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Abstract

A search for a low-mass SM Higgs-Boson in the channel W H — [vbb has been performed
using neural networks. The data were taken by the CDF experiment at the p-p collider
Tevatron from 2000-2003, corresponding to in integrated luminosity of £;,; = 162 pb~! at
a CMS-energy of /s = 1.96 TeV. 95% confidence level upper limits are set on o X BR,
the product of the production cross section times the Branching ratio, as a function of
the Higgs boson mass. Cross sections above 8 pb are excluded for six different Higgs
masses between 110 GeV/c? and 150 GeV/c®. The requirred integrated luminosities for
a 95% C.L. exclusion, 3o evidence and 50 discovery are calculated.

Zusammenfassung

Eine Suche nach dem leichten SM Higgs-Boson wurde mit neuronalen Netzen durch-
gefithrt. Die Daten wurden mit dem CDF-Experiment am pp-Beschleuniger Tevat-
ron von 2000-2003 aufgezeichnet, und entsprechen einer integrierten Luminositdt von
Lin = 162 pb™!, bei einer Schwerpunktsenergie von /s = 1.96 TeV. Bei einer Vertrau-
ensgrenze von 95% werden obere Grenzen auf o x BR, dem Produkt von Produktions-
Wirkungsquerschnitt und Verzweigungsverhaltnis, als Funktion der Higgs-Masse gesetzt.
Wirkungsquerschnitte oberhalb 8 pb werden fiir sechs verschiedene Higgs-Massen zwi-
schen 110 GeV/c? and 150 GeV/c? ausgeschlossen. Die benétigten integrierten Lumino-
sitdten fiir einen 95% C.L.-Ausschluf}, eine 3o-Evidenz und eine 50-Entdeckung werden
berechnet.
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Deutsche Zusammenfassung

Einleitung

Die vorliegende Arbeit behandelt die Suche nach einem leichten Standard-Modell Higgs-
Boson mit dem CDF-Experiment am Proton-Antiproton Beschleuniger Tevatron. Un-
tersucht wurde die assoziierte Produktion in Verbindung mit einem W-Boson im Kanal
W H — lvbb. Hierbei zerfillt das W-Boson leptonisch! und das Higgs in ein Paar schwerer
b-Quarks. Die betrachteten sechs Higgs-Massen liegen im Bereich zwischen 110 GeV /c?
und 150 GeV/c? in Schritten von 10 GeV/c? sowie bei 115 GeV/c?. Die Analyse be-
ruht auf Daten aus den Jahren 2000 bis 2003, entsprechend einer integrierten Lumi-
nositit von L;,; = 162 pb~!. Die Schwerpunktsenergie des Tevatron betrug in dieser Zeit

Vs =1.96 TeV.

Das Tevatron

Der pp-Beschleuniger Tevatron befindet sich am Fermi National Accelerator Laboratory
(FNAL), ca. 60 km westlich von Chicago. Bei einer Schwerpunktsenergie von 1.96 TeV ist
er der zur Zeit hochstenergetische Collider der Welt. Der Umfang betrégt ca. 6 km. Zwei
gegeneinander beschleunigte Teilchenstrahlen kollidieren an zwei Wechselwirkungszonen.
An einer dieser Stellen befindet sich das CDF II-Experiment. Um Protonen und Antipro-
tonen bis auf eine Energie von etwa 1 TeV zu beschleunigen, ist ein System verschiedener
Vorbeschleuniger notig. Jeder erhoht die Teilchenenergie bis zur minimalen Einschuflen-
ergie des néchsten Systems. Abb. 1 auf Seite 9 zeigt links eine schematische Darstellung
des Tevatron und seiner Vorbeschleuniger.

Der CDF II-Detektor

Das CDF2-Experiment ist ein sog. Multi-Purpose-Detektor. Verschiedene Detektor-
Systeme sind um den Wechselwirkungspunkt in mehreren Lagen angeordnet. Abb. 1 zeigt
rechts die Anordnung der unterschiedlichen Komponenten. Das Tracking-System befindet
sich am néchsten zum Strahlrohr und besteht aus 3 Silizium-Detektoren. Diese werden

W-Zerfille in 7-Leptonen werden in dieser Arbeit, aufgrund des groBen Untergrund, nicht
beriicksichtigt.
2Collider Detector at Fermilab
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Abbildung 1: Schematische Darstellung des Tevatron mit seinen Vorbeschleu-
nigern (links) und Léngsschnitt durch den CDF II Detektor (rechts)[1].

von einer Driftkammer, der COT?, umschlossen. Auflerhalb der COT befindet sich eine
supraleitende Solenoid-Spule, die ein magnetisches Feld von 1.4 T erzeugt. Ein Time-Of-
Flight-System befindet sich zwischen Solenoid und der COT. Als néchstes schliefit sich
das Kalorimeter an, das einen hadronischen und elektromagnetischen Teil hat. Myonen-
Kammern stellen die duflersten Detektoren dar. Vier unterschiedliche Subsysteme um-
schlieflen fast vollstdndig die inneren Komponenten.

Theoretische Grundlagen

Die wichtigsten Prozesse der Higgs-Erzeugung am Tevatron sind die Gluon-Gluon Fusion
und die assoziierte Produktion des Higgs-Boson in Verbindung mit einem W- oder
Z-Boson. Abbildung 2 auf Seite 10 zeigt links die NLO*Wirkungsquerschnitte fiir alle
drei Prozesse. Die Gluon-Gluon Fusion hat den grofiten Wirkungsquerschnitt, allerdings
ist hier beim Zerfall H — bb die Untergrundsituation ungiinstig. Bei den W H- und
Z H-Reaktionen bildet ein Quark-Antiquark-Paar ein Vektorboson, das anschlieend
ein Higgs-Teilchen abstrahlt. Das entsprechende Feynman-Diagramm ist in Abb. 3
dargestellt. Der Querschnitt fiir den W H-Prozess liegt etwa einen Faktor zwei iiber
dem ZH-Prozess und wird im folgenden weiter betrachtet. Die Verzweigungsverhéltnisse
des Standardmodell-Higgs sind in Abb. 2 auf der rechten Seite dargestellt. Das grofite
Verzweigungsverhéltnis bis zu Massen von ca. 140 GeV/c? hat der Zerfall in zwei
b-Quarks, H — bb. Fiir die Suche nach leichten Higgs-Bosonen bietet sich daher der
Prozess WH — lvbb an.

3Central Outer Tracker
4Next-to-Leading Order
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Abbildung 2: Produktions-Wirkungsquerschnitte fiir Gluon-Fusion und assozi-
ierte Produktion bei 1.96 TeV (links) und Verzweigungsverhéltnisse (rechts) des
Standardmodel Higgs-Boson.

q I*
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Abbildung 3: Feynman-Diagramm fiir den Signalprozess WH — [vbb.

Untergrundprozesse fiir diese Reaktion sind solche, in denen gleiche oder dhnliche End-
zustdnden auftreten, d.h. ein Lepton mit hohem Transversalimpuls, fehlende Energie
durch Neutrinos und b-Quark-Jets. In dieser Analyse wurden folgende Untergriinde
beriicksichtigt: Produktion von Top-Quarks (einzeln und paarweise), W + Jets, Paar-
produktion von Eichbosonen (WW, WZ und WZ), Z — 77 und QCD?-Untergrund.
Exemplarische Feynman-Diagramme fiir diese Prozesse sind in den Abb. 3.14 und 3.15
auf den Seiten 58 und 59 angegeben.

Neuronale Netze

Neuronale Netze entstammen der Forschung iiber kiinstliche Intelligenz. Um die
Lernfihigkeit und Fehlertoleranz biologischer Systeme auf Computer zu iibetragen, be-
gann man mit der Modellierung einzelner Nervenzellen. Abb. 4 zeigt links das mathe-
matische Modell eines sog. Netzwerkknoten nach McCulloch und Pitts. Zuerst wird die
gewichtete Summe der Eingabewerte berechnet und der Schwellenwert subtrahiert. Bei
positivem Ergebnis ist der Ausgabewert 1, ansonsten 0. Heute benutzt man als sog. Ak-

5Quantum Chromodynamics
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Abbildung 4: Einzelner Netzwerk-Knoten im McCulloch-Pitts-Model (links)
und ein 3-lagiges Netzwerk (rechts) [2].

tivierungsfunktion meistens eine Sigmoid-Funktion der Form

ehr — e~

ebz + e—br'

bx
a-tanh(br) = a

Dies hat den Vorteil, dafl die Ausgabewerte kontinuierlich zwischen -1 und +1 liegen. Aus
Einzelnen dieser 'Nodes’ lassen sich mehrlagige Netze aufbauen (sieche Abb. 4 rechts).
Der Prozess des Netzwerk-Training besteht aus dem Anpassen der Gewichte, sodafl die
Differenz zwischen Ausgabe und Zielwert minimal wird. Die quadratische Fehlerfunktion
E ist gegeben durch

Bl = 3 30 3l — Ot 0

mit ¢! als dem gewiinschten Training-Target und O/ () als aktueller Netzwerk-Ausgabe.

Die Analyse

Die gesamte Analyse besteht aus zwei Teilen. In einem ersten Schritt wird eine Vorselekti-
on durchgefiihrt um einen erste, grobe Trennung von Signal und Untergrund zu erreichen.
Diese basiert auf konventionellen Schnitten. In einem zweiten Schritt werden neuronale
Netze eingesetzt, um eine weitere Verbesserung des Signal-zu-Untergrund Verhéltnis zu
erreichen.

Vorselektion

Die Schnitte der Vorselektion sind angepasst an die zu erwartende Signatur des Signal-
prozess und lauten zusammengefasst wie folgt:

e cin “tight” Lepton mit Transversalimpuls P, > 20 GeV (Standard CDF Elektron-
und Myonselektion),

e fehlende Transversalenergie F;> 20 GeV,

e zwei oder 3 “tight” Jets mit transversaler Energie £, > 15 GeV, |n| < 2.0,
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Abbildung 5: Ausgabewert des Netzwerk fiir Signal (rot) und Background
(schwarz), gewichtet im Verhéltnis 1:1. Die Higgsmasse des Signalprozess war
mpy = 120 GeV/c?,

e mindestens ein b-tag sowie

e 7% Veto, Cosmic-Veto und Konversions-Veto.

Anwendung Neuronaler Netze

Das benutzte Netzwerkpaket NeuroBayes® wurde von Prof. Dr. Michael Feindt am
Institut fiir Experimentelle Kernphysik® entwickelt”. Die Netzwerk-Topologie war stets
3-lagig. In der ersten Lage, auch Eingabe-Lage genannt, befand sich fiir jede Eingabeva-
riable ein Netzwerkknoten®. Die Zahl der Knoten in der zweiten Lage war etwas grofier
als in der ersten Lage. In der dritten Lage, der Ausgabe-Lage, befand sich stets nur ein
Netzwerkknoten.

Der Ausgabewert der neuronalen Netze (jeweils eins pro untersuchter Higgsmasse) lag
somit immer zwischen -1 (untergrundartig) und +1 (signalartig). Der Schnitt auf diesen
Ausgabewert (dargestellt in Abb. 5) wird so gewihlt, dafl sich das beste a-priori Limit
aus den Monte-Carlo Simulationen ergibt. Anschlieend wird fiir die invariante Masse des
2-Jet-System ein Massenfenster um die zu untersuchende Higgsmasse gelegt. Die Grenzen
fiir dieses Massenfenster werden wieder so gesetzt, dafl sich das beste erreichbare Limit
einstellt.

6Das IEKP ist Teil des Centrum fiir Elementarteilchenphysik und Astroteilchenphysik CETA.

7NeuroBayes@‘J und <phi—t>® sind eingetragene Warenzeichen der Physics Information Technologies
GmbH ([3].

8Zussatzlich gibt es noch einen sogenannten Bias-Knoten in der ersten Lage.
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Abbildung 6: Invariante Masse des 2-Jet Systems nach dem Netzwerk-Schnitt.
Das neuronale Netz wurde bei einer Higgsmasse von my = 120 GeV/c? trainiert.
Die punktierte Linie zeigt den zu erwartenden Signalpeak bei hundertfachem
Wirkungsquerschnitt.

Ergebnisse

Die erwarteten Ereigniszahlen nach der Vorselektion sind in Tabelle 5.10 auf Seite 93
gezeigt. Die entsprechenden Zahlen nach Anwendung des neuronalen Netzes sowie nach
dem Schnitt auf die invariante Masse des 2-Jet-Systems sind in den Tabellen 6.1 und
6.2 auf Seite 110 angegeben. Die Daten sind unter beriicksichtigung der Fehler in guter
Ubereinstimmung mit dem zu erwartenden Untergrund des Standardmodell. Abbildung
6 zeigt die Verteilung der invariante Masse des 2-Jet-Systems nach dem Schnitt auf die
Netzwerkausgabe. Die Zahl der Events im Massenfenster 80 GeV/c* < mpy < 140 GeV /c?
entspricht den Zahlen in Tabelle 6.2 und ist Grundlage fiir die Berechnung des Limits im
Fall my = 120 GeV/c2. Verteilungen fiir die restlichen sechs Higgsmassen sind auf Seite
112 dargestellt.

In Abbildung 7 zeigen die farbig markierten Graphen die zu erwartende Sensitivitét
nach jedem Analyseschritt. Die quadratischen Markierungen zeigen das Datenlimit,
beruhend auf den Zahlen aus Tabelle 6.2 von Seite 110. Fiir die offenen Marker wurden
systematischen Fehler nicht einbezogen. Die gefiillten Quadrate zeigen die endgiiltigen
Ausschlufigrenzen unter Beachtung der Fehler. Diese liegen daher stets iiber der
ersten Kurve. Wirkungsquerschnitte von etwa 8 pb sind durch diese Analyse ausgeschlos-
sen. Das Limit liegt zu hoch, um eine untere Massengrenze fiir das Higgs setzen zu konnen.

Aus den Zahlen von Tabelle 6.2 auf Seite 110 lésst sich die benttigte Luminositét fiir einen
Ausschlul des Standardmodell-Higgs, fiir ein 3o-Limit oder eine 5o-Entdeckung berech-
nen. Diese sind in Abbildung 8 dargestellt. Die schraffierten Fldchen zeigen das Ergebnis
dieser Arbeit und geben die benétigte Luminositét fiir den Zerfallskanal W H — [vbb. Die
anderen Bénder zeigen die Resultate einer Studie aus dem Jahr 1998 [4]. Wie in der
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Vergleichsstudie wurden keine systematischen Unsicherheiten beriicksichtigt. Die Breiten
der Kurven ergeben sich durch ein hochskalieren der unteren Grenzen um 30%.

Wie in Abb. 8 gezeigt, betrigt die intergrierte Luminositéit bei Kombination von W H und
ZH ca. 70 fb~! fiir eine 3-0 Entdeckung eines Standarmodell-Higgsboson von 115 GeV.
Higgsmassen bis 114.1 GeV sind durch die LEP-Experiments ausgeschlossen [5]. Diese 70
fb~! liegen iiber der zu vom Tevatron in Run II zu erwartenden Luminositéit von ca. 9 fb=1
(vgl. Seite 23). Die hier bestimmte Luminositét fiir eine 3-0 Entdeckung liegt ca. um einen
Faktor 25 iiber der Schitzung der Higgs Working Group und sind hauptséichlich dadurch
begriindet, dafl in dieser Arbeit wesentlich mehr Untergundprozesse mitberiicksichtigt und
gemessene Effizienzen benutzt wurden (vgl. Kapitel 6.3.1 auf Seite 117).

Ausblick

Eine Verbesserung des hier bestimmten Higgs-Limits liee sich am einfachsten mit
einem grosseren Datensatz erreichen. Weiter 40 pb~! an Daten stehen schon jetzt zur
Verfiigung, konnten aber fiir diese Arbeit nicht mehr beriicksichtigt werden.

Aus technischer Sicht sind natiirlich verbesserte Algorithmen zu nennen. Zur Berechnung
der Ausschlufigrenzen liefle sich statt eines einfachen ’event counting’ z.B. ein Fit der
invarianten Massenverteilung durchfiihren. Spezielle Energiekorrekturen fiir b-Quark-Jets
konnten die Breite des Higgs-Massenpeak verringern. Eine hohere b-tagging Effizienz
wire z.B. ebenfalls mit Hilfe neuronaler Netze denkbar [6]. Eine Erhohung der Signal-
Akzeptanz liefle sich durch einen vergrosserten n-Bereich erzielen. Die Beriicksichtigung
von Elektronen aus den Vorwirts-Detektoren wire hier moglich. Die Kombination
verschiedener Kanéle, auch mit den Ergebnissen des DO-Experiment, wiirde ebenfalls die
Perspektiven der Higgs-Physik am Tevatron stark verbessern.

Sollte das Higgs-Boson am Tevatron nicht gefunden werden, wird die Suche am Lar-
ge Hadron Collider (LHC) fortgesetzt. Dieser Proton-Proton-Beschleuniger befindet sich
zur Zeit im Bau und wird vorrausichtlich im Jahr 2007 in Betrieb gehen. Zwei Multi-
Purpose-Experimente, CMS und ATLAS, werden sich mit der Suche nach neuer Physik
beschéftigen. Aufgrund der hohen Luminositit und Schwerpunktsenergie von 14 TeV be-
stehen gute Erfolgsausssichten.
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Abbildung 7: Ausschlufigrenzen fiir den W H Produktionswirkungsquerschnitt
multipliziert mit dem Verzweigungsverhiltnis BR(H — bb) als Funktion der
Higgs-Boson Masse. Die Vertrauensgrenze betrigt 95%. Die gelbe Fliche
iiberdeckt den von LEP ausgeschlossenen Massenbereich bis mpy = 114.1 GeV /c2.
Die drei farbig markierten Kurven zeigen die erwartete Sensitivitdt der Vorselek-
tion und nach Anwendung des neuronalen Netzes, ermittelt aus Monte-Carlo Si-
mulationen. Die offenen Quadrate zeigen das Daten-Limit ohne Beriicksichtigung
der systematischen Fehler. Das endgiiltige Limit, mit Beriicksichtigung der Feh-
ler, zeigen die geschlossenen Quadrate. Im unteren Teil sieht man den NLO-
Wirkungsquerschnitt des Standardmodell fiir den betrachteten Kanal.

15
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Abbildung 8: Notwendige integrierte Luminosititen fiir einen 95% C.L.-
Ausschluf}, eine 30-Evidenz und eine 50-Entdeckung. Die drei unteren Kurven
sind die Ergebnisse der Higgs Working Group Studie aus dem Jahr 1998 fiir den
W H Kanal [4]. Die drei oberen schraffierten Kurven stellen das Ergebnis die-
ser Arbeit dar. Die linke Skala gibt die Luminositét fiir den W H Kanal an. Die
rechte Skala zeigt die Luminositéit fiir eine Kombination des W H mit den ZH
Kanilen. Diese liegt ca. einen Faktor zwei niedriger als beim W H Kanal allein.
Dies liegt am besseren Verhiltnis S/v/B, das sich durch die Kombination der
Kanile ergeben wiirde.
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Chapter 1

Introduction

Physics is the only discipline having excellent theories!. Its three frontiers are the physics
of the “infinitely” big (cosmology), the “infinitely” complicated (chaotic systems) and the
“Infinitely” small (particle physics). The aim of the latter one is a theory of matter which
unifies all known forces to just one interaction. Apart from being simple, it should give a
good quantitative description of all observable phenomena. The current theory of particle
physics is the standard model. It assumes matter to consist of few elementary particles,
an idea which was first introduced by Democritus?.

1.1 The Standard Model

Today we believe matter to consists of fundamental fermions®, i.e. quarks and leptons.

Due to their properties both are classified in three families (cf. table 1.1 on the following
page). The scalar Higgs particle [8, 9] is predicted by the standard model but all searches
have been unsuccessful so far. It is introduced by the mechanism of spontaneous symmetry
breaking and could explain the generation of particle masses.

Although the standard model has proven to be successful in describing experimental data
there are still many open questions. One is the problem of gravity which up to now is not
included in the standard model. Other open questions are:

e Why is the charge ratio of quarks and charged leptons exactly 1/3 and why is the
number of both lepton and quark generations equal to three ?

e There is no explanation for the symmetry of quarks and leptons w.r.t. the elec-
troweak interaction.

e The theory relies on 18 free parameters which have to be taken from measurements.
They cannot be calculated from the standard model in the first place.

n [7] R. Penrose classifies all known theories as being excellent, useful or unproven.
2Pre-socratic greek philosopher, 460-370 BC.
3Fermions are particles with half integer spin. Particles with integer spin are called bosons.
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Table 1.1: The particles of the standard model. All but the Higgs boson have
been discovered so far.

e The scalar Higgs particle gives rise to the so called hierarchy problem. This term
refers to the instability of the Higgs mass against radiative corrections. A Higgs
mass in the order of 1 TeV/c? requires a fine tuning of two parameters over 24
significant digits. It is hard to believe that this fine tuning is realised in nature.

Various theories exist which try to solve the problems of the standard model. They all have
in common the fact that they contain the standard model as a low energy approximation.

1.2 Motivation

The main objective of this study is to extent previous searches for the Higgs boson at
CDF using the new Run II dataset as well as new tools. These tools are so called Neural
Networks. They are an interesting alternative to conventional purely cut based analyses.
A network developed by Prof. M. Feindt (NeuroBayes®) is being used to classify signal
and background processes in this search.

The reaction investigated in this study is the associated production of light SM Higgs-
Bosons in the channel WH — lvbb because search prospects are best in this production
and decay channel. Six different Higgs masses between 110 GeV/c? and 150 GeV/c? are
being tested. The analysis is based on data taken from 2000 to 2003, corresponding to a
total integrated luminosity of L, = 162pb .

1.3 Overview

The thesis is organised as follows: Chapter 2 on the next page gives an overview of the
pp-collider Tevatron and the CDF detector. In chapter 3 on page 37 the Standard Model
of particle physics is presented. Higgs production as well as the corresponding background
processes are emphasised. The fourth chapter on page 61 describes the theory of neural
networks. Chapter 5 on page 81 explains the analysis itself. In chapter 6 upper limits are
set on 0 X BR, the product of the production cross section times the branching ratio as a
function of the Higgs boson mass, starting from page 109. The last chapter on page 123
summarises and gives an outlook on how to further improve the analysis in the future.
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Chapter 2

Tevatron and CDF

2.1 The Tevatron

The Tevatron collider is located at the Fermi National Accelerator Laboratory (FNAL)
approximately 60 km west of Chicago/USA. Fermilab is one of the mayor national US
laboratories for high energy physics. The Tevatron is a proton-antiproton accelerator
with a centre-of-mass energy of 1.96 TeV and currently the most energetic collider in
the world. Fig. 2.1 on the following page shows an aerial view of the facility. It has a
circumference of about 6 km and the two counter-rotating particle beams collide head on
at two interaction points. This is where the multi-purpose detectors, CDF and DO, are
located. In order to accelerate protons and antiprotons to an energy of almost 1 TeV, a
system of various pre-accelerators is needed. Each one increases the particle energy to
the minimum injection energy for the next device in the accelerator chain.

2.1.1 Accelerator chain

The Fermilab accelerator complex is depicted in fig. 2.2 on page 21. The acceleration
process starts with the production of H™ ions by adding an electron to hydrogen atoms
in an ion source. A Cockroft-Walton accelerator [10] increases the energy of the H™ ions
from 0 to 750 KeV. Next the hydrogen ions are sent into a LINAC! which is about
150 m long. It boosts the H™ energy from 750 KeV to 400 MeV. Prior to entering the
next machine the ions pass through a carbon foil to strip off the two electrons from the
proton. The next step of acceleration is performed by the Booster, a synchrotron with a
radius of about 75 m. After the proton energy is raised from 400 MeV to 8 GeV they are
transferred into the Main Injector (MI). The Main Injector accepts 8 GeV protons and
anti-protons from either the Booster, the anti-proton accumulator or the Recycler. It can
accelerate the p- and p-beams to 150 GeV and inject them into the Tevatron.

The Tevatron receives protons and anti-protons from the Main Injector at 150 GeV and
accelerates them to their final energy of 980 GeV. Typically the two beams consist of 36
bunches with 180 x 10% protons/bunch for the p-beam and 12 x 10° anti-protons/bunch

Tinear Accelerator
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Figure 2.1: Aerial view of the Fermilab site. The circular structure in the back-
ground is the inner maintenance road of the Tevatron. The one in the foreground
shows the outer maintenance road for the Main Injector and the Recycler which
are both located in the same tunnel. The main building and the meson area can
be seen in the upper left corner.

for the p-beam. After the ramping? is complete collisions are initiated at the B0 and DO
interaction regions. Stores® are kept for typically 16 h while more anti-protons are made
for the next shot?. It takes 10-16h to create enough anti-protons for a shot. Hence the
p-production is a limiting factor for the Tevatron luminosity.

2.1.2 Anti-proton production

Anti-proton production is accomplished by extracting 120 GeV protons from the Main
Injector and directing them onto a nickel target . The protons striking the target produce
anti-protons as well as many other secondary particles in the proton-nucleus interaction.
A Lithium lens focuses these particles and a bend magnet selects negative particles around
8 GeV. Particles other than protons decay away and only anti-protons are left in the beam
transferred to the anti-proton ring.

The anti-proton ring consists of two parts, the Debuncher and the Accumulator, both
having a triangular shape. In the Debuncher particles enter with a narrow time and
broad energy spread. The RF® is phased such that high energy particles are decelerated
and low energy particles are accelerated resulting in a narrow energy but broad time

2To excite a magnet with a time dependent excitation current.

3To inject circulating beam into an accelerator and keep it there for long periods of time.

4The injection of protons and anti-protons into the Tevatron in preparation for colliding beams oper-
ation.

5Radio Frequency



2.1. THE TEVATRON 21

MAIN INJECTOR

TEVATRON

TARGET HALL
ANTIPROTON

SOURCE

BOOSTER
— LINAC

N
COCKCROFT-WALTON
PROTON

NEUTRINO

Figure 2.2: Schematic view of the Tevatron accelerator complex.

spread. The beam having a bunch structure in the beginning of the process has been
“de-bunched”. In addition, the p-emittance is reduced by stochastic cooling. Pickups
detect deviations from the ideal particle orbit which are used to kick the orbit back to
nominal values. This reduces the transverse emittance in a statistical way. Finally the
anti-protons are transferred to the Accumulator. Here the anti-protons are stacked with
typical rates of about 7 x 10"p/h up to a maximum of about 120 x 10 p’s. At that
point they are transferred to the Main Injector where they are accelerated from 8 GeV to
150 GeV before being sent to the Tevatron.

2.1.3 Recycler

The Recycler is an 8 GeV anti-proton storage ring installed near the ceiling of the Main
Injector tunnel. Its di- and quadrupoles® are made out of permanent magnets. Hence the
particle energy is fixed to a constant value. The original goal of the Recycler was

e to store anti-protons from the accumulator, thereby increasing the total anti-proton
production capacity and

e to recover anti-protons from a Tevatron store for use in subsequent stores.

Due to technical problems the latter goal has been abandoned. For the stacking rate
planned, the difference in integrated luminosity with and without recycling is only about
10% [11]. As of 2003, the Recycler is not being used in standard operation. Due to
a vacuum incident in January 2003 the Recycler has not been commissioned and the
planning for its use has been delayed. The commissioning phase is supposed to start in
calendar year 2004. It is planned to include an electron cooler into the Recycler ring. The
cooling of ion beams by a co-moving low emittance electron beam is a well established

6 A magnet consisting of four poles, used for focusing beams of particles.
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technique for nuclear physics facilities [12, 13]. This project, however, is the first attempt
at achieving medium energy cooling. Previous cooling systems were built at an order of
magnitude lower beam energy. If successful, the implementation of electron cooling will
allow very large antiproton stacks accumulated in the Recycler Ring to be transferred to
the Tevatron with small longitudinal emittance.

2.1.4 Luminosity

The most important quantity characterising a collider, apart from its centre-of-mass en-
ergy, is the instantaneous Luminosity £. Together with the cross-section for a particular
physics process it defines the event rate

dN

at which particle interactions occur. The integrated Luminosity L;,; is just the time
integral of L:

It is usually measured in pb~! which stands for inverse picobarn’. At the Tevatron the
instantaneous Luminosity is given by

¢ = NeBlo (2.3)

dro,oy

where N, and N; are the numbers of protons and anti-protons in a particle bunch, B is
the number of bunches and f is the revolution frequency of the beam (=~ 50 KHz). o,
and o, characterise the width of the Gaussian beam profile in z and y. Typically the
number of particle bunches is 36 for both particle types resulting in a bunch-crossing time
of 132 ns or an interaction frequency of 40 MHz. The average number of interactions
per bunch-crossing is about 2. Fig. 2.3 on the facing page shows the average number of
interactions per bunch crossing N as a function of luminosity.

Table 2.1 on page 25 shows a list of various Tevatron parameters for both RunI and
RunlI [14]. The performance goals have been met in a few runs so far. Fig. 2.4 on
page 24 shows the initial Luminosity per store. The record is about 10 x 103'cm?s71.
The integrated Luminosity L;,; of RunIl can be seen in fig. 2.5 on page 24. Until July
2004 about 650 pb~! have been delivered by the Fermilab beams division. The average
data taking efficiency of CDF has been around 80% resulting in approximately 520 pb™~!
written to tape. These data are available for physics analysis. Requirring a certain data

quality further reduces the amount of usable data.

"The unit barn is defined as 10~28m?2.
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Figure 2.3: Average number of interactions per bunch crossing for 6, 36 and 108
bunches vs. instantaneous luminosity. The three graphs represent mean values
of a Poisson distribution.

2.1.5 Outlook

The scope of the Fermilab Tevatron program has been reviewed by the DOE?® [15] in
October 2002. Plans for operating the Tevatron with 132 nsec bunch spacing rather
than the present 396 ns spacing have been dropped from the project scope. One reason
to skip the luminosity upgrade plans to operate the Tevatron with 136 bunches/beam
and a bunch crossing time of 96 ns was the large effect of beam-beam interactions. The
effect was found to be much stronger than anticipated. In summer 2003 the Fermilab
directorate has worked out a new RunlIl Luminosity Upgrade Plan which defines two
Luminosity projections through Fiscal Year 2009:

e a base projection of 4.4 fb~! and
e a design projection of 8.6 fb™!.
However both base and design projection assume successful integration of electron cooling

in the Recycler. This represents a significant uncertainty since an electron cooling system
at such high energies has never been built before [16].

8Department of Energy
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Figure 2.4: Initial peak luminosity per store in RunlIl. The record luminosity
achieved in July 2004 is about 10 x 103'cm?s~!. Intervals without data points
represent shutdown periods for maintenance work.

Figure 2.5: Integrated luminosity vs. store number. The upper curve shows the
luminosity delivered by the Tevatron. The lower curve represents L;,; for data
recorded by CDF.
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THE TEVATRON

Run IT Parameter List | RUN Ib (1993-95) | Run II | Unit
(6x6) (36x36)
Protons/bunch 2.3 % 101 2.7 % 101
Antiprotons/bunch 5.5 % 10" 3.0 % 1010
Total Antiprotons 3.3 % 101 1.1%10"2
Pbar Production Rate 6.0 * 1010 1.0 % 10" | hr!
Proton emittance 23w 20m mm*mrad
Antiproton emittance 137 157 mm*mrad
G* 35 35 cm
Energy 900 1000 GeV
Antiproton Bunches 6 36
Bunch length (rms) 0.60 0.37 m
Crossing Angle 0 0 prad
Typical Luminosity 0.16 * 103! 0.86 % 1032 | cm 257!
Integrated Luminosity 3.2 17.3 pb~1 /week
Bunch Spacing ~ 3500 396 ns
Interactions/crossing 2.5 2.3

25

Table 2.1: List of Tevatron machine parameters for Run Ib and RunlIl. The
Run IT numbers are design values. The quantities for RunIb represent measured
data.
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Figure 2.6: The CDF coordinate system [1]. The proton beam defines the
positive z-axis with 8 = 0. ¢ is measured from the Tevatron plane.

2.2 The CDF 1I Detector

The CDF experiment is a multi-purpose particle detector. It has been built and is
maintained by an international collaboration of about 600 physicists from 50 institutes in
11 countries. Its size is about 15 m x 10 m x 10 m and it weighs approx. 5000 tons.

The coordinate system used by CDF is depicted in fig. 2.6. The z-axis is defined by the
direction of the particle beam. Protons are moving into the positive z-direction. The
polar angle # is measured from there. Hence 6 = 0 for the protons and § = 7 for the

anti-proton beam. However it is common to describe polar angles by the pseudo-rapidity
n® which is defined by:

n= —ln(tang). (2.4)

The azimuthal angle ¢ is measured from the Tevatron plane. Particles having ¢ = 0 and
¢ = 3 point away from the centre of the accelerator ring.

The layout of the CDF experiment follows common design principles for this kind of
detector, i.e. it has forward-backward as well as spherical symmetry around the beam
pipe. Different detector systems are placed around the interaction region in various layers
(cf. fig. 2.7 and 2.8). The tracking system, being closest to the beam pipe, consists out
of silicon detectors in the centre surrounded by the COT, a gas drift chamber. The COT
itself is surrounded by a large superconducting solenoid which creates a magnetic field of
1.4 T. A Time-Of-Flight system is placed between the solenoid and the COT. Its main
purpose is particle identification. The next detector is the calorimeter which is divided
into an electromagnetic and a hadronic part. The outermost detector components are the
muon chambers. Four different subsystems almost completely surround the inner detector
systems.

The following sections describe the different detector components in more detail. A com-
plete description of the CDF II detector can be found elsewhere [17].

9Jets described in the 1 — ¢ space look the same, regardless of their 7.
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Figure 2.7: Elevation view of the CDF II detector.

2.2.1 Tracking System

Silicon Detectors

The complete silicon detector consists out of three different sub-systems: L00, SVXII and
the ISL. In total, eight layers of silicon surround the beam pipe, ranging from » = 1.35 cm
to a radius of r = 28 cm and length from 90 cm to almost two meters. The total detector
area is 6 m? with 722,000 readout channels.

Layer 00: Layer 00 is the innermost layer of silicon. It is directly glued on to the
beryllium beam pipe in a hexagonal shape. However the detector elements don’t provide
complete ¢-coverage. LO00 is supposed to strongly improve the tracking resolution of
CDF because of its small distance to the interaction region. Unfortunately, due to high
electronic noise it hasn’t been used so far.

Silicon Vertex Detector (SVXII): The SVXII consists of five layers of double sided
detectors at radii between 2.4 cm and 10.7 cm. In total it is 96 cm long and covers
rapidities up to || < 2. The layers are assembled in three cylindrical barrels.

Intermediate Silicon Layers (ISL): In order to link the silicon hits from the SVXII
and the tracks from the COT a third silicon sub-detector has been added to the design:
the ISL. In the central region a single layer of silicon is placed at a radius of 22 cm. In
the region 1.0 < |n| < 2.0 two layers are placed at radii of 20 and 28 c¢cm as can be seen
in Fig. 2.8 on the next page.
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Figure 2.8: Longitudinal view of the CDFII detector [1]. The Time-Of-Flight
system which is located between the COT and the solenoid is not shown.
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Central Outer Tracker (COT)

The COT is a cylindrical open-cell drift chamber. Its inner and outer radii are 44 cm
and 132 cm and the length of the active region is 310 cm. Hence it covers the region
In| < 1.0. One mayor design goal of the COT was to achieve a maximum drift time less
than 132 ns which was supposed to be the bunch crossing time in Run IIb. The COT is
designed to find charged particle tracks with transverse momenta as low as p; = 400 MeV.
It is segmented into 4 axial and 4 stereo superlayers. Each super-layer consists of 12 sense
wires alternated with 13 potential wires which shape the field within the cell. In total 96
measurements can be made in the radial direction. Argon-Ethane (50:50) is used as drift
gas. Although it has a much poorer position and direction resolution than the silicon
detectors it provides a much better momentum resolution. This is due to the greater
radial extension and a higher purity due to a lower track density w.r.t. the silicon. Using
both the silicon detectors and the COT the overall momentum resolution for charged
particles is dp;/P? < 0.1%/GeV /c.

2.2.2 Calorimeters

The CDF calorimeters are designed to accurately measure particle energies of electrons,
photons and hadrons. In total there are five different calorimeter subsystems installed in
CDF: the central EM'® and Hadron calorimeters, the End-Plug EM and Hadron calorime-
ters (PEM and PHA) and the End-Wall Hadron calorimeter (WHA). Fig. 2.8 on the
facing page shows their location. The CDF calorimeters provide complete ¢-coverage and
n-coverage up to |n| < 3.64 and are segmented such that they form a projective tower
geometry which points to the interaction region. The central and end wall calorimeters
are made of two halves, referred to as east and west arcs. Each half consists out of 24
wedges. A single wedge covers 15° in ¢ and is subdivided into 10 towers of 0.1 units in 7.
Fig. 2.9 on the next page shows one of the wedges for the central calorimeter.

The CDF calorimeters are so called sampling calorimeters. Several layers of active de-
tection material are interspaced with layers of absorption material. The electromagnetic
calorimeters use lead as absorption material and the hadronic ones use iron. Scintillator
material has been chosen as active material. Table 2.2 on the following page summarises

some properties of the CDF calorimeters. Their thickness is given in terms of X,'! and
A2,

Both EM-calorimeters have pre-shower (CPR!¥) and stereo shower maximum detectors
(CES™) to improve their spacial resolution.
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’ Detector | n Range ‘ Active medium ‘ Thickness ‘ Energy Resolution ‘
CEM In| < 1.1 | polystyrene scintillator | 19 Xo, 1 A | 13.7%/vVE; ® 2%
PEM |1.1< |n| <3.64 | proportional chambers | 21 Xy, 1 A 16%/VE @ 1%
CHA In| < 0.9 | acrylic scintillator 4.5\ 50%/ v Er @ 2%
WHA | 0.7< |n| < 1.3 | acrylic scintillator 4.5 \ 75%/VE ® 4%
PHA | 12< |n| <3.64| proportional chambers 7\ 80%/VE & 5%

Table 2.2: Summary of CDF calorimeter properties. The @ signifies that the
constant term is added in quadrature. The resolutions are given for energies
measured in GeV. They apply for incident electrons and photons in the case of
the EM calorimeters. For the hadronic calorimeters the quoted values apply to

incident isolated pions.

YA

Phototubes
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Scintillator
Sandwich

Strip
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Figure 2.9: A wedge of the central calorimeter showing the ten towers in n. The
lower part is the electromagnetic calorimeter and includes a strip chamber, the
CES. The upper part is the hadronic calorimeter.
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Figure 2.10: n — ¢ coverage of the CDF muon system. The CMU and CMP are
overlapping in the central region.

2.2.3 Muon Detectors

The central calorimeters act as a hadron absorber for the Central Muon Upgrade (CMU).
It consists of four layers of drift chambers located outside the central hadronic calorimeter.
It covers 84% of the solid angle for the pseudorapidity interval |n| < 0.6 and can be reached
by muons with a transverse momentum greater than 1.4 GeV. In 1992 the system was
upgraded by adding 0.6 m of steel behind the CMU and additional four layers of drift
chambers behind the steel. This new system is called CMP'. For || < 0.6 the CMP
covers 63% of the solid angle while both systems overlap in 53% of the solid angle. In
addition, the pseudo-rapidity range of 0.6 < || < 1.0 is covered by the CMX to 71%
of the solid angle. Fig. 2.10 shows the n — ¢ coverage for the different systems.

The changes for Run II in the muon systems represent incremental improvements. New
Chambers are added to the CMP and CMX systems to close gaps in the azimuthal
coverage and the shielding is improved. The forward muon system is replaced with the
IMU', covering from 1.0 < |n| < 1.5. Table 2.3 on the following page gives an overview
of the different muon systems.

0Flectromagnetic

Radiation length, usually measured in gcm™2.
electron losses all but 1/e of its energy.

12Nuclear interaction length. The mean free path between inelastic interactions, measured in gcm™2.

13Central Pre-Radiator

4Central Electromagnetic strip/wire gas chamber

15Central Muon Upgrade

16Central Muon Extension

TIntermediate Muon System

It is the mean distance over which a high energy
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| | CMU |[CMP/CSP| CMX/CSX | IMU |
Pseudo-rapidity coverage | 9| < 0.6 | |n/<0.6 [0.6<|n <1.0[10<|p <15
Total counters 269 324 864
Min pr of detectable || 1.4 GeV | 2.2 GeV 1.4 GeV 1.4 — 2.0 GeV

Table 2.3: Design parameters of the CDF II muon detectors.

2.2.4 Other Detectors
CLC

The CLC!® consists of two modules which are located in the so-called “3-degree holes”
inside the CDF plug calorimeters which cover the 3.7 < |n| < 4.7 pseudo-rapidity range.
Each detector module is made of 48 thin, long, conical, gas-filled Cherenkov counters.
These counters are arranged around the beam pipe in three concentric layers with 16
counters each and point to the centre of the interaction region. Isobutane is used as radi-
ator for it has one of the largest refractive indices for commonly available gases (1.00143)
and good transparency for photons in the ultraviolet region where most of the Cherenkov
light is emitted. The CLC monitors the average number of inelastic pp interactions by
measuring the number of particles and their arrival time in each bunch crossing. For these
primary particles efficient PMTSs! collect about 100 photoelectrons with good amplitude
and time resolution [18].

Time Of Flight (TOF)

Between the COT and the solenoid the Time-Of-Flight system is installed. It consists out
of scintillator panels which provide both timing and amplitude information. The timing
resolution is 100 ps. The detector covers the central region up to n < 1.1 and will be
capable of identifying kaons from pions by their flight time difference.

Forward Detectors

Beam Shower Counters (BSC): The BSC can detect particles originating from the
interaction point at very small angles (5.5 < || < 7.5). It will be used to study single
diffraction (SD) and double-pomeron exchange (DPE) processes. In addition to their use
in the forward physics program these detectors can be used for beam loss measurements
of the Tevatron. The BSC system consists of four stations on the West and East side of
CDF. All stations are located along the beam pipe, at increasing distances from the IP
as one goes from BSC-1 to BSC-4. The stations are made of two scintillator counters.
The scintillator material is SCSN-81 and has a thickness of 1/4” for the BSC-1 and 3/8”
for the other stations. It is preceded by a 3/8” thick lead plate to convert photons. Each
counter is viewed by its own PMT [19]. Fig. 2.11 on the next page shows where the
different forward detector systems are located.

18Cerenkov Luminosity Counter
YPhoto Multiplier Tubes
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Figure 2.11: Location of the CDF forward detectors.

Miniplug calorimeters (MP): The MiniPlug calorimeters measure the energy and
lateral position of particles in the forward region. They extend the pseudo-rapidity region
covered by the Plug calorimeters to the beam pipe (3.6 < |n| < 5.2). They consist of
lead and liquid scintillator read out by wavelength shifting (WLS) fibres perpendicular
to the lead plates and parallel to the beam pipe. This pixel-type tower-less geometry is
suitable for “calorimetric tracking”. The MiniPlug energy resolution for electrons is given
by 0/E = 18%/+'E where E is the incident particle energy in GeV [20].

Roman Pots: The three Roman Pot stations [21] are located at about 57 meters from
the Interaction Point, and approximately one meter apart from each other. They consist
of a total of 240 scintillator fibre channels and of 3 scintillator counters.

2.2.5 Data Acquisition and Trigger

A schematic view of the CDF DAQ? and trigger system is given in fig. 2.13 on page 35.
The trigger plays an important role to efficiently extract the most interesting physics
events from the large number of minimum bias and background events and to reduce
the amount of data to a reasonable volume. A huge rejection already at trigger level is
essential to retrieve the high statistics needed for the search for new physics.

The CDF trigger is a three level system. The time available for event processing increases
in each level of the trigger which permits the use of an increasing amount of information
to either accept or reject an event. While Level-1 and Level-2 triggers are based on only
parts of the detector information, the Level-3 triggers makes use of the complete event
data. A signal is defined as an event where a variable (for instance the energy in the
calorimeter) lies above a certain trigger threshold. A list of quantities that can be cut on
at the different trigger levels is given in [22]. L1 and L2 are hardware triggers while L3
is a software trigger. An optimised version of the reconstruction executable is running on
a Linux PC farm with about 100 nodes. The design processing rates for Level-1, 2 and 3
are 50 kHz, 300 Hz and 50 Hz respectively. The typical event size is about 250-300 kB.

20Data Acquisition
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Figure 2.12: Functional block diagram of the CDF L1 and L2 trigger system.

The L1 triggers base their decisions on information of the calorimeters, the muon system,
the forward detectors and the drift chamber (see fig. 2.12). The XFT?! reconstructs r/¢
tracks in the COT with a transverse momentum resolution of dp;/p? = 0.01651 GeV~!
and an angular resolution of 5.1 mrad.

An important feature of Level 2 is the SVT?2. It adds silicon r/¢ hits to the L1 XFT
tracks. This allows to select events with two tracks having an impact parameter larger
than 120 um in order to identify secondary vertices?*. This will make a large number
of important processes involving the hadronic decays of bottom hadrons accessible. This
is of special interest for Higgs physics since for low my the Higgs boson predominantly
decays into two bottom quarks.

Full event reconstruction takes place on the L3 trigger farm and hence a wide variety of
requirements can be imposed on the events passing L3 [23]. Computing power on the
order of one second on a Pentium II CPU?* is available per event.

Events passing the final trigger level belong to a certain trigger path. Each “path” is a
unique combination of L1, L2 and L3 triggers. The trigger decisions are combined via
a logical “AND”. Many paths combined by a logical “OR” can be used to feed a single
dataset. The data is written to approximately 20 streams and stored on tape. After
reprocessing the events they are split up into more specific datasets. During measurements
the data quality is monitored online [24].

2IExtremely Fast Tracker

22Gilicon Vertex Tracker

23 A displaced vertex wrt. the primary vertex.
24Central Processing Unit
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Figure 2.13: Data flow schematic of the three level pipelined and buffered trigger system.
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‘...the Higgs boson may be just
around the corner.’
Electroweak symmetry breaking
and the Higgs sector

Chris Quigg

Chapter 3

Theoretical Foundations

The first part of this chapter gives a brief introduction into the current theory of particle
physics. For a more detailed coverage of the topic the reader is referred to standard
textbooks like [25, 26, 27, 28]. Review articles and collections of experimental results
are published regularly by the Particle Data Group [29]. Section 3.2 describes Higgs
production at the Tevatron and section 3.3 deals with the various background types.

3.1 The Standard Model

3.1.1 Bosons and Fermions

In the Standard Model all particles are classified as being fermions or bosons. Both classes
are characterised by their spin. Fermions carry half integer spin, i.e. the values of the
spin quantum number are n + % with n being a positive integer including zero. Bosons
have integer spin and act as exchange particles for the fundamental forces. Fermions are
the building blocks of the matter surrounding us.

Today we know four different fundamental interactions: the strong and the weak inter-
action, electromagnetism and gravitation. Since gravitation is the weakest of all forces
and there is no renormalisable theory describing it, it will not be considered any further.
Its effects in particle physics are negligible because of the small particle masses involved.
In the Standard Model strong interactions are described by QCD!. The weak and the
electromagnetic force have been unified by the electroweak theory from Glashow, Salam

and Weinberg [30, 31].

The fermions are divided into two subgroups: leptons and quarks, each of which have
similar characteristics. They exist in three different families or generations. The particle
properties of different generations are similar while masses tend to increase with increasing
generation number. The fermions of the Standard Model and some of their characteristic
properties are listed in table 3.1. It gives the electric charge, isospin and weak hypercharge.
The weak isospin I3 groups together the fermions participating in the weak interaction.
The first group are left-handed isodoublets with isospin :I:% denoted by L. The second

!Quantum Cromo Dynamics
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Generation Q I3 Y
1 | 2 | 3
1
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i (3), 1 (), 1 ), () ()] =
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Up Cr tr +32 0 |+4
dR SR bR —% 0 —%

Table 3.1: Fermions of the Standard Model. The listed properties are the
electric charge (), the third component of the weak isospin I3 and the weak
hypercharge Y. Subscripts L and R indicate the chirality. For each particle
there is a corresponding anti-fermion with equal mass and multiplicative quantum
numbers but opposite additive quantum numbers.

| Interaction | Boson [ Spin | el. Charge | Mass [GeV/c?] |

electromag. | Photon ~ 1 0 0
weak A 1 0 91.2
weak W= 1 +1 80.4
strong 8 Gluons g | 1 0 0

Table 3.2: Bosons of the Standard Model. In the SM with minimal Higgs sector
a neutral scalar Higgs Boson has to be added.

group consists of right-handed singlets with isospin 0 and index R. In addition to the
electric charge quarks carry colour charge, while anti-quarks carry anti-colour. The values
of the colour charge can either be red (R), green (G) or blue (B).

The force carriers of the Standard Model are listed in table 3.2. The exchange particle
of the electromagnetic interaction described by QED? is the massless photon. It couples
to electric charges while being neutral itself. The field quanta of the weak interaction are
the W# and the Z° Boson with masses of 80.4 and 91.2 GeV /c? respectively. They couple
to all leptons and quarks. The strong interaction is mediated by massless gluons which
carry colour charge. They couple to quarks and unlike photons to each other.

The scalar Higgs particle [8, 9] is postulated by the standard model but all searches have
been unsuccessful so far. It is introduced by the mechanism of spontaneous symmetry
breaking and explains the generation of particle masses.

2Quantum Electro Dynamics
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3.1.2 The gauge principle

An important concept within the Standard Model is the so called gauge principle. Gauge
invariance implies that physics is invariant under phase transformations. One can distin-
guish two kinds of transformations. The first kind are local phase transformations, the
second one are global ones. Global gauge transformations change a wave function ¥(x)
to U'(x) by applying a phase factor ', with o being a constant phase:

U(x) — U (x) = *W(x). (3.1)

For local gauge transformations the phase factor depends on the local space and time
coordinates. For instance in QED such a transformation is given by

U = @y (3.2)

where ¢ is the electric charge. Applying equation 3.2 to the Dirac equation for a particle
in free space

(iv*0, —m)¥(x) =0 (3.3)
one gets
("0 —m)W'(z) = —qv"Oux(x)¥'(x)
= ¢4V (2)

which describes a particle in an electromagnetic field. For now the negative gradient of
the scalar function x(r) has been identified as being the transformed vector potential A;,.
Obviously eqns. 3.3 and 3.5 are not equivalent and hence violate local gauge invariance.
In order to regain it one has to replace the derivative 0, with the covariant derivative D,
defined by

D, =0, +1iqA, (3.6)

As a result the vector potential now transforms in the following way:
Al = A, = Oux(x). (3.7)

Inserting equation 3.6 into the Dirac equation 3.3 results in an expression that is invariant
under local phase transformations, i.e.

(iv"D,, —m)¥(x) =0 (3.8)

gives

(179, — m)U(2) = gy A, ¥ (x), (3.9)

Comparing equation 3.5 with 3.9 it is obvious that both formulae are equivalent. That
is, one can change one into the other by replacing V(x) and A, with the transformed
versions W'(z) and A,

The above example is taken from QED where the vector field A, is massless. In general
it is possible to achieve local gauge invariance for massless vector fields. The same is not
true for massive vector fields. However, as will be shown in section 3.1.6 on page 46, one
can conserve local gauge invariance by the mechanism of spontaneous symmetry breaking.
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3.1.3 The Strong Interaction

The strong interaction of quarks and gluons is described by QCD. As was already men-
tioned on page 38, both quarks and gluons carry colour charge. Unlike leptons quarks
don’t occur as free, single particle. They are always bound in a two- or three-quark state.
The systems consisting of a quark-anti-quark pair (¢g) are called mesons. Particles made
up of three quarks (ggq) are called baryons. In both cases the net colour charge of the
combined object is 'white’ because the quarks in the meson carry colour and anti-colour
and the constituents of the baryons are coloured red, green and blue. The fact that quarks
only appear in colourless bound states explains why there are no free quarks as well as
the absence of qq and qqqq states. However particles with quark content ¢qqq or qgqqq
(pentaquarks) are allowed within this model and may have been observed recently by
different experiments [32, 33, 34].

In QCD the Lagrange function for a free quark can be written as
L = q;(iv"0, — m)q; (3.10)

where th ¢; (j = 1,2, 3) are the quark colour fields. This Lagrangian has to be invariant
under the non-abelian local gauge transformation SU(3)¢. It is given by

g;(z) — " DTog;(x). (3.11)

The a*(z) (a =1, ...,8) are the group -parameters and the T, are the eight generators of
the group. These generators are linearly independent, hermitian 3 x 3 matrices with trace
equal to zero. They don’t commute because of the non-abelian character of SU(3)c. As
in QED one has to introduce a covariant derivative to conserve local gauge invariance. In
equation 3.10 9, has to be replaced by

D, =08, +igT,G". 3.12
w I j

Here g, is a coupling constant and the G}, represent gauge fields which are closely related
to the eight gluons. Equation 3.12 leads to the following transformation of the GJ:

a a a 1 a a C
GY — GY =G4 — ;@a — fra’Gs,. (3.13)

Equation 3.13 and its QED equivalent 3.7 on the preceding page have the same form,
except for the last term flﬁ:abGz, where the f{ are the structure constants of SU(3)¢. It
prevents the gauge fields from not commuting and hence express the non-abelian character

The gauge invariant Lagrangian is now given by

. 1

L = q;(in"0u —m)q; — 9(G7" Tag;) G}, — 7 G GL” (3.14)

41

where the last term has to be added to take into account gluon interactions and kinematics.
The field tensor G};,, is given by

G, = 0,G, — 0.G), — gflchZGf/. (3.15)
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q g

Figure 3.1: Gluon interactions in QCD. Shown are Feynman diagrams for gluon
radiation off a quark (left), a triple-gluon vertex (middle) and a four-gluon vertex
(right). The latter two are representing the gluon self interaction.

Equation 3.14 contains the self-interaction of gluons. The possible quark-gluon and gluon-
gluon interactions are depicted in fig. 3.1. The three- and four-gluon vertices give rise to
the aforementioned effect of quark confinement that forbids the existence of free colour-
charged particles. They are also responsible for the running of the strong coupling constant
a, that will be discussed in section 3.1.5 on page 44. One can rewrite eqn. 3.14 using
symbolic shortcuts in order to clarify the meaning of the different terms. One gets

L =qq+ 9593G + G* + g,G° + g,G" (3.16)

where the different expressions have the following meaning:

e ¢q: kinematics of free quarks
e ¢,qqG: quark-gluon coupling

G?: kinematics of free gluons

gsG3: triple-gluon vertex (gluon self interaction)

gsG*: four-gluon vertex (gluon self interaction).

3.1.4 The Weak Interaction

In order to formulate a theory describing weak interactions, which are for instance re-
sponsible for radioactive decays, one has to consider some experimental results:

e The weak interaction violates parity, i.e. left-handed particles are preferred. This
was shown for the first time by the Wu experiment [35].

e The weak interaction has a very short range.

e There are neutral and charged weak interactions. (3-decays are a prominent example
for the so called changed current reactions. Neutral currents have been discovered
at CERN* about 30 years ago.

4Counseil Européenne pour la Recherche Nucléaire
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In order to explain the finite range of the weak force one has to assume massive exchange
particles. However, we will assume massless bosons for now and deal with this problem
in section 3.1.6.

First a modified form of the phase transition (eqn. 3.2) is introduced:
U'(z) = €37P@(x). (3.17)

Here g, the coupling of the weak interaction, has replaced the electric charge ¢ and the
Pauli matrices 7 = (71, 79, 73) are introduced because the transformation should be unitary
and hermitian with a trace equal to zero. The above equation represents a local SU(2)
phase transition. As in the previous sections one has to introduce a covariant derivative
which, in the case of the weak force, has the following form:

¢ .
D,=0,+ Z§WMTG. (3.18)

As before, the weak field W# changes and transforms by applying the local phase transi-
tion. One gets
W;Ll - W/.,La = W;Ll - auﬁa - g('fabcﬂbwﬁ)a (319)

being similar to the equations found in the previous sections. The term — g(eabcﬁbWﬁ) is a
cross-product and results from the non-abelian character of SU(2). It prevents eqn. 3.19
from commuting.

In order to unify the weak and the electromagnetic interaction one needs a new group:
SU2), xU(1)y. (3.20)

With this group fermions are divided in left-handed doublets and right handed singlets,
as shown in table 3.1 on page 38. This is based on the fact that the charged current of
the weak interaction is only coupling to left-handed particles. The singlets do not take
part in charged weak interactions. The chirality, indicated by L and R in table 3.1, is
defined by the eigenvalues of the two projection operators P, and Pg defined by

1— 5

P, = 27 (3.21)
1 5

Pr = 27. (3.22)

The electromagnetic interaction does not distinguish between left and right handed par-
ticles.

As can be seen from equation 3.20, U(1)y is used for the product with SU(2), and not
U(1)gep. The use of U(1)grp would lead to charged leptons and neutrinos having the
same electric charge, in contradiction to experimental observations. To avoid this problem
() is replaced by another quantity called hypercharge Y. The relation between @ (the
generator of U(1)ggp) and Y is given by the Gell-Mann-Nishijima law

Q=1+ g (3.23)

where I3 (the generator of SU(2)y) is the third component of the weak isospin.
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Because of the new groups SU(2); x U(1)y one has to modify equation 3.18 and add the
term i% B,Y leading to
D, =8, +i% £
2 2
Here the coupling constants for SU(2), and U(1)y are given by g and ¢’ respectively.
The gauge invariant Lagrangian of the weak interaction is now given by

Wear,. (3.24)

o g . Yy

L = \I/")/M(Zau - EWMTG — QIEBH)\IJ (325)
1 Vi a 1 v

— WEW, = 1B By, (3.26)

The first part (3.25) describes the kinematics of fermions and their coupling to gauge
bosons. The second part (3.26) describes the kinematics of bosons. The field strength
tensors Wi, and B, are given by

Wﬁz/ = 8MW1? - al/Wi - QEachSWnUC, (327)
B,, = 0,B,—09,B,. (3.28)

From experiments one knows that charged W= bosons and neutral Z° bosons are medi-
ating the weak interaction while the neutral photon is the field quantum of QED. These
particles are linear combinations of the W¢ and B,, vector fields of SU(2)., x U(1)y and
hence show the close relation between the weak interaction and QED. They are given by

1

- .
Wi =W T (3.29)
and
A\ _ costy  sinby B,
( Zy > B ( —sinfy cos Oy ) ( Wi ) (3.30)

where Oy is the Weinberg angle and A, represents the photon field. The sine and cosine
of Ay are related to g and ¢’ via

_ 9
cosby = —g2 — (3.32)

As one can see from the matrix in eqn. 3.30, A, and Z,, are orthogonal states.

Quark mixing

Experimental observations have shown that the weak eigenstates of the down-type quarks
(d,s,b) are not the same as the mass eigenstates. Charged weak currents do not con-
serve quarks flavour because the weak eigenstates are linear combinations of the mass
eigenstates. Neural currents, on the other hand, do conserve flavour. The weak and mass
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|Via| = 0.9742 — 0.9757  |V,s| = 0.2190 — 0.2260 |V = 0.0020 — 0.0050
[Vea| = 0.2190 — 0.2250  |Ves| = 0.9734 — 0.9749 |V, = 0.0370 — 0.0430
|Via| = 0.0040 — 0.0140  |V;4| = 0.0350 — 0.0430  |V}3| = 0.9990 — 0.9993

Table 3.3: 95% confidence level limits for the absolute values of the CKM matrix
elements [29].

eigenstates of the d-, s- and b-quarks are connected via the Cabbibo-Kobayashi-Maskawa
matrix Vo e

d/ Vud Vus Vub d
s’ = Vea Voo Vo |- s (3.33)
V), \ Vi Vi Ve b ),

The matrix elements of the CKM matrix are complex numbers, however flavour mixing
only depends on the absolute value of the matrix elements. The non-zero phase in some
of the off-diagonal elements gives rise to CP violating decays. Experimentally the effect
of flavour mixing can be observed, for instance, in the decay of B-mesons. These would
be stable in the absence of mixed flavour states. However the CKM matrix allows the
decay chain

b—c—s—u. (3.34)

Because the matrix element V,;, is small compared to the on-diagonal elements the decay
b — c is suppressed and leads to a relatively long lifetime of the B-meson. This long
lifetime is useful for the experimental identification of B-jets because it gives rise to so
called secondary vertices. The matrix elements of Vg can not be calculated from the
Standard Model. They have to be measured experimentally. The current 95% confidence
level limits for the absolute values of the matrix elements are given in table 3.3. Because
of the unitarity of the CKM matrix, the matrix elements are not independent. For a
complete description three angles and one phase are sufficient.

3.1.5 Running coupling constants

The coupling constants of the Standard Model are not really constant, as one would expect
from the nomenclature, but depend on the energy or 4-momentum transfer ?>. This
behaviour is caused by vacuum polarisation, i.e. the fact that the vacuum is filled with
virtual pairs of particles and anti-particles. In the presence of a field these particles orient
themselves like dipoles and either decrease (screening) or increase (anti-screening) the
effective charge. These effects can be described by radiative corrections shown in fig. 3.2
and 3.3 on the next page. Because the integrals that have to be solved are divergent one
uses the technique of renormalisation, i. e. the divergences are absorbed in the renormalised
quantities like the electric charge. Hence one has an effective charge e depending on Q?
and the bare charge ey. The relation between the two is given by

¢ , |7

12W2lnm). (3.35)

e(Q*) = e5(1 +
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Figure 3.2: Feynman graph for QED vacuum polarisation in lowest order. The
photon splits into a charged fermion-antifermion pair thereby reducing the effec-
tive charge between the scattered particles. The 4-momentum transfer () is given
by the difference Q = p —p'.

=l
N}

Figure 3.3: Feynman graphs for QCD vacuum polarisation. The gluon splits
either into a ¢q pair (left) or a gluon-gluon pair (right).

This Q*-dependence of the charge can also be interpreted as a Q*-dependence of a:

(67

alQ’) = ———. 3.36
(Q7) 1—%171% (3.36)

In QED screening causes the fine-structure constant « to decrease with Q2. Only fermion-
antifermion pairs contribute to the radiative corrections. There is no self-coupling between
the photons. Fig. 3.2 shows the corresponding Feynman diagram. The Q? dependence of

« is given by N
a(Q?) = - (3.37)

mg

1—%171

with
e? 1

“T T roa
At LEP® with CMSC-energies of 90 GeV, « decreases by ~ 6% and is given by ~ .

(3.38)

In QCD the situation is more complicated. The colour charge of the quarks causes a
screening effect as in QED. The corresponding dipoles consist of ¢g pairs. But the first
effect is dominated by anti-screening. It is caused by the fact that the gluons themselves
carry colour charge. They self-interact with each other. This reduces the effective colour

5Large Electron Positron collider
SCenter of Mass System
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charge the closer one gets to the true charge since less gluons contribute to the observed
charge. The effects of quark confinement and asymptotic freedom are consequences of
this behaviour. Quark confinement describes the fact that quarks can not be observed as
free particles. They are confined in a bound states with other quarks because «a; increases
with increasing distance. On the other hand bound quarks behave like free particles. Due
to the short distances among them o is small. The Q? dependence of «; is given by

as(pp)
ay(Q*) = ———e (3.39)
AL 2Nf)ln|i?£|

where n; is the number of quark flavours and pp is the renormalisation scale’. This
equation allows to transform a, measurements made at |Q?| = p% to other values of
|Q?]. To compare a, values from experimental measurements it is commonplace to quote
as(Mz). Often the value of /|Q?| where the denominator of eqn. 3.39 vanishes is called
A, the QCD cutoff-parameter. Using this definition, eqn. 3.39 becomes

47
aS(Qz) = 2N 2" (340)
(11 = )i
From this relation one can see the effect of asymptotic freedom since
lim o,(|Q%) =0 (3.41)

|Q?|—o00

as long as Ny < 16, i.e. the number of quark flavours is limited to 16. For the process
of quark-quark scattering high values of Q? are equivalent to small distances. At first
sight it looks like eqn. 3.40 can describe quark confinement as well since oy — oo for
|Q?| — A2 However it was obtained using perturbation theory and is only valid for aj
values smaller than 1.

Another consequence of renormalisation is the running of the quark masses. Like ay, the
quark mass depends on Q?, i.e. m = m(Q?). Usually the pole mass® is referred to as the
physical mass. The running masses decrease with . Since the coupling constants have
different values and Q? dependence one could imagine a unification at high Q?, i.e. all
coupling constants become equally strong. Unfortunately this unification is not possible
within the standard model, as shown in fig. 3.4 on the next page, but becomes possible
in the MSSM?.

3.1.6 The Higgs Mechanism

As has already been mentioned in section 3.1.2, local gauge invariance for massive vector
fields can be achieved by using the principle of spontaneous symmetry breaking!®. One
assumes all particles as being massless in the beginning. Mass is generated by introducing

"Usually this is given by the momentum transfer of the scattering experiment.

8The mass at the pole of the quark propagator.

9Minimal Supersymmetric Standard Model

10This mechanism was originally developed in solid state physics as a relativistic extension of the
Ginzburg-Landau-Model of superconductivity [37].
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Figure 3.4: Running of the coupling constants. The coupling constants a; = g,
as = a and ag = a; should unify for large values of Q2. In the SM (left) the unifi-
cation is not possible but can be achieved in the MSSM (right), a supersymmetric
extension of the Standard Model [36].

an additional scalar background field. The interaction of the massless particles with the
field gives mass to the gauge bosons. This field is called the Higgs field [8].

The Higgs field is chosen to be a scalar, complex field with two components,

1 (o +igs
o= (i) 342

with I3 = % and Y = 1, leading to a neutral field as one can see from eqn. 3.23 on page 42.
¢ and ¢° represent a charged and a neutral component respectively. The SU(2) x U(1)

invariant Lagrangian is given by
Liiggs = (0,0)10"® — V(d1®). (3.43)

It contains only even terms to preserve the symmetry w.r.t. ® = 0. The potential V is
given by
V(®) = p20Td + \(d10)% (3.44)

Depending on the choice of 12 one either gets a solution with non-trivial minima or one
with a minimum at ® = 0, as shown in fig. 3.5 on the next page. For p? <0, V has
minima at

|P| = (3.45)

with

>|= §||@

v =

(3.46)

and an arbitrary phase # = 0. By fixing the phase to a certain value the symmetry of the
system, the phase invariance, is broken. This is called spontaneous symmetry breaking.
Since the vacuum is neutral one can set the first component in eqn. 3.42 to zero and gets

b % (S) (3.47)

UTerms of order (®7®)* are not included because they would lead to renormalisation problems.
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Figure 3.5: The Higgs potential V(®) for u? > 0 and p? < 0 [38]. For u? > 0,
the symmetry is unbroken and V only has the trivial minimum at zero. For
©? < 0 the symmetry is broken and the potential is minimal if |®% |2 +|®Y|? = %

The shape of V' now resembles that of a mexican hat.

for the minimum of V. Fluctuations around the minimum can be parametrised via

1 0
b= . 3.48
V2 <v +n+ iC) (345)
Inserting this into eqn.3.43 one gets
1 2 2,2
Vo) = | -3+ o+ T+ T4 07) + O] (3.49)

For the following calculations it is sufficient to take only the two first terms. Inserting
the above potential and 3.48 into the Lagrangian 3.43 one obtains for the leading terms

1 1
£ = [j@m@n) - ] + 500050 + . (3.50
The first term in brackets represents the Klein-Gordon equation for a massive scalar

particle 7 of mass m,, = v2p.. One identifies this as being the Higgs particle. The second

term describes the massless scalar particle {, the Goldstone boson.

Gauge Boson masses

To give mass to gauge bosons an extra term, the gauge field Lagrangian Lgq,4, has to be

added to eqn. 3.43, i.e.
L = Liggs + Lgauge (3.51)
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with Lgguge being
1 7 oz 1 v
£gauge = _ZLW/“/W (g ZB/WBM (352)
where W and B are the field strength tensors defined in eqn. 3.27 and 3.28 on page 43.
In order to conserve gauge invariance one uses the covariant derivative 3.6 on page 39 and
inserts it into the Lagrangian 3.51. The kinetic part of the gauge invariant Lagrangian is
now given by

1 i i
Liin = Z—l[(gwﬂ + ¢ B8 [(gW*Hr; + ¢ B*)®]. (3.53)
Replacing W and B with the physical fields A,, Z,, and I/V”jE one finally gets
1
£ o= [5@n)@um) — wn’) (3.54)
1 % Ny 1 v
_ZLW‘“’W wy — ZBWB“ (3.55)
1 g*v? +32 —\2
—1—5 1 (W) +W,)7) (3.56)
1 g% 9

—_J= g2 3.57
24 cos? Oy * ( )
The first term (3.54) is the already known Klein-Gordon equation for a massive Higgs
particle with mass my = v/2u. Equation 3.55 is the gauge field Lagrangian L gquge, and
eqns. 3.56 and 3.57 are mass terms. The masses of the Z° and W¥ bosons can now be
identified as being

mw =5 (3.58)
and
_ gv
my = 9 cos QW (359)
mw
= . 3.60
cos Oy ( )
The photon field A, does not acquire a mass term:
1
A, = ———(9B, + ¢ Ws,). (3.61)

The vacuum expectation value of the Higgs field v can not be calculated within the
Standard Model. However it can be obtained from measuring the Fermi constant G and

is given by .
V= ———= ~ 246 GeV. (3.62)

V2V/Gr

Giving mass to Fermions

In order to give mass to fermions one introduces new couplings to the Standard Model,
the Yukawa couplings g{;, which are different for every charged lepton and quark [39].
The corresponding Lagrangian (describing electrons in this case) is given by

ﬁYukawa - _gff [éR(I)T (V6> + (Ve) (I)GR]- (363)
€/L L

e
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Inserting the vacuum expectation value for ®, eqn. 3.47, one obtains

Cyurama = — f/%[éR(o, ») (”e ) + (Z) ) (S) ex] (3.64)
_ f/%[éLeR + eres (3.65)
v, (3.66)

V2

where g—% has to be identified as being the electron mass m.. The Yukawa couplings for
all fermions and quarks have to be chosen such that their masses agree with experimental
measurements. Because the fermion masses are proportional to g{;, the Higgs preferably
couples to heavy fermions. Neutrinos are massless in the model. They do not appear in
Ly ukawa because the charged part of the vacuum expectation value in eqn. 3.47 is zero!2.

The Higgs Boson mass

As has been shown in the previous section, the mass of the Higgs boson is given by
my = v/2u. Unfortunately the parameter 1 can not be calculated in the SM and hence
its exact value is unknown. The mass can only be estimated by theoretical assumptions
and experimental searches so far.

12The fact that neutrino experiments have found evidence for neutrino oscillations is a clear sign for
neutrinos being massive particles [40]. However they are still considered massless in the Standard Model.
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Figure 3.6: Higgs production cross sections at NLO for gluon fusion and asso-
ciated production at 1.96 TeV.

3.2 Higgs production and decay at the Tevatron

3.2.1 Production Processes

The most important processes of Higgs production at the Tevatron are the associated
production in conjunction with a W or Z boson!?® and the process of gluon-gluon fusion.
The NLO!" cross-sections for these processes are shown in fig. 3.6' and LO'® Feynman
diagrams are depicted in fig. 3.7.

Gluon-gluon fusion has the largest cross-section and takes place via a one-loop graph
where the Higgs couples to a virtual quark pair. The triangle loop is dominated by the
exchange of t- and b-quarks'”. Cross-sections are in the range 1.0 - 0.1 pb for Higgs masses
between 100 GeV/c? and 200 GeV /c?.

In the W H and Z H reactions a gg-pair produces a W or Z boson followed by the emission
of a Higgs particle. The cross-section for q¢ — W H is in the range 0.3 - 0.03 pb for
100 GeV/c? < mpg < 200 GeV/c?. For q7 — ZH the cross-section in the same mass range
is lower by a factor of about two.

13Higgs production at the Tevatron via the W H and ZH processed was discussed for the first time in
[41].

14 Next-to-Leading Order

15Plots were made with HIGLU (v2.1), HDECAY (v3.0) [42] and V2HV. The source code for all
programs is available from [43]. The input parameters are documented in appendix A on page 125.
Tables with and NLO cross-sections, branching fractions and the total decay width from 80 GeV/c? to
200 GeV/c? can be found there as well.

16T eading Order

17This is also the case at the Large Hadron Collider (LHC).
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Figure 3.7: Feynman diagrams for the Higgs production processes gg — H, WH and ZH.
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Figure 3.8: Higgs boson decays at tree level and their couplings.
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Figure 3.9: Higgs decays via loop diagrams.

3.2.2 Higgs Decays

The branching ratios of the dominant decay modes of the Standard Model Higgs as
function of its mass are shown in fig. 3.10'®. Feynman diagrams for all those processes
are given in figs. 3.8 and 3.9. Fig. 3.11 shows the total decay width.

H—ff

The dominant decay mode for Higgs masses below roughly 140 GeV/c? is H — bb, the
decay into a pair of b-quarks. For 100 GeV/c? < my < 200 GeV/c? it is in the range of
80% to 35%. The reason is that the coupling is proportional to the particle mass m as
can be seen from fig. 3.8. The decay into top-quark pairs H — tt is not possible in the
Higgs mass range discussed here. Other branching fractions in fig. 3.10, where the Higgs
decays into fermion pairs are H — 77 and H — cc.

H — gg

This decay is of the same order of magnitude in the mass region of interest. The reason
is the large top Yukawa coupling and the colour factor. The partial width is of interest
because it determines the production cross-section for the process gg — H discussed on
page 5H1.

18C.f. footnote 15 on page 51.
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Figure 3.10: Branching ratios of the SM Higgs boson.
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Figure 3.11: Total decay width of the Higgs boson in GeV.

H—-WW,ZZ

For Higgs masses above roughly 140 GeV/c? the decay H — WW is the dominant one.
At least one of the W-bosons is produced off-shell. The decay H — ZZ is less important
because the branching ratio is much smaller (cf. fig. 3.10).

H — Zv, vy

The partial widths for these two processes are the smallest of all processes discussed so
far. Feynman diagrams are shown in fig. 3.9 where either a charged fermion or a W-boson
runs in the triangle loop. The Higgs can not couple to the photon directly because it is
neutral.
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Figure 3.12: Generator level plots of n (left) and p; (right) for b-quarks origi-
nating from H decays. The Higgs mass was set to my = 120 GeV/c2.
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Figure 3.13: Generator level plots of n (left) and p; (right) for electrons and
muons originating from the W decays in WH — lvbb. The Higgs mass was set
to my = 120 GeV/c2.

3.2.3 The channel WH — [vbb

The most promising channel for low mass Higgs searches (i.e. my < 140 GeV /c?) at the
Tevatron is given by q§ — WH — lvbb. A quark-antiquark-pair produces at W-boson
which radiates a Higgs boson. The W then decays into a lepton and a neutrino and the
Higgs goes to bb. The Feynman diagram for the process is shown in fig. 3.14 on page 58
in the top left corner. The signature of the signal events can be read off the graph. One
expects two jets, a high-p, lepton and missing energy from the neutrino. Both the b-jets
and the leptons are expected to lie predominantly within |n| < 2.0, i.e. in the central
region of the CDF detector, as can be seen from figs. 3.12 and 3.13.

This channel is the subject of the study presented in the following chapters.

Since the production process gg — H as a much larger cross-section one might be tempted
to look at the channel gg — H — bb. Unfortunately this is not promising because of the
large bb background that can be expected from QCD processes.
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3.2.4 The channel ZH — Il bb

Already the channel ZH — 1l bb is by far less attractive to look at when compared to
WH — lvbb. First, the NLO cross-section for the ZH process is almost a factor two
lower than oy, namely

OWHNLO — 0.1597 (367)
OZHNLO = 0.0936 (368)
(3.69)

for my = 120 GeV/c?. Also the branching fractions for Z — ete™ and Z — pu*u~ are
roughly a factor three lower compared to W — ev and W — pv. The numbers from the
PDG'" [44] are

BR(Z — ete™) = 0.033 (3.70)
BR(Z — pp) = 0.033 (3.71)
BR(W — ev) = 0.1056 (3.72)
BR(W — uv) = 0.105 . (3.73)

(3.74)

With an electron identification efficiency of € ~ 0.85 one finds that the ratio of o x BR
for WH and ZH is about 45:

OwWH * BR(W — 6 M)

3.75

oon BR(Z — ep)- (1) (375)
0.1597-0.21

— 3.76

0.0936 - 0.066 - (1 — 0.85) ( )

— 4615 . (3.77)

Hence the ZH channel where the Z decays leptonically and the H goes to b-quarks has
not been looked at in this study.

YParticle Data Group
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3.3 Background processes

Example diagrams for the background processes considered in this study are given in figs.
3.14 and 3.15. As can be seen from these figures almost all backgrounds can be expected
to have the same signature as the signal itself. That is, a lepton from W-decay, one or
more real b-quarks and missing energy from neutrinos. Even worse, the s-channel single-
top process, Wbb and WZ can have exactly the same final state (v bb. Hence one can
expect the discrimination between events originating from the signal and the background
to be a difficult task.

Top production

The top-quark almost always decays into b and W since Vj, ~ 1. Leptonic decays of the
W-boson can provide a lepton and neutrino. In all reactions at least two b-quarks are
produced as well.

W + heavy flavour

In the W + bb, cé reaction a W is produced from a ¢g-pair. In addition one of the
incoming quarks radiates off a gluon that splits into a bb or ¢ quark pair. The c-quarks
can accidentally be tagged as b-jets and pass the event selection. The same statements
also holds for the W + ¢ process.

QCD

QCD processes have to be considered because of their large cross-section. The probability
that a QCD multi-jet event contains b-quarks is small. However the high cross-section for
QDC can compensate this and contribute to the background expectation.

Dibosons

The processes WW, W Z and ZZ yield final states with leptons and jets. In all cases one
of the bosons decays leptonically and one undergoes a hadronic decay. The ZZ does not
have a neutrino in the final state. However, if one of the leptons is not reconstructed in
the detector, the signature is consistent with the signal process.

4 =TT

This process has to be considered because a hadronically decaying tau can satisfy the jet
requirements of the analysis and a tau decaying to a lepton can survive the lepton cuts.
Missing energy is caused by several neutrinos.
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Figure 3.14: Feynman diagrams for the signal (top left) and background pro-
cesses. Graphs for top-pair and single-top production are shown on the right.
W* denotes the s-channel and W g the t-channel of the single-top process.
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Figure 3.15: Example Feynman diagrams for a QCD process and Z — 77 as
well as the di-boson production processes WW, WZ and ZZ.
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‘There is nothing particularly
magical about multi-layer
neural networks.’

Pattern Classification

R.O. Duda et al.

Chapter 4

Neural Networks

This chapter describes neural networks and the underlying theoretical concepts. After
presenting network basics in chapter 4.1 and network training in chapter 4.2, some ad-
vanced methods of neural computation are explained in sections 4.3 and 4.4. The last
part on page 78 gives a short overview on the NeuroBayes® package. A more detailed
description of neural networks can be found in various textbooks [45, 46, 47, 48].

4.1 Modelling neurons

In the recent past there has been a growing interest in neural networks' (NN). They
are being successfully applied in in a wide range of scientific disciplines such as finance,
medicine, engineering and physics. One can attribute their success to a few key factors
such as modelling extremely complex non-linear functions and their ease of use. Neural
networks grew out of research in artificial intelligence when people attempted to mimic
the fault-tolerance and capacity to learn of biological systems with machines. It was felt
that these functions could only be modelled by copying the functionality of the low level
structures of the brain.

4.1.1 Biological Neurons

The basic building block of the brain is called neuron. About 10'° neurons can be found in
the human brain. They are massively interconnected with an average of several thousand
connections per neuron. A neuron is a specialised nerve cell that propagates electrochem-
ical signals. It consists of the cell body or soma, small fibres called dendrites and a single
long fibre extending from the cell body, the axon. Fig. 4.1 on the next page shows a
schematic drawing of a typical neuron. The dendrites are fibres to which other neurons
connect via synapses and are transferring the incoming electrical signals from other nerve
cells to the cell body. The dendrites are not directly attached to other neurons.

The axon represents the outgoing fibre that branches into strands and sub-strands. At
the end of these are the transmitting ends called synapses. The receiving ends of these

1 Also called Artificial Neural Networks (ANN).

61
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/Dendrites \\

Figure 4.1: Schematic picture of a single neuron. The cell body or soma contains
the nucleus. The dendrites directly connected to the soma receive electrochemical
signal from other nerve cells. The axon, splitting up into sub-branches, transmits
the output signal to other neurons [49].

junctions on other cells can be found both on the dendrites and on the cell bodies them-
selves. There is no direct connection between neurons. Electrical signals are passed via
chemicals called neuro-transmitters. The neuro-transmitters raise or lower the electrical
potential of the neuron. Once the potential exceeds a certain threshold an electrical pulse
of fixed duration and strength is send to the axon and branches out to other cells. After
firing, the neuron cannot be activated again until the refracting time has elapsed.

4.1.2 The Mathematical Model

In order to simulate neural systems on a computer one has to model mathematically the
basic function of a single biological neuron. These building blocks for artificial neural
networks are called nodes or units, as well as neurons?. The basic functionality of a single
node is:

e It receives a number of inputs. Each input comes via a connection that has a
strength or weight corresponding to synaptic efficacy. The weighted sum of the
inputs is formed. To get the activation of the node the threshold is subtracted.

e The activation signal is passed through an activation function to compute the output
of the node.

The first corresponding mathematical model was developed by McCulloch and Pitts in
the 1940’s. Fig. 4.2 on the facing page shows a schematic of the basic principle. In this

2All terms will be used in this study.
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Wi1 “‘i

Figure 4.2: Visual representation of a single node in the McCulloch-Pitts model.
First, the weighted sum of the input values is calculated and second, the threshold
1; is subtracted. If the result is positive the output value is 1, otherwise it is 0

2].

model the neural function is described by

ni(t+1) = @(Z win(t) — ). (4.1)

where O(x) is the Heavyside- or step-function defined by
1 >
@(m)—{ 1 ifz>0

0 otherwise.

The n; is the node output of node ¢ representing its state: 1 = fired, 0 = not fired. The
variable ¢ denotes a certain discrete time-step. The numbers w;; are the weights and
represent the strength of the connection between node 7 and node j. These weights can
also be negative and hence act like an “inhibitory synapse” in biology. Positive weights
correspond to “excitatory synapses”. If a weight is zero no connection between node ¢
and j has been established. Finally, y; is the threshold for node i. The weighted sum of
the inputs has to extend this value for the neuron to fire.

In modern implementations of the McCulloch-Pitts model the Heavyside function in equa-
tion 4.1 is replaced by a continuous activation function. In general, these functions as
well as their first derivative are monotonic. Often sigmoid functions® are used which map
the interval (—oo, 00) to [—1, 1]. The saturation is particularly desirable when the output
is meant to represent a probability*. The non-linear mapping is the essential feature of
neural networks. It enables the network to learn non-linear relations between different
properties. Other properties that an activation function should have are continuity and
smoothness of the function itself and its first derivative as well as linearity for small values
of x. This will allow the system to implement a linear model if necessary. A sigmoid that
is a popular activation function is given by the hyperbolic tangent

ebr — e~

a _—
ebx + e—bz

bx
a - tanh(br) =

where a and b are free parameters. An example with a = b = 1 is depicted in fig. 4.3.

3The term sigmoid means “S-shaped”.
4This choice can also be motivated by the Bayes theorem . See [48] for further details.
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Figure 4.3: An example sigmoid function: the hyperbolic tangent f(z) = tanh(z).

4.1.3 Network topologies

In order to build up neural networks from single nodes one has to choose a way of arranging
nodes with each other, i.e. one has to decide on the network topology. The most basic
networks consist of two layers, called input and output layer. However the input layer
is not really neural at all, these nodes simply serve to introduce the values of the input
variables. Each layer may consist of one or more nodes. Each node in the input layer is
connected to each node in the output layer via a weight w.

This vanilla topology can be extended by introducing a third layer between the input- and
output layer. Fig. 4.8 on page 70 shows an example of of such a three-layer network. The
second layer is usually called hidden layer because its nodes are not directly connected
to the outside and hence are not seen by the user. Again all nodes in a certain layer
are connected to all nodes in the next and/or previous layer. The data is “fed” to the
input layer, multiplied by the weights w;; and processed by the hidden layer to give its
output. The outputs of layer two are transferred to layer three where the final output
is calculated. This whole process corresponds to a “forward flow of information”. The
nodes of the network only rely on the output of nodes in the previous layer. This type of
network is thus called a “feed-forward network”.

The introduction of a bias node in the first layer may increase the performance of the
network significantly. It is implemented as an extra node in the input layer with a constant
input value of —1. It is connected to all nodes in the next layer and can be used to modify
the threshold values of those nodes.

Recurrent networks are an extension to the feed-forward networks. Each node can be
connected to any other node in the network or even to itself. The increased number
of connections results in a higher number of weights. However it has been shown that
recurrent networks give a large improvement in performance over normal feed-forward
networks for a number of problems such as pattern completion. The concept of layers is
somewhat obsolete here. For instance a certain node may serve as both input and output
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node.

The network topology plays an important role for the neural net classification and the
optimal architecture will depend upon the problem at hand. There is no general choice for
the number of layers and nodes. However some guiding principles have evolved over time.
The number of output nodes can easily be determined by the application the network
is used for. For a binary classification (‘“yes-or-no decision”) only one output node is
necessary in the last layer. Several ones are needed for other tasks. The number of nodes
in the hidden layer(s) is somewhat arbitrary. When choosing too few nodes there might
be too few free parameters to allow for a good separation between the patterns. The
network will not be able to learn all features of the presented input and the generalisation
capabilities will be limited. With too many nodes present in the hidden layer the network
might pick up noise in the training data. If the network is capable of pruning, i.e. it can
eliminate redundant connections during the learning process itself, the number of nodes in
the hidden layer(s) is not critical. As a rule of thumb the number of nodes in the hidden
layer should be a bit higher than the number of nodes in the input layer. Obviously the
number of nodes in the input layer is given by the number of input variables if no bias
node is added.

As has been shown by Kolmogorov and others any continuous function from input to
output can be implemented in a three-layer net, given a sufficient number of hidden units,
proper nonlinearities and weights. Fig. 4.4 gives an example for the decision boundaries
of a two- and three-layer network with two input nodes.

4.2 Network training

Training a network is the process of changing the weights such that the residual between
the output and the target is minimised®. Usually the training process starts with an
untrained network, i.e. the initial weights are chosen randomly. Training patterns are
presented to the input layer and passed through the net. The network output is compared
to the target value, i.e. the wanted network output. The difference between the two
corresponds to an error. This error function® is a scalar function of the weights and
minimal when the network outputs match the desired output values. Hence it is a measure
for how far the network output is away from the true value. Adjusting the network weights
such that the error function becomes minimal is the goal of the training process. The
quadratic error function E is defined by

Bl = 3 30 3l - Ot (42

where (! is the desired output or training target and O (@) is the current network output
7. The weights w,,® form the vector . The index ¢ runs over the number of output nodes
and p over the input patterns.

50nly supervised learning will be discussed here.

6The error function is also called cost or criterion function.

“Cf. fig. 4.7 on page 69 and fig. 4.8 on page 70.

8Note that w,, stands for any weight in the network, regardless of the layers it connects to.
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Figure 4.4: Decision boundaries for a two- and three-layer neural network with
two input nodes. The two-layer network (upper plots) can only implement a
linear decision boundary. Given an adequate number of hidden units, three- and
higher-layer networks can implement arbitrary decision boundaries. The decision
regions need not be convex or simply connected (lower plots) [45, 50].

Unfortunately the surface of the error function can be complicated and is in general
unknown. Thus it is difficult to find the global minimum that would provide the optimal
network performance, i.e. E(w) = 0. In most cases the training process will end up in a
local minimum.

Gradient Descent

A straightforward algorithm to calculate the weight changes needed for minimisation of
the error function is called gradient descent. Here the weight change Aw,, is proportional
to the gradient of the error function and given by

0FE

OWpy

Awpg = =1 (4.3)

This procedure can be geometrically interpreted as a descent along the steepest direction
of the error function. The learning rate n should be chosen such that the algorithm
converges quickly. If n is chosen to small it will take long to converge and if it is too large
the algorithm might oscillate wildly. Fig. 4.5 shows an example for a one-dimensional
quadratic error function. Having a separate learning rate for each weight is advantageous

because the weight change can be adjusted to compensate for a large or small derivate
OE
Owpgq *
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Figure 4.5: Gradient descent in a one dimensional quadratic error function
with different learning rates. If 1 < 7n,,, the optimal learning rate, convergence
is guaranteed but the training can be needlessly slow. For 7 = 7o, the minimum
w* of the error function is found in a single learning step. If 9y, < 1 < 21y the
system oscillates but will converge finally. However the learning process is slow.
If 7 > 214, the algorithm diverges [45, 50].

Initialisation of Weights

As can be seen from equation 4.3 on the preceding page one cannot set the initial weights
to 0 because the weight changes would also be 0 and learning could not take place. It
is commonplace to choose the initial weights randomly from a single distribution to help
ensure uniform learning. Because the preprocessing described in section 4.3.1 on page 73
gives both positive and negative input values on average, the initial weights should be
positive and negative as well. The weights should be small to avoid saturation of the
nodes. However if the weights are chosen to be too small the sigmoidal activation function
is linear which can lead to slow training. This suggests that the summed inputs to the
nodes should be of order unity (cf. eqns. 4.4 and 4.6 on page 69).

Training protocols

The most common learning protocols for the supervised training of neural networks are
stochastic, batch and online learning and all of them have their strengths and drawbacks®.
In stochastic training, patterns are chosen randomly from the training set. In batch mode
all patterns are presented to the network before the weights are being updated. In the
online mode, training patterns are fed into the network one at a time and the weights are
changed immediately. Hence there is no need of computer memory for storing patterns.
It is also possible to present several patterns before calculating new weights. Another
method is to let each node choose independently when to change its weights.

Shuffling the order of the input samples once all patterns have been presented keeps the
network from learning correlations due to a specific order of the inputs.

9A forth protocol called “learning with queries” where the network output is used to select new training
protocols is rarely used.
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Figure 4.6: Finding the optimal decision boundary in a two-dimensional input
space. The dark and the light dots can be distinguished by just using a linear
decision boundary (left plot) which is obviously suboptimal. The overall classifi-
cation error will be large. An overtrained network will lead to an overly complex
model of the decision boundary (middle plot). While this can lead to a perfect
classification of the training data the generalisation capabilities will be poor. The
benchmark point marked ? most likely belongs to the class of dark dots but the
complex model leads to a misclassification. The optimal boundary (right plot)
represents a tradeoff between the performance on the training patterns and sim-
plicity of the model, hence giving the highest accuracy on future data [45, 50].

Stopping criterion

The network training always has to stop at some point because excessive training can
lead to poor generalisation capabilities, i.e. the network is overtrained. It implements a
complex decision boundary tuned to the specific training data rather than the general
properties of the underlying distributions (see fig. 4.6). The simplest stopping criterion is
to end the training when the change in the error function E[w] is smaller than some preset
value 6. A more favourable approach is to use a small fraction of the training patterns
as validation set. Once the error function for the validation sample starts to increase the
training should be stopped because the goal of the network training is a low generalisation
error as sketched in fig. 4.7 on the next page.

4.2.1 Backpropagation

Backpropagation is a common method for supervised training of multilayer neural net-
works. It allows to calculate an effective error for each hidden unit and thus to derive
learning rates for all weights. The training process is divided into two steps. First, a
training pattern is presented to the input nodes and passed through the network to yield
output values from the output nodes. Second, the error is calculated for each node start-
ing with the output layer and propagated backwards. Here we consider the three-layer
network shown in fig. 4.8 on the following page. The figure shows the notational conven-
tions that will be used in the calculation of the weight changes. The index ¢ always refers
to an output unit, j to a hidden one and k to an input unit. The nodes themselves are
denoted O; (output nodes) and V; (hidden notes). The input patterns presented to the
first layer nodes are called &, the desired output values or targets of the third layer are
named (;. There are connections wj, from the input to the hidden units and W;; from
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Figure 4.7: Stopping the network training by means of a validation sample.
The training data can be split into two parts. The first one (e.g. 90%) is used
as standard training set. The other (e.g. 10%) is the validation set and meant to
represent the generalisation task. For most problems the training error decreases
monotonically during training (black curve). The error on the validation set (red
curve) decreases first, but than starts to increase and indicates that the network
may be overfitting the data. The training should be stopped at the first minimum
of the validation error [45, 50].

the hidden to the output nodes. Different patterns are labelled by a superscript p, i.e.
the input value for node k is &} when pattern p is being presented.

In order to calculate the weight change Aw,, for each node in the network one has to
calculate the error function as a function of all weights first. Second, the derivatives as
defined by the gradient descent method have to be computed. We start by calculating
the output values O! for the nodes in the last layer.

Given an input pattern g the hidden node j receives the input
= S et m
k
from all nodes in the first layer. The output value of this node is simply
V= g(h) = 9> wiéy) (4.5)
k
where g(x) is the activation function of the node. Node ¢ in the output layer thus receives
W=D WV =Y Wig(dwiéy) (4.6)
J J k
and produces the output value

O =g(hj) = Q(Z Wijg(z w;ré}))- (4.7)
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&k

Figure 4.8: A three-layer network showing the notation for nodes and weights
used in subsequent calculations. The index i refers to an output unit, j to a
hidden one and k to an input unit. The nodes are denoted O; (output nodes), V;
(hidden notes) and &, (input nodes). Connections wj; connect the input to the
hidden units and W;; the hidden to the output nodes.

The error function 4.2

Bl = 5 Yl - ol (48)
now becomes |
Bl = 530l — gt (49)

= Sl (WP (410)

= I = o W o el (4.11)

Applying the gradient descent rule from page 66 for the hidden-to-output connections one
gets

OF
AW, — — - _ m_OM ¢ (W VH 4.12
Wz] 77an] n ;[Cz Oz ] g (hz )‘/z ( )
- —nZtSij” (4.13)
o
with
0 =g (h)IG = 07 (4.14)

Here ¢/(z) is the first derivate of the activation function. To calculate the weight changes
Awjy, for the input-to-hidden connections the chain rule has to be applied to get the
derivatives w.r.t. the wj;’s. One obtains

oF
g 8wjk
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oE oV
= -y OV Dy (4.16)
W
= —n ) [ — O (W) Wisg' ()€l (4.17)
” ~
= Y 8 Wiy (h)¢: (4.18)
2L
= —n) ¢ (4.19)
b
with
ot = g'(h) Z W0t (4.20)

It is obvious that eqn. 4.13 on the preceding page has the same form as eqn. 4.19 but
with a different definition of the ¢’s. As can be seen from eqn. 4.20, 65 depends upon 0;’
that is needed to compute Aw;;. This backward propagation of errors gave the method
its name: backpropagation. In general the backpropagation update rule always has the
form

Awpq =" Z 5output X ‘/input (421)

patterns

where the output and input refer to the ends of the connection concerned and V is the
activation from a hidden unit or the real input. The definition of the §’s depends on the
layer concerned. For the output layer it is given by eqn. 4.14 on the facing page. For other
layers it is given by an equation like 4.20 and can be calculated by further application of
the chain rule.

Testing network performance

After minimising the error function through the network training the output values of
a single node should lie on a straight line, as shown in fig. 4.9 on the following page.
Therefore it can be used to check the performance of the network. It is straightforward
to show the linear correlation with the network purity.

The contribution of just a single output node to the error function is simply given by 4.2 on
page 65 by omitting the summation over the index ¢. One obtains

) e (4.22)
m

The mean error of a single output node ¢ is hence given by

= 1 " "
E; = - ST B %:[Cz — O (4.23)

N[ —

since the number of training samples is the sum S + B of signal and background events.
Now the sum over the input patterns is split into two parts: the S signal samples with a
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Figure 4.9: Signal purity as function of network output. The purity 77 of a
trained neural network (black points) as function of the network output almost
shows a linear behaviour indicating that the training has been successful. The
straight line represents the ideal case of a perfect network where P = % [51, 52].

target value of +1 and the B background samples with a target value of -1. The mean
error of an arbitrary output node for events with output O now becomes

= 1 1 2 2
B o= 5 grp [SU-0P+B(-1-0) (4.24)
_ %[p (1=0P+(1-P) (=1 —0)] (4.25)

where P denotes the purity defined by

S
P = 4.26
S+ B ( )
The network training is optimal when E is minimal, i.e.
OFE
— =0. 4.27
50 (4.27)
Inserting eqn. 4.25 into 4.27 leads to
O+1
p-2r (4.28)

2

Hence, for a well trained network the signal purity P as function of the network output
O should have a linear behaviour.
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4.3 Improving Network Performance

4.3.1 Preprocessing

The use of preprocessing often greatly improves the performance of a neural net. The
process of finding the global minimum of the error function is significantly simplified if
the input variables are transformed appropriately. This is because the sensitivity of the
activation function is limited to a small input range around zero. Although the input can
be in any range, there is a saturation effect for large input values.

Scaling

In order to avoid saturation effects, input values have to be scaled to a range that is
appropriate for the network. Typically, variables are scaled linearly. However in some
circumstances non-linear scaling may be appropriate!’.

Variable Transformation

Another way of preparing data for a neural network is to transform the variables such
that they are equally distributed. The transformation is performed by integrating the
input distribution. If the probability density distribution of a variable is given by f(z;)
the transformation can be achieved by

vw) = [ s (1.20)

where N is a normalisation factor to restrict y to the interval [0, 1]. Fig. 4.10 on the
following page explains the procedure.

Decorrelation

The above transformations only treat single variables without taking into account any
possible correlations. Uncorrelated input variables have the advantage that the weights
can be minimised independently which is easier than minimising all weights at the same
time. Inputs can be decorrelated by diagonalising their covariance matrix. One gets new
input variables which are linear combinations of the raw inputs. By dividing these new
variables by the square root of the corresponding eigenvalue, the input vector space can be
transformed to a hypersphere with a standard deviation of 1, centred around the origin.

For shape reconstruction the degeneracy of the new covariance matrix allows an arbitrary
rotation of the basis in the input vector space. The basis can be rotated such that the
first variable contains all information on the first moment (i.e. the mean) of the target
distribution, the second variable all information on the second moment and so on.

10For instance, if an input variable is distributed exponentially one might take the logarithm.
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Figure 4.10: Equalising a distribution by use of the integrated function. The
function f(x;) (lower plot) is integrated according to equation 4.29 on the pre-
ceding page leading to y(x;) (upper right). The output distribution (upper left)
is flat between 0 and 1 and has 10 equidistant bins [53].

4.3.2 Regularisation

In order to avoid oscillatory behaviour of the network one can add a penalty term to the
cost function:

E[W] — E[@] = E[w] + A - P[] (4.30)

where P denotes the penalty term and A is a free parameter. The new cost function
E [@] not only depends on the classical training error but also on the complexity of the
model. It penalises highly complex networks, i.e. networks with high weights. Searching
for the minimum of the new error function is to balance the error on the training set
with complexity. The parameter A is adjusted to impose the regularisation more or less
strongly. If X is chosen too large the penalty term will dominate the error function. An
easy way of implementing regularisation is to add a term based on the squared network
weights:

Plw] = Z w?,. (4.31)

This approach is called “formal stabilisation” and will lead to a network with small
weights.

4.3.3 Momentum Term

Error surfaces often have plateaus, i. e. regions where the slope 2_—5 is very small. These can
arise when there are too many weights and thus the error function depends only weakly
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upon any of them. To allow the network to learn more quickly one can add a momentum
term to the learning rule (cf. eqn. 4.3 on page 66)

0FE
Awpg (t+1) = —n

Dw, + a - wpyy(t) (4.32)

where « has to be positive and less than 1 for stability. Doing this one alters the learning
rule such that some fraction « of the previous weight update is included in the current
weight change. By increasing stability the momentum term can speed up the learning
process.

4.3.4 Weight Decay and Pruning

Another approach for keeping the network weights small, apart from regularisation, is the
weight decay method. The basic idea is to decay all weights during the training. After
each weight update every weight is decreased according to

W = wo. (1 —¢) (4.33)

Pq pqg

where 0 < € < 1. However it is also possible to shrink the weights exponentially. Giving
all connections this tendency to decay to zero they will disappear unless reinforced by the
network. Hence the network is forced to increase the weights it considers to be important.
In the end the system achieves a balance between pattern error and some measure of the
overall weight. Sometimes it might be advantageous to prune away connections whose
weights are too small. This pruning technique, where weights are set to zero once they
fall below a certain threshold value, can help the network to optimise its own topology.
If all connections to a certain node are pruned away obviously the whole node is removed
from the system. In the beginning of the training process the threshold should be set to a
value close to zero and increase during the training process. This keeps the network from
“destroying” itself right away since the initial weights might be small.

4.4 Advanced methods

4.4.1 The Hessian Matrix

The gradient descent algorithm described in section 4.2 on page 66 is one of the basic
optimisation techniques. However it is not very efficient and more powerful techniques
are available. Instead of just using the first-order derivatives one can also use higher
order information. Here the second-order derivative is used to improve the finding of a
minimum of the cost function.

Expanding the error function E(w) in a Taylor series at the current point wp one gets

B(@) = By + (i — 1) - VE(uiiy) + %(w ) H (@ — )+ (4.34)

HThis is equivalent to regularisation (cf. section 4.3.2).
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where H is the Hessian matrix
0’FE

H =
ow, dw,

pq —

(4.35)

evaluated at wy'?. Differentiating eqn. 4.34 gives a similar expression for the gradient:
VE(W) = VE(wy) + H - (W — wp) + ... . (4.36)

To find the minimum of E(w) where VE(w) = 0, one can set eqn. 4.36 to zero, ignoring
the higher order terms:
VE(uwy) + H - (W — wp) = 0. (4.37)

Rewriting the last equation gives
w = Wy — Hil VE(U70) (438)

as an estimate for the location of the minimum. Comparing this equation with the gradient
descent rule (eqn. 4.3 on page 66) one sees that the new optimal learning rate is given by

TNopt = H_l' (439)

The above equations are just approximations in case the error function is not quadratic
and they have to be used iteratively. However they improve the bare gradient descent
method discussed earlier. The drawback of using this new method is that for a network
having N weights the algorithm requires to compute, store and invert the N x N Hessian
matrix. This makes the algorithm impractical for all but small problems. Fortunately
several methods exist to compute some properties of the Hessian matrix without knowing
all matrix elements. They can be used to get an estimate of the optimal learning rate.
One should keep in mind that the algorithm doesn’t converge necessarily for non-quadratic
error surfaces. But more sophisticated methods, such as conjugate gradient descent, exist.

4.4.2 Conjugate Gradient Descent

An improved version of the gradient descent algorithm is conjugate gradient descent. It
employs a series of line searches in weight space. In a line search starting from wj in
direction d one stays on the line

W =g+ \-d (4.40)

and chooses A to minimise the error function. The first search direction is simply given
by
d = —VE(uyp). (4.41)

Subsequent search directions are calculated according to

J"new — _VEnew 4 5 . dold (442>

for some value of 3. This new vector dis a compromise between the gradient direction and
the previous search direction. The value of (3 is chosen such that the new search direction

12Note that the vector 0 is used for a point in the weight space. Specifying W corresponds to specifying
all the network weights.
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spoils as little as possible the minimisation achieved by the previous search step. The old
and new search directions fulfill

& H 4 =0 (4.43)

where d°@ and d"® are then said to be conjugate. The value of 3 can be calculated with

the Polak-Ribiere rule:
(VEnew _ VEold) .V Enew

(V Eeld)2
As can be seen from eqn.4.42 and 4.44 no explicit knowledge of the Hessian matrix is
needed for this method.

0=

(4.44)

In summary, the conjugate gradient method (using the Polak-Ribiere variant) consists
of a succession of line minimisations along directions given by eqn.4.42 and 4.44. For
quadratic error functions in n dimensions it finds the minimum in exactly n steps, i.e.
the computation time depends only linearly on the dimension of the problem. However
conjugate gradient descent requires batch training, i.e. all input patterns have to be
presented to the network before weight changes are calculated.

4.4.3 Alternative cost functions

The quadratic error function (cf. eqn. 4.2 on page 65) is a common cost function because it
is easy to compute. Nevertheless other error functions can be beneficial in some cases. In
principal any differentiable function of the output and target values can be used, provided
it is minimised when the network outputs equal the target values for all input patterns.
One popular alternative is based on relative entropy. Given two discrete probability
distributions p(z) and ¢(x) over the same variable x, the relative entropy, or Kullback-
Leibler distance, is a measure of the “distance” between these two distributions:

d=> q(x) ln%. (4.45)

Based on this relative entropy is the following cost function that has been suggested by
several authors:

+§“
1+O“

_C“]
OH

E = Z (14 ¢ log (1 — ¢t log (4.46)

Here the term $(1 + O!) has to be interpreted as the probability that the output value
of unit i is true. Of = —1 means definitely false and O = +1 means definitely true.
Similarly (1 + ¢!) is interpreted as a target set of probabilities.

Like the quadratic error function 4.2 on page 65, equation 4.46 is always positive except
when OF = (¥ for all i and u, where E = 0. Its qualitative advantage is that it diverges
if the output of one unit saturates at the wrong extreme. The quadratic measure just
approaches a constant in that case and hence the learning can float around on a relatively
flat plateau of E for a long time.
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4.5 NeuroBayes®

NeuroBayes® (NB) is a new, powerful software package for data analysis initially devel-
oped at the University of Karlsruhe by Prof. M. Feindt!®. It uses a robust and easy-to-use
algorithm and is based on a feed-forward network and the Bayesian interpretation of the
network output. In order to improve the network performance, input values are pre-
processed using variable transformation and decorrelation. NeuroBayes\Y has already
been used extensively for B-physics analyses within the DELPHI-experiment. Detailed
information on the algorithm and its usage can be found in [52], [54] and [55].

The NeuroBayes® package has been used throughout in the analysis presented in chapters
5 and 6 where it was applied to solve binary classification problems. It allows to change
many parameters of the network training. Among others, some of the available options
and features are:

e various types of regularisation and preprocessing,
e the number of training iterations,

e pruning,

e automatic variable selection,

e two types of loss-functions,

e change of the momentum term,

e change of the learn speed and

training with weights.

All of these features can influence the performance of the network. Some points have to
be explained in more detail since they were used in the analysis.

e Automatic variable selection:

NeuroBayes® can automatically determine the relevance for a variable to improve
the separation of signal and background and provides a ranking table. Such an
example ranking list is given in table 4.1. It is possible to cut on the ¢ value and
exclude variables below the threshold from the training by using the automatic
variable selection. Possible cut values range from 0.50 to 4.50 in steps of 0.50.
Although information is lost, the cut can help the network to learn and improve the
performance.

e Momentum:
A momentum can be specified for the training. It can help the neural network to
get out of local minima'*. The momentum term may lie in the interval [0.0,1.0].
The default value is 0.0.

1?’NeuroBayes@ and <phi—t>® are registered trademarks of Physics Information Technologies [3].
14Cf. page T4, section 4.3.3.
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’ Rank \ Variable \ Correlation \ o ‘

1 Q-n 28.5 421
2 A 27.5 40.7
3 EP? 9.53 14.1
4 AE? 8.33 12.3
5 pler 6.59 9.73
6 M 4.71 6.97
7 EP? 4.16 6.14
8 El 3.24 4.78
9 M, 3.46 5.11
10 B 3.24 4.79
11 C 1.80 2.66
12 ARy, 1.39 2.06
13 My, 1.28 1.89

Table 4.1: Example ranking list. The column denoted correlation shows the
correlation coefficient to the target value and o the significance. These ranking
tables are automatically provided by the NeuroBayes®—Teacher and written to
the log file.

e Learn speed:
A multiplicative factor by which the learning speed calculated by NeuroBayes® is
multiplied. Thus, the network will learn faster but might not learn as well as with
a low learning speed. As default a speed-factor of 1.0 (i.e. learning speed is not
increased) is used.

e Training with weights:

Weights can be assigned to the input patterns, i.e. events can be weighted by any
real valued number in the range [0.0,1.0]. A weight of 1.0 means that the event is
taken as it is. A training pattern with a weight of 0.0 would be ignored from the
training process.

The optimisation of some of these parameters for the Higgs search described in chapter 5
was the subject of a dedicated study that is documented in section 5.6.3 on page 103.
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"The sum of many small things
is a big thing.’
G. Altarelli

Chapter 5

Data analysis

In this chapter the analysis of the W H — lvbb channel is described. In some cases parts
of the more detailed material can be found in appendix C and D on pages 139 and 143
respectively.

After some preliminary remarks in section 5.1, section 5.2 describes the data sample
and Monte Carlo simulations (MC) that have been used to model signal and background
processes. The preselection cuts for the baseline event selection are given in section 5.3 on
page 85 with the expected event numbers listed in section 5.4 on page 93. Section 5.5
on page 95 deals with sources of systematic errors. The last step in the analysis, the
application of the neural networks, is described starting from page 100 in section 5.6. The
final results are presented in chapter 6 on page 109.

5.1 Introduction

The analysis consists of two major parts. As a first step a set of simple preselection
cuts is applied in order to have a first rough reduction of the background. In a second
step neural networks are trained to further improve the signal to noise ratio. The final
network output for each event lies between -1 (background like) and +1 (signal like). The
cut on the output value discriminating between signal and background is chosen such
that it provides the best a priori limit. Subsequently a mass window is chosen for the
invariant mass of the dijet system. Again it is optimised to provide the best achievable
limit. Counting the events for both data and background in the mass window provides
the limit on the production cross-section for pp — W H times the branching ratio H — bb.

5.2 Data and Monte Carlo samples

As has already been explained in section 3.3 on page 57, various background processes have
to be taken into account. These are listed in table 5.1. In order to reduce confusion about
the nomenclature in subsequent sections the naming scheme used in this study is given as
well, if necessary. The signal processes are denoted as W H with the corresponding Higgs

81
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Physics process \ Alternative nomenclature ‘

Top-quark production

Top pair production | tt

single Top W g, t-channel
single Top W+, s-channel
W + heavy flavour
Wb Wbb
Wee Wee
We

W + light flavours
W2p ‘
Di-boson production
Ww

WZz

Z7

Other

Z — TT VAR
QCD processes non-W

Table 5.1: List of background processes and their nomenclature.

mass given in GeV/c?. Six different mass values around 120 GeV/c? are considered in
this study: 110 GeV/c? up to 150 GeV/c? in steps of 10 GeV/c? as well as 115 GeV/c?.
The last value lies close to the final LEP Higgs mass limit of 114.1 GeV/c2.
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’ Higgs mass \ Generator \ Dataset ID \ Events ‘

100 GeV/c? | A+H N/A 310K
110 GeV/c? | A+H hewo3w 469K
115 GeV/c? A+H hewoOw 450K
120 GeV/c? A+H hexolw 477K
130 GeV/c? A+H hexo2w 455K
140 GeV/c? A+H N/A 342K
150 GeV/c? | A+H N/A 378K

Table 5.2: List of Monte Carlo signal samples. All samples were generated with
Alpgen [63] and the subsequent fragmentation was done with Herwig [62]. All W
and H decays were allowed in the generation.

5.2.1 Data sample and Luminosity

This analysis uses the full high-p; dataset taken until September 7**, 2003. The runs are
defined by the silicon good run list (version 4, December 4 2003) of the DQM group
[56]. The good runs from 141544 to 157715 correspond to an integrated luminosity of
Lin: = 161.57 £ 9.5pb ™! for both the CEM and CMUP detectors *. The CMX luminosity
adds up to 149.94 &+ 8.8 pb~!. The offline luminosity has been corrected by a factor 1.019
[57] and assigned a 6% uncertainty [58]. Official TopNtuples have been used produced with
offline version 4.11.1 [59, 60]. Silicon tracks have been refit using the standard alignment
and refitter from 4.11.1.

5.2.2 Monte Carlo samples

The Monte Carlo samples used in this study were created with Pythia [61], Herwig [62]
and Alpgen [63]. Table 5.2 lists the signal and table 5.3 the background samples together
with their size and CDF dataset ID. The QCD sample was created out of the real physics
data. The isolation cut was reversed w.r.t. the preselection, i.e. the isolation had to
be greater than 0.1. Furthermore the b-tag criterion was relaxed. Instead of requiring a
SECVTX? b-tag, a taggability criterion [64] was applied demanding

e uncorrected F; > 10 GeV,
e <24 and

o N> 9 (see [65] for the definition of good tracks.).

'Runs 164844, 164870, 164871 and 164872 were excluded because of CSL problems. Runs 163463 and
163474 were removed because of a bad beamline.
2Secondary Vertex. A CDF b-tagging algorithm based on the reconstruction of secondary vertices.
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’ Process \ Generator \ Dataset ID \ Events \ Remarks ‘
Top
tt Herwig ttopli 378K | my = 175 GeV /c?
W Pythia ttopOs 512K | s-channel
Wg Pythia ttopls 440K | t-channel
W + heavy flavour
Wbb (WevBBOp) A+H atop40 233K
Wbb (WmvBBOp) A+H atop46 220K
Wb (WtvBBOp) A+H atop4c 219K
Wee (WevCCOp) A+H atop43 252K
Wee (WmvCCOp) A+H atop49 293K
Wee (WtvCCop) A+H atop4f 304K
We (WevCOp) A+H atopOw 293K
We (WmvCOp) A+H atop3w 179K
Welp (WevClp) A+H atoplw 290K
Welp (WmvClp) A+H atopdw 264K
W + light flavours
W2p (Wev2p) A+H atop(2 189K
W2p (Wmv2p) A+H atop08 260K
W2p (Wtv2p) A+H atop2e 293K
Di - boson
ZZ (77Z0p) A+H atop0z 223K
WZ (WZ0p) A+H atopOy 191K
WW (WWO0p) A+H atop4x 944K
Other
Z —TT \ Pythia \ zewk1t \ 497K \

Table 5.3: List of Monte Carlo background samples. As in table 5.2 on the page
before, samples marked ‘A+H’ were generated with Alpgen [63] and the subse-
quent fragmentation was done with Herwig [62]. The nomenclature in brackets
is the one used by the ALPGEN interface [66].
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1 tight Lepton with P, > 20 GeV (Standard e and p selection)

Fi> 20 GeV (corrected)

2 tight Jets with E; > 15 GeV, |n| < 2.0 (corrected)

at least one b-tag

7, veto, Cosmic veto, Conversion veto

Table 5.4: Overview of preselection cuts.

’ Variable \ Cut value \ TopNtuple variable ‘
Global quantities
7 veto applied | smry->fTopEventClass & 0x8 != 0
Cosmic veto applied | smry->fTopEventClass & 0x20 != 0
Missing F; > 20 GeV
# tight Leptons 1
|Ziepton — Zeventvertez| | < 5 cm | ele->TrkZ0 / myon->Z0 / zvertex
Jets
E; > 15 GeV
n <2 Eta
# of Jets 2
# of SECVTX tags >1

Table 5.5: Preselection cuts for Jets and global event quantities.

5.3 Preselection Cuts

The expected signature for associated Higgs production in the channel WH — lvbb was
already discussed in section 3.2.3 on page 55. One expects two b-jets, a high-p, lepton and
missing energy from the neutrino. In order to have a first reduction of the background
the preselection cuts have been chosen to reflect the phenomenology. Only W decays to
e*v and pFv are considered. Tau decays were omitted because of the difficult background
situation. In a nutshell, the main cuts are listed in table 5.4. The complete set of selection
cuts is listed in tables 5.5, 5.6 and 5.7 and explained in more detail in the subsequent
sections. They largely follow the baseline event selection from [67] which itself is based

on [68].

5.3.1 Jets and missing F;

The cuts for the jet selection, missing F; and other global event quantities are given in
table 5.5. Jets are reconstructed using the JETCLU? algorithm. They are identified

3Jet Cluster. A CDF jet reconstruction algorithm.
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’ Central Electron Variable \ Cut value \ TopNtuple variable ‘
Fiducial and CEM =1 Fiducial
B, > 20.0 GeV Et
P, > 10.0 GeV/c TrkPt
E/P (if p, <50 GeV/c) <2.0 EP
Ehad/Eem < 0.055 4 0.00045 - E | Hadem
Ly, <0.2 LshrTrk
|Az| < 3.0 cm DeltaZ
Qrack * A > —3.0 cm, < 1.5 em | Charge * DeltaX
Xgm-p < 10.0 StripChi2
|20] < 60.0 cm TrkZ0
Good COT axial segments | > 3 TrkAxSeg
Good COT stereo segments | > 3 TrkStSeg
Isolation < 0.1 Isolation
Conversion false Conversion

Table 5.6: Preselection cuts for CEM electrons.

as a cluster of energy within a cone of radius AR = /An? + A¢p? < 0.4 using the event
z-vertex. Their energies are corrected at level 4 using the jet energy corrections defined
in ref. [69]. A short list of jet correction levels with explanations can be found in [70].
The number of required jets is two and at least one of the jets has to have a SECVTX
b-tag [65]. Larry Nodulman’s curvature correction for muons is applied in the calculation
of missing F;. The events had to pass the ELECTRON_CENTRAL_18 trigger for CEM
electrons, the MUON_CMUP18 trigger for CMUP muons and the MUON_CMX18 trigger
for CMX muons. The check for cosmic rays is only done for muon events. The cosmic
ray flag from the CosmicFinderModule [71] is checked to be zero. A global Z veto flag is
checked to remove Z candidates. Events are skipped when the tight lepton and a second
object forms an invariant mass that lies within a window around the Z mass. The default
window is [76,106] GeV /c?. A detailed description of the Z veto can be found in ref. [72].

5.3.2 Electrons

The cuts for the electron selection are listed in table 5.6. Most of the cuts represent
the standard CDF electron selection for electrons in the CEM calorimeter and have been
developed by the CDF Electron Task Force [73]. The variable definition and the meaning
of the separate cuts are as follows:

o F:
The transverse electromagnetic energy deposited by the electron in the CEM is
calculated as the EM cluster energy multiplied by sinf. 6 is defined as the polar
angle provided by the best COT track pointing to the electromagnetic cluster (cf.
fig. 2.6 on page 26). Details of the EM cluster algorithm can be found in ref. [74].
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(] Pt:
The transverse momentum of the COT beam constrained track as measured using
the track curvature in the COT within the magnetic field.

o [/P:
The ratio of the EM cluster transverse energy to the COT track transverse momen-
tum.

L Ehad/Eem:
The ratio of the hadronic (CHA + WHA) calorimeter energy to the electromagnetic
(CEM) calorimeter energy for a cluster.

* Lshr:
The lateral shower profile for electrons. The variable compares the energy in CEM
towers adjacent to the seed tower for data and test beam electrons [75].

o |Az|:
The distance in the r-z plane between the extrapolated beam constrained COT
track and the best matching CES cluster.

o Qtrack * A
The distance in the r-¢ plane between between the extrapolated beam constrained

COT track and the best matching CES cluster times the charge of the track.

2
d Xstrip:
The x? comparison of the CES shower profile in the 7-z view with the same profile
extracted from test beam electrons.

(] |Zo‘l
The z intersection of the track with the beam axis in the r-z plane.

e Track quality cuts:
The electron associated track must have passed through 3 axial and 3 stereo super-
layers (SL) of the COT to ensure a high track quality.

e [solation:
The energy in a cone of radius AR = \/An? + A¢? < 0.4 around the electron cluster
excluding the electron cluster divided by the energy in the electron cluster. The
isolation variable is corrected for calorimeter leakage [76, 77].

e Conversion:
For each electron a conversion flag is tested. A values of 1 means the electron is
flagged as coming from a conversion v — ete™. Trident events where a conversion is
caused by a bremsstrahlung photon are still considered good events. In these cases
the conversion flag has a value of -2 [68].

5.3.3 Muons

Table 5.7 on the following page shows the cuts for the muon selection. They mostly
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’ Central Muon Variable \ Cut value \ TopNtuple variable ‘
Region CMUP or CMX
P, > 20.0 GeV/c Pt
Eem < max(2,2+0.0115 - (p — 100)) GeV | EmEnergy
Ehaa < maz(6,6 +0.0280 - (p — 100)) GeV | HadEnergy
CMU |Ax| < 3.0 cm CmuDx
CMP |Az| < 5.0 cm CmpDx
CMX |Az| < 6.0 cm CmxDx
|20 < 60.0 cm Z0
|do| if no Si hits < 0.2 cm DO
|do| if Si hits <0.02 cm DO
Good COT axial segments >3 TrkAxSeg
Good COT stereo segments >3 TrkStSeg
Isolation <0.1 Isolation
COT exit radius (CMX only) | > 140 cm

Table 5.7: Preselection cuts for CMUP and CMX muons.

represent the recommended cuts by the muon group [78]. The variables have the following
definition:

o P
Transverse momentum of the muon track P;. The cut value ensures a high trigger
efficiency.

L Eem:
The energy deposited in the EM calorimeter by the muon. The low cut selects
minimum ionising particles (MIP’s).

® Epaa:
The energy deposited in the hadronic calorimeter by the muon. Again the cut is
chosen to select MIP’s.

o |Axl:
The three different Ax cuts for the CMU, CMP and CMX ensure a good match in
the r-¢ plane between extrapolated tracks and muon stubs.

o |2l
The cut on | 2| enforces calorimeter projectivity, i. e. the calorimeter towers can only
be projected on to the vertex within a range of -60 cm < 25 < + 60 cm.

o |dol:
The impact parameter of the muon has two different cut values. They depend
on tracks having silicon hits or not. The purpose of the cut is cosmic ray (CR)
rejection.

e Track quality cuts:
As was the case for electrons, the muon track must have passed through 3 axial and
3 stereo superlayers of the COT to ensure a high track quality.
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e [solation:
The muon isolation has to be smaller than 0.1 in order to reject QCD events.

e COT exit radius (CMX only):
The level 1 CMX18 trigger requires that a track has hits in all four COT superlayers.
However, it is geometrically possible for a CMX muon not to pass all four layers.
In order to treat data and Monte Carlo in a consistent way, one removes that part
of the acceptance and demands that the COT exit radius of a track belonging to
a CMX muon has to be greater than 140 cm. This cut guarantees that the muon
intersects all four COT superlayers [79)].

5.4 Event Estimation

5.4.1 Acceptance

For simple event counting the number of expected events for a certain physics process
may be written as

N=0-BR-e. (5.1)

The total event detection efficiency can be defined as

€ = €4 * €geom * €lepton id * €iso * Emet * €veto * €jet * €b—tag * Etrig (52)

where €, is the efficiency of the |zp| < 60 cm cut, €geon, is the efficiency of the lepton to be
in the fiducial region, €;epton iq is the efficiency to identify a lepton and €4, is the efficiency
of the isolation cut. The efficiency of the missing F; cut is given by €,,.; and €,¢, is the
efficiency of the conversion, cosmic and Z° rejections. €., gives the percentage of events
fulfilling the jet requirements from table 5.5 and €,_4,4 is the efficiency to b-tag at least
one jet in the event. Finally €4 is the trigger efficiency for identifying high P, leptons.

For the calculation of the signal acceptance and the Monte Carlo derived backgrounds
several scale factors have to be taken into account and applied to the simulation. This is
done in order to correct for various over- and under-efficiencies in the Monte Carlo, i.e.
to calibrate the simulation to the data.

A common scale factor for all lepton types is that for the z-vertex cut. It has been
measured from data and found to be €,, = 0.948 & 0.003 [80]. The scale factors for lepton
identification efficiencies are 0.965 4 0.006 [81], 0.939 £ 0.007 and 1.014 4+ 0.007 [82] for
CEM, CMUP and CMX, respectively. The scale factors for CMUP and CMX muon
reconstruction efficiencies are 0.945 4+ 0.0006 and 0.992 + 0.003 [82]. The trigger efficiency
for CEM electrons is given by 0.9656 + 0.0006 [83]. For CMUP and CMX muons the
trigger efficiencies are 0.887 £ 0.007 and 0.954 £+ 0.006 [82]. The scale factor for the b-
tagging efficiency has been measured using a b-enriched electron sample and found to be
0.82 4 0.06 [84]. The total b-tag efficiency averaged over E; is given by 0.2403 and 0.2924
for Data and Monte Carlo respectively. Fig. 5.1 on the next page shows the efficiency and
the scale factor as function of jet Ej.

The combined systematic error of these corrections is asssumed to be 10% in the calcula-
tion of the total systematic error in chapter 5.5.6 on page 98.
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Figure 5.1: Efficiency to tag a b-jet as function of jet F; in data and Monte
Carlo (top) and the data/MC scale factor (bottom) [84]. The average tagging
efficiencies are 0.2403 (data) and 0.2934 (MC) leading to a sale factor of 0.82 .

5.4.2 Signal process

The number of events passing each cut for the process WH — lvbb with a Higgs mass
of mg = 120 GeV/c? is summarised in table 5.8 on the next page. Tables with numbers
for the other six Higgs masses can be found in Appendix C on page 139. In all tables
the number of double-tags is given for informational purpose only. The acceptance is
calculated as the ratio of events passing the z-vertex cut (denoted Nypsy) and Nyingie—tag
the number of events having at least one SECVTX b-tag. This number has to be corrected
to take into account the effects described in the previous section. The corrected acceptance
for all Higgs masses is listed in table 5.9 on the next page and shown in fig. 5.2 on page 92.
It rises almost linearly from 1.42 + 0.14 to 1.83 + 0.18 as my increases from 110 GeV /c?
to 150 GeV/c?. In order to get the right event estimate the various scale factors listed in
section 5.4.1 have to be applied to the samples. Furthermore it is based on the measured
luminosities presented in section 5.2.1 on page 83.
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’ Cut \ CEM \ CMUP \ CMX \ Total ‘
Initial sample 477500
Nopso 462414
Ngeom 125627 19125 9119 | 147930
Nieptonid 22912 13186 5289 | 41289
Niso 20870 11992 4796 | 37611
Net 18571 10565 4220 | 33316
Niveto 18396 10503 4197 | 33058
N.veto 18269 10464 4185 | 32880
Neonvveto 17551 10075 4033 | 31626
Njer 9867 5754 2274 | 17877
Ningle—tag 5678 3320 1323 | 10310
Naoubie—tag 1456 809 331 2593

| Acceptance | 0.0123 | 0.00718 | 0.00286 | 0.0223 |

Table 5.8: Number of CEM, CMUP and CMX events after each cut. The Higgs
mass was set to my = 120 GeV /c?.

’ Process \ Nops \ Ningle—tag \ Accept. \ Corr. Accept. ‘

WH110 | 454940 9444 2.08% 1.49%
WH115 | 436430 9274 2.12% 1.53%
W H120 | 462414 10310 2.23% 1.61%
W H130 | 441022 10061 2.28% 1.64%
W H140 | 330274 8154 2.47% 1.77%
WH150 | 365165 9252 2.53% 1.82%

Table 5.9: Uncorrected and corrected acceptance for all Higgs masses.

5.4.3 Background processes
Mistags and W +Heavy Flavour

The Wbb background has exactly the same final state as the signal process and hence
is an irreducible background. Events originating from Weé can survive the selection
requirements due to the mis-identification of a c-jet. Background numbers shown in table
5.10 are taken from [67] and scaled accordingly. The numbers are determined from both
Monte Carlo and data. The contribution from heavy flavour production in W+jet events
is obtained from measurements of the heavy flavour event fraction in these events and
their tagging efficiency. Their overall rate is normalised to the data [85, 86].

non-W Background (QCD)

As in the previous section, the background estimate for QCD background is taken from
[67]. The missing F; vs. isolation method has been used to calculate the expected event
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Figure 5.2: The total corrected W H — lvbb acceptance as function of the Higgs
boson mass.

numbers. A detailed description of the method can be found in ref. [87]. The background
estimate is given in table 5.10.

Single top Background

Single top production in both the s-channel and the t-channel contributes to the back-
ground. See table 5.10 for the estimated number of events.

Diboson background and Z — 77

The diboson background consists of WW, WZ and ZZ production where one of the
bosons decays to leptons and the other one decays into jets with ¢- and b-quarks. In the
case of Z — 77, one of the 7’s decays leptonically and the other one decays having three
or more charged tracks. These so called 3-prong decays could be mis-identified as a jet
with a displaced vertex due to the 7 lifetime. The expected contribution for the four
background sources is given in table 5.10 on the facing page.

5.4.4 MC derived Background

The normalisation for the top-pair cross-section has been measured by the CDF exper-
iment. A value of o7 = 5.6 £ 1.6 pb is assumed [88]. As was the case for the signal
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’ Process \ ‘
WH110 0.52 £+ 0.09
WH115 0.45 £ 0.078
W H120 0.41 + 0.071
W H130 0.31 + 0.054
W H140 0.27 + 0.047
W H150 0.20 £ 0.035
Mistags 170 £ 24
Wbb 225 +£6.5
Wee 8.0 &£ 2.2
We 77+ 20
non-W/QCD 10.5 £ 1.9
tt 7.38 + 1.14
single Top(Wg + W*) 4.6 £0.5
WW/WZ|ZZ|Z — 17| 2.5+ 0.4

’ Total background ‘ 80.18 £ 9.9 ‘
] Data \ 73 ‘

Table 5.10: Number of expected events for signal, background and data after the
preselection. Numbers are based on an integrated luminosity of L;,; = 162 pbfl.
In the diboson processes one boson decays leptonically with the other boson
decaying into hadrons. The error on the number of signal events is taken from
table 5.16 on page 98. The statistical error for the signal has been neglected due
to the high Monte Carlo statistics of about ten thousand events for each mass.

samples, the different scale factors listed in section 5.4.1 have to be considered as well as
the luminosities. The acceptance table can be found in appendix C on page 142.

5.4.5 Summary of Event Estimation

Table 5.10 gives the number of observed data events and summarises the background and
signal estimation for all processes after the preselection. The expectation for the various
backgrounds is in reasonable agreement with the CDF data.
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5.5 Systematic Errors

This section discusses the systematic uncertainties on the signal normalisation. System-
atic errors are studied for the signal process WH — lvbb with mpy = 120 GeV /c?. These
errors are also applied to the Monte Carlo samples for the remaining six Higgs masses.
Uncertainties for the ¢¢ background are discussed in section 5.5.7 on page 98. One has to
consider several sources of uncertainties, i.e.

e the uncertainty due to the jet energy scale,
e the uncertainty due to the modelling of initial and final state radiation,
e the uncertainty due to the choice of parton distribution functions,

e the uncertainty due to the signal generators Alpgen and Herwig versus other signal
generators,

e the uncertainty on the top quark mass (for the ¢ background),
e the uncertainty on the b-tagging efficiency and

e the uncertainty on the trigger and lepton ID efficiency.

To study these systematic uncertainties various Higgs samples with my = 120 GeV /c?
were generated:

e a sample with ISR switched off,
e samples with different PDF’s

e and a sample using Pythia as generator rather than Alpgen in conjunction with
Herwig.

These samples are listed in table 5.11 on the following page. The remaining systematic
errors could be determined by using the standard MC samples listed in table 5.2 on
page 83.

5.5.1 Jet energy scale

The uncertainty on the jet energy scale (JES) was investigated by using the member
function in the JetEnergyCorrection class which varies the jet energy scale by one sigma
[89, 69]. Instructions for its usage are documented in [90]. The resulting deviations
are given in table 5.12 on the following page in percent. To cover the normalisation
uncertainty due to the jet energy scale a systematic error of 2.67% is assigned to the W H
process. This covers the maximum changes seen in table 5.12.
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’ Higgs mass \ Generator \ Events \ Remarks ‘

120 GeV/c?* | Pythia | 100K | Generator
120 GeV/c? | Pythia | 100K | ISR off

120 GeV/® | A+H | 100K | CTEQIL
120 GeV/c> | A+H | 100K | CTEQ6L
120 GeV/c® | A+H | 100K | MRST99
120 GeV/c? A+H 100K | MRTSLOO02

Table 5.11: List of Monte Carlo systematic samples. Samples marked ‘A+H’
were generated with Alpgen [63] and the subsequent fragmentation was done with
Herwig [62].

’Process \Variation\ CEM \ CMUP \ CMX \ Total ‘

+1lo +2.67% | +2.22% | +2.31% | +2.45%
—1lo -0.11% | +0.12% | +0.18% | 0.00%

W H120

Table 5.12: The uncertainty due to the jet energy scale.

5.5.2 Radiation modelling

At present there exists no realistic way to estimate uncertainties due to the modelling of
ISR* and FSR? radiation in the Monte Carlo. Realistic would be to use two different
models which represent a reasonable range. Instead Monte Carlo events were ISR was
completely switched off were generated. The effect of ISR is taken to be half the absolute
difference between the nominal efficiency and the no-ISR efficiency:

enoISR _ .0

AEISR — €
2¢V

(5.3)

The FSR uncertainty was determined from the no-ISR sample. Reconstructed jets were
matched with gluons using the Monte Carlo truth. When the gluon and the jet had
an n-¢-distance of AR = \/An? + A¢? < 0.4 the jet was assumed to originate from the
gluon. This way the acceptance change due to FSR could be determined. It is given by

EnoISR,noFSR _ EnoISB

AeISE = (5.4)

2€noISR

Acceptance deviations due to ISR and FSR are listed in table 5.13 on the next page.

5.5.3 Top quark mass

It is assumed that the uncertainty on to top quark mass m; has no impact on the W H
acceptance. However the effect is considered for the ¢t background on page 98.

4Initial State Radiation
5Final State Radiation
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’ Process \ Radiation type \ Deviation ‘

ISR +5.71 %
FSR -4.63 %

WH120

Table 5.13: Relative deviation due to ISR and FSR.

’ Process \ PDF \ Deviation ‘
CTEQSL (default) 0.00%
CTEQ4L +1.75%
W H120 | CTEQG6L -3.15%
MRST99 -8.74%
MRSTO02LO +0.35%

Table 5.14: Relative deviation due to the choice of PDF.

5.5.4 Parton Distribution Functions

To evaluate the uncertainty associated with the choice of a specific PDF® several sets were
investigated. The results are given in table 5.14. The maximum deviation (MRST99) from
the standard PDF set (CTEQ5L) was taken with

newPDF __ 0

AePPF = & ‘ (5.5)

€0

5.5.5 Signal and Background generators

Systematic errors can arise from the Monte Carlo generator used for creating the signal
and background samples. The different programs use different models (for instance for
the hadronisation of jets) or are based on different cross-section calculations. The shifts
imposed on the signal are listed in table 5.15 and are given by

on 6newGen _ EO
AeCen = — (5.6)
’ Process \ Generator \ Deviation ‘
Alpgen+Herwig (default) 0.0 %
H12
WH120 Pythia -5.15 %

Table 5.15: Relative deviation for the signal caused by different event generators.

6Parton Distribution Functions
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Efficiency change

Source W H120

Jet B, +1o 2.67 %

Jet By —1o 0.0 %

ISR 5.71 %
FSR 4.63 %
PDF 8.74 %
Generator 5.15 %

Top mass 0.0 %

€cnt 10 %
Luminosity 6%

’ Quadratic sum ‘ 17.32% ‘

Table 5.16: Summary table of systematic uncertainties on the signal normalisa-
tion. €gy is the error on the acceptance (cf. section 5.4.1 on page 89).

’ Generator ‘ Events ‘ Remarks ‘

Herwig 100K | my; = 170GeV
Herwig 100K | m, = 180GeV
Pythia 100K | Generator
Pythia 100K | ISR off
Pythia 100K | CTEQ3L
Pythia 100K | GRV94L
Pythia 100K | MRST72
Pythia 100K | MRST75

Table 5.17: List of ¢ systematic samples.

5.5.6 Summary of Systematic Uncertainties

Table 5.16 summarises the systematic uncertainties on the signal normalisation. €., is
the total error on the acceptance and represents a conservative estimate. The quadratic
sum of 17.32% is applied to all six Higgs masses.

5.5.7 tt Systematics

To determine systematic uncertainties for the Monte Carlo derived tf background several
MC samples had to be generated. These are listed in table 5.17. In addition to the error
sources mentioned in the previous section, the effect of a varying top mass has to be taken
into account. As in the signal case, remaining systematic errors could be determined by
using the standard MC sample. The errors are determined in the same way as it was done
for the signal process. The results are summarised in table 5.18 on the facing page.
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Efficiency change

Source tt

Jet By +1o 8.0%
Jet B, —1o 0.28%
ISR 3.8%
FSR 1.72%
PDF 4.5%
Generator 1.4%
Top mass 0.85%
Eent 10%
Luminosity 6%

| Quadratic sum 15.51% |

Table 5.18: Systematic uncertainties for the ¢t background.

99
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5.6 Application of the Neural Network

The NeuroBayes® package consists out of two major parts: the NeuroBayes®—TeaCher
and the NeuroBayes\W-Expert. The network training is performed by calling the
NeuroBayes\-Teacher. This part sets up the network topology and training parame-
ters and performs the actual training (cf. chapter 4.2 on page 65). When the training
process is finished a file is written (called the “expertise”) that contains all the informa-
tion (e.g. weights between the nodes) to perform an analysis on new data. This analysis
is done via the NeuroBayes®—Expert. It reads in the expertise file and classifies unknown
events.

The Monte Carlo samples listed in tables 5.2 and 5.3 on page 83 and 84 were divided into
two parts with each part containing 50% of the events. This was done in order to have
two independent sets of MC data. The first one was used for the network training with
the NB-Teacher, the second one was used for measuring the network performance with
the NB-Expert.

Three-layer networks have been used throughout in the analysis. The number of nodes
in the first, or input layer, was equal to the number of input variables”. Different sets
of variables have been tested as will be explained in section 5.6.3. The number of nodes
in the second layer was varied as well, however it was always larger than the number of
nodes in layer one. In all cases there was only one output node in the third layer. It would
have been possible to use one output node for each background type®. But for binary
classification problems such a network topology is not superior to one with just a single
node in the last layer [91].

5.6.1 Network input variables

The following list of quantities has been considered as network input variables®.

® 7)Lep, the pseudo-rapidity of the lepton defined by —In tan(g).

PP the transverse momentum of the lepton given by P, = Psin 6.

F,, the missing transverse Energy.

EJ" and E}”, the transverse energy of the first and second jet w.r. t. the z-axis where
E, = Esind.

AE?7” the difference between the scalar E; of the first and second jet.

e H,, the scalar sum of the P, of the jets.

"In addition, NeuroBayes® introduces a so-called bias-node in the first layer.

8This setup has been used in ref. [2].

9The variable jpbRPpos from the JetProb algorithm [92] has been looked at as well and the background
reduction could be improved. Unfortunately this variable was not properly filled in the reconstructed
Ntuples for the muon data sample and hence dropped from the input variable list.
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o AR j,, ARy, ARy, the difference AR = /An? + A¢? between jet 1 and jet 2,
jet 1 and the lepton as well as jet 2 and the lepton.

e Sphericity S, aplanarity A and centrality C1°.

e () -1, with @ being the lepton charge (in units of the elementary charge e) and
n being the pseudo-rapidity of the b-tagged jet in the event. If there are multiple
b-tagged jets, the jet which the maximum @) - i is taken [94].

e My, the reconstructed top-quark mass [94]. When reconstructing M,,, the z-
component of the neutrino is unknown but can be calculated up to a two-fold
uncertainty using the following kinematic constraints:

(W) = pu(l) + pu(v) pu(v)p!(v) = 0. (5.7)
Solving for p,(v) gives:

_ () L
p:(v) = E2(1) —p2(1) — 2(E2(1) — p2(1))

z

'\/(2/<épz(l))2 —4(E*(Dpi(v) — %) - (E2(D) —p2(D) ~ (5.9)
with k = 0.5 (Mj —m7) + cos(dy — ¢,,) - pe(1) pe(v). (5.10)

(5.8)

The missing energy F; is used as p;(v). Out of the two solutions the one with the
smallest absolute value is choosen. If p, turns out to be complex with non-zero
imaginary part only the real part of p, is used. The neutrino energy is calculated

according to
E() = V(£ +p2). (5.11)

® > nwu, the sum of ny and ny, the pseudo-rapidities of the reconstructed W- and
Higgs-Boson.

o Anwy, the difference of ny and ny.

e M,;, the invariant mass of the reconstructed Higgs, i.e. the invariant mass of the
first and second jet.

e M, 5, the invariant mass of the first two jets, the lepton and the reconstructed
neutrino.

e 05, the event shape variable from the k7 jet algorithm [95].
Some of these variables need to be explained in more detail.

e (', the centrality, is defined by C' = % where FE is the jet energy and E; the jet
transverse energy.

0These quantities are already provided in the TopNtuple [93].
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e The sphericity S describes the shape of an event which can be sphere like, ellipsoid-
like or rod-like. It is defined as %(Ql + @2) where @1 and @), are the smaller ones
of the three eigenvalues of the sphericity tensor, i.e.

3Min(3-,(P1)?)
S PR (5.12)

3
S=S(@i+Qy) =
The sphericity tensor .S;; itself is given by

N k pk

5, — Z=t (5.13)
k= [PF?

where i and j are the usual z, y, 2z coordinate axis and the sum is over all the N
observed particles. It is defined such that the sum of its eigenvalues is one, i.e.
Q1+ Q2+ Q3 = 1[96]. For an event with two collinear back-to-back jets one of the
eigenvalues will be much larger than the others and hence S will be quite small. On
the other hand, an isotropic event will yield Q1 =~ Q2 =~ Q3 ~ 1/3 and thus S ~ 1.

e The aplanarity A is given by A = %Ql

e The event shape variable d;5 from the kr algorithm [95, 97] provides a measure at
which an event changes from from having n+ 1 jets to having n jets and is given by

. (Min(E?, E?)(1 — cos a; ;) o
d;,; = Min ( jEZ ! ) , 4,j € (n,n+1). (5.14)

5.6.2 Network Training with weights

As was already mentioned in chapter 4.5 on page 79, NeuroBayes® allows to perform the
network training with weights, i.e. a certain degree of acceptance is assigned to a training
pattern.

Before the NB-Teacher was used to train a network for a particular Higgs mass, weights
were calculated for the different background samples. No weights were applied to the
signal samples during the training. The background events were weighted such that their
total number was equal to the number of accepted signal events, i.e. the ratio was 1:1.
Furthermore the background events were normalised w.r.t. to their expected number
after the preselection. The net effect is a background sample having a composition one
would expect in real data. This was done to improve the network learning since the task
of the network was to perform a binary classification, i.e. to discriminate between the
signal and one background class. Hence it does make sense to have the signal and the
background class weighted 1:1 for the training process. Details on the weight calculation
can be found in appendix B on page 135.

The weights for the NB-expert were calculated such that the signal and background
numbers equal those of the preselection.
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’ Rank \ Variable \ Correlation \ o ‘

1 El 11.8 14.5
2 81 17.4 21.4
3 pler 7.69 9.47
4 M, 13.9 17.2
5 Qxn 12.5 15.3
6 B, 7.92 9.75
7 My 3.74 4.61
8 ARj1jo 3.47 4.27
9 My, 2.68 3.29
10 EJ? 1.84 2.26
11 ARy, 1.84 2.26
12 | Niep 1.48 1.82
13 |4 1.22 1.51
14 AFE!? 1.1 1.36
15 onw 0.74 0.91
16 > nwH 0.914 1.12
17 | ARy, 0.672 0.82
18 | S 0.581 0.71
19 |C 0.512 0.63
20 | H, 0.315 0.38

Table 5.19: Variable ranking table for all input variables considered. The col-
umn denoted correlation shows the correlation coefficient to the target value and
o the significance. The Higgs mass of the signal sample was 120 GeV /c2.

5.6.3 Optimisation study

NeuroBayes® allows to automatically determine the separation power of the input vari-
ables (cf. table 4.1 on page 79). In a first step, all variables descibed in the previous
section were presented to the network. The ranking list shown in table 5.19 was obtained.

Starting from this ranking list different sets of input variables were defined starting with
the four best variables. For the subsequent sets one variable was added at a time with
the last one having 10 variables!!. The different scenarios are listed in table 5.20 on the
next page and named A’ to 'G’.

These input variable scenarios were tested with various different parameter settings for the
network training. The parameters that have been changed in order to find the combination
that provides the best separation of signal and background as well as good linearity of

the network output vs. purity are'?:

e the number of training iterations,

U The NeuroBayes® feature of automatically choosing the best variables above a certain o-cut could
not be used, due to a bug in the C++ interface to the network package.
12Cf. figures 5.4 and 5.5 on page 107.
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’ Scenario \ Nyar \ Variables ‘
4 | E]', 0ia, PI?, My

Egl’ d12, PS, My, Q-1

Etj.l’ 612’ PtLep7 Mluva Q -1, Et

Etj.l’ O1a, PL, My, Q -, B, My

El', 619, PI7, My, Q -, ey Mys, ARj1j0

El', 19, P, Myas, Q -, By Mg, ARj1jo, My
10 | B, 610, B, Myap, @ -, By, Myy, ARjrjo, My, EBF?

Qg Q| wE| =
©|oo| ||

Table 5.20: List of input variable scenarios. In each case the variables are given
in the order in which they were present to the network.

’ Parameter \ Values ‘
Iterations 100, 1k, 10k, 20k, 40k, 50k, 100k
Nupdate 100, 200
Nodes in 2" layer Nyar + 1, Nyar + 2, Nyar + 3
Learn speed 1, 20, 50, 100, 200
Input variable scenarios | A, B, C, D, D, E, F, G

Table 5.21: Parameter list of the optimisation study.

e the number of events after which the network weights were updated,
e the number of nodes in the 2" layer and

e the learn speed.

Table 5.21 summarises the different parameter values.

5.6.4 Final Network Parameters and performance

In this section the network and its performance are described for mg = 120 GeV/c?. Plots
and tables for the remaining Higgs masses can be found in the Appendix D on page 143.

The variation of the parameters in table 5.21 gave the best separation using scenario E
and 100k iteration. The remaining network settings are shown in table 5.22 with option
12 used as a global preprocessing flag!3.

The error for the training and test sample and the regularisation loss function are shown
in fig. 5.3 on page 106. They are decreasing throughout the learning process as they
should. This is also the case for the other masses (cf. fig. D.3 and D.4 on page 147).
Table 5.23 shows the correlation matrix of the network input variables in percent.

Fig. 5.4 on page 106 shows the network output for signal and background, weighted 1:1.
One can see that the network was able to separate both event classes. On page 71 in

Individual preprocessing has not been used in this study.
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’ Parameter \ ‘
Input variable scenario | E (8 variables)
Preprocessing 12
Test sample fraction 20%

Iterations 100k

Task "CLA’
Regularisation 'REG’

Loss function "ENTROPY”
Def_Shape "OFF’
Nupdate 100

Nodes in 2" layer 10

Learn speed 20

Maxlearn 1

Table 5.22: Final network parameter list. The same network parameters were
used for all Higgs masses.

T L' On PtLep My Qxn  Ey My
T 100 - - - _ . S
EM 118 100 - - - - .
d12 6.3 657 100 - _ ; .
Pk 82 227 25 100 -
M,; 32 704 672 543 100 - .

Qxn -13 -05 06 1 -0.8 100 - -
B -6.4 249 255 -16.2 5.3 -1.4 100 -
My 6.3 60 46.1 -3 57.9 -2 7.8 100

Table 5.23: Correlation matrix of network input variables in percent for
mpy = 120 GeV/c?. Elements above the diagonal are left out because the ma-
trix is symmetric. T denotes the network target value.

section 4.2.1 it has been shown that the purity as function of the network output should
be linear for a perfectly trained network. Fig. 5.5 shows the corresponding plot for the
network trained with my = 120 GeV/c?. The efficiency vs. purity for the Neurobayes
teacher is given in fig. 5.6. Fig. 5.7 on page 108 shows the same plot for the NB-expert.
The final network cut values and mass windows can be found in table 5.24.
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401: Err-Weight Learnsample

100: Error Learnsample
F 200: Error Testsample EnIeeam10000 8032
T L
H

032 2 F 3

N 5-0.34 ; Sosal
034l 50.35F r

r 0361 -0.36]—
036 0s7f r
F -0.38] ; -8
038 -030F
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Figure 5.3: Error for the training (left) and test sample (middle) and the regu-
larisation loss function (right) for a Higgs boson mass of my = 120 GeV/c2. The
latter one is the quantity that is actually minimised by the network. Twenty per-
cent of the training sample was used as a test sample to independently determine
the network error. The three quantities decrease throughout the network training
as they should (cf. fig. 4.7 on page 69). The decreasing error for the test sample
indicates that the network is not overtrainied.

201: F(NETOUT) FOR SIGNAL

Entries 5155

2 F Mean  0.3276
g 220 i RMS 0.3922
3 200F I
@ 200—
00E % :
180
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= ’
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Figure 5.4: Network output of the NB-teacher for signal (red) and background
(black). Signal and background are weighted 1:1. The Higgs mass of the signal
was 120 GeV/c?.

| Higgs mass [GeV/c?] | 110 | 115 | 120 | 130 [ 140 [ 150 |

Network cut 00]00]00]00][00]00
Miow [GeV/c?] 70 | 75 | 80 | 90 | 100 | 110
Mipign [GeV/c?] 150 | 155 | 160 | 170 | 180 | 190

Table 5.24: Values of the network output and invariant mass cut for all Higgs masses.
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Figure 5.5: Network output vs. purity of the NB-teacher for a Higgs boson
mass of my = 120 GeV/c? (cf. fig. 4.9 on page 72).

o
T

p-ourlty
o
>

0.8

C

0.7

0.5

0.4

0.3 - -~
-

0.2

o~

0.1

~

IE RS PN N T R S NN S
01 02 03 04 05 06 07 08 09 1
efficieny

Figure 5.6: Efficiency vs. purity of the NB-teacher for signal (upper curve) and
background (lower curve). The signal mass of the Higgs boson was 120 GeV /c2.
An efficiency of 100% corresponds to a cut value of -1 on the network output.
Hence the number of signal and background events are equal and the purity is
50% for both.
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Figure 5.7: Efficiency vs. purity of the NB-expert for the signal. The signal
mass of the Higgs boson was 120 GeV /c2.
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Chapter 6

Results

The event expectation after the preselection cuts has already been shown in table 5.10 on
page 93. The next step in the analysis is the usage of the neural networks. The optimized
network parameters are listed in table 5.22 on page 105. Fig. 6.1 shows on the left
the network output for 120 GeV/c?. The remaining distributions are summarized in
fig. 6.2 on page 111. The distributions for the signal processes scaled up by a factor of
100 are shown by the dashed line. As expected the signal tends to have high network
output values whereas the background tends to a low network output. The values for the
cuts made on these distributions are given in table 5.24 on page 106. In all cases the cut
value was 0.0. Table 6.1 on the next page shows the resulting event numbers.

The invariant mass spectra of events surviving the network cut are given in fig. 6.1 on the
right for 120 GeV/c? and in fig. 6.3 on page 112. These spectra always lie in the region
of the signal masses, i.e. the network is able to select the events in the mass region of
interest. Although the expected number of signal events decreases due to the network cut
the signal mass peak shown by the dashed line is retained. Cutting on these distributions
is the last step of the analysis. The upper and lower limits of the mass window are shown
in table 5.24. The event numbers obtained after this last cut are given in table 6.2 on the
next page and are the basis for the exclusion limits calculated in the next section.

Events /0.1 Unit
Events / 10 GeV/c?

ST T[T T[T T[T [T T 77T

2O a4 N W & o o N

1 | IR RN I
60 80 100 120 140 160 180 2002
Dijet mass [Gev/c’]

Figure 6.1: Network output (left) and invariant mass distribution (right) for
mpy = 120 GeV/c2. A cut on the network output of -0.2 was applied to obtain
the dijet mass plot.
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’ Process | Events ‘
my [GeV/c?] 110 [ 115] 120] 130 | 140 150
WH 042 ] 036 032] 026 0.21] 017
tt 213 | 228 228 ] 2.65| 2.81]3.042
we 0.66 | 0.67 | 0.67 | 0.72| 0.71|0.705
Wy 071 0.72| 0.72| 0.78 | 0.87| 0.87
Wbb 6.32 | 5.77 | 537 | 5.04| 419| 3.72
Wee 19| 1.78| 1.68| 145| 12| 1.08
We 326 | 3.12| 2.86| 2.67| 2.07| 1.68
Mistags 58| 5.21| 529 | 441| 386 | 3.50
Ww 0.044 | 0.037 | 0.031 | 0.017 | 0.01 | 0.004
Wz 0.7| 0.58| 048 | 0.36| 0.2 0.12
zZZ 063 05| 038| 023| 0.13] 0.1
Z—7Tr 0.086 | 0.12 | 0.086 | 0.1]0.086 | 0.086
QCD 443 | 397 3.97| 42| 3.27| 257

| Total background | 26.68 | 24.76 | 23.8 | 22.64 | 19.4 [ 17.48 |

| Data | 26 24 21 24 18] 18]

Table 6.1: Number of expected events after the application of the neural net-
work. The network training parameters are given in table 5.21 on page 104.
Table 5.24 on page 106 lists the cut values on the network output for each mass.
At this point, no cut on the invariant mass distribution is applied.

’ Process | Events ‘
mp [GeV/c?] 110 [ 115| 120 130| 140 | 150
WH 042 ] 036 032] 026] 021] 0.16
tt 105 1.14] 1.13| 1.31[ 1.35] 142
we 0.65 | 0.67 | 0.67| 0.71| 0.69| 0.66
Wg 071 0.72| 0.71| 0.78 | 0.83| 0.83
Wbb 6.23| 575| 53| 4.94| 3.88| 3.42
Wee 1.84 | 1.78 | 1.65| 1.45| 1.13| 101
We 326 | 3.08| 2.78| 257 | 204| 1.6
Mistags 565 | 521 | 513 | 44| 358| 3.14
WWw 0.042 | 0.035 | 0.029 | 0.017 | 0.006 | 0.004
Wz 0.7 0.58| 048] 0.35|0.1553 | 0.08
Z7Z 063 05| 038] 021| 0.09] 0.06
ZTT 0.086 | 0.12|0.086 | 0.1 | 0.086 | 0.086
QCD 443 | 397| 3.73| 42| 327 257

| Total background [ 25.28 [ 23.55 [ 22.07 [ 21.03 [ 17.1 [ 14.87 |

| Data | 26] 23] 20 24| 18] 18]

Table 6.2: Number of expected events after the application of the neural network
and the cut on my,. The cuts on the network output value and the invariant mass
distribution are shown in table 5.24 on page 106.
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Figure 6.2: Network output for masses other than mpy = 120 GeV/c?.
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Figure 6.3: Invariant mass of the 2-jet system after the network cut for masses

other than my = 120 GeV/c?.
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6.1 Limit calculation

Since no significant deviation from the standard model can be found in the mass spectrum,
exclusion limits on the cross section of the W H process for Higgs bosons with a certain
mass will be derived in this chapter. The method applied is described in ref. [98] and the
source code for the limit calculation is available from [99].

6.1.1 Poisson statistics

The method to calculate limits herein is based on the Poisson distribution. Given a certain
number of observed events ng, the probability P for observing that number depends on
the mean number u of expected events and is given by

no ., g™H

P(no, ) = (6.1)

’n,()!
In particle searches one wants to determine the value of pu. Important properties of the
Poisson distribution are [100]:

e the total probability is one, i.e. , > P(n,u) =1,

n=0

e the mean number of events is (n) = p and

e the standard deviation is given by o = /u.

The upper limit of x4 is given by N, the value of u for which there is some probability
e to observe ng or fewer events. The confidence level C.L. of this upper limit is given by
1 — €. The value of € is calculated by summing over the Poisson probabilities, i. e.

€= Z P(n,p). (6.2)

In order to calculate N, one varies p until the desired value of € is found, corresponding
to the confidence level one wants.

If an average of up background events is expected among the ng observed events, and if
i is known precisely one can calculate an upper limit N on the number of signal events
present in the observed sample. Now N gives that value of j1g, the mean number of signal
events expected, for which the probability is 1 — e that in a random experiment one would
observe more than ng events and have ng < ng, where ng is the number of background
events in the sample. It can be calculated using

>° P(n. s+ N)
e =" : (6.3)

no

2. P(n, p)

n=0

N is varied until the proper value of € is found.

! This value doesn’t have to be an integer.
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| Higgs mass [GeV/c?] [ 110 | 115 [ 120 | 130 | 140 [ 150 |

Preselection 35.67 | 33.02 | 29.36 | 35.44 | 32.73 | 32.03
NN w/o mass cut 7.89 | 7.35 | 6.89 | 5.88 | 4.92 | 4.63
NN + mass cut 5.75 | 540 | 5.13 | 4.86 | 4.00 | 3.73
Data w/o systematic | 6.32 | 554 | 4.68 | 6.19 | 4.63 | 5.14

| Data (final limit) | 8.48 | 848 | 7.53 | 8.85 | 7.17 | 7.64 |

Table 6.3: Exclusion limit on the W H production cross section times the branch-
ing ratio BR(H — bb) as function of the Higgs boson mass.

6.1.2 Incorporating Uncertainties

Usually the number of data events and the expected background are not known precisely.
Hence uncertainties have to be taken into account in the limit calculation.

Let’s assume the the value of pup is known with a Gaussian uncertainty of o and the
acceptance A with an overall uncertainty of 4. The relative uncertainty on ug is given
by o4/A. The Poisson upper limit N on ug can be defined as before, i.e. the value of
the true pug for which one would observe more than ng events and have ng < ng. One
determines the value of N such that

_(ep-wR)?  (N-pl)?

Farg S P pip £ pis)e ¥Boe N dlpdpl
00

€= ng 00 7(“37*2‘/13)2 (64)
ZO [ P(n,uple > duly
n=0 0

with oy = No4/A. This approach is applied in the Fortran program poilim.f that was
used to calculate the limits presented in the next section.

6.2 Final Exclusion Limit

Limits are derived at six mass values ranging from 110 GeV/c? to 150 GeV/c? in steps
of 10 GeV/c?, as well as 115 GeV/c?. This procedure is applied in order to map out the
distribution. Counting the events for both data and background in the mass window
provides the limit on the cross-section times the branching ratio. Fig. 6.4 on page 116
shows the exclusion limit on o - BR at 95% confidence level. The corresponding numbers
are shown in table 6.3.

Searches for the SM Higgs bosons at LEP have provided a lower mass limit and exclude
Higgs masses below 114.1 GeV/c?. In fig. 6.4 this area is shown in yellow. The three
curves labeled with colored markers give the sensitivity from MC simulations after the
preselection and the application of the neural network with and without a mass window
around the signal mass. The empty squares show the data limits without systematic
uncertainties. The final limits including systematics are given by the full black squares.
The area above this curve is ruled out by this analysis. In total, cross sections of about
8 pb are excluded. For my = 110 GeV /c? the limit is too high by a factor of 35 to place
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a lower limit on the Higgs mass. For higher masses this factor goes up since o - BR
decreases while the limit is almost constant.
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Figure 6.4: Exclusion limit on the W H production cross section times the
branching ratio BR(H — bb) as function of the Higgs boson mass. The confidence
level is 95%. The yellow area covers the mass region up to my = 114.1 GeV/c?
that is excluded by LEP. The three curves labeled with colored markers show the
expected sensitivity from MC after the preselection and the application of the
neural network. The empty squares represent the data limit without systematic
uncertainties. The final limit including systematic errors is given by the full black
squares. The solid line at the bottom shows the standard model cross section for
the process WH — [vbb.
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Process Events
Higgs report | This study
W H (Signal) 0.71 0.32
tt 1.36 1.13
W 0.95 0.67
Wy 0.12 0.71
Wbb 1.56 5.3
W2z 0.16 0.48
> | 415 [ 829 |
Wee N/A 1.65
We N/A 2.78
Mistags N/A 5.13
WWw N/A 0.03
77 N/A 0.38
Z — TT N/A 0.09
QCD N/A 3.73
’ Total background \ 4.15 \ 22.07 ‘

Table 6.4: Number of expected events from the RunII Higgs report and this
study for mpg = 120 GeV/ ¢? and a luminosity of L;,; = 162 pb~!. The channels
marked with N/A have not been looked at in the RunII report.

6.3 Comparison with other studies

6.3.1 Runll Higgs Report

In the year 1998 the Tevatron Higgs Working group studied the potential Higgs reach of
the Tevatron in RunIl [4]. Among other decay channels WH — [vbb was studied by
means of neural networks. The signal and background numbers for my = 120 GeV /c?
are shown in table 6.4.

Only four background processes were considered in the Higgs report?. compared to 11 in
this study. For these processes one sees differences in both the expected signal and the
background event numbers that are discussed in the corresponding subsections on page
118 and 118. In general these differences are due to various assumptions that were made
in the Run II study.

e Detector simulation:
A special parameterized detector model was developed for the Workshop called
'SHW’ instead of using the CDF and DO detectors descriptions.

e b-tagging:
The double b-tag efficiency was assumed to be in the range 30-40 %. This is higher
than the current CDF single tag efficiency of 24% (cf. fig. 5.1 on page 90).

2Both W* and Wg count as single-top production.
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’ Identification \ This study \ Higgs report ‘

Electron Trigger | CEM: 96.5 % [83] | 100% [4, p.63]
CMX: 95.4 % [32]

1 4, p.
CMUP: 88.7 % [s2] | 1007 [4 P-63]
B-tagging 27 % [84] | 30-40% [4, p.64]

Muon Trigger

Table 6.5: Comparison of particle ID and trigger efficiencies. The numbers in
square brackets are the corresponding references.

e Trigger efficiency:
For most efficiencies a number of 100% was assumed in the Higgs report. A com-
parison with the actual efficiencies used herein is given in table 6.5.

e Cross sections:
Some backgrounds differ due to different cross-section that were used in the Monte-
Carlo generators. Others (especially Wbb) were estimated using real data.

Signal process

The factor of almost two in the expected number of events between this study and the
Runil Higgs report can be explained by the reasons mentioned above and are discussed
here in more detail. The production cross-section for the W H process times the branching
ratio into lvbb in the RunII report was assumed to be 0.045 pb. In this study a value of
0.035 pb was assumed for a Higgs mass of 120 GeV/c?. This is due to different Monte-
Carlo generators and the 25% difference is in good agreement with the difference in the
Leading-Order and Next-to-Leading-Order cross sections from table A.1 on page 129.
Another point is the difference in the b-tagging efficiency. Assuming an average of 27%
for this study and 35% for the RunII report gives a 30% difference in the event.

Looking at table 6.5 assuming another 5% difference in trigger efficiency is reasonable.
Table 6.6 summarizes the actual numbers and shows that multiplying these reduces the
difference in signal numbers to 10%.

Backgrounds

The difference in the number of background events in table 6.4 is mostly given by the Wbb
background. In the Run II study this background was simulated assuming a cross-section
of 3.5 pb. Because this cross-section is difficult to calculate the background number for
this study is measured from real data and was obtained using the so called "Method 2’
(85, 86].

Integrated luminosity

Based on the numbers from table 6.2 it is possible to calculate the integrated luminosities
necessary for a 95% C.L. exclusion, a 30 evidence and a 5o discovery. The uncertainty
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’ This study | Higgs report ‘
S = 038 SHE = 0.713
o = 0.036| % = 0.045
errig = 0.95 e%ffg = 1.00
€h—tag = 0.27 ef_lfag = 0.35
SHR SHR i e
( ) - ' ZR ' 67z*;ng ' 61;{}; ’ (6.5)
S corrected S o 6T?"ig 6b—mg

0.38 0.036 0.95 0.27

0.713 0.045 1 35 (6.6)

= 1.88-0.8-0.95-0.77
= 1.1

Table 6.6: Comparison of signal event numbers. Multiplying the ratio S/SH%

of signal numbers before the my;-cut by the different factors for trigger and b-
tagging efficiency as well as the Monte-Carlo cross-sections reduces the original
factor from 1.8 to 1.1. This justifies the difference in signal numbers between
this study and the Higgs report.

on the background is assumed to be v/B, the square root of the number of background
events. For a 30 evidence one requires

Sfinal
\V4 Bfinal

Now one has to scale up the signal and background numbers by some factor f in order to
obtain the desired significance. This factor is given by

S [ x Stina S final
VB \/fXBfinal \/? V Bfinal \/? ( )

Hence the scale factor for a 3o evidence is given by

=3, (6.9)

1 52
= - —. 6.11
For the ratio of two scale factors f; and f5 one gets
St 2
By S B
N =B _(Z) .= (6.12)
2 2_2 Sy By
2

Inserting the numbers from table 6.4 gives

fi 0.71\* 22.07 )
J_ : =2.222.5.32 = 26.18 6.13
f 0.32 4.15 (6.13)
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| my [GeV/c?] [ 110 [ 120 | 130 |

This study 31.27 | 45.83 | 68.40
95% C.L. Higgs report | 1.11 1.81 4.52
Ratio 28.17 | 25.32 | 15.13

This study 110.62 | 153.40 | 228.90
Higgs report | 3.71 6.04 15.12
Ratio 29.82 | 25.40 | 15.14
This study | 290.61 | 426.00 | 635.82
Higgs report | 10.31 | 16.79 | 42.00
Ratio 28.19 | 25.37 | 15.14

3o

5%

Table 6.7: Integrated luminosities in fb~! per experiment for a 95% C.L. exclu-
sion, 30 evidence and 5o discovery. The numbers correspond to the lower edges
of the colored bands in fig. 6.5 and are read off the left scale.

where f; denotes the scale factor for Higgs report numbers and f; the one for this study.
The scale factors f differ by a factor of 26 for the 30 and 120 GeV/c? case. This factor
can also by read off the graph in fig. 6.5. Similar numbers apply for the other limits and
masses. They can be seen in table 6.7.

Fig. 6.5 shows the integrated luminosities per experiment for a 95% C.L. exclusion, 30
evidence and 50 discovery. The lower bands are the results of the RunIl Higgs report.
The shaded curves show the results of this study. As in the Higgs report, no systematic
uncertainties were considered and the values for the lower edges of the curves were scaled
up by 30% to obtain their width. The scale on the left can be used for a direct comparison
of the results, i.e. with the left scale one compares the results for the W H channel with
the RunII result for the W H channel only.

However the curves can also be interpreted in a different way. When the W H channel is
combined with the ZH channels one gains a factor of about two in the number of signal
events. The right scale gives the required luminosities for this hypothetical combination
of the results for the W H and ZH channels hence showing the potential improvement in
the required luminosity.
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Integrated Luminosity / Experiment [fb ]

10°

WH— Ivbb, ZH— vvbb, ZH— llbb

15 o discovery
[ 13 o evidence
1 x [ 95% CL exclusion

110 115 120 1 25 1 30
Higgs mass [GeV/c2]

Figure 6.5: Integrated luminosities per experiment for a 95% C.L. exclusion,
3o evidence and 50 discovery. The three lower bands are the result of the Run II
Higgs report. The three shaded upper curves show the result of this study. The
left scale compares the results for the W H channel from this work with the
RunlII result for the W H channel only. The right scale gives the luminosity for
a hypothetical combination of the W H channel with the ZH channels, hence
decreasing the required luminosities by a factor of about two. This is due to the
expected increase in S/v/B when combining the different channels.



122 CHAPTER 6. RESULTS



‘We will send word when we
may and some of us may yet
meet at times but I fear that we
shall not all be gathered
together ever again.’

The Lord of the Rings

J.R.R. Tolkien

Chapter 7

Conclusion and Outlook

7.1 Conclusion

A search for a low-mass SM Higgs-Boson in the channel W H — lvbb has been performed
using neural networks. The data was taken by the CDF experiment at the pp collider
Tevatron from 2000-2003, corresponding to in integrated luminosity of L;,; = 162 pb~!
at a CMS-energy of /s = 1.96 TeV. A good agreement between the data and the Monte
Carlo simulations is found for both event numbers and kinematic distributions. 95%
confidence level upper limits were set on ¢ x BR, the product of the production cross
section times the branching ratio, as a function of the Higgs boson mass. Values larger
than approx. 8 pb can be excluded for six different Higgs masses between 110 GeV/c?
and 150 GeV/c?. At this point the sensitivity is insufficient to place a lower limit on
the Higgs boson mass since the derived cross-section limit lies above the Standard Model
expectation.

As shown in fig. 6.5 combining W H with ZH would require an estimated luminosity of
~ 70 fb~! for a 3 ¢ discovery of a SM Higgs at 115 GeV. Below 114.1 GeV SM Higgs
masses are excluded by the LEP experiments [5]. These 70 fb~! are unfortunately above
the expected integrated luminosity of the Tevatron collider in the coming years, where
at most a luminosity of ~ 9 fb~! can be hoped for (cf. section 2.1.5 on page 23). This
estimate for a 3o discovery is roughly a factor 25 above the one estimated by the Tevatron
Higgs working group mainly because in this thesis many more background channels were
included and measured efficiencies were used.

7.2 Outlook

Future improvements on the limit can be achieved simply by using a larger dataset once
it will be available. Furthermore, instead of calculating the exclusion limit based on
event counting one could use advanced techniques. Fitting the shapes of the invariant
mass spectra would be an example. In addition the analysis can be improved by using
specific energy corrections for jets originating from b-quarks [101, 102]. This can reduce
the width of the Higgs mass peak. A higher b-tagging efficiency would as well improve
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the results. Neural networks can be applied for this purpose, a method that is under
development at present [6]. Improving the detector alignment would also increase the
b-tagging performance. An increased acceptance could be achieved be extending the n
range in the detector. So called “phoenix electrons”; i.e. electrons reconstructed in the
CDF forward calorimeters, could be included. However, the background might rise faster
than the signal in these regions and one has to check if the analysis would really benefit
from this extension.

The channel considered in this thesis is not the only process that is worth looking into. The
process ZH for instance, is investigated at present. Combining several search channels
(also with the ones investigated by D0) would further enhance the Higgs prospects at the
Tevatron.

If the Higgs boson is not going to be found at CDF and DO, the next place to look
for it will be the LHC. The proton-proton collider is located in Geneva, Switzerland.
Currently it is under construction and supposed to be operational in 2007. Two multi-
purpose experiments, CMS and ATLAS, will be looking for new physics. Due to the
high luminosity and a center-of-mass-energy of 14 TeV the prospects for a Higgs discovery
are promising.



Appendix A

Cross section calculation

The tables presented in this section were made with HIGLU (v2.1), HDECAY (v3.0) [42]
and V2HV. The source code for all programs is available from [43].

After presenting the input files for all three programs, tables A.1 on page 129 and A.2 on
page 130 present the LO and NLO Higgs cross sections for the g9 — H, WH and ZH
processes. Higgs branching ratios for H — bb, 7577, "1™, 55 and ¢ are shown in tables
A.3 and A.4 on pages 131 and 132, respectively . The last two tables, A.5 on page 133
and A.6 on page 134, list the Higgs branching ratios for H — gg, vy, Zv, WW and ZZ
as well as the total decay width.

The following input file was used for HIGLU to calculate the gg — H cross section.

PROCESS: 0 = GG --> H 1 =H --> GG

PROCESS = 0

CoLLDER: 0 -PP  t-peeAR
COLLTDER = 1

TOTAL ENERGY: [TEV]

ENERGY = 1.96D0

MODEL 0 =SM MSSM: 1 = SUBHPOLE 2 = SUBH
====== = FEYNHIGGSFAST
MODEL =0

TAN(BETA) : (MSSM)

TANBETA = 3.DO

COUPLINGS: G_B = BOTTOM G_T = TOP

========== (MODEL = 0)

B = 1.D0

T = 1.D0

QUARK MASSES: [GEV]
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M_SB(1) = 0.190D0
M_C = 1.5D0
M_B = 5.0D0
M_T = 175.D0

HIGGS TYPE AND MASS [GEV]: 1 = HEAVY SCALAR 2 = PSEUDOSCALAR 3 = LIGHT SCALAR
INDIVIDU = O0: M_HIGGS = M_A

TYPE 3
INDIVIDU = 1
M_HIGGS = DUMMYHIGGSMASS.DO

SCALES: [GEV] MU = MU_1xM_HIGGS + MU_2: RENORMALIZATION SCALE

======= Q = Q_1xM_HIGGS + Q_2: FACTORIZATION SCALE
MU_1 = 1.D0

MU_2 = 0.DO0

Q-1 = 1.D0

Q_2 = 0.D0

ORDER OF ALPHA_S: 1 =10 2 = NLO

LOOP =2

DEFINITION OF ALPHA_S: 1 = ALPHA_ S (M_Z) 2 = BY LAMBDA (N_F)

ALPHA_S (M_Z):

ALPHA_S = 0.116D0O

LAMBDA_NF: [GEV] (QCD SCALE)

N_F =

NUMBER OF EXTERNAL LIGHT FLAVORS: (FOR H --> GG)

N_EXT =5
VEGAS: ABSERR = ABSOLUTE ERROR
====== POINTS = NUMBER OF CALLS
ITMAX = NUMBER OF ITERATIONS
PRINT = PRINT OPTION FOR INTERMEDIATE VEGAS-OUTPUT
0 1 10
NO OUPUT PRETTYPRINT  TABLE
ABSERR = 0.DO
POINTS = 1000
ITMAX =5
PRINT =10

STRUCTURE FUNCTIONS: STFUN: O = PDFLIB 1 = GRV
SCHEME = FACTORIZATION SCHEME: O = MSBAR 1 = DIS
STFUN = 1
SET = 2
SCHEME = 0
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NGROUP = 4
NSET = 34

PARAMETERS: (FOR RAD. CORR. OF SUSY-COUPLINGS)

MZ = Z-MASS [GEV]
MSQ = SQUARK-MASS [GEV]

GF = 1.16639D-5

MZ = 91.187D0

MW = 80.41D0

MGLUINO = 1000.DO

MSQ = 1000.DO

MUR = 1000.DO

MDR = 1000.DO

M2 = 1000.DO

MU = 100.DO

AU = 0.D0

AD = 0.D0

This input file was used for V2HV to calculate the W H and ZH cross sections.

MSSM =0

TGBET = 3.D0
HIGGS =2

MA1 = 141.D0
MA2 = 200.D0
NA = 60
Z=1/W=2 =1

ENERGY = 1960.D0O
PP/PPBAR = 1

SCALE1 = 1.0DO
SCALE2 = 1.0DO
NSCALE =1
EPSILON = 1.D-8
NGROUP = 4

NSET = 34
IPOINT = 10000
ITERAT =5

NPRN = 10

MC = 1.5D0

MB = 5.D0

MT = 175.D0
NO =5

LAMBDA = 0.202D0O
LOOP =2

Mw = 80.41D0
MZ = 91.187D0
SW2 = 0.2315D0
GF = 1.16639D-5
MSQ = 1000.DO

MUR = 1000.D0O
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AT = 0.D0
AB = 0.D0
MU = 0.D0

This last file was used for HDECAY to calculate the branching ratios.

HIGGS =0

MODEL =1

TGBET = 30.D0
MABEG = 80.D0
MAEND = 200.D0
NMA = 121
ALS(MZ) = 0.118D0
MSBAR(1) = 0.190D0
MC = 1.5D0

MB = 5.D0

MT = 175.D0
MTAU = 1.7771DO0
MMUON = 0.105658389D0
1/ALPHA = 137.0359895D0
GF = 1.16639D-5
GAMW = 2.080D0
GAMZ = 2.490D0
MZ = 91.187D0
Mw = 80.41D0
VUsS = 0.2205D0
VCB = 0.04D0
VUB/VCB = 0.08D0
MU = 300.D0
M2 = 200.D0O
MGLUINO = 1000.DO
MSL1 = 1000.D0
MER1 = 1000.DO
MQL1 = 1000.D0
MUR1 = 1000.D0
MDR1 = 1000.D0
MSL = 1000.D0
MER = 1000.D0
MSQ = 1000.DO0
MUR = 1000.D0
MDR = 1000.DO
AL = 1500.D0
AU = 1500.D0
AD = 1500.D0
NNLO (M) = 0
ON-SHELL = 0
ON-SH-WZ = 0

IPOLE =0
OFF-SUSY = 0
INDIDEC = 0

NF-GG 5

IGOLD =0
MPLANCK = 2.4D18
MGOLD = 1.D-13



M(H) ZH
LO NLO L0 NLO LO NLO

80  0.830001 2.05355 0.480773757 0.599457491 0.261416568 0.325369273
81 0.803386 1.98505 0.463219006 0.577603458 0.252427403 0.314224663
82 0.777919 1.91956 0.446250169 0.556607489 0.243720399 0.303432026
83 0.753533 1.85691 0.430071462 0.535923512 0.235401678 0.292783596
84 0.730169 1.79697 0.414567526 0.517404605 0.227397964 0.283295723
85  0.707769 1.73964 0.399704928 0.498990235 0.219718302 0.273744427
86  0.686280 1.68472 0.385579235 0.481343108 0.212404306 0.264668642
87 0.665655 1.63208 0.371934682 0.464766453 0.205331121 0.256043147
88  0.645848 1.58154 0.35900646 0.448551509 0.198621042 0.24760936
89  0.626815 1.53305 0.346283851 0.432856901 0.191971798 0.239434828
90 0.608519 1.48653 0.33450083 0.418060107 0.185830322 0.231742031
91  0.590920 1.44185 0.322878795 0.403793135 0.179746477 0.224259989
92 0.573986 1.39891 0.311699565 0.390324165 0.173876173 0.217244767
93 0.557682 1.35766 0.301285651 0.377190439 0.168395362 0.210326454
94  0.541980 1.31796 0.290959506 0.364391477 0.16296852 0.203607904
95  0.526849 1.27976 0.28109239 0.352206792 0.157753737 0.197170168
96  0.512265 1.24300 0.271734729 0.340477286 0.152813838 0.19100153
97  0.498200 1.20760 0.262698573 0.32940096 0.14802847 0.185177802
98  0.484631 1.17348 0.253979566 0.318407455 0.143400642 0.179308842
99  0.471537 1.14059 0.245574296 0.308101656 0.138925351 0.173834292
100  0.458895 1.10889 0.237614181 0.298115881 0.134690291 0.168526354
101 0.446686 1.07834 0.229772479 0.288311769 0.130494659 0.163287706
102 0.434891 1.04884 0.22236354 0.279200978 0.126547042 0.158439115
103 0.423492 1.02036 0.215110978 0.270222587 0.12264536 0.153651833
104  0.412472 0.992854 0.208302092 0.261693301 0.118988355 0.149073118
105 0.401816 0.966280 0.201637179 0.253343791 0.115400642 0.144565078
106  0.391508 0.940618 0.19526758 0.245576014 0.11196379 0.140393652
107  0.381534 0.915806 0.189077634 0.237786514 0.108620502 0.136185221
108 0.371881 0.891804 0.183060116 0.230436839 0.105360211 0.13222239
109  0.362535 0.868620 0.17734603 0.223232436 0.102262512 0.128328694
110  0.353484 0.846175 0.171868313 0.216400374 0.0992908441 0.124595566
111 0.344716 0.824386 0.166535516 0.209677165 0.096382366 0.120949748
112 0.336221 0.803482 0.161402057 0.203483114 0.0935893341 0.117616548
113 0.327988 0.783195 0.156484981 0.197168217 0.0909008737 0.114183408
114 0.320007 0.763523 0.151621588 0.191172866 0.0882454985 0.110898636
115  0.312268 0.744449 0.147030728 0.185380713 0.0857220165 0.107699712
116 0.304763 0.725949 0.142639383 0.179936725 0.0833108798 0.104740749
117 0.297482 0.708002 0.138295201 0.174441207 0.0809185769 0.101710111
118  0.290417 0.690641 0.134161621 0.169352293 0.0786383239 0.0989172889
119  0.283560 0.673833 0.130122147 0.164379814 0.0764129551 0.096196832
120  0.276905 0.657537 0.126281682 0.159655441 0.0742871213 0.0935814862
121 0.270442 0.641731 0.122555842 0.154832147 0.0722221474 0.0909105757
122 0.264167 0.626407 0.11894958 0.150393507 0.0702174621 0.0884566135
123 0.258071 0.611536 0.11546873 0.146020152 0.0682850375 0.0860456726
124  0.252149 0.597097 0.112096508 0.141749734 0.0664061715 0.0836615427
125 0.246395 0.583073 0.108844965 0.137769785 0.064592133 0.0814482402
126 0.240803 0.569458 0.105671336 0.133754418 0.0628162945 0.0792064279
127  0.235367 0.556235 0.102636353 0.129950636 0.061118135 0.0770812149
128  0.230082 0.543391 0.0996484329 0.126243611 0.0594367527 0.0749940401
129  0.224942 0.530915 0.0968240041 0.122653347 0.0578557072 0.0730069704
130  0.219944 0.518793 0.0940495355 0.11918354 0.0562930523 0.0710493387
131 0.215082 0.507012 0.0914382944 0.115948408 0.0548210525 0.0692395211
132 0.210352 0.495558 0.0888392156 0.112701057 0.053351846 0.0674170001
133 0.205749 0.484431 0.0863013497 0.109477813 0.05191627 0.0655893629
134 0.201270 0.473600 0.0839000031 0.106494913 0.0505558769 0.0639065688
135  0.196910 0.463075 0.0815563328 0.103560469 0.0492247531 0.0622455531
136  0.192666 0.452834 0.0792657853 0.100691224 0.0479229179 0.0606248942
137  0.188533 0.442874 0.0770944532 0.0979427599  0.0466879261 0.05906039
138  0.184508 0.433177 0.0749804513 0.0952743487  0.0454825841 0.05754519
139  0.180589 0.423757 0.0728943932 0.0926696608  0.044289569 0.0560540771
140 0.176771 0.414584 0.0709050579 0.0901599776  0.0431512223 0.0546280401

Table A.1: LO and NLO Higgs cross sections
qq — ZH for Higss masses from 80 GeV/c? to 140 GeV/c?.

for g9 - H, q¢g — WH and
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M(H) gg->H wH ZH
Lo NLO Lo NLO Lo NLO

141 0.173051 0.405659  0.0689577704  0.0877618466  0.0420349026  0.0532544298
142 0.169427 0.396967  0.0670997295  0.0854328671  0.0409683275  0.0519261989
143 0.165895 0.388496  0.0652710108  0.0831103605 0.0399185279  0.0505984122
144  0.162452 0.380244  0.0635087082  0.0808323661 0.0389032134  0.0492882372
145  0.159097 0.372209  0.0617987299  0.0787434018 0.0379159745  0.0480901176
146  0.155826 0.364381  0.0601378216  0.0766675968 0.0369553122  0.0468930899
147 0.152636 0.356760  0.0585450811  0.0746169391  0.03603408 0.0457088959
148 0.149526 0.349338  0.0569862318  0.0726768477 0.0351311815  0.0445948028
149 0.146493 0.342098  0.055497978 0.0707931335  0.034268671 0.0435054519
150  0.143534 0.335045  0.0539996608  0.0688937775  0.0333955439  0.0424052498
151 0.140648 0.328167  0.0526125366  0.0671658752  0.0325899496  0.0414010003
152 0.137832 0.321466  0.0512203863  0.0653864917  0.0317773472  0.0403681379
153 0.135085 0.314933  0.0498618655  0.0637122885 0.0309823659  0.0393966054
154  0.132403 0.308562  0.0485969603  0.0620949264  0.0302409451  0.0384485241
155  0.129787 0.302344  0.0473124427  0.0605058153  0.0294904336  0.0375240938
156  0.127233 0.206280  0.0460799227  0.0589547111  0.0287665196  0.0366185361
157 0.124739 0.290364  0.0448995234  0.0574515113  0.0280739579  0.0357392379
158 0.122305 0.284593  0.0437472771  0.0559907116  0.0273963812  0.034884666
159 0.119929 0.278963  0.0426236988  0.0545689355  0.0267337747  0.0340499732
160  0.117608 0.273467  0.041526647 0.0531890444  0.0260858253  0.0332361099
161  0.115341 0.268101  0.0404860595  0.051862892  0.0254707025  0.032454493
162 0.113128 0.262863  0.0394395954  0.0505302426  0.0248488351  0.0316669658
163 0.110965 0.257756  0.0384489395  0.0492845057  0.0242651475  0.0309383782
164  0.108853 0.252769  0.0374647503  0.0480313982 0.0236785178  0.0301922672
165  0.106789 0.247901  0.0365375135  0.0468569943  0.0231271938  0.0294986549
166  0.104772 0.243146  0.0356179938  0.0456975435  0.0225792617  0.0288107949
167  0.102801 0.238499  0.0347335086  0.0445917096  0.0220517337  0.0281574257
168  0.100876 0.233958  0.0338633006  0.0434831186 0.0215315487  0.0274959843
169  0.989932E-01  0.229523  0.0330075669  0.0424077307  0.021018089 0.0268552956
170 0.971532E-01  0.225191  0.0321926738  0.0413754123  0.0205304138  0.0262397817
171 0.953544E-01  0.220960  0.0314042205  0.0403729982  0.0200581924  0.0256431832
172 0.935959E-01  0.216824  0.0306272016  0.0393720792  0.019591451 0.0250419632
173 0.918764E-01 0.212784  0.0298776471  0.0384337904 0.0191395998  0.0244827023
174 0.901951E-01  0.208830  0.0291508627  0.0374912744  0.0187006256  0.0239158245
175  0.885509E-01 0.204966  0.0284231234  0.0365828059  0.0182634804  0.0233719122
176  0.869428E-01  0.201190  0.0277340506  0.0357059749  0.0178462281  0.0228428375
177 0.853699E-01  0.197498  0.0270713267  0.0348660153  0.0174448875  0.0223372017
178  0.838314E-01 0.193887  0.026406129 0.0340128555  0.0170410211  0.0218201641
179 0.823263E-01  0.190358  0.0257707702  0.033215249  0.0166548045  0.0213398212
180 0.808537E-01 0.186906  0.0251440156  0.0324236727  0.0162744287  0.0208615584
181  0.794129E-01  0.183531  0.0245442898  0.0316710279  0.0159094296  0.0204063383
182  0.780031E-01 0.180230  0.0239578907  0.0309042537  0.0155520162  0.0199408799
183  0.766235E-01 0.176998  0.0233842739  0.0301841024 0.0152012654  0.0195036526
184  0.752733E-01  0.173837  0.022829791 0.0294748023  0.0148626138  0.0190719937
185 0.739518E-01  0.170747  0.0222865944  0.0287760586  0.0145299219  0.0186458767
186  0.726582E-01  0.167724  0.0217600207  0.028114092  0.0142071239  0.018243837
187  0.713920E-01  0.164764  0.0212419152  0.027452807  0.0138880923  0.0178389553
188  0.701523E-01  0.161869  0.0207424389  0.0268087022  0.0135814095  0.0174441605
189  0.689386E-01 0.159033  0.0202452988  0.0261869436 0.0132744161  0.017062279
190 0.677503E-01 0.156258  0.0197767506  0.0255719554  0.0129868182  0.0166892916
191  0.665867E-01 0.153543  0.0193094814  0.0249839776  0.0126974654  0.016325932
192  0.654472E-01 0.150885  0.018869956 0.0244272728  0.0124260965  0.0159836051
193 0.643312E-01  0.148283  0.0184280478  0.0238604251 0.0121517129  0.0156341818
194 0.632382E-01 0.145734  0.0179908097  0.02330046 0.0118810834  0.0152889938
195  0.621676E-01  0.143239  0.0175773268  0.0227743346 0.0116239764  0.0149649155
196 0.611189E-01 0.140796  0.0171706963  0.0222558481  0.0113711562  0.0146430175
197  0.600916E-01 0.138406  0.0167699438  0.021747679  0.0111216823  0.014327918
198  0.590851E-01 0.136064  0.0163892058  0.021257188  0.0108845522  0.0140247917
199  0.580990E-01  0.133772  0.0160160943  0.0207759979  0.01065177 0.0137273435
200 0.571328E-01 0.131526  0.0156440098  0.0203048179  0.0104187438  0.0134332184

Table A.2: LO and NLO Higgs cross sections for g9 — H, ¢q¢ — WH and
qq — ZH for Higgs masses from 141 GeV/c? to 200 GeV/c2.



M(H) bb tau tau muon muon ss cc
80 0.8604 0.6654E-01 0.2313E-03 0.5226E-03 0.3808E-01
81 0.8595 0.6664E-01 0.2316E-03 0.5220E-03 0.3803E-01
82 0.8587 0.6673E-01 0.2319E-03 0.5213E-03 0.3799E-01
83 0.8577 0.6682E-01 0.2322E-03 0.5207E-03 0.3794E-01
84 0.8568 0.6691E-01 0.2325E-03 0.5200E-03 0.3789E-01
85 0.8559 0.6699E-01 0.2327E-03 0.5194E-03 0.3784E-01
86 0.8549 0.6707E-01 0.2330E-03 0.5187E-03 0.3779E-01
87 0.8539 0.6714E-01 0.2332E-03 0.5180E-03 0.3774E-01
88 0.8529 0.6721E-01 0.2335E-03 0.5173E-03 0.3769E-01
89 0.8519 0.6728E-01 0.2337E-03 0.5166E-03 0.3764E-01
90 0.8508 0.6734E-01 0.2339E-03 0.5159E-03 0.3758E-01
91 0.8496 0.6739E-01 0.2341E-03 0.5151E-03 0.3752E-01
92 0.8484 0.6744E-01 0.2342E-03 0.5143E-03 0.3746E-01
93 0.8471 0.6748E-01 0.2343E-03 0.5135E-03 0.3740E-01
94 0.8458 0.6752E-01 0.2344E-03 0.5126E-03 0.3734E-01
95 0.8443 0.6754E-01 0.2345E-03 0.5116E-03 0.3727E-01
96 0.8427 0.6755E-01 0.2345E-03 0.5106E-03 0.3719E-01
97 0.8410 0.6755E-01 0.2345E-03 0.5096E-03 0.3711E-01
98 0.8392 0.6754E-01 0.2345E-03 0.5084E-03 0.3703E-01
929 0.8372 0.6751E-01 0.2344E-03 0.5071E-03 0.3694E-01
100 0.8350 0.6747E-01 0.2342E-03 0.5058E-03 0.3684E-01
101 0.8327 0.6740E-01 0.2340E-03 0.5043E-03 0.3673E-01
102 0.8301 0.6732E-01 0.2337E-03 0.5027E-03 0.3661E-01
103 0.8272 0.6722E-01 0.2333E-03 0.5009E-03 0.3648E-01
104 0.8241 0.6709E-01 0.2329E-03 0.4990E-03 0.3634E-01
105 0.8207 0.6693E-01 0.2323E-03 0.4969E-03 0.3618E-01
106 0.8170 0.6675E-01 0.2317E-03 0.4946E-03 0.3601E-01
107 0.8129 0.6654E-01 0.2309E-03 0.4921E-03 0.3583E-01
108 0.8084 0.6629E-01 0.2301E-03 0.4893E-03 0.3563E-01
109 0.8036 0.6600E-01 0.2291E-03 0.4863E-03 0.3541E-01
110 0.7982 0.6568E-01 0.2279E-03 0.4831E-03 0.3517E-01
111 0.7925 0.6532E-01 0.2267E-03 0.4796E-03 0.3492E-01
112 0.7862 0.6492E-01 0.2253E-03 0.4758E-03 0.3464E-01
113 0.7794 0.6447E-01 0.2237E-03 0.4716E-03 0.3434E-01
114 0.7721 0.6397E-01 0.2220E-03 0.4672E-03 0.3401E-01
115 0.7643 0.6342E-01 0.2201E-03 0.4624E-03 0.3366E-01
116 0.7558 0.6282E-01 0.2180E-03 0.4572E-03 0.3329E-01
117 0.7467 0.6217E-01 0.2157E-03 0.4517E-03 0.3289E-01
118 0.7371 0.6146E-01 0.2132E-03 0.4458E-03 0.3246E-01
119 0.7267 0.6070E-01 0.2106E-03 0.4396E-03 0.3200E-01
120 0.7158 0.5988E-01 0.2077E-03 0.4329E-03 0.3152E-01
121 0.7042 0.5900E-01 0.2047E-03 0.4259E-03 0.3100E-01
122 0.6919 0.5806E-01 0.2014E-03 0.4185E-03 0.3046E-01
123 0.6791 0.5707E-01 0.1980E-03 0.4106E-03 0.2989E-01
124 0.6655 0.5601E-01 0.1943E-03 0.4024E-03 0.2929E-01
125 0.6514 0.5491E-01 0.1905E-03 0.3939E-03 0.2867E-01
126 0.6366 0.5374E-01 0.1864E-03 0.3849E-03 0.2802E-01
127 0.6213 0.5253E-01 0.1822E-03 0.3757E-03 0.2734E-01
128 0.6054 0.5126E-01 0.1778E-03 0.3660E-03 0.2664E-01
129 0.5890 0.4994E-01 0.1732E-03 0.3561E-03 0.2592E-01
130 0.5722 0.4858E-01 0.1685E-03 0.3459E-03 0.2518E-01
131 0.5548 0.4718E-01 0.1636E-03 0.3354E-03 0.2441E-01
132 0.5370 0.4573E-01 0.1586E-03 0.3246E-03 0.2363E-01
133 0.5190 0.4426E-01 0.1535E-03 0.3137E-03 0.2283E-01
134 0.5006 0.4275E-01 0.1483E-03 0.3026E-03 0.2202E-01
135 0.4820 0.4121E-01 0.1429E-03 0.2913E-03 0.2120E-01
136 0.4631 0.3965E-01 0.1375E-03 0.2799E-03 0.2037E-01
137 0.4441 0.3808E-01 0.1321E-03 0.2684E-03 0.1953E-01
138 0.4251 0.3649E-01 0.1266E-03 0.2569E-03 0.1870E-01
139 0.4059 0.3490E-01 0.1210E-03 0.2453E-03 0.1785E-01
140 0.3867 0.3329E-01 0.1154E-03 0.2337E-03 0.1701E-01

Table A.3: Higgs branching ratios for H — bb, 77—, ptp~, s5 and cé for Higgs

masses from 80 GeV/c? to 140 GeV/c?.
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132 APPENDIX A. CROSS SECTION CALCULATION

M(H) bb tau tau muon muon ss cc

141 0.3679 0.3171E-01 0.1100E-03 0.2223E-03 0.1618E-01
142 0.3486 0.3009E-01 0.1043E-03 0.2107E-03 0.1533E-01
143 0.3300 0.2852E-01 0.9891E-04 0.1994E-03 0.1451E-01
144 0.3113 0.2694E-01 0.9341E-04 0.1881E-03 0.1369E-01
145 0.2928 0.2537E-01 0.8798E-04 0.1769E-03 0.1288E-01
146 0.2747 0.2383E-01 0.8263E-04 0.1660E-03 0.1208E-01
147 0.2568 0.2230E-01 0.7733E-04 0.1551E-03 0.1129E-01
148 0.2391 0.2079E-01 0.7211E-04 0.1445E-03 0.1051E-01
149 0.2218 0.1931E-01 0.6697E-04 0.1340E-03 0.9751E-02
150 0.2047 0.1784E-01 0.6187E-04 0.1236E-03 0.8997E-02
151 0.1882 0.1643E-01 0.5696E-04 0.1137E-03 0.8273E-02
152 0.1714 0.1498E-01 0.5194E-04 0.1036E-03 0.7535E-02
153 0.1557 0.1362E-01 0.4723E-04 0.9405E-04 0.6843E-02
154 0.1395 0.1222E-01 0.4236E-04 0.8425E-04 0.6130E-02
155 0.1240 0.1088E-01 0.3771E-04 0.7492E-04 0.5451E-02
156 0.1085 0.9525E-02 0.3303E-04 0.6553E-04 0.4768E-02
157 0.9314E-01 0.8186E-02 0.2838E-04 0.5626E-04 0.4093E-02
158 0.7795E-01 0.6859E-02 0.2378E-04 0.4708E-04 0.3425E-02
159 0.6276E-01 0.5529E-02 0.1917E-04 0.3791E-04 0.2758E-02
160 0.4794E-01 0.4228E-02 0.1466E-04 0.2895E-04 0.2107E-02
161 0.3578E-01 0.3159E-02 0.1095E-04 0.2161E-04 0.1572E-02
162 0.2689E-01 0.2377E-02 0.8240E-05 0.1624E-04 0.1181E-02
163 0.2095E-01 0.1854E-02 0.6428E-05 0.1265E-04 0.9206E-03
164 0.1745E-01 0.1546E-02 0.5359E-05 0.1054E-04 0.7666E-03
165 0.1525E-01 0.1353E-02 0.4689E-05 0.9211E-05 0.6701E-03
166 0.1371E-01 0.1217E-02 0.4219E-05 0.8277E-05 0.6021E-03
167 0.1254E-01 0.1114E-02 0.3863E-05 0.7571E-05 0.5508E-03
168 0.1161E-01 0.1033E-02 0.3581E-05 0.7011E-05 0.5100E-03
169 0.1085E-01 0.9662E-03 0.3350E-05 0.6552E-05 0.4766E-03
170 0.1021E-01 0.9101E-03 0.3155E-05 0.6164E-05 0.4484E-03
171 0.9657E-02 0.8618E-03 0.2988E-05 0.5831E-05 0.4242E-03
172 0.9174E-02 0.8195E-03 0.2841E-05 0.5539E-05 0.4030E-03
173 0.8744E-02 0.7820E-03 0.2711E-05 0.5280E-05 0.3841E-03
174 0.8359E-02 0.7482E-03 0.2594E-05 0.5047E-05 0.3671E-03
175 0.8006E-02 0.7174E-03 0.2487E-05 0.4834E-05 0.3516E-03
176 0.7681E-02 0.6891E-03 0.2389E-05 0.4638E-05 0.3374E-03
177 0.7377E-02 0.6625E-03 0.2297E-05 0.4454E-05 0.3240E-03
178 0.7090E-02 0.6374E-03 0.2210E-05 0.4280E-05 0.3114E-03
179 0.6812E-02 0.6131E-03 0.2125E-05 0.4113E-05 0.2992E-03
180 0.6538E-02 0.5890E-03 0.2042E-05 0.3947E-05 0.2871E-03
181 0.6257E-02 0.5643E-03 0.1956E-05 0.3777E-05 0.2747E-03
182 0.5963E-02 0.5384E-03 0.1866E-05 0.3600E-05 0.2619E-03
183 0.5661E-02 0.5116E-03 0.1774E-05 0.3417E-05 0.2486E-03
184 0.5358E-02 0.4847E-03 0.1680E-05 0.3235E-05 0.2353E-03
185 0.5069E-02 0.4591E-03 0.1591E-05 0.3060E-05 0.2226E-03
186 0.4827E-02 0.4376E-03 0.1517E-05 0.2914E-05 0.2119E-03
187 0.4622E-02 0.4194E-03 0.1454E-05 0.2790E-05 0.2029E-03
188 0.4442E-02 0.4035E-03 0.1399E-05 0.2681E-05 0.1950E-03
189 0.4281E-02 0.3893E-03 0.1349E-05 0.2584E-05 0.1880E-03
190 0.4136E-02 0.3765E-03 0.1305E-05 0.2497E-05 0.1816E-03
191 0.4003E-02 0.3647E-03 0.1264E-05 0.2416E-05 0.1757E-03
192 0.3881E-02 0.3539E-03 0.1227E-05 0.2342E-05 0.1704E-03
193 0.3767E-02 0.3439E-03 0.1192E-05 0.2274E-05 0.1654E-03
194 0.3661E-02 0.3346E-03 0.1160E-05 0.2210E-05 0.1607E-03
195 0.3562E-02 0.3258E-03 0.1129E-05 0.2150E-05 0.1563E-03
196 0.3468E-02 0.3175E-03 0.1101E-05 0.2093E-05 0.1522E-03
197 0.3380E-02 0.3097E-03 0.1074E-05 0.2040E-05 0.1483E-03
198 0.3296E-02 0.3024E-03 0.1048E-05 0.1989E-05 0.1447E-03
199 0.3216E-02 0.2953E-03 0.1024E-05 0.1941E-05 0.1412E-03
200 0.3141E-02 0.2887E-03 0.1001E-05 0.1896E-05 0.1378E-03

Table A.4: Higgs branching ratios for H — bb, 7t7~, ut ™, s5 and cé for Higgs
masses from 141 GeV/c? to 200 GeV /c?.



M(H) gg gamma gamma Z gamma WW YA Width [GeV]
80 0.3283E-01 0.7568E-03 0.000 0.4881E-03 0.1320E-03 0.2476E-02
81 0.3357E-01 0.7795E-03 0.000 0.5419E-03 0.1450E-03 0.2503E-02
82 0.3431E-01 0.8028E-03 0.000 0.6022E-03 0.1591E-03 0.2531E-02
83 0.3507E-01 0.8265E-03 0.000 0.6702E-03 0.1745E-03 0.2558E-02
84 0.3584E-01 0.8507E-03 0.000 0.7475E-03 0.1914E-03 0.2586E-02
85 0.3661E-01 0.8753E-03 0.000 0.8366E-03 0.2098E-03 0.2613E-02
86 0.3740E-01 0.9005E-03 0.000 0.9411E-03 0.2300E-03 0.2641E-02
87 0.3819E-01 0.9262E-03 0.000 0.1064E-02 0.2520E-03 0.2668E-02
88 0.3899E-01 0.9524E-03 0.000 0.1212E-02 0.2761E-03 0.2696E-02
89 0.3981E-01 0.9791E-03 0.000 0.1392E-02 0.3025E-03 0.2724E-02
90 0.4063E-01 0.1006E-02 0.000 0.1610E-02 0.3314E-03 0.2752E-02
91 0.4145E-01 0.1034E-02 0.000 0.1874E-02 0.3632E-03 0.2781E-02
92 0.4229E-01 0.1062E-02 0.3655E-07 0.2201E-02 0.3981E-03 0.2809E-02
93 0.4313E-01 0.1091E-02 0.3970E-06 0.2594E-02 0.4367E-03 0.2838E-02
94 0.4397E-01 0.1120E-02 0.1453E-05 0.3069E-02 0.4795E-03 0.2867E-02
95 0.4482E-01 0.1150E-02 0.3547E-05 0.3647E-02 0.5272E-03 0.2897E-02
96 0.4568E-01 0.1180E-02 0.6994E-05 0.4332E-02 0.5810E-03 0.2927E-02
97 0.4653E-01 0.1211E-02 0.1208E-04 0.5150E-02 0.6423E-03 0.2957E-02
98 0.4739E-01 0.1242E-02 0.1908E-04 0.6120E-02 0.7128E-03 0.2988E-02
99 0.4824E-01 0.1274E-02 0.2824E-04 0.7255E-02 0.7943E-03 0.3020E-02

100 0.4909E-01 0.1306E-02 0.3978E-04 0.8585E-02 0.8900E-03 0.3052E-02
101 0.4994E-01 0.1338E-02 0.5390E-04 0.1012E-01 0.1003E-02 0.3086E-02
102 0.5077E-01 0.1371E-02 0.7080E-04 0.1190E-01 0.1136E-02 0.3120E-02
103 0.5160E-01 0.1403E-02 0.9063E-04 0.1394E-01 0.1293E-02 0.3155E-02
104 0.5242E-01 0.1436E-02 0.1136E-03 0.1627E-01 0.1480E-02 0.3192E-02
105 0.5322E-01 0.1469E-02 0.1397E-03 0.1891E-01 0.1700E-02 0.3230E-02
106 0.5401E-01 0.1502E-02 0.1692E-03 0.2190E-01 0.1957E-02 0.3270E-02
107 0.5477E-01 0.1535E-02 0.2021E-03 0.2526E-01 0.2261E-02 0.3311E-02
108 0.5551E-01 0.1568E-02 0.2384E-03 0.2901E-01 0.2616E-02 0.3355E-02
109 0.5622E-01 0.1601E-02 0.2783E-03 0.3320E-01 0.3024E-02 0.3400E-02
110 0.5690E-01 0.1633E-02 0.3218E-03 0.3784E-01 0.3498E-02 0.3448E-02
111 0.5754E-01 0.1665E-02 0.3689E-03 0.4297E-01 0.4042E-02 0.3499E-02
112 0.5814E-01 0.1697E-02 0.4194E-03 0.4861E-01 0.4661E-02 0.3552E-02
113 0.5870E-01 0.1727E-02 0.4735E-03 0.5479E-01 0.5365E-02 0.3609E-02
114 0.5921E-01 0.1757E-02 0.5309E-03 0.6154E-01 0.6158E-02 0.3669E-02
115 0.5967E-01 0.1786E-02 0.5917E-03 0.6888E-01 0.7048E-02 0.3733E-02
116 0.6007E-01 0.1814E-02 0.6556E-03 0.7684E-01 0.8041E-02 0.3802E-02
117 0.6041E-01 0.1840E-02 0.7224E-03 0.8543E-01 0.9143E-02 0.3875E-02
118 0.6069E-01 0.1865E-02 0.7921E-03 0.9467E-01 0.1036E-01 0.3953E-02
119 0.6089E-01 0.1889E-02 0.8643E-03 0.1046 0.1169E-01 0.4036E-02
120 0.6102E-01 0.1911E-02 0.9388E-03 0.1152 0.1315E-01 0.4126E-02
121 0.6108E-01 0.1931E-02 0.1015E-02 0.1264 0.1473E-01 0.4222E-02
122 0.6105E-01 0.1949E-02 0.1094E-02 0.1384 0.1644E-01 0.4326E-02
123 0.6094E-01 0.1964E-02 0.1173E-02 0.1510 0.1828E-01 0.4437E-02
124 0.6074E-01 0.1978E-02 0.1253E-02 0.1644 0.2024E-01 0.4557E-02
125 0.6046E-01 0.1989E-02 0.1334E-02 0.1783 0.2233E-01 0.4687E-02
126 0.6008E-01 0.1997E-02 0.1416E-02 0.1930 0.2454E-01 0.4826E-02
127 0.5961E-01 0.2003E-02 0.1496E-02 0.2083 0.2687E-01 0.4977TE-02
128 0.5905E-01 0.2006E-02 0.1576E-02 0.2242 0.2932E-01 0.5140E-02
129 0.5839E-01 0.2006E-02 0.1655E-02 0.2407 0.3186E-01 0.5317E-02
130 0.5765E-01 0.2004E-02 0.1733E-02 0.2577 0.3450E-01 0.5508E-02
131 0.5681E-01 0.1998E-02 0.1808E-02 0.2753 0.3722E-01 0.5716E-02
132 0.5588E-01 0.1989E-02 0.1880E-02 0.2934 0.4001E-01 0.5942E-02
133 0.5487E-01 0.1977E-02 0.1949E-02 0.3118 0.4286E-01 0.6186E-02
134 0.5377E-01 0.1962E-02 0.2015E-02 0.3307 0.4575E-01 0.6453E-02
135 0.5259E-01 0.1944E-02 0.2077E-02 0.3499 0.4866E-01 0.6743E-02
136 0.5133E-01 0.1923E-02 0.2135E-02 0.3695 0.5158E-01 0.7060E-02
137 0.4999E-01 0.1899E-02 0.2188E-02 0.3893 0.5448E-01 0.7406E-02
138 0.4859E-01 0.1872E-02 0.2236E-02 0.4093 0.5736E-01 0.7784E-02
139 0.4712E-01 0.1843E-02 0.2279E-02 0.4295 0.6017E-01 0.8199E-02
140 0.4558E-01 0.1809E-02 0.2315E-02 0.4501 0.6288E-01 0.8657E-02

Table A.5: Higgs branching ratios for H — gg, vy, Zv, WW and ZZ for Higgs
masses from 80 GeV/c? to 140 GeV/c?. The last column shows to the total
decay width in GeV. For H — Z~ the first 12 values are set to zero because of
the limited precision of the calculation program.
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M(H) gg gamma gamma Z gamma WW 7z Width [GeV]
141 0.4402E-01 0.1775E-02 0.2348E-02 0.4702 0.6556E-01 0.9152E-02
142 0.4235E-01 0.1736E-02 0.2370E-02 0.4912 0.6801E-01 0.9715E-02
143 0.4070E-01 0.1696E-02 0.2390E-02 0.5115 0.7040E-01 0.1032E-01
144 0.3896E-01 0.1653E-02 0.2400E-02 0.5322 0.7255E-01 0.1100E-01
145 0.3720E-01 0.1607E-02 0.2404E-02 0.5529 0.7449E-01 0.1176E-01
146 0.3541E-01 0.1559E-02 0.2401E-02 0.5736 0.7621E-01 0.1261E-01
147 0.3359E-01 0.1509E-02 0.2390E-02 0.5943 0.7763E-01 0.1357E-01
148 0.3174E-01 0.1456E-02 0.2371E-02 0.6150 0.7876E-01 0.1465E-01
149 0.2988E-01 0.1401E-02 0.2344E-02 0.6358 0.7950E-01 0.1588E-01
150 0.2796E-01 0.1342E-02 0.2306E-02 0.6569 0.7982E-01 0.1731E-01
151 0.2609E-01 0.1283E-02 0.2263E-02 0.6775 0.7982E-01 0.1892E-01
152 0.2410E-01 0.1217E-02 0.2203E-02 0.6994 0.7902E-01 0.2089E-01
153 0.2220E-01 0.1153E-02 0.2141E-02 0.7202 0.7800E-01 0.2312E-01
154 0.2017E-01 0.1081E-02 0.2057E-02 0.7428 0.7592E-01 0.2595E-01
155 0.1819E-01 0.1008E-02 0.1966E-02 0.7650 0.7334E-01 0.2934E-01
156 0.1614E-01 0.9276E-03 0.1855E-02 0.7885 0.6970E-01 0.3371E-01
157 0.1405E-01 0.8420E-03 0.1727E-02 0.8129 0.6502E-01 0.3948E-01
158 0.1192E-01 0.7503E-03 0.1578E-02 0.8383 0.5910E-01 0.4741E-01
159 0.9731E-02 0.6502E-03 0.1405E-02 0.8653 0.5177E-01 0.5919E-01
160 0.7535E-02 0.5468E-03 0.1217E-02 0.8934 0.4295E-01 0.7789E-01
161 0.5701E-02 0.4925E-03 0.1143E-02 0.9172 0.3492E-01 0.1049
162 0.4343E-02 0.3732E-03 0.8807E-03 0.9354 0.2854E-01 0.1403
163 0.3430E-02 0.2931E-03 0.7027E-03 0.9476 0.2425E-01 0.1810
164 0.2895E-02 0.2460E-03 0.5986E-03 0.9545 0.2202E-01 0.2184
165 0.2565E-02 0.2167E-03 0.5350E-03 0.9584 0.2102E-01 0.2511
166 0.2336E-02 0.1962E-03 0.4911E-03 0.9608 0.2066E-01 0.2808
167 0.2165E-02 0.1808E-03 0.4586E-03 0.9623 0.2070E-01 0.3085
168 0.2031E-02 0.1686E-03 0.4332E-03 0.9632 0.2105E-01 0.3348
169 0.1923E-02 0.1586E-03 0.4127E-03 0.9636 0.2164E-01 0.3600
170 0.1834E-02 0.1502E-03 0.3957E-03 0.9636 0.2249E-01 0.3845
171 0.1757E-02 0.1430E-03 0.3811E-03 0.9632 0.2354E-01 0.4084
172 0.1691E-02 0.1367E-03 0.3684E-03 0.9625 0.2487E-01 0.4320
173 0.1633E-02 0.1311E-03 0.3572E-03 0.9614 0.2652E-01 0.4554
174 0.1581E-02 0.1260E-03 0.3471E-03 0.9601 0.2841E-01 0.4786
175 0.1534E-02 0.1214E-03 0.3378E-03 0.9580 0.3093E-01 0.5021
176 0.1491E-02 0.1171E-03 0.3293E-03 0.9555 0.3381E-01 0.5257
177 0.1450E-02 0.1131E-03 0.3211E-03 0.9521 0.3760E-01 0.5499
178 0.1411E-02 0.1092E-03 0.3131E-03 0.9477 0.4242E-01 0.5748
179 0.1373E-02 0.1055E-03 0.3052E-03 0.9418 0.4873E-01 0.6009
180 0.1335E-02 0.1017E-03 0.2970E-03 0.9334 0.5743E-01 0.6290
181 0.1293E-02 0.9783E-04 0.2881E-03 0.9215 0.6977E-01 0.6602
182 0.1248E-02 0.9367E-04 0.2782E-03 0.9050 0.8666E-01 0.6958
183 0.1200E-02 0.8932E-04 0.2675E-03 0.8843 0.1077 0.7363
184 0.1150E-02 0.8491E-04 0.2564E-03 0.8610 0.1315 0.7813
185 0.1101E-02 0.8067E-04 0.2455E-03 0.8371 0.1557 0.8295
186 0.1062E-02 0.7713E-04 0.2366E-03 0.8187 0.1745 0.8749
187 0.1029E-02 0.7414E-04 0.2291E-03 0.8045 0.1890 0.9178
188 0.1001E-02 0.7153E-04 0.2227E-03 0.7930 0.2007 0.9591
189 0.9769E-03 0.6920E-04 0.2170E-03 0.7835 0.2104 0.9994
190 0.9553E-03 0.6709E-04 0.2119E-03 0.7755 0.2185 1.039
191 0.9359E-03 0.6517E-04 0.2072E-03 0.7687 0.2255 1.078
192 0.9183E-03 0.6339E-04 0.2029E-03 0.7628 0.2316 1.117
193 0.9021E-03 0.6173E-04 0.1989E-03 0.7576 0.2369 1.155
194 0.8873E-03 0.6019E-04 0.1952E-03 0.7531 0.2416 1.194
195 0.8736E-03 0.5874E-04 0.1917E-03 0.7490 0.2458 1.232
196 0.8608E-03 0.5737E-04 0.1884E-03 0.7454 0.2495 1.271
197 0.8489E-03 0.5607E-04 0.1852E-03 0.7422 0.2529 1.309
198 0.8377E-03 0.5483E-04 0.1822E-03 0.7393 0.2559 1.348
199 0.8272E-03 0.5366E-04 0.1793E-03 0.7367 0.2586 1.387
200 0.8173E-03 0.5253E-04 0.1766E-03 0.7343 0.2611 1.426

Table A.6: Higgs branching ratios for H — gg, vv, Zv, WW and ZZ for Higgs
masses from 141 GeV/c? to 200 GeV/c?. The last column shows to the total
decay width in GeV.



Appendix B

Weight calculation

In order to determine the correct weights that had to be applied to each event while
running the network several effects were taken into account. They are described in the
following subsections.

B.1 NB-teacher

Number of signal and background events

The weight wg normalizes the number of Monte Carlo events for each background process
to the number of Monte Carlo signal events, i.e.

signal
]\;ot

back
N tot

(B.1)

Wg =

N9 s the number of MC events for a given Higgs mass and N4 is the number of
MC events for a particular background process.

Cross-section, branching ratio and acceptance

The backgrounds are normalized the background with the biggest product of cross-section,
branching ratio and acceptance, i. e.

c-BR-A
(6-BR- A)maz

(B.2)

Wy =

Summ of all background events

The weight wy, normalizes the weighted summ of all backgrounds to the number of signal
events, i.e.

(B.3)
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where Ny, is given by

NbaCk: § wS'wo'Ntot
)

and the index ¢ runs of over the different backgrounds.

Final weights

APPENDIX B. WEIGHT CALCULATION

(B.4)

The final weight that was applied during the network training is given by the product

Wieqech = WS * Wy * Wy, (B5)
and given in table B.1.
| Process | Nops | Ny | wg-w, wy Wieach Newp | frumi |

W H120 | 462414 10310 | 1 1 1 0.41 25146.3
tt 365743 | 4221 | 0.604704 1.02518 | 0.619932 7.38 571.951
W 425541 8208 | 0.170034 1.02518 | 0.174316 2.07515 3955.38
Wg 482770 | 5326 | 0.217172 1.02518 | 0.222641 2.65043 | 2009.48
W bbe 226125 2207 1.0 1.02518 | 1.02518 12.2043 180.838
Wbbu 213566 1664 | 0.797348 1.02518 | 0.817428 9.7311 170.998
Wbbr 667004 | 2026 | 0.0965909 1.02518 | 0.0990233 1.17883 1718.66
Weee 244351 503 0.365657 1.02518 | 0.374865 4.46259 112.715
Ween 283361 453 0.284175 1.02518 | 0.291331 3.46816 130.617
Weer 669993 | 618 0.023569 1.02518 | 0.0241626 | 0.287644 | 2148.49
Wee 284217 | 320 0.428956 1.02518 | 0.439759 5.23512 61.1256
Weu 321304 | 437 0.330909 1.02518 | 0.339242 4.03852 108.208
Weelp | 280676 | 794 0.170286 1.02518 | 0.174574 2.07823 | 382.056
Weulp | 256436 560 0.130219 1.02518 | 0.133498 1.58923 | 352.371
Wev2p | 65706 56 0.5867 1.02518 | 0.601475 7.16028 | 7.82092
Wuv2p | 251635 106 0.499411 1.02518 | 0.511987 6.09497 17.3914
Wrv2p | 542703 | 97 0.0414983 | 1.02518 | 0.0425434 | 0.506459 | 191.526
WwWw 216547 104 0.00841751 | 1.02518 | 0.00862949 | 0.10273 1012.36
Wz 184934 | 425 0.0925926 1.02518 | 0.0949243 1.13003 | 376.096
A 913775 2104 | 0.0925926 1.02518 | 0.0949243 1.13003 1861.9

Z2TT 2105900 | 35 0.0252525 1.02518 | 0.0258885 | 0.30819 113.566
QCD 1390660 | 90 0.883838 1.02518 | 0.906096 10.7867 | 8.34365

Table B.1: Weights for the NB-teacher. N, is the number of events passing the
Zpertez-cUt Of 29| < 60 cm and Ny the number of events passing the preselection

cuts. The weights wg, w, and wy are explained in the text above. The final

weight Wieqen, is the product of the three numbers. Ngg, is the number of Monte

Carlo events that are expected to be found in a data sample of 162 pb~1. The

factor fium: shows the fraction Ny/Nez, and describes how much more Monte
Carlo luminosity was available than was available in the data. The final weight

is given by Wieqch-
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Process \ Wy ‘
W H120 | 4.00494e-05

23 0.00211161
W= 0.000240671
Wy 0.00045498

W bbe 0.00155441
Wbbu 0.00148549
Wbbr 0.00155845
W ece 0.00227316
Weep 0.00175676
Weer 0.00024107
W ee 0.00841152
Wep 0.01237
Weelp | 0.00516988
Weplp | 0.00511266
Wev2p | 0.157047
Wur2p | 0.103666
Wrr2p | 0.0968981
ww 8.2534e-05
WZ 0.000391735
VA 0.000516524
ZTT 0.00328132
QCD 0.0104621

Table B.2: Weights for the NB-expert.

B.2 NB-expert

For running the expert the events were weighted according the data luminosity. w,
weights the signal and the different background to the same CEM, CMUP and CMX
luminosity, i. e.

Edet
wdet — clata7 (B6)

Lyc

where det refers to a specific detector which is either the CEM, CMUP or CMX. The
luminosity for the Monte Carlo is given by

(B.7)

with o being the cross-section, BR being the branching ratio and .4 being the acceptance.
The weights are given in table B.2.
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Appendix C

Acceptances
| Cut | CEM | CMUP | CMX | Total |
Initial sample 469837
Nops 454940
Nyeom 114354 | 17866 | 8653 | 135713
Nieptonia 22213 | 12007 | 5151 | 40186
Niso 20187 | 11750 | 4692 | 36587
Net 17865 | 10273 | 4071 | 32171
Naiveto 17676 | 10234 | 4046 | 31922
N.veto 17553 | 10192 | 4020 | 31731
Neonvueto 16893 | 9847 | 3883 | 30590
Njet 0173 | 5433 | 2116 | 16703
Ningte—tag 5IST | 3073 | 1197 | 9444
Niouste—tag 1311 763 315 | 2387

| Acceptance | 0.0114 | 0.00675 | 0.00263 | 0.0208 |

Table C.1: Number of CEM, CMUP and CMX events after each cut. The Higgs
mass was set to my = 110 GeV /c?.
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| Cut | CEM | CMUP | CMX | Total |
Initial sample 450713
Nobso 436430
Nyeom 114274 [ 17376 | 8408 | 134786
Nieptonid 21552 | 12394 | 4888 | 38749
Niso 19534 | 11264 | 4420 | 35183
Ninet 17327 | 9857 | 3870 | 31023
Naiveto 17158 [ 9802 | 3848 | 30780
N-veto 17045 | 9764 | 3830 | 30612
Neonvveto 16375 | 9397 | 3688 | 29435
Njet 8989 | 5189 | 1991 | 16153
Niingle—tag 5164 | 2985 | 1133 | 9274
Nuouble—tag 1256 734 | 262 | 2251

| Acceptance | 0.0118 [ 0.00684 [ 0.0026 | 0.0212 |

Table C.2: Number of CEM, CMUP and CMX events after each cut. The Higgs
mass was set to my = 115 GeV /c?.

| Cut | CEM | CMUP | CMX | Total |
Initial sample 455446
Nopso 441022
Ngeom 128616 19182 8953 | 150084
Nieptonid 21893 12907 5013 | 39725
Niso 19857 | 11781 4532 | 36130
Npet 17645 10322 3950 | 31880
Niveto 17495 | 10272 3924 | 31655
Nveto 17350 10205 3915 | 31435
N onvveto 16623 9841 3762 | 30191
Nijet 9655 2688 2166 | 17487
Naingle—tag 5603 | 3222 1251 | 10061
Naouble—tag 1407 819 303 2524

| Acceptance | 0.0127 | 0.00731 | 0.00284 | 0.0228 |

Table C.3: Number of CEM, CMUP and CMX events after each cut. The Higgs
mass was set to my = 130 GeV /c?.
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| Cut | CEM | CMUP | CMX | Total |
Initial sample 342000
Nopso 330274
Nycom 103962 | 16309 | 7246 | 121408
Nieptonid 17297 | 11032 | 4018 | 32276
Niso 15658 | 10059 | 3649 | 29337
Ninet 13627 | 8748 | 3142 | 25491
Naiveto 13484 | 8693 | 3117 | 25272
N-eto 13380 | 8650 | 3101 | 25109
Neonvveto 12773 | 8315 | 2984 | 24052
Njet 7390 | 4781 | 1721 | 13880
Niingle—tag 4298 | 2840 | 1022 | 8154
Nuouble—tag 1114 719 262 | 2093

| Acceptance | 0.013 | 0.0086 | 0.00309 | 0.0247

Table C.4: Number of CEM, CMUP and CMX events after each cut. The Higgs
mass was set to my = 140 GeV /c?.

| Cut | CEM | CMUP | CMX | Total |
Initial sample 378000
Nopsv 365165
Nyeom 122300 18992 8309 | 141915
Nieptonid 19587 12422 4512 | 36419
Niso 17653 11359 4088 | 33053
Niet 15396 9857 35568 | 28767
Niiveto 15230 9788 3534 | 28515
N.veto 15068 9721 3520 | 28273
Neonvveto 14376 9313 3378 | 27031
Nijet 8445 5419 1954 | 15792
Ningle—tag 5026 3124 1117 9252
Naoubie—tag 1284 790 285 2357

| Acceptance | 0.0138 | 0.00856 | 0.00306 | 0.0253 |

Table C.5: Number of CEM, CMUP and CMX events after each cut. The Higgs
mass was set to my = 150 GeV /c?.
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| Cut | CEM [ CMUP| CMX| Total |
Initial sample 378471
Nopso 365743
Nycom 160059 | 30584 | 13428 | 187427
Nieptonid 37029 | 22295 | 8226 | 65566
Niso 33431 | 20258 | 7465 | 59396
Ninet 30036 | 18137 | 6651 | 53223
Nuiveto 26599 | 15995 [ 5835 | 48266
Neveto 25216 | 15425 | 5625 | 46111
Neonvveto 23521 | 14500 | 5273 | 43147
Njet 4336 | 2714 1034 | 8021
Niingle—tag 2260 | 1425 576 | 4221
Nuouble—tag 448 264 102 805
Acceptance | 0.00618 | 0.0039 | 0.00157 | 0.0115

Table C.6: Number of CEM, CMUP and CMX events after each cut for ¢tt. The
top mass was set to my; = 175 GeV/c2.
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Appendix D

Network performance
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Figure D.2: Final input variable (Q x ) for a Higgs boson mass of 120 GeV /c2.
The integrals of all distribution are normalised to 1.
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D.2 Network training and Output
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Figure D.3: Error for the training (left) and test sample (middle) and the regu-
larisation loss function (right) for Higgs boson masses of 110 GeV/c?, 115 GeV/c?
and 120 GeV/c?. The latter one is the quantity that is actually minimised by the

network.
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Figure D.5: Network outputs for signals (right, red) and background (left,

black). Signal and background are weighted 1:1 for all six Higgs masses.

my = 150 GeV/c?

vertical line shows where the cut was made.
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Figure D.7: Efficiency vs. purity for the NB-teacher for Higgs boson masses
other than 120 GeV/c?. The upper curves (black) show the distributions for the
signal, the lower ones (red) for the background. An efficiency of 100% corresponds
to a cut value of -1 on the network output. Hence the number of signal and
background events are equal and the purity is 50% for both.
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D.3 Correlation matrices

T E' 6o B My Qxn E My
T 100 - - - - - -

ElM 37 100 - - - - - -
O12 1.7 65.6 100 - - - - -
Pl 66 224 25 100 - - - -
M,z -29 701 67.2 544 100 -
Qxn -111 -03 09 07 06 100 - -
E, 79 263 272 -141 7 1.6 100
Mg -08 60 456 -3.6 564 -14 7.6 100

Table D.1: Correlation matrix of network input variables in percent for a Higgs
boson mass of my = 110 GeV/c?.

T B 0o P My Qxn B My
T 100 - - - - - - -
EMY 95 100 - - - - - -
O1o 43 65.6 100 - - - - -
Pk 67 229 251 100 - - - -
M,; 05 702 668 54 100 -
Qxn -125 -07 06 -03 -06 100 - -
E, 57 267 276 -156 68 -1.8 100
Mgz 3 60.1 457 -14 582 -1.8 81 100

Table D.2: Correlation matrix of network input variables in percent for a Higgs
boson mass of mg = 115 GeV/c?.
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T E' 6 P My; Qxn B Mg
T 100 - - - - - - -
El' 198 100 - - - - - -
S1o 144 661 100 - - - - -
Pk? 89 23 247 100 - - - -
M,; 118 71 674 541 100 - - -
Qxn -116 -33 -22 01 -2 100 - -
E, 28 264 272 -155 62 -1.5 100 -
My 142 614 485 -2 60  -33 75 100

Table D.3: Correlation matrix of network input variables in percent for a Higgs

boson mass of mg = 130 GeV/c?.

T L' 01 PtLep My Qxn  Er My
T 100 - - - - - - -
El 283 100 - - - - - -
O12 232 66.2 100 - - - - -
PF? 96 245 264 100 - - - -
M,; 196 71.5 682 54 100 - - -
Qxn 26 -14 -11 -2 15 100 - -
£ 24 264 275 -139 61 -42 100 -
Mg 209 61.8 493 -15 609 -09 65 100

Table D.4: Correlation matrix of network input variables in percent for a Higgs

boson mass of mg = 140 GeV/c?.

T L' 01 PtLep My Q@ xn  Ey My
T 100 - - - - - - -
El 323 100 - - - - - -
O12 274 66.5 100 - - - - -
PF? 102 247 265 100 - - - -
M,; 253 726 69.2 534 100 - - -
Qxn 36 04 06 -03 31 100 - -
£, 05 27 28  -149 65  -48 100 -
Mg 265 629 511 -02 63 06 7.2 100

Table D.5: Correlation matrix of network input variables in percent for a Higgs

boson mass of my = 150 GeV/c?.
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Glossary

barn The unit barn is defined as 1072m?.  Page 22

A Nuclear interaction length. The mean free path between inelastic interactions, measured
in gem™2. Page 29

neuron A single nerve cell, including its axons and dendrites. Page 61

Poisson distribution The definition of a poisson distribution is given in equation 6.1 on
page 113. Page 23

quadrupole A magnet consisting of four poles, used for focusing beams of particles. A
quadrupole focuses the beam in one plane while defocussing it in the perpendicular
direction. Hence a series of quadrupoles with alternating polarity is needed to result
in a net focusing in both planes. Page 21

ramping To excite a magnet with a time dependent excitation current. A time varying
excitation current for a magnet used either to track changing beam energy or to
reduce average power dissipation by reducing the excitation when the magnetic
field is not required. At Fermilab, the Main Ring and Tevatron bending magnetic
field varies with the energy of the accelerating protons in order to confine them
within the Main Ring beam pipe. Page 20

secondary vertex A displaced vertex wrt. the primary vertex. Page 34

shot The injection of protons and anti-protons into the Tevatron in preparation for col-
liding beams operation. Page 20

store To inject circulating beam into an accelerator and keep it there for long periods of
time. In the Tevatron this means to inject protons and p bunches, cog the bunches
to their proper collision points, ramp the Tevatron to 980 GeV and the collider
detector experiments are taking data. In the antiproton source, it means that an
antiproton stack is established. Page 20
synapse The junction across which a nerve impulse passes from an axon terminal to a
neuron or muscle cell. Page 61
2

Xo Radiation length, usually measured in gem=<. It is the mean distance over which a
high energy electron losses all but 1/e of its energy.  Page 29
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List of Acronyms

ANN.......... Artificial Neural Network. See also NN. Page 61

ATLAS....... A Toroidal LHC Apparatus. Page 14

BSC.......... Beam Shower Counters Page 32

CDF.......... Collider Detector at Fermilab Page 26

CERN........ Counseil Européenne pour la Recherche Nucléaire Page /1

CES.......... Central Electromagnetic strip/wire gas chamber Page 29

CETA ........ Centrum fiir  Elementarteilchenphysik und  Astroteilchenphysik
Page 12

CLC.......... Cerenkov Luminosity Counter Page 32

CMP.......... Central Muon Upgrade Page 31

CMS.......... Center of Mass System Page 45

CMS.......... Compact Muon Solenoid. An experiment for the Large Hadron Collider
at CERN. Page 14

CMX ......... Central Muon Extension Page 31

COT.......... Central Outer Tracker Page 29

CPR.......... Central Pre-Radiator Page 29

CPU.......... Central Processing Unit  Page 34

CR............ Cosmic Ray Page 88

CSL........... Consumer-Server/Logger  Page 83

CTEQ........ The Coordinated Theoretical-Experimental Project on QCD  Page 97

DO............ An experiment located at the pp-collider Tevatron, Fermilab. Page 1/

DAQ.......... Data Acquisition Page 33

DOE.......... Department of Energy Page 23
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Double-Pomeron Exchange Page 32

Data Quality Monitoring Page 83
Electromagnetic  Page 29

Fermi National Accelerator Laboratory Page 8
Final State Radiation Page 96

Institut fir Experimentelle Kernphysik Page 12
Intermediate Muon System Page 31

Interaction Point Page 19

Initial State Radiation Page 96

Jet Energy Scale Page 95

Jet Cluster. A CDF jet reconstruction algorithm. Page 85
Layer 00 Page 27

Level-1 Trigger Page 33

Level-2 Trigger Page 33

Level-3 Trigger Page 33

Large Electron Positron collider Page 45

Large Hadron Collider Page 14

Linear Accelerator Page 19

Leading Order Page 51

Monte Carlo. Monte Carlo methods are algorithms for solving various
kinds of computational problems by using random numbers. Page §1

Main Injector Page 19
Minimum Ionising Particle Page 88
Miniplug Calorimeter Page 33

Martin, Roberts, Stirling, Thorne. The authors of a particular set of
PDF’s.  Page 97

Minimal Supersymmetric Standard Model Page 46
NeuroBayes® Page 78

Next-to-Leading Order Page 9
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NN............ Neural Network. See also ANN. Page 61

PDF.......... Parton Distribution Functions Page 97

PDG.......... Particle Data Group Page 56

PEM.......... Plug Electromagnetic Calorimeter Page 29

PHA.......... Plug Hadron Calorimeter Page 29

PHI-T........ Physics Information Technologies Page 12

PMT.......... Photo Multiplier Tube Page 32

QCD.......... Quantum Cromo Dynamics Page 10

QED.......... Quantum FElectro Dynamics Page 38

REF............ Radio Frequency Page 20

SD............ Single Diffraction Page 32

SECVTX..... Secondary Vertex. A CDF b-tagging algorithm based on the reconstruc-
tion of secondary vertices. Page 83

SLo............ Super Layer Page 87

SM............ Standard Model Page 3§

SVT .......... Silicon Vertex Tracker Page 34

SVX IT....... Silicon Vertex Detector II ~ Page 27

TEVATRON . Fermilab’s 2 TeV proton-antiproton accelerator, the world’s highest-
energy accelerator. Page 8

WHA ......... Endwall Hadron Calorimeter Page 29
WLS.......... Wavelength Shifting Page 33
XFT.......... Extremely Fast Tracker  Page 34
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