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Deutshe Zusammenfassung





IEinf�uhrungDas Ziel der experimentellen Teilhenphysik ist die Erforshung der fundamentalenWehselwirkungen zwishen Elementarteilhen. Nah gegenw�artigem Stand der For-shung ist die Welt aus je drei Generationen von Quarks und Leptonen aufgebaut.Die Wehselwirkung der Elementarteilhen wird beshrieben durh die Theorie derelektroshwahen und starken Wehselwirkung im Rahmen des Standardmodells derTeilhenphysik [1, 2, 3, 4℄. Die �Uberpr�ufung der Vorhersagen des Standardmodells isteine wihtige Aufgabe der experimentellen Teilhenphysik. In den letzten Jahrzehn-ten wurden zu diesem Zwek viele Experimente durhgef�uhrt, die die Vorhersagen desStandardmodells best�atigen konnten. All diesen Experimenten ist gemein, da� durhdie Kollision von Elektronen oder Protonen bei sehr hohen Energien Teilhen mit einergro�en Masse, wie Eihbosonen oder shwere Quarks, erzeugt und untersuht werden.Zur Rekonstruktion dieser Reaktionen dienen Teilhendetektoren, die zum Nahweisder aus den Kollisionen resultierenden Leptonen, Baryonen (gebundene Zust�ande ausdrei Quarks) und Mesonen (gebundene Zust�ande aus einem Quark und einem Anti-quark) verwendet werden. Die Untersuhung dieser Teilhen erlaubt Shlu�folgerungen�uber die Eigenshaften der der Reaktion zugrundeliegenden Wehselwirkung.Im Standardmodell der Teilhenphysik untersheiden sih Eigenzust�ande der shwa-hen Wehselwirkung und Masseneigenzust�ande der Quarks. Dies hat zur Folge, da�Oszillationen zwishen Teilhen{ und Antiteilhenzustand von neutralen Mesonenm�oglih sind. Die Frequenz der Oszillationen h�angt vom Massenuntershied �m zwi-shen shwerem und leihtem Masseneigenzustand ab. Die 3 � 3 Transformations-matrix, die Masseneigenzust�ande der Quarks in Wehselwirkungseigenzust�ande rotiert,hei�t Cabibbo{Kobayashi{Maskawa{ (oder kurz CKM{) Matrix [5, 6℄.Solhe Meson{Antimesonoszillationen konnten erstmals im Jahr 1956 im K0 � �K0System experimentell nahgewiesen werden [7℄. Weitere neutrale Mesonen, bei denendie M�oglihkeit zu Teilhen{Antiteilhenoszillationen besteht, sind D0{, B0{ und Bs{Mesonen. Im Falle des D0{Mesons erwartet man sehr langsame Oszillationen, so da�diese aufgrund der kurzen Lebensdauer dieses Teilhens shwer nahweisbar sind. Er-ste Hinweise auf B0{ und Bs{Mesonoszillationen konnten erstmals 1987 am UA1 [8℄und ARGUS [9℄ Experiment beobahtet werden. Eine zeitaufgel�oste Messung von B{Mesonoszillationen dient der Bestimmung der Oszillationsfrequenz �m. Die Oszillati-onsfrequenz �md des B0{Mesons konnte in den letzten Jahren mit gro�er Genauigkeitbestimmt werden, der aktuelle Weltmittelwert betr�agt �md = 0:507�0:004 ps�1 [10℄.Im Falle des Bs{Mesons erwartet man eine sehr viel h�ohere und dadurh experimen-tell shwieriger au�osbare Oszillationsfrequenz �ms. Bis vor kurzem war nur eine ausResultaten der Experimente am LEP e+e�{Ringbeshleuniger am CERN in Genf, desSLD Experiments am SLAC e+e�{Linearbeshleuniger in Stanford (USA) und des



IICDF Experiments am p�p{Ringbeshleuniger Tevatron in Chiago (USA) abgeleiteteUntergrenze 1 von �ms > 14:4 ps�1 [10℄ bekannt. Eine erste zeitaufgel�oste Messungvon Bs{Oszillationen konnte vor kurzem am CDF II Experiment realisiert werden undresultiert in �ms = 17:33+0:42�0:21�0:07 ps�1 [11℄. Mit Hilfe der Messungen von �md und�ms kann erstmals das Verh�altnis der CKM{Matrixelemente ��Vts=Vtd�� = 0:2087+0:0047�0:0076mit guter Genauigkeit bestimmt werden. Die Signi�kanz des bei CDF II beobahteten�ms{Signals betr�agt 3.5 � und die Wahrsheinlihkeit, ein solhes Signal durh eineFluktuation des Untergrunds zu erhalten, betr�agt 0.5 %.Im Rahmen dieser Arbeit wird ein Algorithmus basierend auf der Verwendung neuro-naler Netze entwikelt, mit dem Zerf�alle von B{Mesonen in exklusive Endzust�ande2e�ektiv von Untergrundereignissen separiert werden k�onnen. Diese Methode wird ver-wendet, um durh eine e�ektivere Selektion von Signalereignissen S bei gleihzei-tig st�arkerer Unterdr�ukung von Untergrundereignissen B die Signi�kanz S des Bs{Oszillationssignals, gegeben durh [12℄S = SpS +B r�D22 e��2t�m2s=2 (1)zu erh�ohen. Der Faktor �D2 ist ein Ma� f�ur die Leistungsf�ahigkeit von Taggingalgo-rithmen, die bestimmen, ob ein rekonstruiertes B{Meson als Meson oder Antimesonerzeugt wurde. Der Faktor e��2t�m2s=2 gibt an, wie sehr das Oszillationssignal durhdie experimentelle Au�osung �t des rekonstruierten Zerfallsvertexes vershmiert wird.Ziel dieser Arbeit ist die Verbesserung des Faktors SpS+B unter Verwendung neuro-naler Netze. Im Rahmen einer aktualisierten Messung von �ms am CDF II Experi-ment wird die daraus resultierende Verbesserung die Signi�kanz S des �ms{Signalserh�ohen, damit die Wahrsheinlihkeit einer Untergrunduktuation verringern und sozur endg�ultigen Etablierung des Bs{Oszillationssignals beitragen.�Uber die Selektion von Ereignissen hinaus wird im Rahmen dieser Arbeit eine Me-thode zur Bestimmung der B{Mesonlebensdauer und der Oszillationsfrequenz �mf�ur Datens�atze entwikelt, deren Lebensdauerverteilungen durh Vorselektionen unddie experimentelle Au�osung verformt sind. Diese Methode kann einerseits als un-abh�angiger Test des Ergebnisses f�ur �ms in [11℄ dienen, andererseits aber auh zurKalibration von Taggingalgorithmen verwendet werden, die im Rahmen der Messungder CP{Asymmetrie im Bs{System Anwendung �nden. Auh die e�ektive Selektionvon exklusiven B{Mesonzerf�allen mit Hilfe neuronaler Netze ist niht auf eine An-wendung im Rahmen einer Bs{Oszillationsanalyse beshr�ankt, sondern kann in allenArten von Analysen, f�ur die solhe Endzust�ande relevant sind, Verwendung �nden.1In dieser Arbeit wird die Massendi�erenz �m in Einheiten einer Oszillationsfrequenz angegeben,dies impliziert ~ =  = 1.2Bei exklusiven Endzust�anden handelt es sih um eindeutig bestimmte Zerfallskan�ale, bei denenalle in der Zerfallskette vorkommenden Teilhen vollst�andig rekonstruiert werden.
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Abbildung 1: Der CDF II Detektor.Experimenteller AufbauDie in dieser Arbeit verwendeten Daten wurden mit Hilfe des CDF II Detektors amFermi National Aelerator Laboratory in Batavia bei Chiago (USA) gesammelt. DerCDF II Detektor 3 wird von einer internationalen Kollaboration betrieben, an der etwa500 Physiker und a. 60 Universit�aten und Forshungsinstitute weltweit beteiligt sind.Der CDF II Detektor zeihnet Ereignisse aus Proton{Antiprotonkollisionen bei einerShwerpunktsenergie von ps = 1:96 TeV auf und be�ndet sih an einem der beidenWehselwirkungspunkte des Tevatrons, eines symmetrishen Kreisbeshleunigers miteinem Radius von 1 km.Der CDF II Detektor ist ein zylindersymmetrisher Mehrzwekdetektor, der f�ur ei-ne Vielzahl von physikalishen Fragestellungen Verwendung �ndet. Abbildung 1 zeigtshematish den Aufbau des Detektors. Die innersten Komponenten des CDF II Detek-tors sind der Siliziumvertexdetektor und die ihn umgebende Spurkammer COT. BeideKomponenten bilden ein System, das den Nahweis von Spuren geladener Teilhen3CDF steht f�ur \Collider Detetor experiment at Fermilab".



IVerm�ogliht. Au�erhalb der Spurkammer erzeugt ein supraleitender Solenoidmagnet einhomogenes Magnetfeld von 1.4 Tesla, das die Spuren der geladenen Teilhen kr�ummtund so die Messung des Transversalimpulses erm�ogliht.Der Siliziumvertexdetektor besteht aus den Subkomponenten Layer00, SVXII undISL. Layer00 bildet die innerste Lage von Siliziumsensoren im Abstand r = 1:6 mvom Wehselwirkungspunkt. SVXII, das Kernst�uk des Detektors, besteht aus sehsdoppelseitigen Lagen von Siliziumsensoren, die Messungen in allen drei Raumkoordi-naten erlauben. Layer00 und SVXII erm�oglihen die Rekonstruktion von Zerfallsverti-zes kurzlebiger Teilhen mit hoher Pr�azision. Als Bindeglied zwishen SVXII und derSpurkammer fungiert der aus zwei weiteren Lagen von Siliziumsensoren bestehendeISL Subdetektor. Die Spurkammer selbst besteht aus 96 Lagen von Me�dr�ahten, diedie Messung von Transversalimpulsen von geladenen Teilhen mit hoher Genauigkeiterm�oglihen. Zwishen Spurkammer und Solenoidmagnet be�ndet sih der zur Teil-henidenti�kation verwendete Flugzeitdetektor. Au�erhalb des Magnetfeldes be�ndensih elektromagnetishe und hadronishe Kalorimeter, die der Energiemessung vonTeilhen, bzw. Jets bei hohen Energien dienen. Die Kalorimeter werden von einemSystem bestehend aus Szintillatoren und Spurkammern zum Nahweis von Myonenumgeben.Aufgrund der hohen Kollisions{ und Wehselwirkungsrate bei CDF II ist es wederm�oglih noh w�unshenswert, alle resultierenden Ereignisse auf Speihermedien auf-zuzeihnen. Nur wenige dieser Ereignisse sind von physikalishem Interesse, daher �n-det bei CDF II ein aufwendiges, mehrstu�ges Filtersystem (Trigger) zur Vorselektionvon potentiell interessanten Ereignissen Anwendung. Der f�ur die vorliegende Arbeitverwendete Datensatz basiert vollst�andig auf Ereignissen, die mit Hilfe des Zweispurt-riggers vorselektiert wurden. Der dem Zweispurtrigger zugrundeliegende Gedanke ist,da� Spuren, die aus dem Zerfall eines Teilhen mit einer vergleihsweise langen Lebens-dauer resultieren, wie z. B. eines B{Mesons, durh eine Vershiebung ihres Sto�parame-ters in Bezug auf den Wehselwirkungspunkt identi�ziert werden k�onnen. Abbildung 2veranshauliht den Zusammenhang zwishen dem Sto�parameter der Spuren und derLebensdauer des Teilhens. Der Zweispurtrigger selektiert Ereignisse, die mindestenszwei vom Wehselwirkungspunkt vershobene Spuren mit einem Transversalimpulsvon pt > 2 GeV4 beinhalten.
4In dieser Arbeit werden Energie, Impuls und invariante Masse in der Einheit GeV angegeben.Ein GeV entspriht 1:602 176 462(63) � 10�10 Joule, die Umrehnung von Impulsen (Massen) in dieEinheiten kg ms (kg) erfolgt mit der Division durh  (2), wobei  = 299 792 458 ms .
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Abbildung 2: Veranshaulihung der Funktionsweise des Zweispurtriggers. Die Lebens-dauer der B{Mesonen f�uhrt zu einer Vershiebung von Zerfallsort (deay point) undProduktionsort (prodution point), Spuren aus diesem Zerfall zeihnen sih durheinen vom Produktionsort vershobenen Sto�parameter d0 aus.Rekonstruktion von B{MesonenDie in dieser Arbeit verwendeten Daten wurden am CDF II Experiment im Zeitraumvon Februar 2002 bis Dezember 2005 mit Hilfe des Zweispurtriggers gesammelt undentsprehen einer integrierten Luminosit�at von 765 pb�1.Trotz der Anreiherung des Datensatzes mit langlebigen Teilhen durh den Zweispur-trigger enth�alt nur ein winziger Bruhteil der Ereignisse tats�ahlih den Zerfall einesB{Mesons. Statt zweier aus dem Zerfall eines langlebigen Teilhens stammender Spu-ren erf�ullt oft lediglih eine zuf�allige Kombination von zwei aus Untergrundereignissenresultierenden Spuren das Triggerkriterium und wird selektiert. Es bedarf eines ausge-reiften und e�ektiven Rekonstruktionsalgorithmus, der es erm�ogliht, aus der Vielzahlvon Ereignissen diejenigen zu identi�zieren, die den Zerfall eines B{Mesons in einenexklusiven Endzustand enthalten.



VIDie Grundlage zur Rekonstruktion exklusiver Endzust�ande bildet die pr�azise Messungvon Trajektorien geladener Teilhen durh Spurrekonstruktionsalgorithmen. Da beider Rekonstruktion von B{Mesonen sowohl eine sehr genaue Bestimmung des Zer-fallsvertexes als auh eine pr�azise Bestimmung des transversalen Impulses von Inter-esse sind, werden Spuren verwendet, die sowohl im Siliziumvertexdetektor als auh inder Spurkammer nahgewiesen wurden und so eine genaue Bestimmung aller Spur-parameter erlauben. Der f�ur diese Arbeit verwendete Spurrekonstruktionsalgorithmusbasiert auf dem Kalman�tter [13℄ und kombiniert die Information beider Detekto-ren durh Extrapolation von Spuren der Spurkammer in den Siliziumvertexdetektor.Die Rekonstruktion des Zerfalls eines B{Mesons in einen exklusiven Endzustand er-folgt durh die sukzessive Rekonstruktion der Zerfallsvertizes aller in der Zerfallsket-te auftretenden Zwishenzust�ande. So beginnt z.B. die Rekonstruktion des ZerfallsB0 ! D�;D ! K�� mit der Rekonstruktion des Zerfalls D ! K��, indem alleKombinationen von Spuren durh einen Vertex�t auf die Hypothese �uberpr�uft wer-den, ob die drei Spuren ihren gemeinsamen Ursprung an einem Punkt haben und obdie invariante Masse der Spurkombination der Ruhemasse des D{Mesons entspriht.Als n�ahster Shritt werden alle D{Mesonkandidaten mit den verbliebenen Spurenkombiniert und auf die Hypothese �uberpr�uft, ob D{Meson und vierte Spur mit demZerfall eines B0{Mesons kompatibel sind. Ereignisse, die niht mit dieser Hypothesevereinbar sind, k�onnen als Untergrundereignisse klassi�ziert und verworfen werden.Der auf diese Weise vorselektierte und mit B{Mesonen angereiherte Datensatz dientals Grundlage f�ur den im Rahmen dieser Arbeit entwikelten Algorithmus zur opti-mierten Selektion von B{Mesonzerf�allen mit Hilfe neuronaler Netze.Signaloptimierung mit Neuronalen NetzenDie Signi�kanz S, mit der die Bs{Oszillationsfrequenz �ms gemessen werden kann,wird von vershiedenen experimentellen Faktoren limitiert (siehe Gleihung 1). Einerdieser Faktoren ist die Signalsigni�kanz SpS+B , deren Optimierung der Fokus der vor-liegenden Arbeit gilt. Sie wird bestimmt durh die Anzahl von Signalereignissen S,die bei einem Niveau von B Untergrundereignissen beobahtet werden. Das bisher beiCDF II verwendete Verfahren zur Optimierung der Signalsigni�kanz SpS+B basiert aufeiner sequentiellen Shnittoptimierung und nutzt Informationen zur Separation vonSignal{ und Untergrundereignissen in niht optimaler Weise. Die Methode verwendetzur Separation nur eine begrenzte Zahl von Kenngr�o�en (Variablen) und vernahl�assigtinsbesondere deren Korrelationen vollst�andig. Der im Rahmen dieser Arbeit unter Ver-wendung neuronaler Netzwerke entwikelte Optimierungsalgorithmus ist dagegen inder Lage, alle zur Charakterisierung von B{Mesonzerf�allen zur Verf�ugung stehenden
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Abbildung 3: Zusammensetzung des Datensatzes, der f�ur das Netzwerktraining imKanal B0 ! D�;D ! K�� verwendet wird. Muster f�ur Untergrundereignisse f�urdas Netzwerktraining werden aus dem Massenbereih von 5.4 bis 5.6 GeV des oberenSeitenbands entnommen.Variablen zu verwenden und diese unter Ber�uksihtigung aller Korrelationen optimalzu kombinieren. Zur Optimierung der Kennzahl SpS+B wird ein neuronales Netzwerktrainiert, das B{Mesonsignalereignisse von Untergrundereignissen zu trennen lernt.Das Ziel ist, f�ur jedes Ereignis im zur Verf�ugung stehenden Datensatz die Wahrshein-lihkeit, da� es sih um den Zerfall eines B{Meson handelt, zu berehnen und denShnitt auf diese Wahrsheinlihkeit, der SpS+B maximiert, zu ermitteln. Es handeltsih dabei um ein bin�ares Klassi�zierungsproblem, wof�ur man Muster f�ur Signal{ undUntergrundereignisse ben�otigt, um das Netzwerk zu trainieren. Als Muster f�ur Signa-lereignisse werden mit Hilfe einer PYTHIA{Simulation [14℄ erzeugte B{Mesonzerf�alleverwendet. Muster f�ur Untergrundereignisse k�onnen niht mit Hilfe einer Simulationerzeugt werden, da die komplexe Zusammensetzung des an einem Hadronenbeshleu-niger beobahteten Untergrunds bisher niht vollst�andig durh Modelle beshriebenwerden kann. Ein alternativer Ansatz besteht in der Verwendung von Untergrundereig-nissen aus realen Daten, wie im folgenden dargelegt wird. Abbildung 3 zeigt die Vertei-lung der invarianten B{Mesonmasse im Endzustand B0 ! D�;D! K��. Im Bereihvon 5.2 bis 5.35 GeV ist das Resonanzsignal des Zerfalls sihtbar. Im Bereih nied-rigerer invarianter Masse sind Strukturen sihtbar, die unvollst�andig rekonstruiertenB0{Zerf�allen zugeordnet werden k�onnen. Im Bereih �uber 5.4 GeV wird das Massen-spektrum vollst�andig von kombinatorishem Untergrund, resultierend aus zuf�alligenKombinationen von Spuren, dominiert. Ziel der Signaloptimierung ist, den Beitrag die-



VIIIses kombinatorishen Untergrunds in der Signalregion weitgehend zu eliminieren unddabei weiterhin m�oglihst e�ektiv Signalereignisse zu selektieren. Um dies zu errei-hen, wird ein neuronales Netzwerk zur Separation von B{Mesonsignalereignissen vonkombinatorishem Untergrund trainiert, wobei Ereignisse aus realen Daten im Mas-senbereih von 5.4 bis 5.6 GeV als Muster f�ur kombinatorishe Untergrundereignissedienen. Basierend auf dem Training werden alle Ereignisse des Datensatzes klassi�-ziert und die Signalsigni�kanz SpS+B durh Selektion des optimalen Shnittes auf dieAusgabe des Netzwerks maximiert.Diese Strategie wird im Rahmen dieser Arbeit am Beispiel des Zerfalls B0 ! D�;D!K�� entwikelt und m�oglihe systematishe E�ekte werden eingehend untersuht. ImVergleih zur bisher bei CDF II verwendeten sequentiellen Shnittoptimierung kanndie Signalsigni�kanz SpS+B durh die Verwendung eines neuronalen Netzwerks in die-sem Zerfallskanal um 11 % verbessert werden. Wollte man den gleihen Wert mit einershnittbasierten Selektion erreihen, ben�otigte man dazu 24 % mehr an Daten 5. Ab-bildung 4 vergleiht die shnittbasierte mit der aus der Verwendung eines neuronalenNetzwerks resultierenden Selektion. Beide Selektionen wurden auf maximale Signalsi-gni�kanz SpS+B hin optimiert. Man kann der Abbildung entnehmen, da� das Netzwerkauf dem gleihen Datensatz bei einem �ahnlihen Untergrundniveau sehr viel e�ektiverSignalereignisse selektiert.Die Optimierungsstrategie kann direkt auf weitere exklusive B{Mesonzerf�alle ange-wandt werden. Um optimale Ergebnisse zu erzielen, mu� jedoh jeder einzelne End-zustand auf besondere Charakteristika, wie Winkelkorrelationen zwishen den Toh-terteilhen oder das Vorhandensein von Subresonanzen, untersuht werden, um demNetzwerk alle relevanten Informationen zur Separation von Signal und Untergrund zurVerf�ugung zu stellen. Als weiteres Beispiel mit direkter Relevanz f�ur eine Messung von�ms wird die Selektionsmethode auf den Zerfallskanal Bs ! Ds�;Ds ! ��; �! KKangewandt. Im Vergleih zur mit Shnitten erzielten Signalsigni�kanz kann unter Ver-wendung eines neuronalen Netzwerks der maximaleWert f�ur SpS+B um 16 % verbessertwerden. Wollte man den gleihen Wert mit einer shnittbasierten Selektion erreihen,ben�otigte man dazu 35 % mehr an Daten. Die verbesserte Signalselektion l�a�t, un-ter Ber�uksihtigung der Ortsau�osung �t der selektierten Ereignisse (siehe Gleihung1), eine Erh�ohung der Signi�kanz der Messung von �ms bei CDF II im ZerfallskanalBs ! Ds�;Ds ! ��; �! KK um 14 % erwarten.
5In diesen Wert geht die Annahme ein, da� das Verh�altnis von Signal{ zu UntergrundereignissenS=B der shnittbasierten Selektion konstant bleibt, wenn weitere Daten hinzugef�ugt werden.
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Abbildung 4: Vergleih der durh Shnitte/neuronales Netz selektierten Ereignisse.Die linke Abbildung zeigt die Verteilung der invarianten Massen von durh Shnit-te (hellblau, \Shnitte") bzw. neuronales Netz (shwarz, \Netz") selektierten B{Mesonkandidaten. Die mittlere und rehte Abbildung verdeutlihen die Gemeinsam-keiten (gr�une Verteilung) und Untershiede (rote Verteilung) beider Selektionen. Ins-besondere kann man der rehten Abbildung entnehmen, da� das neuronale Netzzus�atzlihe Signalereignisse selektiert, die durh Anwendung der Shnittselektion ver-worfen worden w�aren.
Methode zur Bestimmung von �mIm Rahmen dieser Arbeit wird eine Maximum{Likelihood{Methode zur direkten Be-stimmung der B{Mesonlebensdauer � und der Oszillationsfrequenz �m implementiertum zu demonstrieren, da� sih die Ereignisselektion mit Hilfe eines neuronalen Netzesin einer Messung von �m verwenden l�a�t. Die Methode basiert auf der Beshreibungder Verteilungen der invarianten Massen m und Lebensdauern t von B{Mesonsignal{(S) und Untergrundereignissen (B). F�ur eine Bestimmung der Oszillationsfrequenzmu� dar�uber hinaus die Information, ob ein Meson als (Anti{)Teilhen erzeugt wurdeund zum Zeitpunkt t als (Anti{)Teilhen zerfallen ist, vorliegen. Diese Informationwird durh Taggingalgorithmen ermittelt und ist in der Variablen � enthalten. DieWahrsheinlihkeitsdihte P (m; t; �; �t), die diese Informationen f�ur Signal{ und Un-



Xtergrundereignisse ber�uksihtigt, hat die FormP (m; t; �; �t) =(1� fB) � PS(m) � PS(t; �; �t) + fB � PB(m) � PB(t)PS;B(m) sind dabei Parametrisierungen der Verteilungen der invarianten Massen vonSignal{ und Untergrundereignissen. Der Parameter fB gewihtet die relativen Antei-le von Signal{ und Untergrundereignissen. PB(t) parametrisiert die Lebensdauerver-teilung von Untergrundereignissen und PS(t; �; �t) enth�alt die Lebensdauerverteilungvon B{Mesonsignalereignissen unter Ber�uksihtigung der Teilhen{Antiteilhenoszil-lationen. PS(t; �; �t) hat die FormPS(t; �; �t) = 1NS(t; �; �t) �1 + �D os(�mt)1 + j�j 1� e� t� �
 G(t� t0; �t) � �(t)und ber�uksihtigt die Vershmierung des Oszillationssignals durh die Faltung miteiner Au�osungsfunktion G(t � t0; �t) und die limitierte Akzeptanz in Form der Ef-�zienzfunktion �(t). Der Faktor NS(t; �; �t) dient der Normierung der Wahrshein-lihkeitsdihte und D ist ein Ma� f�ur die Reinheit (Dilution) der Entsheidung desTaggingalgorithmus.Durh die Minimierung der negativen Log Likelihood FunktionL = �2Xi lnh�1� fB� � PS(ti; �t;i) � PS(mi) + fB � PB(ti) � PB(mi)if�ur die Bestimmung der Lebensdauer der B{Mesonen bzw.L = �2Xi lnh�1� fB� � PS(ti; �i; �t;i) � PS(mi) + fB � PB(ti) � PB(mi)izur Bestimmung der Oszillationsfrequenz �m k�onnen im Rahmen eines UnbinnedMaximum Likelihood Fits unter Verwendung aller selektierter Ereignisse i mit ihrerjeweils untershiedlihen Ortsau�osung �t;i die Lebensdauer der B{Mesonen, bzw. �mbestimmt werden.Die Anwendung der Methode auf einen durh das neuronale Netz selektierten Da-tensatz demonstriert, da� es m�oglih ist, die Vershiebung in der Verteilung der B{Mesonlebensdauer durh Trigger{ und Netzwerkselektion mit Hilfe einer Simulation zubeshreiben. Die durh ein neuronales Netzwerk im ZerfallskanalB0 ! D�;D! K��selektierten Ereignisse konnten verwendet werden, um die Lebensdauer � des B0{Mesons und dessen Oszillationsfrequenz �md�(B0) = 460:8� 4:5 (stat.) �m�md = 0:507 � 0:069 (stat.) ps�1



XIin guter �Ubereinstimmung mit den Weltmittelwerten �(B0) = 459:3 � 2:0�m [15℄und �md = 0:507� 0:004 ps�1 [10℄ zu bestimmen.Die Implementierung der Methode zur Bestimmung von �m kann als unabh�angigerTest des bisher von CDF II ver�o�entlihten Ergebnisses f�ur �ms dienen. In die Mes-sung von �ms bei CDF II gehen insgesamt f�unf exklusive hadronishe Endzust�andedes Bs Mesons ein. Sowohl zur �Uberpr�ufung des Ergebnisses als auh f�ur eine Ver-besserung durh die Verwendung neuronaler Netze zur Ereignisselektion m�ussen alsomehrere Zerfallskan�ale in die Analyse einbezogen werden.Die Verwendung der durh das neuronale Netzwerk selektierten Ereignisse im Zer-fallskanal Bs ! Ds�;Ds ! ��; � ! KK f�ur einen Amplitudensan [12℄ von �mszeigt, da� die auf der Verwendung des neuronalen Netzwerks basierte Selektion ei-ne deutlihe Verbesserung der Signi�kanz der Messung von �ms erwarten l�a�t. DerAmplitudensan mi�t den Anteil einer bestimmten Oszillationsfrequenz indem die Am-plitude A des Oszillationssignals als freier Parameter im Fit f�ur jeweils fest Werte derOszillationsfrequenz �ms angepa�t wird. Idealerweise nimmt die Amplitude f�ur dieim Datensatz enthaltene Oszillationsfrequenz den Wert eins an und f�ur alle anderenFrequenzen den Wert null. Abbildung 5 zeigt, da� die Sensitivit�at f�ur eine Messungvon �ms in dem Zerfallskanal Bs ! Ds�;Ds ! ��; �! KK bei der Verwendung desaus 765 pb�1 bestehenden Datensatzes von ' 17 ps�1 auf ' 18:5 ps�1 erh�oht wird.Die Sensitivit�at wird durh einen Amplitudensan mit zuf�alliger Taggingentsheidungermittelt und ist gegeben durh die Frequenz, bei der der Fehler auf die Amplitude1:65 �A (95 % Kon�denzintervall) die Linie A = 1 shneidet.Die Verwendung des durh das Netzwerk selektieren Datensatzes in einem UnbinnedMaximum Likelihood Fit von �ms ergibt f�ur diesen Zerfallskanal das vorl�au�ge Er-gebnis �ms = 17:64 � 0:22 (stat.) ps�1F�ur die aus dem Amplitudensan abgeleitete Sensitivit�at und f�ur das Ergebnis von�ms wurde kein systematisher Fehler ermittelt, nur die statistishe Unsiherheit derAmplituden und von �ms ist angegeben, so da� es sih niht um eine Messung derSensitivit�at oder �ms handelt. Sowohl Amplitudensan als auh der Fit von �msdienen lediglih dem Vergleih der shnittbasierten und der auf dem neuronalen Netzbasierten Selektionen. F�ur eine Messung von �ms unter Verwendung der Selektiondurh neuronale Netzwerke m�ussen weitere exklusive Zerfallskan�ale des Bs{Mesons indie Analyse einbezogen werden. Die Steigerung der Sensitivit�at der Messung durhdie Verwendung der auf dem neuronalen Netz basierenden Selektion l�a�t eine deutliherh�ohte Signi�kanz des bei CDF II beobahteten Bs{Oszillationssignals erwarten, so-bald alle Zerfallskan�ale ber�uksihtigt werden.
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Abbildung 5: Ergebnis des Amplitudensans f�ur �ms im Vergleih f�ur Ereignisse,die mit der herk�ommlihen Shnittmethode (links) bzw. durh ein neuronales Netz(rehts) im Zerfallskanal Bs ! Ds�;Ds ! ��; � ! KK selektiert wurden. Die Sen-sitivit�at (\Sensitivity"), gegeben durh den Shnittpunkt der gepunkteten Linie mitder Geraden Amplitude = 1, wird von ' 17 ps�1 auf ' 18:5 ps�1 erh�oht.Zusammenfassung und AusblikIm Rahmen der vorliegenden Arbeit wurde eine Methode zur Optimierung der Si-gnalsigni�kanz SpS+B f�ur Zerf�alle von B{Mesonen in exklusive Endzust�ande unterVerwendung neuronaler Netze entwikelt. Im Vergleih zu der bisher bei CDF II an-gewandten Methode der sequentiellen Shnittoptimierung kombiniert ein neuronalesNetz die zur Verf�ugung stehende Information unter Ber�uksihtigung von Korrelatio-nen optimal. Die Methode wurde am Beispiel des Zerfallskanals B0 ! D�;D! K��entwikelt und validiert. Im Zerfallskanal B0 ! D�;D ! K�� verbessert die aufdem neuronalen Netz basierte Ereignisselektion die Signalsigni�kanz SpS+B um 11 %.Um das gleihe Ergebnis mit Hilfe der shnittbasierten Selektion zu erzielen, ben�otigteman daf�ur einen um 24 % gr�o�eren Datensatz. Die Methode zur Bestimmung der B{Mesonlebensdauer und der Oszillationsfrequenz �m konnte die durh das neuronaleNetz selektierte Ereignisse verwenden, um im Zerfallskanal B0 ! D�;D ! K�� mitdem Weltmittelwert konsistente Ergebnisse f�ur Lebensdauer und Oszillationsfrequenzzu bestimmen.Die auf der Verwendung eines neuronalen Netzwerks basierende Selektionsmetho-de wurde ebenfalls auf den f�ur eine Bestimmung von �ms relevanten Zerfallska-nal Bs ! Ds�;Ds ! ��; � ! KK angewandt und konnte die Signalsigni�kanzSpS+B um 16 % erh�ohen. Um das gleihe Ergebnis mit Hilfe der shnittbasierten Se-lektion zu erzielen, ben�otigte man einen um 35 % gr�o�eren Datensatz. Die e�ekti-



XIIIvere Ereignisselektion l�a�t eine Verbesserung der Signi�kanz der �ms{Messung beiCDF II um 14 % in diesem Zerfallskanal erwarten. Der Vergleih der im ZerfallskanalBs ! Ds�;Ds ! ��; � ! KK durh Shnitte und Netzwerk selektierten Ereignissein einem Unbinned Maximum Likelihood Fit zur direkten Bestimmung oder in einerAmplitudensanmethode zur indirekten Bestimmung von �ms best�atigt diese Erwar-tung. Die Methode zur Signaloptimierung unter Verwendung neuronaler Netze kannleiht auf weitere in der Messung von �ms verwendete Bs{Zerfallskan�ale erweitert wer-den und l�a�t, wenn angewandt auf komplexere Zerf�alle wie Bs ! Ds���, eine nohweitaus gr�o�ere Verbesserung der Signalsigni�kanz erwarten. Die verbesserte Signals-elektion wird im Rahmen eines aktualisierten Ergebnisses wesentlih zur endg�ultigenEtablierung des Bs{Oszillationssignals bei CDF II beitragen.�Uber eine Verwendung im Rahmen einer Oszillationsanalyse hinaus kann der Algorith-mus zur Signalselektion in allen Arten von Analysen verwandt werden, f�ur die Zerf�allevon B{Mesonen in exklusive Endzust�ande relevant sind. Die Methode zur Bestimmungvon �ms kann in Zukunft zur Kalibration von Taggingalgorithmen zur Verwendungbei einer Messung der CP{Asymmetrie im Bs{System verwendet werden.
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IntrodutionThe universe that surrounds us is omposed of elementary partiles known as quarksand leptons. These partiles and the ompounds they form, for example protons,atoms, stones or humans, are generally referred to as matter, mostly onsisting oflight quarks and eletrons. But this is not the full story. It was suggested by Dira in1928 and then atually on�rmed by Anderson in 1933 [16℄ that not only eletrons butalso anti{eletrons, also alled positrons, exist. The positron has the same propertiesas the eletron, exept for a harge of +1 and the fat that it's not made of matter butantimatter, whih means that eletron and positron will annihilate into two masslessphotons when they meet. It shows out that not only the eletron has an antimatterpartner, but that for all quarks and lepton there exist orresponding antiquarks andantileptons.Quarks don't exist as free partiles, they form bound states. Examples for suh boundstates are the proton, ontaining two u and one d quark, or the neutron, omposed ofone u and two d quarks. Generally bound states omposed of three quarks are alledbaryons, bound states ontaining a quark and an antiquark form mesons.Certain types of mesons show a partiularly interesting behavior { they osillate,whih means that a meson an transform into its own antipartile, the orrespond-ing antimeson, by so{alled avor hanging weak interations. Within the StandardModel of partile physis this is explained by a di�erene between avor and masseigenstates, leading to a mass di�erene �m between the meson's mass eigenstates. Atime{resolved measurement of meson{antimeson osillations an be used to determine�m, whih is diretly proportional to the osillation frequeny. Meson{antimesonosillations were �rst observed in 1956 in the K0 � �K0 system [7℄, whih is omposedof �sd � s �d quarks. Other neutral mesons that have the potential to osillate are theD0 � �D0 (�u � �u), B0 � �B0 (�bd � b �d) and Bs � �Bs (�bs � b�s) systems. While in thease of the D0� �D0 system the mass di�erene between both states is predited to bevery small, leading to a very small osillation frequeny whih renders the osillationsdiÆult to observe, the osillations of the B0 and Bs mesons are long established. The�rst evidene of neutral B meson osillations were observed in 1987 by the UA1 [8℄ andARGUS [9℄ experiments. Today very preise time{resolved measurements of B0 � �B0osillations exist and provide a world average value of �md = 0:507� 0:004 ps�1 [10℄.15
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Figure 6: Amplitude san for �ms using all available experimental results prior to2006 (left) [10℄ and the amplitude san from CDF II (right) [11℄.A time{resolved measurement in the Bs� �Bs system proves to be more diÆult due tothe muh more rapid osillations and the smaller prodution rate ompared to the B0system. Until very reently only an upper limit of �ms > 14:4 ps�1 [10℄ on the mixingfrequeny �ms was known, based on the results of LEP, SLD and CDF. At the timeof this write{up, for the �rst time a diret measurement of time{resolved Bs ouldbe realized by the CDF II ollaboration, quoting a value of �ms = 17:33+0:42�0:21 � 0:07ps�1 [11℄. The signi�ane of the Bs osillation signal is 3.5 � and the probabilityof a bakground utuation produing this kind of signal is 0.5 %. Figure 6 om-pares the amplitude sans used to derive the limit of 14.4 ps�1 (left) to the amplitudesan obtained as part the CDF II result (right). The CDF II Collaboration (CDFmeans \Collider Detetor experiment at Fermilab") is an international ollaborationof about 500 Physiists and 60 universities and national laboratories. The aim of thework presented in this thesis is to further improve the measurement of �ms at CDF IIby introduing a neural network algorithm for an improved andidate seletion withthe aim to separate signal from bakground events more eÆiently. The �ms signalsigni�ane sales with SpS+B , where S denotes the number of signal events observedin a data sample on a bakground level of B events. Using a neural network to improvethe signal signi�ane SpS+B an lead to a more signi�ant measurement of �ms andhelp to exlude the possibility of a bakground utuation.In addition to an improved signal seletion, also an unbinned maximum likelihood �tfor a diret measurement of �ms is implemented as part of the work presented in thisthesis. The �t is used to demonstrate that a neural network seletion an be easilyintegrated into a measurement of �ms. In addition, the unbinned maximum likeli-



Introdution 17hood �t framework an be used for an independent ross hek of the results presentedin [11℄.Both improved signal seletion and mixing �t framework an be used in many appli-ations beyond the sope of a Bs mixing measurement. Assuming �ms to be known,its value an be �xed and the �t framework an be used to alibrate advaned taggingalgorithms on Bs samples. These taggers an be applied in measurements of the CPasymmetry in the Bs system. The improved signal seletion ahieved by neural net-work algorithms an be used for any kind of analysis involving the deay of Bs mesonsinto exlusive �nal states. Examples for suh appliations ould be the measurementof branhing frations or spetrosopy in the Bs system.The work presented in this thesis is mainly foused on the appliation in a �ms mea-surement. Chapter 1 starts with a general theoretial introdution on the unitaritytriangle with a fous on the impat of a �ms measurement. Chapter 2 then desribesthe experimental setup, onsisting of the Tevatron ollider and the CDF II detetor,that was used to ollet the data. In hapter 3 the onept of parameter estimationusing binned and unbinned maximum likelihood �ts is laid out. In addition an intro-dution to the NeuroBayes r neural network pakage is given. Chapter 4 outlines theanalysis steps walking the path from the trigger level seletion to fully reonstruted Bmesons andidates. In hapter 5 the onepts and formulas that form the ingredientsto an unbinned maximum likelihood �t of �ms (�md) from a sample of reonstrutedB mesons are disussed. Chapter 6 then introdues the novel method of using neu-ral networks to ahieve an improved signal seletion. First the method is developed,tested and validated using the deay B0 ! D�;D ! K�� and then applied to thekinematially very similar deay Bs ! Ds�;Ds ! ��; � ! KK. Chapter 7 usesevents seleted by the neural network seletion as input to an unbinned maximumlikelihood �t and extrats the B0 lifetime and �md. In addition, an amplitude sanand an unbinned maximum likelihood �t of �ms is performed, applying the neuralnetwork seletion developed for the deay hannel Bs ! Ds�;Ds ! ��; � ! KK.Finally hapter 8 summarizes and gives an outlook.





Chapter 1Theoretial Overview
1.1 OverviewIn the Standard Model of partile physis [1, 2, 3, 4℄ the strong, eletromagneti andweak interations arise due to the exhange of spin{one bosons between spin{1/2fermions. The gauge symmetry group underlying the Standard Model is SUC(3) �SUL(2)� UY (1). The gauge bosons assoiated with eah symmetry areSUC(3) �! 8G��; � = 1; : : : ; 8SUL(2) �! 3W �� ; � = 1; 2; 3UY (1) �! B�The eight spin{one partiles G�� denote gluons, the exhange partiles of the stronginteration. The four bosons W �� and B� give rise to the four physial bosons W�,Z0 and  that mediate the weak and eletromagneti interations. The fermion setoran be lassi�ed into three families, onsisting of six avors of leptons, by de�nitionleptons are spin{1/2 partiles that don't partiipate in the strong interation, and sixavors of quarks, that partiipate in the strong interation. All fermions take part inthe weak interation. The oupling of the harged W� bosons to the fermions is theonly interation in the Standard Model that onnets fermions of di�erent families.Without harged urrent interation, the lightest partile of any fermion family wouldbe stable, as a onsequene the exhange of W� bosons is responsible for a large fra-tion of observed partile deays. 19



20 Chapter 1. Theoretial Overview��ee� ����� ���� �| {z }Leptons �ud� �s� �tb�| {z }QuarksFigure 1.1: Three families of fermions grouped into three generations of leptons andquarks.1.2 The CKM MatrixThe interation Lagrangian desribing the harged urrent interation between di�er-ent quark avors an be written in terms of mass eigenstates asL = � g2p2 (�uL; �L; �tL) � (1� 5) VCKM 0B� dLsLbL 1CAW y� + h::where VCKM is the 3� 3 transformation matrix between quark mass and avor eigen-states, alled Cabibbo{Kobayashi{Maskawa (CKM) matrix [5, 6℄. Most generally theCKM{matrix an be written asVCKM = 0B� Vud Vus VubVd Vs VbVtd Vts Vtb 1CAThe Vij are omplex numbers, leading to 18 real parameters of the matrix. Assumingthree generations of quarks allows to impose the unitarity requirement V yCKM VCKM =1, whih eliminates 9 free parameters. Furthermore, multipliations of the di�erentquark �elds by a phase alter VCKM but leave the overall Standard Model Lagrangianunhanged | modulo an overall rotation of all quarks by a ommon phase, whihagain leaves VCKM unhanged (see e.g. [17℄). The freedom to rede�ne the quark �eldsremoves another �ve degrees of freedom from the CKM{matrix. Four physial param-eters remain free, whih an be interpreted as three rotational angles plus a omplexphase.A popular and useful parametrization of the CKM{matrix was derived by Wolfen-stein [18℄, whih indiates the size of eah matrix element by the small quantity � ' 0:2up to third order:VCKM ' 0B� 1� 12�2 � A�3(�� i�)�� 1� 12�2 A�2A�3(1� �� i�) �A�2 1 1CA +O(�4) (1.1)
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Figure 1.2: The unitarity triangle in standard form (left) and resaled by VdV �b in theWolfenstein representation (right).1.3 The Unitarity TriangleThe matrix elements of VCKM obey unitarity onstraints, whih means that any pairof rows or olumns is orthogonal. From an experimental point of view, out of the sixarising orthogonality onditions the most interesting is the produt of the �rst andthird olumn of VCKM . VudV �ub + VdV �b + VtdV �tb = 0This ondition an be displayed as a losed unitary triangle in the omplex plane.All sides of this triangle are of the same order of magnitude and the angles �, �and  relate to CP{violating quantities that an be measured experimentally. Fora more onvenient representation it is useful to sale all sides by VdV �b. Moving tothe Wolfenstein parametrization (eq. 1.1) the orners of triangle have the oordinates(0; 0), (1; 0) and (��; ��), where ��; �� are related to the Wolfenstein parameters as�� = �1� �2� �; �� = �1� �2� �Figure 1.2 depits the unitarity triangle in standard and in resaled Wolfenstein rep-resentation.1.4 Constraining the Unitarity TriangleMeasuring the sides and angles of the unitarity triangle has been one of the majortasks of experimental partile physis in reent years. Overonstraining the unitaritytriangle by measuring the sides and angles with di�erent, independent measurementswill prove an important test for the Standard Model. If it is experimentally foundthat the triangle is not losed, this will be a hint for new physis beyond the Standard



22 Chapter 1. Theoretial OverviewModel.Today, most experimental results that an be used to onstrain the oordinates (��; ��)of the upper edge of the unitarity triangle depend on hadroni matrix elements whihintrodue a signi�ant unertainty to the extrated value of the parameters. Figure1.3 summarizes measurements of quantities that at present provide the most stringentonstraints on the unitarity triangle: jVub=Vbj, sin 2�, �K and the ratio �ms=�md.This setion summarizes the urrent experimental status of the measurements ofjVub=Vbj, sin 2� and �K before �ms and �md are disussed in more detail, due totheir relevane for the work presented in this thesis.
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Figure 1.3: Graphial summary of the experimental onstraints on the parameters ofthe unitarity triangle [19℄. This does not yet inlude the reent �ms measurementperformed by CDF II.



1.4. Constraining the Unitarity Triangle 231.4.1 jVub=VbjThe parameter jVub=Vbj an be determined from the relative rate of the semileptonib{quark deays b! l� and b! ul�. Currently the most preise measurements of Vbresult from the study of semi{exlusive deays B ! D(�) l �� and inlusive B to harmdeays. Similarly, Vub an be obtained from measuring the deays B ! ml ��, wherem denotes a �; �; ! or � in the exlusive �nal state. The most preise measurementsof these deays are urrently provided by the BaBar and CLEO experiments [20℄[21℄.The onstraint on jVub=Vbj 1��1� �22 �����VubVb ���� =p�2 + �2 (1.2)desribes a irle passing through (��; ��) entered around (0; 0), as seen in �gure 1.3.1.4.2 sin 2�The time dependent CP{violation parameter S, whih an be measured in b ! �s{type deays with and without mixing, is equal to sin 2� to a very good preision [19℄.The world average given by sin 2� = 0:739�0:048 [22℄ is dominated by measurementsperformed by BaBar and Belle. As there are no unertain hadroni matrix elementsinvolved in the measurement of sin 2�, this measurement provides a very stringentonstraint on the position of (��; ��) in the omplex plane.1.4.3 �KThe CP{violation parameter �K is a measure of CP{violation in the kaon setor. Itan be extrated from measurements of the ratios of amplitudes �00 and �+� of theneutral kaons K0L; K0S deaying to a pair of neutral or harged pions respetively:�K = 13�00 + 23�+�The urrent PDG [15℄ values for �00 and �+� lead to an average of �K = (2:282 �0:017)� 10�3 [19℄.1.4.4 �md and �msIn analogy to the neutral kaon setor, two CP onjugate states exist in the neutral Bmeson system. The mass eigenstates are not eigenstates of the weak interation, butmixtures of the two CP onjugate states. Mixing between these states emerges via thetwo box diagrams shown in �gure 1.4.



24 Chapter 1. Theoretial Overview

Figure 1.4: Diagrams giving rise to B mixing. The label q an represent either ad{quark for B0 mixing or a s{quark in the ase of the Bs.The avor eigenstates ��B0q� and �� �B0q� an be written in terms of the mass eigenstatesjBH;qi (heavy) and jBL;qi (light) as��B0q� = 1p2� jBH;qi+ jBL;qi ��� �B0q� = 1p2� jBH;qi � jBL;qi �Here q an represent either a d{quark for B0{ or an s{quark for Bs{mixing.The time evolution of a state jsi in the non{relativisti approximation is desribed bythe Shr�odinger equation Htot jsi = i ��t jsiThe evolution in time for an initially pure B0q ( �B0q ) state is given by��B0q (t)� = e��qt=2e�imqt� os(�mq t=2) ��B0q�+ i sin(�mq t=2) �� �B0q� ��� �B0q (t)� = e��qt=2e�imqt�i sin(�mq t=2) ��B0q�+ os(�mq t=2) �� �B0q� �The di�erene of the widths �d between short{ and long{lived state of the Bs meson isexpeted to be small in the ase of the B0 meson [23℄ and an be negleted. Thereforethe probability for an initially pure B0 ( �B0) to deay as �B0 (B0) isP (t) = 12e��dt�1� os(�mq t)� (1.3)The width di�erene ��s between short{ and long{lived state of the Bs mesons ispredited to be signi�antly larger than ��d [23℄, urrent experimental results give��s=�s = 0:31+0:10�0:11 [10℄. Inorporating ��s introdues an additional term in the



1.4. Constraining the Unitarity Triangle 25probability for an initially pure Bs ( �Bs) to deay as �Bs (Bs) [24℄P (t) = 12e��st� osh�e���st2 �� os(�ms t)� (1.4)Within the Standard Model, the theoretial predition for the values of �mq an bealulated at lowest order evaluating the mixing diagrams in �g. 1.4. The result givenin [25℄ is �mq = G2F6�2 �BmBq f 2Bq Bqm2W S(xt) ��V �tb Vtq�� (1.5)Here mBq is the B0q meson mass, fBqpBq is the hadroni matrix element taken fromLattie QCD [26℄ and �B is a perturbative QCD orretion to the Inami{Lim funtionS(xt) [27℄. Translating the fator jV �tb Vtdj into the Wolfenstein parametrization showsthat a onstraint on �md desribes approximately a irle around (1,0) in the (��; ��){plane: V �tb Vtd = �6A2[(1� ��) + ��2℄ +O(�10) (1.6)The largest theoretial unertainties in the expression for �mq in eq. 1.5 arise fromthe alulation of the hadroni matrix elements fBqpBq. When measuring the massdi�erene �mq with high preision, the error on fBqpBq will still introdue a largeunertainty of the matrix element Vtq extrated from eq. 1.5. Therefore measurementsof �md or �ms alone don't additionally onstrain the unitarity triangle in the (��; ��){plane.The importane of a measurement of �md and �ms arises from the fat that mosttheoretial unertainties anel out when instead of the expression for �mq from eq.1.5, the ratio �ms=�md is taken into aount:�ms�md = mBs f 2Bs pBsmB0 f 2B0 pB0 ����VtsVtd ����2 (1.7)The ratio of the matrix elements � = f 2Bs pBs=f 2B0 pB0 an be alulated from lattieQCD with an unertainty below 5 % [28℄. Measuring the mass di�erenes �ms and�md allows to extrat the ratio of the CKM matrix elements Vts=Vtd.Very reently, the �rst diret measurement of �ms was published by the CDF IIollaboration [11℄. The result �ms = (17:33+0:42�0:21 � 0:07) ps�1 an be ombined withthe urrent world average values of �md = (0:507 � 0:004) ps�1, m(B0) = 5:2794 �0:0005GeV 1, m(Bs) = 5:3696 � 0:0024GeV [10℄ and � = 1:21+0:040�0:024 [28℄ to obtain��Vts=Vtd�� = 0:2087+0:0047�0:0076.1In this work energy, momentum and mass are given in the unit GeV. One GeV orresponds to1:602 176 462(63) � 10�10 Joule, obtaining momentum (mass) in the unit kg ms (kg) is realised by thedivision by  (2), where  = 299 792 458 ms .



26 Chapter 1. Theoretial OverviewThe measurement of �ms from [11℄ is already very preise and the value derivedfor ��Vts=Vtd�� is now already limited by the theoretial preision of �. Providing avery preise result for �ms on the one hand, the measurement published by CDF IIobserves a signal with a signi�ane of 3.5 � only on the other hand. As alreadymentioned in the introdution, the probability of a bakground utuation produinga spurious signal is still 0.5 % and an therefore not be ompletely exluded.The main fous of the work presented in this thesis is to improve the signi�ane ofthe existing �ms measurement by seletion signal events more eÆiently and at thesame time suppress bakground ontributions. The seletion algorithm suggested inthis thesis will therefore help to exlude the possibility of a bakground utuationand will provide an important ontribution to fully establish a signal for time resolvedBs osillations in the near future.Parameter ValueVub (3:90� 0:68)� 10�3Vb (42:0� 0:8)� 10�3j�Kj (2:282� 0:017)� 10�3sin 2� 0:739� 0:048�md (0:507� 0:004) ps�1�ms (17:33+0:42�0:21 � 0:07) ps�1Table 1.1: Summary of measurements of some important parameters that onstrainthe unitarity triangle [10℄ [11℄ [19℄.



Chapter 2Experimental Setup
2.1 The TevatronThe Tevatron proton{antiproton (p�p) ollider is loated at the Fermi National Ael-erator Laboratory in Batavia/Illinois. The main aelerator ring has a radius of 1 kmand is operated at a enter of mass energy of 1.96 TeV, whih makes it the soure ofthe world's highest energy p�p{ollisions today. The ollisions our at two interationregions where the two detetors D0 and CDF II (\Collider Detetor at Fermilab") areloated. For this thesis data olleted with the CDF II detetor is used.2.1.1 The Aelerator ChainTo aelerate protons and antiprotons to a enter of mass energy of 1.96 TeV, a hainof suessive preaelerators (�gure 2.1) is used before �nally injeting the partilesinto the Tevatron. As a �rst stage hydrogen gas is ionized to H� and then aeleratedto a kineti energy of 750 keV inside the Cokroft{Walton devie. From there the ionsenter a linear aelerator (Lina) whih uses osillating eletri �elds in RF avities toaelerate the ions traversing a distane of 150 m to 400 MeV. Due to the geometryof the osillating RF �elds, the ions are grouped into bunhes at the end of the Lina.At this stage, the ions are direted onto a arbon foil target whih strips the hydrogeno� its eletrons, leaving bare protons.Next, the Booster, a irular synhrotron 74.5 m in diameter, aelerates the protonsby a series of kiks from RF avities to 8 GeV, with eah turn around the boosterthe protons gain 500 keV of kineti energy. Here the intensity of the proton beam isinreased by repeatedly injeting further protons into the same orbit as the alreadyirulating ones. Protons are then extrated from the Booster into the Main Injetor,27
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Figure 2.1: The Fermilab aelerator omplex for Run 2.
a 3 km irumferene synhrotron, where protons an be aelerated to 120 GeV forantiproton prodution or up to 150 GeV for injetion into the Tevatron.Antiprotons are produed by direting the 120 GeV protons from the Main Injetoronto a nikel target, where � 20 antiprotons with a kineti energy of 8 GeV are pro-dued per 106 protons. The antiprotons are then separated from other partile speiesby a pulsed magnet and foused by a lithium lens, and via the Debunher Synhrotronaumulated in the 8 GeV Aumulator Synhrotron, where stohasti ooling is usedto redue the spread in the antiprotons kineti energy spetrum before they an bedireted to the Main Injetor.The prodution rate of antiprotons is the limiting fator for operating at high lumi-nosities, it takes about 15{20 hours to build up a stak of antiprotons that will beinjeted into the Tevatron. Approximately one per day the 36 bunhes of stakedantiprotons (� 5� 1010 partiles) and protons (� 3� 1011 partiles) are injeted fromthe Main Injetor into the Tevatron where they are aelerated to the �nal enter ofmass energy of 1.96 TeV. After the end of a ollision period, also alled store, theremaining unused antiprotons are olleted and ooled in the Antiproton Reyler,whih is housed in Main Injetor ring and stores the partiles for reyling them inthe next store.



2.1. The Tevatron 292.1.2 PerformaneSine Winter 2004 the Antiproton Reyler is fully ommissioned and integrated intothe Tevatron operation. As � 75 % of all antiprotons are expeted to survive astore, and the prodution rate of antiprotons is the limiting fator to ahieve highluminosities, the reyling of antiprotons resulted in a signi�ant improvement ofthe performane in terms of peak luminosity and the Run 2 design luminosity ofL = 1032 m�2s�1 ould be reahed. The luminosity of ollisions an be written as:
L = f F��L��� NBNpN�p2�(�2p + �2�p) (2.1)

where f is the revolution frequeny, F is a form fator desribing the geometri prop-erties of a bunh, NB the number of bunhes, Np;�p the number of protons/antiprotonsper bunh and �p;�p the RMS beam size at the interation point.The integrated luminosity over the time of a data taking period multiplied with theross setion � of a given proess yields an estimate for the predited number of eventsN = � � R L dt.Table 2.1 summarize the values for those parameters for Run 2. Figures 2.2 and 2.3summarize the development of peak and integrated luminosity at the CDF II detetorsine the beginning of Run 2 in 2002.
Parameter Value for Run 2NB 36bunh length [m℄ 0.37bunh spaing [ns℄ 396protons/bunh (Np) � 3� 1011antiprotons/bunh (N�p) � 5� 1010highest peak L [m�2 s�1℄ 1:72� 1032Table 2.1: Aelerator parameters for the Tevatron.
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Figure 2.2: Integrated Tevatron Run 2 luminosity.

Figure 2.3: Tevatron Run 2 peak luminosity.



2.2. The CDF II Detetor 312.2 The CDF II Detetor2.2.1 OverviewThe CDF II detetor is a multipurpose ollider detetor [29℄, designed to detet andmeasure properties of partiles being produed in p�p{ollisions. It features a vertexingand traking system, partile identi�ation, a superonduting solenoid generating a1.4 T magneti �eld, alorimetry and muon hambers. The omponents are arrangedin the ylindrial symmetry typial to ollider detetors. Fig. 2.4 shows the side viewone quadrant of the CDF II detetor.
2

5

Figure 2.4: The CDF II detetor.2.2.2 The Traking SystemThe CDF II traking system onsists of several subdetetors that an be used todetet harged partiles and measure momenta and displaements with respet tothe ollision point (primary vertex) in the detetor. It onsists of two detetors, theCentral Outer Traker (COT) and the Silion Vertex Detetor with its subsystemsSVXII, ISL (Intermediate Silion Layer) and L00 (Layer00). The traking system isbuilt ylindrially around the beam pipe and ontained within the 1.4 T magneti�eld reated by a superonduting solenoid.



32 Chapter 2. Experimental SetupThe Silion Vertex Detetor of CDF II overs a radial range from r=1.6 m to 28m, provides an aeptane up to j�j < 2:0 and onsists of 6{7 layers of double andsingle layered silion sensors. The innermost single layer losest to the beam line at aradius of 1.6 m is alled Layer00. Outside of L00 from r=2.1 m to r=17.3 m followsSVXII, a double-sided silion mirostrip detetor. The strips are aligned axially onone side, with 90-degree stereo on the other side for layers 0, 1, and 3 and small-angle stereo (1.2 degrees) on the other side for layers 2 and 4. Between SVXII andthe Central Outer Traker (COT), the Intermediate Silion Layer enhanes linkingof traks measured in both detetors. The ISL entral layer is loated at r=22 mand forward/bakward layers are at r=20 m and r=28 m. The entral layer oversj�j < 1:0 and the forward/bakward layers over 1:0 < j�j < 2:0. The ISL is a double-sided silion mirostrip detetor (axial on one side, small-angle stereo on the otherside).The ensemble of silion vertex detetor devies is partiularly suited to measure theimpat parameter d0 and the azimuthal angle � of traks with high preision and antherefore determine the deay vertex of long lived unstable partiles with high spatialresolution.
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z [m]Figure 2.5: � overage of the SVX and COT detetors.The Central Outer Traker (COT) is a ylindrial drift hamber overing the radialrange from 33 m up to 143 m. The COT ontains 96 wire layers grouped into eightsuperlayers, where in four superlayers the wires run in z{diretion (\axial superlayers")and in the other four superlayers the wires are tilted by 2 degree with respet to thez{diretion (\stereo superlayers"). All sense wire are ontained in an Ar{Ethane{CF4gas mixture. Partiles passing through the COT in the range j�j < 1 pass through all



2.2. The CDF II Detetor 33eight superlayers, partiles up to j�j < 1:3 pass through at least four superlayers andionize the gas mixture. Eletrons drifting towards the sense wire indue an eletronisignal that is read out by an ASDQ (ampli�er, shaper, disriminator and hargeenoding) hip [30℄. Due to geometrial reasons the trak density in the COT trakingvolume is signi�antly smaller ompared to the SVX, in addition the COT produes amaximum of 96 hit measurements per traks, so it provides an aurate measurementof a partile's transversal momentum (in the r{� plane) and less preise informationof the partile's momentum in the r{z plane.2.2.3 Partile Identi�ationThe ability to identify a trak as oming from a kaon, proton, eletron, muon or pionan yield an important input to many types of physis analyses. The CDF II detetorsprovides two measurements that an help to make a deision for eah trak regardingthe type of partile that produed it, the measurement of the spei� ionization (COTdE/dx) of harged partiles inside the COT and the measurement of the partile'stime of ight using the Time{of{Flight{detetor (TOF) [31℄.The spei� ionization of harged partiles transversing the COT gas mixture it mea-sured by the readout hips of the sense wires. The pulse width read out is logarith-mially dependent to the total harge deposited on the sense wire (�t � log(Q) �dE=dx) [29℄. To measure the time of ight T of a partile, information of the produ-tion time t0 is neessary. For eah ollision event a measured TOF signal has to bemathed to a orresponding COT trak. A mathed trak an then be assigned to aprimary vertex, knowledge of the spatial position of the primary vertex and the reon-strution of the traks momentum p an be used to alulate t0 (for details on trakreonstrution and momentum measurement refer to setion 4.2.1). Via the relationT = Tmeas � t0 = ss1 + m2p2 (2.2)the mass m, and therefore the identity, of the partile produing trak and TOF signalan be alulated. Here s denotes the path length of the trak, alulated from thedistane between primary vertex loation and position of the measured TOF signalin the sintillator bars and  the veloity of light. Figure 2.6 shows the position ofthe TOF detetor outside the COT (left) and the separation power of the TOF mea-surement for kaon/pion (K=�), proton/kaon (p=K) and proton/pion (p=�) separationompared to the partile separation power ahieved by COT dE/dx alone (right).



34 Chapter 2. Experimental Setup

z

End Wall
Hadron
Cal.

End Plug
Hadron

Calorimeter

Solenoid Coil

SVX-II

Intermediate
Silicon
Layers

TOF

E
nd

 P
lu

g 
C

al
or

im
et

er

Central
Outer 

Tracker

Figure 2.6: Loation of the TOFsystem in the CDF II detetor.
0

100

200

300

400

500

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Momentum (GeV/c)

T
im

e 
D

iff
er

en
ce

 (
ps

)

K/π
p/πp/K

K/π dE/dx
separation

0

1

2

3

4

5
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 S

eparation pow
er (σ

)

Figure 2.7: Time of ight dif-ferenes as a funtion of parti-le type and momentum. Thedashed line indiates K=� sep-aration power of COT dE=dx.2.2.4 CalorimetersThe CDF II alorimetry system onsists of several independent alorimeters: theentral and end{plug eletromagneti and hadroni alorimeters and the hadroniend{wall alorimeters. For the loation of the individual detetor omponents see�gure 2.4. The alorimetry system overs the pseudorapidity region j�j < 3:6 and isused to measure the energy of high energy eletrons, photons and hadroni jets.
2.2.5 Muon SystemsThe CDF II muon system onsists of four detetors mounted radially outside thealorimetry system. There are three drift hambers, namely the entral muon detetor,entral muon upgrade and intermediate muon detetor, and in addition a ombineddrift hamber/sintillation ounter, alled the entral muon extension detetor. Mostof the partiles that reah the muon system, i.e. without produing a shower andbeing absorbed in the alorimeters, atually are muons, as they interat with mattermainly via ionization. Kaons and pions surviving the alorimeter passage produemuon fake rates at the level of a few perent.



2.3. The CDF II Trigger System 352.3 The CDF II Trigger System2.3.1 OverviewCollisions at the CDF II detetor our at a rate of 2.5 MHz, the size of the detetorinformation of one event is '250 kB. Assuming that an interation ours at everyollision, this would result in a data ow of 625 GB/s | the impossibility of storingevery single event reorded by the CDF II detetor on mass storage media is evident.Most events are minimum bias events that are not partiularly interesting from a phys-ial point of view. These events our 4 orders of magnitude more frequently thanhard inelasti proesses produing b{quarks and even 10 orders of magnitude morefrequently than proesses produing top quarks. Therefore it is of utmost importaneto do a preseletion of events that are potentially interesting, whih is performed bythe CDF II trigger system, or short the trigger.The trigger onsists of three subsystems (Levels) that deide onseutively, the dei-sions being based on trigger tables that implement a large number of trigger paths,eah path onsisting of a set of rules that de�ne requirements for events that anpotentially be relevant for one of the di�erent physis programs at CDF II. It is farbeyond the sope of this short introdution to disuss all trigger paths used at CDF II,only a general introdution to the CDF II trigger system is given here. In a later hap-ter a fous will be put on the implementation of one trigger path that is of partiularimportane to the work presented in this thesis, the so{alled Two Trak Trigger (seesetion 4.1.1).2.3.2 Level 1 TriggerAfter eah beam rossing, data from all detetor omponents is read out, exept forthe data from the silion vertex detetor whih is just sampled and kept in a pipeline,and made available for the deision of the Level 1 trigger. The ore omponent of theLevel 1 trigger system is the eXtremely Fast Traker (XFT). Based on a lookup tableof pre{de�ned COT hit patterns, the XFT is apable of reonstruting the transversalmomentum pT and azimuthal angle � of a trak. At Level 1 also a mathing of XFTtraks to muon hamber hits and alorimeter lusters is performed. As Level 1 takes abit longer than a beam rossing to make its deision, the information from the di�erentdetetor subsystems is kept in a 5 �s deep pipeline (see �gure 2.8).2.3.3 Level 2 TriggerAfter an event has been aepted by Level 1, information from the silion vertex de-tetor (SVX) is digitized, read out and stored in one of the four Level 2 bu�ers. Thosebu�ers allow Level 2 to make its deision asynhronously from Level 1, but an also



36 Chapter 2. Experimental Setupause deadtime when all four bu�ers are full already and Level 1 aepts anotherevent.At Level 2 the Silion Vertex Traker (SVT) [32℄ takes the rather oarse information ofthe Level 1 XFT traks and uses them as seed. Using sophistiated pattern{mathingalgorithms, the SVT tries to add silion hit lusters to extrapolated XFT seed traks.Using a linearized �t, the SVT reates traks with a measurement of the impat pa-rameter d0 and signi�antly more preise values for pT and �. As shown in �gure 2.11the impat parameter resolution for SVT traks is 47 �m. This resolution is a ombi-nation of the intrinsi SVT d0{resolution and the transverse spread of the interationregion, whih an be roughly desribed by a irular shape in the transversal planewith a Gaussian distribution of � � 33�m. Taking into aount this spread of theinteration region, the intrinsi SVT impat parameter resolution of � 35�m is loseto the resolution obtained after the o�ine reonstrution. The main purpose of theSVT is to preselet events with a positive lifetime by requiring impat parameters ofd0 > 100�m for at least two SVT traks, this requirement e�etively selets traksoming from partile deays with a positive lifetime, as demonstrated in �gure 2.10.This is of partiular importane when studying the deays of long lived b{hadrons.2.3.4 Level 3 TriggerThe Level 3 trigger stage is implemented in software running on a PC farm. For theLevel 3 trigger deision, the full COT and SVX o�ine reonstrution is performed foreah trak. Further improving the resolution of pT , �, z0 and ot � and d0, all Level1 and Level 2 trigger onditions are on�rmed with the resolution of o�ine traks. IfLevel 3 aepts an event, the data is �rst stored on disk in a storage area and laterwritten to tape for analysis. Roughly 1 in 120,000 events passes one or more paths ofthe full trigger hain, reduing the event output rate from the beam rossing rate to� 100 Hz.
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Chapter 3Mathematial Methods
3.1 Parameter EstimationOne of the hallenges in quantitative siene is the estimation of parameters frommeasurements with errors. These arise due to limited experimental resolution of themeasurement proess and are statistial in nature.Let an experiment provide n measurements ~x1; ~x2; :::; ~xn of the (multidimensional)variable ~x. The task is to extratthe best estimate of ~x as well as the orrespondingerrors and orrelation oeÆients from these measurements. If the measurements fol-low a probability density funtion f(~xj~a), whih is a funtion of the parameters ~a, thisproblem an be solved by the maximum likelihood method [33℄.3.1.1 The Maximum Likelihood MethodThe maximum likelihoodmethod assumes a multidimensional probability density fun-tion f(~xj~a) in ~x that depends on a set of unknown parameters ~a and, for a set of nmeasurements ~xi, de�nes the likelihood funtion L(~a)L(~a) = f(~x1j~a) � f(~x2j~a) � ::: � f(~xnj~a) = nYi=1 f(~xij~a) (3.1)The best estimate for the parameters ~a is the hoie b~a that maximizes L(a), i.e.maximizes the probability to observe the measured values ~xi. The maximum of L(~a)an be found by requiring �L(~a)�ak = 0 for all k (3.2)39



40 Chapter 3. Mathematial MethodsIn real life L(~a) often tends to very small values ausing numerial instabilities whenevaluated on a omputer. Instead of the likelihood funtion L(~a), also the log likelihoodfuntion l(~a) = lnL(~a) an be used. As the logarithm is a monotonous funtion,requiring �l(~a)�ak = 0 for all k (3.3)is equivalent to the ondition quoted in eq. 3.3. For pratial purposes1 it's useful tode�ne the negative log likelihood funtionF (~a) = �l(~a) = � nXi=1 ln f(~xij~a) (3.4)that has to be minimized to get the optimal estimate of b~a. During the minimizationproedure one has to make sure that the normalization in the �t region from ~xmin upto ~xmax Z ~xmax~xmin f(~xj~a) d~x = 1 for all ~a (3.5)is kept onstant and independent of ~a. To obtain a orret result, one has to hekthat f(~xjb~a) indeed desribes the distribution of the measurements in eah dimensionproperly when inserting the best estimate b~a of the parameters ~a.In the limit of an in�nite number of measurements n ! 1, the likelihood funtionapproahes a Gaussian distribution. F (~a) an then be expanded around its minimum,where ~a = b~a and �F�~a = 0.F (a1; a2; :::; aN) = F (ba1;ba2; :::;baN) + 12Xi;j �2F�ai � �aj (ai � bai)(aj � baj) + ::: (3.6)= F (ba1;ba2; :::;baN) + 12Xi;j Gij(ai � bai)(aj � baj) + ::: (3.7)where ~a = (a1; a2; :::; aN). In the limit n ! 1 the matrix G an be identi�ed asthe inverse of the ovariane matrix V �1, also alled Hesse matrix H. In the non{asymptoti ase, V �1 serves as a good approximation ofG at the minimum of F . In thease of only one parameter F (a), the values of F (a) around the minimum a = ba� r ��are the given by F (ba� r � �) = F (ba) + 12r2 (3.8)1Several program libraries forminimizing funtions exist, therefore it's just a matter of onvenieneto use a negative log likelihood funtion.



3.1. Parameter Estimation 41where � an be identi�ed as � = d2Fda2 ���ba. If F (a) has the shape of a parabola aroundthe minimum, equation 3.8 an be used to alulate the standard deviation. Theprobability that is ontained in the interval ba� r �� an be derived from the Gaussiandistribution. In the ase of more than one parameter, the funtionFmin(ai) = minF (~a) (3.9)an be de�ned for ai, whih is the minimum of F (~a) with regard to all other parametersaj; j 6= i. From this de�nition, the r� standard deviations an be de�ned viaFmin(bai + r�) = F (b~a) + 12r2 (3.10)similar to the ase of only one variable. Non{paraboli behavior at the minimum anbe approximated by asymmetri errorsFmin(bai + �r) = F (b~a) + 12 (3.11)Fmin(bai � �l) = F (b~a) + 12 (3.12)3.1.2 The Maximum Likelihood Method for Binned DataIf the total number of measurements n is large, it's possible to proess the result in formof a histogramwhere the x{axis is divided in J intervals (bins). The probability densityfuntion f(xja) is then �tted to the data points in eah of the J bins. The entriesnj in eah bin are random variables following a Poisson distribution with expetationvalue �j P (njj�j) = �nje�jnj! (3.13)�i an be obtained from integrating f(xja) over the width of one interval multipliedwith the size of the sample n�j = Zbinj f(xja) dx ' n � f(xja) ��x (3.14)where x is the value of x at the enter of bin j and �x the width of the bin. Thenegative log likelihood funtion beomesF (a) = � JXj=1 ln ��nje�jnj! � = � JXj=1 nj ln�j + JXj=1 �j + JXj=1 lnnj! (3.15)



42 Chapter 3. Mathematial MethodsThe last term PJj=1 lnnj! an be ignored during the minimization as it is onstantfor a given set of data points. In the ase � � 1 the Poisson distribution an beapproximated by a Gaussian distribution with variane �2i = �i. The negative loglikelihood funtion transforms toF (a) = � JXj=1 ln� 1p2��j exp��(nj � �j)22�2j �� (3.16)= 12 JXj=1 (nj � �j)2�j + onst. (3.17)Here 2F (a) follows a �2 distribution with k degrees of freedom where k is the numberof intervals J minus the number of parameters that are determined in the �t [33℄. Thevalue of �2=k should be ' 1, this an be used to deide whether the desription of thedata points by f(xja) is aeptable or not.3.2 Neural NetworksThe NeuroBayes r [34℄ neural network software ombines a three{layer feed forwardneural network with a robust and sophistiated preproessing, whih is performedbefore the training variables are atually fed into the network. Eah training variableorresponds to one node in the input layer. Training patterns are passed to the networkby feeding them into the input layer. Eah node in the input layer is onneted to thenodes in the intermediate or hidden layer. The number of nodes in the hidden layeran be hosen freely2. For a binary lassi�ation problem the output layer onsists ofonly one node whih gives a ontinuous network output in the interval [�1;+1℄. Figure3.1 shows a shemati representation of suh a three layer network arhiteture. Anadditional bias node with a onstant value of 1 in the input layer an help to inreasethe network performane. The nodes of two onseutive layers are onneted viaweights. For eah node j a biased weighted sum depending on the values provided bythe output of the nodes xj of the previous layer is alulatedaj(~x) =Xi wijxi + �0;j (3.18)The term �0;j represents the threshold of the node j provided by the onnetions ofthe bias node with the nodes in the intermediate layer and wij denote the weights2The hoie is not ompletely arbitrary. One has to make sure that the network has enoughfreedom to learn all features (not too few nodes) and prevent it from learning everything by heart(not too many nodes).



3.2. Neural Networks 43

Figure 3.1: Shemati display of a three layer neural network arhiteture with oneoutput node.

Figure 3.2: Representation of a neural network node. The weighted sum of the inputvariables xi is passed through the sigmoid transfer funtion to the next layer.from the input to the intermediate layer. The input to the next layer for eah node istransformed by the symmetri sigmoid funtionS(~x) = 21 + exp(a(~x)) � 1 (3.19)The sigmoid transformation maps the interval [�1;+1℄ to [�1;+1℄, behaves linearlyaround 0 and goes into saturation for very small or large values of a(~x). For a networkwith d input nodes, M nodes in the hidden layer and vetor of input values xi, thenetwork output of the k{th output node ok is alulated viaok = S� MXj=1 vjk S� dXi=1 wijxi + w0;j�� (3.20)



44 Chapter 3. Mathematial Methodswhere as before wij denotes the weights from the input to the intermediate layer andvjk the weights from the intermediate layer to the output node.3.2.1 Network TrainingTo train the neural network, training patterns are fed to the network via the inputlayer. For eah training pattern the network output is alulated and ompared to thetrue value Tij for output node j and event i. Then the weights onneting di�erentnodes in di�erent layers are varied with the outline to minimize a ost funtion E. Theost funtion expresses the deviation of the atual network output from the desiredor nominal value. In the work of this thesis, a ost funtion based on the entropyfuntion is used in the network training:E =Xi Ei =Xi Xj ln�12(1 + Tijoij + �)� (3.21)j sums over all patterns in the training sample, i over the output nodes and � is aregularization onstant that avoids numerial problems for an untrained network andis put to zero after a few iterations.The surfae of the ost funtion has a very omplex shape in the multidimensionalparameter spae spanned by all possible ombinations of weights. Finding the globalminimum is pratially impossible. At the beginning of the training, the weights areset to random values following a Gaussian distribution with mean 0 and width 1. Thetraining is then performed by a speial avor of bakpropagation and based on gradientdesent, adjusting the hange of eah weight �wik proportional to the urrent gradientof the ost funtion �wik = �� �E�wik . Hereby the step widths are adapted individuallyfor eah weight during the training.3.2.2 Preproessing of VariablesTo aid the minimization of the ost funtion, NeuroBayes r performs a sophistiatedpreproessing of the input variables. To avoid starting the training in the saturationregion of the transfer funtion (eq. 3.19), the variables are �rst brought into the re-gion between [�1;+1℄ and then transformed into Gaussians with mean 0 and width 1.Then the variables are deorrelated by rotations of the ovariane matrix, transform-ing it to a diagonal unit matrix whih allows to minimize the weights independently.Furthermore the NeuroBayes r preproessing is apable of treating variables that on-tain potentially ordered disrete lasses and variables that don't have value assignedfor eah event by assigning the missing values to a Æ funtion.The signi�anes of the input variables are determined during the preproessing. The



3.2. Neural Networks 45orrelation of eah individual variable to the training target is alulated in an it-erative proedure. One variable after the other is omitted from the set of trainingvariables to determine the loss of total orrelation aused by negleting this partiularvariable. The variable ausing the smallest information loss when omitted is thendisarded, leading to a set of n�1 training variables. This proedure is repeated untilthe orrelation to the target for variable is alulated. More details on the variablesigni�ane table an be found in appendix B.3.2.3 RegularizationTo enhane the generalization apabilities of the neural network and to avoid over-training, several regularization shemes are applied during the network training. Oneway of improving the generalization ability is pruning away onnetions between nodesor even full nodes that have beome insigni�ant during the network training proess.The removal of onnetions and nodes redues the number of free parameters andimproves the ratio of signal over noise by removing the soure of the noise.Another regularization method helping to ontrol the behavior of the network is weightdeay. An additional weight is introdued to the error funtion from eq. 3.21E �! eE = E + 2Xi w2i (3.22)whih e�etively leads to a deay of weights during the minimization proedure, i.e.the network onverges to smaller weights. This makes sure that only patterns ouringfrequently are learned by the network, random utuations of the input data will deayaway. In this way also very large weights are avoided that an inrease the varianeof the output and lead to disontinuities or osillatory behavior of the network.3.2.4 The Bayesian ApproahNeuroBayes r makes use of Bayes' theorem[35℄P (HjD) = P (DjH)P (H)P (D) (3.23)where H denotes a hypothesis and D the data that was measured. P (H) inludesa priori knowledge about the hypothesis, without knowing anything about the data,therefore also alled prior. P (DjH) is the likelihood to observe the D assuming H andP (D) the probability to observe D. Finally P (HjD) denotes the a posteriori know-ledge about H that we have after taking into aount the data, also alled posterior.In the ase that the training target is a real variable, NeuroBayes r an be used toestimate the full posterior probability density funtion P (HjD) for eah event. The



46 Chapter 3. Mathematial Methodsadvantage of taking into aount Bayes' theorem is that the output the neural networkprodues will always be in the range of the inlusive input distribution, and thereforewill never produe non{physial results. In the ase of binomial targets, the outputof every well{trained neural network an be interpreted as Bayesian a posteriori prob-ability in the ase that the inlusive signal over bakground ratio is the same in thedata sample that is lassi�ed and in the training sample.Furthermore, Bayesian arguments are used in the automati regularization and prun-ing shemes in NeuroBayes r.



Chapter 4Dataset and Reonstrution
4.1 Dataset Seletion4.1.1 The Two Trak TriggerThe data used for this work was olleted entirely using the so{alled Two TrakTrigger, whih is de�ned by a set of trigger paths based on the silion vertex traker(SVT, see setion 2.3). The name Two Trak Trigger indiates the dediation ofthis part of the trigger system: identify events with positive lifetime by seleting twodisplaed traks (see �gure 2.10). This type of trigger was �rst developed for the Run2upgrade and is urrently unique to CDF II. The Two Trak Trigger requirements foran event an be summarized as:� at least two oppositely harged XFT traks with pt > 2GeV/and ��1;2 < 135Æ at Level 1.� at least two SVT traks with pt > 2GeV/, 100�m < jd0j < 1mmand �2SVT < 251 at Level 2.� math of the SVT traks to COT traks and on�rmation of the pt and impatparameter requirements with the additional requirements of 2Æ < ��1;2 < 90Æand the deay length in the r-�-plane projeted on pt (Lxy) greater than 200 �mat Level 3.1Here �2SVT denotes the �2 of a trak that is obtained after hits from the silion detetor areadded to a Level 1 XFT trak by the SVT, see setion 2.3.3 for details.47



48 Chapter 4. Dataset and ReonstrutionFlexibly adapting the data taking bandwidth required by the Two Trak Trigger todi�erent luminosity senarios, additional requirements are imposed on an event at thelevel 2 trigger stage by the individual Two Trak Trigger subpaths:L2 B LOWPT requires at least two SVT traks with p1t+p2t > 4:0GeV (the so{alledlow{pt senario).L2 B CHARM asks for at least two oppositely harged SVT traks with p1t + p2t >5:5GeV.L2 B HIGHPT with at least two oppositely harged SVT traks with p1t + p2t >6:5GeV (high{pt senario).At periods of high luminosity data taking, the low{pt senario B LOWPT 2 is usuallypresaled. Presaling means that only one in N = 1=p events is aepted by thelevel 2 trigger systems out of all events passing the trigger requirements, p denotingthe presale fator. Applying a presale fator to trigger paths at high luminositydata taking periods redues the level 2 bu�er oupany, thereby reduing the overalldeadtime of the trigger system. More bandwidth an then be given to trigger pathsthat selet rare events at low rates. The presale fators for individual trigger pathsare adapted dynamially during a store3 to take into aount the dereasing luminosityby antiproton losses to make optimal use of the trigger system bandwidth. Also theB CHARM and B HIGHPT trigger paths may be subjet to presales. The presale fatorsfor all trigger paths during eah data taking period are stored in a database and anbe aessed in o�ine software. Figure 4.1 show the e�etive presale fators (averagedper run) for the B LOWPT, B CHARM and B HIGHPT trigger senarios [36℄.4.1.2 \Good Run" SeletionFigure 4.1 shows several run ranges where no presale fators are quoted, this reetsthe fat that not all runs should be used for any kind of analysis. Only data that istaken under stable onditions, where eah trigger and detetor omponent that is ofimportane for an analysis, was fully funtional, should be used.To keep trak of problems with detetor or trigger systems during individual datataking periods, several boolean good run ags are set by the shift rew after the om-pletion of a run and stored in the online database.The good run ags used for the work presented in this thesis are based on a set ofrequirements generally agreed on by the BPAK (B physis analysis kernel) group [37℄2The pre�x L2 will be dropped from now on, the di�erent Two Trak Trigger senarios don'tdi�er at the L1 and L3 trigger stage.3A store omprises one yle of antiproton injetions into the Tevatron, see setion 2.1.
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Figure 4.1: E�etive presale fators for the B LOWPT, B CHARM and B HIGHPT trig-ger senarios against run number. The run range displayed overs data taken fromSeptember 2002 until August 2004 is taken into aount.and reet that for any analysis involving the reonstrution of B{mesons full fun-tionality of the SVT trigger system and the traking system is required. All agsapplied for the dataset used in this work are summarized in the following list.RUNCONTROL STATUS During daily operation runs sometimes have to be endedvery prematurely as problems with the trigger system, data aquisition or any de-tetor system show up immediately after starting a run. Those runs an be easilyidenti�ed by the very small number of events written out. The RUNCONTROL STATUSag is set to 0 if there are less than 10000 L1 aepts, less than 1000 L2 aeptsand/or less than 1 nb�1 of data written to tape for this run.SHIFTCREW STATUS is set to 0 by the shift rew if a testing or alibration triggertable was used for this run. It is set to 1 for runs taken with approved physistrigger tables.OFFLINE STATUS is set by the o�ine shift rew, on�rming that the data fora given run has passed o�ine proessing without indiating any problems likeorrupted data formats.CLC STATUS on�rms the proper funtionality of the Cerenkov luminosity ounterCLC and that the luminosity measurement performed by the CLC was nota�eted by instable beam onditions.



50 Chapter 4. Dataset and ReonstrutionL(1,2,3)T STATUS assure proper operation of the trigger system. They are setby the onsumer operator shift rew member after the omparison of referenequality monitoring plots for a given run to the default plots.SVX STATUS is set if the high voltage of the SVX silion traker is swithed on.SVT STATUS is set based on quality monitoring plots of the orreted SVT beamlineposition and the online reonstrution of D mesons. Proper operation of the SVTrequires the SVX to be swithed on.COT OFFLINE sets a more rigorous limit on the minimum luminosity for a run of10 nb�1 and requires the number of bad hannels in the COT drift hamber tobe less than 1 %.Applying these good run requirements on the two datasets xbhd0d and xbhd0h, ol-leted with the Two Trak Trigger amounts to a olleted integrated luminosity of 765pb�1. xbhd0d onsists of data olleted between February 2002 and August 2004 (355pb�1), xbhd0h inludes data taken between Deember 2004 and September 2005 (410pb�1).4.2 Event reonstrutionIn the previous setion the steps neessary to preselet a dataset of trak pairs dis-plaed from the primary interation vertex, possibly originating from the deay oflong{lived partiles like B mesons, were disussed. One these events are triggeredand written to tape, they an be examined more arefully by using sophistiated re-onstrution algorithms implemented in the CDF II o�ine software framework. In thissetion the algorithms involved in the proeeding from measuring hits in the trakingdevies towards the reonstrution of B meson deays are disussed.4.2.1 TrakingCharged partiles deposit small amounts of energy in the material of the CDF II trak-ing system. Due to the high voltages applied in the detetor systems the resultingionization of the detetor material leads to small urrents that an be deteted andenoded by the detetors' readout systems. Suh a signal obtained from one of thesilion sensors or COT readout wire is alled a hit. The reonstrution of the tra-jetory of a harged partile by assoiating hits reorded in the detetor systems tothis partile is alled trak reonstrution or simply traking. Several suh trakingalgorithms are used in CDF II o�ine software. As the trak multipliity is onstantin �, the hit oupany redues with r� when a harged partile passes the detetor



4.2. Event reonstrution 51from the interation point. The so{alled Outside{in (OI) algorithms therefore startto reonstrut the ight paths of harged partiles at the COT and then moves onby adding information from the SVX. Before the atual trak �t is performed, twopattern reognition algorithms selet trak andidates in the COT. All andidates thatpass the 2d{�t to a irle are then used for a 3d helix �t, making full use of the stereolayer information, and form a COT standalone trak. The eÆieny of COT trakreonstrution is � 95% for trak passing all eight superlayers with pt > 0:5 GeV. Themomentum resolution of �pt=pt ' 0:15% =GeV is atually better than antiipated inthe tehnial design report [29℄.The next step to form an OI trak is adding the information from the silion trakingdevies. The COT standalone trak path is extrapolated until the intersetion withlayers of the silion detetor, if a silion hit an be assigned to that trak, the trak�t repeated and the extrapolation to the next silion layer is done. A trak is onsid-ered an OI trak if at least three (r � �) silion hits ould be assigned to the COTstandalone trak. Two algorithms perform this work in the CDF II o�ine softwareframework, they are doumented in detail in [38℄[13℄.4.2.2 Momentum Sale Calibration and Trak Re�ttingAs seen in the previous setion, the energy loss by ionization of partiles in matterforms the basis for reonstruting the ight paths in the detetor. For a partiletraversing the entire traking volume, this energy loss is roughly 10 MeV. This energyloss however shows a dependene on the partile's momentum and rest mass4, so inorder to get an optimal momentum measurement, these e�ets have to be taken intoaount [39℄.Figure 4.2 shows the pt dependene of the reonstruted invariant mass of a J= deaying into two muons. Two alibration tools an be used to remove the momentumdependene and to math the mass of the reonstruted J= with the world averagefrom [15℄. First the momentum dependene is removed by modifying the inompletedetetor desription in the GEANT material map [40℄ used for trak �tting. Afterremoving the momentum dependene, the J= mass is then shifted to the expetedvalue by orreting the value used for the magneti �eld B for the onversion of trakurvature to momentum.The average energy loss of a partile in the detetor also depends in the partile'srest mass. Therefore, before reonstruting partile deays in dediated �nal states,eah trak is re�tted using the partile hypothesis expeted in the reonstruted �nalstate. Before the re�t is performed, the COT ovariane matrix is resaled aordingto [41℄, as studies have shown that trak reonstrution in the COT underestimates4Whih allows partile identi�ation based on the spei� ionization dE/dx, as seen in setion2.2.3.
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Figure 4.2: The removal of the pt dependene of the reonstruted invariant J= massobserved when using raw trak is done by tuning the material model used for trak�tting to ompensate the inomplete detetor desription present in that model. TheJ= mass is then moved to the world average value by orreting the value of themagneti �eld B used for onversion of trak urvature to momentum [39℄.the measurement errors. The re�t starts from the resaled COT traks and tries toadd silion information to the trak seed as desribed in the previous setion. Hitsfrom the silion detetor subsystems SVX, ISL and L00 are taken into aount andthe Kalman pakage [13℄ is used for trak re�tting.4.2.3 Trigger Con�rmationThe optimization proedure desribed in hapter 6 ritially depends on a orretdesription of the properties of exlusive B deays in simulated events. An importantaspet of a good desription is a preise simulation of the trigger system used topreselet B andidates in the experimental data. In real events involving the deayof B mesons several e�ets might lead to an event being aepted by the Two TrakTrigger (TTT), see 4.1.1.1. The deay of the B meson produes two or more displaed traks ful�lling the



4.2. Event reonstrution 53trigger requirement.2. Two random traks, one potentially resulting from the B deay, the other orboth potentially resulting from a bakground proess or multiple interations inthe event, ful�ll the trigger requirement.3. One trak from the B mesons deay and an XFT trak, that by mistake pikedup several wrong hits and so has a tendeny towards high impat parameters,ful�ll the trigger requirement.Simulated events are not apable of reproduing the properties of ombinatorial bak-ground events as the omplex environment of hadron ollisions is not yet fully un-derstood and known models are not able to reprodue the data. Therefore items 2and 3 will not be modeled orretly in a simulation. To ompensate for this lak of afull bakground simulation, for eah event in real data it is on�rmed that indeed twotraks originating from the reonstruted B meson deay were those that ful�lled thetrigger requirement and aused the event to be preseleted, so the ases 2 and 3 areeliminated in data.The trigger on�rmation is heked by mathing reonstruted o�ine traks to traksreonstruted online by the SVT. The SVT information for eah event is stored inthe SVTD bank and an be aessed for eah event. For eah B andidate it is thenon�rmed that at least two traks in the �nal state are atually SVT traks and thatat least one pair of SVT traks from that andidate has passed the Two Trak Triggerrequirements outlined in 4.1.1.4.2.4 B Meson ReonstrutionThe reonstrution of exlusive B deays is performed using the BottomMods[42℄[43℄pakage. The reonstrution software is highly modular and starts with the reon-strution from simple objets, like reonstruted traks, to higher level objets, likereonstruted B mesons. The output of eah module serves as input to the next mod-ule in the reonstrution hain.The reonstrution starts with a preseletion of traks requiring the trak to have asuessful helix �t attahed to it and requiring a physial error matrix for the trakparameters5 . For eah event all reonstruted traks are re�tted with either pion orkaon mass hypothesis and stored internally as olletions of stable partile andidatesserving as input to the modules reonstruting the deays of unstable partiles. Insubsequent hapters, two exlusive B deays are of partiular interest: the deay ofthe B0 meson into the �nal state D��+ with the D meson deaying into K����+,5Due to measurement errors and numerial inauraies sometimes a negative (unphysial) erroris alulated for a trak parameter. This ours very rarely but auses the software to rash.



54 Chapter 4. Dataset and Reonstrutionwith the deay of the Bs meson into D�s �+ and the Ds deaying into the ��� and the� deaying into a pair of harged kaons6. In the ase of the Bs, �rst � andidates areformed from pairs of oppositely harged traks assumed to be kaons. Most of thosepairs won't originate from a real � deay and are random ombinations instead. Torejet bakground andidates, the invariant mass of the two traks is alulated fromthe sum of their four momenta. However, as the traks' four momenta are taken atthe perigee point7, whih does not neessarily orrespond to the position where the �atually deayed, this is only a rough estimate. A more aurate value for the invariantmass an be obtained only after a full vertex �t. As vertex �ts are expensive in termsof omputation time, a soft preseletion of trak pairs based on the estimated invari-ant mass an make the reonstrution faster. The software performing the vertex �tis based on the CTVMFT [44℄ pakage, whih alulates the vertex positions, invariantmasses, four momenta of the partiles involved and the orresponding ovariane ma-tries. All trak pairs with suessful vertex �t and in the mass window from 1:005 to1:035 GeV around the expeted invariant � mass are then aepted as � andidates.In the next step, Ds ! �� andidates are formed by adding a harged trak assumedto be a pion to the � andidate. Candidates with dupliate traks are removed. Avertex �t is performed on all remaining andidates onstraining all three traks to aommon vertex. Candidates with a suessful vertex �t and an invariant mass in themass window from 1:87 to 2:07 GeV, around the expeted Ds mass, are used in thereonstrution of the deay Bs ! Ds�. Here the reonstrution is done in a simi-lar way: traks from the pion olletion are added to all Ds andidates. Candidateswith dupliate traks are removed and Bs andidates are preseleted using the fourmomenta sum of the traks. At this stage the trigger requirement desribed in theprevious setion is applied to the list of Bs andidates. Eah andidate is requiredto inlude at least one pair of traks mathed to SVT traks and at the same timeful�lling the Two Trak Trigger requirements for SVT trak pairs. The �tted deayvertex of the Ds is allowed to be displaed from the Bs vertex due to the lifetime ofthe Ds of � = 147�m [15℄, instead the three momentum of the Ds is onstrained topoint bak to the B vertex. Also the invariant mass of the Ds is onstrained to itsPDG (partile data group) value of 1:968GeV [15℄. These onstraints add additionalinformation to the vertex �t and redue the number of free parameters, leading to animproved resolution of the reonstruted partile's quantities.The reonstrution of the deay B0 ! D�;D! K�� proeeds similarly. Here as �rststep one kaon and two pion andidates with the right sign harge ombination forma D andidate. After preseletion and vertex �t this D olletion serves as input tothe reonstrution of the deay B0 ! D�. Again the trigger requirement is imposed6The orresponding deays of the anti{partiles �B0 and �Bs are not listed separately but alwaysimpliitly inluded.7The perigee denotes the point of losest approah of a trak to the origin of the oordinate system.
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Figure 4.3: Topology of the deay B0 ! D�;D! K�� [45℄.for eah B0 andidate and the D meson is onstrained to its PDG mass and fored topoint bak to the B vertex. Figure 4.3 shows the typial event topology of a B0 deay.At eah level of the reonstrution, soft preseletion uts are applied to the olletionsof reonstruted unstable partile andidates to redue the CPU usage and to reduethe size of the output �les. All seletion uts applied to the reonstruted deaysdesribed here are listed in table 4.1.4.2.5 B StntuplesFor storing the information ontained in a list of reonstruted B meson andidates,the B Stntuple framework was developed [46℄. This framework introdues a data for-mat that allows to aess all vertex �t informations alulated in the reonstrutionhain without having to repeat the �t. When the reonstrution of B meson an-didates is ompleted for a given event, the olletions of unstable partiles reatedby suessively building up the deay hain as desribed in the previous setion is



56 Chapter 4. Dataset and ReonstrutionDeay Preseletion after vertex �t�! KK 1:005 < m�[GeV℄ < 1:035�2 < 15Ds ! �� 1:87 < mDs [GeV℄ < 2:07�2 < 25Lxy=�Lxy > 2Bs ! Ds� 4:4 < mBs [GeV℄ < 6:6�2 < 25Lxy=�Lxy > 2D! K�� 1:77 < mD[GeV℄ < 1:97�2 < 25Lxy=�Lxy > 4B0 ! D� 4:4 < mBs [GeV℄ < 6:6�2 < 25Lxy=�Lxy > 2Table 4.1: Preseletion uts applied during the reonstrution of deay andi-dates. mp denotes the invariant mass obtained from a vertex �t of partile p,�2 the two{dimensional �2 obtained from that �t and Lxy the two{dimensionaldeay length (detailed desriptions of all variables an be found in appendixA).onverted into B Stntuple format and stored for later analysis. Figure 4.4 shows theexemplari data struture of a andidate for the deay Bs ! Ds�;Ds ! ��; �! KK.For eah unstable partile in the deay hain, the results of the vertex �t are storedin a TDeayPart objet. Stable partiles orresponding to trak re�ts with a ertainmass hypothesis are stored as TStablePart objets, ontaining all trak related infor-mations.An additional data struture stores general information independent of the atualreonstrution suh as run number, event number and online trigger ags for eahevent. In addition for eah B meson andidate the tagging deisions provided bydi�erent tagging algorithms (see setion 5.4) are stored.Produing B Stntuples from the Two Trak Trigger dataset is a very CPU time on-suming task. For eah event in the Two Trak Trigger dataset, a list of ' 30 exlusivedeay hannels of the B0, B� and Bs mesons is reonstruted, requiring full vertex�ts of all mesons and all intermediate resonanes involved. To failitate this proessand make eÆient use of the resoures available at CDF II, the B Stntuple prodution
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Figure 4.4: Example data struture of an event with three andidates for the deayBs ! Ds�;Ds ! ��; �! KK in B Stntuple format.is entrally organized by the Bs mixing group. The full Two Trak Trigger dataset issplit into several subsetions and eah member of the group uses his/her aount tosubmit jobs performing the reonstrution to the CAF (Central Analysis Farm), themain omputing resoure at CDF II. Using ' 30 user aounts, the full B Stntupleprodution still takes several weeks to proess the full 40 TB of Two Trak Triggerdata. The resulting output B Stntuples are written to mass storage and an be usedfor later analysis. The B Stntuple dataset resulting from the proessing of the TwoTrak Trigger dataset still amounts to 5 TB, too muh to store it on a desktop om-puter and analyze it onveniently. Further more, in order to read the event struture,the installation of a CDF Software environment is neessary. With the outline toredue the amount of disk storage spae needed and to make iteration over the re-onstruted data sample in one partiular �nal state faster and independent of CDFSoftware, an interfae reating small ROOT Ntuples from the B Stntuple datasetswas developed as part of this thesis. For eah partile in the partiular deay hain of



58 Chapter 4. Dataset and Reonstrutioninterest only seleted quantities are written out to the ROOT Ntuple, still onservingthe event struture. This makes the datasets easily available for further analysis usingthe ROOT framework [47℄ and redues the size of the data sample of a partiulardeay hain reonstruted from the Two Trak Trigger dataset to O(10GB).



Chapter 5Outline of the Mixing Analysis
5.1 OverviewThe parameter �ms determines the time evolution of the osillation of a Bs mesoninto a �Bs meson and vie versa1. Using eq. 1.3 on page 24, one an derive the numberof events that were produed as Bs and deayed as Bs (unmixed events) or wereprodued as Bs and deayed as �Bs (mixed events) asNunmixed = N02 e��t(1 + os(�ms t)) (5.1)Nmixed = N02 e��t(1� os(�ms t))where � denotes the deay width2 and N0 the number of Bs mesons produed at t = 0.Introduing the time dependent asymmetry A, whih expresses the time dependentdi�erene of the number of mixed and unmixed events, one an writeA = Nunmixed �NmixedNunmixed +Nmixed = os(�ms t) (5.2)Several prerequisites are neessary to measure A. First the deay of a Bs meson intoa avor eigenstate has to be reonstruted. As a next step, the avor of the mesonat prodution time has to be determined by tagging algorithms, or short taggers. Ingeneral, taggers provide a right deision (right sign tag, or short RS), a wrong deision(wrong sign tag, WS) or no deision at all (no tag, NT). A measure of the quality of a1All formulas apply to the B0 as well by replaing �ms by �md in all expressions.2Here for both B0 and Bs meson the approximation ��d;s = 0 is used (see setion 1.4.4).59



60 Chapter 5. Outline of the Mixing Analysistagger is given by the tagging power �D2, whih is omposed of the tagging eÆieny�, de�ned as � = NRS +NWSNRS +NWS +NNT (5.3)and the tagging dilution D, that gives a measure how often the tagger provides awrong tag: D = NRS �NWSNRS +NWS (5.4)The dilution D is related to the probability P that a tagging deision orretly iden-ti�es the avor: D = 2P � 1. A perfet tag has D = 1 and a random tag has D = 0.The measured asymmetry is given by Ameas = DAtrue, hene the \dilution" shouldbe maximized.For a measurement of time{resolved Bs osillations, the lifetime of the Bs must betaken into aount, as for a given deay time t the number of Bs mesons that havemixed (not mixed) 3 has to be determined. A parametrization of the Bs lifetime dis-tribution has to inorporate the limited experimental resolution of the reonstrutedB deay vertex and also model the bias in the lifetime distribution introdued by pre-seleting events with displaed traks at trigger level (see setion 4.1.1).In addition, lifetime parametrization and tagging have to take into aount that thereonstruted sample of B mesons ontains a fration of bakground events of severaltypes. The omposition of the data sample an be analysed by studying the invariantmass spetrum of the reonstruted B meson. In general, eah reonstruted exlusive�nal state will ontain di�erent types of bakgrounds and their ontributions have tobe understood and modeled for eah deay hannel individually.In summary, the neessary ingredients for a �ms measurement are:� Understanding the invariant mass spetrum to determine the omposition ofsignal and bakground events in the sample of B mesons andidates.� Parametrization of the B meson lifetime distribution for a time{resolved mea-surement of the osillations.� Flavor tagging to determine whether a B meson has mixed or not.Eah individual step is disussed in detail in the following setions. First setion 5.2disusses the omposition of the invariant mass spetra of the deays B0 ! D�;D!K�� and Bs ! Ds�;Ds ! ��; � ! KK, whih are the main fous of the workpresented in this thesis. Setion 5.3 then introdues a model desribing the time3A Bs meson an have osillated several times before it deays. Saying it has \mixed" in thisontext means that the meson has performed an odd number of osillations, so the avor eigenstatesat prodution and deay time are di�erent.



5.2. Understanding the Invariant Mass Spetrum 61evolution of B deays with trigger bias and �nite resolution, before in setion 5.4di�erent tagging algorithms used at CDF II are introdued. Setion 5.5 then ombinesmass, lifetime and tagging information to a ombined probability density funtion thatan be used to extrat �ms (or equivalently �md). Finally the sensitivity for a �msmeasurement is disussed in setion 5.6.5.2 Understanding the Invariant Mass SpetrumThe result of the deay vertex reonstrution proedure desribed in setion 4.2.4 isa set of B meson andidates. Only a fration of all ombinations of traks that are�tted to a ommon vertex and pass all preseletion uts will in fat originate from thedeay of a B meson into the reonstruted exlusive �nal state.Figure 5.1 shows a typial invariant mass spetrum obtained after the vertex reon-strution. Several distint features an be observed in the spetrum: At ' 5:3 GeVthe signal peak4, orresponding to the deay of the B meson into the reonstrutedexlusive �nal state is visible. In the lower invariant mass range \satellite peaks" anda signi�ant rise of the spetrum an be observed. These strutures an be assigned topartially reonstruted B mesons where one or more, possibly neutral, partile(s) aremissed in the reonstrution of the B meson deay. Another feature of the invariantmass spetrum shown in �gure 5.1 is a smooth distribution of events spreading over thefull invariant mass range. This so{alled \ombinatorial bakground" originates fromrandom ombinations of traks that happen to pass the vertex �t requirement andall preseletion uts, but do not result from the deay of a b{hadron. However, in adeay hain reonstruted as Bs ! Ds�;Ds ! ��; �! KK for example, these eventsould still ontain the deays of real Ds or � mesons that are ombined with one ortwo random traks and pass the four trak vertex �t requirement. In addition to om-binatorial bakground and partially reonstruted deays, there is also the possibilityof reonstruting the exlusive �nal state of a di�erent speies of b{hadrons (whih isnot the one that one atually tries to reonstrut) where a wrong partile hypothesisis assigned to one or more partiles in the deay hain. Examples for this type ofbakground are the deays �b ! ��;� ! pK� and Bs ! Ds�;Ds ! ��; �! KKthat an be reonstruted as B0 ! D�;D ! K��, if in the �nal state the protonoriginating from the �b deay or one kaon from the Bs deay are by mistake onsideredas pions. The bakground ontribution from these misassigned partile hypothesis isin general small, and therefore not labeled expliitly in �gure 5.1. Nevertheless, theseevents tend to overlap with the main signal peak, and so have to be taken into aountwhen parametrizing the di�erent bakground ontributions for a mixing measurement.4Note that in order to visualize the signal peak, already strong preseletion uts are applied tothe dataset obtained after the vertex reonstrution.
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Figure 5.1: Typial shape of the invariant mass spetrum of a reonstruted B meson.In addition to the fully reonstruted �nal state, there are various \satellite peaks" onthe lower invariant mass side from partially reonstruted B mesons. Also the smoothdistribution of ombinatorial bakground events an be observed.In general, the types of bakground observed when reonstruting the deays of ex-lusive B mesons an be grouped into three ategories:� Partially reonstruted B meson deays where one or more partile(s) are missedin the �nal state. These deays are sometimes denoted as satellite peaks, orreetions.� Fully reonstruted �nal states of di�erent b{hadrons with wrong partile hy-pothesis assigned to one partile in the �nal state.� Combinatorial bakground, onsisting of trak ombinations not originating fromthe deay of a b{hadron.



5.2. Understanding the Invariant Mass Spetrum 63In the following two setions, the mass spetra of the two deay hannels B0 !D�;D ! K�� and Bs ! Ds�;Ds ! ��; � ! KK are studied in more detail anda parametrization of the shape of the invariant mass spetrum is introdued, takinginto aount all soures of bakground disussed in this setion.5.2.1 The Mass Spetrum for B0 ! D�;D ! K��Partially reonstruted deaysSimulated events of inlusive B deays5 help to understand the omposition of theshape of partially reonstruted deays. In the ase of the deay B0 ! D�;D! K��these ontributions an be grouped into two lasses:� The deay modes B0 ! D�; �! ��0 and B0 ! D��;D� ! D and D� ! D�0where in either ase the neutral partile is missed in the �nal state. These deayshave distintive shapes and an be separated from other partially reonstrutedB deays in the invariant mass spetrum.� All remaining B0 deay modes that are not fully reonstruted due to neutralpartiles in the �nal state. These deays are denoted B0 ! DX and result ina smooth shape of the invariant mass spetrum, rising towards lower invariantmasses. These deays inlude semileptoni B meson deays, like B0 ! D�� andB0 ! De�.Figure 5.2 shows the invariant mass distributions obtained for partially reonstruteddeays after reonstruting events from an inlusive simulation as B0 ! D�;D !K��. The two peaks observed for the deays B0 ! D��;D� ! D and D� ! D�0(enter panel of �g. 5.2) result from the angular distribution of the �0 originatingfrom the D� deay. This angular distribution an be understood when onsidering thespin{parity omposition of this partiular deay hain:B0 ! D� �JP = 0� ! 1� 0�D� ! D �0JP = 1� ! 0� 0�5inlusive here indiates that all known deay hannels of the B meson, weighted aording totheir branhing ratios, are inluded in the simulation.
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Figure 5.2: Invariant mass distributions resulting from reonstruting the deays B0 !D�; � ! ��0 (left panel), B0 ! D��;D� ! D and D� ! D�0 (enter panel) andB0 ! DX (right panel) as the deay B0 ! D�;D! K��.The D� originating from the B0 deay is polarized, as, out of three possible spinprojetions Jz = �1; 0; 1, only Jz = 0 is allowed due to angular momentum onser-vation. The angular distribution of the subsequent deay D� ! D�0 then followsa jd10;0j2 � os2 � distribution, where dlm;m0 denotes the orresponding Wigner fun-tion [15℄[48℄ and � is the angle between the ight diretion of the D� and the ightdiretion of the �0 in the D�'s rest frame. Therefore the �0, whih is missed in thereonstrution, is emitted mainly (anti{)parallel to the D�, resulting in the two promi-nent peaks in the invariant mass distribution of the reonstruted B meson that anbe seen in the enter panel of �gure 5.2.Figure 5.2 also shows �ts of the distributions with parametrized funtions that are usedas templates desribing the shapes of these bakground ontributions when �tting theomplete invariant mass spetrum. The funtion P�(m) hosen to model the shapeof the invariant mass distribution of the deay B0 ! D�; � ! ��0 is an exponentialfuntion onvolved with a Gaussian funtion plus an additional Gaussian funtionP�(m) = N� e�m�1 
 G(m�m0; �1; �1) + G(m;�2; �2) (5.5)Here N� denotes the normalization of the funtion, � the mean, � the width of theGaussian funtions and �1 a deay onstant. The deays B0 ! D��;D� ! D andD� ! D�0 are modeled by the sum of three Gaussian funtions, where two narrowGaussian funtions are �xed to the same widthPD�(m) = ND� �fW G(m;�3; �3)+(1�fW )�G(m;�3��; �4)+G(m;�3+�; �4)�� (5.6)where ND� is the normalization, fW the relative ontribution of the wide Gaussianfuntion with width �3 and mean �3 and � the relative shift with respet to �3 of the



5.2. Understanding the Invariant Mass Spetrum 65two narrow Gaussian funtions with width �4. The shape of the remaining partiallyreonstruted B deays of the type B0 ! DX is modeled by a ombination of anexponential with a linear funtionPX(m) = NX �fLh 2a1(b1 �mL)2 �b1 �m��(b1 �m)i+ (5.7)(1� fL) hs1�1� (m�m)��1� e(m�w)��i�where NX , a1 and s1 are normalization onstants, m = mH �mL denotes the enterof the mass �t range, fL, b1, w and � are the �t parameters and �(b1 � m) is theHeavyside step funtion.Misassigned �nal state partilesPartile identi�ation at CDF II is not powerful enough to deide on a trak bytrak basis whether a partile was a pion, kaon or proton (see setion 2.2.3). Heneontributions from other deays with four traks in the �nal state, where a kaon ora proton was misidenti�ed as a pion will ontribute to the invariant mass spetrum.For the deay B0 ! D�;D ! K�� suh ontributions arise from the deays �b !��;� ! pK� and Bs ! Ds�;Ds ! ��; � ! KK. The relative ontributionof these deays an be obtained from simulated events. For example, the relativeontribution f�b as B0 of the deay �b ! ��;� ! pK� an be estimated asf�b as B0 = �(�b)�(B0) � BR(�b ! ��) � BR(� ! pK�)BR(B0 ! D�) � BR(D! K��) � �(�b as B0)�(B0 as B0) (5.8)where � denotes the prodution ross setion, BR the branhing ratio of the or-responding deay and � the probability that the orresponding deay will be reon-struted as B0 by the reonstrution software and pass all preseletion uts. Theontribution fBs as B0 of the deay Bs ! Ds�;Ds ! ��; � ! KK, reonstrutedas B0 ! D�;D ! K��, an be alulated similarly. For this work, the resultsf�b as B0 = 4:1%� 0:8% and fBs as B0 = 2:0%� 0:4% derived in [49℄, based on PDG[15℄information and reent CDF II publiations [50℄[51℄ are used.Another ontribution to the invariant mass spetrum results from the Cabibbo sup-pressed deay B0 ! DK, where the kaon from the B meson deay is reonstruted asa pion. The ontribution of this deay relative to the main signal peak B0 ! D� isderived from a simulation and its shape is �xed when �tting the full invariant massspetrum. The deay B0 ! DK is onsidered as an additional signal ontribution.Figure 5.3 displays the shapes and parametrizations of the three deays introdued inthis paragraph. The funtions P�b(m) and PCab(m) desribing the deays �b ! ��
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Figure 5.3: Invariant mass distributions resulting from reonstruting the deays �b !��;� ! pK� (left panel), Bs ! Ds�;Ds ! ��; � ! KK (enter panel) andB0 ! DK (right panel) as the deay B0 ! D�;D! K��.and B0 ! DK are modeled by exponential funtions onvolved with Gaussian fun-tions, the deay Bs ! Ds� is desribed by PBs(m), a double Gaussian funtion withommon mean and variable widths.Fitting the full mass spetrumThe analyti desription of the full invariant mass spetrum inludes all �t templatesderived in the previous two paragraphs. In addition there are funtions parametrizingthe shape of the invariant mass spetrum of ombinatorial bakground events Pomb(m)and a parametrization of the main signal peak PSig(m). The shape of Pomb(m) an'tbe derived from a simulation, instead an analytial desription that parametrizes theshape observed in data is hosenPomb(m) = N�(1� fo)e��(m�m) + fo� (5.9)The full expression desribing the main signal peak PSig(m) is hosen as a double Gaus-sian funtion with ommon mean and variable widths. The funtion PS(m) inludesthe main signal peak and all exlusive �nal states with wrong partile hypothesis inthe �nal state. The relative ontributions of these deays are �xed relative to the mainsignal peak PS(m) = (1�fBs � f�b � fCab)PSig(m) + (5.10)fBs PBs(m) + f�b P�b(m) + fCab PCab(m)



5.2. Understanding the Invariant Mass Spetrum 67The ontributions of all partially reonstruted deays and the ombinatorial bak-ground are merged in PB(m)PB(m) = (1�fpart)Pomb(m) + (5.11)fpart�(1� fX)�(1� fD�)P�(m) + fD� PD�(m)� + fX PX(m)�PS(m) and PB(m) are both normalized to one. The �t funtion P (m) desribing thefull invariant mass spetrum is given byP (m) = N �(1� fb)PS(m) + fb PB(m)� (5.12)and ombines all individual ontributions.The proedure applied to �t the full invariant mass spetrum starts with binned likeli-hood �ts of the individual templates desribing partially reonstruted B0 deays andexlusive �nal states with wrong partile hypotheses assigned to one partile on the in-variant mass distributions obtained from the inlusive simulation. The orrespondingdistributions and �ts of the templates PBs, P�b, PCab, P�, PD� and PX are displayedin �gs. 5.2 and 5.3. The ratio of the ontribution fCab of the deay B0 ! DK relativeto B0 ! D�, the ratio fX of the deays B0 ! DX relative to the sum of the deaysB0 ! D�; � ! ��0 and B0 ! D��;D� ! D and D� ! D�0 and the ratio fD� ofthe deays B0 ! D��;D� ! D and D� ! D�0 relative to B0 ! D�; � ! ��0 are�xed to the values derived from the inlusive simulation. fBs and f�b are �xed to thevalues derived in the previous paragraph.The free parameters used in the binned likelihood �t of P (m), the funtion parametriz-ing the full invariant mass spetrum observed in real data, are:� fpart, the fration of partially reonstruted B deays relative to ombinatorialbakground events,� the bakground fration fb, denoting the ratio of bakground events (desribedby PB) relative to signal events (modeled by PS),� all parameters of PSig and Pomb, the funtions desribing the signal peak andthe ombinatorial bakground shape respetively,� the overall normalization N .Figure 5.4 shows P (m), �tted in the invariant mass range from 4.7 to 6.0 GeV ona data sample of the reonstruted deay B0 ! D�;D ! K��. The �t funtiondesribes the shape of the invariant mass spetrum well. All individual omponentsadding up to P (m) are displayed. These �ts are very important for understanding the
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Figure 5.4: Fit of P (m) on the invariant mass distribution obtained for the deayB0 ! D�;D! K�� in data.omposition of the data sample used for lifetime and mixing �ts, as well as to extratingthe number of signal and bakground events to alulate the signal signi�ane SpS+B .The analyti desription of the full invariant mass spetrum is an important ingredientfor a �t of �ms. As the �t funtions for signal and bakground show a distint shapeand an be easily separated in the mass �t, the �t in invariant mass spae providesa handle to separate the relative signal and bakground ontributions in the datasample. When �tting for �ms this is taken into aount by performing the unbinnedmaximum likelihood �t simultaneously in mass and lifetime spae and using the bak-ground fration fB as a free parameter, shared by both spaes.5.2.2 The Mass Spetrum for Bs ! Ds�;Ds ! ��; �! KKBasially everything laid out in the previous setion for the deay B0 ! D�;D! K��is also valid for the invariant mass spetrum of the deay Bs ! Ds�;Ds ! ��; � !KK. However, the number of reonstruted Bs deays at CDF II is signi�antlysmaller ompared to the number of B0 events. Therefore the ontributions from



5.3. Measuring the B Meson Lifetime 69partially reonstruted deays Bs ! DsX, Bs ! Ds�; �! ��0 and Bs ! D�s�;D�s !Ds and D�s ! Ds�0 an be modeled by a single template Prefl(m), onsisting of alinear funtion plus a Gaussian funtionPrefl(m) = N�(1� fG)h 2a2(b2 �mL)2 �b2 �m��(b2 �m)i + fG G(m;�5; �5)� (5.13)The template PCab(m) desribing the deay Bs ! DsK is modeled by a single Gaussianfuntion. Contributions from the deays �b ! ��;� ! pK� and B0 ! D�;D !K�� reonstruted as Bs ! Ds�;Ds ! ��; �! KK with wrong partile hypothesisin the �nal state an be almost ompletely removed by requiring a ut on the invariantmass of the deay �! KK and are therefore negleted in the �t. The funtion PS(m)desribing the main signal peak is hosen to be a single Gaussian funtion and theombinatorial bakground is modeled in analogy to equation 5.9 as an exponentialfuntion plus o�set. The �t funtion P (m) used for the �t of the full invariant massspetrum an be written asP (m) = N �(1� fb)PS(m) + fb �(1� frefl)Pomb(m) + frefl Prefl(m)�� (5.14)where PS(m) = (1� fCab)PSig(m) + fCab PCab(m) (5.15)Figure 5.5 shows the invariant mass spetrum of the deay Bs ! Ds�;Ds ! ��; �!KK (left) and the orresponding ontributions resulting from partially reonstruteddeays modeled by Prefl (right).5.3 Measuring the B Meson Lifetime5.3.1 IntrodutionA situation frequently ourring in quantitative siene is the measurement of a dis-tribution of the physial quantity x. A set of measurements x an be regarded as asample from a probability density funtion f(x). The true distribution f(x) di�ersfrom the measured distribution beause of statistial utuation and the imperfetmeasurement proess that prevents a measurement of the true value of x. Examplesfor suh experimental limitations are a limited aeptane and the �nite preision ofthe measurement.One an express this interrelationship formally [33℄: Instead of x, in reality the quan-tity y is measured and as the result of a set of measurements a probability density
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Figure 5.5: Fit of P (m) on the invariant mass distribution obtained for the deayBs ! Ds�;Ds ! ��; �! KK in data (left). The right panel shows the orrespondingtemplate desribing the ontributions from the deays Bs ! DsX, Bs ! Ds�; �! ��0and Bs ! D�s�;D�s ! Ds and D�s ! Ds�0 to the invariant mass spetrum derivedfrom simulated events.funtion g(y) in this quantity is obtained. The distribution f(x) of the physial vari-able x de�ned in a � x � b and the measured distribution g(y) of the quantity y areonneted via the onvolution integralg(y) = Z ba A(y; x) f(x) dx (5.16)Here the kernel A(y; x) of the integral equation determines the probability of measur-ing a value y when the true value of the physial quantity is x. This orresponds tothe so{alled Fredholm Integral Equation of the First Kind.The determination of the lifetime of a fully reonstruted B meson with data olletedfrom the two trak trigger at CDF II is an example for suh a task. The observablet, the proper deay time of the B meson, is omposed of measured quantities of thereonstruted B meson deay vertex and is given byt = Lxy mPDGB pt (5.17)where Lxy denotes the deay length, pt the transverse momentum of the reonstrutedB meson andidate and  the veloity of light. mPDGB orresponds to the urrent



5.3. Measuring the B Meson Lifetime 71world average value of the invariant mass of the orresponding B meson from [15℄.The preision of the measurement of t is limited by the experimental deay lengthresolution �Lxy of the B vertex reonstrution and the resolution of the measurementof the transverse momentum pt.�t =s�mPDGB pt �Lxy�2 + �mPDGB Lxy p2t �pt�2 =s�mPDGB pt �Lxy�2 + � tpt�pt�2 (5.18)The momentum resolution �pt for individual traks is extremely good (see setion4.2.1). For semileptoni deays the missing neutrino momentum, whih is orretedfor with an average orretion fator taken from simulations, introdues an additionalunertainty in the pt of the reonstruted B meson. For exlusive hadroni �nal statesthe ontribution of �pt to �t is negligible ompared to �Lxy . This simpli�es eq. 5.18 to�t = �Lxy mPDGB pt (5.19)The aeptane for measuring di�erent values of t is sulpted by two e�ets: Alreadyat trigger level the shape of the measured proper deay time distribution is modi�edby preseleting events that ontain at least two SVT traks displaed from the primaryvertex. A ut on SVT traks requiring 100�m < d0 < 1mm for two traks in theevent is applied, resulting in a redued aeptane for both short{ and long{lived Bmesons. In addition, seletion uts to improve the signal to noise ratio of the observedB meson resonane using uts on the deay length, impat parameter or also uts on aneural network output an additionally sulpt the shape of the observed proper deaytime distribution.In general the kernel funtion A(t; ttrue) is a funtion of both the unknown true life-time ttrue and the measured lifetime t, inorporating at the same time resolution andaeptane e�ets. The determination of A is a diÆult task and would require anunfolding proedure. Analyses at CDF II requiring the reonstrution of the B mesonlifetime distribution taking into aount a limited aeptane introdued by triggerand analysis uts make use of a simpli�ed model (see for example [49℄[52℄[53℄[54℄) laidout in the following setion.5.3.2 Probability Density Funtion in Lifetime SpaeIdeally one would expet the probability PS(t) to observe the deay of a partile withlifetime � at a proper deay time t to follows an exponential deay lawP unbiasedS (t) = 1� e� t� (5.20)



72 Chapter 5. Outline of the Mixing AnalysisAs disussed in the previous setion, this distribution is a�eted by the limited experi-mental resolution �t and the limited aeptane that is sulpted by trigger preseletionand analysis uts. As an approximation of equation 5.16, these e�ets an be modeledas a funtion of the measured lifetime t by the produt ansatz [53℄:P biasedS (t; �t) � PS(t; �t) = ePS(t; �t) � �(t) (5.21)where ePS(t; �t) = 1� e� t� 
 G(t� t0; �t) (5.22)and 
 denotes the onvolution integral1� e� t� 
 G(t� t0; �t) = Z 10 1� e� t� G(t� t0; �t) dt0 (5.23)of the unbiased lifetime distribution with a Gaussian funtion G entered at zero andwith width �t, modeling the �nite resolution of the proper deay time measurement.In general �t has a di�erent value �t;i for eah event i in the data sample.The eÆieny funtion �(t) used in eq. 5.21 is used to take into aount the limitedaeptane introdued by trigger and ut seletions. �(t) an be determined by om-paring the signal proper deay time distribution g(t) after all trigger and analysis utsare applied to an unbiased lifetime distribution (eq. 5.20), onvolved with a resolutionfuntion taking into aount the event{by{event unertainty of the proper deay timemeasurement �t;i of the vertex position [54℄:�(t) = g(t) after trigger and utsPi 1� e� t� 
 G(t� t0; �t;i) (5.24)Here i sums over all events in the sample ontained in g(t). The biased signal dis-tribution g(t) an be obtained from a simulation of B meson deays, properly takinginto aount the e�ets of trigger preseletion.5.4 Flavor TaggingAn important ingredient to a measurement of time{resolved Bs osillations is theinformation whether a B mesons has mixed or not. Therefore the avor, or quarkontent, of the B meson at prodution and at deay time has to be determined. Fora fully reonstruted deay into a avor eigenstate, the avor of a B meson at deaytime is determined by its deay produts. To deide whether this partile has mixedor not, still the avor of the B meson at prodution time has to be determined usingavor tagging algorithms.
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Figure 5.6: Visualization of di�erent avor tagging algorithms.Flavor tagging algorithms an generally be lassi�ed into opposite side (OST) andsame side (SST) tagging algorithms. Opposite side tagging exploits the fat that bquarks are produed in p�p ollisions as pairs of a b and �b quark. This an be used todetermine the avor of the b quark that lead to the prodution of the reonstrutedB meson by determining the avor of the other b quark in the event. Same side avortagging relies on the harge of partiles produed in assoiation with the produtionof the reonstruted B meson.Currently three opposite side tagging algorithms are used at CDF II: soft muon, softeletron and jet harge tagging. The soft lepton tags [55℄ are based on semileptoni Bmeson deays. The harge of the lepton indiates the avor of the b quark: negatively(positively) harged leptons ome from diret b (�b) deays. Misidenti�ation of theb avor an arise from leptons produed in subsequent D meson deays or from fakeleptons, where a pion or kaon is misidenti�ed as a lepton. The eÆieny of leptonavor tagging is limited by the small branhing fration of semileptoni B mesonsdeays and the eÆieny of lepton identi�ation in the detetor.The jet harge tag [56℄ is based on the momentum weighted sum of harge of traksassoiated with a jet produed by the deay of a b quark. Wrong jet harge tags anarise from jets (or single partiles in the jet) that don't atually origin from the bquark and from partiles in the jet that are not deteted.



74 Chapter 5. Outline of the Mixing AnalysisThe SST algorithm used at CDF II is based on the assoiated partile produtionduring the fragmentation of a b quark to B (or B��) mesons [57℄. In the ase ofBs mesons this means that the fragmentation of a �b (b) quark to a Bs ( �Bs) meson,ontaining an s (�s) quark, enfores the prodution of a �s (s) quark from the vauum,preferably leading to the prodution of a K+ (K�) meson. If a harged kaon anbe identi�ed nearby a Bs meson, this gives an indiation of the avor of the Bs atprodution time. The SST Kaon tagging algorithm implemented at CDF II uses thepartile identi�ation systems introdued in setion 2.2.3 and tries to identify trakswith a high probability to be a kaon in the viinity of a Bs meson.Figure 5.6 summarizes the funtional priniple of the di�erent tagging algorithmsvisually.5.5 Extrating �md and �msA probability density funtion desribing the time dependent evolution of a B � �Bosillation signal is omposed of several parts:� The asymmetry term inluding the os(�mt){modulation of the mixing signal(f. eq. 5.2). This term inludes the tagger deision and has to take intoaount that the tagger might sometimes give a wrong deision by inorporatingthe dilution D.� The lifetime term, desribing the deay of the B mesons while they osillate.This has to take into aount the bias introdued by trigger and preseletion aslaid out in setion 5.3.� The desription of signal and bakground shapes in mass spae, as this providesa handle to determine the relative fration of signal and bakground ontainedin the data sample (f. setion 5.2).Denoting the tagger deision as � = f�1; 0; 1g for f mixed, no deision, not mixed g,the time evolution of the mixing signal an be written asPS(t; �; �t) = 1NS(t; �; �t) � �1 + �D os(�mt)1 + j�j 1� e� t� �
 G(t� t0; �t) � �(t) (5.25)where D denotes the dilution of the tag deision and �(t) the lifetime eÆieny funtionintrodued in the previous setion. NS(t; �; �t) keeps the funtion normalized to one.The full analytial expression for PS(t; �; �t) and the omputation of NS(t; �; �t) anbe found in appendix C. It is partiularly useful to derive an analytial solution forthe normalization of the probability density funtion, as this has to be alulated foreah event individually in the unbinned maximum likelihood �t, as for eah event a



5.5. Extrating �md and �ms 75di�erent ��;i enters eq. 5.25.The probability density funtion, inorporating in addition the desription of signaland bakground events in mass spae, is given byP (m; t; �; �t) =(1� fB) �PS(m) � 1NS(t; �; �t) � �1 + �D os(�mt)1 + j�j 1� e� t� �
 G(t� t0; �t) � �(t)�+ fB PB(m)PB(t) (5.26)Here fB is the relative fration of bakground events in the data sample and PS(m)and PB(m) denote the parametrizations of the invariant mass distributions of signaland bakground events enountered in setion 5.2. PB(t) is a parametri desriptionof the bakground's lifetime distribution derived from simulated events (see setion7.2 and appendix E).During the unbinned maximum likelihood �t for eah eventZm Zt P (m; t; �; �t) dmdt = 1 for � = �1; 0; 1 (5.27)has to be assured.5.5.1 Amplitude SanFor a measurement of �m expression 5.26 an be used to perform an unbinned max-imum likelihood �t on a data sample ontaining B0 (Bs) events and use �m as afree parameter in the �t. If a small number of events is available only, in general theunbinned maximum likelihood �t will not onverge and the derivation of limits for �mwill be diÆult. An alternative approah, inspired by the idea of performing a Fouriertransformation of the osillation signal, is the amplitude san method, suggested in[12℄. This method an also be used to ombine results from di�erent experimentsdiretly (for examples see [10℄).Instead of �tting �m, a sale fator A, the amplitude, is introdued in the asymmetryterm of the probability density funtion1 + �D os(�mt)1 + j�j �! 1 + �AD os(�mt)1 + j�j (5.28)This amplitude serves as a free parameter in unbinned maximum likelihood �ts usingdi�erent �xed values of �m. Ideally the amplitude would ome out to be A = 1 forthe orret value of �m and ompatible with zero for all other values of �m. Figure5.7 shows the amplitude san from [11℄ as an example.In �gure 5.7 the �t result for the amplitude A is onsistent with zero for osillation
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Figure 5.7: Amplitude san for �ms from [11℄.frequenies from 0 to 16 ps�1, this means these values of �ms an be exluded. Theamplitude then rises to one for values of �ms from 17 to 17:5 ps�1, whih is interpretedas the 3.5 � signal for Bs osillations. The amplitude then goes to zero again at�ms ' 18 ps�1 and is then onsistent with zero again for higher frequenies with aninreasingly larger unertainty of A. The sensitivity for di�erent values of �ms an beestimated by the blind amplitude san method. In this method the tagging deisionsare randomized for the amplitude san. The frequeny at whih the 95 % on�denelimit of the �tted value of A inludes the value A = 1 gives the frequeny where inaverage the 95 % exlusion limit on �ms an be set in the absene of an osillationsignal if the real tagging deisions are inluded again in the amplitude san. In �gure5.7 the result of this blind amplitude san is indiated by the red dotted line thatintersets the line A = 1 at a value of �ms = 25:4 ps�1, marked by the red irle.When inluding the tagging deisions, the 95 % on�dene limit of A hits the lineA = 1 at �ms = 16:7 ps�1, whih means that values of �ms < 16:7 ps�1 an beexluded with 95 % on�dene by the urrent CDF II measurement [11℄. The valueof �ms = 17:33+0:42�0:21 � 0:07 ps�1 is not derived from the amplitude san but obtainedafter a separate unbinned maximum likelihood �t.5.6 Sensitivity for �msThe signi�ane of the �ms signal observed at �ms = 17:33+0:42�0:21 � 0:07 ps�1 [11℄ byCDF II is 3:5� and the probability of suh a signal originating from a bakground



5.6. Sensitivity for �ms 77utuation is still 0.5 %. To establish a more signi�ant signal and to �nally exludethe possibility of a bakground utuation in an updated measurement of �ms, it isworthwhile to review the experimental parameters that determine the signi�ane ofthe �ms measurement.The amplitude of the mixing signal is attenuated by two ontributions: the taggingperformane and the resolution of the proper deay time distribution. In addition thesensitivity for measuring �ms depends on the absolute number of reonstruted signalevents and on the purity of the signal, i.e. how e�etive signal events are seleted whilebakground events are suppressed.5.6.1 Tagging PerformaneThere are several avor tagging algorithms used at CDF II to determine the quarkontent of the reonstruted B meson at prodution time (f. setion 5.4). Two fa-tors determine the performane of eah tagging algorithm { its tagging eÆieny �,i.e. how often the tagger gives a deision, and its dilution D, quantifying how oftenthis is a orret deision. Both quantities have already been introdued in setion 5.1.The following table summarizes the values measured of the tagging power �D2 for thefour di�erent tagging algorithms urrently used at CDF II [58℄.Algorithm �D2 [%℄OST Soft Eletron 0.3OST Soft Muon 0.5OST Jet Charge 0.7SST Kaon 4.05.6.2 Proper Deay Time ResolutionThe Lorentz{invariant proper deay time t of partiles an be reonstruted fromthe transverse deay length Lxy and the Lorentz boost pt=m, where pt denotes thetransverse momentum and m the invariant mass of the partile. The unertainty �ton this measurement (see setion 5.3) is given by�t = �Lxy mPDGB ptThe value of �t derived from the vertex �t algorithm (see setion 4.2.4, page 53) un-derestimates the proper deay time resolution by a fator 1.2{1.4 [59℄. A resalingproedure based on reonstruted prompt events is applied to obtain a better esti-mate of the true resolution of t for exlusively reonstruted B mesons [59℄. Figure 5.8



78 Chapter 5. Outline of the Mixing Analysisompares the time dependent mixing asymmetries and deay rates introdued in theprevious setion for Bs � �Bs and B0 � �B0 osillations. These plots show an idealizedsituation without taking into aount attenuation of the signal by detetor e�ets likeresolution and aeptane. It is evident that the proper deay time resolution for theobservation of Bs osillation is muh more important than in the ase of B0 osilla-tions. The rapid osillations of the Bs meson are smeared by the �nite resolution andif the vertex resolution was not suÆiently good, the osillations would be averagedout and ould not be observed any more.5.6.3 Signal Signi�aneExpressions for the signi�ane S, i.e. the ratio of the expeted amplitude of the osilla-tion signal over bakground, an be derived using Fourier and Likelihood methods [12℄.Negleting resolution e�ets, S an be expressed asS = SpS +B r�D22 (5.29)where S denotes the number of signal events in the reonstruted �nal state and Bthe number of bakground events in the signal region. Taking into aount the e�etof the limited proper deay resolution on an osillation signal P (t) by a onvolutionwith a Gaussian funtion P (t0)
 G(t� t0; �t) (5.30)introdues an additional attenuation fatorS = SpS +B r�D22 e��2t�m2s=2 (5.31)To improve the measurement of �ms, eah of these three ontributions to the signalsigni�ane has to be improved. Partiular emphasis will be put on the optimizationof the fator SpS+B in the ontext of this work.
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Figure 5.8: Comparison of the time dependent asymmetries and deay rates for Bs� �Bsosillations (left plots) and B0 � �B0 osillations (right plots). A mixing frequeny of�ms = 17 ps�1 was assumed for the Bs and �md was set to 0:5 ps�1. For bothstates a lifetime � = 1=� = 1:5 ps was assumed. No experimental e�ets like detetorresolution or aeptane are taken into aount.





Chapter 6Signal Optimization with NeuralNetworks
6.1 MotivationThe signal signi�ane SpS+B is one of three fators ontributing to the signi�aneof a Bs mixing signal (f. eq. 5.31, page 78). S denotes the number of signal eventsthat are obtained at a bakground level of B events. The method used at CDF IIto �nd the optimum value for SpS+B up to now employs an iterative ut optimizationproedure. This method is based on the ombination of uts on several quantities thatseparate signal events from bakground events in the data sample obtained after thevertex reonstrution (setion 4.2). The ut applied on eah single quantity is variedwhile the uts applied to all other quantities are kept �xed. For eah ut, the resultingsigni�ane SpS+B is alulated from a �t on the resulting invariant mass spetrum.The ut yielding the maximum value is seleted and kept �xed. This proedure is re-peated for all seleted variables until the set of uts is obtained that maximizes SpS+B .A more detailed desription of the method an be found in [60℄ for example.The ut based optimization proedure does not ombine the information provided bythe seletion variables in an optimal way. Typial quantities that are used to distin-guish B meson signal from bakground events are the deay length Lxy, the impatparameter d0 or the transverse momentum pt of the andidate. Some of these variablesare orrelated in the sense that a ertain value of one variable will already ontain in-formation on the value of other variables. If, for example, the �2 of the D mesonvertex �t is very small, also the �2 of the B meson vertex �t, where a pion and the Dmeson are �tted to one vertex, will have a tendeny towards smaller �2 values.The orrelation between variables is not taken into aount by the ut based opti-81



82 Chapter 6. Signal Optimization with Neural Networksmization proedure. A neural network is able to exploit to additional informationontained in the orrelation between variables and optimally ombines them into asingle disriminating variable.6.2 StrategyThe training of a neural network for signal optimization requires input or trainingpatterns desribing the properties of signal and bakground events. A simulation anbe used to provide input patterns for signal events, assuring it properly desribesthe distributions of the training variables of signal events in real data. As the mainbene�t from using a neural network, ompared to a sequential ut based seletion,arises from taking into aount orrelations between the training variables, also aorret simulation of these orrelations is needed.As an be deferred from �gure 5.4 (68), the omposition of the bakground events inthe signal region is mainly dominated by ombinatorial bakground, i.e. events whihontain either a random ombination of four traks, or events whih inlude the deayof a real D meson that is ombined with a random trak not originating from thedeay of a B meson. To redue the number of bakground events in the signal regionit is therefore desirable to suppress suh ombinatorial bakground events.To obtain a simulation of signal events, only the resonane deays of B mesons intoexlusive �nal states have to be simulated, whih makes the simulation ideally suitedto provide training patterns for signal events to the network training. To provideombinatorial bakground events, the full fragmentation proess of quarks to hadronshas to be simulated. The omplex environment of hadron ollisions is not yet fullyunderstood and known models are not able to reprodue the data. An alternative toa simulation is the use of real data events from the sidebands, i.e. the invariant massregions lose to the signal region, as training patterns for bakground events. Thewidth of the signal region is limited by the detetor resolution and an be deferredfrom a �t of the invariant mass spetrum (see setion 5.2). Candidates taken from asideband region where only a negligible number of signal events is expeted providea very pure soure of ombinatorial bakground events that are kinematially verysimilar to ombinatorial bakground events in the signal region.Ideally, an interpolation of the properties of andidates seleted from the lower andupper sideband region would be desirable to losely reprodue the properties of om-binatorial bakground events in the signal region. In the ase of the neutral B mesonshowever, the lower sideband annot be used to provide training patterns for bak-ground events, as the lower sideband generally ontains ontributions from partiallyreonstruted B meson deays, in addition to ombinatorial bakground events. From�gure 5.4 the ontributions of several partially reonstruted B0 deays in the �nalstate B0 ! D�;D! K�� an be identi�ed: In the deay B0 ! D�; �! ��0, the �0



6.2. Strategy 83in the �nal state is not reonstruted, for B0 ! D��;D� ! D and D� ! D�0 , the or the �0 is missing and the deays denoted B0 ! DX ontain large ontributionsfrom the deays B0 ! De� and B0 ! D�� where the �nal state neutrino is notdeteted (see also setion 5.2). These deays have, exept for a lower invariant mass,very similar properties as fully reonstruted signal events.Therefore events from the lower sideband in data annot serve as patterns for ombi-natorial bakground events, instead only events from the upper sideband region in theinvariant mass range from 5.4 to 5.6 GeV are used as training patterns for bakgroundevents in the network training. Using events from the upper sideband only, it has tobe made sure that these events are suited to desribe the properties of ombinatorialbakground in the signal region. The deays of B mesons into �nal states with fourlight partiles (pions, kaons) are not limited by phase spae, therefore events in thesignal region and in the nearby upper sideband are kinematially very similar. Inaddition, variables used in the network training are seleted avoiding a dependeneon the invariant mass to make sure that the properties of ombinatorial bakgroundevents in the upper sideband region an be used to desribe bakground events in thesignal region (see also setion 6.6.3).Figure 6.1 visualizes the training samples seleted from simulated events and data.For both samples soft preseletion uts are applied in order to redue the size of thedata sample by removing obvious bakground. In addition, a requirement on theminimum number of hits in the traking devies is imposed to improve the quality ofreonstruted andidates:� Number of COT Axial/Stereo Hits � 10/10,� Number of Silion Hits � 3,� all traks have pt > 0.35 GeV,� pt(�B) > 1.0 GeV, pt(B) > 5.5 GeV,� Lxy=�Lxy(D) > 6, Lxy=�Lxy(B) > 4, Lxy(B ! D) > -300 �m,� �2r�(D) < 20, �2r�(B) < 20,� jd0(B)j < 200 �m.Figure 6.2 shematially summarizes the training and lassi�ation proedure. As �rststep the NeuroBayes r Teaher is used to perform the preproessing of variables andthe network training with input patterns for signal and bakground. Using the resultsof the training, the NeuroBayes r Expert alulates a network output for all events inthe data sample obtained after the same preseletion uts. A possible bias resultingfrom using the same events in the upper sideband region for training and later afterlassi�ation for the evaluation of the performane will be disussed in setion 6.6.2.
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Figure 6.1: Composition of the training samples used as signal and bakground. Left:Composition of the input data sample after the preseletion uts are applied. Right:Shematial view of the data samples used for training, grey: simulated signal events,brown: upper sideband region providing training patterns for bakground events forthe network training.

Figure 6.2: Proedure for the lassi�ation of a data sample. The Teaher uses thetraining samples to alulate the network topology and preproessing onstants thatserve as input to the Expert for lassi�ation. In the end, a neural network output isobtained for eah event in the data sample.



6.3. Obtaining Simulated Events 856.3 Obtaining Simulated EventsThe sample of simulated B meson deays is obtained from b�b events generated usingthe PYTHIA [14℄ event generator. b�b reation at the Tevatron emerges via severalprodution mehanisms (�gure 6.3), that an be grouped into avor reation (a,b,),avor exitation (d) and gluon splitting (e,f) proesses. In order to simulate eventsat a enter{of{mass energy of 1.96 TeV realistially, all of these proesses have to betaken into aount when generating b�b pairs leading to the prodution of B mesons [61℄.To produe the sample of simulated events that is used for the neural network train-ing in the following setions, PYTHIA was run with the ag msel=1 whih enablesall prodution mehanisms mentioned above. To produe a large sample of B me-son deays in reasonable time, for eah event the underlying event struture is keptand the b{hadrons are redeayed into seleted �nal states using the EvtGen programpakage[62℄[57℄. For the detetor simulation dfSim[63℄ is used, the output of dfSimontains the same event struture and detetor information as real data. The trig-ger deision is simulated with TrigSim++, where in partiular svtsim[64℄ takes areof the simulation of the Two Trak Trigger. The reonstrution of the simulatedevents proeeds in the same way as the reonstrution in real data (see setion 4.2).After reonstrution and preseletion uts are applied to the sample of simulatedevents, 181k events of the deay B0 ! D�;D ! K�� and 41k events of the deayBs ! Ds�;Ds ! ��; �! KK are available as signal patterns in the network training.
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Figure 6.3: Examples of heavy-avor prodution diagrams. (a,b) Leading order. ()Pair reation (with gluon emission). (d) Flavor exitation. (e) Gluon splitting. (f)Events lassi�ed as gluon splitting but of avor-exitation harater (from [65℄).



6.4. Seletion of Training Variables 876.4 Seletion of Training VariablesA large variety of variables is available whih allows to disriminate between B mesonsignal events and ombinatorial bakground. Many of these variables show a strongorrelation and ontain similar information. For example, the �2 of the B meson vertex�t is strongly orrelated to the �2 of the D meson vertex �t, or the impat parametersof the four traks involved in the deay show a strong orrelation to the B mesonsimpat parameter jd0(B)j or its deay length Lxy(B).To determine the most important variables, a network training, inluding all variablesthat might ontribute in some way to the signal optimization, is performed. Theorrelation matrix of the training variables is alulated as part of the NeuroBayes rpreproessing, eah entry orresponds to the orrelation oeÆient �ij = ovij�i�j obtainedfrom the ovariane matrix ovij of the variables. Figure 6.4 shows the orrelation ma-trix of all training variables in a olor oded representation. A detailed list providingde�nitions of all variables that are used an be found in appendix A. Many variablesshow strong orrelations and by deploying sophistiated neural network based teh-niques, a signi�ant improvement with respet to the ut based seletion method anbe expeted.To �nd out whih and how many of these variables are atually neessary for an optimalperformane of the network, a series of trainings is performed, removing suessivelythe least signi�ant variable from the list of variables given in table 6.1 until only thetwo most signi�ant variables jd0(B)j and Lxy=�Lxy(B) are used. The performaneof a partiular set of training variables is evaluated by the following proedure: Eahtraining is used to alulate the network output for eah event in the preseleted datasample. The optimal network ut, maximizing SpS+B for eah training, is obtainedby applying sequentially harder uts on the network output and �tting the resultinginvariant mass distributions. The values for the number of signal events S and bak-ground events B in the region from 5:26 to 5:36 GeV around the entral mass peakare derived from the �t and the quantities SpS+B and S=B are alulated.Figure 6.5 summarizes the result, it shows the maximum signal signi�ane SpS+Bagainst the set of training variables used in the orresponding training. Apparentlyonly few variables ontribute signi�antly to the performane. Still these may beexhanged by others due to the redundane of the information provided by the trainingvariables (see �gure 6.4). Generally speaking, it's always better to limit the numberof variables in the network training, as this improves the generalization apabilities(see setion 3.2.2). In addition, there is the freedom to exlude ertain variables fromthe network training due to a bad desription in the simulation or due to an undesireddependene on the invariant mass of the B meson andidate (see also setion 6.6.3).
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correlation matrix of input variables

Index Name1 target2 jd0(B)j3 Lxy=�Lxy(B)4 �23D(B)5 �R(D; �B)6 pt(B)7 min jd0j�d08 �23D(D)9 max(mK;�1D ;mK;�2D )10 jd0(D)j11 Lxy=�Lxy(D)12 pt(�B)13 ^(~p(B); ~p(�B))msB14 �2r�(B)15 Lxy(B ! D)16 min pt17 jd0(K)j18 jd0(�1D)j19 pt(�2D)20 pt(K)21 pt(D)22 min(mK;�1D ;mK;�2D )23 jd0(�2D)j24 �2r�(D)25 lifetime{signed d0(K)26 lifetime{signed d0(�1D)27 pt(�1D)28 jd0(�B)j29 lifetime{signed d0(�B)30 Lxy(D)31 lifetime{signed d0(�2D)32 min jd0j33 Lxy(B)Figure 6.4: Correlation matrix of the training variables. The entry target denotesthe training target, in this ase target= 1 for signal and target= �1 for bakgroundevents.



6.4. Seletion of Training Variables 89Rank Name Signi�ane [�℄1 jd0(B)j 177.492 Lxy=�Lxy(B) 110.763 �23D(B) 57.644 �R(D; �B) 47.015 pt(B) 39.266 max(mK;�1D; mK;�2D) 19.767 min jd0j�d0 16.938 jd0(D)j 16.079 pt(�B) 15.9410 �23D(D) 12.5911 ^(~p(B); ~p(�B))msB 9.9712 Lxy=�Lxy(D) 7.4513 jd0(K)j 7.9514 jd0(�1D)j 9.0915 Lxy(B ! D) 8.4916 �2r�(B) 6.6417 pt(D) 6.3818 pt(K) 5.5719 pt(�2D) 5.6720 min pt 5.0421 min(mK;�1D; mK;�2D) 4.1422 jd0(�2D)j 3.2023 lifetime{signed d0(K) 2.9724 �2r�(D) 2.8525 pt(�1D) 2.5226 lifetime{signed d0(�B) 1.7627 jd0(�B)j 1.8128 Lxy(D) 0.7229 lifetime{signed d0(�2D) 0.6730 lifetime{signed d0(�1D) 0.5531 min jd0j 0.4232 Lxy(B) 0.43Table 6.1: Loss of total orrelation to the training target of all training variables.The numbers are alulated by suessively taking out the variable that results in thesmallest loss of total orrelation to the target (see appendix B for more details).
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6.5. Results for B0 ! D�;D! K�� 91The list of training variables given in table 6.1 inludes several quantities that exhibita strong dependene on the B meson's invariant mass and are not well desribed inthe simulation. In detail, these variables are pt(K), pt(�1D), pt(�2D), pt(D), pt(B),�R(D; �B) and ^(~p(B); ~p(�B))msB . These variables are removed from the networktraining. Comparisons of the distributions of all variables from sideband subtratedsignal in data to simulated events an be found in appendix D. The mass dependeneof the remaining variables is disussed in setion 6.6.3.The �nal set of variables is determined iteratively: Network trainings are performed,using the two most signi�ant variables jd0(B)j and Lxy=�Lxy(B) in ombination withany of the remaining 23 training variables. The largest signal signi�anes SpS+Bobtained after the 23 trainings are ompared. The variable resulting in the largest im-provement for SpS+B , when adding it to the set of two training variables, is kept for thenext iteration. These three most important variables are then ombined with eah ofthe remaining 22 variables. This proedure is repeated until no further signi�ant im-provement by adding additional variables is observed. The set of ten variables obtainedafter this proedure are jd0(B)j, Lxy=�Lxy(B), �23D(B), pt(�B), min jd0j�d0 , Lxy=�Lxy(D),Lxy(B ! D), �2r�(B), jd0(D)j and min pt. Using these variables for the network train-ing results in a signi�ane of SpS+B = 131:5� 0:9. Adding further variables doesn'tsigni�antly improve SpS+B . The signi�ane obtained when using all 25 variables is131:8� 0:8, whih is onsistent with the result obtained using the set of ten variablesonly.6.5 Results for B0 ! D�;D! K��The previous setion seleted a set of ten variables for the optimization of the signalsigni�ane in the deay hannel B0 ! D�;D ! K��. In this setion, the results,that are obtained using this set of variables in the network training and the lassi�-ation of the data sample are disussed in more detail. Also a omparison of the datasamples obtained after the neural network lassi�ation and the ut based seletion isperformed.Table 6.2 shows the loss of total orrelation to the training target of the �nal set of tentraining variables. Figure 6.6 shows the olor oded representation of the orrelationmatrix of these variables, most the variables show some positive, in some ases ratherstrong, orrelation, again underlining the fat that an improvement of the separation ofsignal and bakground an be expeted from taking these orrelations into aount byusing a neural network. Figure 6.7 shows two ontrol plots reated after the training ofthe network is ompleted, both demonstrate that the training was suessful. Figure6.8 ompiles the number of signal events Nsig, the number of bakground events NBG,the signal signi�ane SpS+B and the ratio S=B derived from the �ts of the invariant



92 Chapter 6. Signal Optimization with Neural Networksmass spetra resulting from di�erent uts on the neural network output.The urve displayed in the bottom left panel of �gure 6.8 shows that it is possible toselet a ut on the network output that yields a higher signi�ane SpS+B than ouldhave been obtained using a ut based seletion. The maximum value is SpS+B =131:5�0:9 found at a ut on the network output of nnout > 0.04, the orresponding invariantmass distribution with �t is displayed in �gure 6.9 (bottom). The improvement ofthe signal signi�ane SpS+B amounts to ' 11% 1 ompared to SpS+B =118:3 � 0:8extrated from the �t of the invariant mass spetrum obtained after the ut basedoptimization proedure in �gure 6.9 (top). Obtaining the same signal signi�anewith the ut based optimization proedure would require 180 pb�1 or 24 % more data.For this estimate, the ratio of S=B obtained after the ut based optimization proedureis assumed to remain onstant when more data is added.Rank Name Signi�ane [�℄1 jd0(B)j 177.492 Lxy=�Lxy(B) 110.763 �23D(B) 57.644 pt(�B) 53.025 jd0(D)j 19.376 min jd0j�d0 18.067 Lxy=�Lxy(D) 8.338 Lxy(B ! D) 10.599 min pt 10.1210 �2r�(B) 7.04Table 6.2: Loss of total orrelation to the training target of all training variables.The numbers are alulated by suessively taking out the variable that results in thesmallest loss of total orrelation to the target (see appendix B for more details).
1The mass �t introdues an unertainty in the order of 1% to the relative improvement.
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Figure 6.10: Diret omparison of events seleted by sequential uts and by the neuralnetwork. See text for a detailed explanation.
Finally, �gure 6.10 ompares the two samples obtained after a ut based seletionand after a neural network based seletion. The two distributions in the left panelorrespond to the distributions already enountered in the top panel of �gure 6.9(blue, ut based) and the bottom panel of �gure 6.9 (blak, neural network). Inboth ases the seletion methods are optimized to obtain the maximum value for thesignal signi�ane SpS+B . The enter panel shows two subsets of the sample obtainedafter uts (blue): the green distribution ontains events that both the neural networkand the uts would have seleted, the distribution in red in the entral panel denotesevents that are part of the sample seleted by uts, but would have been rejetedby the network ut. The shape of the red distribution indiates that these eventsare ombinatorial bakground events mostly. In analogy, the distributions displayedin the right panel show the invariant mass distribution after applying the networkut (blak) ompared to the events that would have passed both uts and networkut (green, same as in the enter panel). The red distribution ontains events thatare lost when applying sequential uts, but that are seleted by the orrespondingnetwork ut. Here the shape of the red distribution indiates that the neural networkmethod selets additional signal events that would have been rejeted by the ut basedseletion.



6.6. Validation and Cheks 976.6 Validation and CheksThis setion summarizes misellaneous heks that have been performed to understandand improve the neural network training proedure. First setion 6.6.1 demonstratesthat the partiular hoie of a sideband region doesn't play a signi�ant role for thenetwork performane. Setion 6.6.2 shows that using events from the upper sidebandin data for the network training and then again to evaluate the network performaneafter the lassi�ation of the data sample doesn't introdue any bias due to overtrainingor memorizing training events. Possible e�ets originating in the dependene of thetraining variables on the andidates' invariant mass are investigated in setion 6.6.36.6.1 Seletion of the Sideband RegionUp to this point the seletion of the sideband range from 5.4 to 5.6 GeV has beenrather arbitrary. Due to kinematial di�erenes, the distributions of the networktraining variables will have di�erent shapes in di�erent regions of the sideband, thesidebands loser to the signal region supposedly being more similar to the ombinato-rial bakground in the signal region.To understand the e�et of a partiular hoie of an upper sideband region, a seriesof heks has been performed. Figure 6.11 shows the dependene of the signal sig-ni�ane for events as training patterns for bakground from di�erent 0.2 GeV wideslies of the sideband, starting with the range from 5.4 to 5.6 GeV up to range from5.7 to 5.9 GeV. The partiular hoie of a sideband doesn't show any e�et on theperformane. Seleting the sideband region for the network training from 5.4 to 5.6GeV is not a ritial issue, other sideband regions lose to the signal range will behavesimilarly in the training proess and yield similar eÆienies when used for the signalseletion. Figure 6.11 demonstrates that the use of di�erent sideband regions doesn'tbias the mass �t either, shown is the invariant mass of the Bs andidate obtained fromthe mass �t. Cheks on other parameters don't indiate any bias either.6.6.2 Bias ChekUsing the same events from the upper sideband in data �rst as input patterns forbakground in the network training and then again, using this network training todeide if suh an event is rather signal{ or bakground{like, might introdue a bias.A possible soure of suh a bias an be an overtraining of the network. The e�et ofovertraining would result in a network that is not able to generalize from what it haslearned but rather just memorize the training events. This would lead to suppressingbakground events that were part of the training proess more rigorously than otherbakground events (e.g. under the signal region) that have not been used in the
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Figure 6.11: Maximum signi�ane (top) and reonstruted B0 mass (bottom) ob-tained for di�erent slies of the upper sideband lose to the signal region used for thenetwork training.



6.6. Validation and Cheks 99network training. Regularization shemes prevent suh an overtraining to our whenusing NeuroBayes r (f. setion 3.2.3).From �gure 6.9 (bottom) it is already evident that a large e�et indued by usingidential events for training and lassi�ation an be exluded, otherwise the trainingregion between 5.4 and 5.6 GeV would appear more suppressed than bakground fromother sideband regions.To evaluate this e�et, the data sample is split into two statistially independent sub-samples by seleting events with odd and even event numbers. These two subsamplesare used as training patterns for bakground in two independent trainings, resultingin two independent sets of preproessing onstants and network weights, alled theExpertises of NeuroBayes r. The Expertise from the training using the odd datasetis used to alulate network outputs for the even dataset and vie versa. Performingtraining and lassi�ation this way ensures that no event is lassi�ed from a networktraining where it has served as input pattern already. After the independent lassi�a-tion, the two lassi�ed samples are merged again and, after applying di�erent networkuts, used as input for the �ts of the invariant mass spetra. To ompare the resultsobtained with this unbiased training/lassi�ation proess with a dataset where a pos-sible bias might our from using idential events for training and lassi�ation, theExpertises from the even (odd) subsample are then used to lassify the even (odd)subsample.If the network had been over-trained and therefore memorized the patterns providedduring the training proess, it would show a tendeny towards assigning smaller net-work outputs to the bakground events it already enountered during the trainingwhen idential subsamples are used for training and lassi�ation. For the sampleprepared using di�erent subsamples for training and lassi�ation this e�et an'tshow up, as training and lassi�ation sample in this ase are disjoint.Figure 6.12 shows a omparison of the number of ounted bakground events in thesideband region from 5.4 to 5.6 GeV, obtained after applying suessively harder utson the network output on the two di�erently prepared data samples. No signi�antdi�erene between the urves an be observed. Figure 6.13 shows two more exemplariurves obtained in a similar way, denoting quantities derived from the �ts of theinvariant mass spetra after di�erent network uts. The top panel displays the numberof signal events derived from the �ts of the invariant mass spetrum for the twomethods and the bottom panel ompares the reonstruted B0 masses. Again, no biasan be observed omparing the two methods.Judging the results obtained from the tests presented in this setion, using the sameevents from the upper sideband region in data for the network training that later islassi�ed by the network as part of the full dataset. Figures 6.12 and 6.13 onvinethat the network does not memorize the events used in the network training as a resultof overtraining.
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Figure 6.12: Left plot : Counted number of bakground events in the sideband regionfrom 5.4 to 5.6 GeV used in the network training. The blak irles denote thenumber of events Nbiased ounted when applying uts on the neural network outputfor the sample that was obtained after using the same events as input for the networktraining and for lassi�ation of the sample (\biased"). The red squares show thenumber of events Nunbiased in the training region obtained when using di�erent eventsfor training and lassi�ation (\unbiased"). Right plot: The di�erene of the twoplots, the length of the error bars is equal to pNbiased.
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Figure 6.13: Top: Comparison of the number of signal events for the \biased" and\unbiased" training methods (left) and the di�erene of the two distributions (right).Bottom: Comparison of the �tted B0 mass for the two training methods (left) andthe di�erene of the two distributions (right).



102 Chapter 6. Signal Optimization with Neural Networks6.6.3 Mass Dependene of VariablesUsing a neural network trained with bakground events from the upper sideband indata and signal from simulated events impliates the possibility of the network notpredominantly learning to distinguish B meson signal events from ombinatorial bak-ground events, based on di�erent physial properties of these events, but rather tolearn that the di�erene between signal and bakground events only arises due to dif-ferent invariant mass ranges of the training samples.This has to be taken into aount when seleting variables for training the network.In the worst possible ase, the network would be able to fully reonstrut the invariantmass of a andidate. This would result in a suppression of all events outside the invari-ant mass region of the signal training sample and ould be used to generate arti�ialsignal peaks anywhere in the invariant mass spetrum by seleting events from thisregion as training patterns for signal and bakground events from a distint invariantmass range.Variables that exhibit a mass dependeneAn example for a variable exhibiting a signi�ant dependene on the invariant mass isthe opening angle �R(D; �B) between the D and � originating from a B meson deay.Figure 6.14 shows the mass dependene in a pro�le plot of the two{dimensional dis-tribution of �R(D; �B) against the andidates' invariant mass in the upper sideband.A similar mass dependene, though muh less signi�ant, an be seen for Lxy=�Lxy(B)in the right panel of �gure 6.14.Figure 6.15 shows the behavior of the variable pt(�B) for di�erent sideband regions.The right panel ompares the shapes of the pt(�B) distributions in two di�erent sliesof the upper sideband. It an be seen that not only the mean values of the pt(�B)distributions (left panel) show a dependene on the invariant mass but also the shapeof the distributions vary. The trigger threshold observed at 2 GeV is less pronounedfor higher invariant masses. Just resaling the variable to atten the means of the dis-tributions will therefore not remedy this mass dependene. Many variables exhibitingsuh a mass dependene are exluded from the training (see setion 6.4). The variablept(�B) however is used as training variable in the �nal set of variables (table 6.2), asit is an important variable ontributing signi�antly to the performane of the net-work. Exluding pt(�B) from the training, while keeping all other variables, reduesthe maximum signal signi�ane obtained from SpS+B =131:5 � 0:9 to 130:2 � 0:82.Figure 6.16 demonstrates the e�et introdued by the mass dependene of the training2The values of SpS+B , using or not using pt(�B), are derived on the same events, so both valuesare strongly orrelated. The di�erene of the performanes is more signi�ant than the unertainty,derived from the �t of the invariant mass spetrum, suggests.



6.6. Validation and Cheks 103

invariant mass [GeV]
5.4 5.6 5.8 6 6.2 6.4 6.6

 R
 [

sr
]

∆

1

1.2

1.4

1.6

1.8

2

invariant mass [GeV]
5.4 5.6 5.8 6 6.2 6.4 6.6

xyLσ/
xy

L

2

4

6

8

10

12

Figure 6.14: Pro�le plot of the two{dimensional distribution of �R(D; �B) (left)and Lxy=�Lxy(B) (right) against the andidates' invariant mass. A dependene onthe invariant mass is observed. The red lines indiate the uts on �R(D; �B) andLxy=�Lxy(B) applied as part of the ut based optimization proedure.

invariant mass [GeV]
5.4 5.6 5.8 6 6.2 6.4 6.6

 [
G

eV
]

Bπ t
p

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

 [GeV]Bπ tp
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

en
tr

ie
s 

p
er

 5
0 

M
eV

500

1000

1500

2000

2500

3000

3500

5.4 to 5.6 GeV

6.3 to 6.5 GeV

Figure 6.15: Left: Pro�le plot of the two{dimensional distribution of pt(�B) against theandidates invariant mass. Right: pt(�B) distributions for two sideband regions, it'sevident that the shape of the pt(�B) distribution hanges within the upper sideband,the trigger threshold observed at 2 GeV beomes less pronouned when moving tohigher invariant mass ranges.
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106 Chapter 6. Signal Optimization with Neural NetworksRank Name Signi�ane [�℄1 pt(�B) 12.612 jd0(D)j 4.493 jd0(B)j 4.274 Lxy=�Lxy(B) 4.475 min jd0j�d0 3.236 Lxy=�Lxy(D) 1.737 Lxy(B ! D) 0.688 �23D(B) 0.259 �2r�(B) 0.0810 min pt 0.03Table 6.3: Loss of total orrelation to the target of variables when using two di�erentslies of the upper sideband as training samples for signal and bakground.
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6.7. Results for Bs ! Ds�;Ds ! ��; �! KK 107uts on the neural network output. The training region from 5.5 to 5.7 GeV is notemphasized ompared to the regions either from 5.7 to 5.9 GeV, whih was used asbakground in the training proess, or from 5.4 to 5.5 GeV, that was not part of thetraining sample. From �gure 6.18 one an onlude that the network is not apableof produing spurious signal peaks simply by seleting di�erent sideband regions astraining patterns for signal and bakground.Comparing neural network and utsAnother e�et visible in �gure 6.18 is the preferene of the neural network for lowerinvariant masses, when trained with two slies of the upper sideband as samples of sig-nal and bakground events. The remaining mass dependene of the training variablesin the network training is not be apable of produing a spuriously enhaned signalpeak, but rather modify the shape of the bakground spetrum with a preferene forlower invariant masses. This modi�ed shape is taken into aount by the parametersof the funtion used to desribe the distribution of ombinatorial bakground eventsas part of the �t of the invariant mass spetrum (f. eq. 5.9). Using �R(D; �B),pt(B) and pt(�B) as ingredients of the ut based optimization proedure, suh a biastowards lower invariant masses must have been inherent to all previously publishedanalyses already (this is visualized by the red lines in �gure 6.14, indiating uts thatare applied as part of the ut based optimization proedure). Figure 6.19 omparesthe shapes of the bakground distributions obtained after a ut based seletion andafter the neural network seletion.Beyond a slight modi�ation the shape of the bakground distribution, no further ef-fet of the mass dependene of some of the training variables an be observed. Theshape of the bakground distribution shows a similar behavior as already observedduring the ut based optimization proedure, therefore no speial treatment of vari-ables that exhibit some dependene on the invariant mass is onsidered.6.7 Results for Bs ! Ds�;Ds ! ��; �! KKThe optimization strategy developed in previous setions for the signal signi�ane ofthe deay B0 ! D�;D! K�� an be applied to other B meson deays as well. Theneessary ingredients are a simulation of the resonane deay, providing training pat-terns for signal events, and ombinatorial bakground events from the upper sidebandin data, serving as patterns for bakground events in the network training. Of ourse,eah deay hannel exhibits spei� features that an be taken into aount whenseleting variables for the network training. For example, the angular orrelationsbetween daughter and parent partiles in the deay hain or resonant substrutures of
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Figure 6.19: Comparison of the distributions of invariant mass in the upper sidebandobtained after the ut based optimization proedure (magenta triangles) and a neuralnetwork seletion (blak irles). In both ases, the distributions rise with lowerinvariant masses, a �t on the bakground distributions shows that the shape of bothurves is similar. Left: mass range from 5.5 to 6.5 GeV where the �t is performed,right: extrapolation to lower invariant masses.



6.7. Results for Bs ! Ds�;Ds ! ��; �! KK 109the daughter partiles an ontribute additional information to the network trainingin di�erent deay modes.This setion fouses on the deay of the Bs meson into Bs ! Ds�;Ds ! ��; �! KK.As the optimization proedure developed in this work is intended to improve the ex-isting �ms measurement at CDF II, it will be demonstrated that the use of a neuralnetwork for the already intensively studied deay mode (see e.g. [60℄[58℄) an stillsigni�antly improve the signal signi�ane SpS+B relevant for a measurement of �ms.To redue the size of the data sample and to improve the trak quality by imposingrequirements on the number of detetor hits, a set of soft preseletion uts is applied:� Number of COT Axial/Stereo Hits � 10/10,� Number of Silion Hits � 3,� all traks have pt > 0.35 GeV,� pt(B) > 5.5 GeV,� Lxy=�Lxy(D) > 2, Lxy=�Lxy(B) > 2� �2r�(D) < 20, �2r�(B) < 20,� jd0(B)j < 200 �m,� pt(�B) > 1.0 GeV.The set of training variables used to ahieve an optimal performane for the deayBs ! Ds�;Ds ! ��; �! KK is obtained after an iterative proedure similar to themethod applied for the B0 meson in setion 6.4. Variables are added to the networktraining step by step until no further improvement an be observed. Table 6.4 displaysthe set of variables obtained by this proedure for the deay Bs ! Ds�;Ds ! ��; �!KK. The set of variables table 6.4 is very similar to the set of variables obtained forthe deay mode B0 ! D� in table 6.2 in setion 6.5. This reets the fat that in bothases, the deay of long{lived B mesons is separated from ombinatorial bakgroundevents by similar properties. On the other hand, table 6.4 also demonstrates thatin the ase of the deay Bs ! Ds�;Ds ! ��; � ! KK some additional variablesan ontribute signi�antly whih don't ontribute in the ase of the deay B0 !D�. These additional variables are the heliity angle of either of the kaons fromthe deay � ! KK and the invariant mass of the �, whih reets the di�erentangular orrelation and subresonane struture of the daughter partiles of the deayDs ! �� ompared to D ! K��. Figure 6.20 shows the orrelation of the trainingvariables and �gure 6.21 displays the NeuroBayes r training quality plots. Signal andbakground are well separated in the training sample and the network output is a linear



110 Chapter 6. Signal Optimization with Neural Networksfuntion of the purity, indiating that the training was suessful. Training patternsfor bakground used in the network training are taken from the upper sideband regionfrom 5.6 to 5.9 GeV.Rank Name Signi�ane [�℄1 Lxy=�Lxy(B) 159.212 jd0(B)j 62.463 pt(�B) 30.724 �23D(B) 26.095 heliity angle K1 14.516 Lxy(B ! D) 13.857 m�!KK 12.488 jd0(D)j 11.979 min pt 11.5410 �23D(D) 10.1111 Lxy=�Lxy(D) 9.2712 lts. d0(K1)=�d0 3.16Table 6.4: Training variables used for the optimization of the deay Bs ! Ds�;Ds !��; �! KK.Figure 6.22 shows the number of signal events Nsig, the number of bakground eventsNBG, signal signi�ane SpS+B and ratio of S=B derived from �ts on the invariantmass spetra after applying di�erent uts on the neural network output. Figure 6.23(bottom) shows the mass distribution for a network ut of 0.76, this yields the largestvalue for SpS+B of 35:5�0:7. This orresponds to an improvement of ' 16% omparedto the ut based optimization proedure [60℄ (displayed in �gure 6.23, top panel) thatresults in SpS+B = 30:6�0:8. This improvement is equivalent to adding 260 pb�1 or 35% more data, when using the ut based optimization proedure instead of the neuralnetwork seletion to obtain the same performane. The expression desribing theoverall signal signi�ane of a �ms{measurement in eq. 5.31 not only depends on theabsolute number of signal and bakground events, ontained in the fator SpS+B . Fora time{resolved measurement of Bs osillations, in partiular the proper deay timeresolution �t plays an important part in determining the overall signal signi�ane(see setion 5.6). To estimate the proper time resolution attenuation fator obtainedfor signal events in the deay hannel Bs ! Ds�;Ds ! ��; �! KK after applying a
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Figure 6.21: Quality plots from the NeuroBayes r training for the deay Bs !Ds�;Ds ! ��; �! KK. The purity is a linear funtion of the network output (left)and signal and bakground training samples are well separated (right), two importantharateristis of a well{trained neural network.partiular seletion proedure, the weighted averageSt = 1N NXi=0 e� 12 �2t;i�m2s (6.1)is alulated as the sum over all simulated events i passing the seletions. For �msa value of 17 ps�1 is assumed. Figure 6.24 (left) ompares the values of St obtainedafter di�erent neural network seletion uts and a ut based optimization proedure.The maximum value for St� SpS+B from �g. 6.24 orresponds to an improvement of' 14%, whih is slightly less than the ' 16% obtained when taking into aount SpS+Bonly.6.8 SummaryUsing a neural network trained with simulated signal events and events from theupper sideband in data an inrease the signal signi�ane SpS+B for exlusively re-onstruted �nal states of B meson deays signi�antly. The method an be appliedto all exlusive deay modes. The performane of the network seletion an be opti-mized by taking into aount individual harateristis of eah deay hannel. A wide
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116 Chapter 6. Signal Optimization with Neural Networksdemonstrate that, for example, the signal purity, expressed as S=B, an be madealmost arbitrarily large by applying very hard uts on the neural network output.



Chapter 7Mixing Fit
7.1 OverviewThe �t framework desribed in hapter 5 is applied to the data samples obtainedafter performing di�erent types of seletions in this setion and used to derive a valuefor �md (�ms) from the sample ontaining the deay mode B0 ! D�;D ! K��(Bs ! Ds�;Ds ! ��; � ! KK). The general outline of the �t proedure for thedeay mode B0 ! D� an be summarized as follows:1. Apply all seletion uts to the data sample, simulated signal events and simu-lated bakground omponents (partially reonstruted B mesons and �nal stateswith misassigned partiles).2. Perform a binned maximum likelihood �t of the full invariant mass spetrum:(a) Fit of the mass template funtions for partially reonstruted B mesonsand �nal states with misassigned partile hypothesis.(b) Full mass �t of the invariant mass spetrum.3. Perform an unbinned maximum likelihood �t of the B meson lifetime:(a) Fit of the orresponding lifetime template funtions for �nal states withmisassigned partile hypothesis.(b) Fit of the lifetime eÆieny urve.() Perform an unbinned maximum likelihood �t in mass and lifetime spaesimultaneously, both spaes share the bakground fration fB as ommonparameter.4. Perform an unbinned maximum likelihood �t of �md (�ms).117
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Figure 7.1: Flow hart summarizing the �t proedure. The yellow boxes, superimposedon the arrows, display the �t parameters that are �xed after eah step.



7.2. Lifetime Fit with a Neural Network Seletion 119Figure 7.1 shows a ow hart displaying the sequene of steps of the �t proedure.In the following setions, a seletion of events based on the ut based optimizationproedure and a neural network seletion, as outlined in hapter 6, are used to seletthe input data sample used for the �t. It will be demonstrated that the mixing�t framework an be used with both seletions to extrat values for the B0 mesonlifetime and �md that are onsistent with the world average. Setion 7.4 will apply asimilar �t proedure to ompare the ut based and the neural network based seletionmethods by using events seleted by either method as input for an amplitude sanand an unbinned maximum likelihood �t of �ms. The mass �t for the deay hannelB0 ! D�;D ! K�� was already disussed in detail in setion 5.2. The followingsetions will therefore fous on the �t of the B0 lifetime in setion 7.2 and proeed tothe �t of �md in setion 7.3.7.2 Lifetime Fit with a Neural Network Seletion7.2.1 Likelihood FuntionThe unbinned maximum likelihood �t used to extrat the value of the B0 lifetime� is performed simultaneously in the mass and lifetime spae using the negative loglikelihood funtionL = �2Xi lnh�1� fB� � PS(ti; �t;i) � PS(mi) + fB � PB(ti) � PB(mi)i (7.1)Here fB = NBGNBG+NSig denotes the relative fration of bakground events in the �trange used to weight the ontributions in lifetime and mass spae of signal eventsPS(ti; �t;i) � PS(mi) and bakground events PB(ti) � PB(mi).The parameter fB is shared by mass and lifetime spaes, but an be onstrained bythe �t in mass spae only. The invariant mass distributions of signal and bakgroundontributions an be separated well, while in lifetime spae the distributions of signaland bakground events have a very similar shape. The index i iterates over all andi-dates in the data samples serving as input to the �t.The analyti expressions used for PS;B(mi) and PS(ti; �t;i) have been introdued insetions 5.2.1 and 5.3.2. PB(ti) is a parametri desription of the shape of the life-time distribution of ombinatorial bakground events. It onsists of a sum of twoexponential funtions onvolved with Gaussian funtions:PB(t) = NB �f1 e� t�1 
 G(t� t0; �1; �1) + (1� f1) e� t�2 
 G(t� t0; �2; �2)� (7.2)where f1, �1, �2, �1, �1=�2, �1 and �1 � �2 are used as �t parameters. NB normalizesthe funtion to one. For the ombined �t in mass and lifetime spae, the mass range



120 Chapter 7. Mixing Fit5:2 GeV to 5:8 GeV is used. This redues the ontribution of partially reonstrutedB0 deays in the lower sideband region to a minimum so that their ontributions anbe negleted in the lifetime �t.The probability density funtion used for signal events in lifetime spae orrespondsto eq. 5.21, using an an unertainty �t;i on an event{by{event basis. The initial valuesof the parameters of PB(t) are obtained from a template �t, see appendix E. Duringthe unbinned maximum likelihood �t these parameters are treated as free parameters,only �1=�2 is �xed to the value obtained from the template �t. The �t onverges tovalues for the bakground ontribution that are very similar to those obtained fromthe template �t. Templates for the lifetime distributions of the ontributions from�b ! �� and Bs ! Ds� are added to PS(ti; �t;i) with the same relative frationsf�b as B0 and fBs as B0 that are used in the �t of the invariant mass spetrum (see setion5.2.1). The shapes of these templates an be found as well in appendix E.For the ombined �t in mass and lifetime spae the mean of the two Gaussian funtionsand the width of the narrower of the two Gaussian funtions modeling the signal peakare free parameters in mass spae. All other parameters in mass spae are �tted �rstby a binned likelihood �t in the wide invariant mass range from 4.7 to 6.0 GeV and asubsequent binned likelihood �t in the narrow invariant mass range from 5.2 to 5.8 GeVand then kept �xed during the unbinned maximum likelihood �t. The parameters forthe eÆieny funtion �(t) are also �xed one they have been determined for a spei�seletion ut (see following setion). In lifetime spae, the B meson lifetime � is a freeparameter, as well as the bakground fration fB, shared by both spaes.7.2.2 Determining the EÆieny CurveThe shape of the eÆieny funtion �(t) is determined aording to eq. 5.24 usingthe proper deay time distribution obtained from a simulation of B meson deays,taking into aount the bias introdued at trigger level and by seletion uts. Thisdistribution is obtained after applying the same kind of ut or neural network seletionon the sample of simulated events as is applied to the data sample that serves as inputfor the unbinned maximum likelihood �t. To make sure that the simulated eventsdesribe the signal distribution in data also after applying a ut on the neural networkoutput, a omparison of the distributions of all quantities involved in the networktraining has to be performed1. If the distributions di�er, one annot expet thatthe eÆieny urve derived after applying all preseletion uts to simulated eventsorresponds to the eÆieny urve observed in real data when applying the samekind of preseletion. Figure 7.2 ompares the neural network output obtained for the1For the ut based seletion suh a omparison was already performed (see appendix D) to deidewhih variables are well desribed by the simulation and are suited to serve as training variables inthe network training.
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Figure 7.2: Comparison of the distributions of the neural network output (left) andproper deay time (right) for sideband subtrated signal events in data and simulatedevents (MC) after applying the ut on the network output that maximizes SpS+B . Asa referene, also the distributions from the upper sideband in data are displayed.sample of simulated events and the proper deay time distribution of signal events indata after performing a sideband subtration. In both ases the distributions obtainedfrom simulated events and data agree very well. Comparisons of all variables used inthe network training and details on the sideband subtration proedure an be foundin appendix D.4.To determine the lifetime eÆieny urve �(t) after a neural network seletion, thesample of simulated events has to be lassi�ed and the network ut that is applied tothe data sample has to be applied to the sample of simulated events as well. The properdeay time distribution of seleted simulated events g(t) is �lled into a histogram anddivided by the integral of the funtion desribing the unbiased lifetime distributionover the width of eah bin of the proper deay time histogram aording to eq. 5.24 :�(t) = g(t) after trigger and utsPi 1� e� t� 
 G(t� t0; �t;i)The resulting distribution is �tted using a phenomenologial parametrization of �(t) [53℄�(t) = 2Xj=0 aj (t� �j)2 e�t=�j �(t� �j) (7.3)where �(t� �j) represents the Heavyside step funtion �(x) = 1 if x > 0 and �(x) = 0



122 Chapter 7. Mixing Fitelse. This parametri form of �(t) has the advantage that the normalization fatorNS(ti; �i; �t;i) an be alulated analytially (see appendix C). NS(ti; �i; �t;i) keeps theprobability density funtion used for the lifetime and mixing �ts (eqs. 5.21 and 5.25)normalized to one for eah event during the unbinned maximum likelihood �t,. Figure7.3 shows the resulting eÆieny urves �(t) after �tting the parametrization fromeq. 7.3 to the distributions obtained from data using a ut based seletion and theneural network seletion. The two eÆieny urves look very similar.
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Figure 7.3: Fit of the parametrized �(t) to the distributions obtained after applyinga ut based seletion (left) and a seletion based on a neural network lassi�ation(right).
7.2.3 Results of the Lifetime FitThe parameters obtained from the eÆieny �t are used as input for the unbinnedmaximum likelihood �t, whih is performed in parallel in mass and lifetime spae. Thenegative log likelihood expression given in eq. 7.1 is minimized using the MINUIT [47℄pakage. Figure 7.4 shows the projetions of the �t funtion in lifetime spae usingthe �t results obtained from the unbinned maximum likelihood �t for the ut basedand the network based seletions. Figure 7.5 shows the orresponding projetions ofthe �t funtion in mass spae.Table 7.1 summarizes the results obtained using the ut based seletion and a neuralnetwork seletion. fB is the ommon bakground fration found in mass and lifetimespae and the parameter \signal width" denotes the width of the narrower of the
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Figure 7.4: Projetions of the �t funtion in lifetime spae using the results obtainedfrom the unbinned maximum likelihood �t using data seleted by sequential uts (left)and a seletion based on a neural network lassi�ation (right).
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Figure 7.5: Projetions of the �t funtion in mass spae using the results obtainedfrom the unbinned maximum likelihood �t using data seleted by sequential uts (left)and a seletion based on a neural network lassi�ation (right).



124 Chapter 7. Mixing FitParameter Result (uts) Result (network)fB 0.43172 � 0.00368 0.29643 � 0.00356signal t [�m℄ 468.62 � 5.39 460.77 � 4.45signal mass [GeV℄ 5.2784 � 0.0002 5.2783 � 0.0002signal width [GeV℄ 0.01544 � 0.00015 0.01554 � 0.00014bg f1 0.32271 � 0.04647 0.33924 � 0.04606bg �1 [�m℄ 0.03248 � 0.00127 0.04045 � 0.00123bg �1 [GeV℄ 0.02818 � 0.00101 0.02605 � 0.00148bg �1 [GeV℄ 0.00361 � 0.00014 0.00743 � 0.00053bg �2 [�m℄ 0.01671 � 0.00133 0.02695 � 0.00225bg �1 � �2 [GeV℄ -0.01150 � 0.00084 -0.02051 � 0.00144Table 7.1: Summary of �t results obtained from the unbinned maximum likelihood �tof the mass and lifetime distributions after a ut based seletion and after a neuralnetwork seletion.two Gaussian funtions used as signal parametrization. All parameter names startingwith \bg" denote parameters that desribe the ombinatorial bakground's properdeay time distribution (f. eq. 7.2). The result obtained for the B0 lifetime afterthe ut based seletion is � = 468:2 � 5:4�m, the neural network seletion gives� = 460:8 � 4:5�m. Both values are in good agreement with the world averagevalue of �(B0) = 459:3 � 2:0�m [15℄. This result demonstrates that the �t model,inorporating the �nite experimental resolution and the bias in the lifetime distributiondue to trigger and seletion uts, is apable of extrating the orret lifetime from theunderlying data sample. The bias in the lifetime distribution that is introdued by aneural network seletion is similar to the bias observed after a ut based seletion andan be inorporated by deriving the eÆieny �(t) using simulated events.7.3 Fit of �mdThe negative log likelihood funtion used for the unbinned maximum likelihood �tof �md is very similar to the expression used for �t of the B0 lifetime in eq. 7.1. Inaddition to the desription of signal and bakground distributions in mass and lifetimespae, a term desribing the B0 � �B0 mixing enters the probability density funtionthat is used for the �t of �md. The negative log likelihood funtion used for the
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Figure 7.6: Likelihood funtion as a funtion of �md, evaluated around the minimumobtained when using a ut based seletion (left) and a seletion based on a neuralnetwork lassi�ation (right) to provide the events that are used in the unbinnedmaximum likelihood �t.minimization an be written asL = �2Xi lnh�1� fB� � PS(ti; �i; �t;i) � PS(mi) + fB � PB(ti) � PB(mi)i (7.4)where PS(ti; �i; �t;i) denotes the lifetime distribution inluding the mixing term (seeeq. 5.26), whih ontains the tagging deision � as an additional measured quantity.For this study only tagging deisions provided by the jet harge tagger [56℄ are used.The full analytial expression for PS(ti; �i; �t;i) an be found in appendix C. Duringthe minimization all parameters in lifetime and mass spae are �xed to the valuesobtained after the unbinned maximum likelihood �t of the B0 lifetime (see table 7.1).Only �md remains as a free parameter. The results for �md obtained after performinga ut based or a neural network seletion are�md = 0:496 � 0:072 ps�1 after a ut based seletion�md = 0:507 � 0:069 ps�1 after a network based seletion:The values obtained for �md are in good agreement with the world average value of�md = 0:507� 0:004 ps�1 [10℄. Figure 7.6 shows the negative log likelihood funtionfor �md evaluated in the region from 0:1 ps�1 to 0:9 ps�1. Statistial unertaintiesare quoted only. No systemati studies are performed as this is not intended to bea measurement of �md but rather a hek, demonstrating the potential to use theneural network seletion for a mixing �t and the funtionality of the �t framework.



126 Chapter 7. Mixing Fit7.4 Amplitude San and Fit of �msThe previous setion used data samples ontaining the deay B0 ! D�;D ! K��obtained after applying a ut based optimization proedure and a neural networklassi�ation and tagging deisions provided by the jet harge tagger to perform a �tof �md. The data sample obtained for the deay Bs ! Ds�;Ds ! ��; � ! KK isonsiderably smaller and extrating the osillation frequeny �ms is more diÆult,as �ms is signi�antly larger than �md. The measurement of �ms performed byCDF II [11℄ uses a set of �ve Bs deay modes and ombines the information of fouravor taggers, so a hek of the existing measurement or even an improvement, usinga neural network seletion, requires the use of more deay modes and the ombinationof several tagging algorithms.Nevertheless, the deay mode Bs ! Ds�;Ds ! ��; � ! KK is the most importantsingle mode for a �ms measurement, as this hannel provides the largest numberof signal events (' 40% of the sum of the number of signal events of all �ve deaymodes) and the best signal over bakground ratio of all deay modes. Therefore in thissetion a omparison of the amplitude san method (see setion 5.5.1) and an unbinnedmaximum likelihood �t of �ms performed on the data sample of the deay Bs !Ds�;Ds ! ��; � ! KK obtained after a ut based optimization proedure and aneural network lassi�ation is presented. This omparison is intended to demonstratethat the use of the neural network seletion is apable of improving the existing �msmeasurement, using the ut based optimization proedure.The amplitude san is performed in lose analogy to the �t of �md presented inthe previous setion. First all parameters in mass and lifetime spae are �tted usingthe sequene of binned and unbinned likelihood �ts introdued in setion 7.1. Allparameters in mass and lifetime spae, inluding the Bs lifetime and the bakgroundfration, are �xed to the values obtained from the �t sequene. The amplitude sanonsists of a series of unbinned maximum likelihood �ts where in eah �t �ms is �xedto a ertain value and the amplitude A (see eq. 5.28) is a free parameter. Figure 7.7ompares the amplitude san obtained for a range of �ms from 1 to 21 ps�1 for the utbased seletion and the neural network based seletion. Both plots looks similar, as thesamples obtained after both seletions show a signi�ant overlap (see �gure 6.10). Thesensitivity for �ms is obtained from the intersetion of the dotted line, denoting valuesof 1:65 �A derived from the blind amplitude san (see setion 5.5.1), with the line A =1. Compared to the ut based seletion, the sensitivity for �ms is improved from ' 17ps�1 to ' 18:5 ps�1 using the neural network based seletion. Also the 95 % on�denelower limit on �ms, indiated by a irle at the intersetion of the A + 1:65 �A withthe line A = 1 in both plots, improves from �ms > 1:2 ps�1 to �ms > 9:8 ps�1using the neural network seletion. The unertainties quoted for the amplitude A in�g. 7.7 are statistial only and are derived from the unbinned maximum likelihood
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Figure 7.7: Amplitude san for �ms obtained using a ut based seletion (left) and aseletion based on a neural network lassi�ation (right).�t of A. The two amplitude sans are intended to ompare the ut based and neuralnetwork based seletion and demonstrate the relative improvement of the sensitivityahieved by a better andidate seletion only. No treatment of systemati errors, mostimportantly the possibility of an inorret dilution predited by the tagging algorithmand the relative ontribution of di�erent bakground omponents, is performed, asthey are not expeted to behave signi�antly di�erent for both types of seletion.Another way to ompare the data samples obtained using a neural network or utbased andidate seletion is to use the samples as input for an unbinned maximumlikelihood �t of �ms. The likelihood expression used in the �t, as well as the �tproedure, are idential to the �t of �md performed in setion 7.3. Figure 7.8 showsthe likelihood funtion evaluated around the minimum obtained for �ms from anunbinned maximum likelihood �t. In both ases, the likelihood projetion showsa ompliated struture onsisting of several loal minima. This indiates that fora preise and signi�ant measurement of �ms more deay hannels and also moretagging information has to be inluded in the �t. However, in the range from 1 to22 ps�1 both �ts have their global minimum at ' 17 ps�1, where in the ase of thesample seleted by the neural network this minimum is still deeper ompared to theloal minima observed at ' 14 ps�1 and ' 20 ps�1. The values for �ms obtainedfrom both �ts are:�ms = 17:71 � 0:39 ps�1 after a ut based seletion�ms = 17:64 � 0:22 ps�1 after a network based seletion.Statistial unertainties are quoted only. These numbers an't be interpreted as a �nalresult for �ms, as no treatment of systemati unertainties is performed.
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Figure 7.8: Likelihood funtion as a funtion of �ms, evaluated around the minimumobtained when using a ut based seletion (left) and a seletion based on a neuralnetwork lassi�ation (right) to provide the events that are used in the unbinnedmaximum likelihood �t.The results of the omparison of the data sample seleted by uts to a data sampleseleted by a neural network are promising. In the amplitude san as well as in theunbinned maximum likelihood �t the network seletion ould demonstrate that it willbe apable of improving the existing �ms measurement when all deay hannels andall the tagging information that is available are taken into aount.



Chapter 8Conlusion and OutlookUsing sophistiated neural network tehniques, the event seletion proedure for thedeays of B mesons into exlusive �nal states has been improved signi�antly omparedto the sequential ut based optimization proedure applied at CDF II up to now. Thevariables used in the seletion proedure are ombined optimally into a single disri-minating variable, exploiting the additional information ontained in the orrelationbetween these variables. The networks are trained using simulated signal events andombinatorial bakground events from the upper sideband in data as training patterns.The novel tehnique developed in the ourse of this work improves the ongoing analysisof Bs mixing at CDF II and will substantially ontribute to establishing a statistiallysigni�ant values for �ms at the 5 � level.Applying the network seletion to the deay B0 ! D�;D ! K�� yields a signalsigni�ane of 131:5 � 0:9 , whih orresponds to an improvement of 11 % omparedto the ut based optimization proedure that was applied at CDF II up to now. Thisimprovement is equivalent to adding 24 % more data to the analysis. Extending themethod to the deay Bs ! Ds�;Ds ! ��; � ! KK gives SpS+B = 35:5 � 0:7,an improvement of 16 % ompared to the ut based optimization proedure, whihorresponds to adding 35 % more data to the analysis. Taking into aount the t{resolution of the seleted events, this leads to an expeted overall improvement of 14 %of the signi�ane of the Bs mixing measurement in this deay hannel. The datasetthat is used for both deay hannels orresponds to an integrated luminosity of 765ps�1.Comparing the data samples in the deay hain Bs ! Ds�;Ds ! ��; � ! KKseleted by uts or a neural network in an amplitude san and an unbinned maximumlikelihood �t of �ms on�rms that the neural network seletion leads to a signi�antimprovement of the existing measurement of �ms in the near future.In addition, a �t framework allowing the measurement of the lifetime of exlusivelyreonstruted B mesons from a data sample with a lifetime distribution that is biased129



130 Chapter 8. Conlusion and Outlookdue to trigger and seletion uts has been implemented. The framework allows todetermine the mixing frequeny �md (�ms) of B0 (Bs) mesons by inorporatingtag deisions provided by avor tagging algorithms. Beyond the appliation in ameasurement of �ms, in future the �t framework an be used for the alibrationof advaned tagging algorithms for measurements of the CP{asymmetry in the Bssystem.As a hek of both improved seletion proedure and �tter framework, the lifetimeand mixing frequeny of the B0 meson in the �nal state B0 ! D�;D ! K�� wasdetermined by performing either a ut based seletion or a neural network seletion:�(B0) = 468:2� 5:4�m�md = 0:496 � 0:072 ps�1 after a ut based seletion�(B0) = 460:8� 4:5�m�md = 0:507 � 0:069 ps�1 after a network based seletion.Both results are in good agreement with the world average values of �(B0) = 459:3 �2:0�m [15℄ and �md = 0:507� 0:004 ps�1 [10℄.Also an unbinned maximum likelihood �t of �ms was performed using the deayhannel Bs ! Ds�;Ds ! ��; �! KK, resulting in�ms = 17:71 � 0:39 ps�1 after a ut based seletion�ms = 17:64 � 0:22 ps�1 after a network based seletion.Statistial unertainties are quoted only. These numbers an not be interpreted as a�nal result for �ms, as no treatment of systemati unertainties is performed.The improved signal seletion using neural networks an be easily transferred to otherexlusive �nal states and enhane any type of analyses involving exlusively reon-struted B Meson deays. For an appliation of the neural network seletion in theontext of a �ms measurement, all �nal states ontributing to the measurement haveto be individually optimized with neural networks. First results [66℄ show that a sig-ni�antly larger improvement of the signal signi�ane SpS+B an still be ahieved forother Bs deay hannels like Bs ! Ds���. These deays are kinematially more om-plex, involve subresonanes and ontain, due to six instead of four traks in the �nalstate, a larger fration of ombinatorial bakground. Extending the network seletionto all deay modes relevant for the Bs mixing measurement will therefore providean improvement of the existing �ms measurement in the near future and ontributesigni�antly to the disovery of Bs osillations at CDF II.



Appendix ADe�nition of VariablesThe following variable de�nitions are used throughout the work presented in thisthesis. The pion sub{ and supersripts are used to distinguish the pion �B originatingdiretly from the B meson deay from the two pions �1D and �2D from the subsequentD meson deay D! K��.jd0(B)j Impat parameter of the B mesonLxy(B) Deay length of the B meson de�ned as Lxy = ~r�~ppt , where ~r is the displaementof the deay position in the (x{y) plane, ~p the momentum vetor of the partilein (x{y) and pt = j~pjLxy=�Lxy(B) Deay length signi�ane of the B meson�23D(B) Three{dimensional �2 of the B vertex �t�2r�(B) Two{dimensional �2 of the B vertex �tpt(B) Transverse momentum of the B mesonjd0(D)j Impat parameter of the D meson�23D(D) Three{dimensional �2 of the D vertex �t�2r�(D) Two{dimensional �2 of the D vertex �tLxy=�Lxy(D) Deay length signi�ane of the D mesonLxy(D) Deay length of the D meson 131



132 Appendix A. Definition of Variablespt(D) Transverse momentum of the D mesonLxy(B ! D) Deay length of the D meson with respet to the B mesonmin(mK;�1D ; mK;�2D) Minimum of the two invariant masses alulated from the fourmomenta of either pion from the deay D ! K�� and the four momentum ofthe kaonmax(mK;�1D ; mK;�2D) Maximum of the two invariant masses alulated from the fourmomenta of either pion from the deay D ! K�� and the four momentum ofthe kaon^(~p(B); ~p(�B))msB Cosine of the angle between the three{momentum of the B me-son ~p(B) and the three{momentum ~p(�B) of the �B boosted to the B mesonsrest frame�R(D; �B) Opening angle (in sterad) between the D meson and the � from the deayB0 ! D�pt(�B) Transverse momentum of the �Bpt(K) Transverse momentum of the kaon from the deay D ! K��pt(�1D) Transverse momentum of the �rst pion from the deay D! K��pt(�2D) Transverse momentum of the seond pion from the deay D! K��jd0(�B)j Impat parameter of the �Bjd0(K)j Impat parameter of the kaon from the deay D ! K��jd0(�1D)j Impat parameter of the �rst pion from the deay D! K��jd0(�2D)j Impat parameter of the seond pion from the deay D! K��lifetime{signed d0(�B) Lifetime signed impat parameter of the �B (see �g. A.1)lifetime{signed d0(K) Lifetime signed impat parameter of the kaon from the deayD! K��lifetime{signed d0(�1D) Lifetime signed impat parameter of the �rst pion from thedeay D! K��



133lifetime{signed d0(�2D) Lifetime signed impat parameter of the seond pion from thedeay D! K��min jd0j Minimum impat parameter of all four traksmin jd0j�d0 Minimum impat parameter signi�ane of all four traksmin pt Minimum transverse momentum of all four traksheliity angle K1 Cosine of the angle between the three{momentum of the Bs meson~p(B) and the three{momentum ~p(K1) of the �rst of the two kaons from the deay�! KK boosted to the Bs mesons rest frame (the \heliity angle")m�!KK Invariant mass of the deay �! KK

Primary Vertex

 (B)p

 (track)p

0d

Figure A.1: De�nition of the lifetime{signed impat parameter for a trak in an eventwith a B deay. dlts0 = j~d0j signum(~d0 ~pB)



Appendix BDetails of the Variable Signi�aneTableTables 6.1, 6.2 and 6.3 show examples for variable signi�ane tables alulated as partof the NeuroBayes r preproessing [34℄[67℄[68℄. Taking into aount all N � 1 trainingvariables and the training target (i.e. signal or bakground) the N � N ovarianematrix C is alulated after the variables' individual preproessing. The entries Cijare alulated for all pairs of variables (inluding the target) xi, xjCij = 1n Xevents�xi� < xi >� � �xj� < xj >� (B.1)where < x > denotes the average or expetation value of x and n is the number oftraining events. The orrelation between two variables an be expressed by the entriesof the orrelation matrix �ij = CijpV [xi℄pV [xj ℄ where V [xi℄ denotes the variables' varianeand �ij the orrelation oeÆient.The NeuroBayes r preproessing then deorrelates all training variables by appropri-ate rotations of the (N � 1) � (N � 1) orrelation matrix of the training variables.The rotations performed to diagonalize the training variables' orrelation matrix areperformed simultaneously on the vetor ~� = (�1; :::; �N�1) of eah training variable'sorrelation to the training target1. The vetor ~e� obtained after the (N � 1)� (N � 1)orrelation matrix of the training variables is diagonalized ontains the orrelations ofthe N � 1 deorrelated training variables to the training target. The total orrelation�T of all training variables to the training target then is �T 2 =PN�1i=1 e�i2.To alulate the variable signi�ane table (table B.1 shows an example for suh avariable table obtained after a training with four variables) for eah of the N � 11The vetor ~� orresponds to the �rst row of the full N � N orrelation matrix of all trainingvariables and the target. 134



135Rank Name Signi�ane [�℄1 jd0(B)j 163.212 Lxy=�Lxy(B) 76.623 �23D(B) 48.734 pt(�B) 41.43Table B.1: Example for a variable signi�ane table obtained after the NeuroBayes rpreproessing.variables xi the loss of total orrelation�2xi = �2T;x1;:::;xN�1 � �2T;x1;:::;xi�1;xi+1;:::;xN�1 (B.2)is alulated if this variable was removed from the set of training variables. Thevariable xi where the smallest loss of total orrelation ours is then removed from theset of variables. In table B.1 this is variable pt(�B), at the bottom of the table. Thesigni�ane S of this variable, whih is quoted in the right olumn of table B.1, is thenobtained from S = �xi � pn where n is the number of events in the training sample.The signi�ane S of a variable serves as a measure of the additional total orrelationto the target that is introdued by adding this variable to the remaining set of N � 2training variables. This proedure is repeated with the set of N � 2 variables untilthe signi�ane of all variables is alulated. As the signi�ane of the k{th variablein the table depends only on the k � 1 remaining variables, the variable table is notneessarily ordered monotonily in signi�ane.



Appendix CDerivation of analyti expressionsused in the mixing �tThe probability density funtion desribing a mixing signal that is sulpted by aneÆieny urve �(t) is given in setion 5.5 by equation 5.25PS(ti; �i; �t;i) = 1NS(t; �; �t) � �1 + �AD os(�mt)1 + j�j 1� e� t� �
 G(t� t0; �t) � �(t) (C.1)A denotes the amplitude fator enountered in setion 5.5.1. Here again 
 is used asabbreviation for the onvolution integralf(ti; �i; �t;i) = 1NS(t; �; �t) � �1 + �D os(�mt)1 + j�j 1� e� t� �
 G(t� t0; �t)= 1NS(t; �; �t) � Z 1�1�1 + �D os(�mt)1 + j�j 1� e� t� �G(t� t0; �t) dt0 (C.2)and PS(ti; �i; �t;i) = f(ti; �i; �t;i)��(t). It is advantageous to use os(�mt) = Re(e�i�mt)and move to the omplex plane for solving the integrals involved in the normalizationof this funtion. The analyti solution of the integral de�ned by C.2 is given byf(ti; �i; �t;i) = 12� e� 1� (t��22� )j�j+ 1 �Erf��2 � t�p2�� �+ �ADe��2�m22 Rene�i�m(t��2� ) Erf��2 � t�p2�� + i�m�p2 �o� (C.3)Using expression 7.3 �(t) = 2Xj=0 aj (t� �j)2 e�t=�j �(t� �j) (C.4)136



137as parametrization of the lifetime eÆieny urve ensures that the normalization fatorNS(ti; �i; �t;i) an be alulated analytially. Splitting C.3 intof1(ti; �i; �t;i) = 12� e� 1� (t��22� )j�j+ 1 Erf��2 � t�p2�� � (C.5)andf2(ti; �i; �t;i) = 12� e� 1� (t��22� )j�j+ 1 �ADe��2�m22 Rene�i�m(t��2� ) Erf��2 � t�p2�� + i�m�p2 �o(C.6)leads to PS(ti; �i; �t;i) = 1NS(t; �; �t) � �f1(ti; �i; �t;i) + f2(ti; �i; �t;i)� � �(t) (C.7)and the normalization onstants ensuring R PS(ti; �i; �t;i)dt = 1 an be alulated fromNS(ti; �i; �t;i) = Z 1�1�f1(ti; �i; �t;i) + f2(ti; �i; �t;i)� � �(t) dt (C.8)The integral C.8 an be split into six parts for � = 0 or � = �1 and sorted in powersof tN (N = 0; 1; 2), as �(t) from C.4 an be written in the form�(t) = 2Xj=0(dj + jt + bjt2) e�aj t �(t + j2bj ) (C.9)where �j = 1=�j, bj = aj, j = �2aj�j and dj = aj�2j . This leads to integrals forN j�N(ti; �i; �t;i) of the type� = 0; N = 0 : N j00(ti; �i; �t;i) = Z dj e��j t f1(ti; �i; �t;i) dt� = 0; N = 1 : N j01(ti; �i; �t;i) = Z jt e��j t f1(ti; �i; �t;i) dt� = 0; N = 2 : N j02(ti; �i; �t;i) = Z bjt2 e��j t f1(ti; �i; �t;i) dt� = �1; N = 0 : N j10(ti; �i; �t;i) = Z dj e��j t f2(ti; �i; �t;i) dt� = �1; N = 1 : N j11(ti; �i; �t;i) = Z jt e��j t f2(ti; �i; �t;i) dt� = �1; N = 2 : N j12(ti; �i; �t;i) = Z bjt2 e��j t f2(ti; �i; �t;i) dt



138 Appendix C. Derivation of Analyti ExpressionsFor eah term j = 0; 1; 2 in �(t) the six ontributions N j�N(ti; �i; �t;i) add up toN jS(ti; �i; �t;i). The overall normalization of PS(ti; �i; �t;i) is then given byNS(ti; �i; �t;i) = 2Xj=0 N jS(ti; �i; �t;i) = 2Xj=0 2XN=0 1Xi=0 N jiN(ti; �i; �t;i) (C.10)where j sums over the three omponents of �(t), the sum over N adds the di�erentpowers in t for eah part of �(t) and the sum over i puts together the normalizationsfor the lifetime and mixing terms. and show tests of the analytial implementation inC++ program ode with a numerial integration algorithm[47℄.
C.1 Analytial Results of the Normalization Inte-gralsThis setion summarizes the analytial results of eah integral N j�N(ti; �i; �t;i) obtainedby the help of [69℄ The integration limits and the index j for the di�erent terms of�(t) are omitted.
N00 = d2(j�j+ 1)�(1 + ��)�e�(�+1=�)t�he�2�22 +�t+t=� Erf���2 + tp2� �� e �22�2 Erf��2 � �tp2�� �i�

N01 = �(j�j+ 1)�p2��(1 + ��)��e��t� t22�2 �2 � �e�2�22 r 2��3 Erf���2 + �p2� �+ 14" � 2(1 + ��)2 e�2�22 Erf���2 + �p2� �� �(� + t+ ��t)(1 + ��)2 e �22�2� (1+��)t� Erf��2 � �tp2�� �#�



C.1. Analytial Results of the Normalization Integrals 139
N02 = 12(j�j+ 1)�(1 + ��)2 be��t� t22�2 ����r 2�����2 + 2� � �2�2� + t+ ��t�+ e (��2+t)22�2 ��1 + �2�2 � �� + �3�2��Erf���2 + �p2� ��!+ 14�(1 + ��)3 b��2e�2�22 � 2 Erf���2 + �p2� �� e�2�2(1+��)t2�2� �t2 + 2�t(1 + �t)� + � 2�2 + 2�t+ �2t2�Erf��2 � �tp2�� ��!
N10 = �d �AD Re��e� (1+2i��m+2��(1+i��m))�22�2 �e�m2�22 + (1+��+i��m)((1+i��m)�2��t)�2� � �1 + �� + i��m� � Erf�(1 + i��m)�2 � �tp2�� �� e (1+��)(1+��+2i��m)�2��2 p�� 2(1 + �� + i��m)2�2� Er�� �(1 + �� + i��m)(��2 + t)p2p�� 2(1 + �� + i��m)2�2����4�(1 + �� + i��m)2���
N11 =  �AD Re�� i���2 e��t� t22�2 � � e�2�22 r�2 �3 Erf���2 + tp2� ��.�2��i� i�� + ��m�p2���� h�e� (�i+��m)2�2+2�(1+��+i��m)2�2 �� � e (1+��+i��m)((�1+���i��m)�2+2�t)2�2 Erf���2 + tp2� �+ �� + t+ ��t + i��mt�Erf�(1 + i��m)�2 � �tp2�� ��i.�4(1 + �� + i��m)��



140 Appendix C. Derivation of Analyti Expressions
N12 = b �AD Re("� e��t� t22�2��p2����2 + t + ��2� �2�2 + i�mt + �(�i�m�2 + t)��+ e (��2+t)22�2 p� � �1� �� + i��m + �3��2 + �2(1 + i��m)�2�Erf���2 + tp�� ��#.�4(1 + �� + i��m)2p2�+ "�e (�i+��m)2�2+2�(1+��+i��m)t2�2 � �t2 + 2�t�1 + �t+ i�mt��+ � 2�2 + 2i�mt + �2t2 ��m2t2 + 2�t(1 + i�mt)�Erf�(1 + i��m)�2 � �tp2�� �#.�1 + �� + i��m�3� 2e�2�22 � 3� Er� �1 + �� + i��m�3���2 + t�p2q��1 + �� + i��m�6�2!)Here Er�(z) denotes the omplex error funtion de�ned asEr�(z) = �iErf(iz) (C.11)The evaluation of the error funtion Erf(z) with omplex argument z is based on aasymptoti series expansion suggested in [70℄ de�ningw(iz) = ez2 Erf(z) (C.12)and using the expansion for ww(iz) = 1p�z"1 + 1Xm=1(�1)m (2m� 1)!!(2z2)m # (C.13)C.2 Numerial Tests of the Analyti Implementa-tionThe integrals introdued in setion C.1 are rather ompliated expressions and animplementation in C++ soure ode has to be heked for possible programmingmistakes or other types of inonsistenies. This hek is performed omparing theimplementation of the analytial solutions of the integrals to a numerial integration



C.2. Numerial Tests of the Analyti Implementation 141performed using the ROOT pakage[47℄. Figure C.1 and C.2 show this omparison forthe normalization of f1(ti; �i; �t;i) and f2(ti; �i; �t;i) respetively for typial values of allparameters. In eah ase the di�erene between the implementation of the analytialfuntion and the numerial integral is < 10�6, whih an be attributed to the limitedpreision of the numerial integration routine.
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Figure C.1: Comparison of the implemented analytial solution of the sum of integralsN00+N01+N02, this orresponds to the normalization of the funtion f1(ti; �i; �t;i), to anumerial integration. The top left panel shows f1(ti; �i; �t;i) for some typial values of� and �t. The top right panel shows the eÆieny urve that is used, the bottom leftpanel shows the analytial and numerial integrals R x�0:05 f1(ti; �i; �t;i) superimposed,where the x{axis denotes the upper limit used for the integration, and the bottomright panel the di�erene of the two.
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Appendix DComparisons between Data andSimulated Events
D.1 OverviewThis setion summarizes the omparisons of simulated events to data for all variablesthat have been used for the training of a neural network throughout the sope of thisnote. First (setion D.2) a omparison between data and simulated events obtainedafter a ut based seletion is presented for the deay B0 ! D�;D ! K��. Theomparisons demonstrates that the agreement between data and simulated events isgenerally good and the simulated sample an be used to provide training patterns forsignal events in the network training. In the following setion D.3 the orrelationsbetween the variables in data and simulated events are ompared, this hek showsthat the orrelations the neural network is going to learn from the simulation are thesame as in data. Finally setion D.4 demonstrates that the agreement between dataand simulated events is still valid when applying a neural network seletion on bothdata and simulated events. This is important when deriving the lifetime eÆienyurve from the lifetime distribution of simulated signal events (see setion 7.2.2). Allheks have been performed for the deay Bs ! Ds�;Ds ! ��; �! KK as well andshow a similarly good desription of signal events in data by events obtained from asimulation.For the preparation of the plots in eah setion the signal region is de�ned as reon-struted B0 mass �2� where � denotes the width of the narrower Gaussian funtionsin the signal peak obtained from the �t in �gure 6.9 (top). This overs the massrange [5.2419, 5.3163℄ GeV. The sideband region is hosen to be the range from [5.4,5.6℄ GeV. Before subtrating, the sideband distributions are saled to the number ofevents expeted for the ombinatorial bakground ontribution in the signal region.144



D.2. Comparison of Distributions after Cuts 145The sample of simulated events is saled to the number of true signal events (exludingontributions from the Cabibbo{suppressed mode B0 ! DK). Eah plot shows thesaled distribution for simulated events (grey), the sideband subtrated signal fromdata (blak markers), both normalized to unit area, and for referene the distributionof the variable in the upper sideband (blue markers).D.2 Comparison of Distributions after Cuts
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Figure D.1: Comparison of data and simulated events of the impat parameter ofjd0(B)j (left) and the two{dimensional �2 of the vertex �t of the B0 (right).
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Figure D.2: Comparison of data and simulated events of the deay length signi�aneLxy=�Lxy(B) of the B0 (left) and the distribution of the deay length Lxy(B) of theB0 (right).
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Figure D.3: Comparison of data and simulated events of the pt of the B0 meson andthe pt of the pion originating from the deay B0 ! D� (right).



D.2. Comparison of Distributions after Cuts 147

2χ
0 5 10 15 20 25 30 35 40 45 50

p
ro

b
ab

ili
ty

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

MC signal

signal

upper SB

CDF Run 2 Preliminary
-1

L = 765 pb

2χ
0 5 10 15 20 25 30 35 40 45 50

p
ro

b
ab

ili
ty

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

MC signal

signal

upper SB

CDF Run 2 Preliminary
-1

L = 765 pb

Figure D.4: Comparison of data and simulated events of three{dimensional �2 of thevertex �t of the deay B0 ! D�;D! K�� (left) and the deay D ! K�� (right).
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Figure D.5: Comparison of data and simulated events of the impat parameter (left)and the two{dimensional �2 of the vertex �t of the D from the deay B0 ! D� (right).
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Figure D.6: Comparison of data and simulated events of the deay length signi�aneLxy=�Lxy(B) (left) and the distribution of the deay length Lxy(D) of the D from thedeay B0 ! D� (right).
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Figure D.7: Comparison of data and simulated events of the invariant masses ofthe subsystems mK;�1D and mK;�2D from the deay D ! K��. The two masses areordered, the left panel shows the higher mass max(mK;�1D; mK;�2D) , the smaller massmin(mK;�1D; mK;�2D) is displayed in the right panel.
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Figure D.8: Comparison of data and simulated events of the deay length of the D fromthe deay B0 ! D� with respet to the B0 (left) and the opening angle �R(D; �B)between D and � from the B0 ! D� deay (right).

cm
-0.1 0 0.1 0.2 0.3 0.4

p
ro

b
ab

ili
ty

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

MC signal

signal

upper SB

CDF Run 2 Preliminary
-1

L = 765 pb

significance
-20 0 20 40 60 80 100

p
ro

b
ab

ili
ty

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

MC signal

signal

upper SB

CDF Run 2 Preliminary
-1

L = 765 pb

Figure D.9: Comparison of data and simulated events of the the lifetime signed impatparameter dlts0 (left) and the lifetime signed impat parameter signi�ane dlts0 =�d0 ofthe � from the B0 ! D� deay (right).
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Figure D.10: Comparison of data and simulated events of the the lifetime signedimpat parameter dlts0 (left) and the lifetime signed impat parameter signi�anedlts0 =�d0 of the K from the D! K�� deay (right).
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Figure D.11: Comparison of data and simulated events of the the lifetime signedimpat parameter dlts0 (left) and the lifetime signed impat parameter signi�anedlts0 =�d0 of the �rst � from the D! K�� deay (right).
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Figure D.12: Comparison of data and simulated events of the lifetime signed impatparameter dlts0 (left) and the lifetime signed impat parameter signi�ane dlts0 =�d0 ofthe seond � from the D! K�� deay (right).
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Figure D.13: Comparison of data and simulated events of the angle ^(~p(B); ~p(�B))msBbetween ~p(�B) and ~p(B) in the B rest frame (left) and the pt of the K from the deayD! K�� (right).
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Figure D.14: Comparison of data and simulated events of the transverse momenta ptof the �rst � (left) and the seond � from the deay D ! K�� (right).
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Figure D.15: Comparison of data and simulated events of the impat parameters jd0jof the �B (left) and the K from the deay D! K�� (right).
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Figure D.16: Comparison of data and simulated events of the impat parameters jd0jof the �rst � (left) and the seond � from the deay D ! K�� (right).
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Figure D.17: Comparison of data and simulated events of the pt of the D meson fromthe deay B0 ! D� (left) and the minimum pt of the four stable partiles from thedeay hain B0 ! D�;D! K�� (right).
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Figure D.18: Comparison of data and simulated events of the minimum impat param-eter jd0j and the minimum impat parameter signi�ane jd0j=�d0 of the four stablepartiles from the deay hain B0 ! D�;D! K��.



D.3. Comparison of Correlations in Data and Simulated Events 155D.3 Comparison of Correlations in Data and Sim-ulated EventsThis setion summarizes the data/simulated events omparison of the orrelationsbetween the training variables. As the main bene�t from using a network insteadof applying uts on individual variables arises from taking orrelations into aount,it's important to hek that the simulated events simulation properly reprodues theorrelations that are observed in real data. The plots in this setion are prepared usingthe same sideband subtration proedure as in the previous setion. For eah pair ofvariables 2{dimensional histograms are prepared for the signal range in data, the uppersideband region from 5.4 to 5.6 GeV in data and the signal from simulated events.The distribution from the upper sideband is then subtrated from the distribution indata. For both data and simulated events then pro�le plots are reated. The followingpages summarize the results of this omparison for most of the variables.
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FigureD.19:Comparisonofdataandsimulatedeventsoforrelationsbetweenvari-
ables.Reddenotesthesimulatedeventssimulation,blakdenotesdata.
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FigureD.20:Comparisonofdataandsimulatedeventsoforrelationsbetweenvari-
ables.Reddenotesthesimulatedeventssimulation,blakdenotesdata.
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FigureD.21:Comparisonofdataandsimulatedeventsoforrelationsbetweenvari-
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FigureD.22:Comparisonofdataandsimulatedeventsoforrelationsbetweenvari-
ables.Reddenotesthesimulatedeventssimulation,blakdenotesdata.



160 Appendix D. Comparisons between Data and Simulated EventsD.4 Comparison of Data and Simulated Events af-ter a Network SeletionThis setion summarizes the omparisons of simulated events to data for all variablesthat have been used for the training after a neural network seletion, applying thenetwork ut that optimized SpS+B . All distributions are prepared in analogy to thosealready shown in appendix D.2. Eah plot shows the saled distribution from simu-lated events (grey), the sideband subtrated signal from data (blak markers), bothnormalized to unit area, and for referene the distribution of the variable in the uppersideband (blue markers). For the ompilation here distributions of the variables fromthe redued set of training variables ompiled in table 6.2 in setion 6.5 is displayed.
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Figure D.23: Comparison of data and simulated events of the impat parameter jd0(B)jof the B (left) and the impat parameter jd0(D)j of the D (right).
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Figure D.24: Comparison of data and simulated events of the three{ (left) and two{dimensional (right) �2 of the vertex �t of t he B0 (right).
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Figure D.25: Comparison of data and simulated events of the deay length signi�aneLxy=�Lxy(B) of the B0 (left) and the deay length signi�ane Lxy=�Lxy(D) of the D(right).
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Figure D.26: Comparison of data and simulated events of the Lxy of the D with respetto the B vertex and the pt of the pion originating from the deay B0 ! D� (right).
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Figure D.27: Comparison of data and simulated events of the minimum impat pa-rameter signi�ane jd0j=�d0 (left) and the minimum pt of the four stable partilesfrom the deay hain B0 ! D�;D! K�� (right).



Appendix ECompilation of Fit TemplatesThis appendix shows an exemplari ompilation of bakground templates that wereused for �ts of the B meson lifetime. All templates are rederived for di�erent networkuts by applying to the orresponding network uts on the sample used to �t thetemplate. The templates shown here enter the lifetime �ts in �gure 7.4. The funtionused to desribe the lifetime templates is in every ase the sum of two exponentialfuntions onvolved with two Gaussian funtions (f. 7.2):PB(t) = NB �f1 e� t�1 
 G(t� t0; �1; �1) + (1� f1) e� t�2 
 G(t� t0; �2; �2)�All parameters of the two exponential funtions and the two Gaussian funtions arereleased in the template �ts, in total there are eight free parameters for eah template�t. The parameters of the upper sideband template �t only enter the lifetime �t asstart values, exept for the overall normalization, whih is �xed to one, and �1=�2,whih is �xed to the value obtained after the template �t, all parameters are oatingin the unbinned maximum likelihood �t. The parameters desribing the lifetime dis-tribution of the deays �b ! �� and Bs ! Ds� are kept �xed during the unbinnedmaximum likelihood �t.
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Figure E.1: Templates desribing the ontribution of ombinatorial bakground from5.4 to 5.6 GeV in the lifetime distribution. The distribution displayed in the leftpanel was obtained after a ut based seletion, the distribution in the panel on theright hand side results from a neural network seletion. The parameters of the �ttedfuntion give the start values for the bakground ontributions for the �ts displayedin �gure 7.4.
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Figure E.2: Projetion of the �t results from the unbinned maximum likelihood �tof the bakground ontribution of ombinatorial bakground superimposed on thelifetime distribution obtained for ombinatorial bakground in the range from 5.4 to5.6 GeV. The distribution displayed in the left panel is obtained after a ut basedseletion, the distribution in the panel on the right hand side results from a networkbased seletion. The parameters of the superimposed funtions result from the �tdisplayed in �gure 7.4.
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