the alternative would

clearly be much worse since the statistics would be useless at higher energies (see number

of counts in Figure 6.21).

This procedure of calculating the band center and width distributions is followed for

all 12 detectors individually. Figures 6.24 and 6.25 show data from Tower 1 and 2 ZIPs

respectively, along with the 2σ bands. The potential WIMP signal region is usually taken
1For the neural network analysis to be presented in Chapter 9, the training of the network necessitated
the splitting of the 252Cf data into two sets
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Figure 6.22: Fit of the band means to Eq. (2.10). The red line attempts to fit the means of
the gamma band shown in Fig. 6.20 to a non-linear function of the recoil energy. Similarly,
the green line fits the means of the nuclear recoil band in Fig. 6.21 to the same function
with different parameters. The error bars are taken from the error in the gaussian fits in
Fig. 6.20 and 6.21.
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Figure 6.23: Fit of the band widths to Eq. (2.11). The error bars are taken from the error
in the gaussian fits in Fig. 6.20 and 6.21.

to be the 2σ nuclear recoil band.

When calculating the recoil bands, only the inner electrode ionization energy was used.

Previously the summed energy of the ionization channels and an inner electrode cut would

have been used, but now we use only the inner electrode energy. The outer electrode suffers

from elevated noise, so the outer electrode contribution to the total ionization energy for

an event passing the inner electrode cut will be close to noise (see Figure 6.18).

Thus, quantities such as the ionization yield and recoil energy are now defined as (com-

pare with definitions in Eq. (2.9) and (2.8)):

Er = P − Vb

Eeh
Qinner = P − αQinner (6.1)

y =
Qinner

Er
=

Qinner

P − αQinner
(6.2)

Subsequent references to Er and y will consider these definitions to be implicit.
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Figure 6.24: Calculated 2σ electron recoil and nuclear recoil bands (both shown as black
lines) for Tower 1 detectors. Closed 133Ba calibration data is shown in blue, all 252Cf data
is shown in red. A good event cut has been applied.
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Figure 6.25: Calculated 2σ electron recoil and nuclear recoil bands (both shown as black
lines) for Tower 2 detectors. Closed 133Ba calibration data is shown in blue, all 252Cf data
is shown in red. A good event cut has been applied.
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Figure 6.26: Amplitude of the inner ionization electrode signal in mV as a function of y-
delay for Z11 133Ba events, showing the region of unusual charge collection at ydel < −20 µs.
The red line highlights the 133Ba 356keV peak.

6.5.10 Z11 Cliff Cut

During calibration of the detectors, it was discovered that Z11 has a region in x-y that

shows a peculiar ionization response. This behavior was not present during testing of this

detector at the UC Berkeley testing facility, and it is unclear how this pathology could have

arisen during assembly and transportation of Tower 2.

As Figure 6.26 shows, the ionization signal is clearly behaving differently in the ydel <

−20 µs region of the detector, with a ∼15% stepped increase in the ionization signal in this

region. This area of the detector also has a significant number of calibration events that

have very far outlying values in the phonon timing parameters. We opted to perform a cut

that removed all events for which ydel < -20 µs in this detector.
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6.5.11 Phonon Timing Cut

The phonon timing cut is designed to discriminate between 1) nuclear recoil events and 2)

electron recoil events that deposit their energy in the top 20 µm of the detector (‘surface

events’), and hence have a reduced ionization yield such that they may appear in the nuclear

recoil band (see Chapter 5). This discrimination is performed by examination of the phonon

pulse shape, since surface events typically have a shorter phonon risetime than bulk events.

The general strategy applied in creating the timing cut is to maximize our expected

sensitivity to a WIMP signal. The cut is created using open calibration data, and the

resulting number of nuclear recoils and low-yield electron recoils passing the cut in the

closed calibration data is used to extrapolate to the expected sensitivity and background

estimates in the WIMP search data. Since we know the number of low-yield events in

both the calibration and WIMP search data, and are blinded to potential WIMPs and/or

neutrons, we can scale the observed sensitivity and background estimates on the calibration

data to the expected sensitivity and background on WIMP search data.

The primary cut for the Run 119 analysis is constructed using a combination of the

primary phonon pulse 10-40% risetime and the primary phonon pulse delay (ionization

start time to phonon 20% time). The cut is a simple linear selection in the risetime-delay

plane, as shown in Figure 6.27 for detector Z2, and is created using 2σ nuclear recoils events

from 252Cf data, and ‘wide beta’ events from 133Ba data, where a wide beta is defined as

an event for which 0.1 < y <(lower bound of 5σ electron recoil band).

During Run 119, several alternative timing analyses were performed, and Chapter 9

describes one such attempt to utilize a wavelet-based analysis of the phonon pulses to
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Figure 6.27: Phonon timing cut for Z2. Low yield (below 5σ electron recoil band) events
from open 133Ba calibration are shown in blue, events in 2σ nuclear recoil band from 252Cf
calibration are shown in red. All data has the following cut applied: cGoodEv & cQin &
cQThresh & cVT & (0 < Er < 100kev).
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discriminate between bulk and surface events.

6.6 Cut Efficiencies

Except where stated otherwise, all cut efficiencies are calculated using neutron 252Cf cali-

bration events since this is how we define our WIMP signal region. The cuts were all defined

(using open calibration data) and discussed before calculating efficiencies upon the closed

data. In this way we sought to avoid biasing the cuts based on their performance on the

closed calibration data. The exceptions are the nuclear recoil band and phonon timing cuts,

which were defined using the entire neutron calibration dataset.

We treat Ge and Si detectors as separate entities in the calculation of efficiencies and

subsequent calculation of limits. Hence we will finally arrive at two results - an estimate

of the number of Dark Matter candidate events for WIMPs interacting with Ge, and an

estimate of the number of candidate events for WIMPs interacting with Si. Three detectors

are excluded from the main analysis due to poor operation; Z1 has a very large Tc gradient

and consequently has poor recoil band discrimination, Z6 is known to be contaminated

with 14C, and Z7 has a poor noise response. The efficiencies below will be quoted for the

‘Good Ge detectors’, by which we mean (Z2, Z3, Z5, Z9, Z11 = 1.25kg), and for ‘Good Si

detectors’, referring to (Z4, Z8, Z10, Z12 = 0.4kg).

Where efficiency values are quoted and shown in Figures, the efficiency is defined as the

number of events passing the cut divided by the total number of events present prior to

application of the cut. Error bars shown are based on binomial statistics of the cut passing

fraction and do not include any systematics that may be present.
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Figure 6.28: Efficiency of the Good Event Cut (= Bad data & Charge χ2 & phonon pre-
trigger cuts) for WIMP search events occurring in good Ge (Z2, Z3, Z5, Z9, Z11) and good
Si (Z4, Z8, Z10, Z12) detectors.

6.6.1 Bad Data, Charge χ2 and Phonon Pretrigger Cut Efficiencies

The total WIMP search data livetime for Run 119 is 77.44 days. Application of the Bad

Data Cut (see Section 6.5.1) results in a net livetime of 77.28 days.

Application of the remaining Good Event cuts (charge χ2 and phonon pretrigger, Sec-

tions 6.5.2-6.5.3) to the WIMP search data results in 61.84 livedays (77.30 kg-days) on the

good Ge detectors, and 68.03 livedays (27.21 kg-days) on the good Si detectors. The overall

efficiency of the Good Event Cut upon the WIMP search data as a function of energy is

shown in Figure 6.28. The efficiency drops with decreasing recoil energy since the cut in-

cludes the charge χ2 and phonon pretrigger cuts, which are sensitive to the signal to noise

ratio of the ionization and phonon pulses.
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Figure 6.29: Efficiency of the Charge Threshold Cut for good Ge and good Si detectors.
Events are preselected to pass the Good Event Cut and be located within the 2σ nuclear
recoil band.

6.6.2 Charge Threshold and Inner Electrode Cut Efficiencies

The efficiencies of the cQThresh and cQin cuts when applied to data with cGoodEv already

applied are shown in Figures 6.29 and 6.30 respectively.

6.6.3 Muon Veto Cut Efficiency

The efficiency of the muon veto cut for passing WIMPs can be inferred from the spectrum

of events above threshold in the veto. As Figure 6.19 shows, the timing of veto hits above

threshold follows a falling exponential as predicted by Poisson statistics. Therefore, the

efficiency of the veto at cutting WIMP events is simply the probability of having a veto hit

falling by chance in the 50µs window prior to an event’s global trigger.

The efficiency of the veto on passing WIMP events is then calculated to be 0.9697 ±

0.0001.
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Figure 6.30: Efficiency of the Inner Electrode Cut for good Ge and good Si detectors.
Events are preselected to pass the Good Event Cut and be located within the 2σ nuclear
recoil band.

6.6.4 Nuclear Recoil Band Cut Efficiency

The neutron calibration also contains gamma events from the 252Cf source. Therefore to

get a more accurate estimation of the nuclear recoil band’s efficiency upon neutrons, events

in the electron recoil band are excluded from the calculation.

The efficiency of the 2σ nuclear recoil band at passing events from the 252Cf data that

lay outside the 3σ electron recoil band is shown in Figure 6.31. The efficiency on the

neutrons is consistent with the 95% passing fraction that we would a priori expect from a

2σ selection.

6.6.5 Phonon Timing Cut Efficiency

Efficiency of the timing cut on nuclear recoil events is shown in Figure 6.32. An ideal timing

cut would obviously remove all surface electron recoil events whilst keeping all nuclear
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Figure 6.31: Efficiency of 2σ nuclear recoil band for events in 252Cf calibration data. Events
are preselected to pass the Good Event Cut and be outside the 3σ electron recoil band (see
text).

Figure 6.32: Efficiency of the phonon timing cut on 2σ NR events in the 252Cf calibration
data. Events are preselected to pass the Good Event Cut, the charge threshold cut, the
inner electrode cut and the veto anticoincidence cut.
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recoils, and hence this cut is one of the few pieces of the analysis for which it is, at least in

principle, possible to improve our net sensitivity to WIMPs via improving the cut analysis.

Again, see Chapter 9 for one such attempt to improve the timing cut efficiency beyond that

discussed here for the CDMS primary analysis.

The efficiency of the cut on nuclear recoils is not of course, the whole story. The

expected number of surface electron recoils that will ‘leak’ past the cut is also of paramount

importance. The number of these ‘leakage’ events in the WIMP search data can be estimated

by knowing the relative number of low yield events that appear in the 133Ba data to the

number of low yield events in the WIMP search data. Since our WIMP search data is

blinded (potential WIMP events are removed from the data), we can do this without biasing

ourselves. However, one potential problem lies in the presence of systematic differences

between the low yield events in the calibration data and in the WIMP search data. More

on this can be found in Section 6.7.

6.6.6 Overall Efficiency

The overall efficiency represents the combination of (Good Event Efficiency & Trigger Effi-

ciency & Inner Electrode Efficiency & Charge Threshold Efficiency & Muon Anticoincidence

Efficiency & Nuclear Recoil Band Efficiency & Phonon Timing Cut Efficiency) applied to

2σ Nuclear Recoil events. This combined efficiency is shown in Figure 6.33.

The combined efficiency, along with the expected number of leakage events for a given

energy range will inform our choice of analysis threshold. The analysis threshold cut is

simply a binary cutoff below a particular energy. Our overall efficiency will drop to zero

at some energy, but our aim is to maximize the expected sensitivity to WIMPs. Hence we
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Figure 6.33: Overall detector efficiencies for good Ge and good Si detectors. The discon-
tinuity in the Si efficiency is due to the combination of detectors with different analysis
thresholds.

may wish to set the analysis threshold higher if the expected number of leakage events in a

particular detector is high with a low analysis threshold energy.

We set our analysis threshold to 7 keV in all Ge detectors, which is where the overall

efficiency drops to zero. Z4, Z8 and Z10 had finite efficiencies down to 7 keV, but also have

higher expected leakages with a 7 keV analysis threshold. The threshold is therefore set to

20 keV in Z4, Z8 and Z10, and 7 keV in Z12, resulting in the observed discontinuity in the

Si combined efficiency distribution.

The combined efficiencies yield a final spectrum-averaged WIMP exposure of 34 kg-days

on Germanium and 14 kg-days on Silicon. By spectrum-averaged exposure, we mean the

exposure that would be needed to expect the same number of WIMPs if the detectors were

100% efficient. Literally, it is the convolution of the efficiency with the expected WIMP

spectrum, times the raw exposure.
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6.7 Overall Rates and Expected Background

6.7.1 Gamma Rates

The mean gamma rate is calculated from WIMP search data to be 135.7± 2.9 evts/kg/day

in the good Ge detectors in the energy range 20-60 keV. However, this includes a period of

around 9 days where the old air purge to the icebox was functioning at a decreased level,

and the rise in environmental Rn inside the shield increased the background rates by a

factor 2-3 during this period. A fairer estimate is therefore given by the 68.35 livedays for

which the old air purge was functioning correctly, which results in a mean rate of 108.8±2.8

evts/kg/day in good Ge ZIPs, and 450.0±8.9 evts/kg/day in good Si ZIPs, for recoil energies

in the range 20-60 keV. The energy range is chosen this way in order to not count events

that come from the cosmogenic activation of Ge that results in lines at 10.4 keV and 66.7

keV.

GEANT Monte Carlo studies of the gamma background suggest that the majority of

the gamma background (∼ 75%) comes from 222Rn chain decays from outside the mu-

metal shield due to an imperfect air purge. The remaining gammas most likely come from

U/Th/K chain decays from the copper cans and/or the inner polyethylene [90].

6.7.2 Beta Rates

Using the ‘wide beta’ definition (0.1 < y < lower bound of 5σ electron recoil band), the

mean beta rates in good Ge and Si detectors are 2.55 ± 0.21 evts/kg/day and 3.27 ± 0.18

evts/kg/day for recoil energies in the range 4-100keV. As a subset of these values, the mean

rates of single-scatter betas are 0.48 ± 0.09 evts/kg/day and 0.42 ± 0.09 evts/kg/day in
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good Ge and Si detectors respectively, 4-100 keV. These rates are calculated for the 68.35

livedays for which the old air purge was functioning correctly.

By examining the gamma and beta rates during the periods with the old air purge active

and inactive, it can be estimated that 40 - 50% of the betas in the WIMP search data come

from ejectrons, of which ∼ 80% multiply scatter. 10 - 40% of the beta background is

thought to come directly from 210Pb decays, where the 210Pb is distributed across the Cu

cans and the towers themselves via plating from Radon. More Monte Carlo simulations of

210Pb contamination is needed to improve these estimates, and to compare directly with

the energy distribution of background beta events.

6.7.3 Alpha Rates

Alpha particles are identified in the analysis as events with y < 0.5 and Er > 1500 keV.

The WIMP search data has an observed mean alpha rate of 1.24± 0.24 evts/kg/day in the

good detectors. Since it is expected that the overwhelming majority of these events should

come from 210Pb decays, the expected number of beta decays from this contamination can

be calculated, and was used in part to estimate the beta background from 210Pb described

in the previous section.

6.7.4 Neutron Rates

One veto-coincident neutron was observed in the entire WIMP search data; this event

multiply-scattered between Z11 and Z12 and was coincident with a muon in the veto system.

It is expected that with 2 towers of detectors a neutron will multiply-scatter ∼ 20% of the

time. The time between the muon veto event and the first detector event was less than 1µs.
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No veto-anticoincident neutron events were observed in Run 119.

The background due to single-scatter muon veto anticoincident neutrons is estimated to

be 0.06 events in Ge and 0.05 events in Si, for all WIMP search Run 119 data [99].

Several neutron Monte Carlo simulations have been performed using both GEANT and

FLUKA Monte Carlo simulation packages. The different simulations predict that Run

118 and 119 combined should have seen between 5-10 veto-coincident neutrons, where the

greatest discrepancy occurs between the two simulation packages. Yet, in the combined

data sets only one anticoincident neutron was observed. The simulations are still being

refined, so the number of observed neutrons in future runs will have to be weighed against

future predictions.

6.7.5 Expected Background after Cuts

The expected background is the number of WIMP-like events (that are not WIMPs) leaking

into the signal region that remain after cuts are applied. The expected background leakage

due to gammas is negligible based upon the 133Ba gamma calibration data. The cuts remove

> 99.99% of electron recoil band events, and the recoil bands for all detectors are all well

separated above the analysis thresholds.

The expected background due to low-yield (nuclear recoil band) surface events that pass

the phonon timing cut is calculated by considering the efficiency of the timing cut upon

beta events. The gamma calibration data tells us, for a given number of betas (using the

‘wide beta’ definition), what fraction we should expect to see located in the nuclear recoil

band. Since we also know the relative number of betas in the calibration data and WIMP

search data sets, we can scale the expected number of leakage events that pass the timing
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cut in the calibration data to an estimate of the expected leakage in the WIMP search

data. We can also use the single/multiple ratio in the calibration data as a cross-check on

the expected number of single-scatter leakage events, since multiple scatter events are not

removed from the WIMP search data in the blinding cut.

This assumes no systematic difference between the betas in the calibration and WIMP

search data, which is not the case. Systematic differences arise due to 1) different sources of

low yield events (eg. much larger fraction are ejectrons in calibration data), and 2) Due to

the calibration source location, the phonon sensor sides of the detector are predominantly

‘lit’ by the source, which results in a systematic effect due to the differing dead layer effects

on the phonon and charge sensor sides (see Chapter 5).

The expected background due to betas from local contamination sources described in

Section 6.7.2 is calculated to be 0.5± 0.2(stat)± 0.2(sys) in Ge, 7-100keV; 1.2± 0.6(stat)±

0.2(sys) in Si, 7-100keV [99].

6.8 Results from Unblinding

The presence of the blinding scheme, which removed any potential WIMP-like events from

the open analysis, allowed the estimation of the above expected backgrounds and cut effi-

ciencies in an unbiased way. The cuts were all frozen, with efficiencies and expected leakage

calculated before the ‘box was opened’; that is, the blinding protocols were removed and

all events were included in the final analysis.

All unblinded WIMP search data is shown in Figures 6.34 and 6.35, with the following

cuts applied: (Good Event) & (Charge Threshold) & (Inner Electrode) & (Muon Veto
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Figure 6.34: Unblinded WIMP search data in Tower 1 detectors with all cuts except for the
phonon timing and singles cuts applied. 2σ recoil bands are shown as black lines, and each
detector’s analysis threshold is shown as a vertical dotted line.
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Figure 6.35: Unblinded WIMP search data in Tower 2 detectors with all cuts except for the
phonon timing and singles cuts applied. 2σ recoil bands are shown as black lines, and each
detector’s analysis threshold is shown as a vertical dotted line.
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Figure 6.36: Unblinded WIMP search data in Z2/3/5/9/11 with all cuts, including the
singles cut, applied. The red circled event at 10.15keV is the only event that passes all cuts
and appears in the 2σ nuclear recoil band (Z11 NR band shown as black lines). Another
‘near-miss’ event appears (circled) at 56keV and lies within the 3σ nuclear recoil band.

Anticoincident) & (Z11 Cliff Cut).

The number of events in each good detector passing successive cuts is given in Table

6.3.

When we apply the analysis to unblinded Run 119 WIMP search data, a single event

remains in the 2σ nuclear recoil band. i.e. this event passes all cuts and therefore is a

candidate for a WIMP event. The event, shown in Figure 6.36 occurred in detector Z11

with a recoil energy of 10.5 keV. Further analysis of the event reveals that Z11 exhibited

some anomalous behavior during the data series in which this event occurred, which was

not flagged by the original set of blind cuts.

Figure 6.37 shows ionization yield vs. event time for all events passing cGoodEv in
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Figure 6.37: Ionization yield as a function of event time for Z11 good events in the data
series which contains the candidate event (in red, circled). The drooping of the electron
recoil band over time is characteristic of detector neutralization loss; the recoil band returns
to its normal position when the regularly scheduled detector flashing is performed towards
the end of the run (dotted line). The subsequent data run is shown to the right - the time
between the datasets has been reduced for clarity.

Z11 for the (310 minute) dataset containing the candidate event. It can be seen that the

yield of the events begin to ‘droop’ as time goes on, which is characteristic of a detector

losing neutralization. It seems likely that this event only appears in the nuclear recoil band

because its ionization yield is artificially reduced due to lack of neutralization in Z11.The

presence of this event, however, is included in our calculation of the dark matter limit in

order to maintain the integrity of the blind technique. It is not known why this problem

occurred but it was not repeated in any other parts of Run 118 or 119.

Figure 6.36 also shows a ‘near miss’ event just outside the nuclear recoil band at ∼

56 keV. This event is not considered a WIMP candidate since our bands were defined
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whilst blind and this event, although close, does not appear in the 2σ nuclear recoil band.

A single event is consistent with our background leakage estimate and cannot be con-

sidered statistically significant evidence of a WIMP.

6.9 Dark Matter Limits

The Run 119 result can be used to calculate three different dark matter limits; 1) Upper

limit on spin-independent WIMP-nucleon cross section (as a function of WIMP mass) for

both Ge and Si, 2) Upper limit on spin-dependent WIMP-neutron cross section on Ge and

Si, 3) Upper limit on spin-dependent WIMP-proton cross section on Ge and Si.

Spin-Independent Limits

Calculation of the spin-independent Ge and Si WIMP recoil spectra follows the method of

Lewin and Smith [53] using standard assumptions for the galactic halo (WIMP characteristic

velocity v0 = 220 km s−1, mean Earth velocity vE = 232 km s−1, ρ = 0.3 GeV c−2 cm−3). In

addition, we use the Optimal Interval method developed by S. Yellin [91], which sets a

limit on the signal cross-section by examining the interval in recoil energy that is least

contaminated by background. This method reduces to the Poisson limit in the case of no

observed events.

The spin-independent upper (90%) limits on the WIMP-nucleon cross-section obtained

from Run 119 are shown in Figure 6.38. The combined R118 + R119 Ge data sets a limit on

the WIMP cross-section that is a factor ∼ 10 better than any other direct WIMP-detection

experiment [99].
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Figure 6.38: Spin independent 90% upper limits on WIMP-nucleon cross-section obtained
from Run 119 in Ge (solid blue) and Si (solid red). Also shown are the combined Ge
limit from Run 118 and Run 119 combined (solid black) and limits from Zeplin-I (dashed
salmon) [92], Edelweiss (dashed dk. red) [93] and DAMA (dashed blue) [94]. The shaded
low mass region shown in more detail at the upper-right is from DAMA [95]. The two
block regions are predictions on supersymmetry taken from [96] (lavender) and [97] (green).
Figure generated by [98].
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Spin-Dependent Limits

Spin-dependent interactions only occur where the target nuclei have an odd number of nu-

cleons (and hence have nonzero nuclear spin). Although both Ge and Si are predominantly

made from even-A isotopes, both contain an isotope with nonzero nuclear spin: 73Ge (spin-

9/2) makes up 7.73% of natural Ge, and 29Si makes up 4.68% of natural Si. Since both of

these isotopes contain a single unpaired neutron, this makes CDMS much more sensitive to

spin-dependent interactions with neutrons than with protons [63].

The spin-dependent limits obtained from a combination of Run 118 + Run 119 data

on both Ge and Si are shown in Figures 6.39 and 6.40 [63]. Again, standard halo model

assumptions are made (WIMP characteristic velocity v0 = 220 km s−1, mean Earth velocity

vE = 232 km s−1, ρ = 0.3 GeV c−2 cm−3).

6.10 The Future

The next CDMS run at Soudan, using 30 ZIP detectors - 19 Ge (4.75kg) and 11 Si (1.1kg)

- will begin running in summer 2006, and is expected to have ∼ 4 times the livetime of Run

119. Thus the limits set on this data are expected to be ∼ 15 times greater than those set

for Run 119, based on scaling the mass and exposure.

It is expected that the overall efficiency of the analysis will improve by the time the

subsequent run’s data is in hand. The efficiency of the phonon timing (surface event) cut

has a significant effect on the final efficiencies, and hence one of the improved timing analyses

should be able to provide significant improvement in this area (see Chapter 9 for discussion

of one possible approach).
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Figure 6.39: Spin dependent 90% upper limits on WIMP-neutron cross-section. CDMS
limits for R118 and R119 are shown for Ge (solid black) and Si (dash-dot black) [63]. Also
shown are the DAMA/NaI annual modulation signal (red filled region) [100], CRESST I
(grey crosses) [101], PICASSO (blue squares) [102] and ZEPLIN I (red triangles) [103].
Figure generated by [98].
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Figure 6.40: Spin dependent 90% upper limits on WIMP-proton cross-section. CDMS limits
for R118 and R119 are shown for Ge (solid black) and Si (dash-dot black) [63]. Also shown
are the DAMA/NaI annual modulation signal (red filled region) [100], CRESST I (grey
crosses) [101], PICASSO (blue squares) [102], ZEPLIN I (red triangles) [103], and NAIAD
(green circles) [104]. Figure generated by [98].
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Chapter 7

Wavelet Technology

Analyzing signals using Fourier theory gives no direct indications as to when transients occur

in a signal since the information is encoded in both the phase and amplitude coefficients

over a wide range of frequencies. One can window the signal in the time domain and analyze

each section separately, but information is limited by the size of the window chosen. i.e.

a small window gives good timing information, but is not able to resolve low frequency

components, whereas a large window resolves low frequency components but is unable to

resolve small time structure.

The wavelet transform is a solution to these problems. It uses a scalable function, shifted

along the signal in the time domain, and for every position the function is compared to the

signal. A level of correlation is determined, which is recorded as a coefficient. This process

is repeated many times with a differently scaled function, producing a set of time-frequency

representations of the signal, all with different resolutions.

Since, in analyzing CDMS detector signals, we are particularly interested in time-

frequency information associated with the leading edge of the pulse, the wavelet approach

184
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Figure 7.1: The Continuous Wavelet Transform (CWT) analyses a signal using all transla-
tions and scalings of the mother wavelet.

is a natural way to proceed.

7.1 Continuous Wavelet Transformation

The wavelet transform described above is known as the continuous wavelet transformation,

or CWT. It can be written as:

γ(s, τ) =
∫

f(t) Ψ∗
s,τ (t) dt (7.1)

where γ(s, τ) (the ‘wavelet coefficient’) represents the level of correlation between the func-

tion being analyzed f(t) and the wavelet Ψ∗
s,τ (t). The variables s and τ represent the scale

and translation of the wavelet respectively, as derived from the ‘mother wavelet’ described

by:

Ψs,τ (t) =
1√
s

Ψ
(

t− τ

s

)
(7.2)

Note that at this point we haven’t specified what Ψ(t) is. The theory specifies only general

properties, and it is left to the problem at hand to determine which particular family of

wavelets is appropriate. Ψ(t) appears as a complex conjugate in 7.1 by convention, i.e. this

could be changed by a suitable redefinition of Ψ(t).
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7.2 Wavelet Properties

All wavelet functions must satisfy a set of conditions to be considered a suitable wavelet.

Firstly, it can be shown that if a square integrable function Ψ(t) satisfies the admissibility

condition: ∫
|Ψ̃(ω)|2

|ω|
dω < +∞ (7.3)

where Ψ̃(ω) is the Fourier transform of Ψ(t), then it can be used to analyze and then

reconstruct a signal without loss of information [107]. The admissibility condition also

implies that:

|Ψ̃(ω)|2
∣∣∣
ω=0

= 0 (7.4)

And hence a zero at the zero frequency means that the time-averaged value of the wavelet

must be zero: ∫
Ψ(t) dt = 0 (7.5)

The definition of (7.1) shows that the wavelet transform of a one-dimensional function

will be two-dimensional; the wavelet transform of a two-dimensional function will be four-

dimensional, etc. Since this is an undesirable property, one imposes additional constraints

upon the wavelet functions in order to make the wavelet transform decrease quickly with

decreasing scale s.

These conditions, known as the regularity conditions essentially state that the wavelet

function should be concentrated in both time and frequency domains (‘compactly sup-

ported’) [107]. The concept of regularity is a complex one1, but as an overview consider the
1For more information on the regularity of wavelets, see [109] and [111].
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moments of the wavelet, defined by

Mp =
∫

tp Ψ(t) dt (7.6)

It can be shown that if the wavelet transform (7.1) is Taylor expanded in s about t = 0,

then the moment Mn is the coefficient of the (n + 1)th power of the scale s. i.e.

γ(s, 0) =
1√
s

[
f(0)M0s +

f (1)(0)
1!

M1s
2 +

f (2)(0)
2!

M2s
3 + ... +

f (n)(0)
n!

Mnsn+1 + O(sn+2)

]
(7.7)

where f (p) is the pth time derivative of f(t).

Using (7.5), we know that M0 = 0, so if we can manage to make the other moments

up to Mn zero (or very small) as well, then the wavelet transform coefficients γ(s, τ) will

decay as fast as sn+2 for a smooth signal f(t). Study of these vanishing moments suggests

that the ideal number of them present in the wavelet will depend heavily on the application

[108].

So to summarize, the admissibility condition specifies that Ψ must be a wave, and the

regularity conditions and vanishing moments specify that it must be compactly supported.

The result is a localized wave, or a wavelet.

7.3 The Discrete Wavelet Transformation

The wavelet transformation as it stands is somewhat impractical. The continuous trans-

formation requires the calculation of coefficients over every possible scale by continuously

shifting a continuously scalable function over a signal, and these scaled functions will not

necessarily form an orthonormal basis [107].
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Even without this redundancy, there are still an infinite number of wavelets in the

wavelet transformation and in order to be able to compute wavelet coefficients we would

like to reduce this number. It is also clear that the wavelet transformation will not, in

general, have an analytic solution, requiring the resulting algorithms to be calculable given

a reasonable amount of computer power.

To overcome the problem of redundancy, discrete wavelets are introduced. These are

just like regular wavelets, except they can only be scaled and translated by discrete steps:

Ψj,k(t) =
1√
sj
0

Ψ

(
t− kτ0s

j
0

sj
0

)
(7.8)

where j and k are integers, and the usual choice for the scaling and translation factors are

s0 = 2 (‘dyadic sampling’), and τ0 = 1, so the discrete wavelet definition becomes:

Ψj,k(t) =
1√
2j

Ψ
(

t− (2j)k
2j

)
(7.9)

Thus the signal is now only sampled at discrete intervals in time. However, it can be

shown that such a decomposition still allows for perfect reconstruction of the original signal,

so long as the total energy of the wavelet coefficients lies between two positive bounds A

and B [109]:

A‖f(t)‖2 ≤
∑
j,k

|〈f(t),Ψj,k〉|2 ≤ B‖f(t)‖2 (7.10)

where ‖f(t)‖2 ≡
∫∞
0 |f(t)|2 dt is the energy of f(t), A > 0, B < ∞ and A,B are independent

of f(t). When this equation is satisfied, the family of basis functions Ψj,k(t) with j, k ∈ Z

is referred to as a ‘frame’ with frame bounds A and B.

When A = B the frame is tight, and the discrete wavelets form an orthonormal basis.

i.e. ∫
Ψj,k(t)Ψ∗

m,n(t)dt = δjmδkn (7.11)
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Hence the original signal can be reconstructed by summing the orthogonal wavelet basis

functions, weighted by the wavelet coefficients:

f(t) =
∑
j,k

γ(j, k)Ψj,k(t) (7.12)

When A 6= B, the frame is dual, and although reconstruction of the original signal

is still possible, the decomposition wavelet is different from the reconstruction wavelet.

Orthogonality, however, is not an essential quality in the representation of signals, and it is

sometimes useful to use a collection of wavelets that do not obey the orthogonality relation.

One of the disadvantages of the discrete wavelet transform is that that it is not shift

invariant. That is, if one takes the discrete wavelet transform of a signal and the discrete

wavelet transform of the same signal shifted in time, the results will not in general be the

same. The results will also not, in general, be shifted versions of one another.

7.4 The Scaling Function

The discrete wavelet transform still requires a very large number of scalings and translations

in order to be calculated for a sampled signal. The key to reducing the number of wavelets

is to consider the wavelet transform as a type of filter. That is, a wavelet transform at a

particular scale produces information over a limited range of frequencies, and in effect is

acting like a band-pass filter.

Fourier theory tells us that scaling the wavelet by a factor of two will stretch the fre-

quency spectrum of the wavelet by a factor of two, and will also shift the frequency com-

ponents up by a factor of two. Hence, we can cover the whole frequency range of the signal

by using a set of dyadically dilated wavelets.



190

Figure 7.2: Wavelet and Scaling Functions for the db1 (also known as the haar) wavelet,
which belongs to the Daubechies family of wavelets and has 1 vanishing moment. The
functions are shown at an arbitrary scale.

However, in order to cover all frequencies down to zero, an infinite number of dilated

wavelets is still needed, because each time the wavelet is dilated it’s bandwidth is reduced.

However one can cover the frequency range below some minimum value by use of a scaling

function. This method, first introduced by Mallat [110], allows the analysis of a signal by

using a finite number of wavelets, and a scaling function that covers the (low) frequency

space not covered by the wavelets. i.e. the scaling function is essentially a sum of the

(infinite number of) wavelets that encompass the low-frequency part of the spectrum:

φ(t) =
n∑
j,k

γ(j, k)Ψj,k(t) (7.13)

i.e. The frequency space is covered by the scaling function up to some scale n. The scaling

function has the condition ∫
φ(t) dt = 1 (7.14)

Figure 7.2 shows the wavelet and scaling functions for the Daubechies wavelet with 1

vanishing moment, also called db1 or equivalently the haar wavelet. Figure 7.3 shows the
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Figure 7.3: Wavelet and Scaling Functions for the db2 wavelet, which belongs to the
Daubechies family of wavelets and has 2 vanishing moments. The functions are shown
at an arbitrary scale.

wavelet and scaling functions for the Daubechies wavelet with 2 vanishing moments, also

called db2.

7.5 Band-Pass Filters

One way to implement the multiresolution analysis that follows from the wavelet and scaling

function is to view these functions as a filter bank. In this way, the signal is passed through

a series of filters and the outputs of the different filter stages are the wavelet and scaling

function transform coefficients.

That is, we can express the signal in the following way [111]:

Aj(k) =
∑
m

Aj+1(m) h̄(2k −m) +
∑
m

Dj+1(m) ḡ(2k −m) (7.15)

where A0 is identified as the signal f(t), the coefficients Aj(m) and Dj(m) can be expressed
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as

Aj+1(k) =
∑

n

h(2k − n)Aj(n) (7.16)

Dj+1(k) =
∑

n

g(2k − n)Aj(n) (7.17)

g(k) is a high-pass wavelet decomposition filter, h(k) is a low-pass scaling decomposition

filter, ḡ(k) and h̄(k) are the corresponding recomposition filters, and j is referred to as the

level of decomposition.

The total frequency range is now being covered at low frequencies by the low-pass

(scaling) function, and at high frequencies by the high-pass (wavelet) function. The signal

now can be expressed in terms of the coefficients A and D, which we call ‘Approximation’

and ‘Detail’ coefficients respectively. The only remaining problem is how to define the

filters.

The filters are uniquely defined from the wavelet and scaling functions by a set of

conditions which define a quadrature mirror filter [112]. For an orthonormal wavelet, the

high and low pass filters are related by

h(L− n + 1) = (−1)ng(n) 1 ≤ n ≤ L (7.18)

h̄(L− n + 1) = (−1)nḡ(n) 1 ≤ n ≤ L (7.19)

and reconstruction filters are related to deconstruction filters by

ḡ(L− n + 1) = g(n) 1 ≤ n ≤ L (7.20)

h̄(L− n + 1) = h(n) 1 ≤ n ≤ L (7.21)

where the filters are all of length L. Given one of the four filters, the rest follow from these

relationships.
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We shall describe the case where the wavelet is not orthonormal below. Now, the

mother wavelets (and ‘father’ scaling functions) are described by some polynomial, and the

requirement that the high and low pass filters are able to reproduce this polynomial leads

to a prescription to perform this calculation, which also uniquely defines the filters for a

given wavelet.

One such prescription is the cascade algorithm: Take h̄, upsample it by a factor of 2

and convolve the result with h̄. Continue to upsample and convolve with h̄ and the result

will converge to the scaling function. Similarly, take ḡ, upsample and convolve with h̄

repeatedly and the result will converge to the wavelet function. Figures 7.4 and 7.5 shows

iterations of this process on the db1 filters to compare with the functions shown in Figure

7.2. Figures 7.6 and 7.7 also show iterations of this process on the db2 filters to compare

with the functions shown in Figure 7.3.

A wavelet in the Daubechies family dbX has X vanishing moments. The db2 wavelet

therefore has 2 vanishing moments, which is why it extends beyond a dyadic range in

terms of the number of parameters present at each iteration of the cascade algorithm.

Similarly, wavelets with more vanishing moments will have a greater increase in the number

of parameters with each successive iteration of the cascade algorithm.

These filters can also be used to directly calculate the approximation and detail coeffi-

cients at a given level without first calculating the previous level’s approximation coefficients.

If the high-pass reconstruction filter after i iterations of the cascade algorithm is given as

ḡi(n), having length L, then for a signal x(t) an individual detail coefficient at level j can
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Figure 7.4: Successive iterations of the cascade algorithm for the db1 scaling function.
The upper-left figure shows h̄, which is iteratively upsampled and convolved with itself to
approach the exact scaling function shown in Figure 7.2.

Figure 7.5: Successive iterations of the cascade algorithm for the db1 wavelet function. The
upper-left figure shows ḡ, which is iteratively upsampled and convolved with h̄ to approach
the exact wavelet function shown in Figure 7.2.
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Figure 7.6: Successive iterations of the cascade algorithm for the db2 scaling function.
The upper-left figure shows h̄, which is iteratively upsampled and convolved with itself to
approach the exact scaling function shown in Figure 7.3.

Figure 7.7: Successive iterations of the cascade algorithm for the db2 wavelet function. The
upper-left figure shows ḡ, which is iteratively upsampled and convolved with h̄ to approach
the exact wavelet function shown in Figure 7.3.
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Figure 7.8: A signal is filtered into approximation and detail coefficients via high-pass and
low-pass filters, and are subsequently downsampled by a factor of 2.

be written

Dj(k) =
L∑

n=1

x
(
2j(k + 1) + n− L

)
ḡj−1(n) (7.22)

In the case where the wavelets are not orthonormal, there are now two scaling functions

and two wavelet functions - one pair is used for signal decomposition and one pair is used in

signal reconstruction. The high and low pass filters in this case are still uniquely determined

by the quadrature mirror filter conditions since relations similar to those in (7.18) - (7.21)

still hold.

Once the high and low pass filters are defined, the signal can be filtered into two parts -

one that contains high-frequency information (the detail coefficients), and one that contains

the low-frequency information (the approximation coefficients). Unfortunately this also

means that the output data rate is equal to twice the input data rate, since each coefficient

type will yield the same number of values as are contained in the input signal. However,

without loss of information, we can take advantage of the factor of 2k that appears in (7.16)

and (7.17) to downsample each output collection of coefficients by a factor of 2, so that the

output data rate is equal to the input data rate.

Figure 7.8 shows the filtering of a set of approximation coefficients into approximation

and detail coefficients of the next lowest level. Since f(t) ≡ A0, the signal can now be
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Figure 7.9: The filtering of a signal f(t) into approximation and detail coefficients. If the
signal contains n values, then each set of coefficients at level j contains n/(2j) values. The
filtering can continue at successive levels until 2j ≥ n.

filtered down to any desired level as a collection of approximation and detail coefficients, as

shown in Figure 7.9.

Since the number of coefficients at each detail level is progressively halved, the iteration

limit will occur where only one value is present in the output coefficients. i.e. If the signal

contains n values, then the highest level j occurs when 2j ≥ n. The width of the scaling

function spectrum can be inferred from this limit; usually the length of the longest possible

filter is used to determine the width.

Although the mechanics of the process will not be discussed here (for example, see [112]),

it is possible to reconstruct the original signal exactly from any given level by using that

level’s approximation coefficients, and all the detail coefficients down to that level. i.e.

f(t) ≡ A1 ⊕D1

≡ A2 ⊕D2 ⊕D1

≡ A3 ⊕D3 ⊕D2 ⊕D1

etc...

The decomposition of a signal in this way naturally lends itself to compression and
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noise removal, which are much the same process. Both use some method of thresholding to

discard detail coefficients below some value, which removes high-frequency transients in the

signal (denoising) and results in a smaller number of values with little loss of information

(compression). See Figure 7.10 for an example of the compression of a CDMS phonon signal.

The detail and approximation coefficients of the uncompressed signal are calculated

(shown in blue in Figure 7.10) and detail coefficients with a magnitude below a threshold

value (= 1.88) are set to zero. The coefficient values after thresholding are shown in red; all

of the detail coefficients at level 1 and 2 are set to zero. All coefficients except for one at level

3 are set to zero. The signal is reconstructed using the lowest level approximation coefficients

and all levels of the detail coefficients (red, top right). The reconstructed signal has an

energy (≡
∫

f(t)2 dt) which is 99.6% of the original signal’s energy, yet it is constructed

from a set of approximation and detail coefficients (the same size as the original signal) of

which 88% are identically zero.
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Figure 7.10: Example of performing compression on a CDMS phonon pulse using the db2
wavelet. See text for explanation.



200

7.6 Wavelet Families

Figures 7.11 - 7.15 show examples of the most commonly used wavelet families. These are

the wavelet functions; scaling functions are also necessary for a multiresolution analysis but

are not shown here. Generally speaking, the coefficient for a wavelet decomposition will

be larger when the shape of the wavelet physically resembles the shape of the signal. For

example, this makes the step-function-shaped ‘haar’ wavelet particularly useful for finding

discontinuities in signals.

Figure 7.11: The haar wavelet, the simplest of all the wavelets. It is particularly useful at
finding discontinuities in signals, by virtue of it’s own discontinuous nature.

Figure 7.12: The Daubechies wavelet family, which are orthonormal. db1 is the same as
the haar wavelet.
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Figure 7.13: A selection of wavelets from the Biorthogonal family. These wavelets form
a dual frame, so that the wavelet used for decomposition is different than the one used
for reconstruction. Hence these are shown in pairs - the right hand figure in each pair
is the decomposition filter. The Reverse Biorthogonal or rbio family is obtained by
exchanging the decomposition and reconstruction filters in the Biorthogonal family.

Figure 7.14: The Symlet family of wavelets. These have similar properties to the
Daubechies wavelets.

Figure 7.15: The Coiflet family of wavelets.
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7.7 DWT Example I: Discontinuous Signal

Consider the signal in Figure 7.16. It is a sine wave + white noise with a discontinuity in

the sine component part way through the signal (at bin 650):

The decomposition of this signal using the haar wavelet, up to level 4, is shown in

Figure 7.17. This Discrete Wavelet Transform (DWT) analysis follows the use of a filter

bank described in Section 7.5. Notice how, particularly at the higher levels, the detail

coefficients show a large negative value where the discontinuity occurs (negative because

the signal has a step up, and the haar wavelet is a step down). The choice of wavelet for

a particular task depends heavily on the nature of the task, and there is no analytic way

to choose the wavelet. This is just a simple example to show how the analysis works in

practice.

7.8 DWT Example II: CDMS phonon pulse analysis

Although the wavelet analysis of a CDMS phonon pulse will be covered in more detail

later in Chapter 9, here we show the discrete wavelet decomposition of an actual CDMS

detector phonon pulse taken from the primary channel for a single event. The main part

of a CDMS pulse is shown in Figure 7.18, with the decomposition of this signal, using the

rbio1.5 (reverse biorthogonal) wavelet shown in Figure 7.19.

The ‘high pass filters’ shown in the third column of Figure 7.19 are those applied to

the original signal to obtain the approximation and detail coefficients at a given level, as

per Eqn. (7.22). The scales of the high-pass filters as shown are correct to obtain the

coefficients at each level from the original signal.
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Figure 7.16: Noisy sine function with discontinuity at bin 650.

Figure 7.17: Discrete Wavelet Decomposition of the signal shown in Figure 7.16 using the
haar wavelet, up to level 4.
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Figure 7.18: Section of a CDMS detector phonon pulse with recoil energy ∼ 50 keV.

Figure 7.19: Discrete Wavelet Decomposition of the signal shown in Figure 7.18 using the
bior1.3 wavelet, up to level 4. The filters ḡj(n) used in Eqn. (7.22) are shown at levels j +1.
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All wavelet families, when applied to the CDMS phonon pulse, show some sharp change

in detail coefficient values around the leading edge of the pulse, although the rbio family of

wavelets have a particularly noticeable change in values at this point. Whether the values

of these leading edge coefficients provide information on recoil type is a question we shall

return to in Chapter 9.



Chapter 8

Neural Network Technology

The creation of a surface event cut is essentially a classification problem. That is, we would

like to know, for each point in some n-dimensional space - where n is the number of detector

parameters that we’re considering - what the probability is of a surface electron recoil or a

nuclear recoil being found at that point. Once we know how likely we are to find a given

class of event at each location, we can place our cut based on this set of probabilities.

Since neural networks based on perceptrons are particularly good at analyzing classifi-

cation problems, we examine their use applied to this problem.

8.1 The Perceptron

A perceptron is a mathematical object that takes some collection of input values x1, x2, ...xd

and produces output values aj :

aj =
d∑

i=1

wjixi + bj j = 1, 2, ...,M. (8.1)

206
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Figure 8.1: Example perceptron activation functions. Use of tanh for the hidden layer
function in a multilayer perceptron network is very common. The output layer activation
function is usually either a logistic sigmoidal function as shown, or a simple linear function.

where wji is a matrix of weight values and bj is an array of bias values. The number of

output values, M , depends upon the relation of this perceptron to the desired output values,

and to other perceptrons, if they exist.

The values aj are usually transformed by some activation function to give the final

output of the perceptron. This is typically some non-linear function such as tanh.

zj = tanh(aj) j = 1, 2, ...,M. (8.2)

Two example activation functions are shown in Figure 8.1.

So in summary, the perceptron takes input values xd and creates output values zj . This

operation alone isn’t particularly spectacular. However, perceptrons can be combined into

a network which can then be ‘trained’ on model data - that is, the weight and bias values

are modified based on some comparison of the output values and the desired output values,

until the values converge and the network produces the desired behavior.
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Figure 8.2: Example MLP network with 2 input perceptrons, 1 output perceptron and 3
hidden perceptrons.

8.2 Multilayer Perceptron Networks (MLPs)

It has been shown that one layer of suitable nonlinear perceptrons followed by a linear

or logistic layer (to be described) can approximate any nonlinear function with arbitrary

accuracy, given enough nonlinear perceptrons [113].

The multilayer perceptron network has d input values xi, M ‘hidden layer’ units zj , and

c network outputs yk. The input layer and hidden layer have associated weights matrices

of size (M × d), and (c×M) respectively. The hidden layer and output layers have M and

c associated bias values, respectively. The hidden layer transfer function is tanh, and the

output layer activation function is a logistic sigmoidal function, yk = (1+exp(−ak))−1 (see

Figure 8.1) although linear functions are also commonly used.

An example network, for which d = 2, M = 3 and c = 1 is shown in Figure 8.2. The

number of input and output vectors is defined by the problem at hand - for example, this

network could be used to classify 2-dimensional data points as being one of two different
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types (where the output y1 = 0 for a data point of type 1, and y1 = 1 for a data point of

type 2). The number of units in the hidden layer is empirically chosen to be sufficient for

network conversion, since computation time rises exponentially with the number of hidden

units.

The layer outputs are given by:

zj = tanh

(
d∑

i=1

w
(1)
ji xi + b

(1)
j

)
j = 1, 2, ...,M. (8.3)

yk =

1 + exp

− M∑
j=1

w
(2)
kj zj + b

(2)
k

−1

k = 1, 2, ..., c. (8.4)

The network needs to be trained on sample data in order to perform in the desired

way. That is, a set of sample inputs are given along with correct network outputs and the

network is run multiple times. Each time the network runs, the outputs are compared with

the correct values and the error is propagated back to the weights and biases, which are

modified, and the network runs again. This process is repeated until the weights and biases

have converged.

The network converges via minimization of an error function. For example, a network

with c outputs (index k) is supplied with d data points (index n), outputs values yn
k , and

has target output values tnk . The sum-of-squares error function is given by

E =
1
2

d∑
n=1

c∑
k=1

(yn
k − tnk)2 + ε (8.5)

where ε is a stochastic term neccessary to stop the network from getting stuck in a local

minimum of the error function.

The yn
k values are effectively a function of the input values and the network weights and

biases. There are various ways to minimize a smooth function of many parameters, such as
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Figure 8.3: Example of overfitting with an MLP network. 20 data points (circles) are taken
from a noisy sine function (red line), and used to train five separate MLP networks (black
lines). Although this particular example is simple enough that overfitting could easily be
avoided by manipulating the amount of noise added to the error calculation, we don’t know
what this number should be a priori.

scaled conjugate gradient and quasi-Newton methods [115]. These will not be discussed in

detail here, but scaled conjugate gradient is used predominantly in the subsequent analysis.

A noise term is usually added to the error value since without this term there is a risk

that the network will converge to a local minimum. However, if the noise term is too large,

the system can end up in a state with a loss of generality. The iteration of the system can

be thought of that of a ‘noisy ball’ in a landscape of potentials.

If the analysis is not a simple one, the network can overfit the training data - meaning

that the performance of the network is good on training data, but is poor on subsequent

test with unseen data. i.e. the network is fitting the noise on the training data, rather than

the underlying behavior of the data. Figure 8.3 shows an example of overfitting, where the

network outputs follow the noise details rather than the underlying function. This example
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is intended to be illustrative only, since it could easily be improved by manipulation of the

noise term in the calculated error, although this could only be done were we to examine the

behavior of the network on unseen data and adjust accordingly. That is, overfitting could

not, in principal, be avoided in even this simple example if we needed to fix the network

behavior whilst being blind to unseen data. Since that is indeed the case when setting a

surface event cut, this is especially important.

8.3 Bayesian Techniques

Running the network on the same set of inputs twice will, in general, result in two different

sets of output data because of the addition of noise in the iterative convergence of the error

function. We also do not know, in principle, what the size of the noise should be. This

makes it difficult to train a network without overfitting on the training data unless one is

allowed to observe the effectiveness of the network upon unseen data.

The solution to this problem is to use a Bayesian approach that accounts for uncertainty

in the network’s weights and biases. The Bayesian method offers a number of important

benefits; 1) By taking account of parameter1 uncertainty, overfitting is generally not a

problem, 2) The relative importance of different input variables can be determined via

automatic relevance determination (ARD).

In this approach, an iterative procedure is used to dynamically adjust the network’s sen-

sitivity to each input value based on repeated observations of the network output value(s).

At first, we do not know which weight values associated with each input node are likely or

unlikely. Each input node is assigned a prior probability distribution to express the initial
1By parameters, we mean the combined collection of network weight and bias values



212

uncertainty in the value of that input’s weights to the hidden layer. After the network

undergoes training in the usual fashion, Bayes’ theorem is used to update each input’s prior

probability distribution on the basis of the network output values. For example, if it’s clear

from the output values that a particular input is not contributing much to the outputs then

it’s prior probability distribution will become narrower, constraining it’s weight values to

be small. Conversely, if an input node is contributing significantly to the output values then

it’s prior distribution will be widened to allow large weight values.

This method quickly tranquilizes input nodes that are only providing noisy input values.

The weights of such an input are dynamically constrained to be small, no matter what effect

on the input minimizing the error might have. Without this procedure the network is free to

set the weights to any values in order to minimize the error function at the cost of overfitting.

By constraining unimportant inputs to have small weights, overfitting is avoided.

We start with a prior probability distribution p(ω) which expresses knowledge of the

parameters (network weights and biases) before the data is observed (where ω is a vector

containing all of the network weight and bias values). The network is trained to create a set

of output values, D, where D is used to denote the set of network output values yn
k . Bayes’

theorem can be used to update the prior probability distribution.

Bayes’ Theorem gives

p(ω|D) =
p(D|ω)p(ω)

p(D)
(8.6)

where p(ω) is the prior probability distribution of the network parameters (weights and

biases), p(D|ω) is the likelihood of getting the observed set of output values D given the

network parameters ω, and p(D) is the probability of seeing the set of output values D.



213

p(D) is called the evidence and is given by the identity:

p(D) =
∫

p(D|ω′)p(ω′) dω′ (8.7)

Assuming that we are able to calculate this integral, the prediction for new inputs x is

given by

p(y|x,D) =
∫

p(y|x,ω)p(ω|D) dω (8.8)

where y is the vector of network outputs using the inputs x, and p(y|x,D) means the

probability of the output y given the inputs x, as a function of D.

Unfortunately, integrals like (8.7) and (8.8) can only be calculated analytically for a very

small class of prior distributions. The calculation of the integrals must be performed either

by the use of approximations - known as the evidence procedure - or by numerical methods

such as Monte Carlo or Markov Chain sampling. Here we concentrate on application of the

evidence procedure.

The choice of the prior probability distribution for the weights and biases of our network

should reflect the fact that we expect the underlying generator of the dataset to be smooth.

We also tend to favor small values for the network weights, since large weight values suggest

that the network is performing an unstable mapping.

These requirements suggest a Gaussian prior distribution of the form

p(ω) =
(αi

2π

)W/2
exp

(
−αi

2
‖ω‖2

)
(8.9)

where αi represents the inverse variance of the expected distribution and is known as a

hyperparameter (since it parameterizes the distribution of the other parameters), W is the
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total number of relevant weights and biases (the length of ω), and

‖ω‖2 ≡
W∑
i=1

ω2
i (8.10)

This is equivalent to adding an extra term to the error function (8.5) which penalizes

large weight values:

E =
1
2

d∑
n=1

c∑
k=1

(yn
k − tnk)2 +

α

2

W∑
i=1

ω2
i + ε (8.11)

= ES + EW + ε (8.12)

where ES is the sum-of-squares error and EW is the weight-based error term.

In the automatic relevance determination (ARD) framework, we associate a hyperpa-

rameter αi with each input variable xi. Each αi represents the inverse variance of the prior

distribution of the weights from that input to the hidden layer nodes.

There is also a single αi for the hidden layer bias, an αi for the set of hidden layer

to output weights (one per output), and a final αi for the output layer bias. During the

training of the network, it is possible to modify the hyperparameters and find their optimal

value. Because the hyperparameters represent the inverse of the variance of the weights, a

small αi for a network input means that weights significantly different from zero are favored

and thus it is likely that the corresponding input is important. Conversely, a large α means

that the weights are constrained to be close to zero, and thus the corresponding input is

apparently less important. In order be able to compare inputs fairly, each input from the

data is independently scaled to have zero mean and unit variance.
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8.4 The Evidence Procedure

The evidence procedure is an approximation used to solve the integrals (8.7) and (8.8).

We wish to find the probability p(ω|D) - for a given set of network outputs D what is the

probability distribution of the network weight and bias values?

Now that the prior probability distribution has been parameterized by the αi hyper-

parameters, in principle it is possible to find p(ω|D) by integrating over all the unknown

hyperparameter values:

p(ω|D) =
∫

p(ω,α|D) dα (8.13)

=
∫

p(ω|α,D) p(α|D) dα (8.14)

where α is a vector of the αi hyperparameter values.

The approximation made in the evidence procedure is to assume that the function

p(α|D) is sharply peaked around αMP , the most probable values of the hyperparameters:

p(ω|D) ≈ p(ω|αMP ,D)
∫

p(α|D) dα (8.15)

≈ p(ω|αMP ,D) (8.16)

Hence, if we find the hyperparameter values that maximize the weight posterior probability,

then we can perform all calculations that involve p(ω|D) using the distribution with the

hyperparameters fixed at those values.

It can be shown [116] that by considering d
dα ln p(D|α), the most probable value of the

hyperparameter αMP is expressed as a function of it’s previous value α:

αMP =
1

‖ω‖2

(
W∑
i=1

λi

λi + α

)
(8.17)
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where λi are the eigenvalues of the network’s Hessian matrix. In this framework, the Hessian

matrix is defined as the second derivative of the error function with respect to the network’s

first and second layer weights (see Figure 8.2):

H ≡ ∂2E

∂ω
(1)
ji ∂ω

(2)
lk

(8.18)

so that H is a square matrix of dimension W ×W , and E is given by (8.11).

So the evidence procedure is iterative; given some initial choice of α, the network is

trained, the new α is given by (8.17) and the network is trained again, α is re-estimated,

etc. until α converges.

To implement the evidence procedure in practice the following steps are performed:

1. Choose initial values for the hyperparameters αi (one per input) in the network. The

final outcome is relatively insensitive to the initial hyperparameter values. The weights

and biases are also set to nominal values, typically on the order of 10−2, but again

the final outcome is empirically close to independent of these values.

2. Train the network to minimize the error function (8.11). This is done via some cal-

culation of the error function gradient with respect to the weights and biases, such

as quasi-Newton or scaled conjugate gradient [115]. The operation of a network not

using the evidence procedure would stop here.

3. The evidence procedure described above is used to set new values for the hyperpa-

rameters, using (8.17).

4. Steps 2 and 3 are repeated, until the hyperparameters converge.
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Figure 8.4: Example of applying the evidence procedure to a regression problem (the same
as shown in Figure 8.3). 20 data points (circles) are taken from a noisy sine function (red
line), and used to train an MLP network without using the evidence procedure (dotted
black line), and the same MLP network with the evidence procedure applied (solid black
line). Network shown in Figure 8.5.

Figure 8.4 shows an example of applying the evidence procedure to the same problem

as shown in Figure 8.3. Although the initial hyperparameter and weight values are selected

manually, the output of the network is not sensitive to them, given enough iterations to

converge the hyperparameters and enough hidden perceptrons. Thus an optimal solution

can be reached without overfitting and with no sensitivity to initial conditions.

There is no analytical way to select the number of units in the hidden layer, although

a good method is to start with the same number as there are input units and increase the

number of hidden units by one, running the network each time. For most applications it

becomes clear how many hidden nodes are appropriate in this way. The example shown in

Figure 8.4 uses 1 input node, 3 hidden nodes and 1 output node (Figure 8.5).

We can also apply the evidence procedure to classification problems, such as the one we
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Figure 8.5: MLP network used to produce Figure 8.4 with 1 input, 1 output and 3 hidden
perceptrons.

will face in making a surface event cut. Figure 8.6 shows the result of applying the evidence

procedure to such a test problem, where the data is generated from a set of three Gaussian

Mixture Models (GMMs). The advantage in using GMMs is that, via knowledge of the

underlying generator(s) of the data, they allow the analytic calculation of the optimal Bayes

result - that is, the result that would be obtained if the neural network is working perfectly

(calculation of the Bayes result takes account of the limited statistics in the dataset).

The example in Figure 8.6 shows the result of using two different networks on the same

classification problem. The regularized network uses the evidence procedure, whereas the

unregularized network does not. Both networks have 2 input nodes, 8 nodes in the hidden

layer, and 1 output node.

This toy model allows us to examine how well a cut set using an MLP and the evidence

procedure would perform on unseen data, since the Bayesian decision boundary exactly

describes the optimal performance of a network. An MLP using the evidence procedure on
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a binary classification problem is able to produce a result very close to the optimal solution

independently of the initial network parameters.

8.5 Key Summary

It can be seen that the evidence procedure gives a smoother decision boundary, closer to the

optimal Bayes boundary, than the unregularized (no evidence procedure) MLP. Although

the unregularized MLP can be improved by tweaking the magnitude of the noise

term, we would be unable to do this whilst being blind to the results. The evi-

dence procedure empirically provides results that do not depend upon any initial conditions

(assuming enough hidden perceptrons and sufficient iterations of the hyperparameters).

Further studies of test cases also show that the evidence procedure is particularly good at

not being ‘distracted’ by unimportant inputs. For example, running the above classification

problem again while adding another input variable that is generated from noise does not

affect the result of the network. However, the unregularized MLP performs worse when

given this extra variable, since it lacks the ability to dynamically make the weight values

for this input small without overfitting. Conversely, the evidence procedure gives almost

exactly the same result as it did without the noise input, even when adding several such

inputs. Furthermore, it provides an easy way to weigh the importance of each input via

ARD - examination of the hyperparameter value associated with each input variable allows

a direct comparison since a smaller α represents a larger prior variance, and consequently

a more relevant input.
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Figure 8.6: Example of applying the evidence procedure to a classification problem. Dummy
data is generated from gaussian generators at (0,-0.1) (Data Class I) and (1,1) & (1,-1) (Class
II), shown as grey ellipses. The data is used to train an unregularized MLP network (result
in dotted black) and an MLP network using the evidence procedure (result in solid black).
The results shown are the optimal decision boundaries - the points at which the network
output claims a 50/50 probability of a Class I or Class II data point. The use of Gaussian
generators allow the analytic calculation of the Bayesian optimal decision boundary (solid
magenta).



Chapter 9

Run 119 - Wavelet / Neural Net

Based Analysis

This chapter describes an alternate approach to the surface event cut that is so central

to the CDMS analysis. Recent work in CDMS has suggested that phonon pulse timing

parameters can be combined to provide even greater discrimination between electron and

nuclear recoils [105] [106]. It is also interesting to ask whether these timing parameters,

such as the phonon signal’s risetime and delay, represent all of the recoil discrimination

information contained within the phonon signal.

The alternate analysis discussed here uses a wavelet-based approach in order to extract

the maximum amount of information from the leading edge of the pulse, and maximizes

discrimination based on this wavelet information combined with existing analysis parame-

ters by using a neural network. All of the analysis in this chapter, unless otherwise noted,

is the sole work of the author.

221



222

9.1 Creating an Optimal Cut

Once we have characterized a parameter space in terms of the expected location of signal

and background events in that space, we must decide where to place a cut. This will depend

on our goals with the experiment - for example, an experiment that hopes to see very few

signal events would want to have a much lower expected background that an experiment

that expects to see many signal events. In general, however, we wish to optimize our choice

of cut such that our analysis gives the best expected limit on the signal.

Let us suppose that the fraction of signal events that pass the cut is given by α(p) and

the fraction of background events that pass the cut is given by β(p), where p is a value that

parameterizes these distributions. Thus the cut is set by deciding upon a suitable choice of

p, and a perfect cut would have α = 1, β = 0.

We wish to minimize the expected upper limit of the WIMP-nucleon cross-section in

the absence of a signal, and we know that this limit will improve as α(p) increases and the

experiment’s exposure increases. However, the limit will also depend upon the upper limit

of the expected background. Hence, we can write:

Limit =
P90(Nβ β(p))

α(p)MT
(9.1)

where Nβ is the number of background events present before the cut is applied, MT is the

total exposure (mass × time), and P90(x) is the Poisson 90% upper limit of x (P90(0) =

2.3,P90(1) = 3.9 etc.). This expression assumes no attempt to subtract the background

and no signal events. The dark matter limit is in units of (90% confidence limit of signal

events) / kg / day.

Therefore to find where to place the cut, we need only find the value of p that minimizes
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Figure 9.1: Test pulses used for initial investigation into wavelet representation of pulse
parameters, modeled after CDMS phonon pulses.

the function (9.1).

9.2 Pulse Parameters via Wavelets

The first thing we would like to know in using wavelets to represent the phonon pulse shape

is whether there is a simple way to represent familiar phonon pulse characteristics using

wavelets. For example, can the wavelets easily represent quantities such as the signal start

time and risetime?

The problem was examined first for a simple error-function-shaped distribution, and

then generalized to the CDMS phonon pulse shape. Figure 9.1 shows an example test

signal used for the analysis, with and without noise added. The test signal is created from

the form

s(t) = A
(
e−t/τ2 − e−t/τ1

)
(9.2)

where τ1 and τ2 are constants used respectively to set the rise and fall time of the pulse, and

A is a normalization constant used to set the peak height of the signal to 1 before adding

noise. The signals are modeled after real CDMS phonon pulses (see Figure 2.8), and use a
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Figure 9.2: Schematic showing the calculation of two discrete wavelet detail coefficients
shown in Figure 9.3. Two phonon pulses are shown, with start times of 450 (blue) and 550
(magenta). Coefficient 38 for each signal follows from the correlation of the filter (red) and
the signals - hence we obtain expect a small positive value for coefficient 38 when the start
time is 450, and a large negative value when the start time is 550. The values of coefficient
44 obtained through correlation of the filter (black) signal are almost identical for both
signals (see Figure 9.3).

noise spectrum similar to that present in Soudan data.

A set of 2500 test signals was created using many possible combinations of start time

and risetime values, whilst keeping the amplitude and fall times fixed. We examine the

10-40% risetime values since this has been historically used in CDMS analyses, but this

could easily be extended to some other part of the leading edge of the pulse. The discrete

wavelet detail coefficients from a DWT analysis of all of these signals were then examined

using a variety of wavelet families and decomposition levels. The aim was to find one or

more coefficients that represent one of the two parameters (start time, risetime), yet are

not dependent upon the other parameter.

By examining Discrete Wavelet Transformations of the test pulses, it was found that

the bior1.3 wavelet at a decomposition level of 4 (see Figure 7.19) is particularly good at
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Figure 9.3: Selection of DWT coefficients of noisy training pulses, using the bior1.3 wavelet
at level 4, plotted against start time values of the test pulses. There is enough dependence
of these coefficients upon the start time that a neural network can be trained to calculate
the start time given these coefficients.

Figure 9.4: Performance of a neural network trained using the coefficients shown in Figure
9.3 on pulses with start times different from those in the training data set.
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Figure 9.5: Schematic showing the calculation of the discrete wavelet detail coefficient 41, as
shown in Figure 9.6. Two phonon pulses are shown with common start times but different
risetimes. Coefficient 41 for each signal is calculated by correlating the filter (red) with the
signal. When the risetime is smaller, the coefficient value has a more negative value, as can
be seen in Figure 9.6.

representing the start time of these pulses. Figure 9.2 is a schematic showing the calculation

of these coefficients. Figure 9.3 shows the value of several detail coefficient values for the

set of training pulses, as a function of the start time bin. A neural network with 3 input

nodes, 5 hidden nodes and 1 output node was trained to calculate the start time value using

detail coefficients 38-40. Figure 9.4 shows the performance of the network on unseen data.

There are also coefficients that represent the rise time values, but there is a dependence

upon the start time value. This dependence can be removed by using the network-derived

value of the start time, and shifting the pulses to a common start time.

A DWT analysis of the shifted pulses showed that detail coefficients using bior1.3 at a

decomposition level 3 (see Figure 7.19) have a well-defined dependence upon the rise time.

Figure 9.5 is a schematic showing the calculation of the coefficients. Figure 9.6 shows the

value of several detail coefficients for the training pulses, as a function of the risetime value.
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Figure 9.6: Selection of DWT coefficients of noisy training pulses, using the bior1.3 wavelet
at level 3, plotted against rise time values of test pulses that have been shifted back to
a common start time using the network derived value of the start time. Again, a neural
network can be trained to calculate the rise time given these coefficients.

Figure 9.7: Performance of a neural network trained using the coefficients shown in Figure
9.6 on pulses with rise times different from those in the training data set.



228

A neural network similar to that used to calculate the start time was used to calculate the

rise time. Network performance on unseen data is shown in Figure 9.7.

The work presented in this section is intended as a ‘proof of concept’ - that wavelet

coefficients can be used to represent pulse parameters that we know are useful in performing

discrimination between surface and bulk events. Hence it follows that the wavelet coefficients

themselves should be useful in performing discrimination, although it is still unclear whether

this information will give an improvement over using only timing RQs. Therefore we develop

a cut based only upon phonon RQs before incorporating wavelet information.

9.3 Cut Based on Phonon RQs

Here we report on the first attempt at using a neural network approach on RQ values from

CDMS Run 119 at Soudan. The cut described below has since been improved upon (see

Section 9.6). It is reported on here since this analysis was developed blind, in parallel to

the primary Run 119 analysis, and was designated as a secondary Run 119 analysis.

Firstly, we define our training and testing datasets. The data is selected from 133Ba and

252Cf calibration data, using the cuts cGoodEv & cQin & cQThresh & cVT & 7keV <

Er < 100 keV (see Chapter 6). The remaining data is classified according to the following

definitions:

• Betas are events from 133Ba gamma calibration data that lie below the 5σ electron

recoil band in ionization yield, and have an ionization yield y > 0.1.

• Neutrons are events from 252Cf neutron calibration data that lie within the 2σ nuclear

recoil band.
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Subsequent discussion of betas and neutrons within this chapter will consider these defini-

tions to be implicit.

Now that we have a collection of events that fall into one of two classes, we must select

a subset of events with which to train the network, while the remaining subset will be used

to test the network output. Since we wish to set the phonon timing cut in an unbiased way,

it is imperative that our methodology allows the creation and ‘freezing’ of the cut before

it’s effectiveness on unseen data is observed. i.e. we wish to create the cut blind. This is

one of the reasons that the evidence procedure is so useful here - without it we would not

know if we were overfitting on the training set.

Since we already have a selection of open and closed data defined for other cuts on the

133Ba calibration data, we used the same definitions to select our training set. That is,

datasets with even SeriesNumbers form the training set, whilst datasets with odd Series-

Numbers form the testing data set. The situation is a little trickier with 252Cf calibration

data, since there was no defined open and closed datasets. Here, we select 252Cf data with

even EventNumbers as part of the training set, and take the odd numbered events to be in

the testing data set. Now we have training and testing data sets of comparable size.

Three parameters were chosen with which to perform the cut; the phonon delay, phonon

risetime and phonon partition. Two of these have been described previously, but for com-

pleteness here are the definitions:

Phonon Delay (pdelc) The time from the start of the ionization pulse to the time at

which the primary phonon pulse has reached 20% of it’s amplitude (the primary

phonon pulse is the quadrant that measures the greatest phonon energy).
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Figure 9.8: The parameters phonon delay, phonon risetime and phonon partition used to
make the RQ-based cut, shown for training data in detector Z3.

Phonon Risetime (pminrtc) The time taken for the primary phonon pulse to rise from

10-40% of it’s amplitude.

Phonon Partition (pfracc) The phonon energy in the primary quadrant divided by the

phonon energy in the opposing quadrant. This provides a rough measure of radial

position, since an event close to the center of the detector will have a phonon partition

value close to one, whereas an event at a higher radial position will have a higher value.

Figure 9.8 shows the distribution of these values for training set beta and neutron events

in a sample detector.

A multilayer perceptron network consisting of 3 input nodes, 8 hidden nodes and 1

output node, and using the evidence procedure, is then applied to the training data. The

network inputs are the three phonon parameters, whilst the output is 1 when the event

is a neutron, and 0 when the event is a beta. The resulting network effectively maps a

point in the 3-dimensional input parameter space into a value q with values from 0 to 1,

which represents the probability of a neutron being found at that location (the probability

of finding a beta at that point is (1− q)). By allowing all events with a value of q greater
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Figure 9.9: Network output values on test data and the resulting passing fractions of neutron
and beta events as a function of the network output cutoff p. The network gives values close
to 1 for neutron events, and values close to 0 for beta events. The cut is placed by choosing
a value of the cutoff p which gives the best expected limit, as described in Section 9.1.
Typically, p > 0.9.

than some cutoff p to pass the cut, we can tune p to create an optimal cut. i.e. We choose

a value of p, which will pass some fraction β(p) of the betas, and some fraction α(p) of the

neutrons. We can therefore use (9.1) to choose the appropriate value of p.

Figure 9.9 shows the network output values for test data from a single detector, and the

resulting passing fractions α(p) and β(p).

The cut is set in this way for the good Ge detectors (Z2/3/5/9/11) resulting in neutron

efficiencies of ∼ 80% above 20keV on the training data. The training data results in 28

beta events leaking past the cut in the 5 good Ge detectors. Before the cut there are

5235 neutron events and 2728 beta events in the good Ge detectors. After the cut the same

detectors have 3316 neutron events (63% passing fraction) and 28 beta events (1.0% passing

fraction). Although neutron efficiencies of 80% are obtained at higher recoil energies, the

total neutron passing fraction is 63% since the neutron efficiency drops to 40-50% at low
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Figure 9.10: Efficiency of the RQ-based cut on 2σ nuclear recoil testing (unseen) data events
summed over all 5 good Ge detectors (Z2/3/5/9/11). Error bars are statistical and do not
reflect any systematics (see text).

energies, and there are more neutrons at lower recoil energies.

As described in Section 6.7.5, since we know the number of low yield events in the WIMP

search data and the number of them that reside within the signal region, we can scale the

timing cut’s leakage value to an expected leakage upon the WIMP search data, resulting

in an expected background of 0.5± 0.4 events in good Ge detectors from 7-100 keV (error

includes both statistics and systematics).

The cut is frozen at this point and the efficiency and leakage calculated for the testing

data. This results in the efficiencies shown in Figure 9.10 for unseen data, which are the

same as the efficiencies obtained on the training data within statistics. Applying the cut to

the testing data results in 48 beta leakage events, almost a factor of two greater than was

obtained for the training data. This represents a 3σ fluctuation above the expected leakage.

Subsequent analysis showed that there were two reasons for this.
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Firstly, it is worse to miscatagorize a beta as a neutron than it is to miscatagorize a

neutron as a beta, and the analysis did not account for this. A false positive nuclear recoil

degrades our expected limit by more than a false negative nuclear recoil. This problem is

discussed in Section 9.4.

Secondly, the value p that parameterizes the cut is typically > 0.9 since the cut is being

set in a region of the parameter (RQ) space which is at the tail of the beta population. The

neural network has the greatest generalization to unseen data when one is interested in the

regions of parameter space with the highest data point density. Hence, the region where

we set the cut in practice can suffer from a loss of generalization since it is dealing mostly

with outliers, and the network training optimizes for dense regions of the data distribution.

It was found that training on all data in a single energy bin for a given detector increased

the statistics sufficiently to regain generality for the outliers.

Incorporating the number of beta leakage events seen in the testing data, the expected

background estimate becomes 0.9±0.6 events in good Ge detectors from 7-100 keV. The Run

119 primary timing cut has an expected background of 0.5± 0.4 events in the same energy

range, so although the nuclear recoil efficiency is improved in this analysis the expected

background is higher.

The testing data set has around 10% more events than the training data set, so this

fluctuation is unlikely to be purely statistical. Timing analyses developed by other research

groups using the same parameters did not see a significant systematic increase in the number

of leakage events when comparing open to closed data. The conclusion is that there were

other systematic effects in the neural network method including overfitting on the training

dataset.
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The timing cut discussed in this section was designated a secondary analysis prior to

unblinding Run 119 data. That is, it was developed blind and frozen before unblinding

in the same way as the primary analysis. Of the secondary analyses developed during

this period for the WIMP search data, this analysis gives the lowest expected limit across

almost all of the WIMP mass range. When this cut is applied to the WIMP search data,

no candidate events remain in the 2σ nuclear recoil band between 7-100 keV, whereas the

primary analysis saw a single candidate event at 10.5 keV.

9.4 Logistic Error Function with Risk

The analysis above has ignored one crucial piece of information: it’s worse to miscatagorize

a beta event as a neutron or WIMP candidate than it is to miscatagorize a neutron as a

beta. Letting a single beta event cross the decision boundary of the neural network output

changes the expected limit of the cut far more than it does to let a single neutron cross the

decision boundary.

In order to account for the unbalanced nature of this classification we replaced the sum-

of-squares term ES in the error function (8.12) with a logistic error function based on a

Bernoulli random variable for each target output:

EL = −
d∑

n=1

(l1tn ln yn + l2(1− tn) ln(1− yn)) (9.3)

where the network has a single output node and d data points are being fed into the network,

tn are the target output values (either 0 or 1), yn are the actual network output values and

l1, l2 define the relative risk of misclassification. When the target output is 1 (in our case

a neutron), the error goes like −l1 ln y; when the target output is 0 (a beta) the error goes
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Figure 9.11: The logistic error function for a single data point in a binary classification
problem. The error function for betas rises more quickly with network output since the risk
of misclassifying a beta as a neutron is higher than the risk of misclassifying a neutron as
a beta.

like −l2 ln(1− y).

Therefore we can account for the unbalanced classification by making l2 > l1 which

penalizes the network more for mistaking a t = 0 event for a t = 1 event than it does for

mistaking a t = 1 event for a t = 0 event. Figure 9.11 shows the error as a function of the

output for both target values.

The logistic error function also penalizes the network for getting an output value wrong

by more than the sum-of-squares error does. As Figure 9.11 shows, the gradient of the error

function with respect to the network output is greater in the logistic case.

The relative risk coefficients l1, l2 were set based by optimizing the expected limit for

the classification problem at hand, and were used in the analysis in Section 9.6.
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9.5 Discrete Wavelet Analysis of CDMS Phonon Pulses

Next we look at wavelet information from the same set of neutron and beta events that

were selected for the analysis described in Section 9.3, so that we can add these parameters

to the neural net analysis.

For each event, the phonon pulse from the primary quadrant was selected. The pulses

were each scaled by the optimal filter-calculated amplitude in order that all the pulses be

normalized to the same pulse height. Finally, each event was shifted back to a common

start time using the inner electrode ionization pulse start time. Recall that the phonon

delay used for the RQ based cut is the time from the ionization pulse start to the time at

which the phonon pulse has reached 20% of its final amplitude. Shifting the phonon pulses

back allows the wavelet analysis to focus on their shape relative to the ionization pulse start

time.

All of the major wavelet families shown in Section 7.6 were used to perform discrete

wavelet transforms on the CDMS pulses and the coefficients were examined in order to see

which might allow determination of the recoil type. The conclusions were: firstly, analysis

with most wavelets does show some level of difference between beta and neutron pulses,

and this difference is situated around the leading edge of the pulses.

Secondly, it is clear that the pulse shape differences that exist between surface and bulk

events are such that a decomposition level between 3 and 5 is the most effective scale to

see these differences. Since each time bin in a CDMS phonon pulse is 0.8 µs, successive

wavelet coefficients taken at level j, step by (0.8 × 2j) µs. Typical phonon pulse risetimes

are 10-20 µs so we might have expected that a level of ∼ 4 would best represent this feature.
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The sym3 and rbio1.3 wavelets also have good signal to noise but show a greater difference

between the leading edge wavelet coefficients for each recoil type.

Figure 9.12 shows some example discrete wavelet decompositions for a variety of wavelet

families and decomposition levels, along with the wavelet filter used to calculate the coeffi-

cients. At the leading edge of the neutron and beta phonon pulses there is a corresponding

change in the discrete wavelet coefficient values. The haar and db2 wavelet analysis have

good signal to noise at the leading edge but the neutron and beta wavelet coefficients are

too similar to perform discrimination based on these values.

Empirically it was found that the rbio1.3 and sym3 wavelets at a decomposition level

of 4 give the greatest discrimination power between recoil types in Ge ZIPs. Figure 9.13

shows the value of the leading edge DWT coefficients for all the preselected calibration

events in detector Z2 using these wavelets. Use of multiple coefficients from the same

wavelet decomposition was examined, but it was found that other wavelet coefficients from

around the leading edge do not provide additional discrimination power. These coefficients

either provide the same information as the leading edge coefficients, or do not provide useful

discrimination information.

Although the neutron and beta populations shown in Figure 9.13 are well separated,

there are a small number of beta events that lie in the neutron region. It would not be

possible to make a very effective cut for WIMP search data on these parameters alone in

their present state.

The wavelet coefficients are derived from raw pulses, and as such have no ability to

account for the known variation of pulse shape with detector position. Even a ZIP detector

with TESs that exhibited no variation of Tc values across the phonon quadrants would
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Figure 9.12: Sample Discrete Wavelet Transformation coefficients for example neutron and
beta phonon pulses taken from CDMS calibration data. The leading edge of the primary
phonon pulse is shown and the wavelet coefficients have been similarly windowed in order
to show the leading edge behavior. The scales of the high-pass filters as shown in the third
column are correct to obtain the coefficients at each level from the original signal, as per
Eqn. (7.22).
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Figure 9.13: Leading edge DWT coefficients using the rbio1.3 and sym3 wavelets at a
decomposition level of 4. The beta and neutron populations are generally well separated,
but there are a significant number of beta outliers situated within the neutron population.

exhibit pulse shape variation across the crystal due to geometric effects. The majority

of these beta outliers have position (partition and delay) values that place them at outer

crystal radii, and therefore we might expect that some of them would move closer to the

beta population after a phonon position correction (see Section 4.7).

These outliers appear no matter which wavelet we use, since the actual phonon pulse

shape is clearly neutron-like for these events. It can also happen for low-yield events below

∼ 10 keV that the ionization pulse start time is poorly calculated (due to poor signal to

noise for ionization pulses), leading to a phonon pulse in our analysis that is shifted to a

position not congruent with the other pulses. In this case the wavelet coefficient will not

represent the leading edge of the pulse.
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Figure 9.14: Phonon risetimes and leading edge wavelet coefficients using sym3 wavelet, for
analysis events in detector Z2. The wavelet representation suffers from an abundance of
outliers but events with recoil energy above 20 keV give greater separation between the two
populations.

Within the timeframe of this work it was not possible to use the computer farm for a

complete phonon position correction of the wavelet parameters, however a näıve position

correction was performed using the correction table calculated for the phonon risetime. This

did not aid in discrimination between recoil types using the wavelet values.

Since the neural network approach allows the use of many input parameters, it may

be possible to combine the wavelet information with RQ values in order to identify these

outliers within the network. Figure 9.14 shows the sym3 leading edge wavelet value with the

(position-corrected) risetime RQ value. The risetime value provides greater discrimination

power between recoil types than the wavelet value for events 7-20 keV in recoil energy.

However, the discrimination power of the two parameters becomes comparable when we

consider events in the range 20-100 keV in recoil energy.

Since the neural network framework is able to operate with many parameters, we create

a timing cut using these wavelet parameters and a collection of RQ parameters. The use
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of the Automatic Relevance Determination (ARD) framework will allow us to observe how

much each network input contributes to the output.

9.6 Final Analysis

This section describes an approach to the surface event cut using a combination of RQ

values and discrete wavelet coefficients. The data is preselected from Soudan Run 119

133Ba gamma calibration and 252Cf neutron calibration data as described in Section 9.3.

A multilayer perceptron network with 7 input nodes, 14 hidden nodes and 1 output node

was used to train the data using the evidence procedure (Section 8.4). The logistic error

function described in Section 9.4 was used with values l1 = 1, l2 = 2. The number of hidden

nodes to use was determined by increasing the number while observing the effect on the

network’s performance on training data. Having more hidden nodes than is necessary only

impacts the training time and not the network output. 14 hidden nodes were used since

increasing to 15 did not affect the network’s performance on the training data.

Two of the network inputs were taken from discrete wavelet analysis using the rbio1.3

and sym3 wavelets. These were both derived from phonon pulses in the primary channel

that were normalized and shifted to a common start time using the ionization pulse start

time, as described in Section 9.5. These wavelet-derived inputs were:

• Coefficient 21 taken from a discrete wavelet analysis of the scaled and shifted primary

phonon pulse using the wavelet rbio1.3 at a decomposition level of 4 (see Figures 9.12

and 9.13).

• Coefficient 22 taken from a discrete wavelet analysis of the scaled and shifted primary
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phonon pulse using the wavelet sym3 at a decomposition level of 4 (see Figures 9.12

and 9.13).

The remaining network inputs were CDMS RQ values, as follows:

Phonon 10-40 Risetime (pminrtc) The time taken for the primary phonon pulse to

rise from 10-40% of its final amplitude.

Phonon Radial Delay (rdel) The radial position as determined by the relative delays

of the four phonon pulses.

Phonon Partition (pfracc) The phonon energy in the primary quadrant divided by the

phonon energy in the opposing quadrant. This provides a rough measure of radial

position, since an event close to the center of the detector will have a phonon partition

value close to one, whereas an event at a higher radial position will have a higher value.

Ionization Inner Electrode Start Time (QIst) Start time, relative to the beginning

of the digitized trace, of the ionization signal in the inner electrode.

Recoil Energy (pric) Recoil energy, using inner ionization electrode quantities (see Sec-

tion 6.5.9).

Figure 9.15 shows the values of these parameters for the set of neutrons and betas in

detector Z2.

The open and closed datasets for this analysis were determined randomly, by assigning

each event to be in the open or closed data set with equal probability. This is to avoid

systematic effects that may be present in the primary analysis’ choice of open and closed



243

Figure 9.15: Values of the 7 parameters used as inputs to the multilayer perceptron network
for detector Z2 (see text for parameter descriptions). All events in Z2 from 7-100 keV are
shown - betas from gamma calibration are shown in blue, neutrons from neutron calibration
are shown in red.
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Figure 9.16: Efficiency of the neural network surface event cut upon neutrons from the
closed (unseen) dataset for the good Ge detectors. 2σ error bars shown. The neutron
efficiency of the primary analysis surface event cut is shown for comparison.

Detector Open Beta Leakage Closed Beta Leakage Total Beta Leakage
Z2 5 / 344 5 / 313 10 / 657
Z3 4 / 594 3 / 594 7 / 1188
Z5 1 / 519 2 / 474 3 / 993
Z9 1 / 678 3 / 692 4 / 1370
Z11 1 / 361 0 / 343 1 / 704

Z2/3/5/9/11 12 / 2496 13 / 2416 25 / 4912

Table 9.1: Number of beta events leaking past the neural network surface event cut for the
open and closed datasets in the recoil energy range 7-100 keV on good Ge detectors.

data sets. The Open dataset of input values for each parameter, for each detector, were

scaled to have a mean of zero and unit variance. The same scaling parameters were then

applied to the Closed data. Open data from 7-100 keV recoil energy in each detector was

used to train MLP networks with the evidence procedure in three bins: 7-20 keV recoil,

20-60 keV recoil, 60-100 keV recoil. There are therefore three MLP networks per detector.

The cut for each detector was set by minimizing the expected limit based on the perfor-

mance of the network on the training data, as described in Section 9.1. The networks were
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then applied to the closed data on each detector.

For each MLP network and for all detectors, the input hyperparameter values αi have the

same values to within a factor ∼ 2. This implies that each network input gives a comparable

contribution to the output values. The reduced network performance that resulted when

an input was removed and the network retrained also supports this conclusion. Removal of

the wavelet inputs results in a ∼ 20% drop in overall neutron efficiency, and beta leakage

numbers remain the same within statistics.

Figure 9.16 shows the efficiency of the surface event cut upon the closed neutron data

for the good Ge (Z2/3/5/9/11) detectors. The efficiency for neutrons has been fit to a

function of the form ε = a + b
(Er−c)d where ε is the efficiency and Er is the recoil energy.

Table 9.1 shows the number of beta events that leak past the cut in the good Ge detectors

in the open and closed data.

The expected number of background events, by which we mean WIMP search single-

scatter events in the 2σ nuclear recoil band after application of the surface event cut, is

calculated as follows. Before application of the surface event cut, we calculate for WIMP

search data the ratio of single-scatter events found in the 2σ nuclear recoil band to the total

number of low-yield multiple scatters. This tells us the number of events that contribute

to the signal region in the absence of the surface event cut, for a given number of low-yield

multiple scatters. Therefore the expected contribution to the signal region can be deter-

mined by examining the number of low yield multiple scatters that remain after application

of the surface event cut.

For this analysis, the expected background due to betas is 0.3±0.2 events for 7-100 keV

recoil energy. Recall that the primary Run 119 analysis had an expected background due
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Figure 9.17: Expected spin independent 90% upper limits on the WIMP-nuclear cross-
section for the neural network analysis described in Section 9.6 (red), and for the Run 119
primary 7-100 keVr analysis (blue).

to betas of 0.5± 0.2 events over the same energy range, by passing a total of 51 beta events

in the 133Ba calibration data.

Figure 9.17 shows the expected WIMP cross-section upper limits for the neural network

and wavelet analysis, and for the Run 119 primary analysis. The calculation of the expected

WIMP limit follows the Optimal Interval method described in Section 6.9, and uses standard

assumptions for the galactic WIMP halo. The expected number of background events at a

given WIMP mass is obtained by fitting an exponentially falling spectrum of background

events to the multiple scatter events that pass the surface event cut in the WIMP search
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Figure 9.18: Spin independent 90% upper limit on the WIMP-nucleon cross-section obtained
from the neural network analysis described in Section 9.6 (red). Also shown are the Ge
limit from the Run 119 primary 7-100 keVr analysis (blue) and limits from Zeplin-I (dashed
salmon) [92], Edelweiss (dashed dk. red) [93] and DAMA (dashed blue) [94]. The two block
regions are predictions on supersymmetry taken from [96] (lavender) and [97] (green).

data. The only difference between the neural network and primary analyses for the purposes

of setting a dark matter limit is the surface event cut. All other cuts and efficiencies remain

as described in Chapter 6.

When this analysis is applied to the WIMP search data no events remain in the signal

region. The spin-independent upper limit on the WIMP-nucleon cross-section that results is

shown in Figure 9.18. The Optimal Interval method of Section 6.9 is again used along with

standard assumptions for the galactic WIMP halo. The limit set by the primary analysis

includes one WIMP candidate event that passed all cuts.
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9.7 Conclusions

The expected number of Run 119 background events leaking into the WIMP signal region

is ∼ 40% smaller for the neural network analysis compared to the primary analysis. The

neural network analysis’ signal region efficiency is comparable to that of the primary analysis

above 10 keV, and is twice as efficient as the primary analysis below 10 keV. This results

in an expected limit for the neural network and wavelet analysis that is 20-40% lower than

the expected limit for the primary analysis.

The comparative differences in expected limits become larger when the experiment be-

comes limited by backgrounds. The subsequent CDMS II run at Soudan will be using 19 Ge

detectors (compared to the 6 Ge detectors used in Run 119), so the expected background

due to local beta contamination will most likely exceed 1 event. The improvement in ex-

pected limit that results from a ∼ 40% reduction in expected background will be of even

greater importance in this situation.

When applied in a neural network approach, the discrete wavelet detail coefficients from

the leading edge of the phonon pulse are clearly providing additional discrimination power

against surface events. Since the hyperparameters for the network inputs have similar

values, this implies that the two wavelet inputs are as useful as, but no more useful than,

the phonon risetime and phonon partition values traditionally used to reject surface events

in CDMS.

This is not entirely surprising, as Sections 9.2 and 9.5 show, the wavelet coefficients that

we use for the analysis are simple filters that provide some measure of the leading edge

slope. The wavelet approach is also susceptible to error when the ionization pulse start
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time is uncertain, as can happen with low energy, low yield events.

A more effective way to use wavelets to study the phonon pulse shape would be to

use the continuous wavelet transform, since this would provide information at all scales

and time offsets, and would be independent of the phonon pulse start time. This would,

however, generate a great deal of information and some way to reduce the number of wavelet

coefficients obtained from a signal may be necessary. The neural network approach would

likely shed a great deal of light on this problem. It was not possible in the timescale of this

thesis to fully explore the potential application of the continuous wavelet transform.

The study of phonon signals other than the primary channel’s should also prove fruitful,

since quantities like the phonon partition show that the relative timing of the four quadrants

can prove useful in surface event discrimination.

The use of Multilayer Perceptron Networks with the evidence procedure and some mea-

sure of relative classification risk has proven very powerful in performing a surface event cut

while blind to the results. The methods described in the last two chapters allow the setting

of an optimized cut on a arbitrary number of input parameters based on minimization of

the expected dark matter limit.

No doubt there are undiscovered CDMS parameters that will provide even greater sur-

face event discrimination that those known to date. Whatever these turn out to be, and

however many of them there are, the neural network methodology described here should be

able to make an optimized cut upon them (assuming the training time is manageable).

However, the neural network approach is more sensitive to differences in parameter

distributions between the calibration and WIMP search datasets. If the input parameter

distributions within the WIMP search dataset are different from the calibration dataset
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values (and with more input parameters this is increasingly likely), the neural network

trained upon the calibration data will not generalize well to the WIMP search data. If

these shifts in distributions are dependent upon recoil energy for example, the data can be

split into several recoil energy bins and each can be trained by a separate neural network (as

was done for the analysis in Section 9.6). This way, each neural network is less susceptible

to classification error as a result of subsequent shifts in the input parameter’s distributions.



Chapter 10

Soudan Low Background Counting

Facility (SOLO)

The SOudan LOw Background Counting Facility (SOLO) has been in operation at the

Soudan mine in Minnesota since March 2003. The SOLO screening facility was constructed

by Brown University, in conjunction with PNNL, the University of Minnesota and the

Soudan Mine, and has been, and is currently being used to screen materials for the Majo-

rana, CDMS and XENON experiments.

The facility uses HPGe detectors and shielding previously deployed in Double Beta

Decay (DBD) Experiments at the Homestake Mine, although recently, in conjunction with

the University of Florida, one of the DBD detectors has been upgraded to a newer, larger,

HPGe detector.

251
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Figure 10.1: The SOLO experiment (red box) is located at the back of the MINOS hall in
the Soudan Underground Laboratory.

10.1 SOLO Installation

The SOLO experiment was built in January 2003 at the back of the MINOS hall in the

Soudan Underground Laboratory (see Figure 10.1). The enclosure is built from ∼10 tons

of Doe run Pb (2”×4”×8” bricks) with activity of 50 Bq/kg. Additional low-activity lead

is used for the innermost layer (i.e. the lead that was to be closest to the detectors), which

is ∼200 year old German lead with an expected activity of 50 mBq/kg.

The entire enclosure is built upon a (very strong!) steel table measuring approximately

4’×4’. One side of the tabletop contains a platform that can be raised and lowered by a

drill mechanism. This platform is used as the door, such that lowering the platform allows

access to the chambers containing the detectors.
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The initial SOLO setup contained the detectors ‘TWIN’ and ‘Diode M’, which are high-

purity Ge (HPGe) diode detectors with crystal masses of 1.05kg and 0.6kg respectively.

Both detectors had previously been used in Double Beta Decay Experiments at Homestake,

so their expected sensitivity was already known.

Figure 10.2 shows the (partially constructed) setup of the chambers when SOLO was put

together in Jan 2003. The two detectors are housed in separate chambers, each surrounded

by at least 12” of Pb, the innermost 2” of which is the low 210Pb-activity (German) Pb. A

2” wall of German Pb separates the chambers, each of which houses a detector. The entire

enclosure is sealed up with two airtight layers of 50µm thick white mylar, and radon gas

is purged using boiloff gas from a LN dewar fed in through the shield. At present when

samples are introduced no airlock is employed, but gamma lines due to Rn disappear less

than 3 hours after the shield is closed and the N2 gas purge (at 3 cfh) begins (airborne Rn

rates in the Soudan lab vary from 200 Bq/m3 in December to 600-800 Bq/m3 in June).

A simple data acquisition system is used, consisting of Spectroscopy Amplifiers with

2µs shaping times, and pulse height ADCs connected to a PC running acquisition software.

Spectra are integrated in 4 hour intervals, and transferred automatically to a web accessible

archive. Both detectors have independent data acquisition systems.

10.2 Preliminary Experiences

Upon first operation in June 2003, the TWIN spectrum showed > 10 events/keV/kg/day up

to ∼ 1 MeV, the same detector having operated at < 1 event/keV/kg/day in the past (see

Figure 10.3). At the same time, Diode M observed a background rate ∼ 1 event/keV/kg/day
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Figure 10.2: The initial chamber setup of the SOLO experiment (partially constructed)
showing the open door. The Diode M detector is shown on the right, and the TWIN
detector although not pictured, protrudes into the left hand chamber through the circular
hole in the ceiling. The innermost layer of both chambers is the low-activity German lead,
which includes the inner side of the door that faces into the chamber when the door is
closed.
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Figure 10.3: Spectra obtained from the 1.05kg TWIN detector, from top to bottom: data
taken with door open (i.e. no Rn purge) (black), data taken with Rn purge active but
with ‘TP’ bricks present (see text) (magenta), data taken with TP bricks removed (red),
and data taken at Homestake during earlier operation of the detector with same shielding
(blue).
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up to ∼ 500 keV, suggesting that the TWIN detector was subject to a source that Diode

M was not. Analysis of the TWIN spectral lines in the data indicated the presence of two

unexpected isotopes: 207Bi (31.6 years half-life) and 194Hg (444 years half-life). The relative

strengths of the lines at different energies appeared to indicate the presence of 3.5-4.5cm of

Pb between the source contaminant and the detector. Both isotopes are very rare, but are

known to be spallation products arising from high energy protons on Pb.

In order to test the hypothesis that contaminated bricks were causing the high back-

ground levels on TWIN, the upper section of the SOLO Pb shield was disassembled to

examine the bricks surrounding the chambers. Bricks stamped with the letters ‘TP’ were

found directly above the TWIN chamber, behind the low activity German Pb layer, in a

location consistent with our calculations. We understand that these bricks possibly came

from Fermilab, where they may have been used as a proton beam stop. Unfortunately, at

some stage they must have been combined with the gamma shielding stock of Pb at Soudan.

Removal of these ‘TP’ bricks substantially reduced the background on the TWIN detector,

as can be seen in Figure 10.3 (magenta and red lines).

In May 2004, SOLO was counting several blocks of polyethylene for the CDMS exper-

iment, in order to establish the intrinsic levels of U/Th/K. The polyethylene data showed

a large number of unexpected gamma lines (Figure 10.4). The polyethylene spectrum was

∼5 events/keV/kg/day above background across all energies. (On closer inspection the

no–sample backgrounds also appeared elevated.) When the polyethylene lines could not be

matched to the patterns from any known combination of radioactive contaminants, it was

realized they were characteristic of gamma cascades arising from thermal neutron capture

in Ge. The low energy neutron flux coming from the rock at Soudan was insufficient to be
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Figure 10.4: Elevated count rate in TWIN due to moderation of neutrons by polyethylene
sample (red), compared to background in the absence of a sample (blue).

generating such pronounced features, however, it became clear that the polyethylene was

moderating neutrons from a calibration source (105 n/s) had been placed in storage 20ft

from the SOLO experiment. Needless to say, the neutron source was moved to another

storage location.

The TWIN detector is currently offline due to a failure in its front–end FET. A low

background/low noise FET is currently being prepared by PNNL as a replacement. In

conjunction with the University of Florida, a 2kg HPGe detector (named ‘GATOR’) was

installed in the shield in June 2005, and is now performing screening alongside Diode M.

10.3 Background

As Figure 10.3 shows, the SOLO background below 1 MeV is 5-10 times greater than

when these detectors were in operation at Homestake, while the background above 1 MeV
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is very similar to the levels achieved previously. The shape of the excess background is

consistent with that expected from 210Pb bremsstrahlung. As a general rule of thumb, a

brem spectrum with a rate at low energies (< 100 keV) of 1 event/keV/kg/day would arise

from Pb with an intrinsic 210Pb level of 1 Bq/kg. The German Pb liner has an intrinsic

activity of <50 mBq/kg so it is unlikely that this is the cause of the elevated background.

However, the non-ancient lead spent >10 years underground in non-airtight containers with

background airborne Rn levels between 200-800 Bq/m3, so it is entirely plausible that the

brem arises due to Rn plating on the Pb bricks.

Hence in April 2005 the surfaces of the inner Pb liner were cleaned using dilute nitric

acid. Unfortunately, this intervention has had little effect on the level of this background.

We now believe that the brem could be arising from the ancient Pb bricks themselves. This

would have arisen during recasting when the bricks were inadvertently contaminated with

210Pb.

10.4 GATOR Installation and Shield Reconstruction

GATOR is a 2kg HPGe detector purchased direct from Canberra, along with a data ac-

quisition system. The upper section of the chamber was removed and rebuilt in April 2005

in order to install the GATOR detector in the chamber previously occupied by the (non-

functioning) TWIN detector (and to perform the nitric etching described above). This

resulted, however, in two complications.

Firstly, the GATOR detector is considerably larger than TWIN, which required the

chamber to be increased in size. At the time there was an insufficient amount of ancient
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Energy (keV)

Figure 10.5: Spectra from the 2kg GATOR detector before (red) and after (blue) the
November 2005 repair operation, when all TP bricks were removed from the shield and two
50Bq/kg bricks on the inside of the GATOR chamber were replaced with ancient bricks.
Vertical axis shows counts/keV/kg/day.

lead to accommodate the inner layer of the new, larger chamber, so two ‘regular’ (50Bq/kg)

lead bricks were used to form part of the inside chamber wall. Secondly, the bricks were

naturally moved around in the process, which led to some TP bricks that were previously

lower in the stack being placed close to the chambers.

Thus, upon first operation, the GATOR chamber saw an elevated low energy background

level (due to proximity of the non-ancient lead) and a collection of 194Hg and 207Bi lines

(although these appeared to be attenuated by several inches of lead). A hint of the 207Bi
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Figure 10.6: Partially reconstructed GATOR (left) and Diode M (right) chambers during
the November 2005 repair operation.

line at 1064keV also appeared in the Diode M data.

A repair operation was therefore planned to once and for all, remove all of the TP bricks

from the stack, and to replace the regular lead on the inside of the GATOR chamber with

ancient lead bricks. This did not occur until November 2005, although Diode M was able

to continue counting samples in the interim. The operation resulted in the removal of 140

‘TP’ bricks from the stack, which were forevermore banished from the land.

Figure 10.5 shows the GATOR spectrum before and after the November 2005 repair

operation. Figure 10.6 shows the partially reconstructed GATOR and Diode M chambers.
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10.5 Sample Counting Results

Over the past two years SOLO has screened many samples. The TWIN detector unfortu-

nately was unable to provide screening, since shortly after the polyethylene/neutron source

counting described above, it’s front-end FET failed. Diode M has henceforth provided the

majority of the sample screening results; GATOR is also now providing screening as of Dec

2005.

Below we describe results from two sample counting runs. The procedure for calculat-

ing sample activity upper limits is based on lines at 511keV and 585keV for 232Th chain

contamination, 352keV and 609keV for 238U chain contamination, and 1461keV for 40K

contamination.

The number of counts above background S is given by S = N − B, where N is the

number of counts in the sample data and B is the number of counts in the background

data. The signal S can also be expressed as S = αTε, where α is the source activity, T

is the livetime and ε is the peak detection efficiency. ε is defined as the ratio of detected

peak events to total number of decays, which is obtained via Monte Carlo simulation of the

SOLO geometry. Values of ε are shown in Table 10.1.

Given that the number of counts N is Poisson distributed, the source activity for a given

Element Energy (keV) ε
232Th 511 3.3× 10−4

232Th 582 2.2× 10−4

238U 352 9.0× 10−5

238U 609 1.6× 10−4

40K 1461 5.6× 10−4

Table 10.1: Peak Detection Efficiencies (see text) of the primary lines used to set limits on
232Th, 238U and 40K contamination, determined from Monte Carlo simulation.
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Figure 10.7: Results from sample screening of 2 Hamamatsu PMTs. The y-axis shows the
‘differential rate unit’ (DRU) = counts/keV/kg/day.

confidence level can therefore be determined.

Hamamatsu R8520 PMTs

2 Hamamatsu PMTs were screened for the XENON collaboration using Diode M, with a

total livetime of 37.4 livedays (22.4 kg days). Figure 10.7 shows the results of the counting.

The resulting upper limits for activities at the 90% confidence level were calculated to

be 6/18/5 mBq per PMT for 232Th/238U/40K.

With Diode M for sample runs of ∼2 weeks, sensitivities better than 0.1 ppb level for

238U/232Th, and 0.25 ppm level for 40K have been achieved.
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Figure 10.8: Results from sample screening of a collection of 135 capacitors. The y-axis
shows the ‘differential rate unit’ (DRU) = counts/keV/kg/day.

135 Capacitors

A collection of 135 capacitors were screened using Diode M, with a total livetime of 21.4

livedays (12.8 kg days). Figure 10.8 shows the results of the counting.

The majority of the activity of this sample comes from the U/Th chains. The resulting

upper limits for activities at the 90% confidence level were calculated to be 48/462/12 mBq

for 232Th/238U/40K, for the whole batch.



Appendix A

Analysis Software Documentation

A.1 DarkPipe

In a nutshell, Darkpipe takes the raw data as is output from the DAQ, and creates a

collection of ‘Reduced Quantity’ (RQ) files which contain values calculated from the raw

event information. RQ values are uncalibrated in quantities like energy; timing values are

usually correct in some units.

As well as the raw input file (which can be gzipped or not), Darkpipe also reads a

selection of auxiliary files which contain further diagnostic information from the DAQ. If

some information does not pertain to a specific single event, it’s in the aux files. Examples

are samplerate, pretrigger values, charge bias values, thresholds, etc. More details are givin

in the Auxiliary Files section below.

The most important routines in DP are:

• DP config v10 - contains all the hard coded parameters used by DP that are not found

in the aux files

264
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• Dark Pipe Control - this is the main loop. When you run Darkpipe, you run this

script.

• Dark Pipe v10 - does all the hard work. Dark Pipe Control is just a wrapper that

handles most of the file I/O, but Dark Pipe v10 contains or runs all the routines that

calculate and save the RQ values.

Another important routine is readEvents. This is a Matlab mex file, written in C and

compiled to make readEvents.mexglx. The routine is responsible for reading the DAQ data

format and outputting a Matlab array that contains the same information. This is usually

done by using the netServer protocol, which allows raw data that may, or may not, be

gzipped, to be read from across the network. Hence a raw data file can be loaded by a

machine that does not direct access to the raw data directory.

Stublists

The stublist files are used to store values that might change on a run by run basis. These

include such things as the input and output data locations and which detectors to run.

They can also be used to change file locations when running on different networks via the

getLocation function.

Auxiliary Files

• .info file - Contains details on which detectors are part of the current run, their digitizer

samplerates, pre/posttrigger values, trace lengths.

• .isr file - Whenever the DAQ writes a GPIB command, it is echoed into this file. The
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isr file is therefore hard to parse by eye since it contains hex commands. Darkpipe

extracts this information along with timing data.

• .dmm file - Contains SQUID offset and trigger threshold values.

• gpib states changed.log - records information when the state of each detector changes.

Used to extract time since last flash.

Running DP Manually

This is usually done when new code is being tested. One can checkout a copy of Darkpipe

on the same system as the running version, and run it in an interactive way in order to

examine changes or find bugs. Of course, you could also run the ’running’ version by hand

if you so choose, but should not edit the files since all updates are to be handled via CVS

updates.

1. Start up Matlab in DP root

2. Create a string variable, pathraw, which is a full path to the file you wish to load

e.g. pathraw = ’/cdmstmpf2/Soudan data/150425 0732/150425 0732 F0001’

3. Run Dark Pipe Control

A useful way to debug is to enter a ‘keyboard’ command into a particular Darkpipe

routine, run Darkpipe as outlined above, and it will stop in the debug mode at the keyboard

command. This will allow you to examine variable values and see what’s happening at that

point.
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Adding a new RQ

The process of adding a new RQ value is fairly straightforward, and requires more work to

calculate the new value (i.e. write the new code) than it does to merely tell Darkpipe to

start storing a new variable.

Let’s say we want to create a new RQ that calculates some zip-specific quantity, called

UsefulNumber.

1. Add a corresponding entry to BigList. When this is run (does not run as part of

Darkpipe), it creates a ‘namefile’ .mat file. This contains a list of all the RQ names

that Darkpipe is to calculate. Therefore, to add our RQ we would need to ensure

that BigList will now have an extra entry for UsefulNumber. This is stored in the

Namelist as UsefulNumberZ1, UsefulNumberZ2, etc. It’s not until the main DP loop

that Darkpipe drops this naming convention. Take a look at Biglist to see how it’s

done for an existing RQ and follow that prescription.

2. Add code (to Dark Pipe v10 or one of it’s subroutines) that stores the above RQ

quantitiy in the appropriate RQ structure. For ZIP quantities, you’d store it in

submZ(iZ).m(iev,Z(iZ).UsefulNumber), where iZ is the ZIP number, iev is the event

number as it appears in the file (i.e. 1-500). Again, compare to existing RQs.

For Trigger quantities, you’d store the value (or array of values) in something like

submTG(:,NewTGRQName).

Similarly for Veto quantities, you’d use submVT(:,NewVTRQName).

The way this works is that Darkpipe assigns a unique integer value to each RQ name.

So you’re actually accessing a column of the submTG matrix, you just don’t have to
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worry about getting the correct value - Darkpipe assigns them based on the Namelist.

3. Now when you load up CAP on one of the output RQs (or merged RRQs) with the

new variable, it should automatically create an FCCS function for the new RQ.

RQ file structure

An RQ file contains the following variables (** = TG, VT, Z1, Z2, etc.):

• DP** Version - Darkpipe code version. Set in DP config v10

• DP** start - Date/time the Darkpipe processing that created this file started

• DP** stop - Same as above, for time processing completed

• Names** - List of all the RQ names (each row is a string containing an RQ name)

• ** RQVersion - An entry containing the RQ version, stored on an event-by-event

basis. This value comes from the one in BigList

• m** - Array containing all of the RQ values. It will have as many columns as Names**

has rows; each column corresponding to the relevant RQ quantity. eg. m**(:,23) will

return all the RQ values for the quantity in row 23 in Names**

ZIP RQ files also have the variable

• **T filename - Stores the filename of the charge template file used in the processing

DarkPipe Code Overview

Variable ’pathlist’ must be set prior to calling Dark_Pipe_Control
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Dark_Pipe_Control
Reads and Parses stublist file
Set up output path and RQ structures
Read aux files

Dark_Pipe_v10

Set up file to be read

DP_config_v10

Load up all the preset variables and structures
Optimal filter noise threshhold values, setup phonon templates
Set pulse window
Define regions of interest (baseline section, pretrigger, posttrigger)
Define 2-pole Butterworth filter
Define risetime thresholds of interest
Load charge templates as defined in template_list.txt
Setup veto/trigger mask/time structures
end DP_config_v10

Setup netserver path
Load raw data file using readEvents to number of events (num_events)
Allocate memory for RQ matrices
num_events is broken into parcels (eg. every 50 events) for memory management

Loop over parcels (eg. 1-10)

Load up events in current parcel using readEvents (into ’ev’ structure)
Allocate memory for RQ sub-matrices
Store RQs: EventNumber, SeriesNumber, EventTime,
Store RQs: LiveTime, TimeBetween, TrigTime

# TRIGGER ANALYSIS SECTION

Read TrigInfo value for each tower (bits are rearranged from raw data->RQ)

map_all_ISR - Store bias values taken from the .isr file (also stores times)

Initialize all TGTime and TGMask variables to their error values

Loop over each event in parcel

calcTrig
Extract trigger bit information from history buffer (trigger/veto mask/time)
Bit manipulation to make RQs appear in a more logical form than raw data
vetorq - returns RQ values for interrelated Trigger/Veto RQs

end calcTrig

end loop
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calcZZflt (filter creation routine) - Only if filters do not exist

flt_GetTraces

Set number of noise events
Read in noise candidate events (eg. first 500 events in run)
Generate MinMax noise cuts (to exclude pulses)
Generate Pileup cuts
Make list of events that pass noise cuts

flt_CalcFlt
Take noise traces and make FFTs of events
Generate template pulse and form the PSD from it
Calculate amplitude of fft noise
Calculate conj of noise with template
Store all filter information in the filter file and save it as a mat file

end calcZZflt

# ZIP ANALYSIS SECTION

Loop over each event in parcel (eg. 1-50)

Loop over detectors

calcZbasic - baseline, baseline std dev & saturation calculations
calcZbsub - create baseline subtracted pulses
calcZpoptflt - calculate amplitude and delay for phonon pulses

using optimal filter
calcZqoptfiltX - calculate amplitude and delay for charge pulses

using optimal filter
calcZFitsC - perform multiparameter fit (F5) for charge channels
calcZint - find integral values of phonon channel pulses
calcZrtft - find phonon pulse risetime values

Store values taken from .dmm file & gpib states file

end loop over events

end loop over detectors

# VETO ANALYSIS SECTION

Initialize veto RQs with error values

Loop over each event in parcel

calcVT - fills veto RQs with pretrigger and posttrigger times & masks
calcNearVT - find times of largest Q and P signals relative to veto hits
calcVTtrace - calculates amplitudes & times from raw veto pulse
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end

Move data from sub-matrices into main matrices

end loop over parcels

Save all the main matrices as the RQ files: VT, TG, Z1, Z2, etc.

Update .status file associated with this raw data file
to note that processing is complete

end Dark_Pipe_v10

end Dark_Pipe_Control

A.2 PipeCleaner

Overview

PipeCleaner takes the Darkpipe output (RQ files) and performs the following operations:

1. All the RQ files are merged together to form a single VT file, a single TG file, etc.

eg. if we processed a 15k dataset we would have 30 raw data files, each of which

would produce each of the RQ file types. The corresponding RRQ files are created

my concatenating the m?? matrices in the RQ files. xxxxxx xxxx F0001 DPTG.mat

+ xxxxxx xxxx F0002 DPTG.mat + ..... = xxxxxx xxxx DPTG.mat etc. These

merged files are usually referred to as RRQ files, even though they are technically just

merged RQ files.

2. A new file consisting of RRQ (relative reduced quantities) is created via the application

of calibration values and other corrective operations. These are some of the most

important analysis quantities such as the recoil energy, the ionization yield and the

phonon risetime. The filename has the form xxxxxx xxxx DPR1.mat. The exact
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contents of the file are described below.

3. Subject to the state of a flag value in the PipeCleaner call, a further calculation

may be performed in order to correct the phonon quantities based on position. This

utilizes .mat files that have been created for each detector describing nearest neighbour

parameters. This process creates a file with the form xxxxxx xxxx DPM1.mat that

contains all the phonon corrected quantities.

When running at Soudan, PipeCleaner also performs two diagnostic routines:

• A small set of plots (6) is created for each detector and sent to a web directory. This

is intented for fast feedback.

• A more detailed trend diagnostic is performed that uses a template file created by

a seperate piece of code. This template file contains reference information for many

quantities for all zips. The current dataset is compared with the reference data and

K-S test significance values are produced. In this way, each dataset is given a rating

that reflects the extent to which it is similar to the reference dataset.

Datum Files

Datum files contain the following variables (z is the number of zips that info is stored for):

• epg (1xz) - keV needed to create electron-hole pair. 3 in Si, 3.82 in Ge.

• overall (1xz) - scaling to get from PxOFeV →px (x = A,B,C,D,T)

• pcorrect (1xz) - flag for phonon correction (linearlization)

• qadjust (1xz) - flag for charge correction (linearization)
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• qia (1xz) - scaling to get from QIOFvolts → qi

• qipos (10xz) - values needed to perform the charge position correction (Note)

• qix (1xz) - qi crosstalk values (see PC first pass.m)

• qoa (1xz) - scaling to get from QOOFvolts → qo

• qox (1xz) - qo crosstalk values (see PC first pass.m)

• relative (4xz) - Box plot balancing factors for each detector.

The datum file should be set with a best guess at the start of a run, using older detectors

as a guide. Once the detectors are suitably neutralized, a new datum can be created with

the energy calibration and box plot balancing factors set more accurately. The final values

will need to be created along with the phonon position correction at the end of the run

during reprocessing.

Running PipeCleaner Manually

This is usually done as new code is being tested. One can checkout a copy of the Darkpipe

package on the same system as the running version, and run it in an interactive way in

order to examine changes or find bugs. Of course, you could also run the ’running’ version

by hand if you so choose, but should not edit the files since all updates are to be handled

via CVS updates.

A useful way to debug is to enter a ‘keyboard’ command into a particular Darkpipe

routine, run Darkpipe as outlined above, and it will stop in the debug mode at the keyboard
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command. This will allow you to examine variable values and see what’s happening at that

point.

To run PipeCleaner Manually:

1. Start up Matlab in DP root

2. PipeClean(outdir,Series,dgZ,doDiag,doCorrectP,storeFilePath,numfiles) where

• outdir : (string) directory in which to output RRQ files

• Series : seriesnumber as an integer

• dgZ : array of detector numbers to pipeclean

• doDiag : flag to do diagnostic plotting. default = 0 (no plots)

• doCorrectP : flag to do phonon correction. default = 1 (do correction)

• storeFilePath : (string) full path to where the RQ files reside

• numfiles : file number of the highest numbered file (needed for merging memory

management)

Adding a New RRQ

Adding a new RRQ value is fairly straightforward. The easiest way to proceed is to add

the name of the new RRQ to the ’rrq ZIP’ variable within PC first pass.m, then simply

calculate the named RRQ quantity from within this code (or from a subroutine). Taking a

look at PC first pass.m should make this clear.
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RRQ File Structure

The DPTG, DPVT, DPZ1, DPZ2, etc. files have the same structure as their respective RQ

files. The R1 and M1 files contain only the following variables (** = R1 or M1):

• DP** Version

• Names**

• m**

The description of these variables match the ones described for RQs above.

PipeCleaner Code Overview

PipeClean(outdir,Series,dgZ,doDiag,doCorrectP,storeFilePath,numfiles)

Use numfiles to determine whether the list of files needs to be split
If we need to split up the list into batches

Create additional RQ directories, incrementing the seriesnumber by 1 each time
Move RQs to new directories and rename them

end

Loop over number of batches

Create output directory if it doesn’t exist

mergeRQfiles (concatenates individual RQ files and creates resulting RRQ files)
PipeCleaner

If xxxxx_xxxx_DPR1.mat file already exists, move it to xxxxxx_xxxx_DPR1.mat.old
Startup CAP with unique (random) filelist name

PC_first_pass

Use the datum_list.txt file to find out which datum to use for this series
Load the datum file
Initialize arrays
Loop over dgZ

Determine delays in x,y,z
Calculate Luke factor
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Find saturated events
Apply calibration values to charge amplitudes
Use optimal filter quantities for non-saturating charge events
Use F5 fit for saturating charge events
Perform qi position correction

Calculate phonon amplitudes from optimal filter quantities
Calculate box plot balancing values
Calculate xppart, yppart
Calculate recoil energy
Calculate risetime values (eg. ptrt = PTr40 - PTr10)

end loop over dgZ

Save RRQs in xxxxxx_xxxx_DPR1.mat file

end PC_first_pass

Reinitialize RRQs by switching filelist in CAP

If doDiagPlots=1 and at Soudan

Create Diagnostic plots directory
AutoDiagPlots (creates basic diagnostics, sends to web directory)

end

if doCorrectP=1

PC_correct_phonons

Use the datum_list.txt file to find out which datum to use for this series
Load the datum file
Initialize arrays

Loop over dgZ
phonon_corr (performs position correction)
end

Save phonon corrected RRQs in xxxxxx_xxxx_DPM1.mat file

end PC_correct_phonons
end
end

end

If this is a background set
Blind_Data

end
If at Soudan
diagnostics
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end
end



Appendix B

Optimal Filter Code

This is an adaptation of the routine that is actually used in the DarkPipe code, but essen-

tially performs the same operation. The MATLAB routine below uses time2psd and psd2fft,

both of which perform the operation that their names suggest whilst being careful to keep

the units correct.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% OPTIMAL FILTER ROUTINE %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Parameters that need to be defined:
%
%% trace - signal to be fit (1 x M)
%% template - template of signal, normalized to amplitude of 1 (1 x M)
%% samplerate - samplerate of the signal in Hz
%% noise - power spectral density of noise at frequencies (1 x 0.5M)
%% samplerate/M : samplerate/M : samplerate/2

M = length(trace);

% Fourier Transform of signal
trace_ft = ft(trace’);

% Calculate noise power spectral density J
noise = [inf noise]; % DC noise assumed to be infinite
noise_fft = psd2fft(noise’);
J = abs(noise_fft).^2;
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% calculate fft of template
[ftp ftp_angle freq_tp] = time2psd(template’, samplerate);
template_fft = psd2fft(ftp,ftp_angle);

% calculate optimal filter
optimalfilter = conj(template_fft)./J;

%%%%%%%%%%%%%%
%%% DELAY %%%%
%%%%%%%%%%%%%%

% Calculate amplitude estimator
t_hat = real(fi(trace_ft .* optimalfilter/sqrt(samplerate)));

% delay is given by maximum value of the estimator
[amp,delay] = max(t_hat);

% delay is now relative to start/end of window.
% i.e. a pulse that starts -N bins before the template start will have
% a delay value that is M-N. A pulse starting +N bins after the
% template start will have a delay of N.

% Change delay value so that the value is relative to pulse start
delay = -1 + delay - M*(delay>M/2);

%%%%%%%%%%%%%%%%%
%%% AMPLITUDE %%%
%%%%%%%%%%%%%%%%%

clear j %so j = sqrt(-1)
phase_factor = exp(2*pi*j*(0:M-1)’/M*delay);

% calculate top and bottom of amplitude estimator
Atop = sum(real(trace_ft .* phase_factor .* optimalfilter)) / sqrt(samplerate);
Abottom = sum(real(template_fft .* optimalfilter));

% calculate amplitude
A = Atop/Abottom;
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Wavelet and Neural Network Code

C.1 Calculation of DWT Coefficients

This MATLAB function returns approximation and detail coefficients from the discrete

wavelet transformation of a signal.

function [d,a] = getdwtcoef(x,wname,lvl,coef)
% CALCULATE SPECIFIC DETAIL AND APPROXIMATION COEFFICIENTS FROM DISCRETE WAVELET
% TRANSFORMATION
%
% function [d,a] = getdwtcoef(x,wname,lvl,coef)
%
% - d is the detail coefficient(s) requested
% - a is the approximation coefficient(s) requested
%
% - x is the signal to be analyzed
% - wname is a string containing the wavelet family name (eg. ’rbio1.5’)
% - lvl is the decomposition level
% - coef is a coefficient value, or a range of continuous integers.
% eg. coef=5, coef=10:20 are OK.
% The number of coefficients = floor(length(x)/2^lvl) + N/2
% where N is the length of the wavelet filter to be used (eg. N=6 for
% sym3, N=2 for haar, etc.)

switch wname
case ’sym1’

Hi_D = [-0.707106781186548 0.707106781186548];
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case ’sym2’
Hi_D = [-0.48296291314469 0.836516303737469 -0.224143868041857 ...

-0.129409522550921];
case ’sym3’

Hi_D = [-0.332670552950957 0.806891509313339 -0.459877502119331 ...
-0.135011020010391 0.0854412738822415 0.0352262918821007];

case ’sym4’
Hi_D = [-0.0322231006040427 -0.0126039672620378 0.0992195435768472 ...

0.297857795605277 -0.803738751805916 0.497618667632015 ...
0.0296355276459985 -0.0757657147892733];

case ’rbio1.3’
Lo_D = [ 0 0 0.707106781186548 ...

0.707106781186548 0 0];
Hi_D = [ 0.0883883476483184 0.0883883476483184 -0.707106781186548 ...

0.707106781186548 -0.0883883476483184 -0.0883883476483184];
case ’rbio1.5’

Lo_D = [ 0 0 0 ...
0 0.707106781186548 0.707106781186548 ...
0 0 0 ...
0 ];

Hi_D = [-0.0165728151840597 -0.0165728151840597 0.121533978016438 ...
0.121533978016438 -0.707106781186548 0.707106781186548 ...
-0.121533978016438 -0.121533978016438 0.0165728151840597 ...
0.0165728151840597 ];

case ’bior1.3’
Lo_D = [-0.0883883476483184 0.0883883476483184 0.707106781186548 ...

0.707106781186548 0.0883883476483184 -0.0883883476483184 ];
Hi_D = [ 0 0 -0.707106781186548 ...

0.707106781186548 0 0 ];
case ’haar’

Hi_D = [-0.707106781186548 0.707106781186548];
otherwise

disp(’Unsupported wavelet’);
d=0;a=0;
return;

end

if ~exist(’Lo_D’)
% get low pass from quadrature mirror filter condition
Lo_D = Hi_D(end:-1:1);
Lo_D(2:2:end) = -Lo_D(2:2:end);

end

for n=1:lvl

% Pad function so that filter can be applied across entire signal
I = getSymIndices(length(x),length(Lo_D)-1);
y = x(I);

% Compute coefficients of approximation.
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z = conv2(y,Lo_D,’valid’);
% downsample by factor of 2
CA = z(2:2:length(x)+length(Lo_D)-1);

if n==lvl
% Compute coefficients of detail.
z = conv2(y,Hi_D,’valid’);
% downsample by factor of 2
CD = z(2:2:length(x)+length(Lo_D)-1);

end

x = CA;

end

if coef==0
d = CD;
a = x;

else
d = CD(coef);
a = x(coef);

end

%-------------------------------------------------------------------------%
function I = getSymIndices(lx,lf)

I = [lf:-1:1 , 1:lx , lx:-1:lx-lf+1];

if lx<lf
K = (I<1);
I(K) = 1-I(K);
J = (I>lx);
while any(J)

I(J) = 2*lx+1-I(J);
K = (I<1);
I(K) = 1-I(K);
J = (I>lx);

end
end
%-------------------------------------------------------------------------%

C.2 MLP Classification Example

The MATLAB code below was used to create Figure 8.6. It shows the use of the MLP

network to solve a classification problem both with, and without, the evidence procedure.
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% EXAMPLE OF NETWORK CLASSIFICATION WITH MLP
%
% Uses: gmm, gmmsamp, gmmactiv, gmmpost, mlp, foptions, netopt, mlpfwd
% evidence, mlpevfwd from the NETLAB toolbox
% (http://www.ncrg.aston.ac.uk/netlab/index.php)
%
% Data generated from gaussian mixture model is trained using MLP network
% with and without the evidence procedure.

clear all

n=500; % number of data points
randn(’state’,684); % set pseudo random number generator state
rand(’state’,684);

% Set up gaussian mixture model: 2d data with three centres
% Class 1 is first centre, class 2 from the other two
mix = gmm(2, 3, ’full’);
mix.priors = [0.5 0.25 0.25];
mix.centres = [0 -0.1; 1 1; 1 -1];
mix.covars(:,:,1) = [0.625 -0.2165; -0.2165 0.875];
mix.covars(:,:,2) = [0.2241 -0.1368; -0.1368 0.9759];
mix.covars(:,:,3) = [0.2375 0.1516; 0.1516 0.4125];

% generate the data from the mixture model
[data, label] = gmmsamp(mix, n);

% label==0 is given a target value of 0
% label==1 or 2 is given a target value of 1
target=(label>1);

% plot data
figure(1);clf;
plot(data(target==0,1),data(target==0,2),’b.’)
hold on
plot(data(target==1,1),data(target==1,2),’r.’)

% determine data range parameters
x0 = min(data(:,1)); x1 = max(data(:,1));
y0 = min(data(:,2)); y1 = max(data(:,2));
dx = x1-x0; dy = y1-y0;
expand = 10/100; % Add on 5 percent each way
x0 = x0 - dx*expand; x1 = x1 + dx*expand;
y0 = y0 - dy*expand; y1 = y1 + dy*expand;
resolution = 100;
step = dx/resolution;
xrange = [x0:step:x1];
yrange = [y0:step:y1];

% create a grid of points in data range
[X Y]=meshgrid([x0:step:x1],[y0:step:y1]);
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% Set network parameters
nin = 2; % number of inputs
nhidden = 8; % number of hidden units
nout = 1; % number of network outputs

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Train using unregularized MLP (no evidence) %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% noise parameter (added to error function to avoid local minima)
alpha = 0.01;

% initialize network
net = mlp(nin, nhidden, nout, ’logistic’,alpha);

options = foptions; % default options
options(14)=60; % set 60 steps of error reduction

% Train network using quasi-Newton error minimization
[net]=netopt(net, options, data, target, ’quasinew’);

% put all points in the grid through the network so we have a network
% output at all values in the data range
yg = mlpfwd(net, [X(:),Y(:)]);
yg = reshape(yg(:,1),size(X));

% plot the optimal (50/50) decision boundary for this network
[cN, hN] = contour(xrange, yrange, yg, [0.5 0.5],’k:’);
set(hN,’LineWidth’,1)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Train using evidence-based MLP %%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Using same number of inputs, hidden units and outputs as before

% Initialize 1st and 2nd layer weights and biases to nominal small values
aw1 = 0.01*ones(1,nin);
ab1 = 0.01;
aw2 = 0.01;
ab2 = 0.01;

% define priors based on the current network parameters
prior = mlpprior(nin, nhidden, nout, aw1, ab1, aw2, ab2);

% initialize network
net = mlp(nin, nhidden, nout, ’logistic’,prior);

% set number of times to perform evidence procedure
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nouter = 5; ninner = 2;
options = foptions;
options(2)=1e-5; options(3)=1e-5; options(14)=100;

% train network, re-evaluate hyperparameters via the
% evidence procedure and retrain...

for k=1:nouter
net = netopt(net, options, data, target, ’quasinew’);
[net, gamma] = evidence(net, data, target, ninner);

end

% put grid points through the regularized MLP network
[yg, ymodg] = mlpevfwd(net, data, target, [X(:),Y(:)]);
yg = reshape(ymodg(:,1),size(X));

% plot the optimal (50/50) decision boundary for the regularized MLP network
[cE, hE] = contour(xrange, yrange, yg, [0.5 0.5],’k-’);
set(hE,’LineWidth’,1)

% calculate Bayesian posteriors from gaussian mixture model
px_j = gmmactiv(mix, [X(:) Y(:)]);
px = reshape(px_j*(mix.priors)’,size(X));
post = gmmpost(mix, [X(:) Y(:)]);
p1_x = reshape(post(:, 1), size(X));
p2_x = reshape(post(:, 2) + post(:, 3), size(X));

% plot the optimal Bayesian decision boundary
[cB, hB] = contour(xrange, yrange,p1_x,[0.5 0.5],’m-’);
set(hB,’LineWidth’,1)

% plot gaussian mixture model centers
plot(0,-0.1,’k+’,’markers’,20)
plot(1,1,’k+’,’markers’,20)
plot(1,-1,’k+’,’markers’,20)

axis([-2 2.5 -3 3]);
legend(’Data - Class 1’,’Data - Class 2’,’MLP no evidence’, ...

’MLP with evidence’, ’Bayes Optimal Boundary’,0);
xlabel(’Input Value 1’,’FontSize’,12)
ylabel(’Input Value 2’,’FontSize’,12)
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[113] K. Hornik, M. Stinchcombe, H. White, Neural Networks, 2 No. 5 (1989).

[114] D. J. C. MacKay, Neural Computation, 4 No. 3 (1992).

[115] I. T. Nabney, NETLAB: Algorithms for Pattern Recognition, Springer-Verlag (2002).

[116] C. M. Bishop, Neural Networks for Pattern Recognition, Clarendon Press, Oxford

(1995).


