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Introduction

CDF (Collider Detector at Fermilab) is a particle detector located at Fermi Na-
tional Laboratories, near Chicago. It allows to study decay products of pp collisions
at center-of-mass energy of 1.96 TeV. During its first period of data taking (Runl),
CDF observed for the first time the top quark (1995). The current period of data
taking (Runll) is devoted to precise measurements of top properties and to search
for new physics.

This thesis work is about the top decay channel named 7 + jets. A tt pair
decays in two W bosons and two b quarks. In a 7 + jets event, one out of the
two W decays into two jets of hadrons, while the other produces a 7 lepton and a
neutrino; the 7 decays semileptonically in one or more charged and neutral pions
while b quarks hadronize producing two jets of particles. Thus the final state of a
T + jets event has this specific signature: five jets, one 7 - like, i.e. narrow and with
low track multiplicity, two from b quarks, two from a W boson and a large amount
of missing energy from two 7 neutrinos. We search for this signal in 311 pb~! of
data collected with TOP_MULTIJET trigger. We use neural networks to separate
signal from background and on the selected sample we perform a tf production cross
section measurement.

The thesis is structured as follows: in Chapter 1 we outline the physics of
top and 7, concentrating on their discovery, production mechanisms and current
physics results involving them. Chapter 2 is devoted to the description of the
experimental setup: the accelerator complex first and CDF detector then. The
trigger system is described in Chapter 3, while Chapter 4 shows how particles
are reconstructed exploiting information from different CDF subdetectors. With

Chapter 5 we begin to present our analysis: we use a feed forward neural network
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based on a minimization algorithm developed in Trento University, called Reactive
Taboo Search (RTS), especially designed to rapidly escape from local minima. Using
this neural network, we explore two techniques to select ¢t — 7 + jets events, the
first based on a single net, the second on two neural networks in cascade; both
techniques are described in Chapter 6, together with the variables used as inputs
for the nets. Finally, in Chapter 7 we present a method to measure cross section

on the sample of events selected by neural networks.



Chapter 1
Top and 7 physics

The Standard Model (SM) is a gauge theory, based on the group SU(3)c ®
SU(2)L ® U(1)y, which describes strong, weak and electromagnetic interactions via
the exchange of corresponding spin-1 gauge bosons: eight massless gluons and one
massless photon for the strong and the electromagnetic forces respectively, three
massive bosons, W* and Z, for the weak interactions [1][2][3][4].

According to the Standard Model, the fermionic matter content is organized in

vy t
R

a 3-fold family structure:

Ve U
e= d |’

where (each quark appears in three different colours)

lq] () (q) G (@n (@ (12)
Qd l . 9 ),

plus the corresponding antiparticles.

Il

The gauge symmetry is broken by the vacuum, through the Spontaneous Sym-
metry Breaking mechanism (SSB) [5][6], which generates the masses of the weak
gauge bosons and gives rise to the appearance of a physical scalar particle, the
Higgs boson. The fermion masses are also generated through the SSB mechanism.

The Standard Model is one of the more succesful achievements in modern physics.

It provides a very elegant theoretical framework, which is able to describe all known
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experimental facts in particle physics. But a lot of open questions still remain. Why
fermions are replicated in three (and only three) nearly identical copies? Are the
masses the only difference among the three families? What is the origin of the SM
flavour structure? These unanswered questions and more make difficult to consider
SM as a complete description of the fundamental forces.

Top quark and 7 lepton are both members of the third generation. Studying
them we are at the frontier of experimental known physics. For all these reasons,
the study of these two particles is more and more challenging.

In the following we will briefly review how top and 7 were discovered, their

production and decay mechanisms and the main studies involving them.

1.1 The top quark

1.1.1 Discovery

Top quark is the weak isospin partner of bottom quark. Top quark was first
observed at Fermilab in 1995 by the CDF and D@ collaborations during the so
called Runl at /s = 1.8 TeV. Before its discovery, indirect evidence for its existence
came from a lot of sources [7]. The main theoretical motivation for its existence
is the request of consistency for Standard Model. In particular, renormalizability
demands the absence of triangle anomalies. Such a requirement can be translated
into a condition on the electric charges of all left-handed fermions, condition which
is met in a complete standard family where the electric charged of the leptons plus
those of all color components of the quarks add up to zero. This condition would
be violated for the third family if top quark was absent.

Turning to experimental evidences, observing ete™ — bb at LEP, an asymmetry
in the scattering of the b quark relative to the incoming electron direction was ob-
served: this asymmetry was found in excellent agreement with the Standard Model
expectation, assuming that the b quark is a member of an SU(2) doublet.

Moreover, the experimentally determined absence of flavour-changing neutral
currents such as b — ptpu~X or b — sX, where X is a state with no net flavour

quantum numbers, implies that the b quark is a member of an SU(2) doublet too.
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How could CDF claim the discovery of top quark in 19957 CDF experimenters
looked for £ production with subsequent decay tt — WbWb. The search was per-
formed in those channels where one or both W's decay into electron or muon. These
channels, especially the one with just one lepton in the final state, have good branch-
ing ratios, as we will see later, and a clean signature, due to the presence of one
or two leptons. A fundamental step of the analysis was the identification of jets
originating from b quarks: two algorithm were used, SecViz and SLT, which will be
described in Chapter 4. The observation was claimed [8] when it was seen a large
excess in the signal, inconsistent with the background prediction by 4.80 (fig. 1.1).
The interpretation of the excess as ¢ production was supported by a peak in the

mass distribution for fully reconstructed events (fig. 1.2).
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Figure 1.1: Top quark first observation: number of events before b quark tagging (circles),

after quark tagging (triangles) and expected number of background events(hatched).



6 Top and 7 physics

Aln(likelihood
B o kN

E\‘\\\\‘\\\\‘\\\\‘\
160 170 180 19
Top Mass (GeV.

Events/(10 GeV/Q()
w N
T T

IR A I I N P P TR T i e O SO O
Og0 100 120 140 160 180 200 220 240 260 280
Reconstructed Mass (Ge\?)(c

Figure 1.2: Top quark first observation: reconstructed mass distribution (solid line),
background shape (dotted) and the sum of background plus Monte Carlo for My, = 175
GeV (dashed).

1.1.2 Top production and decays

At hadron colliders, two distinct Standard Model production mechanisms for top
are possible, ¢t production via the strong interaction and single-top production via

the electroweak interaction [9][10].

Pair production

tt pairs are produced via strong interactions as a result of quark-antiquark an-
nihilation or quark-gluon fusion. Fig. 1.3 shows the corresponding leading order
Feynman diagrams. The total cross section in terms of the parton-parton process
1] — tt is
o(pp— 1) =) / dxydas ff (21, 12) f] (22, 12)5 (i) — 16 3; 05(p%), My)  (1.3)
(¥
where f? ( ff ) is the probability density of finding parton i (j) with a given fraction

of the proton (antiproton) momentum between z; and z; + dz; (z2 and z9 + dxs),
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0 is the cross section for the parton-parton subprocesses, § is the center-of-mass
energy of the i-j parton system, «; the strong coupling constant function of the
renormalization scale u and M, is top mass.

In Runll, with a center-of-mass energy of 1.96 TeV, 85% of ¢t pairs are produced
via ¢q annihilation against 15% produced via quark-gluon fusion.

tt production cross section! is small compared with other processes which take
place at the Tevatron. Roughly one in 10 collisions (~ 7 - 10~* Hz rate) produces

top quark pairs.

q t g i B y——
g g
At
q t g t g o000 »—e——I1©
(a) (b) (c)

Figure 1.3: Leading order Feynman diagrams for ¢t production via the strong interaction:

(a) gd annihilation, (b,c) gg fusion

Single-top production

A single top can be produced via electroweak interaction through the following

processes (fig 1.4):

e i¢-channel: a space-like W boson (g% < 0) strikes a b quark in the proton sea,
promoting it to a top quark; this channel is often referred to as W — gluon

fusion, because the b quark arises from a gluon splitting to bb;

e s-channel: rotating the {—channel diagram such that the W boson becomes
time-like (¢ > (my + m?)), one has another process that produces a single

top, through a ¢¢ annihilation;

e associated production: a single top quark may also be produced via weak

interaction in association with a real W boson (¢*> = M?); one of the initial

'For My, = 175 GeV and /s = 1.96 TeV, oy = 6.7 pb, while o45ta ~ 10! pb.
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Figure 1.4: Leading order Feynman diagrams for electroweak production of single top

quarks: (a) s-channel, (b,c) ¢t-channel and (d,e) associated production with a W.

partons is a b quark in the proton sea, as in the ¢-channel.

The cross sections for all three processes are proportional to the matrix element
|Vis|? of the Cabibbo-Kobayashi-Maskawa matrix (CKM). Therefore, measuring the
single top quark production cross section provides a direct probe of |Vj;| and the
weak tbW vertex in general. In table 1.1 cross section for the different channels are

reported.
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cross section (pb) | cross section (pb)
o el 0.447 + 0.002
oNLo 0.959 + 0.002
oLL 0.093 £ 0.024

Table 1.1: Single top quark production cross sections at Tevatron Runll

Top decays

Standard Model predicts that top decays into W boson and a b quark with a
branching ratio greater than 0.998. Other decays, such as t - Ws and t — Wd
are also allowed but suppressed by factor 1072 - 10~* by the square of the CKM
matrix elements V;; and V4, whose values can be estimated, under the assumption
of unitarity of the three-generation CKM matrix, to be less than 0.043 and 0.014
respectively [11].

Top decay width is then [12]

F(t—)Wb):GFMtg (1—MV2V)2(1+2M—V2V)2[1—%(E—§)] (1.4)

872 M} M} 3\ 3 2
For M; = 175 GeV /c? we have
1
D(t — Wb) ~ 1.55GeV — 7, = (r_) ~4-10Ps (1.5)
¢

Top decay width is smaller than the characteristic hadronization time of QCD
(Thag ~ 28 - 1072%) so top decays before hadronizing. However the distance between
its production and decay verteces is order 107 m, well below the spatial resolu-
tion of any detector by many orders of magnitude. Thus, to detect top quark we
need to identify and reconstruct its decay products. Due to top large mass, its
decay products have good angular separations and high momenta in the laboratory
frame. Most of them travel in the central region of the detector and have transverse
momentum exceeding 20 GeV.

W’s lifetime is so short (~ 3-1072?% s) that it instantaneously decays into lepton-

neutrino pair or quark-antiquark pair. The first decay type manifests itself as an
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electron, a muon or a tau. Moreover, a large amount of missing energy from neu-
trinos is present. The hadronic decay of W, on the other hand, manifests itself as
two jets of particles. b quark decays in a shower of particles too and due to its large
lifetime, compared to typical hadronization time, it travels a few millimeters before
decaying.

Depending on the decay of W, we can divide top decays into three different

channels:

e dilepton
Both Ws decay into leptons (electrons or muons). This channel has the lowest
branching ratio (~ 5%) but it is the cleanest among the three, due to its two
leptons that give a clean signature. Main background sources are di-boson and

Drell-Yan events.

e lepton plus jets
One W decays in electron or muon, the other into hadrons. Branching ratio

is greater (~ 30%) but background too (W + jets events).

e all-hadronic
The channel with the greatest branching ratio (~ 45%) but the most difficult
to detect; in this channel, in fact, both W's decay into hadrons, thus giving a
final state with six jets, difficult to separate from the huge background from
QCD multijet events that arise from a 2—2 low generation parton process
producing two energetic (hard) leading jets and less energetic (soft) radiated

gluon jets.

Channels involving a 7 lepton are treated separately. All three channels described
above can have a 7 (or two in the dilepton case) in the final state, but only taus
decaying into hadrons can be revealed: if 7 decays into leptons, the electron or muon
coming from it is not distinguishable from an electron/muon from W.

In fig. 1.5 ¢t production and decay are schematized; in table 1.2 branching ratios

for all possible W decays are reported.
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Figure 1.5: pp collision and top decay
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Table 1.2: Single top quark production cross sections.

1.1.3 Top properties

Mass

Top quark mass is a parameter of fundamental impact in different areas of parti-
cle physics. With a mass? of 172.74+2.9 GeV/c? it is 35 times heavier than the next

heaviest quark, the bottom, and it is the heaviest elementary particle known. A

precise measurement of top mass, combined with improved measurements of other

electroweak parameters, determine important constraints on the value of Higgs bo-

son mass. W mass theoretical calculation, in fact, is subject to radiative corrections

that arise from creation and absorption of virtual quarks and bosons. Quark correc-

2Tevatron summer 2005 combination of CDF and Dy RunI and RunlII results [13]
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tion depends on top mass while boson correction on log(Mpy), where My is Higgs
boson mass. Measuring with high precision W and top masses we can deduce boson
correction and thus obtain a constraint on Higgs mass (see fig. 1.6) [14]. In B and
K physics, moreover, many observables have terms depending on top mass and for
precision Standard Model electroweak fits, M; enters quadratically in many places

as well.

1 —LEP1 and SLD
80.5 - LEP2 and Tevatron (prel.)

68% CL g

150 175 200
m, [GeV]

Figure 1.6: Constraint on higgs mass from top and W mass measurements.Green bands

show theoretical predictions as a function of Higgs mass.

At Tevatron top mass has been measured using different methods. The template
method uses fits to the kinematic variables to determine the most probable jet-
parton assignment for each event. In this way, mass templates can be reconstructed
for different Monte Carlo samples. By comparing the mass distribution observed in

data to the expected templates for Monte Carlo generated signal and background,
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top quark mass can be determined [15]. The best top mass measure obtained so
far is based on a more sophisticated version of the template method applied to
the lepton + jets channel. In this method mass templates are built both for top
quark and W boson; the latter are function of both jet energies systematics (JES) 3
and top mass. Data are fitted simultaneously for top mass and JES, decreasing in
this way the uncertainty due to the JES themselves [16]. Template method has
been also applied to dilepton channel, with the difference that the presence of two
neutrinos implies that one needs extra information to reconstruct the final state.
In the neutrino weighting approach a probability distribution is computed for each
event as a function of top mass and considering all possible lepton-jet combinations,
weighted by their probability. The top mass maximizing the probability is used to
build the mass template [17].

Another method to measure top mass is the matriz element method [18]. The
idea is to calculate for each event a likelihood as a function of my,, according to

matrix elements:

2t
,C(mtop) = Z / Flur

jet—parton

IMIPF (21, 22) f (pr)w (%, y; mugp)dx - (1.6)

where M is the matrix element, F'(z1, 29) the parton distribution function, f(pr) the
probability for the transverse momentum of ¢ system and w(x,y;my,) a transfer
function which describes correlations between final state parton variables x and
observed quantities y. The sum is over all jet-parton combinations. An event joint
likelihood L = [], £(m;) can be finally built and its maximum provides an estimate
of the top quark mass.

In figs. 1.7 and 1.8 CDF and D{ top mass estimates are summarized.

Cross section

The measurement of the production cross section for ¢¢ pairs can be a test of
QCD. A significant deviation of the measured cross section from the predicted value

can signal a non-Standard Model production mechanism. The theoretical value of

3Jet energy corrections will be treated in more detail in section 4.2.2
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Figure 1.7: D) and CDF best top mass measurements.

cross section has been calculated with relatively little uncertainty and for M;,, =
175 GeV and /s = 1.96 TeV it is 6.7 £ 0.5 pb [19].

In Runl the combined estimate of all measurements was 6.5 + 1.7 - 1.4 pb, for
M,,, =175 GeV, obtained with 110 pb~! of data, to be compared with the value
found by D@, which is 5.7 & 1.6 pb*.

In Runll with increasing luminosity we expect to obtain a more precise measure-

ment: CDF preliminary combined measurement made with 350 pb~! is 7.14-1.0 pb [20].

In figure 1.9 theoretical values of cross section as a function of top mass are
shown together with the current best estimate obtained at CDF. In fig. 1.10 all

cross section estimates made at Tevatron during Runll are reported.

“The theoretical value from [19] is 5.19 & 0.33 for My, = 175 GeV and /s = 1.8 TeV
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Figure 1.8: CDF top mass measurement from different analysis.

According to Standard Model, 7 lepton is a fermion, the heaviest of the leptons,

member of the third generation which decays into particles belonging to the first

and second ones. In the following we will give a short description of 7 discovery and

then review its possible production mechanisms and decays and the main studies

involving it.
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Figure 1.9: Theoretical cross section as a function of top mass; red dot is CDF' latest

estimate of cross section.

1.2.1 Discovery

“Since muons exist in nature for no apparent reason, it is possible that other
heavy leptons may exist in nature”. These words are taken from the famous paper
by Tsai, Decay correlations of heavy leptons in et + e~ — [T + [, published in
1971 [21]. In this paper the existence of a lepton heavier than muon is supposed

and its properties are studied.

7 lepton was then discovered in 1975 at SPEAR ete™ collider ring. The idea was
to look for ete™ — LTL~, with LT — e /ut+vand L~ — e /u~ +v. SPEAR had
its first collision in April 1972 and took a sizeable amount of data from the spring
of 1973 trough the spring of 1974. In 1974, Martin Perl started looking at the data
and found events of the form et + e~ — e* + uT+ missing energy, which couldn’t
be explained by conventional backgrounds [22]. Most of those events were detected
at or above a center of mass energy of 4 GeV. The missing energy and missing
momentum spectra required that at least two additional particles were produced

in each event. What were the possible sources of these events? Two sources were
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Figure 1.10: All CDF and D{ cross section measurement

possible: a meson decaying by a two-body decay,

efe - MM, Mt —=etv, M —uvw
or a lepton decaying by a three body decay,

ete” = LTL™, LT —etvv, L — pu v

After detector improvements and the growing of data, looking at the momentum

spectrum of the events, it was possible to determine that it was compatible with a
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spectrum of a three-body decay but in total disagreement with a two-body decay.
The next step was to determine the nature of the two missing particles. Neutron
was eliminated because it was set an upper limit of 0.7 GeV/c? at 95% CL on the
mass possessed by any of the undetected particles and an upper limit of 39% at
90% CL was set on the percentage of e*u™ events containing kaons, photons and
charged particle escaping detection. Thus missing particles had to be neutrinos and
each decay had to have a lepton and two missing neutrinos. The only particle with
this signature was a heavy lepton [23]. It was time to give a proper name to this
new lepton, named U particle - unknown particle - up to then. A greek letter was
chosen, 7, standing for ¢riton, that means third. This name was used for the first
time in [24] where a detailed study of the new lepton just discovered was presented:
7 mass was measured to be 1.9 + 0.1 GeV/c?, 1.2 standard deviations above today

accepted value® and an upper limit of 600 MeV /c? was set on 7 neutrino.

1.2.2 7 production and decays

We have seen that 7 was first produced in ete™ collision. Depending on the
energy of colliding electron and positron, from threshold to about 10 GeV, 7 pro-
duction is dominated by v exchange; from above 10 GeV to Z° resonance, the Z°
exchange contributes trough interference with the v exchange, and obvioulsy it is
the only exchange at Z° resonance. At higher energies, v exchange once again
dominates.

T can also be produced by photoproduction:
Y+ N—=s7rt+r~+ N

where N is a target proton or nucleus and N’ represents the final hadronic state.
Moreover, 7 can come from decay of other particles, such as W and D and B.
Finally, virtual photons emitted in the collision of a pair of heavy ions can produce
a 777~ pair when the ions are at energies much greater than the 7 mass [25].

7 can decay leptonically into electrons and muons or semileptonically into hadrons.

Both decay types are accompanied by neutrinos. In table 1.3 all 7 decays are listed

51777.03%9-3% MeV
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with their branching fractions.

Semileptonic decays are preferably into one charged hadron (one-prong event) or
three charged hadrons (three-prong event). Hadrons are mostly pions; decays into
other charged hadrons, such as kaons, are very rare. In about 73% of one-prong

events and 41% of three-prong events, one or more neutral pion is present.

1.2.3 Physics with taus

T lepton production and decay mechanisms are know with precision. 7 is heavy
enough to have a large variety of decay modes, thus being more sensitive than elec-
trons or muons to new physics related to flavour and mass generation problems.
Tests of lepton universality have been carried out at LEP and at CDF too, as
we will see later: finding out if the leptonic coupling constants for weak currents
are identical for all generations is an important test of Standard Model. Moreover,
Lorentz structure of leptonic 7 decay can be investigated to determine 7 decay
parameters and, exploiting 7 decay into hadrons one can make QCD tests and
precise determination of the strong coupling constant. In the minimal Stan-
dard Model with massless neutrinos, there is a separately conserved additive lepton
number for each generation. All present data are consistent with this conservation
law. However, there are no strong theroretical reasons forbidding a mixing among
different leptons, in the same way as happens in the quark sector. Many models
in fact predict lepton-flavour or even lepton-number violation at some level.
Experimental searches for these processes can provide information on the scale at
which new physics begins to play a significant role. A detailed description of the
studies mentioned above can be found in [26]; now we want to concentrate on the

analysis involving 7 carried out at CDF.

Lepton universality

BR(W —7v)
BR(W:@V) [27] :

The measurement was performed using 72 pb~! of data collected with a trigger re-

At CDF atest of lepton universality has been done measuring the ratio

quiring a 7 lepton and missing energy. As the branching ratio is proportional to the
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Decay mode

Branching ratio (%)

Leptonic decay modes

T — elVely

T — UWulr

17.84 £+ 0.06
17.36 = 0.06

One prong semileptonic decay modes

0 neutrals:

T =TV, 11.06 £ 0.11
T >K v, 0.69 £+ 0.02
T~ — K*(892) v, 1.29 4+ 0.18
total 13.04 £ 0.21
> 1 neutrals:

T = pv, = T U, 25.42 + 0.14
7~ = K 7%, 0.45 £ 0.03
7 =y, — 1 210%, 9.17 + 0.14
77 = 7 37%, 1.08 4+ 0.10
total 36.12 £+ 0.22

Three prong semileptonic

decay modes

0 neutrals:

TT =S av, T T Ty,

9.47 £ 0.10

> 1 neutrals:
T~ = . =a > 1%,
77 = (a17) " vy
T — pO7T_7TOI/T
T = p Ty,
T = ptnT T,

TT = WT U,y

5.63 £+ 0.22

1.6 £0.4

Table 1.3: Branching ratios of 7 decay modes.
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square of the coupling constant we obtain

g _ |BR(W = 1v)
Je BR(W — ev)

= 0.99 + 0.02(stat) + 0.04(syst) (1.7)

in excellent agreement with the theoretical value 1.021 + 0.015 [28].

7% — 77 cross section measurement

A well measured Z° — 77 cross section is very important in all analysis involving
taus. Being 7 the heaviest lepton, various new physics processes can lead to final
states with one or more taus. Standard Model Z° — 77 is thus the main background
in most analysis looking for new particles decaying in 7 pairs.

7% — 77 cross section has been measured on 350 pb~! of data in the channel
were one 7 decays into electron and the other into hadrons. Major backgrounds are
QCD and v + jets events, electroweak events with two real leptons and W + jets

events. The measured cross section is
o(pp — Z°)BR(Z® — 77) = 265 + 20(stat) £ 21(syst) £ 15(lumi)pb (1.8)

in agreement with the NLO prediction of approximately 260 pb [29].

Search for new physics with high mass 7 pairs

Various new physics processes can lead to very high mass 7 pairs. Examples are
7' — tr and MSSM Higgs A — 77. Known backgrounds are from the high mass
tail of Drell-Yan processes Z/vy* — 77 and jets faking 7’s from W + jets, QCD dijet
and multijet events.

One strategy used to search for such processes is by performing a counting expe-
riment. Having selected events with e+ 75, pt+ 7, and 7+ 73, where index A denotes
a decay into hadrons and using the four-momentum sum of lepton and 7 and the
missing energy, an invariant mass m is defined. Applying a cut at 120 GeV/c? the
large peak from Z° — 77 is removed. The region below this cut is used as a con-
trol sample while in the signal region a blind analysis is performed. No excess over
background was seen: a 95% CL upper limit on o(pp — X)BR(X — 77) vector
and scalar bosons was set [30](fig. 1.11).
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As far as MSSM A — 77 is concerned, a search was made for 90 < m 4 < 250 GeV /c?.
One 7 is detected in the decay to e or p and neutrinos, the other in the decay to
hadrons and neutrino. No signal evidence for the mass range considered wa seen,
thus an exclusion limit at 95% CL was set on o(pp — X)BR(A — 77) [31] (see
fig. 1.12).

cross seclions

" == sequential 2
20t Y RB=0.01)
E N 85% CL upper limils
% == wRCIOT
Eul — gcalar
] ..
Ery by
|‘g_ 1k "‘.'*"'-. E
B L
F 1 L 1 .~“!. “"I

100 200 300 aqo 200 600

m, (GeVic')

Figure 1.11: Upper limits at 95% CL on the production cross section times branching ratio
to tau pairs of scalar and vector particles, as a function of particle mass. The figure also
shows the cross section times tau pair branching ratio for scalar neutrinos and sequential

Z' bosons.
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Figure 1.12: Upper limits at 95% CL on Higgs production cross section times branching
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Chapter 2

The accelerator complex and CDF

detector

The Fermi National Laboratories (Fermilab) host the most powerful particle
accelerator working at present in the world. While we are speaking a new and
more powerful one, the Large Hadron Collider (LHC), is being built at CERN
laboratories, near Geneva, but for the next few years Fermilab will be the only
laboratory capable of taking us up to a dimension of less than 10~'® m, looking at

hadron constituents, the quarks.

Fermilab, originally named the National Accelerator Laboratory is located in
Batavia, near Chicago (Illinois); it was commissioned in 1967 and in 1974 was re-
named in honor of Enrico Fermi. Its accelerator complex accelerates protons and
antiprotons and makes them collide in correspondence of two detectors, CDF' and
D{). Two major components of the Standard Model were observed at Fermilab: the
bottom quark (May-June 1977) and the top quark (February 1995). In July 2000,

Fermilab experimenters announced the first direct observation of the tau neutrino.

In the following sections, we will describe Fermilab accelerating complex and
how protons and antiprotons are produced, but first we will spend a few words on

a very important accelerator parameter, luminosity.
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2.1 The accelerator complex

2.1.1 Instantaneous and integrated luminosity

While building an accelerator, a fundamental construction parameter is the lu-
minosity we want to achieve. Luminosity is a parameter that directly rises from the
computation of the probability W;_, for a generic process ¢ — f, where 7 and f are
the initial and final states, respectively. In our case, the initial state is made up by
two particles, a proton and an antiproton, while the final state by a generic number
N of particles. The probability amplitude, emphasizing the overall four-momentum

conservation, has the general structure
(fIT|p;p) = (21)" 6(Ps — pp — pp) (Py | M| 1y pp) (2.1)

where it is supposed that each particle a in the initial and final states is described
by a narrow wave packet that obeys, as obvious, on-shell mass condition, the Klein-

Gordon equation, while, moreover, it is peaked around a four-momentum p,:

Fi@) = @lo) = g [ dab@) 5@ - m?) f@ e (22

(2ﬂ)3/2

(hiding all remaining quantum numbers). Integrating the square modulus of 2.1
over its space dependences and after other manipulations, that use approximations
permitted by the narrowness of the wave packets, assuming that protons and an-
tiprotons are grouped in bunches, we end up with the transition probability W,

given by

Wis = (2m)" 6*(Py — pp — pg) [{f [M] ppi pp)|” /d4$ pp(x) pp(z)  (2.3)

1
4wy wp
where the w’s are energies, v is the frequency of the crossing of the proton and
antiproton bunches and the p’s, that have the meaning of probability density of

particle location, are the time component of conserved four-currents given by
i (FFOuF — FO,F7) (2.4)

The square amplitude in 2.3 is what could be computed by a theory (in fact the
Standard Model). What appears in the integral depends on the experimental setup;
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the integral itself has dimension of inverse cross section and is a measure of the
chance the incoming protons and antiprotons have to come in interaction.

We can assume that the densities p are Gaussian near the collision points and that,
for simplicity, the collisions themselves are head-on; then, parametrizing the bunches
path by s and calling z(s)y(s) a plane orthogonal to the path in s, we can write

approximately

N+ 22 y2 (sxwt)?

(2m)6B/?) 0, 0 0

o~ (z(s), y(s), sEot) = e 208 204 2k (2.5)

where + refers to proton/antiproton, N is the number of particles in a bunch, v is
the speed of the bunches and the o’s are radii of the portion of the the crossing

bunches that effectively overlap. In 2.3 we have consequently

[ 5 (@) oo

I/A/d:rdydsdt pp(z, y, s+ vt) ps(z, y, s —vt) (2.6)

N, N; A
= V——— 2.7
V47r0zay 2v (2.7)
A
= L— 2.
oy (2.8)

where A is the whole lasting of the data taking, long with respect to the duration of
each effective crossing of the colliding bunches, and (the lab reference frame is also

the center of mass frame in our case)

I - - - >
=Pl i =l ey 9)
Thus we have
dVVHf 4 (27)4 2

-~ 5Py — — s M I D5 L 2.10
di ( f— Dp pp) 2w|ﬁ\ ‘<f| |ppapp>| ( )

2 4 4P _ M
= OB T m ) M P £ (211)

V (p - pp)? = m2m2
= oy L (2.12)

L is usually called (instantaneous) luminosity, while its integral over time L is called
integrated luminosity. Greater the luminosity, greater the chance to observe an

interaction. For this reason the Tevatron has undergone a series of improvements
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during its life in order to increase this fundamental parameter. In the first period of
data taking, from 1992 to 1996 (Runl) the accelerator, operating at a center-of-mass
energy of 1.8 TeV, delivered to each experiment an integrated luminosity in excess
of 160 pb~!. Runl was followed by a long shutdown period begun in 1996; during
this period both the accelerator complex and CDF detector were improved in order
to increase the number of expected events. After detector and accelerator upgrades,

since 2001 a second period of data taking has begun (RunlII).

Detector improvements will be treated later; as far as luminosity is concerned,
the number of bunches per beam was increased from 6 to 36 and finally to 108, while
maintaining the average number of particles roughly the same as in Runl. In fact
increasing the number of particles per beam, the main problem one has to face with
is the superposition of multiple pp interactions within the same bunch crossing. If
this happens, event reconstruction is much more complicated. So the best thing we
can do is leaving the number of particles per bunch unchanged while increasing the
number of bunches (see figure 2.1).

But a limiting factor in increasing the number of particles per beam is antiproton
production: its rate is much smaller than proton one, so during the upgrade period
a lot of effort was spent to improve antiproton storage and recycling. In figure 2.2

RunlII peak luminosity course is shown. The best value obtained so far is 1.40 - 1032

ecm—2s7t [1].

2.1.2 The accelerator complex

The accelerator chain is drawn in figure 2.3. We give a brief description of its

components and then describe in more detail proton and antiproton production [2].

Cockroft-Walton accelerator

A Cockroft-Walton accelerator is used as the first stage of acceleration. It con-
sists of a multi-step voltage divider which accelerates negative hydrogen ions up to

750 keV through constant voltage steps.
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Figure 2.1: Average number of interactions per crossing for different beam conditions:
with 108 bunches per beam a greater luminosity can be achieved without increasing the

number of interactions per crossing.
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Figure 2.3: Schematic view of the accelerator complex.

Linac

The second stage of the accelerator chain is a linear accelerator, 150 meters long.
This device induces an oscillating electric field between a series of electrodes which
accelerates up to 400 MeV negative hydrogen ions coming from Cockroft-Walton

accelerator.

The Booster

The Booster is the first synchrotron in the chain of Fermilab accelerators. It
consists of a series of magnets around a 150 meter circumference. It takes 400 MeV
protons obtained from the Linac - after electron stripping - and accelerates them up
to 8 GeV.



2.1 The accelerator complex 33

The Main Injector

The Main Injector is a 3 km circumference synchrotron. It replaces the Runl
Main Ring, with a higher repetition rate for stacking antiprotons. It accelerates 8
GeV protons from the Booster to either 120 GeV or 150 GeV, depending on their
destination: 120 GeV if protons are used to produce antiprotons, 150 GeV if they
have to be injected in Tevatron. It is also capable of decelerating antiprotons, a
very useful feature to recover unused antiprotons when Tevatron is not in colliding

mode.

The Recycler Ring

The Recycler is a storage ring constructed primarily by permanent magnets
located above the Main Injector magnets. It receives 8 GeV antiprotons from Main
Injector and stores them for an indefinite period of time, next sending them back to
the Main Injector.

This device, a Runll innovation, allows to recycle % of antiprotons that still
circulate in the Tevatron at the end of a store! (75 % of initial antiprotons), thus
increasing by a factor two the average luminosity. Moreover, due to its permanent

magnets, it avoids wasting antiprotons in case of power losses.

The Tevatron

The Tevatron is the largest of Fermilab accelerators, with a circumference of
about 6 km. It accepts protons and antiprotons from Main Injector and accelerates
them from 150 GeV to 980 GeV, using cryogenically cooled magnets. Magnets
are cooled by liquid helium (T = 4 K) and provide a 4.5 T field. 36 bunches of
protons and antiprotons, with 392 ns separation, circulate in the same beam pipe,
kept apart by electrostatic separators. They collide in two intersection points, in

correspondence of CDF and D{) detectors.

LA store is when the beam is kept circulating continuously in the Tevatron; can be a HEP store

(with protons and antiprotons) or proton-only store for studies and maintenance.
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Proton production and acceleration

The first step of protons production is ionization of gaseous hydrogen in H~™
ions; ion energy is increased up to 750 KeV by the Cockcroft-Walton accelerator
and then up to 400 MeV through Linac. The ion beam so-obtained is focalized on a
thin graphite layer in order to strip the electrons off and obtain protons, which are
accelerated up to 8 GeV by the Booster. Using radio-frequency cavities protons are
collected into bunches which are then injected in the Main Injector.

If protons are needed to produce antiprotons, they are sent to a nickel target
with an energy of 120 GeV, while if they are needed for a collision, they are injected
in Tevatron with an energy of 150 GeV.

antiproton production and acceleration

Antiprotons production starts in the Target, where more than 6 - 102 protons
strike a nickel target every 2-3 seconds. A lithium lens collects and focuses all
particles emerging from the target and a bend magnet separate antiprotons from
all other negatively-charged particles. antiprotons produced in this way, with an
energy of about 8 GeV, are then subject to stochastic cooling in the Debuncher
Ring and stored in a storage ring, the Accumulator. In the Accumulator, a system
of radio-frequency cavities collects antiprotons in bunches that are then injected in
the Main Injector and finally in the Tevatron, where they reach their final energy of
980 GeV. antiproton production rate is much smaller than proton one: an antiproton

is produced every ~ 7 -10% protons striking the nickel target.

2.2 CDF detector
CDF history can be divided in different periods:
e Run 0 (1988 - 1989), ~ 4.5 pb~! of integrated luminosity,
e Run Ia (1992 - 1993), ~ 19 pb™!,

e Run Ib (1994 - 1996), ~ 90 pb~,
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e Run II (2001 - today) ~ 1 fb~*.

These different periods reflect the improvements that CDF' has undergone in its
life, in order to increase the number of collected events. In fact the number of events

for a process, with cross section o, we expect to detect is

Nevents = 0-6/5

where € is the detector efficiency for that process, £ is the instantaneous luminosity
and the integral is over the period of data taking. To increase o we have to increase
the center-of-mass energy, while, as we have seen in the previous section, to increase
luminosity we have to act on bunch frequency and antiproton storage and recycling.
Increasing € means improving the detector acceptance; from Runl to Runll there
have been several improvements on CDF to achieve this goal as we will point out
describing the detector.

In the following, after a brief remark on CDF coordinate system, we will describe
the detector from inside to outside, following the trajectory of a particle [3] [4] [5].

Starting from the interacting point, we immediately find the tracking system
that, being immersed in a magnetic field, allows us to measure particle momentum
in addition to its trajectory. Then, outside the solenoid coil, we find calorimeters
and further on muon detectors. A time-of-flight detector, Cherenkov luminosity

counters and diffractive events detectors complete the CDF' design.

CDF coordinate system

CDF detector with particular attention to coordinate system is shown in fi-
gure 2.4: z axis is along the beam line; +z is proton travel direction (east) while
-z is is antiproton one (west); the interaction point is at z=0. z axis is north-south
direction (+z = north, -z = south), y axis is up-down direction ( +y = up, -y =
down).

r and 6 are the radial distance and the polar angle from the beam line; § = 0° is
in the +z direction, # = 90° is straight up and # = 180° in the -z direction. Usually

instead of 6, a function of 6 is used, called pseudo-rapidity, defined in the following
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way: .
n = —ln(tani) (2.13)

Particles perpendicular to the beam line have n = 0. 7 is preferred to 6 because
differences in 7 are Lorentz invariant and after the collision, z-component of the
system is not exactly 0, so particles are subject to boosts on z-direction. ¢ is the
azimuthal angle around the beam line; ¢ = 0° corresponds to north, ¢ = 90° to up
and ¢ = 180° to south.

| = -logCtan(e/2)) |

polar angle &

z = distance along beamline; +z = p direction (east), -z = pbar direction (west); z =
O interaction point

Figure 2.4: View of CDF detector and its coordinate system.

Tracking System

CDF inner tracking system consists of three silicon detectors responsible for high

precision measurements and a drift chamber devoted to add further information for
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track reconstruction; going in more detail and starting from the interaction point

we find:

e Layer 00 (L00)
A single sided silicon micro-strip detector located immediately outside the
beam pipe, at a radius of approximately 1.6 cm and covering |n| < 4.0 (fi-
gure 2.5) [6]. New for RunlI, it provides more precise track measurements and

better b quark tagging efficiency compared to the other tracking devices.

e Silicon Vertex Detector (SVXII)
A double sided silicon micro-strip detector, located outside L00, extending
from r = 2.1 ¢cm to 7 = 17.3 cm and covering |n| < 2.0 (figure 2.6). It consists
of 5 layers and its strips are aligned axially to the beam on one side, while in
the other side are aligned with a small (1.2°) angle stereo (layers 2 and 4) and
with a 90-degree stereo (layers 0, 1 and 3). It provides high precision tracking

and secondary vertex detection.

e Intermediate Silicon Layer (ISL)
A double sided silicon micro-strip detector, with axial strips on one side and
small angle stereo strips on the other side. It consists of three layers, positioned
at different radii (figure 2.7): central layer is at r = 22 cm while forward and
backward layers are respectively at » = 20 cm and r = 28 cm. They also have
different 7 coverage: |n| < 1.0 for central layer and 1.0 < |n| < 2.0 for the

others.

e Central Outer Tracker (COT)
An open cell drift chamber with argon-ethane gas in a 50/50 mixture. It’s
located outside SVX from r = 40 cm to r = 137 c¢m, covering |n| < 1.0, thus
providing tracking in the central regions of the detector (figure 2.8). Its 2520
cells are divided into 8 super-layers, each containing twelve layers of sense
wires. The odd super-layers have wires parallel to the beam (azial super-

layers) while the even have wires at a small ( 2.0°) stereo angle (stereo super-
layers). COT replaces the Run I Central Tracking Chamber (CTC), featuring
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a greater number of sense wires, enhanced stereo coverage and faster drift

times.

narrow
module=— §

Figure 2.6: Schematic view of SVXII
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Figure 2.7: ISL position.

Figure 2.8: COT section: the eight superlayers (left) and the alternation of field plates

and wire planes (right)
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Time-of-flight detector

Located outside COT (at r = 140 cm), it provides time-of-flight information to
improve particle identification capabilities in the central detector (especially for K-7
discrimination) [7]. New for RunlI, it consists of 216 scintillator bars, each running
the length of COT (figure 2.9) and arranged cilindrically around it, with a PMT at

each end of each bar.
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Figure 2.9: Time-of-flight detector position.

Calorimeters

CDF' calorimeter system consists of an electromagnetic section followed by a
hadronic one. Both sections are made up of sampling calorimeters, with alternate
layers of absorber and scintillator material. Scintillator tiles are read out by wave-
length shifting fibers (WLS) embedded in the scintillators. WLS fibers carry the
light out to photomultipliers tubes located in the backplane of the calorimeters.

Electron and photon energies are measured in the electromagnetic sections: par-
ticles interact in the absorber producing an electromagnetic cascade; the readout
system (scintillator and PMT) measures the excitation caused by the cascade and
if the calorimeter is thick enough to contain the whole cascade, readout response

is proportional to the energy of the particle that produced the cascade. In CDF
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| range | A | Ap
0.-1.1 | 15° | ~0.1
11-18 | 75| ~0.1
18-21 | 7.5°| ~0.16
2.1-3.64| 15° | 0.2- 0.6

Table 2.1: Calorimeter segmentation

electromagnetic calorimeters are made up of 4 mm lead layers alternate to 4 mm

scintillator layers. Energy resolution is about 1\%’ for central calorimeter and %’

for plug one. Electromagnetic calorimeters are organized in towers pointing to the
interaction point. Calorimeter segmentation is different for different 7 ranges (see
table 2.1): A¢ is 7.5° or 15°, while An goes from 0.1 to 0.6.

Hadron energies are measured in hadronic calorimeters: these have the same ge-
ometry and segmentation as electromagnetic ones but differ in the absorber material
(iron instead of lead) and absorber layers thickness (3-5 cm). Hadrons interacting
with absorber material produce nuclear interaction cascades: these are much longer
and broader than electromagnetic and contain also invisible energy from neutrons,
neutrinos and soft particles, so due to larger energy fluctuations with respect to

electromagnetic sections, energy resolution is lower (%’ for central calorimeter and

%’ for plug one).

According to the position in the detector (Central, Endwall and Plug) and their

specific function (revealing hadronic or electromagnetic energy), CDF calorimeters

are:

e Central Electromagnetic Calorimeter (CEM) A Pb/scintillator sam-
pling calorimeter, 31 layers deep; it is located outside the solenoid in the cen-
tral part of the detector and provides energy measurements of electromagnetic

showers in the central region of the detector (|n| < 1.1).

e Central Hadronic Calorimeter (CHA) A Fe/scintillator sampling calorime-

ter, 32 layers deep. It covers |n| < 0.9
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e Endwall Hadronic Calorimeter (WHA) A calorimeter similar to CHA,
but 15 layers deep and covering 0.8 < |p| < 1.2.

e Plug Electromagnetic Calorimeter (PEM) An electromagnetic calorime-
ter (Pb/ scintillator) covering the plug region of the detector (1.1 < |n| < 3.6).
It is located outside the barrel end of COT, one plug on each side.

e Plug Hadronic Calorimeter (PHA) Located beyond PEM, it’s a Fe/scintillator

calorimeter, 23 layers deep.

Plug and endwall calorimeters are visible in figure 2.10; for central ones see
figure 2.11.
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Figure 2.10: Longitudinal view of the tracking system with plug and endwall calorimeters.

Shower and pre-shower detectors

A pre-shower detector, the Central Pre-Radiate Chamber (CPR) is placed im-
mediately in front of CEM (figure 2.11). It consists of scintillator tiles coupled
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Figure 2.11: Schematic view of the inner parts of CDF detector.

to wavelength shifter fibers read out by photomultipliers. With its 3072 channels,
CPR collects charge deposited by showers originated by interaction of particles with
tracking system and solenoid material. It can help in discriminating pions from
electrons and photons, because the latter deposite in the chamber a greater amount
of energy.

A shower maximum detector, the Central Electromagnetic Strip (CES), is lo-
cated in the CEM, at a distance r = 184 cm (figure 2.11). It is a drift chamber with
strips and wires placed perpendicularly to each other. Strips are placed orthogonally
to z-axis and their spacing is 2 cm while distance between wires is 2.5 cm. CES gives
information about electromagnetic shower position and thus allows a more precise
measurement of electromagnetic objets, because it provides a more refined azimuthal

segmentation with respect to calorimetric towers.

Muon detectors

Muon detectors are divided in muon chambers and muon scintillators (figure 2.12).

The first are single wire chambers operating in proportional mode and depending
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on their location are divided in

e Central Muon Chambers (CMU) Located at the outside edge of CHA, it
covers |n| < 0.6. Tt is divided in 2304 cells, organized in 144 modules.

e Central Muon Upgrade (CMP) Located along the walls, floor and top of
CDF detector, it serves as a confirmation of CMU tracks. It covers |n| < 0.6

and consist of 1068 cells, arranged in 4 layers.

e Central Muon Extension (CMX) An extension of CMU in order to cover
0.6 < || < 1.0.

e Barrel Muon Chambers (BMU) Located on the outside of the toriods,

they provide muon detection in the forward region, covering 1.0 < |n| < 1.5

Muon scintillators provide fast timing and trigger counters for muon chambers.

Each muon chamber has its own scintillator:

e Central Scintillator Upgrade (CSP) and CSP Wall Scintillators (CSW)
Both located outside of CMP chambers, CSP, new for Runll, covers the top
and the bottom of the detector, while CSW covers the north and south walls

e CMX Miniskirt Scintillators (MSX) Scintillator tiles located in the inner

surface of CMX miniskirt 2 chambers

e Barrel Scintillator Upgrade (BSU) Scintillator tiles located on the outer
surface of BMU chambers

e Toroid Scintillator Upgrade (TSU) Scintillator tiles located on the inner

face of the toroids, adding additionale triggering power for forward muons

BSU together with TSU are sometimes referred to as ISU (Intermediate Scintillator
Upgrade), while BMU+BSU+TSU make the Intermediate Muon Detector (IMU).

2The lower part of CMX, due to the floor, has a different geometry; that part is called miniskirt
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Figure 2.12: Schematic view of the whole CDF detector.

Cherenkov Luminosity Counters

To have an estimate of luminosity one has to count the number of pp interac-
tions per bunch crossing. This goal is achieved through two Cherenkov Luminosity
Counters (CLC) [8]. They are located inside the endplug calorimeters, in the for-
ward and backward regions (3.7 < |n| < 4.7). Each module consists of 48 thin,
long, conical, gas filled Cherenkov counters. These counters are arranged around
the beam pipe in three concentric layers with 16 counters each and pointing to the
center of the interaction region (see figure 2.13). Prompt particles coming from the
pp interactions traverse the full length of the counter and generate a large amplitude
signal in photomultipliers. On the contrary, particles originating from beam halo
interactions or from secondary interactions of prompt particles in the detector and
beam pipe material, are softer, traverse the counters at large angles with shorter
path lenghts and their light suffers a large number of reflections, giving thus a much

smaller signal than prompt particles.
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Figure 2.13: Schematic view of the luminosity monitor inside a quadrant of CDF.

Forward detectors

In the forward region three detectors provide measurements of diffractive events

an forward particles (figure 2.14):

e Miniplug Calorimeter (MNP) A Pb/liquid scintillator sampling calorime-
ter, located inside the central hole of the toroids, and covering 3.6 < |n| <
5.2.

e Beam Shower Counters (BSC) Set of scintillator counters located along
the beampipe at various distances from the interaction point (four on the west

side and three on the east side).

e Roman Pot Spectrometer (RPS) It consists of three scintillator fibers
pots located along the beampipe on the west side, beyond the last BSC and

about 57 m far from the interaction point.
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Chapter 3

Trigger and DAQ system

At CDF, a 3-level trigger architecture was chosen (fig. 3.1). Level 1 (L1) always
occurs at a fixed time (~ 5 ps) after the collision: using a custom designed hardware
it makes a raw reconstruction of physics objects and takes a decision just counting
them. Its input rate is 1.7 MHz while its accept rate is ~ 20 KHz, limited by the
following trigger level. Level 2 (L2) is a combination of hardware and software
trigger making a decision on a partially reconstructed event. Its average processing
time is ~ 30 us and its accept rate ~ 350 Hz, limited by event building. Full detector
resolution is finally used by Level 3 (L&), a purely software trigger that exploits fully
reconstructed events, giving a final accept rate of ~ 75 Hz, limited by tape writing.

A trigger unit can be schematized as a decision unit whose inputs are synchronous
streams processing info from the different parts of the detector. In the following, we

will describe the three levels in more detail [1].

3.1 Level 1

L1 decision unit [2] is fed with inputs from three different streams, one finding
calorimeter based objects (L1CAL), the second muons (LIMUON) and the third
COT tracks (LITRACK).

o L1CAL exploits information from all calorimetric towers, both electromagnetic

and hadronic [3]. Calorimeter triggers are divided in object triggers (electrons,
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Figure 3.1: The Runll trigger system block diagram.

photons and jets) and global ones (total and missing transverse energies). The
first are obtained applying thresholds to individual towers, electromagnetic
only for electrons and photons, also hadronic for jets, whereas threshold for

global triggers are applied after summing on all towers.

L1IMUON finds single and di-muon objects. It exploits information from muon
detectors - wire chambers and scintillators - and from tracking system. Trigger
primitives are derived from single hits or coincidence of hits for the scintilla-
tors and pairs or patterns of hits (muon stubs) on projective wires from wire
chambers. Hits and stubs are matched to tracks from L1TRACK.
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e L1ITRACK finds COT tracks reconstructed by a online track processor, the
eXtremely Fast Tracker (XFT'). The algorithm first digitizes COT hits and
classifies them as prompt or delayed, depending on their drift time, thus pro-
viding a raw timing information in the hits. Then hits are analyzed by Finder
modules, each working independently from the others and reading the 48 wires
contained in four adjacent COT cells (fig. 3.2). Each Finder determines if its
cells contain a segment comparing classified hits with a list of prompt and
delayed hits that actually correspond to a line segment. Once the Finder has
completed its task, the Linker looks for combinations of three or four segments

that could belong to the same track.

L Layer 1 Layer 2 Layer 3 Layer 4

O b by b b b b L
50 60 70 80 90 100 110 120 130 140

Figure 3.2: A close up view of a track in the COT. All cells in all four axial layers are

shown. The relevant Finder in each layer is highlighted

3.2 Level 2

L2 trigger takes a decision on a partially reconstructed event, exploiting data
collected from L1 and from the calorimeter shower maximum detectors (XCES and

XPES triggers, receiving data from central and plug shower maximum detectors
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respectively). Simultaneously a hardware cluster finder (L2CAL) processes data
from calorimeters and a track processor (SVT) finds tracks in the silicon vertex
detector. After all this information is stored in the processors, the event is examined

to find out if trigger criteria is satisfied.

e L2CAL is a cluster finding algorithm: it combines calorimeter towers to form
clusters, thus allowing a more precise trigger on calorimetric objects (fig. 3.3).
Each cluster starts with a tower whose energy is above a seed threshold!. Once
a seed tower is found, all adjacent towers above a second threshold -shoulder
threshold, lower than the seed one - are added to the cluster. This procedure
goes on until no towers adjacent to the cluster have energy above the shoulder
threshold. After a complete cluster is found, the total electromagnetic and
hadronic energies are calculated and recorded along with the number of towers

and the n and ¢ coordinates of the seed tower.

e XCES and XPES can help reducing trigger rates for electrons and photon
triggers because requiring a cluster above threshold in a shower maximum
detector can eliminate background from single-phototube discharge. Moreover,
since the spatial resolution in shower maximum detector is much smaller than
a calorimeter wedge, matching tracks from COT to XCES allows a better

identification of electrons.

e SVT is a track processor designed to detect secondary vertices (fig. 3.4)[4] [5].
Its inputs are the list of axial COT tracks found by XFT and the data from
SVXII. First SVXII hits are found by a hit finder algorithm and stored in
hit buffers; then association between XFT and SVXII tracks is performed by
Associative Memory (AM), a massive parallel mechanism based on the search
of roads among the list of SVXII hits and XFT tracks; a road is a coincidence
between hits on four of the silicon layers and XF'T tracks. Upon receiving a
list of hits and tracks, each AM chip checks to see if all of the components
of one of its roads are present in the list of hits and XF'T tracks. When AM

has determined that a road might contain a track, the road’s hits are retrieved

Ltypically a few GeV.
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from the hit buffer and passed to a track fitter to compute track parameters.
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Figure 3.3: Level2 calorimeter cluster finding.

3.3 Level 3

After being accepted by L2, all event data are available to the Event Builder
which fully reconstructs the event and sends it to the Level 3 trigger where the

final event filtering is done. Events surviving L3 cuts are written to tape for offline
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Figure 3.4: Architecture of SVT trigger.

analysis. Event reconstruction and filtering is made on a farm of Linux PC’s; in order
to ensure a high level of agreement between results in L3 and offline analysis, the L3
code is based on the offline production reconstruction code. Offline reconstruction

will be described in next chapter.
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Chapter 4
Reconstruction of physical objects

In this chapter we will describe how we can identify the particles produced in
a pp collision starting from the raw outputs of the different parts of the detector.
First we will see how information from silicon detectors and COT' are used to re-
construct charged particle trajectories. Then we will move to the reconstruction of
jets of hadronic particles, based on calorimeters. A section will be devoted to the
correction of jet energies for different error sources introduced by calorimeters and
reconstruction algorithms. After a brief description of the identification of leptons
and photons, we will end with the different methods used at CDF to identify a jet

of particles originated from a b quark.

4.1 Tracks

Track reconstruction is performed using data from silicon tracking system and
COT. The reconstruction is based on the position of the hits leaved by charged
particles on detector components. Combining these hits one can reconstruct particle
trajectories.

Which information do we obtain from the different parts of the tracking system?
L00 has microstrips parallel to z axis, in order to measure the ¢ coordinate of a hit.
SVXII is composed of 5 layers with microstrips on each side of the layers. Each layer
has strips parallel to z axis on one side in order to measure ¢ coordinate. Layers

1, 3 and 5 have on the other side strips perpendicular to z axis thus providing a
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measure of z position. Layers 2 and 4 have strips with a small angle with respect
to ¢ strips. These strips are used to combine the r/¢ measurement of a track with
its z measurement. ISL provides r/¢ measurements of a hit, because its layers have
axial strips on one side and small stereo angle on the other. COT provides r/¢
measurement too, because half of its layers have wires parallel to z axis and the
others have wires at a small stereo angle.

Different algorithms are devoted to track reconstruction: those used for trigger
purposes - XFT and SVT - are described in section 3; at the end of this section we
will describe those developed for offline tracking. But before going in more detail
on tracking algorithms, it is worth to spend a few words on particles trajectories.

The whole tracking system is immersed in a 1.4 T magnetic field. Charged
particles moving in a homogeneous magnetic field describe a helix trajectory. The
helix axis is parallel to the magnetic field !. Measuring the radius of curvature of
the helix, one can obtain the particle’s transverse momentum, while the longitudinal
momentum is related to the helix pitch. To describe a helix five parameters are
needed, three to parametrize the circle in 7/¢ projection and two to parametrize the
trajectory in z. At CDF the following parameters are used to describe the helix of
a charged particle:

a = (cot8,C, 2y, D, ¢p)

where

cot @ is the cotangent of the polar angle at minimum approach to the origin,

C is the half curvature, whose sign, by definition, is the same as the particle,

2p is the position on z axis at point of minimum approach to the helix origin,

D is the signed impact parameter i.e. the distance between the helix and the
origin at minimum approach; if (zg,y) is the center of the circle, then the

impact parameter is calculated as

p=a/A i

L= 1 is the radius of the circle and @ the particle charge,

where p = B0 = 300

LAt CDF the magnetic field direction is -2.
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e ¢ is the direction in 7/¢ of the helix at the point of minimum approach.

In figures 4.1 and 4.2 CDF track parameters and the relation between particle
charge sign and impact parameter is showed.

Having described the parametrization of a particle trajectory, now we’ll turn on
the main tracking algorithms developed for offline analysis, the Standalone and the

Outside-In algorithms.

Charge:
Q =ssign(C)

Helix radius:
p =Q/2C

(X0,Y0)

Distance from
origin :

r=QD +p

Origin of circle:
X0 =r cos@y+QT172)
YO = sinp,+Q12)

Figure 4.1: Parameters used to describe a track at CDF.

4.1.1 Standalone tracking

Standalone tracking [1] is a strategy to reconstruct tracks in the silicon detector.
It consists in finding triplets of aligned 3D hits, extrapolating them and adding
matching 3D hits on other layers. This technique is called standalone because it
doesn’t require any input from outside: it performs tracking completely inside the

silicon detector.
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y A1 positively charged, D positive
2. negatively charged,D positive
3. positively charged, D negative
4. negatively charged,D negative

Y

37
\4

Figure 4.2: Relation between particle charge sign and impact parameter.

First the algorithm builds 3D hits from all possible couples of intersecting axial
and stereo? strips on each layer. Once a list of such hits is available, the algorithm
searches for triplets of aligned hits. This search is performed fixing a layer and doing
a loop on all hits in the inner and outer layer with respect to the fixed one. For
each hit pair - one in the inner and one in the outer layer - a straight line in the r-z
plane is drawn. Next step consists in examining the layer in the middle: each of its
hits is used to build a helix together with the two hits of the inner and outer layers.

The triplets found so far are track candidates. Once the list of candidates is
complete, each of them is extrapolated to all silicon layers looking for new hits in
the proximity of the intersection between candidate and layer. If there is more than
one hit, the candidate is cloned and a different hit is attached to each clone. Full

helix fits are performed on all the candidates. The best candidate in a clone group

2We recall that azial strips are parallel to z axis, while stereo strips have a small angle with

respect to z axis.
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is kept, the others are rejected.

4.1.2 Outside-In tracking

The Outside-In algorithm [2] exploits information from both COT and silicon.
The first step is tracking in the COT, which starts translating the measured drift
times in hits positions; once all COT hit candidates in the event are known, the
eight superlayers are scanned looking for line segments. A line segment is defined
as a triplet of aligned hits which belong to consecutive layers. A list of candidate
segments is formed and ordered by increasing slope of the segment with respect
to the radial direction so that high momentum tracks will be given precedence.
Once segments are available, the tracking algorithm tries to assemble them into
tracks. At first, axial segments are joined in a 2D track and then stereo segments
and individual stereo hits are attached to each axial track. Qutside-In algorithm
takes COT tracks and extrapolates them into the silicon detectors, adding hits via
a progressive fit. As each layer of silicon is encountered (going from the outside in),
a road® size is established based on the error matrix of the track; currently, it is
four standard deviations big. Hits that are within the road are added to the track,
and the track parameters and error matrix are refit with this new information. A
new track candidate is generated for each hit in the road, and each of these new
candidates are then extrapolated to the next layer in, where the process is repeated.
At the end of this process, there may be many track candidates associated with the
original COT track. The candidate that has hits in the largest number of silicon
layers is chosen as the real track; if more than one candidate has the same number
of hits, the x? of the fit in the silicon is used to choose the best track.

4.1.3 Vertex reconstruction

The position of the interaction point of the pp collision (primary vertez) is of
fundamental importance for event reconstruction. At CDF two algorithms can be

used for primary vertex reconstruction.

3A road is a band containing the track.
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One is called PrimViz [3] and is used, as an example, in b quark identification.
PrimVtz starts from the beamline z-position (seed vertex) measured during colli-
sions. Then the following cuts (with respect to the seed vertex position) are applied
to the tracks:

L4 |Ztrk - z’ue’rtea:| < 1.0 cm;
e |do| < 1.0 cm, where dj is track impact parameter;
° ‘ff—o < 3.0, where o is error on dy.

Tracks surviving the cuts are ordered in decreasing pr and used in a fit to a
common vertex. Tracks with x? relative to the vertex greater than 10 are removed
and the remaining ones are fit again to a common point. This procedure is iterated
until no tracks have x? > 10 relative to the vertex.

The second vertex finding algorithm developed in CDF is ZVertexColl [4]. This
algorithm starts from pre-tracking vertices, i.e. vertices obtained from tracks pass-
ing minimal quality requirements. Among these, a lot of fake vertices are present:
ZVertexColl cleans up these vertices requiring a certain number of tracks with
pr > 300 MeV be associated to them. A track is associated to a vertex if it is
within 1 ¢m from silicon standalone* vertex (or 5 cm from COT standalone vertex).

Vertex position z is calculated from tracks positions z, weighted by ther error 9:

Yiw
Vertices found by Z VertexColl are classified by quality flags according to the number
of tracks with silicon/ COT tracks associated to the vertex. Associated COT tracks

have shown to reduce the fake rate of vertices thus higher quality is given to vertices

with COT tracks associated:

(4.1)

z =

e Quality 0: all vertices

e Quality 4: > 1 track with COT hits

YA standalone vertex is a vertex reconstructed completely inside a single detector - silicon

detector or COT - without any input from other detectors.
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Quality 7: > 6 tracks with silicon hits, > 1 track with COT hits

Quality 12: > 2 tracks with COT hits

Quality 28: > 4 tracks with COT hits

Quality 60: > 6 tracks with COT hits

4.2 Jets

4.2.1 Reconstruction algorithm

Jets are reconstructed applying a clustering algorithm to calorimeter data. This

algorithm determines the number of jets in an event, their energies and directions.

e Each calorimetric tower is assigned a vector in the rn¢ space: it originates
in the interaction point and point towards the tower energy barycenter®(see

figure 4.3). Its module is equal to the total transverse energy of the tower.

e Towers with Er > 1 GeV are ordered according to their decreasing energy and

adjacent towers are grouped in pre-clusters.

e A fixed radius cone is drawn around each precluster in the n¢ plane (Ar =
\/m); radius size is chosen depending on the physics process under
study: for example, for high multiplicity events a smaller value (typically
Ar = 0.4) is preferred, while a greater radius (Ar = 0.7) is chosen in other

cases. The cone axis is the vector with maximum module.

e All vectors falling inside a cone are summed and the axis is re-estimated. This

step is repeated until all vectors are assigned to a cone.

e Remaining vectors with E; > 0.1 GeV are associated to the cone containing

them and the axis is re-estimated until no new vector is found inside the cone.

5The tower barycenter is located at 6 radiation lengths X, for electromagnetic calorimeters and
1.5 interaction lengths A for hadronic ones, i.e. it is assumed that all energy has been released at

the average depth of calorimeters.
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If two cones overlap, two solutions are possible, depending on how much is the energy
they have in common: if the less energetic one has more than 75% of its energy in
common with the other, the two cones are replaced by a single one. Otherwise, they
are kept distinguished and common vectors are assigned to the closest cone in the
1 — ¢ plane.

Finally, summing all vectors in a cone, jet four-momentum is computed. Jet four-
momentum (E,p) is computed assuming that each vector corresponds to a massless
particle that deposited all its energy in the tower barycenter. So jet four-momentum

is computed summing the four-momenta of all vectors that make up the jet:

E = ) (E"+E™) (4.2)
Py = i(Eihad sin 1% + E£™ sin 09™) cos ¢ (4.3)
Py = i(Eih“d sin 91 + E¢™ sin §¢™) sin ¢ (4.4)
P, = i(E{“‘d cos 1 + E¥™ cos ™) (4.5)

i
Starting from the above quantities, jet transverse energy, transverse momentum and

rapidity are calculated:

Pr = /P2 +p? (4.6)
E
E +p,
n = 0.5In J_’z (4.8)

Jet quadrimomentum explained so far is computed starting from raw calorimetric
energies. Because of calorimeters intrinsic limits, raw energies differ from real de-
posited energies, thus jet four-momenta need to be corrected, as we will discuss in

the next section.

4.2.2 Jet corrections

Jet energies measured in calorimeters suffer from intrinsic limits of both calorime-

ters and jet reconstruction algorithm. Different particles produce different responses
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HAD

Oran

Figure 4.3: Calorimetric tower for jet reconstruction: each tower is assigned a vector

originating in the interaction point and pointing towards the tower energy barycenter.

in calorimeters and some of them can fall in uninstrumented regions of the detector.
Moreover, calorimeter response to particle energies is non-linear. The jet clustering
algorithm, on the other hand, doesn’t take into account multiple interactions and
energy that can be radiated outside the fixed radius cone. For all these reasons, a
set, of corrections has been developed in order to scale measured jet energy back to

the energy of the particle originating the jet[5].

¢ Relative energy scale correction
Relative (or n-dependent) jet energy corrections [6] [7] are applied to raw
jet energies to correct for non-uniformities in calorimeter response along 7.
Calorimeter response in each 7 bin is normalized to the response in the region
with 0.2 < |n| < 0.6, because this region is far away from detector cracks and
it is expected to have a stable response®. The correction factor is obtained

using the dijet balancing method applied to dijet events

This method starts selecting events with one out of two jets in the region
0.2 < |p| < 0.6. This jet is defined as trigger jet. The other jet is defined
as probe jet. If both jets are in the region of 0.2 < |p| < 0.6, trigger and

SCentral calorimeters are better calibrated and understood.
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probe jet are assigned randomly. The transverse momentum of two jets in a
2—2 process should be equal and this property is used to calculate first a pr
balancing fraction Aprf :

ApT pprobe . ptrigger

Apr = ave = 7:1;6 ’I"? er (49)
P (R + ) /2

and then a correction factor to make, on average, the probe jet scale equal to

trigger:

g B2+ (Bpr)
ptrigge'r 2 _ <Apr>

T

(4.10)

In figure 4.4 we show the correction factor as a function of 7.
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Figure 4.4: Relative energy scale correction factor as a function on 7 for three different

values of cone radii. Jet20 is the name of the sample on which correction was calculated:

it is a sample of events collected with a trigger requiring at Level 1 one calorimetric tower

with energy above 20 GeV.
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e Multiple interactions correction
At current instantaneous luminosity” and with 36 bunches, we expect on av-
erage one hard interaction per beam crossing. However in a fraction of events
more than one pp interaction can occur. Energy from these non overlapping
minimum bias events may fall into the jet clustering cone of the hard interac-
tion causing thus a mismeasurement of jet energy. A correction for this effect
is extracted using a sample of minimum bias events [8] [9]: for each event,
transverse energy Fyp inside cones of different radii (0.4, 0.7 and 1.0) is mea-
sured in a region far away from cracks (0.1 < |n| < 0.7); then, the distribution
of average E, as a function of the number of quality 12 vertices® is fitted with

a straight line and the slope of the fitting lines are taken as corrections factors
(see fig. 4.5).

X2 / ndf 15.62/4

po 0.005894 + 0.0007298

[

pl 0.3563 + 0.0006464

0.4 (GeV)
al

<E;>inrandom cone R .
N
[6)]
YTIYTTT{YYTT‘TTYT{YTTY‘TYVT{YTTY‘TYTT‘TTYT{YVTY

w
(SIS

w

=
- o N

o
&)

0 1 2 3 4 5 6 7 8
Number of primary vertices

Figure 4.5: Average transverse energy as a function of the number of primary vertices in
the event: a correction factor for multiple interaction is extracted from the slope of the

fitting line.

L~ 10%2 cm251

8See section 4.1.3 for further details on vertex classification.
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e Absolute energy scale correction

A jet contains different types of particles with wide momentum spectra. As
calorimeter response to a particle depends on its momentum, position, incident
angle and type of particle, jet momentum at hadron level is in general different
from its momentum measured at calorimeter level. Absolute energy scale
correction converts the calorimeter cluster transverse momentum pr to the
sum of transverse momenta of the particles in the jet cone: calorimeter energy
is converted to particle energy [10]. The procedure to extract a calorimeter-

to-hadron correction factor is based on the following steps :

— generate a large sample of MC events with full CDF simulation to cover
the py range from 0 to 600 GeV;

— create clusters of calorimeter towers and of HEPG particles using the

same CDF standard cluster algorithm;
— associate calorimeter-level jets with hadron-level jets;

— parametrize the mapping between calorimeter and hadron-level jets as a

function of hadron-level jets;

— as a correction factor, extract the probabilities of measuring a jet with

s given a jet with fixed value of pfd.

In fig. 4.6 absolute corrections as a function of calorimeter-level jet momentum

are showed for different cone sizes.

Underlying event correction

In a hadron-hadron collision, in addition to the hard interaction that produces
the jets in the final state, there is also an underlying event, originating mostly
from soft spectator interactions. In some of the events, the spectator interac-
tion may be hard enough to produce soft jets. Energy from the underlying
event can fall in the jet cones of the hard scattering process thus biasing jet
energy measurements. A correction factor for such effect has been calculated
using a sample of minimum bias events as for multiple interaction correction,

but selecting only those events with one vertex [9]. For each event, transverse
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Figure 4.6: Absolute jet energy scale corrections for jet with different cone sizes as a

function of jet momentum.

energy Ey inside cones of different radii (0.4, 0.7 and 1.0) is measured in a re-
gion far away from cracks (0.1 < |n| < 0.7). The &rrection factor is extracted

from the mean values of Er distribution (fig. 4.7).

e out-of-cone correction
The jet clustering Bhay not include all the energy from the initiating partons.
Some of the partons generated during fragmentation may fall outside the cone
chosen for the clustering algorithm. This energy must be added to the jet to get
the parton level energy. A correction factor is obtained using MC events [11]:
hadron-level jets are matched to partons if their distance in the n — ¢ plane is
less than 0.1. Then the difference in energy between hadron and parton jet is

parametrized using the same method as for absolute corrections (see fig. 4.8).

We have seen different corrections that account for different sources of jet energy

mismeasurement. Depending on the physics analysis, all of them or just a subset
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Figure 4.7: Er in cones of different radii in minimum bias events with just one quality

12 vertex.
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Figure 4.8: Out-of-cone correction factor as a function of jet momentum for different cone

sizes.
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can be applied.

Corrections are applied to the raw measured jet momentum according to:

Pr(R, Pr, ) = (Pf(R)-fy(R, Pr, 1)~ Mg (R))-furs(R, Pr)~UE(R)+OOC(R, Py)

(4.11)
where R is the clustering cone radius, Py is the raw energy measured in the cone and
n the pseudorapidity of the jet; f,, Mpsr, faps, UE and OOC' are respectively relative,

multiple interactions, absolute, underlying event and out-of-cone correction factors.
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4.3 Leptons

4.3.1 electron

Being a charged particle, an electron traversing the detector first leaves a track
in the tracking system and then looses its energy in the electromagnetic calorimeter.
So a good electron candidate is made of a cluster in an electromagnetic calorimeter
(central or plug) and one or more associated tracks; if available, shower max cluster
and preshower clusters can help electron identification. The shower has to be narrow
and well defined in shape, both longitudinally and transversely. The ratio between
hadronic and electromagnetic energies has to be small and track momentum has to

match electromagnetic cluster energy [12] [13].

4.3.2 muon

Muons can leave a track in the tracking system and then loose all their energy in
muon detectors. Muons are reconstructed using the informations coming from muon
chambers (CMU, CMP, CMX, BMU) and muon scintillators (CSP, CSX, BSU,
TSU). The first provide measurements of drift time, which is then converted to a
drift distance, i.e. a distance from the wire to a location that the muon has occupied
in its flight, in the plane perpendicular to the chamber sense wire. Scintillators, on
the other hand, only produce timing information. The output of chambers and
scintillators produce muon hits. Fitting these hits a muon track segment, a stub, is
obtained. Finally COT tracks are extrapolated to the muon chambers and matched

to muon stubs in the r — ¢ plane [14] [15].

4.3.3 tau

Tau lepton can decay leptonically into electron or muon (and the corresponding
neutrinos) or semileptonically into charged and neutral pions; the first case is not
distinguishable from a leptonic decay from W, while the second has a precise sig-
nature: tau decays preferably into 1 or 3 charged pions (One/Three prong event)

and in most cases neutral pions are present. So a well isolated jet with low track



4.4 Photons 73

multiplicity and neutral pions is a good tau candidate.

T reconstruction procedure exploits information from calorimeter and tracking
systems. One looks for an isolated narrow cluster above a certain energy threshold
and then matches it to COT tracks. For more details on 7 reconstruction, see

section 6.1.

4.3.4 neutrino

Neutrinos produced in a pp collision escape the detector without leaving any
sign, but their presence can be inferred from momentum conservation.

Colliding proton and antiproton have nearly opposite momenta so total vector
sum of momenta of final state particles must be zero. As many particles escape down
the beam pipe, we can’t apply fotal momentum conservation; but we are allowed to
apply transverse momentum conservation , i.e. momentum conservation in the plane
perpendicular to the beam, if we consider that particles escaping down the beam pipe
have negligible transverse momentum. If the sum of transverse momenta of detected
particles is significantly different from zero, we can attribute this discrepancy to the
presence of one or more undetected neutrinos whose momentum is therefore the
opposite of the total detected transverse momentum. As neutrino mass is negligible
at a center-of-mass energy of 1.96 TeV, undetected neutrinos total momentum, called
missing Ey (K1), is calculated as the opposite of the vector sum of all calorimetric

towers, both electromagnetic and hadronic:
ET: - Z (EZ sin Gz)ﬁz
towers

where FE; is the energy of the ith tower, 0; is the polar angle of the line pointing from
the interaction point to the ith tower and 7i; is the transverse unit vector pointing

from the interaction point to the center of the tower [16].

4.4 Photons

A photon traversing CDF detector interacts only with electromagnetic calorime-

ter and shower max detector. Thus photon identification starts looking for clusters
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of energy around a seed tower with energy greater than 3 GeV. Total energy of the
hadronic towers located behind the photon cluster has to be negligible with respect
to the photon cluster energy. Photon cluster isolation is required: the difference
between photon energy and the energy in a 0.4 cone around the seed tower has to
be less than 15% of photon energy. Moreover the sum of transverse momenta of all
tracks pointing to the 0.4 cone is required to be less than 2 GeV/c. Electromagnetic
shower shape shall be transverse and no matching tracks have to be present. The
line connecting the primary event vertex to the C'ES shower position determines

photon direction [17].

4.5 b quark tagging

As top quark decays almost exclusively in a W boson and a b quark and conside-
ring that the process t£ — bbW+IW ~ has a cross section ~ 1073 times smaller than
the total inelastic cross section, an efficient b quark tagging algorithm is essential
to reduce signal to background ratio. b tagging relies on two properties of b quark:
it has a long lifetime, so it travels a non-negligible distance before it decays® and it
decays semi-leptonically through the decay mode b — lvc. From these properties
it is possible to construct algorithms that will tag a jet if it comes from a b quark

(b-jets). At CDF three b-tagging algorithms have been implemented so far:
e SecViz algorithm;
e JetProbability (JP) algorithm

e Soft Lepton Tag (SLT) algorithm

4.5.1 SecVtx algorithm

SecViz algorithm [18] [19] can tag a b-jet exploiting the fact that its vertex is

displaced from the primary vertex, due to long b quark lifetime.

97 ~ 1.5 ps, so for a typical pr ~ 40 GeV, a b quark can travel for a distance of some millimeters

before it decays.
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The algorithm starts from COT and silicon tracks inside a cone and as a first
step, using as discriminating variable their impact parameter, it removes tracks
identified as Kg, A or v daughters, or consistent with primary vertex or too far from
it. Then a three dimensional common vertex constrained fit is performed using two
tracks; if the x? < 50, the two tracks are used as seed to find other tracks that
point towards the same secondary vertex. If at least three tracks are found to be
compatible with a secondary vertex, they are considered potential tag. The potential

tag becomes a b-tag if it survives the following cuts:

1. |Lyy| < 2.5 cm, where Ly, is the decay length of the secondary vertex (see
fig 4.9); this cut helps rejecting conversions from the first layer of SVXII;

2. ﬂ>3;

0'ny

3. if My is the invariant mass of the tracks, |mygs — M| > 0.01 GeV and
Ima — Myx| > 0.006 GeV

4. |Lgy - (Myri/prer)| < 1 cm.

The tags are classified depending on where the secondary vertex is located with
respect to the jet cone axis. Secondary vertices on the same side of the interaction
point as the jet cone axis are positive tags, otherwise they are classified as negative

tags. Negative tags can arise from tracks mismeasurements (see fig. 4.10).

4.5.2 JetProbability algorithm

This algorithm exploits the information of the tracks associated to a jet to deter-
mine the probability that the jet comes from the primary vertex [20]. The probability
distribution is uniformly distributed for a jet arising from the primary vertex , while
it shows a peak on zero for a long-lived jet (fig. 4.11). The probability is based on
track impact parameters and on their uncertainties.

All tracks associated to a primary jet should originate from the primary vertex;
due to finite tracking resolution, these tracks are reconstructed with a non-zero im-
pact parameters that have equal probability to be either positive or negative signed.

The width of the impact parameter distribution from these tracks is solely due to



76 Reconstruction of physical objects

Jet Axis

—___ Secondary
Vertex

Primary #__,4.
Vertex

Figure 4.9: Schematic 2D view of an event containing a jet with a secondary vertex.
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Figure 4.10: Real and fake secondary vertices as seen in the transverse plane.

the tracking detector resolution and multiple scatterings. A long-lived particle, on
the other hand, will travel some distance along the jet direction before decaying
and its decay products will preferentially have positive signed impact parameter

(fig. 4.12). To minimize the contribution of mismeasured tracks, the final probabi-
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lity is computed using the signed impact parameter significance (ratio of the impact
parameter to its measured error) instead of the parameter itself. Given a track with
impact parameter significance Sg,, the probability that a track from a light quark
has a larger value of Sy, is calculated. Combining probabilities for all tracks in a
jet, one obtains a per jet probability. By construction, this probability is flat for

jets originating from light quarks, peaked towards zero otherwise.

Prompt Jet

Charm Jet

Bottom Jet

Figure 4.11: Jet probability distribution from prompt, charm and bottom jets.

Signed Impaci Parameter Signed Impaci Parameter

Figure 4.12: Signed impact parameter distribution for tracks from primary vertex (left)

and from secondary vertex (right).
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4.5.3 Soft Lepton Tag algorithm

This algorithm is based on the fact that ~ 20 % of b quarks decay to muons. In
general, muon identification relies on the presence of a stub in the muon chambers,
associated with a track and minimum ionization energy deposition in the electro-
magnetic and hadronic calorimeters. Muons coming from b quarks are not isolated
so information from calorimeters can’t be used. Moreover, multiple scattering of
muons in the material of CDF detector has to be taken into account: it causes a de-
flection in the muon path that ranges from about a few millimeters for a momentum
of 2 GeV/c to about half a meter for a 50 GeV/c muon. SLT algorithm procedure
can be divided in two steps [21]:

1. The first step consists in finding taggable tracks, i.e. tracks that could have
been left from muons. To take into account the fact that the muon may
non have had enough momentum to reach the muon chambers, tracks whose
momentum is lower than 2.8 GeV are rejected. Moreover, it has to point to
the fiducial volume requested by the user: one can choose to define a track
taggable if it points to a volume limited by the physical edges of the muon
chambers, or a distance 3 o,s¢ inside/outside the physical edges, where o5
is the standard deviation of the maximum deflection expected from multiple

scattering through the detector’s material.

2. If a track is taggable and has a stub associated to it, the algorithm performs a
likelihood comparing all the available information about the muon candidate
with the expected values, obtained from a sample of muons derived from data.
Besides variables from muon detectors, for the likelihood one can use also some
track quality information, like the number of COT hits, the beamline-corrected

impact parameter and the track z, position.
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Chapter 5
Neural Networks

The mail goal of our analysis is extracting ¢t — 7 + jets events among the huge
background due to QCD events and to do this we use neural networks having as
inputs the variables that most discriminate between signal and background. Before
going in detail on our analysis, in this chapter we will first give an introduction on
the main concepts about neural networks and then describe the learning strategy
we use, the Reactive Tabu Search (RTS).

5.1 Brief introduction to the main concepts

An Artificial Neural Network may be defined a computing system of Von Neuman
type aimed at approximating efficiently a given mapping from a subset D of R" into
R™ on the basis of known examples. The examples form a so called training set.
The mapping is defined in terms of a number of parameters, called weights and
organised in a hierarchical structure, named architecture. The process of getting the
approximated mapping (the learning process) is usually a trial and error one, in fact
searching for a minimum of a positive definite error function confronting expected
values of the mapping against those actually given by a specific configuration of the
neural network. Such error function (also called cost function) is a parametric one,
depending on the weights for a fixed architecture and evaluated over all of the given
examples.

The weights compose a varying vector in some RF space, where the error function
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defines a hyper-surface that we call surface error : we may depict the learning
process as building trajectories on the error surface, searching there for a (optimal)
minimum.

According to [1], as a model we may refer to the classical case of approximating

a one-dimensional function using polynomials or truncated Taylor series
F(x) = wo + wi(z — m0) + wa(x — 20)% + - - + wax — 20)", (5.1)

pictorially represented in fig.5.1: z = 1, 2z — 2!, z — 2%, ..., 2 — 2F in the circles
(or nodes) are in a sense cellular automata or primitive functions of a computing
network, whose weights are the coefficient ag, a1, as, ... a;. The output node adds

all incoming information and produces the final polynomial value.

F(a

Figure 5.1: A polynomial network.

Given the analytical expression of a function, indeed, the weights of (5.1) can be
calculated as the coefficients of the first k£ + 1 terms of a Taylor expansion, as well
known; but such analytical expression is equivalent to the exact knowledge of the
function over its complete definition set.

Artificial Neural Network’s are intended to deal with the more general case when

a mapping is incompletely and noisily known, namely through its value in a finite
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number of example points, constituting however a statistically significant sample
that could allow ANN to reach satisfactory generalization ability, i.e. ability to
approximate the mapping everywhere. In any of their nodes, called perceptrons, the
primitive functions are general threshold ones, whose inputs are properly weighted:
the same as for neurons in brain and their input information [2] (see also [1], [3], [4]
for introduction and review).

We represent input and weights as vectors like 7 and w respectively and we call 6 a

primitive threshold function, whose output depends on a test as

- =

W T >z (5.2)

or in the extended form as
w-Z>0 (5.3)

using a wy component equal to —1 for @ (fig.5.2); z is usually called bias. Some

B(W1x1 + WQXQ + ann)

Figure 5.2: Abstract neuron primitive function.

mapping may divide its definition set into two linearly separated subsets, i.e. sub-
sets separated by some hyper-plane: it is easily proved that in this case a single
perceptron is sufficient to reproduce the mapping, because the equation w - = 0
defines in fact an hyper-plane, while condition (5.2) determines one (and conse-
quently the other) of the two half-spaces on its sides. The most simple examples
are the bi-dimensional logic functions AND and OR as can be seen in fig.5.3. More

often, however, a mapping does divide its definition set into two or more subsets
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OR AND

Figure 5.3: Linearly separated sets.

that are not separable by a flat surface. The most simple example is given by the
two-dimensional XOR, or (exclusive OR) logic function, for which a continuous line
of at least two straight pieces is needed to separate the two subsets into which its
definition set is divided (fig.5.4). It is understandable that in this case some net-
work of a number of perceptrons could cooperate to build some suitable piece-wise
flat hyper-surface able to approximate the needed, generally curved hyper-surface

of separation.

Va

Figure 5.4: Non linearly separated sets.

Mappings that separate their definition set into subsets are those occurring in
classification problems through pattern recognition and are the typical ones in (high-

energy) physics analysis. What should make Artificial Neural Networks more pow-



5.1 Brief introduction to the main concepts 85

erful then the usual sequential-cuts attack to classification problems may be viewed
in the two-dimensional hypothetical case shown in fig.5.5, because there quite hardly
any cut on the projection on any axis could give any good classification result; in-
stead the blue piecewise straight line is what one could expect from an Artificial
Neural Network.

A —— FFNN cuts
— background

=

&

Figure 5.5: Hypothetical two-dimensional classification case. The blue piecewise

straight line could be a Neural Network cut.

ANN architectures most usually are identified by a number of layers, each com-
posed of a number of (abstract) neurons, the computing units sketched in fig.5.2,
whose primitive function is called activation function and typically consists of a

smooth variant of the step function, like the sigmoid:

_1—6_m

5@ ==

(5.4)

These networks are generally called multi-layer perceptrons; the set of input
nodes is called the input layer, the set of output nodes is called the output layer; all
the layers not directly connected to input or output are called hidden layers (fig.5.6).
We are interested in so called feed-forward networks, such that information pro-
ceeds from input to output along successive layers. In fig.5.7 it is shown a two layer
perceptron, thus a network having two layers of weights and using sigmoidal hidden
units, that has proven to be an important class for practical applications. In fact it

is possible to see that such networks can approximate arbitrarily well any functional
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hidden layers
input layer

output layer

W/

Figure 5.6: Multi-layer network.

continuous mapping from a finite-dimensional space to a finite-dimensional space,
provided a sufficient number of hidden units is given. Discussion of this important
point is found for instance in [1], [3], [4], [5] and literature cited therein. What is
of most interest to us is the corollary that in the context of classifications problems
networks with sigmoidal nonlinearities and two layers of weights can approximate
any decision boundary to arbitrary accuracy; in other words such networks provide
universal non-linear discriminant functions and thus they model posterior proba-

bilities of class membership.

5.2 Reactive Tabu Search

Several approaches to learning with feed-forward multi-layer perceptrons have
been realized (see [1], [3], [4], [5] reviews); they mostly use derivative based algo-
rithms. We use instead an non-derivative based strategy devised by R. Battiti and
GP. Tecchiolli, formulated as a combinatorial optimization problem and solved by
means of a heuristic operational method called Reactive Tabu Search (RTS) [6, 7].
RTS is based on the construction of search trajectories in the space of the binary
strings of length L = N x B, into which N weights are suitably coded using B bits

per weight. The search is intended to locate an optimal minimum on the cost surface



5.2 Reactive Tabu Search 87

bias bias
Xg
X, ¥
X, ¥4
inputs hidden units outputs

Figure 5.7: Two-layer network.

by means of a sequence of elementary moves, each consisting of a single bit-flip in

the string of weights.

According to the known Glover’s Taboo Search strategy ([8]), when a move is
done, its inverse is forbidden for a prohibition period of T successive steps, thus
forcing some amount of diversification in the search process: as a matter of fact, if no
such action is undertaken, the resulting “greedy” moves toward low values of the cost
function would easily cause trapping in local minima or cycling’s around them. RTS
remarkably enhances such diversification, dynamically adjusting the 7" parameters
through a simple mechanism that evaluates and reacts to the local shape of the cost
surface: this way it escapes rapidly from local minima and cycling’s. Evaluation of
the local shape of the cost surface is done recalling history of the recent moves, so

that an important feature of RTS is that it is intensively history-based.

Each effective elementary move is decided on the basis of the best in a sample
of admissible (i.e. not taboo) random exploratory steps in a neighbourhood of the
current position. In order to have such exploratory moves effectively done in a
vicinity, the well known gray code is used to represent the weights, because then a

single bit-flip on the string of the weights most probably produces a small change
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of just one of the weights; alternatively the usual binary coded is implemented, but
then the bit to be flipped (toggle-bit) on a randomly picked weight is chosen according
to a linear distribution, decreasing with the bit significance. Fig.5.8 shows the basics
of RTS.

RTS (Reactive Taboo Search) Algorithm

1. Choose a starting configuration

2. Make admissible (i.e. not taboo) only the moves that have not been
executed in the most recent part of the search (defined by T)

3. Make "some” explorative moves (using only admissible moves) in the
neighbourhood of the current configuration

4. Choose the configuration that produces the minimal value of f{w);

5. Check if the chosen configuration has been already visited in the
past and, in this case, r'eac'l“ ad justing the prohibition period or

escaping \

6. Goto 1

£

* If "too of ten” already visited, escape;
* If "not too often” visited, but among “too many” already visited
different configurations, escape as well;
* Otherwise
= If no repetions since long time, decrease T;
» Otherwise increase T
* Store history until needed.

Figure 5.8: Basics of RTS operations.
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Chapter 6
tt — 7 + jets selection

In this chapter, after a brief description of 7 reconstruction method at CDF,
we will describe the variables we use to discriminate top — 7 + jets events from
background. Such variables are used as inputs for neural networks: we explore two

techniques, the first based on a single net, the other on two networks in cascade.

6.1 7 candidate reconstruction

At CDF 1 is reconstructed exploiting information from tracking system, ca-
lorimeters and shower max detectors. Reconstruction procedure is based on the

following steps [1] [2]:

1. a calorimeter tower with transverse energy E3¢%T greater than 6 GeV is

found (seed tower);

2. a number N of adjacent towers (shoulder towers) with transverse energy
greater than 1 GeV is added to the seed tower to build a calorimetric cluster;
the sum of transverse energies of the towers is used as the transverse energy

of the 7 candidate;

3. a COT track pointing to the cluster and with momentum p5¢?-"* greater

than 4.5 GeV is associated to the cluster (seed track); if several such tracks
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are found, the one with the highest momentum is chosen; the direction of the

seed track becomes a reference direction for all following steps;

. other COT tracks close to the seed one are associated to the tau candidate

(shoulder tracks); shoulder tracks must have momentum greater than 1 GeV
and small separation Az*"% (5 cm) from the z-intercept of the seed track;
moreover, they have to be within a 3D angle 6,5, with respect to the reference
direction. Tracks within angle 6;, with respect to the seed track are considered
7 decay products while ones with 6, < 0 < 0;5, are called isolation tracks and
are used to veto 7 candidates. 0, and 0,5, define signal and isolation cones
respectively (see fig. 6.1). 6, depends on 7 energy and is defined as
GeV

calo

O5ig = min(0.17, max( ,0.05))

while 6;5, is 0.525 rad (30°).

. the last step is ¥ reconstruction and matching to 7 candidates. 7’s are recon-

structed as clusters in the CES. Raw wire and strip CES clusters are obtained
using a clustering algorithm that starts with a seed wire or strip and combines
up to five wires or strips into a cluster. Raw strips and wire clusters are then
matched to each other to form 2D CES clusters. If matching is not unique, the
measured energy is used to identify which wire and strip clusters are coming
from the same cluster. Each matched cluster is classified as a 7° candidate if
no COT tracks with py > 1 GeV/c is found nearby. If only one 7° is found in
correspondence of a particular calorimeter tower, the energy assigned to the 7°
is the full EM energy of this tower minus the expected energy deposited from

0 candidate interests the

all tracks traversing the tower. If more than one 7
same tower, the available EM energy is divided between them proportionally
to their respective CES cluster energies. As in the tracks case, for 7% a cone

around the seed track is defined:

5GeV
azo = min(0.17, max(E—e, 0.10))
calo

All 7% candidates inside the cone, having Er > 1 GeV and having matched

in both x and z views of CES are associated to the 7 candidate.
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Eyeedtur | > 6.0 GeV
Egh-twr | > 1.0 GeV
Ntwr S 6
Oy | = | min (0.17, 75-0’";‘1156?6")
B;so = 0.525 rad
S 6.0 GeV
pipirk > 1.0 GeV
Azshtrk | < 5.0 cm

Table 6.1: 7 reconstruction parameters.

In table 6.1 7 candidate reconstruction parameters are summarized.

6.2 7 identification variables

The variables we use to separate tt — 7 + jets events from background are

divided in two groups: global variables are those which describe the events in its

entirety, used to discriminate from background, in our multijet trigger sample !,

tt events additionally satisfying necessary conditions to the 7 + jets channel, like

significant total missing energy; other variables (7 mass, number of tracks in the 7

cone, ...), describe specifically the 7 candidate: we use them to distinguish between

real taus and jets faking taus.

6.2.1 Input variables: global

e njets

In a clean tt — T + jets event we expect five jets: two of them come from

one of the two Ws, two from b quarks and one from 7. Number of jets (njets)

distribution is therefore peaked on 5, while background events are peaked on
4 (Figure 6.2). njets refer to tight jets, i.e. jets with Er > 15.0 GeV and

'Multijet trigger requirements will be described in section 6.3
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— signal

seed track — isolation

not associated
with tau candidate

Figure 6.1: 7 candidate reconstruction: seed track, signal and isolation cones.

In| < 2.0.

e aplanarity and sphericity

Both are calculated starting from the normalized momentum tensor M,
Y.iDiaDib
Ez‘p?

where a and b indexes run over the three space directions and p; is the mo-

My = (6.1)

mentum of the iy, jet [3]. We are interested in finding the axis 7 such that the
normalized sum of the square components of the jet momenta along it has a

maximum

> (7i)°
2P}

This quantity easily characterizes space direction distribution of such mo-

mazx (6.2)

menta, namely the case they are mostly along 7 against more isotropical

distributions.
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The ratio in eq. 6.2 can be written as

>, (Bi7)° i (DiaDiv)
Z’ﬁ? aEb:I ’ Z pl azb:l ’

M matrix is symmetric and definite positive. Its unit eigenvectors 7i(y), 7i(a)
and 7i3) have eigenvalues @); that satisfy the condition Q; + Q2 + @3 = 1

because the trace of M is null.

If we order the eigenvalues such as 0 < @1 < @2 < Q3, the axis 77 we are

looking for is the normalized eigenvector 7i(3) of M with the highest eigenvalue
Q3)-
Sphericity S is thus defined by

S = (@Q1+Q2) = _(1—Q3) =

3 NBie)?\ 3 (i (64)
N 2<1 > ) N (Em)

where subscript 1" denotes momentum component transverse with respect to

DN W

7i(3) axis; S is null in the limiting case that the momenta are all exactly along

7i(3) and approaches 1 for a perfectly isotropic jet momenta distribution, when
RQi=Q2=0Q3= %
Aplanarity is defined as

A=20, (6.5)

and it is null when the sum of jet momenta has null component on 7i(;) axis;

this is the case of coplanar or collinear events. On the contrary, when jet

momenta have isotropic distribution, @1 = Q2 = Q3 = % and A reaches its
1

maximum, .

Jets emerging from a tt pair are expected to be uniformly distributed and, as

a consequence, they will tend not to lie in the same plane. Thus, for ¢t events

we expect higher aplanarity and sphericity values (Figures 6.3 and 6.4).
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e centrality

Jets produced by tt pairs decaying hadronically are emitted preferably in the
transverse plane (r — ¢ plane); the centrality C of the energy flux is calculated

as
_ YiEpy

vE

Signal events are expected to have centrality values nearer to 1 (greater amount

C

(6.6)

of energy emitted in the transverse plane) with respect to background ones
(Fig. 6.5).

YEr;

In QCD events, the two most energetic jets are produced by ¢g processes
while the least energetic ones are produced by gluon bremsstrahlung. On the
contrary, in a tt event up to 6 jets can be produced by hard processes. As
a consequence, > FErs, the scalar sum of jet transverse energies, excluded the

two leading ones, can discriminate between signal and background (Fig. 6.6).

Missing Et significance

In a tt — T + jets event two neutrinos are produced (from W and 7 decays):
therefore we expect a significant amount of Missing Energy (Hr) in signal
events.

Hr significance is calculated as

MetSigf = *g ;T (6.7)

Signal events have larger missing Fr significance with respect to background
ones (Fig. 6.7).
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Figure 6.2: Distribution of tight jets (jets with Ep > 15.0 GeV and |n| < 2.0) for

tt — 7 + jets and background events.
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0
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Wsignal

Figure 6.3: Sphericity distribution: jets emerging from ¢f pairs are uniformly distributed,

thus they tend to have sphericity values higher than background ones.
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| HADCL5 Apla |
I M background
Wsignal
2500
2000

0.2 0.25 0.3 0.35

Figure 6.4: Aplanarity distribution: as jets emerging from t{ pairs are uniformly distri-
buted, they tend not to lie in the same plane having thus aplanarity values higher than

background events.

| HADCL5 Cent |

M background
Wsignal

Figure 6.5: Centrality distribution: jets produced by ¢t pairs are emitted preferably in the
transverse plane, thus they have centrality values nearer to 1 (greater amount of energy

in the transverse plane) with respect to background.
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| HADCL5 SumEt3 |

Ebackground
Wsignal

500

400

300

200

100

Figure 6.6: Y Er3 distribution: the scalar sum of jet transverse energies, excluded the
two leading ones, is greater in tt events with respect to background, because in the first

case up to six jets can be produced by hard processed, against two in a QCD process.
p J p y b )y a8 b

| METCL5_MetSigf |
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Figure 6.7: Missing transverse energy significance distribution: in a ¢t — 7 + jets events,
due to the production of two neutrinos, missing energy has significance greater than back-

ground events.
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6.2.2 Input variables: tau specific

e ntrks
A 7 decaying semileptonically will produce in most cases one or three charged
pions; thus ntrks, the number of tracks in the 7 signal cone, has a distribution
peaked on these two values (fig. 6.8). On the contrary, quark or gluon jets
arising from QCD processes have a broader distribution peaking at different
track multiplicities while photons, electrons and muons have none or just one

track.

e nmubhits
A muon could fake a 7 decaying into just one charged pion and without neutral
pions; thus the presence of muon hits in correspondence of a 7 candidate can

be used as a discriminating variable (Fig. 6.9);

e etateta and phiphi
7 cluster Eta-Eta and Phi-Phi moments:

V<= <n>)?2>, V< (bi— <¢>)>

where 7; and ¢; are pseudorapidity and ¢ coordinate of the ¢th tower belonging
to the 7 cluster. Jets from real taus are narrower than those from fake taus
(figs. 6.10 and 6.11).

e caloetiso, trackiso, nisopiOs
As already stated, a jet coming from a 7 is narrow and well isolated; we can
quantify this isolation in different ways, exploiting the definition of isolation
cone (section 6.1): trackiso is the transverse momentum of all tracks in the
isolation annulus (Fig. 6.13), while caloetiso is the total calorimetric energy in
the same region (Fig. 6.12). A real 7 should have null these quantities. For
the same reason should be zero the number of neutral pions in the isolation

cone, nisopils (Fig. 6.14).

e visible mass

The so-called wisible mass (fig. 6.15) is 7 candidate invariant mass calculated
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using momenta and energies of both tracks and neutral pions. 7 candidates

from real taus have reconstructed masses lower than fake taus

e 7 boost
The size of a jet can result from different factors, one of them being jet’s boost:
bigger the boost, smaller the size; thus a jet with low track multiplicity can

fake a jet from 7 if its boost is great enough. The Lorentz boost parameter

Thoost = 75 = @ (68)

m:
calculated using 7 candidate momentum and visible mass (Fig. 6.16) can help

in discriminating real taus from fakes.

e angleseedtocluster
The angle between the seed track and the cluster barycentre is plotted in

figure 6.17: true taus tend to have smaller values with respect to fake taus.

ntrks10deg

8000

Bbackground
Wsignal

7000
6000
50001
4000
30001
2000

1000

0

Figure 6.8: Distribution of the number of tracks in the 7 signal cone: a jet from a true 7

has one or three charged tracks.
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Figure 6.9: Distribution of muon hits in correspondence of 7 candidates; a muon can fake
a 7 decaying into just one charged piona real 7 this variable can discriminate between true

taus and muons faking taus.
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Figure 6.10: Distribution of 7 cluster Eta-Eta moment: true taus produce a narrower jet

with respect to fake taus, thus cluster Eta-Eta moment is lower.
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Figure 6.11: Distribution of 7 cluster Phi-Phi moment: true taus produce a narrower jet

with respect to fake taus, thus cluster Phi-Phi moment is lower.
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Figure 6.12: Distribution of the total calorimetric energy in 7 jet isolation annulus. It is

peaked towards zero for real taus.
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Figure 6.13: Distribution of transverse momentum of all tracks in 7 jet isolation annulus,

peaked towards zero for real taus.
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Figure 6.14: Number of neutral pions in 7 jet isolation annulus. Real taus, in most cases,

have no neutral pions in the isolation region.
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Figure 6.15: Visible mass of 7 candidates, obtained summing over all tracks and neutral
pions in signal cone. 7T candidates from real taus have reconstructed masses lower than

fake taus (and approaching more the true value 1.777 GeV/c2.)



106 tt — 7 + jets selection

8000

Mbackground
Wsignal
7000

6000
5000
4000
3000
2000

1000

L L - L I L L L I L L L I

400 600 800 1000

0

Figure 6.16: Distribution of Lorentz boost parameter for real and fake taus: real taus

show greater boosts compared to fakes.
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Figure 6.17: Distribution of the angle between 7 candidate seed track and cluster barycen-

tre. It is peaked towards zero for real taus.
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6.3 tt — 7+ jets selection using NNs

We want to select tf — 7+ jets events in 311 pb~! of data collected up to August
2004 (gsetOd dataset) This dataset has been obtained through TOP_MULTIJET
trigger that requires necessary conditions for high transverse momenta hadronic final

states:

e at Level 1 at least 1 calorimetric tower with EFr > 10 GeV,

e at Level 2 at least 4 calorimetric clusters with EZ* > 15 GeV and total

transverse energy X E1 > 125 GeV,

e at Level 3 at least 4 jets (with fixed cone radius 0.4) with |n| <2.0 and
transverse energy E%et >10 GeV.

This trigger is thus optimized for all-hadronic channel, but it fits also to our analysis
having ¢ — 7 + jets channel a signature similar to all-hadronic one: the main
differences are a substantial amount of missing energy, due to two neutrinos and five
jets instead of six. In order to clean our dataset as much as possible before analysis,
we apply some preliminary cuts (prerequisites); these are very general cuts, not

affecting acceptance on the channel under study [4]:

e we apply Good Run List version 7.0 as from the Data Quality Web page and
remove by hand runs taken with old trigger i.e. those whose run number is
smaller than 143938;

e we ask that at least one highest-SumPt class-12 vertex is present?;

e in order to restrict our analysis to events with a well centered beam crossing,
we ask that z,e.+ < 60 cm, where 2, is z-position of the highest-SumPt class-

12 vertex reconstructed with ZVertexColl algorithm; moreover, we ask that

2A class-12 vertex is a vertex reconstructed by ZVertezColl algorithm using at least two tracks
having COT hits; vertices found by ZVertexColl are used by jet clustering algorithm (see sec-
tion 4.1.3).
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the distance between this vertex and the one from Prim Vtz algorithm? is less
than 5 cm (| 2pert — 2Primviz| < 5 cm), to ensure that the vertex used for tagging

is indeed close to the one used for jet clustering;

e to avoid overlap with other leptonic analysis we remove events with a good,

high Py electron or muon.

After prerequisites application, we are left with nearly 4 millions events in
311 pb~! of data among which, from Standard Model, we expect ~ 121 tt — 7+ jets

4 i . . . 1
events®. The 3 ratio before any analysis is thus ~ z5555-

N

In a tt — 7 + jets event two jets are from b quarks, so the first step to reduce
background is considering only those events that have at least one Sec Viz® b-tagged
jetS. As one can see from tables 6.2 and 6.3, were effects of cuts applied to gset0d
(data) and ttopvh (t¢ MC) datasets are shown, this request throws away a certain
amount of signal (35%) but it makes a great rejection of background (92%). More-
over, having a b-tagged jet in an event makes event reconstruction easier. For the
same reason we also reject those events that do not have at least one reconstructed
7 candidate: we loose some signal (40%) but make event reconstruction easier.

After prerequisites, b-tagging and 7 candidate request, we are left with a sample

1
6000 *

strategy is based on neural networks. In the following we will describe the two

This is our starting point. How can we further increase 22 Our

. S
with N ~ N

techniques we explored: the first is based on a single neural network, the second on

two of them in cascade.

3 PrimVtz is another algorithm used to reconstruct primary vertex; vertices found by PrimViz

are used for b-tagging (see section 4.1.3).
4The number of expected signal events is estimated from ttopvh dataset (MC events generated

with Herwig with top mass = 175 GeV) according to

L:data

Nye = Ndatam

where Lo and L4444 are MC and data luminosities.
5b-tagging algorithms are described in section 4.5.
6We do not require two b-tagged jets because this request would lower signal acceptance too

much: we would be left with only 20% of signal events, against an efficiency of 65% requiring just

one b-tagged.
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number of events | efficiency (%)
Total Data events 2900266 100.0
Good Run 4249634 72.0
z vertex 3901254 91.8
No lepton 3897615 99.9
Events with at least one b-tagged jet 308577 7.9
Events with at least one 7 cand 209804 68.0
Total 7 candidates 278343

Table 6.2: Effects of preliminary cuts on Data events (gset0d dataset, 311 pb~1)

number of events efficiency (%)

Tot events 219479 100.0

Good Run 193855 88.3

trigger 125489 64.7

7 vertex 120454 96.0

No lepton 107050 88.9

T + jets 11286 (121 in 311 pb~?) 10.5

Events with at least one b-tag 7340 65.0
Events with at least one 7 cand | 4331 (47 in 311 pb™1) 59.0

Total 7 candidates 4331

Table 6.3: Effects of preliminary cuts on MC events (ttopvh dataset, M;,, = 175 GeV).
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6.3.1 Neural Network analysis

In this section, we briefly recall how a neural network based analysis is structured.
We use feed-forward neural network with one hidden layer, whose architecture is thus
mainly characterized by n;-ny-n, triplet, where n; is the number of input features, n;,
is the number of hidden neurons and 7, is the number of output neurons. A neural
network analysis starts with training: we drive the net to recognize patterns given
in a set of known examples (training set). In our case, we ask the net to assign an
output value as near as possible to 1000 (0) to signal (background) event, searching
for the best issue iteratively. We have to avoid over-training, which happens when
the neural network learns “too well” on the training set and is not effective on a
different sample of events (it is inefficient in generalizing). To avoid over-training,
each n iterations performing a walidation test: neural network trained so far is
applied to a set of events different from training ones, but still known (the validation
set); we eventually save the best neural network configuration on the basis of the
best issue on the validation set.

In our present analysis we found that a neural network reaches its best perfor-
mance after 20000 - 30000 iterations.

neural network performance is described by two parameters, purity and effi-
ciency, which are functions of a cut on neural network output. Signal events are
classified as True Positives if their neural network output is greater than a fixed
bound, the cut, False Negatives otherwise. In a similar way, background events are
False Positives if their neural network output is greater than cut, i.e. they have been

incorrectly classified as signal, True Negatives otherwise. Using these definitions,

Purity is
TruePositives(cut)
p /) = 6.9
ur(cut) TruePositives(cut) + FalsePositives(cut) (6.9)
and Efficiency
TruePositives(cut)
B o) — 6.10
1 f(eut) Total Signal Events (6:10)

Purity measures how well the neural network can discriminate between signal and
background events, while Efficiency is a measure of the neural network capability

in recognizing signal events. An ideal neural network can recognize signal and dis-
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criminate it from background with infinite precision, so both Purity and Efficiency
are 100% and the Purity vs Efficiency plot is a step function; the more the training
plot approaches the the ideal one, the better the training.

6.3.2 Training samples

Signal events are taken from ¢ MonteCarlo datasets generated with Herwig.
Signal training sample is made of a mixture of events from MC generated with dif-
ferent top masses, in order to make training independent from top mass. In table 6.4
the datasets used for training are listed. We consider top masses from 167.5 GeV
to 180 GeV: the current top mass estimate, combination of CDF and D@ results, is
172.7 £ 2.9 GeV/c?. Before any neural network analysis, we apply to MC events
TOP_MULTIJET trigger simulation and prerequisites. Then we select tt — 7+ jets
events at hepg level. Not all hepg T + jets events have exactly one reconstructed
7 candidate: some events haven’t, because 7 reconstruction algorithm isn’t 100%
efficient”, and some events can have more than one, because the algorithm requests
are rather loose - not to reject signal - thus a narrow jet with low track multiplicity
can be classified as 7 candidate even if it doesn’t come from a 7. So, we make
signal selection requiring that each hepg 7+ jets event has at least one 7 candidate
matching the hepg 7. Matching is performed in 1 — ¢ plane: we decide that a 7 can-
didate matches an hepg 7 if their distance in 7 — ¢ is less than 0.2. In fig. 6.18 such
distances are plotted. In table 6.5 the effects of all preliminary cuts on MC events
are shown. After all requirements, our signal events are 7 candidates matching hepg

taus in tf — 7 + jets events.

As far as background is concerned, we randomly select 7 candidates from gset0d

dataset after prerequisites application and b-tagging requirement. We can consider

S 1.
N 6000’

training session, as we will see later, we won’t use more than a few thousands of

those events as background because = after all preliminary cuts is ~ during

events so signal contamination in such a sample is small enough that we can neglect

“taus with 7 > 1.0 can’t be reconstructed because the algorithm uses only tracks from COT,

whose 1 coverage is |n < 1.0|
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top mass (GeV) | dataset name
167.55 ttopbh
170 ttopch
172.5 ttopdh
175 ttopvh
177.5 ttopth
180 ttopgh

Table 6.4: MC datasets used to build training samples.

‘ ttopbh‘ ttopch‘ ttopdh‘ ttopvh‘ ttopfh‘ ttopgh

Tot events before Good run list | 209946 | 233233 | 233448 | 219479 | 225501 | 229394
goodRunCount 185450 | 207609 | 207941 | 193855 | 199877 | 203770
goodTrigCount 116101 | 132025 | 133545 | 125489 | 130470 | 133746
goodZVertCount 111556 | 126877 | 128234 | 120454 | 125396 | 128404
noLeptonCount 99406 | 112933 | 114020 | 107050 | 111152 | 113815
T + jets after prereq 10336 11602 11963 11286 11915 12168
T + jets after with b-tag 6794 7621 7911 7340 7782 7906
T + jets with matched 7 cand 4118 4481 4696 4331 4710 4740

Table 6.5: Effects of preliminary cuts on MC datasets used to build training samples.



6.3 it — 7 + jets selection using NNs 113

DeltaRDistr DeltaRDistr DeltaRDistr DeltaRDistr

Entries 17610 Entries 17610
Mean  0.1873 F Mean  0.1873

RMS  0.3031 3 RMS  0.3031
10

1000f
800
2
10°E
600
400

10

200/

1g

Lo Pl B S 0 s ki e B bbb bon b b b b
00 01 02 03 04 05 06 07 08 09 1 0 01020304 0506 07 08 09 1

Figure 6.18: Distribution of distances in  — ¢ plane between hepg taus and 7 candidates:
linear (left) and logarithmic (right) scale; tau candidates whose distance from hepg taus

is greater than 0.2 are considered fake taus.

it.

We have to teach a network to distinguish between signal and background: how
many training events should we use? We have at our disposal as many back-
ground events as we need (~ 278000, from table 6.2) but only ~ 4000 events for
each mass as signal, for a total of ~ 24000 signal events (table 6.5). Common sense
(and previous studies [5]) suggests that more examples we submit to the net during
training session, better results we obtain. But the greater the number of events,
the slower the net. So we have to find a good compromise between a statistically

significant number of events and net speed.

To find the best number of training events we fix a net architecture and do
training using samples with different number of events, from 12 (just a provocation!)
to 36000. Then we compare signal and background distributions and efficiencies on
signal on a fixed, independent validation set made up of 18000 signal and 18000

background events.

In figures 6.19, 6.20 and 6.21 results are shown. Figure 6.19 represents the
distribution of signal events processed by the neural network. We asked the net

to assign to every event a value as much near as possible to 1000 if it recognizes
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it as signal, near to 0 otherwise. Each bin between NNout and NNout + dnnout
contains the number of events whose neural network output lies in that interval. As
signal event distribution is peaked towards the output value 1000, in figure 6.19 we
consider only neural network outputs greater than 900. Figure 6.20 has to be read in
the same way, with the difference that it shows background events distribution and
thus only neural network output smaller than 100 are considered. Figure 6.21 shows
the efficiency on signal events as a function of the cut on neural network output.
Looking at all these plots we can conclude that 6 events are obviously too few to
describe signal/background, thus the neural network can’t distinguish between them
at all; but if we move to 120, 1200 and more events we can’t recognize a specific
trend: all trainings seem to give the same good results. Indeed, using 36000 events
the net seems to recognize signal and background with more difficulty: too much
information can result in a more difficult search of the absolute minimum for a fixed

number of iterations. So we decide to use 6000 training events for our analysis.

2500 | — 12evts
[ | —— 120evts
r 1200evts
2000 | —— 2000evts B
- 6000evts —
[ | —— 10000evts
1500~ 12000evts
C 36000evts =
1000/~ —
r |:||_|I:I‘=—‘_ [ |
500 E_I— 1 —
obldb b b ) T
900 910 920 930 940 950 960 970 980 990
NNout

Figure 6.19: Distribution of signal events processed by neural networks trained with

different numbers of training events. Zoom on the signal region (900 < NNout < 1000).
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Figure 6.20: Distribution of background events processed by neural networks trained with

different numbers of training events. Zoom on the background region (0 < NNout < 100).
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Figure 6.21: Efficiency as a function of NN output for neural networks trained with

different numbers of training events. Zoom on the signal region (900 < NNout < 1000).
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6.3.3 Single NN

The first technique we explored is based on a single neural network, trained with
both global and 7 specific variables [6]. We made 30000 iterations with a validation
every 100 iterations. The architecture used is 16-20-1. In figg. 6.22 and 6.23 training
results are shown: signal and background are very well separated and efficiency on
signal is very high for all cuts on NN output; if we consider NNout = 950, we have
77.3% efficiency on signal. Purity as a function of NN output has a very good trend,
99.7% at NNout = 950. Thus purity versus efficiency plot approaches the ideal one
- a point at 100%. But such good training results do not mean that we will obtain
the same results on real data. To check goodness of training we have to apply it to
a sample different from training one. As signal we use 1100 events not overlapping
with training ones and taken from ttopvh dataset (M, = 175 GeV). These 1100
events correspond to 43 signal events in 311 pb™!. Background events are all gset0d
events passing preliminary cuts. Validation results are shown in figg. 6.24 and 6.25.
Signal-background separation is good and so is efficiency on signal. As far as purity
is concerned, the net can’t reach the high values obtained during training, where
signal and background were present in the same proportions. Such low purity values
are reflected in the % ratios as a function of NN output reported in table 6.6, together

with efficiency and number of signal events expected in 311 pb~!.
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Figure 6.22: Single NN training results: output distribution (left) and efficiency on signal
as a function of cut on NN output (right)
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Figure 6.23: Single NN training results: purity as a function of cut on NN output (left)
and efficiency vs purity (right)
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Figure 6.24: Single NN validation results: output distribution (left) and efficiency on

signal as a function of cut on NN output (right)
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Cut | True Pos. | False Neg. | False Pos. | Eff(%) | Pur(%) S/N | In 311pb~!
0 1100 0 278337 100 0.0 | 1/5978 46.6
50 1098 2 60813 99.8 0.1 | 1/1308 46.4
100 1092 8 40230 99.3 0.1 1/870 46.2
150 1087 13 30318 98.8 0.2 1/658 46.0
200 1079 21 24351 98.1 0.2 1/532 45.7
250 1075 25 20022 97.7 02| 1/439 45.5
300 1067 33 16638 97.0 0.3 1/367 45.2
350 1063 37 13773 96.6 0.3 1/305 45.0
400 1062 38 11799 96.5 04 1/261 44.9
450 1057 43 10065 96.1 0.4 1/224 44.7
500 1050 50 8577 95.5 0.5 1/192 44.4
550 1040 60 7347 94.5 0.6 1/166 44.0
600 1028 72 6234 93.5 0.7 1/142 43.5
650 1016 84 5190 924 0.8 1/120 43.0
700 1002 98 4326 91.1 1.0 1/101 42.4
750 989 111 3435 89.9 1.2 1/81 41.9
800 971 129 2652 88.3 1.5 1/64 41.1
850 948 152 2004 86.2 2.0 1/49 40.1
900 913 187 1248 83.0 3.0 1/31 38.6
910 902 198 1095 82.0 34 1/28 38.2
920 888 212 963 80.7 3.8 1/25 37.6
930 877 223 813 79.7 4.4 1/21 37.1
940 864 236 729 78.5 4.8 1/19 36.6
950 844 256 585 76.7 5.8 1/15 35.7
960 809 291 468 73.5 6.8 1/13 34.2
970 760 340 369 69.1 8.0 1/10 32.2
980 684 416 255 62.2 10.2 1/8 28.9
990 568 532 120 51.6 16.7 1/4 24.0
995 426 674 75 38.7 194 1/3 18.0

Table 6.6: Single NN validation results: True Positives are signal events passing the

cut, False Negatives are signal events not passing the cut, Fualse Positives are background

events (gsetOd events) passing the cut. % ratio is calculated as BL_S where B are Fulse

Positives and S is the number of signal events expected in 311 pb~! and passing the cut.
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NN1 NN2
nmuhits ntrks10deg
aplanarity nisopiOs
centrality etaeta
sphericity phiphi
YErs trackiso
Missing Et significance caloetiso
visible mass
angleseedtocluster
T boost

Table 6.7: Input variables for NN1 and NN2.

6.3.4 Two NN cascade

The second technique we’re going to illustrate is based on two NNs in cascade.
The idea is to apply the second net only to those events whose NN1 output is
greater than a certain value, BestCut. NN2 thus works on events that tend all to be
recognized as signal by NN1, even background ones, and makes a further cleaning
in the sample. In table 6.7 the input variables for the two nets are listed: with the
first net we want to concentrate the selection on generical t¢ multijet events, so we
use in input mostly global variables.The second net is trained by 7 specific variables

only, to identify specifically tt — 7 + jets events.

NN1 training and validation

NN1 training procedure is the same as for the Single NN: same training sample
and same number of iterations; the architecture however changes and the one which
gives the best results appears to be 7-14-1. In figg. 6.26 - 6.29 training and validation
results are shown. We are using just a subset of the variables used for the single
NN technique, so we expect that the net has more difficulty in discriminating signal
from background at this stage. The second net will help increasing % assuming that

we optimally determine the cut on the first net.



6.3 it — 7 + jets selection using NNs

121

120

100

80

60

40

20

200

. Signal

. Background

400 600 800 1000

N w B (3. [} ~
o o o o o o

=
o

ol e b e b b b
[+]
o

o

Efficiency

IS

200t oo, , ..

@ = ® e o

c

Q - O 4

S 0

80 .

60 .

40 .
20

ol L b,
0 200 400 600 800 1000

NNoutput

Figure 6.26: NN1 training results: output distribution (left) and efficiency on signal as a

function of cut on NN output (right)
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Figure 6.28: NN1 validation results: output distribution (left) and efficiency on signal as

a function of cut on NN output (right)
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Figure 6.29: NN1 validation results: purity as a function of cut on NN output (left) and
efficiency vs purity (right)
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BestCut determination

To determine BestCut, for each MC mass® we make 100 samples with realistic

1
6000

picked from MC datasets ttopbh,...ttopgh, while as background we consider all gset0d

proportions of signal and background (initial % ~ ). Signal events are randomly
events having missing transverse energy significance less than 3 GeV'/2. This cut
assures that we are considering only background events, where signal contamination
is negligible at all (recall B distribution in figure 6.7). After NNI application,

we calculate signal significance \/ss+73 for different values of NN1 output cut. In

figure 6.30 we plot signal significance as a function of NN1 output for all masses.

each point is the mean value over the 100 measures. The value that maximizes \/.Si——B

is 960, independentently from top mass.

all top masses
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Figure 6.30: Signal significance as a function of NNI output cut; the arrow indicates the
value chosen as BestCut (960)

NN2 training and validation

Of course NN2 should be trained with events whose NN1 output is greater than

BestCut. Only 291 gset0d events survive this cut, however, and among them there is

8To check if BestCut depends on top mass
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a significant amount of signal, thus we can’t consider all those events as background.
As, at the moment, we do not have at our disposal MC events simulating our
background, we decide to train NN2 with the same sample used for Single NN and
NN1. In figg. 6.31 and 6.32 NN2 training results are shown. Validation is made
on those MC and gsetOd events passing NNI1 BestCut and results are plotted in
figg. 6.33 and 6.34. Final % ratios as a function of cut on NN2 output are listed in
table 6.8.

6.3.5 Comparing the two techniques

To decide which technique gives the best results we compare the % we obtain
in the two cases. With a single neural network the best value we obtain is 31—2 if we
cut at NNout = 995: we are left with 75 events among which we expect 18 signal
events. With two neural networks in cascade, if we cut at NN2 output = 450, we
have % = ﬁ and the same acceptance on signal (42 events surviving the cut, 18
signal events expected). If we accept a lower efficiency on signal, we can obtain even
better signal-to-noise ratios, as seen in table 6.8. Thus for our future analysis, we

prefer the double NN technique.
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Figure 6.31: NN2 training results: output distribution (left) and efficiency on signal as a

function of cut on NN output (right)
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Figure 6.33: NN2 validation results: output distribution (left) and efficiency on signal as
a function of cut on NN output (right)
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Cut | True Pos. | False Neg. | False Pos. | Eff(%) | Pur(%) S/N | In 311pb 1
0 471 0 291 100 6.8 | 1/13.6 19.9
50 463 8 165 98.3 119 | 1/74 19.6
100 456 15 123 96.8 15.7 | 1/54 19.3
150 455 16 93 96.6 20.7 | 1/3.9 19.3
200 452 19 78 96.0 24.5 1/3.1 19.1
250 450 21 66 95.5 289 | 1/2.5 19.0
300 445 26 63 94.5 299 | 1/2.3 18.8
350 440 31 54 93.4 34.5 1/1.9 18.6
400 433 38 48 91.9 38.2 | 1/1.6 18.3
450 425 46 42 90.2 42.8 1/1.3 18.0
500 419 52 42 89.0 42.2 | 1/1.4 17.7
550 415 56 39 88.1 45.0 | 1/1.2 17.6
600 409 62 39 86.8 444 | 1/1.3 17.3
650 402 69 33 85.4 51.6 | 1/1.0 17.0
700 388 83 30 82.4 54.7 | 1/0.9 16.4
750 374 97 30 79.4 52.8 | 1/0.9 15.8
800 354 117 21 75.2 71.3 | 1/04 15.0
850 332 139 18 70.5 78.1 1/0.3 14.1
900 208 173 15 63.3 84.1 | 1/0.23 12.6
950 239 232 12 50.7 84.3 | 1/0.2 10.1

Table 6.8: NN2 validation results: True Positives are signal events passing the cut, False

Negatives are signal events not passing the cut, False Positives are background events

(gset0d events) passing the cut. % ratio is calculated as 42 where B are False Positives

and S is the number of signal events expected in 311 pb—! and passing the cut.
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Chapter 7
tt cross section measurement

In the previous chapter we described two neural network based techniques we
explored in order to select ¢ — T + jets events among events collected with
TOP_-MULTI_JET trigger and we concluded that using two nets in cascade, for
a fixed acceptance on signal, we can obtain a greater % ratio with respect to a
single neural network technique. Now, using this technique, we will turn to ¢ cross
section measurement.

Measurement on data will be the last step; first we will introduce the method
we use to get cross section and the measurements of the efficiencies we need for the
cross section estimate. Then we will check the method applying it to samples where
signal and background are known. After an estimate of the systematic uncertainties

associated to our measure, we will finally move to data and measure the cross section.

7.1 The method

To select tt — T + jets events we use two NNs in cascade. The first NN,
NN1, is trained by variables describing globally the event mainly as a ¢t production;
then NN2 is trained by 7 specific variables. NN2 is applied to events whose NN1

output is greater than a certain value, BestCut, optimally selecting ¢f events in data.

BestCut is in fact the value that maximizes the signal significance \/SSLTB' NN2 thus

acts on an optimal ¢t sample classified by NN1, and makes on it further selection

of tt — 7 + jets events. Then we perform a binned likelihood fit on NN2 output
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in order to estimate the number of signal (n;) and background (n;) events in the

sample. We then use ng to calculate cross section according to

LF

(7.1)

o= — 1
6selCNNlL

where €, is the efficiency of the cuts we apply before NN analysis, €yy1 is NN1
BestCut efficiency and L is the integrated luminosity.

The likelihood we use is based on the expected probabilities fy(i) and fy(i) of
finding signal and background in the ith of the bins of NN2 output distribution.
These probabilities are given by the fraction of signal and background events we find
in the bins when applying NN2 to the training known sample. Thus the expected

number of signal events in the 4th bin is f(i) of total ny while

Ns + Ny '
is the chance of finding signal in that bin; analogously

fb(i)nb (7 3)

ng + My '

is the chance of finding background in the 7th bin. Consequently

(n,, Fo(3) + ms £ (4) ) B (7.4)

Ng + Ny

is the chance of finding k; signal and background events in the ¢¢th bin, while

ﬁ <nb 1) + nsfs(i))’” (7.5)

n n
i=1 s T T

is the chance of the final overall distribution of signal and background in the
bins. Our likelihood

(ns + np) N e~ (natne) #ﬁm (nbfb(i) + s f5(9) ) e

Ling, m) = N! s + My

(7.6)
i=1

is given by subjecting 7.5 to the condition that n; and n, are the expectation
values of a priori poisson probability that out of the N events k£ of them are found

as signal and N — k as background, summing them over all the possbile k:
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i nfe s n) ke (n, +mny)Nem(atm) 1)
K (N —k)! N! '

k=0

Minimizing — In L we obtain ng and nj.

7.2 Efficiencies

To measure cross section we need to estimate the efficiencies on signal of prere-

quisites, b-tagging, 7 candidate requests and NN1 output cut.

Prerequisite efficiency

In fig. 7.1 and table 7.1 prerequisite efficiencies for different masses are shown. Ef-
ficiency increases with increasing masses: trigger requirements' are based on calori-
metric energies and an increasing top mass produces jets with increasing energies;

thus a greater number of events survives trigger cuts.

LAt Level 1 1 calorimetric tower with Er > 10GeV, at Level 2 4 calorimetric clusters with
Egtuster > 15GeV and LEr > 125 GeV, at Level 8 4 jets with |n| < 2.0 and EJ* > 10 GeV
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Dataset | My,,(GeV) | Good run | prereq Eff. T+ jets Eff.

ttopbh 167.55 185450 99406 | 0.536 £+ 0.003 10336 | 0.0557 + 0.0006
ttopch 170 207609 | 112933 | 0.544 + 0.003 11602 | 0.0559 £ 0.0005
ttopdh 172.5 207941 | 114020 | 0.548 + 0.003 11963 | 0.0575 £+ 0.0005
ttopvh 175 193855 | 107050 | 0.552 + 0.003 11286 | 0.0582 + 0.0006
ttopfh 177.5 199877 | 111152 | 0.556 + 0.003 11915 | 0.0596 + 0.0006
ttopgh 180 203770 | 113815 | 0.558 + 0.003 12168 | 0.0597 + 0.0006

Table 7.1: Effects of prerequisites on events used to build training samples.

\ prerequisite efficiencies VS top mass |

0.56
0.555
0.55
0.545
0.54

0.535

|

L1 1 V- ‘ L1 ‘ I ‘ I ‘ I ‘ I 1 -
168 170 172 174 176 178 180
top mass (GeV)

J\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\

Figure 7.1: Prerequisite efficiency as a function of top mass
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b-tagging efficiency

b-tagging efficiency is calculated as the ratio between events having at least on
b-tagged jet and all events. It is shown in fig 7.2 and table 7.2 and within statistical
errors it is independent from top mass.

When applying the method to data, we shall multiply b-tagging efficiency esti-

mated on MC events by a scale factor? [1], that accounts for imperfections in MC

simulations.

Dataset | top mass (GeV) | Good run evts | At least 1 b tag Efficiency

ttopbh 167.55 10336 6794 | 0.657 + 0.014
ttopch 170 11602 7621 | 0.657 + 0.014
ttopdh 172.5 11963 7911 | 0.661 + 0.013
ttopvh 175 11286 7340 | 0.650 £+ 0.014
ttopth 177.5 11915 7782 | 0.653 + 0.013
ttopgh 180 12168 7906 | 0.650 £+ 0.013

Table 7.2: b-tagging efficiency on tt — 7 + jets events

\ b-tagging efficiencies VS top mass
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Figure 7.2: b-tagging efficiency on ¢t — 7 + jets events as a function of top mass
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7 finder algorithm efficiency

7 finder algorithm efficiency on our channel is estimated counting all t#t — 7+ jets
events with a 7 candidate matching an hepg 7. In table 7.3 and fig. 7.3 efficiency

as a function of top mass is shown. Within statistical errors it is independent from

top mass.

Dataset | top mass (GeV) | Good run evts | Evts with matched Efficiency

ttopbh 167.55 10336 6193 | 0.599 + 0.014
ttopch 170 11602 6807 | 0.587 + 0.013
ttopdh 172.5 11963 7138 | 0.597 + 0.013
ttopvh 175 11286 6632 | 0.588 + 0.013
ttopth 177.5 11915 7160 | 0.601 + 0.013
ttopgh 180 12168 7295 | 0.600 £ 0.012

Table 7.3: tau finder efficiency on tt — 7 + jets events

\ Tau finder efficiencies VS top mass
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Figure 7.3: 7 finder efficiency on tt — 7 + jets events as a function of top mass



7.2 Efficiencies 135

NN1 output cut efficiency

NN1 output cut efficiency is calculated submitting to NN1 all tt — 7 + jets
events passing prerequisites, b-tagging and 7 matching cuts and counting those
whose NN output is greater than BestCut = 960. In fig. 7.4 and table 7.4 NN{
output cut efficiency as a function of top mass are reported. No sensible dependence

on top mass is evident, in particular for masses from 170 to 180 GeV/c?.

Dataset | top mass (GeV) | Tot events | NNout > 960 Efficiency

ttopbh 167.55 4118 1709 | 0.415 + 0.017
ttopch 170 4481 1935 | 0.432 £ 0.016
ttopdh 172.5 4696 2054 | 0.437 £ 0.016
ttopvh 175 4331 1890 | 0.436 + 0.017
ttopth 177.5 4710 2036 | 0.432 + 0.016
ttopgh 180 4740 2082 | 0.439 + 0.016

Table 7.4: NN1 output cut efficiency on tt — 7 + jets events

NN1 output cut efficiencies VS top mass |
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Figure 7.4: NN1 output cut efficiency on ¢t — 7 + jets events as a function of top mass
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7.3 Validation on MC samples

To validate our method, we use those 100 samples for each mass built to deter-

mine BestCut (section 6.3.4). For each sample we perform the following steps:
1. apply NN1;
2. select all events whose NN1 output is greater than BestCut;
3. apply NN2;

4. perform a binned likelihood fit on NN2 output distribution to extract the

number of signal and background events in the sample;
5. calculate cross section.

In section 6.3.4, looking at signal significance as a function of cut on NN1 output,
we determined that BestCut is 960. As a first check of out method, we want to study
cross section as a function of BestCut, to assure that 960 gives the best result. For
each of 100 samples, we repeat steps 1-5 varying BestCut from 700 to 990.

Starting with loose NN1 cut, we expect to have poor final purity and an over-
estimation of the cross section, such effect reducing more and more with tighter cuts:
the hope is that a cross section plateau in correspondence of the tighter cuts comes
out, corresponding to the correct value of cross section. Indeed this is what one can
see in figures 7.5, 7.6 and 7.7. The red line is the theoretical value of cross section
calculated from [2] and [3]. Each point is the mean over the 100 measures (one for
each sample) and the error bar is the standard deviation. Increasing NNI output
cut, standard deviation increases because efficiency on signal lowers. For each mass
the plateau begins at NN1 cut 910 and for almost all masses the cross section value
approaching more the theoretical one is found for BestCut 960.

In fig. 7.8 cross section as a function of top mass is plotted for BestCut 960. The
theoretical values are superimposed and, as in the previous plots, each point is the
mean over the 100 values obtained for each mass. Within statistical errors, cross

section measurements are compatible with theoretical values.



7.3 Validation on MC samples

137

Mtop = 167.55 GeV.

xsec (pb)

o

H
]
T T[T T[T T T

| | | 1 | |
700 750 800 850 900 950 1000
NNL1 output cut

Mtop = 170 GeV

25

xsec (pb)

2

S

1

)

ol

»—\
@
L L L B L L L

| | | 1 | | |
700 750 800 850 900 950 1000
NNL1 output cut

Figure 7.5: Cross section as a function of NN1 output cut for samples with known signal

and background; red line is the theoretical value. left: oy, = 8.5 pb; right: oy, = 7.9 pb.

Each point is the mean over 100 measures and error bar is standard deviation.
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Figure 7.6: Cross section as a function of NN1 output cut for samples with known signal

and background; red line is the theoretical value. left: oy, = 7.3 pb; right: o4, = 6.7 pb.
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Figure 7.7: Cross section as a function of NN1 output cut for samples with known signal
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cross section VS top mass |
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Figure 7.8: Cross section measured on validation samples as a function of
top mass; each point is the mean over 100 measurements made on samples
with known signal and background events. The error bar with the arrows is
the theoretical error, the other error bar is the standard deviation over 100

measurements.
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7.4 Systematics

Before moving to measurement on data, we want to estimate the systematic

uncertainties which will be associated to our cross section estimate.

7.4.1 Systematic error introduced by NNs

Using neural networks we introduce a systematic error due to the finite number
of events used for training and to the training procedure itself. The greater the
number of events we use for training, the better the separation between signal and
background; as we do not have an infinite number of events at our disposal, we
obviously introduce a systematic error in our measure. Moreover, during training
procedure, the trajectory followed to locate an optimal minimum on the space of
weights associated to NN nodes, can differ from training to training: we recall that
a move on such space consists of a bit-flip in the strings of weights and the bit to
flip is chosen randomly.

To quantify the systematic error introduced by the use of NNs, we apply the

following procedure:

e we build training samples with different cardinalities® and for each cardinality

we build four non overlapping samples?;

e for each sample we make 5 trainings with the same architectures for both NN71
and NN2;

e for each of the 5 trainings and for each of the 4 non-overlapping samples
with the same cardinality, we make 100 applications® (pseudo-experiments) on
samples with n, signal events and n; background events. The first are selected
randomly from ttopvh MC dataset and are the number of expected signal

events® in 311 pb™1. n, are all gset0d events whose missing Ep significance is

32000, 6000, 10000, 12000 events.
4This small number of non overlapping samples has been forced by the limited number of signal

events at our disposal (~ 24000 events)
SNN1 — BestCut - NN2 — fit.
647 events if we consider top mass = 175 GeV.
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smaller than 3.0 GeV 2. This cut assures that in background events there is

no signal contamination.

e having done 100 pseudo-experiments for each of the 5 trainings made with
each of the 4 non overlapping samples, we calculate the overall mean of the

number of events estimated at the end of each pseudo-experiment:

1 non overl Ntr,- Npe
(T—Ls)ovemll = N NN E g g sy (78)
non—overliViriVpe j=1 k=1

where N, o, overt 1S the number of non overlapping samples, Ny, is the number
of trainings we made for each non-overlapping sample, N, is the number
of pseudo-experiments and ng,, is the number of events estimated by the
kth pseudoexperiment of the jth training made with the 7¢h non overlapping

sample;

e to quantify the systematic error introduced by the use of different non-overlapping
samples and trainings, for each training j made with a specific non-overlapping

sample 7 we calculate a mean just over the pseudo-experiments:

Npe

g 1

(ns)fj = Npe Znsijk (79)
k=1

e we assign as systematic error to n, the standard deviation of (72,)P¢ with respect

to (,ﬁs)overall .

1 non overl Nip
52 = Z ﬁ Pe _ (g overall |2 710
" Nnonfoverthr -1 1 P | S)ZJ ( 5) | ( )

In the ideal case, the use of a certain training sample instead of another with
the same number of events, should not introduce any error and the standard
deviation should be null. But in the real case, using a training sample with a
finite number of events introduces a systematic effect due to the choice of the
training events. The same for different trainings made with the same sample:
if we could perform infinite iterations we would always reach the same result
but as we do a finite number of iterations we introduce a systematic effect on

our measurement.
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# events Ns | On, | On,/ms (%)
2000 18.20 | 1.37 7.5
6000 17.85 | 1.75 9.8
10000 18.35 | 1.84 10.0
12000 19.62 | 1.92 9.8

Table 7.5: Systematic error introduced by neural networks computed for training samples

with different cardinalities.

In table 7.5 systematic errors for different cardinalities are reported. The syste-
matic error seems to be independent from the number of events used for training,
mainly using 6000, 1000 and 12000 events. With 2000 events we obtain a smaller
systematic uncertainty: this effect will be investigated in the future repeating the
whole procedure with other cardinalities around 2000. For our measure, we used

6000 training events, thus the systematic error introduced by the net is %" = 9.8 %.

7.4.2 Other sources of systematic errors
MC generator

For NN training we used MC events generated with Herwig. Different MC gen-
erators can differ in the fragmentation and generation models they use, introducing
thus a systematic effect in the measure. To estimate the systematic effect intro-
duced by the choice of a particular MC generator, we apply to event generated with

Phytia the same cuts applied to Herwig events and compare the efficiencies obtained
(table 7.6).

Efficiency calculated on Herwig events is ez = 0.0223 4+ 0.0004 while on Phytia

events we obtain ep = 0.0217 4= 0.0004. We derive a relative systematic uncertainty

ge

€

1 |€H —€P|
== =1.3% 1
)MC’ 9 € 37 (7.11)

(
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Pythia (ttop0z) | Herwig (ttopuvh)

Total MC events 190831 193855

Good Run 170987 125489

Trigger 108086 120545

z vertex 103660 107050

No lepton 92669 11286

tau+jets & at least one b tag 6181 6632
matched tau 3711 4331

Table 7.6: Effects of cuts on events generated with different MC generators, Pythia
(ttop0z) and Herwig (ttopuh), both generated with the same top mass (M, = 175 GeV))

ISR/FSR

To calculate the systematic uncertainty that arises from incomplete knowledge
of initial and final state radiation (ISR/FSR), we apply our cuts to events generated
with more/less ISR/FSR, i.e. with or without simulation of initial and final state

radiation. We use the following samples, generated with Pythia:
e ttopbr (less ISR)
e ttopdr (more ISR)
e ttopfr (less FSR)
e {topkr (more FSR)

Effects of cuts on these sample are listed in tables 7.7 and 7.8. We obtain the

following efficiencies:
o cless = 0.0203 4+ 0.0004
o e7¢r° = 0.0210 £ 0.0004
o cléss = 0.0206 + 0.0004

o €more = (.0212 + 0.0004
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less ISR | more ISR

Total MC events 178448 174436

Good Run 108286 107784

Trigger 104846 | 104324

z vertex 93984 93519

No lepton 9269 9276

tau+jets & at least one b tag 6034 6057
matched tau 3620 3656

Table 7.7: Effects of cuts on events generated with/without initial state radiation.

We compare the previous efficiencies with the value obtained on the sample
generated with Pythia at the same top mass (ttopel dataset, table 7.9, ep = 0.0214+

0.0001). As |55 — ep| > |€7gr — ep| and [€lsy

de L |€fsk — ep|
- — _IISR™ Pl _ g9
(%) 5= 5 B %
and 5 y |
€ 1eFsr —€p
- = _IFSE_"Pl _95
() pon = 5o %

more

—ep| > |€RZE — ep| we obtain

(7.12)

(7.13)

Adding in quadrature the two contributes, we obtain an overall systematic uncer-

tainty (56) =4.1%.

e /JISR/FSR

Jet energy scale

To compute systematics due to jet energy corrections, we vary all the different

sources of jet energy corrections by +1o, recalculate all variables related to jet

energies and finally calculate the variation on signal efficiency. We recall that our

method consists in the following steps:

1. application of prerequisites;

2. selection of events with at least one b-tagged jet;

3. selection of events with at least one 7 candidate;
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less FSR | more FSR

Total MC events 172562 184271

Good Run 105672 114542

Trigger 102388 110751

7 vertex 91932 99369

No lepton 9084 9924

tau+jets & at least one b tag 5892 6506
matched tau 3558 3898

Table 7.8: Effects of cuts on events generated with/without final state radiation.

ttopel (M, = 178 GeV)

Total MC events 1150043

Good Run 1021924

Trigger 647365

z vertex 622086

No lepton 556572

tau+jets & at least one b tag 36856
matched tau 21889

Table 7.9: Effects of cuts on ttopel dataset.
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4. application of the first neural network NN1;

5. selection of those events whose NNI output is greater than a certain value
BestCut;

6. application of a second neural network NN2.

The effects of jet energy corrections enter our method in steps 2 and 4: b-tagged
jets are searched among those with corrected transverse energy greater than 15 GeV
and NN1 is trained with variables strongly related to jet corrections, such as Y Ers3,
sphericity, aplanarity and centrality. NN2, on the contrary, is trained only with 7
specific variables and 7 energy and momentum aren’t subjected to jet corrections.
As far as step 2 is concerned, the selection of jets with Ey, > 15 GeV is affected
very slightly by 410 variation of jet corrections: the vast majority of the jets have
energies greater than 15 GeV, and the +10 variation increases/decreases the num-
ber of surviving events of a few units. So we decide to estimate the systematic
uncertainty due to jet corrections comparing NN1 BestCut efficiencies.

In table 7.10 we show the effects of BestCut on NN1 outputs obtained using samples

with default and +10 correction factors.

We obtain the following efficiencies:
® cir =0.98+0.02%
o 1, = 1.00 £ 0.02%
e c_1, =0.95+0.02%

The systematic uncertainty due to jet correction is thus

de 1 |€+10 - 6_1(7‘
— =——F=126 7.14
(D=5 % (7.14)

PDFs

To evaluate the systematic uncertainty due to pdf dependence, we follow the
official top group recipe [4] to reweight the ¢ sample using the pdf libraries. We

obtain the following systematic uncertainties:
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default corr.fact. | +1o —1lo

Total MC events 219479 219479 | 219479

Good Run 193855 193855 | 193855

Trigger 125489 125489 | 125489

7 vertex 120454 120454 | 120454

No lepton 107050 107050 | 107050
tau+jets & at least one b tag 7340 7346 7336
matched tau 4331 4334 4329
NN1 out > BestCut 1890 1939 1852

Table 7.10: Effects of preliminary and BestCut cuts on events corrected with default

correction factor and with factors obtained varying all sources of jet corrections by 1o

(ttopvh dataset).

e 2.0 %, difference between MRST72 and CTEQS5L cross sections;

e 1.6 %, difference between MRST cross sections for two different values of «

(MRST75 vs MRST72);

e 0.6 %, quadrature sum of the maximum =+ differences for the 20 CTEQ eigen-

vectors.

Summing in quadrature all these uncertainties, we obtain a total systematic

uncertainty of 2.6 %.

7.5 Measurement on data

Let’s apply the overall method to all gsetOd events and extract cross section

measurement. We assume that top mass is 175 GeV. In section 7.3, we studied

cross section as a function of cut on NN1 output; a plateau corresponding to the

correct cross section value was evidenced for a range of NNI output cuts containing

the BestCut value we had estimated using signal significance (section 6.3.4). In

figure 7.9 cross section as a function of cut on NN1 output is shown for gsetOd data.
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The error bar represents the statistical error which is dominated by the error coming
from the fit. The plateau is not as evident as that we obtained during validation on
MC samples: in that case it started at NN1 output cut 910 while here it begins at
960. We explain such effect considering that background events in validation samples
were selected requiring missing transverse energy significance smaller than 3 GeVs.
This cut assures that in background events there is no signal contamination but
makes NN1 and NN2 tasks easier: the first can discriminate better between signal
and background because we do not sumbit it difficult background, i.e. background
events with large missing energy that can be easily taken for signal; as a consequence,
the second net is submitted much cleaner samples even for NNI output cuts lower
than BestCut and the plateu starts well before BestCut.

In table 7.11 we report efficiencies and luminosity values used for the measure
and the number of signal events extracted by the fit for BestCut = 960. The main
source of statitiscal error is in the number of signal events: the fit gives an error of
32%. In table 7.12 we summarize systematic errors.

The cross section value for BestCut 960 is
o(Myp = 175GeV) = 7.1 + 2.3(stat) £ 0.9(syst)pb (7.15)

in agreement with the theoretical valueof 6.7 pb.

Systematic error is dominated by the systematic uncertainty introduced by our
method (9.8%).

The statistical error, as already stated, is dominated by the error on the estimate
of ns. We are quite confident that it can be reduced with higher statistics (1 fb™!
of data will soon be available to be processed). Moreover, tau finder algorithm
is subject to continuous improvements from which our analysis will surely gain
efficiency on signal. Statistical error is also related to the purity level of the sample
submitted to the second net: greater the purity smaller the error associated to ng
by the fit. Thus better neural network performances, that can be achieved exploring

new architectures and input variables, can improve measurement precision.
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N 19.5 + 6.3
Eprereq 0.058 £ 0.001
€btag 0.591 + 0.016
€1 ind 0.588 + 0.013
ENN1 0.436 £+ 0.017
Luminosity 311 pb!

Table 7.11: Ingredients for cross section estimate: number of signal events, efficiencies

and luminosity values. Errors are statistical only.

NN 9.8 %
MC generator | 1.3 %
ISR/FSR 4.1 %

JES 2.6 %
PDFs 2.6 %
Luminosity | 5.8 %
total 12.7 %

Table 7.12: Systematic uncertainties affecting our measure: the main contribute is from

the neural network method we use.
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Figure 7.9: Cross section as a function of cut on NN1 output; red line is the theoretical
value (6.7 pb) for My,,=175 GeV. Each point is obtained applying the overall method
(NN1 — BestCut - NN2 — fit) varying the cut on NN1 output in order to evidence
on data the same plateau we obtained on samples with known signal and background. The
error bar is the statistical error calculated propagating errors on efficiencies and on ng, the
number of signal events obtained by the likelihood minimization. ng is the main source
of statistical error while errors on efficiencies are negligible. The value obtained for NN1

output cut 960 (BestCut) is our final cross section estimate (7.14+2.3(stat)30.9(syst)pb)
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Conclusions

In this thesis we study a selection of ¢t pairs decaying in a final state with
five jets, two from b quarks, two from W bosons and one from a 7 lepton decaying
semileptonically into charged and neutral pions. We search for this signal in 311 pb~!

of data selected with TOP_MULTIJET trigger up to August 2004. 7+ jets channel

1
32000 °

first cleaning of the sample can be done exploiting b-tagging and 7 finder algorithms:
1

suffers from a large background from QCD and before any analysis % is ~

% after requiring at least one b-tagged jet and a 7 candidate in each event, is

6000 °
Using two neural networks in cascade, the first trained mostly by global variables,
the second by tau specific ones, we can reach a % = % with 18 expected signal

events. This technique, compared to a standard one with just one network, allows
to obtain a % three times better.
Making a binned likelihood fit on the output of the second net, we measure ¢t

production cross section. For a top mass = 175 GeV/c? we obtain
0(Miop = 175GeV) = 7.1 + 2.3(stat) = 0.9(syst)pb

The measured value is in agreement with the theoretical value of 6.7 pb.

We are working on the reduction of statistical error: the analysis will be repeated
in the next future on a greater sample of data (1 fb~!) with improved tau finder
algorithm. New net architectures and input variables will be tested, to increase the
discriminating power of the first net, which is strongly related to statistical error on

the number of signal events estimated by minimization procedure.
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