
Scuola Normale Superiore di Pisa

CLASSE DI SCIENZE

Corso di Perfezionamento in Fisica

Ph. D. thesis

First observation of the B0
s → K+K− decay mode, and

measurement of the B0 and B0
s mesons decay-rates into

two-body, charmless final states at CDF

Diego Tonelli Advisor:

Prof. Giovanni Punzi

30 Novembre 2006





Abstract

We searched for decays of the type B0
(s) → h+h

′− (where h, h′ = K or π) in a sample corresponding
to 180 pb−1 of pp̄ collisions at

√
s = 1.96 TeV, collected by the upgraded Collider Detector at the

Fermilab Tevatron. A total signal of approximately 900 events was reconstructed, and the relative
branching fractions (B) of each decay mode were determined with a likelihood fit. We report the first
observation of the decay mode B0

s → K+K−, with a yield of 236 ± 32 events, corresponding to a
relative branching fraction

fs
fd
× B(B0

s → K+K−)
B(B0 → K+π−)

= 0.46± 0.08 (stat .)± 0.07 (syst .),

where fs/fd is the ratio of production fractions of B0
s and B0 mesons from the hadronization of a

b-quark in pp̄ collisions. We measured the direct CP-violating asymmetry in the B0 → K+π− decay,

ACP(B0 → K+π−) ≡ B(B
0 → K−π+)− B(B0 → K+π−)

B(B
0 → K−π+) + B(B0 → K+π−)

= −0.013± 0.078 (stat .)± 0.012 (syst .),

and the ratio
B(B0 → π+π−)
B(B0 → K+π−)

= 0.21± 0.05 (stat .)± 0.03 (syst .),

in agreement with world average values. These measurements are performed for the first time in a
hadron collider. No evidence for other modes was found, and we set the following upper limits at the
90% confidence level (CL):

B(B0 → K+K−)
B(B0 → K+π−)

< 0.10,
fs
fd
× B(B0

s → K−π+)
B(B0 → K+π−)

< 0.08, and
B(B0

s → π+π−)
B(B0

s → K+K−)
< 0.05.

By normalizing the relative decay-rates to the world-average values of the B0 → K+π− branching
fraction and of the ratio fs/fd, we obtain the following absolute branching fractions:

B(B0
s → K+K−) = [33± 6 (stat .)± 7 (syst .)]× 10−6,

B(B0 → π+π−) = [3.9± 1.0 (stat .)± 0.6 (syst .)]× 10−6,

B(B0 → K+K−) < 1.8× 10−6 at 90% CL,

B(B0
s → K−π+) < 5.6× 10−6 at 90% CL, and

B(B0
s → π+π−) < 1.7× 10−6 at 90% CL.

This analysis has been published in Physical Review Letters [1].
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Introduction

The decays of b-hadrons are a fertile ground to investigate the flavor sector of the Standard Model
and to look for first signals for new physics in the years preceding the Large Hadron Collider op-
erations. In particular, the phenomenology of non-leptonic charmless two-body decays of b-mesons
offers rich opportunities for increasing our understanding of the CP violation, i. e., the lack of sym-
metry of physical processes when all spatial coordinates are inverted and particles are replaced by
their antiparticles. The precise measurements obtained recently at dedicated e+e− colliders already
provided demonstration of the central role of these decay modes. To mention just one example, the
first evidence of direct CP violation in decays of particles other than kaons was obtained from the
measurement of partial rate-asymmetries between B0 → K+π− and B

0 → K−π+ decays [2].

Charmless hadronic b-meson decays proceed through an unique interplay of electroweak and
low-energy strong interactions, allowing observation of CP-violating effects within and beyond the
Standard Model. The problem is that, currently, no completely reliable theoretical prediction of
decay rates is available, for most of them, because of the presence of strong interactions in non-
perturbative regime, which introduce significant uncertainties in the predicted amplitudes. Several
phenomenological models provide different predictions, none of them properly accounting for all ob-
served decay-rates. This makes the interpretation of experimental observations difficult, since any
discrepancy between predictions and measurements may be ascribed either to improper treatment of
hadronic uncertainties, or to contributions of amplitudes not expected in the Standard Model.

Constraining quark-mixing (i. e., Cabibbo-Kobayashi-Maskawa, CKM) parameters from charmless
hadronic b-meson decays requires, therefore, methods for addressing hadronic uncertainties. A variety
of techniques has been proposed to overcome the difficulty [3, 4, 5]. One that recently received a lot
of attention consists in combining the information from measurements of rates of B0 → π+π− and
B0
s → K+K− decays to control the effect of hadronic uncertainties to directly determine the phase

of the Vub element of the quark-mixing matrix (angle γ) or, alternatively, to test our understanding
of dynamics of b-hadron decays, when compared with other determinations of γ. This method relies
on the expected (partial) cancellation of hadronic amplitudes between decay-modes related by U-spin
symmetry, a subgroup of the flavor SU(3) symmetry under which d quarks transform into s quarks.
This symmetry is not exactly conserved in the Standard Model, introducing a residual uncertainty in
the extraction of the CKM phases. However, the magnitude of the violation can be constrained using
a combination of QCD calculations and experimental observables from other similar decays, and it is
not expected to be large. This allows its treatment as a correction to the results obtained in the limit
of exact validity. The large variety of two-body charmless decay modes supplies useful information
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2 Introduction

both on the weak phase and on the needed correction, provided that an experimental access to these
modes is available.

While rich experimental data are available for B0 and B+ mesons from the ARGUS, CLEO, and
LEP experiments, and, more recently, from the BABAR and Belle experiments, no hadronic charmless
decays of B0

s mesons into pions or kaons has yet been observed.1

The upgraded Collider Detector at the Fermilab Tevatron (CDF II) is an ideal environment for
studying hadronic charmless decays of B0

s (along with B0 and B+) mesons into charged final states. In
this thesis, I describe a method developed for reconstructing such decays in the peculiar environment of
a hadron collider, and the results of the analysis of the first sample, corresponding to

∫
Ldt = 180 pb−1,

collected by the CDF experiment in the current period of operation.

The thesis is organized as follows. Chapter 1 provides a concise description of the theory of non-
leptonic b-hadron decays within the framework of the Standard Model, emphasizing the aspect related
to the determination of CKM parameters. It includes a simplified and non-exhaustive discussion on
the main phenomenological models currently employed in estimating non-perturbative strong contri-
butions to the transition amplitudes. The first chapter contains also a short review of the current
experimental situation and an outline of the analysis.

Chapter 2 describes the experimental apparatus. It contains a general description of the accelerator
and of the CDF II detector. The subdetectors that reconstruct charged-particle trajectories and the
trigger are described in greater detail, being the aspects of the detector more specific to the present
analysis.

The remaining chapters cover the description of the data analysis I carried out for this thesis. Most
of the discussions are self-contained, but certain issues are so inter-correlated that a few forward
references could not be avoided. I tried to limit the technical descriptions to the minimum needed for
a convincing description. Whenever possible, I moved them to the appendices.

Chapter 3 presents the data set used for the measurement and details the extraction of the signal
from the background.

Chapter 4 discusses how the information from kinematics and particle identification was combined
to achieve a statistical discrimination among the individual modes contributing to the signal, needed
for the desired measurements of branching fractions.

The measurement of specific ionization induced by the passage of charged particles in the CDF II
drift chamber (dE/dx ) is an essential discriminant to infer the composition of the sample. Chapter 5
contains a detailed description of the calibration of the dE/dx measurement and of the characterization
of its performance, both necessary for this measurement.

Chapter 6 details the structure of the likelihood function used to fit the composition of the sample.

The results of the fit are presented in chap. 7.

The next chapter, chap. 8, details the evaluation of trigger and analysis efficiencies necessary to
infer the desired measurements of branching fractions from the observed numbers of signal events in
the sample.

Chapter 9 contains the discussion of systematic effects and their associated uncertainties.

1ARGUS stands for “A Russian German US” Collaboration, LEP for Large Electron Positron collider.
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The final results of the measurement and their interpretation are discussed in chap. 10.

When the distinction between the different decay modes (B0 → π+π−, B0
s → K−π+, B0

s →
K+K−, etc.) is not relevant, the expression B0

(s) → h+h
′− (h, h′ = π or K) is used to collectively

indicate all of them. Unless otherwise stated, throughout this thesis, C-conjugate modes are implied
and branching fractions (B) indicate CP-averages, that is,

B(B → f) ≡ Γ(B → f) + Γ(B → f)
2ΓB

,

where Γ(B → f) is the partial decay-width of a particle B into a final state f , ΓB represents the
natural width, and over-lined quantities indicate CP-conjugated states.
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Chapter 1

Two-body charmless B0
(s)

decays

into charged kaons and pions

This chapter contains a concise discussion on the theoretical and phenomenological framework asso-
ciated to the study of strange and non-strange b-meson decays into pairs of charged pions and kaons
(B0

(s) → h+h
′−). The basic concepts and formalism of CP violation in the Standard Model are in-

troduced. Some relevant phenomenological models for predicting amplitudes of non-leptonic decays of
b-mesons are illustrated, discussing their role in providing constraining information on both the CP

violation mechanism and the low-energy strong dynamics involved in these processes. Lastly, the ex-
perimental part of this thesis is introduced: after a brief comparison between the different experimental
environments exploited to study b-meson decays, we summarize the current experimental knowledge
and we outline the structure of the data analysis described in the rest of the thesis.

1.1 Flavor physics and CP violation

1.1.1 Introduction

In 1964, the observation of the decay of long-lived neutral K mesons in both two- and three-pion
states showed that not all natural phenomena are symmetric under the mirror reversal of their spatial
arrangement combined with the replacement of all involved particles with the corresponding antipar-
ticles [6]. The observation of a O(10−3) branching fraction for the K0

L → π+π− process was the
discovery of the non conservation of the CP symmetry, i. e., the CP violation.

In particular, this is the manifestation of indirect CP violation, which originates from the fact that
the mass eigenstates K0

L,S of the neutral kaon system are not eigenstates of the CP operator causing
the small CP-even component of the K0

L state to decay, through CP-conserving interactions, into the
π+π− final state.

It was only in 1999, after a search several decades long, that an alternative manifestation of the
phenomenon, the direct CP violation, was established, again using neutral kaons [7]. The direct CP

violation occurs in first order transitions, arising directly at the decay-amplitude level. Its observation
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ruled-out the “super-weak” theory, proposed by Wolfenstein readily after the 1964 observation [8], and
confirmed that the CP violation is an universal property of the weak interaction, thus being expected
to appear in other phenomena governed by this interaction. In this respect, a large theoretical and
experimental effort has been dedicated since the 1980s to further extend the exploration of the CP

violation, following the first indications of Sanda, Carter, and Bigi on the the opportunity to detect
CP violation in b-meson decays [9]. These have different features with respect to kaon decays, both
from an experimental and theoretical point of view.

The b-mesons contain the b-quark, which belongs to the third quark generation and can directly
decay into a first or a second generation quark; thus, the effects of three-quark generation are accessible
already in lowest-order processes, yielding CP violation effects typically larger than in kaons. The
larger mass of the b-quark with respect to the s-quark provides a two-fold advantage. From the
theoretical standpoint, useful approximations in QCD calculations of (some) amplitudes allow more
reliable predictions than in kaon decays. On the other hand, many decay modes are kinematically
available, allowing multiple experimental access to CP-violating observables. However, the multiplicity
of available channels results in small branching fractions for individual processes and the consequent
need for high statistic samples. Also, the mixing properties are more difficult to extract, because
physical B0

(s) meson states have similar lifetimes, as opposed to the kaon case. It is therefore convenient
to use the flavor-eigenstates base, i. e., to study states whose flavor eigenstate at production is known.
This further reduces the size of available samples, especially in the presence of inclusive incoherent bb̄
production, as in hadron-hadron collisions.

The usual convention is to define as b-mesons the color-neutral bound states of a b̄ valence antiquark
and a valence quark:

B0 ∼ db̄, B0
s ∼ sb̄, B+ ∼ ub̄, and B+

c ∼ cb̄. (1.1)

Dedicated detectors installed at the KEKB and at the upgraded Positron Electron Project (PEP-II)
e+e− colliders, operating at the center-of-mass energy (also referred to as the Mandelstam variable
√
s) corresponding to the Υ(4S) resonance with asymmetric beam energies (the so-called B-Factories),

provided a great wealth of measurements related to B0 and B+ decays, with impressive precision.
In 2001, the first observation of CP violation in decays of particles other than kaons was announced
by the B-Factories: a time-dependent B0 → J/ψKs decay-rate asymmetry was measured, due to
the interference between the amplitude of the decay occurred after B0 − B0

flavor mixing and the
amplitude of the direct decay [10]. This was the observation of “mixing-induced” CP violation in the
b-hadron system. In addition, in 2004, direct CP violation was also observed in B0 → K+π− decays,
thereby complementing the 1999 observation in the kaon system [2].

Understanding CP violation in Nature has fundamental implications related to topics as diverse
as the microscopic time-reversibility of physical laws, or the origin of the baryonic asymmetry of the
universe. In fact, one of the Sakharov conditions for explaining the O(10−10) cosmological baryon
asymmetry is that elementary interactions do not conserve CP (and C) [11]. Interestingly, the esti-
mates of the baryon asymmetry suggest that the magnitude of CP violation currently detected in the
Standard Model is insufficient to cause the observed asymmetries, indicating the need for additional
sources of CP violation. Studying the flavor sector of the Standard Model is a promising way to
obtain information on new physics, through the virtual contributions that new particles may give in
the transitions of Standard Model particles, thereby yielding abnormal amplitudes of processes. This
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“indirect” approach for studying new physics complements the straightforward “discovery approach”,
consisting in producing new resonances in collisions of increasingly high energy. It generally probes
higher energy scales (since non-Standard Model particles can participate as highly-virtual off-shell
states) thereby giving earlier indication of new physics. Nearly all models of physics beyond the
Standard Model imply new sources of flavor and of CP violation.

To recognize possible manifestations of CP violation beyond the Standard Model, it is necessary
to first understand the Standard Model picture of flavor dynamics, governed by the quark-mixing
(or CKM) matrix. The experimental phenomenology is extremely rich: the high number of strange,
beauty, and charmed hadron decays accessible provides a wealth of CP-violating observables. The key
issue is the theoretical interpretation of the results. Since the CP-violating effects are typically small,
accurate predictions of the effects due to exchange of soft gluons between quarks are required. But
the current understanding of QCD in non-perturbative regime does not allow to reach the desired
accuracy; thus the predictions suffer from “hadronic” uncertainties which make it difficult to extract
the short-distance CKM-related observables from the measured quantities.

1.1.2 CP violation in the Standard Model

In 1973, almost then years since its first observation, Kobayashi and Maskawa proposed an interpre-
tation of the CP-violation which will be later established as an essential part of the Standard Model
[12]. They extended the quark-mixing formalism, due to Cabibbo [13] and Glashow-Iliopoulos-Maiani
[14], from two to three quark generations, and suggested that a physical phase in the associate quark-
mixing matrix could have explained the observed phenomenon. The completion of the quark families,
with the observation of the top quark in 1995, and the current level of experimental knowledge on CP

violation confirm, so far, the Kobayashi-Maskawa theory.

The Standard Model with three generations of quarks does not automatically imply conservation
of CP. It can accommodate the observed CP violation since it has a structure complex enough to
support the existence of a physical weak phase in the CKM matrix. In the following, we assume that
the combined operation CPT, in which T is the time-reversal operation, is a valid symmetry. This is
a general property of Lorentz-invariant quantum field theories based on Hermitian local Lagrangian
densities and was never found to be violated [15]. In addition, since no CP violation in processes
governed by the strong or electromagnetic interactions has ever been detected, we assume that this
phenomenon arises only in weak interactions. The flavor sector of the Standard Model is based on
the spontaneously broken gauge group

SU(2)L ×U(1)Y −→ U(1)em. (1.2)

The only structure of the Standard Model from which CP violation may originate is the charged-
current interaction of quarks

di −→ ujW
−, (1.3)

where di = (d, s, b) denote down-type quarks, uj = (u, c, t) up-type quarks and W− is the SU(2)L
gauge boson. The set of coupling-magnitudes Vujdi are fundamental Standard Model parameters,
usually represented in matricial form: the VCKM (Cabibbo-Kobayashi-Maskawa, or quark-mixing)
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matrix:  d′

s′

b′

 =

 Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 d

s

b

 . (1.4)

This couples the physical quarks (mass eigenstates, d, s, b) to the states that participate in the charged-
current weak interaction (flavor eigenstates, d′, s′, b′) through the above unitary transformation. As
a consequence, the Lagrangian density of the non-leptonic charged current interaction is written as

LCC−int = − g2√
2

(ūL, c̄L, t̄L)VCKM

 dL

sL

bL

W †µ + hermitian conjugates (1.5)

in terms of mass-eigenstates. The gauge coupling g2 is related to the SU(2)L gauge group and the W †µ
field describes the charged W bosons. If a CP transformation is applied to relation (1.3) one obtains

Vujdi −→ V ∗ujdi . (1.6)

Since Vujdi = V ∗ujdi (i. e., the interaction is CP-invariant) only if Vujdi is real, CP violation may be
accommodated in the Standard Model through complex phases in the CKM matrix.

Quark fields may be redefined according to phase transformations of the type

uj → eiξuuj and di → eiξddi. (1.7)

The invariance of the charged-current interaction Lagrangian density under such transformations
implies

Vujdi → eiξuVujdie
−iξddi. (1.8)

These transformations may be used to eliminate unphysical phases from any N ×N unitary matrix,
thus reducing its parameterization to a set of 1

2N(N − 1) Euler angles and 1
2 (N − 1)(N − 2) complex

phases.1 With N = 3 quark generations this translates into three Euler angles and a single physical,
observable phase. The degree of freedom represented by this irreducible complex phase permits
integration of CP violation into the Standard Model [12]. However, given the real nature of physical
observables, CP violation can be experimentally detected only when measurable quantities are affected
by the quantum-mechanical interference of multiple terms which have relative phases different from 0
and π. In order to obtain observable CP violation effects within the framework of the Standard Model,
some additional conditions need to be satisfied. A first theoretical condition prescribes non-degenerate
quark generations (quarks with same charge must have different masses), otherwise the CP-violating
phase of the CKM matrix could be removed through an appropriate unitary transformation of the
quarks fields. The condition is experimental and states that the magnitude of the CP violation has
to be sufficient to generate observable phenomena. These conditions are summarized in the following
relation

(m2
t −m2

c)(m
2
t −m2

u)(m
2
c −m2

u)(m
2
b −m2

s)(m
2
b −m2

d)(m
2
s −m2

d)× JCP 6= 0, (1.9)

1Any N ×N complex matrix has 2N2 parameters. Unitarity provides 1
2
N(N − 1) complex and N real constraints.

This leaves 2N2 − N(N − 1) − N = N2 parameters of which 2N − 1 can be removed by redefining the corresponding

number of quark phases, yielding (N − 1)2 parameters.
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where mi are masses of quarks, and

JCP = |=(ViαVjβV ∗iβV
∗
jα)|, i 6= j, α 6= β, (1.10)

is the Jarlskog invariant, independent of the quark-field parameterization, that defines the global scale
of the CP violation [16].

In the following we use the approximated parameterization of the CKM matrix introduced by
Wolfenstein [17]:  1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 , (1.11)

where A, ρ, and η are real parameters, along with the expansion parameter λ ≡ sin(θC) ≈ 0.22,
and O(λ4) terms are neglected.The Wolfenstein parameterization is particularly convenient for phe-
nomenological applications because it readily illustrates the observed hierarchy of magnitude of CKM
parameters, represented by the following 90% confidence intervals [18]:

|VCKM| =

 0.9736–0.9741 0.2262–0.2282 0.00387–0.00405
0.2261–0.2281 0.97272–0.9732 0.04141–0.04231

0.00750–0.00846 0.004083–0.004173 0.999096–0.999134

 , (1.12)

currently known from unitarity-constrained global fits of the unknown CKM parameters based on
experimental input from measurements as diverse as nuclear β decays (|Vud|), semileptonic kaon
decays (|Vus|), muon production from (anti)neutrino interactions (|Vcd|), etc. When next-to-leading
corrections in λ play a role, the CKM elements can be calculated with increasing levels of accuracy
through expansions in λ:

Vud = 1− λ2/2− λ4/8 +O(λ6),

Vus = λ+O(λ7),

Vub = Aλ3(ρ− iη),

Vcd = −λ+A2λ5[1− 2(ρ+ iη)]/2 +O(λ7),

Vcs = 1− λ2/2− (1 + 4A2)λ4/8 +O(λ6),

Vcb = Aλ2 +O(λ8),

Vtd = Aλ3
[
1− (ρ+ iη)(1− λ2/2)

]
+O(λ7),

Vts = −Aλ2 +A(1− 2ρ)λ4/2− iηAλ4 +O(λ6),

Vtb = 1−A2λ4/2 +O(λ6). (1.13)

These may be simplified using

ρ̄ ≡ ρ(1− λ2/2) and η̄ ≡ η(1− λ2/2), (1.14)

as prescribed in a generalized Wolfenstein parameterization that yields Vtd = Aλ3(1− ρ̄−iη̄), Vus = λ,
Vcb = Aλ2, and JCP = λ6A2η with excellent accuracy.
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The unitarity of the CKM triangle corresponds to the condition V †CKMVCKM = 1 = VCKMV
†
CKM,

which leads to six normalization equations and six orthogonality relations. The latter can be graphi-
cally represented as six triangles in the complex plane, each of area JCP/2:

VudV
∗
us︸ ︷︷ ︸

O(λ)

+VcdV
∗
cs︸ ︷︷ ︸

O(λ)

+VtdV
∗
ts︸ ︷︷ ︸

O(λ5)

= 0, (1.15)

VusV
∗
ub︸ ︷︷ ︸

O(λ4)

+VcsV
∗
cb︸ ︷︷ ︸

O(λ2)

+VtsV
∗
tb︸ ︷︷ ︸

O(λ2)

= 0, (1.16)

VudV
∗
ub︸ ︷︷ ︸

(ρ+iη)Aλ3

+VcdV
∗
cb︸ ︷︷ ︸

−Aλ3

+ VtdV
∗
tb︸ ︷︷ ︸

(1−ρ−iη)Aλ3

= 0, (1.17)

V ∗udVcd︸ ︷︷ ︸
O(λ)

+V ∗usVcs︸ ︷︷ ︸
O(λ)

+V ∗ubVcb︸ ︷︷ ︸
O(λ5)

= 0, (1.18)

V ∗cdVtd︸ ︷︷ ︸
O(λ4)

+V ∗csVts︸ ︷︷ ︸
O(λ2)

+V ∗cbVtb︸ ︷︷ ︸
O(λ2)

= 0, (1.19)

V ∗udVtd︸ ︷︷ ︸
(1−ρ−iη)Aλ3

+V ∗usVts︸ ︷︷ ︸
−Aλ3

+ V ∗ubVtb︸ ︷︷ ︸
(ρ+iη)Aλ3

= 0. (1.20)

In the above equations, only the leading non-vanishing terms in the Wolfenstein expansion are shown.
Only eqs. (1.17) and (1.20) represent triangles with sides of comparable magnitude, O(λ3), i. e.,
visibly non-degenerate. In other relations, one side in suppressed by factors λ2 to λ4 with respect to
the others, resulting in almost degenerate triangles. Since eqs. (1.17) and (1.20) agree with each other
at the λ3 level, yielding

[(ρ+ iη) + (−1) + (1− ρ− iη)]Aλ3 = 0, (1.21)

they can be taken as describing the same triangle, usually referred to as the unitarity triangle (UT)
of the CKM matrix, or “Bjorken triangle”.

When the experimental accuracy will be sufficient to probe next-to-leading order terms of the
Wolfenstein expansion, the difference between eq. (1.17) and eq. (1.20) will become relevant. Including
O(λ5) terms, eq. (1.21) is generalized to

[(ρ̄+ iη̄) + (−1) + (1− ρ̄− iη̄)]Aλ3 +O(λ7) = 0. (1.22)

It is convenient to divide the above relation by the normalization factor Aλ3 and to introduce two
sides,

Rb ≡
√
ρ̄2 + η̄2 =

(
1− λ2

2

)
1
λ

∣∣∣Vub
Vcb

∣∣∣ and Rt ≡
√

(1− ρ̄)2 + η̄2 =
1
λ

∣∣∣Vtb
Vcb

∣∣∣, (1.23)

and three angles,

α ≡ arg
(
VtdV

∗
tb

VudV ∗ub

)
, β ≡ arg

(
VcdV

∗
cb

VtdV ∗tb

)
, and γ ≡ arg

(
VudV

∗
ub

VcdV ∗cb

)
. (1.24)

The notation φ1 ≡ β, φ2 ≡ α, φ3 ≡ γ is also used for the angles. These relations are represented in the
complex plane by the triangle of fig. 1.1, which is a straightforward generalization of the leading-order
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case of eq. (1.21), in which the coordinates of the apex are (ρ̄, η̄) rather than (ρ, η). Further convenient
relations that will be used in the following are

Vub = Aλ3

(
Rb

1− λ2/2

)
e−iγ , and Vtd = Aλ3Rte

−iβ . (1.25)

0 1 <

=

R b R
t

(ρ̄,η̄)

γ β

α

Figure 1.1: Representation of the unitarity triangle in the complex (Argand-Gauss) plane. The
generalized Wolfenstein parameterization of the UT is used.

1.2 Phenomenological models of non-leptonic b-meson decays

Since in the Standard Model the mechanism of CP violation intervenes in the quark-mixing matrix,
its phenomenology can be directly studied only in processes involving at least one quark pair. The
presence of quarks in the interaction complicates the problem, because they are unobservable as
physical states. In going from quarks to the observable hadrons, it is necessary to account for all the
QCD processes that may arise between quarks with no alterations of the final state. However, strong
interactions are not in a perturbative regime at energies E ∼ Λχ ' 1 GeV, owing to the infrared
divergence of the strong coupling constant.2 Among the processes involving quark decays, amplitudes
of non-leptonic transitions of b-mesons are theoretically the most difficult to predict, because all
particles in initial and final states are quarks, and the lack of theoretical information about the low-
energy strong interactions affects both the initial bound meson state and the final states. These decays
are mediated by b→ q1 q̄2 d(s) quark-level processes, with q1, q2 = u, d, c, ors.

Two topologies contribute to such decays: lower order “tree” topologies and internal-loop (i. e.,
“penguin”) topologies, the latter being further divided in gluonic (QCD) and electroweak (EW) pen-
guins. Figures 1.4–1.7 show the corresponding leading-order diagrams for B0

(s) → h+h
′− decays.

Depending on the flavor contents of their final states, non-leptonic decays are classified as

tree-only processes – where q1 6= q2, and q2 = u, c;

tree and penguin processes – where q1 = q2, and q1, q2 = u, c;
2With respect to the scale Λχ, quarks can be classified into two categories according to their mass: u, d, and s are

“light” (mu,d,s < Λχ), whereas c, b, and t are “heavy” (mc,b,t > ΛQCD). Following this classification, we define as

“heavy-flavored hadrons” (or “heavy-flavors” in short) hadrons containing quarks heavier than the strange.
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penguin-only processes – where q1 = q2, and q1, q2 = d, s.

Several theoretical and numerical techniques has been developed to estimate the effect of low-energy
QCD interactions and calculate the above transitions amplitudes. A comprehensive review of this
activity is beyond the scope of this introduction to our measurement; we limit the discussion to those
basic concepts that are useful for a better understanding of the motivation of the measurement and
the interpretation of our final results.

1.2.1 Effective Hamiltonians

Currently, the most common conceptual framework in expressing amplitudes of heavy-flavor decays
is connected with the use of low-energy, effective Hamiltonians. The problem of calculating hadronic
amplitudes is simplified by considering that two energy scales are involved in the decays of pseudo-
scalar mesons: one O(100 GeV) scale characterizes the electroweak interaction of the quarks, another
one, O(mB), characterizes the hadronization of quarks into hadrons. The sizable difference between
these two regimes allows the separation (i. e., factorization) of the problem, and derivation of a low-
energy effective description of the phenomena. This effective theory is based on point-like interactions,
in analogy with the early Fermi theory of genuine electroweak decays.

Given an energy scale µ appropriately chosen for the process of interest, effective Hamiltonians are
calculated using the technique of Operator Product Expansion [19] to yield transition matrix elements
of the following general form:

〈f |Heff |i〉 =
GF√

2
λCKM

∑
k

Ck(µ)〈f |Qk(µ)|i〉, (1.26)

where GF is the Fermi constant, λCKM contains the CKM-related quantities, and |i〉 and 〈f | are initial
and final states.

In eq. (1.26) one distinguishes a series of local operators (Qk) multiplied by appropriate coefficients,
acting as effective coupling constants. The perturbative short-distance contributions to the amplitude
are separated form the long-distance ones, described by a product between perturbative quantities (the
Wilson coefficient functions Ck(µ)), and non-perturbative quantities (the hadronic matrix elements
〈f |Qk(µ)|i〉).

The interaction is considered as effectively governed by the local operators Qk, generated by
electroweak and strong interactions. The Wilson coefficients Ck(µ) are scale-dependent couplings
related to the vertices described by the local operators and absorb all contributions of particles with
mass m > µ. Since the amplitude of a process can not depend on the scale µ chosen to separate
the short-distance contributions from the long-distance ones, the dependence on µ of the Wilson
coefficients (Ck(µ)) has to be canceled by the dependence on µ of the operators (Qk(µ)). By imposing
this condition, the equation of evolution of Wilson coefficients as a function of µ is obtained. The
Wilson coefficient are then unequivocally determined by calculating them at a scale µ̄ high enough
to allow a perturbative treatment (typically µ ≈ mW ), and then evaluating their value at the scale
of the process of interest (typically O(GeV)) through the evolution equations. The construction of
the effective Hamiltonian is made in a perturbative regime, i. e., the fact that the interacting hadrons
are bound states of quarks does not affect the determination of Ck and Qk factors. Calculations
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are made considering only the quarks involved in the interaction. The problem of hadronization is
therefore confined to the determination of the matrix elements of the Qk operators. This requires non
perturbative techniques (see sec. 1.4).

For a qualitative example of the extraction of a low-energy effective Hamiltonian the B
0 → K−π+

decay may be considered. Being induced by a quark level b → uūs transition, it involves tree and
penguin diagrams. For the moment we neglect penguin contributions, and assume a pure tree transi-

�W−
d̄

b

d̄

u

s

ū

�
b u

s

ū

O2

Figure 1.2: Color-allowed tree diagram contributing to the B
0 → K−π+ decay (left panel). Corre-

sponding description in terms of the four-quark operator O2 in the effective theory.

tion. In this case, the leading order diagram contributing to the B
0 → K−π+ decay is the one shown

in the left panel of fig. 1.2, with the following transition amplitude:

Tfi = −g
2
2

8
V ∗usVub[s̄γ

ν(1− γ5)u]
[

gνµ
k2 −m2

W

]
[ūγµ(1− γ5)b]. (1.27)

where g2 is the SU(2)L gauge coupling, k2 is the transferred momentum, mW is the W+ mass, gµν is
the metric tensor, γ indicate the usual 4× 4 Dirac matrices, and s, u, b (and C-conjugates) indicate
the four-spinors associated to quarks. Since the transferred momentum is much smaller than W mass,
k2 ∼ m2

b � m2
W , the W boson propagator can be assumed point-like, yielding

gνµ
k2 −m2

W

−→ − gνµ
m2
W

≡ −
(

8GF√
2g2

2

)
gνµ. (1.28)

Thus,

Heff =
GF√

2
V ∗usVub[s̄αγµ(1− γ5)uα][ūβγµ(1− γ5)bβ ] ≡

GF√
2
V ∗usVubO2, (1.29)

where α and β are the color indices of the SU(3)C gauge group of QCD, and the current-current
operator O2 describes effectively the b → u ū s process (see fig. 1.2, right panel). The above de-
scription neglects QCD corrections. Their impact is two-fold: factorizable QCD corrections induce
a renormalization-scale dependence on the Wilson coefficient C2, i. e., C2(µ) 6= 1, whereas non-
factorizable QCD corrections generate a second current-current operator, with mixed color indices,
given by

O1 ≡ [s̄αγµ(1− γ5)uβ ][ūβγµ(1− γ5)bα]. (1.30)

The scale µ appears as a consequence of the renormalization procedure necessary to eliminate the
“artificial” ultraviolet divergences not present in the full theory, which arise from the transforma-
tion of the full W propagator into the point-like propagator (eq. (1.28)). The resulting low-energy
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Hamiltonian has, therefore, the following structure:

Heff =
GF√

2
V ∗usVub[C1(µ)O1 + C2(µ)O2]. (1.31)

The Wilson coefficients C1(µ) 6= 0 and C2(µ) 6= 1 are calculated by matching the full theory (the
one with W exchange) with the effective theory (point-like, with W integrated out). This consists in
calculating the QCD corrections in both the full and the effective theory, and then in expressing the
QCD-corrected amplitude in terms of QCD-corrected matrix elements and Wilson coefficients. The
results for the generic Wilson coefficient Ck(µ) contain terms of ln(µ/mW ), which become large for
µ = O(mb), i. e., at the scale governing the hadronic matrix elements of the Ok. Since the transition
amplitude eq. (1.26) can not depend on the chosen renormalization scale µ, the renormalization group
allows adding up the various terms of the Wilson coefficients:

αns

[
ln
(

µ

mW

)]n
︸ ︷︷ ︸

leading order

, αns

[
ln
(

µ

mW

)]n−1

︸ ︷︷ ︸
next-to-leading order

. . . (1.32)

Relation (1.31) becomes more complicated when penguin topologies are taken into account. Applica-
tion of the unitarity constraint

V ∗urVub + V ∗crVcb + V ∗trVtb = 0 (r = d, s) (1.33)

allows integrating out the top quark entering the penguin loop processes, similarly to what done with
the W (eq. (1.28)). The resulting effective Hamiltonian is

Heff =
GF√

2

∑
j=u,c

V ∗jrVjb

[
2∑
k=1

Ck(µ)Qjrk +
10∑
k=3

Ck(µ)Qrk

] (1.34)

where another quark-flavor label has been introduced, j = u, c, and the effective operator basis has
been expanded to contain the following operators:

Current-Current operators –

Qjr1 = [r̄αγµ(1− γ5)jβ ][j̄βγµ(1− γ5)bα], Qjr2 = [r̄αγµ(1− γ5)jα][j̄βγµ(1− γ5)bβ ].

QCD-penguin operators –

Qr3 = [r̄αγµ(1− γ5)bα]
∑
q′

[q̄′βγ
µ(1− γ5)q′β ], Qr4 = [r̄αγµ(1− γ5)bβ ]

∑
q′

[q̄′βγ
µ(1− γ5)q′α]

Qr5 = [r̄αγµ(1− γ5)bα]
∑
q′

[q̄′βγ
µ(1 + γ5)q′β ], Qr6 = [r̄αγµ(1− γ5)bβ ]

∑
q′

[q̄′βγ
µ(1 + γ5)q′α]

EW-penguin operators –

Qr7 =
3
2
[r̄αγµ(1−γ5)bα]

∑
q′

eq′ [q̄′βγ
µ(1+γ5)q′β ], Qr8 =

3
2
[r̄αγµ(1−γ5)bβ ]

∑
q′

eq′ [q̄′βγ
µ(1+γ5)q′α]

Qr9 =
3
2
[r̄αγµ(1−γ5)bα]

∑
q′

eq′ [q̄′βγ
µ(1−γ5)q′β ], Qr10 =

3
2
[r̄αγµ(1−γ5)bβ ]

∑
q′

eq′ [q̄′βγ
µ(1−γ5)q′α]
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At the renormalization scale of interest, µ = O(mb), the Wilson coefficients of the current-current
operators are C1(µ) = O(10−1) and C2(µ) = O(1), while those of the penguin operators are O(10−2).
The small ratio αQED/αs = O(10−2) would suggest a minor role for the EW penguin compared with
the QCD penguins. However, the strong increase of the Wilson coefficient C9 with the top-quark mass
leads to important EW-penguin contributions in several b-meson decays, including B0

(s) → h+h
′−.

1.2.2 Manifestation of new physics

The concept of low-energy effective Hamiltonian allows developing a phenomenological treatment of
possible manifestations of new physics in b-meson decays. These are two-fold.

First, the new physics may modify the action of Standard Model operators through new, short-
distance functions depending on new physics parameters, e. g., masses of charginos, squarks, etc.
Virtual new physics particles may participate in second-order diagrams (“box” or penguin topologies)
thereby being “integrated out” as the top quark and the W boson in the Standard Model. As a
consequence, the initial conditions for the renormalization group evolutions become

Ck −→ CSM
k + CNP

k , (1.35)

where CSM
k and CNP

k are the Wilson coefficients associated to the Standard Model and new physics
amplitudes, respectively. The new physics-related CNP

k coefficients may carry new CP-violating phases
not related to the CKM matrix.

Secondly, new physics may enlarge the operator basis:

{Qk} −→ {QSM
k , QNP

l }. (1.36)

thus enhancing the role of operators otherwise absent or suppressed in the Standard Model. In this
case, generally, new sources for flavor or CP violation arise.

The opportunity of measuring a relatively small set of CKM-related observables using a rich
variety of observables associated to many distinct processes, some of which proceeding through very
different dynamics, provides access to the detection of new physics: comparison between values of the
same quantities measured through different processes, and experimental verification of the multiple
correlations between CKM-parameters prescribed by the Standard Model, are sensitive to the possible
virtual contributions of non-Standard Model particles in a large fraction of new physics models.

A straightforward evidence for new physics would be obtained, for instance, if decay amplitudes
abnormally larger than expected were observed, indicating presence of non-Standard Model particles
in penguin, box diagrams, or even tree diagrams.

1.3 CP-violating asymmetries

The low-energy effective Hamiltonians discussed so far are “universal”, i. e., they apply to all b-meson
decays governed by the same quark-level transition as, for instance, B0 → K+π− and B0

s → K+K−

decays. Consequently, the observed differences in rates between the various modes sharing the same
quark-level processes are ascribed, in this formalism, to the hadronic matrix elements of the relevant
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four-quark operators. The theoretical evaluation of such matrix elements is challenging and often
associated to large uncertainties. In this respect, different methods have been devised to model the
strong dynamics, reducing the number of hadronic matrix elements to be calculated. Before discussing
these methods, it is convenient to introduce the CP-violating observables expressed in terms of the
low-energy Hamiltonian. Following the relation (1.34) for the low-energy effective Hamiltonian, the
amplitude of a B → f decay is

A(B → f) =
〈
f |Heff |B

〉
=
GF√

2

∑
j=u,c

V ∗jrVjb

[
2∑
k=1

Ck(µ)
〈
f |Qjrk (µ)|B

〉
+

10∑
k=3

Ck(µ)
〈
f |Qrk(µ)|B

〉] ,

(1.37)
while the amplitude of the CP conjugate process B → f is

A(B → f) =
〈
f |H†eff |B

〉
=
GF√

2

∑
j=u,c

VjrV
∗
jb

[
2∑
k=1

Ck(µ)
〈
f |Qjr†k (µ)|B

〉
+

10∑
k=3

Ck(µ)
〈
f |Qr†k (µ)|B

〉] .

(1.38)
Using the CP invariance of the strong interaction, (CP)Qjr†k (CP)† = Qjrk , and applying the identity
operator 1= (CP)†(CP) to each 〈f | and |B〉, we obtain

A(B → f) = ei[φCP(B)−φCP(f)]GF√
2

∑
j=u,c

VjrV
∗
jb

[
2∑
k=1

Ck(µ)
〈
f |Qjr†k (µ)|B

〉
+

10∑
k=3

Ck(µ)
〈
f |Qr†k (µ)|B

〉] ,

(1.39)
where the convention-dependent phases φCP(B) and φCP(f) are defined by

CP|B〉 = eiφCP(B)|B〉, CP|f〉 = eiφCP(f)|f〉. (1.40)

The most general expression of a non-leptonic b-meson decay amplitude in the Standard Model is,
therefore

A(B → f) = eiϕ1 |A1|eiδ1 + eiϕ2 |A2|eiδ2

(1.41)

A(B → f) = ei[φCP(B)−φCP(f)]
[
e−iϕ1 |A1|eiδ1 + e−iϕ2 |A2|eiδ2

]
where ϕ1 and ϕ2 are CP-violating phases originated from the CKM factors VjrV ∗jb (or from non-
Standard Model sources of CP-violation), and the CP-conserving (or strong or rescattering or final-
state interaction) amplitudes |A1|eiδ1 and |A2|eiδ2 involve the hadronic matrix elements of the four-
quark operators.

Using eq. (1.41), the following CP asymmetry is defined:

ACP ≡ Γ(B → f)− Γ(B → f)
Γ(B → f) + Γ(B → f)

=
|A(B → f)|2 − |A(B → f)|2

|A(B → f)|2 + |A(B → f)|2

= − 2|A1||A2| sin(δ1 − δ2) sin(ϕ1 − ϕ2)
|A1|2 + 2|A1||A2| cos(δ1 − δ2) cos(ϕ1 − ϕ2) + |A2|2

. (1.42)

The phenomenon that yields a non vanishing value of the asymmetry in eq. (1.42) is referred to as
direct CP violation (or CP violation in the decay). It originates directly from the amplitude level of
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the decay, being a general property of the flavor-changing weak interactions at first order [20]. This
phenomenon was observed for the first time in the neutral kaon system [7], and recently it has been
established in the B sector through the asymmetries of B0 → K+π− decay-rates at the B-Factories
[2]. The direct CP violation may arise in decays of both charged and neutral b-hadrons.

Any single phase in an amplitude is irrelevant, being subject to removal by a redefinition of
the phase convention. Only phase differences are important. In fact, a non vanishing value of the
asymmetry arises when (at least) two amplitudes interfere, provided a non-trivial CP-violating phase-
difference ϕ1 − ϕ2 and a non-trivial CP-conserving phase-difference δ1 − δ2 are present. The latter
provide the “reference” phases with respect to which the change in sign of the weak phase can be
detected. Equation (1.42) shows also that the more similar the magnitudes of the interfering am-
plitudes, the larger the resulting asymmetry. As a consequence, the decays that are experimentally
more suited for measuring direct CP violation are those in which the small inter-generation mixing
(“Cabibbo suppression”) reduces the amplitudes of dominant, lowest-order, diagrams (tree) to a level
comparable with the amplitudes of higher-order ones (penguin).

The ϕ1 − ϕ2 weak phase difference is in general given by one of the UT angles (usually γ).
Unfortunately, hadronic uncertainties affect its extraction from asymmetries measured in data, because
of the poorly known hadronic matrix elements in eq. (1.37).

1.3.1 The role of neutral b-mesons

Owing to the possibility of flavor-oscillations, neutral meson decays provide an enriched phenomenol-
ogy of CP violation with respect to charged mesons. In the framework of the Standard Model, B0

q−B
0

q

flavor-mixing (q = d, s) is among the few measurable manifestations of second-order electroweak in-
teractions, occurring through box diagrams (see fig. 1.3). For time-scales significantly larger than the

�W−W+

q̄

b

b̄

q

�
W+

W−

s̄

b

b̄

s

Figure 1.3: Box diagrams contributing to B0
q -B

0

q flavor mixing.

strong-interaction scale, the mutual weak coupling between meson and antimeson induces a virtual
transition between the two states, occurring as a function of time so that an initially (t = 0) pure B0

q

meson state evolves into a time-dependent, linear combination of B0
q and B

0

q states.

|B0
q (t)〉 = a(t)|B0

q 〉+ b(t)|B0

q〉. (1.43)
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In the Weisskopf-Wigner approximation for coupled unstable systems [21], the coefficients a(t) and b(t)
are governed by a non-Hermitian quasi-Hamiltonian H through the following Schrödinger equation:3

i
d

dt

(
a(t)
b(t)

)
= H

(
a(t)
b(t)

)
≡

[(
M

(q)
0 M

(q)
12

M
(q)∗
12 M

(q)
0

)
︸ ︷︷ ︸

mass matrix

− i
2

(
Γ(q)

0 Γ(q)
12

Γ(q)∗
12 Γ(q)

0

)]
︸ ︷︷ ︸

decay matrix

(
a(t)
b(t)

)
, (1.44)

in which the H11 = H22 condition derives from the assumption of conservation of the CPT symmetry.
The eigenstates and eigenvalues are

|B0
q,±〉 =

1√
1 + |αq|2

(
|B0
q 〉 ± |B

0

q〉
)

λq,± =
(
M

(q)
0 − i

2
Γ(q)

0

)
±
(
M

(q)
12 −

i

2
Γ(q)

12

)
αq. (1.45)

The eigenstates have masses mq,H (“heavy”) and mq,L (“light”) and widths Γq,H and Γq,L, satisfying

∆mq ≡ mq,H −mq,L = 2|M (q)
12 | > 0 and ∆Γq ≡ Γq,H − Γq,L =

4<(M (q)
12 Γ(q)∗

12 )
∆mq

< 0. (1.46)

In addition, Γq ≡ ∆Γq/2. We introduced the quantity αq such that

αqe
i
(
Θ

(q)
Γ12

+n′π
)

=

√√√√√√ 4
∣∣∣M (q)

12

∣∣∣2 e−2i
(
Θ

(q)
Γ12
−Θ

(q)
M12

)
+
∣∣∣Γ(q)

12

∣∣∣2
4
∣∣∣M (q)

12

∣∣∣2 +
∣∣∣Γ(q)

12

∣∣∣2 − 4
∣∣∣M (q)

12

∣∣∣ ∣∣∣Γ(q)
12

∣∣∣ sin(Θ(q)
M12
−Θ(q)

Γ12

) , (1.47)

in which n′ = 0, 1 and

M
(q)
12 ≡

∣∣∣M (q)
12

∣∣∣ eiΘ(q)
M12 and Γ(q)

12 ≡
∣∣∣Γ(q)

12

∣∣∣ eiΘ(q)
Γ12 . (1.48)

Analytical (QCD sum-rules) and numerical (lattice simulation) calculations of mixing amplitudes
allow estimating values of the mass and decay matrix elements:

M
(q)
12 ∝ (V ∗tqVtb)

2ei[π−φCP(B0
q )]. (1.49)

It is found that Γ(q)
12 /M

(q)
12 ≈ O(m2

b/m
2
t )� 1. Consequently, the expansion of eq. (1.47) at first order

yields

αq =

[
1 +

1
2

∣∣∣∣∣ Γ(q)
12

M
(q)
12

∣∣∣∣∣ sin(Θ(q)
M12
−Θ(q)

Γ12

)]
e
−i

(
Θ

(q)
Γ12

+n′π
)
. (1.50)

The deviation of |αq| from unit measures the CP violation in the mixing transition. The expected mag-
nitude of the corresponding asymmetry, |αq|

4−1
|αq|4+1 = O(10−4), is strongly suppressed in the Standard Model.

It is difficult to measure, but represents also an interesting probe of new physics, that may significantly
enhance the asymmetry.

The time evolution of initially (t = 0) pure B0
q - and B

0

q-meson states is given by

|B0
q (t)〉 = f

(q)
+ (t)|B0

q 〉+ αqf
(q)
− (t)|B0

q〉 and |B0

q(t)〉 =
f

(q)
− (t)
αq

|B0
q 〉+ f

(q)
+ (t)|B0

q〉, (1.51)

3Small corrections to the exponential decay laws affecting very short and very long decay times are irrelevant for the

current level of experimental accuracy of mixing- and CP-related measurements.
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in which
f

(q)
± (t) =

1
2
(
e−iλq,+t ± e−iλq,−t

)
. (1.52)

It is convenient to introduce the following quantities:

|g(q)
± (t)|2 =

1
4
[
e−Γq,Lt + e−Γq,Ht ± 2e−Γqt cos(∆mqt)

]
, (1.53)

g
(q)
− (t)g(q)∗

+ (t) =
1
4
[
e−Γq,Lt + e−Γq,Ht + 2ie−Γqt sin(∆mqt)

]
, (1.54)

and two observables that are independent of the phase convention chosen:

ξ
(q)
f = e−iΘ

(q)
M12
A(B

0

q → f)
A(B0

q → f)
and ξ

(q)

f
= e−iΘ

(q)
M12
A(B

0

q → f)

A(B0
q → f)

. (1.55)

In fact, from eq. (1.49):
Θ(q)
M12

= π + 2arg(V ∗tqVtb − φCP), (1.56)

and the chosen CKM and CP phase conventions cancel out in the ratios of amplitudes. By combining
the observables described, we arrive at the following transition rates for initially (t = 0) present B0

q

or B
0

q mesons:

Γ(B0
q (t)→ f) =

{
|g(q)
− (t)|2 + |ξ(q)f |

2|g(q)
+ (t)|2 − 2<

[
ξ
(q)
f g

(q)
+ (t)g(q)∗

− (t)
]}

Γf (B0
q → f), (1.57)

and

Γ(B
0

q(t)→ f) =
{
|g(q)

+ (t)|2 + |ξ(q)f |
2|g(q)
− (t)|2 − 2<

[
ξ
(q)
f g

(q)
− (t)g(q)∗

+ (t)
]}

Γf (B
0

q → f), (1.58)

in which Γf (B0
q → f) and Γf (B

0

q → f) are obtained from the decay-amplitudes of non-evolved states.

1.3.2 Decays into CP eigenstates

If the study is restricted to decays of neutral B0
q and B

0

q mesons into CP eigenstates, i. e., (CP)|f〉 =
±|f〉), the equivalence ξ(q)f = ξ

(q)

f
holds, and the expression for the CP-violating asymmetry takes on

the following form:

ACP(t) ≡
Γ[B

0

q(t)→ f ]− Γ[B0
q (t)→ f ]

Γ[B0
q (t)→ f ] + Γ[B0

q (t)→ f ]
' Adir

CP cos(∆mqt) +Amix
CP sin(∆mqt)

A∆Γ sinh(∆Γqt/2)− cosh(∆Γqt/2)
, (1.59)

in which terms of second order in the CP-violating parameters have been neglected the asymmetries
are expressed as follows:

Adir
CP ≡

1− |ξ(q)f |2

1 + |ξ(q)f |2
, Amix

CP ≡
2=(ξ(q)f )

1 + |ξ(q)f |2
, and A∆Γ ≡

2<(ξ(q)f )

1 + |ξ(q)f |2
. (1.60)

The direct CP term, Adir
CP, measures the CP violation in the decay and corresponds to the quantity

shown in eq. (1.42). The Amix
CP term is a feature of only neutral decays and represents the mixing-

induced CP violation. The third asymmetry, A∆Γ, is not independent of the other two, but may be
experimentally accessible in case of a sizable width-difference (∆Γq).
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The phase-convention independent CP-violating observable ξ(q)f can be calculated inserting eq. (1.41)
into eq. (1.55), and noting that φCP = ±1 because we are considering CP eigenstates:

ξ
(q)
f = ∓e−iφq

(
eiϕ1 |A1|eiδ1 + eiϕ2 |A2|eiδ2
e−iϕ1 |A1|eiδ1 + e−iϕ2 |A2|eiδ2

)
, (1.61)

where

φq ≡ 2arg
(
V ∗tqVtb

)
=

{
2β (q = d)
−2δγ (q = s)

. (1.62)

The angles β, γ, refer to the UT shown in fig. 1.1; the (small) angle δ derives from the last orthogonality
relation of the CKM matrix in eq. (1.20). In analogy with eq. (1.42), the extraction of ξ(q)f is in general
affected by large hadronic uncertainties. However, if a single weak amplitude has a dominant role in
the B0

q → f transition one obtains

ξ
(q)
f = ∓e−iφq

(
eiϕf/2|Af |eiδf
e−iϕf/2|Af |eiδf

)
= ∓e−i(φq−φf ). (1.63)

In the above expression, the hadronic matrix element |Af |eiδf cancels. The requirements needed for a
non-zero direct CP violation are no longer valid in this case thereby Adir

CP = 0, but the mixing-induced
asymmetry becomes simply related to the CP-violating phase difference: Amix

CP = ± sin(φq −φf ). This
is the case of the B0 → J/ψK0

S decay which, being strongly dominated by the tree level amplitude,
provides direct access to the CKM parameter sin(2β). In the case of mixing induced CP violation, the
mixing amplitude plays the role of the strong amplitude in the direct CP violation case, providing the
“reference phase” through which the change in sign of the weak phase can be detected.

1.4 Hadronic matrix elements

Except in special cases, the presence of strong (CP-conserving) phases is necessary for obtaining
observable CP-violating asymmetries. These phases need to be taken into account in the extraction of
CKM parameters from observed decay-rates. However, knowledge of strong phases implies theoretical
evaluation of matrix elements, which is challenging and often associated to large uncertainties.

In this respect, different phenomenological methods have been devised to model the strong dy-
namics, reducing the number of hadronic matrix elements to be calculated. All involve systematic
expansions of QCD in ratio of quark masses and in the scale Λ ' ΛQCD associated with the hadroniza-
tion.

The commonly used phenomenological approaches can be classified into three general categories:
methods relying on QCD-based calculations from first principles, methods based on general amplitude
parameterizations, and methods combining specific aspects of both. A detailed discussion of the
technical aspects of each approach is beyond the scope of this thesis, further information can be found
in Ref. [22]. In the following, we briefly compare the relevant features of these approaches in the
context of the measurement described in this work.
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1.4.1 Factorization

Among the methods based on QCD calculations, the use of factorization theorems in the heavy b-quark
limit of QCD provided the most complete theoretical analysis of two-body non-leptonic b-meson de-
cays. The principle subtending the factorization approach is that, in a decay of an heavy B0

(s) meson
into lighter mesons, the fast meson produced by a point-like source decouples from soft QCD interac-
tions (“color transparency”). Amplitudes are systematically expanded in powers of Λ/mb � 1 (heavy
b-quark limit), yielding factorization theorems for the hadronic matrix elements in terms of univer-
sal hadronic functions such as light-cone distribution amplitudes of the mesons and matrix elements
describing a heavy-to-light transition. This reduces the number of hadronic parameters.

A simplified example of factorization, based on the assumption of a pure tree transition for the
B

0 → K−π+ decay (see fig. 1.2, left panel), illustrates the basic principle subtending the factorization
of hadronic elements of four-quark operators into the product of hadronic matrix elements of quark
currents [23]. Using the SU(3)C color-algebra relation,

T aαβT
a
γδ =

1
2

(
δαδδβγ −

1
NC

δαβδγδ

)
, (1.64)

to rewrite the operator O1 (see eq. (1.30)), we obtain〈
K−π+|Heff |B

0
〉

=
GF√

2
V ∗usVub

×
{
a1

〈
K−π+|[s̄αγµ(1− γ5)uα][ūβγµ(1− γ5)bβ ]|B

0
〉

+ 2C1

〈
K−π+|[s̄αT aαβγµ(1− γ5)uβ ][ūγT aγδγ

µ(1− γ5)bδ]|B
0
〉}

, (1.65)

where a1 = C1/NC + C2 ∼ 1 is a combination of Wilson coefficients representing a phenomenological
color factor that governs decays in which all color indices run through the whole diagram (“color-
allowed”). When this is not the case, the color factor is smaller (“color-suppressed”). Since the
second term of eq. (1.65) is zero, the hadronic matrix element is factorized as〈

K−π+|[s̄αγµ(1− γ5)uα][ūβγµ(1− γ5)bβ ]|B
0
〉

=
〈
K−|[s̄αγµ(1− γ5)uα]|0

〉
×

〈
π+|[ūβγµ(1− γ5)bβ ]|B

0
〉

= ifK × FB
0π

0 (m2
K)× (m2

B −m2
π) (1.66)

where fK is a decay constant, FB
0π

0 (m2
K) is a form factor, and (m2

B − m2
π) is a kinematic factor.

In this simple case, the resulting amplitudes are rarely reliable, because non-factorizable and anni-
hilation amplitudes are neglected and final state interactions are assumed absent. Different choices
of the relevant expansion scales and of the input parameters lead to different models. Among the
most commonly used in describing non-leptonic b-meson decays are the QCD Factorization (QCDF)
approach, the Perturbative QCD (PQCD) approach, and the Soft Collinear Effective Theory (SCET).

QCD factorization

The QCDF-based predictions [24] represent the most complete theoretical analysis of two-body non-
leptonic b-meson decays. This approach combines 1/mb expansions with the perturbation theory in
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αs to achieve scale separation at leading power in ΛQCD/mb for a large class of exclusive hadronic
decays in the limit mb � ΛQCD. In a B → m1m2 decay, mb, Em � Λ,mm, thus the amplitudes can
be factorized into simpler non-perturbative objects, and a factorization theorem can be verified at
one-loop. The resulting amplitudes use elements of the simplified factorization illustrated above. If
at least one of the final state mesons is light, QCDF yields an amplitude with the following general
structure:

A(B → m1m2) = [“naive model”]× [1 +O(αs) +O(ΛQCD/mb)]. (1.67)

Several input parameters are needed, including quark masses, heavy-to-light form factors, light-cone
distributions amplitudes etc. The radiative, non-factorizable corrections O(αs) can be calculated sys-
tematically, whereas the main limitation originates from the O(ΛQCD/mb) terms. Infrared end-point
logarithmic and linear divergences arise when calculating certain contributions (e. g., annihilation dia-
grams). These 1/mb divergences are usually chirally enhanced and need to be regularized empirically,
thus introducing large uncertainties in the predictions. The benefits of the QCDF approach are that
some of the hadronic parameters, namely ratios of tree-to-penguin amplitudes, strong phases, and cor-
rections to the form factors, are obtained from first principles and independently of models. However,
the form factors (evaluated at a point) need to be determined from QCD sum-rules [25] or from data.
QCDF predicts that most strong phases, being expansions in αs, are suppressed. As a consequence,
factorization predicts small direct-CP asymmetries, possibly in contrast with experimental data.4 In
addition, QCDF predictions for weak annihilation amplitudes suffer from large uncertainties.

Perturbative QCD

An alternative approach that factorizes hard components from a QCD process which can be treated
by perturbation theory was proposed in Ref. [26]. Form factors are assumed to have a perturbative
expansion and the meson wave functions depend on transverse momenta. Non-perturbative parts are
organized as universal hadron light-cone wave functions, which can be extracted from experimental
data or constrained by lattice calculations or QCD sum-rules. It allows more stable treatment of
end-point singularities arising when calculating non-factorizable and annihilation amplitudes with the
QCDF approach.

Soft collinear effective theory

The SCET is an effective theory that contains both collinear and soft degrees of freedom allowing
removal of divergences for highly-energetic particles (products of decays of b-mesons into light mesons
of energies Em ∼ mb/2) [27]. The accuracy of this expansion is Λ/Em ∼ 2Λ/mb ∼ 0.2 � 1, where
the condition on Λ/Em applies only to non-leptonic decays to two light mesons, B0

(s) → m1m2,
with energies Em mb/2. The factorization theorem derived using SCET agrees with the structure
of the QCDF proposal if perturbation theory is applied at the scales m2

b and mbΛ. It improves and
generalizes QCDF allowing each of the scales m2

b , EmΛ, and Λ2
QCD to be treated independently and

factorization to be generalized to all orders in αs. As a result, the contributions of long-distance cc̄

4Equation (1.42) shows that an observable CP-violating asymmetry requires two interfering CP-violating and two

interfering CP-conserving (i. e., strong) amplitudes.
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penguin amplitudes (“charming-penguins”), left unfactorized, are predicted of the same magnitude
as the leading order ones. They could introduce large strong phases, thus accommodating the large
direct CP-violating asymmetries observed in data and not predicted by QCDF predictions.

Comments on factorization

A key utility of factorization theorems for non-leptonic decays is that the expansions adopted are
systematic, thereby providing a method to estimate, not only the central values of quantities, but
also their uncertainties, for comparison with experimental data. Predictions from factorization can be
compared with data in several ways, depending on the scale at which perturbation theory is used, or
if light-cone sum rules, models, or other data are used to determine the hadronic parameters. QCDF
and PQCD use perturbation theory at the scale EmΛ and light-cone sum-rules or simple estimates are
used for numerical evaluation of most hadronic parameters. In this regime, all non-leptonic observables
can be predicted and compared with experimental data. The comparison lead to identification of a
subset of power corrections, empirically parameterized in terms of additional unknowns to be included
in the numerical analysis. These power corrections are crucial to reach reasonable agreement with the
data. But, in some cases, the magnitude of power-suppressed contributions competes with leading
order diagrams. Then, a systematic modification of the power counting that promotes these effects
to leading order is necessary. Thus, a limitation of these approaches is that no clear distinction is
available between results that are model-independent consequences of the QCD in the heavy-quark
limit, and results that depend on the expansion chosen, non-perturbative input parameters, etc.
Moreover, a convincing proof that the power series converge is still lacking. For instance, owing to
the intermediate mass of the charmed quark, the identification of a convergent expansion for the long-
distance cc̄ penguin processes remains controversial [28]. In the QCDF model, contributions from
charming penguins are factorized and small. But it was argued that their effect could be larger than
expected. Part of these inconveniences, at least for heavy-to-light decays, is overcome by the SCET
approach.

1.4.2 Flavor symmetries

Use of flavor symmetries for the light quarks (q) is the most relevant application of the methods
based on relationships between amplitudes of different channels, to reduce the number of hadronic
parameters.

The strategies based on flavor symmetries rely substantially on data for extracting the unknown
amplitudes from those measured experimentally. This is both their main advantage and limitation.
The advantage is that all information on hadronic parameters is extracted from data, including all
contributions such as final state interactions, annihilation contributions, etc., which are typically
difficult to calculate in a model-independent way. But the uncertainties on the predictions are usually
large, their magnitude being dependent on experimental knowledge. And, when different experimental
measurements of the same quantity are controversial (e. g., in occasion of the Belle and BABAR

disagreement on Adir
CP in the B0 → π+π− decay [29]) the predictive power of such methods is severely

affected.
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Another limitation consists in the difficult assessment of the magnitude of symmetry-violations.
This can be partially done using QCD-based numerical or analytical calculation for the factorizable
portion of the violation. But the non-factorizable part has to be extracted from data, and this may
require large samples of extremely rare b-meson decays.

In addition, amplitude decompositions based on flavor symmetries are useful phenomenologically
to extract CKM-related information, but provide marginal information on the details of quark-gluon
dynamics in non-leptonic b-meson decays. Convenient amplitude relations for B0

(s) → h+h
′− decays

useful are obtained using SU(2)- and SU(3)-based flavor symmetries.

SU(2) isospin symmetry

Use of isospin relations is based on expansions in mu,d/Λ ∼ 0.03� 1. Several methods for determining
α or γ are based on the isospin symmetry, which is conserved to a few percent accuracy. However,
in B0

(s) → h+h
′− decays, the effectiveness of this approach is currently limited by the number of

unknown isospin parameters. And, even with more complete experimental information, it would still
be important to complement this strategy with information on amplitudes from SU(3) or factorization.
Otherwise, the possible presence of new physics effects may remain undetected in full fits of SU(2)
amplitudes [30].

SU(3) symmetry

SU(3)-based amplitude relations are obtained combining the ms/Λ ∼ 0.3 � 1 expansion parameter
with those of the SU(2) symmetry. Several Standard Model-based strategies based on SU(3) symmetry
have been proposed. Still, the limited number of currently precise measurements available makes it
necessary to introduce additional “dynamical assumptions” to further reduce the number of hadronic
parameters. These assumptions usually rely on the additional knowledge of the strong matrix elements
from the factorization approach. For their relevance in the present analysis, implications and limits
of the application of a subgroup of the SU(3) symmetry to the phenomenology of B0 → π+π− and
B0
s → K+K− decays are discussed in detail as follows.

1.5 B0
(s) → h+h

′− decays

Two-body non-leptonic charmless decays are the most widely used processes to study flavor physics
in the b-meson sector. The large mass of the b-meson allows for a plethora of open channels, which
provide multiple ways for testing the consistency of the Standard Model interpretation of CP violation.
For each channel, observables include the CP-averaged branching fraction, the direct CP-violating
asymmetries and, for certain decays of neutral mesons, the mixing-induced CP-violating asymmetry.

These decay modes are considered interesting since the beginning of theoretical studies in the
B0

(s) meson sector. The initial interest was motivated by the opportunity of a theoretically solid
determination of the CKM angle α. In absence of second-order QCD penguin contribution (b̄→ s̄(d̄)),
a measurement of the time-dependent asymmetry in the B0 → π+π− decay directly provides the
unitarity-constrained CKM phase α = 180◦ − β − γ, in analogy with the B0 → J/ψK0

S channel for
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the β phase. However, a significant penguin contribution invalidates this direct approach. Several
methods have been proposed to bound the magnitude of the penguin effects in this determination. In
1990, Gronau and London proposed a technique based on isospin symmetries to determine the gluonic
penguin effects neglecting electroweak penguin amplitudes [3]. The challenge of this approach resides
in the experimental difficulty of reconstructing large samples of all neutral and charged B → ππ decays,
including the color-suppressed B0 → π0π0 decays. Subsequently, Silva and Wolfenstein extended the
idea to SU(3) flavor symmetry, combining also the Kπ modes [4], followed by several authors [31].

In 1998–2000, the CLEO experiment measured B(B0 → K+π−)/B(B0 → π+π−) ' 4 whereas if
only tree processes were to contribute, B(B0 → K+π−)/B(B0 → π+π−) ∝ |Vus|2/|Vud|2 ≈ O(λ2) ≈
0.05 was expected. This confirmed the relevant role of penguin amplitudes.

Today, it is common to think of penguin amplitudes as an opportunity to be exploited rather than
as a limitation, because the increased complexity implies also an enriched phenomenology: higher-
order penguin processes may provide access for new physics phases, induced by virtual contributions
of new particles in the loops. The B0

(s) → h+h
′− decays can be used for determining the values of the

CKM-related quantities, which may differ from the ones extracted from other tree-level dominated
processes, possibly indicating non-Standard Model CP-violating phases. In addition, B0

(s) → h+h
′−

decays can provide valuable information on low-energy strong dynamics in B0
(s) meson decays.

Amplitudes of B0
(s) → h+h

′− decays are dominated by b̄ → ū (tree-type) and b̄ → s̄(d̄) (penguin-
type) quark transitions (see figs. 1.4–1.7). The observed decay-rates are O(10−5) and smaller because
the former processes involve leading-order diagrams that are CKM suppressed (|Vub| � |Vcb|), while
the latter involves higher-order diagrams. Several strategies based on flavor symmetries were

�W+

d, s

b̄

d, s

ū

d̄, s̄

u

�W+

d, s

b̄

d, s

d̄, s̄

u

ū

Figure 1.4: Color-allowed (left panel) and color-suppressed (right panel) tree (T) diagram contributing
to B0

(s) → h+h
′− decays.

proposed to control the hadronic uncertainties in the predictions of B0
(s) → h+h

′− amplitudes. In the
following, we focus the discussion on the U-spin flavor-symmetry because it has a specific interest in
the context of this analysis.

1.5.1 Amplitude relations from U-spin flavor symmetry

The U-spin symmetry is a sub-group of the SU(3) flavor symmetry under which d quarks transform
into s quarks. The B0 → π+π− and the B0

s → K+K− decays are an example of completely U-spin-
symmetric channels. Relations (1.68)–(1.71) show an extended set of U-spin-symmetric decay modes
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Figure 1.5: QCD-penguin (P) diagram contributing to B0
(s) → h+h

′− decays.
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Figure 1.6: Color-allowed (PEW, left panel) and color suppressed (PC
EW, right panel) electroweak

penguin diagram contributing to B0
(s) → h+h

′− decays.
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Figure 1.7: W -exchange (E, left panel) and penguin-annihilation (PA, right panel) diagram contribut-
ing to B0

(s) → h+h
′− decays.

along with their amplitudes (indicated following the classification of figs. 1.4–1.7)

B0 → π+π−︸ ︷︷ ︸
T+P+ 2

3PC
EW+PA+E

d←→ s B0
s → K+K−︸ ︷︷ ︸

T+P+ 2
3PC

EW+PA+E

(1.68)

B0 → K+π−︸ ︷︷ ︸
T+P+ 2

3PC
EW

d←→ s B0
s → K−π+︸ ︷︷ ︸
T+P+ 2

3PC
EW

(1.69)

B0 → K+π−︸ ︷︷ ︸
T+P+ 2

3PC
EW

d
spect.←→ s B0

s → K+K−︸ ︷︷ ︸
T+P+ 2

3PC
EW+PA+E

(1.70)
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B0 → π+π−︸ ︷︷ ︸
T+P+ 2

3PC
EW+PA+E

d
spect.←→ s B0

s → K−π+︸ ︷︷ ︸
T+P+ 2

3PC
EW

(1.71)

The “spect.” superscript labels relations in which U-spin-symmetry is applied only to the “spectator”
quark, i. e., the valence quark of the B0

(s) meson that does not participate to the weak, quark-level
process governing the decay. In these cases, the effect of annihilation and exchange diagrams (see
fig. 1.7), in which both quarks of the B0

(s) meson participate to the weak transition, is assumed negli-
gible. This assumption can be verified experimentally by measuring the rates of other B0

(s) → h+h
′−

decays (see sec. 1.5.5).

U-spin symmetry is not exactly conserved in the Standard Model. The magnitude of its violation,
due to both factorizable and non-factorizable hadronic matrix elements, is not precisely known but
several authors expect it being aO(10%) effect. The factorizable part of the violation can be calculated
from QCD methods, such as light-cone sum-rules [32]; the full violation, that includes non-factorizable
components, can only be inferred from data, by comparing amplitudes of U-spin-related modes.

Use of U-spin-symmetry has been proposed to limit the adverse effect of unknown penguin am-
plitudes and to extract the weak-phase γ from measurements on B0

(s) → h+h
′− decays. In 1993,

Dunietz made the first proposal of relating the amplitudes of U-spin-symmetric B0 → π+π− and
B0
s → K+K− modes to extract the CKM phase α [33]. In 1999 Pirjol suggested that combining the

branching-fractions of these modes constrains the penguin-induced uncertainty on the CKM phase α
more effectively than the SU(3)- and SU(2)-based methods, in which the penguin contribution can
not be distinguished from the rescattering one [34]. The definitive and most complete formalization
of a strategy exploiting U-spin-symmetries applied to B0 → π+π− and B0

s → K+K− decays is due
to Fleischer [5]. Further contributions to the Fleischer methods were given by Matias, London et al.
[35, 36, 37]. Since the Fleischer proposal is the main theoretical motivation for studying B0

(s) → h+h
′−

decays at CDF, it is discussed in more detail.

The B0 → π+π− decay is governed by a b̄ → ūud̄ transition, whose amplitude may be rewritten
as

A(B0 → π+π−) = V ∗ubVud (AuT +AuP) + V ∗cbVcd AcP + V ∗tbVtdAtP , (1.72)

where AqT is the CP-conserving tree amplitude that includes the charged-current process and the
exchange process (T = T + E), and AuP , AcP , and, AtP describe the QCD, and EW penguin and the
penguin-annihilation topologies (P = P + PA + 2

3PC
EW) with internal quarks u, c, and t, respectively.

Using eq. (1.33) to eliminate the CKM factor VtdV ∗tb = −VudV ∗ub−VcdV ∗cb and applying the Wolfenstein
parameterization, we obtain

A(B0 → π+π−) = C
(
eiγ − deiθ

)
, (1.73)

where

C ≡ |V ∗ubVud|Rb
(
AuT +AuP −AtP

)
, and deiθ ≡ 1

Rb

(
AcP −AtP

AuT +AuP −AtP

)
, (1.74)

are hadronic parameters, and Rb is one side of the UT (see eq. (1.23)). The equations above are
completely general parameterizations of CP-violating observables relying only on the unitarity of the
CKM matrix. The large hadronic uncertainties affecting the deiθ factor limit the possibility of a
straightforward determination of the quantity sin(2β+2γ) which would be directly accessible through
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the measurement of Amix
CP (B0 → π+π−) if d = 0. However, even with d 6= 0, the following general

expressions hold:

Adir
CP(B0 → π+π−) = − 2d sin(θ) sin(γ)

1− 2d cos(θ) cos(γ) + d2

(1.75)

Amix
CP (B0 → π+π−) =

sin(φd + 2γ)− 2d cos(θ) sin(φd + γ) + d2 sin(φd)
1− 2d cos(θ) cos(γ) + d2

where φd = 2β is known, up to a two-fold ambiguity, from the B-Factories measurements of the
mixing-induced CP violation in B0 → J/ψK0

S decays.5

Relation (1.75) show that the decay B0 → π+π− may be used to probe γ, provided sufficient infor-
mation on the hadronic parameters C, d, and θ is available. The U-spin symmetry may contribute this
information, through the combination of observables related to B0

s → K+K− and B0 → π+π−decays.

The decay B0
s → K+K− is a b̄ → s̄us̄ transition, thus involving tree and penguin diagrams as

the B0 → π+π− mode. Its CKM structure makes the penguin topologies dominant. In analogy to
relation (1.73), the amplitude reads as

A(B0
s → K+K−) =

∣∣∣∣VusVud

∣∣∣∣ C′(eiγ − ∣∣∣∣VcsVudVusVcd

∣∣∣∣ d′eiθ′) , (1.76)

where

C′ ≡ |V ∗ubVud|Rb
(
A′uT +A′uP −A′tP

)
, and d′eiθ

′
≡ 1
Rb

(
A′cP −A′tP

A′uT +A′uP −A′tP

)
, (1.77)

Except for the interchange of a d quark by an s quark, the hadronic parameters |C′|, d′, and θ′ have
the same functional dependence on the penguin amplitudes as the |C|, d, and θ parameters. In the
U-spin limit, the following relations hold:

C′ = C, d′ = d, and θ′ = θ. (1.78)

If the U-spin violation is not maximal, or if it is measurable from data, this similarity in the functional
dependence can be used to reduce the number of hadronic unknowns in B0 → π+π− and B0

s → K+K−

decays.

1.5.2 Time-integrated B0
s → K+K− decay rate

A first opportunity is provided by time integrated measurements of decay rate of the (still unobserved)
B0
s → K+K− channel. Fleischer and Matias indicate that the combination of B0 → π+π− and

B0
s → K+K− branching fractions is already sufficient to provide constraining information on γ or,

alternatively, on the presence of non-Standard Model CP-violating phases [5, 35]. The ratio of B0
s →

K+K− and B0 → π+π− branching fractions has the following expression in terms of hadronic and

5Strictly speaking, the B-Factories measurements probe the quantity φd + φK , where φK is related to the weak

K0-K
0

mixing phase; however, this is negligibly small in the Standard Model.
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CKM-related parameters:

Rsd ≡
B(B0

s → K+K−)
B(B0 → π+π−)

=
1
ε

∣∣∣∣C′C
∣∣∣∣ ε2 + 2εd′ cos(θ′) cos(γ) + d′2

1− 2d cos(θ) cos(γ) + d2
×mB0

mB0
s

× τB
0

τB0
s

×

√
1−

(
mK
mB0

s

)2

√
1−

(
mπ
mB0

)2
(1.79)

where

ε ≡ λ2

1− λ2
≈ 0.053 (1.80)

accounts for CKM factors, ∣∣∣∣C′C
∣∣∣∣ and

ε2 + 2εd′ cos(θ′) cos(γ) + d′2

1− 2d cos(θ) cos(γ + d2)
(1.81)

account for U-spin-violation, and √
1− 2

(
mK/mB0

s

)2√
1− 2 (mπ/mB0)2

≈ 0.92 (1.82)

is a kinematic factor. In the SU(3) limit, the three observables Adir
CP(B0 → π+π−) , Amix

CP (B0 → π+π−),
and Rsd depend on the four theoretical parameters d, θ, φd, and γ. The phase φd is precisely known
from the BABAR and Belle experiments. Assuming the Standard Model, the value of the phase γ
can be used from independent measurements or from global CKM fits; thus, In this case, knowledge
of two observables allows prediction of the third. This prediction can be compared with the direct
experimental measurements to check the consistency of the approach.

More interestingly, one can resolve for d, γ, and θ using the three observables to check whether the
result on γ is consistent with independent measurements. Of particular relevance is the comparison
with independent determinations of the phase γ from decays not involving penguin amplitudes, such
as B0

(s) → D−(s)K
+: a significant discrepancy in this case, would indicate the contribution of virtual

non-Standard Model particles in the loops of the B0
s → K+K− penguin amplitudes.

However, it is known that the U-spin symmetry is not exactly conserved in the Standard Model(see
sec. 1.5.3), but still, useful information is available through correlations in the B0

s → K+K− and
B0 → π+π− observable spaces: in presence of U-spin violation, eq. (1.79) is approximately valid
yielding predictions affected by additional uncertainties. Nevertheless, Fleischer et al. show that
even in case of significant U-spin violations, constraining information on the phase γ, or on the
possible contribution of new physics can be extracted by comparing the experimental data with the
Standard Model-allowed regions in the space of observables [35, 36].

This strategy, based on time-integrated B0
s → K+K− decay-rates is particularly suited for an ap-

plication to the first available samples of the (yet unobserved) B0
s → K+K− decays: the measurement

of B(B0
s → K+K−) can be compared with the prediction extracted from the already available mea-

surement of time-dependent B0 → π+π− asymmetries from the B-Factories to check for indications
of inconsistent values of γ or new, CP-violating physics-phases.
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1.5.3 Time-dependent partial B0
s → K+K− rate asymmetries

When large samples of B0
s → K+K− will be available, the second step of the Fleischer method can be

applied. Using eq. (1.76), the partial-rate decay asymmetries of the B0
s → K+K− decay are written,

in analogy with eq. (1.75), as

Adir
CP(B0

s → K+K−) =
2(d′/ε) sin(θ′) sin(γ)

1− 2(d′/ε) cos(θ′) cos(γ) + (d′/ε)2

(1.83)

Amix
CP (B0

s → K+K−) =
sin(φs + 2γ)− 2(d′/ε) cos(θ′) sin(φs + γ) + (d′/ε)2 sin(φs)

1− 2(d′/ε) cos(θ′) cos(γ) + (d′/ε)2
,

The phase φs = O(1◦) is negligibly small in the Standard Model; it can be experimentally probed
using the time-dependent rate asymmetries of B0

s → J/ψφ. Thus, the measurements of asymmetries
in B0 → π+π− and B0

s → K+K− decays can be converted into theoretically reliable contours in the
(γ, d) and (γ, d′) planes.

Further progress is possible exploiting the U-spin flavor symmetry. In the approximation of con-
served symmetry, the angle γ would be the only unknown in the system of four equations shown in
relation (1.75) and relation (1.83). However, theoretical and experimental difficulties challenge the
extraction of the phase γ through this strategy:

Magnitude of U-spin violation – a theoretical limitation to the validity of the above method arises
from the unknown magnitude of the violation of U-spin symmetry in the Standard Model. No
method has been devised yet to fully determine this magnitude. Constraining bounds on the
factorizable portion of the violation can be extracted from QCD calculations [32], but little in-
formation is presently available for the non-factorizable portion. However, as the experimental
measurements of U-spin-related B0

(s) → h+h
′− decays increase, additional constraining informa-

tion will become available.

Measurement of B0
s → K+K− asymmetries – experimentally, the measurement of time-dependent

B0
s → K+K− decay asymmetries is challenging. While the CP-violating asymmetries in B0 →

π+π− decays are known with increasing precision from the measurements at the Belle and
BABAR experiments, their B0

s → K+K− counterparts are yet to be measured. Currently, the
B0
s → K+K− decays can be produced only at the Tevatron. A measurement of CP-violating

time-dependent asymmetries requires fitting the time-evolution (see eq. (1.59)) of a sample of
decays in which the B0

s flavor at the time of production is known (i. e., flavor-tagged decays).
This requires a large initial sample of B0

s → K+K− decays, since an unavoidable factor of
≈ 20 reduction in statistics is due to the limitations of the production-flavor tagging-algorithms.
Additional dilution, due to the time-dependent treatment, further affects the final statistical
uncertainties on the asymmetries. Furthermore, high resolution in reconstructing the decay
vertices is required to resolve the fast oscillation of B0

s mesons. Further discussion is in sec. 10.7.

1.5.4 Role of the B0
s → K−π+ decay

The B0
s → K−π+ decay, which is the (still unobserved) U-spin partner of the B0 → K+π− decay, has

been indicated by several authors as a source of rich opportunities of investigation.
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In 1998 Gronau and Rosner proposed an SU(3)-based strategy to measure the CKM phase γ [38].
Experimentally, their proposal is accessible since it involves only time-integrated measurements of par-
tial rates of untagged B0

(s) and B+ decays into kaons and pions. But, from the theoretical stand-point,
it needs some unknown corrections, due to rescattering effects and PC

EW contributions. Gronau and
Rosner indicated the B0

s → K−π+ mode as the key to reduce one of the major sources of theoretical
uncertainty, i. e., the parameter associated to the ratio between tree and penguin amplitudes (P/T)
[39]. Using the spectator-U-spin symmetry, which transforms the U-spin partners decays B0

s → K−π+

and B0 → K+π− into another pair of U-spin partners, B0
s → K+K− and B0 → π+π−, the authors

devise a method to precisely measure P/T, provided separate measurement of B0
s → K−π+ and

B
0

s → K+π− decay rates are available.

More recently, a paper by Lipkin drew additional attention on the B0
s → K−π+ decay [40].

The observation of O(10%) direct CP violation in the B0 → K+π− decay [2] is not supported by an
expected similar effect in the B+ → K+π0 decay, which differs only by the spectator quark. This raised
interpretations about this disagreement being a possible indication of new physics. Lipkin suggests
that partial decay-rates in B0

s → K−π+ provide a stringent test that necessarily confirms or rules
out the presence of new physics involved in B0 → K+π− amplitudes. This approach, inspired to an
earlier work by Gronau [41], exploits an accidental cancellation between CKM factors involved in B0 →
K+π− and B0

s → K−π+ decays, which yields equal expected direct CP asymmetries in these decays.
In fact, penguin (tree) amplitudes dominate the B0 → K+π− (B0

s → K−π+) process; in the B0
s decay,

the penguin amplitude is suppressed, with respect to its B0 counterpart, by exactly the same factor
that enhances the amplitude of the interfering tree amplitude. This accidental correspondence is valid
only within the framework of the Standard Model, thereby any significant disagreement between the
measured partial rate asymmetries of strange and non-strange b-meson Kπ decays is strong convincing
indication of new physics.

The relevance of this test resides in its nearly complete independence of models. No flavor symme-
try are required, but only charge-conjugation invariance for all final state rescattering. In addition,
the large asymmetries expected in the B0

s → K−π+ decay make this test relatively easy, from an
experimental point of view, when B0

s → K−π+ decays will be observed.

1.5.5 Role of penguin-annihilation and exchange amplitudes

Amplitudes of penguin-annihilation and exchange diagrams, in which all initial-state quarks undergo
a transition, are difficult to predict with current phenomenological models. Their contribution needs
to be neglected, for instance, when assuming spectator-U-spin relations (e. g., B0 → K+π− ←→
B0
s → K−π+). And QCDF predictions are also affected by extremely large uncertainties due to the

empirical corrections necessary to control soft end-point divergences.

But, in general, PA and E topologies may carry different CP-violating and CP-conserving phases
with respect to the leading processes, thereby influencing the determination of CKM-related param-
eters from widely-used decays as B0 → π+π−. Experimental information on their magnitude is,
therefore, particularly desirable.

In the Standard Model, the decays B0 → K+K− and B0
s → π+π− proceed only through PA and

E diagrams. A measurement of their decay rates (or improved constraints on them) would thereby
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provide valuable estimates of the magnitude of PA and E contributions. Theoretical predictions
estimate the branching fractions of B0 → K+K− and B0

s → π+π− modes in the 10−7–10−8 range
[42, 43, 44]. While the B0 → K+K− mode is reconstructable also the B-Factories, currently only
CDF has access to the B0

s → π+π− decay mode.

1.6 Experimental considerations

The measurements involving b-hadrons produced in hadron-hadron collisions had a role since the
beginning of the experimental study of flavor physics in the b-meson sector, as confirmed by the
discovery of the b-quark, the pioneering results of the UA1 Collaboration [45], and the CDF measure-
ments obtained from the 1992–96 data-taking period (Run I) [46]. However, the largest experimental
contribution to the understanding of the physics of the b-quark derives from e+e− machines operating
at the Υ(4S) resonance (just above the open beauty threshold) or at the Z0 pole. In the following, we
discuss the peculiar features of the hadronic environment and compare them with their e+e− counter-
parts (see tab. 1.1). This provides a better understanding of the experimental difficulties encountered
in the measurements presented in this thesis, and of the strategies adopted to overcome them.

In mid 1977, an excess in the 9.5 GeV/c2 region of the invariant µ+µ−-mass distribution from
products of collisions of 400 GeV/c protons on nuclear targets was interpreted as a bound quark-
antiquark state containing a new fundamental particle, the b-quark [47]. The original enhancement
was soon resolved into two resonances, Υ′ and Υ′′, and rapidly confirmed by the PLUTO and Double
Arm Spectrometer II experiments at the DOppel RIng-Speicher e+e− storage ring (DORIS), which
accurately determined the properties of the new resonances in 1978 [48]. Since 1980, further refine-
ments of these measurements and discovery of new bound bb̄ states were provided by the CLEO and
the Columbia University-Stony Brook experiments at the Cornell Electron Storage Ring (CESR), and
by the Crystal Ball detector at the upgraded DORIS ring [49]. In the 1980s, the experimental knowl-
edge on the phenomenology of the b-quark increased considerably. The CLEO experiment observed
enhancements in the single electron and muon inclusive cross-sections in e+e− collisions, providing
evidence of open b-meson production followed by semileptonic decays. Subsequently, the first samples
of exclusive and semileptonic b-meson decays were reconstructed. The Mark II Collaboration at the
PEP ring measured a B0 meson lifetime of about 1 ps, confirmed by several other experiments [50].
The long lifetime of b-hadrons compared with lifetimes of light-flavors is a key feature that makes their
experimental study so rich. If exploited with detectors with sufficient spatial resolution, it constitutes
a highly-discriminating quantity in rejecting background, and allows studying the flavor properties of
neutral b-mesons through measurements of their time evolution. In fact, after some indications from
the CLEO and Underground Area 1 (UA1) experiments [51], convincing evidence of B0-B

0
mixing was

found by the ARGUS Collaboration [52], which detected like-sign semileptonic decays of BB pairs.
This also provided the first indication of high-frequency flavor oscillations of B0

s mesons, combined
with the UA1 measurement [51].6 Measurements on b-physics in the 1990s were dominated by the
CLEO experiment and the LEP experiments (especially ALEPH — Apparatus for LEP PHysics),
which observed several new decay-modes of b-mesons.

6The UA1 result also indicated a large value of the top-quark mass, mt & 50 GeV/c2.
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1.6.1 The B-Factories

Following the original 1987 proposal by Oddone [53], the latest evolution of accelerators for the study
of b-meson decays are the B-Factories: high-luminosity e+e− colliders with asymmetric beam energies
that produce Υ(4S) resonances with 0.4–0.6 Lorentz boost. The Υ(4S) meson decays 96% of the times
into BB pairs (B = B0 or B+) which in turn decay in vertices typically spaced apart by 200–300 µm.
This allows determination of the time-interval between the two decays with sufficient precision for
measuring time-dependent CP-violating asymmetries, given the availability of silicon detectors with
good enough spatial resolution. Operating the colliders at an energy corresponding to the Υ(4S)
resonance, just above the open beauty threshold, reduces backgrounds because of tight kinematic
constraints and absence of fragmentation products.

The experiments installed at the B-Factories (BABAR [54] and Belle [55]) are large-acceptance
asymmetric spectrometers with excellent performance in reconstructing charged-particle trajectories
(silicon micro-vertex detectors plus drift chambers with helium-based gas admixtures in 1.5 T mag-
netic fields), that allows discrimination of heavy-flavor decay vertices and measurement of decay-time
differences. Redundant information from silica quartz (BABAR) or aerogel (Belle) Cherenkov counters,
time-of-flight detectors, thallium-doped cesium iodide electromagnetic calorimeters, and an outermost
layers of muon detectors allow identification of muons, electrons, and hadrons.

1.6.2 The hadron collider environment

The primary advantage of high-energy hadron colliders is the large cross-section for b-quark pro-
duction. At the Fermilab Tevatron pp̄ collider, the dominant production process is non-resonant
inclusive b-quark pair-production of the type pp̄→ bb̄X.7 The corresponding cross section, multiplied
by the efficiency that at least one resulting b-hadron is within the detector acceptance (i. e., its de-
cay products have approximately pT > 300 GeV/c and |θ| < 40◦ with respect to the beam axis) is
σ(pp̄ → bb̄+X) ≈ 50 µb [56]. This, corresponding to roughly 5,000 b-hadrons within CDF acceptance
per second (at typical current luminosities), is large with respect to production cross-sections at e+e−

machines: 1 nb at the Υ(4S) resonance and 7 nb at the Z0 pole. As a consequence, experiments at
the B-Factories require O(103) higher luminosities for collection of samples comparable in size to the
Tevatron samples.

A second advantage of hadron collisions is the available center-of-mass energy. At the Tevatron
(
√
s = 1.96 TeV) this is sufficient to produce all species of b-hadrons: not only B0 and B+ mesons,

produced in large quantities in Υ(4S) decays, but also B0
s and B+

c mesons and b-baryons. In addition,
the typical relativistic factors (i. e., Lorentz boost or βγ) of b-hadrons produced in pp̄ collisions are
larger with respect to the B-Factories. This results in larger decay-lengths, which allow probing
shorter scales in the time-evolution of heavy-flavors.

However, the hadron collider environment has its disadvantages. The large bb̄ cross-section is still
about three order of magnitudes smaller than the pp̄ inelastic cross-section, resulting inO(10−9) signal-
to-background ratios at production, for typical branching-fractions of interesting processes. This poses
a challenging task for the trigger systems. In this respect, the component of momentum of b-hadrons

7The Tevatron collider is described in sec. 2.1.
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perpendicular to the beam line (transverse momentum), which scales approximately as the b-quark
mass (〈pT(B)〉 ≈ 5 GeV/c), provides a first discrimination from light-quark background, generally
distributed at lower values. But the transverse momentum distribution of b-hadrons is a rapidly
falling function: most b-hadrons have low transverse momenta and decay into particles often having
pT < 1 GeV/c. The need to select low-momentum particles conflicts with the accept-rate limitations
of the data acquisition systems. Furthermore, since the longitudinal component of b-hadron momenta
is frequently large, their decay products tend to be boosted along the beam direction, thus escaping
the detector acceptance. If one b-hadron is within CDF acceptance, the other one is within acceptance
only O(20%) of the time.

Reconstruction of b-hadron decays in a hadron collider is also plagued by the more complex event
structure. Different sources contribute particles entering the detector acceptance when protons collide
against antiprotons.

Hard interaction – in most hard pp̄ interactions, only one proton constituent (a valence — u, d
— or a “sea” quark, or a gluon) undergoes hard-scattering against one antiproton constituent.
This two-to-two parton scattering is the leading interaction that may produce the bb̄ pair and
additional particles through initial and final state radiation.

Underlying event – when a hard collision occurs, the remnants of proton and antiproton rearrange
in color-neutral hadrons which may have a momentum perpendicular to the beam sufficient
to enter the detector acceptance. The underlying event also includes the products of multiple
parton interactions, i. e., multiple hard-scattering between different constituents of the same pp̄
pair.

b-hadron fragmentation process – quarks are never observed as independent entities, but are
confined inside hadrons with a partner antiquark (in mesons) or diquark (in baryons). Fragmen-
tation (or hadronization) is the long-distance, non-perturbative QCD process of transition from
a single, final-state quark to an observable color-singlet hadron. In this process, a number of
accompanying hadrons is produced in a local region around the hadronizing quark, as a result
of the fragmentation of color lines of strong force. The fragmentation of the bb̄ pair is exploited
in the present analysis to reject background (see sec. 3.7.2). The fragmentation of all other
quarks and gluons produced in the event, including those generated in the final- and initial-state
radiation, in the underlying event etc. is generally source of nuisance in the analysis.

Pile-up event – when a beam of protons crosses a beam of antiprotons, multiple hard interactions
may occur between different proton-antiproton pairs. Each hard interaction contribute with an
associated fragmentation process and underlying event.

Occasionally, products of interactions of the beams with residual gas contaminating the vacuum of the
beam-pipe add to the above sources. As a consequence, in a pp̄ collider as the Tevatron, high particle
multiplicities per event are observed (30–40 charged particles with pT & 50 MeV), with multiple
production vertices, and event shapes lacking well-defined structures (see fig. 1.8). This results in
greater detector occupancies and in increased difficulty in reconstructing b-hadron decay topologies.
The e+e− colliders, instead, benefit from low particle multiplicities and well defined spherical (back-
to-back) event shapes at the B-Factories (LEP) (see fig. 1.9).
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DATA Event : 258977  Run : 149386 | Prescaled: 17,34,35,45
Unprescaled: 3,11,13,15,17,19,21,23,29,34,35,36,41,45

Missing Et
IS NOT DEFINED

List of Tracks
Id    pt    phi   eta

Cdf Tracks: first 5
455   -11.8  2.7 -0.0
456    10.9  2.3 -0.2
457    -8.0 -0.6 -0.0
458     1.4 -1.0 -0.2
460     1.2  0.4 -0.5

To select track type
SelectCdfTrack(Id)

Svt Tracks: first 5
  1   -12.1  2.7
  0    10.6  2.3
  2    -8.2  5.6

To select track type
SelectSvtTrack(Id)

Particles: first 5
pdg    pt    phi  eta
 13    11.8  2.7 -0.0
 13    10.9  2.3 -0.2
To list all particles
ListCdfParticles()

DATA Event : 258977  Run : 149386 | Prescaled: 17,34,35,45
Unprescaled: 3,11,13,15,17,19,21,23,29,34,35,36,41,45

Figure 1.8: Computerized reconstruction of an event containing a B0
(s) → h+h

′− candidate (green
tracks) in the CDF II detector. Left panel shows an enlargement of the drift chamber (see sec. 2.3.5)
projected in the plane transverse to the beam. Right panel shows an enlargement of the inner silicon
micro-vertex detector (see sec. 2.3.3) projected in the plane that contains the beam. Two distinct pp̄
interactions are clearly distinguishable.

Figure 1.9: Computerized reconstruction of an event containing a B0 → J/ψK0
S candidate in the

BABAR detector (left panel) and of a typical event in the ALEPH detector (right panel).

In hadron-hadron collisions, therefore, extraction of heavy-flavor signals from the large background
is the first experimental challenge. In particular, the role of the trigger system is crucial for efficiently
collecting heavy-flavor decays and reject overwhelming backgrounds in the high collision-rate en-
vironment typical of hadron colliders. At the Tevatron, selecting final states containing single or
dileptons of low to moderate transverse momenta allows isolating large samples of b-hadron decays,
because semileptonic (B → `−ν̄`X, where ` = e, µ) and charmonium (B → J/ψX → [`+`−]X)
decays account for approximately 20% of total b-hadron widths and have recognizable experimental
signatures. In order to exploit them, lepton identification capability and accurate reconstruction of
charged-particle trajectories are required. But the most powerful discriminant for heavy flavor de-
cays against background is their relatively long (≈ 1.5 ps, for B0

(s) mesons) lifetime. Heavy flavors
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produced at the Tevatron have momenta whose component in the plane transverse to the beam-line
is often large enough to allow measuring the displacement between their production and decay posi-
tions (≈ 500 µm), provided a vertex detector of sufficient resolution. This feature allows rejecting a
large fraction of light-quark background while keeping significant fractions of signal. High-precision
measurement of particle momenta and accurate reconstruction of decay vertices are mandatory for an
effective discrimination based on decay lengths.

Before the current period of Tevatron operation, final-state leptons were used at the trigger level
for a first pre-selection of samples enriched in heavy-flavor decays, while the vertex displacements
criteria were applied only in the data analysis, to further enhance the signal purities. This choice,
dictated by instrumental limitations, excluded the non-leptonic heavy flavor decays from the reach of
experiments at hadron colliders.

Since March 2001, for the first time at a hadron collider, the CDF experiment exploits high-
resolution identification of charged particles produced in decays displaced from beam line at trigger
level (see sec. 2.5.2). This unique capability allows collection of samples of hadronic heavy flavor
decays (e. g., B0

(s) → h+h
′−, B0

(s) → D−(s)π
+, etc.) of unprecedented size and purity, disclosing a

broad program of measurements, such the one described in this thesis, previously inaccessible.

A next generation of experiments dedicated to studying b-physics in hadron collisions will soon
follow the CDF experience. The “Large Hadron Collider b” experiment (LHCb) is currently being
set up to study pp collisions at

√
s = 14 TeV [57]. The LHCb detector is a single-arm spectrometer

designed to exploit the large production cross-section and the high spatial correlation (i. e., large
acceptance for both b-hadrons) of bb̄ pairs emitted at small angles with respect to the LHC beams.
Starting in 2008, a bb̄ production rate of 0.1–1 MHz is expected during five years of operations, in which
approximately 2 fb−1 per year will be collected. The O(102 GeV/c) momentum of b-hadrons combined
with an hodoscope of silicon micro-strip detectors will ensure precise reconstruction of decay vertices
with minimal multiple scattering. A dipole magnet will produce an integrated field

∫
Bdl = 4 T ·m to

bend the trajectories of charged particles, whose momentum will be measured using a combined system
of silicon micro-strip detectors and straw-tube drift cells. Two ring-imaging Cherenkov detectors will
provide charged hadron identification, crucial for separation of kinematically similar signal modes
and for identifying the flavor of the b-hadron at production. Sampling calorimeters using scintillating
tiles and lead or steel absorbers will measure the energy of electrons (for reconstructing semileptonic
and charmonium decays), photons (final states with neutral pions and eta mesons, radiative decays),
and hadrons. Multi-wire proportional chambers and gas-electron multipliers will detect penetrating
charged particles for muon identification (semileptonic, charmonium, and rare decays).

1.7 Introduction to the analysis

1.7.1 Current experimental status on B0
(s) → h+h

′− decays

In 1993, the first evidence of decays of a b-meson into two charmless pseudo-scalar mesons was claimed
by the CLEO experiment, which observed 13.6+4.7

−3.9 events of type B0 → h+h
′− in 1.47×106 BB pairs

produced in
∫
Ldt = 1.37 fb−1 of e+e− collisions at the Υ(4S) resonance [58]. Later, in 1998, they

quoted the first measurement of an individual branching fraction, B(B0 → K+π−) = [15+5
−4 (stat .)±
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e+e−→ Υ(4S)→ BB e+e−→ Z0 → bb̄ pp̄→ bb̄X

Accelerator CESR, PEP-II, KEKB LEP Tevatron
Detector CLEO, ALEPH, DELPHI, CDF II, DØ

BABAR, Belle L3, OPAL,
σ(bb̄) 1 nb 7 nb 50 µb
σ(bb̄)/σ(bck) 0.26 0.22 0.001
Typical bb̄ rate 10 Hz 0.1 Hz 5–10 kHz
Flavors B0 (50%), B0 (40%), B+ (40%) B0 (40%), B+ (40%)

B+ (50%) B0
s (10%), B+

c (< 0.1%), B0
s (10%), B+

c (< 0.1%),
b-baryons (10%) b-baryons (10%)

Boost 〈βγ〉 0.06–0.6 6 1–4
Pile-up events 0 0 1–5
Track multiplicity ∼ 5 ∼ 10 ∼ 30
Trigger Inclusive Inclusive displaced tracks, `

Table 1.1: Schematic comparison of some relevant parameters for b-physics measurements in different
experimental environments. “DELPHI” stands for “DEtector with Lepton, Photon, and Hadron Iden-
tification”, “OPAL” for “Omni-Purpose Apparatus at LEP”. All numerical values are approximate.

1.4 (syst .)]×10−6, using 3.3×106 BB pairs, corresponding to
∫
Ldt = 3.14 fb−1 [59]. This large decay-

rate provided the first experimental indication that b → sg penguin amplitudes give an important
contribution to two-body charmless b-meson decays. A confirmation of this hierarchy was obtained in
2000, when the B0 → π+π− decay was observed and its branching fraction measured to be B(B0 →
π+π−) = [4.6+1.6

−1.4 ± 0.5] × 10−6, using a larger sample of 9.66 × 106 BB pairs (
∫
Ldt = 9.13 fb−1)

[60]. From the same sample, the CLEO Collaboration quoted also the first measurement of partial
rate asymmetry in B0 → K+π− decays: ACP(B0 → K+π−) = −0.04± 0.16 (stat .)± 0.02 (syst .) [61].

More recently, BB samples O(50) times larger, available at the BABAR and Belle experiments, al-
lowed measurements of time-integrated decay-rates of impressive precision, and the first measurements
of time-dependent decay-rates (see tab. 1.2).

BABAR Belle
ACP(B0 → K+π−) −0.108± 0.024± 0.008 −0.093± 0.018± 0.008
B(B0 → K+π−) [10−6] 19.7± 0.6± 0.6 20.0± 0.4± 0.8
B(B0 → π+π−) [10−6] 5.8± 0.4± 0.3 5.1± 0.2± 0.2
B(B0 → K+K−) [10−6] < 0.40 @ 90% CL < 0.25 @ 90% CL

Table 1.2: Time-integrated decay-rates for the modes of interest as measured by the BABAR [62, 63]
and the Belle [64, 65, 66] experiments, as of Summer 2006.

While charmless hadronic decays of B0 (and B+) mesons have been extensively explored ex-
perimentally in the last decade, significantly less information is available about the B0

s meson. No
charmless decays of a B0

s meson into kaons or pions has yet been observed. The only information
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currently available are the following upper limits (at the 90% CL) on branching fractions, obtained
by the ALEPH Collaboration in a sample of four million hadronic Z0 decays produced in e+e− col-
lisions at the Z0 resonance: B(B0

s → K+K−) < 59 × 10−6, B(B0
s → K−π+) < 210 × 10−6, and

B(B0
s → π+π−) < 170× 10−6 [67].

CDF has, therefore, the first and unique opportunity to improve our understanding of b-meson
decays by complementing the rich experimental data available for charmless hadronic decays of B0

and B+ mesons with measurements of similar modes for the B0
s meson.8

Joint study of B0 and B0
s decays was originally envisaged also at the Hadron Electron Ring Acceler-

ator facility (HERA-B) single-magnet forward spectrometer at the Deutsches Elektronen-Synchrotron
[68]. They expected to reconstruct approximately 800 B0 → π+π− decays per year in collision of
820 GeV/c protons on a fixed wire target. However, detector-related problems delayed the commis-
sioning of the experiment and no result on B0

(s) → h+h
′− decays has been claimed yet by the HERA-B

Collaboration.

1.7.2 Analysis overview

All branching fractions measured in the present work are relative (i. e., ratios of branching fractions)
rather than absolute branching fractions.

The primary motivation for a relative measurement is that ratios of branching fractions of B0
(s) →

h+h
′− decays have often more physics relevance than absolute measurements. They are usually easier

to predict and to interpret theoretically than absolute quantities, especially if amplitude relations
based on Standard Model symmetries allow (partial) cancellation of hadronic unknowns in the ratios,
as discussed in sec. 1.4 and 1.5.

The second, important motivation for a relative measurement is the cancellation of several sys-
tematic effects. Consider the expression for the measurement of an absolute branching-fraction (at
the Tevatron) of, say, the B0

s → K+K− decay:

B(B0
s → K+K−) =

N(B0
s → K+K−)

2ε× σ(pp̄ → bb̄+X)× fs ×
∫
Ldt

, (1.84)

where N(B0
s → K+K−) is the yield of reconstructed candidates, ε indicates the total trigger, re-

construction, and analysis efficiencies, σ(pp̄ → bb̄ + X) is the cross-section for hadroproduction of
b-quarks, fs is the probability that a b-quark produced in pp̄ collisions hadronizes into a B0

s meson,
and

∫
Ldt is the integrated luminosity corresponding to the size of the data sample. All these fac-

tors are affected by significant uncertainties. These can have large effect on absolute measurements,
whereas partially or completely cancel in relative measurements:

efficiency – the knowledge of the total efficiency for each mode, which is O(�), is affected by im-
portant uncertainties. These are partly due to the frequent changes (improvements) in detector
and trigger configuration which took place during the collection of the first CDF data, on which
this analysis is based. On the other hand, even in stable trigger and detector configurations,

8The future role of the Belle experiment when KEKB will be operating at a center of mass energy of the Υ(5S)

resonance is discussed in sec. 10.7.
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there is an intrinsic difficulty in measuring with the accuracy needed for an absolute measure-
ment the trigger and reconstruction efficiencies for (relatively) low momentum particles in the
complicate environment of hadron collisions. The need to reject backgrounds several orders of
magnitude larger than the signals, results in triggers designed to optimize purity at the expense
of efficiency. Trigger and reconstruction efficiencies are difficult to measure with high accuracy.
Common reconstruction efficiencies and systematic uncertainties cancel in relative measurements
involving kinematically similar modes. This yields reduced residual uncertainties that are easier
to determine and less sensitive to changes of the trigger and detector configurations.

Production cross-section – the (pT(B)-dependent) value of the production cross-section is affected
by a ≈ 15% uncertainty [56]. This reflects into a systematic uncertainty in absolute branching-
fraction measurements, and cancels completely in a relative measurement.

Fragmentation fraction – the 2.5%–10% uncertainty on the probability for a b-quark to hadronize
to the desired hadron [18] becomes a systematic uncertainty in an absolute measurement, whereas
it cancels completely (partially) in relative measurements between B0

(s) mesons of same (differ-
ent) flavor.

Luminosity – the irreducible 6% uncertainty in the CDF integrated luminosity (see sec. 2.4.4),
would directly propagate as a systematic uncertainty on the measurement of absolute branching
fractions, whereas it cancels completely in a relative measurement.

To ensure control of remaining systematic uncertainties, we adopted a data-driven approach. When-
ever possible, we relied on collision data as opposed to computer simulation using pseudo-random
sampling (i. e., “Monte Carlo”). This choice is rewarding in terms of reliability of results, at the price
of the additional difficulty of reconstructing several control samples. In fact, with current Monte Carlo
programs, it is extremely difficult to reliably simulate b-hadron production and associated backgrounds
in a hadron collision environment at the level of accuracy required by this kind of measurements. Re-
sults from simulation are either strongly model-dependent and plagued by large systematic effects, or
require extensive tunings based on data, thereby losing the benefits of simulation. We limited the use
of Monte Carlo simulation to the strictly necessary, namely the modeling of the kinematic of signal
decay-modes and the evaluation the relative acceptances between different signal modes. This choice
provides reliable results because the decay kinematics of signal and the detector geometry are accu-
rately reproduced by the standard Monte Carlo simulations. Modeling of background distributions
and evaluation of other efficiencies was based on data.

The first challenge of the analysis is the extraction of the B0
(s) → h+h

′− signal, starting from a
O(10−9) signal-to-background ratio at production: the combination of a dedicated trigger (sec. 2.5),
with an analysis selection optimized in an unbiased way, allowed the first reconstruction ever of
a B0

(s) → h+h
′− signal at a hadron collider. But this signal contains contributions from several,

kinematically similar, B0 and B0
s meson decay-modes (B0 → K+π−, B0 → π+π−, B0

s → K+K−,
. . . ), overlapping with unknown proportions in a single mass peak. For the desired measurement
of decay rates, we needed to discriminate among the different contributions. This second challenge
required the development of a sophisticated multivariate likelihood fit because the available resolution
in mass and in particle identification is insufficient for an event-by-event separation of the decays.
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We exploited the kinematic differences between modes and the measurement of specific ionization of
charged particles (dE/dx ) in the drift chamber, to determine the composition of signal and background.
This required a detailed calibration of the dE/dx with large samples of D∗+ → D0π+ → [K−π+]π+

decays. In order to infer the desired measurements of branching fractions from the observed numbers
of signal events, we had to correct for the relative efficiency associated to the reconstruction of different
decay modes.

After the discussion of the experimental apparatus in the next chapter, the description of the data
analysis occupies the rest of this thesis.



Chapter 2

The upgraded Collider Detector at

the Fermilab Tevatron

The data used for this work were collected by the upgraded Collider Detector at the Fermilab Tevatron
collider (CDF II). This chapter provides a concise description of the complex infrastructure, accelerator
and detector, involved in producing the data sample. A more detailed description of the tracking and
the trigger systems is given, for the crucial role they have in the present analysis.

2.1 The Fermilab Tevatron collider

The Tevatron collider is currently the world highest energy accelerator. It provides collisions of
antiprotons with protons at a center-of-mass energy of 1.96 TeV. The Tevatron is an underground
circular proton synchrotron, 1 km in radius, the last stage of a system of accelerators, storage rings,
and transfer lines located at the Fermi National Accelerator Laboratory (FNAL or Fermilab), about
50 km west from Chicago, Illinois, United States. While the machine operates in collider mode,
“bunches” of protons, circulating clockwise as seen from above and spaced by 396 ns, collide against
a similar beam of antiprotons accelerated counter-clockwise, both at energies of 980 GeV. A bunch is
a collection of particles contained within one radio-frequency “bucket” (defined below).

The Energy Doubler, now known as the Tevatron, was commissioned in 1983 as the first large-scale
superconducting synchrotron in the world. The first pp̄ collisions occurred in 1985 and, since then,
various periods of collider operations alternated with fixed-target operations or shut-down periods
for upgrades of the machine. Each period of Tevatron collider operations is conventionally identified
as a Run.1 Table 2.1 contains a summary of the Tevatron operations and performance since its
construction. The present analysis uses the first physics-quality data collected in Run II.

1The Run is not to be confused with the run, defined in CDF as a continuous period of data-taking in approximately

constant detector and beam conditions.

41
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Date
√
s [TeV] L [cm−2s−1]

∫
Ldt [pb−1]

Mar 1983 End of the construction − − −
Jul 1983 Proton energy 512 GeV − − −
Oct 1983 Fixed-target program began − − −
Feb 1984 Proton energy 800 GeV − − −
Oct 1985 CDF observed first pp̄ collisions 1.6 few 1024 −
Oct 1986 Proton energy 900 GeV − − −
Jun 1988–May 1989 Run 0: first physics collider Run 1.8 2× 1030 ' 4.5
Aug 1992–Feb 1996 Run I 1.8/0.63 28× 1030 ' 180
Aug 2000 Beam energy 980 GeV − − −
Mar 2001 Run II began 1.96 5× 1030 −
Sep 2006 Record luminosity 1.96 229× 1030 ' 1800

Table 2.1: Chronological overview of the Tevatron operation and performance. The third column
reports the peak luminosity. The fourth column reports the delivered integrated luminosity. The last
row shows the performance as of this writing.

The performance of the Tevatron collider is evaluated in terms of two key parameters: the avail-
able center-of-mass energy,

√
s, and the instantaneous luminosity, L. The former defines the accessible

phase-space for the production of resonances in the final states. The latter is the coefficient of pro-
portionality between the rate of a given process and its cross-section σ:

rate [events s−1] = L [cm−2s−1] × σ [cm2].

The time-integral of the luminosity (integrated luminosity) is therefore a measure of the expected
number of events, n, produced in a finite time T :

n(T ) =
∫ T

0

Lσdt. (2.1)

Assuming an ideal head-on pp̄ collision with no crossing angle between the beams, the instantaneous
luminosity is defined as

L = 10−5 NpNp̄Bfβγ

2πβ∗
√

(εp + εp̄)x(εp + εp̄)y
H(σz/β∗) [1030cm−2s−1]. (2.2)

It depends on the following Tevatron parameters: the number of circulating bunches in the ring (B =
36), the revolution frequency (f = 47.713 kHz), the Lorentz relativistic factor (boost, βγ = 1045.8
at 980 GeV), the average numbers of protons (Np ≈ 250 × 109) and antiprotons (Np̄ ≈ 25 × 109)
in a bunch, an empiric “hourglass” factor (H = 0.6–0.7), which is a function of the ratio between
the longitudinal r.m.s. width of the bunch (σz ≈ 60 cm) and the “beta function” calculated at the
interaction point (β∗ ≈ 31 cm), and the 95% normalized emittances of the beams (εp ≈ 18π mm
mrad and εp̄ ≈ 13π mm mrad after injection).2 The dominant limiting factor of the luminosity is the
availability of monochromatic antiprotons that can be efficiently transferred through the accelerator

2The hourglass factor is a parameterization of the longitudinal profile of the beams in the collision region, which

assumes the shape of an horizontal hourglass centered in the interaction region. The beta function is a parameter
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chain for final collisions. The current Tevatron performance benefits from an increase of a factor of
2.5 in this critical parameter, with respect to the beginning of Run II.

The Tevatron is an approximately circular synchrotron employing 772 dipole, 2 half-dipole, and
204 quadrupole superconducting magnets. Each is approximately 6 m long, 4 tons in mass, and is
made of NbTi alloy filaments embedded in copper, kept at 4.3 K temperature by a large cryogenic
system. A 4400 A current flows through each magnet to produce the 4.2 T magnetic field necessary
to keep the particles on their orbit, while they are accelerated by eight radio-frequency cavities (RF)
driven at approximately 53.105 Hz. Motions or friction by the approximately 4000 N/cm of outward
pressure are avoided by epoxy-covered steel collars bound around the magnets.

The particles are accelerated through the RF buckets. A bucket is one interval of the longitudinal
restoring force provided by the RF cavities that results in a stable phase-space where a bunch may
be captured and accelerated. The Tevatron provides beams for experiments in different modes (fixed-
target, collider, etc.). For the purpose of the present analysis, we describe the procedure for obtaining
a continuous period of collider operation using the same collection of protons and antiprotons, called
a store. Further details can be found in Ref. [69].
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Figure 2.1: Illustration of the Fermilab Tevatron collider.

convenient for solving the equation of motion of a particle through an arbitrary beam transport system. The emittance

ε measures the phase-space occupied by the particles of the beam. Three independent two-dimensional emittances are

defined. The quantity
√
βε is proportional to the r.m.s. width of the beam in the corresponding phase plane. On-

line measurements of the transverse emittances are performed at the Tevatron with various methods, including flying

through the beam a 7 µm wire and by measuring the cascade of losses, which is proportional to the beam intensity, or

detecting the synchrotron light radiated by the particles at the edge of a dipole magnet.
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2.1.1 Proton production

Hot hydrogen gas is passed through a magnetron, which extracts a 50–55 mA current of 15–22 keV
H− ions, subsequently accelerated every 66 milliseconds to 750 keV by a three-staged diode-capacitor
voltage multiplier (Cockroft-Walton) accelerator. The proton beam, segmented into bunches, is then
injected into a two-staged 150 m long linear accelerator (Linac, see fig. 2.1). First, a drift tube
accelerator resonating at 201.249 MHz accelerates bunches of protons up to 116 MeV; then, a side-
coupled cavity accelerator at 804.996 MHz increases their energy to 401.5 MeV before injection into
the Booster.3 The Booster (see fig. 2.1) is an alternating gradient synchrotron (orbit radius of 75.5 m)
that accelerates protons to 8 GeV in 33 milliseconds, sweeping from ≈ 38 to 53.105 MHz. At injection,
a thin carbon foil is used to strip the electrons from the H− ions to obtain protons. Injecting H−

ions rather than protons into the Booster allows the injection to proceed over multiple revolutions of
the beam around the Booster Ring (usually 10–12). If protons were instead injected, the magnetic
field used to inject new protons onto orbit in the Booster would also deflect the already revolving
protons out of orbit. There are two basic modes during collider operations: antiproton accumulation
and injection.

2.1.2 Antiproton production and accumulation

In accumulation mode, one set of 84 proton bunches (approximately 8× 1012 p in total) is extracted
from the Booster at 8 GeV and injected into the Main Injector every 2.2 seconds.4 The Main Injector
(see fig. 2.1) is a 53.105 MHz circular synchrotron (528.5 m in radius), with 18 accelerating cavities and
conventional magnets. The protons are accelerated to 120 GeV, and then extracted and directed to the
antiproton production station, a rotating 7 cm-thick target made of nickel alloys containing chromium,
iron and other metals. The particles produced in the interaction are spatially wide-spread. They are
collected and focused with a cylindrical lithium lens (760 T/m).5 Eight GeV/c negatively-charged
secondaries are momentum-selected by a 1.5 T pulsed dipole magnet. Typically, 21 antiprotons are
collected for each 106 protons on target, resulting in a stacking rate of approximately 10–20 mA/h.
The emerging antiprotons have a bunch structure similar to the one of the incident protons and
are delivered to the Debuncher storage ring (see fig. 2.1). This rounded triangular synchrotron,
90 m of mean radius, transforms the antiproton pulses in a continuous beam of monochromatic
antiprotons. Stochastic cooling and bunch rotation are applied during many cycles.6 From the
Debuncher, 8±0.018 GeV antiprotons are transferred with 60%–70% efficiency into the Accumulator,
a concentric storage ring 75 m in mean radius (see fig. 2.1), where they are stacked and cooled

3The side-coupled technique avoids the need of increasing the drift-tube lengths by producing a traveling wave that

moves along with the ions, keeping them into the accelerating phase.
4The novel “slip-stacking” technique, implemented in 2005, allows grouping two (instead of one) sets of protons

bunches, for a greater antiproton production-rate.
5Lithium is used to minimize beam loss from multiple-scattering.
6Stochastic cooling is a technique used to reduce the transverse and energy spread of a particle beam without any

accompanying beam-loss. This is achieved by applying iteratively a feedback mechanism that senses with extreme

sensitivity the beam deviation from the ideal orbit with electrostatic plates, processes and amplifies it, and transmits

an adequately-sized synchronized correction pulse to another set of plates downstream [70]. Bunch rotation is an RF

manipulation technique that, using adequate phasing, transforms a beam with a large time spread and a small energy

spread in a beam with a large energy spread and a small time spread, or viceversa.
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with a variety of systems until the maximum antiproton intensity is reached. Since 2004, optimized
antiproton accumulation is achieved using the Recycler Ring (see fig. 2.1). This is a constant 8 GeV-
energy storage-ring placed in the Main Injector enclosure, that uses permanent magnets (magnetized
strontium ferrite, the same as in refrigerators). It is used to gather antiprotons that are periodically
transferred from the Accumulator (95% transfer efficiency) thus maintaining it at its optimum intensity
regime. Recently, relativistic electron cooling was successfully implemented in the Recycler, further
enhancing the Tevatron performance [71].7

2.1.3 Injection and collisions

Every 10–20 h, antiproton accumulation is stopped in preparation for injection. A set of seven proton
bunches is extracted from the Booster, injected into the Main Injector, accelerated to 150 GeV,
coalesced with ≈ 90% efficiency into a single bunch of ≈ 300 × 109 p, and then injected into the
Tevatron.8 This process is repeated every 12.5 seconds, until 36 proton bunches, separated by 396
ns, are loaded into the Tevatron central orbit. Typically, 65% of the protons in the Main Injector are
successfully transferred to the Tevatron. The electrostatics separators (about 30 pairs of metal plates)
are then activated in the Tevatron, in preparation for antiproton injection.

Four sets of 7–11 p̄ bunches are extracted from the Accumulator (or from the Recycler) to the
Main Injector, accelerated to 150 GeV, coalesced with ≈ 80% efficiency into four 30× 109 p̄ bunches
separated by 396 ns, and then injected into the Tevatron, where protons are counter-rotating. Protons
and antiprotons circulate in the same enclosure, sharing magnet and vacuum systems. The separators
minimize the beam-beam interactions, by keeping the proton and the antiproton beams, each about
half a millimeter thick, into two non-intersecting closed helical orbits separated by approximately five
millimeters (3σ–5σ) as they revolve in opposite directions. This allows controlling each beam nearly
independently. The injection process is repeated nine times until 36 antiproton bunches circulate in
the Tevatron.

Sweeping the Tevatron RF by ≈ 1 kHz, the beam is then accelerated in about a minute from 150 to
980 GeV, at which energy one particle completes the full revolution of the Tevatron circumference in
21 µs at 0.9999996c. The beams are finally brought into collision at the two instrumented interaction-
points located along two straight sections of the Tevatron: DØ and BØ, where the DØ and CDF
II detectors, respectively, are located. Although the power produced in the collision is only 1–2 W,
the stored energy of the beam is about 1.7 MJ, corresponding, approximately, to the kinetic energy
of a 4.5 ton truck moving at 100 km/h. Special high-power quadrupole magnets (“low-β squeezers”),
installed on the beam pipe at either side of the detectors, reduce the transverse spatial spread of
the beams to maximize the collision rate in the interaction regions. The resulting transverse spatial
distribution of the luminous region is approximately a two-dimensional Gaussian, with σT ≈ 30 µm.
The typical longitudinal dimension of a bunch is 60–70 cm. The interaction regions have a roughly
Gaussian distribution along the beam direction, with r.m.s. width σz ≈ 28 cm.9 The center of the

7Electron cooling is a method of damping through the interaction between the antiproton beam and an electron

beam propagating together at the same average velocity.
8Coalescing is the process of compacting into one dense bunch many smaller bunches.
9Whereas one may expect a bunch length σz ≈ 60 cm to distribute pp̄ interactions over a length of 60/

√
2 cm, this

length is in fact less than 30 cm owing to the variation of the transverse beam profile along the beam (z) axis.
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luminous region is shifted toward the nominal interaction point by fine tuning of the squeezers. The 36
bunches of protons (antiprotons) are distributed among the 1113 buckets in three equispaced “trains”
of 12 bunches each. The inter-bunch spacing is 396 ns (21 buckets) within a train, while a 2.6 µs
spacing (139 buckets, “abort gap”) is kept between trains. The need for the abort gap is two-fold:
it allows antiprotons injection (in coincidence with the proton abort gap) without perturbing the
already revolving protons with the injecting magnet. Furthermore, when beam abortion is needed,
the abort gap allows ramping-up the deflecting magnets without interfering with the beam during the
transient, possibly damaging the detectors. As a consequence of this bunch distribution, the average
bunch-crossing rate is 1.7 MHz, resulting from a 2.53 MHz rate, when the proton and antiproton
trains are crossing, and zero rate in correspondence of the abort gaps.

The transverse profile of the beam is shaped to its optimized configuration to avoid detector damage
from the tails of the p (p̄) distributions interacting with the beam pipe: retractable collimators (iron
plates) are moved perpendicularly toward the beam and trim-off the residual halo. When the beam
profile is narrow enough and the conditions are safely stable, the detector is powered and the data-
taking starts.

The number of overlapping inelastic interactions N for each bunch crossing is a Poisson-distributed
variable that depends on the instantaneous luminosity. The observed distribution of the multiplicity
of interaction vertices yields N̄ ≈ 0.2, 1.0, 2.0, and 6.0 for respectively, L ≈ 1 × 1031, 5 × 1031,
10 × 1031, and 30 × 1031 luminosities [72]. The luminosity decreases as a function of time because
of the interactions of the beam with residual molecules of gas that escaped the vacuum of the beam
pipe, beam-halo interactions, and p̄ depletion due to the collisions. The luminosity profile can be
empirically modeled by the sum of two exponential functions:

L(t) = L0

(
cSe
−t/tS + cLe

−t/tL
)
, (2.3)

where the ci, and ti parameters depend on the initial luminosity (L0). Their values are typically
cS ≈ 0.4 and tS ≈ 4 h, for the short-lived component, and cL ≈ 0.6 and tL ≈ 23 h, for the long-
lived one. During the 10–20 h of a store, the luminosity decreases by a factor of 2.5–5, the majority
of data being collected at L ≈ L0/2. Just after the final injection, a new antiproton accumulation
cycle is started. When the antiproton stack is sufficiently large and the colliding beams are degraded,
the detector high-voltages are switched-off and the store is dumped. The beam is extracted via a
switch-yard and sent to an absorption zone.

Beam abortion can occur also accidentally when a superconducting magnet rises its temperature
above the critical value (i. e., the magnet “quenches”), destroying the orbit of the beams.10 The time
between the end of a store and the beginning of collisions of the next one is typically 2 h, during which
time calibrations of the subdetectors and cosmic rays tests are usually performed.

2.1.4 Tevatron performance

Since the beginning of Run II the Tevatron performance has been steadily increasing. Currently (as
of 2006), the Tevatron is running at a center-of-mass energy of 1.96 TeV with an inter bunch-crossing

10During a quench, one cubic liter of liquid helium expands to 700 cubic liters of gaseous helium within a quarter of a

second. More than 1500 custom-made relief valves allow the Tevatron cryogenic system to manage the rapid expansion.
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time of 396 ns. The original plan of shortening the inter bunch-crossing to 132 ns, to reduce pile-up
events, has been discarded. The Tevatron set the world record of highest peak luminosity for a hadron
collider of 229.0 × 1030 cm−2s−1 (September, 20st 2006). As of this writing, a single store lasts for
about 20–30 h yielding ≈ 6 pb−1 integrated luminosity. Antiprotons are accumulated at 1011p̄/h rates
and transferred through the accelerator chain with average 75% overall efficiency for the next store.
The Tevatron delivers typically collisions corresponding to 30 pb−1 per week. As of October 2006,
physics quality data corresponding to 1.6 fb−1 are stored on permanent memories.

2.2 The CDF II detector

The CDF II detector is a large multi-purpose solenoidal magnetic spectrometer surrounded by 4π fast,
projective calorimeters and fine-grained muon detectors. It is installed at the BØ interaction point
of the Tevatron (see fig. 2.2) to determine energy, momentum and, whenever possible, the identity of
a broad range of particles produced in 1.96 TeV pp̄ collisions. It was designed, built, and operated
by a team of physicists, technicians, and engineers that, as of this writing, spans 60 institutions of 13
countries, and includes approximately 618 official members. Several upgrades modified the design of
the original facility commissioned in 1985.11 The most extensive upgrade started in 1995 and led to
the current detector whose operation is generally referred to as Run II.

2.2.1 Coordinates and notation

CDF II employs a right-handed Cartesian coordinate system with origin in the BØ interaction point,
assumed coincident with the center of the drift chamber (see sec. 2.3.5). The positive z-axis lies
along the nominal beam-line pointing toward the proton direction (east). The (x, y) plane is therefore
perpendicular to either beams, with positive y-axis pointing vertically upward and positive x-axis in
the horizontal plane of the Tevatron, pointing radially outward with respect to the center of the ring.

Since the colliding beams of the Tevatron are unpolarized, the resulting physical observations are
invariant under rotations around the beam line axis. Thus, a cylindrical (r, φ, z) coordinate system is
particularly convenient to describe the detector geometry. Throughout this thesis, longitudinal means
parallel to the proton beam direction (i. e., to the z-axis), and transverse means perpendicular to the
proton beam direction, i. e., in the (x, y) ≡ (r, φ) plane.

Since protons and antiprotons are composite particles, the actual interaction occurs between in-
dividuals partons (valence or sea quarks and gluons) contained within them. Each parton carries a
varying fraction of the (anti)proton momentum, not known on an event-by-event basis. As a con-
sequence of the possible imbalance in the longitudinal components of the momenta of interacting
partons, possible large velocities along ẑ for the center-of-mass of the parton-level interaction may
occur. In hadron-collisions environments, it is customary to use a variable invariant under ẑ boosts as
an unit of relativistic phase-space, instead of the polar angle θ. This variable is the rapidity defined
as

Y =
1
2

ln
[
E + p cos(θ)
E − p cos(θ)

]
, (2.4)

11Originally, the CDF acronym was meant for Collider Detector Facility.
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where (E, ~p) is the energy-momentum four-vector of the particle.12 Under a ẑ boost to an inertial frame
with velocity β, the rapidity of a particle transforms linearly, according to Y → Y ′ ≡ Y + tanh−1(β),
therefore Y is invariant since dY ≡ dY ′. However, a measurement of rapidity still requires a detector
with accurate particle identification capabilities because of the mass term entering E. Thus, for
practical reasons, it is often preferred to substitute Y with its approximate expression η in the ultra-
relativistic limit, usually valid for products of high-energy collisions:

Y
p�m−→ η +O(m2/p2), (2.5)

where the pseudo-rapidity η ≡ − ln [tan(θ/2)] is only function of the momenta. As the event-by-event
longitudinal position of the actual interaction is distributed around the nominal interaction point with
30 cm r.m.s. width, it is useful to distinguish detector pseudo-rapidity, ηdet, measured with respect
to the (0, 0, 0) nominal interaction point, from particle pseudo-rapidity, η, which is measured with
respect to the z0 position of the real vertex where the particle originated.13

Mapping the solid angle in terms of (pseudo)-rapidity and azimuthal angle is also convenient
because the density of final-state particles in energetic hadronic collisions is approximately flat in
the (Y, φ) space. The (pseudo)-rapidity dependence was observed experimentally, the azimuthal de-
pendence derives from the unpolarized beams.14 Other convenient variables used are the transverse
component of the momentum with respect to the beam axis (pT), the “transverse energy” (ET), and
the approximately Lorentz-invariant angular distance ∆R, defined as

~pT ≡ (px, py)→ pT ≡ p sin(θ), ET ≡ E sin(θ), and ∆R ≡
√
η2 + φ2. (2.6)

Throughout this thesis, the magnitude of the vector ~pT (and of any vector ~v) is indicated as pT (v) ,
instead of |~pT| (|~v|), for a simpler notation.

2.2.2 Overview

CDF II (see fig. 2.2) is a 5000-ton assembly of subdetectors, ≈ 16 m in length by ≈ 12 m in diameter,
which can be moved from its garaged position, in the CDF assembly building, to its operation position
on the Tevatron beam line. The 31.4 m move takes one day. The CDF II detector was designed and
constructed with an approximately cylindrically symmetric layout both in the azimuthal plane and
in the “forward” (z > 0, east) “backward” (z < 0, west) directions with spatial segmentation of
its subcomponents roughly uniform in pseudo-rapidity and azimuth. CDF II is composed of several
specialized subsystems, each one designed to perform a different task, arranged in a standard layout
for multipurpose detectors; starting from the interaction point, particles emitted within the acceptance
region encounter in sequence: a thin wall beryllium vacuum chamber, a high-precision tracking system

12The rapidity can be derived from the Lorentz-invariant cross-section: E d3σ
(dp)3

= E d2σ
πpTdpTdpz

. Observing that only

E and pz change under z boosts, we can replace them by a variable Y such as E dY
dpz

= 1. Solving for Y we get eq. (2.4).
13An idea of the difference is given by considering that ηdet ≈ η± 0.2 if the particle was produced at z = 60 cm from

the nominal interaction point.
14The charged particle density distribution as a function of rapidity is invariant under Lorentz transformation, and

was found to be approximately constant (within a wide rapidity range) at about four charged particles per unit of

rapidity at the Tevatron.
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Figure 2.2: Elevation view of one half of the CDF II detector.

composed by an inner silicon system and an outer drift-chamber, a time-of-flight detector, a solenoidal
magnet and its return steel yoke, finely segmented sampling calorimeters, and muon detectors.

Its main features are an excellent tracking performance, which provides high mass resolution and
precisely reconstructed decay-vertices, good electron and muon identification capabilities combined
with charged-hadron identification, and an advanced trigger system that fully exploits the high event-
rates. A detailed description of the CDF II detector can be found elsewhere [73] and in specific
references cited for each subdetector. In the following, we emphasize the tracking and the trigger
systems, which are the aspects of the detector more specific to this analysis.

2.3 The tracking system

Three-dimensional charged particle tracking is achieved through an integrated system consisting of
three silicon inner subdetectors and a large outer drift-chamber, all contained in a superconduct-
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ing solenoid. The 1.41 T magnetic field and the 130 cm total lever arm provide excellent tracking
performances (see fig. 2.3).

Figure 2.3: Elevation view of one quadrant of the inner portion of the CDF II detector showing the
tracking volume surrounded by the solenoid and the forward calorimeters.

In the central region (|ηdet| <∼ 1), 7 silicon samplings (one in the (r, φ) view plus six in the (r, φ, z)
view), and 96 chamber samplings (48 (r, φ) plus 48 (r, z)) are available between 1.6 and 132 cm. In
the forward and backward regions (1 <∼ |ηdet| <∼ 2), 8 silicon samplings (one in the (r, φ) view plus
seven in the (r, φ, z) view) are available between 1.6 and 29 cm, along with partial information from
the chamber.

The high number of samplings over the 88 cm lever arm of the chamber ensure precise determination
of curvature, azimuth, and pseudo-rapidity of the tracks in the central region. The chamber provides
also track seeds for pattern-recognition in silicon.

The core of the silicon detector is the Silicon VerteX detector (SVXII). It provides five three-
dimensional measurements that extend the lever arm by 41.5 cm toward the beam thus allowing
more precise determination of the trajectories and identification of decay-vertices displaced from the
beam-line. The SVXII has an outer and an inner extension.

The outer extension, i. e., the Intermediate Silicon Layers (ISL), provides a single (double) three-
dimensional silicon measurement in the central (forward-backward) region, at intermediate radial
distance from the chamber. The ISL allows efficient linking between tracks reconstructed in the
chamber and hits detected in the SVXII, and extends the track finding at pseudo-rapidities 1 <∼
|ηdet| <∼ 2, where the chamber coverage is marginal.

The inner extension, i. e., the Layer ØØ (LØØ), is a light-weight silicon layer placed on the beam-
pipe. It recovers the degradation in resolution of the reconstructed vertex position due to multiple
scattering on the SVXII read-out electronics and cooling system, installed within the tracking volume.
In addition, the LØØ, being made of state-of-the-art radiation-tolerant sensors, will extend the lifetime
of the whole system when the effects of radiation damage will degrade the performance of the inner
SVXII layers. The integrated design of the tracking system allowed commonality of components
among subdetectors (read-out chip, support structures, etc.) thus simplifying the construction and
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the operation.

All 722,432 channels from the ≈ 7.0m2 silicon active-surface employ 5644 radiation-tolerant, cus-
tom integrated read-out chips of the same type. This chip allows independent cycles of digitization
of data and analog processing of subsequent data. It optimizes charge collection using sparsification,
neighbor logic, and common-mode noise suppression.15 The discriminated differential pulse from each
channel is preamplified, digitized and propagated to the downstream data-acquisition. The ISL and
the SVXII, whose mass is approximately 128 kg, share also the carbon-fiber supporting structure.

The total amount of material in the silicon system, averaged over φ and z, varies roughly as 0.1X0
sin(θ)

in the |ηdet| <∼ 1 region, and roughly doubles in 1 <∼ |ηdet| <∼ 2 because of the presence of cables,
cooling bulk-heads, and portions of the support frame.16 The average amount of energy loss for a
charged particle is roughly 9 MeV. The total heat load of the silicon system is approximately 4 kW. To
prevent thermal expansion, relative detector motion, increased leakage-current, and chip failure due
to thermal heating, the silicon detectors and the associated front-end electronics are held at roughly
constant temperature ranging from −6◦C to −10◦C for LØØ and SVXII, and around 10◦C for ISL,
by an under-pressurized water and ethylene-glycol coolant flowing in aluminum pipes integrated in
the supporting structures.17

2.3.1 The magnet

A 1.4116 T solenoidal magnetic field is maintained in the region r <∼ 150 cm |z| <∼ 250 cm by circulating
a 4650 A current (current density 1150 A/m) through 1164 turns of an aluminum-stabilized NbTi/Cu
super-conducting coil. The field is oriented along the positive ẑ (proton) direction and is uniform to
within 0.1% in the |z| <∼ 150 cm volume, where tracking measurements are made (see fig. 2.3). The
tiny non-uniformities, mapped out during detector construction, are treated as small perturbations
in the track-fitting algorithms. During data-taking, the field is continuously monitored by nuclear
magnetic resonance probes with 0.01% accuracy. Any deviation from the mapped values is applied as
a correction to the measured track parameters. The threshold to radially escape the magnetic field
for a particle is pT & 0.3 GeV/c while the trajectory of a particle with pT = 30 GeV/c deviates only
1.6 cm from a straight path of 150 cm. The solenoid is 4.8 m in length, 1.5 m in radius, 0.85X0 in
radial thickness (for normally incident particles.), and is cooled by forced flow of two-phase helium.
Outside the coil, the return of the field flux is a box-shaped steel yoke, 9.4 m high by 7.6 m wide by
7.3 m long. It avoids interference between the field and the proper operations of the photo-multiplier
tubes (PMT) used in the calorimeters.

15Neighbor-logic consists in a programmable threshold for each chip that allows read-out of channels over threshold

and of their nearest-neighbors only, speeding-up the read-out and minimizing the data size. Noise suppression subtracts

from the signal of all channels a pedestal calculated event-by-event for each chip.
16The symbol X0 indicates the radiation length.
17The pressure of the cooling fluid is maintained under the atmospheric pressure to prevent leaks in case of damaged

cooling pipes.
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2.3.2 Layer 00

The LØØ is the innermost layer of the micro-vertex silicon detector [74]. It consist of a single,
castellated layer of single-sided, AC-coupled silicon sensors mounted directly on the beam pipe at
radii, alternating in φ, of 1.35 or 1.62 cm from the beam. It provides full azimuthal and |z| <∼
47 cm longitudinal coverage. Longitudinally adjacent sensors (0.84 (or 1.46) cm × 7.84 cm) are
ganged in modules of 15.7 cm active-length arranged into twelve partially-overlapping φ sectors, and
six longitudinal barrels. These radiation-tolerant sensors are biased to O(500 V), which allows full
depletion after O(5 Mrad) integrated radiation doses. The strips are parallel to the beam axis allowing
sampling of tracks in the (r, φ) plane. The inter-strip implant pitch of 25 µm with floating alternate
strips results in 50 µm read-out pitch. The analog signals of the 13,824 channels are fed via fine-
pitch cables, up ≈ 50 cm long, to the front-end electronics outside the tracking volume. These cables
unexpectedly pick-up ambient noise, causing a significant fraction of channels to have non-uniform
and event-by-event changing pedestals that can not be controlled with dynamic pedestal subtraction.
As a consequence, all channels have to be read-out, and pedestals are fit to 6th-order Chebyshev
polynomial functions and subtracted off-line on an event-by-event basis. The fit procedure is iterative
and excludes channels with isolated, positive signals (hits).

2.3.3 Silicon VerteX detector II

The SVXII is a fine resolution silicon micro-strip vertex detector which provides five three-dimensional
samplings of tracks at 2.45 (3.0), 4.1 (4.6), 6.5 (7.0), 8.2 (8.7), and 10.1 (10.6) cm of radial distance
from the beam (see fig. 2.3) with full pseudo-rapidity coverage in the |ηdet| <∼ 2 region (see fig. 2.4(a))
[75]. This corresponds to a length of |z| <∼ 96 cm along the beam-line, sufficient to cover the σz ≈ 28 cm
longitudinal spread of the luminous region. The SVXII has a cylindrical geometry coaxial with the
beam, and its mechanical layout is segmented in three 32 cm axial sections (“barrels”) × twelve
30◦ azimuthal sectors (“wedges”) × five equally-spaced radial layers. A small overlap between the
edges of adjacent azimuthal sectors helps wedge-to-wedge alignment (see fig. 2.4(b)). Sensors in a
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Figure 2.4: Schematic illustration of the three instrumented mechanical barrels of SVXII (a) and of
the cross-section of a SVXII barrel in the (r, φ) plane (b).
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single layer are arranged into independent longitudinal read-out units, called “ladders”. Each ladder
comprises two, double-sided sensors and a multi-layer electronic board, all glued on a carbon-fiber
support. Front-end electronics, biasing circuits, and fan-out are located on the board that serves the
pair of sensors whose strips are wire-bonded together resulting in a 15 cm active length. At a given
radial layer and azimuth, each barrel contains pairs of ladders stacked length-wise head-to-head to
keep the read-out electronic at the two outside extremities of the barrel (see fig. 2.4(a)). The active
surface consists of double-sided, AC-coupled, 7.5 cm × 1.5–5.8 cm silicon sensors with micro-strips
implanted on a 300 µm thick, high resistivity bulk. Bias is applied through integrated poly-silicon
resistors. On one side, all sensors have axial strips (i. e., parallel to the beam direction) spaced
by approximately 60–65 µm, for a precise reconstruction of the φ coordinate. On the reverse side,
the following combination of read-out pitch (strip orientations with respect to the beam) is used:
141 µm (90◦), 125.5 µm (90◦), 60 µm (−1.2◦), 141 µm (90◦), 65 µm (1.2◦), from the innermost to the
outermost layer for reconstructing the z coordinate. A total of 405,504 electronics channels are used
for SVXII.

2.3.4 Intermediate Silicon Layers

The ISL is a silicon tracker placed at intermediate radial distance between the SVXII and the drift
chamber (see fig. 2.3), and covering the |ηdet| <∼ 2 pseudo-rapidity range for a total length of 174 cm
along z [76]. At |ηdet| <∼ 1 a single layer of silicon sensors is mounted on a cylindrical barrel at radius
of 22.6 (or 23.1 cm). At 1 <∼ |ηdet| <∼ 2 two layers of silicon sensors are arranged into two pairs of
concentric barrels (inner and outer). In the inner (outer) barrel, staggered ladders alternate at radii
of 19.7 and 20.2 cm (28.6 and 29.0 cm). One pair of barrels is installed in the forward region, the
other one in the backward region. Each barrel is azimuthally divided into a 30◦ structure matching
the SVXII segmentation. The basic read-out unit consists of an electronic board and three sensors
ganged together resulting in a total active length of 25 cm. ISL employs 888 5.7 cm× 7.5 (or 6.7) cm
double-sided, AC-coupled, 300 µm-thick sensors. Each sensor has axial strips spaced by 112 µm on
one side, and 1.2◦-angled strips spaced 112–146 µm on the reverse, for 303,104 total channels.

2.3.5 Central Outer Tracker

A multi-wire, open-cell drift chamber provides charged particle tracking at large radii in the central
pseudo-rapidity region (|ηdet| <∼ 1, see fig. 2.3) [77]. The Central Outer Tracker (COT) has an hollow-
cylindrical geometry, its active volume spans from 43.4 to 132.3 cm in radius and |z| <∼ 155 cm in the
axial direction. Arranged radially into eight “super-layers”, it contains 96 planes of wires that run the
length of the chamber between two end-plates (see fig. 2.5(a)). Each super-layer is divided into φ cells;
within a cell, the trajectory of a charged particle is sampled at 12 radii (spaced 0.583 cm apart) where
sense wires (anodes) are strung. Four super-layers employ sense-wires parallel to the beam axis, for
the measurement of the hit coordinates in the (r, φ) plane. These are radially interleaved with four
stereo super-layers whose wires are alternately canted at angles of +2◦ and −2◦ with respect to the
beam-line. Combined read-out of stereo and axial super-layers allows the measurement of the (r, z)
hit coordinates. Each super-layer is azimuthally segmented into open drift-cells. The drift cell layout
(see fig. 2.5(b)) consists of a wire plane closed azimuthally by cathode sheets spaced approximately
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2 cm apart. The wire plane contains sense wires alternating with field-shaping wires, which control
the gain on the sense wires optimizing the electric field intensity. The cathode is a 6.35 µm-thick
Mylar sheet with vapor-deposited gold shared with the neighboring cell.18 Innermost and outermost
radial extremities of a cell (i. e., the boundaries between super-layers) are closed both mechanically
and electrostatically by Mylar strips with an additional field-shaping wire attached, the shaper wire.

(a)

SL2
52 54 56 58 60 62 64 66

R

Potential wires

Sense wires

Shaper wires

Bare Mylar

Gold on Mylar (Field Panel)

R (cm)

(b)

Figure 2.5: A 1/6 section of the COT end-plate (a). For each super-layer is given the total number
of cells, the wire orientation (axial or stereo), and the average radius [cm]. The enlargement shows
in details the slot were wire planes (sense) and field sheet (field) are installed. Sketch of an axial
cross-section of three cells in super-layer 2, (b). The arrow shows the radial direction.

Both the field sheet and wire plane have a center (z ≈ 0.0 cm) support rod that limits motion due
to electrostatic forces. Each wire plane contains 12 sense, 13 field-shaping, and 4 shaper wires, all
made of 40 µm-diameter gold-plated tungsten. Wire planes are not aligned with the chamber radius:
a ζ = 35◦ azimuthal tilt (see fig. 2.5(b)) partially compensates for the Lorentz angle of the drifting
electrons in the magnetic field.19 The tilted-cell geometry helps in the drift-velocity calibration, since
every high-pT (radial) track samples the full range of drift distances within each super-layer. Further
benefit of the tilt is that the left-right ambiguity is resolved for particles coming from the z-axis since
the ghost track in each super-layer appears azimuthally rotated by arctan[2 tan(ζ)] ≈ 54◦, simplifying
the pattern recognition problem.20

A 50:50 gas admixture of argon and ethane bubbled through isopropyl alcohol (1.7%) flows at 9.45
l/min in the active volume of the chamber with its pressure being continuously monitored by four
probes. Since 2003, the flux has been increased by a factor of ten to contrast the adverse effect of
wire aging (see sec. 4.3). High voltage is applied to the sense and field-shaping wires to generate a 1.9

18Gold, used also for the wires, was chosen because of its good conductivity, high work function, resistance to etching

by positive ions, and low chemical reactivity.
19In the presence of crossed electric ( ~E) and magnetic ( ~B) fields, electrons drifting in a gas move at an angle ζ with

respect to the electric field direction, given by ζ ≈ arctan
(

v(E,B=0)B
kE

)
, where v(E,B = 0) is the drift velocity without

a magnetic field, and k is a O(1) empirical parameter that depends on the gas and on the electric field. A common

solution for this problem consists in using tilted cells (i. e., tilted drift electric field) that compensate the Lorentz angle

linearizing the time-to-distance relation.
20Each pulse on a given wire has a two fold ambiguity corresponding to the two incoming azimuthal drift trajectories.

The signals from a group of nearby radially wires will satisfy the configuration for two tracks, one from the actual

particle trajectory and another “ghost track” originated by the ambiguity.
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kV/cm drift electric-field. This value, combined with the drift gas, results in a maximum drift-time
of about 177 ns along a maximum drift-distance of 0.88 cm, allowing for read-out and processing of
the COT data between two consecutive bunch-crossings. The average 180 kV/cm field present at
the surface of the sense wire produces typical gains of 2 × 104. The 30,240 sense wires are read-out
by the front-end chip, which provides input protection, amplification, shaping, baseline restoration,
discrimination, and charge measurement. The input-charge information is encoded (logarithmically)
in the signal width for dE/dx sampling, and is fed to a time-to-digital converter that records leading
and trailing-edge times of signal in 1 ns bins. Hit times are later processed by the pattern recognition
software to reconstruct trajectories. Owing to the relevance of the dE/dx measurement in this analysis,
the extraction of the dE/dx information in the COT is detailed in appendix A. The material of the
COT corresponds to an average 0.017X0 for tracks at normal incidence.

2.3.6 Tracking performance

The only physics objects used in this analysis are the tracks. Within an uniform axial magnetic field
in vacuum, the trajectory of a charged particle produced with non-zero initial velocity in the bending
plane of the magnet is described by an helix. The arc of an helix described by a charged particle in the
magnetic volume of CDF is parameterized using three transverse, and two longitudinal parameters:

C – signed helix (half)-curvature, defined as C ≡ q
2R , where R is the radius of the helix. This is

directly related to the transverse momentum: pT = cB
2|C| ;

ϕ0 – φ direction of the particle at the point of closest approach to the z-axis;

d0 – signed impact parameter, i. e., the distance of closest approach to the z-axis, defined as d0 ≡
q(
√
x2
c + y2

c −R), where (xc, yc) are the coordinates of the center-guide;

λ – the helix pitch, i. e., cot(θ), where θ is the polar direction of the particle at the point of its
closest approach to the z-axis. This is directly related to the longitudinal component of the
momentum: pz = pT cot(θ);

z0 – the z coordinate of the point of closest approach to the z-axis.

The trajectory of a charged particle satisfies the following equations [78]:

x = r sin(ϕ)− (r + d0) sin(ϕ0) (2.7)

y = −r cos(ϕ) + (r + d0) cos(ϕ0) (2.8)

z = z0 + sλ, (2.9)

where s is the projected length along the track, r = 1/2C, and ϕ = 2Cs + ϕ0. The reconstruction
of a charged-particle trajectory consists in determining the above parameters through an helical fit
of a set of spatial measurements (“hits”) reconstructed in the tracking detectors by clustering and
pattern-recognition algorithms. The helical fit takes into account field non-uniformities and scattering
in the detector material.
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For this analysis, only COT-seeded silicon tracks were used, because the pattern recognition al-
gorithms that use stand-alone silicon information would have given marginal contribution for two
reasons. First, the impact of silicon stand-alone tracking becomes important in the region 1 <∼ |η| <∼ 2
where the COT coverage is incomplete. However, this region of acceptance is already excluded in our
analysis, since the trigger that collects B0

(s) → h+h
′− decays uses the COT information (see sec. 3.2).

Secondly, the algorithms for silicon stand-alone tracking were not yet optimized as of this analysis.

All tracks were first fit in the COT and then extrapolated inward to the silicon. This approach
guarantees fast and efficient tracking with high track purities. The greater radial distance of the COT
with respect to the silicon tracker results in a lower track density and consequent fewer accidental
combination of hits in the track reconstruction. A concise overview of the tracking algorithms is given
in the following, see Ref. [79] for more details.

Tracking in the COT

In each event and for each sense wire above threshold, the COT front-end provides the information
on the integrated charge and on the arrival time of the avalanche (“hit time”) with a few nanoseconds
resolution. The hit time depends on several factors including the time at which the collision occurred
with respect to the Tevatron clock, the time spent by the charged particle produced in the collision
to reach the proximity of the wire, the drift time of the ionized charge in the gas, the profile of the
charge pulse (different amplitudes trigger the discriminator at different times), non-uniform electronic
signal propagation among channels, etc. The hit time, after calibration and correction for all these
effects, is interpreted as drift time and used for pattern recognition.

First, in each super-layer a segment seed is constructed by fitting to a straight line a triplet of hits
in adjacent wire-planes [80]. The angle between the segment and the radial direction is required to be
consistent with the one of a tangent to a circular trajectory of a charged particle with pT & 0.3 GeV/c
originated near the z-axis. This removes ghost tracks due the left-right azimuthal ambiguity with
respect to a wire. Further hits in the super-layer are iteratively added to the seed when lying within
1 mm (i. e., 20 ns at 50 µm/ns velocity).

Then, axial pattern recognition takes place by reconstructing circles (i. e., two-dimensional tracks)
in the four axial COT super-layers. Two algorithms are used in parallel for a higher efficiency; eventual
track duplicates are removed at the end of the process. The first algorithm applies a χ2-fit to all hits
belonging to matching segments among different super-layers. The second algorithm defines a circle
using one segment and the beam position. Then it searches for all hits within 1 cm in radius from the
circle and fills a 200 µm-binned histogram with the radius of each hit found. If the higher statistics
bin contains at least 10 hits, these are used to fit a track. If additional hits are found within 750 µm
from the track, they are included and the track is refit.

Stereo information is added from the outer to the inner super-layers. A three-dimensional track is
refit after progressive addition of stereo segments reconstructed in cells adjacent to those where axial
segments were found (segment-linking). Once this step is completed, the three-dimensional tracks are
used to find the z coordinates of the vertices in the event. Association of stereo hits that match the
found z vertices is attempted for those axial tracks that failed stereo segment-linking. Final tracks
are refit using detailed magnetic field maps and drift model.
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All channels of the COT are properly working. Its efficiency for tracks is typically 99%. The single-
hit resolution is 140 µm, including a 75 µm contribution from the ≈ 0.5 ns spread in the measurement
of the time of the interaction. Internal alignments of the COT cells are maintained within 10 µm using
cosmic rays. Curvatures effects from gravitational and electrostatic sagging are under control within
0.5% by equalizing the difference of E/p between electrons and positrons as a function of cot(θ). The
typical resolutions on track parameters are the following: σpT/p

2
T ≈ 0.0015 (GeV/c)−1, σϕ0 ≈ 0.035◦,

σd0 ≈ 250 µm, σθ ≈ 0.17◦, and σz0 ≈ 0.3 cm for tracks fit with no silicon information or beam
constraint. Since it directly affected this analysis, aging of the chamber is discussed in sec. 4.3.

Tracking in the silicon detector

When a silicon strip is above threshold, its neighboring strips are also read-out. This results in strings
of contiguous strips above threshold with local minima and maxima of signal. A clustering algorithm
split these strings in correspondence of the local minima. If any local maximum exist, the closest local
minima are associated to it, forming a cluster. If the minimum is equidistant from two maxima, its
charge is split between the two clusters. The precise position of each cluster, i. e., the silicon hit, is
lastly calculated with a charge-weighed mean over the strips of the cluster.

COT tracks are used to seed the reconstruction of tracks in silicon with a progressive algorithm
that attaches silicon hits from the outermost layers moving inward. First axial and then stereo silicon
hits are associated to the COT track with an iterative process. Silicon hits are searched in a 4σ-wide
extrapolation of the COT track in the silicon layers, where σ are the uncertainties on the estimated
track parameters, which are updated at each iteration to account for the multiple scattering effects.
At each iteration (i. e., in each layer), several silicon hits may be found in the search region. For each
of them, a candidate track is considered and refit, but only the two tracks with highest hit multiplicity
are considered for the next layer. At the end of the process, only the track with highest hit multiplicity
and better χ2 is retained.

As of this writing, 96% of the LØØ, 84% of the SVXII, and 82% of the ISL modules are recording
physics-quality data (i. e., with less than 1% digital error rate). Two unexpected phenomena, occurred
at the beginning of Run II, were the dominant causes of the current inefficiency [81]. The first
contribution is related to two beam incidents: in March 2002, the failure of multiple Tevatron RF
cavities debunched the beam, causing high losses and consequent quenching of the magnets. The
beam was aborted with an uncontrolled deflection that exposed the CDF II detector to a flux of more
than 107 minimum ionizing particles per cm2 in less than 150 ns; in November 2002, a failure on the
deflecting magnets induced an incidental Tevatron abort in which some bunches were deflected into
CDF II. Addition of faster interlock systems and more collimators prevented further occurrence of
such incidents.

The second phenomenon was the break-up of wire-bonds oriented orthogonally to the magnetic
field, due to resonant Lorentz forces occurring in read-out tests at 16 kHz frequency. This was
addressed with an optimized configuration of the read-out parameters, and inhibiting further read-
out if a resonance is detected. A temporary inefficiency was induced by 35% of ISL cooling-lines being
blocked by epoxy, after installation. This prevented a large portion of ISL from being active, until all
the lines were cleared with a laser (in January 2003).
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The signal-to-noise ratio ranges from 14:1 for the (r, φ) layers of the SVXII to 10:1 for the LØØ.
The best (r, φ) position resolution achieved is 9 µm, using two-strip clusters in SVXII. The z0

resolution is typically 70 µm. An active real-time optical survey keeps the SVXII axis parallel to the
beam within 20 µm along the SVXII length. Tight assembling tolerances (10 µm in φ and 40 µm
in r) combined with a set of off-line algorithms provide internal and global LØØ, SVXII, and ISL
alignment accurate within 20 µm, and constantly monitored in time. The excellent overall accuracy
of the silicon alignment is confirmed by the fluctuations of the measured impact parameters of prompt
particles as a function of z and φ, which do not exceed 2 µm. This can be compared with a typical
impact parameter resolution of a few tenths of microns. The average offline tracking efficiency is
94%.21 In the 1 <∼ |η| <∼ 2 region, where no COT coverage is present, seeding the silicon-only track
with calorimeter information provides efficiencies over 70%, with minimal fake rates.

Aging effects due to long-term radiation are the primary concern for the lifetime of the detector.
Depletion voltages are regularly monitored and, by extrapolating the current data, we expect type
inversion of the inner layer of SVXII after 3–5 fb−1 integrated luminosity. The silicon information
improves the impact parameter resolution of tracks which, depending on the number (and radial
distance) of the silicon hits, may reach σd0 ≈ 20 µm (not including the transverse beam size). This
value, combined with the σT ≈ 30 µm transverse beam size, is sufficiently small with respect to the
typical transverse decay-lengths of heavy flavors (a few hundred microns) to allow separation of their
decay-vertices from production vertices. The silicon tracker improves also the stereo resolutions up to
σθ ≈ 0.06◦, and σz0 ≈ 70 µm, while the transverse momentum and the azimuthal resolutions remain
approximately the same of COT-only tracks.

Fit of the beam-line and reconstruction of vertices

For the data used in the present analysis, the position of the primary pp̄ interaction is found by
combining the information on the transverse plane from the beam-line position, with the information
on the longitudinal position from the z0 of tracks.

beam position – the average beam position through the SVXII is determined on-line and off-line for
each run, using the correlation (eq. (2.13)) between impact parameter and azimuthal coordinate
of tracks (see sec. 2.5.2). An additional off-line algorithm determines the beam position using
only COT information. It uses an iterative vertex-fit procedure that loops on the tracks and
performs multiple refitting of the vertex, after excluding progressively the tracks that mostly
contribute to the χ2. The comparison between the SVXII and COT beam-lines is used to check
the relative alignment of the two subdetectors.

primary vertex – the primary vertex position is reconstructed by clustering the z0 of tracks whose
z0 are within 5 cm, and that are consistent with passing through the beam-position. In bunch
crossings with pile-up events, the 5 cm limit minimizes the contribution of tracks originated
from distinct primary vertices, whose observed ∆z0 distribution has a roughly Gaussian shape
with about 1 cm r.m.s. width.

21This efficiency is defined as the probability to attach silicon hits to an isolated COT track with pT & 1.5 GeV/c.
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secondary vertex – the ctvmft package [78] reconstructs decay vertices displaced from the pro-
duction vertices. Equations (2.7)–(2.9), solved for s, d0, and z0, yield

s =
1

2C
arcsin [(2C)x cos(ϕ0) + (2C)y sin(ϕ0)] (2.10)

d0 = y cos(ϕ0)− x sin(ϕ0)−
1
C

sin2(Cs) (2.11)

z0 = z − λs. (2.12)

Given a set of N tracks, ctvmft determines the coordinates of their decay vertex, i. e., the set
(xv, yv, zv) that satisfy above equations, varying the track parameters within their uncertainties
to minimize the quantity χ2 ≡

∑N
i=1 ~υ

T
i G−1~υi. The symbol ~υi indicates the vector of the

distance between the track constrained through eqs. (2.10)–(2.12) and the original unconstrained
one in the five-dimensional space of track parameters; G is the covariance matrix of the track
parameters evaluated at the distance of closest approach to the z axis. In case of success, the
parameters of the tracks originated from the secondary vertex are refit using the additional
information on its position.

2.4 Other detectors

In this section are briefly discussed the subdetectors not used in this analysis.

2.4.1 Time-of-flight detector

The CDF II capability of identifying charged hadrons is expanded at low momenta by the Time of
Flight detector (TOF) [82]. By measuring the arrival time (t) of a charged particle with respect to the

bunch-crossing time, the TOF infers the mass of the particle according to the relationm = p
c

√
c2t2

L2 − 1,
where the momentum p and the path length L are precisely measured by the tracking system. A
cylindrical array of 216 scintillating bars, oriented along the beam axis, is installed in the 4.7 cm
radial space between the outer surface of the COT and the cryostat of the superconducting solenoid
at an average radius of 140 cm, which corresponds to 5 ns flight-time for the fastest particles. The
light pulse induced by the passage of a charged particle is collected at both ends of each bar, 279 cm
in length (|ηdet| <∼ 1) and 4× 4 cm2 in cross-section (∆φ = 1.7◦), into 432 fine-mesh, 19-stage photo-
multipliers able to maintain adequate gains even in the 1.4 T magnetic field. The preamplified PMT
signal follows two parallel paths: the timing signal is discriminated and digitized, while the charge
signal is digitized for use at trigger level and for subsequent extraction of off-line corrections. Long
attenuation-length and fast rise-time scintillator, along with accurate calibrations, ensure a measured
resolution (i. e., the uncertainty on the relative timing between the collision and the TOF hits) of
σt ≈ 110 ps. This guarantees a separation between charged pions and kaons with pT

<∼ 1.6 GeV/c
equivalent to 2σ, assuming Gaussian distributions. Unfortunately, in high (L & 5 × 1031 cm−2s−1)
luminosity conditions, the occupancy of the single bars determines a degradation in efficiency, which
is about 60% per track.
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2.4.2 Calorimeters

Outside the solenoid, calorimeters covering the region |ηdet| <∼ 3.6 measure the energy flow from
hadrons, electrons, or photons, using “shower” sampling based on layers of high-Z passive absorber
interspersed with layers of plastic scintillator, and identify neutrinos via transverse energy imbalance.22

The calorimeters are finely segmented in solid angle around the nominal collision point and coarsely
segmented outward from the collision point (in-depth segmentation). Angular segmentation is orga-
nized in projective towers. Each tower is an independent read-out unit which subtends a portion of the
solid angle, namely a rectangular cell in the (ηdet − φ) space, with respect to the nominal interaction
region. In-depth segmentation of each tower consists of two independent compartments: the inner one
samples the electromagnetic component of the shower, while the outer one samples the hadronic frac-
tion of the deposited energy. Different fractions of energy release in the two compartments distinguish
photons and electrons from hadrons.

The initial calibration of the central calorimeter was done using cosmic rays and 50 GeV electrons
and pions in a test beam. The test-beam calibration of the forward electromagnetic calorimeters
employed 5–260 GeV positrons, pions, and muons. Long term variations of the response are monitored
using radioactive 137Cs (60Co) sources in the central (forward) calorimeter. Short term (once per store)
gain variations are monitored using an automated system of light-emitting diodes and xenon flashers
for the electromagnetic portion, and a nitrogen laser for the hadronic portion. In situ calibrations are
also exploited by matching the trajectories of isolated charged particles with the calorimeter towers,
and comparing calorimeter energy with the momentum measured in the COT.

Central calorimeter

In the |ηdet| <∼ 1.1 region, the electromagnetic calorimeter appears as an hollow cylinder occupying
the radial region between 173 and 208 cm [83]. It is made of four arches, each subtending 180◦ and
divided into 12 azimuthal 15◦-sectors (see fig. 2.6(a)). Each sector consists of 31 layers of 5 mm thick
polystyrene scintillator radially interleaved with 30 aluminum-clad lead sheets, 3.2 mm-thick. Each
sector is divided into ten ηdet towers (∆ηdet ×∆φ ≈ 0.11 × 15◦ per tower). To maintain a constant
thickness in X0, compensating the sin(θ) variation between towers, some lead layers are replaced with
increasing amounts of acrylic as a function of ηdet.23 The blue light from each tower is collected,
wave-length shifted into green light by sheets of acrylic material placed at both azimuthal tower
boundaries, and guided to two photo-tubes per tower. The outer two towers in one wedge are missing
to allow accessing the solenoid. The total number of instrumented towers is 478. At a radial depth
of 5.9 radiation lengths (X0), where the peak of shower development is typically located, an array of
multi-wire proportional chambers measures the transverse shower-shape with 2.0 mm resolution (for
50 GeV electrons). A further set of multi-wire proportional chambers was located in the gap between
the outer surface of the solenoid and the first layer of the calorimeter to monitor photon conversions
started in the tracker material or in the solenoid. During the fall 2004 shut-down, this system was
substituted with a finely segmented layer of scintillator tiles [84].

The hadronic compartment comprises two subsystems: the central (|ηdet| <∼ 0.9) and the end-wall

22See pag. 48 for a definition of transverse energy.
23The number of lead layers varies from 30 in the innermost (|ηdet| ≈ 0.06) tower to 20 in the outermost (|ηdet| ≈ 1.0).
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(0.7 <∼ |ηdet| <∼ 1.3) section [85]. Both consist of four “C”-shaped arches for a total of 48 azimuthal
sectors. Each central wedge is segmented into nine ηdet towers matching in size and position the
electromagnetic towers, for 384 towers in total. The end-wall section has six additional towers, three
of which matching the central hadronic towers (see fig. 2.2) for a total number of 288 towers. A central
hadronic tower is constructed of 32 layers of steel absorber, 2.5 cm thick, alternating radially with 1.0
cm-thick acrylic scintillator. The wall towers are similar but contain only 15 layers of 5.1 cm-thick
absorber.

The total thickness of the electromagnetic section corresponds to approximately 19X0 (1λint, where
λint is the pion nuclear absorption length in units of g cm−2), for a relative energy resolution σE/E =
13.5%/

√
E sin(θ) ⊕ 2%.24 The total thickness of the hadronic section corresponds to approximately

4.5λint, for an energy resolution of σE/E = 50%/
√
E sin(θ) ⊕ 3% for the central, and σE/E =

75%/
√
E sin(θ)⊕ 4% for the end-wall.
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Figure 2.6: Schematic illustration of an azimuthal sector of the central electromagnetic calorimeter
(a). Elevation view of one quarter of the plug calorimeter (b).

Forward calorimeter

The electromagnetic (hadronic) coverage is extended in the region 1.10 (1.30) <∼ |ηdet| <∼ 3.64 by a
scintillating tile calorimeter (see fig. 2.6(b)) [86]. It is composed of two independent and identical
devices, installed at longitudinally symmetric positions with respect to the interaction point (east
and west). The absorber of the electromagnetic part consists of 23 annular lead plates, 2.77 m outer
diameter, with a central hole to house the beam pipe. Each one is made out of 4.5 mm-thick calcium-
tin-lead sandwiched between two 0.5 mm-thick stainless-steel sheets. In between the absorber plates,

24The first term is called the “stochastic” term and derives from the intrinsic fluctuations of the shower sampling

process and of the PMT photo-electron yield. The second term, added in quadrature, depends on the calorimeter

non-uniformities and on the uncertainty on the calibrations. All energies are in GeV.
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4 mm-thick scintillator tiles are organized azimuthally in 15◦ triangular sectors. In each tile, the signal
is collected independently by embedded wave-length shifter fibers connected to the photo-tubes. A
thicker (10 mm) amount of scintillator, independently read-out and installed in the first layer, acts
as preshower detector. Shower-maximum sampling is available at a radial depth of ≈ 6X0 using two
tilted layers of scintillator strips with 5 mm pitch. The hadronic section consists of 23 annular layers
of 5 cm-thick iron absorber alternated with 6 mm scintillator layers. The outer radius of each module
increases at increasing |z| giving the characteristic “plug” shape to the calorimeter. Each module is
segmented into 12 azimuthal sectors, each subtending 30◦. Within each sampling layer, the scintillator
is arranged in tiles similar to those used in the electromagnetic compartment.

The total thickness of the electromagnetic section corresponds to approximately 21X0 (1λint), for
an energy resolution of σE/E = 16%/

√
E sin(θ)⊕ 1%.25 The total thickness of the hadronic section

corresponds to approximately 7λint, for an energy resolution of σE/E = 74%/
√
E sin(θ)⊕ 4%.

2.4.3 Muon detectors

The tracker, the magnet return yoke, the calorimeter, and additional steel shielding act as muon filters:
they absorb the majority of charged particles, thus allowing detection of the more penetrating ones
in multiple layers of drift chambers placed in the outermost shell of the detector. Four independent
systems detect penetrating charged particles in the |ηdet| <∼ 1.5 pseudo-rapidity range, employing
similar combinations of drift tubes, scintillation counters, and absorbers with different azimuthal
coverages [87]. Table 2.2 shows the most relevant design parameters of these detectors. Single wire,
rectangular drift chambers are arranged in arrays with various azimuthal segmentations and coupled
with scintillator counters. The chambers, filled with a 50:50 admixture of argon and ethane, have
sense wires parallel to the beam axis operating in proportional regime. In each azimuthal sector,
stacks of up to eight layers of chambers are overlaid along the radial direction to allow coincidences
among hits. The chambers are staggered in various patterns of alternating layers, for azimuthal
ambiguity resolution. The difference of the drift electrons arrival-times between neighboring cells
provides up to 250 µm hit-position resolution in the (r, φ) view. Division of the charge collected at the
opposite ends of sense wires allows a measurement of the z coordinate of the hit with up to 1.2 mm
resolution. Resolutions were measured using cosmic rays. The charge from each of the 7,316 channels
is preamplified, shaped, discriminated, and digitized. The arrival time is digitized also. Scintillators
provide timing information to suppress backgrounds due to secondary interactions in the beam pipe
material and to cosmic rays. Timing also allows association of cell hits to the appropriate bunch-
crossing, since the maximum drift time in the chambers (see tab. 2.2) exceeds the inter bunch-crossing
time. When a short track-segment (stub), resulting from three matching radial layers, corresponds
to the outward extrapolation of a COT track, a muon candidate is identified and associated to the
corresponding momentum measured in the tracker.

The Central MUon detector (CMU) is located around the outside of the central hadron calorimeter
at a radius of 347 cm from the beam axis and covers the region 0.03 <∼ |ηdet| <∼ 0.63. Each array covers
12.6◦ in φ, and a 2.4◦ gap between arrays limits the azimuthal coverage to 84% of the full angle. Each
array is further segmented azimuthally into three 4.2◦ modules.

25See footnote at pag. 61 for an explanation of terms.
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The Central Muon uPgrade (CMP) is a second set of drift chambers located behind an additional
60 cm of steel and arranged to enclose the central detector inside an approximately rectangular box.
Its function is to cover the φ gaps of the CMU, and to enhance rejection of penetrating high energy
hadrons, which are limited to a measured fraction of 1% of the total pions and 2–4% of the total
kaons. Owing to the common CMU and CMP coverage, only one set of scintillators is used for both,
and the z coordinate is measured only in the CMU.

At a radial distance of 400–600 cm from the beam axis, an arch-shaped arrangement of drift-cells
and scintillation counters, the Central Muon eXtension (CMX), extends the muon coverage to the
0.6 <∼ |ηdet| <∼ 1 region.

Coverage in the region 1 <∼ |ηdet| <∼ 1.5 is completed by the Intermediate MUon system (IMU).
Each cell-stack spans 1.25◦ in φ although its azimuthal coverage is limited by the presence of support
structures (see tab. 2.2).

Parameter CMU CMP CMX IMU Units
Polar coverage |ηdet| <∼ 0.6 |ηdet| <∼ 0.6 0.6 <∼ |ηdet| <∼ 1.0 1 <∼ |ηdet| <∼ 1.5 −
Azimuthal coverage 302◦ 360◦ 360◦ 270◦ Degrees
Maximum drift time 800 1,400 1,400 800 ns
Number of channels 2,304 1,076 2,208 1,728 −
Pion interaction-length 5.5 7.8 6.2 6.2–20.0 λint

Minimum pT(µ) 1.4 2.2 1.4 1.4–2.0 GeV/c

Table 2.2: Design parameters of the muon detectors. Pion interaction length is quoted for a reference
axial angle θ = 90◦ in CMU and CMP, and θ = 55◦ in CMX.

2.4.4 Cherenkov Luminosity Counters

The luminosity (L) is inferred from the average number of inelastic interactions per bunch crossing
(N) according to N × fb.c. = σpp̄−in. × ε× L, where the bunch-crossing frequency (fb.c.) is precisely
known from the Tevatron RF, σpp̄−in. = 59.3 ± 2.3 mb is the inelastic pp̄ cross-section resulting
from the averaged CDF and E811 luminosity-independent measurements at

√
s = 1.8 TeV [88], and

extrapolated to
√
s = 1.96 TeV, and ε is the efficiency for detecting an inelastic scattering.

The Cherenkov Luminosity Counters (CLC) are two separate modules, covering the 3.7 <∼ |ηdet| <∼
4.7 range symmetrically in the forward and backward regions [89]. Each module consists of 48 thin,
110–180 cm long, conical, isobutane-filled Cherenkov counters. They are arranged around the beam-
pipe in three concentric layers and point to the nominal interaction region. The base of each cone,
6–8 cm in diameter and located at the furthest extremity from the interaction region, contains a
conical mirror that collects the light into a PMT, partially shielded from the solenoidal magnetic field.
Isobutane guarantees high refraction index and good transparency for ultraviolet photons. With a
Cherenkov angle θC = 3.4◦, the momentum thresholds for light emission are 9.3 MeV/c for electrons
and 2.6 GeV/c for charged pions. Prompt charged particles from the pp̄ interaction are likely to
traverse the full counter length, thus generating large signals and allowing discrimination from the
smaller signals of angled particles due to the beam halo or to secondary interactions. In addition,
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the signal amplitude distribution shows distinct peaks for different particle multiplicities entering the
counters. This allows a measurement of N with 4.4% relative uncertainty in the luminosity range
1031 <∼ L <∼ 1032 cm−2s−1. This accuracy, combined with the 4% relative uncertainty on the inelastic
pp̄ cross-section, results in an instantaneous luminosity measured with 5.9% relative uncertainty. This
uncertainty does not affect the results of this analysis since ratios of branching fractions, instead of
absolute branching fractions, are measured.

2.4.5 Forward detectors and beam monitoring

Six arrays of scintillator paddles, read-out by acrylic light-guides are wrapped around the beam line
at longitudinal distances of ±6.6, ±23.2, and ±31.6 m from the interaction point at 3.8–10.8 cm
radii. An additional array is placed at 56.4 m from the interaction point toward the west side. These
counters are used for triggering diffractive events and for monitoring beam losses.

Two small, cylindrical calorimeters occupy the radial range 6 <∼ r <∼ 33 cm in the region 580 <∼ |z| <∼
640 cm. They employ lead plates immersed in radiation-resistant liquid scintillator with a tower-less,
homogeneous geometry suited for calorimetric tracking for diffractive physics measurements [90].

The furthermost (z ≈ −57 m) components from the interaction point are scintillating fibers placed
in the Tevatron vacuum inside retractable “Roman Pots”, which are used as spectrometer for leading
antiprotons in measurements of diffractive physics.

Further arrays of scintillation counters and ionization chambers are placed along the beam line at
varying distances from the interaction point to monitor the beam halo and losses [91].

2.5 Trigger and Data Acquisition System

From the rule of thumb 1 µb = 1 Hz at L = 1030 cm−2s−1, we obtain that, at a typical Tevatron
instantaneous luminosity L ≈ 4×1031 cm−2s−1, and with an inelastic pp̄ cross-section of σpp̄−in. ≈ 60
mb, approximately 2.5 × 106 inelastic collisions per second occur, corresponding to one inelastic pp̄
interaction per bunch crossing on average.26 Since the read-out of the entire detector needs about
2 ms on average, after the acquisition of one event, another approximately 5,000 interactions would
occur and remain unrecorded. The percentage of events which are rejected solely because the trigger
is busy processing previous events is referred to as trigger deadtime.

On the other hand, the average size of the information associated to each event from the O(106)
total CDF II channels is 140 kbyte. Even in case of deadtime-less read-out of the detector, in order
to record all events, an approximate throughput and storage rate of 350 Gbyte/s would be needed,
largely beyond the possibilities of currently available technology.

If one would adapt the 2.53 MHz interaction-rate to the 50–100 Hz storage rate attainable at CDF
II by choosing randomly the 2 storable events out of the 100,000 occurred, only four B0

(s) → h+h
′−

decays would be expected in our sample of
∫
Ldt = 180 pb−1. However, since the cross-sections of

most interesting processes are 103–1012 times smaller than the inelastic pp̄ cross-section, the above
problems may be overcome with an on-line preselection of the most interesting events. This is the task

26Abort gaps can be neglected for this estimate.
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of the trigger system, which evaluates the partial information provided by the detector and discards
the uninteresting events on-line.

The CDF II trigger is a three-level system that selectively reduces the acquisition rate, with
virtually no deadtime, i. e., keeping each event in the trigger memory a time sufficient to allow
for a trigger decision without inhibiting acquisition of the following events (see fig. 2.7). Each level
receives the accepted event from the previous one and, provided with detector information of increasing
complexity and with more time for processing, applies a logical “OR” of several set of programmable
selection criteria to make its decision.

Prior to any trigger level, the bunched structure of the beams is exploited to reject cosmic-ray
events by gating the front-end electronics of all subdetectors in correspondence of the bunch crossing.
The front-end electronics of each subdetector, packaged in Versa Module Eurocard modules hosted
in about 120 crates, has a 42-cells deep pipeline synchronized with the Tevatron clock-cycle (i. e.,
132 ns). The Tevatron clock picks-up a timing marker from the synchrotron RF and forwards this
bunch-crossing signal to the trigger and to the front-end electronics. Since the inter-bunch time is 396
ns (instead of the 132 ns originally planned), the pipeline collects data corresponding to a maximum of
42×132/396 = 14 bunch crossings, automatically rejecting 2/3 of cycles corresponding to the crossing
of empty buckets. For each crossing, data enter the pipeline for read-out and eventual use at Level-2,
and a Level-1 decision on a preceding crossing is made before the corresponding data reach the end
of the pipeline. The Level-1 has 132 ns× 42 ' 5.5 µs to make its decision before the contents of the
buffer is deleted. On a Level-1 accept, the data from the Level-1 buffer are passed to the four-cell
Level-2 buffer integrated in the front-end electronics of each subdetector, and the event is queued for
a Level-2 decision. While data in a Level-2 buffer are being processed, they cannot be overwritten
by incoming data corresponding to a subsequent Level-1 accept. If a Level-1 accept occurs while all
four Level-2 buffers are occupied, trigger deadtime is incurred. The 5.5 µs × 4 ' 20 µs latency of
the Level-2 decision is less than approximately 80% of the average time between Level-1 accepts, to
minimize deadtime. On a Level-2 accept, the entire detector is read-out, thereby emptying a cell in
all detector buffers for the next event; the event is queued for read-out in Level-3 and for eventual
storage to permanent memory.

The following description emphasizes the aspects of the trigger specific to this analysis: particular
detail is devoted to the devices dedicated to the identification of tracks produced in decays displaced
from the hard pp̄ interaction vertex. These tracks populate events enriched in long-lived heavy-flavor
decays, including the B0

(s) → h+h
′− decays we wish to reconstruct.

2.5.1 Level-1

At Level-1, a synchronous system of custom-designed hardware process a simplified subset of data
in three parallel streams to reconstruct coarse information from the calorimeters (total energy and
presence of single towers over threshold), the COT (two-dimensional tracks in the transverse plane),
and the muon system (muon stubs in the CMU, CMX, and CMP chambers). A decision stage combines
the information from these low-resolution physics objects, called “primitives”, into more sophisticated
objects, e. g., track primitives are matched with muon stubs, or tower primitives, to form muon,
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Figure 2.7: Functional block diagram of the CDF II trigger and data acquisition system.

electron, or jet objects, which are subjected to basic selections.27

Drift chamber track-processor

The eXtremely Fast Tracker (XFT) is a custom processor that identifies two-dimensional tracks in the
(r, φ) view of the COT (transverse plane) in time with the Level-1 decision. It uses pattern matching
to first identify short segments of tracks and then to link them into full-length tracks [92]. After
classifying the hits of the four axial COT super-layers in “prompt” (0–66 ns) or “delayed” hits (67–
220 ns), depending upon the observed drift-time within the cell, track segments are reconstructed in
each axial super-layer. A pattern-matching algorithm searches for coincidences between the observed
combinations of hits in each super-layer — a minimum of 11 (out of 12) hits is required — and a set
of predetermined patterns. If a coincidence between segments crossing four super-layers is found, two-
dimensional XFT-tracks are reconstructed by linking the segments. The segments are compared with a
set of about 2,400 predetermined patterns corresponding to all tracks with pT & 1.5 GeV/c originating
from the beam line. The comparison proceeds in parallel in each of the 288 azimuthal 1.25◦-sectors
in which XFT logically divides the chamber. If no track is found using all four super-layers, then
the best track found in the innermost three super-layers is output. The track-finding efficiency and

27A particle jet is a flow of observable secondary particles produced in a spatially collimated form, as a consequence

of the hadronization of partons produced in the hard collision.
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the fake-rate with respect to the off-line tracks depend on the instantaneous luminosity, and were
measured to be ε ≈ 96%, and 3%, respectively, for tracks with pT & 1.5 GeV/c at L ' 1031 cm−2s−1.
The observed momentum resolution is σpT/p

2
T ≈ 0.017(GeV/c)−1, and the azimuthal resolution is

σϕ6 ≈ 0.3◦, where ϕ6 is the azimuthal angle of the track measured at the sixth COT super-layer,
located at 106 cm radius from the beam line.

2.5.2 Level-2

At Level-2, an asynchronous system of custom-designed hardware processes the time-ordered events
accepted by the Level-1. Additional information from the shower-maximum strip chambers in the
central calorimeter and the axial hits in the SVXII is combined with Level-1 primitives to produce
Level-2 primitives. A crude energy-clustering is done in the calorimeters by merging the energies in
adjacent towers to the energy of a seed tower above threshold. Level-1 track primitives matched with
consistent shower-maximum clusters provide refined electron candidates whose azimuthal position is
known with 2◦ accuracy. Information from the (r, φ) sides of the SVXII is combined with Level-1
tracks primitives to form two-dimensional tracks with resolution similar to the off-line one. Finally,
an array of programmable processors makes the trigger decision, while the Level-2 objects relative to
the following event accepted at Level-1 are already being reconstructed.

Silicon Vertex Trigger

Reconstructing decay vertices on-line is technically challenging and requires constrained geometrical
fitting of (previously reconstructed) high-resolution tracks at high event-rates. The Silicon Vertex
Trigger (SVT) detects instead impact parameters of the charged particles, which is faster than fully
reconstructing their decay vertices, but still provides information on the lifetime of the decaying
particle [93]. The full spatial resolution of silicon detectors is needed to discriminate O(100 µm)
impact parameters from the O(10 µm) beam spot. Thus the SVT requires the coincidence of hits
in four axial SVXII layers with a XFT track. Since the silicon signals are digitized only after the
Level-1 accept decision, the SVT is used at Level-2, whose average latency is around 20 µs. Within
this time, the SVT reconstructs two-dimensional tracks in the bending plane of the spectrometer with
off-line resolution, a task that typically needs thousands of milliseconds to be accomplished by the off-
line CPUs. SVT speed is largely due to a highly-parallelized structure whose segmentation matches
the SVXII 12-fold azimuthal symmetry: each 30◦ azimuthal sector of each of the six longitudinal
half-barrels is processed by its own asynchronous, data-driven pipeline.

The SVT receives in input the XFT tracks and the digitized pulse-heights from four SVXII layers.
It first finds charge clusters in silicon, by converting a sparsified list of channel numbers and pulse
heights into charge-weighed hit centroids. At this point the pattern recognition is separated in two
stages. First, a low-resolution stage is implemented by grouping together adjacent detector channels
into “super-bins”. Their width in the azimuthal direction is programmable, with 250–700 µm typical
values. A set containing about 95% of all super-bin combinations compatible with the trajectory of
a charged particle with pT & 2 GeV/c originated from the beam line (“patterns”) is calculated in
advance from simulation and stored in a large memory. For each azimuthal sector, only the 32,768
most probable patterns are stored. On-line, an algorithm detects low-resolution candidate tracks called
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“roads” by matching super-bins containing hits with the stored patterns. A road is a combination
four excited super-bins in different SVXII layers plus the XFT track parameters, which are logically
treated as additional hits (see fig. 2.8(a)). Maximum parallelism is exploited at this step to speed-up
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Figure 2.8: Schematic illustration of combinations of super-bins (in the transverse plane) corresponding
to the passage of charged particles in four radial silicon layers (a). Impact parameter distribution as
measured by the SVT (b).

the processing, using a working principle similar to the one of the bingo game: while the silicon hits
are being read out, each “player” marks the matching super-bins on his “score-card”; each “bingo”
corresponds to a road and is retained for further processing. A maximum of 64 roads per event,
each one having a maximum of 8 hits per super-bin, is output. At this stage, pattern recognition is
done during detector read-out with no additional processing time. The resolution is coarse enough to
reduce the fraction of accidental combinations, but fine enough to separate most tracks. Once a track
is confined to a road, most of the pattern recognition is done, leaving the remaining ambiguities, as
multiple hits in the same super-bin, to the stage of track fitting.

In principle, no exact linear relation exists between the transverse parameters C, ϕ0, and d0 of a
track in a solenoidal field, and the coordinates at which the track intersects a radial set of flat detector
planes. But for pT & 2 GeV/c, |d0| <∼ 1 mm and |∆ϕ0| <∼ 15◦, a linear fit biases the reconstructed d0

by at most a few percent. The track-fitting process exploits this feature by expanding the non-linear
constraints and the parameters of the real track to first order with respect to the reference track
associated to each road. A linear expansion in the hit positions of both the track parameters and the
χ2 is used. The fit process is thus reduced to computing a few scalar products, which is done within
250 ns per track. The needed constants, which depend on detector geometry and alignments, are
evaluated in advance and stored in an internal memory. The output of the SVT are the reconstructed
parameters of the two-dimensional track in the transverse plane: ϕ0, pT, and the impact parameter,
d0. The list of parameters for all found tracks is sent to Level-2 for trigger decision.

The SVT measures the impact parameter with σd0,SVT ≈ 35 µm r.m.s. width, with an average
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latency of 24 µs, 9 µs of which being spent waiting for the start of the read-out of silicon data. This
resolution is comparable with the off-line one for tracks not using LØØ hits, and yields a distribution
of impact parameter of prompt tracks with respect to the z axis with σd0 ≈ 47 µm (see fig. 2.8(b))
when combined with the transverse beam-spot size.28 The SVT efficiency is higher than 85%. This
efficiency is defined as the ratio between the number of tracks reconstructed by SVT and all XFT-
matched off-line silicon tracks that are of physics analysis quality.

The impact parameter is a relative quantity measured with respect to the beam. If the actual
beam position in the transverse plane is shifted by an amount dfake with respect to the origin of the
SVT reference frame, all prompt tracks appear to SVT as having O(dfake) impact parameters. This
is relevant since the beam is usually displaced from its nominal (0, 0, z) position. Between Tevatron
stores, O(500 µm) displacements in the transverse plane and O(100 µrad) slopes with respect to the
detector axis may occur. In addition, the beam can drift by O(10 µm) in the transverse plane even
during a single store. However, a simple geometric relation prescribes that the impact parameter of
a track (d0), calculated with respect to a point displaced from its production vertex, is a sinusoidal
function of its azimuthal coordinate (ϕ0):

d0 = yv cos(ϕ0)− xv sin(ϕ0), (2.13)

where ~xv = (xv, yv) are the coordinates of the production vertex (see fig. 2.9). Using eq. (2.13), the
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Figure 2.9: Schematic illustration, in the plane perpendicular to the beam, of a track emerging from
a primary vertex displaced from the origin of the coordinate system. Equation (2.13) is easily verified
by noticing that β0 = α0 − ϕ0.

SVT measures the actual coordinates of the beam position with respect to the detector system and
subtracts them from the measured impact parameters, in order to provide physical impact parameters.
Using about 105 tracks every 30 seconds, six transverse beam positions (one for each SVXII semi-

28Prompt tracks are those associated to particles produced in the hard pp̄ interaction.
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barrel) are determined on-line. The six samplings along the ẑ direction provide a measurement of the
slope of the beam with respect to the nominal z-axis.

For the proper measurement of impact parameters, the beam slope is more harmful than the
transverse drift, because it breaks the cylindric symmetry of the system. The SVT does not have
access to the z0 coordinate of tracks. For each track, only the longitudinal coordinate of the SVXII
half-barrel that detected the track is known. But half-barrels are too long (16 cm) for allowing
a reliable correction of the beam slope. When significant slopes are observed, the Tevatron beam
division is alerted, and they apply a corrective action on the magnets.

Beam mis-alignments affect also the SVT efficiency. Owing to its modular structure and to the
limited size of the pattern bank, the SVT can not identify charged particles that cross adjacent SVXII
wedges. In normal conditions, these are only a small fraction of pT > 2 GeV/c particles, typically due
to the bending trajectory and of the finite beam-spot size. However, in presence of beam offset from
the nominal position, this fraction significantly increases, thus inducing SVT inefficiency.

2.5.3 Level-3

The digitized output relative to the Level-2-accepted event arrives fragmented from all subdetectors
via optical fibers. It is collected by a custom hardware switch that arranges it in the proper order
and transfers it to 292 (as of this writing) commercial computers, running linux and organized in
a modular and parallelized structure of 16 subsystems [94]. The ordered fragments are assembled in
the event record, a block of data that univocally corresponds to a bunch crossing and is ready for the
analysis of the Level-3 software. The event reconstruction benefits from full detector information and
improved resolution with respect to the preceding trigger levels, including three-dimensional track
reconstruction, tight matching between tracks and calorimeter or muon information, and calibration
information. If an event satisfies the Level-3 requirements, the corresponding event record is trans-
ferred to mass storage at a maximum rate of 20 Mbyte/s. A fraction of the output is monitored in real
time to search for detector malfunctions, to derive calibrations constants and to graphically display
events. The Level-3 decision is made after the full reconstruction of the event is completed and the
integrity of its data is checked, a process that takes a few milliseconds.

2.5.4 Trigger performance

A maximum of 64, 128, and 256 different combinations of selection requirements can be implemented at
Level-1, Level-2 and Level-3, respectively. An unique sequence of these requirements is called a trigger
logic-path. The set of all active trigger-paths, along with the corresponding thresholds and calibration
constants, are downloaded to the data acquisition (DAQ) and to the trigger at the beginning of each
run, during which they remain unchanged. The trigger performance was continuously optimized while
the data used in this analysis were collected (February 2002–September 2003).

Level-1 – the number of different combinations of requirements increased from 40 to 56. The available
output rate passed from 12 kHz to 18 kHz, of which roughly 90% were occupied by tracking-
based triggers for b-physics, 5% by lepton triggers for high-pT physics, and 5% by jet and photon
triggers for QCD and new physics searches.
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Level-2 – the number of different combinations of requirements increased from 68 to 116. The
available output rate passed from 250 Hz to 300 Hz (50% tracking, 30% jet and photon, and
20% lepton).

Level-3 – the number of different combinations of requirements increased from 125 to 185. The
available output rate passed from 50 Hz to 75 Hz (40% tracking, 30% jet and photon, and 30%
lepton).

The trigger deadtime never exceeded 5%, and its integrated value in the data used for this analysis
was below 1%.

2.6 Operations and data quality

The proper operation of the detector and the quality of the on-line data-taking is continuously ensured
by “crews” of five collaborators plus one technician which alternate on duty with eight-hours shifts,
plus several subdetector experts available on request. The on-line crew, in communication with the
Tevatron crew, ensures smooth data-acquisition, monitors the crucial parameters of all subdetector,
and intervenes in case of malfunctions. The average data-taking efficiency is 85%. The inefficiency is
approximately equally shared in a 5% arising at the beginning of the store, when the detector is not
powered while waiting for stable beam conditions, a 5% due to trigger deadtime, and a 5% due to
unexpected detector or DAQ problems.

When no beam is present, cosmic-rays runs are taken, or calibrations of the subdetector are done.
During the Tevatron shut-down periods, the crew coordinates and helps the work of experts that
directly access the detector.

Each time that at least one of the trigger paths fires, an “event” is labeled with a progressive num-
ber. Events are grouped into runs, i. e., periods of continuous data-taking in constant configurations
of trigger table, set of active subdetectors and so forth.29 Several parameters of the operations (e. g.,
beam-line position and slope, set of calibrations, etc.) are stored in the database on a run-averaged
format.

All data manipulations occurring some time after the data are written to permanent memories
are referred to as off-line processes, as opposed to the on-line operations that take place in real
time, during the data-taking. The most important off-line operation is the processing with a central-
ized production analysis that generates collections of high-level physics objects suitable for analysis,
such as tracks, vertices, muons, electrons, jets, etc. from low-level information such as hits in the
tracking subdetectors, muon stubs, fired calorimeter towers, etc. [95]. During the production, more
precise information about the detector conditions (e. g., calibrations, beam-line positions, alignment
constants, masks of malfunctioning detector-channels, etc.) and more sophisticated algorithms are
used than those ones available at the Level-3 of the trigger. The production may be repeated when
improved detector information or reconstruction algorithms become available: this typically occurs
once or twice every year. The reprocessing uses large farms of commercial processors that reconstruct

29The data acquisition might need to be interrupted and recovered for several motivations, including the need for

enabling or disabling a subdetector, the need for a change in the trigger table, a problem in the DAQ chain and so forth.
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approximately 107 events per day employing approximately 2–5 s per event with 1 GHz CPU.30 The
added information increases the event size by typically 20% after production.

To ensure homogeneous data-taking conditions, each run undergoes a quality inspection. On-line
shift operators, off-line production operators, and subdetector experts certify in what fraction of data
the running conditions for all relevant subdetectors are compliant to physics-quality standards.

When detectable problems of the detector occur, the data-taking is quickly stopped, so very short
runs are likely to contain corrupted data. Runs with fewer than 108 live Tevatron clock-cycles, or
fewer than 104 (103) Level-1 (Level-2) accepts, or containing data corresponding to an integrated
luminosity

∫
Ldt < 1 nb−1 are excluded from physics analysis. On-line shift operators further exclude

the runs in which temporary or test trigger tables were used.31 Runs whose data underwent problems
or software crashes during the production are excluded off-line.

Accurate integrated luminosity measurements are ensured in physics-quality data by requiring the
CLC to be operative during the data-taking and by verifying that a set of luminosity and beam-
monitor probe quantities are within the expected ranges. Shift operators ensure that Level-1 and
Level-2 trigger operate correctly and that the rate of SVXII data corruption errors is smaller than
1%.32 SVT experts verify that the on-line fit and subtraction of the beam position is done correctly
and that the SVT occupancy is within the expected limits. In addition, higher level quantities, such
as event yields of J/ψ → µ+µ−, D0 → K−π+, and D∗+ → D0π+ decays are monitored on-line and
are required to be within the expected ranges. For analyses that use COT information, the minimum
integrated luminosity required is 10 nb−1 and the fraction of noisy COT channels is required to be
smaller than 1%.

2.7 Monte Carlo simulation of detector and trigger

Estimation of the fraction of events of a certain type that escape the detector acceptance, or detailed
studies of the expected response of the detector to the passage of particles is a common need in many
analyses. Usually, complex detector geometries and the numerous effects that need to be accounted for
in predicting their response make it the analytical derivation of the relevant distributions impractical
or impossible. Monte Carlo techniques are an useful and widely-used complement for this problem.
Although we chose a data-driven approach for this analysis, use of simulation was unavoidable for
some purposes. We provide here a short overview of the standard CDF II simulation. Further details
can be found in Ref. [96].

In the standard CDF II simulation, the detector geometry and material are modeled using the
version 3 of the geant package [97] tuned to test-beam and collision data. geant receives in input the
positions, the four-momenta, and the identities of all particles produced by the simulated collisions that
have long enough lifetimes to exit the beam pipe.33 It simulates their passage in the detector, modeling

30The event size, and the processing-time increase roughly linearly with the instantaneous luminosity.
31It is sometimes necessary to test new configurations of the trigger selections in a real data-taking condition to

monitor trigger rates, performance and so on.
32The read-out of the silicon detector and the proper integration of the information in the on-line infrastructure is a

complex operation which, occasionally, leads to a certain fraction of data to be improperly processed.
33The generation of simulated samples is described in sec. 3.6.
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their interactions (bremsstrahlung, multiple scattering, nuclear interactions, photon conversions, etc.)
and the consequent generation of signals on a single channel basis. Specific packages substitute
geant for some subdetectors: the calorimeter response is simulated with gflash, a faster parametric
shower-simulator [98] tuned for single-particle response and shower-shape using test-beam data (8–
230 GeV electrons and charged pions) and collision data (0.5–40 GeV/c single isolated tracks); the
drift-time within the COT is simulated using the garfield standard package [99] further tuned
on data; the charge-deposition model in the silicon uses a parametric model, tuned on data, which
accounts for restricted Landau distributions, production of δ-rays, capacitive charge-sharing between
neighboring strips, and noise [100].34 Furthermore, the actual trigger logic is simulated. The output
of the simulated data mimics the structure of collision data, allowing their analysis with the same
reconstruction programs used for collision data.

The detector and trigger configuration undergo variations during data-taking. Minor variations
may occur between runs, while larger variations occur, for instance, after major hardware improve-
ments, or Tevatron shut-down periods. For a more detailed simulation of the actual experimental
conditions, the simulation has been interfaced with the off-line database that reports, on a run-by-run
basis, all known changes in configuration (position and slope of the beam line, relative mis-alignments
between subdetectors, trigger-table used, set of SVT parameters) and local or temporary inefficiencies
in the silicon tracker (active coverage, noisy channels, etc.). This permits simulating the detailed
configuration of any set of real runs to use it, after proper luminosity reweighing, for modeling the
realistic detector response in any given subset of data.

34The δ-rays are knock-on electrons emitted from atoms when the passage of charged particles through matter results

in transmitted energies of more than a few keV in a single collision.
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Chapter 3

Sample selection and signal

extraction

In order to extract the desired information from the B0
(s) → h+h

′− decays, the events of interest
(referred to as “signal”) need to be extracted from the multitude of other uninteresting events (“back-
ground”). This chapter describes the three main stages of this process. The first step is the on-line
trigger selection, which collects events most likely containing B0

(s) → h+h
′− decays. The baseline

selection is a next step that uses a simple off-line improvement of the trigger selection to extract a
visible B0

(s) → h+h
′− signal. The optimized selection is the last step aimed at obtaining the sample

such that the statistical uncertainties on the quantities one wishes to measure are minimized.

3.1 B0
(s) → h+h

′− decays at CDF

The topology of a B0
(s) → h+h

′− decay is simple. Two charged, pseudo-scalar mesons (π+π−,
K+π−, K−π+, and K+K−) from the decay of a long-lived B0

(s) meson produce, in the detector, two
oppositely-curved tracks intersecting in a space-point a few hundred microns away from the location
of the pp̄ interaction, where the B0

(s) meson was produced.

Such a simple topology poses a first experimental challenge at CDF: rare processes (B ≈ 10−5),
immersed in a background O(109) times larger, need to be selected on-line, relying uniquely on
tracking resources. In fact, the signature of B0

(s) → h+h
′− decays lacks the most used discriminating

features; for instance, no leptons are present to exploit the good CDF muon and electron identification
capability, nor narrow intermediate resonances (e. g., a φ meson) can be used to provide additional
kinematic constraints.

The B0
(s) → h+h

′− final states contain only kaons and pions which, unfortunately, are also the
most common particles present in the background. However, if the momentum of the B0

(s) meson
has a sufficiently large component in the plane transverse to the beam-line, the displacement between
production and decay positions of the B0

(s) meson can be measured with the silicon tracker. This
provides a highly discriminating quantity for background rejection.
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Figure 3.1: Illustration of a pp̄ event containing a B0
(s) → h+h

′− decay, projected into the transverse
plane. Ellipses indicate vertices, arrows indicate the transverse momenta (i. e., the direction) of
charged particles. Nothing is to scale.

Before discussing the details of trigger and off-line selection, it is useful to define some relevant
quantities used in the analysis. All quantities are calculated in the laboratory frame, and are illustrated
in fig. 3.1. For the present description, we neglect the curvature of O(100 µm) samplings of trajectories
of charged particles with O(GeV/c) momenta. In proximity of the beam line, tracks in the bending
plane of the solenoid are approximated with straight lines.

Transverse plane − the plane perpendicular to the proton beam direction, in which the profile of
the interaction region is approximately Gaussian with r.m.s. σT ≈ 30 µm.

Transverse momentum (~pT) − the projection of the momentum vector onto the transverse plane.
This quantity is the simplest discriminant between heavy-flavor signals and background as dis-
cussed in sec. 1.6.2 Raising the thresholds on transverse momentum is also an effective way to
control the trigger accept-rates. Another useful quantity used in the selection is the scalar sum
of the transverse momenta of the two particles,

∑
pT ≡ pT(1) + pT(2) .

Primary vertex − the space-point of the reconstructed primary pp̄ interaction, where a b-quark
pair, once produced, quickly hadronizes to a b-hadron pair. The primary-vertex reconstruction
has been detailed in sec. 2.3.6. An event may contain multiple primary vertices due to multiple
hard pp̄ collisions occurring in the same bunch-crossing (“pile-up” event, see sec. 1.6.2).

Secondary vertex − the space-point in which the decay of a long-lived particle occurs. The compo-
nents of its displacement with respect to the primary vertex in the transverse plane are indicated
by the vector ~xv= ~βTγct = (~pT/m)ct, for a particle of mass m and momentum p that decays at a
time t after its production. The secondary-vertex reconstruction has been detailed in sec. 2.3.6.
Multiple secondary vertices may be present in the same event. They can be due to the inter-
section of tracks from various sources, including the decay of the other heavy-flavor produced
in the event, the decay of additional heavy-flavors produced in a pile-up event, fake (i. e., due
to accidental combinations of noise hits) or mis-measured (i. e., partially contaminated by noise
hits) tracks.1

Transverse decay-length (LT) − the displacement of the secondary vertex with respect to the
primary one, projected onto the transverse momentum vector of the decaying particle (~pT(B)).

1In the dominant pp̄ → bb̄ (cc̄) +X production process, two heavy-flavors are produced in the event.
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The transverse displacement of the secondary vertex (~xv) may be not collinear with ~pT(B)
because of measurement uncertainties. Thus, the transverse decay-length,

LT ≡
~pT · ~xv
pT

, (3.1)

is usually preferred to ~xv as an estimator of transverse-length travelled before decay. This
quantity is typically positive for true long-lived decays, while it is negative or positive with
almost equal probability for decays from a fake secondary vertex or for combinations of prompt
tracks, although in the latter case its value is comparable with its resolution.

Impact parameter (d0) − the component of the distance of closest approach between a track and
the primary vertex in the transverse plane. This is a signed quantity defined as

d0 ≡
ẑ · (~pT ∧ ~xv)

pT
, (3.2)

where the scalar product with the unit vector pointing toward the proton direction (ẑ) determines
its sign and the symbol ∧ indicates the vector product. The impact parameter is typically
different from zero for products of long-lived decays, while it is comparable with the convolution
of its resolution and the transverse size of the beam for particles produced in the vicinity of the
primary vertex (prompt background).

Azimuthal opening angle (∆ϕ0 ) − the opening angle between the two outgoing particles pro-
jected on the transverse plane. The distribution of this quantity in B0

(s) → h+h
′− decays depends

on the distributions in impact parameter and transverse momentum. However, it has generally a
slowly-varying shape for signal candidates, while it shows two enhancements around 0◦ and 180◦

for background candidates (see fig. 3.2). Pairs of quasi-collinear tracks are found in hadronic
jets, due to light-quark fragmentation, or in highly occupied regions of the detector, due to
combinations of fake tracks; pairs of azimuthally-opposed tracks are found in back-to-back jets
of generic QCD background.

3.2 The B PIPI trigger path

The first proposal for a trigger dedicated to B0
(s) → h+h

′− decays at CDF was presented at the
Snowmass workshop on “B physics at hadron accelerators” in 1993 [102]. The B PIPI trigger path,
i. e., the sequence of Level-1, Level-2, and Level-3 requirements used to collect the data for this
analysis, is a selection of the Displaced-Tracks Trigger consisting in an improvement of that original
idea.

In the following, we outline just the most common trigger configuration, while the improvements
that had relevant effects in the analysis are summarized in sec. 3.2.4.

3.2.1 Level-1 requirements

At Level-1, the reconstruction of charged-particles trajectories relies on the tracks reconstructed by the
XFT in the transverse plane. Their parameters are pT, ϕ6, and q. The azimuthal angle is measured at
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Figure 3.2: Distribution of azimuthal opening angle between tracks with pT > 2 GeV/c and d0 >

100 µm from simulated B0 → π+π− decays (black plot). Distribution of azimuthal opening angle
for pairs of tracks with pT > 2 GeV/c from background candidates in data (red plot). Background
candidates are reconstructed from the “minimum bias” sample collected by CDF Run I. The minimum
bias trigger collects random pp̄ collisions thus providing a sample dominated by events with QCD
light-quark production. (Plot taken from Ref. [101].)

a radial distance corresponding to the super-layer 6 of the COT and it is labeled ϕ6 rather than ϕ0. A
pair of oppositely-curved XFT-tracks is required, consistently with the decay of a neutral particle into
two charged particles. A pT > 2.04 GeV/c requirement on the transverse momentum of each XFT-
track is imposed by hardware constraints to keep a sustainable trigger accept-rate. In addition, track
pairs due to light-quark fragmentation in back-to-back jets are rejected with the 0◦ < ∆ϕ6 < 135◦

requirement on the azimuthal opening angle between tracks. To further reduce the Level-1 accept-rate,
a requirement on the scalar sum of the transverse momenta of the pair is applied:

∑
pT > 5.5 GeV/c.

3.2.2 Level-2 requirements

The trigger requires a pair of oppositely-curved SVT tracks that satisfy a minimal linearized-fit quality
requirement: χ2

SVT < 25 [103].2 Transverse momentum and
∑
pT requirements from Level-1 are

confirmed on SVT tracks. In addition, a 100 < |d0| < 1000 µm requirement is applied to the impact
parameter of each track. The lower threshold rejects a large fraction of background tracks from
prompt light-flavor decays; the upper threshold is dictated by hardware constraints (see sec. 2.5.2),
but also reduces the contamination from strange-hadron decays, mis-measured tracks due to silicon
noisy strips, and charged products of nuclear interactions in the detector material.3

2The efficiency of the χ2
SVT < 25 requirement on unbiased samples is approximately 97%.

3At typical Lorentz boosts of the outgoing particles from Tevatron collisions, s-hadrons have decay length of 2–1500

cm. In addition, a low, nearly flat background of fake tracks is known to be uniformly distributed over the whole d0

spectrum.
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The impact parameter requirement is the single most selective one of the whole trigger selection.
It reduces the trigger accept-rate by a factor O(100), while still keeping O(10%) efficiency on signal.
The spatial resolution of SVT in identifying secondary vertices is further exploited: positive decay-
length of the B0

(s) candidate is required, LT(B) > 200 µm, along with a |d0(B)| < 140 µm requirement
on its impact parameter. The latter imposes that the candidate originates from the primary vertex,
rejecting sequential B → DX → h+h

′−X decays. Events with LT(B) < −200 µm are retained as
well for studies of background (see sec. 3.8.1). The azimuthal opening-angle requirement is further
tightened with respect to the previous trigger stage to 20◦ < ∆ϕ0 < 135◦, to reduce the fraction of
events with light-quark background.

3.2.3 Level-3 requirements

The Level-1 and Level-2 criteria are reapplied on Level-3 tracks. In addition, a requirement on
the longitudinal separation between the two tracks at the point of their minimum distance from
the beam is applied: |∆z0| < 5 cm. This significantly reduces the fraction of combinations of two
tracks descending from particles produced in distinct primary vertices (pile-up events). A |η| < 1.2
requirement on tracks excludes events with particles outside the XFT fiducial acceptance. The Level-
3 mass-resolution, comparable with the off-line one, allows a loose 4.0 < mπ+π− < 6.0 GeV/c2

requirement on the reconstructed invariant π+π−-mass of the particle pair. This is adequate for
reducing the Level-3 accept-rate, while keeping events populating a sufficiently wide mass-spectrum
for signal and background studies.

3.2.4 Changes in the trigger configuration

In the first portion of data, the XFT required a coincidence of 10 out of 12 hits in each axial super-
layer to form a track segment (see sec. 2.5.1). An optimized configuration requiring a coincidence of
11 out of 12 hits was applied after October 2002 (run 152646). This allowed a O(30%) reduction of
the Level-1 trigger rate with just O(5%) efficiency loss on signal.

Another crucial improvement was implemented at Level-2: the SVT requires the coincidence of four
strip clusters in four radial SVXII layers (see sec. 2.5.2), resulting in an overall efficiency proportional
to the fourth power of the single hit efficiency. Until June 2003, the clusters were searched in the four
innermost SVXII layers. After then, a majority logic was introduced, that searches the coincidence
of four clusters in any combination of four (out of five) SVXII layers. The looser requirement yields
a 18% increase in the single track efficiency, and provides additional benefits as an almost-doubled
event yield for two-body decays, like D0 → K−π+, with negligible worsening of the signal purity.4

In the first portion of data, corresponding to about
∫
Ldt ' 120 pb−1, the code for reconstructing

silicon tracks was too slow to be executed within the time allowed by the Level-3 latency. The spatial
resolution of the silicon detectors was therefore exploited by looking for a matching between SVT

4The increase in the single-track efficiency is 4(1− εclust) where εclust ' 95% is the clustering efficiency in a single

SVXII layer. The resulting 20% increase reduces to about 18% because only 90% of the SVXII wedges had five properly

working layers. Further benefit is provided by the opportunity to reconstruct an additional 15% of tracks: those that

cross two different SVXII electrical barrels within a wedge. In conclusion, the SVT trigger efficiency for a two-body

decay increased by a factor of about (1 + 0.18 + 0.15)2 − 1 ' 80%.
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and COT tracks, i. e., by requiring proximity in curvature (|CCOT − CSVT| < 1.5× 10−4 cm−1) and
azimuth (|ϕCOT

0 − ϕSVT
0 | < 0.86◦) to form Level-3 tracks. The matched tracks had their d0 assigned

from the corresponding SVT track, whereas other parameters were assigned from the corresponding
COT track. In May 2003, a faster silicon-tracking algorithm was implemented at the Level-3 trigger.
Since then, Level-3 tracks are required to be associated to silicon hits in at least three different axial
SVXII layers. This improvement allowed more than a factor of two reduction in Displaced-Tracks
Trigger rate, with just a O(5%) inefficiency for heavy-flavor decays.

3.3 Other Displaced-Tracks Triggers

This is a concise description of the B CHARM path, which was implemented to collect efficiently multi-
body heavy-flavor decays, such as B0

s → D−s π
+, that are used as control samples for the present

measurement. At Level-1 the B CHARM and B PIPI paths share common requirements; this explains
why, in the B PIPI path, the ∆ϕ0 > 20◦ requirement was applied only at Level-2, although the
information needed for this requirement was available since Level-1. At subsequent levels, the B CHARM

selection is similar to the B PIPI one but it has different thresholds on the impact parameter of SVT
tracks (|d0| > 120 µm), on the azimuthal opening angle (2◦ < ∆ϕ0 < 90◦), and does not contain any
requirement on the impact parameter of the B candidate.

During the 20 hours of a typical Tevatron store, the instantaneous luminosity decreases by a factor
of typically 2.5–5 with respect to the initial luminosity. Since the set of trigger selections is optimized
for an average reference luminosity, during the store, a fixed selection is either too loose, suffering
high trigger accept-rates and inducing dead-time in the trigger decision, or is too tight, leaving a
fraction of trigger bandwidth unused. CDF uses simultaneously trigger selections that have different
pT-thresholds and self-adjusting prescale factors (“dynamic prescale”) that change on the milliseconds
scale to optimally exploit the available bandwidth.5

At luminosities L & 4.5×1031 cm−2s−1, the Level-1 of the Displaced-Tracks Trigger selection causes
a trigger dead-time greater than the upper limit of 5%. Thus, dynamic prescaling and introduction
of additional trigger paths, the B PIPI HIGHPT and B CHARM HIGHPT trigger, was required. These
variants are similar to the B PIPI and B CHARM paths respectively, but have tighter requirements on the
transverse momenta of XFT tracks (pT > 2.46 GeV/c), and on their scalar sum (

∑
pT > 6.5 GeV/c)

at Level-1. These additional requirements, confirmed at subsequent trigger stages, allow sustainable
trigger accept-rates at high luminosities, at the price of some reduction of the signal yields.

3.4 B PIPI trigger performance

Table 3.1 contains the most relevant requirements applied at each level of the B PIPI trigger, along with
the typical B PIPI rates and the available trigger bandwidths. A semi-quantitative illustration of the
impact of the trigger selection on the signal-to-background ratio for B0

(s) → h+h
′− decays is shown in

5A trigger prescaled of a factor N (acceptance fraction) will only accept every randomly-chosen Nth event that

satisfies the trigger requirements. This reduces the trigger accept-rate by a factor N , leaving unchanged the signal-to-

background ratio in the sample.
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Quantity Units Level-1 Level-2 Level-3
pT(1), pT(2) GeV/c > 2.04 > 2.0 > 2.0
∆ϕ0 Degrees [0◦, 135◦] [20◦, 135◦] [20◦, 135◦]∑
pT GeV/c > 5.5 > 5.5 > 5.5

|d0(1)|, |d0(2)| µm − [100, 1000] [100, 1000]
|d0(B)| µm − < 140 < 140
|LT(B)| µm − > 200 > 200
|η(1)|, |η(2)| − − − < 1.2
mπ+π− GeV/c2 − − [4.0, 6.0]
Accept-rate Hz 10000 30 0.5
Trigger bandwidth Hz 16000 250 50

Table 3.1: Upper part: summary of the most relevant trigger requirements. Lower part: average
B PIPI accept-rates at L = 4× 1031 cm−2s−1, a typical peak luminosity in 2002–2003, when the data
of this analysis were collected.

fig. 3.3, where we assumed a production cross-section times branching fraction σpp̄→B0
(s)+X

×B(B0
(s) →

h+h
′−) ≈ 30 µb × 3 × 10−5 ≈ 1 nb for the signal, and an inelastic pp̄ cross-section σpp̄ = 60 mb at

√
s = 1.96 TeV.

Figure 3.3: Cross-section times branching-fraction times detection efficiency for B0
(s) → h+h

′− decays
compared with the cross-section times efficiency for generic inelastic pp̄ background, as a function of
the selection requirements.
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3.5 Extraction of the B0
(s) → h+h

′− signal

The first step of the off-line analysis consists in applying a baseline selection to the sample collected by
the B PIPI trigger between February 9, 2002, (run 138815) and September 2, 2003, (run 168640). After
application of the standard CDF data-quality requirements (see sec. 2.6) the sample size correspond to
an integrated luminosity of

∫
Ldt = 180± 11 pb−1. In the baseline selection, trigger requirements are

reapplied using high-resolution off-line quantities to remove B0
(s) → h+h

′− candidates not satisfying
the trigger selection, and two-particle secondary-vertices are fitted in the transverse plane.

3.5.1 Track preparation

This analysis is based on tracks. Tracks were reconstructed by the production executable (see
sec. 2.3.6) using the SVXII and COT hits, the detailed magnetic map of the tracking volume, and tak-
ing into account the measured angular and translational mis-alignments among the SVXII, the COT,
and the beam-line. Silicon hits in the LØØ and ISL detectors were not used because the alignment
corrections for these subdetectors were not available at the time of this analysis.

For the sake of an accurate determination of the decay lengths of heavy-flavor decays, it is necessary
to use events in which both primary and secondary vertices are reconstructed with good spatial
resolution. We therefore used only tracks whose reconstruction included silicon hits. Mis-alignments
and noise hits in the silicon detectors and in the COT cause a contamination of fake or mis-measured
tracks in the events. The fraction of such undesirable tracks was reduced by applying a set of standard
criteria: we selected tracks reconstructed using at least 42 COT hits, of which a minimum of 20 were
found in the axial super-layers, and a minimum of 20 in the stereo super-layers. Each track was also
required to be associated to hits in at least three r − φ SVXII layers and to result from a converged
helix-fit with positive-definite error matrix.

To increase computation speed in the off-line production, the error matrix of the track fit in the
COT is estimated disregarding the effect of multiple scattering in the detector material. According to
the standard CDF prescription, we compensated for this approximation by refitting the tracks, after
rescaling the covariance matrix of the COT track with an appropriate set of empirical scale factors.
The rescaled COT track is used to seed the refit of the combined COT+SVXII tracks. The refitting
uses an algorithm based on Kalman filtering [104] and includes energy-loss corrections for kaons and
pions, according to the chosen mass assignment for each particle. The refitting procedure, the tracking
alignments, and the geant description of the detector material have been carefully studied at CDF
by independent analyses for the measurement of b-hadron masses [105].

3.5.2 Trigger confirmation

Since SVT tracks are determined with a different fitting algorithm with respect to the off-line tracks,
the sample may contain candidates that did not satisfy the trigger selection (“volunteers”). Common
sources of volunteers are, for instance, track pairs in which a track from a b-hadron decay is combined
with a fake track, or with a track from the decay of the other b-hadron of the event. Volunteers are
undesirable in decay-rate measurements like ours, because we need to use Monte Carlo simulation
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to determine the reconstruction efficiencies for each mode. Since the Monte Carlo does not simulate
volunteers (see sec. 3.6), we need to exclude them also from data. Volunteers were excluded by
requiring matching between the offline-track pair forming the B0

(s) → h+h
′− candidate and two SVT

tracks in each event;6 then the complete set of trigger requirements was applied to SVT quantities of
the matched tracks, thus repeating the real trigger decision in the off-line analysis.

3.5.3 Reconstruction of B0
(s) → h+h

′− candidates

Decays of b-mesons are expected to appear as peaking structures in the otherwise smooth invariant
mass spectrum. The off-line reconstruction of B0

(s) → h+h
′− candidates was solely based on tracking,

disregarding any form of particle identification. In each event, the two-particle invariant mass was
computed for all possible pairs of oppositely-curved tracks satisfying the criteria described in sec. 3.5.1
and 3.5.2. We used the measured momenta and we arbitrarily assigned the charged-pion mass to both
tracks. The two tracks were constrained by the ctvmft algorithm (see sec. 2.3.6) to originate from a
common vertex in the transverse plane. The vertex fit was restricted to the transverse plane because
the alignment constants for the (r, z) layers of the SVXII, needed for a three-dimensional vertex fit,
were not available at the time of this analysis. In case of a converged vertex-fit with satisfactory
quality, the pair was promoted to be a B0

(s) → h+h
′− candidate, and retained for further processing,

if its invariant π+π−-mass lie in the 4.2 < mπ+π− < 6.0 GeV/c2 range. During the reconstruction,
we applied a baseline selection, consistent in reapplying the trigger selection on off-line quantities
(see tab. 3.1), to quickly reject uninteresting candidates. In addition, we rejected tracks reconstructed
outside the SVT fiducial acceptance (|η| <∼ 1.0), and pairs with positive product of impact parameters.7

The invariant π+π−-mass distribution of the resulting sample is shown in fig. 3.4. A bump ap-
pears at masses around the nominal B0

(s) meson masses. A simple, binned χ2-fit of the distribution
to a Gaussian function for the signal, over a negative exponential plus a constant function for the
background, provides an estimate of about 1200 signal events. The signal is centered at about 5.25
GeV/c2, with about 30 MeV/c2 r.m.s. deviation, and ≈ 0.2 signal-to-background ratio at the peak.

The distribution in fig. 3.4 is an important achievement: for the first time in a hadron collider,
B0

(s) → h+h
′− decays, with O(10−5) branching-fractions, are reconstructed, and this is made possible

even at the level of trigger selection by the SVT.

3.6 Monte Carlo simulation of B0
(s) → h+h

′− decays

This section describes the simulated Monte Carlo samples used in several parts of the analysis.

We used the bgenerator package which allows generating large samples of b-hadron decays [107].
bgenerator simulates production and decay of b-hadrons only: no fragmentation products, collision

6The algorithm required proximity in curvature and azimuthal opening angle:√
(Coff−CSVT−C)2

σ2
C

+
(ϕoff

0 −ϕSVT
0 −ϕ0)2

σ2
ϕ0

< 95, where “off” labels off-line quantities, “SVT” labels SVT quanti-

ties, the mean of the differences between off-line and SVT quantities, measured in J/ψ → µ+µ− data, are over-lined,

and σ are the corresponding standard deviations.
7An independent analysis of the similar D0 → h+h

′− decays [106] proved the d0(1)× d0(2) < 0 µm2 requirement to

be effective in increasing the signal purity with negligible inefficiency.
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Figure 3.4: Invariant π+π−-mass distribution of the events passing the trigger selection and recon-
structed off-line. The result of a Gaussian (signal) over a negative exponential and a constant (back-
ground) fit is overlaid in red.

remnants, or pile-up events are present in the simulated data. This package provides less complex
events, particularly suited for a fast processing with the detector simulation, but no information about
QCD backgrounds or fragmentation phenomenology can be extracted from the simulated samples.
This information is available when using full pp̄ interaction generators, like pythia, but still they
would require extensive and dedicated tuning to reproduce the phenomenology of events with the
accuracy required by b-physics analyses. Furthermore, a huge amount of computing power would be
needed to generate background samples of adequate size for analyses like ours, with O(109) rejection
factors for background. Hence we chose the simpler, and more reliable, approach of using Monte Carlo
simulation for the signal, while extracting the information on background from collision data.

For each of the following modes: B0 → π+π−, B0 → K+π−, B0 → K+K−, B0
s → K+K−,

B0
s → K−π+, B0

s → π+π−, Λ0
b → pπ−, and Λ0

b → pK−, we generated 106 decays for a resulting
sample approximately 20 times larger in size than the data sample after the trigger and analysis
requirements. Single B0

(s) mesons were directly generated using a two-dimensional distribution in
transverse momentum and rapidity of the B0

(s) meson as external input (see fig. 3.5). This distribution
combines the spectrum in transverse momentum measured in B0

(s) → J/ψX decays by CDF [56], and
a constant rapidity-distribution in the range |Y | < 1.3. The time evolution and decay of b-hadrons
were simulated according to the most recent experimental and theoretical knowledge by the evtgen

package [108], which properly accounts for phase space, helicity, and angular distributions of the decay
products.8 We used evtgen with the option of no flavor oscillations (∆md = ∆ms = 0).

Since the analysis relies on selective requirements on lifetime-sensitive quantities (e. g., d0 and LT),
a proper treatment of B0

(s) meson lifetimes in the simulation is crucial for an accurate description of

8evtgen was originally developed and extensively tested at the BABAR and CLEO experiments.
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Figure 3.5: Two-dimensional distribution in rapidity and transverse momentum of the b-hadron used
in the generation of simulated B0

(s) → h+h
′− decays.

the data. For the pseudo-proper decay-length of B0 and Λ0
b decays we used the world-average values:9

cτ(B0) = 460 ± 4 µm and cτ(Λ0
b) = 368 ± 24 µm [109]. For the B0

s → K−π+ mode, we chose the
world-average value measured in flavor-specific decays: cτ(B0

s → K−π+) = 438±17 µm [109]. Special
care was needed for the B0

s → K+K− and B0
s → π+π− decays. Their time evolution depends on

the CP contents of these modes and on the relative width-difference between the B0
s mass-eigenstates

(∆Γs/Γs).10 At first order, it is written as:

Γ(B0
s (t)→ h+h−) + Γ(B

0

s(t)→ h+h−) ∝ RHe−Γs,Ht +RLe
−Γs,Lt, (3.3)

where RH (RL) is the relative contribution of the heavy (light) mass eigenstate to the given mode
and Γs,H (Γs,L) is the corresponding decay-width. Neither the CP contents of B0

s → K+K− and
B0
s → π+π− decays, nor the value of ∆Γs/Γs are known. However, a reasonable assumption can

be made, based on Standard Model predictions. Since the K+K− and π+π− states are in S-wave,
they are CP-even states. For these decays, under standard assumptions, the penguin amplitude is
dominant over the tree amplitude. Since the penguin amplitude has zero CP-phase, only the CP-even
eigenstate of the B0

s meson decays to K+K− and π+π− final states. Thus, 95% of these decays is
contributed by the CP-even (short) component within the Standard Model. In case of new physics,
this is no longer true, since a CP-phase can arise from the new-physics-induced penguin amplitude.
We therefore calculated the values for cτ(B0

s → h+h−) under the following assumptions:

� the B0
s → h+h− modes are 100% pure decays of the short B0

s eigenstate;

9Pseudo-proper decay-length is intended as the product of the mean life with the speed of light.
10We adopt the convention ∆Γs = Γs,L − Γs,H where H and L refer to the heavy and light mass eigenstates of the

B0
s meson. According to the Standard Model, the following relations hold: ∆Γs/Γs > 0, B0

s,L ≡ B0
s,even ≡ B0

s,short,

and B0
s,H ≡ B0

s,odd ≡ B0
s,long, since mass and CP-eigenstates coincide.
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� the value of the width difference is ∆Γs/Γs = 0.12 ± 0.06, according to the Standard Model
predictions [110];

� the widths for flavor-specific B0 and B0
s decays are equal, according to the Standard Model

predictions: Γs = Γd.

This results in

cτ(B0
s → h+h−) =

c

Γs,short
=

c

Γs + ∆Γs/2
=

c

Γd + 0.12 · Γd/2
= [434± 4(Γd)± 12(∆Γs)] µm, (3.4)

where we separated the uncertainty into the 1% contribution from the uncertainty on Γd, and the
contribution from the 0.06 uncertainty on ∆Γs/Γs.

Lastly, all needed information on final-state particles is passed to the CDF II detector and trigger
simulation that produces the simulated event in the standard format (see sec. 2.7).

Figure 3.6 shows the two-particle invariant mass distributions for some simulated samples. Each
decay mode is reconstructed assigning the correct mass to each particle. The central part of each
distribution was fit with a simple, binned χ2-fit to a Gaussian distribution. All distributions were
correctly centered at the nominal B0 or B0

s meson masses, with about 22 MeV/c2 estimated r.m.s.
width. A dependence of the observed width on the B0

(s) meson transverse momentum was found in
the simulation. The width increased by about 1 MeV/c2 in increasing the B0

(s) meson transverse
momentum from 4 to 20 GeV/c. Similar features were observed for the other simulated modes, not
reported in fig. 3.6 for brevity.

We verified the simulation by comparing the distributions of several quantities used in the analysis
with collision data. In data, a significant contribution from background events contaminates the signal
region (see fig. 3.4). Thus, for extracting unbiased distributions of the signal quantities, we did a back-
ground subtraction: for each quantity to be compared, we subtracted the distributions for background
candidates from the distributions for signal plus background candidates. The signal plus background
candidates are defined as those found in the invariant-mass range 5.125 < mπ+π− < 5.400 GeV/c2

of fig. 3.4. For the background candidates, we assumed that their contribution underneath the sig-
nal peak is dominated by pairs of random tracks satisfying the selection requirements (combinatorial
background). We sampled this component using candidates at masses higher with respect to the
signal peak since candidates at lower masses include partially reconstructed B0

(s) meson decays, such
as B0 → ρ+π− → [π+γ]π−, which are kinematically excluded from the signal region;11 we therefore
used, as background candidates, those in the mass range 5.37 < mπ+π− < 5.55 GeV/c2. Before the
subtraction, the distribution of background candidates was appropriately rescaled to the number of
background events expected underneath the signal.

We compared the distributions of several variables of the two outgoing particles (transverse momen-
tum, pseudo-rapidity, and impact parameter), and of the candidate (transverse momentum, pseudo-
rapidity, sum of transverse momenta of outgoing particles, azimuthal opening angle, transverse decay-
length, impact parameter). The agreement between simulation and data is satisfactory for all variables,

11See sec. 3.8.1 for further details on the background composition.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.6: Two-particle invariant mass distributions in simulated samples of (a) B0 → π+π− and
B

0 → π+π−, (b)B0 → K+π−, (c)B
0 → K−π+, (d)B0

s → K−π+, (e)B
0

s → K+π−, (f)B0
s → K+K−

and B
0

s → K+K− decays. The result of a simple Gaussian fit is overlaid (black, solid line).

indicating that the simulated sample describes the data with enough accuracy for our purpose. Figure
3.7 shows an example of such agreement.

Since the simulation available when the analysis was done did not reproduce well the resolutions
on the tracking quantities (e. g., σpT , σLT and so forth), we did not use discriminating variables based
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Figure 3.7: Background-subtracted pT(B)-distribution in B0
(s) → h+h

′− decays. Data (points with
error bars) are compared with Monte Carlo simulation (filled histogram). The rightmost bin contains
overflows.

on these resolutions. The only relevant consequence of this limitation is an underestimation of the
mass widths in the simulated data.12 Based on the comparison between the observed widths of several
two-body decays (D0 → h+h

′−, J/ψ → µ+µ−, and Υ→ µ+µ−) and the predictions of the simulation,
we determined an expected r.m.s. width σm = 28 ± 0.3 MeV/c2 for each single B0

(s) → h+h
′− decay

mode, instead of the σm = 22± 0.2 MeV/c2 estimated from simulation in fig. 3.6.

3.7 Improved extraction of the B0
(s) → h+h

′− signal

For the most efficient use of the statistical information in our data, we optimized the selection criteria,
starting from the sample shown in fig. 3.4.

3.7.1 Unbiased selection optimization

For any given sample, an optimization of the selection is a procedure that selects a subsample that
provides the smallest (expected) statistical uncertainty on the quantity one wishes to measure. It
is often desirable that the optimization be conducted in an unbiased way, i. e., free from subjective
inputs or arbitrary tuning, to ensure the reproducibility of results in independent samples. Biases may
affect the optimization when this is performed on the same data set used for the measurement. This
may lead to artificial enhancements of the precision of the measurement, due not to a better use of
the statistical information, but to sample-specific random fluctuations. This bias can be avoided, for
instance, by using simulated data samples for the optimization, or by excluding from the measurement

12For D0 → h+h
′− decays, for instance, the observed mass-width in data was around 10.0 MeV/c2, to be compared

with approximately 7.9 MeV/c2 in the simulation.
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the subsample of data used for the optimization.

In principle, to define an unbiased optimization for our measurement of ratios of branching frac-
tions, one should try all possible configurations of selection requirements, repeat the measurement in
each of the resulting subsamples, and then apply the optimal selection. In practice, the number of
the possible selections is often so large that repeating the full measurement many times may become
difficult. However, a fast and reliable method to evaluate the resolution expected from a measurement
before actually carrying it out is provided by the Minimum Variance Bound (MVB) [111] (see descrip-
tion in appendix B for details). Given the data, the MVB analytically provides an upper bound to the
precision that can be achieved on a parameter, whatever the estimation procedure used. The problem
is therefore reduced to finding the analytical expression of the MVB for measuring the branching
ratio of a signal over a background. In the simplified case of a counting experiment to determine the
number S of signal events within a total number of S + B events, the expected statistical resolution
on the signal yield σS , estimated with the MVB, obeys the following expression:

σS ∝
1
S

=
√
S +B

S
. (3.5)

An optimization procedure would imply, in this case, to evaluate the quantity S for all combinations
of selection requirements. The optimal selection would be one that maximizes S. The expression of
eq. (3.5), which is rigorously valid for a counting experiment, is still sufficiently accurate in the case
of a likelihood fit of a continuous distribution. We therefore based our optimization on the quantity
S, which was maximized as a function of different configurations of the selection requirements.

3.7.2 Isolation of the b-meson

Before proceeding with the details of the optimization, it is convenient to introduce an additional
variable, useful in the off-line selection: the isolation.

Given their hard fragmentation, b-hadrons tend to carry a larger fraction of the transverse momen-
tum of the particles produced in the fragmentation, with respect to lighter hadrons [112]. Following
several Run I analyses [113], we constructed the variable “isolation of the B candidate”. The isolation
is an estimator of the fraction of momentum, available from the b-quark fragmentation, carried by the
b-meson:

I|R=1(B) =
pT(B)

pT(B) +
R∑

i 6=j:B →j
pT(i)

, (3.6)

where the sum in the right-hand term of the denominator runs over all fragmentation tracks, iden-
tified as tracks (other than those of the B candidate decay-chain) satisfying standard track-quality
requirements and found in a local region around the flight direction of the B candidate.13 Such region
is parameterized as a cone in the (η− φ) space, unitary in radius (R =

√
φ2 + η2 = 1), whose apex is

the primary vertex and the axis collinear with ~pT(B) (see fig. 3.8).

13For the computation of the isolation variable, we loosened the requirements of sec. 3.5.1: we used all tracks with a

converged helix-fit, with no requirement on the minimum number of associated COT or silicon hits.
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Figure 3.8: Illustration of the fragmentation of a b-quark into a b-hadron. The isolation cone is shown
in red, the directions of the charged particles produced in the fragmentation are shown in yellow.
Nothing is to scale.

When the decay products of the b-meson are contained in the cone, I(B) is just the fraction of
transverse momentum within the cone carried by the b-meson.14 Candidates with high values of
isolation are more likely to be b-mesons than candidates with low isolation.

The introduction of the isolation, however, adds further complexity in the analysis: its distribution
depends on the mechanism of hadronization of the b-quark, which is not described by the signal-only
simulation discussed in sec. 3.6. We therefore had to use collision data to characterize this new
observable in the analysis. Section 8.5 is devoted to the extraction of the efficiency of the isolation
requirement.

3.7.3 Optimized selection

In the optimization, we varied the thresholds on the following discriminating quantities: d0 of the two
tracks descending from the candidate, LT(B), |d0(B)|,

∑
pT, and I(B). We avoided using signal events

from data to keep the optimization unbiased; for each jth configuration of the selection requirements
we evaluated the quantity

Sj =
Sj√

Sj +Bj
, (3.7)

function of the expected number of signal (Sj) and background (Bj) events, defined as follows:

Sj – the number of simulated B0
(s) → h+h

′− decays that passed the jth configuration of the selection
requirements, normalized to the 1200 B0

(s) → h+h
′− decays observed in data after the baseline

selection. This guarantees that, in each step of the optimization, signal and background yields
are correctly normalized. The B0

(s) → h+h
′− signal is simulated as an admixture of the expected

dominant modes in the proportions resulting from the theoretical and experimental knowledge
at the time of the analysis: B0 → π+π− (15%), B0 → K+π− (60%), B0

s → K+K− (20%), and
B0
s → K−π+(5%).

Bj – the number of background events passing the jth configuration of the selection requirements.

14Since we use R = 1 all through this thesis, we henceforth assume I(B) ≡ I|R=1(B).
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We define background events as those found in the 5.37 < mπ+π− < 5.55 GeV/c2 invariant
π+π−-mass region (“mass sideband”) in the data.15 We adequately normalized the amount of
the events found in the sideband to what was expected underneath the peak.

Starting from the baseline selection described in sec. 3.5.3, each requirement was tightened inde-
pendently of the others, scanning an adequate range of values for its threshold. Table 3.2 shows the
chosen ranges and step widths for each requirement, which resulted in 4.8× 103 total selections.

The effectiveness of the procedure relies on the capability to reproduce the real efficiency, for
background and for signal, corresponding to each selection. Reliable efficiencies for background were
ensured by our choice of using collision B0

(s) → h+h
′− data. For the signal, the validation of sec. 3.6

guarantees that the simulation reproduces with sufficient accuracy the efficiencies of all quantities used
in the optimization, except for the isolation. The efficiency of the isolation requirement was extracted
separately and assumed factorizable with the other efficiencies. We extracted it from control samples
of B0

(s) decays fully reconstructed in data with a method described in sec. 8.5.

The optimal selection is reported in the last column of tab. 3.2.

Quantity Units Lower edge Higher edge Step width Optimum
Minimum LT µm 200 650 50 > 300
Minimum

∑
pT GeV/c 5.5 7.5 0.5 > 5.5

Min(|d0(1)|, |d0(2)|) µm 100 250 10 > 150
Maximum |d0(B)| µm 140 50 10 < 80
Minimum I(B) − 0.4 1.0 0.1 > 0.5

Table 3.2: Quantities used in the optimization of the selection and ranges in which they were varied.
The results of the optimization are shown in last column.

The dependence of S on each scanned quantity is shown in fig. 3.9.

3.8 The final sample

Table 3.3 summarizes the final requirements used to select the B0
(s) → h+h

′− sample from which we
measured the decay rates. Figure 3.10 shows the π+π−-invariant mass distribution of the sample
resulting from the optimized selection. A clear B0

(s) → h+h
′− signal peak emerges from a smooth

background. A satisfactory (reduced χ2 ' 1.1) binned fit of the distribution to a Gaussian function
for the signal, over a negative exponential plus a constant function for the background, provides an
estimate of 893±47 signal events, centered at 5.253±0.002 GeV/c2, with 38±2 MeV/c2 r.m.s. width,
and an approximate 2.1 signal-to-background ratio at the peak. The impact of the optimized selection
is an improvement of a factor 20 in background rejection, with just a 25% inefficiency on signal with
respect to the baseline selection.

15This mass sideband was chosen according to the arguments mentioned in sec. 3.6, and detailed in sec. 3.8.1.
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(a) (b)

(c) (d)

Figure 3.9: Figure of merit S as a function of the combination of selection requirements; each combi-
nation is uniquely identified by an ID index on the abscissa. The requirement on minimum isolation is
I(B) > 0.5 in all plots. Plot (a) spans all combinations; the red line intersects the point corresponding
to the optimal selection. Magnification of the region corresponding to LT(B) > 300 µm (left structure)
and LT(B) > 350 µm (right structure) requirements (b). Magnification of the region corresponding
to the requirements LT(B) > 300 µm and

∑
pT > 5.5 GeV/c (c). Magnification of the region corre-

sponding to the requirements LT(B) > 300 µm,
∑
pT > 5.5 GeV/c, and 90 µm > |d0(B)| > 60 µm

(d).
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Quantity of the track Units Requirement
Axial Si hits − ≥ 3
Axial COT hits − ≥ 20
Stereo COT hits − ≥ 20
Total COT hits − ≥ 42
pT GeV/c > 2.0
|η| − < 1.0
|d0| µm [150, 1000]
Quantity of the candidate
q(1)× q(2) e2 −1
d0(1)× d0(2) µm2 < 0
LT µm > 300∑
pT GeV/c > 5.5

|d0| µm < 80
I − > 0.5
|η| − < 1.0
∆ϕ0 Degrees [20◦, 135◦]
mπ+π− GeV/c [4.2, 6.0]

Table 3.3: Summary of the optimized selection for the extraction of the final B0
(s) → h+h

′− sample.

Figure 3.10: Invariant π+π−-mass distribution of the events passing the optimal selection. The result
of a Gaussian (signal) over a negative exponential and a constant (background) fit is overlaid in red.

3.8.1 Background composition

Owing to the extremely selective criteria used to isolate the final sample, a detailed understanding
of the background is challenging. Contributions to the background include an unknown admixture
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DATA Event : 2686948  Run : 151434 | Prescaled: 17,50
Unprescaled: 11,17,19,21,23,30,41,43,50

Missing Et
IS NOT DEFINED

List of Tracks
Id    pt    phi   eta

Cdf Tracks: first 5
 90    -4.1 -1.1  0.4
 91    -3.7  2.1 -0.2
 92     3.4  0.5  0.4
 93     1.1  2.1 -0.8
 99    -0.8 -2.4 -0.7
 91    -3.7  2.1 -0.2
To select track type
SelectCdfTrack(Id)

Svt Tracks: first 5
  2    -4.3  5.2
  1    -3.7  2.1
  0     3.3  0.5

To select track type
SelectSvtTrack(Id)

DATA Event : 258977  Run : 149386 | Prescaled: 17,34,35,45
Unprescaled: 3,11,13,15,17,19,21,23,29,34,35,36,41,45

Missing Et
IS NOT DEFINED

List of Tracks
Id    pt    phi   eta

Cdf Tracks: first 5
455   -11.8  2.7 -0.0
456    10.9  2.3 -0.2
457    -8.0 -0.6 -0.0
458     1.4 -1.0 -0.2
460     1.2  0.4 -0.5

To select track type
SelectCdfTrack(Id)

Svt Tracks: first 5
  1   -12.1  2.7
  0    10.6  2.3
  2    -8.2  5.6

To select track type
SelectSvtTrack(Id)

Particles: first 5
pdg    pt    phi  eta
 13    11.8  2.7 -0.0
 13    10.9  2.3 -0.2
To list all particles
ListCdfParticles()

Figure 3.11: Computerized reconstruction of two events containing B0
(s) → h+h

′− candidates as they
appear in the transverse plane. The LØØ and SVXII cross sections are visible in the center (blue
segments).

of rare events from heavy-flavors, light-quarks, resolution tails and so forth. However, the invariant
π+π−-mass distribution already provides a first insight on the background composition. This becomes
evident if the distributions for the events passing the final selection (black plot in fig. 3.12, labeled as
“signal sample”) and the corresponding distribution for the events with “negative-LT” are compared.
The negative-LT sample contains events that pass the selection of tab. 3.3 except for the requirement
on the transverse decay-length, which is inverted to LT(B) < −300 µm (see fig. 3.12, red plot).
The negative-LT sample is composed of “unphysical” decays, i. e., decays in which the reconstructed
direction of the transverse momentum vector of the candidate appears opposite to the reconstructed
direction of its displacement with respect to the primary vertex (see sec. 3.1). The invariant-mass
shape of these random pairs of tracks is independent of their LT(B) to a good approximation; thus,
the negative-LT sample provides an useful model of this background component in the signal sample.
From the comparison of the two distributions shown in fig. 3.12, we infer the background composition
as follows

Combinatorial background – it is mostly composed of random pairs of charged particles, displaced
from the beam-line (|d0| > 150 µm), accidentally satisfying the selection requirements. Its
dominant sources include generic QCD background of light-quark decays, lepton pairs from
Drell-Yan processes [114], pairs of mis-measured tracks, combinations of a mis-measured track
with a track from an heavy-flavor decay, or combinations of two tracks originated from two
independent heavy-flavor decays of the event (bb̄ and cc̄ production).16 This is consistent with
the smooth, slowly decreasing invariant π+π−-mass distribution of the negative-LT sample that
populates the whole mass range. This distribution is almost coincident with the corresponding
shape in the signal sample for masses higher than 5.4 GeV/c. In this region, therefore, as well
as in the signal region (5.125 < mπ+π− < 5.4 GeV/c), the combinatorial component is the
prominent contribution to the background.

Partially-reconstructed heavy-flavor decays – a change in the slope of the mass distribution of
16Mis-measured tracks, i. e., tracks (partially) based on noise hits, are known to have an approximately constant

distribution in impact parameter extended up to large values.
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the signal sample, at masses just smaller than the signal mass, indicates an additional background
source having an LT distribution biased toward positive values. This contribution is readily
interpreted as mis-reconstructed b-hadron decays. These are multi-body b-hadron decays (e. g.,
B0

(s) → ρ−π+, B0 → ρ−K+, B0
s → K−ρ+ and many others), in which only two tracks were

reconstructed, resulting in the typical “shoulder”-shape, that is suppressed around 5.1 GeV/c,
because their contribution is limited to the mπ+π− < mB0

(s)
region for kinematic reasons.

Figure 3.12: Invariant π+π−-mass distribution of the events passing the optimized selection of tab. 3.3
(black). The corresponding distribution for events with LT(B) < −300 µm is overlaid (red).

3.8.2 Signal composition

The observed width of the B0
(s) → h+h

′− signal is approximately 38 MeV/c2, larger than what
expected from the simulation for a single (e. g., B0 → π+π− or B0 → K+π−) decay. This indicates
that the B0

(s) → h+h
′− signal is the overlap of signals from different B0 and B0

s decay-modes with
unknown proportions. Theoretical [24] and experimental [109] knowledge at the time of this analysis
predicts sizable contributions from two known B0 modes (B0 → K+π− and B0 → π+π−) and
two, still unobserved, B0

s modes (B0
s → K+K− and B0

s → K−π+), but, in principle, many other
may contribute. In order to obtain the desired branching-fraction measurements, it is necessary to
separate the contributions of the different components of the signal.

The measurement of the composition of the B0
(s) → h+h

′− signal is the scope of this analysis, and
it is described in the next four chapters. In chap. 4, we see that a separation on an event-by-event basis
is not feasible, and we introduce the statistical approach that combines information from PID and
kinematics into an unbinned multivariate maximum likelihood (ML) fit to determine the contribution
of each mode. It includes also choice of the kinematic observables and the achieved PID performance.
In chap. 5 we detail the dedicated calibration of the dE/dx measurement, while the likelihood fit and
its results are described in chap. 6 and chap. 7.
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Chapter 4

Separation of individual

B0
(s)
→ h+h

′− modes

The B0
(s) → h+h

′− signal reconstructed in the previous chapter is expected to contain several B0 and
B0
s meson decay-modes in unknown proportions. We need to discriminate the individual contributions

for extracting the desired measurements of branching fractions. The available resolution in mass and
in particle identification is insufficient for an event-by-event separation of the decays. This chapter
is devoted to the description of how the information from kinematics and particle identification was
used to achieve a statistical discrimination among the individual modes.

4.1 Introduction

Figure 4.1 shows the invariant π+π−-mass distribution of the different expected decay-modes, resulting
from the Monte Carlo simulation. Besides the established B0 → K+π− and B0 → π+π− modes, we
included contributions from B0

s → K+K−, B0
s → K−π+, B0

s → π+π−, B0 → K+K−, Λ0
b → pπ−,

and Λ0
b → pK− decays. We used branching fractions based on current experimental knowledge and

theoretical predictions. We used the world-average measurements of the production fractions of B0

mesons, B0
s mesons, and b-baryons from fragmentation of a b-quark: fd = 0.397, fs = 0.107, and

fbaryon = 0.107 [109]. For the branching fractions of the established modes, we used the most recent
results from the B-Factories: B(B0 → K+π−) = 18.5× 10−6 and B(B0 → π+π−) = 4.8× 10−6 [109].
For the other modes, we used typical theoretical predictions: B(B0 → K+K−) = 0.1×10−6, B(B0

s →
K−π+) = 8.0×10−6, and B(B0

s → π+π−) = 0.1×10−6 from Ref. [24], and B(Λ0
b → pπ−) = 1.0×10−6

and B(Λ0
b → pK−) = 1.5× 10−6 from Ref. [115].

Despite the excellent CDF II mass-resolution, the different decay-modes are too closely spaced
in mass to be resolved;1 they appear overlapping in a single peak, broader than the expected mass
resolution for an individual decay. In addition, PID resolution is insufficient for an event-by-event

1See, for instance, some observed mass-widths: σm ≈ 14 MeV/c2 in J/ψ → µ+µ− decays, or σm ≈ 9 MeV/c2 in

D0 → h+h
′− decays.

97
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Figure 4.1: Invariant π+π−-mass distribution of the simulated decay-modes contributing to the B0
(s) →

h+h
′− signal.

identification of particles in the final states. Only the momenta of charged particles are measured,
while their masses need to be arbitrarily assigned when the invariant mass of the decay is computed.
Unfortunately, whatever mass assignment we choose (a single one for all modes), the invariant-mass
distributions of modes with mis-assigned masses are inevitably broadened: even with an infinitely
precise mass resolution, their reconstructed invariant-mass would vary as a function of the momenta
of the outgoing particles. For the distribution of fig. 4.1 we chose the charged pion mass for both
outgoing particles. The mis-assigned invariant π+π−-mass of the B0 → K+π− mode peaks at a
value about 45 MeV/c2 lower than the nominal B0 meson mass, while the invariant π+π−-mass of
the B0

s → K−π+ mode peaks at a value some 45 MeV/c2 higher, although 45 MeV/c2 lower than
the nominal B0

s meson mass. Any contribution from mis-reconstructed B0
s → K+K− decays centers

at the B0 meson mass, because the B0-B0
s mass difference approximately compensates the effect of

mis-identifying both kaons. While the mass r.m.s. width is approximately 25 MeV/c2 for the properly
reconstructed B0 → π+π− mode, the widths of other modes appear to be larger (about 30 MeV/c2),
as a consequence of incorrect mass assignments.

However, even though an event-by-event separation of the individual contribution of each involved
process is beyond CDF possibilities, a statistical separation can be exploited for extracting the desired
measurements of decay rates. This was based on the combination of kinematic information of the
decays with final-states PID, and required a dedicated calibration of the PID response to exploit the
maximum separation.

4.2 Kinematic separation

To discriminate among decay modes, we exploit kinematic differences. These differences are small,
since the ≈ 90 MeV/c2 difference between B0

s and B0 masses, and the ≈ 350 MeV/c2 difference
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between kaon and pion masses are small compared with the typical energy available for each outgoing
particle in the decay rest-frame (E ≈ 2.5 GeV).

Evaluating, for each event, the different invariant masses resulting from all possible mass assign-
ments to the particle pair (i. e., π+π−, K+π−, π+K−, and K+K−) induces unavoidable and large
correlations between the likelihood terms, with complications for their description and use in the
fitting procedure. In addition, this choice would considerably increase the number of observables
needed in the likelihood function. If contributions from other modes (e. g., Λ0

b → pπ−) are considered,
additional observables add up to the set of fit observables.

On the other hand, choosing a single, privileged mass-assignment capable of discriminating the
modes better than other assignments is not convenient. The resulting separation power remains
limited whatever assignment is chosen, because not all the available kinematic information is efficiently
exploited.

We defined two variables that summarize the information carried by the values of invariant-mass
resulting from all possible mass assignments to the outgoing particles. In a decay of a particle into
two bodies of momenta ~p1 and ~p2 and masses m1 and m2, the invariant mass of the decaying particle
satisfies the following relation:

m2
m1m2

=
(√

m2
1 + p2

1 +
√
m2

2 + p2
2

)2

− (~p1 + ~p2)2. (4.1)

Similarly, the invariant mass of the pair resulting from a different mass assignment to the outgoing
particles is

m2
m1m2

=
(√

m2
1 + p2

1 +
√
m2

2 + p2
2

)2

− (~p1 + ~p2)2, (4.2)

where the incorrect mass m1 (m2) is assigned to the particle with momentum ~p1 (~p2) with, in general,
m1 6= m2 6= m1 6= m2. The B0

(s) → h+h
′− data are acquired with a trigger requirement of particles

with transverse momenta larger than 2 GeV/c. In this regime, the limit of relativistic decay-products
is sufficiently accurate, m2

1,2,m
2
1,2 � p2

1,2, thus the difference between the mis-reconstructed and the
true mass of the pair can be expanded in the following Taylor series up to O(m2/p2):

m2
m1m2

−m2
m1m2

≈
(

1 +
p1

p2

)(
m2

2 −m2
2

)
+
(

1 +
p2

p1

)(
m2

1 −m2
1

)
. (4.3)

The relation (4.3) allows writing the invariant mass of the decay, m2
m1m2

, for any mass assignment to
the outgoing particles (m1,m2), as a function of just two, loosely correlated variables: an invariant
mass m2

m1m2
obtained from a single arbitrary choice of mass assignment, and the ratio of momenta

p1/p2 (momentum imbalance). After choosing a single mass-assignment for all events, thus obtaining
the observable m2

m1m2
, of which the p.d.f. is function, the likelihood term corresponding to a given

decay-mode is easily written in terms of the nominal B0 or B0
s mass (i. e., the value of mm1m2 obtained

with the correct mass assignment for the given mode), and of the momentum imbalance. Our choice
of the charged-pion mass (mπ) for the two particles yields

m2
π+π− ≈ m

2
m1m2

+
(

1 +
p1

p2

)(
m2
π −m2

2

)
+
(

1 +
p2

p1

)(
m2
π −m2

1

)
. (4.4)
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For each event (i. e., for each set of observed mm1m2 = mπ+π− and p1/p2), eq. (4.4) takes on different
forms, depending on the mode one is referring to. For the B0 → K+π− mode, for instance, m1 = mK+ ,
m2 = mπ− or viceversa by construction, hence m2

m1m2
= mB0 .

The advantage of this approach consists in the fact that all kinematic information is summarized
in just two, loosely correlated, variables, while a larger number of strongly-correlated variables would
have been needed if all mass assignments had been used in the likelihood.

Charge-kinematics flavor tagging

By combining charge information with kinematic information, one can gain discrimination between
K+π− and K−π+ final states. In Kπ decays the heavier kaon tends to carry higher momentum than
the pion; hence, decays in which the positively (negatively) charged particle has higher momentum
than the other one are preferably K+π− (K−π+) events. If one neglects a O(�) fraction of doubly-
Cabibbo-suppressed decays, this provides some separation between B0

(s) and B
0

(s) decays in Kπ final

states, because K+π− states are produced only by B0 and B
0

s decays, while K−π+ states are produced
only by B

0
and B0

s decays.

We labeled the outgoing particles according to the increasing magnitude of their momenta, index
“1” labels the charge (q1), mass (m1), and momentum (~p1) of the lower momentum particle in the
decay, index “2” labels the corresponding quantities of the higher momentum particle. Then we
defined a “signed momentum-imbalance” as

α =
(

1− p1

p2

)
× q1, (4.5)

which takes values in the finite interval [−1, 1]. Equation (4.4) can be rewritten in terms of α as

m2
π+π− ≈ m

2
m1m2

+ (2− |α|)(m2
π −m2

2) +
(

1− 1
|α| − 1

)
(m2

π −m2
1), (4.6)

where m1 (m2) is the mass of the lower (higher) momentum particle.

Table 4.1 reports the analytic expressions for the average invariant π+π−-mass of the decay, as a
function of the signed momentum imbalance, for each specific B0

(s) → h+h
′− mode. The formulas are

obtained by solving eq. (4.6) for mπ+π− , and replacing all masses with the nominal values appropriate
to each decay mode. For each mode, and for every value of α, the observed π+π−-invariant mass is
distributed as a Gaussian function, owing to the detector resolution smearing of the natural width
of the B0

(s) meson. The mean of the distribution is labeled as M(α) ≡ E[m2
π+π−(α)], where E[x]

indicates the expectation value of the random variable x (see tab. 4.1).

Figure 4.2 shows a graphical representation of the relation between the invariant π+π−-mass and
the signed momentum-imbalance, in which the analytical formula of the B0 → K+π− mode in tab. 4.1
is smeared with the assumed 25 MeV/c2 mass resolution, and the distribution in signed momentum-
imbalance is assumed flat. The mean of the invariant-mass distribution, M(α), shifts as a function
of the signed momentum imbalance. The gain in information due to this mass-momentum correlation
over the simpler invariant mass information (represented by the projection of the plot in fig. 4.2 onto
the mπ+π− axis) comes from the differences among shifting patterns in different modes.
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Figure 4.2: Graphical representation of the two-dimensional distribution of invariant π+π−-mass as
a function of the signed momentum-imbalance for the B0 → K+π− mode. The invariant mass distri-
bution is assumed to be Gaussian with constant 25 MeV/c2 standard deviation. The α-distribution
is assumed to be a constant.
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Table 4.1: Analytic expressions of the squared invariant-mass of the B0
(s) meson candidate with pion

mass assignment to both particles (mπ+π−) as a function of the signed momentum-imbalance (α) for
each B0

(s) → h+h
′− mode. Left column: values for α < 0, i. e., the negatively-charged particle carries

smaller momentum. Right column: values for α > 0, i. e., the positively-charged particle carries larger
momentum.

The distributions of invariant π+π−-mass as a function of the signed momentum-imbalance for
simulated B0

(s) → h+h
′− decays are shown in fig. 4.3 (see sec. 3.6 for details on the simulated samples).

In spite of the smearing effect of the mass resolution, different trends for the different modes are
visible. Differences between B0 → K+π− and B

0 → K−π+ decays, and between B0
s → K−π+ and

B
0

s → K+π− decays are also evident. The latter are used to measure the CP-violating decay-rate
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asymmetry in these modes. The shape in the B0 → π+π− mode is obviously a straight line centered at
the B0 meson mass, since the chosen mass assignment is correct for this mode. Small, if any, kinematic
separation is expected between B0 → π+π− and B0

s → K+K− modes, because the B0
s → K+K−

curve is also approximately constant, and overlaps the B0 → π+π−curve. However, an increased
separation between these two modes is provided by the PID information, since both particles in final
states are different.
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Figure 4.3: Distribution of the invariant π+π−-mass as a function of the signed momentum imbalance
for the following simulated modes: (a) B0 → π+π− and B

0 → π+π−, (b) B0 → K+π−, (c) B
0 →

K−π+, (d) B0
s → K−π+, (e) B

0

s → K+π−, (f) B0
s → K+K− and B

0

s → K+K−.

The same features are more evident in fig. 4.4, in which the distributions of fig. 4.3 are mπ+π− -
averaged within each bin (profile plots) to visually remove the effect of mass-resolution smearing.
The precise correspondence between the analytical functions of tab. 4.1 (solid, black lines overlaid)
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Figure 4.4: Profile plots of the invariant π+π−-mass as a function of signed momentum imbalance for
the following simulated modes: (a) B0 → π+π− and B

0 → π+π−, (b) B0 → K+π−, (c) B
0 → K−π+,

(d) B0
s → K−π+, (e) B

0

s → K+π−, (f) B0
s → K+K− and B

0

s → K+K−. The corresponding
analytical expressions (from tab. 4.1) are overlaid (black, solid line).

and the simulated data indicate that the approximation used to extract eq. (4.3) is very accurate
in the kinematic range of interest. We effectively summarized the kinematic information in just two
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variables, with virtually no loss of information. A general feature of these plots is that slopes are
enhanced at the boundaries of the α domain (|α| ≈ 1), suggesting that the kinematic separation is
more effective in those decays where the momenta of the final particles are strongly unbalanced.

4.3 Charged particle identification

Identification of hadrons in CDF is difficult, since the detector was mostly designed for high-pT physics
measurements [116] and not optimized for these capabilities. The TOF is the only subdetector entirely
devoted to this function, but its performances are marginal for particles with momenta greater than 2.0
GeV/c. Similarly, specific ionization from the silicon tracker is of little help, because its identification
power is only effective for particles with pT

<∼ 800 MeV/c.2

Conversely, for charged particles of pT & 2 GeV/c, the identification from the rate of energy loss
through ionization (dE/dx ) in the gas that fills the active volume of the drift chamber is reasonably
effective. To a good approximation, the most probable dE/dx value for a charged particle is a function
of its velocity; thus, if the momentum of the particle is measured, the mass can also be determined.
In the COT, the signal induced on each sense-wire depends on the amount of ionization charge
produced by the passage of the charged particle near the wire. It is measured in nanoseconds because
it is encoded as the digital pulse-width between the leading and the trailing-edge times of the hit.
Multiple samplings along the trajectory of the charged particle allow a more reliable estimation of
dE/dx , which has usually a broad distribution (see appendix A). The COT samples a maximum of 96
dE/dx measurements per track, from which a 80% truncated mean is calculated to avoid the adverse
effect of long positive tails in the estimation of the average dE/dx . A more detailed description of the
dE/dx measurement in the COT is given in appendix A and in references therein.

Off-line dE/dx information could not be used directly in our analysis. In the first two years of
data-taking, an unexpected wire-aging was observed, and the effect was severe enough to significantly
degrade the performance of the chamber. Gain losses of up to 50% were observed as a function of time
and location in the chamber. The aging was attributed to polymer build-up in the avalanche, which
grew in a strong radiation environment and deposited on sense wires. The importance of the effect
depended on local temperature and gas-flow patterns. The wire coating was identified as being mostly
composed of carbon, hydrogen and a small amount of oxygen. Eventually, it was found that operating
the chamber with about 100 ppm of O2 added to the gas admixture (compared with a standard level
of less than 12 ppm), reversed two years of gain loss in less than ten days [117].

Although the data collected when the COT performance was maximally compromised were ex-
cluded from physics analyses, smaller gain variations, due to the first, undetected effects of degradation,
were observed throughout all data. Therefore, an accurate calibration of the uniformity of the dE/dx
response in time and over the chamber volume was required. This is particularly important for anal-
yses like ours, that rely on statistical separation, where even modest gain-variations may significantly
reduce the available separation power.

The calibration of the dE/dx has been a crucial ingredient for the present measurement. This

2A separation equivalent to the one between two equal Gaussian distributions spaced by one standard deviation

apart is obtained for kaons and pions at this momentum.
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analysis was the first one using dE/dx in Run II. After our calibration, several other CDF measure-
ments took advantage from the improved dE/dx performance [118, 119]. The details of the calibration
procedure are described in the next chapter, which can be skipped at a first reading, if one prefers to
continue directly toward the discussion of the measurement. In this case, we anticipate the relevant
results of the calibration as follows.

The goal of the calibration was to remove any spurious dE/dx dependence on local properties of
the chamber or on features of the particles other than velocity. This had the effect of optimizing the
PID performance in terms of separation power and correlations in the response.

Separation power – the capability of discriminating among different classes of charged particles is
crucial because the larger the separation, the smaller the statistical uncertainty on measure-
ments of sample composition. Before the calibration, the observed difference between dE/dx
distributions of kaons and pions was equivalent to an approximately 1.10σ separation between
two Gaussian distributions, σ being the r.m.s. width (see fig. 4.5(a)). The improved performance
due to calibration provided a separation approximately equivalent to 1.4σ (see fig. 4.5(b)) nearly
constant in the momentum range of interest. The observed 1.4σ separation is sufficient to sta-
tistically distinguish two samples obtaining an uncertainty only a factor 0.6 worse than the
one achievable by means of an “ideal” PID, i. e., the one with PID-observables having non-
overlapping distributions. The most relevant separation capability needed in our analysis is
between B0 → π+π− and B0

s → K+K− contributions, which are almost indistinguishable kine-
matically (see fig. 4.1). Since both final state particles are different, in this case we benefit from
approximately 1.4× 1.4 ' 2σ separation, corresponding to 75% of the ideal separation.

In addition to the increase in separation (see sec. 5.2.2–5.2.4), we obtained the curves of the
expected dE/dx for kaons and pions (see sec. 5.3), and we accurately modeled the dE/dx
distributions for a proper inclusion in the fit of the sample composition (see sec. 5.8).

Correlations – Even more critical, although often overlooked, are the correlations between dE/dx
measurements. Residual time-dependent gain variations cause non-zero correlations between ob-
served dE/dx of particles in the same event, yielding biased estimates of the sample composition,
if the dE/dx is applied to multiple particles per event.

As a result of our calibration, we halved the initial track-to-track correlation (see sec. 5.7)
remaining with a residual 11% correlation, which was modeled for a proper inclusion in the fit
(see sec. 5.8).
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(a) (b)

Figure 4.5: Distribution of the off-line dE/dx (before the calibration) for negatively-charged kaons
(black histogram) and pions (red histogram) with 2.5 < p < 3.0 GeV/c (a). Distribution of the
calibrated dE/dx around the average pion response for negatively-charged kaons (black histogram)
and pions (red histogram) (b). The curves of the average dE/dx response as a function of momentum
were not available before the calibration. We therefore restricted the distributions in plot (a) to a
narrow momentum-range to minimize the spread due to the dE/dx dependence on momenta.
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Chapter 5

Calibration of the measurement of

specific ionization in the drift

chamber

This chapter describes the calibration of the specific ionization signal produced by the passage of charged
particles in the drift chamber. Data were used to equalize the response as a function of the trajectory of
the incident particle in the chamber and of time. Special emphasis is given to the study of correlations
between the observed dE/dx of particles in the same event. The calibration provided a significantly
improved separation between classes of particles and reduced correlations. The chapter also discusses
the extraction of the modeling of the dE/dx distributions to be used in the fit of the composition of
the B0

(s) → h+h
′− sample.

5.1 Calibration sample

Final states of B0
(s) → h+h

′− modes and of the dominant backgrounds contain charged kaons and
pions. For calibration purposes, we therefore used a copious and pure sample of charged kaons and
pions from D0 decays in the chain

D∗(2010)+ → D0π+ → [K−π+]π+. (5.1)

The O(5 µb) cross-section for production of central D∗+ mesons with pT > 6 GeV/c in pp̄ collisions
[120], combined with a 2.6% branching fraction for the process (5.1) [109], are efficiently exploited
by the Displaced-Tracks Trigger, which collects extremely abundant signal samples. The strong D∗+

decay unambiguously identifies the flavor of the D0 meson, which is selected in its dominant, Cabibbo-
favored decay D0 → K−π+.1 Thus, the final states always contain two like-sign charged pions and
one oppositely-charged kaon, allowing collection of high-purity samples of kaons and pions from the

1The O(10−3) contamination of the doubly-Cabibbo-suppressed mode D0 → K+π− is negligible for our purposes

[121].

109
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D0 decay. The pion originated from the D∗+ decay is denoted as “soft pion”, since it has a much
lower transverse momentum than all other particles in the decay.

The sample was collected by the B CHARM trigger (see sec. 3.3), a path that belongs, along with the
B PIPI path, to the Displaced-Tracks Trigger. A large fraction of trigger requirements is common to
these two paths. Thus, most trigger-dependent effects on the dE/dx of B0

(s) → h+h
′− final states are

automatically accounted for in the calibration. The sample contains the same physics-quality runs
used for the B0

(s) → h+h
′− analysis (see sec. 2.6).

Following Ref. [106], the reconstruction of signal (see fig. 5.1) was solely based on tracking and on
the information on the identity of D0 decay-products provided by the charge of the soft pion. The
quality requirements described in sec. 3.5.1 were applied to all tracks of the candidate decay. One

primary vertex
D∗+ decay

D0 decay

LT

(soft) π+

π+

K−

Figure 5.1: Schematic sketch of theD∗+ → D0π+ → [K−π+]π+ decay topology in the plane transverse
to the proton beam direction.

D0 → K−π+ and one D
0 → K+π− candidate were formed for each pair of oppositely-curved tracks

found in the XFT fiducial region (|η| < 1). Further requirements on the product of impact parameters
of tracks (d0(K) × d0(π) < 0 cm2), on candidate transverse momentum (pT(D0) > 5.5 GeV/c),
on its transverse decay-length (LT(D0) > 300 µm), and on its impact parameter (|d0(D0)| < 140
µm) were applied to reject O(10%) contributions [120] from non-prompt D∗+ decays. Candidates
with reconstructed invariant mass within 200 MeV/c2 from the world average D0 mass [109] were
combined with a third charged particle with pT > 0.4 GeV/c (soft pion) to form a D∗+ → D0π+

candidate. The charged pion mass is assigned to the like-sign pair of particles. The difference between
the reconstructed D∗+ and D0 masses was required to be within 1.5 MeV/c2 from the nominal value of
0.1454 GeV/c2 to reduce backgrounds (combinations of true D0 decays with random tracks, random
three-track combinations that satisfy the selection requirements, etc.).

The selection results in about 3.3×105 signal decays, shown in the invariant Kπ-mass distribution
of fig. 5.2(a). A D0 signal with about 10 MeV/c2 r.m.s. width is visible over a low background com-
posed of random track combinations that accidentally meet the selection requirements (combinatorial
component) and of mis-reconstructed D0 decays. The combinatorial component populates uniformly
the whole mass range. D0 → K+K− decays (B ' 3.9 × 10−3) in which a kaon is mis-assigned the
pion mass, and D0 → K−π+π0 (B ' 13%) decays in which a π0 is not reconstructed, contaminate
the lower mass-side of the signal. The higher mass-side contains, among others, D0 → π+π− decays
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(B ' 1.4× 10−3), in which a pion is mis-assigned the kaon mass [106]. The final calibration sample is

Figure 5.2: Invariant Kπ-mass distribution (a) and distribution of the mass difference between D∗+

and D0 candidates, mD∗+ −mD0 (b).

restricted to the D0 candidates found within 40 MeV/c2 from the world average D0 mass [109], and
resulted in 184,368 D∗− → D

0
π− → [K+π−]π− and 178,258 D∗+ → D0π+ → [K−π+]π+ candidates.

At this level we did not subtract the background, whose contamination is already reduced to O(5%).

Kaons (or pions) with positive and negative charges were studied separately to properly account
for the effects due to the asymmetry of the COT layout, which makes the efficiency of charge-collection
dependent on the sign of the track curvature (see sec. 2.3.5). In the following, for brevity, we show the
distributions for particles of only one charge, when the effects observed for the other one were similar.

5.2 Calibration procedure

We studied the observed dE/dx response as a function of a set of “macroscopic” parameters such as
time, track azimuthal angle, pseudo-rapidity, etc. We did not check for anomalous effects associated
to lower level COT structures such as super-layers, cells, or hit widths, because these were already
accounted for in the standard CDF low-level corrections described in appendix A. Our calibration
procedure consists of the following steps:

1. extensive search for possible dE/dx gain variations as functions of several global and track-
related quantities;

2. identification of the subset of variables {xi} showing the most relevant effects;

3. removal of the dE/dx dependence on each xj variable; we first corrected for the most severe
effects, proceeding toward the smallest ones, while taking care of minimizing the cross-correlation
between the variables;
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4. extraction of the ionization curve, i. e., the function that describes the expected average dE/dx
for a charged particle as a function of its Lorentz boost (βγ);

5. determination of the dE/dx resolution;

6. evaluation of the separation between kaons and pions;

7. extraction of the dE/dx correlations.

The crucial point is the correction (third step). In the simple case of a gain variation as a function
of just one detector-related or track-related variable, e. g., x, the corrected dE/dx is simply obtained
by fitting the dependence on that variable and subtracting the result from the uncorrected dE/dx .
When the dE/dx depends on multiple quantities, e. g., x1 and x2, two cases are possible. If the
dependencies are factorizable, i. e., dE

dx (x1, x2) = f(x1)× g(x2), with f and g being generic functions,
then the corrected dE/dx is easily determined in two stages. First, the dependence on one variable, say
x2, is corrected in a subsample restricted to a limited domain in x1, such that dE/dx is approximately
constant as a function of x1 in that domain and the subsample contains sufficient statistics. Then, the
resulting correction is applied to the whole sample, in which, finally, the one-dimensional dependence
on x1 can be corrected. The worst case is when multiple dependencies can not be factorized, i. e.,
dE
dx (x1, x2) = h(x1, x2) 6= f(x1) × g(x2). In principle, a multivariate fit of dE/dx as a function
of all quantities provides a multi-dimensional function that corrects simultaneously all effects. In
practice, the size of the sample needed to obtain reliable corrections increases significantly with the
number of effects to be corrected for, and the parameterization of the correction becomes more and
more complex. Therefore, this approach is often combined with iterative corrections in a compromise
between the conflicting needs for a simultaneous correction of correlated dependencies, and for samples
with adequate statistics.

In the present case, the observed dE/dx was affected by multiple anomalous dependencies cor-
related in a non-factorizable way and complicated by unavoidable, intrinsic correlations between the
geometric and kinematic quantities. For instance, a gain variation as a function of pseudo-rapidity is
induced by the natural dependence of ionization on the Lorentz boost (βγ) combined with the βγ− η
correlation caused by the selection requirements and the kinematics of the decay.

We applied multiplicative, rather than additive, corrections because most dE/dx dependencies are
expected to derive from geometric or gas-related effects of the chamber. They are therefore expected
to influence the gain, rather than the offset, of the response.

5.2.1 Search for gain variations

An extensive scan of dE/dx distributions as a function of a number of variables evidenced four
major anomalous effects (see fig. 5.3): a dependence on the time (run number) correlated with effects
dependent on three track-related quantities, the azimuthal angle (ϕ0), the pseudo-rapidity (η), and
the multiplicity of associated COT-hits. Similar effects were observed also in control samples of muons
from J/ψ decays and electrons from conversions. No further gain variations were found as a function
of chamber pressure, instantaneous luminosity, or z0 of tracks.
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(a) (b)

(c) (d)

Figure 5.3: Profile plots of dE/dx as a function of run number (a), and of the azimuthal angle (b),
pseudo-rapidity (c), and hit multiplicity (d) of the track. All distributions include contributions from
positively and negatively-charged kaons and pions. The average ionization 〈dE/dx 〉 is the dE/dx
value averaged along the corresponding variable within each bin.

The ϕ0 dependence is the most severe effect (see fig. 5.3). A “triangle”-shaped periodic pattern
with ≈ 2.5 ns shifts between the measured dE/dx values is observed. Large dE/dx variations (≈ 2 ns)
are observed also as a function of pseudo-rapidity. An uniform dE/dx degradation of about 1.5 ns,
on average, is observed as a function of time, qualitatively confirming the hypothesis of a progressive
gain-loss from coating of the wires (see sec. 4.3). An effect of about 1.5 ns is also observed as a function
of the hit multiplicity.

The magnitude of these effects can be compared with the typical separation between the distri-
butions of dE/dx for kaons and pions of fig. 5.4. A simple Gaussian χ2-fit of the central part of
each distribution yields a kaon response distributed around 13.0 ns with 1.6 ns r.m.s. spread, and a
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Figure 5.4: Distribution of the off-line dE/dx for negatively-charged kaons (black plot) and pions (red
plot) with 2.5 < p < 3.0 GeV/c.

pion response distributed around 14.8 ns with 1.7 ns r.m.s. spread. Despite the partial broadening
due to the 500 MeV/c range in momentum, the separation is comparable in size to the observed gain
variations.

Thus, the need for dE/dx calibration is two-fold: on one hand, this would increase the separation
power; on the other one, the calibration is required to avoid biases (as a function of time, or of the
position of the track in the chamber, for instance) in the determination of the composition of the
B0

(s) → h+h
′− sample. This aspect is the most critical, and was the original and major motivation

for carrying out the calibration before proceeding with our measurement.

The corrections were applied in the following order:

1. time-dependent correction for the azimuth dependence;

2. time-dependent correction for the pseudo-rapidity dependence;

3. correction for the hit multiplicity.

At each step, the correction was applied to the dE/dx value resulting from the previous step. We
partitioned the data set in eleven independent subsamples, contiguous in time, to partially decouple
geometric from time-dependent effects. The goal was to obtain samples with adequate statistics and
limited dE/dx variations as a function of time. We studied the geometric dependencies separately
within each subsample. The full set of run ranges is shown in fig. 5.5. The major known hardware
and working-conditions changes were taken into account in partitioning the sample, including the
implementation of hardware corrections for the gas pressure (since run 142559, see appendix A),
the introduction of the XFT one-miss logic configuration (since run 152646, see sec. 3.2.4), and the
introduction of the 4/5 SVT majority-logic (since run 164304, see sec. 3.2.4). An example of the impact
of such changes in dE/dx -related quantities is given in fig. 5.5(b): since run 167830, a significant
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fraction of Displaced-Tracks Trigger data were collected by the B CHARM HIGHPT (see sec. 3.3) trigger
path, which applies higher thresholds on transverse momenta. A separate treatment is needed for
these data to take into account the higher average boost of particles (see fig. 5.5(b)).

A B C D E F G H I L M

Figure 5.5: Profile plot of dE/dx as a function of run number for kaons and pions (left panel). Red
lines indicate the separations between run ranges, which are labeled in alphabetical order. Profile plot
of the Lorentz boost as a function of run number for kaons (right panel). The red line corresponds to
run 167830.

5.2.2 Time-dependent correction for gain variation with azimuthal posi-

tion

First we corrected for the azimuthal dependence, which is the largest effect observed. We found
that this effect is independent of the pseudo-rapidity and multiplicity of associated COT hits of the
track, but it degrades with time. Figure 5.6 depicts the average measured dE/dx as a function of
ϕ0 in 9 (out of 11) run ranges for positively-charged kaons and pions. Time and ϕ0 dependencies
of the dE/dx are not factorizable, since the magnitude of azimuthal dependence changes (worsens)
with time. This is consistent with the hypothesis of a time-dependent degradation of the gain due to
wire aging. The interpretation of the azimuthal pattern of the gain loss is complicated by the details
of gas-flow patterns within the COT. However, fig. 5.6 shows that the region with the largest gain-
reduction corresponds to the coldest portion of the chamber, i. e., the sector that lies directly under
the silicon detector, which is kept at a temperature below 0◦C. Convection currents in the gas could
also play a role. This suggested a temperature-dependence of wire coating, consistently with what
was observed in the H1 chamber at HERA which used a similar gas [122]. Besides aging, gravitational
and electrostatic sagging of the wires were investigated as possible causes of this effect. The observed
azimuthal pattern is inconsistent with this hypothesis.

The effect was removed with a time-dependent ϕ0 correction, i. e., an independent set of ϕ0
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Figure 5.6: Profile plot of dE/dx as a function of track ϕ0 for positively-charged kaons and pions.
Each plot corresponds to a different period of data taking (see fig. 5.5).

corrections was determined for each of the run ranges of fig. 5.5. Since the sharp peaks of fig. 5.6
are poorly modeled with smooth fitting functions, we applied a per-bin multiplicative correction that
rescales the average dE/dx in each ϕ0-bin, and in each run range, to an arbitrarily chosen value of 15
ns. The result of the correction is reported in fig. 5.7.

5.2.3 Time-dependent correction for gain variation with axial position

The second largest effect is a function of pseudo-rapidity. The combined effect of kinematics, selection
biases, and cell geometry cause a coupling of the pseudo-rapidity, hit multiplicity, and boost distribu-
tions of particles in our sample. In order to study the η dependence independently of such correlations,
we restricted the calibration sample to the subset of particles with boost in the range 7 < βγ < 9 and
with 69 ≤ N ≤ 73 associated COT hits. Such βγ-range is small enough to make dE/dx variations
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Figure 5.7: Profile plot of dE/dx as a function of track ϕ0 for positively-charged kaons and pions.
Black (red) points refer to the dE/dx evaluated before (after) the correction.

within the subsample negligible for our purpose, and it has the highest density of particles (kaons
only) in our sample.2 Similarly, the chosen N -domain is the only one in which the dE/dx appears
fairly constant, as shown in fig. 5.3(d). As for the azimuthal dependence, the gain degradation as a
function of pseudo-rapidity is time-dependent in a non-factorizable way (see fig. 5.8). In earlier data,
figs. 5.8(a)–5.8(c), the pattern appears symmetric between negative and positive pseudo-rapidities,
as one would expect from a consequence of the sample-specific correlations between pseudo-rapidity
and Lorentz boost. Later on, the degradation increases and the gain loss worsens toward the exhaust
end of the chamber (η > 0 side). Such asymmetric pattern is consistent with the observed aging due
to polymer build-up, since the net gas flow in the chamber is directed toward positive ẑ. Although
the steep, “V”-shaped feature appearing around |η| <∼ 0.2 was not further investigated, past Run I
experience suggested a possible detector-induced gain saturation affecting signals from vertical tracks
[123].

We applied a time-dependent, multiplicative η-correction by fitting to 11th-degree polynomials the
observed patterns in each run range. This removed the dependence and adjusted the average dE/dx
value to the conventional value of 15 ns. The correction determined from the subsample described
above was then applied to the whole sample (see fig. 5.9).

5.2.4 Correction for gain variation with sampling multiplicity

The observed dE/dx also shows a non-trivial dependence on the number N of COT hits associated
to the track (see fig. 5.10(a)). The dE/dx decreases in going from N = 42 to N ≈ 70, after
which value it shows an almost constant trend followed by a moderate increase. Multiple and inter-

2Owing to the 2 GeV/c trigger threshold on the transverse momentum, the minimum βγ for pions in Displaced-Tracks

Trigger data is βγ = p/m ≈ 2/0.139 ≈ 14.
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Figure 5.8: Profile plots of dE/dx (already corrected for the ϕ0 dependence) as a function of track
pseudo-rapidity in different run ranges for a subsample of positively-charged kaons and pions with
specified Lorentz boost and number of associated COT hits (see text).

correlated factors affect hit-multiplicity distributions. Lorentz boost plays a role, for instance, because
faster charged-particles produce larger ionization, whose effect on hit multiplicity is two-fold: on one
hand a larger fraction of wires collects signals above discriminator threshold, on the other hand,
large ionization causes larger pulse-widths, which have higher probability to be merged, during read-
out, with subsequent hits in high occupancy events, hence decreasing hit multiplicities. The former
contribution dominates, causing an average excess of two hits for pions with respect to kaons. An
interpretation of the observed N -dependence in terms of the above issues is not simple. However, a
pattern of this kind is expected from the truncated-mean estimation of an asymmetric distribution, as
in the case of the off-line dE/dx . We studied this estimator as a function of the sampling multiplicity
(see fig. 5.10(b)) in an ensemble of pseudo-experiments based on positive Cauchy distributions whose
mean values were estimated with an 80% truncation. An effect similar to the one observed in data is
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Figure 5.9: Average dE/dx response (already corrected for the ϕ0 dependence) as a function of
track pseudo-rapidity for positively-charged kaons and pions. Black (red) points refer to the dE/dx
evaluated before (after) the correction.

evident, with comparable size (which depends on the skewness of the distribution).

The gain variation as a function of the number N of associated COT hits does not vary with time,
allowing for a time-integrated correction. Lorentz-boost correlation was minimized by restricting the
sample to the domain of particles (only kaons) with 7 < βγ < 8. We corrected the effect on hit
multiplicity by fitting it to a 4th-degree polynomial function that removed the slope, and set the
average dE/dx to the conventional value of 15 ns. The correction is first obtained from the chosen βγ-
restricted subsample, and it is subsequently extended to the whole sample (see fig. 5.10(a)). Although
the effect is considerably reduced, a residual slope is still visible. This indicates that the βγ and
the N dependencies do not factorize exactly, as assumed in our correction procedure. The residual
dependence is accounted for in the treatment of dE/dx correlations (see sec. 5.7).

5.3 Extraction of the expected ionization curve

Once the dominant effects were corrected, we extracted the curve of the expected dE/dx as a function
of the Lorentz boost. We first divided the sample according to the Lorentz boost of the particles (βγ-
bins); in each bin we computed the dE/dx sample-mean (denoted as “average dE/dx” or 〈dE/dx 〉
in the following);3 then we fit the average dE/dx as a function of the Lorentz boost to the following
modified Bethe-Bloch curve (see appendix A):〈

dE
dx

〉
=

1
β2

[
c1 ln

(
βγ

b+ βγ

)
+ c0

]
+ a1(β − 1) + a2(β − 1)2 + C, (5.2)

3Sample mean was preferred to any other estimator because it minimizes the variance.
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Figure 5.10: Profile plot of dE/dx (already corrected for the azimuthal and axial effects) as a func-
tion of hit multiplicity for positively-charged kaons and pions (a). Black (red) points refer to the
dE/dx evaluated before (after) the correction. Average truncated mean of a set of Cauchy-distributed
variables, as a function of the number of variables (b).

with ai, b, cj , and C free parameters in the fit. The resulting function is usually referred to as the
“ionization curve”.

Since contamination from background may lead to a sample-dependent curve and consequent
biases in estimates of the sample composition, the purity of the sample is of paramount importance in
extracting the curve. We both increased the sample purity in the region of the D0 signal and applied a
background subtraction to the dE/dx distributions. First, we defined a signal plus background sample,
tightening the requirements of sec. 5.1: we used D0 candidates with observed mass within 20 MeV/c2

(compared with 40 MeV/c2, used for calibration) from the world average [109]. Then we defined a
background sample that contained D0 candidates with reconstructed mass within 40 to 60 MeV/c2

from the nominal one. Finally, we subtracted the 〈dE/dx 〉 distribution of background events from
the 〈dE/dx 〉 distribution of signal plus background events. For each ith bin in βγ we calculated the
sideband-subtracted expected dE/dx as〈

dE
dx

〉
i

=
〈Si〉ni − 〈Bi〉mi

ni −mi
, (5.3)

where Si is the dE/dx sample-mean (over the ni entries in the bin) of particles in the signal-plus-
background sample, and Bi is the sample-mean (over the mi entries in the same bin) of particles in
the background sample. In each bin, ni includes a number mi of expected background events. The
expression for the standard deviation of the expected background-subtracted dE/dx is not trivial:

σ〈dE/dx〉i =
1

(ni −mi)4
×
{
n4
iσSi +m5

iσ
2
Bi + nim

2
i

[
niσSi − 2m2

iσ
2
Bi + (〈Si〉 − 〈Bi〉)2

]
+ n+ i2mi

[
m2
iσ

2
Bi − 2niσSi + (〈Si〉 − 〈Bi〉)2

]}
, (5.4)
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where σSi and σBi are the uncertainties on the number of signal-plus-background and background
events in the ith bin.

(a) (b)

Figure 5.11: Average dE/dx (after all corrections) as a function of βγ of positively-charged kaons and
pions (a). A fit to the modified Bethe-Bloch curve (see eq. (5.2)) is overlaid in red. Average difference
between data and fit function as a function of βγ (b). The red line marks the reference zero-value.

Figure 5.11(a) and fig. 5.12(a) depict the average dE/dx after all corrections as a function of the
Lorentz boost for kaons (in the range βγ & 4) and pions (in the range βγ & 14) with the result of
a binned ML fit to the function of eq. (5.2) overlaid in red. The fit does not describe accurately the
data (see fig. 5.11(b) and fig. 5.12(b)): positive and negative O(0.1 ns) discrepancies, and the quality
of matching between pion and kaon data at the pion turn-on (βγ & 14) is poor. The corresponding
plots for negatively-charged pions and kaons, figs. 5.12(a) and (b), exhibit similar features.

These effects suggest for us to use separate models for the expected dE/dx of pions and kaons,
while keeping the original separation in charge, for an additional insight in the observed mis-match
(see fig. 5.13). For a given boost, higher ionization is detected from positively-charged kaons than from
pions while for negatively-charged particles the opposite behavior is observed. The different average
ionization between kaons and pions, therefore, seems to be an effect depending on the track curvature
(i. e., mass and charge), rather than just on the mass of particles. This is consistent with being caused
by the asymmetry of the COT cells. A more detailed investigation would require a complete revision
of the CDF low-level standard calibration (see appendix A). However, since the O(0.1 ns) bias is small
compared with 1.5 ns typical dE/dx resolutions, we chose the simpler solution of fitting separately
each particle type and charge to extract particle-dependent expected dE/dx values.

Figure 5.14 shows the fit residuals (difference between data and fit functions). The residual for
positively-charged particles is still not perfectly flat at zero, but the size of previous biases is signifi-
cantly reduced and a smooth matching between kaons and pions is obtained.

In presence of a small systematic effect in curvature, we therefore chose to use particle-dependent
curves for the expected dE/dx throughout the analysis. In the need for the maximum separation
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(a) (b)

Figure 5.12: Average dE/dx (after all corrections) as a function of βγ of negatively-charged kaons
and pions (a). A fit to the modified Bethe-Bloch curve is overlaid in red. Average difference between
data and fit function as a function of βγ (b). The red line marks the reference zero-value.

(a) (b)

Figure 5.13: Average dE/dx (after all corrections) as a function of βγ of positively (a) and negatively-
charged (b) particles. In each plot, two distributions are superimposed, one corresponding to kaons
(black points with fit function overlaid in red), the other one corresponding to pions (green points
with fit function overlaid in blue).

power, this allows exploiting a more accurate parameterization of dE/dx .
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(a) (b)

Figure 5.14: Average difference between data and fit function shown in fig. 5.13 as a function of βγ
of positively (a) and negatively-charged (b) kaons and pions.

5.4 Checking the corrections

We verified the improvements provided by the dE/dx tuning by studying the distributions of “dE/dx
residuals”. The dE/dx residual (in mA mass hypothesis) of a charged particle with momentum p and
observed specific energy-loss dE/dx obs, is defined as

δA =
dE
dx obs

− dE
dx A

, (5.5)

in which dE/dxA is the expected dE/dx determined from the function eq. (5.2) evaluated at βγ =
p/mA.

The residual of an ideal dE/dx would show no dependencies. Comparing the residuals before and
after tuning allows estimating the benefits and the reliability of the tuning (see figs. 5.15 and 5.16).
The calibration greatly improved the uniformity and stability of dE/dx response: the ≈ 2 ns variation
in gain as a function of time is reduced to a <∼ 1 ns effect; the ≈ 2.5 ns azimuthal dependence was
reduced down to the ≈ 0.5 ns level; The 1–1.5 ns axial dependence was reduced to <∼ 0.5 ns effect as
well as the effect on hit multiplicity. Similar features are present in the corresponding distributions for
negatively-charged particles. However, the dependencies are not completely removed: second-order
residual effects are still visible. Sections 5.7 and 6.2.1 discuss on how they have been taken into
account in the analysis.

5.5 Resolution

Additional, and potentially useful, information for separation resides in the resolution of the dE/dx
measurement, available on a per-track basis. The dE/dx resolution is defined as the r.m.s. width of a
Gaussian distribution that fits the bulk of the distribution of dE/dx residual. In general, the observed
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(a) (b)

(c) (d)

Figure 5.15: Distribution of residuals (with kaon hypothesis) for positively-charged kaons as a function
of run number (a), and of azimuth (b), pseudo-rapidity (c), and hit-multiplicity (d) of the track. Black
(red) points are obtained using the uncorrected (corrected) dE/dx .

deviations of resolution from its typical 1.5 ns value are modest, thus providing limited additional
information. The dependence on hit multiplicity is the dominant effect involving the resolution (see
fig. 5.17). It derives from the sampling process associated to the dE/dx measurement. The observed
σdE/dx ∝ a − b ·N dependence is different from the expected Poisson fluctuation σdE/dx ∝ 1/

√
N .

This might be due to non-linearities from low-level gain corrections (which vary among super-layers)
and from the truncated mean algorithm.

We chose not to use dE/dx resolution as a discriminating variable in the analysis, after checking
that its contribution to the separation power is marginal.
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(a) (b)

(c) (d)

Figure 5.16: Distribution of residuals (with pion hypothesis) for positively-charged pions as a function
of run number (a), and of azimuth (b), pseudo-rapidity (c), and hit multiplicity (d) of the track. Black
(red) points are obtained using the uncorrected (corrected) dE/dx .

5.6 Separation

Any improvement in particle identification capability quantifies the impact of the dE/dx corrections.
Given a PID-related observable, (dE/dx residual, for instance) the identification performance relies
on the difference in the distributions of the chosen observable between the classes of events to be
identified. Such difference is generally expressed in terms of a separation between those distributions.

The conventional way to quote the separation is to provide an estimation of the distance between
the centers of the distributions in units of their standard deviations (σ). The reliability of this
estimation degrades increasingly as the distributions deviate from the Gaussian shape. In presence
of long tails or strongly asymmetric distributions, the separation estimated with this approach is not
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Figure 5.17: Distribution of dE/dx resolution as a function of the number of associated COT hits for
positively-charged kaons and pions.

reliable. In addition, this choice has limited applicability: if the PID information is given in form of
a multi-dimensional observable, no straightforward and unambiguous way to quote the separation is
provided.

We therefore chose a different approach [124]. Suppose that one uses PID information in a sample
of N events, of which a fraction f are pions and a fraction 1−f kaons (see fig. 5.18). An unambiguous
estimator of the separation power is the precision (1/σf ) in estimating the fraction f , where σf

is the statistical uncertainty on the fraction. The precision is bounded from above by the value

(a)

f℘π(x)

(1− f)℘K(x)
(b)

f℘π(x)

(1− f)℘K(x)

Figure 5.18: Illustration of the distribution of a simulated PID-observable (x, in the text) for pions
(red curve) and kaons (black curve) in case of partial (a) and total (b) event separation.
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1/σbest
f =

√
N/f(1− f) obtained in the ideal case of classes of events being totally separated, i. e.,

the distributions of the chosen PID observable having zero overlap (see fig. 5.18(b)). In this limiting
case, the only uncertainty in assigning an event to one of the two classes comes from the Binomial
fluctuation due to the finite sample-size.

We quote the separation between kaons and pions as the relative precision with respect to the
ideal case s = σbest

f /σf . The resolution σf can in principle be determined by repeating a maximum
likelihood fit of the fraction f on a sufficient number of pseudo-experiments that simulate the exper-
imental data, and evaluating the spread of results around the input values. We used, instead, the
Minimum Variance Bound (see appendix B). Choosing a variable x to separate the classes of events,
in the simple case of two classes, the MVB is written as

σ2
f =

1
N

[∫
(℘π(x)− ℘K(x))2

f℘π(x) + (1− f)℘K(x)
dx

]−1

, (5.6)

where ℘π(x) and ℘K(x) are the probability distributions of x, normalized to unit area, for pions and
kaons respectively (see fig. 5.18).4 Following our approach, the separation power of the variable x in
the given sample is determined by evaluating

s = σbest
f /σf =

√
f(1− f)

∫
(℘π(x)− ℘K(x))2

f℘π(x) + (1− f)℘K(x)
dx. (5.7)

This quantity is independent of the sample size, but depends on the true values of fractions as generally
happens for resolutions. This is also intuitive, since an easier separation is expected among populations
similar in size. The quantity s ranges from zero, i. e., no separation corresponding to completely
overlapping distributions, to one, i. e., the maximum achievable separation in the given sample. The
quantity s is well-defined whatever the shape and the dimensionality of the PID distributions involved.
In addition, any s value can be analytically converted in an “equivalent nσ separation” to quote, in a
more conventional way, the separation in σ units one would have observed if the distributions of the
chosen PID variable were Gaussian.

The achieved separation power depends on the variable (i. e., x) used to measure it, and a wise
choice of the variable (or set of variables) may enhance the actual separation. To find the optimal
variable, we checked a few combinations of observed dE/dx , expected dE/dx , and dE/dx resolutions.5

We chose to use dE/dx residuals with pion mass hypothesis, δπ, since no significant enhancements in
separation were found by using other variables.

We evaluated the separation using an approximately 97%-pure sample of kaons and pions from
candidates with mass within 20 MeV/c2 from the nominal D0 mass (see fig. 5.19). Following relation
(5.7), the resulting separation is s+ ' 59.53% for positively-charged particles and s− ' 58.60%
for negatively-charged particles, approximately constant in the momentum range of interest 2 <∼
p <∼ 20 GeV/c. These values correspond to approximately 1.43σ and 1.39σ Gaussian-equivalent

4The symbol x may stand for a set of many variables, discrete or continuous, and the integral extends over the whole

x domain.
5We studied dE/dx residuals, residuals normalized by the dE/dx uncertainty, and the Neyman-Pearson Test (NPT)

variable. The NPT is the ratio of the likelihood functions corresponding to the two classes (℘π/℘K) and was tried

because it is the most statistically powerful variable when a cut is used to separate events, i. e., cutting on the NPT

variable provides the least background at fixed efficiency.
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(a) (b)

Figure 5.19: Distribution of dE/dx around the average pion response for negatively (a) and positively-
charged (b) pions (red line) and kaons (black line).

separations, respectively. Since s (see eq. (5.7)) depends on the specific proportions among classes
of events present in the sample, the above values hold only for samples with approximately equal
contributions from pions and kaons. This condition is (accidentally) satisfied in the B0

(s) → h+h
′−

sample (see chap. 7).

Separation s [%] Equivalent separation [Gaussian σ]
Uncorrected ' 48.78 ' 1.10
ϕ0 − t ' 54.90 ' 1.28
η − t ' 56.43 ' 1.33
Hit multiplicity ' 59.70 ' 1.43

Table 5.1: Observed separation between positively-charged kaons and pions as a function of the
corrections applied.

Table 5.1 contains the values of the separation evaluated after each step of the calibration. A 22%
improvement is achieved in passing from the uncorrected dE/dx to the dE/dx after the corrections.
The values refer to positively-charged kaons and pions; similar results are found for negatively-charged
particles.

5.7 Correlations

Figure 5.20 shows the distribution of the residual for pions (with pion hypothesis) as a function of the
residual for kaons (with kaon hypothesis) after all dE/dx corrections have been applied. A non-zero,
positive correlation is apparent from the shape of the distribution, corresponding to a correlation
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Figure 5.20: Residual for pions (with pion hypothesis) as a function of the residual for kaons (with
kaon hypothesis).

coefficient ρ ' 11%.6

5.7.1 Source of the correlation

With an ideal PID detector, no correlation is expected between independent measurements. Non
vanishing correlation indicates the presence of residual dE/dx gain variations. An uncorrected gain
variation, in fact, would induce a correlation between the observed ionizations of distinct particles,
through the inevitable correlations present in the calibration sample.

The mechanism through which the correlations of the calibration sample induce correlations in the
dE/dx response is easily explained in mathematical terms. Suppose to use dE/dx information from
two particles per event. One wants to properly write the distributions of dE/dx for the two particles,
in general ℘(dE ′/dx ′, dE ′′/dx ′′). If the dE/dx shows a gain variation as a function of, say ϕ0, the
p.d.f. becomes conditional at given pair of azimuthal angles:

℘

(
dE ′

dx ′
,
dE ′′

dx ′′

)
−→ ℘

(
dE ′

dx ′
,
dE ′′

dx ′′

∣∣∣ϕ′0, ϕ′′0)× ℘ (ϕ′0, ϕ
′′
0) . (5.8)

Hence, the desired distribution is obtained as

℘
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,
dE ′′

dx ′′

)
=

∫
℘

(
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,
dE ′′

dx ′′

∣∣∣ϕ′0, ϕ′′0)× ℘ (ϕ′0, ϕ
′′
0) dϕ′0dϕ

′′
0

=
∫
℘

(
dE ′
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∣∣∣ϕ′0)℘(dE ′′

dx ′′

∣∣∣ϕ′′0)× ℘ (ϕ′0, ϕ
′′
0) dϕ′0dϕ

′′
0 . (5.9)

If the azimuthal angles are independent observables,

℘(ϕ′0, ϕ
′′
0) = ℘(ϕ′0)× ℘(ϕ′′0), (5.10)

6The correlation coefficient in this case is ρ =
E[δπ×δK ]−E[δπ ]×E[δK ]

σδπ×σδK
, in which E[x] indicates the expected value of

x, and σ are sample standard-deviations.
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and eq. (5.9) can be factorized as:
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∫
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)
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(
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)
. (5.11)

However, eq. (5.10) does not usually hold for particles in a same event. In particular, if the particles
originate from the same decay, their kinematic quantities (ϕ0, η, . . . ) will be strongly dependent,
preventing the factorization of the dE/dx distribution and yielding correlated values of the observed
dE/dx . The sources of correlation can be divided into two types:

Global effects – these are all effects not-related to kinematics. Suppose that the dE/dx shows gain
variations as a function of the instantaneous luminosity: dE

dx = dE
dx (βγ,L). Then, since the kaon

and the pion from a D0 decay are reconstructed in the same event (i. e., in the same conditions
of luminosity), their observed dE/dx would appear correlated by the common dependence on
luminosity. This may apply to a variety of global variables, such as time, pressure or temperature
of the gas, and so forth.

Local effects – these are all effects related to kinematics. Suppose that the dE/dx shows gain
variations as a function of the azimuthal angle of emission of the particle: dE

dx = dE
dx (βγ, ϕ0).

Then, since the azimuthal angle of a kaon and a pion from a D0 decay are correlated by the
kinematic of the decay and the selection biases, their observed dE/dx would become correlated.
This may apply to a variety of local variables, such as η, z0, hit multiplicity, etc.

5.7.2 Impact of the correlations

In presence of correlations between observables of a likelihood fit, not only the statistical precision is
degraded, but biased estimates may occur. The correlation between observed values of dE/dx plays
a role when dE/dx information of multiple particles per event is used, as in our case. If the values
dE ′/dx ′, dE ′′/dx ′′,. . . , dEn/dxn are observed for n particles in an event, the presence of correlation
imply that these random variables are not independently distributed, i. e., the probability of observing
a set of dE/dx values is not factorizable in the single probabilities:

℘

(
dE ′

dx ′
,
dE ′′

dx ′′
, . . . ,

dEn

dxn

)
6= ℘′

(
dE ′

dx ′

)
× · · · × ℘n

(
dEn

dxn

)
. (5.12)

The joint p.d.f. in the left-hand side term of above relation needs to be used, instead of the factorized
form in the right-hand side. Otherwise, when the dE/dx is used as a discriminating observable in a
fit, the multi-particle probability distribution for a dE/dx observable would be incorrect. Similarly,
when an event-by-event dE/dx -based selection is applied (i. e., when “cutting” on the dE/dx ), the
expected overall efficiency corresponding to the chosen requirements would be wrong. Both cases may
yield biased estimates of the sample composition.

Relation (5.12) may hold also in absence of correlation, since dependence between variates, a
weaker condition than correlation, is the harmful feature.7 However, following a common colloquial

7As an example, the variates x and y = x2 with flat x-distribution in [0, 1] are fully dependent but show zero

correlation.
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convention, in this thesis we refer to this dependence as correlation, because in our specific case
(common-mode gain-variations, see next section) correlation and dependence coincide.

5.7.3 Study of the correlations

We investigated the combined effect of any possible residual gain variation by allowing for a generic,
time-dependent common-mode fluctuation c(t) that affects and correlates the observed dE/dx values
in the event. In particular, we extracted the variance (σ2

c ) of the distribution of the common mode, as
an estimator of the size of the correlation. We denote the probability distributions of dE/dx residual
for pions (with pion mass-hypothesis) as ℘π(δπ), with standard deviation σπ. An analogous notation
is adopted for kaons. If δπ and δK were independent variables, the probability distribution of their
sum (δK + δπ) would satisfy

℘(δπ + δK) = ℘π(δπ) ∗ ℘K(δK), (5.13)

in which the symbol ∗ indicates the Fourier convolution product.8 Similarly, their difference δπ − δK
would be distributed as

℘(δπ − δK) = ℘π(δπ) ∗ ℘−K(−δK), (5.14)

where ℘−K(−δK) is the distribution of the negative residual for kaons (dE
dx K

− dE
dx obs

), whose variance
satisfies the condition σ2

K = σ2
−K . Since the variance of a convolution product is the sum of variances

of the convoluted distributions, the standard deviations of the distributions of sum and difference are
equal:

σπ+K = σπ−K =
√
σ2
π + σ2

K . (5.15)

On the other hand, if the two residuals are correlated by a common-mode fluctuation, the observed
residual (δobs) is written as the sum of the intrinsic, uncorrelated residual with the common-mode
shift:

δobs
π = δπ + c and δobs

K = δK + c. (5.16)

Therefore, the sum of observed residuals, δobs
π + δobs

K = δπ + δK + 2c, is distributed as

℘(δobs
π + δobs

K ) = ℘π(δπ) ∗ ℘K(δK) ∗ ℘c(2c), (5.17)

whereas their difference, δobs
π − δobs

K = δπ + c− δK − c = δπ − δK , is distributed as

℘(δobs
π − δobs

K ) = ℘π(δπ) ∗ ℘−K(−δK). (5.18)

Equations (5.17) and (5.18) show that, in presence of a common mode, the sum of residuals has
greater variance than their difference, σ2

π+K > σ2
K−π. The standard deviation of the correlation is

easily obtained:

σc =
1
2

√
σ2
π+K − σ2

π−K . (5.19)

Following eq. (5.19), we used the distributions of sum and difference of the observed residual to estimate
the magnitude of time-dependent common modes. We compared the variances of the correlation
extracted from two samples:

8Henceforth, “convolution” always denote the Fourier convolution product.
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physical sample – the sample used in the calibration: each event contains a kaon and a pion pro-
duced in the decay of a singleD0 meson. In this sample, the common mode receives contributions
from gain variations due to global effects (pressure, time, luminosity,. . . ) and local effects (ϕ0,
η, . . . ) since kaons and pions are kinematically correlated.

mixed-decay sample – an artificial sample containing events in which the kaon and the pion orig-
inate from decays of two distinct D0 mesons, reconstructed in two consecutive events. In this
sample, we expect the magnitude of the common mode to be smaller than in the physical sam-
ple. The contribution to the gain variations due to local effects are reduced, since pion and kaon
are kinematically uncorrelated. In addition, the larger the time scale of the gain variation with
respect to the typical time interval between the collection of two D0 decays, the smaller becomes
the contribution of global effects.

This allowed studying what fraction of the correlation (σc) is enhanced by the kinematics of the decay
and what is due to global effects (see fig. 5.21). The correlation is expected to reduce after dE/dx

(a) (b)

Figure 5.21: Distribution of the sum (black line) and difference (red line) of residuals for a kaon (in
kaon hypothesis) and a pion (in pion hypothesis) from a D0 decay (a). Same distribution of plot (a)
obtained by combining kaons and pions from decays of D0 candidates in adjacent events (b).

tuning. tab. 5.2 shows σc evaluated after each step of the dE/dx calibration. A factor of two reduction
in the size of the correlation confirms that our corrections were effective. Nevertheless, a 11% residual
correlation (corresponding to σc ' 0.52 ns) still affects the calibration sample. This has been modeled
and properly included in the likelihood fit of the B0

(s) → h+h
′− sample (see next section).

5.8 Model of the dE/dx distributions

Use of dE/dx information in a likelihood fit requires modeling the distributions of the desired observ-
ables. It is convenient to stress the difference between observed dE/dx quantities, i. e., those affected
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σc [ns] σmix
c [ns]

Uncorrected ' 1.045 ' 0.54
ϕ0 − t ' 0.73 ' 0.21
η − t ' 0.72 ' 0.25
Hit multiplicity ' 0.52 ' 0.24

Table 5.2: Width of the distribution of correlation for physical and mixed-decay samples as a function
of the correction applied.

by common-mode fluctuations, and intrinsic quantities, that would have been observed in absence of
correlations. Since the intrinsic residual and the correlation are, by construction, independent vari-
ables (see eq. (5.16)), the (known) distribution of the observed residuals is the convolution of their
unknown distributions:

℘(δobs) = ℘(δ + c) = ℘(δ) ∗ ℘(c). (5.20)

The models for the intrinsic residuals, ℘(δ), and for the correlations, ℘(c), were extracted from the
distributions of observed residuals, ℘(δobs), of pions and kaons from D0 decays. We expanded each
term of the right-hand side of eq. (5.20) in sum of Gaussian distributions, and we fit the distributions
of observed residuals to extract the unknown parameters. In practice, the first two terms of the
expansion were sufficient to model accurately intrinsic residuals and correlations:

℘K(δK) = q · GK′(δK) + (1− q) · GK′′(δK) (5.21)

℘π(δπ) = p · Gπ′(δπ) + (1− p) · Gπ′′(δπ) (5.22)

℘c(c) = r · Gc′(c) + (1− r) · Gc′′(c) (5.23)

where we used the following notation for the Gaussian distribution: Gs(x) = G (x;µs, σs) = 1
σs
√

2π
e
− (x−µs)2

2σ2
s .

Independent parameterizations were assumed for the distributions of intrinsic residuals for positively
and negatively-charged particles. Mean (µ), variance (σ2) and fraction of each Gaussian were deter-
mined with a simultaneous, binned ML fit of the following combinations of observed residuals:

℘K(δobs
K ) = ℘(δK) ∗ ℘(c) = (GK′ + GK′′) ∗ (Gc′ + Gc′′) (5.24)

℘π(δobs
π ) = ℘(δπ) ∗ ℘(c) = (Gπ′ + Gπ′′) ∗ (Gc′ + Gc′′) (5.25)

℘(δobs
π + δobs

K ) = (Gπ′ + Gπ′′) ∗ (GK′ + GK′′) ∗ (G2c′ + G2c′′) (5.26)

℘(δobs
π − δobs

K ) = (Gπ′ + Gπ′′) ∗ (G−K′ + G−K′′), (5.27)

where the relative normalization factors (p, q, r) were included in the fit, but omitted above for a
clearer notation, and where G2s(x) = G (x; 2µs,

√
2σs) and G−s(x) = G (x;−µs, σs).

Figure 5.22 shows a satisfactory agreement between the chosen model and the distributions of
intrinsic residuals and correlations. The only, slight discrepancies between data and model appear
in the positive side of the distribution, with effects smaller than 1%. Figure 5.23(a) shows the re-
sulting models of the intrinsic residuals. Although we allowed for independent residual distributions
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(a) (b)

Figure 5.22: Distribution of observed dE/dx residual for pions (with pion mass hypothesis) (a), and for
kaons (with kaon mass hypothesis) (b). Results of the fit to the functions in eq. (5.25) and eq. (5.24)
are overlaid (red, solid line).

(a) (b)

Figure 5.23: Probability density function of the intrinsic (a) and observed (b) residual for pions (red)
and kaons (green). The p.d.f. correspond to positively-charged particles.

between kaons and pions, the extracted shapes are similar (see fig. 5.23), both showing non-Gaussian
positive tails. Figure 5.24 shows that the differences between residuals of positively and negatively-
charged particles are tiny. These small differences between kaons and pions and between positively
and negatively-charged particles have been ascribed to a systematic dependence of the dE/dx response
on track curvature, caused by the geometric and electrostatic asymmetry of the COT drift-cells. For
given Lorentz boost, trajectories of charged particles with different masses or charge have different
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curvatures, being sensitive to the systematic effects in the efficiency of charge-collection by the COT
sense-wires. Figure 5.25 shows the extracted correlation functions. Following sec. 5.7.3, we extracted

(a) (b)

Figure 5.24: Distributions of the observed residuals for positively (black) and negatively-charged (red)
pions (a) and kaons (b).

two models for the correlation function: one from the physical sample and the other one from the
mixed-decay sample. Both models show a narrow core centered at zero, with a small, long positive
tail. The width of the correlation between pion and kaon from the same decay is larger than the width
in the kinematically independent sample. This effect is expected from the kinematic enhancement of
dE/dx correlations discussed in sec. 5.7.
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(a) (b)

Figure 5.25: Probability density function of the correlation between dE/dx of pions and kaons from
the same D0 decays (a), and from decays of two D0 candidates reconstructed in consecutive events
(b).



Chapter 6

Statistical determination of the

sample composition

This chapter describes how the kinematic and PID information discussed in previous chapters was
combined in a maximum likelihood fit to statistically determine the composition of the B0

(s) → h+h
′−

sample. We chose a strictly data-driven approach, using the data to model all likelihood terms, except
for the kinematic distributions for signal events. Special emphasis is also devoted to discussing the
tests of the fit on simulated samples and the form of the likelihood function, which was carefully chosen
to avoid any possible bias.

6.1 The fit

The composition of the B0
(s) → h+h

′− sample, including the relative yields of B0 → K+π− and

B
0 → K−π+ decays, was statistically determined with a multivariate maximum likelihood fit [125]

that combined kinematic and PID information. We wrote an unbinned likelihood L (~θ|~x), function
of the n parameters of the model ~θ = (θ1, . . . , θn). For any specific set of values of the unknown
parameters ~θ, L is the joint probability density for obtaining the particular set of values of the
discriminating variables observed in the sample, ~x. In the fitting process, we maximized the likelihood
function with respect to the unknown parameters, thus determining their ML estimate. Technical
details of the numerical maximization of the likelihood by means of the minuit package [126] are
given in appendix B.

An appropriate choice of the discriminating observables is crucial to fully exploit the available
information while keeping a simple analytic expression of the likelihood. The goal is to use the
maximum available information through the minimum number of observables. In addition, the more
independent the chosen observables are, the simpler is factorizing and modeling the joint probability
density.

137



138 Chapter 6. Statistical determination of the sample composition

6.1.1 Kinematic observables

In the kinematic portion, we exploited the correlation between the invariant mass of the particle
pair with pion mass assignments (mπ+π−) and the signed momentum imbalance, α = (1 − p1/p2)q1,
accordingly to what is shown in sec. 4.2. The arbitrary assignment of the pion mass to both particles
is convenient with respect to the Kπ assignment because, being symmetric, it prevents complications
from interchanged K+π− ↔ K−π+ assignments.

Additional information from momenta, complementary to the information from their ratio, is
exploited by using also the scalar sum of momenta of the particles, ptot = p1 + p2. This quantity
is required because, in spite of its limited separation power (it hardly discriminates all signals from
background), it allows a proper factorization of the likelihood function, as it is shown in sec. 6.2.3.
Using the variables (α, ptot) in place of (p1, p2) to access momentum information is convenient, because
it allows writing the probability distributions in terms of lesser correlated quantities.

6.1.2 PID observables

Particle identification information was summarized in a single observable for each charged particle,
the “kaonness” κ, defined as

κ =
dE/dx obs − dE/dxπ
dE/dxK − dE/dxπ

. (6.1)

The average of this quantity is, by construction, zero for pions and one for kaons, with almost
momentum-independent distribution for both types of particles. This is particularly convenient in
our case, since all B0

(s) → h+h
′− modes have only pions and kaons in their final states, and also the

background composition is expected to be dominated by these particles.

In summary, the likelihood was calculated by evaluating the joint probability density corresponding
to the values of the following, five discriminating observables for each event:

1. mπ+π− – the invariant mass of the pair of final state particles with pion mass assignments;

2. α – the signed momentum imbalance between the two particles;

3. ptot – the scalar sum of particle momenta;

4. κ1 – the kaonness (function of the dE/dx ) of the lower-momentum particle;

5. κ2 – the kaonness of the higher-momentum particle.

6.2 Likelihood function

The likelihood function L was written as a product, over the N events in the sample, of the single-
event likelihood Li:

L (~θ|~x) ≡ L (~θ) =
N∏
i=1

Li(~θ). (6.2)
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Once the final selection was applied (see tab. 3.3), each event contained only one B0
(s) → h+h

′−

candidate. Thus, additional correlation terms in the likelihood, needed in case of multiple candidates
per event, could be neglected. The single-event likelihood is written as

Li(~θ) = (1− b)L sig + bL bck (6.3)

In eq. (6.3), L sig is the term that describes the probability distributions of the observables for signal
events and L bck is the corresponding term for background events; b is the fraction of background
events, to be determined by the fit.

6.2.1 Signal likelihood

The likelihood that describes the signal is a sum of factorized probability density functions:

L sig =
s∑
j=1

fj(℘mj ℘
p
j℘

PID
j ) = (6.4)
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p
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PID
... ),

in which the index j runs over all expected B0
(s) → h+h

′− modes, that is, B0 → π+π−, B0 → K+π−,

B
0 → K−π+, B0

s → K−π+, B
0

s → K+π−, B0
s → K+K−, B0 → K+K−, B0

s → π+π−, etc.1 The
parameters fj are their fractions (with respect to the total signal) to be determined by the fit. From
the (s− 1) independent fractions resulting by the normalization condition,

fs = 1−
s−1∑
j=1

fj , (6.5)

we determined the yield of each mode. We conventionally labeled as ℘m the term that describes the
invariant-mass distributions (“mass term”), as ℘p the term that describes the momentum distributions
(“momentum term”), and as ℘PID the term that models the dE/dx density (“PID term”). We show
in sec. 6.2.3 that this factorization is not trivial since the three terms of the p.d.f. are inter-related by
the dependencies between mass, momentum, and dE/dx observables.

The model of the kinematic terms of the likelihood, ℘p and ℘m, was extracted from Monte Carlo
simulation (see sec. 3.6), while the model of the PID term was determined from the samples of
D0 → h+h

′− decays described in sec. 5.1.

1C-conjugate modes are considered distinct for decays in Kπ final states.
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Probability density function of the mass term

The invariant π+π−-mass distribution of each decay mode is dominated by two contributions: one,
present only in the terms of the non-π+π− modes, is the mass shift, function of the momentum imbal-
ance of the decay. It is due to mis-assigned masses of the outgoing particles, as discussed in sec. 4.2; the
other one is the effect of the finite momentum resolution of the detector. We accounted for both effects
by writing a mass p.d.f. which is conditional for given momentum imbalance: for each observed value
of invariant π+π−-mass and of momentum imbalance, we assumed the mass distributed with Gaussian
spread around the specific average-value expected at that momentum imbalance, M(α). An event,
whose candidate has an invariant π+π−-mass mπ+π− and a momentum imbalance α, contributes to
the mass p.d.f. of the jth signal mode with the following term:

℘mj (mπ+π− |α; ~θ) = G (mπ+π− |α; ~θ) =
1

σm
√

2π
e
− 1

2

(
m
π+π−−Mj(α)

σm

)2

, (6.6)

in which the dispersion σm accounts for the detector resolution, and the mean value Mj(α) depends
on the mode (j) and on the observed signed momentum imbalance (α). For each mode, we included
the analytic expression of Mj(α) shown in tab. 4.1, which depends on the masses mB0 , mB0

s
, mK ,

and mπ as external inputs. For the masses of charged pion and kaon, we used the world average
values [109]. For the B0

(s) mesons, we used the masses measured by CDF in Run II: mB0 = 5279.63±
0.53 (stat .)±0.33 (syst .) MeV/c2 and mB0

s
= 5366.01±0.73 (stat .)±0.33 (syst .) MeV/c2 [105]. Using

the masses measured with the same apparatus and reconstruction code as for B0
(s) → h+h

′− data
allows cancellation of common systematic uncertainties. Therefore, only the statistical uncertainty in
the measurement of b-hadron masses of Ref. [105] contributes to the systematic uncertainty in our
measurement (see sec. 9.2.2).

We used a single mass resolution σm for all B0
(s) → h+h

′− modes, as predicted by the simulation
in sec. 3.6. The value of σm was obtained rescaling the mass-width observed in simulated B0

(s) →
h+h

′− decays to correct for the discrepancy observed between data and simulation (see sec. 3.6). We
extracted the scale factor by comparing the observed widths of several two-body decays (D0 → h+h

′−,
J/ψ → µ+µ−, and Υ→ µ+µ−) with the predictions of the simulation. This yielded a 1.26 scale factor
to be applied to the simulation, resulting in an expected r.m.s. width of σm = 28 ± 0.3 MeV/c2 for
each individual B0

(s) → h+h
′− mode.

The effect of the small variation of the mass resolution as a function of the transverse momentum
of the B0

(s) meson (about 1.5 MeV/c2, spanning the range 2 <∼ pT(B) <∼ 15 GeV/c, see sec. 3.6) was
included in the final checks of the measurement (see sec. 9.2.1).

Probability density function of the momentum term

The momentum p.d.f. is extracted from the simulated signal-samples described in sec. 3.6. Since
the signed momentum-imbalance (α) and the scalar sum of momenta (ptot) are not independent
observables, we used a joint p.d.f., ℘pj (α, ptot; ~θ), to model their distributions. Selection requirements
and kinematic correlations between the outgoing particles cause domain and shape of the α distribution
to vary as a function of ptot. In fact, both momenta (p1 and p2) are necessarily larger than 2 GeV/c,
and their sum is larger than 5.5 GeV/c, because of the trigger requirements on their transverse
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components. This translates into the following conditions on α and ptot:

p1 = ptot

(
1− |α|
2− |α|

)
> 2 GeV/c and ptot > 5.5 GeV/c. (6.7)

The other constraint on momentum, p2 = ptot/(2 − |α|) > 2 GeV/c, is automatically satisfied if
eq. (6.7) holds. The domain of the joint p.d.f. is defined by the requirements of relation (6.7) and it is
shown in fig. 6.1. The joint p.d.f. is written as the probability density of the scalar sum of momenta,

Figure 6.1: Allowed region in the (ptot, α) domain. Distribution of the scalar sum of momenta as a
function of the momentum imbalance in simulated B0

(s) → h+h
′− decays.

℘(ptot; ~θ), times the conditional probability density of the signed momentum-imbalance at given ptot,
℘(α|ptot; ~θ). We empirically chose the shapes of both densities, whose parameters were determined by
means of a two-dimensional, binned, ML fit of the simulated distributions. An event, whose candidate
has an observed scalar sum of momenta ptot and an observed momentum-imbalance α, contributes to
the momentum p.d.f. of the jth signal mode with the following term:

℘pj (α, ptot; ~θ) = ℘j(ptot; ~θ)× ℘j(α|ptot; ~θ)

=
1
Kj

(
ecjptot

4∑
l=0

al,jp
l
tot

)
×

[
6∑

m=0

bm,jα
m

(
ptot − 2
ptot − 4

)m]
, (6.8)

in which the ptot density is the product of an exponential function times a 4th-degree polynomial,
whereas the conditional p.d.f. of α is a 6th-degree polynomial in the α variable scaled by a factor
(ptot−2)/(ptot−4) deriving from the constraint on the domain of α given by relation (6.7). The index
j of the a, b, and c parameters denotes their dependence on the decay mode. The odd b terms are set
to zero for decays into π+π− and K+K− final states, where α distributions are symmetric because
the two outgoing particles have same mass. The normalization factor Kj for each mode is calculated
with numerical two-dimensional integration of the p.d.f. in the appropriate domain of α and ptot.

Figure 6.2 shows the distributions of the scalar sum of momenta as a function of the momentum
imbalance for the simulated modes. These are fit to the functions of eq. (6.8) to obtain the momentum
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templates shown in fig. 6.3. We checked the agreement between model and data by overlaying the
templates to the α-distributions of simulated data, sampled in different ptot ranges. An example of
this check is shown in fig. 6.4 for the B0 → π+π− mode. A similar agreement was found for all
simulated modes.

Figure 6.2: Distribution of the scalar sum of momenta as a function of the signed momentum imbalance
in the following simulated decays: (a) B0 → π+π− and B

0 → π+π−, (b) B0 → K+π−, (c) B
0 →

K−π+, (d) B0
s → K−π+, (e) B

0

s → K+π−, and (f) B0
s → K+K− and B

0

s → K+K−.
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Figure 6.3: Joint (α, ptot) templates as determined from simulated signal samples for the following
modes: (a) B0 → π+π−and B

0 → π+π−, (b) B0 → K+π−, (c) B
0 → K−π+, (d) B0

s → K−π+, (e)
B

0

s → K+π−, and (f) B0
s → K+K− and B

0

s → K+K−.
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Figure 6.4: Distributions (points with error bars) of the signed momentum imbalance for simulated
B0 → π+π− and B

0 → π+π− decays sampled in four distinct ranges of scalar sum of momenta:
6 < ptot < 7 GeV/c (a), 7 < ptot < 8 GeV/c (b), 8 < ptot < 9 GeV/c (c), and 9 < ptot < 12 GeV/c
(d). The corresponding templates are overlaid (solid line).

Probability density function of the PID term

The p.d.f. of the PID information can not be factorized in the probability densities of the two particles,
because of the 11% correlation between the observed dE/dx values in an event (see sec. 5.7). We
therefore wrote a two-particle, joint p.d.f. that incorporates the probability densities for the intrinsic
dE/dx observables of each particle, and for the correlation function.

We used the shapes of intrinsic residuals and correlation determined in sec. 5.8 to write the p.d.f.,
which results from a convolution integral plus a transformation of variables. The convolution combines
the intrinsic dE/dx residuals of both particles (δ1 and δ2) through the p.d.f. of correlation, ℘c(c),
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yielding the following p.d.f. for the jth mode:

℘j(δobs
1 , δobs

2 ; ~θ) = [℘l(δ1)× ℘m(δ2)] ∗ ℘c(c) =
∫ +∞

−∞
℘l(δ1,l − c)℘m(δ2,m − c)℘c(c)dc, (6.9)

which, at this stage, is independent of momenta. The indices l,m = K, or π depend on the identity
of particles in the final states of the jth mode, and determine the choice of the shapes for intrinsic
residuals within the integral, which are slightly different between pions and kaons (see fig. 5.23).

The p.d.f. in eq. (6.9) is function of a different set of observables for each mode, e. g., δπ for the
B0 → π+π− case, δπ and δK for the B0 → K+π− case, and so on. To avoid biases related to using
different sets of observables in different terms of the likelihood function [127], we rewrote the likelihood
in terms of a single observable, the kaonness κ. However, changing variable from residual to kaonness
induces an additional dependence on momentum in the PID term. In fact, for each particle type, the
following relation holds:

δ = (κ− 〈κ〉)
(

dE
dx K

− dE
dx π

)
≡ (κ− 〈κ〉) ∆ (6.10)

in which ∆ indicates the difference between expected dE/dx values evaluated in kaon and pion mass-
hypothesis, which is function of momentum. The joint p.d.f. in terms of κ is

℘(κobs
1 , κobs

2 ; ~θ) =
∫ +∞

−∞
℘(δ1 − c)℘(δ2 − c)

∣∣∣∣∣ ∂(δ1, δ2)
∂(κ1, κ2)

∣∣∣∣∣℘c(c)dc, (6.11)

in which δ ≡ δ(κ). After writing out the Jacobian, the above equation becomes

℘(κobs
1 , κobs

2 ; ~θ) =
∫ +∞

−∞
℘(δ1 − c)℘(δ2 − c)∆1∆2℘c(c)dc. (6.12)

The transformation from residual to kaonness brings the momenta into the probability density through
the differences of expected dE/dx values, ∆1(α, ptot) and ∆2(α, ptot). Hence, the correct expres-
sion of the joint p.d.f. function of κ becomes a conditional probability density at given momenta:
℘(κobs

1 , κobs
2 ; ~θ) −→ ℘(κobs

1 , κobs
2 |α, ptot; ~θ).

An event in which δ1 and δ2 are the observed dE/dx residuals of the particle pair, contributes to
the jth signal mode of the PID p.d.f. with the following term:

℘PID
j (κobs

1 , κobs
2 |α, ptot; ~θ) = ℘PID

l,m (κobs
1 , κobs

2 |α, ptot; ~θ) =
1
Kj

∫ +∞

−∞
℘l(δ1,l−c)℘m(δ2,m−c)∆1∆2℘c(c)dc,

(6.13)
which includes Kj = 1/

∫ +∞
−∞ ℘j(κobs

1 , κobs
2 |α, ptot; ~θ)dκobs

1 dκobs
2 as a normalization factor. The explicit

expression of the p.d.f. was evaluated analytically using mathematicaTM, a commercial software-
package for computation [128]; we omit here its explicit expression because of its length and lack of
visually intelligible features.

6.2.2 Background likelihood

The single-event likelihood for background is factorized in three terms:

L bck = ℘mbck℘
p
bck℘

PID
bck . (6.14)
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The model of mass and momentum terms was extracted in B0
(s) → h+h

′− data from events distributed
in the invariant mass regions at lower (4.850 < mπ+π− < 5.125 GeV/c2) or higher (5.4 < mπ+π− <

5.8 GeV/c2) masses with respect to the signal. These regions are henceforth identified as “mass
sidebands”. As for the signal, the model of the PID term for background was determined from the
samples of D0 → h+h

′− decays described in sec. 5.1.

Probability density function of the mass term

The different contributions to the background (combinatorial and partially reconstructed heavy-
flavors, sec. 3.8.1) are not included in the simulation. Rather than searching a priori a physics-
motivated model capable to reproduce the mass shapes of the various contributions, we empirically
found that an exponential function summed with a constant is adequate in the invariant-mass range
4.850 < mπ+π− < 5.800 GeV/c2. Each candidate, with invariant π+π−-mass mπ+π− and momentum
imbalance α, contributes to the mass probability density of the background with the following factor:

℘mbck(mπ+π− |α; ~θ) =
1
K

(ec1mπ+π− + c2) , (6.15)

in which K is the normalization constant K =
∫ 5.80

4.85
(ec1mπ+π− + c2) dmπ+π− , and ci are free param-

eters in the fit. Figure 6.5 shows that the functional form chosen for the background is appropriate.

Figure 6.5: Invariant π+π−-mass distribution of B0
(s) → h+h

′− candidates passing the selection of
sec. 3.8 (collision data). The function of eq. (6.15) is overlaid (red, solid line).

Probability density function of the momentum term

As for the signal, we used a joint p.d.f. that parameterizes simultaneously the distribution of momen-
tum imbalance (α) and of scalar sum of momenta (ptot). The p.d.f. is further split in the density
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of the scalar sum, ℘(ptot; ~θ), times the conditional density of the momentum imbalance, ℘(α|ptot; ~θ).
We empirically chose the shapes of both densities, whose parameters were determined in data with
a binned, two-dimensional ML fit of the distributions for candidates from mass sidebands. An event
with observed scalar sum of momenta ptot and observed momentum-imbalance α contributes to the
momentum p.d.f. of the background with the following term:

℘pbck(α, ptot; ~θ) = ℘(ptot; ~θ)× ℘(α|ptot; ~θ) =

1
K

[
1 +

(
ptot − λ

a

)2
]−s

e[−ν tan−1( ptot−λa )] ×
6∑

m=0

bmα
m

(
ptot − 2
ptot − 4

)m
,(6.16)

where the ptot density is a Pearson type-IV distribution [129], while the α conditional density is a
6th-degree polynomial in the α variable scaled by the usual factor (ptot − 2)/(ptot − 4).2 Since the
momentum distribution of particles from background is not expected to vary between positively and
negatively-charged particles, the shape of the α distribution was forced to be symmetric by setting the
odd b terms to zero. The normalization factor K is calculated through a numerical two-dimensional

Figure 6.6: Distribution of the scalar sum of momenta as a function of the momentum imbalance in
background events (a). Joint (α, ptot) template as determined in background events (b).

integration of the p.d.f. in the appropriate domain of α and ptot. Figure 6.6(a) shows the distribution
of the scalar sum of momenta as a function of the momentum imbalance in background events. A
fit to the function of eq. (6.16) yields the momentum template shown in fig. 6.6(b). We checked the
agreement between model and data by overlaying the template to the α-distribution of background
events, sampled in different ptot ranges (see fig. 6.7).

2The Pearson type-IV distribution is useful to approximate a broad class of asymmetric distributions with extensive

tails.
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Figure 6.7: Distributions (points with error bars) of the momentum imbalance for background events
sampled in four distinct ranges of scalar sum of momenta: 6 < ptot < 7 GeV/c (a), 7 < ptot < 8
GeV/c (b), 8 < ptot < 9 GeV/c (c), and 9 < ptot < 12 GeV/c (d). The corresponding templates are
overlaid (solid line).

Probability density function of the PID term

The PID p.d.f. for background uses the same joint two-particle p.d.f. as for the signal. The term
corresponding to each possible pair of particle types (l,m) in background, is weighed by a factor
wlwm. Each weight wl is proportional to the fractional contribution of particles of type l to the
background, and it is a free parameter in the fit. We allowed for independent kaon, proton, electron
and pion (or muon) contributions. Muons and pions were not differentiated since their contributions
are indistinguishable; the ≈ 1.5 ns dE/dx resolution is insufficient to resolve the difference between
their ionization rates, which is inappreciable because of the small difference in mass. This does not
affect the signal composition, since muon contamination in the signal peak is negligible, if any, due
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to the small rates expected for B0
(s) meson decays in muon pairs [130], and muons from semileptonic

heavy-flavor decays don not have a peaking distribution in mass. We used the model of residuals
and correlation for kaons and pions described in sec. 5.8, but we lacked the corresponding model
for protons and electrons. We assumed that the distribution of the residual for protons (electrons)
with proton (electron) mass hypothesis were the same as of pions: ℘e(δe) = ℘p(δp) = ℘π(δπ). This
assumption is valid to a good extent since, in principle, the shapes of residuals (with the correct mass
hypothesis) are independent of the particular type of particle. The small differences observed between
kaon and pion residuals in fig. 5.23, suggest that we need to associate a systematic uncertainty due to
this assumption (see sec. 9.3.2).

A candidate decaying to particles with κobs
1 and κobs

2 observed “kaonnesses”, sum of observed scalar
momenta ptot, and observed momentum imbalance α, contributes to the PID term of the likelihood
of background with the following probability density function:

℘PID
bck =

∑
l,m=e,π,K,p

wlwm[℘l,m(κobs
1 , κobs

2 |α, ptot; ~θ) + ℘m,l(κobs
1 , κobs

2 |α, ptot; ~θ)]. (6.17)

The explicit expression of ℘l,m(κobs
1 , κobs

2 |α, ptot; ~θ) is shown in eq. (6.13). While in the signal case
the l,m indexes run over kaons and pions only, in the above equation they include also protons and
electrons. We measured independent fractions of particle species in each of the invariant π+π−-mass
ranges listed in tab. 6.1. This allows for a priori different background compositions in these regions,
that account for the distinct sources (combinatorial and mis-reconstructed b-meson decays) outlined
in sec. 3.8.1.

Legend Mass range [GeV/c2]
Low-mass region 4.850 < mπ+π− < 5.125
Signal region 5.125 < mπ+π− < 5.400
High-mass region 5.400 < mπ+π− < 5.800

Table 6.1: Mass regions with independent background compositions.

6.2.3 The likelihood revisited

Special care is needed in writing a multivariate likelihood, since potentially large fit-biases may arise
when the densities of dependent observables are factorized improperly. In our likelihood function, the
kinematic and PID terms are coupled by their common dependence on momentum, resulting in the
factorization of the p.d.f. schematically shown below:

Li(~θ) ∼ ℘m(mπ+π− |α; ~θ)× ℘p(α, ptot; ~θ)× ℘PID(κobs
1 , κobs

2 |α, ptot; ~θ). (6.18)

The momentum dependence of the mass term is obvious from sec. 4.2, since the invariant π+π−-
mass of modes with final states other than two pions varies with the momentum imbalance. As a
consequence, the mass term is a conditional density at given α, multiplied by the momentum density.
But the momentum affects also the κ observable via the presence of expected dE/dx values in the
expression of κ.
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Figure 6.8: Average dE/dx as a function of particle momentum (in logarithmic scale).

In general, the dE/dx information is used to distinguish at least two classes of particles (type a
and type b); for each type, the κ observable can be written as a function of the proper dE/dx residual
(the one evaluated with “true” mass hypothesis):

κ(a) =
dE/dx obs − dE/dxπ
dE/dxK − dE/dxπ

=
dE/dx obs − dE/dxa
dE/dxK − dE/dxπ

+
dE/dxa − dE/dxπ
dE/dxK − dE/dxπ

(6.19)

κ(b) =
dE/dx obs − dE/dxπ
dE/dxK − dE/dxπ

=
dE/dx obs − dE/dx b
dE/dxK − dE/dxπ

+
dE/dx b − dE/dxπ
dE/dxK − dE/dxπ

. (6.20)

Under the assumption that distributions of the proper residuals have the same shape, which is true
with good approximation, the first terms in the right-hand sides of the above equations are equal
for any given momentum. Hence, κ(b) is obtained by shifting κ(a) by a factor dE/dxb−dE/dxa

dE/dxK−dE/dxπ
which

depends only on differences between expected dE/dx values with different mass hypotheses. If these
differences were not a function of momentum, i. e., if all curves in fig. 6.8 were parallel, then the κ
distribution for any type of particle could be obtained from other shapes with a simple shift. However,
by allowing (in background) for contributions of electrons and protons, whose curves are not parallel
to the ones relative to pions and kaons, we introduced a momentum dependence in the κ distribution.
We therefore wrote the PID density as a conditional probability at given momenta. The components
of the likelihood and the external inputs needed to model them are summarized in tab. 6.2.

6.3 Cross-checks of the fit

The fitting code has been extensively tested on ensembles of simulated pseudo-experiments. In this
section we report a compilation of the most significant tests.



6.3 Cross-checks of the fit 151

Term Template Source
Signal Mass ℘mj (mπ+π− |α) Analytic Two-body kinematics

Data mB0 ,mB0
s
, J/ψ,Υ→ µ+µ−, D0 → h+h

′−

PDG mK ,mπ

Sign. momentum ℘pj (α, ptot) MC
Sign. PID ℘PID

j (κobs
1 , κobs

2 |α, ptot) Data D0 → h+h
′−

Background mass ℘mbck(mπ+π− |α) Data B0
(s) → h+h

′− sidebands
Bckg. momentum ℘pbck(α, ptot) Data B0

(s) → h+h
′− sidebands

Bckg. PID ℘PID
bck (κobs

1 , κobs
2 |α, ptot) Data D0 → h+h

′−

Table 6.2: Schematic summary of the likelihood components.

6.3.1 Statistical resolution

We studied the features of the fit under several configurations of the most critical parameters, such as
background contamination, uncertainty on the absolute scale of masses, and PID performance. We
used the simulated signal decays described in sec. 3.6 to reproduce the experimental circumstances
of the B0

(s) → h+h
′− fit. The kinematics of background was simulated by extracting pseudo-random

numbers according to the distributions of background events in data. Since the CDF II simulation does
not reproduce the dE/dx measurement, this was simulated with a simplified model, which included
only pions and kaons with Gaussian dE/dx responses and a constant 1σ separation between them. Half
of the pseudo-experiments contained 245 B0

(s) → h+h
′− decays (low-statistics sample), half contained

2450 decays (high-statistics sample). Input (true) values for the fraction of each decay-mode with
respect to the total signal were chosen according to the following realistic values:

� fB0→π+π− = f
B

0→π+π−
= 7.5%;

� fB0→K+π− = f
B

0→K−π+ = 30%;

� fB0
s→K−π+ = f

B
0
s→K+π−

= 2.5%;

� fB0
s→K+K− = f

B
0
s→K+K−

= 10%.

We fit the simulated data with two configurations: in the kinematic and PID fit we used the full
likelihood function; in the kinematic fit we used only the kinematic portion of the likelihood. This
allowed understanding the relative contribution of kinematics and PID information to the separation
power. Part of the simulated samples contained 50% fraction of background in the signal region,
part contained no background; this allowed studying what fraction of the statistical resolution was
dominated by the purity of the signal, and what by the close spacing in mass between signals. We also
investigated two configurations of the absolute scale of masses: one with scale free to vary in the fit, and
the other one in which the scale was constrained to a Gaussian distribution with 3 MeV/c2 standard
deviation, chosen as a conservative upper bound on the understanding of the global mass-scale of the
CDF II detector.
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Kinematic fit

In the kinematic fit, only the mπ+π− , α, and ptot observables were used and the densities ℘PID in
eqs. (6.5) and (6.14) were set to constants. Tables 6.3 and 6.4 report the results of the kinematic fits
applied to the pseudo-experiments. The symbol ACP indicates the following asymmetry of decay-rates:
f
B0→K−π+−fB0→K+π−

f
B0→K−π++fB0→K+π−

. Each row corresponds to a different fit, applied to samples with no background
(first two rows), and with background (last two rows).

In general, the kinematic information alone appears insufficient to distinguish the B0 → π+π−

from the B0
s → K+K− decays. This effect was expected, since their contributions almost perfectly

overlap in the invariant π+π−-mass spectrum (see fig. 4.1). However, the estimate of the summed
B0 → π+π− and B0

s → K+K− yields (f̂B0
(s)→h+h−) is stable around the true value in all the fit config-

urations, and well separated from the other contributions even in presence of a realistic background.
The statistical resolution in the low-statistics samples is significantly degraded when the mass scale is
floating (see, in particular, the resolution on the estimate of ACP). In the high-statistics sample, the
available information is sufficient to determine the absolute mass-scale with about 2 MeV/c2 uncer-
tainty. Adding the background affects the statistical resolution in both samples, with a degradation
ranging from 20% to more than 100%, depending on the chosen parameter; larger worsening affects
lower-yield modes, as the B0

s → K−π+, in which a small fluctuation of the number of events assigned
to the background may result in significant changes of the small signal yield. A row-to-row comparison
between tabs. 6.3 and 6.4 shows the expected 1/

√
N scaling of the resolutions with statistics.

Kinematic and PID fit

The full fit uses all five discriminating observables of sec. 6.1 and the complete likelihood shown in
eqs. (6.5) and (6.14). Tables 6.5 and 6.6 show the results of the full fit applied to samples of pseudo-
experiments with low and high statistics using different configurations of background and absolute
mass-scale. Adding the dE/dx information significantly improves the separation between B0 → π+π−

and B0
s → K+K− modes: the statistical uncertainties on the estimate of these fractions are reduced

by factors of three to four with respect to the kinematic fit. The uncertainties on other parameters
also show 10%–40% improvements; the only exception is the B0

s → K−π+ fraction, which shows little,
if any, improvement because its small value is dominated by background fluctuations. Conversely, we
found that the resolution on ACP is less affected by the background than other parameters, especially
at high statistics. Our previous considerations on the effects of the mass scale and of the background
hold with the full fit as well, even though with reduced magnitudes.

We also verified that the full fit is able to properly estimate global shift of masses of up to 30
MeV/c2, without introducing any bias, or degrading the estimates of the fractions. We also checked
the ideal performance with a perfect PID: a factor of two improvement in resolution of each signal
fraction would be obtained if the kaon-pion separation were equivalent to six Gaussian standard
deviations.
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6.3.2 Bias and variance of the ML estimate

Maximum likelihood estimates based on samples of finite statistics often suffer from statistical biases.
To investigate these effects and the stability of the minimization code, which might experience diffi-
culties in finding the proper minimum independently of the initial values of parameters when dealing
with a fairly complicate p.d.f., we studied the distributions of the pull values of the fit. The pull value
of each fit parameter θi estimated is defined as follows:

P(θi) =
θ̂i − θi
σ̂θ̂i

, (6.21)

in which θ̂i is the estimate of the parameter, and σ̂θ̂i is the estimate of its uncertainty. We studied the
pull values using an ensemble of 280 pseudo-experiments that simulated the experimental circumstance
of the fit on B0

(s) → h+h
′− data. Each pseudo-experiment consisted of the simulated distributions of

the five discriminating observables (mass, momentum imbalance, scalar sum of momenta, and dE/dx
of both tracks) corresponding to 4900 total events. The distributions for each signal mode and for
background were generated according to the corresponding likelihood term using a pseudo-random
number generator.3 The fractions of each signal mode and of background fluctuated from sample to
sample according to a multinomial distribution whose mean value was the set of true parameters ~θ.
This choice properly accounts for the statistical fluctuations of signal and background fractions among
samples, while keeping constrained the total number of events. We fit the composition of all pseudo-
experiments using the same likelihood as for the data; we then derived the pull-value distributions of
the relevant physics quantities from the estimated parameters and uncertainties (see fig. 6.9).

The pull-values are Gaussian-distributed with approximately unit variance and negligible bias (see
tab. 6.7). The distribution of L in the proximity of its minimum is, therefore, approximately Gaussian
for each estimated parameter, which is not obvious with finite samples and complicated probability
densities. This guarantees the estimated uncertainty of each parameter σ̂θ̂i to be such that the range
[θ̂i− σ̂θ̂i , θ̂i+ σ̂θ̂i ] is the shortest that contains the true value θi with about 68% probability. Note that
the pull values corresponding to ratios of fractions are not necessarily Gaussian-distributed because
such ratios are not primary fit parameters, but they are ratios of fit parameters (the fit determines
the absolute fractions). Since the distribution of the ratio of two Gaussian-distributed quantities
has infinite variance, the Gaussian assumption for the distribution of pull values of ratios is just a
first-order approximation.

Fit parameter Pull mean Pull standard deviation χ2/d.o.f.
fB0→π+π−/fB0→K+π− −0.04± 0.06 0.94± 0.05 16.4/25
ACP −0.01± 0.06 0.92± 0.06 25.1/25
fB0

s→K+K−/fB0→K+π− 0.01± 0.06 0.99± 0.05 15.3/25
fB0

s→K−π+/fB0→K+π− −0.07± 0.07 0.93± 0.05 25.8/25

Table 6.7: Results of the Gaussian fit of the pull-value distributions.

3We used the ranlux generator, from the CERN (Conseil Europeén pour la Recherche Nucleaire) software libraries,

with “luxury-level” three, interfaced with a c code compiled with gcc on a commercial linux PC.
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(a) (b)

(c) (d)

Figure 6.9: Distribution of the pull values for the relevant fit parameters: (a) fB0→π+π−/fB0→K+π− ,
(b) ACP(B0 → K+π−), (c) fB0

s→K+K−/fB0→K+π− , and (d) fB0
s→K−π+/fB0→K+π− . Results of χ2-fits

to Gaussian functions are overlaid in red.



Chapter 7

Result of the sample composition

measurement

After checking the ML fit in simulated samples, we applied it to data for estimating the composition
of the B0

(s) → h+h
′− sample. This chapter discusses the results of this measurement.

7.1 Fit results

After all checks of the likelihood, the fit was applied to the B0
(s) → h+h

′− sample passing the final
selection (see sec. 3.8). We considered only candidates whose discriminating observables satisfied the
following conditions.

� 4.850 < mπ+π− < 5.800 GeV/c2: this mass range contains the whole B0
(s) → h+h

′− signal, and
allows a proper extrapolation of the background shape underneath the signal peak;

� −0.85 < α < 0.85: this imbalance range excludes boundary regions where the model of the
corresponding p.d.f. becomes inaccurate and may lead to undesired systematic uncertainties.
The requirement removed only a few events, all lying outside the signal region;

� ptot > 5.75 GeV/c: we chose to exclude a few candidates with lower ptot values, because the
likelihood function became negative for these candidates, due to the steep turn-on of the corre-
sponding ptot-density;

� −10 < κ1, κ2 < 10: candidates with extremely unlikely values of the observed dE/dx are
excluded to reduce the probability of contamination from fake tracks or tracks with corrupted
dE/dx information. In this case there are fewer than ten excluded events.

The total number of events is N = 4897. Given the production fractions and branching fractions
involved (see sec. 4.1), we expect sizable contributions from two known modes, B0 → π+π− and
B0 → K+π−, and two not yet observed modes, B0

s → K+K− and B0
s → K−π+. Their fractions with

respect to the total signal were left free to vary in the fit. Contributions of the rarer B0 → K+K−

157
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and B0
s → π+π− modes were not considered, because the existing upper limits (at the 90% confidence

level) on their branching fractions, B(B0 → K+K−) < 3.7 × 10−7 and B(B0
s → π+π−) < 2.1 ×

10−4 [18], along with typical theoretical predictions, B(B0 → K+K−) = (0.01–0.21) × 10−6 and
B(B0

s → π+π−) = (0.027–0.155) × 10−6 [24], suggest negligible contributions in our sample. Similar
considerations apply to Λ0

b → pπ− and Λ0
b → pK− modes, whose contribution to our sample is

excluded by an independent analysis [131]. The fractions of the B0
s → π+π− and B0 → K+K−

modes were fixed at zero and were determined in a separate fit (see sec. 7.2).

We numerically minimized the quantity −2 ln(L ) using the minuit package of the CERN software
libraries [126]. Technical details of the numerical minimization are reported in appendix B. The
minimization converges in about 15 minutes on a commercial linux computer, with 2.0 GHz processor
and 1 GB RAM, yielding the fit results, the estimated minimum value of −2 ln(L ), and the positively-
defined covariance matrix. The result of the fit is shown in tab. 7.1, and the corresponding correlation
matrix is shown in sec. 7.1.3. Table 7.2 summarizes only the relevant physics quantities determined
by the fit.

7.1.1 Signal composition

The fit determined a total B0
(s) → h+h

′− signal yield of about 900 events, in agreement with the
simple estimate from the invariant π+π−-mass fit shown in sec. 3.8. Significant signals are seen for
B0 → K+π− and B0 → π+π− modes, which have already been established at the B-Factories [29],
but so far were never observed at a hadron collider. In addition, we found about 240 decays of the
previously unobserved B0

s → K+K− mode. This is the first observation of a B0
s meson decaying

into two pseudo-scalar mesons. No evidence is obtained for the rarer B0
s → K−π+ mode, nor for an

asymmetry in B0 → K+π− decays, which is consistent with zero within its 8% estimated statistical
uncertainty. The estimated statistical uncertainties on the fractions are around 3% for each decay
mode.

Estimated ratios of yields

Although the fit determines the individual fraction of each mode, we combined these fractions in the
ratios of yields shown in the upper portion of tab. 7.1 to extract the final measurements of ratios of
branching fractions. We aimed at the best statistical resolution on the relative branching fractions
by normalizing the yields of the B0 → π+π−, B0

s → K+K−, and B0
s → K−π+ modes to the yield

of the B0 → K+π− reference mode. This reference mode was chosen because it has the largest yield
(i. e., introduces the smallest relative statistical uncertainty in the ratios), and because its branching
fraction is measured with high precision at the B-Factories [29]. We quote also the B0→π+π−

B0
s→K+K− ratio of

yields, although it is just a different expression for the B0
s→K

+K−

B0→K+π− ratio, because it allows a convenient
theoretical interpretation (see sec. 10.1).

7.1.2 Background composition

The estimate of the background composition and of its mass shape are shown in the lower portion of
tab. 7.1. Evidence for pion (and muon), kaon, proton, and electron contributions is found along the
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Quantity Fit estimate minuit code
f̂B0→π+π− 0.134± 0.030 1
f̂B0→K+π− 0.600± 0.034 2(
f̂
B

0→K−π+ − f̂B0→K+π−

)
/
(
f̂
B

0→K−π+ + f̂B0→K+π−

)
−0.022± 0.078 3

f̂B0
s→K−π+ 0.003± 0.028 4

f̂B0
s→K+K− 0.262± 0.035 −

f̂B0
s→K+K−/f̂B0→K+π− 0.437± 0.074 −

f̂B0→π+π−/f̂B0→K+π− 0.224± 0.057 −
f̂B0→π+π−/f̂B0

s→K+K− 0.513± 0.145 −
f̂B0

s→K−π+/f̂B0→K+π− 0.005± 0.046 −
b̂ 0.816± 0.009 7
ŵπ,µ (low-mass region) 0.550± 0.017 8
ŵπ,µ (signal region) 0.474± 0.027 9
ŵπ,µ (high-mass region) 0.463± 0.021 10
ŵK (low-mass region) 0.303± 0.036 −
ŵK (signal region) 0.350± 0.057 −
ŵK (high-mass region) 0.264± 0.051 −
ŵe (low-mass region) 0.015± 0.005 11
ŵe (signal region) 0.019± 0.006 12
ŵe (high-mass region) 0.027± 0.007 13
ŵp (low-mass region) 0.132± 0.028 14
ŵp (signal region) 0.157± 0.044 15
ŵp (high-mass region) 0.246± 0.043 16
ĉ1 (background slope) −2.296± 0.415 18
ĉ2 (background constant) 12.397± 21.967 19

Table 7.1: Fit results. Signal (background) related quantities are reported in the upper (lower)
section. The last column reports the legend to convert the minuit coding of the fit parameters into
physics quantities for interpreting the correlation matrix shown at pag. 160; the missing codes refer
to parameters not being part of the set of primary fit parameters (~θ). C-conjugate modes are implied
except for the parameter in the third row.

whole mass range. As expected, the pions (contaminated by the muons) dominate the background
composition. Their 50% fraction is estimated with ≈ 2% statistical uncertainty. A part of the ≈ 30%
fraction of kaons is presumably due to two physics sources: displaced tracks from two uncorrelated
heavy-flavor decays (i. e., one track from each one of the two heavy-flavors in the event), and tracks
from the same, partially-reconstructed multi-body b-hadron decay. While the former contributes to
the whole mass-spectrum, the latter is enhanced in the signal region and in its lower-mass side,
as confirmed by the corresponding larger estimated kaon fractions. The ≈ 5% accuracy on the
kaon fraction is worse than the accuracy for pions, because of the correlation between kaon and
proton components, due to limited dE/dx separation between them. It is beyond the scope of this
measurement to fully understand the source of the large fraction of protons found in the background.
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However, decays of baryons, which are produced both in the pp̄ interaction and in secondary nuclear
interactions in the detector material, along with residual protons from beam-gas interactions, have
the kinematic features to significantly contribute.1 In addition, a small (≈ 2%), but statistically
significant (3σ–4σ) electron component is present in the whole mass range, presumably due to semi-
leptonic decays of heavy flavors.

Mode Estimated fraction [%] Estimated yield

B0 → π+π−+ B
0 → π+π− 13.4± 3.0 121± 27

B0
s → K−π++ B

0

s → K+π− 0.0± 2.8 3± 25
B0
s → K+K−+ B

0

s → K+K− 26.2± 3.5 237± 32
B0 → K+π− + B

0 → K−π+ 60.0± 3.4 542± 31
B0 → K+π− 30.7± 2.9 277± 28
B

0 → K−π+ 29.4± 2.9 265± 28

Table 7.2: Physics results from the fit. C-conjugate modes are not implied.

7.1.3 Correlations

We studied in detail the correlation matrix (shown below) to search for possible large correlations
that may have suggested a better choice of the fit parameters. The matrix reports the correlation
coefficients, defined as ρij = Cov(θ̂i, θ̂j)/σ̂θ̂i σ̂θ̂j , in which Cov(θ̂i, θ̂j) is the off-diagonal element of the
estimated covariance matrix of the fit. The conversion from the minuit coding of the fit parameters
to the physical quantities is shown in last column of tab. 7.1.

PARAMETER CORRELATION COEFFICIENTS

NO. 1 2 3 4 7 8 9 10 11 12 13 14 15 16 18 19

1 1.000

2 -0.411 1.000

3 0.010 0.004 1.000

4 -0.344-0.096 0.004 1.000

7 0.064 0.067-0.023-0.387 1.000

8 0.000 0.000 0.000 0.000 0.000 1.000

9 -0.301-0.016 0.007-0.026 0.020 0.000 1.000

10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

11 0.000 0.000 0.000 0.000 0.000-0.397 0.000 0.000 1.000

12 -0.035 0.010 0.000-0.001-0.037 0.000-0.297 0.000 0.000 1.000

13 0.000 0.000 0.000 0.000 0.000 0.000 0.000-0.445 0.000 0.000 1.000

14 0.000 0.000 0.000 0.000 0.000 0.283 0.000 0.000-0.077 0.000 0.000 1.000

15 0.027-0.007 0.020-0.008-0.064 0.000 0.269 0.000 0.000-0.068 0.000 0.000 1.000

16 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.277 0.000 0.000-0.087 0.000 0.000 1.000

18 0.034 0.047-0.013-0.232 0.358 0.000 0.013 0.000 0.000-0.023 0.000 0.000-0.039 0.000 1.000

19 0.034 0.050-0.013-0.236 0.359 0.000 0.013 0.000 0.000-0.023 0.000 0.000-0.039 0.000 0.998 1.000

Concerning the physical fit parameters (i. e., pars. 1–4), the largest correlation, about 40%, is
observed between the estimated fractions of B0 → π+π− and B0 → K+π− decays (pars. 1 and
2). Although the distributions in π+π−-mass of these modes are not completely overlapping, the

1Previous studies from CDF Run I showed that beam-gas interactions produce a sizable excess of protons with large

impact parameters, which are prominent in the lower (0.5 GeV/c) part of the transverse-momentum spectrum [132].
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estimated B0 → π+π− fraction is about 20% of the B0 → K+π− fraction. The fit has limited power
in separating the bulk of the B0 → π+π− from the higher-mass tail of the B0 → K+π− mode, also
because the available dE/dx separation is limited, in this case, to just one track per candidate. A
similar reason explains the ≈ 35% correlation between B0

s → K−π+ and B0 → K+π− fractions (pars.
2 and 4), in which a zero observed fraction of B0

s → K−π+ decays is contaminated by the tails of
the dominant B0 → K+π− mode, with no separation by dE/dx . The ≈ 30% correlation observed
between the B0 → π+π− fraction and the fraction of background pions underneath the signal (pars.
1 and 9) occurs because the fit tends to reabsorb into the B0 → π+π− fraction any fluctuation of the
pion fraction in background. The observed trend to small, negative correlations between fractions of
signal modes is due to their constraint to have unit sum (see eq. (6.5)).

Concerning the other fit parameters, the largest correlation (≈ 100%) is observed between the
slope of the exponential (par. 18) and the constant term (par. 19) of the invariant π+π−-mass shape
of background. Such a large value, together with an estimated constant term compatible with zero,
indicates that our choice for these parameters is not optimal; however, this has no effect on the
measurement of the fractions. A ≈ 45% correlation is observed between the estimated fractions of
electrons and pions in the background at the high-mass side of the signal (pars. 10 and 13). The
fit barely distinguishes a 2%–3% fraction of electrons from the dominant (≈ 50%) pion component
which, at higher momenta, have similar dE/dx response. However, not only this effect is limited in
size, but it does not affect any of the physics measurements. All other correlations are minor.

7.1.4 Distribution of errors

The distributions of the estimated uncertainties and their correlations were investigated by scanning
the functional form of the likelihood in the proximity of its maximum; only the results are briefly
reported below, while a description of the method is given in appendix B. This approximate, graphic
method exploits the fundamental property for the variance of an estimator, the Minimum Variance
Bound. In case of sufficiently regular likelihood functions and large data samples, the logarithm of the
likelihood function admits the following, second-order Taylor-expansion in the vicinity of its maximum
~θ ≈ ~̂θ:

ln[L (~θ)] ' ln[L (~̂θ)]− 1
2

[
(~θ)TV−1~θ

]
, (7.1)

in which (~θ)T is the transposed vector of fit parameters and V−1 is the inverse of the covariance
matrix. This implies that ln(L ), at least locally around its maximum, is approximated by an n-
dimensional ellipsoid, where n is the multiplicity of free parameters in the fit. The likelihood shape
therefore resembles a multi-Gaussian function. In the simple, two-dimensional case,

ln[L (~θ)] ' ln[L (~̂θ)]− 1
2(1− ρ)

(θ1 − θ̂1
σ̂θ̂1

)2

+

(
θ2 − θ̂2
σ̂θ̂2

)2

− 2ρ

(
θ1 − θ̂1
σ̂θ̂1

)(
θ2 − θ̂2
σ̂θ̂2

) , (7.2)

where the contour ln[L (~θ)] ' ln[L (~̂θ)]− s defines an ellipse centered at the estimates, and in which
the ratio between the main axes depends on the estimated correlation coefficient. We studied two-
dimensional contours of constant likelihood around the maximum to detect any deviation of the
estimated uncertainties from the Gaussian behavior (see fig. 7.1). Each contour is obtained by varying
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a pair of highly-correlated parameters, while keeping all other parameters fixed at the values that
maximize the likelihood. Samplings of the contours are obtained with the mncontour option of
the minuit program (see appendix B). No significant deviation from the expected ellipsoid shape is

(a)

f̂
B0→π+π−

f̂
B

0
→
K

+
π
−

(b)

f̂
B0→K+π−

f̂
B

0 s
→
K
−
π
+

(c)

f̂
B0→π+π−

f̂
B

0 s
→
K
−
π
+

Figure 7.1: Samplings of the contour of constant likelihood ln(L ) = ln[L (~̂θ)] − s in the proximity
of the ML estimate (indicated with a star) in the following two-dimensional planes of parameters:
(fB0→π+π− , fB0→K+π−) (a), (fB0→K+π− , fB0

s→K−π+) (b), and (fB0
s→K−π+ , fB0→π+π−) (c). The con-

tours correspond to deviations of the parameters by 1σ (open squares), 1.5σ (filled squares), 2σ (open
circles), and 2.5σ (filled circles) from their ML estimates.

found.

7.1.5 Fit quality

The principle of maximum likelihood does not directly provide a method for testing the goodness-of-
fit. Different approaches have been proposed in literature for testing the quality of unbinned likelihood
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fits, but none has been proved rigorously correct [133]. However, a standard, qualitative method to
obtain a visual test of the fit quality consists in comparing the distributions in data with the joint p.d.f.
that corresponds to the likelihood function evaluated with the maximizing set of parameters ~̂θ. In
practice, for each discriminating observable x, the functional form of the p.d.f. (evaluated with ~θ = ~̂

θ)
is integrated along the observables other than x and, after appropriate normalization, it is overlaid
(“projected”) to the binned distribution of x in data. This allows detecting possible macroscopic
discrepancies between the observed distributions and the model. Distributions of the discriminating
observables with fit projections overlaid are shown in figs. 7.2–7.5.

The fit reproduces accurately all the observed distributions. Figures 7.5(a) and (b) reports the
distributions of κ for tracks from candidates in the signal region only (5.125 < mπ+π− < 5.400 GeV/c2)
for a further check on whether the fit properly determines the sample composition underneath the
signal peak. The fit reproduces accurately the data both in the central part of the distribution, where
the signal is present, and in the tails at lower (higher) values of κ, where electrons (protons) from
background contribute.

The fit projections show clearly the different impact of each observable in separating the single
modes. The mass and momentum observables contribute mostly in distinguishing the B0 → K+π−

mode from the others, whereas poor separation is obtained between B0
s → K+K− and B0 → π+π−.

The dE/dx observables, instead, separate B0 → π+π− from B0
s → K+K− events effectively, thus

complementing the kinematic information.

B0 → K+π-

B0 → K+K-

B0 → π+π-

B0 → K+π-

B0 → K+K-

B0 → π+π-
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B0 → K+K-

B0 → π+π-

B0 → K+π-

B0 → K+K-

B0 → π+π-

(a)
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B0 → π+π-

B0 → K+π-

B0 → K+K-

B0 → π+π-

(b)

Figure 7.2: Invariant π+π−-mass distribution (points with error bars) with fit projection overlaid
(shaded functions) (a). Signed momentum imbalance distribution (points with error bars) with fit
projection overlaid (shaded functions) (b). In all fit projections of figs. 7.2–7.5 the p.d.f. of all signals
(shaded in color) are summed with each other and with the p.d.f. of background (hatched in black).
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Figure 7.3: Distribution of the scalar sum of momenta (points with error bars) with fit projection
overlaid (shaded functions).
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Figure 7.4: Distribution of the κ observable (points with error bars) with fit projection overlaid
(shaded functions) for the smaller-momentum particle (a) and for the larger-momentum particle (b).

7.2 Search for rare B0
s → π+π− and B0 → π+π− modes

Contributions of the rare B0 → K+K− and B0
s → π+π− modes were not considered in the fit listed in

tab. 7.1. We searched for these modes with two dedicated fits, by adding the fraction of B0 → K+K−

(or B0
s → π+π−) decays as a free parameter in the likelihood. Table 7.3 reports the results of the fit

for the B0 → K+K− mode (second column), and for the B0
s → π+π− mode (third column).

No evidence for the presence of B0 → K+K− and B0
s → π+π− decays was found in our sample.
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Figure 7.5: Distribution of the κ observable from candidates in the signal region (points with error
bars) with fit projection overlaid (shaded functions) for the smaller-momentum particle (a) and for
the larger-momentum particle (b).

Quantity Fit estimate Fit estimate
f̂B0→π+π− 0.133± 0.030 0.133± 0.030
f̂B0→K+π− 0.589± 0.042 0.605± 0.035
f̂
B0→K−π+−f̂B0→K+π−

f̂
B0→K−π++f̂B0→K+π−

−0.023± 0.079 −0.022± 0.078

f̂B0
s→K−π+ 0.004± 0.027 0.009± 0.029

f̂B0
s→K+K− 0.263± 0.035 0.265± 0.035

f̂B0→K+K− 0.011± 0.026 −
f̂B0

s→π+π− − −0.011± 0.017
f̂B0

s→K+K−/f̂B0→K+π− 0.447± 0.079 0.438± 0.075
f̂B0→π+π−/f̂B0→K+π− 0.225± 0.058 0.220± 0.057
f̂B0→π+π−/f̂B0

s→K+K− 0.505± 0.144 0.501± 0.145
f̂B0→K+K−/f̂B0→K+π− 0.018± 0.044 −
f̂B0

s→π+π−/f̂B0
s→K+K− − −0.043± 0.064

Table 7.3: Results of the fit for rare B0 → K+K− (second column) and B0
s → π+π− (third column)

modes. C-conjugate modes are implied except for the parameter in the third row.

Allowing for additional signal modes did not bias the estimation of fit parameters, which are consistent
with those of tab. 7.1. This holds for the signal parameters (shown in tab. 7.3) and for the background

parameters (omitted for brevity). We studied the pull-values of the fB0→K+K−
fB0→K+π−

and
fB0
s→π

+π−

fB0
s→K

+K−
ratios

of fractions (see fig. 7.6), according to what described in sec. 6.3.2. The pull-values show the expected
Gaussian shape, centered in zero and with unit variance (see tab. 7.4). We therefore used the results
of tab. 7.3 to set frequentist upper limits for the branching fractions of B0 → K+K− and B0

s → π+π−
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(a) (b)

Figure 7.6: Distribution of the pull values for the following fit parameters: (a) fB0→K+K−/fB0→K+π− ,
(b) fB0

s→π+π−/fB0
s→K+K− . Results of χ2-fits to Gaussian functions are overlaid in red.

Fit parameter Pull mean Pull standard deviation χ2/d.o.f.
fB0→K+K−/fB0→K+π− −0.01± 0.07 0.99± 0.05 39.4/24
fB0

s→π+π−/fB0
s→K+K− −0.04± 0.07 0.96± 0.06 20.7/24

Table 7.4: Results of the Gaussian fit of the pull value distributions.

modes, based on Gaussian distributions of fit pulls and likelihood-ratio ordering [134]. This procedure
is detailed in sec. 10.4–10.6, after including the systematic uncertainties in the extraction of limits.
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Efficiency corrections

In order to infer the desired measurements of branching fractions from the observed numbers of signal
events, it is essential to know the total efficiency associated to the reconstruction of each decay-mode.
Contribute to this efficiency include efficiency of the on-line trigger requirements and of the off-line
data reduction procedure. This chapter details the evaluation of these efficiencies.

8.1 Overview

Table 8.1 contains the ratios of fractions estimated by the fit, along with the ratios of decay rates we
wish to extract from them. The symbols fd and fs indicate the production fractions of B0 and B0

s

mesons from the fragmentation of a b-quark in pp̄ collisions.

Measured quantity Estimated value Physics quantity
f̂
B0→K−π+−f̂B0→K+π−

f̂
B0→K−π++f̂B0→K+π−

(−2.2± 7.8)% =⇒ B(B
0→K−π+)−B(B0→K+π−)

B(B
0→K−π+)+B(B0→K+π−)

f̂B0
s→K+K−/f̂B0→K+π− 0.44± 0.07 =⇒ fs

fd
× B(B0

s→K
+K−)

B(B0→K+π−)

f̂B0
s→K−π+/f̂B0→K+π− 0.00± 0.04 =⇒ fs

fd
× B(B0

s→K
−π+)

B(B0→K+π−)

f̂B0→π+π−/f̂B0→K+π− 0.22± 0.06 =⇒ B(B0→π+π−)
B(B0→K+π−)

f̂B0→K+K−/f̂B0→K+π− 0.02± 0.04 =⇒ B(B0→K+K−)
B(B0→K+π−)

f̂B0
s→π+π−/f̂B0

s→K+K− −0.04± 0.06 =⇒ B(B0
s→π

+π−)
B(B0

s→K+K−)

Table 8.1: Results from the fit and related measurements. Except for the first row, C-conjugate modes
are implied.

To transform the ratios of event yields into ratios of branching fractions, we need to correct each
yield for its reconstruction efficiency, according to the following equations (in eq. (8.1) C-conjugate
modes are not implied):

ACP(B0 → K+π−) =
f̂
B

0→K−π+ × εkin(B0→K+π−)

εkin(B
0→K−π+)

− f̂B0→K+π−

f̂
B

0→K−π+ × εkin(B0→K+π−)

εkin(B
0→K−π+)

+ f̂B0→K+π−

, (8.1)
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B(B0 → π+π−)
B(B0 → K+π−)

=
f̂B0→π+π−

f̂B0→K+π−
× εkin(B0 → K+π−)
εkin(B0 → π+π−)

× cXFT(B0 → K+π−)
cXFT(B0 → π+π−)

, (8.2)

B(B0 → K+K−)
B(B0 → K+π−)

=
f̂B0→K+K−

f̂B0→K+π−
× εkin(B0 → K+π−)
εkin(B0 → K+K−)

× cXFT(B0 → K+π−)
cXFT(B0 → K+K−)

, (8.3)

B(B0
s → π+π−)

B(B0
s → K+K−)

=
f̂B0

s→π+π−

f̂B0
s→K+K−

× εkin(B0
s → K+K−)

εkin(B0
s → π+π−)

× cXFT(B0
s → K+K−)

cXFT(B0
s → π+π−)

, (8.4)

fs
fd
× B(B0

s → K+K−)
B(B0 → K+π−)

=
f̂B0

s→K+K−

f̂B0→K+π−
× εkin(B0 → K+π−)
εkin(B0

s → K+K−)
× cXFT(B0 → K+π−)
cXFT(B0

s → K+K−)
× εiso(B

0)
εiso(B0

s )
, (8.5)

fs
fd
× B(B0

s → K−π+)
B(B0 → K+π−)

=
f̂B0

s→K−π+

f̂B0→K+π−
× εkin(B0 → K+π−)
εkin(B0

s → K−π+)
× cXFT(B0 → K+π−)
cXFT(B0

s → K−π+)
× εiso(B0)
εiso(B0

s )
. (8.6)

In eqs. (8.1)–(8.6) the total efficiency is factorized in three terms,

ε = εkin × cXFT × εiso, (8.7)

detailed as follows.

Kinematic efficiency (εkin) – this term mostly accounts for acceptance effects. It includes the
trigger efficiency and the efficiency of the off-line reconstruction and selection. The trigger effi-
ciency accounts for any signal decay produced in pp̄ collisions outside the geometric acceptance
of the detector, or lost for other trigger-related inefficiencies. Examples are decays in which the
two particles are within the COT acceptance but are not reconstructed by the XFT or by the
SVT, or properly-reconstructed decays that fail the trigger requirements (e. g., opening angle, or
impact parameter criteria, etc.). The off-line efficiency accounts for all triggered decays that fail
the off-line reconstruction and selection, e. g., events excluded because involving subdetectors
resulted partially or temporarily unreliable, or events failing the selection of sec. 3.8.1

The kinematic efficiency was extracted from simulated Monte Carlo samples. For this reason, this
term does not include the contribution of the isolation requirement which is treated separately.

Track-trigger efficiency (cXFT) – this correction takes into account the discrepancy between sim-
ulation and data in the efficiency of the XFT trigger for charged kaons and pions. It was extracted
from collision data.

Isolation efficiency (εiso) – this is the efficiency for a signal event to satisfy the requirement on
isolation. It was extracted from collision data.

1Occasionally, further and more accurate inspection of the results of routine detector-calibrations shows hardware

problems not acknowledged during the data-taking.
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8.2 Kinematic efficiencies

The kinematic efficiencies were extracted by using simulated samples of B0
(s) → h+h

′− decays (see
sec. 3.6). The efficiency for each mode was obtained as follows:

εkin =
N∗

N
, (8.8)

where N is the number of generated decays for each mode, and N∗ is the number of generated decays
that passed the simulation of trigger, the reconstruction, and the off-line analysis requirements. Use
of simulated samples is reliable because the effects contributing to the kinematic efficiency are either
properly reproduced by the CDF II simulation, or common to all modes, thus vanishing in the ratios.

Any geometric acceptance effect is properly taken into account because the simulation reproduces
the relevant kinematic distributions of the decays and includes an accurate description of the CDF II
detector geometry (see sec. 2.7). Additional prominent contributions arise from the different probabil-
ity of interaction with matter among positively-charged kaons, negatively-charged kaons, and pions,
and from the different decay-in-flight probability between pions and kaons. Several CDF measure-
ment confirm that the geant package reproduces these effects at the level of accuracy required for
our purpose. All other residual contributions to the efficiency (e. g., exclusion of decays involving
temporarily-damaged parts of the detector, etc.) can be disregarded: these effects introduce the same
inefficiency in all modes; thus, the inefficiency is canceled out in the ratios. The opportunity to ex-
ploit such cancellations was one of the motivation for a measurement of relative, rather than absolute,
branching fractions.

8.2.1 Kinematic correction for the branching fraction measurements

We applied the trigger simulation, the event reconstruction, and the off-line analysis selection to the
sample of 106 generated decays per mode described in sec. 3.6. Table 8.2 reports, in second column,
the yields of reconstructed decays after applying the trigger simulation, the event reconstruction, and
the off-line selection requirements (except for the isolation). The resulting kinematic efficiencies are
O(1%). From the event yields of second column of tab. 8.2 we obtain the following ratios of kinematic
efficiencies:

εkin(B0 → K+π−)
εkin(B0 → π+π−)

= 0.97± 0.01, (8.9)

εkin(B0 → K+π−)
εkin(B0

s → K+K−)
= 1.08± 0.01, (8.10)

εkin(B0 → K+π−)
εkin(B0

s → K−π+)
= 1.02± 0.01, (8.11)

εkin(B0
s → K+K−)

εkin(B0
s → π+π−)

= 0.89± 0.01, (8.12)

and
εkin(B0 → K+π−)
εkin(B0 → K+K−)

= 1.02± 0.01. (8.13)
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Mode Nεkin NεkincXFT

B0 → π+π− 13928± 118 13255± 115
B0 → K+π− 13567± 117 12308± 111
B0 → K+K− 13260± 115 11407± 107
B0
s → K+K− 12595± 112 10900± 104

B0
s → K−π+ 13340± 115 12109± 110

B0
s → π+π− 14116± 119 13455± 116

Table 8.2: Number of candidates in simulated events after trigger, reconstruction, and analysis selec-
tion, excluding the isolation cut (second column). Same quantities after correction for the XFT bias
(third column).

8.2.2 Kinematic correction for the CP asymmetry measurement

The only acceptance effect that matters in the measurement of ACP(B0 → K+π−) is the detector-
induced charge asymmetry between positively and negatively charged kaons, due to their different
probability of strong interaction in the tracker material. All other inefficiencies, such as the O(1%)
asymmetry between positively and negatively-charged particles induced by the COT cell-geometry,
cancel out in the ratio involved in the expression of the asymmetry.

Following Ref. [106], we used large samples of simulated single kaons with momentum distributions
similar to those of B0

(s) → h+h
′− decays to extract the probabilities of missing the reconstruction

of a kaon due to hadronic interactions in the tracker. The results were pT(B)-averaged to yield
a (2.8 ± 0.1)% probability for positively-charged and (4.5 ± 0.1)% for negatively-charged kaons, in
agreement with the published cross-sections on deuterium [109]. The resulting correction factors are

εhad(K+) = 0.972± 0.001 and εhad(K−) = 0.955± 0.001, (8.14)

where εhad(K+) ≡ εkin(B0 → K+π−) and εhad(K−) ≡ εkin(B
0 → K−π+). Our level of understanding

of the charge asymmetries is confirmed by the measurement ofD0 → h+h
′− partial widths of Ref. [106],

where these effects are found to be under control at the 0.5% level.

8.3 Track-trigger efficiency

In the typical momentum range of the B0
(s) → h+h

′− decay-products, pions (with typical Lorentz
boost βγ ≈ 15) ionize more than kaons (βγ ≈ 4). Thus, pions produce larger average pulse-widths
in the COT sense-wires with respect to kaons. This results in typically higher numbers of hits above
threshold associated to pions. The XFT requirement on the minimum number of axial COT-hits above
threshold per track (see sec. 2.5.1) is therefore less efficient for kaons than for pions, thus biasing the
observed ratios of yields between modes with different multiplicities of kaons and pions in their final
states. An additional correction is needed to account for this effect, which is not reproduced by the
simulation because of incorrect energy-loss modeling.

A time-dependent study on data made for the CDF measurement of D0 → h+h
′− partial widths

[106] finds an average 6% (see fig. 8.1) higher efficiency for pions with respect to kaons. This was



8.3 Track-trigger efficiency 171

measured using the XFT-unbiased prong in three-body D+
(s) meson decays (D+ → K−π+π+, D+ →

K+K−π+and D+
s → K+K−π+) triggered on two tracks. Using the XFT information associated

to the non-triggered kaon (or pion) in the event, the fraction of kaons (pions) reconstructed off-line
(Noff) that would have passed the XFT requirements was measured as a function of the transverse
momentum:

εXFT =
NXFT

Noff
. (8.15)

For each charged particle of transverse momentum pT, the ratio of XFT efficiencies between data
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Figure 8.1: XFT efficiency for positively-charged kaons (black points) and pions (red points) as a
function of 1/pT, as measured in D+

(s) meson decays [106]. Fit functions are overlaid (solid lines).

and Monte Carlo simulation (cXFT) was fit to a straight-line function of 1/pT:

cXFT(pT) =
εdata
XFT

εMC
XFT

= k0 +
k1

pT
, (8.16)

in which εdata
XFT is the XFT-efficiency measured on collision data, and εMC

XFT is the XFT efficiency
extracted from the simulation. The parameters of the above formula, determined from binned χ2-fits
as a function of time (in terms of runs), are shown in tab. 8.3.2 Following Ref. [106], we applied the

Param. Units 138809–152636 152637–156487 156488–164274 164275–168889
k0(π) - 1.024± 0.003 1.008± 0.006 0.985± 0.006 1.002± 0.005
k0(K) - 1.017± 0.003 0.959± 0.006 0.952± 0.004 0.957± 0.004
k1(π) GeV/c 0.0 −0.10± 0.02 −0.08± 0.02 −0.12± 0.02
k1(K) GeV/c 0.0 −0.11± 0.02 −0.13± 0.01 −0.14± 0.01

Table 8.3: Estimated parameters of the model of the XFT bias.

2The chosen run sectioning accounts for major trigger variations, already described in sec. 3.2.4.
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correction to the simulated samples: the contribution to the final yield of each simulated B0
(s) → h+h

′−

event was reweighed by the product cXFT[pT(h)] × cXFT[pT(h
′
)]. The two factors deriving from

eq. (8.16) were evaluated using the proper set of ki parameters from tab. 8.3 and the specific value of
transverse momentum of the particle. Table 8.2 shows the resulting reweighed yields (third column).
The XFT-corrections with their statistical uncertainties are

cXFT(B0 → K+π−)
cXFT(B0 → π+π−)

= 0.95± 0.02, (8.17)

cXFT(B0 → K+π−)
cXFT(B0

s → K+K−)
= 1.05± 0.02, (8.18)

cXFT(B0 → K+π−)
cXFT(B0

s → K−π+)
= 1.00± 0.02, (8.19)

cXFT(B0
s → K+K−)

cXFT(B0
s → π+π−)

= 0.91± 0.02, (8.20)

and
cXFT(B0 → K+π−)
cXFT(B0 → K+K−)

= 1.05± 0.02. (8.21)

8.4 Results (not involving isolation efficiency)

At this point we have the corrections for those ratios of branching fractions not needing the isolation
efficiency (eqs. (8.1)–(8.4)) and we can extract the corresponding measurements. All associated un-
certainties account for the statistical fluctuations due to finite samples only. The corrections for the
remaining measurements (eqs. (8.5)–(8.6)) are treated in the rest of this chapter.

8.4.1 Partial rate asymmetry in the B0 → K+π− decay

Following eq. (8.1), we corrected the fit results for the kaon charge-asymmetry factor, εkin(B0→K+π−)

εkin(B
0→K−π+)

'
1.018, to extract the direct asymmetry:

B(B
0 → K−π+)− B(B0 → K+π−)

B(B
0 → K−π+) + B(B0 → K+π−)

= −0.013± 0.078 (stat .). (8.22)

8.4.2 Ratio B(B0 → π+π−)/B(B0 → K+π−)

Using the kinematic and XFT efficiencies εkin(B0→K+π−)
εkin(B0→π+π−) ×

cXFT(B0→K+π−)
cXFT(B0→π+π−) ' 0.93 (see eq. (8.2)), we

corrected the fit results to extract the following measurement of ratio of branching fractions:

B(B0 → π+π−)
B(B0 → K+π−)

= 0.21± 0.05 (stat .). (8.23)
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8.4.3 Ratio B(B0 → K+K−)/B(B0 → K+π−)

Using the kinematic and XFT efficiencies, εkin(B0→K+π−)
εkin(B0→K+K−) ×

cXFT(B0→K+π−)
cXFT(B0→K+K−) ' 1.08 (see eq. (8.3)),

we corrected the fit results to extract the following measurement of ratios of branching fractions:

B(B0 → K+K−)
B(B0 → K+π−)

= 0.02± 0.05 (stat .). (8.24)

8.4.4 Ratio B(B0
s → π+π−)/B(B0

s → K+K−)

Using the kinematic and XFT efficiencies, εkin(B0
s→K

+K−)
εkin(B0

s→π+π−) ×
cXFT(B0

s→K
+K−)

cXFT(B0
s→π+π−) ' 0.81 (see eq. (8.4)),

we corrected the fit results to extract the following measurement of ratio of branching fractions:

B(B0
s → π+π−)

B(B0
s → K+K−)

= 0.03± 0.05 (stat .). (8.25)

8.5 Isolation efficiency

The ratios between B0 and B0
s yields need an additional correction for the different efficiency of the

isolation requirement when applied to B0 or to B0
s mesons. The distribution of isolation (see sec. 3.7.2)

depends on several factors:

1. the multiplicity and momenta of the charged-particles not belonging to the b-meson decay-chain
and produced in the b-quark fragmentation, or in the underlying event, or in possible pile-up
events;

2. the transverse momentum of the b-meson, since the sharing of transverse momentum between
the b-meson and its neighboring particles depends on the energy of the b-meson itself.3

This has some consequences. First, the isolation is independent of the decay mode of the b-meson,
but it does depend on its production mechanism. We therefore expect different isolation distributions
between B0 and B0

s mesons, which are produced through different fragmentation processes. A second
consequence is the need to study the isolation using collision data, since typical pp̄ collision simulators,
as pythia, cannot be trusted to reproduce reliably the details of the b-quark fragmentation. In
addition, the dependence on the transverse momentum of the b-meson needs to be considered.

We measured, as a function of pT(B), the isolation efficiencies εiso(B0) and εiso(B0
s ), corresponding

to the I(B) > 0.5 requirement, using several fully reconstructed B0
(s) meson decays available in data.

8.5.1 Choice of the control samples

We chose fully reconstructed decays since the determination of transverse momentum and direction
of the B0

(s) meson is required. Since samples sharing the same trigger as of B0
(s) → h+h

′− decays, and
with similar final states are desirable, we used the exclusive B0

(s) → D−(s)π
+ decays. However, common

3QCD measurements show that the fraction of energy carried by a charged particle in a jet does not depend linearly

on the energy of the jet itself.
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thresholds in transverse momentum between the B PIPI (which collects B0
(s) → h+h

′− decays) and
the B CHARM (which collects B0

(s) → D−(s)π
+ decays) trigger paths cause a higher turn-on point in the

pT(B) distribution of the B0
(s) → D−(s)π

+ with respect to the B0
(s) → h+h

′− modes. A two-body
decay-product carries a larger average-fraction of the momentum of the decaying particle than the
product of a multi-body decay. Thus, b-mesons in the B PIPI path had typically smaller transverse
momenta than in the B CHARM path (see fig. 8.2 and figs. 8.3(a) and (c)). While a 30%–40% fraction of
B0

(s) → h+h
′− candidates have transverse momenta smaller than 6 GeV/c, B0

(s) → D−(s)π
+ candidates

are removed, by the trigger bias, from this region of the spectrum.

Figure 8.2: Background-subtracted pT(B)-distribution in B0
(s) → h+h

′− decays. Data (points with
error bars) are compared with Monte Carlo simulation (filled histogram). Rightmost bin contains
overflows. See sec. 3.6 for details on background subtraction.

We therefore complemented our sample with B0
(s) mesons selected in their B0

(s) → J/ψX decays
by the di-muon trigger. This trigger selects events enriched in J/ψ → µ+µ− decays by requiring
azimuthal matching between two oppositely-curved XFT-tracks with pT > 1.5 GeV/c and two non-
adjacent track-segments in the CMU detectors. The lower threshold on the transverse momenta of
muons provides signals with transverse momenta distributions extended down to pT(B) ≈ 4 GeV/c
(see figs. 8.3(b) and (d)). The decay chains of the samples used to measure the isolation efficiency are
summarized below:

� B0
(s) → D−

(s)π
+ modes:

– B0 → D−π+ → [K+π−π−]π+,
with approximate total branching fraction 2.5× 10−4;

– B0
s → D−

s π
+ → [φ(1020)π−]π+ → [[K+K−]π−]π+,

with approximate total branching fraction 6.6× 10−5 .

� B0
(s) → J/ψX modes:
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– B0 → J/ψK∗(892)0 → [µ+µ−][K+π−],
with approximate total branching fraction 7.7× 10−5;

– B0
s → J/ψφ(1020) → [µ+µ−][K+K−],

with approximate total branching fraction 2.6× 10−5.

Figure 8.3: Background-subtracted pT(B)-distributions in B0 → D−π+ (a), B0 → J/ψK∗0 (b), B0
s →

D−s π
+ (c), and B0

s → J/ψφ decays (d). A single sideband in the high-mass side of the B0
(s) → D−(s)π

+

signals was used to extrapolate the background underneath the peak, avoiding partially-reconstructed
B0

(s) decays present in the low-mass side of the signal. In the B0
(s) → J/ψX case two symmetric

mass-sidebands were used.
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8.5.2 Data samples and event selection

All B0
(s) → D−(s)π

+ and B0
(s) → J/ψX decays were reconstructed in the same run set as of the

B0
(s) → h+h

′− analysis and the same track-quality and fiducial-acceptance requirements were applied
(see sec. 3.5.1). The reconstruction of all signals was solely based on tracking.

B0
(s) → D−(s)π

+ samples

The B0 → D−π+ and B0
s → D−s π

+ decays (see fig. 8.4) were reconstructed in data collected by the
B CHARM and B CHARM HIGHPT triggers (see sec. 3.3).

(a)

primary vertex

B0 decay

LT
(B

)

LT(B
→ D)

D− decay

π+

K+

π−

π−

(b)

primary vertex

B0
s decay

φ decay

LT
(B

)

LT(B → D)

D−s decay

π+

K+

K−

π−

Figure 8.4: Illustration of the B0 → D−π+ → [K+π−π−]π+ (a) and of the B0
s → D−s π

+ →
[φπ−]π+ → [[K+K−]π−]π+ (b) decay topologies in the transverse plane.

The selection for reconstructing pure B0
(s) meson signals without biasing their isolation distribu-

tions was derived following Ref. [135]. Table 8.4 contains the selection requirements, which are specified
as follows. First, D−(s) candidates were reconstructed, by attempting all combinations of three tracks
consistent with a D− → K+π−π− (or D−s → K+K−π−) decay. Once three tracks originating from a
common vertex were found, a fourth track with pion mass-assignment was added to reconstruct the
B0

(s) candidate. The D−(s) meson vertex momentum was required to intersect in space with the fourth
track. While fitting the B0

(s) meson decay-vertex, the D−(s) meson masses were constrained to their
world-average values [109] to improve mass resolution.4 In the B0

s → D−s π
+ case, further background

rejection was achieved by requiring a φ in the D−s meson decay. We exploited the narrow width of
the φ resonance to suppress the background by rejecting D−s candidates with invariant mass of the
two oppositely-charged kaons differing by more than 10 MeV/c2 from the world average φ mass [109].
The requirement on the impact parameter of the B0

(s) meson (see tab. 8.4) ensured that the candi-
date originated from the primary vertex. Candidates with large, positive decay-length were selected
by imposing requirements on the impact parameters of their daughter particles, and on LT(B) and
LT(B → D).

4We verified that the mass-constrained fit did not bias the signal yield by repeating the fit after removing the

constraint.
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Variable Units B0 → D−π+ B0
s → D−s π

+

pT(D) GeV/c > 5.0 > 3.0
pT(B) GeV/c > 6.0 > 5.5
pT(πB) GeV/c > 1.6 > 1.9
|d0(B)| µm < 80 < 80
|d0(track)| cm < 0.1 < 0.1
|d0(track)| µm > 120 > 120
LT(B → D) µm > −150 > −150
LT(B) µm > 250 > 400
φ mass GeV/c2 − 1.010 < mKK < 1.030
D mass GeV/c2 1.8694 1.9683
∆R(D,πB) − < 1.5 < 1.5
χ2

T(D) − < 10 < 10
χ2

T(B) − < 15 < 15

Table 8.4: The B0
(s) → D−(s)π

+ selection. ∆R(D,πB) ≡
√

(∆η)2 + (∆ϕ0)2 where ∆η and ∆ϕ0 are
pseudo-rapidity and azimuthal angle of the pion candidate originated from the B0

(s) meson decay-
vertex, with respect to the direction of the D−(s) meson. The quantities χ2

T(B) and χ2
T(D) are quality

parameters of the fits to respectively the B0
(s) and D−(s) candidate decay-vertices in the transverse

plane.

Figures 8.5(a) and (c) show the invariant-mass distributions resulting from the selection of tab. 8.4.
We reconstructed about 2.2× 103 B0 → D−π+ decays with about 1.4 signal purity at the peak, and
a small, but pure (≈ 3.4 peak purity), sample of about 140 B0

s → D−s π
+ decays.5 Two distinct

background components are visible: an exponential-like decreasing contribution, distributed over the
whole mass-range — but more evident in the high-mass side of the signal — and an additional
component present only in the low-mass side of the signal. The former is combinatorial background due
to either a D−(s) meson signal combined with a displaced track, or to a random four-track combination
that satisfied the selection requirements. The latter is due to partially reconstructed B0

(s) meson decays
such as B0

(s) → D−(s)ρ
+, and B0

(s) → D∗−(s)π
+ decays, where the D−(s) meson is properly reconstructed

and the π0 (or the photon) from the ρ+ → π+π0 (D∗−(s) → D−(s)π
0/γ) decay is undetected.

B0
(s) → J/ψX samples

B0 → J/ψK∗0 and B0
s → J/ψφ modes (see fig. 8.6) were reconstructed in data collected by the di-

muon trigger. Following the standard CDF criteria for reconstructing J/ψX modes (see, for instance,
Ref. [105]), we relaxed the requirements on the transverse momenta of B0

(s) mesons and of their
daughter particles to gather enough signal events in the lower part of the pT(B)-spectrum. We
partially compensated the worsening of the signal purity, induced by looser momentum-thresholds, by
tightening the LT(B) and d0(B) requirements.

5We indicate as signal purity Ns/Nb where Ns (Nb) are the signal (background) events in the invariant-mass bin

corresponding to the peak.
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(a) (b)

(c) (d)

Figure 8.5: Invariant D−π+-mass distribution of B0 → D−π+ candidates (a); invariant J/ψKπ-mass
distribution of B0 → J/ψK∗0 candidates (b); invariant D−s π

+-mass distribution of B0
s → D−s π

+

candidates (c); invariant J/ψK+K−-mass distribution of B0
s → J/ψφ candidates (d).

Table 8.5 summarizes the selection criteria, which are discussed as follows. Two oppositely-charged
particles, assigned the muon masses, were constrained to a common vertex. Candidates with a di-
muon mass within 80 MeV/c2 from the world-average J/ψ mass [109] were associated to a pair of
tracks consistent with a K∗0 → K+π− (or φ → K+K−) decay. Then, the four tracks were required
to pass through a common vertex, while the invariant µ+µ−-mass was constrained to the world
average J/ψ mass [109] to improve mass resolution. Of the two possible mass assignments in the
K∗0 reconstruction, K+π− and K−π+, we chose the one yielding the invariant mass closest to the
pole K∗0 mass [109]. This choice, wrong in about 10% of the cases [136], has negligible effect in our
measurement of efficiency (see sec. 8.5.4). The trigger threshold on transverse momenta of CMU muons
was confirmed on off-line quantities (see tab. 8.5). The requirements on transverse decay-length and
impact parameter select B0

(s) candidates originated from the primary vertex and with large, positive
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primary vertex

B0 (B0
s) decay

L
T

J/ψ decay

K∗0(φ) decay

µ+

µ−
K+

π−(K−)

Figure 8.6: Illustration of the B0 → J/ψK∗0 → [µ+µ−][K+π−] (B0
s → J/ψφ → [µ+µ−][K+K−])

decay topology in the transverse plane.

decay-length.

Figures 8.5(b) and (d) show the invariant-mass distributions resulting from the selection of tab. 8.5.
We reconstructed about 770 B0 → J/ψK∗0 decays with approximate signal-to-background ratio 1.0
at the peak, and about 100 B0

s → J/ψφ decays with about 1.5 peak purity. The background, mostly
uniform at both sides of the signals, is dominated by random four-track combinations that accidentally
meet the selection requirements and random two-track combinations associated with a real J/ψ meson.

Variable Units B0 → J/ψK∗0 B0
s → J/ψφ

pT(µ) GeV/c > 1.5 > 1.5
pT of non-ψ daughter GeV/c pT(K), pT (π) > 1.0 pT(K), pT(K) > 0.5
pT(non-ψ) GeV/c pT(K∗0) > 2.0 pT(φ) > 1.5
pT(B) GeV/c > 3.0 > 3.0
|d0(B)| µm < 100 < 100
LT(B) µm > 100 > 100
J/ψ mass GeV/c2 3.017 < mµµ < 3.177 3.017 < mµµ < 3.177
Non-ψ mass GeV/c2 0.842 < mKπ < 0.942 1.010 < mKK < 1.030
χ2

T(B) − < 30 < 30

Table 8.5: The B0
(s) → J/ψX selection. “Non-ψ” denotes the K∗0 (φ) resonance in B0 (B0

s ) decays.

8.5.3 Efficiency measurement

We define the efficiency of the I(B) > 0.5 requirement in a sample of Ns b-meson decays as being

εiso(B) =
N iso
s

Ns
, (8.26)

where N iso
s ≤ Ns is the number of decays in which the isolation of the b-meson is larger than 0.5.

We extracted εiso(B) with a joint fit of the number of signal events passing the isolation requirement
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(N iso
s ), and of the number of events failing the requirement (Ns−N iso

s ). This was done for each decay-
mode separately, and as a function of the transverse momentum of the b-meson. We first determined
εiso(B0 → D−π+), εiso(B0

s → D−s π
+), εiso(B0 → J/ψK∗0), etc.; then, the results for b-mesons of the

same flavor, measured in distinct decay-modes, were combined to obtain the final efficiencies.

The yields were fit by maximizing a likelihood function that uses the information contained in two
discriminating observables: the invariant mass of the B candidate (mB , see figs. 8.7 and 8.8), and a
boolean variable (“flag”) that is true if the candidate satisfies the isolation requirement I(B) > 0.5.
We numerically maximized the unbinned likelihood function L using the minuit package [126] (see
appendix B). The likelihood L is function of the vector ~θ = (θ1, . . . , θn) of the n unknown parameters,
and is written as follows:

L (~θ) = e−(Ns+Nb)
N∏
i=1


Nsε

s
isoL

sig
i +Nbε

b
isoL

bck−iso
i I(B) > 0.5;

Ns(1− εsiso)L
sig
i +Nb(1− εbiso)L

bck−noiso
i I(B) ≤ 0.5.

(8.27)

For each mode, the two-variate (mB and flag) fit was implemented as a combination of two, simul-
taneous, mono-variate fits applied to two independent samples: the events passing and the events
failing the I(B) > 0.5 requirement. For each event passing (failing) the requirement, the first (second)
branch of the above likelihood function was used. In eq. (8.27), the exponential factor accounts for the
Poisson fluctuations of the expected total number of events Ns +Nb, and the product runs over the
observed number of events in our sample, N .6 The expected numbers of signal (Ns) and background
(Nb) events, and the isolation efficiencies on signal (εsiso) and on background (εbiso) were determined
by the fit. The p.d.f. used in the likelihoods that describe signal (L sig

i ) and background (L bck−iso
i

and L bck−noiso
i ) distributions are detailed as follows.

Probability density function for signal

The B0
(s) meson invariant-mass distribution of each mode is described with a Gaussian probability

distribution:
L sig = ℘(mB ; ~θ) = G (mB ;µ, σ) =

1
K
e−

1
2 (
mB−µ
σ )2 , (8.28)

where the mean, µ, and the standard deviation, σ are parameters to be determined by the fit, and the
normalization constant, K =

∫ b
a
e−

1
2 (
mB−µ
σ )2dmB , depends on the mass-range of the fit, a < mB < b.

Probability density function for background

We described the background shapes with different empirical probability distributions depending on
the decay-mode considered: an exponential function in B0

(s) → D−(s)π
+ modes, and a linear function

in B0
(s) → J/ψX modes.

6When the number of observations in the sample is itself a Poisson random variable, the likelihood is often referred

to as extended ; it is the usual likelihood function with the feature that the sample size is part of the result of the

estimation [137].
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(a) (b)

Figure 8.7: Invariant D−π+-mass distributions of B0 → D−π+ candidates passing (black histogram),
and failing (red histogram), the I(B) > 0.5 requirement (a). Invariant D−s π

+-mass distributions
of B0

s → D−s π
+ candidates passing (black histogram), and failing (red histogram), the I(B) > 0.5

requirement (b).

(a) (b)

Figure 8.8: Invariant J/ψKπ-mass distribution of B0 → J/ψK∗0 candidates passing (black his-
togram), and failing (red histogram), the I(B) > 0.5 requirement (a). Invariant J/ψK+K−-mass
distributions of B0

s → J/ψφ candidates passing (black histogram), and failing (red histogram) the
I(B) > 0.5 requirement (b).

Since the invariant-mass distribution of background events in B0
(s) → D−(s)π

+ modes varies with
the isolation (see fig. 8.7), we used two different probability functions:

L bck−iso = ℘(mB ; ~θ) =
1
K0

ec0mB and L bck−noiso = ℘(mB ; ~θ) =
1
K1

ec1mB , (8.29)
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where L bck−iso is used for candidates with I(B) > 0.5 and L bck−noiso for candidates with I(B) < 0.5.
In the B0

(s) → J/ψX sample, instead, the mass shape of the background does not depend on the
isolation (see fig. 8.8), allowing for an unique parameterization:

L bck−iso = L bck−noiso = ℘(mB ; ~θ) =
1
K2

(a0 + a1mB) (8.30)

for any value of I(B).

Comments on the likelihood formulation

The vector of unknown parameters, ~θ, was estimated for each mode, independently, to determine

N̂s – the estimate of the signal yield in the sample;

N̂b – the estimate of the background yield in the sample;

µ̂ and σ̂ – the estimate of signal mean and standard deviation;

ε̂s
iso – the estimate of the efficiency of the I(B) > 0.5 requirement on signal events;

ε̂b
iso – the estimate of the efficiency of the I(B) > 0.5 requirement on background events;

ĉ0 and ĉ1 (or â0 and â1) – the estimate of the parameters of the mass distribution of background
in B0

(s) → D−(s)π
+ (or B0

(s) → J/ψX) modes.

Using the simultaneous fit of eq. (8.27) is convenient. Since several parameters (Ns, Nb, εsiso, ε
b
iso,

µ, σ, a0, and a1) are shared between the two branches of the likelihood, optimal use of the available
information is achieved in determining these parameters jointly. In addition, the use of common
parameters helps the convergence of the maximization of the likelihood in the low statistics, low
purity subsamples of candidates that fail the isolation requirement (see figs. 8.9(b) and (d)). Lastly,
several systematic effects, not dependent on isolation, cancel out in the ratio of signal yields between
the two samples (see sec. 8.5.4).

Fit of the B0
(s) → D−(s)π

+ samples

Fitting the invariant-mass distributions of the hadronic samples is complicated by the sources of
background described in sec. 8.5.2. Handling the contribution from partially reconstructed b-meson
decays in the low-mass side of the signals was particularly difficult, especially for candidates failing
the I(B) > 0.5 requirement. These samples contain a small amount of signal over a large amount of
background (see figs. 8.7(a) and (b)), possibly inducing large systematic uncertainties.7

We simplified the problem by restricting the fit ranges to mass domains where the expected contri-
bution of mis-reconstructed b-mesons is negligible, and the background has the simple shape exhibited
by high-mass events. We shifted the lower bound of the fit range toward higher masses at the ex-
pense of excluding a small fraction of signal events. This fraction was reincorporated in the final
estimate through a correction factor. In B0 → D−π+ decays, for instance, we chose the mass range

7We expected signal efficiencies εs
iso ' 80%–90% and background efficiencies εb

iso ' 30%–40%.



8.5 Isolation efficiency 183

5.25 < mDπ < 5.8 GeV/c2, which excludes some signal events, since the B0 signal is centered at about
5.27 GeV/c2 with about 25 MeV/c2 r.m.s. width (see fig. 8.5(a)). The signal yield was determined by
replacing, in the likelihood (eq. (8.27)), the parameter Ns with Nsc, c being the following correction:

c =

∫ 5.80

5.25
e−1/2[(mDπ−µ)/σ]2dmDπ∫ 5.80

−∞ e−1/2[(mDπ−µ)/σ]2dmDπ

. (8.31)

The specific value of c depends on the fit estimates in each case. On average it is approximately 0.85,
i. e., the fraction of signal events excluded from the fit region is typically around 15%.

Checks on pseudo-experiments showed that varying the fit ranges does not bias the estimated
signal yields nor it degrades appreciably their statistical uncertainties.

B0
(s) → D−(s)π

+ results

Figures 8.9(a)–8.9(d) show the invariant-mass distributions for hadronic samples, with fit functions
overlaid. To study the pT(B) dependence, we divided the sample according to the transverse momen-
tum of candidates in events with 6 < pT(B) < 10 GeV/c and events with pT(B) > 10 GeV/c. Tables
8.6 and 8.7 summarize the corresponding fit results.

pT range [GeV/c] ε̂siso [%] ε̂biso [%] ĉ N̂s N̂b µ̂, σ̂ [MeV/c2]
6 < pT(B0) < 10 86.2± 2.9 31.2± 1.4 ≈ 0.85 683± 55 1701± 49 5275± 2, 23± 2
pT(B0) > 10 93.7± 1.3 49.9± 1.5 ≈ 0.82 1518± 86 1649± 51 5275± 2, 27± 2
− 91.2± 1.3 40.6± 1.0 ≈ 0.84 2177± 101 3358± 71 5275± 1, 25± 1

Table 8.6: Isolation efficiencies in the B0 → D−π+ sample. Last row refers to all events passing
off-line selection requisites (pT(B0) > 6 GeV/c, inclusive).

pT range [GeV/c] ε̂siso [%] ε̂biso [%] ĉ N̂s N̂b µ̂, σ̂ [MeV/c2]
6 < pT(B0

s ) < 10 75.2± 9.6 39.8± 9.5 ≈ 0.98 42± 8 48± 9 5359± 3, 15± 3
pT(B0

s ) > 10 91.5± 3.1 38.7± 11 ≈ 0.91 102± 8 29± 2 5362± 3, 23± 3
− 84.4± 3.9 45.6± 8.2 ≈ 0.94 136± 17 84± 8 5360± 2, 18± 3

Table 8.7: Isolation efficiencies in the B0
s → D−s π

+ sample. Last row refers to all events passing the
off-line selection requisites (pT(B0

s ) > 6 GeV/c, inclusive).

Isolation efficiencies of typically 87% (43%) on signal (background) were measured. The efficiency
on signal increases with the transverse momentum of the B0

(s) meson, which is intuitive, since the
higher the transverse boost, the more collimated the fragmentation particles around the meson direc-
tion.
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(a) (b)

(c) (d)

Figure 8.9: Invariant D−π+-mass distributions of B0 → D−π+ candidates passing (a), and failing
(b), the isolation requirement. Invariant D−s π

+-mass distributions of B0
s → D−s π

+ candidates passing
(c), and failing (d), the isolation requirement. Fit functions are overlaid (red, solid line).
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Fit of the B0
(s) → J/ψX samples

The fit range was not restricted in this case because of the uniform shape of background. Figures
8.10(a)–8.10(d) show the invariant-mass distributions for B0

(s) → J/ψX samples, with fit functions
overlaid. Tables 8.8 and 8.9 contain the results of the fits applied to subsamples of different transverse
momentum of the B0

(s) candidate. An example of such fits is reported in fig. 8.11. Isolation efficiencies

pT range [GeV/c] ε̂siso [%] ε̂biso [%] N̂s N̂b µ̂, σ̂ [MeV/c2]
3 < pT(B0) < 6 57.5± 9.7 18.2± 1.3 110± 22 1115± 38 5263± 3, 17.0± 2.6
6 < pT(B0) < 10 80.7± 4.6 28.5± 1.4 275± 24 1279± 40 5275± 1, 12.4± 1.0
pT(B0) > 10 94.4± 3.0 38.0± 1.8 393± 26 930± 35 5276± 1, 14.8± 1.0
− 84.4± 2.9 27.9± 0.9 768± 42 3336± 66 5275± 1, 14.3± 0.7

Table 8.8: Isolation efficiencies in the B0 → J/ψK∗0 sample. Last row refers to all events passing
off-line selection requisites (pT(B0) > 3 GeV/c, inclusive).

pT range [GeV/c] ε̂siso [%] ε̂biso [%] N̂s N̂b µ̂, σ̂ [MeV/c2]
3 < pT(B0

s ) < 6 70.1± 14.6 28.9± 4.1 22± 6 141± 13 5357± 2, 7.1± 2.0
6 < pT(B0

s ) < 10 90.0± 7.1 31.2± 4.8 42± 7 104± 11 5363± 1, 6.6± 1.1
pT(B0

s ) > 10 84.3± 7.3 40.7± 6.5 51± 9 74.4± 10 5365± 2, 13.6± 2.0
− 82.8± 5.7 32.8± 2.9 113± 14 321± 20 5362± 1, 10.2± 1.5

Table 8.9: Isolation efficiencies in the B0
s → J/ψφ sample. Last row refers to all events passing off-line

selection requisites (pT(B0
s ) > 3 GeV/c, inclusive).

of typically 83% (30%) on signal (background) were measured. Efficiencies on B0 mesons was higher
than in B0

s mesons, and isolation efficiencies for signal increase when the b-meson momentum increases.
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(a) (b)

(c) (d)

Figure 8.10: Invariant J/ψKπ-mass distributions of B0 → J/ψK∗0 candidates passing (a), and failing
(b), the isolation requirements. Invariant J/ψK+K−-mass distributions of B0

s → J/ψφ candidates
passing (c), and failing (d). Fit functions are overlaid (red, solid line).
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(a) (b)

(c) (d)

Figure 8.11: Invariant J/ψKπ-mass distributions of B0 → J/ψK∗0 candidates with pT(B) < 6 GeV/c
passing (a), and failing (b), the isolation requirement. Invariant J/ψK+K−-mass distributions of
B0
s → J/ψφ candidates with pT(B) < 6 GeV/c passing (c), and failing (d), the isolation requirement.

Fit functions are overlaid (red, solid line).
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8.5.4 Sample-averaged isolation efficiency

Tables 8.6–8.9 report the results of the measurement of the isolation efficiency. In the 3 < pT(B) <
6 GeV/c subsample, the results are obtained from J/ψX decays only, otherwise , the two measurements
of εsiso from the J/ψX and the hadronic samples are combined. The total isolation efficiency on signal
and its variance were obtained from a weighed mean,

εsiso =
εs−ψiso /σ2

εs−ψiso
+ εs−had

iso /σ2
εs−had
iso

1/σ2
εs−ψiso

+ 1/σ2
εs−had
iso

, σ2
εsiso

=
σ2
εs−ψiso

σ2
εs−had
iso

σ2
εs−ψiso

+ σ2
εs−had
iso

, (8.32)

where εs−ψiso is the isolation efficiency on signal reconstructed in the J/ψX mode, εs−had
iso is the efficiency

from hadronic modes, and σεs−ψiso
and σεs−had

iso
are the corresponding statistical uncertainties. Table

8.10 reports the final results of the averages. Although each efficiency depends individually on the

Sample pT range [GeV/c] ε̂iso(B0) [%] ε̂iso(B0
s ) [%] ε̂iso(B0)/ε̂iso(B0

s )
J/ψ 3 < pT(B) < 6 57.5± 9.7 70.1± 14.6 0.82± 0.22
J/ψ and hadronic 6 < pT(B) < 10 84.6± 2.4 84.8± 5.7 1.00± 0.08
J/ψ and hadronic pT(B) > 10 93.8± 1.2 90.4± 2.8 1.04± 0.03

Table 8.10: Averages of the efficiencies measured with the D−(s)π
+ and J/ψX samples.

transverse momentum of the candidate, no evidence of a pT(B) dependence of the ratios of efficiencies
between B0 and B0

s mesons was found with the available statistics.

Systematic uncertainties

Systematic effects are negligible compared with statistical uncertainties. Any isolation independent
systematic effect is canceled out in the ratio of signal yields, since it would contribute equally to
numerator and denominator. This is the case of the ≈ 10% contamination due to the broad self-
reflection peak of the B0 → J/ψK∗0 signal caused by interchanged K ↔ π mass assignments. Any
isolation-dependent systematic source should considered, in principle. This is the case, for example,
of the known, asymmetric cross-feed between the reconstructed B0 → J/ψK∗0 and B0

s → J/ψφ

samples, caused by K−π mass mis-assignment, which occurs with a few percent incidence, according
to simulations [105, 136]. However, these effects are small enough to be diluted in the 10% statistical
uncertainties of the measurement.

8.5.5 Momentum-averaged isolation efficiency

The results of the fit of composition were corrected using an isolation efficiency, 〈εiso〉, averaged
over the transverse momentum of the B0

(s) meson. We extracted 〈εiso〉 from the results of tab. 8.10,
separately for B0 and B0

s meson decays, as follows: in each jth bin of transverse momentum, N j
s is the

yield of simulated signal after the full selection (except for the isolation requirement) is applied. The
values of N j

s are easily obtained from the yields in the third column of tab. 8.2 split in different bins
of pT(B), i. e.,

∑
j N

j
s = NεkincXFT. Moreover, the isolation efficiency in each jth bin of transverse
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momentum, ε̂jiso, is known (see tab. 8.10). We therefore obtain the simulated-signal yield expected in
each pT-bin j after applying the isolation requirement, if this could have been done in the simulation
as follows:8 N j−iso

s = N j
s ε̂
j
iso. This quantity, averaged along the B0

(s) meson momentum, becomes
N iso
s = Ns〈εiso〉 that is

∑
j N

j−iso
s =

∑
j N

j
s 〈εiso〉. The averaged isolation efficiency is therefore

obtained as 〈εiso〉 =
∑
j N

j−iso
s /

∑
j N

j
s =

∑
j

(
N j
s ε̂
j
iso

)
/
∑
j N

j
s . The resulting relative isolation

efficiency with its statistical uncertainty is

〈εiso(B0
s )〉

〈εiso(B0)〉
= 1.07± 0.11. (8.33)

8.6 Results (involving isolation efficiency)

The isolation efficiency, along with the kinematic and XFT efficiencies of sec. 8.4, completes the set of
corrections we used to obtain the remaining ratios of branching fractions. All uncertainties account
only for the statistical fluctuations due to finite samples.

8.6.1 Ratio (fs/fd)× B(B0
s → K+K−)/B(B0 → K+π−)

Following eq. (8.5), we corrected the fit results for the kinematic, the XFT, and the isolation efficiencies,
εkin(B0→K+π−)
εkin(B0

s→K+K−) ×
cXFT(B0→K+π−)
cXFT(B0

s→K+K−) ×
〈εiso(B0)〉
〈εiso(B0

s)〉
' 1.06, to extract the following ratio of branching

fractions:
fs
fd
× B(B0

s → K+K−)
B(B0 → K+π−)

= 0.46± 0.08 (stat .), (8.34)

8.6.2 Ratio (fs/fd)× B(B0
s → K−π+)/B(B0 → K+π−)

Following eq. (8.6), we corrected the fit results for the kinematic, the XFT, and the isolation efficien-
cies, εkin(B0→K+π−)

εkin(B0
s→K−π+) ×

cXFT(B0→K+π−)
cXFT(B0

s→K−π+) ×
〈εiso(B0)〉
〈εiso(B0

s)〉
' 0.95, to extract the following ratio of branching

fractions:
fs
fd
× B(B0

s → K−π+)
B(B0 → K+π−)

= 0.01± 0.04 (stat .), (8.35)

8.7 Further considerations

Most corrections described in this chapter were obtained from data to comply with the data-driven
approach chosen for the analysis. We used Monte Carlo simulation only when strictly necessary, in
a context — the extraction of kinematic efficiencies — that ensures reliable results. In fact, this
is the only part of the analysis where simulation enters directly the results. Using simulation to
correct ratios of branching fractions is reliable since ratios of efficiencies are largely dominated by
differences in geometric acceptance between B0

(s) → h+h
′− modes. These depend only on kinematics

of the decays and on the detector geometry, two aspects that are accurately reproduced by the CDF
II simulation. At first order, any possible more complex effect that might be poorly reproduced by

8We remind the reader that we use the bgenerator generator that does not simulate the pp̄ interaction (see sec. 3.6).
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the simulation cancels out in the ratios. The resulting input from simulation is modest: the largest
kinematic correction amounts to a factor of about 12% (see eqs. (8.9)–(8.14)).

In the next chapter we evaluate the systematic uncertainties of the measurement, while the final
results are discussed in chap. 10.



Chapter 9

Systematic uncertainties and checks

This chapter describes the evaluation of the uncertainties due to systematic effects relevant for this
analysis.

9.1 General strategy

Whenever possible, we adopted the following general procedure to evaluate the influence of systematic
effects on our analysis. We first identified the set of nuisance parameters considered as potential
sources of systematic uncertainties. For each nuisance parameter s, we generated different sets of
pseudo-experiments following the procedure discussed in sec. 6.3.2.1 One set assumes, for the nuisance
parameter, the nominal value s0 used in the analysis on data (“standard” or “central” analysis). The
other sets use alternative configurations, in which s is varied within a realistic range, e. g., ±1σs
when the source of systematic uncertainty is the statistical uncertainty σs on the parameter s. The
resulting systematic uncertainty associated to s is the largest difference between the results of the
analysis of the samples with alternative configurations, and the results of the sample with the nominal
configuration.

The measurements described in this thesis focus on ratios of branching fractions of decays that
are kinematically similar. We expect that most systematic effects that plague the individual modes,
e. g., the uncertainty on the integrated luminosity of the sample, (mostly) cancel in the ratio, thus
resulting in a smaller systematic uncertainty on the measured ratios. Only systematic effects that
have a different impact on different modes were therefore considered. Furthermore, we ignored those
systematic effects that induce uncertainties significantly, i. e., a factor O(10), smaller than their largest
counterparts, because their contribution to the total systematic uncertainty is negligible anyhow.

Sections 9.2–9.8 contain the discussion on the dominant systematic uncertainties, while sec. 9.9
summarizes their magnitude for each measurement.

1The symbol s may indicate either a single parameter of a multidimensional parameter.

191



192 Chapter 9. Systematic uncertainties and checks

9.2 Systematic effects related to kinematics

Any uncertainty affecting the distributions of the kinematic observables of the fit (mπ+π− , α, ptot) is
a potential source of systematic uncertainty for the final measurement.

9.2.1 Uncertainty on mass resolution

The simulation, used to model the signal distributions, underestimates the mass width of individual
decay modes (see sec. 3.6). For the central fit, we scaled the σm ' 22 MeV/c2 mass width observed
in the simulation, to a value σm = 28 MeV/c2, as derived from the comparison between data and
simulation in D0 → h+h

′− decays and in di-muon decays of J/ψ and Υ(1S) mesons (see tab. 9.1). A

Decay mode Q-value [MeV/c2] σm,data [MeV/c2] σm,MC [MeV/c2]
D0 → K−π+ 1231 ' 10.0 ' 7.9
J/ψ → µ+µ− 2886 ' 17.6 ' 13.2
Υ(1S)→ µ+µ− 9250 ' 65.6 ' 50.0

Table 9.1: Mass widths of two-body decays observed in collision data [105] and in simulation. The
available kinetic energy of each process (Q-value) is reported.

discrepancy between the actual mass width in data and our assumed value may bias the estimated
contribution of the individual modes to the peak, thus introducing a systematic deviation in the
measurement of the signal composition.

We repeated the measurement on ensembles of pseudo-experiments generated with either σm =
25 MeV/c2 or σm = 31 MeV/c2, which correspond to variations by ±50% of the discrepancy between
the data and the predictions of simulation. The maximum variation with respect to the central value
was chosen as associated systematic uncertainty (see tab. 9.5).

Check for the pT-dependence of the mass width

The reconstructed mass-width of simulated decays depends moderately on the transverse momentum
of the B0

(s) meson (see sec. 3.6). This effect was neglected in our default analysis. Thus, we checked its
possible impact on the final results. We extracted from simulated data a straight-line parameterization
of the pT-dependence of the mass width, σm(pT) = 0.026 + 0.00029 × pT GeV/c2 with pT in GeV/c,
and we included it in the mass term of the likelihood (eq. (6.6)). The corresponding fit of composition
in data show no statistically significant variation of the fit results with respect to our central fit,
indicating a negligible systematic effect with respect to the statistical fluctuations.

9.2.2 Uncertainty on the nominal B0
(s) meson masses

The values of B0
(s) masses enter the likelihood through the analytic expressions ofM(α) for the mean

of the invariant π+π−-mass distributions (see sec. 6.2.1). However, B0
(s) meson masses are associated

to their experimental uncertainties, which introduce a systematic uncertainty in the present analysis.
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Wrong values of the masses in the likelihood would result in a poor description of the π+π−-mass
distributions of data, and in biases of the fit results. We included this effect considering the statistical,
rather than the total, uncertainty on the input values of B0

(s) masses. In fact, we purposefully used
in this analysis the masses measured in Ref. [105] with an analysis that used our own apparatus and
reconstruction code, to cancel the common systematic uncertainties. The dominant systematic effects
affecting the CDF II measurements of masses (tracker mis-alignments and incorrect absolute-scale of
the momentum) are independent of the details of the considered decay-mode, being related only to the
tracking performance. As a consequence, these uncertainties mostly cancel in CDF analyses that use
mass information retrieved from other CDF measurements. Thus, only the statistical uncertainties
on the input masses contribute to the systematic uncertainty in the present analysis.

We repeated the measurement on different samples of pseudo-experiments generated with different
combinations of B0

(s) masses. The four possible combinations of B0 and B0
s masses were simulated

by independently increasing (decreasing) by one statistical standard deviation the masses measured
in Ref. [105]: mB0 = 5279.63± 0.53 (stat .) MeV/c2 and mB0

s
= 5366.01± 0.73 (stat .) MeV/c2.

The largest discrepancy between the results of fits in these samples was taken as systematic un-
certainty (see tab. 9.5).

Check for a global mass scale

As a further check of our control on masses, we repeated the fit on data with an additional parameter
to be determined by the fit: a global mass scale ξ. We added the mass scale in the M(α) expression
within the mass term of the signal p.d.f. (eq. (6.6)) as a global mass offset

mB0 → mB0 + ξ and mB0
s
→ mB0

s
+ ξ. (9.1)

Other than for the addition of ξ, the likelihood was unchanged with respect to the central fit. Table
9.2 shows the fit results with ξ free to float (second column) compared with the results of the central
fit (third column).

Quantity Free mass-scale Central fit
f̂B0→π+π− 0.116± 0.032 0.134± 0.030
f̂B0→K+π− 0.669± 0.054 0.600± 0.034(
f̂
B

0→K−π+ − f̂B0→K+π−

)
/
(
f̂
B

0→K−π+ + f̂B0→K+π−

)
−0.034± 0.073 −0.022± 0.078

f̂B0
s→K−π+ −0.018± 0.030 0.003± 0.028

f̂B0
s→K+K− 0.233± 0.039 0.262± 0.035

f̂B0
s→K+K−/f̂B0→K+π− 0.348± 0.080 0.437± 0.074

f̂B0→π+π−/f̂B0→K+π− 0.174± 0.057 0.224± 0.057
f̂B0→π+π−/f̂B0

s→K+K− 0.498± 0.161 0.513± 0.145
ξ̂ [GeV/c2] 0.005± 0.003 0 constant

Table 9.2: Physical fit results obtained allowing an additive, global mass-scale to float (first column)
compared with the results of the central fit, in which the mass scale is set to zero (second column).

The difference in the value of −2 ln(L ) obtained between the fit with floating mass scale and the
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central fit is −2∆ ln(L ) ' 2.39, and the estimated value of ξ is just 1.6σ off zero. This indicates
no statistical evidence for a shift of the mass scale in data.2 The results with floating mass scale
are consistent with those of the central fit with ξ = 0, which is the configuration chosen to exploit a
better resolution on the physical parameters. This test shows also that the fit has sufficient statistical
information to determine the global mass-scale in data with 2.8 MeV/c2 accuracy, and with little
deterioration in statistical resolution of other parameters.

9.2.3 Effect of final state electromagnetic radiation on masses and mo-

menta

The unavoidable emission of low-energy photons from charged kaons and pions in the final states
(final state radiation, FSR) may distort the distributions of kinematic variables (mπ+π− , α, and
ptot) because of the unreconstructed photon-momentum. Since the resulting lower-mass tails of the
mass distributions are not modeled in our fit, a systematic deviation in the observed ratios of yields
may be present: the fit may mis-assign the contribution from decays that underwent radiation to
other modes peaking at lower masses. The bgenerator simulator (see sec. 3.6) does not include
FSR. Complementing it with available FSR-simulators, as photos [139], is of little help, because
currently these packages are reliable in simulating genuine electroweak processes only, or processes
fully calculable with perturbation theory within the Standard Model.

We therefore included FSR in our pseudo-experiments by using an analytical formula for leading
radiation obtained directly from QED calculations [140, 141]. The expression is derived within scalar
QED, under the approximation of a point-like effective weak vertex, and neglecting effects of non-
bremsstrahlung emission. In Ref. [140] an expression for the cumulative distribution of the photon
energy is derived for K → ππ decays. We extrapolated the corresponding formula for B0

(s) → π+π−

and B0
(s) → K+K− decays, following Ref. [141], and we conservatively quoted the deviation of the

results from the fit without FSR as systematic uncertainty. No QED calculation was finalized yet for
the K±π∓ decays as of this analysis. The authors of Ref. [141] suggested that a reliable estimate of
the effect can be obtained by averaging the expected FSR in a K+K− decay with the one in a π+π−

decay. We therefore simulated the radiation of K±π∓ final states as if they were π+π− or K+K−

states, and we assessed a conservative systematic uncertainty as the largest deviation from the results
without FSR (see tab. 9.5).

9.3 dE/dx -related systematic effects

When using the dE/dx information in fit of composition some assumptions were inevitable, yielding
another class of systematic effects in our measurement.

2A fundamental property of the likelihood ratio test-statistics prescribes that, for sufficiently regular likelihoods and

in the asymptotic limit, the quantity −2∆ ln(L ) between two ML estimators with a difference n in dimensionality, is

distributed as a χ2 with n degrees of freedom [138].
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9.3.1 Uncertainty on the distribution of the common mode fluctuations

The observed dE/dx of kaons and pions from D0 decays are correlated by common-mode fluctuations
(see sec. 5.7), whose effect had to be included in the ML fit of composition. Since no independent way
to determine the distribution of the common mode in the B0

(s) → h+h
′− decays is available, we used

the distribution of the D0 sample. However, the magnitude of the dE/dx correlation between particles
in a decay partially depends on the kinematic correlations between the particles themselves, resulting
in a sample-dependent distribution of the dE/dx correlations (see sec. 5.7). In particular, smaller
dE/dx correlations are expected between B0

(s) → h+h
′− decay-products with respect to D0 → K−π+

products, due to the smaller kinematic correlations provided by the higher Q-value of the decay. Thus,
by assuming no differences between the dE/dx correlation of two kinematically different samples as
B0

(s) → h+h
′− and D0 → K−π+ decays we introduced a systematic effect.

In sec. 5.7 we determined the distribution of the common mode for kaons and pions from D0

decays in two cases: one in which kaons and pions are produced in the decay of a single D0 meson
(“physical-sample”), the other one in which kaon and pion are produced in the decay of two distinctD0

mesons, reconstructed in two consecutive events (“mixed-decay sample”). We used these independent
models of the correlation function to assess a systematic uncertainty. We generated two ensembles of
pseudo-experiments: one with common-mode distribution extracted from the same-decay sample, the
other one with the distribution extracted from the mixed-decay sample. The former choice, which may
overestimate the correlation in the B0

(s) → h+h
′− sample, is also the one adopted for the standard

analysis on data. The latter represent a lower limit to the correlation expected in B0
(s) → h+h

′−

decays. The variation between the results of the analysis performed in these different set of pseudo-
experiments was chosen as the systematic uncertainty (see tab. 9.5).

9.3.2 Uncertainty on the distribution for electrons and protons

In sec. 5.8, we determined the dE/dx -residual distributions only for kaons and pions. Concerning
electrons and protons, we included these (small) background components in the likelihood by assuming
for them the pion distribution. In principle the distribution of the residual, i. e., of the observed dE/dx
around its average value with correct mass assignment, is expected to be independent of the particle
type. However, slight differences between the distributions of kaon and pion residuals were observed
and ascribed to systematic dependence of the dE/dx on the track curvature (see sec. 5.8). One would
expect similar differences between the distributions of pions, electrons, and protons. We generated four
ensembles of pseudo-experiments, using in each one a different combination of pion and kaon shapes
to be assigned to the proton and electron components. The largest deviation from the obtained results
with respect to those obtained with the standard analysis was chosen as a conservative systematic
uncertainty (see tab. 9.5).

9.3.3 Charge dependence of the distributions

Small differences between the residual distributions of positively and negatively-charged particles of
the same type were observed (see fig. 5.24). In our measurement, we used the p.d.f. extracted from
positively-charged particles only, possibly biasing the charge-sensitive fit parameters, as the direct
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CP-asymmetry.

We generated four ensembles of pseudo-experiments; in each, a different combination of residual
distributions for positively and negatively-charged particles was assigned to the outgoing particles of
each kind. The largest deviation from the results obtained with the standard configuration was chosen
as systematic uncertainty (see tab. 9.5).

9.4 Lifetime-related systematic effects

Lifetime-related discriminants (impact parameter and transverse decay-length) are crucial ingredients
of the sample selection. The accuracy of the simulation in reproducing the distributions of these
quantities is of paramount importance for a proper evaluation of the kinematic efficiencies, used to
extract the ratios of branching ratios from the ratios of event yields. In case of poorly simulated
lifetime-distributions of the B0

(s) → h+h
′− modes (strictly speaking, the ratios of distributions are

the relevant quantities), wrong efficiency corrections would be applied to the fit results, yielding
systematically wrong measurements. Our choice of lifetimes is affected by some (modest) experimental
uncertainties, and by some theoretical uncertainties coming from the unavoidable assumptions made
(see sec. 3.6). Both induce a systematic uncertainty in the final ratios of branching fractions.

9.4.1 Uncertainty on the nominal B0
(s) meson lifetimes

In this section we assess the systematic uncertainty deriving from the experimental uncertainties on
the lifetime of B0 decays and of flavor-specific B0

s decays only. The world-average values for these
lifetimes are dominated by measurements based on large samples of semielectronic and semimuonic
decays, thus having relatively small uncertainties: ≈ 4% for B0

s flavor-specific decays and ≈ 1.5% for
B0 decays. We re-evaluated the kinematic efficiency for each mode (see sec. 8.2) after fluctuating by
one standard deviation the input lifetime in the simulated samples. We assumed the worst cases, in
which B0 and B0

s lifetimes fluctuated in opposite directions:

1. cτ(B0) = 460 + 4 = 464 µm and cτ(B0
s → K−π+) = 438− 17 = 421 µm;

2. cτ(B0) = 460− 4 = 456 µm and cτ(B0
s → K−π+) = 438 + 17 = 455 µm.

The resulting kinematic efficiencies were applied to the fit results.3 The largest variation between
these results and the central results was adopted as systematic uncertainty (see tab. 9.5).

9.4.2 Uncertainty on the width difference between B0
s mass eigenstates

In addition to the above effect, the measurements involving B0
s → K+K− and B0

s → π+π− modes
suffers from an additional uncertainty due to the poor knowledge of the width difference between
B0
s mass eigenstates (∆Γs/Γs). The relative uncertainty on the Standard Model prediction for this

3Also the kinematic efficiencies involving B0
s → π+π− and B0

s → K+K− decays are affected, since the value of

Γd = 1/τ(B0) enters in the extraction of their time-evolution (see eq. (3.4)).
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quantity (∆Γs/Γs = 0.12 ± 0.06, [110]) results in a 12 µm uncertainty on the pseudo-proper decay-
lengths of B0

s → K+K− and B0
s → π+π− modes. We re-evaluated the kinematic efficiency for

B0
s → K+K− and B0

s → π+π− modes (see sec. 8.2) after fluctuating by this quantity their input
lifetimes in the simulation. The resulting kinematic efficiencies were applied to the fit results. The
maximum variation between these results and the central value was chosen as systematic uncertainty
(see tab. 9.5).

9.5 Systematic effects induced by charge asymmetries

An accurate understanding of all charge-related asymmetries is of critical importance for a correct
estimation of the yield asymmetry between B0 → K+π− and B

0 → K−π+ modes that determines
our measurement of direct CP-asymmetry. Any instrumental effect may fake an asymmetry, and the
composition of background in terms of charge becomes crucial.

9.5.1 Uncertainty on the probability of interaction with matter of kaons

The B0 → K+π− and B
0 → K−π+ yields were corrected for the different probability of interaction

with matter between positively and negatively-charged kaons (see sec. 8.2.2). Any uncertainty in the
correction, which was extracted from Monte Carlo simulation and checked on real data, reflects itself
as a systematic effect on the final ACP(B0 → K+π−) asymmetry. Although the geant package for
detector simulation is known to reproduce accurately the different cross-sections for kaons, we allowed
for a conservative systematic uncertainty. We applied to the fit result a new correction, consisting
in the central one changed by the 25% of its value, and we quoted the difference with respect to the
central result as a systematic uncertainty (see tab. 9.5).

9.5.2 Uncertainty on charge asymmetries in background

The form of the likelihood function implies that each species populates the background with equal
proportions of positively and negatively-charged particles, i. e., the estimated fraction of each par-
ticle type (f̂π, f̂K , f̂p, and f̂e) indicates the charge-averaged fraction of that type. If, instead, the
background contains a different number of positively and negatively-charged particles of some types,
possible fit biases may appear. Such a charge asymmetry of the background may mimic an asymmetry
of the B0 → K+π− signals, inducing a systematic effect on the measured ACP(B0 → K+π−) asymme-
try. To check the hypothesis of measurable charge asymmetries in the background, we repeated the fit
of composition on data allowing for independent fractions of positively and negatively-particles of each
type in background. This resulted in nine additional parameters to be fit. The corresponding (physics
related) fit results are shown in the first column of tab. 9.3. The results of the central fit are also
reported for comparison. The difference between the value of −2 ln(L ) obtained with the central fit
and the one from the fit with independent background fractions for positively and negatively-charged
particles was −2∆ ln(L ) ' 16.54 (for nine additional degrees of freedom). In addition, all differences
between fractions of oppositely-charged particles of the same type are largely consistent with zero
within 1.5σ. Thus, no statistical evidence for charge asymmetries in the background is present in
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Quantity +/− bckg. split Central fit
f̂B0→π+π− 0.135± 0.030 0.134± 0.030
f̂B0→K+π− 0.599± 0.034 0.600± 0.034(
f̂
B

0→K−π+ − f̂B0→K+π−

)
/
(
f̂
B

0→K−π+ + f̂B0→K+π−

)
−0.073± 0.086 −0.022± 0.078

f̂B0
s→K−π+ 0.004± 0.028 0.003± 0.028

f̂B0
s→K+K− 0.262± 0.035 0.262± 0.035

f̂B0
s→K+K−/f̂B0→K+π− 0.437± 0.074 0.437± 0.074

f̂B0→π+π−/f̂B0→K+π− 0.226± 0.057 0.224± 0.057
f̂B0→π+π−/f̂B0

s→K+K− 0.517± 0.146 0.513± 0.145

Table 9.3: Physical fit results obtained allowing separate fractions for positively and negatively-charged
particles in background (first column) compared with the results of the central fit (second column).

our data.4 Furthermore, the physics parameters show negligible variations between the two fits (see
tab. 9.3): all differences amount to fractions of a standard deviation except for the differential rate
between B0 → K+π− and B

0 → K−π+ decay, which varied by about half of a standard deviation.
However, the considerable degradation of its statistical resolution (7.8% → 8.6%) indicates that the
shift on the estimate could be ascribed to statistical reasons.

Although the above results show no evidence of charge asymmetries in background, we still assigned
a conservative systematic uncertainty on possible undetected charge-asymmetries of protons. Only
protons and antiprotons were considered because of the possible contribution to the background of
beam-gas interaction products, which contain more protons than antiprotons.5 We therefore repeated
in data a fit of composition allowing for separate fractions of protons and antiprotons. This determined
the following pp̄ asymmetry in the signal region: Â(p) = (f̂p− f̂p̄)/(f̂p + f̂p̄) = 0.06±0.05. The results
of this fit were used to generate an ensemble of pseudo-experiments to which the central analysis was
applied. The difference between fit results obtained in samples with and without pp̄ asymmetry was
used as systematic uncertainty (see tab. 9.5).

9.6 Likelihood-related systematic effects

An important class of systematic effects involves the expression of the likelihood function. If the
dependencies among observable are improperly treated (i. e., the p.d.f. of two dependent observables
are factorized), biases on the fit results may occur and invalidate the measurement. Even subtler
effects arise when the fit uses an observable that has different distributions among different classes of
events, which are not included in the p.d.f. [127].

4See footnote at pag. 194.
5See footnote at pag. 160
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9.6.1 Effect of the dependence between the observables mπ+π− and ptot

In the likelihood, we assumed the invariant π+π−-mass (mπ+π−) being independent of the scalar sum
of momenta (ptot):

Li(~θ) ∼ ℘m(mπ+π− |α; ~θ)× ℘p(α, ptot; ~θ)× ℘PID(κobs
1 , κobs

2 |α, ptot; ~θ). (9.2)

While this applies with good accuracy to the signal, it is an approximation for the background.
Figure 9.1 shows the normalized invariant π+π−-mass distributions for background events with ptot <

Figure 9.1: Normalized invariant π+π−-mass distribution of background events that pass the optimized
selection and with ptot < 9 GeV/c (black plot) and ptot > 9 GeV/c (red plot).

9 GeV/c (black histogram) and with ptot > 9 GeV/c (red histogram). The shape slightly depends on
ptot, thus, the factorized form of eq. (9.2) is not completely accurate, and may introduce undesired
biases in the fit results. We determined the slopes of the exponential functions used to model the
two distributions in fig. 9.1 with a binned χ2-fit, and estimated a 32% relative difference between
them. Then we used these shapes to generate two ensembles of pseudo-experiments, and we applied
the standard fit of composition to these simulated samples. The maximum deviation between the
observed fit results was taken as a systematic uncertainty (see tab. 9.5).

9.6.2 Uncertainty on the momentum distributions of background compo-

nents

In sec. 6.2.2 we determined an inclusive momentum (α, ptot) distribution for the background, using
events in the mass sidebands of data. This provided an average p.d.f., consisting in the superimposi-
tion of the momentum distributions of an unknown admixture of protons, kaons, pions, muons, and
electrons. As a general rule, whenever the model used in a multi-component fit depend on additional
observables, one should always use the correct, complete likelihood expression, including the explicit
distributions of all observables for all classes of events because, if they are different, significant biases
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of the fit results may occur [127]. One of the discriminating observables used in the ML fit is the
scalar sum of the momenta of the two outgoing particles (ptot), which is clearly sensitive to differences
in momentum spectra between the different background components. Since in our central fit the like-
lihood function implicitly assumed the same momentum distribution for all background components,
we need to investigate the possible biases induced by this approximation.

We studied the momentum distribution of each type of particle in the background of the B0
(s) →

h+h
′− sample. To increase the number of background events, we released the requirement on isolation

in the selection (see tab. 3.3). Then we defined a sample of background particles: i. e., the tracks
from candidates with lower, 4.800 < mπ+π− < 5.125 GeV/c2, or higher, 5.4 < mπ+π− < 5.8 GeV/c2,
π+π−-mass than the B0

(s) → h+h
′− signal mass. We further subdivided this sample in five subsamples

according to the momentum of the outgoing particles. A measurement of the composition of each
subsample may allow extracting useful information on the momentum spectra of each component.
At fixed momentum, the distribution of the observed dE/dx around the average pion response is
sensitive to the fraction of different species of charged particles of the sample. The available dE/dx
resolution, comparable in size to the separation among the average responses for each particle type,
along with the unavoidable momentum-spread of particles within each subsample, complicate the task.
However, some useful information is still available, especially if the study is restricted to momentum
ranges in which a reasonably high statistics is combined with well-separated dE/dx curves. We
fit the composition of each subsample on a single-particle basis in terms of pion, kaon, proton, and
electron components with a binned ML fit of the δobs

π (i. e., residual with pion hypothesis) distribution.
The shapes of the δobs

π distributions for each particle type were fixed in the fit, only their relative
normalization were allowed to float for determining the composition. Figure 9.2 shows an example of
one fit. From the results on the momentum-dependent composition of background (see tab. 9.4), we

Figure 9.2: Distribution of the observed dE/dx around the average pion response for charged particles
with 4 < p < 5 GeV/c from background.

derived the momentum distributions of each particle type shown in fig. 9.3. We fit these distribution



9.6 Likelihood-related systematic effects 201

p [GeV/c] Entries f̂K [%] f̂π [%] f̂p [%] f̂e [%]
2.808–3.500 5807 16.8± 6.4 54.5± 1.5 23.3± 5.8 4.2± 0.4
3.500–4.000 4180 14.0± 4.6 55.8± 1.8 23.8± 3.8 5.2± 0.6
4.000–5.000 5923 19.7± 2.7 55.6± 1.6 15.9± 2.0 7.7± 0.6
5.000–5.800 2478 23.0± 3.4 57.1± 2.5 12.7± 2.3 5.7± 1.0
5.800–9.000 2506 29.0± 2.8 54.6± 2.7 5.5± 1.5 8.4± 1.2

Table 9.4: Momentum-dependent composition of background.

Figure 9.3: Fraction of kaons (a), pions (b), protons (c), and electrons (d) in background as a function
of momenta.

with straight line functions, and we generated ensembles of pseudo-experiments in which the fraction
of each particle species was reweighed as a function of the momentum, according to the fit results.
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We quoted a conservative systematic uncertainty by using the difference between the fit results on
pseudo-experiments reweighed with the momentum spectra of fig. 9.3, and pseudo-experiments in
which the slopes of the reweighing functions were inverted. The resulting effect is small in comparison
with other systematic effects (see tab. 9.5).

The results of tab. 9.4 have a physical interest in their own right. The capability of measuring
fractions of individual species, and their momentum distributions in the background of such an ag-
gressively selected sample may be exploited in a future, dedicate analysis for extracting insights on
the different sources of background, or on additional, unexpected signals.

9.7 Efficiency-related systematic effects

In chap. 8, the ratios of observed decays were corrected for the relative efficiencies between the indi-
vidual B0

(s) → h+h
′− modes. However, the relative efficiencies were determined in samples of finite

statistics. The Poisson fluctuations of the events yields used to determine the efficiencies introduce a
systematic effect in the final measurements of ratios of branching fractions.

9.7.1 Uncertainty on the isolation efficiency

In sec. 8.5, the relative isolation efficiency was determined with ≈ 10% statistical uncertainty, which
introduces a systematic uncertainty in measurements of ratios of branching fractions between B0

s and
B0 decays. We re-evaluated the ratios of branching ratios after fluctuating the relative isolation effi-
ciency by one standard deviation in either directions. The difference between the resulting branching
fraction and the central result was quoted as systematic uncertainty (see tab. 9.5).

9.7.2 Effect of Poisson fluctuations in simulated samples

The relative kinematic efficiencies, used to convert the ratios of event yields in ratios of branching
fractions, were determined within O(10%) statistical uncertainties (see sec. 8.2). We re-evaluated each
ratio of branching fractions by using acceptance corrections fluctuated by one standard deviation in
either direction. The difference between the resulting branching fraction and the central result was
used as systematic uncertainty (see tab. 9.5).

9.7.3 Uncertainty on the XFT-bias correction

In sec. 8.3, the ratios of observed decays were corrected for the different XFT triggering-efficiency for
kaons and pions. The parameters of the functions used for this correction were known within statistical
uncertainties, which induce a systematic uncertainty on our results. We re-evaluated the correction
factors by independently fluctuating the coefficients of the polynomials of tab. 8.3, neglecting their
correlations. We evaluated the efficiencies in the limiting (worst) cases in which the coefficients
for pions and for kaons fluctuated in opposite directions by one standard deviation. This provides
conservative variations of the efficiencies, which are upper limits to the ones expected including the
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correlations between coefficients. The largest difference between the resulting branching fraction and
the central result was quoted as a symmetric systematic uncertainty (see tab. 9.5).

9.8 Other systematic uncertainties

9.8.1 Uncertainty on the transverse momentum spectra of B0
s and B0 mesons

The simulated samples were generated using a single pT(B)-spectrum for B0 and B0
s mesons, extracted

from an unknown admixture of b-hadrons reconstructed in CDF data (see sec. 3.6). Small differences
between the transverse momentum distributions of B0 and B0

s mesons are possible, because of the
differences in their fragmentation processes. The effect of these differences in the present analysis
might be two-fold: on one side, the modeling of the mass and momentum terms of the p.d.f. for the
signal (see chap. 6) would be incorrect, possibly resulting in biases of the fit results; on the other hand,
the ratios of kinematic efficiencies between B0 and B0

s decay modes, extracted form the simulation,
would be affected.

The currently available experimental data do not allow for an independent extraction of the B0
s

fragmentation function. Some assumptions are needed for a semi-quantitative evaluation of this effect.
It is reasonable to expect the fragmentation function of the B0

s meson to be softer compared with the
one of the B0 meson, since the b-quark produces an heavier quark from vacuum to hadronize in a B0

s

meson. The mean value of the fraction of b-quark momentum inherited by the meson is expected to
vary by approximately ∆z ≈

mB0
s
−mB0

mB0
s
/2+mB0/2

≈ 2% between B0 and B0
s mesons [142].

We modified the pT(B) spectrum in the Monte Carlo with a ±1% shift and we re-extracted the
mass and momentum distributions for the signals. No significant difference within the statistical
uncertainties was found with respect to the distributions of the standard analysis, thus we estimated
this effect to be negligible. In addition, the simulated samples with adjusted spectra were used to
re-evaluate the kinematic efficiencies for each mode, assuming the worst case in which the standard
spectrum was shifted by 1% toward higher (lower) momenta for the B0 (B0

s ) modes. The difference
between the resulting ratios of branching fractions and the central results were quoted as systematic
uncertainty (see tab. 9.5).

9.8.2 Uncertainty on the mass distribution of background

Since we empirically assumed an exponential model for the invariant π+π−-mass distribution of back-
ground candidates (see eq. (6.15)), we quoted a systematic uncertainty due to our limited knowledge of
the real distribution. We first fit the invariant π+π−-mass distribution in data, trying various different
empirical models: polynomial functions of various degrees, combinations of Gaussian functions, and so
forth. We excluded all models that returned a poor quality of the fit (χ2-test), retaining only the sec-
ond and third degree polynomial functions. Then, we generated two ensembles of pseudo-experiments
in which the invariant π+π−-mass of background events assumed these shapes, whose parameters had
been previously extracted from data. Finally, we applied the full fit to these pseudo-experiments. The
largest difference between the fit results obtained with alternative models and those obtained with
the standard exponential model was quoted as systematic uncertainty (see tab. 9.5).
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9.9 Systematic uncertainty summary

Table 9.5 contains the contribution of each effect to the systematic uncertainty associated to each
measurement. Each systematic effect can be considered independent from the others. Thus, we eval-
uated the total systematic uncertainty for each measurement by adding in quadrature the individual
contributions.

Source fs
fd
× B(B0

s→K
+K−)

B(B0→K+π−) ACP(B0 → K+π−) B(B0→π+π−)
B(B0→K+π−)

Mass resolution 0.004 0.0015 0.002
Nominal B0

(s) masses 0.022 0.0033 0.010
Final state radiation 0.020 − 0.025
dE/dx: common-mode shape 0.026 0.0016 0.013
dE/dx: p and e residuals 0.001 0.0003 0.000
dE/dx: charge-dependent shapes 0.005 0.0052 0.001
Nominal B0

(s) lifetimes 0.004 − −
Effect of ∆Γs/Γs 0.006 − −
Kaon charge-asymmetry − 0.0009 −
pp̄ asymmetry 0.000 0.0097 0.000
mπ+π− − ptot dependence 0.010 0.0018 0.002
Momenta in background 0.001 0.0005 0.000
Isolation efficiency 0.047 − −
MC statistics 0.004 0.0004(∗) 0.003
XFT-bias correction 0.009 − 0.003
pT(B) spectrum 0.006 − −
Background model 0.011 0.0022 0.003
Total 0.07 0.012 0.03

Table 9.5: Summary of systematic uncertainties. The uncertainty on the asymmetry due to Poisson
fluctuations of the Monte Carlo sample labelled with an asterisk (∗) is smaller that other uncertainties
on the same row, because for this uncertainty we used a dedicated, high-statistics sample of simulated
charged kaons (see sec. 9.5.1).

The dominant sources of systematic uncertainties vary among the measured quantities. The largest
contributions are the uncertainty on the isolation efficiency, which is the dominant uncertainty for
the (fs/fd) × B(B0

s → K+K−)/B(B0 → K+π−) measurement, the effect of possible asymmetries
between the fraction of protons and antiprotons in background, which dominates the ACP(B0 →
K+π−) measurement, and the effect of final state radiation for the B(B0 → π+π−)/B(B0 → K+π−)
measurement. Further discussion of the systematic uncertainties is given in the next chapter.
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Results and their interpretation

We reconstructed, for the first time in hadron collisions, decays of b-mesons into two-body, charmless
pseudo-scalar mesons, and we measured their branching fractions. We observed a new mode and we set
improved upper limits on two unobserved modes. In all measurements, uncertainties are dominated by
the statistical component. This chapter contains the final results, their discussion, and the perspectives
of future B0

(s) → h+h
′− measurements at CDF.

10.1 Observation of the B0
s → K+K− decay-mode

We report the first observation of the decay mode B0
s → K+K−, with a yield of 236 ± 32 events,

corresponding to the following measurement of relative branching fraction:

fs
fd
× B(B0

s → K+K−)
B(B0 → K+π−)

= 0.46± 0.08 (stat .)± 0.07 (syst .), (10.1)

where fs/fd is the ratio of production fractions of B0
s and B0 mesons from the hadronization of a

b-quark in pp̄ collisions. This is the first observation of the decay of a B0
s meson into a pair of pseudo-

scalar mesons. Using the world-average values B(B0 → K+π−) = (18.9 ± 0.7) × 10−6 and assuming
for fs/fd the world-average value from pp̄ and e+e− collisions, fs/fd = 0.261± 0.038 [29], we extract
the following absolute branching fraction:

B(B0
s → K+K−) = [33± 6 (stat .)± 7 (syst .)]× 10−6, (10.2)

which is compatible with the current world-best limit from the ALEPH Collaboration: B(B0
s →

K+K−) < 59× 10−6 [67].

The contributions of the systematic and statistical components to the uncertainty are approxi-
mately equal. A sizable reduction of the systematic uncertainty is expected, along with the statistical
one, as the data samples increase in size: the dominant sources of systematic uncertainty include the
statistical uncertainty on the isolation efficiency, the statistical uncertainty on the nominal values of
B0

(s) meson masses used in the likelihood, and the uncertainty on the effect of final state radiation
(see fig. 10.1). The first two contributions are of statistical origin, thus expected to decrease as the

205
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size of calibration samples used to determine them increases. The FSR-related uncertainty will be
reduced in the next update of the analysis, since Isidori and Baracchini recently provided the QED
corrections also for B0 → K+π− modes [141]. This will allow incorporating the effect of FSR as a
further efficiency correction to the central result. For comparison with theoretical predictions, it is

Figure 10.1: Circular chart of the systematic uncertainties (σi) contributing to the measurement of
(fs/fd)× B(B0

s → K+K−)/B(B0 → K+π−). The area of each sector is proportional to σ2
i .

convenient to relate the B0
s → K+K− rate also to the rate of the U-spin conjugate mode B0 → π+π−:

fd
fs
× B(B0 → π+π−)
B(B0

s → K+K−)
= 0.45± 0.13 (stat .)± 0.06 (syst .). (10.3)

10.1.1 A test of SU(3) symmetry breaking

Khodjamirian, Mannel and Melcher provide quantitative estimates of the flavor SU(3)-symmetry
breaking in B0

(s) → h+h
′− decays [32]. This crucial information defines the limits of applicability

of the SU(3) symmetry approach proposed to reduce and control hadronic uncertainties in the predic-
tions of B0

(s) → h+h
′− amplitudes [5]. Our measurement provides a first experimental check of this

prediction.

Amplitudes are written in terms of factorizable portions (Afact, function of CKM factors, short dis-
tance operators, decay constants and form factors), multiplied by non-factorizable corrections (sums
of terms suppressed by either αs or inverse powers of the b-quark mass). Following an usual phe-
nomenological approach, Khodjamirian et al. evaluate ratios of amplitudes, so that the magnitude of
SU(3) violation becomes related to the ratio of the kaon and pion decay constants (fK/fπ), to the
ratio of B → K and B → π form factors, and to the ratio of non-factorizable terms. All these factors
are calculated using the QCD sum-rules approach [25].

Neglecting the CKM factors, the authors calculate the ratio between the factorizable parts of
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B0
s → K+K− and B0 → π+π− (or B0 → K+π−) amplitudes: |C′/C|fact. (see sec. 1.5.2).1 They show

that this is strongly affected by SU(3) violation, obtaining∣∣∣∣C′C
∣∣∣∣
fact.

= 1.52+0.18
−0.14, and

fπ
fK
×
∣∣∣∣C′C
∣∣∣∣
fact.

= 1.25+0.14
−0.12. (10.4)

When comparing B0
s → K+K− and B0 → π+π− amplitudes, U-spin symmetry predicts |C′/C| = 1

with no assumptions. However, extracting the parameter |C′/C| from our measurement would require
assumptions on the value of the hadronic parameters d and θ and on the CKM angle γ (see eq. (1.79)).
These, combined with the experimental uncertainty of our result provide little information on the
compatibility with the above predictions. Comparing B0 → K+π− and B0

s → K+K− amplitudes,
instead, allows a comparison without assumptions on the values of d, θ, and γ. The only assumption,
in this case, is that exchange and penguin-annihilation topologies, which only affect the B0

s → K+K−

amplitude, play a minor role. Our measurement of B(B0
s → K+K−) allows the first check of eq. (10.4)

with experimental data, yielding (
fπ
fK
×
∣∣∣∣C′C
∣∣∣∣)

CDF

' 1.8± 0.4. (10.5)

The experimental accuracy is still too poor for a statistically significant discrimination between the
hypotheses of large U-spin violation or exact U-spin validity. However, the observed B0

s → K+K− to
B0 → K+π− amplitude ratio exceeds the predictions of Khodjamirian et al., suggesting large U-spin
breaking in this process.

10.1.2 Comparison with theoretical predictions

The 27% uncertainty on our result is not sufficiently small to rule out any of the currently prominent
theoretical predictions, which have comparable uncertainties.

Good consistency is found with the QCDF-based predictions of Beneke and Neubert, B(B0
s →

K+K−) = (28–36)× 10−6 [24] and with a recent prediction based on the SCET, B(B0
s → K+K−) =

(18.2±6.8)×10−6 [143]. On the other hand, our result disfavors an alternative QCDF-based prediction
by Sun, Zhu, and Du, that includes “chirally enhanced” power corrections and weak annihilation
contributions: B(B0

s → K+K−) = (7–17)× 10−6 [144].

A satisfactory agreement is found also with the predictions based upon U-spin applied to B0 →
π+π− data by Buras, Fleischer, Recksiegel, and Schwab. They predict B(B0

s → K+K−) = (35 ±
7)× 10−6 neglecting annihilation and exchange topologies, and partially including the effect of SU(3)
violation: they use the value C′/C = 1.76+0.15

−0.17 calculated by Khodjamirian ([32], see previous section),
but neglect U-spin violation in the non-factorizable amplitudes [145]. Another recent, SU(3)-based
prediction by Chiang and Zhou, B(B0

s → K+K−) ≈ (19 ± 1–4) × 10−6, is in reasonable agreement
with our result [146].

Probably, the most interesting comparison is with the predictions of Descotes-Genon, Matias, and
Virto that recently proposed a new approach to the calculation of B(B0

s → K+K−) that complements
the benefits of the QCD factorization expansion (QCDF) with those of the SU(3) symmetry relations

1The non-factorizable part involves complications from penguin and annihilation topologies and is neglected.
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to control, for the first time in literature, the 1/mb corrections [37]. The measured rate of the
B0 → K0K̄0 process [147] is connected to the B0

s → K+K− rate, using a combination of U-spin
and isospin arguments and fully evaluating SU(3) breaking within QCDF. The resulting prediction
for the branching fraction is B(B0

s → K+K−) = (20 ± 9) × 10−6 within the Standard Model.2 This
method benefits from unprecedented theoretical precision, the uncertainty being dominated by the
experimental uncertainty on B(B0 → K0K̄0), which is expected to be further reduced with future
measurements from the B-Factories. A further refinement by Baek, London, Matias, and Virto allows
the prediction of B(B0

s → K+K−) = (17 ± 7) × 10−6, valid under the assumption of positive direct
CP-violating asymmetry in B0 → K0K̄0 decays, Adir

CP(B0 → K0K̄0) > 0 [148]. Our result is largely
consistent with both these predictions.

10.1.3 A probe for new physics and for the CKM phase γ

Recently, results of increasingly-high precision from the B-Factories suggest several mild discrepancies
with the Standard Model predictions. Although not statistically significant, all these discrepancies
hint at possible new physics arising in b̄ → s̄ transitions. Examples include the ≈ 2σ discrepancy
between CP asymmetries in b̄ → s̄qq̄ (where q = u, d, s) and b̄ → s̄cc̄, expected to be approximately
equal in the Standard Model, the “B → Kπ puzzle”, etc. 3 The B0

s → K+K− decay, being governed
by the b̄→ s̄ transition, is a natural candidate for investigating other possible discrepancies.

Following the strategy discussed in sec. 1.5.2, we investigated the impact of the measured B(B0
s →

K+K−) on the CKM picture by studying the compatibility of our measurement with allowed region
in the space of B0

(s) → h+h
′− observables. The comparison between allowed regions in the [Adir

CP(B0 →
π+π−), Rsd] space and the value of Rsd directly measured in this thesis, provides an immediate test
of the validity of Standard Model. A significant discrepancy between the values of Rsd obtained with
the two methods would indicate new physics. On the other hand, in case of consistency, a precise
measurement of the observables would provide valuable information on the value of the CKM phase
γ.

The derivation of allowed regions is detailed in sec. 1.5.2; in the following we list the values of
experimental and theoretical input used for the comparison. The experimental inputs are the CP-
violating asymmetries in the B0 → π+π− decay measured by the Belle Collaboration, Adir

CP = −0.55±
0.09 and Amix

CP = −0.61± 0.11 [149], those measured by the BABAR Collaboration Adir
CP = −0.16± 0.11

and Amix
CP = −0.53± 0.14 [62], the world-average value of the phase φd = 2β = 43◦ as measured at the

B-Factories using B0 → J/ψK0
S decays [29], and the value of Rsd = 8.5±2.9 directly measured in this

thesis. The theoretical inputs are the range 58◦ ≤ γ ≤ 72◦ for the Vub phase, and the following ranges
for the SU(3)-violating parameters 1.49 ≤ |C′/C| ≤ 1.91, 0.8 ≤ d′/d ≤ 1.2, and −40◦ ≤ θ′ − θ ≤ 40◦.

Figure 10.2 shows the comparison between the value of Rsd indirectly determined from the mea-
surement of asymmetries at the B-Factories [149, 62], and the direct value measured in this thesis.

2The uncertainties quoted by Matias et al., are added in quadrature.
3In the Standard Model, the isospin-symmetry allows accurate predictions of ratios of branching fractions between

different B → Kπ modes. The predictions are confirmed by the experimental data for the decays in which EW

penguins may only be color suppressed, whereas (moderate) inconsistencies are found for modes in which EW penguin

amplitudes are not suppressed. This phenomenon, frequently referred to as “B → Kπ puzzle” might be explained if

non-Standard Modelphases would enhance the contribution of EW penguin amplitudes.
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All inputs are allowed to vary within 1σ from their central values.
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Figure 10.2: Allowed regions in the [Adir
CP(B0 → π+π−), Rsd] space as resulting from Belle and BABAR

measurements compared with the direct measurement of Rsd. The dark gray zone corresponds to
BABAR inputs, the light gray zone corresponds to the Belle inputs and the blue-hatched band corre-
sponds to the direct measurement of this thesis. The light green band indicates the Standard Model
value of Rsd predicted in Ref. [37]. The improved prediction for Rsd, obtained under the additional
hypothesis that Adir

CP(B0 → K0K̄0) > 0 [148], is indicated by the dark green band. The red-hatched
region is excluded using a conservative constraint on the penguin parameter d′, extracted from the
measurement of B(B0 → K+π−). The plot is an updated version of the plot shown in fig. 3 of Ref. [36]
and was kindly provided by Joaquim Matias for this thesis.

The present measurement of B(B0
s → K+K−) is fully compatible with the allowed regions ob-

tained from the measurements at the B-Factories, excluding any indication of physics beyond the
Standard Model at this level. The experimental and theoretical uncertainties are still too large for
extraction of valuable information on the CKM phase γ. However, this method will benefit from
increasingly-improved experimental and theoretical uncertainties allowing search of physics beyond the
Standard Model in these decays, until the full power of measurements of CP-violating B0

s → K+K−

decay asymmetries will be available.

10.2 Measurement of CP-asymmetry in the B0 → K+π− decay

From the partial rate asymmetry between B
0 → K−π+ and B0 → K+π− decays, we extracted the

measurement of the direct CP-violating asymmetry.

Following the usual procedure, the flavor of the decaying meson was not identified. The asymmetry
was derived assuming all K+π− final states (from the decay of a particle with mass consistent with
the B0 meson mass) originated from B0 decays, and all K−π+ states (from the decay of a particle
with mass consistent with the B0 meson mass) originated from B

0
decays. We therefore neglected

the contribution of doubly-Cabibbo-suppressed (DCS) decays (B0 → K−π+ and B
0 → K+π−), of

asymmetries in flavor mixing (B0 → B
0 → K−π+ and B

0 → B0 → K+π−), and of their combined
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effect. The contribution of DCS decays becomes relevant only in presence of direct CP asymmetry
in the DCS modes. However, even in the extremely unlikely case of unit asymmetry, the size of the
effect would be O(�), i. e., not appreciable at the current level of experimental accuracy. The effect
of flavor mixing is proportional to the size of the asymmetry in the mixing (i. e., ∝

∫ T
0
N(B0 →

B
0
)dt −

∫ T
0
N(B

0 → B0)dt), which is expected significantly smaller than our current experimental
uncertainty. Even smaller is the effect of a possible asymmetry arising in the interference between
decay and mixing due to K+π− and K−π+ final states being accessible to both B0 and B

0
mesons

through the DCS processes. The measured asymmetry is

ACP(B0 → K+π−) ≡ B(B
0 → K−π+)− B(B0 → K+π−)

B(B
0 → K−π+) + B(B0 → K+π−)

= −0.013± 0.078 (stat .)± 0.012 (syst .).

(10.6)
This result is compatible with the current results from the Belle, ACP(B0 → K+π−) = −0.093 ±
0.018 (stat .) ± 0.008 (syst .) [64], and the BABAR, ACP(B0 → K+π−) = −0.108 ± 0.024 (stat .) ±
0.008 (syst .) [62] experiments, although it is also compatible with zero, within its 8% uncertainty.
Our measurement is not competitive with the recent B-Factories results, still it is the third best
measurement, more precise than the (seven years old) CLEO measurement, ACP(B0 → K+π−) =
−0.04± 0.16 (stat .)± 0.02 (syst .) [61].

The systematic uncertainty is promising for future extension of this measurement to samples of in-
creased size. The main contributions to this uncertainty are the effects of possible charge asymmetries
in background and in the dE/dx response (see fig. 10.3). Although it may be difficult to strongly re-
duce these contribution in future updates of the measurement, their impact is already O(1%), a value
comparable with the uncertainties quoted in recent B-Factories measurements. On the other hand,
the statistical uncertainty, which currently is the limiting factor in this measurement, is expected to
reduce by a factor of at least three with the sample already available at CDF, and will further decrease
as CDF keeps accumulating data.

10.3 Measurement of B(B0 → π+π−)/B(B0 → K+π−)

From the observed yields of 121 ± 27 B0 → π+π− decays and 542 ± 30 B0 → K+π− decays, we
measured the following ratio of branching fractions:

B(B0 → π+π−)
B(B0 → K+π−)

= 0.21± 0.05 (stat .)± 0.03 (syst .). (10.7)

This result is compatible with the measurements available at the B-Factories:4 B(B0→π+π−)
B(B0→K+π−) = 0.26±

0.01 (stat .) ± 0.01 (syst .) from the Belle Collaboration [65] and B(B0→π+π−)
B(B0→K+π−) = 0.29 ± 0.02 (stat .) ±

0.02 (syst .) measured at the BABAR experiment [63]. This agreement represents an important cross
check of the validity of our analysis, that provides additional convincing evidence of the B0

s → K+K−

observation. In π+π−-mass, the B0
s → K+K− and B0 → π+π− distributions are completely overlap-

ping (see figs. 4.1 and 7.2) and well separated from the B0 → K+π− contribution. As a consequence,

4BABAR quotes absolute branching fractions. We calculated their ratio neglecting the correlations between the

systematic uncertainties, which might be slightly over-estimated.
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Figure 10.3: Circular chart of the systematic uncertainties (σi) contributing to the measurement of
ACP(B0 → K+π−). The area of each sector is proportional to σ2

i .

the total number of joint B0 → π+π− and B0
s → K+K− events is determined accurately even by

fitting just the mass distribution. Any artificial enhancement of the B0
s → K+K− contribution due to

a improper use of the dE/dx information would decrease the B0 → π+π− contribution, thus resulting
in a measured value of B(B0→π+π−)

B(B0→K+π−) inconsistent with the B-Factories results.

Besides its role of cross-check, this results is promising for the future extension of the measurement
to larger samples. With the sample already collected by the CDF experiment, we expect a reduction
of more than a factor of three in the statistical uncertainty, further bound to decrease as CDF keeps
gathering data. Also the systematic uncertainty, whose largest contribution derives from the effect
of final state radiation (see fig. 10.4), will be strongly reduced. In the present measurement, this
was included in the systematic uncertainties because the QED calculation of FSR in B0 → K+π−

decays were not available (see sec. 9.2.3). In the next update of the analysis the effect of FSR will
be incorporated in the central result, because QED corrections have recently been published also for
B0 → K+π− modes [141].

10.4 Results on B0
s → K−π+

From the observed yield of 3±25 events, no evidence of the B0
s → K−π+ decay was found. We thus set

a frequentist upper limit on the corresponding branching fraction based on Gaussian distributions of fit
pulls (see fig. 6.9(d)) and likelihood-ratio (LR) ordering, following Ref. [134]. Systematic uncertainties
were added in quadrature to the statistical uncertainty for a proper inclusion of systematic effects in
the extraction of the upper limit. We used the confidence intervals for the mean of a Gaussian
distribution (i. e., the pull distribution) constrained to be non-negative (see tab. X of Ref. [134]).
The resulting 90% confidence level (CL) upper limit on the ratio between the branching fractions of
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Figure 10.4: Circular chart of the systematic uncertainties (σi) contributing to the measurement of
B(B0 → π+π−)/B(B0 → K+π−). The area of each sector is proportional to σ2

i .

B0
s → K−π+ and B0 → K+π− modes, multiplied by the ratio of production fractions, is

fs
fd
× B(B0

s → K−π+)
B(B0 → K+π−)

< 0.08. (10.8)

By normalizing the above result to the world-average value B(B0 → K+π−) = (18.9 ± 0.7) × 10−6

and by assuming for fs/fd the world-average value from pp̄ and e+e− collisions, fs/fd = 0.261±0.038
[29], we obtain the following upper limit:

B(B0
s → K−π+) < 5.6× 10−6 at 90% CL. (10.9)

This result represents more than a factor of 30 improvement over the world-best limit available so far
by the ALEPH Collaboration: B(B0

s → K−π+) < 2.1× 10−4 at 90% CL [67].

Our result suggests a value for B(B0
s → K−π+) at the lower end of current theoretical expectations.

Beneke and Neubert predict B(B0
s → K−π+) = (6.8–10.4)×10−6 basing their calculations on QCDF,

in agreement with the results of Sun, Zhu, and Du, who improve the QCDF approach with chirally
enhanced power corrections and contributions from electroweak annihilation [144]. Chiang and Zhou
predict B(B0

s → K−π+) = (5 ± 1) × 10−6, basing on SU(3) flavor symmetries [146]. Similar values
are predicted also by calculations based on PQCD and on SCET. Yu, Li, and Lu expect B(B0

s →
K−π+) = (6.2–8.1) × 10−6, assuming the 70◦ < α < 130◦ range for the CKM phase α [150], while
Williamson and Zupan obtain B(B0

s → K−π+) = (4.9± 1.8)× 10−6 [143].

The comparison between the present upper limit and theoretical expectations suggest that valuable
information on this decay will be available when this analysis will be extended to larger samples: either
an observation of the B0

s → K−π+ decay, or an upper limit on its branching fraction significantly lower
than predictions will provide relevant input for tuning of phenomenological models on B0

(s) → h+h
′−

decays.
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10.5 Results on B0
s → π+π−

From the observed yield of −10± 15 events, no evidence of the pure-annihilation decay B0
s → π+π−

was found. We thus set a frequentist upper limit on the corresponding branching fraction following
the procedure detailed for the B0

s → K−π+ limit (see sec. 10.4). The resulting 90% CL upper limit
on the ratio between the branching fractions of B0

s → π+π− and B0
s → K+K− modes is

B(B0
s → π+π−)

B(B0
s → K+K−)

< 0.05. (10.10)

By normalizing the above result to the B0
s → K+K− branching fraction shown in relation (10.1) and

to the world-average value B(B0 → K+π−) = (18.9 ± 0.7) × 10−6, and by assuming for fs/fd the
world-average value from pp̄ and e+e− collisions, fs/fd = 0.261± 0.038 [29], we obtain the following
upper limit:

B(B0
s → π+π−) < 1.7× 10−6 at 90% CL. (10.11)

This result represents an improvement of approximately two orders of magnitude over the world-best
limit available so far by the ALEPH Collaboration: B(B0

s → π+π−) < 1.7× 10−4 at 90% CL [67].

The sensitivity of our result approaches the expectations from recent calculations. Li, Lu, Xiao,
and Yu calculate B(B0

s → π+π−) = (4.2 ± 0.6) × 10−7 within the PQCD approach with Sudakov
resummation, and including contributions from electroweak and QCD penguin amplitudes [43]. Beneke
and Neubert, using the QCDF, predict smaller values, B(B0

s → π+π−) = (0.24–1.55) × 10−7 [24], in
agreement with Yang et al. that also used QCDF, but with a different solution to avoid end-point
divergences, that provides an expected rate of B(B0

s → π+π−) = (1.24± 0.28)× 10−7 [44].

The CDF experiment is currently the only one capable to search for this decay mode. With the
continuous increase of the collected data sample it has the unique opportunity to either obtain the
first observation of a decay proceeding exclusively through annihilation topology or to improve the
upper limits on its branching fraction below the theoretical expectations, thus providing constraining
information.

10.6 Results on B0 → K+K−

From the observed yield of 10 ± 23 events, no evidence of the pure-annihilation B0 → K+K− decay
was found. We thus set a frequentist upper limit on the corresponding branching fraction following
the procedure detailed for the B0

s → K−π+ limit (see sec. 10.4). The resulting 90% CL upper limit
on the ratio between the branching fractions of B0 → K+K− and B0 → K+π− modes is

B(B0 → K+K−)
B(B0 → K+π−)

< 0.10. (10.12)

By normalizing the above result to the world-average value B(B0 → K+π−) = (18.9 ± 0.7) × 10−6

[29], we obtain the following upper limit:

B(B0 → K+K−) < 1.8× 10−6 at 90% CL. (10.13)
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This result is not yet competitive with the results available at the B-Factories, B(B0 → K+K−) <
0.25× 10−6 at 90% CL from the Belle Collaboration [66] and B(B0 → K+K−) < 0.40× 10−6 at 90%
CL from the BABAR Collaboration [63]. However, competitive measurements are expected with the
sample currently available at CDF. The expected sensitivities are still far from probing the full range
of theoretical expectations, which, however, are affected by large uncertainties: Beneke and Neubert,
for instance, predict B(B0 → K+K−) = (0.007–0.079)× 10−6 [24].

10.7 Concluding remarks and future prospects

When the opportunity to trigger on B0
(s) → h+h

′− decays and reconstruct them efficiently in the
CDF II detector was first proposed in 1993 [102], it was received with a lot of skepticism, motivated
by the envisaged difficulties of reconstructing such rare signals in the challenging environment of pp̄
collisions. The successful design and operation of the trigger on displaced tracks (SVT), along with
the analysis shown in this thesis, confirms today the validity of that proposal.

In this thesis I describe how a signal of B0
(s) → h+h

′− decays was reconstructed for the first time at
a hadron collider and was used to measure the relative branching fractions of individual decay modes
and the CP-violating partial-rate asymmetry of B0 → K+π− decays (see tab. 10.1).

Mode Yield Measured quantity Derived B [×10−6]
B0 → K+π− 542± 30 ACP = −0.013± 0.078± 0.012

B0 → π+π− 121± 27 B(B0→π+π−)
B(B0→K+π−) = 0.21± 0.05± 0.03 3.9± 1.0± 0.6

B0
s → K+K− 236± 32 fs

fd
× B(B0

s→K
+K−)

B(B0→K+π−) = 0.46± 0.08± 0.07 33± 6± 7

B0
s → K−π+ 3± 25 fs

fd
× B(B0

s→K
−π+)

B(B0→K+π−) < 0.08 @ 90% CL < 5.6 @ 90% CL

B0
s → π+π− −10± 15 B(B0

s→π
+π−)

B(B0
s→K+K−) < 0.05 @ 90% CL < 1.7 @ 90% CL

B0 → K+K− 10± 23 B(B0→K+K−)
B(B0→K+π−) < 0.10 @ 90% CL < 1.8 @ 90% CL

Table 10.1: Final results. Absolute branching fractions are normalized to the world-average values
B(B0 → K+π−) = (18.9 ± 0.7) × 10−6 and fs/fd = 0.261 ± 0.038 [29]. The first quoted uncertainty
is statistical, the second one systematic.

I report the first observation of the decay mode B0
s → K+K−, which is also the first observed decay

of a B0
s meson into two pseudo-scalar mesons. I report greatly improved upper limits on the branching

fractions of B0
s → K−π+ and B0

s → π+π− modes, and results in agreement with current world-
averages for B0 decay modes. These measurements have implications for both the knowledge of CKM
sector of the Standard Model and the phenomenology of non-perturbative hadronic contributions in
non-leptonic B0

(s) meson decays. The present results (see tab. 10.1) were published in Physical Review
Letters [1].

10.7.1 B0
s → K+K− observation

The observation of the B0
s → K+K− decay and the measurement of its branching fraction have mul-

tiple relevance. It is the first measured amplitude of a charmless decay of a B0
s into two pseudo-scalar
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mesons. The comparison of the observed branching fraction with theoretical predictions provides
valuable information for tuning the phenomenological models of hadronic B0

(s) meson decays (SU(3)
symmetries, QCDF, SCET, QCD sum-rules, etc.) and for optimizing the choice of their input pa-
rameters. As an example of this impact, the measurement of B(B0

s → K+K−) provides the first
experimental insight on the magnitude of the SU(3) breaking, a necessary test and ingredient for the
U-spin-based method of extracting the CKM parameters.

In the flavor sector, the current resolution on B(B0
s → K+K−) is insufficient to derive strong con-

straints on the CKM parameters, as is frequently the case when dealing with measurements involving
a single B0

(s) → h+h
′− decay-mode. However, combined with the full set of measurements of this the-

sis, for a more efficient use of information, it provides valuable experimental input. In particular, the
measurement of B(B0

s → K+K−) provides the global CKM fits with the first (and currently unique)
B0

(s) → h+h
′− observables from decays of B0

s mesons.

A recent example of the possibilities of this approach was given in Ref. [151] by Malclès, who
proposed a new data-driven technique in which relations among amplitudes of two-body charmless
decays, including charged b-mesons and neutral final states, are derived in a model-independent way
under the assumption of unitarity of the CKM matrix and at the limit of exact SU(3) symmetry.
Electroweak penguin and annihilation-exchange topologies are included in the correlations between

Figure 10.5: Allowed regions in the (ρ̄, η̄) plane of the CKM parameters as resulting from the global
fits of Ref. [151]. Plot (a) uses experimental inputs from the B-Factories experiments. In plot (b)
the measurements of this thesis are included. The color code indicates the probability (1-CL) of the
χ2-fit. For comparison, the results of the CKMfitter Group [152] are overlaid. The recently measured
value of the frequency of B0

s flavor oscillations is not included in these plots.

amplitudes and simplified SU(3)-breaking corrections are incorporated through π and K decay con-
stants and conservative theoretical uncertainties.5 Malclès shows that the combination of precise
measurements from the B-Factories with the CDF results on branching fractions of B0

s mesons in a
5The dominant fraction of the factorizable corrections is included, the non-factorizable corrections are assumed

negligible.
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global χ2-fit provides non trivial constraints in the (ρ̄, η̄) plane of the CKM parameters. Figure 10.5
shows the impact of the results of this thesis within this approach: the area of allowed regions in the
(ρ̄, η̄) plane is visibly reduced by the B0

s meson branching fractions measured at CDF.

The capability of collecting a copious B0
s → K+K− sample, demonstrated in this thesis, provides

the opportunity to detect CP violation in the B0
s system for the first time. At given integrated

luminosity, the B0
s → K+K− sample reconstructed in the CDF II detector is the second largest

sample of fully reconstructed B0
s meson decays. This constitutes the first key ingredient for the

measurement of CP-violating asymmetries in B0
s → K+K− decays, following the Fleischer proposal

for a theoretically reliable measurement of the CKM phase γ [5]. This challenging measurement is the
ultimate long-term goal of the analysis of B0

(s) → h+h
′− decays at CDF, and will need the full Run

II statistics. The recent measurement of B0
s flavor oscillations shows that all needed ingredients for

this measurement are available: an excellent proper-time resolution of the CDF II tracker, which is
necessary to resolve the sine and cosine terms of the B0

s → K+K− decay-rate asymmetry as a function
of time (see eq. (1.59)); a good performance, εD2 ' 5%, in identifying the flavor of the b-mesonat
production, despite the difficult environment of hadron collisions;6 and a precise measurement of
the mass-difference ∆ms, a necessary input parameter of the Fleischer strategy. With the full Run
II statistics (≈ 8 fb−1) we expect a measurement of CP-violating asymmetries in B0

s → K+K−

decays with O(10%) resolution. This measurement is possible only at CDF and at the future LHCb
experiment. The Lorentz boost of B0

s mesons that will be produced in the planned Υ(5S) run at the
KEKB collider is insufficient for resolving the fast B0

s oscillations in the Belle vertex detector.7

The intermediate experimental goal between the currently available high-precision measurements
of time-integrated rates and future time-dependent measurement of asymmetries, is the study of the
time evolution of B0

s → K+K− decays. This provides crucial information on the lifetime difference in
the B0

s meson system, ∆Γs/Γs, as already demonstrated by a preliminary result obtained using the
technique developed in this thesis to isolate the signal [155].

10.7.2 Other results

In the context of increasing the experimental information for tuning the phenomenological models
of hadronic B0

(s) meson decays (SU(3) symmetries, QCDF, SCET, QCD sum-rules, etc.) the great
improvement on upper limits on branching fractions of the B0

s → K−π+ and B0
s → π+π− decays

plays a key role. The result on the B0
s → π+π− decay-rate provides a tighter constraint on the still

unknown magnitude of penguin-annihilation amplitudes, which are difficult to predict and introduce
uncertainties in several processes (i. e., B0 → π+π−) used for extracting CKM phases.

6The performance of flavor-tagging methods is usually quoted as the product of a tagging efficiency (ε) by a squared

“dilution” (D). The efficiency is the fraction of events in which the tagging-algorithm converges to a decision, the

dilution is the asymmetry between correct and wrong tagging-decisions.
7The Belle experiment has access to B0

s decays when the KEKB collider operates at the energy of the Υ(5S) resonance.

Following the CLEO success of 2003, when exclusive B0
s meson decays were observed in a

∫
Ldt = 0.42 fb−1 dataset

collected at the Υ(5S) resonance [153], in 2005 the Belle experiment collected data during a three-days “engineering”

run at the Υ(5S) energy and observed two reconstructed B0
s → K+K− candidates [154]. While a larger dataset

corresponding to
∫
Ldt = 21.7 fb−1 is currently being analyzed, the Belle Collaboration expects the reconstruction of

30–40 B0
s → K+K− decays per

∫
Ldt = 100 fb−1 (corresponding approximately to three months of operation) in a

future physics run at the Υ(5S) energy.
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The upper limit on B(B0
s → K−π+) approaches the lower end of theoretical expectations suggesting

a possible observation in the near future. In this case, samples of B0
s → K−π+ decays will be used

to extract valuable information on the ratio between weak tree and penguin amplitudes to determine
the CKM phase γ, following the proposal by Gronau and Rosner [39].

The present results on B0 decays are not competitive with the B-Factories results. However, the
small systematic uncertainty of the direct CP-violating asymmetry in the B0 → K+π− decays, and the
large B0 → K+π− yield indicate that a competitive measurement will be available already with the
sample available as of this writing. In addition, only CDF can combine measurements of asymmetries
in the B0 → K+π− and B0

s → K−π+ modes to explore a theoretically robust, model-independent
test for new physics proposed by Lipkin in a recent paper [40].

10.7.3 Outlook

Not only the present results are relevant in their own right, they are also extremely promising for
future extensions of this analysis to larger samples. They are obtained from a sample, corresponding
to
∫
Ldt = 180 pb−1, which is a small fraction of the currently available data. In addition, being

the first physics-quality data, they were collected when trigger and detector performances were still
sub-optimal. Currently the Tevatron is running smoothly and its performance is steadily improving.
Similarly, the operation of the CDF II detector and trigger has been optimized and improved through
various upgrades. Typically, the Tevatron delivers collisions corresponding to 30 pb−1 per week,
resulting in approximately 200 B0

(s) → h+h
′− decays reconstructed in the CDF II detector, after the

analysis. As of October 2006, the sample collected by the CDF experiment corresponds to
∫
Ldt ≈

1.6 fb−1.

The preliminary results obtained from a subsample corresponding to
∫
Ldt ≈ 1 fb−1 show a

signal yield of ≈ 6500 B0
(s) → h+h

′− events with higher purity than the one obtained in this thesis
[156]. Already with this sample, we expect results of same quality as current B-Factories results in
measurements related to B0 decays, and dramatically improved results on the B0

s sector, including
the first observation of the B0

s → K−π+ decay.

The Tevatron is planned to operate through September 2009 (at least), delivering a total integrated
luminosity of 4.5–8.5 fb−1. During this time, the CDF experiment will continue exploiting the physics
opportunity of accessing jointly B0 and B0

s decays into two-body charmless mesons. This prerogative
is unique to CDF at least until the planned run of the KEKB collider at the center-of-mass energy
of the Υ(5S) resonance or the LHCb data-taking (2008) will take place. This promotes the CDF
experiment in a leading position for either improving our knowledge of the mechanism of CP-violation
in the Standard Model or detecting the first indications of unexpected CP-violating phases.
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Appendix A

Specific ionization measurement in

the COT

A.1 Energy loss of relativistic charged particles in a medium

When a charged particle traverses a gaseous or condensed medium, an exchange of virtual photons
with a broad spectral range, from the soft ultraviolet to the x-ray region, occurs. This is due to the
(largely dominant) Coulomb interaction between the electromagnetic fields of the incoming particle
and of the material. The photons interact with the atoms of the medium producing excitation and
ionization. An indirect measurement of the total energy-loss is given by the number of ionization
electrons emitted in the gas. The broad spectrum of photons and the thin samples usually employed
lead to large fluctuations in the signal from a proportional counter. The typical ionization energy-loss
distribution, at fixed velocity of the incident particle, has a peak with a long tail at higher values
of energy loss (“Landau distribution”). The peak results from soft collisions in which the atom as a
whole absorbs a virtual photon producing ionization. The tail results from hard collisions between
the particle and quasi-free atomic electrons. This is due to the logarithmic divergence of the mean
transferred energy per collision caused by the 1/E2 dependence of the cross-section for Rutherford
scattering on one electron, and it is usually a nuisance in dE/dx measurements.

The electromagnetic field of the incoming particle propagates in the direction perpendicular to
its motion as the velocity approaches the phase velocity of light in the medium, and the energy-loss
cross-section increases as ln(βγ). Thus, the position of the peak of the energy-loss spectrum moves
accordingly. The dependence of the ionization on velocity allows estimating the particle mass in
the relativistic regime. In a medium of finite density, the polarization associated to the dielectric
properties of the medium shields the transverse field of the propagating particle, causing a saturation
of the energy loss (plateau). The average total energy-loss per unit length of a particle (heavier than
the electron) of charge q traversing a gas volume with velocity cβ is approximated by the Bethe-Bloch
formula [157] 〈

dE
dx

〉
=

4πNe4

mec2β2
q2
[
ln
(

2mec
2β2γ2

I

)
− β2 − δ(β)

2

]
, (A.1)
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where N is the electron density in the medium, me (e) is the electron mass (charge), I is the mean
excitation energy of the medium atoms, and δ(β) is the correction that accounts for the density effect
at high velocities.1

The main features of the logarithmic rise of the energy-loss cross-section and of the density effect
depend only on the virtual wave structure of the electromagnetic field of the incident particle and may
be understood with the aid of a simple model [158]. Consider a scalar field φ coupled to a particle
moving with constant velocity v along the x axis through a dispersive medium in which the phase
velocity of the field is u(ω), a function of frequency. In the rest frame of the particle the field is
static. In the frame of the medium, it is a wave packet that is neither dispersed nor attenuated and
that moves along x with constant amplitude and phase with respect to the particle. Thus, the phase
velocity along x of each frequency component must equal v, since it is a component of a static field
as seen by an observer moving with the particle, v = ω/kx (k is the wave number of the Fourier
component of frequency ω). By definition of phase velocity, u = ω/|k|. Therefore the space-time
dependence of each frequency component is described in the two-dimensional case by the phase factor
ei(kxx+kyy−ωt) = e

iω
v (x−vt+y

√
v2/u2−1). We denote as β′(ω) the dimensionless velocity v

u(ω) . If β′ < 1,
the transverse dependence of the field is an evanescent wave of range y0(ω) = v

ω
√

1−β′2
= β′γ′ξ, where

γ′ = 1√
1−β′2

and ξ is the free wavelength over 2π. For larger velocities, β′ gets closer to unity and

the range increases linearly with β′γ′. For the electromagnetic field of a charged particle moving in
vacuum, u = c for all frequencies, β′ = v/c = β, and γ′ = γ.

The propagation of the electromagnetic field with βγ responsible for the relativistic rise is therefore
seen as a general consequence of wave motion. In a medium, on the other hand, u = c/

√
ε where ε(ω)

is the dielectric constant. When ε(ω) > 1 the range is y0(ω) = v

ω
√

1−β2ε
which saturates at ξ√

1−ε .

Approximately 90% of this range is achieved when βγ = 2√
1−ε , where the field saturates, becoming

insensitive to any further increase of velocity. A simplified model of the dielectric constant yields
ε(ω) = 1− ω2

p

ω2 , where the plasma frequency is a function of the electron density N : ω2
p = 4πNe2

m . Even
in this approximation, the energy-loss cross-section saturates at βγ = 2ω

ωp
∝ 1√

N
, a result close to the

one observed experimentally and known as “density effect”.

A.2 The measurement of energy loss in the COT

The COT was originally designed for accurate and efficient tracking, not being explicitly optimized
for dE/dx measurements. The small drift cells, designed for fast response and high spatial-resolution
measurements, reduce the number of charge clusters collected by each wire, thus increasing statistical
fluctuations. In addition, the gas is kept at atmospheric pressure, while higher pressures are better
for dE/dx measurements. However, a dedicated charge-integration mode can be enabled in the COT
read-out chip for a measurement of dE/dx .

The COT samples the amount of ionization charge produced by a track by measuring the time-

1In the specific case of ionization of tracks in drift chambers the “restricted” energy-loss formula is more appropriate.

It accounts for the fact that energy transfers high enough to knock out an electron from a gas atom result in a second

track, whose energy will not contribute to the original track [158]. It differs from the Bethe-Bloch curve for an energy

cut-off term in the logarithm.
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over-threshold of the pulse on each wire associated to the track. Figure A.1 shows a pulse after
each stage of the read-out chip. The average chamber pulse for a radial charged particle ionizing at
minimum rate injects a charge of approximately 10 fC into the chip during its 8 ns peaking time.
Series of resistors combined with diodes protect the chip from large negative and positive spikes. A
pseudo-differential input in each channel is provided by two preamplifiers which have 1.5 mV/fC linear
gain and 1.5 ns rise time. The shaper is fully differential with multi-pole shaping to cancel positive
ion and preamplifier tails. Its gain is 25 mV/fC, and the associated undershoot of the pulse does not
exceed 2%. The differential baseline-restoration circuit is AC-coupled, resulting in uniform channel-
to-channel discriminator thresholds. It allows for high-rate performance with earlier retriggering in
case of large charge depositions. The discriminator thresholds are set at ≈ 2 fC, close to the inherent
noise level, to ensure high hit-efficiency and good timing-accuracy independently of Q fluctuations
from particle to particle.

The measurement of charge Q can be optionally enabled (dE/dx -on), resulting in an output width
of the discriminated signal proportional to ln(Q).2 When the trailing-edge of the signal exceeds the
threshold, a 28 ns shaping allows accurate integration of the charge. When the signal falls below
threshold, integration is stopped. Off-line, an 80% truncated mean of the dE/dx samplings along

 

(a) 

(b) 

(c) 

(d) 

(e) 

0.5 mv/div 

50 mv/div 

200 mv/div 

200 mv/div 

200 mv/div 

Time (ns) 

Figure A.1: An ≈ 80 fC pulse at the read-out chip: (a) preamplifier input, (b) preamplifier output, (c)
shaper output, (d) baseline-restoration output, and (e) discriminator output with dE/dx on (longer
pulse) or off (shorter pulse).

2In high-luminosity environment, with associated high occupancy, the dE/dx can be disabled to allow for a faster

shaping and higher tracking efficiency.
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a track is used to estimate the average ionization, in order to limit the adverse effect of the dE/dx
positive tail due to the logarithmic divergence. The equation that better models the COT average
energy-loss as a function of velocity is the following variant of the Bethe-Bloch curve:〈

dE
dx

〉
=

1
β2

[
c1 ln

(
βγ

b+ βγ

)
+ c0

]
+ a1(β − 1) + a2(β − 1)2 + C, (A.2)

with ai, b, cj , and C parameters extracted from data. The above function has all the features that
are present in the Bethe-Bloch curve (eq. (A.1)). Parameters c0 and c1 represent the intensities of
the 1/β2 fall and of the relativistic rise, respectively. Parameter b is associated with the COT gas
properties, e. g., mean excitation energy of the gas atoms, etc. Parameters a1 and a2 provide further
adjustment, especially in the low βγ region.

The hit-widths, i. e., the individual charge collections output by the COT are subject to the
following corrections, applied in the off-line production (sec. 2.6), to eliminate a number of detector
related conditions [159]:

Hit merging – The distribution of the arrival times of clusters produced by a single track may have
a large spread, especially if the incident particle passes close to a sense wire, thus crossing a high
number of isochrones. This may cause the signal from one cluster to fall below discriminator
threshold before the subsequent cluster (from the same track) reaches the wire. On each wire,
adjacent hit-widths due to split pulses induced by the same track are merged to avoid this effect.

Electronic pedestal subtraction – it accounts for the offset between digital pulse-width and the
corresponding collected charge.

Path-length correction – it removes the charge dependence on the local distance traversed by the
particle near a wire. The polar dependence is due to the geometry of cells. The correction is
proportional to 1/ sin(θ).

High-voltage correction – it removes gain fluctuations due to different voltages of power-supplies
among super-layers.

z correction – it removes the small dependence on the position of the hit along the sense-wire, caused
by the attenuation of the signal while propagating along the sense wire to the read-out end of
the wire.

Angle and drift distance corrections – the pulse shape depends on the drift distance and on
the angle between the momentum of the incident particle and the drift field in a cell. The
angle-distance dependence is corrected jointly.

Wire correction – wires at the end of the cell collect more charge than wires in the middle, because
the physical boundary between super-layers constrains the diffusion of the charge. The collected
charge among the 12 sense-wires in each cell is equalized.

Super-layer correction – it removes residual super-layer dependencies due to different cell-size
between super-layers.
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Pressure correction – it removes factors up to 5–6 of gain variation due to fluctuations of the gas
pressure. Increases in pressure increase the amount of primary ionization, but reduce the mean
free-path for electrons in the avalanche, producing an overall reduction in gain. An hardware
pressure-feedback circuit and a specific off-line correction remove the effect.

The track-based calibration procedure described in chap. 5 is applied after all the above corrections
have been applied.
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Appendix B

Minimum Variance Bound and

numerical minimization

B.1 Fisher information and Minimum Variance Bound

An useful figure of merit in data reduction is the “Fisher information”. The amount of (Fisher)
information given by an observation x about the parameter θ is defined by the following analytical
quantity (if it exist):

Ix(θ) = E

[[
∂ ln(L )
∂θ

]2]
, (B.1)

where x is the observable, E[x] indicates the expectation value of x, and L ≡ L (θ) is the likelihood
function of θ. Ix(θ) has some interesting properties: it increases as the number of observations
increases, it is conditional to the estimation being done (data that are irrelevant to the parameters to
be measured contain no information), and it is related to the statistical precision of the estimation.
Thus, Ix(θ) provides an useful criterion for the efficient reduction of data: obtain the maximum data
reduction consistent with minimum loss of information.

More generally, for a vector ~θ = (θ1, . . . , θm) of parameters, the ij element of the information
matrix is defined as

[Ix(θ)]ij = E

[
∂ ln(L )
∂θi

∂ ln(L )
∂θj

]
. (B.2)

Under general conditions of regularity of the likelihood (space of the observables independent of ~θ, L

twice-differentiable, and commutation of
∫
dx and ∂/∂θ), the following relation holds:

[Ix(θ)]ij = −E
[
∂2 ln(L )
∂θi∂θj

]
. (B.3)

The Fisher information is related to a fundamental bound of the maximum precision attainable in
measuring a parameter ~θ [111]. This is given by the Cramér-Rao inequality,

Cov(θ̂i, θ̂j) ≥
1

[Ix(θ)]ij
=

1

−E
[
∂2 ln L (~θ)
∂θi∂θj

] , (B.4)
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where Cov(θ̂i, θ̂j) (≡ σ2
i if i = j) is the element ij of the covariance matrix. The covariance matrix is

a generalization to multiple dimensions of the variance of a scalar-valued random variable. It contains
the covariances between elements of a vector of random variables. The covariance between the ith and
jth elements of the vector is Cov(θ̂i, θ̂j) = E[θiθj ]− E[θi]E[θj ]. Relation (B.4) is easily generalizable
to the case of biased estimators and applies to any estimator, not only to those derived from the
ML principle. In the case of equality, the Minimum Variance Bound (MVB) is reached. Relation
(B.4) is useful because, under fairly mild conditions of regularity of the problem, the maximum
likelihood estimator meets the MVB. Thus, the MVB provides a convenient analytical calculation
of the statistical power of an estimator, before carrying-out the measurement. Since relation (B.4)
involves an expectation value, i. e., an integration over the observable space (x), its evaluation may
be impractical. However, in case of sufficiently large data samples, the MVB expression is well
approximated by

Cov(θ̂i, θ̂j) ≈
1

−∂
2 ln L (~θ)
∂θi∂θj

∣∣∣
θ=θ̂

, (B.5)

where the second derivative is evaluated using the measured data at the ML estimates θ̂.

B.2 Numerical minimization with the MINUIT package

In this thesis, the maximum likelihood estimates (~̂θ) of the desired parameters (~θ) were found by
a numerical minimization of the function −2 ln(L ), where L ≡ L (~θ) is the likelihood function
expressed in terms of the probability density functions.

For the minimization, we used the minuit software package [126] which, varying the parameters
~θ, evaluates the function as a 64-bit floating point number. In addition, minuit analyzes the shape
of the function in the neighborhood of the minimum to estimate the parameter uncertainties. Several
options of varying reliability and computational speed are available for this task. For minimization,
we used the migrad option, which applies a stable variation of the Davidon-Fletcher-Powell algorithm
[160] in a gradient search for the minimum value. This algorithm converges to the correct error matrix
as is converges to the minimum of the function. At each iteration, it needs a “working approximation”
of the covariance matrix and of the gradient vector at the current best point, to determine the current
search direction. If the matrix is positive-definite, as expected for most physical functions in the
vicinity of their minima, the search proceeds toward the minimum; if not, e. g., in case of numerical
inaccuracies, an appropriate constant is added along the diagonal, as determined from the matrix
eigenvalues.

For the evaluation of uncertainties, we compared the results of three different algorithms migrad,
hesse, and minos:

1. migrad – the uncertainties are calculated using relation (B.5): the matrix of second deriva-
tives of −2 ln(L ) is numerically determined using finite differences, it is evaluated at the ML
estimates, and inverted to find the covariance matrix. That is, migrad uses the curvature
of −2 ln(L ) at the minimum and assume the parabolic shape. The resulting uncertainties,
therefore, account for parameter correlations, but not for non-linearities.
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2. hesse – in some cases, migrad minimization may converge before a reliable estimate of the
error matrix is available.1 The hesse option provides calculation of the covariance matrix after
migrad is converged. Again, uncertainties are approximate in case of non-linearities.

3. minos – this option allows inclusion of non-linearities (along with correlations) in the uncertain-
ties. After migrad minimization, each parameter θi is varied, each time minimizing −2 ln(L )
with respect to all other parameters. minos searches for the two values of θi for which the
minimum of −2 ln(L ) takes on the values −2 ln[L (~̂θ)]+∆, where ∆ is an user-specified positive
quantity, typically corresponding to one standard deviation.

In addition to the evaluation of uncertainties, minuit allows graphical representation of two-dimensional
contours of the −2 ln(L ) function in the proximity of its minimum. This is accomplished by the mn-

contour option, which uses the same algorithm of minos, varying two user-specified parameters at
a time, and accounting for the correlations and non-linearities.

In the present analysis, the values of the event observables to be input to minuit were stored in
an ASCII file and the function −2 ln(L ), written in C programming language, was externally called
by minuit. The initial set of parameters ~θ was also provided in another ASCII file. We verified
the robustness of the fit estimates by checking their consistence against changing the set of initial
parameters. For some values of the parameters, the function L may take on values equal or less than
zero. In these cases “positive infinity” was added to −2 ln(L ) to avoid “pathologic” regions.

Occasionally, the domain of some parameters needed to be bounded to some specified values
(e. g., a ≤ θi ≤ b) for an easier convergence of the minimization. The resulting uncertainty may be
incorrectly estimated in these cases, since minuit defines internally a non-linear transformation of the
parameter space, that introduces further numerical inaccuracy. We dealt with this feature by limiting
the domains of parameters just to find the minimizing set of parameters. Then, the set found was
used as starting point for a new fit with free parameters and consequent proper evaluation of the
uncertainties.

1Since for n parameters there are n(n+1)/2 elements of the error matrix, a number of migrad iterations larger than

n2 is needed for a reliable estimate of the error matrix itself.
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[22] A. Ali, G. Kramer, and C.-D. Lü, Experimental tests of factorization in charmless nonlep-
tonic two-body B decays, Phys. Rev. D 58, 094009 (1998), [hep-ph/9804363];
Y.-Y. Keum and H.-N. Li,, Nonleptonic charmless B decays: Factorization versus perturbative
QCD , Phys. Rev. D 63, 074006 (2001), [hep-ph/0006001];
M. Neubert,, Application of QCD Factorization in Hadronic B decays, in M. B. Voloshin
(ed.), proceedings of the Fourth Workshop on Continuous Advances in QCD, Minneapolis, 256
(2000), [hep-ph/0008072].

[23] M. Wirbel, B. Stech, and M. Bauer, Exclusive semileptonic decays of heavy mesons, Z.
Phys. C 29, 637 (1985);
———, Exclusive non-leptonic decays of D, Ds and B mesons, Z. Phys. C 34, 103 (1987).

[24] QCD Factorization was first proposed in,
M. Beneke et al., QCD Factorization in B → ππ Decays: Strong Phases and CP Violation in
the Heavy Quark Limit , Phys. Rev. Lett. 83, 1914 (1999), [hep-ph/9905312] and
———, QCD Factorization for exclusive non-leptonic B-meson Decays: General arguments and
the case for heavy-light final states, Nucl. Phys. B 591, 313 (2000), [hep-ph/0006124];
the most recent update is
M. Beneke and M. Neubert, QCD factorization for B → PP and B → PV decays, Nucl.
Phys. B 675, 333 (2003), [hep-ph/0308039].

[25] M. A. Shifman, A. I. Vainshtein, and V. I. Zacharov, QCD and resonance physics.
Theoretical foundations, Nucl. Phys. B 147, 385 (1979).

[26] Y.-Y. Keum, H.-N. Li, and A. I. Sanda, Fat penguins and imaginary penguins in perturbative
QCD , Phys. Lett. B504, 6 (2001), [hep-ph/0004004];
———, Penguin enhancement and B → Kπ decays in perturbative QCD , Phys. Rev. D 63,
054008 (2001), [hep-ph/0004173].

[27] C. W. Bauer, S. Fleming, and M. E. Luke, Summing Sudakov logarithms in B → Xsγ in
effective field theory , Phys. Rev. D 63, 014006 (2001), [hep-ph/0005275];
C. W. Bauer et al., An effective field theory for collinear and soft gluons: Heavy to light
decays, Phys. Rev. D 63, 114020 (2001), [hep-ph/0011336];
C. W. Bauer and I. W. Steward, Invariant operators in collinear effective theory , Phys.
Lett. B516, 134 (2001), [hep-ph/0107001].

[28] M. Ciuchini et al., Charming Penguins in B Decays, Nucl. Phys. B 501, 271 (1997), [hep-

ph/9703353].

[29] E. Barberio et al. (Heavy Flavor Averaging Group), Averages of b-hadron Properties
at the End of 2005 , [hep-ex/0603003].

[30] S. Baek et al., Can one detect new physics in I=0 and/or I=2 contributions to the decays
B → ππ? , Phys. Rev. D 72, 036004 (2005), [hep-ph/0506075].

[31] See, for instance,
Y. Grossman and H. R. Quinn, Bounding the effect of penguin diagrams in aCP (B0 → π+π−),



232 Bibliography

Phys. Rev. D 58, 017504 (1998), [hep-ph/9712306];
J. Charles, Taming the penguin contributions in the B0(t)→ π+π− CP asymmetry: Observ-
ables and minimal theoretical input , Phys. Rev. D 59, 054007 (1999), [hep-ph/9806468].

[32] A. Khodjamirian, T. Mannel, and M. Melcher, Flavor SU(3) symmetry in Charmless B
Decays, Phys. Rev. D 68, 114007 (2003), [hep-ph/0308297];
———, Kaon distribution Amplitude from QCD Sum Rules, Phys. Rev. D 70, 094002 (2004),
[hep-ph/0407226];
A. Khodjamirian, T. Mannel, and N. Offen, Form Factors from Light-Cone Sum Rules
with B-Meson Distribution Amplitudes, [hep-ph/0611193].

[33] I. Dunietz, Extracting CKM parameters from B decays, in P. McBride and C.S. Mishra (ed.),
Proceedings of the Workshop on B Physics at Hadron Accelerators, Snowmass, 83 (1993).

[34] D. Pirjol, Bounding the penguin effect in the determination of α in B0(t) → π+π−, Phys.
Rev. D 60, 054020 (1999), [hep-ph/9903447].

[35] R. Fleischer and J. Matias, Searching for New Physics in Non-Leptonic B Decays, Phys.
Rev. D 61, 074004 (2000), [hep-ph/9906274];
———, Exploring CP Violation through Correlations in B → πK, Bd → π+π−, Bs → K+K−

Observable Space, Phys. Rev. D 66, 054009 (2002), [hep-ph/0204101].

[36] D. London and J. Matias, Testing the Standard Model with B0
s → K+K− Decays, Phys.

Rev. D 70, 031502 (2004), [hep-ph/0404009].

[37] S. Descotes-Genon, J. Matias, and J. Virto, Exploring Bd,s → KK decays through flavour-
symmetries and QCD factorisation, Phys. Rev. Lett. 97, 061801 (2006), [hep-ph/0603239].

[38] M. Gronau and J. L. Rosner, Weak phase γ from the ratio of B → Kπ rates, Phys. Rev. D
57, 6843 (1998), [hep-ph/9711246].

[39] M. Gronau and J. L. Rosner, The role of B0
s → K−π+ in determining the weak phase γ,

Phys. Lett. B482, 71 (2000), [hep-ph/0003119].

[40] H. J. Lipkin, Is observed direct CP violation in Bd → K+π− due to new physics? Check
standard model prediction of equal violation in Bs → K−π+, Phys. Lett. B621, 126 (2005),
[hep-ph/0503022].

[41] M. Gronau, U-spin symmetry in Charmless B Decays, Phys. Lett. B492, 297 (2000), [hep-

ph/0008292].

[42] F. Su et al., Large Strong Phases and CP Violation in the Annihilation Processes B
0 → K+K−,

K∗±K∓, K∗+K∗−, [0604082].

[43] Y. Li et al., Branching ratio and CP asymmetry of Bs → π+π− decays in the perturbative QCD
approach, Phys. Rev. D 70, 034009 (2004), [hep-ph/0404028].

[44] Y.-D. Yang et al., Revisiting the annihilation decay B̄s → π+π−., Eur. Phys. J. C44, 243
(2005), [hep-ph/0507326].



Bibliography 233

[45] N. Ellis and A. Kernan, Heavy quark production at the CERN pp̄ collider , Phys. Rept. 195,
23 (1990).

[46] See, for instance,
A. A. Affolder et al. (CDF Collaboration), Measurement of sin 2β from B → J/ψK0

S

with the CDF detector , Phys. Rev. D 61, 072005 (2000), [hep-ex/9909003];
F. Abe et al. (CDF Collaboration), Measurement of the B0B

0
flavor oscillations frequency

and study of same side flavor tagging of B mesons in pp̄ collisions, Phys. Rev. D 59, 032001
(1999), [hep-ex/9806026].

[47] S. W. Herb et al., Observation of a Dimuon Resonance at 9.5 GeV in 400-GeV Proton-Nucleus
Collisions, Phys. Rev. Lett. 39, 252 (1977)

[48] Ch. Berger et al. (PLUTO Collaboration), Observation of a narrow resonance formed in
e+e− annihilation at 9.46 GeV, Phys. Lett. B76, 243 (1978);
C. W. Darden et al., Observation of a Narrow Resonance at 9.46 GeV in Electron-Positron
Annihilations, Phys. Lett. B76, 246 (1978), ibidem Phys. Lett. B78, 364 (1978).

[49] D. Andrews et al., Observation of Three Upsilon States, Phys. Rev. Lett. 44, 1108 (1980);
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