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CHAPTER 1

The Standard Model and phenomenology of the tWb vertex

Much of our present understanding of nature is articulated in a theory known as the

Standard Model of Particle Physics (SM). This remarkably successful theory includes a

complete description of nearly all phenomena observed at high-energy physics experi-

ments, including the electromagnetic, weak, and strong nuclear forces. However, there

are observed phenomena which are not described by the SM; also, the SM is theoreti-

cally inconsistent with general relativity, Einstein’s well-tested theory of gravity. Because

of these experimental and theoretical puzzles, the SM is not regarded as a fundamental

theory; a truly fundamental theory must explain all phenomena observed in nature.

One of the great puzzles of the SM is the origin and nature of electroweak symmetry

breaking (EWSB), the mechanism which is thought to imbue the weak bosons and the

fermions of the SM with mass. Because of the large masses of the top quark, the W boson

and the bottom quark, the Wtb interaction vertex is a natural place to explore hypotheses

concerning EWSB.

In this chapter we present a brief description of the Standard Model [1, 2, 3, 4, 5]

and discuss some of the phenomenology of top-quark decays. Appendix A describes the

conventions used in this chapter.
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1.1 The Standard Model

The Standard Model is a gauge field theory, locally invariant under transformations in

the Lie group

G = SU(3)C × SU(2)L × U(1)Y. (1.1)

The SU(3)C symmetry defines the structure of the strong nuclear interactions, as described

by the theory of quantum chromodynamics (QCD) [6, 7]. The SU(2)L×U(1)Y symmetry

defines the structure of the unified weak and electromagnetic interactions, as described

by the Glashow–Salam–Weinberg (GSW) theory [8, 9, 10, 11].

Masses arise in a gauge–invariant way, due to a process known as the Higgs mecha-

nism [12, 13]. In this mechanism, the local SU(2)L ×U(1)Y symmetry of the electroweak

interaction is hidden or “spontaneously broken,” and the U(1)Q symmetry of the electro-

magnetic interaction emerges. This aspect of the theory correctly predicts the existence

of the weak gauge bosons as well as the ratio of their masses [8, 9]. It also predicts the

existence of a spin–0 particle: the Higgs boson (H), which has not yet been observed

experimentally. We discuss the Higgs mechanism in greater detail in Section 1.1.2.

The interactions of the SM are defined by the Lagrangian density

L = Lgk + Lφ + Lfk + LYukawa. (1.2)

We describe Equation 1.2 in terms of the spin–0 scalar fields (the Higgs doublet φ), the

spin–1
2

matter fields, (the fermions) and the spin–1 interaction fields (the gauge bosons).

1.1.1 Gauge bosons

In the Standard Model, interactions are mediated by the exchange of spin–1 gauge

bosons. The group structure of the theory requires that there exist twelve such gauge

bosons, one for each generator of the symmetry group G.

2



Generators of the U(1) symmetry group are real scalar constants. We identify the

generator of the U(1)Y subgroup of G as the weak hypercharge (Y ). The gauge field

associated with U(1)Y is labeled Bµ.

The three generators of SU(2) in the fundamental representation are the 2 × 2 Pauli

matrices ~τ = (τ 1, τ 2, τ 3). The weak isospin operator is

Ti =
1

2
τi. (1.3)

The magnitude of the weak isospin (T ) and its third component (T3) are the quantum

numbers associated with the SU(2) symmetry. The gauge boson fields associated with

SU(2)L are labeled A1
µ, A2

µ and A3
µ.

The eight generators of SU(3) in the fundamental representation are the 3 × 3 Gell–

Mann matrices ~λ = (λi, . . . , λ8). The quantum numbers associated with the SU(3) sub-

group of G are the so-called color charges of QCD (i.e. red, green and blue). The gauge

bosons associated with SU(3) are labeled G1
µ, . . . , G

8
µ.

Generators of each of the symmetry subgroups of G commute with the generators of

the other subgroups. Therefore, the kinetic energy terms of the SM Lagrangian which

describe self–interactions of the gauge fields are

Lgk = −1

4
Ai

µνA
iµν − 1

4
BµνB

µν (1.4)

where

Ai
µν = ∂µA

i
ν − ∂νA

i
µ − g εijk Aj

µA
k
ν , (1.5)

Bµν = ∂µBν − ∂νBµ. (1.6)

Here g is the weak coupling constant, and εijk is the structure constant for SU(2).
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1.1.2 The Higgs mechanism

If the SM is to be gauge–invariant and renormalizable, its Lagrangian cannot contain

explicit mass terms. Instead, masses are introduced via the Higgs mechanism [12, 13],

which hides (or spontaneously breaks) the electroweak symmetry and does not spoil the

gauge invariance or the renormalizability of the massless theory [14, 15, 16].

A multiplet of scalar fields (called the Higgs field) is introduced: these fields couple

to the massless SU(2)L × U(1)Y gauge bosons and the massless fermions, but leave the

Lagrangian invariant under SU(2) × U(1) gauge transformations. The minimum energy

states of the Higgs field are degenerate, and one particular state is spontaneously chosen

as the vacuum. This choice does not affect the resulting physics, but when the Lagrangian

is expressed in terms of this arbitrary vacuum state, the SU(2)L × U(1)Y symmetry is

reduced to the familiar U(1)Q symmetry of the electromagnetic interaction, and the gauge

bosons associated with the now–hidden symmetries mix and acquire mass.

The Higgs field is an SU(2) doublet composed of complex scalar fields

φ =

φ+

φ0

 =
1√
2

φ1 + iφ2

φ3 + iφ4

 , (1.7)

where φ1 . . . φ4 are real scalar fields. The fields φ+ and φ0 are assigned quantum numbers

φ+ : T =
1

2
, T3 =

1

2
, Y = 1, Q = +1,

φ0 : T =
1

2
, T3 = −1

2
, Y = 1, Q = 0. (1.8)

The dynamics of the Higgs field is described by the Lφ terms of the SM Lagrangian

Lφ = (Dµφ)†(Dµφ)− V (φ). (1.9)

The scalar potential is

V (φ) = µ2φ†φ+ λ(φ†φ)2, (1.10)

4



and the covariant derivative is1

Dµ = ∂µ − ig
τ j

2
Aj

µ − ig′
Y

2
Bµ. (1.11)

For the case µ2 < 0 and λ > 0, the potential V (φ) is minimized if

φ†φ =
φ2

1 + φ2
2 + φ2

3 + φ2
4

2
=
−µ2

2λ
≡ v2

2
. (1.12)

The scalar Lagrangian Lφ is invariant under SU(2) × U(1) gauge transformations of

the Higgs field; we are therefore free to choose a gauge by applying such a transformation.

It’s convenient to work in the unitary gauge, where three of the four degrees of freedom

of the Higgs field vanish (e.g. φ1 = φ2 = φ4 = 0). The vacuum state is then

φ0 =
1√
2

0

v

 . (1.13)

Still working in the unitary gauge, we can express excitations of the Higgs field relative

to the vacuum state

φ(x) =
1√
2

 0

v +H(x)

 , (1.14)

where H(x) is the Higgs boson, manifested by excitations of the Higgs field from the

vacuum expectation value v. Since we are able to “gauge away” all but one of the four

scalars of the Higgs doublet, only one can appear as a real particle, i.e. the Higgs boson.

The other three fields are the Goldstone bosons, which are not manifest as independent

physical particles, but appear as the longitudinal polarization states of the soon–to–be

massive gauge bosons. We give a concrete example of this relationship in Section 1.2.

1 The Higgs field couples only to the SU(2)L × U(1)Y gauge bosons; the SU(3)C symmetry is unaffected by the Higgs
mechanism.
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1.1.3 Masses of the gauge bosons

If we re-write the Higgs sector terms of the SM Lagrangian using Equation (1.14), the

scalar potential becomes

V =
1

2
(2λv2)H2(x) + λvH3(x) +

1

4
λH4(x), (1.15)

and the Higgs boson has acquired a mass,

mH = v
√

2λ. (1.16)

The covariant derivative of Equation (1.11) mixes the SU(2)L and U(1)Y gauge fields.

Evaluating at the vacuum state, we find

Dµφ0 =
1√
2

(
∂µ − i

g

2
τ iW i

µ − i
g′

2
Bµ

)0

v

 (1.17)

= − iv

2
√

2

g(A1
µ − iA2

µ)

g′Bµ − gA3
µ

 (1.18)

We can identify the mass eigenstates of the gauge bosons by examining the kinetic terms

of the scalar field,

(Dµφ0)
†(Dµφ0) =

v2

8

(
g2W+

µ W
−µ + (g2 + g′2)ZµZ

µ
)
. (1.19)

The massive gauge bosons are the W± and the Z0

W±
µ =

1√
2
(A1

µ ∓ iA2
µ) (1.20)

Z0
µ =

1√
g2 + g′2

(gA3
µ − g′Bµ), (1.21)

which have masses

mW =
v

2
g (1.22)

mZ =
v

2

√
g2 + g′2. (1.23)
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Particle Symbol Mass ( GeV/c2) Interaction
Photon γ 0 Electromagnetic
W boson W± 80.4 Weak charged–current
Z boson Z0 91.2 Weak neutral–current
gluon Ga 0 Strong

Table 1.1: The gauge boson mass and their associated interactions.

The fourth mass eigenstate is the photon

A0
µ =

1√
g2 + g′2

(g′A3
µ + gBµ), (1.24)

which is associated with the electric charge operator

Q ≡ T3 + Y. (1.25)

Table 1.1 lists the physical gauge bosons of the Standard Model and their masses.

The vacuum state of the Higgs field is invariant under the gauge transformation

φ0 → φ0
′ = exp [iα(x) (T3 + Y )]φ0. (1.26)

Therefore the photon acquires no mass, the vacuum carries no electric charge, and the

electroweak symmetry has been reduced,

SU(2)L × U(1)Y → U(1)Q. (1.27)

The mixing of the SU(2)L and U(1)Y gauge bosons is parametrized by the weak mixing

angle θw

cw ≡ cos θw =
g√

g2 + g′2
, sw ≡ sin θw =

g′√
g2 + g′2

, (1.28)

such that Zµ

Aµ

 =

cos θW − sin θW

sin θW cos θW


W 3

µ

Bµ

 . (1.29)
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First Generation Second Generation Third Generation
Quarks

up (u) 1.5− 4.0 MeV charm (c) 1.15− 1.35 GeV top (t) 178± 4.3 GeV
down (d) 4− 8 MeV strange (s) 80− 130 MeV bottom (b) 4.1− 4.4 GeV

Leptons
electron (e) 0.5 MeV muon (µ) 106 MeV tau (τ) 1.8 GeV
electron neutrino (νe) < 3 eV muon neutrino (νµ) < 0.19 MeV tau neutrino (ντ ) < 18.2 MeV

Table 1.2: The quarks and leptons of the SM, their symbols (in parentheses) and their observed masses [17,
18].

We can write the covariant derivative (1.11) in terms of the physically observable gauge

bosons. We identify the isospin raising and lowering operators

T± ≡ (T1 ± iT2) , (1.30)

and the electron charge

e =
gg′√
g2 + g′2

. (1.31)

The covariant derivative is then

Dµ = ∂µ − i
e√
2sw

(
W+

µ T+ +W−
µ T−

)
− i

e

swcw
Zµ

(
T3 − s2

wQ
)
− ieAµQ. (1.32)

1.1.4 Fermions

The matter spectrum of the SM of consists of three generations of spin–1
2

fields. Each

generation is a “copy” of the others with respect to their gauge quantum numbers, but all

differ with respect to their masses. A generation consists of one charged and one neutral

lepton, which are subject to the electroweak interaction, and one up-type and one down-

type quark, which are subject to electroweak and strong interactions. Table 1.2 lists the

fermions of the SM and their observed masses.

To be consistent with experimental results, the fermion matter fields of the SM are

constructed to have a unique chiral structure. The charged-current weak interaction

appears to couple only to left–handed (i.e. negative helicity) fermions and right-handed
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(i.e. positive helicity) antifermions. This is accommodated in the theory by choosing

two different representations of SU(2) for left– and right–handed fermions. Left-handed

fermions appear as SU(2) doublets. The three generations of left-handed leptons are

Ei
L =

νi

`i


L

=


νe

e


L

,

νµ

µ


L

,

ντ

τ


L

 . (1.33)

The three generations of left-handed quarks are

Qi
L =

ui

di


L

=


u
d


L

,

c
s


L

,

t
b


L

 . (1.34)

Right-handed fermions appear as SU(2) singlets. The right-handed charged leptons are

`iR = (eR, µR, τR). (1.35)

The right-handed up- and down-type quarks are

ui
R = (uR, cR, tR) (1.36)

and

di
R = (dR, sR, bR). (1.37)

By construction, there are no right-handed neutrino states in the SM. However, recent

experimental results indicate neutrinos are not massless [19, 20]; therefore right-handed

neutrino states should be included in the theory. The experimental picture of the neutrino

spectrum is far from clear, though. While we know that the number of light neutrino

flavors is three [17], we do not know if neutrinos are Majorana or Dirac particles, or if

there exist additional massive sterile neutrinos, or if other “exotic” scenarios describe the

neutrino sector.
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Fermions SU(2)L U(1)Y U(1)Q

leptons
Weak Isospin Hypercharge Electric Charge

T T3 Y Q = T3 + Y(
νe

e

) (
νµ

µ

) (
ντ

τ

)
1
2

(
+ 1

2

− 1
2

)
− 1

2

(
0

−1

)
eR µR τR 0 0 −1 −1

quarks(
u
d

)
L

(
c
s

)
L

(
t
b

)
L

1
2

(
+ 1

2
− 1

2

)
+ 1

6

(
+ 2

3
− 1

3

)
uR cR tR 0 0 + 2

3 + 2
3

dR sR bR 0 0 − 1
3 − 1

3

Table 1.3: Quantum numbers of the SM quarks and leptons.

Only the quarks participate in the strong nuclear interaction; each quark flavor carries

a color charge (red (r), green (g), or blue (b)) and transforms as a triplet under SU(3):

q =


qr

qg

qb

. (1.38)

Table 1.3 lists the gauge quantum numbers of the SM fermions.

1.1.5 Electroweak interactions with fermions

The Lagrangian of electroweak interactions, ignoring fermion masses, follows directly

from the above quantum number assignments. The kinetic terms are

L =
i=3∑
i=1

Ēi
L (i 6D)Ei

L + ¯̀i
R (i 6D) `iR + Q̄i

L (i 6D)Qi
L + ūi

R (i 6D)ui
R + d̄i

R (i 6D) di
R, (1.39)

where Dµ is the covariant derivative given in Equation (1.11), with T3 and Y evalu-

ated according to the field on which they act. In terms of the mass eigenstates of the

gauge bosons, the Lagrangian describing the electroweak interactions of the ith generation

10



fermions is

L =
i=3∑
i=1

{
Ēi

L (i 6∂)Ei
L + ¯̀i

R (i 6∂) `iR + Q̄i
L (i 6∂)Qi

L + ūi
R (i 6∂)ui

R + d̄i
R (i 6∂) di

R

+ g
(
W+

µ J
µ,i
W+ +W−

µ J
µ,i
W− + Z0

µJ
µ,i
Z

)
+ eAµJ

µ,i
EM

}
. (1.40)

The weak charged– and neutral currents are respectively

Jµ,i
W+ =

1√
2

(
ν̄i

Lγ
µ`iL + ūi

Lγ
µdi

L

)
Jµ,i

W− =
1√
2

(
¯̀i

Lγ
µνi

L + d̄i
Lγ

µui
L

)
(1.41)

and

Jµ,i
Z =

1

cw

{
ν̄i

Lγ
µ

(
1

2

)
νi

L

+¯̀i
Lγ

µ

(
−1

2
+ s2

w

)
`iL + ¯̀i

Rγ
µ
(
s2

w

)
`iR

+ūi
Lγ

µ

(
1

2
− 2

3
s2

w

)
ui

L + ūi
Rγ

µ

(
−2

3
s2

w

)
ui

R

+d̄i
Lγ

µ

(
−1

2
+

1

3
s2

w

)
di

L + d̄i
Rγ

µ

(
1

3
s2

w

)
di

R

}
.

(1.42)

The terms in the electromagnetic current, are also diagonal and do not distinguish between

left and right handed particles:

Jµ,i
EM = ¯̀iγµ (−1) `i + ūiγµ

(
+

2

3

)
ui + d̄iγµ

(
−1

3

)
di. (1.43)

Fermion masses

The fermions also acquire mass by coupling to the Higgs field. Since we are specifi-

cally interested in understanding top-quark decay, we will restrict the discussion of quark

masses to the case of one generation. A complete treatment of quark masses in the case of
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more than one generation must include a description of the weak mixing of quark flavors.

However, this phenomenon is not of primary relevance to this analysis.

We can write gauge-invariant Lagrangian describing the Yukawa coupling of the leptons

∆LYukawa = −λ`iĒi
L φ `

i
R + H.c. (1.44)

and the quarks

∆LYukawa = −λdiQ̄i
L φ d

i
R − λuiεab

(
Q̄i

L

)
a

(
φ†b

)
b
uj

R + H.c. (1.45)

Here i indexes the generation of the quarks and leptons, and is not summed over. The

form of Equations 1.44 and 1.45 differ because right-handed neutrinos are not included

in the Standard Model. If we evaluate these terms at the vacuum state, (1.13) we can

identify the mass terms; Equation (1.45) becomes

∆LYukawa = − 1√
2
λdivd̄i

Ld
i
R −

1√
2
λuivūi

Lu
i
R + H.c. (1.46)

and Equation (1.44) becomes

∆LYukawa = − 1√
2
λ`iv ¯̀i

L`
i
R + H.c. (1.47)

Therefore, charged leptons have mass

m`i =
1√
2
λ`iv, (1.48)

and up- and down-type quarks have mass

mui =
1√
2
λuiv, mdi =

1√
2
λdiv. (1.49)

The Yukawa coupling constants λ`i , λui and λdi are inputs to the theory, and are chosen

in accordance with the masses of the observed quarks and leptons.
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k W+

p

q
t

b
Figure 1.1: Feynman diagram for the decay t→W+b.

1.2 Top-quark decay

According to the Standard Model, the top quark decays almost exclusively via t →

Wb.2 The tree-level Feynman diagram for this process is shown in Figure 1.1; we can

write the Lorentz–invariant amplitude according to the expression of the weak charged-

current (1.41)

iM =
ig√
2
t(p)γµ

(
1− γ5

2

)
b(q)ε∗µ(k). (1.50)

After squaring this amplitude and averaging over the top and bottom polarization states,

we find

1

2

∑
spins

|M|2 =
g2

2
[qµpν + qνpµ − gµνq · p]

∑
polarizations

ε∗µ(k)εν(k). (1.51)

Since mb/mW < mb/mt << 1 we can, to a good approximation, treat the b quark as

massless. In this limit, energy–momentum conservation gives:

2p · q = 2p · k = m2
t −m2

W (1.52)

2k · p = m2
t +m2

W . (1.53)

The sum over polarizations in Equation (1.51) depends on the form of the W+ propa-

gator, and the W+ propagator depends upon the choice of gauge. The Rξ class of gauges

is parametrized by the real, finite constant ξ. The W+ boson propagator in an Rξ gauge

2 The decay modes t → Ws and t → Wd are also allowed. However, they are suppressed by factors of |Vts|2/|Vtb|2 ≈ 10−3

and |Vtd|2/|Vtb|2 ≈ 5× 10−4, where Vij is the Cabibbo-Kobayashi-Maskawa (CKM) weak–mixing matrix. [21, 17] We will
proceed assuming the CKM matrix element Vtb is unity.
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is

〈W+
µ (k)W+

ν (−k)〉 =
−i

k2 −m2
W

[
gµν −

kµkν

k2 − ξm2
W

(1− ξ)

]
, (1.54)

and the propagator for φ+, the Goldstone boson associated with the W+ boson after

EWSB, is

〈φ+(k)φ+(−k)〉 =
i

k2 − ξm2
W

. (1.55)

Note that the parameter ξ is an arbitrary, unphysical parameter. As such, physically–

observable quantities cannot depend on the choice of the parameter ξ (i.e. the choice of

gauge).

In the unitary gauge, (i.e. the limit ξ →∞) the Goldstone boson propagator vanishes

(by definition), and the gauge boson propagator is

〈W+
µ (k)W+

ν (k)〉 =
−i

k2 −m2
W

(
gµν −

kµkν

m2
W

)
. (1.56)

Notice that this propagator includes one longitudinal polarization state (the term pro-

portional to kµkν) and the two transverse polarization states appropriate for an on-shell

massive vector particle. The sum over physical polarization states of the W+ is then

[∑
ε∗µ(k)εν(k)

]
lim ξ→∞

= gµν −
kµkν

m2
W

. (1.57)

Inserting this expression into Equation (1.51), we find

1

2

∑
spins

|M|2 =
g2

4

m4
t

m2
W

(
1− m2

W

m2
t

)(
1 + 2

m2
W

m2
t

)
. (1.58)

This gives the Standard Model prediction for the top quark width,

Γ =
g2

64π

m3
t

m2
W

(
1− m2

W

m2
t

)2(
1 + 2

m2
W

m2
t

)
. (1.59)

The top width (1.59) is a physically-observable quantity, and therefore must be gauge–

invariant. However, if we work in the Feynman–’t Hooft gauge, (i.e. ξ = 1) we see that
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k φ+

p

q
t

b
Figure 1.2: Feynman diagram for the decay t→ φ+b.

the W+ contributes only the transverse polarization states to the width

1

2

∑
spins

|M|2 =
g2

2
(2p · q) =

g2

2
(m2

t −m2
W ), (1.60)

a result inconsistent with Equation (1.58). Gauge invariance is saved when we include

the process t→ φ+b, shown in Figure 1.2. In the Feynman-’t Hooft gauge, the Goldstone

boson contributes the missing longitudinal polarization terms to the top width

iM(t→ φ+b) = λ2
t b(q)

(
1 + γ5

2

)
t(p), (1.61)

1

2

∑
spins

|M(t→ φ+b)|2 = λ2
tp · q

=
g2

4

m2
t

m2
W

(m2
t −m2

W ). (1.62)

We have shown that while the top quark width is gauge–invariant, the distinction

between the longitudinal polarization state of the W+ or the Goldstone boson φ+ depends

upon an arbitrary choice of gauge.

1.2.1 The fraction of longitudinally–polarized W s from top–quark decays

Using the results of the previous section, we can calculate the SM prediction of the

fraction of longitudinally–polarized W s produced in top decays,

F0 ≡
Γ(λW = 0)

Γ(λW = −1) + Γ(λW = 0) + Γ(λW = +1)
. (1.63)
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Because of the V − A nature of the SM weak interaction, only the terms Γ(λW = −1)

and Γ(λW = 0) appear in the denominator. The final result is

F0 =

(
1 + 2

(mW

mt

)2
)−1

. (1.64)

For mt = 178 GeV, the SM prediction is F0 ' 0.71.

1.2.2 Non-universal tWb gauge couplings

So far, we have worked under the assumption that the V −A structure of the charged-

current interaction is universal for all quark generations. However, because the top quark

is heavy, it is possible that new physics may be manifest at the tWb vertex in the form

of non-universal gauge couplings [22]. The most general Lagrangian for the tWb vertex

which describes such non–universal couplings is [23]

L =
g√
2

[
W−

µ b̄γ
µ(fL

1 P− + fR
1 P+)t− 1

MW

∂νW
−
µ b̄σ

µν(fL
2 P− + fR

2 P+)t

]
+
g√
2

[
W+

µ t̄γ
µ(fL

1

∗
P− + fR

1

∗
P+)b− 1

MW

∂νW
+
µ t̄σ

µν(fR
2

∗
P− + fL

2

∗
P+)b

]
.

(1.65)

The form factors fL
1 and fR

1 parametrize the strength of left– and right–handed charged

current interactions. The strength of an anomalous weak magnetic interaction is parametrized

by the form factors fL
2 and fR

2 . At tree level in the SM the form factors are fL
1 = 1 and

fR
1 = fL

2 = fR
2 = 0.

The polarization of the W in the t→ Wb decay probes the values of the form factors

fL
1 and fL

2 . The amplitudes squared for the possible W polarizations are (apart from a
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common factor g2Ebmt) [23]

|M(λW = −)|2 =

∣∣∣∣fL
1 +

mt

MW

fR
2

∣∣∣∣2,
|M(λW = +)|2 =

∣∣∣∣fR
1 +

mt

MW

fL
2

∣∣∣∣2,
|M(λW = 0)|2 =

1

2

∣∣∣∣ mt

MW

fL
1 + fR

2

∣∣∣∣2 +
1

2

∣∣∣∣ mt

MW

fR
1 + fL

2

∣∣∣∣2. (1.66)

While there is direct experimental information regarding fR
1 (see Section 2.3), this form

factor is already severely bounded (albeit indirectly) by the observed b→ sγ rate [24, 25],

− 0.037 < fR
1 < 0.0015 @ 95% CL. (1.67)

We proceed under the assumption that there are no non–universal couplings at the tWb

vertex, and set out to simply measure F0, thereby testing the consistency of the theory.
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CHAPTER 2

Top production and decay

In this chapter we discuss top–quark pair production at the Tevatron. We describe the

experimental signatures of tt decay and present a brief description of methods used to

isolate tt–enriched samples in the data. We discuss several approaches for measuring F0

in these data; we also present the results of some previous measurements of this quantity

from the DØ and CDF experiments. Finally, we describe the methods used in this analysis

to measure F0.

2.1 Top–quark production at the Tevatron

The strong interaction is primarily responsible for producing top quarks in pp collisions

at the Tevatron. The weak interaction can produce single top quarks, however the rate

of weak production is expected to be ∼ 1/3 that of strong production. In addition,

backgrounds from SM processes (e.g. Wgg production) are large, making it difficult to

isolate single–top events. The strong interaction produces top quarks in pairs; many SM

processes do mimic the signatures for tt decays, however the problem of isolating top–

quark pairs is much more tractable, and great effort has been devoted to understanding

and reducing these backgrounds.

The dynamics of the interaction of gluons and quarks is described by the QCD terms
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(a) qq → tt s-channel

g
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t

(b) gg → tt s-channel

g
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t

(c) gg → tt t-channel

g

g t

t

(d) gg → tt u-channel

Figure 2.1: Feynman diagrams of the leading order tt pair production processes.

of the SM Lagrangian

∆LQCD = −1

2
gs qγ

µλaGa
µq −

1

4
Ga

µνG
aµν . (2.1)

The quarks appear as SU(3) triplets q, and Ga=1,...,8
µ are the eight gluon fields associated

with the eight generators of SU(3). The kinetic terms Ga
µνG

aµν describe gluon–gluon

interactions,

Ga
µν = ∂µG

a
ν − ∂νG

a
µ − g3 f

abcGb
µG

c
ν , (2.2)

where fabc are the structure constants for SU(3).

The leading order Feynman diagrams for the production of tt pairs in pp collisions are

shown in Figure 2.1. Of these processes, the qq initial state is expected to produce 85%

of tt pairs at the Tevatron; the gg initial state is expected to contribute the remaining

15%. From these diagrams one can calculate the Lorentz invariant amplitudes M for

these processes. The differential cross section for a process pipj → p1p2 is

dσij

dΩCM

=
|p1|

32π2EiEjECM |vi − vj|
|M(pipj → p1p2)|2. (2.3)
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(a) (b)

Figure 2.2: Parton distribution functions at (a) Q2 = 2 GeV and (b) Q2 = 100 GeV [26].

Protons (and antiprotons) are not point-like objects: they are assemblages of real

quarks, surrounded by a sea of virtual quarks and bound by gluons. At sufficiently high

energies, collisions between the proton constituents (called partons) can be regarded as

interactions between free particles. In this limit, the total cross section for a given process

is approximated by summing over all possible parton interactions:

σ(pp̄→ tt̄) =
∑
i,j

∫
dxidxjFp(xi, Q

2)Fp(xj, Q
2)σij(Q

2,mt). (2.4)

The factorization and renormalization scale Q2 is an arbitrary parameter with dimensions

of energy, which is introduced in the renormalization procedure. The functions Fp(xi, Q
2)

and Fp(xi, Q
2) are the parton distribution functions. The product Fp(xi, Q

2)Fp(xj, Q
2)

is the joint probability density of parton i, (within the proton) with momentum xiP ,

interacting with parton j, (within the antiproton) with momentum −xjP . Here P (−P )

is the magnitude of the proton (antiproton) momentum in the center of mass frame.

The parton distribution functions are determined empirically: parametrizations of these

functions are derived from fits to data of deep inelastic scattering experiments at low
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Q2 [26]. These parametrizations are scaled to appropriately large values Q2 using the

DGLAP equations [27, 28, 29]. Figure 2.2 shows these parametrizations at different

values of Q2.

For a center of mass energy
√
s = 1.96 TeV and a top–quark mass mt = 175 GeV, the

total theoretical cross section for tt production is [30]

σ(pp→ tt) = 6.7+0.7
−0.9 pb. (2.5)

The CDF collaboration has measured the tt pair-production cross section using data from

run II of the Tevatron. Figure 2.3 summarizes the results of these analyses, which are

in good agreement with the theoretical expectation. The consistency of the measured

cross section with the theoretical prediction implies that we have a good understanding

of the background content of these samples, and that we have indeed isolated tt events in

these data. Figure 2.4 summarizes the recent measurements of the tt production cross-

section by the DØ collaboration; these are also in good agreement with the theoretical

expectation.

2.2 Experimental signatures of tt decay

As discussed in Section 1.2, the SM predicts that the top quark decays almost exclu-

sively via the process t → Wb. It’s convenient to classify the final states of tt events

according to the decay of the W bosons. In this analysis we consider only the final states

where one or both W bosons decay leptonically. We discuss these samples in greater

detail in Chapter 4.

• The dilepton final state: Both W ’s decay to a charged lepton and a neutrino. We

nominally consider only W decays to an electron or a muon, giving this channel

has a branching ratio B = 4/81. However, the effective ratio is slightly larger,
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Figure 2.3: A summary of the top–quark pair production cross section measurements performed by the
CDF collaboration in run II. The red and blue bars indicate statistical and systematic errors, respectively.
Note that the samples used in the dilepton and the lepton+jets measurements are non–disjoint, therefore
the dilepton and the lepton+jets results are correlated.
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Figure 2.4: A summary of the top–quark pair production cross section measurements performed by the
DØ collaboration in run II. The red and blue bars indicate statistical and systematic errors, respectively.
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since W decay to a tau with subsequent decay to an electron or muon and two

neutrinos contributes as well. This channel has the smallest branching ratio, and a

low background rate. The experimental signature for this channel consists of two

energetic, oppositely–charged central leptons, two or more central jets, and “missing

energy” in the transverse plane, presumably due to the unobserved neutrinos.

• The lepton+jets final state: one W decays to a charged lepton and a neutrino,

the other decays to quarks (i.e. W → cs, W → ud). This channel has a nominal

branching ratio B = 12/27 (again, the actual branching ratio is slightly larger due

to the contribution of leptonic tau decays). The lepton+jets channel suffers from

a larger background rate than that of the dilepton channel; these backgrounds can

be reduced by requiring that at least one jet have a displaced secondary vertex, in-

dicating it is consistent with the decay of a long–lived b-hadron. The experimental

signature for this channel consists of one energetic charged central lepton, three or

more energetic central jets (at least one of which must have a displaced secondary

vertex “b–tag”), and missing energy (again, presumably due to the unobserved neu-

trino). Since not all partons are manifest as jets in the detector, (e.g. two collinear

partons can “merge” and appear as a single jet; a high–rapidity parton could be

outside the fiducial region of the detector) we improve the overall event acceptance

by requiring three or more jets.

• The all–hadronic final state: both W ’s decay hadronically. Consequently, this

channel has the largest branching fraction, B = 4/9, and because of QCD processes

which can closely mimic this channel’s experimental signature, it has a very large

background rate. The experimental signature for this channel nominally consists of

six energetic jets. As with the lepton+jets channel, backgrounds can be reduced by
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Figure 2.5: The angle between the charged–lepton three–momentum and the W boost vector in the W
rest frame.

requiring that one or more jets have a b–tag.

2.3 Kinematic variables with helicity information

The distributions of several kinematic variables hold information from which we can

deduce F0, the fraction of longitudinally polarized W bosons produced in top–quark

decays. The canonical variable for such an analysis is the polar angle θ∗. Shown in

Figure 2.3, θ∗ is the angle between the charged lepton three–momentum and the z–axis

in the rest frame of the W , where the z–axis is along the W boost direction in the rest

frame of the top quark.

The helicity amplitudes for the process W+ → `+ν` are well known. Ignoring the

common factor gmW , the helicity amplitudes for the decay of left–handed, longitudinal

and right–handed W bosons are 1

left− handed : (λW = −1) = −e−iφ∗e

(
1− cos θ∗`

2

)
,

longitudinal : (λW = 0) = −sin θ∗`√
2
,

right− handed : (λW = +1) = −eiφ∗`

(
1 + cos θ∗`

2

)
, (2.6)

where φ∗` is the azimuthal angle of the charged lepton in the rest frame of W+. In terms

1 The helicity amplitudes (λW ) for the process W− → `−ν̄` can be obtained from Equation (2.6) by replacing θ∗` with
π − θ∗` and φ∗` with π + φ∗` .
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Figure 2.6: Differential decay rates for the process Wλ → `ν`. The curves labeled (a), (b) and (c) are the
distributions for λW = −1, 0, and + 1, respectively. The curve labeled (d) is the distribution predicted
by the Standard Model (i.e. a 70% longitudinal 30% left–handed admixture).

of these amplitudes, the differential decay rate is

1

Γ

dΓ

dcos θ∗
=

3

8
F−(1− cos θ∗)2 +

3

4
F0(1− cos2 θ∗) +

3

8
F+(1 + cos θ∗)2. (2.7)

Figure 2.6 shows the angular distribution of charged leptons whose parent is a W with

helicity (a) λW = −1, (b) λW = 0 or (c) λW = +1.

A direct approach to measuring F0 would be to examine the distribution of recon-

structed cos θ∗ from top–enriched data and fit that observed distribution to an expression

similar in form to Equation (2.7), i.e. a likelihood function parametrized by F0. How-
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ever, we are limited in our knowledge of how each event in the data truly proceeded; we

cannot distinguish on an event–by–event basis between signal and background, nor can

we determine in this basis if we have properly associated observed jets with the correct

pre–hadronization parton. So while we can extract useful information about F0 from this

distribution, we can expect significant statistical and systematic uncertainties due to the

inevitable misidentification and misreconstruction of events.

Another approach is to approximate cos θ∗ using the invariant mass of the bottom

quark and the charged lepton. This relationship is simply

cos θ∗ =
E`Eb − p` · pb

|p`||pb|

' 1− p` · pb

E`Eb

= 1− 2m2
`b

m2
t −M2

W

, (2.8)

Here the energies E` and Eb are

E` =
M2

W +m2
` −m2

ν`

2MW

, |p`| =
√
E2

` −m2
` ,

Eb =
m2

t −M2
W −m2

b

2MW

, |pb| =
√
E2

b −m2
b . (2.9)

This approach is favorable, since to reconstruct m`b, one need only match the charged

lepton with the appropriate b–jet (i.e. the charged lepton and the b quark must share the

same t quark parent). In run II, CDF measured F0 in the lepton+jets channel using this

method [31]. The result is

F0 = 0.99+0.29
−0.35 (stat.)± 0.19 (syst.) (2.10)

F0 > 0.33 @ 95% CL (2.11)

(2.12)
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In run I, CDF measured F+ in the lepton+jets and dilepton channels using this method [32,

33, 34]. The result is

F+ < 0.18 @ 95% CL (2.13)

Another approach is the matrix element method, where the complete invariant matrix

element for tt production and decay is used as a pseudo-likelihood function, parametrized

by the top–quark mass and F0. This method offers great statistical precision, since it

uses maximal kinematic information from each event. It also eliminates a leading source

of systematic error, the uncertainty on top mass. Requisite for this method is a detailed

understanding of the calorimeter response, expressed in terms a mapping between jet and

parton energies, that CDF in run II has only recently realized. In run I, DØ measured F0

in the lepton+jets channel using this method [35, 36]. The result is

F0 = 0.56± 0.31 (stat.)± 0.07 (syst.). (2.14)

Considering the modest size of DØ’s lepton+jets sample in run I, and the relatively large

background content of that sample, the precision of this result is impressive.

In this analysis we have chosen to avoid the problem of combinatoric backgrounds

due to event misreconstruction by using as an observable the transverse momentum (pT )

of the charged lepton in the laboratory frame. Charged–lepton pT is the best–measured

per–event kinematic variable at CDF, and it is a good discriminant of W helicity. In run I

CDF measured F0 in the lepton+jets and dilepton channels using this method [37, 38].

The run I result is

F0 = 0.91± 0.37 (stat.)± 0.13 (syst.). (2.15)

The distributions of charged lepton pT differ according to the helicity of the parent W .

Based on the differential decay rates shown in Figure 2.6, we can make the following qual-
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Figure 2.7: Distributions of the transverse momentum of charged leptons from leptonically decaying
W bosons in tt events, where the W–parent of the charged lepton has helicity λW = −1, λW = 0 or
λW = +1.

itative argument: left–handed W bosons tend to produce charged leptons with momenta

anti-parallel to the boost vector of the parent W , giving rise to a “soft” pT distribution

in the laboratory frame; longitudinal W bosons tend to produce charged leptons with

momenta perpendicular to the boost vector of the parent W , giving rise to a less–soft

pT distribution; right–handed W bosons tend to produce charged leptons with momenta

parallel to the boost vector of the parent W , giving rise to a “hard” pT distribution.

Figure 2.7 shows the charged–lepton pT distribution of leptonically decaying W bosons
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in tt events, where the W–parent has helicity λW = −1, λW = 0 or λW = +1. These

distributions are drawn from events generated using a customized version of the HERWIG

Monte Carlo (MC) event generator [39] which allows one to simulate tt production and

decay, where the helicity admixture of either W is fixed by the user. This modified version

of HERWIG was developed by Gene Guillian at the University of Michigan [40], and has

been vetted by the HERWIG authors [41]. The generated events are passed through

version 4.11.1 of the CDF detector simulation (which models the detector response to

these data), and offline reconstruction software (which computes primitive physics objects

for later analysis). The event selection requirements of the dilepton are lepton+jets cross

section analyses are applied. These are described in detail in Chapter 4.
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CHAPTER 3

Experimental apparatus

Since top quarks are so massive, high–energy collisions are needed to produce them.

At present only the Tevatron synchrotron at the Fermi National Accelerator Laboratory

located in Batavia, Illinois is capable of producing collisions with energies sufficient for

direct production of tt pairs.

Since the top–quark pair production cross section is so small relative to the total

cross section for pp collisions at high energy, (σ(pp → tt)/σ(pp → anything) ∼ 10−10)

many collisions are needed to produce an appreciable sample of tt events. In addition, a

detector capable of recording detailed event kinematics and a trigger capable of quickly

discriminating “interesting” events from overwhelming backgrounds is necessary to study

the properties of tt production and decay. The Collider Detector at Fermilab (CDF) and

its trigger serve this purpose.

The Tevatron [42] and the CDF detector [43, 44] have recently been upgraded for a

period of data–taking called run II. The upgraded Tevatron collides protons and antipro-

tons with a center of mass energy of 1.96 TeV. In this analysis we consider run II data

taken from July 2001 through September 2003, corresponding to an integrated luminosity

of 200 pb−1.

In this chapter we describe the Fermilab accelerator complex and the CDF detector
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Figure 3.1: A schematic representation of the Fermilab accelerator complex.

during run II.

3.1 The Fermilab accelerator complex

The Fermilab accelerator complex consists of a series of eight accelerators, each of

increasing final beam energy. The accelerator complex is illustrated in Figure 3.1.

Protons are drawn from H− ions; these ions are accelerated from rest to an energy of

750 keV by a Cockroft–Walton electrostatic generator. The ions are injected into a 150 m

linear RF accelerator (the Linac) which boosts their energy to 400 MeV. The H− ions

then pass through a graphite foil which strips them of their electrons and leaves the bare
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protons.

The protons are injected into the Booster, a synchrotron 474 m in circumference.

Bending magnets guide the protons along the curved path of the Booster while RF cavities

accelerate them. The frequency of the accelerating potential and the strength of the

magnetic field increase gradually to bring the protons to an energy of 8 GeV.

Protons from the Booster are merged into bunches and are sent to the Main Injector, a

synchrotron 3 km in circumference. There, the proton bunches are accelerated to 150 GeV.

The protons are then injected into the Tevatron, a synchrotron 6.3 km in circumference,

which employs superconducting bending magnets and RF cavities to accelerate the proton

bunches to 980 GeV.

Some of the protons from the Main Injector are used to produce antiprotons. Pro-

tons are accelerated to 120 GeV and are guided to impact a nickel target. This impact

produces many particles; antiprotons are produced with an effective efficiency of 10−5.

These antiprotons are isolated and injected into the Debuncher, where the antiproton

bunches are spread to form a continuous beam. This beam is then “cooled” (i.e. its

average transverse momentum is reduced) via a process called stochastic cooling, where

the trajectory of the beam is measured on one side of the Debuncher and corrected on

the other. The antiproton beam is then injected into the Accumulator, where the beam

is stored and stochastically cooled for several hours, until ∼ 1012 antiprotons have been

collected. The antiprotons are collected into bunches and then injected backwards into

the Main Injector at 8 GeV. In the Main Injector the antiprotons are accelerated to

150 GeV and are then injected backwards into the Tevatron, where they are accelerated

to a final energy of 980 GeV. The protons and antiprotons circulate within the Teva-

tron in opposite directions; they collide with a center of mass energy of 1.96 TeV at the

interaction points BØ and DØ.
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center of mass energy
√
s = 1.96 TeV

number of protons per bunch np = 237× 109

number of antiprotons per bunch np = 22× 109

revolution frequency f = 2.5 MHz = (396 ns)−1

number of proton bunches 36

number of antiproton bunches 36

interactions per bunch crossing 2.3

Table 3.1: Tevatron operational parameters from July 2001 through September 2003.

3.1.1 Properties of pp̄ collision at the Tevatron

The number of events for a particular process at a given center of mass energy depends

upon the cross section, e.g. Equation (2.5), and the instantaneous luminosity (i.e. the

intensity of colliding proton and antiproton beams) integrated over the total data–taking

period. The instantaneous luminosity is defined:

L = f
npnp̄

4πσpσp̄

, (3.1)

where f is the revolution frequency, np and np̄ are the average numbers of protons and

antiprotons per bunch, and σp and σp̄ are the average cross–sectional areas of the bunches

(∼ 4 mm2). The expected number of events for a particular process i is then

Ni = σi ×
∫

L dt. (3.2)

3.2 The CDF detector

The CDF detector is a general–purpose solenoidal detector with nearly complete cov-

erage about the interaction region. The detector design emphasizes charged–particle

tracking, lepton identification and fast projective calorimetry. The detector allows for the

identification and characterization of electrons, muons, photons and jets in pp collisions

at high energy. We describe the configuration of the CDF detector during run II.
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Figure 3.2: A cross-section view of the CDF detector.

The coordinate system used at CDF is right–handed: the ẑ axis points along the

direction of the proton beam, the x̂ axis points out radially within the plane of the

Tevatron. A cross–sectional view of the CDF detector is shown in Figure 3.2. The

detector is symmetric about the x− y plane.

Polar coordinates are commonly used: the polar angle θ is measured from the ẑ axis;

the azimuthal angle φ is measured from the x̂ axis, in the x − y plane. The coordinates
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r, φ and θ are defined

r =
√
x2 + y2, (3.3)

φ = tan−1
(y
x

)
, (3.4)

θ = tan−1
(r
z

)
. (3.5)

The variable pseudorapidity is defined

η = − log

(
tan

(
θ

2

))
. (3.6)

Pseudorapidity is a convenient variable to use: it is relatively insensitive to boosts along

the z axis, and the multiplicity of high–energy particles in pp collisions is roughly constant

in η.

3.2.1 Charged–particle tracking

The central region of the CDF detector, |η| < 1.0, is contained within a superconduct-

ing solenoid, 5 m in length and 3.2 m in diameter, which supports a 1.4 T magnetic field

which is oriented parallel to the z axis. Electrically charged particles produced within

this volume will follow a helical trajectory; the particle’s momentum in the x − y plane

and its electric charge are determined by observing the radius of curvature of the helix

and its orientation relative to the magnetic field. The volume within the superconducting

solenoid is instrumented by detectors which allow for precise determination of the trajec-

tory of electrically charged particles. As charged particles pass through matter, they lose

energy through the processes of ionization and bremsstrahlung. The tracking systems at

CDF locate charged particles in space by sampling the deposited electrical charge due to

ionization along the particle trajectory.

The Central Outer Tracker is an open–cell drift chamber with a large tracking volume,

capable of measuring the momentum and position of charged particles with good preci-
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Figure 3.3: The CDF tracking volume.

sion [45]. The silicon microstrip detectors [46] (Layer 00, the Silicon Vertex Detector,

and the Intermediate Silicon Layers) are capable of measuring the position of charged

particles near the interaction region with excellent precision. A schematic view of the

CDF tracking volume is shown in Figure 3.3.

The silicon detectors

The volume immediately surrounding the beam–pipe is instrumented by three silicon

detector systems: Layer 00 (L00), the Silicon Vertex Detector (SVX), and the Intermedi-

ate Silicon Layers (ISL). A transverse view of the silicon detectors is shown in Figure 3.4.

The silicon detectors locate the charged–particle tracks with excellent spatial resolu-
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Figure 3.4: A transverse view of the CDF silicon detectors.

tion; tracks reconstructed with silicon information have an impact parameter resolution

σd0 ∼ 60× 10−6 m. Reconstructed jets which include tracks with data from the SVX can

be identified as being consistent with the decay of a long–lived b hadron, provided the

reconstructed jet vertex is sufficiently displaced from the primary event vertex.

Layer 00 [47] is a single–sided radiation–hard silicon microstrip detector. It immedi-

ately surrounds the beryllium beam–pipe with an inner radius of 1.15 cm and an outer

radius of 2.1 cm. L00 is designed to enhance the track impact parameter resolution.

At the time of this analysis, L00 was not fully commissioned and information from this

system was not used.
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Figure 3.5: The SVX assembly.

The Silicon Vertex Detector (SVX) [46] is composed of five layers of double–sided

silicon microstrip detectors; this detector covers the radial region from 2.5 to 10.6 cm.

The SVX detector is composed of six cylindrical barrels, each measuring 16 cm along the

z axis. The SVX detector possesses 12–fold symmetry in φ (see Figure 3.4). The SVX can

reconstruct three–dimensional tracks: one side of each silicon microstrip detector provides

tracking information in the r−φ plane, the other side provides tracking information in the

r− z plane. Three of the five SVX layers provide 90◦ stereo information, two SVX layers

provide ±1.2◦ small–angle stereo information. The entire SVX assembly is illustrated in
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Figure 3.5.

The Intermediate Silicon Layers (ISL) [48] are composed of overlapping layers of

double–sided silicon microstrip detectors, staggered at radii between 19 and 30 cm. The

ISL improves the tracking coverage in the forward region of the detector. This system is

useful for matching tracks within the Central Outer Tracker to those within the SVX.

The central outer tracker

The Central Outer Tracker (COT) [45] is a cylindrical open–cell drift chamber. It is

designed to measure the three–dimensional trajectories of charged particles in the central

region, |η| < 1. The COT occupies the radial region 40 to 138 cm, and measures 310 cm

along the z axis.
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The COT volume is filled with a mixture of argon, ethane and isopropyl alcohol gases,

at a ratio of 500 : 500 : 173. The basic element of the COT design is the cell, a structure

which spans the length of the COT. Within each cell are high–voltage field panels, potential

wires and shaper wires which serve to support a regular electrostatic field. Each cell has

twelve sense wires interspersed with the potential wires. A transverse view of typical cells

is shown in Figure 3.6.

As charged particles pass through the cell, the gas mixture is ionized. The electrostatic

field guides the ions towards sense wires; as the ions approach the sense wires the electric

field strength increases and more ions are produced in a cascade. The charge deposited

on the sense wire is amplified and the timing and charge deposition information of the

“hit” is digitized.

The cells of the COT are arranged into eight superlayers. Four superlayers have their

wires arranged parallel to the z axis allowing for track measurements in the r − φ plane.

Four superlayers have their wires offset 3◦ from the z axis so that stereo information

may be recorded, allowing for track measurements in the r − z plane. Given a detailed

understanding of the geometry of the COT, its material composition, the topology of

the magnetic field within and the timing and charge deposition information from hits

on the sense wires, three–dimensional tracks can be reconstructed. Tracks with only

COT tracking information have a momentum resolution δpT/p
2
T = 0.0030/GeV/c; tracks

with information from the COT and the silicon detectors have a momentum resolution

δpT/p
2
T = 0.0012/GeV/c.

3.2.2 The calorimeter systems

The calorimeter systems at CDF measure the energy of particles by sampling the

electromagnetic and hadronic showers produced as the particles traverse and interact
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System |η| Range Thickness Energy Resolution

CEM 0.0− 1.1 19X0, 1λ 13.7%/
√
ET ⊕ 2%

PEM 1.1− 3.6 21X0, 1λ 16%/
√
E ⊕ 1%

CHA 0.0− 0.9 4.5λ 50%/
√
ET ⊕ 2%

WHA 0.7− 1.3 4.5λ 75%/
√
E ⊕ 4%

PHA 1.2− 3.6 7λ 80%/
√
E ⊕ 5%

Table 3.2: Properties of the CDF II calorimeter systems. The energy resolutions for the electromagnetic
calorimeters are for electrons and photons; the resolutions for the hadronic calorimeters are for isolated
pions.

with regions of dense material. The general calorimeter design is comprised of alternating

layers of inert, dense material (i.e. lead or iron) and layers of active scintillator which

sample the shower energy.

These systems cover 2π in azimuth and the pseudorapidity region |η| < 3.6. The

calorimeters are segmented into projective towers: alternating layers of scintillator and in-

ert material, stacked to form a “tower” oriented towards the interaction region. Wavelength–

shifting fibers (WLS) are embedded within the layers of scintillator, and transmit the

scintillation light via acrylic light guides to photomultiplier tubes (PMTs) located at the

tops of the towers. Integrating the charge collected by the PMT gives a measure of the

energy deposited in the calorimeter. A typical calorimeter wedge composed of several

towers is shown in Figure 3.7.

The CDF calorimeter is roughly divided into two regions: the central calorimeter

covers the region |η| < 1.1; the forward calorimeter covers the region 1.1 < |η| < 3.6.

Table 3.2 gives the segmentation of the whole of the CDF calorimeter for different regions

of pseudorapidity, as well as the energy resolution and thickness of these systems.

Each calorimeter system consists of two components: an electromagnetic component

and a hadronic component. The electromagnetic calorimeter measures the energy of elec-
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Figure 3.7: A typical central calorimeter wedge, showing the electromagnetic lead/scintillator stack, the
wavelength–shifting sheets, and the strip chamber.

trons and photons by sampling the electromagnetic showers initiated by bremsstrahlung

of the electron, or e+e− pair production of the photon. The hadronic calorimeter mea-

sures the energy of single hadrons and jets (due to the fragmentation of quarks or gluons)

by sampling the electromagnetic showers due to neutral meson production and their sub-

sequent electromagnetic decay, and the hadronic showers due to strong interactions of

hadrons and mesons with the heavy atomic nuclei.
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The central calorimeter

The Central Electromagnetic Calorimeter (CEM) [49] towers consists of alternating

layers of lead and polystyrene scintillator with a total thickness of 19 radiation lengths 1.

The CEM features two proportional chambers, used to characterize the evolution of the

electromagnetic shower within the tower by observing its lateral profile. The shower

maximum detector (CES) is a argon-carbon dioxide proportional chamber which sits six

radiation lengths within the CEM, where electromagnetic showers reach their maximum

lateral extent. The central pre-radiator (CPR) is a proportional chamber which sits

between the first lead layer and the solenoid. Together these wire chambers are used to

improve efficiency of electron and photon identification as well as the the purity of these

samples.

The central hadronic calorimeter (CHA) [50] consists of alternating layers of iron and

scintillator, with a total thickness of 4.5 nuclear interaction lengths2. The design and

function is similar to that of the CEM.

The end–wall and plug calorimeters

To compensate for the limited forward coverage of the CHA, the end-wall hadronic

calorimeter (WHA) covers the region 0.7 < |η| < 1.3. The plug calorimeter covers the

region 1.1 < |η| < 3.6. The EM component (PEM) consists of alternating layers of lead

and scintillator with a total thickness of 21 radiation lengths. Pre-shower and shower

max wire chambers are embedded within the PEM. The hadronic component of the plug

calorimeter (PHA) has a thickness of seven nuclear interaction lengths.

1The radiation length, X0, is defined as the distance over which a high-energy electron loses all but 1/e of its energy by
bremsstrahlung.

2The nuclear interaction length, λ, is defined as the mean free path of a particle before undergoing an inelastic nuclear
interaction.
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Figure 1.8: A map of the coverage of the CDF muon systems.
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14

Figure 3.8: A map of the coverage of the CDF muon systems.

3.2.3 The muon detectors

Due to their relatively large mass, muons interact with matter through bremsstrahlung

at a much lower rate than electrons. Muons lose energy primarily through ionization,

though they rarely produce electromagnetic showers. Because energetic muons tend to

traverse regions of dense material without great energy loss, the CDF muon detectors are

generally the outermost detector systems. These systems are separated from the rest of

the detector by steel shielding; this shielding serves to absorb charged pions which can

traverse the whole of the hadronic calorimeter and could be interpreted as muons.
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2.5.1 Central Muon Chambers

The Central Muon Detector (CMU) is the original muon system built at CDF, which

consists of 144 modules with 16 rectangular cells per module, as shown on Figure 2.12.

The detector is placed just outside the central calorimeter, whose bulk absorbs more

than 99 % of the outgoing particles. The cells are stacked in four layers in radial

direction with a small azimuthal offset in order to facilitate the muon trajectory

reconstruction. Each wire is connected to TDC board for timing information readout,

which is used for measuring muon location in r−φ plane. In addition, the amplitude-

digit converter (ADC) is attached to each wire’s end, to measure the collected charge,

which is used to define the muon’s location in ẑ via charge division.
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Figure 2.12. Transverse view of a CMU module. Figure 2.13. Transverse view of a CMP stack.

A second set of muon chambers—Central Muon Upgrade (CMP) is placed behind

an additional 60 cm layer of steel, which is provided by the solenoid return yoke.

This detector forms a square box around the CMU and the pseudo-rapidity coverage

therefore varies with azimuth as shown in Figure 2.11. The CMP consists of four

layers of rectangular single-wire drift tubes, staggered by half cell per layer as shown

in Figure 2.13. The chambers are in proportional mode with a maximum drift time

of 1.4 µs. Preamplifiers are mounted on the end of the stacks and signals are read out

by a single TDC per wire. The outer surface of the CMP is covered by the Central

Scintillator Upgrade (CSP)—a layer of rectangular scintillator tiles.
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Figure 1.9: Left: A transverse view of a CMU module. Right: a transverse view of a CMP stack.

traverse regions of dense material without great energy loss, the CDF muon detectors are

generally the outermost detector systems. These systems are typically separated from the

rest of the detector by steel shielding; this shielding serves to absorb charged pions which

can traverse the whole of the hadronic calorimeter and could be interpreted as muons.

The CDF muon detectors consist of stacked argon-ethane drift. Some muon systems

are backed with scintillation counters. Muons which pass through the drift tubes leave

a trail of ionized gas along their trajectory; muons which pass through the scintillator

panels induce scintillation light pulses which are collected by PMTs. A coarse measure-

ment of the muon trajectory can be reconstructed given charge deposition and timing

information from the drift tubes, and timing information from the scintillators. A map

of the geometrical coverage of the CDF muon systems is shown in figure 1.8.

Central Muon Detectors

The central muon detector (CMU) consists of rectangular cells, consisting of a sense

wire within a regular electrostatic field. The CMU is composed of 144 modules, each with

16 cells, as illustrated in figure 1.9.

The central muon upgrade (CMP) sits behind 60 cm of steel shielding. The CMP
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(b) A transverse view of a CMP stack

Figure 3.9: The central muon detector elements.

The CDF muon detectors [51] consist of stacked argon-ethane drift tubes, some backed

with scintillation counters. A map of the geometrical coverage of the CDF muon systems

is shown in Figure 3.8. Muons which pass through the drift tubes leave a trail of ionized

gas along their trajectory; muons which pass through the scintillator panels induce scin-

tillation light pulses which are collected by PMTs. A coarse measurement of the muon

trajectory can be reconstructed given charge deposition and timing information from the

drift tubes, and timing information from the scintillators.

Central muon detectors

The central muon detector (CMU) consists of rectangular cells, consisting of a sense

wire within a regular electrostatic field. The CMU is composed of 144 modules, each with

16 cells, as illustrated in Figure 3.9(a).

The central muon upgrade (CMP) sits behind 60 cm of steel shielding. The CMP

consists of four layers of staggered rectangular drift tubes. The outer surface of the

CMP is covered by the central scintillator upgrade (CSP), a layer of scintillator tiles read

out by PMTs. Figure 3.9(b) shows a typical CMP stack. The central muon extension

(CMX) consists of conical sections of drift tubes, and covers the pseudorapidity range
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0.65 < |η| < 1.0. Each section of CMX has 15◦ of azimuthal coverage and consists of 12

drift tubes stacked in four layers. The outer surface of the CMX is covered by the Central

Scintillator Extension, (CSX) a layer of trapezoidal scintillator tiles, read out by PMTs.

3.2.4 Trigger and data acquisition

The overwhelming majority of proton-antiproton interactions at
√
s = 1.96 TeV are

due to phenomena which are not relevant to the study of the top quark. CDF employs an

event trigger and a data acquisition system (DAQ) which are constructed to select events

which are likely due to relevant physical phenomena and to reject uninteresting events.

The event trigger is a three-level pipelined system. At each successive level a more detailed

examination of the event is performed and the event accept rate is reduced. Collisions

occur at a rate of approximately 2.5 MHz. To accommodate the limitations inherent

to the process of physically recording event information for later detailed analysis, the

trigger system outputs accepted events at a rate of approximately 100 Hz.

Level 1 trigger

The Level 1 trigger (L1) uses custom hardware and coarse detector information to

quickly select events. Within the DAQ electronics of each detector component, there is a

42 “bucket” data pipeline. The pipeline is synchronized with the Tevatron master clock,

which has a period of 132 ns. For each proton-antiproton bunch crossing, event data

enters the pipeline. A trigger decision must be made before the data reaches the end

of the pipeline; if no decision is made, the data are lost. The decision time for the L1

trigger is 5.544 µs. During this decision time, data from the calorimeter, the COT, and

the muon detectors are collected and fed into three synchronous streams. The calorimeter

stream decision is based upon the energy deposited in calorimeter towers, along with the

magnitude of unbalanced transverse energy. The eXtremely Fast Tracker (XFT) uses
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information from the COT to reconstruct tracks; events are (in part) accepted or rejected

based on the multiplicity and transverse momenta of these tracks. The muon stream uses

information from the XFT to match tracks to hits in the muon chambers to produce muon

candidates. The data used in this analysis were collected while the Tevatron operated

with a bunch spacing of 396 ns. The maximum accept rate for the L1 trigger is 20 kHz;

the nominal accept rate during the period of data taking for this analysis was 12 kHz.

Level 2 trigger

Events which meet the requirements of the L1 trigger are passed to the Level 2 (L2)

trigger. At L2, an event is written into one of four buffers within the DAQ electronics

for each detector component. These buffers differ from the data pipeline in that data

are resident in the buffer until a decision is made, and will not be lost. While event

data in a buffer are being processed, they cannot be overwritten by another event from

L1. If a L1 accept does occur while all four L2 buffers are occupied, then “deadtime” is

incurred. In order to minimize deadtime, the latency of the L2 decision must be less than

approximately 80% of the average time between L1 accepts. Therefore, the L2 latency is

designed to be 20 µs.

The L2 trigger is controlled by a DEC Alpha processor, which is programmed to identify

primitive physics objects in event data. The L2 trigger uses all of the data available to the

L1 trigger, as well as information from the CES and SVX detectors. The data available

to the L2 trigger are more detailed than that which is available to the L1 trigger, allowing

for better resolution, better purity and more stringent cuts. The L2 trigger is designed to

work with a maximum accept rate of 300 Hz. The accept rate during data taking varied

from 100 Hz to 300 Hz, depending on the instantaneous luminosity.
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Level 3 trigger

The Level 3 (L3) trigger consists of two components: the event builder and the pro-

cessing farm. The event builder uses custom hardware to assemble all detector and trigger

data from a single event. The processing farm is composed of 16 sub-farms; each sub-farm

consists of 16 dual-CPU processing nodes. These, along with their networking infrastruc-

ture, constitute the L3 trigger.

Once an event is accepted at L2, the trigger data in the L2 buffers are collected and

sent via optical fibers to the event builder. The event builder then collects all detector

data which correspond to the same bunch crossing as the L2 accept. In this way, data from

multiple bunch crossings are not mixed. Once all event data have been collected, they

are fed to the L3 processing farm for complete event reconstruction. A trigger decision is

then made based upon detailed particle identification and event topology. Once an event

is accepted, it is sent from the processing node to the offline processing farm and eventual

permanent storage. The accept rate from the L3 trigger was approximately 75 Hz during

the data–taking period of this analysis.

Data processing

Events which pass a L3 trigger are collected and processed with the CDF offline recon-

struction software. The reconstruction software applies detector calibration information

to the raw data. From these data, physics objects such as electrons, muons, jets, etc. can

be reconstructed. Once the raw data of an event have been reconstructed, the event is

written to magnetic tape for permanent storage and future analysis.
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CHAPTER 4

Data samples

In Chapter 2 we discussed the most prolific channels for top–quark production and

decay at the Tevatron. Here we describe the event selection used in this analysis to

isolate top–enriched data in the lepton+jets and dilepton channels. We present estimates

of the background content of these samples, and we describe for each sample the models

of signal and background used in this analysis.

4.1 The lepton+jets sample

4.1.1 Event selection

The event selection for the lepton+jets sample is well–described elsewhere [52]. With

this selection, we identify events consistent with the lepton+jets signature of tt decay.

Here we summarize the selection.

High–PT charged–lepton identification

At Levels 1 and 2 of the CDF trigger, electrons are required to have an XFT track

with pT ≥ 8 GeV/c matched to an EM cluster with ET ≥ 16 GeV. The ratio of hadronic

to electromagnetic energy for this cluster must be less than 0.125. Muons are required

to have an XFT track with pT ≥ 8 GeV/c matched to muon stubs in the joint CMUP

configuration or in the CMX. A complete version of the offline lepton selection is performed
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at Level 3, and repeated in offline processing with updated calibration constants.

Offline electron selection

Offline, electrons are required to have an EM cluster with ET ≥ 20 GeV matched to a

track with pT ≥ 10 GeV/c. The cluster is required to have an electromagnetic fraction

and shower shape consistent with that of an electron. The extrapolated track is required

to match the shower location as measured in the shower maximum strip detector, and to

have a momentum consistent with the shower energy. Finally, since the electron from W

decay is expected to be isolated from other energy deposits in the calorimeter, the energy

in a cone of radius ∆R = 0.4 around the electron cluster, but not including the cluster

itself, is measured, and the ratio of the energy in the cone to the energy of the electron is

required to be less than 0.1.

Photon conversions in the detector material are a source of electron backgrounds.

Electrons that are part of an identified conversion pair are rejected.

Offline muon selection

Offline, muons are required to have a COT track with pT ≥ 20 GeV/c matched to a

CMUP or CMX muon stub. The matching is based on an extrapolation of the track to

the outer muon chambers, where the effects of multiple scattering are taken into account.

The energy in the calorimeter tower containing the muon is required to be consistent with

the deposition expected for a minimum–ionizing particle. Backgrounds from cosmic rays

are removed by requiring that the track originates at the origin of the detector coordinate

system, and that the tower energy deposit is within a narrow timing window around the

time of the beam crossing.
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Missing transverse energy ( 6ET )

Neutrinos from the process W → `ν are not observed. However, we deduce their

presence and their energy when we observe a large imbalance of energy deposited in the

central calorimeter wedges. The 6ET is calculated as the vector sum of the energy in

each calorimeter tower multiplied by the azimuthal direction of the tower. If isolated

high–momentum muons are found in the event, the 6ET is corrected by subtracting the

muon energy in the calorimeter, and adding the muon pT to the vector sum. We require

6ET ≥ 20 GeV.

Hadronic jets

The final state partons from tt decay (and background processes) tend to hadronize

quickly, and are manifest as showers of charged and neutral particles. In the lepton+jets

channel of tt decay, there are four final state partons which can be detected as jets. To

improve acceptance we require three or more hadronic jets per event. Jets are defined

within a cone of radius ∆R = 0.4; they are required to have ET ≥ 15 GeV and |η| ≤ 2.0.

We remove energy deposited in calorimeter towers traversed by a primary electron, and

correct the tower ET for the location of the primary vertex z coordinate in calculating

the jet energy.

SECVTX b–tags

We improve background rejection by requiring that at least one jet per event have a

displaced secondary vertex (called a SECVTX b–tag, or a b–tag), indicating it is consistent

with the decay of a long–lived b–hadron.1 The primary vertex for the event (i.e. the point

from which all prompt tracks originate) is determined by extrapolating well–measured

tracks to a common point of origin. Secondary vertex tagging is done on a per–jet basis,

1The mean b–hadron lifetime is τ ∼ 2 ps [17]. Because of the long lifetime, b–hadrons traverse a relatively large distance
(∼ 1 mm) before hadronizing to form a jet.
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Figure 4.1: Efficiency to tag a b–jet as a function of jet ET

where only tracks within the jet cone are considered. Cuts on the transverse momentum,

the number of silicon hits attached to the tracks, the quality of those hits, and the χ2

of the final track fit are applied, and poorly reconstructed tracks are rejected. Only jets

with at least two “good tracks” can produce a displaced vertex.

Displaced tracks in the jet are selected based on the significance of their impact pa-

rameter with respect to the primary vertex. Once a secondary vertex is found in a jet, the

two-dimensional decay length of the secondary vertex L2D is calculated as the projection

onto the jet axis, in the r − φ plane, of the vector pointing from the primary vertex to

the secondary vertex. Secondary vertices corresponding to the decay of b– and c–hadrons

are expected to have large positive L2D, while the distribution of secondary vertices from

random poorly–measured tracks is expected to be symmetric about the primary vertex.
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Figure 4.2: Data/Monte Carlo scale factor for tagging a b–jet, as a function of jet ET .

To reduce the background from these false secondary vertices (mistags), secondary ver-

tices are required to have L2D/σL2D
> 3, where σL2D

is the total estimated uncertainty

on L2D, including the error on the primary vertex. A b–tagged jet is defined as be a jet

containing such a secondary vertex.

The efficiency to tag a b–jet is estimated using a control sample in the data and

a matching Monte Carlo sample. The tagging scale factor is defined as the ratio of

efficiencies in data and Monte Carlo. This scale factor is used to correct the tagging

efficiency in tt̄ Monte Carlo samples, so that the geometrical acceptance and energy

dependence of the tagger are taken from the simulation, but with the overall normalization

determined from the data. Figure 4.1 shows the efficiency to tag a b–jet as a function

of the jet ET in data and Monte Carlo. Figure 4.2 shows the b–tagging scale factor as a
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function of jet ET ; from this plot it is apparent that the data/Monte Carlo scale factor

does not vary with jet ET .

Vetos for tt→ dileptons and Z → `+`−

The processes Z → `+`− and tt→ dileptons contribute to the inclusive high pT lepton

selection. To reduce this contribution, any event containing two objects which satisfy the

lepton identification is removed. In addition, we remove those events where the second

lepton is an electron in the plug calorimeter or a muon that fails the CMUP requirement,

but has one CMU or CMP muon segment. Remaining Z bosons are removed by requiring

that there be no second object which forms an invariant mass between 76 and 106 GeV/c2

with the primary lepton. For primary muons the other objects considered are oppositely–

charged isolated tracks with pT > 10 GeV/c. For primary electrons the second objects

considered are tracks, electromagnetic clusters, and jets with ET > 15 GeV and |η| ≤ 2.0

which have fewer than three tracks and an electromagnetic energy fraction greater than

95%.

Total transverse energy (HT )

Events from tt̄ production have, on average, a significantly greater total transverse

energy HT than background events. The total transverse energy, i.e. the scalar sum of

the transverse energy of all the kinematic objects in the event, including all jets with

ET > 8 GeV and |η| < 2.5, is required to be greater than 200 GeV.

4.1.2 Estimates of background content

We use the estimates of the background content of the tagged lepton+jets data pre-

sented in Reference [52]. To improve our sensitivity, we partition the data by primary

lepton type, jet multiplicity, and SECVTX tag multiplicity. We consider eight individual
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primary lepton type CEM CMUP+CMX
single–tag 3 jet events 17 9
single–tag 4 jet events 13 10
double-tag 3 jet events 2 1
double-tag 4 jet events 3 2

Table 4.1: Yield of events in the 161 pb−1 lepton+jets sample.

subsamples; the expected background content of each subsample is indicated in Tables 4.2

through 4.5.

In Figure 4.3 we show distribution of charged–lepton pT from the ≥ 3 jet lepton+jets

sample, where one b–tag is required. The total integrated luminosity is 161.6 pb−1 for the

samples where the primary lepton is a CEM electron or a CMUP muon, and 149.8 pb−1

for the sample where the primary lepton is a CMX muon. These data are plotted against

the total signal and background expectation. The background normalizations are taken

from tables 4.2 through 4.5. The signal component is normalized to correspond to the

tt–production cross section σtt = 6.7+0.7
−0.9 pb [30].

4.1.3 Lepton+jets background models

Tables 4.2 through 4.5 show the background normalization estimates for the lep-

ton+jets separated by primary lepton type, jet multiplicity and SECVTX tag multi-

plicity. Using these estimates we assemble PDFs to model the overall background shape

as a function of charged–lepton pT .

For each lepton+jets sample we compose a model of the background probability density

as a function of charged–lepton pT by assembling histograms representing the contribution

of each physics process to the overall acceptance. These histograms are weighted according

to the background estimates given in Tables 4.2 through 4.5. We model all but the QCD

component of the background using events generated with Monte Carlo. We model the

QCD background using real lepton+jets events where the primary lepton is non–isolated.
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Figure 4.3: Distribution of charged–lepton pT in the ≥ 3 jet SECVTX–tagged lepton+jets sample.
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Figure 4.4: Parametrizations of the total expected backgrounds in the double–tag lepton+jet samples.
(a) CEM 3-jet double–tag sample (b) CEM 4-jet double–tag sample (c) CMUP/CMX 3-jet double–tag
sample (d) CMUP/CMX 4-jet double–tag sample. The functional form is that of a Gaussian function,
f(x) ∝ exp[(x− p1)2/2p2

2].
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Figure 4.5: Parametrizations of the total expected backgrounds in the single–tag lepton+jets samples.
(a) CEM 3-jet single–tag sample (b) CEM 4-jet single–tag sample (c) CMUP/CMX 3-jet single–tag
sample (d) CMUP/CMX 4-jet single–tag sample. The functional form is f(x) ∝ exp[−p1x].
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Background W + 3 jets W + ≥ 4jets
Pretag 241 69
QCD 3.9± 1.5 1.3± 0.5

single top 0.6± 0.1 0.1± 0.0
WW/WZ 0.3± 0.1 0.1± 0.0
mistags 2.9± 0.7 0.8± 0.3
Wbb 1.7± 0.6 0.4± 0.2
Wcc 0.7± 0.3 0.2± 0.1
Wc 0.9± 0.3 0.1± 0.1

total background 11.1± 2.0 2.9± 0.6
observed 17 13

Table 4.2: Sample composition estimate of the 1 SECVTX-tag CEM+jets sample. All uncertainties
include statistical and systematic errors.

Background W + 3 jets W + ≥ 4jets
single top 0.08± 0.04 0.02± 0.01
WZ/WZ 0.01± 0.01 0.01± 0.01
Wbb 0.23± 0.08 0.04± 0.02
Wcc 0.02± 0.01 0.01± 0.00

mistags 0.04± 0.01 0.01± 0.00
total background 0.39± 0.10 0.08± 0.03

observed 2 3

Table 4.3: Sample composition estimate of the ≥ 2 SECVTX-tag CEM+jets sample. All uncertainties
include statistical and systematic errors.

We fit the resulting distribution to a simple form, either an exponential in the case of

the single–tag samples, or a Gaussian in the case of the double–tag samples. The fits to

the double–tag samples are shown in Figure 4.4. The fits to the single–tag samples are

shown in Figure 4.5.

4.1.4 Lepton+jets acceptance ratios

We estimate the ratios of acceptances which parametrize the acceptance correction

function discussed in section 5.1.1. These ratios are taken from the HERWIG Monte

Carlo samples where the helicity of one of the W s in tt events is fixed to be left-handed,

longitudinal, or right-handed. The other W in each event has left-handed polarization

30% of the time, and longitudinal polarization 70% of the time. We apply the event

selection described in Section 4.1 with the exception that we do not require a SECVTX
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Background W + 3 jets W + ≥ 4jets
Pretag 146 37
QCD 1.1± 0.6 0.4± 0.2

single top 0.5± 0.1 0.1± 0.0
WW/WZ 0.3± 0.1 0.0± 0.0
mistags 1.7± 0.3 0.5± 0.1
Wbb 1.2± 0.4 0.2± 0.1
Wcc 0.5± 0.2 0.1± 0.0
Wc 0.6± 0.2 0.1± 0.0

total background 5.7± 1.0 1.4± 0.3
observed 9 10

Table 4.4: Estimated background content of the SECVTX-tag CMUP/CMX+jets sample. All uncer-
tainties include statistical and systematic errors.

Background W + 3 jets W + ≥ 4jets
single top 0.06± 0.04 0.02± 0.01
WZ 0.01± 0.01 0.00± 0.01
Wbb 0.16± 0.05 0.03± 0.01
Wcc 0.01± 0.00 0.00± 0.00

mistags 0.01± 0.00 0.00± 0.00
total background 0.25± 0.07 0.05± 0.02

observed 1 2

Table 4.5: Estimated background content of the ≥ 2 SECVTX–tag CMUP/CMX+jets sample. All
uncertainties include statistical and systematic errors.

tag. The acceptance ratios are given in tables 4.8 and 4.9.

4.1.5 Lepton+jets signal models

We construct probability density functions of charged–lepton pT for tt production and

decay in the lepton+jets channel by applying the event selection described in Section 4.1.1

to tt events generated with the HERWIG program [39, 40], where the leptonically–

decaying W has helicity λW = −1, 0 or +1 (c.f. Section 2.3). After the selection we

parametrize the probability density by fitting the resulting distributions to the function

f(x) = L(x, p1, p2) ·G(x, p3, p4), (4.1)

where the second term is the familiar normal distribution

G(x, p3, p4) =
1

p3

√
2π

exp

[
−(x− p4)

2

2p3
2

]
, (4.2)

61



jet multiplicity 3 4

CEM
p1 38.4± 1.0 38.7± 1.7
p2 11.1± 1.0 11.7± 1.7
p3 76.3± 2.9 62.9± 2.6

CMUP/CMX
p1 38.6± 1.2 38.3± 3.3
p2 11.3± 1.1 13.9± 2.8
p3 72.8± 2.9 55.8± 2.6

Table 4.6: Parametrizations of the total expected background in the double-tag samples. The functional
form is the product of Landau and Gaussian functions, f(pT ) ∝ L(pT , p1, p2)G(pT , 30, p3).

jet multiplicity 3 4
CEM p1 0.0346± 0.0004 0.0391± 0.0003

CMUP/CMX p1 0.0374± 0.0002 0.0375± 0.0002

Table 4.7: Parametrizations of the total expected background in the single-tag samples. The functional
form is f(pT ) ∝ exp[(−p1 · pT )].

and the first term is the Landau distribution [53],

L(x, p1, p2) =
1

2πi

∫ σ+i∞

σ−i∞
exp

[
u lnu+

x− p1

p2

u

]
du. (4.3)

Here σ is any finite real number greater than zero, and p1 and p2 are the “most probable

value” and “width” of the distribution. The Landau distribution is approximated by

rational functions [54], as implemented in the CERNLIB software libraries [55].

The results of these fits are listed in Table 4.10.

4.2 The dilepton sample

We include the tt dilepton sample, where two charged leptons, two jets, 6ET > 25 GeV,

and HT > 200 GeV are required. The full event selection for this sample is described

elsewhere [56]. The total integrated luminosity for this sample is 193 pb−1.

4.2.1 Dilepton background models

Table 4.11 shows the expected background composition of the ee, µµ and eµ dilepton

samples. For each sample we model the background probability density as a function

of charged–lepton pT by assembling histograms representing the contribution of each

62



aL0 aR0 aLR

CEM 0.790± 0.036 0.977± 0.042 0.809± 0.036
CMUP + CMX 0.712± 0.035 0.945± 0.043 0.753± 0.037

CEM + CMUP/CMX 0.754± 0.025 0.962± 0.030 0.783± 0.026

Table 4.8: Acceptance ratios for the lepton + 3 jet samples.

aL0 aR0 aLR

CEM 0.715± 0.030 1.060± 0.040 0.674± 0.027
CMUP+CMX 0.751± 0.034 1.011± 0.043 0.743± 0.033

CEM+CMUP/CMX 0.732± 0.022 1.038± 0.029 0.704± 0.021

Table 4.9: Acceptance ratios for the lepton + 4 jet samples.

background process to the overall acceptance. These histograms are weighted according

to the background composition estimates given in Table 4.11. We model all but the

fake lepton component of the background using Monte Carlo–generated events. The fake

lepton background component is predominantly due toW+jets events where theW decays

leptonically and one of the light–quark jets manages to pass the lepton ID requirements.

We model the fake lepton component using real lepton+jets events which have one jet

which could fake a charged lepton.

We parametrize the background probability density by fitting the resulting histograms

to the function given in Equation (4.1). The parametrizations of the overall background

probability densities are shown in Figure 4.7. In Figure 4.6 we show distribution of

charged-lepton pT from the inclusive dilepton sample sample plotted against the total

background expectation. Note that the observed pT spectrum is softer than expected;

this feature and its impact on the measurement of F0 is discussed in Section 7.2.

parent of charged–lepton left-handed W longitudinal W right-handed W
p1 28.0± 0.9 41.6± 0.6 63.9± 1.6
p2 8.8± 0.4 13.7± 0.6 23.6± 1.1
p3 63.0± 3.6 82.1± 3.8 89.0± 3.7

Table 4.10: Parametrization of the signal PDFs. The functional form is the product of Landau and Gaussian

functions, f(pT ) ∝ L(pT , p1, p2)G(pT , 30, p3)
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Figure 4.7: Parametrizations of the total expected backgrounds in the dilepton samples. (a) The ee
sample (b) The eµ sample (c) The µµ sample (d) The `` sample.
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event type ee µµ eµ ``
WW/WZ 0.21± 0.06 0.18± 0.05 0.34± 0.10 0.74± 0.21
Drell-Yan 0.36± 0.28 0.07± 0.34 - 0.43± 0.44
Z → ττ 0.09± 0.03 0.11± 0.03 0.22± 0.07 0.42± 0.13
Fakes 0.26± 0.11 0.16± 0.07 0.69± 0.28 1.1± 0.45

Total Background 0.9± 0.4 0.5± 0.1 1.3± 0.3 2.7± 0.7
tt (σ = 6.7pb) 1.9± 0.3 1.8± 0.3 4.5± 0.6 8.2± 1.1

Total SM expectation 2.8± 0.5 2.4± 0.3 5.7± 0.7 10.8± 1.4
observed 1 3 9 13

Table 4.11: Background composition estimates for the dilepton samples.

sample ee µµ eµ ``
A00 0.0024± 0.0002 0.0027± 0.0002 0.0060± 0.0003 0.0112± 0.0004
A0L 0.0019± 0.0001 0.0023± 0.0002 0.0049± 0.0002 0.0091± 0.0003
ALL 0.0016± 0.0001 0.0022± 0.0002 0.0040± 0.0002 0.0079± 0.0003

Table 4.12: Acceptances for the dilepton samples.

4.2.2 Dilepton acceptance

We estimate the acceptances given the dilepton event selection for the cases where

both W ’s from tt → dileptons are longitudinally polarized, A00, one W is longitudinally

polarized and one is left-handed, A0L, or both W ’s are left handed, ALL. To do this it

was necessary to re-weight the HERWIG Monte Carlo samples ttopmi-ri according to

the angle between the charged lepton and the top quark in the rest-frame of the “second”

W , since these samples were generated such that the “second” W does not have fixed

helicity. These acceptances are given in table 4.12.
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CHAPTER 5

Method

We measure the fraction of longitudinal W bosons produced in top–quark decays by

analyzing the charged-lepton PT distributions of top–enriched samples. We employ the

method of maximum-likelihood: we construct unbinned likelihood functions composed of

the data and probability density functions (PDFs) of charged-lepton PT representing the

modeled signal and background components of these samples. The fraction of longitudinal

W ’s is a parameter of these functions; our estimates of F0 are those values F̂0 which

maximize their respective likelihoods.

5.1 The likelihood function

We construct an unbinned likelihood function of the form

L (F0, F+, β1, . . . , βS) =
S∏

s=1

G(βs;µs, σs)
Ns∏
i=1

Ps(xi;F0, F+, βs). (5.1)

Here the first product is over the number of samples, S. The second product is over

Ns, the number of reconstructed charged-leptons in sample s. The term G(βs;µs, σs)

is a Gaussian constraint on βs, the fraction of events due to background processes in

sample s. The mean µs and width σs of the constraint term describe an a priori estimate

of the background content of the sample. The term Ps(xi;F0, F+, βs) is the conditional

probability density of observing a charged-lepton in sample s with PT = xi, given F0, FR
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and βs. In this analysis, the fraction of right-handed W ’s from top decay is fixed to zero

(see Section 1.2.2). We express the per-charged-lepton probability density,

Ps(xi;F0, βs)/εs(xi) = (1− βs)
[
F obs

0,s (F0) Ps(xi;λW =0)

+
(
1− F obs

0,s (F0)
)
Ps(xi;λW =−1)

]
+βs Ps(xi; b.g.), (5.2)

where εs(xi) is the efficiency for sample s to trigger on a charged-lepton with PT = xi.

Ps(xi; b.g.) is the probability density for charged leptons in sample s with PT = xi, which

are due to background processes. Ps(xi;λW =−1) and Ps(xi;λW = 0) are the PDFs for

sample s of reconstructed charged-leptons with PT = xi from the decay chain t → Wb,

W → `ν`, where the W has helicity λW = −1 or λW = 0, respectively.

In Chapter 4 we describe the construction of the background and signal PDFs for each

sub–sample. We also describe parametrizations of the trigger efficiency for these samples.

5.1.1 Acceptance correction

The functions F obs
0,s (F0) in (5.2) serve to correct the bias on imposed by the event selec-

tion. For all samples we require that reconstructed charged leptons have PT ≥ 20 GeV.

Since charged leptons from left-handed W ’s have a softer PT distribution than charged-

leptons from longitudinally–polarized W ’s, the minimum PT requirement introduces a

positive bias on F0. Here we derive the correction terms.

Acceptance correction for lepton+jets events

In the channel tt → lepton+jets, only the helicity of the leptonically decaying W

significantly affects the event acceptance; the helicity information of the hadronically

decaying W is largely lost. We can separate n, the number of charged-leptons arising
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from tt production and decay in the lepton+jets channel,

n = n− + n0 (5.3)

where n− and n0 are the numbers of charged-leptons from left–handed and longitudinal

W ’s produced in top decays. The observed number of charged-leptons in sample s is

nobs
s = A−s n− + A0

sn0. (5.4)

Here A−s and A0
s are the fractions of charged leptons from left–handed and longitudinal

W ’s produced in top decays within events that pass the event selection for sample s. The

true and the observed fractions of longitudinal W ’s are

F0 =
n0

n
, (5.5)

F obs
0,s =

A0
s n0

nobs
s

. (5.6)

We can express the observed fraction relative to the true fraction. To ensure that the

correction function is well–behaved for F0 6∈ [0, 1], we define

F obs
0,s (F0) =


(

1 +
A−s
A0

s

( 1

F0

− 1
))−1

0 < F0 ≤ 1

F0 otherwise.

(5.7)

We estimate the acceptances A−s and A0
s by counting reconstructed charged leptons

whose parent is a W with λW = −1 or λW = 0 in tt events, generated by the HERWIG

Monte Carlo program, which pass the event selection requirements for sample s. The

acceptances for each sub–sample are given in Chapter 4.

Acceptance correction for dilepton events

In the channel tt → dileptons, the helicity of both W ’s significantly affect the event

acceptance. We separate the number of tt events

ntt = n00 + n−0 + n−−, (5.8)
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where n00, n0−, and n−− are the numbers of tt events where both W ’s have longitudinal

polarization, one W has longitudinal and one has left–handed polarization, and both W s

have left–handed polarization, respectively. The observed number of tt events in sample

s is then

nobs
tt,s = A00

s n00 + A0−
s n0− + A−−s n−−. (5.9)

Here, A00
s , A0−

s , and A−−s are the acceptances for events where both W ’s have longitu-

dinal polarization, one W has longitudinal and one has left–handed polarization, and

both W ’s have left–handed polarization, respectively. The true and observed fractions of

longitudinally polarized W ’s from top decay are

F0 =
2n00 + n0−

2ntt

, (5.10)

F obs
0,s =

2A00
s n00 + A0−

s n0−

2nobs
tt,s

. (5.11)

Assuming the helicities of the W ’s in the event are uncorrelated,

n00

ntt

= F 2
0 , (5.12)

n0−

ntt

= 2F0(1− F0), (5.13)

n−−
ntt

= (1− F0)
2. (5.14)

We express the observed fraction as a function of the true fraction,

F obs
0,s (F0) =


2A00F

2
0 + 2A0−F0(1− F0)

2(A00F 2
0 + 2A0−F0(1− F0) + A−−(1− F0)2)

F0 ∈ [0, 1]

F0 otherwise.

(5.15)

5.1.2 Trigger correction

We correct for inefficiency in the trigger by weighting the per–charged–lepton proba-

bility 5.2 by the expected efficiency to trigger on such a lepton. In dilepton events where
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Figure 5.1: Parametrization of the efficiency to trigger on a central electron as a function of the electron
ET .

both leptons are consistent with the event triggers, we apply the appropriate corrections

to each lepton.

We use the parametrization of the L3 CEM 18 trigger efficiency as a function of electron

ET [57] to weight CEM electrons. We use the parametrization of the MET PEM trigger

efficiency as a function of electron ET [58] to weight triggered plug electrons in the dilepton

sample. We apply no correction for the MUON CMUP18 and MUON CMX18 triggers, as there

is no apparent pT dependence for muons with track pT > 20 GeV . Figure 5.1 shows the

efficiency to trigger on a central electron as a function of the electron ET . Figure 5.2

shows the efficiency to trigger on a plug electron as a function of the electron ET .

5.2 Minimization procedure

Our estimates of F0 and βs (labeled F̂0 and β̂s) are the values of these parameters which

maximize Equation (5.1). We refer to these as Maximum Likelihood Estimates (MLEs).

We determine the MLEs in the usual way, by finding those values which minimize− log L .

To do this we calculate numerically

−log
(
L (F0, F+, β1, . . . , βS)

)
=

S∑
s=1

(βs − µs)
2

2σ2
s

−
Ns∑
i=1

log(Ps(xi;F0, βs))+constant. (5.16)
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Figure 5.2: Parametrization of the efficiency to trigger on a plug electron as a function of the electron
ET .

We calculate (5.16) for all values of the parameters F0 and βs as a double–precision

floating point number, in accordance with IEEE standard 754 [59]. For F0 or βs 6∈ [0, 1],

Ps(xi;F0, βs) can take on values less than or equal to zero. When this happens, we add

“positive infinity” to Eq. 5.16, following the IEEE standard. In this way we avoid “un-

mathematical” regions of the likelihood function and we preserve its normalization. We

then use the MIGRAD algorithm of the MINUIT [60] software package to scan over the

parameters F0 and βs and find the MLEs F̂0 and β̂s.
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CHAPTER 6

Estimates of statistical and systematic uncertainty

The true fraction F0 is a real number defined within the interval

F0 ∈ [0, 1]. (6.1)

However, as a parameter of the likelihood function (5.1), we do not restrict F0 to this

range. Doing so would introduce either a positive bias in the case where the true value

is close to zero, or a negative bias in the case where the true value is close to one. In

order to make a statement about the observed value of F0 which is consistent with (6.1),

we employ the method of Feldman and Cousins [61], a variant of the classical Neyman

method.

6.1 The Feldman–Cousins method

By construction, the Feldman–Cousins (FC) method always produces intervals within

the defined interval and gives the proper coverage in ensemble for all values of the true

parameter. The method also makes a natural transition from situations where it is appro-

priate to quote an upper or lower limit rather than a central interval. These properties

are desirable since we are measuring a parameter to a precision similar to the breadth

of its defined range. We apply the FC method to estimate central 68% CL intervals and

95% CL limits.
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For each analysis we produce a large ensemble of Monte Carlo pseudo–experiments

which we use as a model of the experimental resolution and bias. Each pseudo–experiment

consists of background events generated in accordance with expected background content

of each sample, and signal events generated in accordance with a fixed value of F0. These

pseudo–experiments fully describe our expectation of the experimental circumstance for

arbitrary values of F0.

For each pseudo–experiment in the ensemble, the value of the true parameter F0 is

selected at random from a uniform distribution within the interval [0, 1]. From the en-

semble we determine the distribution of the measured parameter F̂0 for all possible values

of the true parameter. We then construct a parametrization of this distribution called

the resolution function P (F̂0;F0), i.e. the probability density of F̂0 given F0.

Suppose we are measuring a single parameter µ ∈ [a, b] and we have a reliable estimate

of the resolution function P (µ̂;µ). The FC method of interval estimation at the (100×α)%

confidence level is as follows. We define an ordering rule

R(µ̂) =
P (µ̂;µ)

P (µ̂;µbest)
, (6.2)

where

µbest =


a µ̂ < a

µ̂ a ≤ µ̂ ≤ b

b µ̂ > b

. (6.3)

For each value of µ, we finds the values x1 and x2 such that

R(x1) = R(x2), (6.4)

and ∫ x2

x1

P (x;µ)dx = α. (6.5)
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Figure 6.1: Toy Feldman-Cousins confidence belts at the 68.3%, 95.4% and 99.7% confidence levels for
measurement of a parameter µ ∈ [0, 1] with the experimental resolution function P (µ̂;µ) = G(µ̂;µ, 0.3).

The (100 × α)% confidence interval for a measurement µ̂ is the union for all values of µ

where µ̂ ∈ [x1, x2].

For example, Figure 6.1 shows the 1, 2 and 3σ confidence belts for the case where we

measure a parameter µ ∈ [0, 1] with a Gaussian resolution function with mean m(µ) = µ

(i.e. the measurement is unbiased) and constant width, σ = 0.3. If an experiment yields

the result µ̂ = 0.50, we could make the statement µ = 0.50± 0.29 at the 68% confidence

level; we would not be able to quote an upper or lower limit at the 95% or 99% confidence
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levels. If an experiment yields the unlikely result µ̂ = −1.5, we could make the statement

µ < 0.08 at the 95% confidence level and µ < 0.20 at the 99% confidence level.

6.1.1 Calculating Feldman–Cousins confidence intervals

It is difficult to compute FC confidence intervals analytically; we take the numerical

approach. We assume the resolution function is for all values of the true parameter a

Gaussian with width σ(µ) and mean a < m(µ) < b. We step through values of the true

parameter with a step–size much smaller than the width of the resolution function. For

each value of the true parameter, we find analytically the values x′1 and x′2 ∀ R ∈ (0, 1]

which satisfy Eq. 6.4. We can express the area under the resolution function as a function

of R ∫ x′2

x′1

P (x;µ)dx = f(x′1, x
′
2) = A(R). (6.6)

Using MIGRAD, we allow R to vary, and find the value Rmin which minimizes the quantity(∫ x′2

x′1

P (x;µ)dx− α

)2

= (A(R)− α)2 . (6.7)

From Rmin we find those values x1 and x2 which simultaneously satisfy Eqns. 6.4 and 6.5.

6.1.2 Feldman Cousins resolution functions

To construct confidence belts according to the Feldman Cousins method, it is necessary

to develop an understanding of experimental resolution and bias for all possible values

of the parameter(s) to be measured. We establish this understanding by casting many

pseudo–experiments, each consistent with our expected sample size and background com-

position. In these pseudo–experiments we allow the true parameter F0 to vary uniformly

between 0 and 1 and generate events accordingly. We fit these pseudo–data according

to the procedure described in Chapter 5 to obtain the MLE F̂0. We observe that the

distribution of MLEs is Gaussian for constant F0. We construct parametrizations of the

76



mean and width of the distribution of MLEs as a function of the true parameter, i.e.

m(F0) and σ(F0). We assemble these to form the resolution function

P (F̂0;F0) = G(F̂0;m(F0), σ(F0)). (6.8)

6.2 Resolution function for the lepton+jets analysis

Figure 6.2(a) shows a parametrization of the mean of the distribution of MLEs as

a function of the true parameter F0 for pseudo-experiments where only the lepton+jets

samples are included. Each bin along the x-axis contains the MLEs F̂0 from 1000 pseudo-

experiments where F0 varies uniformly within the range of the bin. The values along the

y–axis are the means of Gaussian fits to the distribution of F̂0 in each bin. Based on this

ensemble of pseudo–experiments, we conclude that our procedure for estimating F0 in the

lepton+jets analysis is unbiased.

Figure 6.2(b) shows a parametrization of the width of the distribution of MLEs as

a function of the true parameter F0 for pseudo-experiments where only the lepton+jets

samples are included. Each bin along the x-axis contains the MLEs F̂0 from 1000 pseudo-

experiments where F0 varies uniformly within the range of the bin. The values along the

y-axis are the widths of Gaussian fits to the distributions of F̂0 in each bin.

6.3 Resolution function for the dilepton analysis

Figure 6.3(a) shows a parametrization of the mean of the distribution of MLEs as a

function of the true parameter F0 for pseudo-experiments where only the dilepton sam-

ples are included. Each bin along the x-axis contains the MLEs F̂0 from 1000 pseudo-

experiments where F0 varies uniformly within the range of the bin. The values along the

y–axis are the means of Gaussian fits to the distribution of F̂0 in each bin. Based on this

ensemble of pseudo–experiments, we conclude that our procedure for estimating F0 in the
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(a) Parameterization of m(F0) for pseudo-experiments where only
the lepton+jets samples are included. The functional form is a
first-order polynomial. The black curve is the best fit, the red
curve has zero intercept and unit slope.
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Figure 6.2: Ensemble tests for the lepton+jets only analysis.
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Figure 6.3: Ensemble tests for the dilepton–only analysis.
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dilepton analysis is unbiased.

Figure 6.3(b) shows a parametrization of the width of the distribution of MLEs as a

function of the true parameter F0 for pseudo-experiments where only the dilepton sam-

ples are included. Each bin along the x-axis contains the MLEs F̂0 from 1000 pseudo-

experiments where F0 varies uniformly within the range of the bin. The values along the

y-axis are the widths of Gaussian fits to the distributions of F̂0 in each bin.

6.4 Resolution function for the combined analysis

Figure 6.4(a) shows a parametrization of the mean of the distribution of MLEs as a

function of the true parameter F0 for pseudo-experiments where only the lepton+jets and

dilepton samples are included. Each bin along the x-axis contains the MLEs F̂0 from

1000 pseudo-experiments where F0 varies uniformly within the range of the bin. The

values along the y–axis are the means of Gaussian fits to the distribution of F̂0 in each

bin. Based on this ensemble of pseudo–experiments, we conclude that our procedure for

estimating F0 in the combined analysis is unbiased.

Figure 6.4(b) shows a parametrization of the width of the distribution of MLEs as

a function of the true parameter F0 for pseudo-experiments where the lepton+jets and

dilepton samples are included. Each bin along the x-axis contains the MLEs F̂0 from 1000

pseudo-experiments where F0 varies uniformly within the range of the bin. The values

along the y-axis are the widths of Gaussian fits to the distributions of F̂0 in each bin.

6.5 Estimates of systematic uncertainty

We incorporate systematic uncertainties with the Feldman–Cousins method by modify-

ing the resolution function such that the statistical uncertainty σ(F0) is added in quadra-
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Figure 6.4: Ensemble tests for the combined analysis.
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ture with our estimate of the systematic uncertainty σsyst.,

P (F̂0;F0) = G(F̂0;µ(F0), σ(F0)⊕ σsyst.). (6.9)

Systematic uncertainties on F0 arise from two basic sources: uncertainties inherent to

the models of the charged-lepton pT distribution of the signal, and uncertainties inherent

to the models of the charged-lepton pT distributions of the background. The latter in-

clude uncertainties on estimates of the rates of various contributions to the background,

and uncertainties in modeling of the charged-lepton pT distributions of each background

component. We consider the effect of the following sources of uncertainty:

• Modeling of top signal:

– top-quark mass

– uncertain aspects of models of initial– and final–state radiation

– choice of parton density functions

– MC statistics

– acceptance correction

– trigger correction

• Modeling of the background:

– normalization of background components

– shapes of background components

All systematic uncertainties are determined by casting pseudo-experiments. We carry

out a procedure similar to the one used to estimate the resolution functions, described in

section 6.1.2. However, in these cases we vary the probability density functions used to

generate the pseudo-data by varying each uncertain aspect of our model within the limits
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of those uncertainties. We then fit the varied pseudo–data using our default signal and

background models and acceptance corrections. We compare the mean of the distribution

of measured F̂0 for the modified pseudo–experiments with the mean from the default

experiments; we take the maximum separation in means as the systematic due to the

uncertainty on the varied parameter. We take the quadrature sum of each variation to

be our total estimate of systematic uncertainty.

6.5.1 Systematics from the signal models

We illustrate the process of estimating systematic uncertainty by casting pseudo-

experiments by examining the uncertainty due to our limited knowledge of the top-quark

mass. To test our sensitivity to the 5 GeV uncertainty on the top mass, we compare

the results obtained from pseudo-experiments where the signal model is consistent with

a 175 GeV top-quark to the results of pseudo-experiments where a 170 GeV or 180 GeV

top-quark is assumed. The maximum separation of means for these three cases is 0.11

(absolute); we take this as our systematic uncertainty due to uncertainty on the top-quark

mass.

To test our sensitivity to initial- and final-state radiation, we throw pseudo-experiments

using a tt sample where initial-state radiation is turned off (ttop0e) and a sample gener-

ated with PYTHIA Tune B (ttop5e). Final-state radiation systematics are tested with a

sample that uses a low value of αs to reduce FSR (ttop6e). These give shifts in mean F0

of 0.02, 0.03 and 0.04 respectively for the combined measurement. As turning radiation

off completely is probably an overestimate, we take half of the first uncertainty and add

it in quadrature with the others for a total uncertainty of 0.05 due to uncertainty on

modeling of radiation.

The charged-lepton pT spectrum from top-quark decay is sensitive to the parton dis-
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tributions used in the simulation. We compare pseudo-experiments thrown assuming

CTEQ5L PDFs (ttopei) and MRST72 and MRST75 PDFs (ttop3e and ttop4e). We

find the separation in means to be 0.03 in the combined samples, and take this as our

estimate of systematic uncertainty due to choice of PDFs.

Another uncertainty in our model of the top-quark decay is due to our parametrization

of the charged-lepton pT spectrum. We estimate the systematic uncertainty due to limited

Monte Carlo statistics by generating pseudo-experiments. We take the histograms of

charged-lepton pT used in the parametrization of the signal shapes and Poisson-fluctuate

the contents of each bin, using the actual bin content as the mean. We fit the fluctuated

histogram to obtain new a new parametrization of the signal. We then throw pseudo-

experiments using the fluctuated signal model and default background model, and fit

using the default signal model. We create 500 new sets of templates in this way; for each

set of templates, we throw 1000 pseudo-experiments. We take the mean of the distribution

of measured F0 for each set of templates as the result of each fluctuation. We then plot

the distribution of means, and take its width as our estimate of systematic uncertainty.

In the combined measurement this is 0.01.

6.5.2 Systematics from the background models

The systematics due to uncertainties in the background models can be broken into two

categories – those due to uncertainty on the normalization of the background components,

and those due to uncertainties on the parametrization of the background distributions.

We begin by studying the effects of varying the background component normalization.

For the dilepton sample we assume that the normalizations of each of the background

components are uncorrelated, and we fluctuate each one by its uncertainties. We throw

pseudo-experiments for each new background configuration, and take the maximum sep-

84



aration in means as an estimate of systematic uncertainty due to uncertainty on dilepton

background normalization. In the dilepton-only measurement this uncertainty is 0.04. In

the combined analysis, this uncertainty is 0.02.

Estimating the systematic due to uncertainties on the background normalizations in

the lepton+jets samples is more subtle, because various components of the background are

correlated with each other. The correlated components must be varied simultaneously, and

the resulting changes must then be propagated through the sample-composition estimates.

We vary the QCD normalization within its quoted uncertainties; this affects the predicted

amounts of W plus heavy flavor events. The amount of W plus heavy flavor in the sample

depends on the heavy-flavor fractions; we vary them within their quoted uncertainties.

The various backgrounds estimated through simulation samples (dibosons, single top,

Z → ττ) are correlated through their dependence on the scale factor. We vary the scale

factor within its uncertainties, and propagate the results through the determination of

the sample composition. The mistag rate is also varied independently. The differences in

mean F̂0 from pseudo-experiments representing the lepton+jets measurement with each

of these variations are given in Table 6.1. We add these in quadrature to obtain an

overall systematic of 0.11 from uncertainties on lepton+jets background normalization in

the lepton+jets measurement. We estimate a systematic of 0.10 due to uncertainties on

lepton+jets background normalization in the combined measurement.

Factor varied ∆F̂0

QCD non-W 0.09
Heavy-flavor fractions 0.05
Scale factor 0.02
Mistags 0.01
Total 0.11

Table 6.1: Shifts in F̂0 due to variations in the normalizations of lepton+jets backgrounds in the lep-
ton+jets measurement.
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Factor varied ∆F̂0

QCD non-W 0.09
Heavy-flavor fractions 0.04
Scale factor 0.01
Mistags 0.01
Total 0.10

Table 6.2: Shifts in F̂0 due to variations in the normalizations of lepton+jets backgrounds in the combined
measurement.

We estimate the systematic due to uncertainties in the background shape model in the

dilepton measurement by fluctuating each parameter of the three background parametriza-

tions within its uncertainties. We cast pseudo-experiments with the fluctuated background

models and take the maximum separation in means as the systematic due to shape un-

certainties. In the dilepton sample this systematic is 0.02.

For the lepton+jets samples, we vary the shapes of two of the background components

to get to represent the effects of shape uncertainties. We change the non-W shape by

replacing our usual model of non-isolated leptons with a spectrum determined through

the angular correlations method described in CDF 6559 [62]. This is believed to give a

sample that is more enriched in real QCD events, and depleted of W production. We

also try several different models of Wbb̄ production, using simulation samples made with

different Q2 scales (atop0s, atop1s, atop2s, atop3s). We take the systematic to be 0.03

in the lepton+jets measurement and 0.02 in the combined measurement.

We estimate the systematic due to uncertainties in the acceptance and trigger correc-

tions by fluctuating each parameter of these corrections within their uncertainties, casting

pseudo-experiments for each variation and taking the maximum separation in F̂0 due to

these variations as the overall systematic. In the combined measurement we estimate the

systematic due to the acceptance correction to be 0.01. In the combined measurement we

also estimate the systematic due to the trigger correction to be 0.01.
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Summaries of all the systematic uncertainties are given in tables 6.3, 6.4 and 6.5.

Source ∆F̂0

background normalization 0.11
top mass uncertainty 0.09
ISR/FSR 0.04
PDF uncertainty 0.03
shape uncertainty 0.03
MC statistics 0.01
acceptance correction 0.01
trigger correction 0.01
total 0.17

Table 6.3: Estimates of systematic uncertainty in the lepton+jets analysis.

Source ∆F̂0

top mass uncertainty 0.12
ISR/FSR 0.06
background normalization 0.04
PDF uncertainty 0.04
acceptance correction 0.03
shape uncertainty 0.02
trigger correction 0.02
MC statistics 0.01
total 0.16

Table 6.4: Estimates of systematic uncertainty in the dilepton analysis.
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Source ∆F̂0

top mass uncertainty 0.11
l+jets bg. normalization 0.10
ISR/FSR 0.05
PDF uncertainty 0.03
dilepton bg. normalization 0.02
l+jets shape uncertainty 0.02
acceptance correction 0.02
trigger correction 0.02
dilepton shape uncertainty 0.01
MC statistics 0.01
total 0.17

Table 6.5: Estimates of systematic uncertainty in the combined analysis
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CHAPTER 7

Results

We apply the parameter estimation procedure described in Chapter 5 along with the

sample composition estimates of Chapter 4 to the data. We first consider the lepton+jets

and dilepton samples separately. We then find the value F̂0 which maximizes the joint

dilepton and lepton+jets likelihood.

7.1 Result from the lepton+jets analysis

Here we include in the likelihood function only the eight lepton+jets samples. Using

MIGRAD we find the MLE for this sample, F̂0 = 0.88. Figure 7.1 shows the projection

of − log (L ) along the F0 axis, where the background fractions for each sub-sample are

fixed to those values which minimize − log (L ) when F0 = 0.88. Figure 7.1 also shows

the distribution of charged–lepton pT data for the eight lepton+jets samples overlaid with

the total signal and background PDFs normalized according to their MLEs.

Using the resolution function derived in section 6.1.2 for the lepton+jets only measure-

ment, and the estimate of systematic uncertainty from table 6.3 we construct Feldman

Cousins confidence belts at the 68.3%, 95.4% and 99.7% confidence levels. These belts

are plotted in figure 7.2, along with MLE for this measurement. From this construction

we find F0 = 0.88+0.12
−0.47 (stat.+ syst.) and F0 > 0.24 @ 95% CL in the lepton+jets only
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measurement. This result is consistent with the SM prediction.

7.2 Result from the dilepton analysis

Here we include in the likelihood function only the three dilepton sub-samples. Using

MIGRAD, we find the MLE for this sample, F̂0 = −0.54. Figure 7.3 shows the projection

of − log (L ) along the F0 axis, where the background fractions for each sub-sample are

fixed to those values which minimize − log (L ) when F0 = −0.54. Figure 7.3 also shows

the distribution of charged-lepton pT data for the three dilepton samples overlaid with

the total signal and background PDFs normalized according to their MLEs. In this case,

the distribution of charged-lepton pT from the data is softer than any component of the

signal or background in our model. As a consequence, the longitudinal component, which

has a harder pT distribution than the left-handed component, is forced to be negative to

fit the data. However, we can make a statement about the true value of F0 by applying

the Feldman Cousins method.

Using the resolution function derived in section 6.1.2 for the lepton+jets only measure-

ment, and the estimate of systematic uncertainty from table 6.4 we construct Feldman

Cousins confidence belts at the 68.3%, 95.4% and 99.7% confidence levels. These belts

are plotted in figure 7.4, along with MLE for this measurement. From this construction

we find F0 < 0.52 @ 95% CL, and F0 < 0.94 @ 99% CL in the dilepton only measurement.

The dilepton data are inconsistent with the standard model prediction F0 = 0.70 at the

1 and 2 σ levels. We are unable to make a statement about F0 at the > 3 σ level. However,

the dilepton data are consistent with the lepton+jets data at the 2 σ level. Given this

level of agreement, it is reasonable to assume that we observe the same physical process

in both samples. Because of this level of agreement, and because it was our original intent

to measure F0 in the combined samples, we will do so.
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7.3 Result from the combined analysis

Here we include in the likelihood function the three dilepton and the eight lepton+jets

sub-samples. Using MIGRAD, we find the MLE for the combined measurement, F̂0 =

0.27. Figure 7.5 shows the projection of− log (L ) along the F0 axis, where the background

fractions for each sub-sample are fixed to those values which minimize − log (L ) when

F0 = 0.27. Figure 7.5 also shows the distribution of charged-lepton pT data for the three

dilepton and eight lepton+jet samples overlaid with the total signal and background

PDFs normalized according to their MLEs. The MLE for the combined measurement is

consistent with the 2 σ intervals from the dilepton and lepton+jets only measurements.

Using the resolution function derived in section 6.1.2 for the combined measurement,

and the estimate of systematic uncertainty from table 6.5 we construct Feldman Cousins

confidence belts at the 68.3%, 95.4% and 99.7% confidence levels. These belts are plotted

in figure 7.6, along with MLE for the combined measurement. From this construction

we find F0 = 0.27+0.35
−0.21 (stat.+ syst.) and F0 < 0.88 @ 95% CL in the combined analysis.

This result is inconsistent with the standard model prediction F0 = 0.70 at the 1 σ level;

it is consistent with the standard model prediction at the 2 σ level.
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Figure 7.1: Result of the lepton+jets analysis. Left: Projection of −log(L ) along the F0 axis for the
fit to the lepton + jets samples only. The background fractions are fixed to the values which absolutely
maximize the likelihood function. The green band shows the MINOS 1 σ interval. Right: The distribution
of charged-lepton pT for the lepton + lets samples overlaid with the total signal and background PDFs
normalized according to their MLEs.
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Figure 7.2: 1, 2 and 3 σ Feldman Cousins confidence belts for an experiment including the lepton+jets
samples. These belts include systematic uncertainties. The thick vertical line indicates the experimental
outcome, F̂0 = 0.88.
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Figure 7.3: Result of the dilepton analysis. Left: Projection of −log(L ) along the F0 axis for the fit to the
dilepton samples only. The background fractions are fixed to the values which absolutely maximize the
likelihood function. The green band shows the MINOS 1 σ interval. Right: The distribution of charged-
lepton pT for the dilepton samples overlaid with the total signal and background PDFs normalized
according to their MLEs.
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Figure 7.4: 1, 2 and 3 σ Feldman Cousins confidence belts for an experiment including the dilepton
samples. These belts include systematic uncertainties.The thick vertical line indicates the experimental
outcome, F̂0 = −0.54.
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Figure 7.5: Result of the combined analysis. Left: Projection of −log(L ) along the F0 axis for the
fit to the lepton+jets and dilepton samples. The background fractions are fixed to the values which
absolutely maximize the likelihood function. The green band shows the MINOS 1 σ interval. Right: The
distribution of charged-lepton pT for the lepton + jets and dilepton samples overlaid with the total signal
and background PDFs normalized according to their MLEs.
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Figure 7.6: 1, 2 and 3 σ Feldman Cousins confidence belts for an experiment including the lepton+jets
and dilepton samples. These belts include systematic uncertainties.The thick vertical line indicates the
experimental outcome, F̂0 = 0.27.

97



CHAPTER 8

Conclusions

We have measured the fraction of longitudinally polarized W bosons produced top–

quark decays.

The result of the analysis in single–lepton tt events is fully consistent with the Standard

Model expectation.

The 2σ discrepancy in the dilepton analysis is suggestive of new phenomena. However,

given the significance of the discrepancy, any claim of new physics based on this analysis is

highly speculative. It is worth noting that another analysis of the kinematic properties of

these data finds a similar discrepancy [63]. It will be interesting to see if this discrepancy

persists as more data are collected during run II of the Tevatron.

In order to make a stronger statement about the nature of the tWb coupling with

this method, larger statistics are required. However alternative methods, particularly the

matrix-element method developed at DØ [36, 35], should be especially powerful, even

with limited statistics.
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APPENDIX A

Notation

In this appendix we make explicit some of the notation used in Chapters 1 and 2. We

follow conventions used in the textbook by Peskin and Schroeder [1], and the paper by

Kane, Ladinsky and Yuan [23].

We use the metric

gµν =



1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


. (A.1)

In a spherical coordinates, the general form of an object’s four-momentum is

pµ = (E, |~p| sin θ cosφ, |~p| sin θ sinφ, |~p| cos θ) (A.2)

with E2−|~p|2 = m2. The left-handed, (λ = −1) longitudinal (λ = 0) and the right-handed

(λ = +1) polarization states for a spin–1 field are

εµ(−) =
eiφ

√
2
(0,− cosφ cos θ − i sinφ,− sinφ cos θ + i cosφ,− sin θ)

εµ(0) =
1

m
(|~p|, E sin θ cosφ,E sin θ sinφ,E cos θ)

εµ(+) =
eiφ

√
2
(0, cosφ cos θ − i sinφ, sinφ cos θ + i cosφ, sin θ). (A.3)

The longitudinal polarization state is forbidden for a massless spin–1 field.
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In the Weyl basis, Dirac spinors have the form

ψ =

ψ+

ψ−

 . (A.4)

For fermions,

ψ± =

 u
(λ=1)
± =

√
E ± |~p |ξ 1

2

u
(λ=−1)
± =

√
E ∓ |~p |ξ− 1

2

(A.5)

For anti-fermions,

ψ± =

 v
(λ=1)
± = ±

√
E ∓ |~p |ξ− 1

2

v
(λ=−1)
± = ∓

√
E ± |~p |ξ 1

2

(A.6)

The two–component spinors ξλ/2 are eigenvectors of the helicity operator

h = p̂ · ~S, (A.7)

eigenvalue λ = +1 corresponds to the “spin-up” eigenstate, λ = −1 corresponds to the

“spin-down” eigenstate.

ξ 1
2

=

 cos θ/2

eiφ sin θ/2

 , ξ− 1
2

=

−e−iφ sin θ/2

cos θ/2

 . (A.8)

In the Weyl basis, the gamma matrices have the form

γ0 =

0 1

1 0

 , γj =

 0 −σj

σj 0

 , γ5 = γ5 =

1 0

0 −1

 , (A.9)

where σj are the 2× 2 Pauli matrices

σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 , σ3 =

1 0

0 −1

 . (A.10)
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The chirality projection operators are defined by

P± =
1

2
(1±γ5) . (A.11)

The operator P+ (P−) projects out the right-handed (left-handed) component of the Weyl

spinor.

P−ψ =

0 0

0 1


ψ+

ψ−

 =

 0

ψ−


ψ̄P+ = (ψ†+ ψ

†
−)

0 1

1 0


1 0

0 0

 = (ψ†− 0). (A.12)
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