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Einfiihrung

Das Ziel der experimentellen Teilchenphysik ist die Erforschung der fundamentalen
Wechselwirkungen zwischen Elementarteilchen. Nach gegenwirtigem Stand der For-
schung ist die Welt aus je drei Generationen von Quarks und Leptonen aufgebaut.
Die Wechselwirkung der Elementarteilchen wird beschrieben durch die Theorie der
elektroschwachen und starken Wechselwirkung im Rahmen des Standardmodells der
Teilchenphysik [1, 2, 3, 4]. Die Uberpriifung der Vorhersagen des Standardmodells ist
eine wichtige Aufgabe der experimentellen Teilchenphysik. In den letzten Jahrzehn-
ten wurden zu diesem Zweck viele Experimente durchgefiihrt, die die Vorhersagen des
Standardmodells bestédtigen konnten. All diesen Experimenten ist gemein, daf§ durch
die Kollision von Elektronen oder Protonen bei sehr hohen Energien Teilchen mit einer
groflen Masse, wie Eichbosonen oder schwere Quarks, erzeugt und untersucht werden.
Zur Rekonstruktion dieser Reaktionen dienen Teilchendetektoren, die zum Nachweis
der aus den Kollisionen resultierenden Leptonen, Baryonen (gebundene Zusténde aus
drei Quarks) und Mesonen (gebundene Zustinde aus einem Quark und einem Anti-
quark) verwendet werden. Die Untersuchung dieser Teilchen erlaubt Schluifolgerungen
iiber die Eigenschaften der der Reaktion zugrundeliegenden Wechselwirkung.

Im Standardmodell der Teilchenphysik unterscheiden sich Eigenzustinde der schwa-
chen Wechselwirkung und Masseneigenzustinde der Quarks. Dies hat zur Folge, dafl
Ostzillationen zwischen Teilchen— und Antiteilchenzustand von neutralen Mesonen
moglich sind. Die Frequenz der Oszillationen hingt vom Massenunterschied Am zwi-
schen schwerem und leichtem Masseneigenzustand ab. Die 3 x 3 Transformations-
matrix, die Masseneigenzustinde der Quarks in Wechselwirkungseigenzustéinde rotiert,
heifit Cabibbo-Kobayashi-Maskawa— (oder kurz CKM-) Matrix [5, 6].

Solche Meson—-Antimesonoszillationen konnten erstmals im Jahr 1956 im K° — K°
System experimentell nachgewiesen werden [7]. Weitere neutrale Mesonen, bei denen
die Méoglichkeit zu Teilchen—Antiteilchenoszillationen besteht, sind D%, B~ und B,
Mesonen. Im Falle des D°~Mesons erwartet man sehr langsame Oszillationen, so daf
diese aufgrund der kurzen Lebensdauer dieses Teilchens schwer nachweisbar sind. Er-
ste Hinweise auf B%- und B,~Mesonoszillationen konnten erstmals 1987 am UA1 [§]
und ARGUS [9] Experiment beobachtet werden. Eine zeitaufgeloste Messung von B—
Mesonoszillationen dient der Bestimmung der Oszillationsfrequenz Am. Die Oszillati-
onsfrequenz Amgy des B’~Mesons konnte in den letzten Jahren mit grofier Genauigkeit
bestimmt werden, der aktuelle Weltmittelwert betrigt Amg = 0.507 +0.004 ps~" [10].
Im Falle des Bs—Mesons erwartet man eine sehr viel hohere und dadurch experimen-
tell schwieriger auflosbare Oszillationsfrequenz Ams. Bis vor kurzem war nur eine aus
Resultaten der Experimente am LEP e*e™ ~Ringbeschleuniger am CERN in Genf, des
SLD Experiments am SLAC ee —Linearbeschleuniger in Stanford (USA) und des
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CDF Experiments am pp-Ringbeschleuniger Tevatron in Chicago (USA) abgeleitete
Untergrenze ' von Am, > 14.4 ps~' [10] bekannt. Eine erste zeitaufgeloste Messung
von B,—Osrzillationen konnte vor kurzem am CDF IT Experiment realisiert werden und
resultiert in Am, = 17.33%9324+0.07 ps~! [11]. Mit Hilfe der Messungen von Amy und
Amg kann erstmals das Verhéltnis der CKM-Matrixelemente ‘V}S/‘/}d‘ = 0.2087 00076
mit guter Genauigkeit bestimmt werden. Die Signifikanz des bei CDF II beobachteten
Am,—Signals betridgt 3.5 ¢ und die Wahrscheinlichkeit, ein solches Signal durch eine
Fluktuation des Untergrunds zu erhalten, betrigt 0.5 %.

Im Rahmen dieser Arbeit wird ein Algorithmus basierend auf der Verwendung neuro-
naler Netze entwickelt, mit dem Zerfille von B-Mesonen in exklusive Endzustinde?
effektiv von Untergrundereignissen separiert werden kénnen. Diese Methode wird ver-
wendet, um durch eine effektivere Selektion von Signalereignissen S bei gleichzei-
tig stirkerer Unterdriickung von Untergrundereignissen B die Signifikanz S des By
Oszillationssignals, gegeben durch [12]

S 6D2 702Am2/2
e t s
vS+ B 2

zu erhdhen. Der Faktor eD? ist ein Maf fiir die Leistungsfihigkeit von Taggingalgo-
rithmen, die bestimmen, ob ein rekonstruiertes B-Meson als Meson oder Antimeson
erzeugt wurde. Der Faktor e=oiAm;/2 gibt an, wie sehr das Oszillationssignal durch
die experimentelle Auflésung o, des rekonstruierten Zerfallsvertexes verschmiert wird.
Ziel dieser Arbeit ist die Verbesserung des Faktors \/SS+7B unter Verwendung neuro-
naler Netze. Im Rahmen einer aktualisierten Messung von Amg; am CDF II Experi-
ment wird die daraus resultierende Verbesserung die Signifikanz S des Am—Signals
erhohen, damit die Wahrscheinlichkeit einer Untergrundfluktuation verringern und so
zur endgiiltigen Etablierung des B,—Oszillationssignals beitragen.

Uber die Selektion von Ereignissen hinaus wird im Rahmen dieser Arbeit eine Me-
thode zur Bestimmung der B—Mesonlebensdauer und der Oszillationsfrequenz Am
fiir Datensétze entwickelt, deren Lebensdauerverteilungen durch Vorselektionen und
die experimentelle Auflosung verformt sind. Diese Methode kann einerseits als un-
abhéngiger Test des Ergebnisses fiir Am; in [11] dienen, andererseits aber auch zur
Kalibration von Taggingalgorithmen verwendet werden, die im Rahmen der Messung
der CP—Asymmetrie im B,—System Anwendung finden. Auch die effektive Selektion
von exklusiven B-Mesonzerfillen mit Hilfe neuronaler Netze ist nicht auf eine An-
wendung im Rahmen einer B,—Osrzillationsanalyse beschrankt, sondern kann in allen
Arten von Analysen, fiir die solche Endzustéinde relevant sind, Verwendung finden.

(1)

In dieser Arbeit wird die Massendifferenz Am in Einheiten einer Oszillationsfrequenz angegeben,
dies impliziert A = ¢ = 1.

?Bei exklusiven Endzustinden handelt es sich um eindeutig bestimmte Zerfallskanile, bei denen
alle in der Zerfallskette vorkommenden Teilchen vollstéindig rekonstruiert werden.
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Abbildung 1: Der CDF II Detektor.

Experimenteller Aufbau

Die in dieser Arbeit verwendeten Daten wurden mit Hilfe des CDF II Detektors am
Fermi National Accelerator Laboratory in Batavia bei Chicago (USA) gesammelt. Der
CDF II Detektor  wird von einer internationalen Kollaboration betrieben, an der etwa
500 Physiker und ca. 60 Universitdten und Forschungsinstitute weltweit beteiligt sind.
Der CDF II Detektor zeichnet Ereignisse aus Proton—Antiprotonkollisionen bei einer
Schwerpunktsenergie von /s = 1.96 TeV auf und befindet sich an einem der beiden
Wechselwirkungspunkte des Tevatrons, eines symmetrischen Kreisbeschleunigers mit
einem Radius von 1 km.

Der CDF II Detektor ist ein zylindersymmetrischer Mehrzweckdetektor, der fiir ei-
ne Vielzahl von physikalischen Fragestellungen Verwendung findet. Abbildung 1 zeigt
schematisch den Aufbau des Detektors. Die innersten Komponenten des CDF II Detek-
tors sind der Siliziumvertexdetektor und die ihn umgebende Spurkammer COT. Beide
Komponenten bilden ein System, das den Nachweis von Spuren geladener Teilchen

3CDF steht fiir “Collider Detector experiment at Fermilab”.
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ermoglicht. Auflerhalb der Spurkammer erzeugt ein supraleitender Solenoidmagnet ein
homogenes Magnetfeld von 1.4 Tesla, das die Spuren der geladenen Teilchen kriimmt
und so die Messung des Transversalimpulses ermdoglicht.

Der Siliziumvertexdetektor besteht aus den Subkomponenten Layer00, SVXII und
ISL. Layer00 bildet die innerste Lage von Siliziumsensoren im Abstand r = 1.6 cm
vom Wechselwirkungspunkt. SVXII, das Kernstiick des Detektors, besteht aus sechs
doppelseitigen Lagen von Siliziumsensoren, die Messungen in allen drei Raumkoordi-
naten erlauben. Layer00 und SVXII ermoglichen die Rekonstruktion von Zerfallsverti-
zes kurzlebiger Teilchen mit hoher Prazision. Als Bindeglied zwischen SVXII und der
Spurkammer fungiert der aus zwei weiteren Lagen von Siliziumsensoren bestehende
ISL Subdetektor. Die Spurkammer selbst besteht aus 96 Lagen von Mefidrdhten, die
die Messung von Transversalimpulsen von geladenen Teilchen mit hoher Genauigkeit
ermoglichen. Zwischen Spurkammer und Solenoidmagnet befindet sich der zur Teil-
chenidentifikation verwendete Flugzeitdetektor. Auflerhalb des Magnetfeldes befinden
sich elektromagnetische und hadronische Kalorimeter, die der Energiemessung von
Teilchen, bzw. Jets bei hohen Energien dienen. Die Kalorimeter werden von einem
System bestehend aus Szintillatoren und Spurkammern zum Nachweis von Myonen
umgeben.

Aufgrund der hohen Kollisions— und Wechselwirkungsrate bei CDF II ist es weder
moglich noch wiinschenswert, alle resultierenden Ereignisse auf Speichermedien auf-
zuzeichnen. Nur wenige dieser Ereignisse sind von physikalischem Interesse, daher fin-
det bei CDF II ein aufwendiges, mehrstufiges Filtersystem (Trigger) zur Vorselektion
von potentiell interessanten Ereignissen Anwendung. Der fiir die vorliegende Arbeit
verwendete Datensatz basiert vollstindig auf Ereignissen, die mit Hilfe des Zweispurt-
riggers vorselektiert wurden. Der dem Zweispurtrigger zugrundeliegende Gedanke ist,
daf3 Spuren, die aus dem Zerfall eines Teilchen mit einer vergleichsweise langen Lebens-
dauer resultieren, wie z. B. eines B-Mesons, durch eine Verschiebung ihres Stofiparame-
ters in Bezug auf den Wechselwirkungspunkt identifiziert werden kénnen. Abbildung 2
veranschaulicht den Zusammenhang zwischen dem Stofparameter der Spuren und der
Lebensdauer des Teilchens. Der Zweispurtrigger selektiert Ereignisse, die mindestens
zwei vom Wechselwirkungspunkt verschobene Spuren mit einem Transversalimpuls
von p; > 2 GeV* beinhalten.

“In dieser Arbeit werden Energie, Impuls und invariante Masse in der Einheit GeV angegeben.
Ein GeV entspricht 1.602176 462(63) - 10~'° Joule, die Umrechnung von Impulsen (Massen) in die
Einheiten kng (kg) erfolgt mit der Division durch ¢ (¢?), wobei ¢ = 299 792458 2.
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Abbildung 2: Veranschaulichung der Funktionsweise des Zweispurtriggers. Die Lebens-
dauer der B-Mesonen fiihrt zu einer Verschiebung von Zerfallsort (decay point) und
Produktionsort (production point), Spuren aus diesem Zerfall zeichnen sich durch
einen vom Produktionsort verschobenen Stofiparameter d0 aus.

Rekonstruktion von B—Mesonen

Die in dieser Arbeit verwendeten Daten wurden am CDF IT Experiment im Zeitraum
von Februar 2002 bis Dezember 2005 mit Hilfe des Zweispurtriggers gesammelt und
entsprechen einer integrierten Luminositit von 765 pb™".

Trotz der Anreicherung des Datensatzes mit langlebigen Teilchen durch den Zweispur-
trigger enthélt nur ein winziger Bruchteil der Ereignisse tatséchlich den Zerfall eines
B-Mesons. Statt zweier aus dem Zerfall eines langlebigen Teilchens stammender Spu-
ren erfiillt oft lediglich eine zufillige Kombination von zwei aus Untergrundereignissen
resultierenden Spuren das Triggerkriterium und wird selektiert. Es bedarf eines ausge-
reiften und effektiven Rekonstruktionsalgorithmus, der es ermoglicht, aus der Vielzahl
von Ereignissen diejenigen zu identifizieren, die den Zerfall eines B-Mesons in einen
exklusiven Endzustand enthalten.
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Die Grundlage zur Rekonstruktion exklusiver Endzustédnde bildet die prizise Messung
von Trajektorien geladener Teilchen durch Spurrekonstruktionsalgorithmen. Da bei
der Rekonstruktion von B—Mesonen sowohl eine sehr genaue Bestimmung des Zer-
fallsvertexes als auch eine prézise Bestimmung des transversalen Impulses von Inter-
esse sind, werden Spuren verwendet, die sowohl im Siliziumvertexdetektor als auch in
der Spurkammer nachgewiesen wurden und so eine genaue Bestimmung aller Spur-
parameter erlauben. Der fiir diese Arbeit verwendete Spurrekonstruktionsalgorithmus
basiert auf dem Kalmanfitter [13] und kombiniert die Information beider Detekto-
ren durch Extrapolation von Spuren der Spurkammer in den Siliziumvertexdetektor.
Die Rekonstruktion des Zerfalls eines B-Mesons in einen exklusiven Endzustand er-
folgt durch die sukzessive Rekonstruktion der Zerfallsvertizes aller in der Zerfallsket-
te auftretenden Zwischenzustinde. So beginnt z.B. die Rekonstruktion des Zerfalls
B — Dn,D — Kz mit der Rekonstruktion des Zerfalls D — Knrm, indem alle
Kombinationen von Spuren durch einen Vertexfit auf die Hypothese tiberpriift wer-
den, ob die drei Spuren ihren gemeinsamen Ursprung an einem Punkt haben und ob
die invariante Masse der Spurkombination der Ruhemasse des D—Mesons entspricht.
Als néchster Schritt werden alle D-Mesonkandidaten mit den verbliebenen Spuren
kombiniert und auf die Hypothese iiberpriift, ob D-Meson und vierte Spur mit dem
Zerfall eines B’~Mesons kompatibel sind. Ereignisse, die nicht mit dieser Hypothese
vereinbar sind, konnen als Untergrundereignisse klassifiziert und verworfen werden.
Der auf diese Weise vorselektierte und mit B-Mesonen angereicherte Datensatz dient
als Grundlage fiir den im Rahmen dieser Arbeit entwickelten Algorithmus zur opti-
mierten Selektion von B-Mesonzerfillen mit Hilfe neuronaler Netze.

Signaloptimierung mit Neuronalen Netzen

Die Signifikanz S, mit der die B,—Oszillationsfrequenz Am, gemessen werden kann,
wird von verschiedenen experimentellen Faktoren limitiert (siche Gleichung 1). Einer
dieser Faktoren ist die Signalsignifikanz \/%73, deren Optimierung der Fokus der vor-
liegenden Arbeit gilt. Sie wird bestimmt durch die Anzahl von Signalereignissen S,
die bei einem Niveau von B Untergrundereignissen beobachtet werden. Das bisher bei
CDF II verwendete Verfahren zur Optimierung der Signalsignifikanz \/% basiert auf
einer sequentiellen Schnittoptimierung und nutzt Informationen zur Separation von
Signal— und Untergrundereignissen in nicht optimaler Weise. Die Methode verwendet
zur Separation nur eine begrenzte Zahl von Kenngrofien (Variablen) und vernachléssigt
insbesondere deren Korrelationen vollsténdig. Der im Rahmen dieser Arbeit unter Ver-
wendung neuronaler Netzwerke entwickelte Optimierungsalgorithmus ist dagegen in

der Lage, alle zur Charakterisierung von B-Mesonzerféllen zur Verfiigung stehenden



VII

L -1
CDF Run 2 Preliminary L =765 pb
> 8000
2 L Ng= 21046+ 251 e Daten
S 7000F- N, = 29114+ 79 — F:)tfunknon
° [ SB= 07229 — B -Dm
8 [ _S_ - 9397+096 —B°- DK
o 6000 \S+B B . DX
g — B’ - Dp,D'm
D 5000 Bs -~ Dyt
L“ﬁ A, > AT

4000 —— Komb. Untergrund

3000

2000

1000

PR TR R
5.6 5.8 6
Inv. Masse [GeV]

Abbildung 3: Zusammensetzung des Datensatzes, der fiir das Netzwerktraining im
Kanal B® — Dm, D — Knr verwendet wird. Muster fiir Untergrundereignisse fiir
das Netzwerktraining werden aus dem Massenbereich von 5.4 bis 5.6 GeV des oberen
Seitenbands entnommen.

Variablen zu verwenden und diese unter Beriicksichtigung aller Korrelationen optimal
zu kombinieren. Zur Optimierung der Kennzahl \/SSTB wird ein neuronales Netzwerk
trainiert, das B-Mesonsignalereignisse von Untergrundereignissen zu trennen lernt.
Das Ziel ist, fiir jedes Ereignis im zur Verfiigung stehenden Datensatz die Wahrschein-
lichkeit, daf} es sich um den Zerfall eines B-Meson handelt, zu berechnen und den
Schnitt auf diese Wahrscheinlichkeit, der \/;TB maximiert, zu ermitteln. Es handelt
sich dabei um ein binires Klassifizierungsproblem, wofiir man Muster fiir Signal- und
Untergrundereignisse bendtigt, um das Netzwerk zu trainieren. Als Muster fiir Signa-
lereignisse werden mit Hilfe einer PYTHIA-Simulation [14] erzeugte B-Mesonzerfille
verwendet. Muster fiir Untergrundereignisse konnen nicht mit Hilfe einer Simulation
erzeugt werden, da die komplexe Zusammensetzung des an einem Hadronenbeschleu-
niger beobachteten Untergrunds bisher nicht vollstindig durch Modelle beschrieben
werden kann. Ein alternativer Ansatz besteht in der Verwendung von Untergrundereig-
nissen aus realen Daten, wie im folgenden dargelegt wird. Abbildung 3 zeigt die Vertei-
lung der invarianten B-Mesonmasse im Endzustand B° — Dz, D — Kz7. Im Bereich
von 5.2 bis 5.35 GeV ist das Resonanzsignal des Zerfalls sichtbar. Im Bereich nied-
rigerer invarianter Masse sind Strukturen sichtbar, die unvollstéindig rekonstruierten
B%Zerfillen zugeordnet werden kdnnen. Im Bereich iiber 5.4 GeV wird das Massen-
spektrum vollstdndig von kombinatorischem Untergrund, resultierend aus zufilligen
Kombinationen von Spuren, dominiert. Ziel der Signaloptimierung ist, den Beitrag die-
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ses kombinatorischen Untergrunds in der Signalregion weitgehend zu eliminieren und
dabei weiterhin moglichst effektiv Signalereignisse zu selektieren. Um dies zu errei-
chen, wird ein neuronales Netzwerk zur Separation von B-Mesonsignalereignissen von
kombinatorischem Untergrund trainiert, wobei Ereignisse aus realen Daten im Mas-
senbereich von 5.4 bis 5.6 GeV als Muster fiir kombinatorische Untergrundereignisse
dienen. Basierend auf dem Training werden alle Ereignisse des Datensatzes klassifi-
ziert und die Signalsignifikanz \/;:i——B durch Selektion des optimalen Schnittes auf die
Ausgabe des Netzwerks maximiert.

Diese Strategie wird im Rahmen dieser Arbeit am Beispiel des Zerfalls B® — D, D —
Krrm entwickelt und mogliche systematische Effekte werden eingehend untersucht. Im
Vergleich zur bisher bei CDF II verwendeten sequentiellen Schnittoptimierung kann

die Signalsignifikanz \/SS‘JF—B durch die Verwendung eines neuronalen Netzwerks in die-

sem Zerfallskanal um 11 % verbessert werden. Wollte man den gleichen Wert mit einer
schnittbasierten Selektion erreichen, ben&tigte man dazu 24 % mehr an Daten 5. Ab-
bildung 4 vergleicht die schnittbasierte mit der aus der Verwendung eines neuronalen
Netzwerks resultierenden Selektion. Beide Selektionen wurden auf maximale Signalsi-
gnifikanz —= = hin optimiert. Man kann der Abbildung entnehmen, daf§ das Netzwerk
auf dem gleichen Datensatz bei einem dhnlichen Untergrundniveau sehr viel effektiver
Signalereignisse selektiert.

Die Optimierungsstrategie kann direkt auf weitere exklusive B-Mesonzerfélle ange-
wandt werden. Um optimale Ergebnisse zu erzielen, muf3 jedoch jeder einzelne End-
zustand auf besondere Charakteristika, wie Winkelkorrelationen zwischen den Toch-
terteilchen oder das Vorhandensein von Subresonanzen, untersucht werden, um dem
Netzwerk alle relevanten Informationen zur Separation von Signal und Untergrund zur
Verfiigung zu stellen. Als weiteres Beispiel mit direkter Relevanz fiir eine Messung von
Amg, wird die Selektionsmethode auf den Zerfallskanal By — D,m, Dy — ¢, ¢ — KK
angewandt. Im Vergleich zur mit Schnitten erzielten Signalsignifikanz kann unter Ver-
wendung eines neuronalen Netzwerks der maximale Wert fiir —= = um 16 % verbessert
werden. Wollte man den gleichen Wert mit einer schnittbasierten Selektion erreichen,
benotigte man dazu 35 % mehr an Daten. Die verbesserte Signalselektion lifit, un-
ter Beriicksichtigung der Ortsauflosung o; der selektierten Ereignisse (siehe Gleichung
1), eine Erhohung der Signifikanz der Messung von Am, bei CDF II im Zerfallskanal
By, — Dy, Dy — ¢, ¢ — KK um 14 % erwarten.

°In diesen Wert geht die Annahme ein, dafi das Verhiltnis von Signal- zu Untergrundereignissen
S/B der schnittbasierten Selektion konstant bleibt, wenn weitere Daten hinzugefiigt werden.
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Abbildung 4: Vergleich der durch Schnitte/neuronales Netz selektierten Ereignisse.
Die linke Abbildung zeigt die Verteilung der invarianten Massen von durch Schnit-
te (hellblau, “Schnitte”) bzw. neuronales Netz (schwarz, “Netz”) selektierten B-
Mesonkandidaten. Die mittlere und rechte Abbildung verdeutlichen die Gemeinsam-
keiten (griine Verteilung) und Unterschiede (rote Verteilung) beider Selektionen. Ins-
besondere kann man der rechten Abbildung entnehmen, dal das neuronale Netz
zusitzliche Signalereignisse selektiert, die durch Anwendung der Schnittselektion ver-
worfen worden wiéren.

Methode zur Bestimmung von Am

Im Rahmen dieser Arbeit wird eine Maximum-Likelihood-Methode zur direkten Be-
stimmung der B-Mesonlebensdauer 7 und der Oszillationsfrequenz Am implementiert
um zu demonstrieren, daf} sich die Ereignisselektion mit Hilfe eines neuronalen Netzes
in einer Messung von Am verwenden liafit. Die Methode basiert auf der Beschreibung
der Verteilungen der invarianten Massen m und Lebensdauern ¢ von B—Mesonsignal—-
(S) und Untergrundereignissen (B). Fiir eine Bestimmung der Oszillationsfrequenz
muf} dariiber hinaus die Information, ob ein Meson als (Anti—)Teilchen erzeugt wurde
und zum Zeitpunkt ¢ als (Anti—)Teilchen zerfallen ist, vorliegen. Diese Information
wird durch Taggingalgorithmen ermittelt und ist in der Variablen £ enthalten. Die
Wahrscheinlichkeitsdichte P(m,t,&, o), die diese Informationen fiir Signal- und Un-



tergrundereignisse beriicksichtigt, hat die Form
P(matagaat) :(1 - fB) ' PS(m) ’ PS(tagaat) + fB ' PB(m) ’ PB(t)

Pg p(m) sind dabei Parametrisierungen der Verteilungen der invarianten Massen von
Signal- und Untergrundereignissen. Der Parameter fg gewichtet die relativen Antei-
le von Signal- und Untergrundereignissen. Pg(t) parametrisiert die Lebensdauerver-
teilung von Untergrundereignissen und Ps(t, &, 0;) enthélt die Lebensdauerverteilung
von B-Mesonsignalereignissen unter Beriicksichtigung der Teilchen—Antiteilchenoszil-
lationen. Ps(t,&, 0y) hat die Form

PS (t: 5: Ot)

— 1 14+ &Dcos(Amt) 1 . ’
_Ns(t,f,at) < 1+ [¢] ;6 ’)@g(t—t,at).g(t)

und beriicksichtigt die Verschmierung des Oszillationssignals durch die Faltung mit
einer Auflosungsfunktion G(¢ — ', 0;) und die limitierte Akzeptanz in Form der Ef-
fizienzfunktion €(¢). Der Faktor Ng(t,£,0;) dient der Normierung der Wahrschein-
lichkeitsdichte und D ist ein Maf} fiir die Reinheit (Dilution) der Entscheidung des
Taggingalgorithmus.

Durch die Minimierung der negativen Log Likelihood Funktion

L= —2ZIH|:(1 - fB) . Ps(ti,dt’i) . Ps(mz) + fB . PB(tz') . PB(ml)}
fiir die Bestimmung der Lebensdauer der B-Mesonen bzw.

L= —QZIH{(l — fB) - Ps(ti, &, 013) - Ps(m;) + f5 - Pp(t;) - PB(mz’)]

zur Bestimmung der Oszillationsfrequenz Am kénnen im Rahmen eines Unbinned
Maximum Likelihood Fits unter Verwendung aller selektierter Ereignisse ¢ mit ihrer
jeweils unterschiedlichen Ortsauflosung o, ; die Lebensdauer der B-Mesonen, bzw. Am
bestimmt werden.

Die Anwendung der Methode auf einen durch das neuronale Netz selektierten Da-
tensatz demonstriert, dafl es mdoglich ist, die Verschiebung in der Verteilung der B-
Mesonlebensdauer durch Trigger— und Netzwerkselektion mit Hilfe einer Simulation zu
beschreiben. Die durch ein neuronales Netzwerk im Zerfallskanal B — Dn, D — Kzr
selektierten Ereignisse konnten verwendet werden, um die Lebensdauer 7 des B°-
Mesons und dessen Oszillationsfrequenz Amy

cr(B") = 460.8 + 4.5 (stat.) um
Amyg = 0.507 + 0.069 (stat.) ps '
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in guter Ubereinstimmung mit den Weltmittelwerten cr(B%) = 459.3 + 2.0 um [15]
und Am, = 0.507 4+ 0.004 ps~" [10] zu bestimmen.

Die Implementierung der Methode zur Bestimmung von Am kann als unabhéngiger
Test des bisher von CDF II verdffentlichten Ergebnisses fiir Amg dienen. In die Mes-
sung von Amg bei CDF II gehen insgesamt fiinf exklusive hadronische Endzustédnde
des B, Mesons ein. Sowohl zur Uberpriifung des Ergebnisses als auch fiir eine Ver-
besserung durch die Verwendung neuronaler Netze zur Ereignisselektion miissen also
mehrere Zerfallskanile in die Analyse einbezogen werden.

Die Verwendung der durch das neuronale Netzwerk selektierten Ereignisse im Zer-
fallskanal By — D7, Dy — ¢m,¢ — KK fiir einen Amplitudenscan [12] von Amy
zeigt, da} die auf der Verwendung des neuronalen Netzwerks basierte Selektion ei-
ne deutliche Verbesserung der Signifikanz der Messung von Amg erwarten 1af3t. Der
Amplitudenscan mifit den Anteil einer bestimmten Oszillationsfrequenz indem die Am-
plitude A des Oszillationssignals als freier Parameter im Fit fiir jeweils fest Werte der
Ostzillationsfrequenz Amg angepafit wird. Idealerweise nimmt die Amplitude fiir die
im Datensatz enthaltene Oszillationsfrequenz den Wert eins an und fiir alle anderen
Frequenzen den Wert null. Abbildung 5 zeigt, dafi die Sensitivitit fiir eine Messung
von Am in dem Zerfallskanal B, — Dy7, Dy — ¢m, ¢ — KK bei der Verwendung des
aus 765 pb~!' bestehenden Datensatzes von ~ 17 ps~' auf ~ 18.5 ps~' erhdht wird.
Die Sensitivitdt wird durch einen Amplitudenscan mit zufilliger Taggingentscheidung
ermittelt und ist gegeben durch die Frequenz, bei der der Fehler auf die Amplitude
1.6504 (95 % Konfidenzintervall) die Linie A = 1 schneidet.

Die Verwendung des durch das Netzwerk selektieren Datensatzes in einem Unbinned
Maximum Likelihood Fit von Amy ergibt fiir diesen Zerfallskanal das vorldufige Er-
gebnis

Am, = 17.64 + 0.22 (stat.) ps '

Fiir die aus dem Amplitudenscan abgeleitete Sensitivitdt und fiir das Ergebnis von
Amy, wurde kein systematischer Fehler ermittelt, nur die statistische Unsicherheit der
Amplituden und von Amy ist angegeben, so daf} es sich nicht um eine Messung der
Sensitivitiat oder Am, handelt. Sowohl Amplitudenscan als auch der Fit von Am,
dienen lediglich dem Vergleich der schnittbasierten und der auf dem neuronalen Netz
basierten Selektionen. Fiir eine Messung von Amg unter Verwendung der Selektion
durch neuronale Netzwerke miissen weitere exklusive Zerfallskanéle des B,—Mesons in
die Analyse einbezogen werden. Die Steigerung der Sensitivitit der Messung durch
die Verwendung der auf dem neuronalen Netz basierenden Selektion 1483t eine deutlich
erhdhte Signifikanz des bei CDF II beobachteten B,—Oszillationssignals erwarten, so-
bald alle Zerfallskanile beriicksichtigt werden.
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Abbildung 5: Ergebnis des Amplitudenscans fiir Amg im Vergleich fiir Ereignisse,
die mit der herkémmlichen Schnittmethode (links) bzw. durch ein neuronales Netz
(rechts) im Zerfallskanal B, — Dy, Dy — ¢, ¢ — KK selektiert wurden. Die Sen-
sitivitit (“Sensitivity”), gegeben durch den Schnittpunkt der gepunkteten Linie mit
der Geraden Amplitude = 1, wird von ~ 17 ps~! auf ~ 18.5 ps~! erhoht.

Zusammenfassung und Ausblick

Im Rahmen der Vorliegenden Arbeit wurde eine Methode zur Optimierung der Si-
gnalsignifikanz \/S-l——B fiir Zerfille von B-Mesonen in exklusive Endzustdnde unter
Verwendung neuronaler Netze entwickelt. Im Vergleich zu der bisher bei CDF II an-
gewandten Methode der sequentiellen Schnittoptimierung kombiniert ein neuronales
Netz die zur Verfiigung stehende Information unter Beriicksichtigung von Korrelatio-
nen optimal. Die Methode wurde am Beispiel des Zerfallskanals B — Dn, D — Kzr
entwickelt und validiert. Im Zerfallskanal B® — Dx, D — Knr verbessert die auf
dem neuronalen Netz basierte Ereignisselektion die Signalsignifikanz \/SSTB um 11 %.
Um das gleiche Ergebnis mit Hilfe der schnittbasierten Selektion zu erzielen, benotigte
man dafiir einen um 24 % grofieren Datensatz. Die Methode zur Bestimmung der B—
Mesonlebensdauer und der Oszillationsfrequenz Am konnte die durch das neuronale
Netz selektierte Ereignisse verwenden, um im Zerfallskanal B — D7, D — K7 mit
dem Weltmittelwert konsistente Ergebnisse fiir Lebensdauer und Oszillationsfrequenz
zu bestimmen.

Die auf der Verwendung eines neuronalen Netzwerks basierende Selektionsmetho-
de wurde ebenfalls auf den fiir eine Bestimmung von Amg relevanten Zerfallska-
nal By, - D,r,Dy — ¢m, ¢ — KK angewandt und konnte die Signalsignifikanz
\/;;TB um 16 % erhohen. Um das gleiche Ergebnis mit Hilfe der schnittbasierten Se-

lektion zu erzielen, bendtigte man einen um 35 % grofleren Datensatz. Die effekti-
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vere Ereignisselektion ldt eine Verbesserung der Signifikanz der Am,—Messung bei
CDF IT um 14 % in diesem Zerfallskanal erwarten. Der Vergleich der im Zerfallskanal
B, — Dy, D, — ¢, ¢ — KK durch Schnitte und Netzwerk selektierten Ereignisse
in einem Unbinned Maximum Likelihood Fit zur direkten Bestimmung oder in einer
Amplitudenscanmethode zur indirekten Bestimmung von Am, bestitigt diese Erwar-
tung. Die Methode zur Signaloptimierung unter Verwendung neuronaler Netze kann
leicht auf weitere in der Messung von Am, verwendete B,—Zerfallskanile erweitert wer-
den und l48t, wenn angewandt auf komplexere Zerfiille wie B, — D nmm, eine noch
weitaus groflere Verbesserung der Signalsignifikanz erwarten. Die verbesserte Signals-
elektion wird im Rahmen eines aktualisierten Ergebnisses wesentlich zur endgiiltigen
Etablierung des B,—Oszillationssignals bei CDF II beitragen.

Uber eine Verwendung im Rahmen einer Oszillationsanalyse hinaus kann der Algorith-
mus zur Signalselektion in allen Arten von Analysen verwandt werden, fiir die Zerfille
von B-Mesonen in exklusive Endzusténde relevant sind. Die Methode zur Bestimmung
von Am, kann in Zukunft zur Kalibration von Taggingalgorithmen zur Verwendung
bei einer Messung der CP—Asymmetrie im B;,—System verwendet werden.
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Introduction

The universe that surrounds us is composed of elementary particles known as quarks
and leptons. These particles and the compounds they form, for example protons,
atoms, stones or humans, are generally referred to as matter, mostly consisting of
light quarks and electrons. But this is not the full story. It was suggested by Dirac in
1928 and then actually confirmed by Anderson in 1933 [16] that not only electrons but
also anti—electrons, also called positrons, exist. The positron has the same properties
as the electron, except for a charge of +1 and the fact that it’s not made of matter but
antimatter, which means that electron and positron will annihilate into two massless
photons when they meet. It shows out that not only the electron has an antimatter
partner, but that for all quarks and lepton there exist corresponding antiquarks and
antileptons.

Quarks don’t exist as free particles, they form bound states. Examples for such bound
states are the proton, containing two u and one d quark, or the neutron, composed of
one u and two d quarks. Generally bound states composed of three quarks are called
baryons, bound states containing a quark and an antiquark form mesons.

Certain types of mesons show a particularly interesting behavior — they oscillate,
which means that a meson can transform into its own antiparticle, the correspond-
ing antimeson, by so—called flavor changing weak interactions. Within the Standard
Model of particle physics this is explained by a difference between flavor and mass
eigenstates, leading to a mass difference Am between the meson’s mass eigenstates. A
time-resolved measurement of meson—antimeson oscillations can be used to determine
Am, which is directly proportional to the oscillation frequency. Meson—antimeson
oscillations were first observed in 1956 in the K — K0 system [7], which is composed
of 5d — sd quarks. Other neutral mesons that have the potential to oscillate are the
D — D° (cui — eu), B* — B° (bd — bd) and B, — B, (bs — b5) systems. While in the
case of the D® — DO system the mass difference between both states is predicted to be
very small, leading to a very small oscillation frequency which renders the oscillations
difficult to observe, the oscillations of the B® and B, mesons are long established. The
first evidence of neutral B meson oscillations were observed in 1987 by the UA1 [8] and
ARGUS [9] experiments. Today very precise time-resolved measurements of B® — BO
oscillations exist and provide a world average value of Am, = 0.507 +0.004 ps~' [10].
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Figure 6: Amplitude scan for Am, using all available experimental results prior to
2006 (left) [10] and the amplitude scan from CDF II (right) [11].

A time-resolved measurement in the By, — B, system proves to be more difficult due to
the much more rapid oscillations and the smaller production rate compared to the B°
system. Until very recently only an upper limit of Am, > 14.4 ps~™' [10] on the mixing
frequency Am, was known, based on the results of LEP, SLD and CDF. At the time
of this write—up, for the first time a direct measurement of time-resolved B, could
be reahzed by the CDF 1I collaboration, quoting a value of Am, = 17.337097 +0.07
ps~!' [11]. The significance of the B, oscillation signal is 3.5 ¢ and the probability
of a background fluctuation producing this kind of signal is 0.5 %. Figure 6 com-
pares the amplitude scans used to derive the limit of 14.4 ps~" (left) to the amplitude
scan obtained as part the CDF II result (right). The CDF II Collaboration (CDF
means “Collider Detector experiment at Fermilab”) is an international collaboration
of about 500 Physicists and 60 universities and national laboratories. The aim of the
work presented in this thesis is to further improve the measurement of Amg at CDF 11
by introducing a neural network algorithm for an improved candidate selection with
the aim to separate signal from background events more efficiently. The Amy signal
significance scales with —=— where S denotes the number of signal events observed
in a data sample on a background level of B events. Using a neural network to improve
the signal significance —=— can lead to a more significant measurement of Am, and
help to exclude the possibility of a background fluctuation.

In addition to an improved signal selection, also an unbinned maximum likelihood fit
for a direct measurement of Amy is implemented as part of the work presented in this
thesis. The fit is used to demonstrate that a neural network selection can be easily
integrated into a measurement of Am,. In addition, the unbinned maximum likeli-
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hood fit framework can be used for an independent cross check of the results presented
in [11].

Both improved signal selection and mixing fit framework can be used in many appli-
cations beyond the scope of a By mixing measurement. Assuming Amy to be known,
its value can be fixed and the fit framework can be used to calibrate advanced tagging
algorithms on B, samples. These taggers can be applied in measurements of the CP
asymmetry in the B, system. The improved signal selection achieved by neural net-
work algorithms can be used for any kind of analysis involving the decay of B mesons
into exclusive final states. Examples for such applications could be the measurement
of branching fractions or spectroscopy in the B, system.

The work presented in this thesis is mainly focused on the application in a Am, mea-
surement. Chapter 1 starts with a general theoretical introduction on the unitarity
triangle with a focus on the impact of a Am,; measurement. Chapter 2 then describes
the experimental setup, consisting of the Tevatron collider and the CDF II detector,
that was used to collect the data. In chapter 3 the concept of parameter estimation
using binned and unbinned maximum likelihood fits is laid out. In addition an intro-
duction to the NeuroBayes® neural network package is given. Chapter 4 outlines the
analysis steps walking the path from the trigger level selection to fully reconstructed B
mesons candidates. In chapter 5 the concepts and formulas that form the ingredients
to an unbinned maximum likelihood fit of Am, (Amy) from a sample of reconstructed
B mesons are discussed. Chapter 6 then introduces the novel method of using neu-
ral networks to achieve an improved signal selection. First the method is developed,
tested and validated using the decay B® — Dm, D — K77 and then applied to the
kinematically very similar decay B, — D,m, D, — ¢n,¢ — KK. Chapter 7 uses
events selected by the neural network selection as input to an unbinned maximum
likelihood fit and extracts the B lifetime and Amy. In addition, an amplitude scan
and an unbinned maximum likelihood fit of Amy, is performed, applying the neural
network selection developed for the decay channel B, — D,r, Dy — ¢m, ¢ — KK.
Finally chapter 8 summarizes and gives an outlook.






Chapter 1

Theoretical Overview

1.1 Overview

In the Standard Model of particle physics [1, 2, 3, 4] the strong, electromagnetic and
weak interactions arise due to the exchange of spin-one bosons between spin-1/2
fermions. The gauge symmetry group underlying the Standard Model is SUx(3) x
SUL(2) x Uy(1). The gauge bosons associated with each symmetry are

SUc(3) — 8G% a=1,...,8
SUL(2) — 3WS a=1,2,3
Uy(l) — B#

The eight spin-one particles GG} denote gluons, the exchange particles of the strong
interaction. The four bosons W and B, give rise to the four physical bosons W,
Z% and 7 that mediate the weak and electromagnetic interactions. The fermion sector
can be classified into three families, consisting of six flavors of leptons, by definition
leptons are spin—1/2 particles that don’t participate in the strong interaction, and six
flavors of quarks, that participate in the strong interaction. All fermions take part in
the weak interaction. The coupling of the charged W bosons to the fermions is the
only interaction in the Standard Model that connects fermions of different families.
Without charged current interaction, the lightest particle of any fermion family would
be stable, as a consequence the exchange of W* bosons is responsible for a large frac-
tion of observed particle decays.

19



20 CHAPTER 1. THEORETICAL OVERVIEW
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Leptons Quarks

Figure 1.1: Three families of fermions grouped into three generations of leptons and
quarks.

1.2 The CKM Matrix

The interaction Lagrangian describing the charged current interaction between differ-
ent quark flavors can be written in terms of mass eigenstates as

dr,

Loo= =2 (up e, 1) 7" (1= 7") Vorw | s | Wi+ hee.
V2 b
L

where Vg is the 3 x 3 transformation matrix between quark mass and flavor eigen-
states, called Cabibbo—Kobayashi-Maskawa (CKM) matrix [5, 6]. Most generally the
CKM-matrix can be written as

Vud Vus Vub
Verkv = Vo Vs Va
Vie Vis Vi

The V;; are complex numbers, leading to 18 real parameters of the matrix. Assuming
three generations of quarks allows to impose the unitarity requirement VCTKM Vekm =
1, which eliminates 9 free parameters. Furthermore, multiplications of the different
quark fields by a phase alter Vg but leave the overall Standard Model Lagrangian
unchanged — modulo an overall rotation of all quarks by a common phase, which
again leaves Viog s unchanged (see e.g. [17]). The freedom to redefine the quark fields
removes another five degrees of freedom from the CKM-matrix. Four physical param-
eters remain free, which can be interpreted as three rotational angles plus a complex
phase.

A popular and useful parametrization of the CKM-matrix was derived by Wolfen-
stein [18], which indicates the size of each matrix element by the small quantity A ~ 0.2
up to third order:

-1 A AN (p —in)
Vorm =~ —A 1—2)2 AN? + 0\ (1.1)
AN (1 —p—in) —AN? 1
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1
VedVeb (0.0) (1.0)

Figure 1.2: The unitarity triangle in standard form (left) and rescaled by V,.4V,; in the
Wolfenstein representation (right).

1.3 The Unitarity Triangle

The matrix elements of Vg obey unitarity constraints, which means that any pair
of rows or columns is orthogonal. From an experimental point of view, out of the six
arising orthogonality conditions the most interesting is the product of the first and

third column of Veogar.
VidVap + VeV + ViaVip = 0

This condition can be displayed as a closed unitary triangle in the complex plane.
All sides of this triangle are of the same order of magnitude and the angles «, [
and ~ relate to CP-violating quantities that can be measured experimentally. For
a more convenient representation it is useful to scale all sides by V.4V. Moving to
the Wolfenstein parametrization (eq. 1.1) the corners of triangle have the coordinates
(0,0), (1,0) and (p, 1), where p, 7 are related to the Wolfenstein parameters as

p=01=X)p, 7=(1-X)n

Figure 1.2 depicts the unitarity triangle in standard and in rescaled Wolfenstein rep-
resentation.

1.4 Constraining the Unitarity Triangle

Measuring the sides and angles of the unitarity triangle has been one of the major
tasks of experimental particle physics in recent years. Overconstraining the unitarity
triangle by measuring the sides and angles with different, independent measurements
will prove an important test for the Standard Model. If it is experimentally found
that the triangle is not closed, this will be a hint for new physics beyond the Standard
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Model.

Today, most experimental results that can be used to constrain the coordinates (p, 7j)
of the upper edge of the unitarity triangle depend on hadronic matrix elements which
introduce a significant uncertainty to the extracted value of the parameters. Figure
1.3 summarizes measurements of quantities that at present provide the most stringent
constraints on the unitarity triangle: |V,;,/Vis|, sin 2, ex and the ratio Amg/Amy.

This section summarizes the current experimental status of the measurements of
|Vis/Ve|, sin2 and ex before Amg and Amy are discussed in more detail, due to
their relevance for the work presented in this thesis.

L5 v

‘ excluded area has CL >0.95 ‘

sin2p3

0.5

-0.5

EPS 2005

_1_5-|||||||||i||||||||||||||||
-1 -0.5 0 0.5 1 15 2

Figure 1.3: Graphical summary of the experimental constraints on the parameters of
the unitarity triangle [19]. This does not yet include the recent Am, measurement
performed by CDF II.
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1.4.1  |Vy/Va

The parameter |V,,;,/V,| can be determined from the relative rate of the semileptonic
b—quark decays b — clv and b — ulv. Currently the most precise measurements of V,
result from the study of semi-exclusive decays B — D®) [ 7 and inclusive B to charm
decays. Similarly, V,;, can be obtained from measuring the decays B — m (v, where
m denotes a 7, p,w or n in the exclusive final state. The most precise measurements
of these decays are currently provided by the BaBar and CLEO experiments [20][21].

The constraint on |V,;,/Ve|
1 1 2 Vb
A 2 )| Va

describes a circle passing through (p,7) centered around (0, 0), as seen in figure 1.3.

=V +n (1.2)

1.4.2 sin2p

The time dependent CP—violation parameter S, which can be measured in b — cés—
type decays with and without mixing, is equal to sin 2/ to a very good precision [19].
The world average given by sin 23 = 0.739 4 0.048 [22] is dominated by measurements
performed by BaBar and Belle. As there are no uncertain hadronic matrix elements
involved in the measurement of sin 23, this measurement provides a very stringent
constraint on the position of (p,7) in the complex plane.

1.4.3 €K

The CP-violation parameter €x is a measure of CP—violation in the kaon sector. It
can be extracted from measurements of the ratios of amplitudes 1y and 7, _ of the
neutral kaons K9, K2 decaying to a pair of neutral or charged pions respectively:

1 2
€k = ZNoo + 5N4—

3 3
The current PDG [15] values for ngy and 7y lead to an average of ex = (2.282 +
0.017) x 10~ [19)].

1.4.4 Am,; and Amg,

In analogy to the neutral kaon sector, two CP conjugate states exist in the neutral B
meson system. The mass eigenstates are not eigenstates of the weak interaction, but
mixtures of the two CP conjugate states. Mixing between these states emerges via the
two box diagrams shown in figure 1.4.
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Figure 1.4: Diagrams giving rise to B mixing. The label ¢ can represent either a
d-quark for B mixing or a s—quark in the case of the B;.

The flavor eigenstates ‘BS> and ‘BS> can be written in terms of the mass eigenstates
|B,g) (heavy) and |Bp, ) (light) as

oy - L
‘Bq> - \/5( ‘BH,q> + ‘BL,q>)
‘BS> = L( ‘BH,q> - |BL,q>)

V2

Here ¢ can represent either a d-quark for B~ or an s—quark for B,-mixing.
The time evolution of a state |s) in the non-relativistic approximation is described by
the Schrodinger equation

0
ii prm— .—
tOt“S) Zat ‘5>

The evolution in time for an initially pure Bg (32) state is given by

|BJ(t)) = e‘rqt/ge_imqt(cos(Amq t/2)|By) 4 isin(Amgt/2) |BY))
‘B_g(t)> = e‘rqt/ge_imqt(i sin(Am, t/2) ‘Bg> + cos(Am, t/2) ‘Bg> )
The difference of the widths 'y between short— and long-lived state of the B; meson is

expected to be small in the case of the Bo_meson 23] and can be neglected. Therefore
the probability for an initially pure B (BY) to decay as B° (B°) is

Plt) = %efm ~ cos(Am, 1)) (1.3)

The width difference AI'y between short— and long—lived state of the By mesons is
predicted to be significantly larger than ATy [23], current experimental results give
AT, /T, = 031101 [10]. Incorporating AT, introduces an additional term in the
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probability for an initially pure B, (B,) to decay as B, (B,) [24]

6—AFst

P(t) = %e‘r5t<cosh ( ) — cos(Amy t)> (1.4)
Within the Standard Model, the theoretical prediction for the values of Am, can be
calculated at lowest order evaluating the mixing diagrams in fig. 1.4. The result given
in [25] is
GF 2 2 «

Am, = ﬁnlg ma, [, Bgmiy S(xy) ‘Vib V}q‘ (1.5)
Here mp, is the Bg meson mass, fp, \/E is the hadronic matrix element taken from
Lattice QCD [26] and np is a perturbative QCD correction to the Inami-Lim function
S(xy) [27]. Translating the factor |Vj; V4| into the Wolfenstein parametrization shows
that a constraint on Am, describes approximately a circle around (1,0) in the (p, 7)—-
plane:

Vip Via = A° A2[(1 = p) + 7°] + O(A") (1.6)

The largest theoretical uncertainties in the expression for Am, in eq. 1.5 arise from
the calculation of the hadronic matrix elements fp, \/E When measuring the mass
difference Am, with high precision, the error on fp, \/Fq will still introduce a large
uncertainty of the matrix element V;, extracted from eq. 1.5. Therefore measurements
of Amg or Amy alone don’t additionally constrain the unitarity triangle in the (p, 7)-
plane.

The importance of a measurement of Amg, and Amy arises from the fact that most
theoretical uncertainties cancel out when instead of the expression for Am, from eq.
1.5, the ratio Amg/Amy is taken into account:

2

Ams _ ms, i, VBs |Vis (1.7)
Amg  mpo f2 VB® | Vi .

The ratio of the matrix elements & = f2 /B,/f3, VB can be calculated from lattice
QCD with an uncertainty below 5 % [28]. Measuring the mass differences Amg and
Am, allows to extract the ratio of the CKM matrix elements Vs/Vi4.

Very recently, the first direct measurement of Am, was published by the CDF II
collaboration [11]. The result Am, = (17.337057 + 0.07) ps~! can be combined with
the current world average values of Amy = (0.507 £ 0.004) ps—!, m(B®) = 5.2794 +
0.0005GeV ', m(B,) = 5.3696 + 0.0024 GeV [10] and ¢ = 1.2173959 [28] to obtain
|Vis/Via| = 02087700050,

'In this work energy, momentum and mass are given in the unit GeV. One GeV corresponds to
1.602 176 462(63) - 1071 Joule, obtaining momentum (mass) in the unit *£™ (kg) is realised by the
division by ¢ (¢?), where ¢ = 299792458 .
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The measurement of Amg from [11] is already very precise and the value derived
for ‘VQS/VM‘ is now already limited by the theoretical precision of £&. Providing a
very precise result for Amg on the one hand, the measurement published by CDF II
observes a signal with a significance of 3.5 ¢ only on the other hand. As already
mentioned in the introduction, the probability of a background fluctuation producing
a spurious signal is still 0.5 % and can therefore not be completely excluded.

The main focus of the work presented in this thesis is to improve the significance of
the existing Amg measurement by selection signal events more efficiently and at the
same time suppress background contributions. The selection algorithm suggested in
this thesis will therefore help to exclude the possibility of a background fluctuation
and will provide an important contribution to fully establish a signal for time resolved
B, oscillations in the near future.

Parameter Value
Vb (3.90 4+ 0.68) x 103
Vo (42.0 £ 0.8) x 1073
134 (2.282 +0.017) x 1073
sin 23 0.739 4+ 0.048
Amy (0.507 4 0.004) ps !
Am (17.33750:32 £ 0.07) ps !

Table 1.1: Summary of measurements of some important parameters that constrain
the unitarity triangle [10] [11] [19].



Chapter 2

Experimental Setup

2.1 The Tevatron

The Tevatron proton—antiproton (pp) collider is located at the Fermi National Accel-
erator Laboratory in Batavia/Illinois. The main accelerator ring has a radius of 1 km
and is operated at a center of mass energy of 1.96 TeV, which makes it the source of
the world’s highest energy pp—collisions today. The collisions occur at two interaction
regions where the two detectors D0 and CDF II (“Collider Detector at Fermilah”) are
located. For this thesis data collected with the CDF II detector is used.

2.1.1 The Accelerator Chain

To accelerate protons and antiprotons to a center of mass energy of 1.96 TeV, a chain
of successive preaccelerators (figure 2.1) is used before finally injecting the particles
into the Tevatron. As a first stage hydrogen gas is ionized to H™~ and then accelerated
to a kinetic energy of 750 keV inside the Cockroft—Walton device. From there the ions
enter a linear accelerator (Linac) which uses oscillating electric fields in RF cavities to
accelerate the ions traversing a distance of 150 m to 400 MeV. Due to the geometry
of the oscillating RF fields, the ions are grouped into bunches at the end of the Linac.
At this stage, the ions are directed onto a carbon foil target which strips the hydrogen
off its electrons, leaving bare protons.

Next, the Booster, a circular synchrotron 74.5 m in diameter, accelerates the protons
by a series of kicks from RF cavities to 8 GeV, with each turn around the booster
the protons gain 500 keV of kinetic energy. Here the intensity of the proton beam is
increased by repeatedly injecting further protons into the same orbit as the already
circulating ones. Protons are then extracted from the Booster into the Main Injector,

27
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FERMILAB'S ACCELERATOR CHAIN

MAIN INJECTOR
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Figure 2.1: The Fermilab accelerator complex for Run 2.

a 3 km circumference synchrotron, where protons can be accelerated to 120 GeV for
antiproton production or up to 150 GeV for injection into the Tevatron.

Antiprotons are produced by directing the 120 GeV protons from the Main Injector
onto a nickel target, where ~ 20 antiprotons with a kinetic energy of 8 GeV are pro-
duced per 10® protons. The antiprotons are then separated from other particle species
by a pulsed magnet and focused by a lithium lens, and via the Debuncher Synchrotron
accumulated in the 8 GeV Accumulator Synchrotron, where stochastic cooling is used
to reduce the spread in the antiprotons kinetic energy spectrum before they can be
directed to the Main Injector.

The production rate of antiprotons is the limiting factor for operating at high lumi-
nosities, it takes about 15-20 hours to build up a stack of antiprotons that will be
injected into the Tevatron. Approximately once per day the 36 bunches of stacked
antiprotons (~ 5 x 10'° particles) and protons (~ 3 x 10'" particles) are injected from
the Main Injector into the Tevatron where they are accelerated to the final center of
mass energy of 1.96 TeV. After the end of a collision period, also called store, the
remaining unused antiprotons are collected and cooled in the Antiproton Recycler,
which is housed in Main Injector ring and stores the particles for recycling them in
the next store.
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2.1.2 Performance

Since Winter 2004 the Antiproton Recycler is fully commissioned and integrated into
the Tevatron operation. As ~ 75 % of all antiprotons are expected to survive a
store, and the production rate of antiprotons is the limiting factor to achieve high
luminosities, the recycling of antiprotons resulted in a significant improvement of
the performance in terms of peak luminosity and the Run 2 design luminosity of
L =10*2cm™2s! could be reached. The luminosity of collisions can be written as:

NpN,N,
UL) Bt (2.1)

L= fF(@ 2m (02 + 02)

where f is the revolution frequency, F'is a form factor describing the geometric prop-
erties of a bunch, Np the number of bunches, N, ; the number of protons/antiprotons
per bunch and o, ; the RMS beam size at the interaction point.

The integrated luminosity over the time of a data taking period multiplied with the
cross section o of a given process yields an estimate for the predicted number of events
N =o0x [ Ldt.

Table 2.1 summarize the values for those parameters for Run 2. Figures 2.2 and 2.3
summarize the development of peak and integrated luminosity at the CDF II detector
since the beginning of Run 2 in 2002.

Parameter Value for Run 2
Np 36
bunch length [m] 0.37
bunch spacing [ns] 396
protons/bunch (N,) ~ 3 x 10"
antiprotons/bunch (N;) ~ 5 x 100
highest peak £ [em™2s7!] 1.72 x 10%

Table 2.1: Accelerator parameters for the Tevatron.
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Figure 2.2: Integrated Tevatron Run 2 luminosity.
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Figure 2.3: Tevatron Run 2 peak luminosity.
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2.2 The CDF II Detector

2.2.1 Overview

The CDF II detector is a multipurpose collider detector [29], designed to detect and
measure properties of particles being produced in pp—collisions. It features a vertexing
and tracking system, particle identification, a superconducting solenoid generating a
1.4 T magnetic field, calorimetry and muon chambers. The components are arranged
in the cylindrical symmetry typical to collider detectors. Fig. 2.4 shows the side view
one quadrant of the CDF II detector.
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Figure 2.4: The CDF II detector.

2.2.2 The Tracking System

The CDF 1I tracking system consists of several subdetectors that can be used to
detect charged particles and measure momenta and displacements with respect to
the collision point (primary vertex) in the detector. It consists of two detectors, the
Central Outer Tracker (COT) and the Silicon Vertex Detector with its subsystems
SVXII, ISL (Intermediate Silicon Layer) and LO0 (Layer00). The tracking system is
built cylindrically around the beam pipe and contained within the 1.4 T magnetic
field created by a superconducting solenoid.
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The Silicon Vertex Detector of CDF II covers a radial range from r=1.6 cm to 28
cm, provides an acceptance up to || < 2.0 and consists of 6-7 layers of double and
single layered silicon sensors. The innermost single layer closest to the beam line at a
radius of 1.6 cm is called Layer00. Outside of L0OO from r=2.1 cm to r=17.3 cm follows
SVXII, a double-sided silicon microstrip detector. The strips are aligned axially on
one side, with 90-degree stereo on the other side for layers 0, 1, and 3 and small-
angle stereo (1.2 degrees) on the other side for layers 2 and 4. Between SVXII and
the Central Outer Tracker (COT), the Intermediate Silicon Layer enhances linking
of tracks measured in both detectors. The ISL central layer is located at r=22 cm
and forward /backward layers are at r=20 c¢m and r=28 cm. The central layer covers
In| < 1.0 and the forward/backward layers cover 1.0 < |n| < 2.0. The ISL is a double-
sided silicon microstrip detector (axial on one side, small-angle stereo on the other
side).

The ensemble of silicon vertex detector devices is particularly suited to measure the
impact parameter dy and the azimuthal angle ¢ of tracks with high precision and can
therefore determine the decay vertex of long lived unstable particles with high spatial
resolution.
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Figure 2.5: n coverage of the SVX and COT detectors.

The Central Outer Tracker (COT) is a cylindrical drift chamber covering the radial
range from 33 cm up to 143 cm. The COT contains 96 wire layers grouped into eight
superlayers, where in four superlayers the wires run in z—direction (“axial superlayers”)
and in the other four superlayers the wires are tilted by 2 degree with respect to the
z—direction (“stereo superlayers”). All sense wire are contained in an Ar-Ethane-CF,
gas mixture. Particles passing through the COT in the range |n| < 1 pass through all
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eight superlayers, particles up to || < 1.3 pass through at least four superlayers and
ionize the gas mixture. Electrons drifting towards the sense wire induce an electronic
signal that is read out by an ASDQ (amplifier, shaper, discriminator and charge
encoding) chip [30]. Due to geometrical reasons the track density in the COT tracking
volume is significantly smaller compared to the SVX, in addition the COT produces a
maximum of 96 hit measurements per tracks, so it provides an accurate measurement
of a particle’s transversal momentum (in the r—¢ plane) and less precise information
of the particle’s momentum in the r-z plane.

2.2.3 Particle Identification

The ability to identify a track as coming from a kaon, proton, electron, muon or pion
can yield an important input to many types of physics analyses. The CDF II detectors
provides two measurements that can help to make a decision for each track regarding
the type of particle that produced it, the measurement of the specific ionization (COT
dE/dx) of charged particles inside the COT and the measurement of the particle’s
time of flight using the Time-of-Flight-detector (TOF) [31].

The specific ionization of charged particles transversing the COT gas mixture it mea-
sured by the readout chips of the sense wires. The pulse width read out is logarith-
mically dependent to the total charge deposited on the sense wire (At ~ log(Q) ~
dE/dx) [29]. To measure the time of flight 7" of a particle, information of the produc-
tion time ¢y is necessary. For each collision event a measured TOF signal has to be
matched to a corresponding COT track. A matched track can then be assigned to a
primary vertex, knowledge of the spatial position of the primary vertex and the recon-
struction of the tracks momentum p can be used to calculate t; (for details on track
reconstruction and momentum measurement refer to section 4.2.1). Via the relation

2
T = Toneas — o = 4|1 + — (2.2)
T

the mass m, and therefore the identity, of the particle producing track and TOF signal
can be calculated. Here s denotes the path length of the track, calculated from the
distance between primary vertex location and position of the measured TOF signal
in the scintillator bars and ¢ the velocity of light. Figure 2.6 shows the position of
the TOF detector outside the COT (left) and the separation power of the TOF mea-
surement for kaon/pion (K /7), proton/kaon (p/K) and proton/pion (p/7) separation
compared to the particle separation power achieved by COT dE/dx alone (right).
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2.2.4 Calorimeters

The CDF 1II calorimetry system consists of several independent calorimeters: the
central and end—plug electromagnetic and hadronic calorimeters and the hadronic
end—wall calorimeters. For the location of the individual detector components see
figure 2.4. The calorimetry system covers the pseudorapidity region |n| < 3.6 and is
used to measure the energy of high energy electrons, photons and hadronic jets.

2.2.5 Muon Systems

The CDF II muon system consists of four detectors mounted radially outside the
calorimetry system. There are three drift chambers, namely the central muon detector,
central muon upgrade and intermediate muon detector, and in addition a combined
drift chamber /scintillation counter, called the central muon extension detector. Most
of the particles that reach the muon system, i.e. without producing a shower and
being absorbed in the calorimeters, actually are muons, as they interact with matter
mainly via ionization. Kaons and pions surviving the calorimeter passage produce
muon fake rates at the level of a few percent.
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2.3 The CDF II Trigger System

2.3.1 Overview

Collisions at the CDF II detector occur at a rate of 2.5 MHz, the size of the detector
information of one event is ~250 kB. Assuming that an interaction occurs at every
collision, this would result in a data flow of 625 GB/s — the impossibility of storing
every single event recorded by the CDF II detector on mass storage media is evident.
Most events are minimum bias events that are not particularly interesting from a phys-
ical point of view. These events occur 4 orders of magnitude more frequently than
hard inelastic processes producing b—quarks and even 10 orders of magnitude more
frequently than processes producing top quarks. Therefore it is of utmost importance
to do a preselection of events that are potentially interesting, which is performed by
the CDF II trigger system, or short the trigger.

The trigger consists of three subsystems (Levels) that decide consecutively, the deci-
sions being based on trigger tables that implement a large number of trigger paths,
each path consisting of a set of rules that define requirements for events that can
potentially be relevant for one of the different physics programs at CDF II. It is far
beyond the scope of this short introduction to discuss all trigger paths used at CDF 11,
only a general introduction to the CDF II trigger system is given here. In a later chap-
ter a focus will be put on the implementation of one trigger path that is of particular
importance to the work presented in this thesis, the so—called Two Track Trigger (see
section 4.1.1).

2.3.2 Level 1 Trigger

After each beam crossing, data from all detector components is read out, except for
the data from the silicon vertex detector which is just sampled and kept in a pipeline,
and made available for the decision of the Level 1 trigger. The core component of the
Level 1 trigger system is the eXtremely Fast Tracker (XF'T). Based on a lookup table
of pre-defined COT hit patterns, the XFT is capable of reconstructing the transversal
momentum pr and azimuthal angle ¢ of a track. At Level 1 also a matching of XFT
tracks to muon chamber hits and calorimeter clusters is performed. As Level 1 takes a
bit longer than a beam crossing to make its decision, the information from the different
detector subsystems is kept in a 5 us deep pipeline (see figure 2.8).

2.3.3 Level 2 Trigger

After an event has been accepted by Level 1, information from the silicon vertex de-
tector (SVX) is digitized, read out and stored in one of the four Level 2 buffers. Those
buffers allow Level 2 to make its decision asynchronously from Level 1, but can also
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cause deadtime when all four buffers are full already and Level 1 accepts another
event.

At Level 2 the Silicon Vertex Tracker (SVT) [32] takes the rather coarse information of
the Level 1 XFT tracks and uses them as seed. Using sophisticated pattern-matching
algorithms, the SVT tries to add silicon hit clusters to extrapolated XFT seed tracks.
Using a linearized fit, the SVT creates tracks with a measurement of the impact pa-
rameter dy and significantly more precise values for pr and ¢. As shown in figure 2.11
the impact parameter resolution for SVT tracks is 47 um. This resolution is a combi-
nation of the intrinsic SVT dy—resolution and the transverse spread of the interaction
region, which can be roughly described by a circular shape in the transversal plane
with a Gaussian distribution of ¢ ~ 33 um. Taking into account this spread of the
interaction region, the intrinsic SVT impact parameter resolution of ~ 35 um is close
to the resolution obtained after the offline reconstruction. The main purpose of the
SVT is to preselect events with a positive lifetime by requiring impact parameters of
dy > 100 pm for at least two SVT tracks, this requirement effectively selects tracks
coming from particle decays with a positive lifetime, as demonstrated in figure 2.10.
This is of particular importance when studying the decays of long lived b-hadrons.

2.3.4 Level 3 Trigger

The Level 3 trigger stage is implemented in software running on a PC farm. For the
Level 3 trigger decision, the full COT and SVX offline reconstruction is performed for
each track. Further improving the resolution of pr, ¢, 2y and cot f and d;, all Level
1 and Level 2 trigger conditions are confirmed with the resolution of offline tracks. If
Level 3 accepts an event, the data is first stored on disk in a storage area and later
written to tape for analysis. Roughly 1 in 120,000 events passes one or more paths of

the full trigger chain, reducing the event output rate from the beam crossing rate to
~ 100 Hz.
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Chapter 3

Mathematical Methods

3.1 Parameter Estimation

One of the challenges in quantitative science is the estimation of parameters from
measurements with errors. These arise due to limited experimental resolution of the
measurement process and are statistical in nature.

Let an experiment provide n measurements &, @y, ..., ¥, of the (multidimensional)
variable Z. The task is to extractthe best estimate of & as well as the corresponding
errors and correlation coefficients from these measurements. If the measurements fol-
low a probability density function f(Z|d), which is a function of the parameters a, this
problem can be solved by the maximum likelihood method [33].

3.1.1 The Maximum Likelihood Method

The maximum likelihood method assumes a multidimensional probability density func-
tion f(Z|@) in ¥ that depends on a set of unknown parameters @ and, for a set of n
measurements 7;, defines the likelihood function L(a)

L(d) = f(#d@) - (#]d) - .- [(@ld) = ][ J(5i]) (3.1)

The best estimate for the parameters @ is the choice @ that maximizes L(a), i.e.
maximizes the probability to observe the measured values Z;. The maximum of L(@)
can be found by requiring

JOL(a)

dar 0 for all £ (3.2)

39
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In real life L(@) often tends to very small values causing numerical instabilities when
evaluated on a computer. Instead of the likelihood function L(@), also the log likelihood
function /(@) = InL(@) can be used. As the logarithm is a monotonous function,
requiring

ol(a

%Z) =0 forallk (3.3)
is equivalent to the condition quoted in eq. 3.3. For practical purposes! it’s useful to
define the negative log likelihood function

F(@) = =1(@) = =} Inf(#a) (3.4)

that has to be minimized to get the optimal estimate of a. During the minimization
procedure one has to make sure that the normalization in the fit region from #,,;, up
t0 Tonax

Tmax
/ f(Zlad)di =1 for all @ (3.5)
Tmin
is kept constant and independent of @. To obtain a correct result, one has to check
that f(Z|d@) indeed describes the distribution of the measurements in each dimension
properly when inserting the best estimate @ of the parameters a.

In the limit of an infinite number of measurements n — oo, the likelihood function
approaches a Gaussian distribution. F'(@) can then be expanded around its minimum,

where @ = @ and %—g = 0.

SN N 1 0’F . .
F(al, ag, ..., GN) = F(al, ag, ..., GN) + = Z ai(az - ai)(aj - aj) + ... (36)

2 7 Oa; - Oa
SN . 1 N N
= F(al, ag, ..., ClN) + 5 ;Gw(al — ai)(aj — aj) + ... (37)

where @ = (ay,as,...,ay). In the limit n — oo the matrix G' can be identified as
the inverse of the covariance matrix V!, also called Hesse matrix H. In the non-
asymptotic case, V! serves as a good approximation of G at the minimum of F'. In the
case of only one parameter F'(a), the values of F'(a) around the minimum a =a+r-o
are the given by

Fla+r-o0) = F@)+ %ﬁ (3.8)

!Several program libraries for minimizing functions exist, therefore it’s just a matter of convenience
to use a negative log likelihood function.



3.1. PARAMETER ESTIMATION 41

where o can be identified as o = % . If F(a) has the shape of a parabola around
a

the minimum, equation 3.8 can be used to calculate the standard deviation. The

probability that is contained in the interval @+ - o can be derived from the Gaussian

distribution. In the case of more than one parameter, the function
Frin(a;) = min F(@) (3.9)

can be defined for a;, which is the minimum of F'(@) with regard to all other parameters
a;, j 7 1. From this definition, the ro standard deviations can be defined via

~ 1
Frin(@; +ro) = F(d) + §r2 (3.10)

similar to the case of only one variable. Non—parabolic behavior at the minimum can
be approximated by asymmetric errors

~ o~ 1
~ 1

3.1.2 The Maximum Likelihood Method for Binned Data

If the total number of measurements n is large, it’s possible to process the result in form
of a histogram where the x—axis is divided in .J intervals (bins). The probability density
function f(x|a) is then fitted to the data points in each of the J bins. The entries
n; in each bin are random variables following a Poisson distribution with expectation

value fi;

Mnj eMi

P(njlu;) = (3.13)

|
n;.

p; can be obtained from integrating f(x|a) over the width of one interval multiplied
with the size of the sample n

[ = f(zla)dr ~ n- f(z.a) - Ax (3.14)

bingj

where z. is the value of x at the center of bin j and Az the width of the bin. The
negative log likelihood function becomes

J R J J J
Fla) = —Zln(“n; )= =S milnp+ > py Y Inny! (3.15)
P ' j=1 =t A
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The last term Z;":1 Inn;! can be ignored during the minimization as it is constant
for a given set of data points. In the case 1 > 1 the Poisson distribution can be
approximated by a Gaussian distribution with variance o} = p;. The negative log

likelihood function transforms to

F(a) = — Zln(\/ﬁa exp(—%)) (3.16)

1 (ny — py)?

§Z]T]J -+ const. (317)
Here 2F (a) follows a x? distribution with & degrees of freedom where k is the number
of intervals J minus the number of parameters that are determined in the fit [33]. The
value of x?/k should be ~ 1, this can be used to decide whether the description of the
data points by f(x|a) is acceptable or not.

3.2 Neural Networks

The NeuroBayes® [34] neural network software combines a three-layer feed forward
neural network with a robust and sophisticated preprocessing, which is performed
before the training variables are actually fed into the network. Each training variable
corresponds to one node in the input layer. Training patterns are passed to the network
by feeding them into the input layer. Each node in the input layer is connected to the
nodes in the intermediate or hidden layer. The number of nodes in the hidden layer
can be chosen freely?. For a binary classification problem the output layer consists of
only one node which gives a continuous network output in the interval [-1, +1]. Figure
3.1 shows a schematic representation of such a three layer network architecture. An
additional bias node with a constant value of 1 in the input layer can help to increase
the network performance. The nodes of two consecutive layers are connected via
weights. For each node j a biased weighted sum depending on the values provided by
the output of the nodes z; of the previous layer is calculated

a;(F) =Y wiwi + po, (3.18)

The term f; represents the threshold of the node j provided by the connections of
the bias node with the nodes in the intermediate layer and w;; denote the weights

2The choice is not completely arbitrary. One has to make sure that the network has enough
freedom to learn all features (not too few nodes) and prevent it from learning everything by heart
(not too many nodes).
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Figure 3.1: Schematic display of a three layer neural network architecture with one
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Figure 3.2: Representation of a neural network node. The weighted sum of the input
variables x; is passed through the sigmoid transfer function to the next layer.

from the input to the intermediate layer. The input to the next layer for each node is
transformed by the symmetric sigmoid function

. 2
5(%) = T+ exp(a(@) 1 (3.19)
The sigmoid transformation maps the interval [—oc, +0oc] to [—1, +1], behaves linearly
around 0 and goes into saturation for very small or large values of a(Z). For a network
with d input nodes, M nodes in the hidden layer and vector of input values z;, the

network output of the k—th output node o, is calculated via

M d
j=1 =1
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where as before w;; denotes the weights from the input to the intermediate layer and
vji the weights from the intermediate layer to the output node.

3.2.1 Network Training

To train the neural network, training patterns are fed to the network via the input
layer. For each training pattern the network output is calculated and compared to the
true value 7;; for output node j and event i. Then the weights connecting different
nodes in different layers are varied with the outline to minimize a cost function E. The
cost function expresses the deviation of the actual network output from the desired
or nominal value. In the work of this thesis, a cost function based on the entropy
function is used in the network training:

j sums over all patterns in the training sample, ¢ over the output nodes and € is a
regularization constant that avoids numerical problems for an untrained network and
is put to zero after a few iterations.

The surface of the cost function has a very complex shape in the multidimensional
parameter space spanned by all possible combinations of weights. Finding the global
minimum is practically impossible. At the beginning of the training, the weights are
set to random values following a Gaussian distribution with mean 0 and width 1. The
training is then performed by a special flavor of backpropagation and based on gradient
descent, adjusting the change of each weight Aw;; proportional to the current gradient
of the cost function Aw;, = —n-2E. Hereby the step widths are adapted individually

Wik
for each weight during the training.

3.2.2 Preprocessing of Variables

To aid the minimization of the cost function, NeuroBayes® performs a sophisticated
preprocessing of the input variables. To avoid starting the training in the saturation
region of the transfer function (eq. 3.19), the variables are first brought into the re-
gion between [—1, +1] and then transformed into Gaussians with mean 0 and width 1.
Then the variables are decorrelated by rotations of the covariance matrix, transform-
ing it to a diagonal unit matrix which allows to minimize the weights independently.
Furthermore the NeuroBayes® preprocessing is capable of treating variables that con-
tain potentially ordered discrete classes and variables that don’t have value assigned
for each event by assigning the missing values to a ¢ function.

The significances of the input variables are determined during the preprocessing. The
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correlation of each individual variable to the training target is calculated in an it-
erative procedure. One variable after the other is omitted from the set of training
variables to determine the loss of total correlation caused by neglecting this particular
variable. The variable causing the smallest information loss when omitted is then
discarded, leading to a set of n —1 training variables. This procedure is repeated until
the correlation to the target for variable is calculated. More details on the variable
significance table can be found in appendix B.

3.2.3 Regularization

To enhance the generalization capabilities of the neural network and to avoid over-
training, several regularization schemes are applied during the network training. One
way of improving the generalization ability is pruning away connections between nodes
or even full nodes that have become insignificant during the network training process.
The removal of connections and nodes reduces the number of free parameters and
improves the ratio of signal over noise by removing the source of the noise.

Another regularization method helping to control the behavior of the network is weight
decay. An additional weight is introduced to the error function from eq. 3.21

~_ C 9
E—)E—E+§Zwi (3.22)

which effectively leads to a decay of weights during the minimization procedure, i.e.
the network converges to smaller weights. This makes sure that only patterns occuring
frequently are learned by the network, random fluctuations of the input data will decay
away. In this way also very large weights are avoided that can increase the variance
of the output and lead to discontinuities or oscillatory behavior of the network.

3.2.4 The Bayesian Approach

NeuroBayes® makes use of Bayes’ theorem|35]

P(DIH)P(H)

P(H|D) = —=p

(3.23)
where H denotes a hypothesis and D the data that was measured. P(H) includes
a priori knowledge about the hypothesis, without knowing anything about the data,
therefore also called prior. P(D|H) is the likelihood to observe the D assuming H and
P(D) the probability to observe D. Finally P(H|D) denotes the a posteriori know-
ledge about H that we have after taking into account the data, also called posterior.
In the case that the training target is a real variable, NeuroBayes® can be used to
estimate the full posterior probability density function P(H|D) for each event. The
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advantage of taking into account Bayes’ theorem is that the output the neural network
produces will always be in the range of the inclusive input distribution, and therefore
will never produce non—physical results. In the case of binomial targets, the output
of every well-trained neural network can be interpreted as Bayesian a posteriori prob-
ability in the case that the inclusive signal over background ratio is the same in the
data sample that is classified and in the training sample.

Furthermore, Bayesian arguments are used in the automatic regularization and prun-
ing schemes in NeuroBayes®.



Chapter 4

Dataset and Reconstruction

4.1 Dataset Selection

4.1.1 The Two Track Trigger

The data used for this work was collected entirely using the so—called Two Track
Trigger, which is defined by a set of trigger paths based on the silicon vertex tracker
(SVT, see section 2.3). The name Two Track Trigger indicates the dedication of
this part of the trigger system: identify events with positive lifetime by selecting two
displaced tracks (see figure 2.10). This type of trigger was first developed for the Run2
upgrade and is currently unique to CDF II. The Two Track Trigger requirements for
an event can be summarized as:

e at least two oppositely charged XFT tracks with p; > 2 GeV/c
and A¢'? < 135° at Level 1.

e at least two SVT tracks with p; > 2 GeV/c, 100 ym < |dp| < 1 mm
and Y2y < 25' at Level 2.

e match of the SVT tracks to COT tracks and confirmation of the p, and impact
parameter requirements with the additional requirements of 2° < A¢'? < 90°
and the decay length in the r-¢-plane projected on p; (L,,) greater than 200 pm
at Level 3.

"Here xZyr denotes the x? of a track that is obtained after hits from the silicon detector are
added to a Level 1 XFT track by the SVT, see section 2.3.3 for details.

47
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Flexibly adapting the data taking bandwidth required by the Two Track Trigger to
different luminosity scenarios, additional requirements are imposed on an event at the
level 2 trigger stage by the individual Two Track Trigger subpaths:

L2 B.LOWPT requires at least two SVT tracks with p; +p? > 4.0 GeV (the so—called
low—p; scenario).

L2 B_.CHARM asks for at least two oppositely charged SVT tracks with p} + p? >
5.5 GeV.

L2 B HIGHPT with at least two oppositely charged SVT tracks with p; + p? >
6.5 GeV (high—p, scenario).

At periods of high luminosity data taking, the low—p, scenario B_LOWPT 2 is usually
prescaled. Prescaling means that only one in N = 1/p events is accepted by the
level 2 trigger systems out of all events passing the trigger requirements, p denoting
the prescale factor. Applying a prescale factor to trigger paths at high luminosity
data taking periods reduces the level 2 buffer occupancy, thereby reducing the overall
deadtime of the trigger system. More bandwidth can then be given to trigger paths
that select rare events at low rates. The prescale factors for individual trigger paths
are adapted dynamically during a store® to take into account the decreasing luminosity
by antiproton losses to make optimal use of the trigger system bandwidth. Also the
B_CHARM and B_HIGHPT trigger paths may be subject to prescales. The prescale factors
for all trigger paths during each data taking period are stored in a database and can
be accessed in offline software. Figure 4.1 show the effective prescale factors (averaged
per run) for the B_.LLOWPT, B_.CHARM and B_HIGHPT trigger scenarios [36].

4.1.2 “Good Run” Selection

Figure 4.1 shows several run ranges where no prescale factors are quoted, this reflects
the fact that not all runs should be used for any kind of analysis. Only data that is
taken under stable conditions, where each trigger and detector component that is of
importance for an analysis, was fully functional, should be used.

To keep track of problems with detector or trigger systems during individual data
taking periods, several boolean good run flags are set by the shift crew after the com-
pletion of a run and stored in the online database.

The good run flags used for the work presented in this thesis are based on a set of
requirements generally agreed on by the BPAK (B physics analysis kernel) group [37]

2The prefix L2_ will be dropped from now on, the different Two Track Trigger scenarios don’t
differ at the L1 and L3 trigger stage.
3 A store comprises one cycle of antiproton injections into the Tevatron, see section 2.1.
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Figure 4.1: Effective prescale factors for the B_LOWPT, B_.CHARM and B_HIGHPT trig-
ger scenarios against run number. The run range displayed covers data taken from
September 2002 until August 2004 is taken into account.

and reflect that for any analysis involving the reconstruction of B-mesons full func-
tionality of the SVT trigger system and the tracking system is required. All flags
applied for the dataset used in this work are summarized in the following list.

RUNCONTROL_STATUS During daily operation runs sometimes have to be ended
very prematurely as problems with the trigger system, data acquisition or any de-
tector system show up immediately after starting a run. Those runs can be easily
identified by the very small number of events written out. The RUNCONTROL_STATUS
flag is set to 0 if there are less than 10000 L1 accepts, less than 1000 L2 accepts
and/or less than 1 nb™! of data written to tape for this run.

SHIFTCREW_STATUS is set to 0 by the shift crew if a testing or calibration trigger
table was used for this run. It is set to 1 for runs taken with approved physics
trigger tables.

OFFLINE_STATUS is set by the offline shift crew, confirming that the data for
a given run has passed offline processing without indicating any problems like
corrupted data formats.

CLC_STATUS confirms the proper functionality of the Cerenkov luminosity counter
CLC and that the luminosity measurement performed by the CLC was not
affected by instable beam conditions.
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L(1,2,3)T_STATUS assure proper operation of the trigger system. They are set
by the consumer operator shift crew member after the comparison of reference
quality monitoring plots for a given run to the default plots.

SVX_STATUS is set if the high voltage of the SVX silicon tracker is switched on.

SVT_STATUS is set based on quality monitoring plots of the corrected SVT beamline
position and the online reconstruction of D mesons. Proper operation of the SVT
requires the SVX to be switched on.

COT_OFFLINE sets a more rigorous limit on the minimum luminosity for a run of
10 nb~! and requires the number of bad channels in the COT drift chamber to
be less than 1 %.

Applying these good run requirements on the two datasets xbhd0d and xbhdOh, col-
lected with the Two Track Trigger amounts to a collected integrated luminosity of 765
pb~!. xbhd0d consists of data collected between February 2002 and August 2004 (355
pb™!), xbhdOh includes data taken between December 2004 and September 2005 (410

pb™).

4.2 Event reconstruction

In the previous section the steps necessary to preselect a dataset of track pairs dis-
placed from the primary interaction vertex, possibly originating from the decay of
long-lived particles like B mesons, were discussed. Once these events are triggered
and written to tape, they can be examined more carefully by using sophisticated re-
construction algorithms implemented in the CDF IT offline software framework. In this
section the algorithms involved in the proceeding from measuring hits in the tracking
devices towards the reconstruction of B meson decays are discussed.

4.2.1 Tracking

Charged particles deposit small amounts of energy in the material of the CDF II track-
ing system. Due to the high voltages applied in the detector systems the resulting
ionization of the detector material leads to small currents that can be detected and
encoded by the detectors’ readout systems. Such a signal obtained from one of the
silicon sensors or COT readout wire is called a hit. The reconstruction of the tra-
jectory of a charged particle by associating hits recorded in the detector systems to
this particle is called track reconstruction or simply tracking. Several such tracking
algorithms are used in CDF II offline software. As the track multiplicity is constant
in ¢, the hit occupancy reduces with r¢ when a charged particle passes the detector
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from the interaction point. The so—called Outside-in (OI) algorithms therefore start
to reconstruct the flight paths of charged particles at the COT and then moves on
by adding information from the SVX. Before the actual track fit is performed, two
pattern recognition algorithms select track candidates in the COT. All candidates that
pass the 2d—fit to a circle are then used for a 3d helix fit, making full use of the stereo
layer information, and form a COT standalone track. The efficiency of COT track
reconstruction is ~ 95 % for track passing all eight superlayers with p; > 0.5 GeV. The
momentum resolution of o, /p; ~ 0.15% / GeV is actually better than anticipated in
the technical design report [29].

The next step to form an OI track is adding the information from the silicon tracking
devices. The COT standalone track path is extrapolated until the intersection with
layers of the silicon detector, if a silicon hit can be assigned to that track, the track
fit repeated and the extrapolation to the next silicon layer is done. A track is consid-
ered an OI track if at least three (r — ¢) silicon hits could be assigned to the COT
standalone track. Two algorithms perform this work in the CDF II offline software
framework, they are documented in detail in [38][13].

4.2.2 Momentum Scale Calibration and Track Refitting

As seen in the previous section, the energy loss by ionization of particles in matter
forms the basis for reconstructing the flight paths in the detector. For a particle
traversing the entire tracking volume, this energy loss is roughly 10 MeV. This energy
loss however shows a dependence on the particle’s momentum and rest mass*, so in
order to get an optimal momentum measurement, these effects have to be taken into
account [39].

Figure 4.2 shows the p; dependence of the reconstructed invariant mass of a .J/1
decaying into two muons. Two calibration tools can be used to remove the momentum
dependence and to match the mass of the reconstructed .J/1 with the world average
from [15]. First the momentum dependence is removed by modifying the incomplete
detector description in the GEANT material map [40] used for track fitting. After
removing the momentum dependence, the .J/i¢ mass is then shifted to the expected
value by correcting the value used for the magnetic field B for the conversion of track
curvature to momentum.

The average energy loss of a particle in the detector also depends in the particle’s
rest mass. Therefore, before reconstructing particle decays in dedicated final states,
each track is refitted using the particle hypothesis expected in the reconstructed final
state. Before the refit is performed, the COT covariance matrix is rescaled according
to [41], as studies have shown that track reconstruction in the COT underestimates

4Which allows particle identification based on the specific ionization dE/dx, as seen in section
2.2.3.



52 CHAPTER 4. DATASET AND RECONSTRUCTION
N:I 3105 ~ CDF Run 2 Preliminary slope
3 = [MeV/c?]/[GeVic]
D) 3100 - Add B scale
> C Tttt o o — . 0.009 # 0.065
—~ 30951 Missing material (~20%)
= I =~ Ch = = S 0.022 = 0.065
R -
= 3090 < material 0.301 + 0.065
S - Correction f;)r
3085~ : AN .
- in GE . 1.388 + 0.074
B S
3080 - \(30\(*
- ?\'&“ﬂ
3075 = o \
0 5 10

pr of J/Y [MeV/c]

Figure 4.2: The removal of the p; dependence of the reconstructed invariant .J/1) mass
observed when using raw track is done by tuning the material model used for track
fitting to compensate the incomplete detector description present in that model. The
J/1) mass is then moved to the world average value by correcting the value of the
magnetic field B used for conversion of track curvature to momentum [39].

the measurement errors. The refit starts from the rescaled COT tracks and tries to
add silicon information to the track seed as described in the previous section. Hits
from the silicon detector subsystems SVX, ISL and LOO are taken into account and
the Kalman package [13] is used for track refitting.

4.2.3 Trigger Confirmation

The optimization procedure described in chapter 6 critically depends on a correct
description of the properties of exclusive B decays in simulated events. An important
aspect of a good description is a precise simulation of the trigger system used to
preselect B candidates in the experimental data. In real events involving the decay
of B mesons several effects might lead to an event being accepted by the Two Track
Trigger (TTT), see 4.1.1.

1. The decay of the B meson produces two or more displaced tracks fulfilling the
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trigger requirement.

2. Two random tracks, one potentially resulting from the B decay, the other or
both potentially resulting from a background process or multiple interactions in
the event, fulfill the trigger requirement.

3. One track from the B mesons decay and an XFT track, that by mistake picked
up several wrong hits and so has a tendency towards high impact parameters,
fulfill the trigger requirement.

Simulated events are not capable of reproducing the properties of combinatorial back-
ground events as the complex environment of hadron collisions is not yet fully un-
derstood and known models are not able to reproduce the data. Therefore items 2
and 3 will not be modeled correctly in a simulation. To compensate for this lack of a
full background simulation, for each event in real data it is confirmed that indeed two
tracks originating from the reconstructed B meson decay were those that fulfilled the
trigger requirement and caused the event to be preselected, so the cases 2 and 3 are
eliminated in data.

The trigger confirmation is checked by matching reconstructed offline tracks to tracks
reconstructed online by the SVT. The SVT information for each event is stored in
the SVTD bank and can be accessed for each event. For each B candidate it is then
confirmed that at least two tracks in the final state are actually SVT tracks and that
at least one pair of SVT tracks from that candidate has passed the Two Track Trigger
requirements outlined in 4.1.1.

4.2.4 B Meson Reconstruction

The reconstruction of exclusive B decays is performed using the BottomMods[42][43]
package. The reconstruction software is highly modular and starts with the recon-
struction from simple objects, like reconstructed tracks, to higher level objects, like
reconstructed B mesons. The output of each module serves as input to the next mod-
ule in the reconstruction chain.

The reconstruction starts with a preselection of tracks requiring the track to have a
successful helix fit attached to it and requiring a physical error matrix for the track
parameters® . For each event all reconstructed tracks are refitted with either pion or
kaon mass hypothesis and stored internally as collections of stable particle candidates
serving as input to the modules reconstructing the decays of unstable particles. In
subsequent chapters, two exclusive B decays are of particular interest: the decay of
the BY meson into the final state D~ 7 with the D meson decaying into K 7 7+,

’Due to measurement errors and numerical inaccuracies sometimes a negative (unphysical) error
is calculated for a track parameter. This occurs very rarely but causes the software to crash.
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with the decay of the B; meson into D, 7" and the D, decaying into the ¢7— and the
¢ decaying into a pair of charged kaons®. In the case of the By, first ¢ candidates are
formed from pairs of oppositely charged tracks assumed to be kaons. Most of those
pairs won'’t originate from a real ¢ decay and are random combinations instead. To
reject background candidates, the invariant mass of the two tracks is calculated from
the sum of their four momenta. However, as the tracks’ four momenta are taken at
the perigee point”, which does not necessarily correspond to the position where the ¢
actually decayed, this is only a rough estimate. A more accurate value for the invariant
mass can be obtained only after a full vertex fit. As vertex fits are expensive in terms
of computation time, a soft preselection of track pairs based on the estimated invari-
ant mass can make the reconstruction faster. The software performing the vertex fit
is based on the CTVMFT [44] package, which calculates the vertex positions, invariant
masses, four momenta of the particles involved and the corresponding covariance ma-
trices. All track pairs with successful vertex fit and in the mass window from 1.005 to
1.035 GeV around the expected invariant ¢ mass are then accepted as ¢ candidates.
In the next step, Dy — ¢m candidates are formed by adding a charged track assumed
to be a pion to the ¢ candidate. Candidates with duplicate tracks are removed. A
vertex fit is performed on all remaining candidates constraining all three tracks to a
common vertex. Candidates with a successful vertex fit and an invariant mass in the
mass window from 1.87 to 2.07 GeV, around the expected D, mass, are used in the
reconstruction of the decay B; — D,m. Here the reconstruction is done in a simi-
lar way: tracks from the pion collection are added to all Dy candidates. Candidates
with duplicate tracks are removed and B, candidates are preselected using the four
momenta sum of the tracks. At this stage the trigger requirement described in the
previous section is applied to the list of B, candidates. Each candidate is required
to include at least one pair of tracks matched to SVT tracks and at the same time
fulfilling the Two Track Trigger requirements for SVT track pairs. The fitted decay
vertex of the D, is allowed to be displaced from the B; vertex due to the lifetime of
the D of er = 147 um [15], instead the three momentum of the Dj is constrained to
point back to the B vertex. Also the invariant mass of the D, is constrained to its
PDG (particle data group) value of 1.968 GeV [15]. These constraints add additional
information to the vertex fit and reduce the number of free parameters, leading to an
improved resolution of the reconstructed particle’s quantities.

The reconstruction of the decay B — Dm, D — K7 proceeds similarly. Here as first
step one kaon and two pion candidates with the right sign charge combination form
a D candidate. After preselection and vertex fit this D collection serves as input to
the reconstruction of the decay B’ — Dn. Again the trigger requirement is imposed

6The corresponding decays of the anti—particles BY and B, are not listed separately but always
implicitly included.
"The perigee denotes the point of closest approach of a track to the origin of the coordinate system.
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Figure 4.3: Topology of the decay B — Dn, D — Knrr [45].

for each BY candidate and the D meson is constrained to its PDG mass and forced to
point back to the B vertex. Figure 4.3 shows the typical event topology of a B® decay.
At each level of the reconstruction, soft preselection cuts are applied to the collections
of reconstructed unstable particle candidates to reduce the CPU usage and to reduce
the size of the output files. All selection cuts applied to the reconstructed decays
described here are listed in table 4.1.

4.2.5 B Stntuples

For storing the information contained in a list of reconstructed B meson candidates,
the B Stntuple framework was developed [46]. This framework introduces a data for-
mat that allows to access all vertex fit informations calculated in the reconstruction
chain without having to repeat the fit. When the reconstruction of B meson can-
didates is completed for a given event, the collections of unstable particles created
by successively building up the decay chain as described in the previous section is
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Decay Preselection after vertex fit
¢ — KK | 1.005 < my[GeV] < 1.035
X2 <15
D, — o¢m 1.87 < mp,[GeV] < 2.07
Y2 <25

Lyy/or,, > 2

Bs; — Dym 4.4 < mp,[GeV] < 6.6
Y2 <25

Lyy/o1,, > 2

D — Knm | 1.77 < mp|GeV] < 1.97
x? <25

Loy /o1, >4

B" = Dr | 4.4 < mpg,[GeV] < 6.6
Y2 <25

Lyy/or,, > 2

Table 4.1: Preselection cuts applied during the reconstruction of decay candi-
dates. m, denotes the invariant mass obtained from a vertex fit of particle p,
x? the two—dimensional x? obtained from that fit and L,, the two—dimensional
decay length (detailed descriptions of all variables can be found in appendix

A).

converted into B Stntuple format and stored for later analysis. Figure 4.4 shows the
exemplaric data structure of a candidate for the decay By — D7, Dy — ¢m, ¢ — KK.
For each unstable particle in the decay chain, the results of the vertex fit are stored
in a TDecayPart object. Stable particles corresponding to track refits with a certain
mass hypothesis are stored as TStablePart objects, containing all track related infor-
mations.

An additional data structure stores general information independent of the actual
reconstruction such as run number, event number and online trigger flags for each
event. In addition for each B meson candidate the tagging decisions provided by
different tagging algorithms (see section 5.4) are stored.

Producing B Stntuples from the Two Track Trigger dataset is a very CPU time con-
suming task. For each event in the Two Track Trigger dataset, a list of ~ 30 exclusive
decay channels of the B°, B* and B, mesons is reconstructed, requiring full vertex
fits of all mesons and all intermediate resonances involved. To facilitate this process
and make efficient use of the resources available at CDF II, the B Stntuple production
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Figure 4.4: Example data structure of an event with three candidates for the decay
B, — Dy, Dy — ¢, ¢ — KK in B Stntuple format.

is centrally organized by the By mixing group. The full Two Track Trigger dataset is
split into several subsections and each member of the group uses his/her account to
submit jobs performing the reconstruction to the CAF (Central Analysis Farm), the
main computing resource at CDF II. Using ~ 30 user accounts, the full B Stntuple
production still takes several weeks to process the full 40 TB of Two Track Trigger
data. The resulting output B Stntuples are written to mass storage and can be used
for later analysis. The B Stntuple dataset resulting from the processing of the Two
Track Trigger dataset still amounts to 5 TB, too much to store it on a desktop com-
puter and analyze it conveniently. Further more, in order to read the event structure,
the installation of a CDF Software environment is necessary. With the outline to
reduce the amount of disk storage space needed and to make iteration over the re-
constructed data sample in one particular final state faster and independent of CDF
Software, an interface creating small ROOT Ntuples from the B Stntuple datasets
was developed as part of this thesis. For each particle in the particular decay chain of
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interest only selected quantities are written out to the ROOT Ntuple, still conserving
the event structure. This makes the datasets easily available for further analysis using
the ROOT framework [47] and reduces the size of the data sample of a particular
decay chain reconstructed from the Two Track Trigger dataset to O(10 GB).



Chapter 5

Outline of the Mixing Analysis

5.1 Overview

The parameter Am, determines the time evolution of the oscillation of a B, meson
into a B, meson and vice versa'. Using eq. 1.3 on page 24, one can derive the number
of events that were produced as By and decayed as B, (unmixed events) or were
produced as B, and decayed as B, (mixed events) as

N,

N
2Tt — cos(Amyt))

Nmized -
where I" denotes the decay width? and Ny the number of B, mesons produced at ¢t = 0.
Introducing the time dependent asymmetry A, which expresses the time dependent
difference of the number of mixed and unmixed events, one can write

Nunmixed - Nmixed
A= = cos(Amyt 5.2
Nunmized + Nmixed ( ) ( )

Several prerequisites are necessary to measure A. First the decay of a B, meson into
a flavor eigenstate has to be reconstructed. As a next step, the flavor of the meson
at production time has to be determined by tagging algorithms, or short taggers. In
general, taggers provide a right decision (right sign tag, or short RS), a wrong decision
(wrong sign tag, WS) or no decision at all (no tag, NT). A measure of the quality of a

'All formulas apply to the B? as well by replacing Am, by Amy in all expressions.
?Here for both BY and B; meson the approximation ATy s = 0 is used (see section 1.4.4).

29



60 CHAPTER 5. OUTLINE OF THE MIXING ANALYSIS

tagger is given by the tagging power eD?, which is composed of the tagging efficiency

€, defined as

. Nrs + Nws
Ngs + Nws + Nyt

and the tagging dilution D, that gives a measure how often the tagger provides a

wrong tag:

(5.3)

€

p=—fs WS (5.4)

The dilution D is related to the probability P that a tagging decision correctly iden-
tifies the flavor: D = 2P — 1. A perfect tag has D = 1 and a random tag has D = 0.
The measured asymmetry is given by A,ees = D Ajpue, hence the “dilution” should
be maximized.

For a measurement of time-resolved By oscillations, the lifetime of the B, must be
taken into account, as for a given decay time ¢ the number of By mesons that have
mixed (not mixed) ® has to be determined. A parametrization of the By lifetime dis-
tribution has to incorporate the limited experimental resolution of the reconstructed
B decay vertex and also model the bias in the lifetime distribution introduced by pre-
selecting events with displaced tracks at trigger level (see section 4.1.1).

In addition, lifetime parametrization and tagging have to take into account that the
reconstructed sample of B mesons contains a fraction of background events of several
types. The composition of the data sample can be analysed by studying the invariant
mass spectrum of the reconstructed B meson. In general, each reconstructed exclusive
final state will contain different types of backgrounds and their contributions have to
be understood and modeled for each decay channel individually.

In summary, the necessary ingredients for a Am, measurement are:

e Understanding the invariant mass spectrum to determine the composition of
signal and background events in the sample of B mesons candidates.

e Parametrization of the B meson lifetime distribution for a time-resolved mea-
surement of the oscillations.

e Flavor tagging to determine whether a B meson has mixed or not.

Each individual step is discussed in detail in the following sections. First section 5.2
discusses the composition of the invariant mass spectra of the decays B® — Dx, D —
Krm and By — Dyn,D; — ¢m,¢ — KK, which are the main focus of the work
presented in this thesis. Section 5.3 then introduces a model describing the time

3A B, meson can have oscillated several times before it decays. Saying it has “mixed” in this
context means that the meson has performed an odd number of oscillations, so the flavor eigenstates
at production and decay time are different.
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evolution of B decays with trigger bias and finite resolution, before in section 5.4
different tagging algorithms used at CDF II are introduced. Section 5.5 then combines
mass, lifetime and tagging information to a combined probability density function that
can be used to extract Amy (or equivalently Amy). Finally the sensitivity for a Am
measurement is discussed in section 5.6.

5.2 Understanding the Invariant Mass Spectrum

The result of the decay vertex reconstruction procedure described in section 4.2.4 is
a set of B meson candidates. Only a fraction of all combinations of tracks that are
fitted to a common vertex and pass all preselection cuts will in fact originate from the
decay of a B meson into the reconstructed exclusive final state.

Figure 5.1 shows a typical invariant mass spectrum obtained after the vertex recon-
struction. Several distinct features can be observed in the spectrum: At ~ 5.3 GeV
the signal peak?, corresponding to the decay of the B meson into the reconstructed
exclusive final state is visible. In the lower invariant mass range “satellite peaks” and
a significant rise of the spectrum can be observed. These structures can be assigned to
partially reconstructed B mesons where one or more, possibly neutral, particle(s) are
missed in the reconstruction of the B meson decay. Another feature of the invariant
mass spectrum shown in figure 5.1 is a smooth distribution of events spreading over the
full invariant mass range. This so—called “combinatorial background” originates from
random combinations of tracks that happen to pass the vertex fit requirement and
all preselection cuts, but do not result from the decay of a b-hadron. However, in a
decay chain reconstructed as B, — Dym, Dy — ¢m, ¢ — KK for example, these events
could still contain the decays of real D, or ¢ mesons that are combined with one or
two random tracks and pass the four track vertex fit requirement. In addition to com-
binatorial background and partially reconstructed decays, there is also the possibility
of reconstructing the exclusive final state of a different species of b-hadrons (which is
not the one that one actually tries to reconstruct) where a wrong particle hypothesis
is assigned to one or more particles in the decay chain. Examples for this type of
background are the decays Ay — A.m, A, = pK7m and By — Dy, Dg — ¢m, ¢ — KK
that can be reconstructed as B — Dr,D — K, if in the final state the proton
originating from the A, decay or one kaon from the B, decay are by mistake considered
as pions. The background contribution from these misassigned particle hypothesis is
in general small, and therefore not labeled explicitly in figure 5.1. Nevertheless, these
events tend to overlap with the main signal peak, and so have to be taken into account
when parametrizing the different background contributions for a mixing measurement.

4Note that in order to visualize the signal peak, already strong preselection cuts are applied to
the dataset obtained after the vertex reconstruction.
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Figure 5.1: Typical shape of the invariant mass spectrum of a reconstructed B meson.
In addition to the fully reconstructed final state, there are various “satellite peaks” on
the lower invariant mass side from partially reconstructed B mesons. Also the smooth
distribution of combinatorial background events can be observed.

In general, the types of background observed when reconstructing the decays of ex-
clusive B mesons can be grouped into three categories:

e Partially reconstructed B meson decays where one or more particle(s) are missed
in the final state. These decays are sometimes denoted as satellite peaks, or
reflections.

e Fully reconstructed final states of different b-hadrons with wrong particle hy-
pothesis assigned to one particle in the final state.

e Combinatorial background, consisting of track combinations not originating from
the decay of a b—hadron.
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In the following two sections, the mass spectra of the two decay channels B° —
Drn,D —- Krnm and By, — Dyn, Dy, — ¢m,¢p — KK are studied in more detail and
a parametrization of the shape of the invariant mass spectrum is introduced, taking
into account all sources of background discussed in this section.

5.2.1 The Mass Spectrum for B — Dr,D — Knr
Partially reconstructed decays

Simulated events of inclusive B decays® help to understand the composition of the
shape of partially reconstructed decays. In the case of the decay B® — Dn, D — Knrw
these contributions can be grouped into two classes:

e The decay modes B® — Dp, p — nn® and B® — D*r, D* — D~ and D* — Dz
where in either case the neutral particle is missed in the final state. These decays
have distinctive shapes and can be separated from other partially reconstructed
B decays in the invariant mass spectrum.

e All remaining B° decay modes that are not fully reconstructed due to neutral
particles in the final state. These decays are denoted B® — DX and result in
a smooth shape of the invariant mass spectrum, rising towards lower invariant
masses. These decays include semileptonic B meson decays, like B — Duv and
B° — Dev.

Figure 5.2 shows the invariant mass distributions obtained for partially reconstructed
decays after reconstructing events from an inclusive simulation as B — Dm, D —
Krm. The two peaks observed for the decays B — D*m, D* — D~ and D* — Dr®
(center panel of fig. 5.2) result from the angular distribution of the 7” originating
from the D* decay. This angular distribution can be understood when considering the
spin—parity composition of this particular decay chain:

B - D*r
JP=0 = 170"

D* — D 7P
JP=1" > 00"

Sinclusive here indicates that all known decay channels of the B meson, weighted according to
their branching ratios, are included in the simulation.
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Figure 5.2: Invariant mass distributions resulting from reconstructing the decays B® —
Dp,p — 7r® (left panel), B — D*r, D* — D~ and D* — D7° (center panel) and
B% — DX (right panel) as the decay B® — Dn, D — K.

The D* originating from the B® decay is polarized, as, out of three possible spin
projections J, = —1,0,1, only .J, = 0 is allowed due to angular momentum conser-
vation. The angular distribution of the subsequent decay D* — Dz® then follows
a |dy> ~ cos®@ distribution, where d}, . denotes the corresponding Wigner func-
tion [15][48] and 6 is the angle between the flight direction of the D* and the flight
direction of the 7% in the D*’s rest frame. Therefore the 7, which is missed in the
reconstruction, is emitted mainly (anti—)parallel to the D*, resulting in the two promi-
nent peaks in the invariant mass distribution of the reconstructed B meson that can
be seen in the center panel of figure 5.2.

Figure 5.2 also shows fits of the distributions with parametrized functions that are used
as templates describing the shapes of these background contributions when fitting the
complete invariant mass spectrum. The function P,(m) chosen to model the shape
of the invariant mass distribution of the decay B® — Dp, p — 77" is an exponential
function convolved with a Gaussian function plus an additional Gaussian function

Py(m) = N,e” 7 @ G(m —m', iy, 01) + G(m, 1, 02) (5.5)

Here N, denotes the normalization of the function, 1 the mean, o the width of the
Gaussian functions and 7; a decay constant. The decays B® — D*r, D* — D~ and
D* — D7% are modeled by the sum of three Gaussian functions, where two narrow
Gaussian functions are fixed to the same width

Pp-(m) = Np- (fwg<m, b, 00)+ (1= fu) (G (. pa—E, 1) +G (m, u3+5,a4>)) (5.6)

where Np- is the normalization, fyy the relative contribution of the wide Gaussian
function with width o3 and mean p3 and & the relative shift with respect to us3 of the
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two narrow Gaussian functions with width 4. The shape of the remaining partially
reconstructed B decays of the type B — DX is modeled by a combination of an
exponential with a linear function

2@1

Px(m) = Ny <fL[ E (by — m)O(b; — m)] n (5.7)

(bl —my

(1-fr) [51 (1 —(m — mc)) (1 - e(mw)T)]>

where Ny, a; and s; are normalization constants, m. = my — my, denotes the center
of the mass fit range, f, by, w and 7 are the fit parameters and ©(b; — m) is the
Heavyside step function.

Misassigned final state particles

Particle identification at CDF II is not powerful enough to decide on a track by
track basis whether a particle was a pion, kaon or proton (see section 2.2.3). Hence
contributions from other decays with four tracks in the final state, where a kaon or
a proton was misidentified as a pion will contribute to the invariant mass spectrum.
For the decay B — Dn, D — Knr such contributions arise from the decays A, —
A, A, — pKm and By — Dy, Dy, — ¢m,¢ — KK. The relative contribution
of these decays can be obtained from simulated events. For example, the relative
contribution f,, .5 go of the decay Ay — A.m, A, — pK7 can be estimated as

F _0(Ny) BR(Ay— Aw) - BR(A, — pKn) €(A, as B°)
MvasBY T 5 (BY) " BR(B® — Dr) - BR(D — Knr) €(BY as BY)

(5.8)

where o denotes the production cross section, BR the branching ratio of the cor-
responding decay and € the probability that the corresponding decay will be recon-
structed as BY by the reconstruction software and pass all preselection cuts. The
contribution fg_ .5 po of the decay B, — D,r, Dy — ¢m,¢ — KK, reconstructed
as B — Dr,D — Knrrm, can be calculated similarly. For this work, the results
fayas B0 = 4.1% £ 0.8% and fp, a5 po = 2.0% £ 0.4% derived in [49], based on PDG[15]
information and recent CDF II publications [50][51] are used.

Another contribution to the invariant mass spectrum results from the Cabibbo sup-
pressed decay B — DK, where the kaon from the B meson decay is reconstructed as
a pion. The contribution of this decay relative to the main signal peak B° — Dt is
derived from a simulation and its shape is fixed when fitting the full invariant mass
spectrum. The decay B — DK is considered as an additional signal contribution.
Figure 5.3 displays the shapes and parametrizations of the three decays introduced in
this paragraph. The functions Py, (m) and Pga(m) describing the decays Ay — A.m
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Figure 5.3: Invariant mass distributions resulting from reconstructing the decays A, —
A, A — pKn (left panel), B — Dyn,Ds — ¢m,¢ — KK (center panel) and
B® — DK (right panel) as the decay B® — Dr, D — K.

and B® — DK are modeled by exponential functions convolved with Gaussian func-
tions, the decay Bs; — Dy is described by Pp,(m), a double Gaussian function with
common mean and variable widths.

Fitting the full mass spectrum

The analytic description of the full invariant mass spectrum includes all fit templates
derived in the previous two paragraphs. In addition there are functions parametrizing
the shape of the invariant mass spectrum of combinatorial background events P,,,,,(m)
and a parametrization of the main signal peak Pg;4(m). The shape of P,,n;(m) can’t
be derived from a simulation, instead an analytical description that parametrizes the
shape observed in data is chosen

Peoms(m) = N((1 = f)e™0"m) 4 1, (5.9

The full expression describing the main signal peak Ps;,(m) is chosen as a double Gaus-
sian function with common mean and variable widths. The function Ps(m) includes
the main signal peak and all exclusive final states with wrong particle hypothesis in
the final state. The relative contributions of these decays are fixed relative to the main
signal peak

Ps(m) = (1=fp, — fa, — fea) Psig(m) + (5.10)
fB, Pp,(m) + fa, Pa,(m) + foa Poa(m)
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The contributions of all partially reconstructed decays and the combinatorial back-
ground are merged in Pg(m)

Pp(m) = (1= fpart) Peomp(m) + (5.11)

Fyar [(1 — £x) (1= for) Po(m) + for Po-(m)) + fx Px(m)]

Ps(m) and Pg(m) are both normalized to one. The fit function P(m) describing the
full invariant mass spectrum is given by

P(m) =N ((1 — ) Ps(m) + f; PB(m)> (5.12)

and combines all individual contributions.

The procedure applied to fit the full invariant mass spectrum starts with binned likeli-
hood fits of the individual templates describing partially reconstructed B° decays and
exclusive final states with wrong particle hypotheses assigned to one particle on the in-
variant mass distributions obtained from the inclusive simulation. The corresponding
distributions and fits of the templates Pp , Py,, Pcaw, P,, Pp- and Px are displayed
in figs. 5.2 and 5.3. The ratio of the contribution fcg, of the decay B® — DK relative
to B® — D, the ratio fx of the decays B® — DX relative to the sum of the decays
B — Dp,p — 77 and B® — D*r, D* — D~ and D* — D7® and the ratio fp- of
the decays B® — D*r, D* — D~ and D* — D7°% relative to B® — Dp, p — 77° are
fixed to the values derived from the inclusive simulation. fp, and fy, are fixed to the
values derived in the previous paragraph.

The free parameters used in the binned likelihood fit of P(m), the function parametriz-
ing the full invariant mass spectrum observed in real data, are:

® fuart, the fraction of partially reconstructed B decays relative to combinatorial
background events,

e the background fraction f,, denoting the ratio of background events (described
by Pg) relative to signal events (modeled by Ps),

e all parameters of Pg;y and P, the functions describing the signal peak and
the combinatorial background shape respectively,

e the overall normalization N.

Figure 5.4 shows P(m), fitted in the invariant mass range from 4.7 to 6.0 GeV on
a data sample of the reconstructed decay B — Dr,D — Kzn. The fit function
describes the shape of the invariant mass spectrum well. All individual components
adding up to P(m) are displayed. These fits are very important for understanding the
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Figure 5.4: Fit of P(m) on the invariant mass distribution obtained for the decay
B° — Dn, D — Knr in data.

composition of the data sample used for lifetime and mixing fits, as well as to extracting
the number of signal and background events to calculate the signal significance \/siTB'
The analytic description of the full invariant mass spectrum is an important ingredient
for a fit of Am,. As the fit functions for signal and background show a distinct shape
and can be easily separated in the mass fit, the fit in invariant mass space provides
a handle to separate the relative signal and background contributions in the data
sample. When fitting for Amy this is taken into account by performing the unbinned
maximum likelihood fit simultaneously in mass and lifetime space and using the back-

ground fraction fp as a free parameter, shared by both spaces.

5.2.2 The Mass Spectrum for B, - D,n, D, — ¢m, ¢ - KK

Basically everything laid out in the previous section for the decay B® — Dr, D — Knrw
is also valid for the invariant mass spectrum of the decay By, — D7, Dy — ¢, ¢ —
KK. However, the number of reconstructed By decays at CDF II is significantly
smaller compared to the number of B? events. Therefore the contributions from
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partially reconstructed decays By — DX, B, — Dyp, p — 7’ and B, — Diw, D¥ —
Dy and D} — D,7® can be modeled by a single template P,ei(m), consisting of a
linear function plus a Gaussian function

2&2

Prepi(m) = N((l - fa) [m (b — m)O(by — m)} + faG(m, ps, 05)> (5.13)

The template Pogy(m) describing the decay B; — DK is modeled by a single Gaussian
function. Contributions from the decays A, — A.m, A, — pK7 and B® — Dn,D —
Krr reconstructed as By — Dym, Dy — ¢, ¢ — KK with wrong particle hypothesis
in the final state can be almost completely removed by requiring a cut on the invariant
mass of the decay ¢ — K K and are therefore neglected in the fit. The function Ps(m)
describing the main signal peak is chosen to be a single Gaussian function and the
combinatorial background is modeled in analogy to equation 5.9 as an exponential
function plus offset. The fit function P(m) used for the fit of the full invariant mass
spectrum can be written as

P(m) =N ((1 - fb) PS(m) + fb [(1 - frefl) Pcomb(m) + frefl Prefl(m)}> (514)

where
Ps(m) = (1 = few) Psig(m) + foa Pea(m) (5.15)

Figure 5.5 shows the invariant mass spectrum of the decay By — Dm, Dy — ¢, ¢ —
KK (left) and the corresponding contributions resulting from partially reconstructed
decays modeled by P,y (right).

5.3 Measuring the B Meson Lifetime

5.3.1 Introduction

A situation frequently occurring in quantitative science is the measurement of a dis-
tribution of the physical quantity z. A set of measurements z can be regarded as a
sample from a probability density function f(x). The true distribution f(z) differs
from the measured distribution because of statistical fluctuation and the imperfect
measurement process that prevents a measurement of the true value of . Examples
for such experimental limitations are a limited acceptance and the finite precision of
the measurement.

One can express this interrelationship formally [33]: Instead of z, in reality the quan-
tity y is measured and as the result of a set of measurements a probability density



70 CHAPTER 5. OUTLINE OF THE MIXING ANALYSIS

By~ Dy D » @7 CDF Run 2 Simulation

- Data
—— Fit Function
—— By~ Dyt
— B,~ DK
— B~ DX
combinatorial

entries per 10 MeV

X2/NDF = 159.3/122
prob =13 %

S =1202

B =341

S/B=35

sNS+B = 30.6

entries per 8 MeV

C b b b P 1
Ty s 46 48 5 52 54 56 58 6 6.2 64
inv. mass [GeV]

(data - fit)
data
A oo !

inv. mass [GeV]

Figure 5.5: Fit of P(m) on the invariant mass distribution obtained for the decay
Bs — Dy, Ds — ¢m, ¢ — KK in data (left). The right panel shows the corresponding
template describing the contributions from the decays By, — D, X, B, — Dp, p — 7"
and By — Dim, D — Dyy and D! — D,r® to the invariant mass spectrum derived
from simulated events.

function ¢(y) in this quantity is obtained. The distribution f(z) of the physical vari-
able z defined in @ > = > b and the measured distribution g(y) of the quantity y are
connected via the convolution integral

aly) = / Aly,2) f(z) do (5.16)

Here the kernel A(y,z) of the integral equation determines the probability of measur-
ing a value y when the true value of the physical quantity is z. This corresponds to
the so—called Fredholm Integral Equation of the First Kind.

The determination of the lifetime of a fully reconstructed B meson with data collected
from the two track trigger at CDF II is an example for such a task. The observable
t, the proper decay time of the B meson, is composed of measured quantities of the
reconstructed B meson decay vertex and is given by

s mPDG
=B (5.17)
CPi
where L, denotes the decay length, p, the transverse momentum of the reconstructed

B meson candidate and ¢ the velocity of light. mb%PY corresponds to the current
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world average value of the invariant mass of the corresponding B meson from [15].
The precision of the measurement of ¢ is limited by the experimental decay length
resolution oy, of the B vertex reconstruction and the resolution of the measurement
of the transverse momentum p;.

PDG 2 PDG 2 PDG 2 2
mpg mp " Ly mg t
= 4+ | == = + [ — 5.18
o \/< c P UL“’) < cp; U’”) \/< cpi 0L”> (pf”‘) (5.18)

The momentum resolution o,, for individual tracks is extremely good (see section
4.2.1). For semileptonic decays the missing neutrino momentum, which is corrected
for with an average correction factor taken from simulations, introduces an additional
uncertainty in the p; of the reconstructed B meson. For exclusive hadronic final states
the contribution of o, to oy is negligible compared to o, . This simplifies eq. 5.18 to

PDG

oy -~ (5.19)
The acceptance for measuring different values of ¢ is sculpted by two effects: Already
at trigger level the shape of the measured proper decay time distribution is modified
by preselecting events that contain at least two SVT tracks displaced from the primary
vertex. A cut on SVT tracks requiring 100 um < dy < 1mm for two tracks in the
event is applied, resulting in a reduced acceptance for both short— and long-lived B
mesons. In addition, selection cuts to improve the signal to noise ratio of the observed
B meson resonance using cuts on the decay length, impact parameter or also cuts on a
neural network output can additionally sculpt the shape of the observed proper decay
time distribution.
In general the kernel function A(t,t.y) is a function of both the unknown true life-
time t.,0 and the measured lifetime ¢, incorporating at the same time resolution and
acceptance effects. The determination of A is a difficult task and would require an
unfolding procedure. Analyses at CDF II requiring the reconstruction of the B meson
lifetime distribution taking into account a limited acceptance introduced by trigger
and analysis cuts make use of a simplified model (see for example [49][52][53][54]) laid
out in the following section.

5.3.2 Probability Density Function in Lifetime Space

Ideally one would expect the probability Ps(t) to observe the decay of a particle with
lifetime 7 at a proper decay time ¢ to follows an exponential decay law
1 _:

Pgmei(t) = —e (5.20)
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As discussed in the previous section, this distribution is affected by the limited experi-
mental resolution o; and the limited acceptance that is sculpted by trigger preselection
and analysis cuts. As an approximation of equation 5.16, these effects can be modeled
as a function of the measured lifetime ¢ by the product ansatz [53]:

PYd(t 0)) = Ps(t,01) = Ps(t,0,) - €(t) (5.21)
where .
Ps(t,o)=-e " @G(t—1, o) (5.22)
T
and ® denotes the convolution integral
]- _t / o ]- _t / !
—-€e T ®g(t—t,0't) = —€ "'g(t—t,O't) dt (523)
T o T

of the unbiased lifetime distribution with a Gaussian function G centered at zero and
with width o;, modeling the finite resolution of the proper decay time measurement.
In general o, has a different value o;; for each event 7 in the data sample.

The efficiency function €(¢) used in eq. 5.21 is used to take into account the limited
acceptance introduced by trigger and cut selections. €(¢) can be determined by com-
paring the signal proper decay time distribution g(¢) after all trigger and analysis cuts
are applied to an unbiased lifetime distribution (eq. 5.20), convolved with a resolution
function taking into account the event—by-event uncertainty of the proper decay time
measurement o;,; of the vertex position [54]:

0 g(t) after trigger and cuts
€ =
Lo > @G(t—t',0.)

2
Here 7 sums over all events in the sample contained in ¢(¢). The biased signal dis-
tribution ¢g(¢) can be obtained from a simulation of B meson decays, properly taking
into account the effects of trigger preselection.

(5.24)

5.4 Flavor Tagging

An important ingredient to a measurement of time-resolved B, oscillations is the
information whether a B mesons has mixed or not. Therefore the flavor, or quark
content, of the B meson at production and at decay time has to be determined. For
a fully reconstructed decay into a flavor eigenstate, the flavor of a B meson at decay
time is determined by its decay products. To decide whether this particle has mixed
or not, still the flavor of the B meson at production time has to be determined using
flavor tagging algorithms.



5.4. FLAVOR TAGGING 73

opposite side | same side (vertexing)

opposite |
side lepton

3

D meson

fragmentation
i kaon

B jet
Collision Poift | L, wpiaty1mm |
Creation of bb i m
ct=L,,—
Pr

Figure 5.6: Visualization of different flavor tagging algorithms.

Flavor tagging algorithms can generally be classified into opposite side (OST) and
same side (SST) tagging algorithms. Opposite side tagging exploits the fact that b
quarks are produced in pp collisions as pairs of a b and b quark. This can be used to
determine the flavor of the b quark that lead to the production of the reconstructed
B meson by determining the flavor of the other b quark in the event. Same side flavor
tagging relies on the charge of particles produced in association with the production
of the reconstructed B meson.

Currently three opposite side tagging algorithms are used at CDF II: soft muon, soft
electron and jet charge tagging. The soft lepton tags [55] are based on semileptonic B
meson decays. The charge of the lepton indicates the flavor of the b quark: negatively
(positively) charged leptons come from direct b (b) decays. Misidentification of the
b flavor can arise from leptons produced in subsequent D meson decays or from fake
leptons, where a pion or kaon is misidentified as a lepton. The efficiency of lepton
flavor tagging is limited by the small branching fraction of semileptonic B mesons
decays and the efficiency of lepton identification in the detector.

The jet charge tag [56] is based on the momentum weighted sum of charge of tracks
associated with a jet produced by the decay of a b quark. Wrong jet charge tags can
arise from jets (or single particles in the jet) that don’t actually origin from the b
quark and from particles in the jet that are not detected.
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The SST algorithm used at CDF II is based on the associated particle production
during the fragmentation of a b quark to B (or B**) mesons [57]. In the case of
B, mesons this means that the fragmentation of a b (b) quark to a B, (B,) meson,
containing an s (5) quark, enforces the production of a 5 (s) quark from the vacuum,
preferably leading to the production of a K (K~) meson. If a charged kaon can
be identified nearby a By meson, this gives an indication of the flavor of the By at
production time. The SST Kaon tagging algorithm implemented at CDF IT uses the
particle identification systems introduced in section 2.2.3 and tries to identify tracks
with a high probability to be a kaon in the vicinity of a By meson.

Figure 5.6 summarizes the functional principle of the different tagging algorithms
visually.

5.5 Extracting Am,; and Am;

A probability density function describing the time dependent evolution of a B — B
oscillation signal is composed of several parts:

e The asymmetry term including the cos(Amt)-modulation of the mixing signal
(cf. eq. 5.2). This term includes the tagger decision and has to take into
account that the tagger might sometimes give a wrong decision by incorporating
the dilution D.

e The lifetime term, describing the decay of the B mesons while they oscillate.
This has to take into account the bias introduced by trigger and preselection as
laid out in section 5.3.

e The description of signal and background shapes in mass space, as this provides
a handle to determine the relative fraction of signal and background contained
in the data sample (cf. section 5.2).

Denoting the tagger decision as £ = {—1,0,1} for { mized, no decision, not mized },
the time evolution of the mixing signal can be written as

Ps(t,g, Ut) = Ns(t é’ Jt) .

where D denotes the dilution of the tag decision and €(¢) the lifetime efficiency function
introduced in the previous section. Ng(t,&, 0;) keeps the function normalized to one.
The full analytical expression for Ps(t, &, 0;) and the computation of Ng(¢,&, 04) can
be found in appendix C. It is particularly useful to derive an analytical solution for
the normalization of the probability density function, as this has to be calculated for
each event individually in the unbinned maximum likelihood fit, as for each event a

1 1+&Dcos(Amt) 1 ¢ /
( 1+ €] - T) RG(t—1t,00) - €(t) (525)
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different o, ; enters eq. 5.25.
The probability density function, incorporating in addition the description of signal
and background events in mass space, is given by

P(m, t,€,0) =(1 — f5) {Pg(m) 1 ) . (1 +&D cos(Amt) %ei>

" Ns(t, €, 0 1+ €]

&Gt —1',01) e(tﬂ + i Pa(m) Pa(t) (5.26)

Here fp is the relative fraction of background events in the data sample and Ps(m)
and Pg(m) denote the parametrizations of the invariant mass distributions of signal
and background events encountered in section 5.2. Pg(t) is a parametric description
of the background’s lifetime distribution derived from simulated events (see section
7.2 and appendix E).

During the unbinned maximum likelihood fit for each event

/ /P(m,t,f, o)) dmdt =1 for £ =-1,0,1 (5.27)

t

has to be assured.

5.5.1 Amplitude Scan

For a measurement of Am expression 5.26 can be used to perform an unbinned max-
imum likelihood fit on a data sample containing B (B,) events and use Am as a
free parameter in the fit. If a small number of events is available only, in general the
unbinned maximum likelihood fit will not converge and the derivation of limits for Am
will be difficult. An alternative approach, inspired by the idea of performing a Fourier
transformation of the oscillation signal, is the amplitude scan method, suggested in
[12]. This method can also be used to combine results from different experiments
directly (for examples see [10]).

Instead of fitting Am, a scale factor A, the amplitude, is introduced in the asymmetry
term of the probability density function

1+ &Dcos(Amt) 1+ EAD cos(Amt)
—
1+ ] 1+ [¢]

(5.28)

This amplitude serves as a free parameter in unbinned maximum likelihood fits using
different fixed values of Am. Ideally the amplitude would come out to be A =1 for
the correct value of Am and compatible with zero for all other values of Am. Figure
5.7 shows the amplitude scan from [11] as an example.

In figure 5.7 the fit result for the amplitude A is consistent with zero for oscillation
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Figure 5.7: Amplitude scan for Amg from [11].

frequencies from 0 to 16 ps~!, this means these values of Am, can be excluded. The
amplitude then rises to one for values of Am, from 17 to 17.5 ps— !, which is interpreted
as the 3.5 o signal for B; oscillations. The amplitude then goes to zero again at
Am, ~ 18 ps~! and is then consistent with zero again for higher frequencies with an
increasingly larger uncertainty of A. The sensitivity for different values of Amg can be
estimated by the blind amplitude scan method. In this method the tagging decisions
are randomized for the amplitude scan. The frequency at which the 95 % confidence
limit of the fitted value of A includes the value A = 1 gives the frequency where in
average the 95 % exclusion limit on Am, can be set in the absence of an oscillation
signal if the real tagging decisions are included again in the amplitude scan. In figure
5.7 the result of this blind amplitude scan is indicated by the red dotted line that
intersects the line A = 1 at a value of Am, = 25.4 ps !, marked by the red circle.
When including the tagging decisions, the 95 % confidence limit of A hits the line
A =1 at Amg; = 16.7 ps !, which means that values of Am, < 16.7 ps ! can be
excluded with 95 % confidence by the current CDF II measurement [11]. The value
of Am, = 17.337052 4 0.07 ps~! is not derived from the amplitude scan but obtained
after a separate unbinned maximum likelihood fit.

5.6 Sensitivity for Am;

The significance of the Am, signal observed at Am, = 17.33%03? 4+ 0.07 ps~! [11] by
CDF 1II is 3.50 and the probability of such a signal originating from a background
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fluctuation is still 0.5 %. To establish a more significant signal and to finally exclude
the possibility of a background fluctuation in an updated measurement of Amy, it is
worthwhile to review the experimental parameters that determine the significance of
the Amg measurement.

The amplitude of the mixing signal is attenuated by two contributions: the tagging
performance and the resolution of the proper decay time distribution. In addition the
sensitivity for measuring Amg depends on the absolute number of reconstructed signal
events and on the purity of the signal, i.e. how effective signal events are selected while
background events are suppressed.

5.6.1 Tagging Performance

There are several flavor tagging algorithms used at CDF II to determine the quark
content of the reconstructed B meson at production time (cf. section 5.4). Two fac-
tors determine the performance of each tagging algorithm — its tagging efficiency e,
i.e. how often the tagger gives a decision, and its dilution D, quantifying how often
this is a correct decision. Both quantities have already been introduced in section 5.1.
The following table summarizes the values measured of the tagging power eD? for the
four different tagging algorithms currently used at CDF II [58].

Algorithm eD? (%)
OST Soft Electron 0.3
OST Soft Muon 0.5
OST Jet Charge 0.7
SST Kaon 4.0

5.6.2 Proper Decay Time Resolution

The Lorentz—invariant proper decay time t of particles can be reconstructed from
the transverse decay length L,, and the Lorentz boost p,/m, where p;, denotes the
transverse momentum and m the invariant mass of the particle. The uncertainty o,
on this measurement (see section 5.3) is given by

PDG

CPt

oy —

The value of o; derived from the vertex fit algorithm (see section 4.2.4, page 53) un-
derestimates the proper decay time resolution by a factor 1.2-1.4 [59]. A rescaling
procedure based on reconstructed prompt events is applied to obtain a better esti-
mate of the true resolution of ¢ for exclusively reconstructed B mesons [59]. Figure 5.8
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compares the time dependent mixing asymmetries and decay rates introduced in the
previous section for B, — B, and B — BO oscillations. These plots show an idealized
situation without taking into account attenuation of the signal by detector effects like
resolution and acceptance. It is evident that the proper decay time resolution for the
observation of B, oscillation is much more important than in the case of B? oscilla-
tions. The rapid oscillations of the B; meson are smeared by the finite resolution and
if the vertex resolution was not sufficiently good, the oscillations would be averaged
out and could not be observed any more.

5.6.3 Signal Significance

Expressions for the significance S, i.e. the ratio of the expected amplitude of the oscilla-
tion signal over background, can be derived using Fourier and Likelihood methods [12].
Neglecting resolution effects, S can be expressed as

S eD?
S= =5\ (5.29)

where S denotes the number of signal events in the reconstructed final state and B
the number of background events in the signal region. Taking into account the effect
of the limited proper decay resolution on an oscillation signal P(¢) by a convolution
with a Gaussian function

PtYeGt—1t, o) (5.30)

introduces an additional attenuation factor

S GDQ o2 Am2
S:\/m\/ e £ Ams/2 (5.31)

To improve the measurement of Am,, each of these three contributions to the signal
significance has to be improved. Particular emphasis will be put on the optimization

of the factor \/SSTB in the context of this work.
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Figure 5.8: Comparison of the time dependent asymmetries and decay rates for B, — B,
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Amg = 17 ps~! was assumed for the B, and Amy was set to 0.5 ps~!. For both
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Chapter 6

Signal Optimization with Neural
Networks

6.1 Motivation

The signal significance \/55+—B is one of three factors contributing to the significance

of a By mixing signal (cf. eq. 5.31, page 78). S denotes the number of signal events
that are obtained at a background level of B events. The method used at CDF II
to find the optimum value for —=— up to now employs an iterative cut optimization
procedure. This method is based on the combination of cuts on several quantities that
separate signal events from background events in the data sample obtained after the
vertex reconstruction (section 4.2). The cut applied on each single quantity is varied
while the cuts applied to all other quantities are kept fixed. For each cut, the resulting
significance \/si—B is calculated from a fit on the resulting invariant mass spectrum.

The cut yielding the maximum value is selected and kept fixed. This procedure is re-

peated for all selected variables until the set of cuts is obtained that maximizes \/SS«TB'

A more detailed description of the method can be found in [60] for example.

The cut based optimization procedure does not combine the information provided by
the selection variables in an optimal way. Typical quantities that are used to distin-
guish B meson signal from background events are the decay length L,,, the impact
parameter d or the transverse momentum p, of the candidate. Some of these variables
are correlated in the sense that a certain value of one variable will already contain in-
formation on the value of other variables. If, for example, the x? of the D meson
vertex fit is very small, also the x? of the B meson vertex fit, where a pion and the D
meson are fitted to one vertex, will have a tendency towards smaller y? values.

The correlation between variables is not taken into account by the cut based opti-

81
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mization procedure. A neural network is able to exploit to additional information
contained in the correlation between variables and optimally combines them into a
single discriminating variable.

6.2 Strategy

The training of a neural network for signal optimization requires input or training
patterns describing the properties of signal and background events. A simulation can
be used to provide input patterns for signal events, assuring it properly describes
the distributions of the training variables of signal events in real data. As the main
benefit from using a neural network, compared to a sequential cut based selection,
arises from taking into account correlations between the training variables, also a
correct simulation of these correlations is needed.

As can be deferred from figure 5.4 (68), the composition of the background events in
the signal region is mainly dominated by combinatorial background, i.e. events which
contain either a random combination of four tracks, or events which include the decay
of a real D meson that is combined with a random track not originating from the
decay of a B meson. To reduce the number of background events in the signal region
it is therefore desirable to suppress such combinatorial background events.

To obtain a simulation of signal events, only the resonance decays of B mesons into
exclusive final states have to be simulated, which makes the simulation ideally suited
to provide training patterns for signal events to the network training. To provide
combinatorial background events, the full fragmentation process of quarks to hadrons
has to be simulated. The complex environment of hadron collisions is not yet fully
understood and known models are not able to reproduce the data. An alternative to
a simulation is the use of real data events from the sidebands, i.e. the invariant mass
regions close to the signal region, as training patterns for background events. The
width of the signal region is limited by the detector resolution and can be deferred
from a fit of the invariant mass spectrum (see section 5.2). Candidates taken from a
sideband region where only a negligible number of signal events is expected provide
a very pure source of combinatorial background events that are kinematically very
similar to combinatorial background events in the signal region.

Ideally, an interpolation of the properties of candidates selected from the lower and
upper sideband region would be desirable to closely reproduce the properties of com-
binatorial background events in the signal region. In the case of the neutral B mesons
however, the lower sideband cannot be used to provide training patterns for back-
ground events, as the lower sideband generally contains contributions from partially
reconstructed B meson decays, in addition to combinatorial background events. From
figure 5.4 the contributions of several partially reconstructed B° decays in the final
state B — Dm, D — Knr can be identified: In the decay B — Dp, p — 7r°, the 7°
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in the final state is not reconstructed, for B® — D*x, D* — D~ and D* — Dz° , the
~ or the 7° is missing and the decays denoted B® — DX contain large contributions
from the decays B® — Dev and B° — Dpuv where the final state neutrino is not
detected (see also section 5.2). These decays have, except for a lower invariant mass,
very similar properties as fully reconstructed signal events.

Therefore events from the lower sideband in data cannot serve as patterns for combi-
natorial background events, instead only events from the upper sideband region in the
invariant mass range from 5.4 to 5.6 GeV are used as training patterns for background
events in the network training. Using events from the upper sideband only, it has to
be made sure that these events are suited to describe the properties of combinatorial
background in the signal region. The decays of B mesons into final states with four
light particles (pions, kaons) are not limited by phase space, therefore events in the
signal region and in the nearby upper sideband are kinematically very similar. In
addition, variables used in the network training are selected avoiding a dependence
on the invariant mass to make sure that the properties of combinatorial background
events in the upper sideband region can be used to describe background events in the
signal region (see also section 6.6.3).

Figure 6.1 visualizes the training samples selected from simulated events and data.
For both samples soft preselection cuts are applied in order to reduce the size of the
data sample by removing obvious background. In addition, a requirement on the
minimum number of hits in the tracking devices is imposed to improve the quality of
reconstructed candidates:

e Number of COT Axial/Stereo Hits > 10/10,

Number of Silicon Hits > 3,

all tracks have p; > 0.35 GeV,

pi(mp) > 1.0 GeV, py(B) > 5.5 GeV,

Lyy/or,,(D) > 6, Ly, /or,,(B) > 4, Ly(B — D) > -300 um,

e |dy(B)| < 200 pum.

Figure 6.2 schematically summarizes the training and classification procedure. As first
step the NeuroBayes® Teacher is used to perform the preprocessing of variables and
the network training with input patterns for signal and background. Using the results
of the training, the NeuroBayes® Expert calculates a network output for all events in
the data sample obtained after the same preselection cuts. A possible bias resulting
from using the same events in the upper sideband region for training and later after
classification for the evaluation of the performance will be discussed in section 6.6.2.
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Figure 6.1: Composition of the training samples used as signal and background. Left:
Composition of the input data sample after the preselection cuts are applied. Right:
Schematical view of the data samples used for training, grey: simulated signal events,
brown: upper sideband region providing training patterns for background events for
the network training.
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Figure 6.2: Procedure for the classification of a data sample. The Teacher uses the
training samples to calculate the network topology and preprocessing constants that
serve as input to the Expert for classification. In the end, a neural network output is
obtained for each event in the data sample.
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6.3 Obtaining Simulated Events

The sample of simulated B meson decays is obtained from bb events generated using
the PYTHIA [14] event generator. bb creation at the Tevatron emerges via several
production mechanisms (figure 6.3), that can be grouped into flavor creation (a,b,c),
flavor excitation (d) and gluon splitting (e,f) processes. In order to simulate events
at a center—of-mass energy of 1.96 TeV realistically, all of these processes have to be
taken into account when generating bb pairs leading to the production of B mesons [61].
To produce the sample of simulated events that is used for the neural network train-
ing in the following sections, PYTHIA was run with the flag msel=1 which enables
all production mechanisms mentioned above. To produce a large sample of B me-
son decays in reasonable time, for each event the underlying event structure is kept
and the b-hadrons are redecayed into selected final states using the EvtGen program
package[62][57]. For the detector simulation cdfSim[63] is used, the output of cdfSim
contains the same event structure and detector information as real data. The trig-
ger decision is simulated with TrigSim++, where in particular svtsim[64] takes care
of the simulation of the Two Track Trigger. The reconstruction of the simulated
events proceeds in the same way as the reconstruction in real data (see section 4.2).
After reconstruction and preselection cuts are applied to the sample of simulated
events, 181k events of the decay B® — Dn, D — Kz and 41k events of the decay
B, — Dyn, Dy — ¢m, ¢ — KK are available as signal patterns in the network training.
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Figure 6.3: Examples of heavy-flavor production diagrams. (a,b) Leading order. (c)
Pair creation (with gluon emission). (d) Flavor excitation. (e) Gluon splitting. (f)
Events classified as gluon splitting but of flavor-excitation character (from [65]).
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6.4 Selection of Training Variables

A large variety of variables is available which allows to discriminate between B meson
signal events and combinatorial background. Many of these variables show a strong
correlation and contain similar information. For example, the y? of the B meson vertex
fit is strongly correlated to the x? of the D meson vertex fit, or the impact parameters
of the four tracks involved in the decay show a strong correlation to the B mesons
impact parameter |do(B)| or its decay length L,,(B).

To determine the most important variables, a network training, including all variables
that might contribute in some way to the signal optimization, is performed. The
correlation matrix of the training variables is calculated as part of the NeuroBayes®
preprocessing, each entry corresponds to the correlation coefficient p;; = ==L obtained

g;04

from the covariance matrix cov;; of the variables. Figure 6.4 shows the correlation ma-
trix of all training variables in a color coded representation. A detailed list providing
definitions of all variables that are used can be found in appendix A. Many variables
show strong correlations and by deploying sophisticated neural network based tech-
niques, a significant improvement with respect to the cut based selection method can
be expected.

To find out which and how many of these variables are actually necessary for an optimal
performance of the network, a series of trainings is performed, removing successively
the least significant variable from the list of variables given in table 6.1 until only the
two most significant variables |dy(B)| and L,,/or,,(B) are used. The performance
of a particular set of training variables is evaluated by the following procedure: Each
training is used to calculate the network output for each event in the preselected data
sample. The optimal network cut, maximizing \/Si—B for each training, is obtained
by applying sequentially harder cuts on the network output and fitting the resulting
invariant mass distributions. The values for the number of signal events S and back-
ground events B in the region from 5.26 to 5.36 GeV around the central mass peak
are derived from the fit and the quantities \/SS‘JF—B and S/B are calculated.

Figure 6.5 summarizes the result, it shows the maximum signal significance \/SSTB

against the set of training variables used in the corresponding training. Apparently
only few variables contribute significantly to the performance. Still these may be
exchanged by others due to the redundance of the information provided by the training
variables (see figure 6.4). Generally speaking, it’s always better to limit the number
of variables in the network training, as this improves the generalization capabilities
(see section 3.2.2). In addition, there is the freedom to exclude certain variables from
the network training due to a bad description in the simulation or due to an undesired
dependence on the invariant mass of the B meson candidate (see also section 6.6.3).
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Index Name
1 target
2 |do(B)|
3 Lyy/or,,(B)
4 X%D(B)
3 AR(D,wpg)
6 pi(B)
7 min L%l
ddo
8 X%D(D)
. . . . 9 ,
correlation matrix of input variables max (M, x}, s MK, x3)
: 10 do (D)
1
A 11 Lyy/or,,(D)
5
= 12 pe(7B)
g L 0 13 <I(ﬁ(‘B):ﬁ(TrB))CmsB
10 5
u 14 X$¢(B)
1s 15 Lyy(B = D)
ig; 16 min p;
s 17 4o (K)
2 18 |do(mp)|
i 19 pi()
2F 21 p(D)
221 L 22 min(mK,ﬂ'lD 3 mK77r2D)
Sl 1 23 o)
24 X72~¢(D)
25 lifetime—signed do (K)
26 | lifetime—signed do(7})
27 Dt (7T1D)
28 |do(7)]
29 lifetime-signed do(7g)
30 L,y (D)
31 | lifetime-signed do(7%)
32 min |dg|
33 L,,(B)

Figure 6.4: Correlation matrix of the training variables. The entry target denotes
the training target, in this case target= 1 for signal and target= —1 for background
events.
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Rank Name Significance [o]
1 do(B)] 177.49
2 Lyy/or..(B) 110.76
3 Xip(B) 57.64
4 AR(D, mp) 47.01
5 »(B) 39.26
6 max (Mg .1, Mg q2) 19.76
7 min ! 16.93
8 do(D)| 16.07
9 p(7p) 15.94
10 X3p(D) 12.59
11| <(p(B), p(75))emss 9.97
12 Lyy/ot,, (D) 7.45
13 |do(K)| 7.95
14 do(7)] 9.09
15 L.,(B — D) 8.49
16 X2(B) 6.64
17 »(D) 6.38
18 pu(K) 5.57
19 (%) 5.67
20 min py 5.04
21 min(mg 1, Mg ) 4.14
22 do(72)] 3.20
23 | lifetime—signed dy(K) 2.97
24 (D) 2.85
25 p(rh) 2.52
26 | lifetime-signed dy(7p) 1.76
27 \do(7B)] 1.81
28 Ly, (D) 0.72
29 | lifetime-signed do(7%) 0.67
30 | lifetime-signed do(7}) 0.55
31 min |do| 0.42
32 La,(B) 0.43

Table 6.1: Loss of total correlation to the training target of all training variables.
The numbers are calculated by successively taking out the variable that results in the
smallest loss of total correlation to the target (see appendix B for more details).
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Performance of the network when removing the least significant variables
. The labels refer to the ranking of the variables as given in table 6.1.
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The list of training variables given in table 6.1 includes several quantities that exhibit
a strong dependence on the B meson’s invariant mass and are not well described in
the simulation. In detail, these variables are p;(K), pi(7}), p:(7%), pi(D), pi(B),
AR(D,mg) and <(p(B),p(78))emss - These variables are removed from the network
training. Comparisons of the distributions of all variables from sideband subtracted
signal in data to simulated events can be found in appendix D. The mass dependence
of the remaining variables is discussed in section 6.6.3.

The final set of variables is determined iteratively: Network trainings are performed,
using the two most significant variables |do(B)| and L,,/or,,(B) in combination with
any of the remaining 23 training variables. The largest signal significances \/SSTB
obtained after the 23 trainings are compared. The variable resulting in the largest im-
provement for \/%, when adding it to the set of two training variables, is kept for the
next iteration. These three most important variables are then combined with each of
the remaining 22 variables. This procedure is repeated until no further significant im-
provement by adding additional variables is observed. The set of ten variables obtained
after this procedure are |do(B)|, Lyy /01, (B), Xip(B), pi(7p), min %, Lay/o1,,(D),
Lyy(B — D), x24(B), |do(D)| and minp;. Using these variables for the network train-

ing results in a significance of \/;:l——B = 131.5+ 0.9. Adding further variables doesn’t

significantly improve \/SS‘JF—B. The significance obtained when using all 25 variables is

131.8 + 0.8, which is consistent with the result obtained using the set of ten variables
only.

6.5 Results for B’ -+ Dr,D — Knn

The previous section selected a set of ten variables for the optimization of the signal
significance in the decay channel B® — Dx, D — Krr. In this section, the results,
that are obtained using this set of variables in the network training and the classifi-
cation of the data sample are discussed in more detail. Also a comparison of the data
samples obtained after the neural network classification and the cut based selection is
performed.

Table 6.2 shows the loss of total correlation to the training target of the final set of ten
training variables. Figure 6.6 shows the color coded representation of the correlation
matrix of these variables, most the variables show some positive, in some cases rather
strong, correlation, again underlining the fact that an improvement of the separation of
signal and background can be expected from taking these correlations into account by
using a neural network. Figure 6.7 shows two control plots created after the training of
the network is completed, both demonstrate that the training was successful. Figure
6.8 compiles the number of signal events Nj;,, the number of background events Np¢,

the signal significance \/SSTB and the ratio S/B derived from the fits of the invariant
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mass spectra resulting from different cuts on the neural network output.
The curve displayed in the bottom left panel of figure 6.8 shows that it is possible to

select a cut on the network output that yields a higher significance \/S:g-|——B than could

have been obtained using a cut based selection. The maximum value is \/S:g-l——B =131.5+
0.9 found at a cut on the network output of nn,,; > 0.04, the corresponding invariant
mass distribution with fit is displayed in figure 6.9 (bottom). The improvement of
the signal significance \/SS+713 amounts to ~ 11% ' compared to SS = =118.3 £ 0.8
extracted from the fit of the invariant mass spectrum obtained after the cut based
optimization procedure in figure 6.9 (top). Obtaining the same signal significance
with the cut based optimization procedure would require 180 pb~! or 24 % more data.
For this estimate, the ratio of S/B obtained after the cut based optimization procedure

is assumed to remain constant when more data is added.

Rank Name Significance [o]
1 \do(B)] 177.49
2 | Ly,/oL.,(B) 110.76
3 Xap(B) 57.64
4 pe(TB) 53.02
5 do(D)] 19.37
6 min 2 18.06
7 | Lyy/o1.,(D) 8.33
8 | L.,(B— D) 10.59
9 min py 10.12
10 2(B) 7.04

Table 6.2: Loss of total correlation to the training target of all training variables.
The numbers are calculated by successively taking out the variable that results in the
smallest loss of total correlation to the target (see appendix B for more details).

!The mass fit introduces an uncertainty in the order of 1% to the relative improvement.
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correlation matrix of input variables

Index Name
1 1 target
2 |do(B)]|
3| Loyfor.,(B)
4 Xgp(B)
5 pt(WB)
0 6 min 19l
Tdo
7 X3¢(B)
05 8 Lay/ot,, (D)
9 L,,(B— D)
3 10| (D)
11 min p;

Figure 6.6: Correlation matrix of the training variables. The entry target denotes
the training target, in this case target= 1 for signal and target= —1 for background

events.
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Figure 6.7: Quality plots from the NeuroBayes® training. The network output is a
linear function of the network output (left) and signal and background training samples
are well separated (right), two characteristics of a well-trained neural network [34].
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Figure 6.10: Direct comparison of events selected by sequential cuts and by the neural
network. See text for a detailed explanation.

Finally, figure 6.10 compares the two samples obtained after a cut based selection
and after a neural network based selection. The two distributions in the left panel
correspond to the distributions already encountered in the top panel of figure 6.9
(blue, cut based) and the bottom panel of figure 6.9 (black, neural network). In
both cases the selection methods are optimized to obtain the maximum value for the

signal significance \/SS‘JF—B. The center panel shows two subsets of the sample obtained

after cuts (blue): the green distribution contains events that both the neural network
and the cuts would have selected, the distribution in red in the central panel denotes
events that are part of the sample selected by cuts, but would have been rejected
by the network cut. The shape of the red distribution indicates that these events
are combinatorial background events mostly. In analogy, the distributions displayed
in the right panel show the invariant mass distribution after applying the network
cut (black) compared to the events that would have passed both cuts and network
cut (green, same as in the center panel). The red distribution contains events that
are lost when applying sequential cuts, but that are selected by the corresponding
network cut. Here the shape of the red distribution indicates that the neural network
method selects additional signal events that would have been rejected by the cut based
selection.
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6.6 Validation and Checks

This section summarizes miscellaneous checks that have been performed to understand
and improve the neural network training procedure. First section 6.6.1 demonstrates
that the particular choice of a sideband region doesn’t play a significant role for the
network performance. Section 6.6.2 shows that using events from the upper sideband
in data for the network training and then again to evaluate the network performance
after the classification of the data sample doesn’t introduce any bias due to overtraining
or memorizing training events. Possible effects originating in the dependence of the
training variables on the candidates’ invariant mass are investigated in section 6.6.3

6.6.1 Selection of the Sideband Region

Up to this point the selection of the sideband range from 5.4 to 5.6 GeV has been
rather arbitrary. Due to kinematical differences, the distributions of the network
training variables will have different shapes in different regions of the sideband, the
sidebands closer to the signal region supposedly being more similar to the combinato-
rial background in the signal region.

To understand the effect of a particular choice of an upper sideband region, a series
of checks has been performed. Figure 6.11 shows the dependence of the signal sig-
nificance for events as training patterns for background from different 0.2 GeV wide
slices of the sideband, starting with the range from 5.4 to 5.6 GeV up to range from
5.7 to 5.9 GeV. The particular choice of a sideband doesn’t show any effect on the
performance. Selecting the sideband region for the network training from 5.4 to 5.6
GeV is not a critical issue, other sideband regions close to the signal range will behave
similarly in the training process and yield similar efficiencies when used for the signal
selection. Figure 6.11 demonstrates that the use of different sideband regions doesn’t
bias the mass fit either, shown is the invariant mass of the By candidate obtained from
the mass fit. Checks on other parameters don’t indicate any bias either.

6.6.2 Bias Check

Using the same events from the upper sideband in data first as input patterns for
background in the network training and then again, using this network training to
decide if such an event is rather signal- or background-like, might introduce a bias.
A possible source of such a bias can be an overtraining of the network. The effect of
overtraining would result in a network that is not able to generalize from what it has
learned but rather just memorize the training events. This would lead to suppressing
background events that were part of the training process more rigorously than other
background events (e.g. under the signal region) that have not been used in the
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Figure 6.11: Maximum significance (top) and reconstructed B’ mass (bottom) ob-
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network training.
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network training. Regularization schemes prevent such an overtraining to occur when
using NeuroBayes® (cf. section 3.2.3).

From figure 6.9 (bottom) it is already evident that a large effect induced by using
identical events for training and classification can be excluded, otherwise the training
region between 5.4 and 5.6 GeV would appear more suppressed than background from
other sideband regions.

To evaluate this effect, the data sample is split into two statistically independent sub-
samples by selecting events with odd and even event numbers. These two subsamples
are used as training patterns for background in two independent trainings, resulting
in two independent sets of preprocessing constants and network weights, called the
Expertises of NeuroBayes®. The Expertise from the training using the odd dataset
is used to calculate network outputs for the even dataset and vice versa. Performing
training and classification this way ensures that no event is classified from a network
training where it has served as input pattern already. After the independent classifica-
tion, the two classified samples are merged again and, after applying different network
cuts, used as input for the fits of the invariant mass spectra. To compare the results
obtained with this unbiased training/classification process with a dataset where a pos-
sible bias might occur from using identical events for training and classification, the
Expertises from the even (odd) subsample are then used to classify the even (odd)
subsample.

If the network had been over-trained and therefore memorized the patterns provided
during the training process, it would show a tendency towards assigning smaller net-
work outputs to the background events it already encountered during the training
when identical subsamples are used for training and classification. For the sample
prepared using different subsamples for training and classification this effect can’t
show up, as training and classification sample in this case are disjoint.

Figure 6.12 shows a comparison of the number of counted background events in the
sideband region from 5.4 to 5.6 GeV, obtained after applying successively harder cuts
on the network output on the two differently prepared data samples. No significant
difference between the curves can be observed. Figure 6.13 shows two more exemplaric
curves obtained in a similar way, denoting quantities derived from the fits of the
invariant mass spectra after different network cuts. The top panel displays the number
of signal events derived from the fits of the invariant mass spectrum for the two
methods and the bottom panel compares the reconstructed BY masses. Again, no bias
can be observed comparing the two methods.

Judging the results obtained from the tests presented in this section, using the same
events from the upper sideband region in data for the network training that later is
classified by the network as part of the full dataset. Figures 6.12 and 6.13 convince
that the network does not memorize the events used in the network training as a result
of overtraining.
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Figure 6.12: Left plot : Counted number of background events in the sideband region
from 5.4 to 5.6 GeV used in the network training. The black circles denote the
number of events Ny;.seq counted when applying cuts on the neural network output
for the sample that was obtained after using the same events as input for the network
training and for classification of the sample (“biased”). The red squares show the
number of events Ny, piaseq in the training region obtained when using different events
for training and classification (“unbiased”). Right plot: The difference of the two
plots, the length of the error bars is equal to v/ Npiaged-
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“unbiased” training methods (left) and the difference of the two distributions (right).
Bottom: Comparison of the fitted B® mass for the two training methods (left) and
the difference of the two distributions (right).
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6.6.3 Mass Dependence of Variables

Using a neural network trained with background events from the upper sideband in
data and signal from simulated events implicates the possibility of the network not
predominantly learning to distinguish B meson signal events from combinatorial back-
ground events, based on different physical properties of these events, but rather to
learn that the difference between signal and background events only arises due to dif-
ferent invariant mass ranges of the training samples.

This has to be taken into account when selecting variables for training the network.
In the worst possible case, the network would be able to fully reconstruct the invariant
mass of a candidate. This would result in a suppression of all events outside the invari-
ant mass region of the signal training sample and could be used to generate artificial
signal peaks anywhere in the invariant mass spectrum by selecting events from this
region as training patterns for signal and background events from a distinct invariant
mass range.

Variables that exhibit a mass dependence

An example for a variable exhibiting a significant dependence on the invariant mass is
the opening angle AR(D, mg) between the D and 7 originating from a B meson decay.
Figure 6.14 shows the mass dependence in a profile plot of the two—dimensional dis-
tribution of AR(D, 7p) against the candidates’ invariant mass in the upper sideband.
A similar mass dependence, though much less significant, can be seen for L,, /oy, (B)
in the right panel of figure 6.14.

Figure 6.15 shows the behavior of the variable p,(7mp) for different sideband regions.
The right panel compares the shapes of the p;(7p) distributions in two different slices
of the upper sideband. It can be seen that not only the mean values of the p,(75)
distributions (left panel) show a dependence on the invariant mass but also the shape
of the distributions vary. The trigger threshold observed at 2 GeV is less pronounced
for higher invariant masses. Just rescaling the variable to flatten the means of the dis-
tributions will therefore not remedy this mass dependence. Many variables exhibiting
such a mass dependence are excluded from the training (see section 6.4). The variable
pi(mp) however is used as training variable in the final set of variables (table 6.2), as
it is an important variable contributing significantly to the performance of the net-
work. Excluding p;(7) from the training, while keeping all other variables, reduces
the maximum signal significance obtained from \/SiiB =131.5 £ 0.9 to 130.2 £ 0.8%
Figure 6.16 demonstrates the effect introduced by the mass dependence of the training

2The values of \/Si—B, using or not using p;(mp), are derived on the same events, so both values

are strongly correlated. The difference of the performances is more significant than the uncertainty,
derived from the fit of the invariant mass spectrum, suggests.




6.6. VALIDATION AND CHECKS 103

.Z‘ j ++++ 2_, [ ++
x| ittt z12l-
H
<t gt S T
18- o r fi it g *++++ﬁ+++ﬁﬁ++++++ﬁ++
L A 10— |
o ++++++ L
L | L
1.6 N w*w r
L H, 8~
L e C
i L
L 4Tt L
|
141 wﬁ* 6
L 4
1.2 r
[ 2;
L1 P N E R EUIN BRI R B R RN T EE RN B B
5.4 5.6 5.8 6 6.2 6.4 6.6 5.4 5.6 5.8 6 6.2 6.4 6.6
invariant mass [GeV] invariant mass [GeV]
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Figure 6.15: Left: Profile plot of the two—dimensional distribution of p;(75) against the
candidates invariant mass. Right: p;(7g) distributions for two sideband regions, it’s
evident that the shape of the p;(7p) distribution changes within the upper sideband,
the trigger threshold observed at 2 GeV becomes less pronounced when moving to
higher invariant mass ranges.
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Figure 6.16: Distribution of the neural network output against the invariant mass of
the B candidates. Left panel: Training including the full set of variables (table 6.1),
including all variables with strong dependence on the invariant mass. Right panel:
Training with the final set of variables (table 6.2). The black markers denote the
mean value of the network output distribution in each invariant mass bin.

variables, if the full set of variables (table 6.1) is used instead of the final set of
variables (table 6.2) in the network training. In the left plot (full set of variables),
the network assigns higher network outputs to background events in the mass region
closer to the signal region compared to background events with a higher invariant
mass in the bottom right corner of the plot in the left panel. The plot in the right
panel displays the distribution of network output against invariant mass for the final
set of variables, excluding the significantly mass dependent variables p,(K), pi(7},),
p(7%), p(D), py(B), AR(D,7g) and <(p(B),p(7B))emsp from the network training.
The dependence of the network output on the invariant mass is reduced, though still
some preference for lower invariant masses is seen.

Training with two sidebands

To determine which variables out of the final set of ten variables used in section
6.5 show a correlation to the invariant mass, two sideband regions are used as input
patterns for signal and background in a network training. To mimic the effect of using
a signal region from roughly 5.2 to 5.4 GeV and a background region in the range
from 5.4 to 5.6 GeV, a training with two similarly wide slices of the upper sideband is
performed. Sideband events from 5.5 to 5.7 GeV are fed as signal to the network and
events from the range 5.7 to 5.9 GeV are declared to be background in the training.
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Figure 6.17: Left: Network output for the training sample composed of the sideband
region from 5.5 to 5.7 GeV fed in as signal (red) and the region from 5.7 to 5.9 GeV
declared as background (black). Right: Network outputs obtained after a training
using simulated B meson decays as signal (red) and events from the upper sideband
region from 5.4 to 5.6 GeV as background (black).

Using these ranges will show if the network is able to produce an artificial signal peak
in the sideband region used as signal in the network training.

The left plot in figure 6.17 shows the network outputs obtained for the two training
samples in the upper sideband. Ideally, if none of the training variables showed any
mass dependence, the two distributions would lie on top of each other. As can be
seen, the network has learned something, as the red curve for signal from the sideband
region 5.5 to 5.7 GeV is slightly shifted towards higher network outputs. Comparing
this separation to the separation of the distributions displayed in the right panel,
where B meson decays from a simulation and events in the upper sideband from 5.4 to
5.6 GeV are used as training samples, this is a very small effect. Table 6.3 shows the
loss of total correlation to the training target of the variables obtained after using the
two slices of the upper sideband as training input. As expected the variable p,(7p)
shows the capability to separate the two sideband because of the modified shape of
the distribution when moving to higher invariant masses.

To demonstrate the impact of this mass dependence on the invariant mass distribution,
the full upper sideband region from 5.4 to 6.5 GeV is classified using the training
obtained with the two sideband slices used as training samples. The plots in figure
6.18 demonstrate the behavior of the classified upper sideband distribution by applying
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Rank Name Significance [o]
1 p(7B) 12.61
2 \do(D)| 4.49
3 \do(B)] 4.27
4 | IL,,/o1.,(B) 4.47
5 min % 3.23
6 | Lyy/or,,(D) 1.73
7 | L.,(B— D) 0.68
8 2p(B) 0.25
9 2s(B) 0.08
10 min py 0.03

Table 6.3: Loss of total correlation to the target of variables when using two different
slices of the upper sideband as training samples for signal and background.
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Figure 6.18: Invariant mass distributions obtained when using two slices of the upper
sideband are used in the network training and the full upper sideband sample is
classified using this training. The boxes denote the sideband regions fed as “signal”
and “background” to the network training. Left: inclusive distribution, no network
cut applied. Center and right panel: mass distributions after applying a weak and a
hard cut on the network output. The function fitted to the distributions corresponds
t0 P.omp(m), the parametrization that is chosen to describe combinatorial background
events in the fit of the full invariant mass spectrum (see section 5.2.1).
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cuts on the neural network output. The training region from 5.5 to 5.7 GeV is not
emphasized compared to the regions either from 5.7 to 5.9 GeV, which was used as
background in the training process, or from 5.4 to 5.5 GeV, that was not part of the
training sample. From figure 6.18 one can conclude that the network is not capable
of producing spurious signal peaks simply by selecting different sideband regions as
training patterns for signal and background.

Comparing neural network and cuts

Another effect visible in figure 6.18 is the preference of the neural network for lower
invariant masses, when trained with two slices of the upper sideband as samples of sig-
nal and background events. The remaining mass dependence of the training variables
in the network training is not be capable of producing a spuriously enhanced signal
peak, but rather modify the shape of the background spectrum with a preference for
lower invariant masses. This modified shape is taken into account by the parameters
of the function used to describe the distribution of combinatorial background events
as part of the fit of the invariant mass spectrum (cf. eq. 5.9). Using AR(D,73),
pi(B) and py(mp) as ingredients of the cut based optimization procedure, such a bias
towards lower invariant masses must have been inherent to all previously published
analyses already (this is visualized by the red lines in figure 6.14, indicating cuts that
are applied as part of the cut based optimization procedure). Figure 6.19 compares
the shapes of the background distributions obtained after a cut based selection and
after the neural network selection.

Beyond a slight modification the shape of the background distribution, no further ef-
fect of the mass dependence of some of the training variables can be observed. The
shape of the background distribution shows a similar behavior as already observed
during the cut based optimization procedure, therefore no special treatment of vari-
ables that exhibit some dependence on the invariant mass is considered.

6.7 Results for B, -+ D, Dy — o7, — KK

The optimization strategy developed in previous sections for the signal significance of
the decay B® — Dm, D — K7r can be applied to other B meson decays as well. The
necessary ingredients are a simulation of the resonance decay, providing training pat-
terns for signal events, and combinatorial background events from the upper sideband
in data, serving as patterns for background events in the network training. Of course,
each decay channel exhibits specific features that can be taken into account when
selecting variables for the network training. For example, the angular correlations
between daughter and parent particles in the decay chain or resonant substructures of
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Figure 6.19: Comparison of the distributions of invariant mass in the upper sideband
obtained after the cut based optimization procedure (magenta triangles) and a neural
network selection (black circles). In both cases, the distributions rise with lower
invariant masses, a fit on the background distributions shows that the shape of both
curves is similar. Left: mass range from 5.5 to 6.5 GeV where the fit is performed,
right: extrapolation to lower invariant masses.
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the daughter particles can contribute additional information to the network training
in different decay modes.

This section focuses on the decay of the By meson into By — Dy, Dy — ¢m, ¢ — KK.
As the optimization procedure developed in this work is intended to improve the ex-
isting Amg measurement at CDF 11, it will be demonstrated that the use of a neural
network for the already intensively studied decay mode (see e.g. [60][58]) can still
significantly improve the signal significance \/;:i——B relevant for a measurement of Amy.
To reduce the size of the data sample and to improve the track quality by imposing
requirements on the number of detector hits, a set of soft preselection cuts is applied:

e Number of COT Axial/Stereo Hits > 10/10,

e Number of Silicon Hits > 3,

e all tracks have p, > 0.35 GeV,

e pi(B) > 5.5 GeV,

o L,y/or,,(D)>2, Lyy/or,, (B) > 2
e X24(D) <20, x7,(B) < 20,

e |do(B)| < 200 pm,

e pi(mp) > 1.0 GeV.

The set of training variables used to achieve an optimal performance for the decay
B, — Dyn, Dy — ¢m,¢ — KK is obtained after an iterative procedure similar to the
method applied for the B® meson in section 6.4. Variables are added to the network
training step by step until no further improvement can be observed. Table 6.4 displays
the set of variables obtained by this procedure for the decay B, — D,m, Dy — ¢, ¢ —
K K. The set of variables table 6.4 is very similar to the set of variables obtained for
the decay mode B — D in table 6.2 in section 6.5. This reflects the fact that in both
cases, the decay of long—lived B mesons is separated from combinatorial background
events by similar properties. On the other hand, table 6.4 also demonstrates that
in the case of the decay By — D,n,D; — ¢m,¢ — KK some additional variables
can contribute significantly which don’t contribute in the case of the decay B° —
Dr. These additional variables are the helicity angle of either of the kaons from
the decay ¢ — KK and the invariant mass of the ¢, which reflects the different
angular correlation and subresonance structure of the daughter particles of the decay
Dy — ¢m compared to D — Knrw. Figure 6.20 shows the correlation of the training
variables and figure 6.21 displays the NeuroBayes® training quality plots. Signal and
background are well separated in the training sample and the network output is a linear



110 CHAPTER 6. SIGNAL OPTIMIZATION WITH NEURAL NETWORKS

function of the purity, indicating that the training was successful. Training patterns
for background used in the network training are taken from the upper sideband region
from 5.6 to 5.9 GeV.

Rank Name Significance [o]
1 L.,/o1.,(B) 159.21
2 do(B)| 62.46
3 pi(75) 30.72
4 2p(B) 26.09
5 helicity angle K! 14.51
6 Lyy(B — D) 13.85
7 MoK i 12.48
8 \do(D)| 11.97
9 min py 11.54
10 X3p(D) 10.11
11 L,,/o1.,(D) 0.27
12 | 1ts. do(K")/om 3.16

Table 6.4: Training variables used for the optimization of the decay B, — D m, D, —
orm,p — KK.

Figure 6.22 shows the number of signal events Nj;,, the number of background events
Npg, signal significance \/SS+713 and ratio of S/B derived from fits on the invariant
mass spectra after applying different cuts on the neural network output. Figure 6.23
(bottom) shows the mass distribution for a network cut of 0.76, this yields the largest

value for \/SS+—B of 35.54+0.7. This corresponds to an improvement of ~ 16% compared

to the cut based optimization procedure [60] (displayed in figure 6.23, top panel) that
results in \/%—B = 30.640.8. This improvement is equivalent to adding 260 pb ™! or 35
% more data, when using the cut based optimization procedure instead of the neural
network selection to obtain the same performance. The expression describing the
overall signal significance of a Am,—measurement in eq. 5.31 not only depends on the
absolute number of signal and background events, contained in the factor \/%73. For
a time-resolved measurement of By oscillations, in particular the proper decay time
resolution o; plays an important part in determining the overall signal significance
(see section 5.6). To estimate the proper time resolution attenuation factor obtained

for signal events in the decay channel By, — D,m, D, — ¢m, ¢ — KK after applying a
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correlation matrix of input variables
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Figure 6.20: Correlation matrix of the training variables for the decay By —
D,n,Dg; — ¢m, ¢ — KK. The entry target denotes the training target, in this case
target= 1 for signal and target= —1 for background events in the training.
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Figure 6.21: Quality plots from the NeuroBayes® training for the decay B, —
Dgm, Dy — ¢, — KK. The purity is a linear function of the network output (left)
and signal and background training samples are well separated (right), two important
characteristics of a well-trained neural network.

particular selection procedure, the weighted average

1 1,2
S = NZQ 3 00 Am

=0

YN

(6.1)

is calculated as the sum over all simulated events i passing the selections. For Am
a value of 17 ps™! is assumed. Figure 6.24 (left) compares the values of S; obtained

after different neural network selection cuts and a cut based optimization procedure.

The maximum value for Stx\/% from fig. 6.24 corresponds to an improvement of

~ 14%, which is slightly less than the ~ 16% obtained when taking into account \/SS+713

only.

6.8 Summary

Using a neural network trained with simulated signal events and events from the
upper sideband in data can increase the signal significance —2— for exclusively re-
constructed final states of B meson decays significantly. The method can be applied
to all exclusive decay modes. The performance of the network selection can be opti-
mized by taking into account individual characteristics of each decay channel. A wide
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Figure 6.22: Number of signal events N;,, number of background events Np¢, signal
significance \/SSJriB and ratio of S/B derived from fits on the invariant mass spectra
after applying different cuts on the neural network output. The red line in each panel
marks the values of each quantity obtained from the cut based selection applied in the
top panel of figure 6.23 (top).
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Figure 6.24: Left panel: Comparison of the contribution &; of the proper time resolu-

tion o, estimated from simulated events of the decay B, — Dy7, Dy — ¢, — KK

for different neural network selection cuts (black markers) and using the cut based
S

selection (red line). Right panel: Sy X 75 for different neural network selection cuts

(black markers) and the cut based selection (red line).

range of systematic effects were evaluated for the decay mode B — Dn, D — K.
It has been demonstrated that neither a weak dependence on the invariant mass of
some training variables, nor the specific choice of a sideband region nor the overlap
between training and classification sample introduces any systematic bias in the data

sample. The signal significance \/;:i——B for the decay mode B® — Dm, D — Krm could

be improved by 11 %, which is equivalent to adding 180 pb™" or 24 % more data to
the existing 765 pb™' when the cut based optimization procedure is used to obtain
the same performance.

For the decay By — Dy, Dy — ¢m, ¢ — KK, the significance \/SS+—B could be improved

by 16 %. This improvement is equivalent to adding 260 pb™" or 35 % more data, when
using the cut based optimization procedure instead of the neural network selection to
obtain the same performance. Taking into account the proper decay time resolution
o; of the selected events, an overall improvement of 14 % in the significance of the
measurement of Am, in this decay channel can be expected.

Beyond an application in a BY or B, mixing measurement, the selection method devel-
oped in this chapter can significantly enhance many physics analyses using exclusively
reconstructed B mesons. Depending on the particular requirements of each analysis,
an optimal working point can be determined choosing the neural network selection
cut appropriately. The curves in the bottom right panels of the figures 6.8 and 6.22
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demonstrate that, for example, the signal purity, expressed as S/B, can be made
almost arbitrarily large by applying very hard cuts on the neural network output.



Chapter 7

Mixing Fit

7.1 Overview

The fit framework described in chapter 5 is applied to the data samples obtained
after performing different types of selections in this section and used to derive a value
for Amy (Am,) from the sample containing the decay mode B® — Dr,D — Krm
(Bs — Dym,Ds — ¢m,¢p — KK). The general outline of the fit procedure for the
decay mode BY — Dn can be summarized as follows:

1. Apply all selection cuts to the data sample, simulated signal events and simu-
lated background components (partially reconstructed B mesons and final states
with misassigned particles).

2. Perform a binned maximum likelihood fit of the full invariant mass spectrum:

(a) Fit of the mass template functions for partially reconstructed B mesons
and final states with misassigned particle hypothesis.

(b) Full mass fit of the invariant mass spectrum.
3. Perform an unbinned maximum likelihood fit of the B meson lifetime:

(a) Fit of the corresponding lifetime template functions for final states with
misassigned particle hypothesis.

(b) Fit of the lifetime efficiency curve.

(c) Perform an unbinned maximum likelihood fit in mass and lifetime space
simultaneously, both spaces share the background fraction fp as common
parameter.

4. Perform an unbinned maximum likelihood fit of Amg (Amy).

117
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Figure 7.1: Flow chart summarizing the fit procedure. The yellow boxes, superimposed
on the arrows, display the fit parameters that are fixed after each step.
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Figure 7.1 shows a flow chart displaying the sequence of steps of the fit procedure.
In the following sections, a selection of events based on the cut based optimization
procedure and a neural network selection, as outlined in chapter 6, are used to select
the input data sample used for the fit. It will be demonstrated that the mixing
fit framework can be used with both selections to extract values for the B° meson
lifetime and Amy, that are consistent with the world average. Section 7.4 will apply a
similar fit procedure to compare the cut based and the neural network based selection
methods by using events selected by either method as input for an amplitude scan
and an unbinned maximum likelihood fit of Am,. The mass fit for the decay channel
B — Dr,D — Knn was already discussed in detail in section 5.2. The following
sections will therefore focus on the fit of the B° lifetime in section 7.2 and proceed to
the fit of Amy, in section 7.3.

7.2 Lifetime Fit with a Neural Network Selection

7.2.1 Likelihood Function

The unbinned maximum likelihood fit used to extract the value of the BY lifetime
7 is performed simultaneously in the mass and lifetime space using the negative log
likelihood function

L= —QZIH[(l — fB) . pg(ti,O't’i) . Ps(mz) + fB . PB(tz) . PB(mz) (71)
Here fp = ﬁﬁvsg denotes the relative fraction of background events in the fit

range used to weight the contributions in lifetime and mass space of signal events
Ps(t;,01) - Ps(m;) and background events Pg(t;) - Pg(m;).

The parameter fp is shared by mass and lifetime spaces, but can be constrained by
the fit in mass space only. The invariant mass distributions of signal and background
contributions can be separated well, while in lifetime space the distributions of signal
and background events have a very similar shape. The index i iterates over all candi-
dates in the data samples serving as input to the fit.

The analytic expressions used for Pgp(m;) and Ps(t;,0,;) have been introduced in
sections 5.2.1 and 5.3.2. Pg(t;) is a parametric description of the shape of the life-
time distribution of combinatorial background events. It consists of a sum of two
exponential functions convolved with Gaussian functions:

pB(t) = NB <f1 67% & Q(t — t’, M, 0'1) + (1 — fl) 67% X Q(t — t’, M2, O'Q)) (72)

where fi, 7, 1o, 01, 01/09, ul and py — po are used as fit parameters. Np normalizes
the function to one. For the combined fit in mass and lifetime space, the mass range
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5.2 GeV to 5.8 GeV is used. This reduces the contribution of partially reconstructed
B decays in the lower sideband region to a minimum so that their contributions can
be neglected in the lifetime fit.

The probability density function used for signal events in lifetime space corresponds
to eq. 5.21, using an an uncertainty o;; on an event-by-event basis. The initial values
of the parameters of Pg(t) are obtained from a template fit, see appendix E. During
the unbinned maximum likelihood fit these parameters are treated as free parameters,
only oy/09 is fixed to the value obtained from the template fit. The fit converges to
values for the background contribution that are very similar to those obtained from
the template fit. Templates for the lifetime distributions of the contributions from
Ay = Acm and By — Dy are added to Ps(t;, 04;) with the same relative fractions
[, as Bo and fg, a5 po that are used in the fit of the invariant mass spectrum (see section
5.2.1). The shapes of these templates can be found as well in appendix E.

For the combined fit in mass and lifetime space the mean of the two Gaussian functions
and the width of the narrower of the two Gaussian functions modeling the signal peak
are free parameters in mass space. All other parameters in mass space are fitted first
by a binned likelihood fit in the wide invariant mass range from 4.7 to 6.0 GeV and a
subsequent binned likelihood fit in the narrow invariant mass range from 5.2 to 5.8 GeV
and then kept fixed during the unbinned maximum likelihood fit. The parameters for
the efficiency function €() are also fixed once they have been determined for a specific
selection cut (see following section). In lifetime space, the B meson lifetime 7 is a free
parameter, as well as the background fraction fg, shared by both spaces.

7.2.2 Determining the Efficiency Curve

The shape of the efficiency function €(t) is determined according to eq. 5.24 using
the proper decay time distribution obtained from a simulation of B meson decays,
taking into account the bias introduced at trigger level and by selection cuts. This
distribution is obtained after applying the same kind of cut or neural network selection
on the sample of simulated events as is applied to the data sample that serves as input
for the unbinned maximum likelihood fit. To make sure that the simulated events
describe the signal distribution in data also after applying a cut on the neural network
output, a comparison of the distributions of all quantities involved in the network
training has to be performed'. If the distributions differ, one cannot expect that
the efficiency curve derived after applying all preselection cuts to simulated events
corresponds to the efficiency curve observed in real data when applying the same
kind of preselection. Figure 7.2 compares the neural network output obtained for the

'For the cut based selection such a comparison was already performed (see appendix D) to decide
which variables are well described by the simulation and are suited to serve as training variables in
the network training.
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Figure 7.2: Comparison of the distributions of the neural network output (left) and
proper decay time (right) for sideband subtracted signal events in data and simulated
s

events (MC) after applying the cut on the network output that maximizes T As

a reference, also the distributions from the upper sideband in data are displayed.

sample of simulated events and the proper decay time distribution of signal events in
data after performing a sideband subtraction. In both cases the distributions obtained
from simulated events and data agree very well. Comparisons of all variables used in
the network training and details on the sideband subtraction procedure can be found
in appendix D.4.

To determine the lifetime efficiency curve €(t) after a neural network selection, the
sample of simulated events has to be classified and the network cut that is applied to
the data sample has to be applied to the sample of simulated events as well. The proper
decay time distribution of selected simulated events ¢(¢) is filled into a histogram and
divided by the integral of the function describing the unbiased lifetime distribution
over the width of each bin of the proper decay time histogram according to eq. 5.24 :

€(t) =

g(t) after trigger and cuts
Yz @G-t 0)

The resulting distribution is fitted using a phenomenological parametrization of €(t) [53]

e(t) = a;(t—&) e 0t - &) (7.3)

Jj=0

where 0(t — ;) represents the Heavyside step function #(z) =1 if x > 0 and §(z) =0
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else. This parametric form of €(¢) has the advantage that the normalization factor
Ns(t;, &, 01,i) can be calculated analytically (see appendix C). Ng(t;, &, 01,) keeps the
probability density function used for the lifetime and mixing fits (eqs. 5.21 and 5.25)
normalized to one for each event during the unbinned maximum likelihood fit,. Figure
7.3 shows the resulting efficiency curves e(¢) after fitting the parametrization from
eq. 7.3 to the distributions obtained from data using a cut based selection and the
neural network selection. The two efficiency curves look very similar.
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Figure 7.3: Fit of the parametrized €(¢) to the distributions obtained after applying
a cut based selection (left) and a selection based on a neural network classification
(right).

7.2.3 Results of the Lifetime Fit

The parameters obtained from the efficiency fit are used as input for the unbinned
maximum likelihood fit, which is performed in parallel in mass and lifetime space. The
negative log likelihood expression given in eq. 7.1 is minimized using the MINUIT [47]
package. Figure 7.4 shows the projections of the fit function in lifetime space using
the fit results obtained from the unbinned maximum likelihood fit for the cut based
and the network based selections. Figure 7.5 shows the corresponding projections of
the fit function in mass space.

Table 7.1 summarizes the results obtained using the cut based selection and a neural
network selection. fg is the common background fraction found in mass and lifetime
space and the parameter “signal width” denotes the width of the narrower of the
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Parameter

Result (cuts)

Result (network)

/B

signal ¢t [pm)]
signal mass [GeV]
signal width [GeV]

0.43172 £ 0.00368
468.62 £ 5.39
5.2784 + 0.0002
0.01544 £ 0.00015

0.29643 £ 0.00356
460.77 £ 4.45
5.2783 £ 0.0002
0.01554 = 0.00014

bg f1

bg cry [pm]

bg 1 [GeV]

bg oy [GeV]

bg 75 [pm]

bg 111 — 1z [GeV]

0.32271 £ 0.04647
0.03248 £ 0.00127
0.02818 £ 0.00101
0.00361 £+ 0.00014
0.01671 £+ 0.00133
-0.01150 £ 0.00084

0.33924 + 0.04606
0.04045 £ 0.00123
0.02605 £ 0.00148
0.00743 £ 0.00053
0.02695 £ 0.00225
-0.02051 £ 0.00144

Table 7.1: Summary of fit results obtained from the unbinned maximum likelihood fit
of the mass and lifetime distributions after a cut based selection and after a neural
network selection.

two Gaussian functions used as signal parametrization. All parameter names starting
with “bg” denote parameters that describe the combinatorial background’s proper
decay time distribution (cf. eq. 7.2). The result obtained for the B° lifetime after
the cut based selection is ¢r = 468.2 + 5.4 ym, the neural network selection gives
cr = 460.8 + 4.5 um. Both values are in good agreement with the world average
value of ¢7(B%) = 459.3 + 2.0 um [15]. This result demonstrates that the fit model,
incorporating the finite experimental resolution and the bias in the lifetime distribution
due to trigger and selection cuts, is capable of extracting the correct lifetime from the
underlying data sample. The bias in the lifetime distribution that is introduced by a
neural network selection is similar to the bias observed after a cut based selection and
can be incorporated by deriving the efficiency €(¢) using simulated events.

7.3 Fit of Amy

The negative log likelihood function used for the unbinned maximum likelihood fit
of Amy is very similar to the expression used for fit of the B lifetime in eq. 7.1. In
addition to the description of signal and background distributions in mass and lifetime
space, a term describing the B — B? mixing enters the probability density function
that is used for the fit of Amgy. The negative log likelihood function used for the
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Figure 7.6: Likelihood function as a function of Amy, evaluated around the minimum
obtained when using a cut based selection (left) and a selection based on a neural
network classification (right) to provide the events that are used in the unbinned
maximum likelihood fit.

minimization can be written as

L= —2ZIH{(1 — fB) + Ps(ti, &, 013) - Ps(mi) + fg - Pp(t:) - Pg(my) (7.4)

where Ps(t;,&;,01;) denotes the lifetime distribution including the mixing term (see
eq. 5.26), which contains the tagging decision £ as an additional measured quantity.
For this study only tagging decisions provided by the jet charge tagger [56] are used.
The full analytical expression for Ps(t;,&;, 04;) can be found in appendix C. During
the minimization all parameters in lifetime and mass space are fixed to the values
obtained after the unbinned maximum likelihood fit of the B° lifetime (see table 7.1).
Only Amy remains as a free parameter. The results for Amy obtained after performing
a cut based or a neural network selection are

Amg = 0.496 + 0.072 ps™! after a cut based selection
Amy = 0.507 + 0.069 ps ! after a network based selection.

The values obtained for Am, are in good agreement with the world average value of
Amg = 0.507 4 0.004 ps~' [10]. Figure 7.6 shows the negative log likelihood function
for Amy evaluated in the region from 0.1 ps—! to 0.9 ps!. Statistical uncertainties
are quoted only. No systematic studies are performed as this is not intended to be
a measurement of Amy, but rather a check, demonstrating the potential to use the

neural network selection for a mixing fit and the functionality of the fit framework.
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7.4 Amplitude Scan and Fit of Am

The previous section used data samples containing the decay B® — Dn, D — Kzn
obtained after applying a cut based optimization procedure and a neural network
classification and tagging decisions provided by the jet charge tagger to perform a fit
of Amg. The data sample obtained for the decay B, — Dyr, Dy — ¢m, ¢ — KK is
considerably smaller and extracting the oscillation frequency Am, is more difficult,
as Amy is significantly larger than Amgy. The measurement of Amg performed by
CDF 1II [11] uses a set of five By decay modes and combines the information of four
flavor taggers, so a check of the existing measurement or even an improvement, using
a neural network selection, requires the use of more decay modes and the combination
of several tagging algorithms.

Nevertheless, the decay mode B, — Dym, D, — ¢, ¢ — KK is the most important
single mode for a Amg measurement, as this channel provides the largest number
of signal events (~ 40% of the sum of the number of signal events of all five decay
modes) and the best signal over background ratio of all decay modes. Therefore in this
section a comparison of the amplitude scan method (see section 5.5.1) and an unbinned
maximum likelihood fit of Amg performed on the data sample of the decay By, —
Dyr, Dy, — ¢m, ¢ — KK obtained after a cut based optimization procedure and a
neural network classification is presented. This comparison is intended to demonstrate
that the use of the neural network selection is capable of improving the existing Am
measurement, using the cut based optimization procedure.

The amplitude scan is performed in close analogy to the fit of Amgy presented in
the previous section. First all parameters in mass and lifetime space are fitted using
the sequence of binned and unbinned likelihood fits introduced in section 7.1. All
parameters in mass and lifetime space, including the By lifetime and the background
fraction, are fixed to the values obtained from the fit sequence. The amplitude scan
consists of a series of unbinned maximum likelihood fits where in each fit Amy is fixed
to a certain value and the amplitude A (see eq. 5.28) is a free parameter. Figure 7.7
compares the amplitude scan obtained for a range of Am, from 1 to 21 ps~! for the cut
based selection and the neural network based selection. Both plots looks similar, as the
samples obtained after both selections show a significant overlap (see figure 6.10). The
sensitivity for Amy is obtained from the intersection of the dotted line, denoting values
of 1.65 04 derived from the blind amplitude scan (see section 5.5.1), with the line A =
1. Compared to the cut based selection, the sensitivity for Amy is improved from ~ 17
ps~! to ~ 18.5 ps~! using the neural network based selection. Also the 95 % confidence
lower limit on Amy, indicated by a circle at the intersection of the A + 1.650, with
the line A = 1 in both plots, improves from Am, > 1.2 ps ! to Am, > 9.8 ps !
using the neural network selection. The uncertainties quoted for the amplitude A in
fig. 7.7 are statistical only and are derived from the unbinned maximum likelihood
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Figure 7.7: Amplitude scan for Am; obtained using a cut based selection (left) and a
selection based on a neural network classification (right).

fit of A. The two amplitude scans are intended to compare the cut based and neural
network based selection and demonstrate the relative improvement of the sensitivity
achieved by a better candidate selection only. No treatment of systematic errors, most
importantly the possibility of an incorrect dilution predicted by the tagging algorithm
and the relative contribution of different background components, is performed, as
they are not expected to behave significantly different for both types of selection.
Another way to compare the data samples obtained using a neural network or cut
based candidate selection is to use the samples as input for an unbinned maximum
likelihood fit of Amg. The likelihood expression used in the fit, as well as the fit
procedure, are identical to the fit of Amy performed in section 7.3. Figure 7.8 shows
the likelihood function evaluated around the minimum obtained for Am, from an
unbinned maximum likelihood fit. In both cases, the likelihood projection shows
a complicated structure consisting of several local minima. This indicates that for
a precise and significant measurement of Amg more decay channels and also more
tagging information has to be included in the fit. However, in the range from 1 to
22 ps~! both fits have their global minimum at ~ 17 ps~!, where in the case of the
sample selected by the neural network this minimum is still deeper compared to the

local minima observed at ~ 14 ps~' and ~ 20 ps~!. The values for Am; obtained
from both fits are:

Amg =17.71 + 0.39 ps~! after a cut based selection
Amg = 17.64 + 0.22 ps~! after a network based selection.

Statistical uncertainties are quoted only. These numbers can’t be interpreted as a final
result for Amg, as no treatment of systematic uncertainties is performed.
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Figure 7.8: Likelihood function as a function of Amy, evaluated around the minimum
obtained when using a cut based selection (left) and a selection based on a neural
network classification (right) to provide the events that are used in the unbinned
maximum likelihood fit.

The results of the comparison of the data sample selected by cuts to a data sample
selected by a neural network are promising. In the amplitude scan as well as in the
unbinned maximum likelihood fit the network selection could demonstrate that it will
be capable of improving the existing Am, measurement when all decay channels and
all the tagging information that is available are taken into account.
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Conclusion and Outlook

Using sophisticated neural network techniques, the event selection procedure for the
decays of B mesons into exclusive final states has been improved significantly compared
to the sequential cut based optimization procedure applied at CDF IT up to now. The
variables used in the selection procedure are combined optimally into a single discri-
minating variable, exploiting the additional information contained in the correlation
between these variables. The networks are trained using simulated signal events and
combinatorial background events from the upper sideband in data as training patterns.
The novel technique developed in the course of this work improves the ongoing analysis
of By mixing at CDF II and will substantially contribute to establishing a statistically
significant values for Am; at the 5o level.

Applying the network selection to the decay B° — Dm, D — Krr yields a signal
significance of 131.5 + 0.9 , which corresponds to an improvement of 11 % compared
to the cut based optimization procedure that was applied at CDF IT up to now. This
improvement is equivalent to adding 24 % more data to the analysis. Extending the
method to the decay B, — Dyn, Dy, — ¢m, ¢ — KK gives \/;TB = 35.5 £ 0.7,
an improvement of 16 % compared to the cut based optimization procedure, which
corresponds to adding 35 % more data to the analysis. Taking into account the ct—
resolution of the selected events, this leads to an expected overall improvement of 14 %
of the significance of the B, mixing measurement in this decay channel. The dataset
that is used for both decay channels corresponds to an integrated luminosity of 765
ps—L.

Comparing the data samples in the decay chain By — Dn, Dy — ¢m, ¢ — KK
selected by cuts or a neural network in an amplitude scan and an unbinned maximum
likelihood fit of Amyg confirms that the neural network selection leads to a significant
improvement of the existing measurement of Amg in the near future.

In addition, a fit framework allowing the measurement of the lifetime of exclusively
reconstructed B mesons from a data sample with a lifetime distribution that is biased

129
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due to trigger and selection cuts has been implemented. The framework allows to
determine the mixing frequency Amg (Amyg) of B® (By) mesons by incorporating
tag decisions provided by flavor tagging algorithms. Beyond the application in a
measurement of Am,, in future the fit framework can be used for the calibration
of advanced tagging algorithms for measurements of the CP-asymmetry in the B;
system.

As a check of both improved selection procedure and fitter framework, the lifetime
and mixing frequency of the B° meson in the final state B — Dm, D — Knrm was
determined by performing either a cut based selection or a neural network selection:

cT(B°) = 468.2 £ 5.4 um
Amy = 0.496 + 0.072 ps after a cut based selection

cT(B°) = 460.8 £ 4.5 um
Amy = 0.507 + 0.069 ps* after a network based selection.

Both results are in good agreement with the world average values of c¢7(B°) = 459.3 +
2.0 pm [15] and Amg = 0.507 4 0.004 ps~' [10].

Also an unbinned maximum likelihood fit of Am, was performed using the decay
channel B, — D,n, Dy — ¢7, ¢ — KK, resulting in

Amg = 17.71 + 0.39 ps™' after a cut based selection
Amg = 17.64 + 0.22 ps~! after a network based selection.

Statistical uncertainties are quoted only. These numbers can not be interpreted as a
final result for Amg, as no treatment of systematic uncertainties is performed.

The improved signal selection using neural networks can be easily transferred to other
exclusive final states and enhance any type of analyses involving exclusively recon-
structed B Meson decays. For an application of the neural network selection in the
context of a Am, measurement, all final states contributing to the measurement have
to be individually optimized with neural networks. First results [66] show that a sig-
nificantly larger improvement of the signal significance SiB can still be achieved for
other B, decay channels like B; — D . These decays are kinematically more com-
plex, involve subresonances and contain, due to six instead of four tracks in the final
state, a larger fraction of combinatorial background. Extending the network selection
to all decay modes relevant for the B, mixing measurement will therefore provide
an improvement of the existing Am, measurement in the near future and contribute
significantly to the discovery of B; oscillations at CDF II.




Appendix A

Definition of Variables

The following variable definitions are used throughout the work presented in this

thesis. The pion sub— and superscripts are used to distinguish the pion 7p originating

directly from the B meson decay from the two pions 7}, and 7% from the subsequent

D meson decay D — K.

\do(B)| Impact parameter of the B meson

L,,(B) Decay length of the B meson defined as L,, = %f, where 7 is the displacement
of the decay position in the (x-y) plane, p’' the momentum vector of the particle
in (x-y) and p; = |p]

Lyy/or,,(B) Decay length significance of the B meson
Xap(B) Three—dimensional x? of the B vertex fit
X;4(B) Two-dimensional x* of the B vertex fit

pi(B) Transverse momentum of the B meson

\do(D)| Impact parameter of the D meson

X%D(D) Three-dimensional x? of the D vertex fit
X;4(D) Two-dimensional x* of the D vertex fit
Lqy/ot,,(D) Decay length significance of the D meson
L,,(D) Decay length of the D meson
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pi(D) Transverse momentum of the D meson
L,,(B — D) Decay length of the D meson with respect to the B meson

min(mg 1, Mg z2) Minimum of the two invariant masses calculated from the four

momenta of either pion from the decay D — K7 and the four momentum of
the kaon

max (M 1. Mg 2) Maximum of the two invariant masses calculated from the four

momenta of either pion from the decay D — Knm and the four momentum of
the kaon

<(p(B),p(mB))emsp  Cosine of the angle between the three-momentum of the B me-

son p(B) and the three-momentum p(7p) of the 75 boosted to the B mesons
rest frame

AR(D,mg) Opening angle (in sterad) between the D meson and the 7 from the decay
B — Dr

pi(mp) Transverse momentum of the mp
pi(K) Transverse momentum of the kaon from the decay D — Knm

pi(m}) Transverse momentum of the first pion from the decay D — K7

pi(m%) Transverse momentum of the second pion from the decay D — K7
\do(mp)| Impact parameter of the 7p

do(K)| Impact parameter of the kaon from the decay D — K

\do(7h)| Impact parameter of the first pion from the decay D — K77
|do(7%)| Impact parameter of the second pion from the decay D — Krr

lifetime-signed do(mp) Lifetime signed impact parameter of the 7p (see fig. A.1)

lifetime—signed do(K) Lifetime signed impact parameter of the kaon from the decay
D — Krnr

lifetime—signed dy(7},) Lifetime signed impact parameter of the first pion from the
decay D — K
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lifetime-signed do(73) Lifetime signed impact parameter of the second pion from the
decay D — K

min |dy| Minimum impact parameter of all four tracks

. d o . . . .
min % Minimum impact parameter significance of all four tracks

minp, Minimum transverse momentum of all four tracks
helicity angle K! Cosine of the angle between the three-momentum of the B, meson

p(B) and the three—-momentum p(K!) of the first of the two kaons from the decay
¢ — KK boosted to the B; mesons rest frame (the “helicity angle”)

Mg kK Invariant mass of the decay ¢ — KK

p (B)

E (track)

Primary Vertex

Figure A.1: Definition of the lifetime—signed impact parameter for a track in an event
with a B decay. d¥* = |dy| signum(dy pp)



Appendix B

Details of the Variable Significance
Table

Tables 6.1, 6.2 and 6.3 show examples for variable significance tables calculated as part
of the NeuroBayes® preprocessing [34][67][68]. Taking into account all N — 1 training
variables and the training target (i.e. signal or background) the N x N covariance
matrix C' is calculated after the variables’ individual preprocessing. The entries Cj;
are calculated for all pairs of variables (including the target) z;, z;

1
Cij = E Z (ZEZ'— < x; >) . (l‘j— < T >) (Bl)
events
where < x > denotes the average or expectation value of x and n is the number of
training events. The correlation between two variables can be expressed by the entries
of the correlation matrix p;; = ———4 —— where V[z;] denotes the variables’ variance
P = Vi) i

and p;; the correlation coefficient.

The NeuroBayes® preprocessing then decorrelates all training variables by appropri-
ate rotations of the (N — 1) x (N — 1) correlation matrix of the training variables.
The rotations performed to diagonalize the training variables’ correlation matrix are
performed simultaneously on the vector g = (p,..., pn_1) of each training variable’s
correlation to the training target'. The vector p obtained after the (N—-1)x (N—-1)
correlation matrix of the training variables is diagonalized contains the correlations of
the N — 1 decorrelated training variables to the training target. The total correlation
pr of all training variables to the training target then is py? = Zf\;l bit.

To calculate the variable significance table (table B.1 shows an example for such a
variable table obtained after a training with four variables) for each of the N — 1

!The vector g corresponds to the first row of the full N x N correlation matrix of all training
variables and the target.
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Rank Name Significance [o]
1 \do(B)] 163.21
2 | Lyy/or.,(B) 76.62
3 X3p(B) 48.73
4 pi(7mB) 41.43

Table B.1: Example for a variable significance table obtained after the NeuroBayes®
preprocessing.

variables x; the loss of total correlation

2 _ 2 9
Pe; = Pray,..any—1 — PTar,..zic1,@ip1, -1 (B'2)

is calculated if this variable was removed from the set of training variables. The
variable x; where the smallest loss of total correlation occurs is then removed from the
set of variables. In table B.1 this is variable p;(7p), at the bottom of the table. The
significance S of this variable, which is quoted in the right column of table B.1, is then
obtained from S = p,, - v/n where n is the number of events in the training sample.
The significance S of a variable serves as a measure of the additional total correlation
to the target that is introduced by adding this variable to the remaining set of N — 2
training variables. This procedure is repeated with the set of N — 2 variables until
the significance of all variables is calculated. As the significance of the k—th variable
in the table depends only on the & — 1 remaining variables, the variable table is not
necessarily ordered monotonicly in significance.



Appendix C

Derivation of analytic expressions
used in the mixing fit

The probability density function describing a mixing signal that is sculpted by an
efficiency curve €(t) is given in section 5.5 by equation 5.25

pS(tia é-’i: 0t,’i>

B 1 1+ &ADcos(Amt) 1 e o _
_Ns(t,f,at)'( 7e7) @Gl =t <) (C)

1+ ¢ T
A denotes the amplitude factor encountered in section 5.5.1. Here again ® is used as
abbreviation for the convolution integral

_ 1 1+&Dcos(Amt) 1« /
f(tiaé-’i:O't,i) - Ns(t,gjat) ( 1+|5| ;6 T> ®g(t_t,0-t)

— 1 * 14+ &Dcos(Amt) 1 . / ’

‘W'/J 1 VG-t oyt (C2)

and Ps(t;, &, 014) = f(ti, &, 004)-€(t). Tt is advantageous to use cos(Amt) = Re(e ™)
and move to the complex plane for solving the integrals involved in the normalization
of this function. The analytic solution of the integral defined by C.2 is given by

1 0'2
1 e 7(t-%) [ o’ —tr
t o) = — Erfc(7>
St & 0) T V20T

0'2Am2 - 02 02 - tT AmO'
+ EADe™ "2 Red e A=) Erfe + i ] C.3
<ADe {e ' ( V2ot ' V2 >} (C3)

Using expression 7.3
2
()= a;(t—&) e ot ¢ (C.4)
j=0
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as parametrization of the lifetime efficiency curve ensures that the normalization factor
Ns(t;, &, 014) can be calculated analytically. Splitting C.3 into

2
1 e (=% o2 —tr
ti,&i,004) = —7Erf0<7> C.5
it s 01.) 27 €|+ 1 V201 (C:5)

and

1 T T c2Am?2 . 2 _t A
foti & o) = e §ADe” B Re{e"Am(t—T) Erfc(a T4 ma)}
T

leads to
1
Ps(t;, &, 004) = m : (f1(ti,fi,0t,i) + f2(ti;5iaat,i)> -€(t) (C.7)

and the normalization constants ensuring [ Ps(t;,&;, 04;)dt = 1 can be calculated from

oo

Ns(t;, &, 005) = / (fl(tiafi,at,z‘) + fQ(tz‘,fi,Ut,z')> ~e(t) dt (C.8)

— 00

The integral C.8 can be split into six parts for £ = 0 or £ = £1 and sorted in powers
of tN (N =0,1,2), as €(t) from C.4 can be written in the form

2
— 2y oajt G

e(t) = ;(dj + ¢t + bit?) e Ut O(t + ij) (C.9)

where a; = 1/7;, b; = aj, ¢; = —2a,;&; and d; = a]-f]?. This leads to integrals for

NgN(ti, &i,01) of the type
E=0,N=0: Njy(ti,&.003) = [ dje " fi(t;, &, 01,) dt
E=0,N=1: Nj(ti& 00:) = [ cjte " fi(t;, &, 004)dt

f = 0, N = 2 . NgQ(ti, &', Ut,i) bjt2 eiajt fl(ti, 51', Ot,i) dt

Il
— e — Y~

5 = j:]-a N=0: N{U(tz;é.z, Ut,i) dj e_ajth(tiagiao-t,i) dt

=+, N=1: N{1(tiagi;0—t,i) cite” % foty, & 00,) di

52 :i:l, N = 2 . Nfg(tiagiao't,i) — bjt2 eiajth(ti,fi,O't’i) dt
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For each term j = 0,1,2 in €(¢) the six contributions NgN(ti,fi,at,i) add up to
Ni(t;, &, 00:). The overall normalization of Ps(t;,&;, 04;) is then given by

2 2 2 1
Ns(ti, & 00) = Nt &om) = Y Niy(ti, &, 00) (C.10)
J=0 ' i

where j sums over the three components of €(¢), the sum over N adds the different
powers in ¢ for each part of €(¢) and the sum over i puts together the normalizations
for the lifetime and mixing terms. and show tests of the analytical implementation in
C++ program code with a numerical integration algorithm[47].

C.1 Analytical Results of the Normalization Inte-
grals

This section summarizes the analytical results of each integral NgN(ti, &, 01,) obtained
by the help of [69] The integration limits and the index j for the different terms of
€(t) are omitted.

) 2 : 2
Noo = I <e(”‘+1/7)t7 [ea2202+“t+t/7 Erf(aa ki t) - e% Erfc(a T
2 (14 ar) V20 V270

Noi1 = il (—e_at_% o? — 046# \/203 E1rf<oa72 * T)
&+ 1)7v2m0(1 + aT) m V20

(
1 72 a2e? ao’ + 71
4

c me > Er ( oo )
(T +t + art) a_?_MErfc<02—Tt>]>

_|__

2.2 p
(1+ ar)? °

)))
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1 2 2
Noy — be—ol= 57 _\/i(_ 21 90 _ 0202 ; t)
02 2(§+1)T(1+a7)2<6 2 0'7'|: - oo’ + 21— oot +t+ ar

(ac?+)? ac? + 1
+e angt a(l + a0 —ar+ oz3027') Erf( )})

V20

2 2_ aT
+ B E (br [26#72 Erf(aa +T> T
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V270

T
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N12 == bfAD Re{

2
e 5T (—ﬂ(—om? +t+7(2— 0’0 +iAmt + a(—iAmo? + t>))

(ao?+1)?

+e 22 +mo (1 —ar +itAm + oo + o*(1 + z'TAm)02>

Erf(a:j;_; t))

(7i+‘rAm)2a2+2‘r(1+a‘r+i‘rAm)t

—e 277 T <t2 +27t(1 + ot + iAmt))

/(4(1 +ar + iTAm)Q\/i>

+

+7°(2 4 2iAmt + ot — Am’t* + 2at(1 + iAmt))

1 +iTAm)o? — Tt>

V2o

y . 3 2
_26# 7_30Erﬁ<(1+Oz7—l—z7'Am) (aa +t)>}
\/5\/—(1 + ot + z'TAm)602

Erfe ( (

/(1 + ot + iTAm)3

Here Erfi(z) denotes the complex error function defined as
Erfi(z) = —i Erf(iz) (C.11)

The evaluation of the error function Erf(z) with complex argument z is based on a
asymptotic series expansion suggested in [70] defining

w(iz) = ¢ Erf(z) (C.12)
and using the expansion for w
, 1 = (2m — 1!
= 1 - C.13
w(iz) = = |1+ 20" (C.13)

C.2 Numerical Tests of the Analytic Implementa-
tion

The integrals introduced in section C.1 are rather complicated expressions and an
implementation in C++ source code has to be checked for possible programming
mistakes or other types of inconsistencies. This check is performed comparing the
implementation of the analytical solutions of the integrals to a numerical integration
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performed using the ROOT package[47]. Figure C.1 and C.2 show this comparison for
the normalization of f,(t;,&;, 0v,) and fa(t;, &, 0v4) respectively for typical values of all
parameters. In each case the difference between the implementation of the analytical
function and the numerical integral is < 107%, which can be attributed to the limited
precision of the numerical integration routine.
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Figure C.1: Comparison of the implemented analytical solution of the sum of integrals
Noo~+ Noi + Nog, this corresponds to the normalization of the function fi (¢, &, 04,), to a
numerical integration. The top left panel shows fi(¢;,&;, 01;) for some typical values of
ct and o;. The top right panel shows the efficiency curve that is used, the bottom left
panel shows the analytical and numerical integrals ff0.05 f1(ti, &, 014) superimposed,
where the x—axis denotes the upper limit used for the integration, and the bottom
right panel the difference of the two.
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Figure C.2: Comparison of the implemented analytical solution of the sum of integrals
Nig+ Ni1 + Nio, this corresponds to the normalization of the function f(t;, &, 0,), to
a numerical integration. The top left panel shows fy(t;, &, 04,) for some typical values
of er, o,y Am, D and £ = 1, the top right panel shows the efficiency curve that is used,
the bottom left panel shows the analytical and numerical integrals ffo.05 fati, &y 00i)
superimposed, where the x—axis denotes the upper limit used for the integration, and
the bottom right panel the difference of the two.



Appendix D

Comparisons between Data and
Simulated Events

D.1 Overview

This section summarizes the comparisons of simulated events to data for all variables
that have been used for the training of a neural network throughout the scope of this
note. First (section D.2) a comparison between data and simulated events obtained
after a cut based selection is presented for the decay B® — Dr,D — Knam. The
comparisons demonstrates that the agreement between data and simulated events is
generally good and the simulated sample can be used to provide training patterns for
signal events in the network training. In the following section D.3 the correlations
between the variables in data and simulated events are compared, this check shows
that the correlations the neural network is going to learn from the simulation are the
same as in data. Finally section D.4 demonstrates that the agreement between data
and simulated events is still valid when applying a neural network selection on both
data and simulated events. This is important when deriving the lifetime efficiency
curve from the lifetime distribution of simulated signal events (see section 7.2.2). All
checks have been performed for the decay B, — D,n, Dy — ¢, ¢ — KK as well and
show a similarly good description of signal events in data by events obtained from a
simulation.

For the preparation of the plots in each section the signal region is defined as recon-
structed B® mass 420 where o denotes the width of the narrower Gaussian functions
in the signal peak obtained from the fit in figure 6.9 (top). This covers the mass
range [5.2419, 5.3163] GeV. The sideband region is chosen to be the range from [5.4,
5.6] GeV. Before subtracting, the sideband distributions are scaled to the number of
events expected for the combinatorial background contribution in the signal region.
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The sample of simulated events is scaled to the number of true signal events (excluding
contributions from the Cabibbo-suppressed mode B® — DK). Each plot shows the
scaled distribution for simulated events (grey), the sideband subtracted signal from
data (black markers), both normalized to unit area, and for reference the distribution
of the variable in the upper sideband (blue markers).

D.2 Comparison of Distributions after Cuts
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Figure D.1: Comparison of data and simulated events of the impact parameter of
|do(B)| (left) and the two-dimensional x? of the vertex fit of the B (right).
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Figure D.2: Comparison of data and simulated events of the decay length significance
Lyy/or,,(B) of the B® (left) and the distribution of the decay length L,,(B) of the
B (right).
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Figure D.4: Comparison of data and simulated events of three—dimensional y? of the
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Figure D.8: Comparison of data and simulated events of the decay length of the D from
the decay B® — Dr with respect to the B (left) and the opening angle AR(D, 7g)
between D and 7 from the B® — D decay (right).
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Figure D.9: Comparison of data and simulated events of the the lifetime signed impact
parameter di* (left) and the lifetime signed impact parameter significance d{* /o, of
the 7 from the B — Dr decay (right).
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Figure D.10: Comparison of data and simulated events of the the lifetime signed
impact parameter di* (left) and the lifetime signed impact parameter significance
d¥* /o4, of the K from the D — Krr decay (right).

_— -1 . -1
CDF Run 2 Preliminary L =765 pb CDF Run 2 Preliminary L =765 pb
2 009
Z 018 z F
_‘é‘ B _‘é‘o.oaj
aO.lﬁj = F
F 0.07[-
014 [ ]MC signal F [ IMC signal
0.12; * signal 0'06; * signal
C 4 upper SB 0.05 4 upper SB
0.1~ r
£ 0.04
0.08]- F
0.06]— 0'03;7
0.04i 0-02;
002 0.01F-
r F ¢ “n %
0Olat daboboloaad dab | % N IR IR B YO 9W b o
0.2 0.3 0.4 -20 0 20 40 60 80 100
cm significance

Figure D.11: Comparison of data and simulated events of the the lifetime signed
impact parameter di* (left) and the lifetime signed impact parameter significance
d¥* /o4, of the first 7 from the D — K77 decay (right).
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Figure D.12: Comparison of data and simulated events of the lifetime signed impact
parameter di* (left) and the lifetime signed impact parameter significance d* /o, of
the second 7 from the D — K77 decay (right).
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Figure D.13: Comparison of data and simulated events of the angle <(p(B), p(7B))emsB
between p(rg) and p(B) in the B rest frame (left) and the p; of the K from the decay
D — Krr (right).
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Figure D.14: Comparison of data and simulated events of the transverse momenta p,
of the first 7 (left) and the second 7 from the decay D — Knr (right).
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Figure D.15: Comparison of data and simulated events of the impact parameters |dy|
of the mp (left) and the K from the decay D — K7r (right).
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Figure D.16: Comparison of data and simulated events of the impact parameters |dy|
of the first 7 (left) and the second 7 from the decay D — Knr (right).
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Figure D.17: Comparison of data and simulated events of the p; of the D meson from
the decay B — D (left) and the minimum p; of the four stable particles from the

decay chain B® — D7, D — Knrr (right).
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Figure D.18: Comparison of data and simulated events of the minimum impact param-
eter |dy| and the minimum impact parameter significance |dy|/og, of the four stable
particles from the decay chain B — Dr, D — Krr.
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D.3 Comparison of Correlations in Data and Sim-
ulated Events

This section summarizes the data/simulated events comparison of the correlations
between the training variables. As the main benefit from using a network instead
of applying cuts on individual variables arises from taking correlations into account,
it’s important to check that the simulated events simulation properly reproduces the
correlations that are observed in real data. The plots in this section are prepared using
the same sideband subtraction procedure as in the previous section. For each pair of
variables 2-dimensional histograms are prepared for the signal range in data, the upper
sideband region from 5.4 to 5.6 GeV in data and the signal from simulated events.
The distribution from the upper sideband is then subtracted from the distribution in
data. For both data and simulated events then profile plots are created. The following
pages summarize the results of this comparison for most of the variables.
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D.4 Comparison of Data and Simulated Events af-
ter a Network Selection

This section summarizes the comparisons of simulated events to data for all variables
that have been used for the training after a neural network selection, applying the
network cut that optimized —=—. All distributions are prepared in analogy to those
already shown in appendix D.2. Each plot shows the scaled distribution from simu-
lated events (grey), the sideband subtracted signal from data (black markers), both
normalized to unit area, and for reference the distribution of the variable in the upper
sideband (blue markers). For the compilation here distributions of the variables from
the reduced set of training variables compiled in table 6.2 in section 6.5 is displayed.
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Figure D.23: Comparison of data and simulated events of the impact parameter |dy(B)|
of the B (left) and the impact parameter |dy(D)| of the D (right).
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Figure D.24: Comparison of data and simulated events of the three— (left) and two-
dimensional (right) x? of the vertex fit of t he B° (right).
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Figure D.25: Comparison of data and simulated events of the decay length significance
Lyy/or,,(B) of the BY (left) and the decay length significance Ly, /oy, (D) of the D
(right).
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Figure D.26: Comparison of data and simulated events of the L, of the D with respect
to the B vertex and the p; of the pion originating from the decay B® — D (right).
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Figure D.27: Comparison of data and simulated events of the minimum impact pa-
rameter significance |dp|/og4, (left) and the minimum p, of the four stable particles
from the decay chain B — Dnr, D — K7 (right).



Appendix E

Compilation of Fit Templates

This appendix shows an exemplaric compilation of background templates that were
used for fits of the B meson lifetime. All templates are rederived for different network
cuts by applying to the corresponding network cuts on the sample used to fit the
template. The templates shown here enter the lifetime fits in figure 7.4. The function
used to describe the lifetime templates is in every case the sum of two exponential
functions convolved with two Gaussian functions (cf. 7.2):

Py(t) = Np (fl e T Gt —t, ui,o0) + (L= fi) ¢ ®G(t - t',M2,02)>

All parameters of the two exponential functions and the two Gaussian functions are
released in the template fits, in total there are eight free parameters for each template
fit. The parameters of the upper sideband template fit only enter the lifetime fit as
start values, except for the overall normalization, which is fixed to one, and o0;/09,
which is fixed to the value obtained after the template fit, all parameters are floating
in the unbinned maximum likelihood fit. The parameters describing the lifetime dis-
tribution of the decays A, — A.m and B; — Dgm are kept fixed during the unbinned
maximum likelihood fit.
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Figure E.1: Templates describing the contribution of combinatorial background from
5.4 to 5.6 GeV in the lifetime distribution. The distribution displayed in the left
panel was obtained after a cut based selection, the distribution in the panel on the
right hand side results from a neural network selection. The parameters of the fitted
function give the start values for the background contributions for the fits displayed
in figure 7.4.
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Figure E.2: Projection of the fit results from the unbinned maximum likelihood fit
of the background contribution of combinatorial background superimposed on the
lifetime distribution obtained for combinatorial background in the range from 5.4 to
5.6 GeV. The distribution displayed in the left panel is obtained after a cut based
selection, the distribution in the panel on the right hand side results from a network
based selection. The parameters of the superimposed functions result from the fit
displayed in figure 7.4.
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Figure E.3: Templates obtained after a neural network selection describing the con-
tributions of the decays Ay, — A.m and B, — D,r reconstructed as B® — Dr to the
lifetime distribution. The parameters of the fitted functions are used in the fit shown
in the right panel of figure 7.4.
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