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Abstract

According to the Standard Model, the top quark decays to a W boson and a b

quark virtually 100% of the time. The measurements of tt̄ production cross section

depend strongly on that assumption. We test this hypothesis with a measurement

of R = B(t → Wb)/B(t → Wq), using a combination of event kinematics and b-

tagging techniques. The measurement is carried out using a data sample produced in

pp̄ collisions at 1.96 TeV and collected at the Collider Detector at Fermilab between

March 2002 and September 2003 with an integrated luminosity of ∼ 162 pb−1.

The branching ratio R is determined from the relative tt̄ tagging rates making

the measurement independent of any assumption on the tt̄ cross section. Any two

tagging rates are sufficient to determine the R but the problem is overconstrained if

more than two tagged subsamples are used. The tt̄ events are classified by the number

vii



of leptons in the final state. In lepton-plus-jets channel only one of the W bosons

decays leptonically, whereas in dilepton channel both W bosons decay leptonically.

The measurement of R is performed in both lepton-plus-jets and dilepton samples.

In the lepton-plus-jets channel the background is estimated using the artificial

neural network (ANN) technique. The ANN approach allows us to measure the

signal fraction in samples with any number of tags. By applying this method alone

the branching ratio was measured to be R = 1.06+0.27
−0.24(stat.) ± 0.16(syst.).

Alternatively, the tagged background contamination in lepton-plus-jets channel is

determined from a traditional a priori method using data driven and Monte Carlo

based techniques. A similar approach is used to determine the tt̄ content in the

dilepton sample. The combination of ANN background measurement in lepton-plus-

jets data sample with the a priori lepton-plus-jets and dilepton estimations leads to

improved sensitivity in the final value of R = 1.12+0.21
−0.19(stat.)+0.17

−0.13(syst.).

Finally, we construct the confidence level bands based on the method proposed

by Feldman and Cousins. From these bands and our final measurement of R we set

the lower limit of R > 0.61 at 95% confidence level.
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Chapter 1

Top Quark

1.1 Top Quark in the Standard Model

The top quark was discovered at Fermilab Tevatron in 1995 by both CDF and DØ col-

laborations [1, 2, 3], thus completing the third generation of fermions in the Standard

Model (SM). Among other known fundamental particles the top quark stands out

by its surprisingly large mass mt = 172.7 ± 4.3 GeV/c2 [4]. The study of the top

quark properties is important for particle physics, since deviations from the Standard

Model predictions believed to be more pronounced in the behaviour of a heavy par-

ticle. The large value of top mass also suggests that the top quark may play a role

in the breaking of electroweak symmetry and hence in the origin of fermion masses.

In this Chapter we will briefly discuss the theory developed in order to describe

all known properties of the fundamental particles. In the presented theoretical frame-

work the role of top quark in the spectrum of all particles is fixed by its properties.

Whether the properties are predicted or not by the theory they need to be verified

by experiment. This analysis is dedicated to an important measurement of one of the

predicted top quark quantities: the probability of top quark decay into a particular
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final state. Based on obtained result one can make conclusions about the consistency

between the theory and observations. The reader will find more about the stated

problem and proposed solution in the last section of this Chapter.

1.1.1 Standard Model of Elementary Particles

In modern physics the interaction and behaviour of elementary particles are described

by a special kind of quantum mechanical theory—gauge field theory. Based on its

formulae particle physicists have developed a number of competing models predicting

and describing the actual outcomes from all known experiments. Since 1970’s many

theories were rejected by inconsistency with measured quantities but the one which

was capable of surviving all the tests and in a good agreement with experimental

results became a Standard Model.

Currently experimental resolution allows us to verify particle physics phenomena

down to scales of 10−19 m. The particles are considered to be elementary (or funda-

mental) if they do not reveal any inner structure in the experiments. Within given

scope the matter is known to consist of 12 elementary particles including six flavours

of leptons and six flavours of quarks. The matter particles are divided into three gen-

erations (families) of two leptons and two quarks each as shown in Table 1.1. Each

generation consists of one lepton, one neutrino, and two quarks. The charged leptons

are electron e, muon μ, and tau τ with Q = −1; each of which is associated with

Table 1.1: Three generations of Standard Model elementary particles.

Generations 1st 2nd 3rd

Mass, MeV/c2 Mass, MeV/c2 Mass, MeV/c2

Leptons
e 0.511 μ 105.66 τ 1777
νe < 3 × 10−6 νμ < 0.19 ντ < 18.2

Quarks
u 1.5-4.5 c 1-1.4 × 103 t 175 × 103

d 5 - 8.5 s 80-155 b 4-4.5 × 103

2
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a corresponding neutral neutrino νe, νμ, and ντ . The quarks have fractional electric

charges: Q = +2
3

for the “up” type quarks: Up quark u, charm c, and top t; and

Q = −1
3

for the “down” type quarks: Down quark d, strange quark s, and bottom

b. In SM both quarks and leptons are fermions with spin σ = 1/2. Each particle

is described by the mass and several intrinsic quantum numbers assigned to it. The

antiparticles have the same mass and spin but opposite sign of quantum numbers

like, for example, charge, leptonic and baryonic numbers. Each lepton and quark has

a corresponding antiparticle, but for neutrinos it is not known whether they are their

own antiparticles or not.

The quarks differ from other fermions in a way that they can not be observed

in a free state. This restriction on quark isolation is called the quark confinement

and it arises from the behaviour of the strong force induced and mediated by the

colour-charged particles. A quark is assigned to have one of the three colour charges,

conventionally named as: red R, green G, and blue B; or anti-colour charges: R̄,

Ḡ, and B̄. Only colourless combinations of quarks confined inside hadrons can be

detected in experiments. The baryons are the hadrons formed of three valence quarks

with different colours and the mesons are the hadrons consisting of valence quark and

antiquark having opposite colours: C and C̄. The strength of the strong interaction

converges to zero at very short distances between the quarks, the phenomena known

as asymptotic freedom, and rapidly increases when particles are pulled apart. A

speculative formulation of the quark confinement is usually posed as follows. If the

energy stored in the field between separated quarks is high enough than a new quark-

antiquark pair can be produced out of the vacuum so that produced final states being

again colour-neutral. Thus, the properties of quarks must be inferred from measurable

properties of the composite particles which are made up of quarks. The top quark

is an exception for it is so heavy that it decays before any colourless hadron can be

formed.

3
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Table 1.2: Force carriers of known interactions and their basic properties.

Interaction Participants Carriers
Mass,
GeV/c2 Charge Time1,

s
Range1,

m
Strong Quarks 8 gluons, gα 0 0 10−23 10−15

Electromagnetic All charged Photon, γ 0 0 10−18 ∞
Weak All particles

W± boson 80.4 ±1
10−12 10−18

Z0 boson 91.2 0

Gravitational
All massive
particles

Graviton (?) - 0 - ∞

Ordinary matter consists only of particles from the 1st generation. The particles

in the second and third generations have the identical quantum numbers as the first

generation particles but they are heavier. The higher generation particles decay

quickly into the first generation ones and can only exist for a short period of time in

high-energy experiments or cosmic rays.

The Standard Model also describes the forces through which the elementary par-

ticles of matter interact with each other. The interactions in SM are mediated by

gauge bosons having an integer spin σ = 1. Traditionally, we distinguish four funda-

mental interactions in nature: strong (1), electromagnetic (10−2), weak (10−6), and

gravitational (10−38), where the number in parenthesis shows the relative magnitude

of the force. The fundamental interactions are also listed in Table 1.2 along with

their mediator particles and characteristic properties. Only charged particles partic-

ipate in electromagnetic interactions by exchanging chargeless and massless photons

γ. The positively and negatively charged W± bosons and neutral Z0 boson carry the

weak interactions between all the particles. The strong interactions among quarks

are carried out by eight massless, electrically neutral, but colourful gluons. The total

number of gluons arises from the possibility of constructing eight independent colour-

anticolour combinations out of three available colour charges. The SM unifies only

strong, electromagnetic, and weak interactions, while gravity remains outside the SM.

1Time and Range are the characteristic time and range of the relevant interaction.
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The theory which would unify and explain all the forces as manifestations of a single

force is being sought.

In theoretical particle physics the concept of symmetry plays a crucial role. Gen-

erally speaking, the symmetry S is implied when a physical system subject to some

transformation S remains invariant. Indeed, in practice we see a number of physical

quantities attributed to the system which do not change while the system is being

translated from initial to final state. Such phenomena are declared as conservation

laws and it can be shown that each symmetry is directly related to a conservation

law ([5], Noether’s theorem). In quantum mechanics the conservation laws are ex-

pressed as commutation relations of operator S with the Hamiltonian H of the system,

so that H remains invariant:

SHS+ = H. (1.1)

The set of such transformations forms a symmetry group G. The symmetries are

classified as discrete if the relevant parameters can take only discrete values as in,

for example, particle-to-antiparticle transformation by charge conjugation C, parity

flipping P , and time reversal T . There are also continuous symmetries in SM. The

rotation and translation are the typical examples of the continuous space-time sym-

metries. The symmetries acting on the internal quantum numbers, e.g. weak isospin

symmetry, colour symmetry, are called the internal symmetries. If the latter trans-

formations are functions of space-time coordinates then the symmetries are referred

as local gauge symmetries.

The interactions of particles forming the content of SM are entirely based on the

concept of local gauge invariance. Let a system of particles or a single particle be

represented as a complex field Ψ and L is a Lagrangian (or Hamiltonian) describing

the dynamics of Ψ. The preservation of invariance of L under the local gauge transfor-

mations from a symmetry group G forces the introduction of additional gauge fields

that interact with Ψ. The number of gauge fields is equal to the number of generators
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of G. In the simplest case of U(1) symmetry group, the transformation Ψ → eiα(x)Ψ

is associated with only one gauge boson field.

The Standard Model is the gauge theory based on the total gauge symmetry of

the fundamental interactions in particle physics, SU(3)C × SU(2)L × U(1)Y . The

SU(3)C symmetry group is used to describe the gauge theory known as Quantum

Chromodynamics (QCD). The composed group SU(2)L ×U(1)Y describes the gauge

theory called Electroweak Theory (EWT). The EWT unifies the weak and electro-

magnetic interactions with the latter described by a subgroup U(1)em, the base for

Quantum Electodynamics (QED), also a gauge theory. The subscripts C, L, and Y

refer to the entities taken to define the corresponding local symmetries: colour charge,

weak isospin, and hypercharge. The number of gauge fields produced by the special

unitary group SU(N) is N2−1, thus one obtain eight gluons, three weak bosons, and

a photon.

The development of any theory is gradual and new concepts are introduced while

fresh experimental results become available. The detailed description of Standard

Model can be found elsewhere [6, 7]. Here we give an overview of the most essential

theoretical excerpts. The top quark is a heavy fermion with electric and colour charges

which can participate in all interactions.

Quantum Electodynamics The QED is the most successful gauge theory found

to be in excellent agreement with experimental results. The QED Lagrangian is

obtained from the one describing fermions with mass m and electric charge Q as

Dirac fields Ψ(x):

L = Ψ̄(x)(i/∂ − m)Ψ(x), (1.2)

with /∂ ≡ ∂μγμ and corresponding equation of motion (Dirac equation) given by

(i/∂−m)Ψ = 0. One can show that under the U(1) gauge transformation Ψ → eiQα(x)Ψ

6
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the Lagrangian in (1.2) can be written in gauge invariant form:

LQED = Ψ̄(x)(i /D − m)Ψ(x) − 1

4
Fμν(x)F μν , (1.3)

where the normal derivative ∂μ is replaced by covariant derivative Dμ,

DμΨ ≡ (∂μ − iQAμ(x)) Ψ. (1.4)

There is a hidden term inside Dμ with a gauge vector boson field Aμ(x), a photon

field, inside the covariant derivative. This term is responsible for interactions of Aμ

and Ψ fields, i.e. a photon and a charged particle.

The last term in (1.3) is a so-called photon kinetic energy term which constitutes

the propagation of the photon. It is given in terms of the field strength tensor Fμν

defined as:

Fμν ≡ ∂μAν − ∂νA
μ. (1.5)

In case of QED theory the gauge invariance of LQED leads to the conservation of

electromagnetic current, Jμ, and charge, Q:

Jμ = Ψ̄γμQΨ, ∂μJμ = 0, Q =

∫
J0(x)d3x. (1.6)

Quantum Chromodynamics As it was noted earlier quarks beside having an

electrical charge also possess a colour charge which stipulate the participation in

strong interactions. The QCD is a gauge theory of strong interactions. Since there

are three possible colour states, the QCD is based on the gauge symmetry group

SU(3) of colour transformations. In this representation the particle field is given as

three-vector:

q =

⎛⎜⎜⎜⎝
q1

q2

q3

⎞⎟⎟⎟⎠ , (1.7)
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where qi are the quark fields. Also, there are eight gauge bosons, gluons gα, α =

1, . . . , 8, mediating the strong interactions among the quarks. The QCD Lagrangian

can be written in the form similar to the one in QED:

LQCD =
∑

q

q̄(x)(i /D − mq)q(x) − 1

4
F α

μν(x)F μν
α . (1.8)

The covariant derivative in the QCD case is defined as

Dμq ≡
(

∂μ − igs

(
λα

2

)
Aα

μ(x)

)
q, (1.9)

where gs is the strong coupling constant, λα

2
are SU(3) generators given by 3×3 trace-

less hermitian matrices, and Aα
μ, α = 1, . . . , 8 are gluon fields. If Dμ is substituted

into Lagrangian one will see that the sum will contain terms for kinematic energy of

the quarks and terms for quarks-gluons interactions.

Similarly to the QED Lagrangian the last term in (1.8) defines gluon field strength

with tensor F α
μν given by

F α
μν = ∂μAα

ν (x) − ∂νA
α
μ(x) + gsf

αβγAμβAνγ , (1.10)

where an extra bilinear term with structure constants fαβγ , α, β, γ = 1, . . . , 8

corresponds to gluon self-interaction.

Electroweak Theory The EWT rose from an attempt to produce a theory de-

scribing weak interactions analogous to QED. The experimental data showed that

the fermions with opposite helicities couple differently with respect to weak interac-

tions. In order to describe such behavior mathematically we introduce the left-handed

(negative helicity) and right-handed (positive helicity) fermions. The handedness of

the (anti)particles is achieved by projecting the massless fermionic Dirac field Ψ (Ψ̄)

into left and right handed components by using chirality operator γ5:

ΨL =
1

2
(1 − γ5)Ψ, Ψ̄L = Ψ̄

1

2
(1 + γ5), (1.11)

ΨR =
1

2
(1 + γ5)Ψ, Ψ̄R = Ψ̄

1

2
(1 − γ5). (1.12)
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The particles with opposite handedness are assigned different values of some quantum

number. This quantum number is called weak isospin, �T , and it is conserved in

the weak interactions. The corresponding symmetry is based on the SU(2) group.

Therefore, the optimal choice of fermionic fields consistent with the experiment is the

combination of fermions into the following left doublets, fL, and right singlets, fR:

fL :

(
e

νe

)
L

(
μ

νμ

)
L

(
τ

ντ

)
L

(
u

d

)
L

(
c

s

)
L

(
t

b

)
L

fR : eR μR τR uR, dR cR, sR tR, bR

. (1.13)

The right-handed neutrinos were not observed and thus, they are not incorporated

into the SM.

It was also noticed that only left-handed particles participate in weak couplings

accompanied by change in electric charge, so called weak charged currents. In the re-

actions where electric charge is unchanged, the weak neutral currents, the coupling can

take place between particles with both chiralities just like it happens in pure electro-

magnetic interactions of massless particles. The idea of unification of weak and elec-

tromagnetic theories was proposed by Glashow. He proposed to add to SU(2)L a new

U(1) group but with generators different than those in QED U(1)em. The suggested

group U(1)Y is based on one generator, the weak hypercharge Y
2
, which commutes

with the weak isospin �T . Hence, the combined electroweak group SU(2)L × U(1)Y

has four generators, three of which are the SU(2)L generators, Ti = σi

2
, i = 1, 2, 3

and the fourth one is the U(1)Y generator, Y
2
. The relation among corresponding

quantum numbers is given by

Q = T3 +
Y

2
, (1.14)

where Q is the electric charge, T3 is the third component of the weak isospin, and Y

is the hypercharge. All generations of fermions have the same electroweak quantum

numbers which are shown in Table 1.3 for the first generation only.

The number of associated gauge bosons is equal to the total number of generators,

9
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Table 1.3: Lepton and quark quantum numbers.

Leptons Quarks
νL eL eR uL dL uR dR

T 1
2

1
2

0 1
2

1
2

0 0

T3
1
2

−1
2

0 −1
2

1
2

0 0

Q 0 −1 −1 2
3

−1
3

2
3

−1
3

Y −1 −1 −2 1
3

1
3

4
3

−2
3

thus EWT includes: three weak bosons W i
μ, i = 1, 2, 3 of SU(2)L group and one

hypercharge boson U(1)Y group.

The Lagrangian of electroweak theory needs to be gauge invariant under the trans-

formations corresponding to SU(2)L and U(1)Y :

SU(2)L : fL → ei 	T 	Θ(x)fL, fR → fR,

U(1)Y : fL,R → ei Y
2

α(x)fL,R,
(1.15)

where under SU(2)L the left-handed fermions transform as doublets and right-handed

fermions transform as singlets. The Lagrangian includes the following major interac-

tion terms:

LEWT =
∑

f

f̄(x)i /Df(x) − 1

4
W i

μνW
μν
i − 1

4
BμνB

μν . (1.16)

Similarly to QED and QCD Lagrangians the sum over all fermions in the above

expression represents the energy of fermions and the last terms include kinetic energy

and the self-interaction of W i
μ gauge bosons which are written in terms of the field

strength tensors:

W i
μν = ∂μW i

ν − ∂νW
i
μ + gεijkW j

μW k
ν , (1.17)

Bμν = ∂μBν − ∂νBμ. (1.18)

The covariant derivative in EWT is given by

Dμf =

(
∂μ − ig �T · �Wμ − ig′Y

2
Bμ

)
f, (1.19)

10
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where g and g′ are coupling constants corresponding to SU(2)L and U(1)L.

There are two problems with Lagrangian in (1.16): First we did not include the

mass terms of the form f̄mf because they are not invariant under SU(2)L transforma-

tion, and second the gauge fields W i
μ and Bμ do not correspond to observed physical

bosons: photon Aμ, W±
μ and Z0

μ bosons. The former difficulty will be solved later

by introducing mass generation mechanism named after Higgs. The latter problem

is solved by rotating the electroweak eigenstates by some angle ΘW . Therefore, the

neutral fields, Aμ and Z0
μ, can be expressed as linear combination of Bμ and the third

component of W i
μ in the form:

Z0
μ = W 3

μ cos ΘW − Bμ sin ΘW , (1.20)

Aμ = W 3
μ sin ΘW + Bμ cos ΘW , (1.21)

and the charged boson fields are defined in terms of first two components of W i
μ field

as

W±
μ =

1√
2
(W 1

μ ∓ iW 2
μ). (1.22)

The angle ΘW is called the weak mixing angle. This is one of the 19 free parameters

of the SM. Its value is measured experimentally

sin2 ΘW = 0.2255 ± 0.0021. (1.23)

Higgs Mechanism In order to get the mass spectra of particles the procedure

known as Spontaneous Symmetry Breaking (SSB) is applied to electroweak sector of

Standard Model. SSB is a general concept widely used in many other theories where

the system of interest possesses a given symmetry S, with transformation operator

U , except when the system is in its ground state, i.e. U |0〉 �= |0〉. As it was pointed

out previously the Lagrangian of electroweak interactions is gauge invariant only if

the mass terms are absent in the equation, i.e. the particles are massless. In SM

in order to make the EWT Lagrangian gauge invariant and generate the masses, the
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Higgs mechanism based on the SSB principles is introduced. The symmetry breaking

in the ground state is equivalent to having some scalar field Φ with non-vanishing

expectation values in the ground state: 〈0|Φ|0〉 �= 0. The field Φ is described as

fundamental complex doublet with hypercharge Y = 1:

Φ(x) =

(
φ+(x)

φ0(x)

)
. (1.24)

The simplest possible SSB Lagrangian for the Φ field can be written in the form:

LSBS = (DμΦ)+(DμΦ) − V (Φ). (1.25)

The LSBS containing the kinetic and self-interaction parts is added to LEWT given

by (1.16). The scalar potential is given by the simplest renormalisable form:

V (Φ) = −μ2Φ+Φ + λ(Φ+Φ)2, (1.26)

where the mass parameter −μ2 < 0 and λ > 0. The minimum of the potential V is

achieved at |Φ|2 = −1
2
μ2/λ ≡ v2

2
, so that the vacuum expectation value is

〈0|Φ|0〉 =

(
0
v√
2

)
. (1.27)

By choosing a particular value for the vacuum we define a preferred direction in

hypercharge and weak isospin space which spontaneously breaks SU(2)L × U(1)Y .

The next step in Higgs mechanism involves the construction of physical spectrum

by performing “small oscillations” around the vacuum. The scalar field Φ can be

parameterized in terms of small fields, ξ(x) and H(x), in the following form:

Φ(x) = exp

(
i�ξ(x) · �σ

2v

)(
0

v + H(x)

)
, (1.28)

where the �ξ(x) are the three scalar fields, the Goldstone bosons, and H(x) is a massive

Higgs field with zero expectation value. The Goldstone fields are eliminated by the

SU(2) gauge transformation

U(ξ) = exp

(
−i

�ξ · �σ
v

)
(1.29)
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performed on every field entering the SM Lagrangian: Φ, fL, fR, Wμ, Bμ. After

rotating the weak eigenstates to the mass eigenstates as in equations (1.20), (1.21)

and (1.22), we substitute the result expressions in (1.16) and (1.25), obtaining for the

bosonic mass-related terms:

Lboson mass =
1

2

(
g2v2

4

)
W+

μ W−,μ +
1

2

(
(g2 + g′2)v2

4

)
Z0

μZ
0,μ + . . . +

1

2
(2μ2)H2 + . . . .

(1.30)

Therefore, predictions for the corresponding masses are:

MW =
gv

2
, MZ =

√
g2 + g′2v

2
, MH =

√
2μ. (1.31)

The masses of leptons and quarks are established through their Yukawa couplings

to the Higgs doublet. The corresponding part of the SM Lagrangian before the

spontaneous symmetry breaking can be written as

LYukawa = λel̄LΦeR + λuq̄LΦ̃uR + λdq̄LΦdR + h.c. +
[
2nd and 3rd generations

]
,

(1.32)

where the first three terms are written explicitly for the first generation of fermions

with lL =
(

e
νe

)
L
, and qL =

(
u
d

)
L
. Φ̃ =

(
φ0,∗
φ−
)

is the charge conjugated scalar Higgs dou-

blet Φ and the “h.c.” stands for the sum of the same terms but hermitian conjugated.

The similar terms are understood for the second and third generation particles. Fol-

lowing the Higgs Mechanism procedure established for the bosons and substituting

the modified fields into equation (1.32), one obtain for the fermionic mass terms:

LYukawa =
λev√

2
ēLeR +

λuv√
2

ūLuR +
λdv√

2
d̄LdR + . . . , (1.33)

from where it is straight forward to write the expressions for mass:

me = λe
v√
2
, mu = λu

v√
2
, md = λd

v√
2
, . . . . (1.34)

From the above examples it is clear that the Higgs Mechanism generates the masses

of the particles given in terms of a unique mass parameter v and the couplings g, g′,
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λ, λe, etc. The vacuum expectation value v is determined experimentally from μ

decays and its value is v =
√

μ2

λ
= (

√
2GF )

1
2 = 2MW

g
= 246 GeV, where GF is the

Fermi constant. Thus, the masses of W± and Z0 were anticipated before they were

measured in experiment. In contrast to the gauge boson sector the Higgs boson self-

coupling λ and the fermion masses are completely undetermined in the SM. So far

the Higgs boson remains the only undiscovered particle predicted by the Standard

Model.

CKM Mixing Matrix It was found that charged current exchanges via W± do

not only couple different (anti-)particle states within the same generation but also

states from different generations. The underlying occurrence of such behaviour is

that the mass eigenstates and weak eigenstates are not identical. In order to find the

relation between those bases, let us rewrite Equation 1.32 in a matrix form:

LYukawa = L̄′
LM ′

EΦE ′
R + Q̄′

LM ′
U Φ̃U ′

R + Q̄′
LM ′

DΦD′
R + h.c., (1.35)

where the three generations are combined into right-handed columns:

E ′
R =

⎛⎜⎜⎜⎝
e′

μ′

τ ′

⎞⎟⎟⎟⎠
R

, U ′
R =

⎛⎜⎜⎜⎝
u′

c′

t′

⎞⎟⎟⎟⎠
R

, D′
R =

⎛⎜⎜⎜⎝
d′

s′

b′

⎞⎟⎟⎟⎠
R

; (1.36)

and the left-handed Dirac-conjugated fields are given by the strings:

L̄′
L =
(
ē′ μ̄′ τ̄ ′ ν̄ ′

e ν̄ ′
μ ν̄ ′

τ

)
L

, Q̄′
L =
(
ū′ c̄′ t̄′ d̄′ s̄′ b̄′

)
L

. (1.37)

Here we will use primed notation for the weak quark and lepton eigenstates. We have

no a priori knowledge about the 3 × 3 complex matrices M ′
E,U,D.

When we substitute the Higgs field and its conjugate into Equation (1.35), we

obtain the generalized mass terms:

LYukawa = Ē ′
LMEE ′

R + Ū ′
LMUU ′

R + D̄′
LMDD′

R + h.c., (1.38)
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Chapter 1. Top Quark

where ME,U,D are the mass matrices equivalent to their primed counterparts rescaled

by the Higgs vacuum expectation value. In general, these matrices are not diagonal

but they can be diagonalized by means of bi-unitary transformations:

ME = V †
E,LMEVE,R, MU = V †

U,LMUVU,R, MD = V †
D,LMDVD,R, (1.39)

where ME,U,D are diagonal 3 × 3 matrices and VE,L/R, VU,L/R, VD,L/R are unitary

matrices. Using the above expressions and plugging them into Equation (1.38) we

obtain the standard form of the mass terms in the Lagrangian:

LYukawa = ĒLMEER + ŪLMUUR + D̄LMDDR + h.c., (1.40)

where we defined the mass eigenstates as linear combinations of corresponding weak

eigenstates:

EL = VE,LE ′
L ER = VE,RE ′

R (1.41)

UL = VU,LU ′
L UR = VU,RU ′

R (1.42)

DL = VD,LD′
L DR = VD,RD′

R (1.43)

As for leptons the weak and mass eigenstates should be very close to each other

since there are no right-handed neutrinos in the SM and the left-handed neutrinos

have very small masses. On the contrary, the quark states transformations have far-

reaching consequences. Using Equations 1.43 one can write the bi-linear terms of the

charged-current weak interactions equivalently in both bases as

(
ū′ c̄′ t̄′

)
L

γμ

⎛⎜⎜⎜⎝
d′

s′

b′

⎞⎟⎟⎟⎠
L

=
(
ū c̄ t̄

)
L

V †
U,LVD,Lγμ

⎛⎜⎜⎜⎝
d

s

b

⎞⎟⎟⎟⎠
L

, (1.44)

where V = V †
U,LVD,L is the generation mixing matrix acting, by convention, on the

down-like quarks D. The matrix V is referred to as the CKM matrix for the explicit

parametrization was provided by Cabbibo-Kobayashi-Maskawa [8, 9, 10].
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The CKM matrix is complex and unitary by construction satisfying the relation:

V† = V−1, (1.45)

where V† and V−1 are the conjugate transpose and inverse matrices of V. In general,

the dimension of CKM matrix, n, depends on number of generations and in order

to define a n × n complex unitary matrix one need to introduce (n − 1)2 observable

parameters. The following is considered to be the “standard” parametrization of

CKM matrix for three generations:

⎛⎜⎜⎜⎝
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
c12c13 s12c13 s13e

−iδ13

−s12c23 − c12s23s13e
iδ13 c12c23 − s12s23s13e

iδ13 s23c13

s12s23 − c12c23s13e
iδ13 −c12s23 − s12c23s13e

iδ13 c23c13

⎞⎟⎟⎟⎠ ,

(1.46)

where cij = cos θij and sij = sin θij with the “generation” labels i, j = 1, 2, 3. The

four parameters are: three angles θ12, θ23, θ13, and the phase δ13. Since only four

parameters are used to determine nine matrix elements and from the CKM matrix

unitarity2, it follows that the elements are mutually constrained. In other words, by

measuring some of them one is able to predict the magnitude of others. The elements

from the first two rows are well measured from various weak decays and their values

are reported elsewhere [11]. Therefore, the value of Vtb element is expected to be

very close to unity: 0.9990 ≤ Vtb ≤ 0.9992. It is important to note that the expected

values of unknown CKM matrix elements will change if the CKM matrix is expanded

to accommodate more generations, nevertheless, the matrix itself will remain unitary

by construction.

2Multiplying both sides of Equation (1.45) from left by (V †)−1 (from right by V ) and
using V −1V = 1 identity, we obtain V †V = 1 (V V † = 1). These expressions imply that the
sum of squared elements in each row and column in V is equal to 1.
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Chapter 1. Top Quark

Figure 1.1: Parton distribution functions for different parton species inside the proton
at the scale μ = mt.

1.1.2 Top Quark Production

It was noted in Section 1.1.1 that in the Standard Model the top quark can participate

in electromagnetic, weak, and strong interactions via coupling to a photon, W± and

Z0 bosons, and a gluon correspondingly. Therefore, the top quark can be produced

in many ways if the energy of interacting particles is sufficient to produce such a

massive quark. To date, only Fermilab Tevatron is capable of producing top quark in

proton-antiproton collisions. The (anti)proton is regarded as a collection of valence

and sea partons including quarks, antiquarks, and gluons, each carrying some fraction

x of the proton’s four-momentum. The chances of specific interaction to occur depend

on the probability of finding a parton inside the proton with a specific momentum

fraction. These probabilities for different types of partons are given by the parton

distribution functions (PDF) as shown in Figure 1.1 [12]. More specifically, in pp̄

collisions at Tevatron the top quark preferably produced as a result of three distinct
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Chapter 1. Top Quark

types of interactions at the parton level: quark-antiquark (qq̄), qluon-(anti)quark (gq,

gq̄), and gluon-gluon (gg) interactions.

The inclusive cross section of top quark production in hadronic interactions at the

center-of-mass energy
√

s is given by the formula:

σ(s) =
∑
i,j

∫
σ̂ij(xixjs, m

2
t , μ)F p

i (xi, μ)F p̄
j (xj , μ)dxidxj , (1.47)

where the summation indexes i and j run over all the partons contained in the initial

proton and antiproton and carrying the momentum fractions xi and xj . F
p(p̄)
i (xi, μ)

is the PDF of parton i in proton (antiproton) evaluated at a scale μ, and σ̂ij(ŝ, m
2
t , μ)

represents the parton-level cross section of interaction of hadron constituents as a

function of top mass mt and the square of the partonic center-of-mass energy ŝ =

xixjs. The total short distance cross section σ̂ can be parametrized [13] as

σ̂ij =
α2

S(μ)

m2
t

fij

(
4m2

t

s
,

μ2

m2
t

)
, (1.48)

where αS(μ) is the QCD running coupling and dimensionless function fij includes

contributions from the higher perturbative expansion terms in αS. In QCD calcu-

lations the higher order terms can contribute significantly. The full cross section is

independent of the choice of renormalization scale μ but for calculations with finite

number of terms the impact of high order terms may be reduced by choosing μ = mt.

The dependence of αS on the scale μ is logarithmic and uncertainties are estimated

by varying the μ by factor of 2 around the top mass. This way the uncertainty on

top quark cross section will reflect the absence of the higher order terms.

The most recent prediction of the top pair cross section with inclusion of next-

to-leading order corrections is σtt̄ = 6.7+0.7
−0.9 pb−1 at

√
s = 1.96 GeV and mt =

175 GeV [14, 15]. The single top cross section is smaller by a about a factor of two.

Mostly for experimental identification of the top quark production processes, they

are distinguished by the number of produced top quarks. Single top quark is pro-

duced in weak couplings to W± boson. The leading order Feynman diagrams of such
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Figure 1.2: The leading-order diagrams of single top quark electroweak production in
t- (left) and s- (right) channels.

production mechanism are shown in Figure 1.2. At the Tevatron energies the dom-

inant diagrams are the t-channel W± exchange and the s-channel qq̄ annihilation.

At the LHC the gb → tW diagram will contribute significantly [16, 17]. Although,

predicted total single top cross section is not very small, the background reduction

is much more complicated problem comparing to tt̄-pair production. At the moment

the single top signal was not observed. In this analysis we are focused on the strong

production of the tt̄-pair. In Figure 1.3 the leading order diagrams are shown for

the processes dominated at Tevatron: the annihilation of quark and antiquark and

gluon-gluon fusion. In order to produce two top quarks the total center-of-mass

energy of interacting partons must be no less than two top quark masses: ŝ � 2mt.

From where for Tevatron energy
√

s = 1.96 GeV, it follows that typical values for

momentum fractions x are:

x ∼ 2mt√
s

≈ 0.18. (1.49)

From Figure 1.1 one can see that at values x ∼ 0.2 the probability of finding up quark
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Figure 1.3: The leading-order QCD diagrams of top quark pair production as the
result of quark-antiquark annihilation and gluon-gluon fusion.

in proton is approximately twice as much of finding down quark or a gluon. This

roughly suggests that qq̄ interaction should be at least five times more frequent than

gg interaction. Indeed, more careful calculations predict the relative contributions to

the top pair production from qq̄ and gg to be about 85% and 15% respectively.

1.1.3 Top Quark Decay

The understanding of top quark decay is essential for determination of its properties.

As any other coloured particle the top quark shortly after its production is allowed

to form a baryonic or mesonic bound state. In QCD the time required for formation

of colourless states is about 10−23 seconds. However, the top quark does not form

any hadronic states simply because its lifetime is shorter (10−25 s) than hadronization

time. The weak decay of the top quark is considered in details in Appendix A. The

bottomline is that the partial width (the inverse of lifetime) of the top decay to any
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other bottom-type quark q can be written as

Γ(t → Wq) = |Vtq|2Φ(mq), (1.50)

where the phase space factors Φ(mq) for q = d, s, b equal to each other with a good

precision due to the fact that the masses of d, s, and b are much smaller than top

mass. Also the CKM matrix element |Vtb| is expected to be close to unity while

|Vtd| and |Vts| values are close to zero suppressing the decays t → Wd and t → Ws.

Therefore the top quark is expected to decay to W and b nearly 100% of the time.

Another consequence of the large top quark mass is that the W boson is produced

on-shell, i.e. as a real particle.

Let us consider decay of top pair more closely. As the result of decay of each top

quark in tt̄ event, two oppositely charged W bosons are produced. In their turn the

bosons will decay either hadronically (W → qq̄) or leptonically (W → lν̄). With a

good approximation we can assume that the branching fraction of each individual

channel is close to 11%. The hadronic decay channel includes six possible final states,

since the W can decay only into quark pairs from the first and the second generations

and each pair can appear in three different colour combinations (RR̄, GḠ, BB̄). The

leptonic decay has three final states corresponding to different lepton types (e, μ, τ).

Hence, each W boson has nine final state degrees of freedom and the total number of

final states for a pair of W bosons is 81 = 9 × 9.

A special comment needs to be made on final states where one of or only lepton

produced is τ . Unlike other leptons, tau decays in the detector into an electron or

muon in about 36% of the time and in other cases tau decays hadronically forming

τ -jets. The difference between the nominal W → lν̄ signature and the subsequent

tau decay W → τ ν̄τ → lν̄lντ ν̄τ will be indicated by larger missing ET and a softer

lepton. Also an additional effort is required to identify τ -jets, otherwise, they may be

incorrectly assigned to quarks. Taking all this into account, it is advisable to treat the

events with taus in intermediate states separately. Through the rest of this analysis
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we will refer only to electrons and muons as leptons.

From experimental point of view it is convenient to combine the final states, in

which tt̄ pair can be observed, in the following three channels:

Dilepton channel In this channel both W bosons decay leptonically as shown in

Figure 1.4a. These final states include lepton pairs e+e− (1/81), μ+μ− (1/81),

e±μ∓ (2/81), plus contributions from leptonic τ decays. Altogether the dilepton

channel contributes in approximately 7% of all signal events. The final tt̄ signa-

ture is recognized in events having highly energetic leptons, large imbalance in

transverse energy due to undetectable neutrinos, and two jets presumably orig-

inated by b quarks. This decay mode is the cleanest one since the backgrounds

are small and events with two energetic leptons can be triggered efficiently.

Lepton-plus-jets channel In this channel only one W boson decays leptonically

whereas another one decays hadronically as shown in Figure 1.4b. The fraction

of events with a single lepton is expected to be approximately 30% with equal

contributions from events with electron (12/81) and muon (12/81) in the final

state. Events with tau may contribute additional ∼ 8% if τ -jets are not sepa-

rated. Lepton-plus-jets events are characterized by having one high-PT lepton,

extensive missing ET , and four energetic jets including at least two heavy-flavour

�t
t̄

W+

W−

q2

l̄2

ν2

ν̄1

l1

q̄1

(a) Dilepton channel

�t
t̄

W+

W−

q2

q4(l̄2)

q̄3(ν2)

ν̄1(q̄4)

l1(q3)
q̄1

(b) Lepton-plus-jets channel

�t
t̄

W+

W−

q2

q4

q̄3

q6

q̄5

q̄1

(c) All-jets channel

Figure 1.4: Different final states of tt̄-pair production and its subsequent decay.
According to the final signature the events are divided into three classes.
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jets. The signal events in this decay mode are more difficult to separate from

the background than in dilepton mode, but overall more lepton-plus-jets events

will be produced.

All-jets channel In this channel both W bosons decay hadronically as shown in

Figure 1.4c. With only quarks produced in the final state we can have 36—out of

81 total—combinations distinguished by quark flavour and colour. The fraction

of such events will be ∼ 44%, with additional contributions from hadronically

decayed taus for up to ∼ 10%. The events in all-jets channel have 6 possibly

separable jets in the final state. Such signature is not easily separable from

multi-jet QCD backgrounds which dominate 2–3 orders of magnitude over the

signal processes.

In this analysis we utilize the tt̄ events in lepton-plus-jets and dilepton channels.
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1.2 Analysis Problem and Strategy

This thesis presents a new measurement of the ratio R of top quark branching fractions

B defined as

R ≡ B(t → Wb)

B(t → Wq)
=

Γ(t → Wb)∑
q

Γ(t → Wq)
, (1.51)

where Γ(·) is the partial width of an appropriate top quark decay, and q can be any

quark. If we assume that there are only three generations of quarks (q = b, s, d) then

Equation (1.51) can be rewritten in terms of CKM matrix elements in the form

R =
|Vtb|2

|Vtb|2 + |Vts|2 + |Vtb|2 , (1.52)

where the phase space factors were canceled due to very small relative difference in

their values (md, ms, and mb � mt, see Appendix A). Further, from CKM matrix

unitarity (see footnote on page 16) one can construct two identities:

|Vtb|2 + |Vts|2 + |Vtb|2 = 1, (1.53)

|Vub|2 + |Vcb|2 + |Vtb|2 = 1. (1.54)

The first equation suggests that the denominator in Equation (1.52) is just unity

and from the second equation knowing the measured values of |Vub| and |Vcb| one can

predict a value for the numerator in the same Equation (1.52). The |Vub| and |Vcb|
are small and |Vtb| is predicted to be close to unity: 0.9990 ≤ |Vtb| ≤ 0.9992 at 90%

confidence level (CL). Therefore, with the above assumptions the Standard Model

top quark is expected to decay to a W and bottom quark at least 99.8% of the time

at 90% confidence level.

In order to determine the ratio R experimentally, one need to measure how often

the top quark decays to Wb versus Wq. Luckily there are a number of techniques

allowing us to identify (tag) the b quarks in the final state. For this measurement one

needs to count the number of tt̄ events Nobs
i with different tag multiplicities i. Ideally,
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the number of tags i can be 0, 1, or 2. On the other hand, the number of signal events

with different tag rates can be predicted as a function of unknown quantity R:

N exp
i = εi(R) · Ntt̄, (1.55)

where εi(R) is the efficiency to have i = 0, 1, or 2 b quarks per event and Ntt̄ is the

total number of signal events.3 Once Nobs
i and N exp

i are determined, one can compare

them through the use of likelihood function:

L(R) = L(Nobs
i , N exp

i (εi)). (1.56)

The value of R where the likelihood reaches its maximum corresponds to the best fit

between the experimental data and the theoretical prediction.

A first direct measurement of the ratio B(t → Wb)/B(t → Wq) is reported in [18].

The measurement was performed in pp̄ collisions at
√

s = 1.8 GeV using the Run I

data collected by Collider Detector at Fermilab. During Run I (August 1992 to

July 1995) CDF collected about 109 pb−1 of integrated luminosity. The value of R

was determined by from both lepton-plus-jets and dilepton data sets with 163 and 9

events respectively. The reported central value for R is 0.94+0.26
−0.21(stat) +0.17

−0.12(syst) and

the lower limit is R > 0.61 (0.56) at 90% (95%) confidence level. The lower limit on

R was obtained by a numerical integration of the likelihood function used to compare

the number of observed and predicted tagged events.

Like the previous measurement of R the present one utilizes the lepton-plus-jets

and dilepton data sets collected during Run II of CDF with the total integrated lumi-

nosity is ∼ 162 pb−1. Run II of the Tevatron provided pp̄ collisions at higher energy

(
√

s = 1.96 TeV) and luminosity. The cross section of top quark pair production

increases in Run II by ∼ 30% relative to the Run I. As a result of increased statis-

tics and enhancements in the upgraded CDF detector, this measurement is expected

3In reality, the event tagging efficiencies εi are functions of R as well as other quantities.
Here we do not show an explicit form of εi for the sake of brevity.
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to yield better result than the previous one. Additionally, the systematic errors are

reduced by more sensitive methods developed in this thesis.

This measurement of R is proceed in three basic steps:

1. We apply appropriate requirements on the data sample to identify the tt̄ en-

riched events and estimate the background level in the samples as a function

of the number of b-tagged jets in the event. Most importantly, in the lepton-

plus-jets channel we utilize an Artificial Neural Network technique to obtain

the background estimation.

2. We predict the expected tag rates in the tt̄ events as a function of R. In our

model we take into account the efficiencies to mistag the jets originated by

quarks other than bottom quark. These efficiencies as well as event acceptances

are determined from the Monte Carlo samples. The scale factor accounts for

the difference in b-tagging efficiency measured in MC and data.

3. We compare the observed tt̄ tag rates to the expectations, find the most likely

value of R, and, finally, set a lower limit on R. Unlike Run I measurement we

apply the Feldman-Cousins technique in order to set a lower limit on R.

A measurement of the ratio R significantly less than unity would contradict our

theoretical assumptions, implying either a fourth generation of quarks, non-SM top

decay, or a non-SM background to top pair production.

In the next chapter we present an overview of the Tevatron accelerator complex

and CDF experiment. Event reconstruction and selection of signal enriched events

is discussed in Chapter 3. Chapter 4 contains a brief introduction to the field of

Artificial Neural Networks and their application to high energy physics experiment.

The measurement of the ratio of top quark branching fractions is presented in Chap-

ter 5. Conclusions about the results and future perspectives are made in the last
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chapter. There are two additional appendixes for easy references from the main text.

Appendix A contains formulae on top quark decay and Appendix B includes infor-

mation related to likelihood method.
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Experimental Apparatus

Currently, the Fermilab Tevatron is the only accelerator capable of producing top

quarks. There are two large, general-purpose detectors independently designed, con-

structed and installed at two interaction points on the Tevatron ring. In this analysis

we use the data collected at the CDF experiment during Run II. This run started

in 2001 after both detectors underwent significant improvements. The accelerator

complex was also significantly upgraded, primarily for higher instantaneous luminos-

ity but also for a small increase in the center of mass energy (
√

s) from 1.8 TeV to

1.96 TeV which increases the tt̄ cross section by about 30%. The Tevatron will remain

the highest energy collider until Large Hadron Collider at CERN starts operating in

2007 at center-of-mass energy
√

s = 14 TeV. In this chapter we will give an overview

of the various accelerating machinery and a description of the CDF components.
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2.1 Fermilab Accelerating Facilities

The Fermilab accelerating complex consists of several particle accelerators schemat-

ically shown in Figure 2.1. Various installations are used at different stages of the

entire acceleration course, the purpose of which is the production of intense high

energy proton and antiproton beams accelerated to the 980 GeV each.

There are two common types of accelerators used at Fermilab: Synchrotrons and

linear accelerators. A synchrotron is a cyclic charged particle accelerator in which

the magnetic field turns the particles so they circulate and the electric field acceler-

ates the particles. Both fields are carefully synchronized with the travelling particle

beams. By appropriately increasing the strength of the electric component the parti-

cles gain energy while travelling thousands of times through the accelerator ring. The

magnetic field is adjusted in order to maintain a constant-radius path as the particles

are accelerated. A detailed description of operation of synchrotron can be found in

literature [19]. In linear accelerators the magnets bending the particle’s path are not

used, hence the paths of the accelerated particles are essentially straight lines rather

than circles.

Conventionally, the whole acceleration chain at Fermilab can be split into the

following three stages: (1) creation and preacceleration of protons, (2) creation and

preacceleration of antiprotons, and (3) injection of the particle beams for the final

acceleration in Tevatron.

Proton Source The creation of protons begins in the Cockroft-Walton chamber

using hydrogen gas H2. Negatively charged ions H− are produced by electrical dis-

charges in the volume of the chamber. The ions are extracted from the chamber by

applying a positive voltage of 750 kV on one side of the dome. The preaccelerated

ions are fed into the linear accelerator, Linac [20], where the particles are accelerated
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Figure 2.1: Schematic view of the Fermilab accelerator complex.

in RF cavities to 400 MeV. The Linac is 150 m long and it converts a continuous

stream of particles into discrete packets (bunches). The H− ions are transfered to

the next accelerator called the Booster. The Booster is a synchrotron with a radius

of 75 m. The Linac pulse length is about 10 times longer than the period of time

needed for the protons to complete one circle in the Booster. In order not to disturb

the protons that are already in the Booster, the ions are injected using one of the

Booster’s bending magnets, passing which the H− ions and protons are merged in

one beam. Then the particles are passed through a thin carbon foil, where the elec-

trons are stripped off from the ions leaving only the protons. The proton bunches

repeatedly pass through the circular array of RF cavities where they are accelerated
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by electric component of the oscillating electromagnetic field. After several thousand

acceleration cycles the protons acquire energy of 8 GeV. At the next stage the proton

bunches are transfered into the Main Injector which is also a synchrotron, but which

is seven times the circumference of the Booster. In the Main Injector the protons can

be accelerated either to 150 GeV for the next final acceleration in the Tevatron or

to 120 GeV for the antiproton production. In the former case the Linac and Booster

provide the beam with typically 6 × 1010 protons per bunch, in the latter case they

deliver a beam with up to 5 × 1012 protons per bunch.

Antiproton Source Two small synchrotrons, the Debuncher and the Accumulator,

are referred to as the antiproton source. Protons with energy of 120 GeV are extracted

from the Main Injector and transferred to the target area where they are used to

bombard a nickel target. As the result of proton scattering on the target, a spray of

various particles is produced at many different angles. These particles are focused with

the Lithium lens and then, the antiprotons are separated from other particles by a

magnetic charge-mass spectrometer. These antiprotons are moved to the Debuncher,

where the spread in the particle momenta is reduced by stochastic cooling process.

The Debuncher has a triangle shape with rounded corners. The beam turning magnets

are installed in the corners on a circle with a radius of 90 m. The 8 GeV, almost

continuous in time (debunched), beam of antiprotons is injected into the Accumulator

whose purpose is to accumulate the antiprotons. The Accumulator is also a triangular-

shaped synchrotron with 75-meter radius, and is housed in the same tunnel as the

Debuncher. Here the beam can be stored for many hours, collecting antiprotons from

the Debuncher in a process called stacking. Also, a much more thorough beam cooling

is performed. The Accumulator can store up to 140 × 1010 antiprotons and whether

typical stacking rates vary from 6 × 1010 to 11 × 1010 protons per hour. When the

intensity of antiproton beam reaches its maximum, the beam is sent back to the Main

Injector.
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Main Injector From the above discussion and the name itself it is clear that the

main purpose of the Main Injector is to prepare the protons and antiprotons for their

injection into the Tevatron for the final acceleration. The Main Injector was designed

and built specifically for Run II. Before that the role of injector had been played by

Main Ring, which was the original 400 GeV proton synchrotron built during the early

1970’s. More specifically, the Main Injector is used for the following tasks:

• accept the 8 GeV protons from the Booster and antiprotons from the Accumu-

lator;

• produce 120 GeV protons used for the antiprotons production;

• accelerate protons and antiprotons to 150 GeV and inject them into the Teva-

tron.

Tevatron The largest accelerator at Fermilab is the Tevatron, a synchrotron col-

lider. After accepting 150 GeV protons and antiprotons from the Main Injector, it is

capable of accelerating particles to the energy of 980 GeV. Thirty-six bunches each of

protons and antiprotons circulate in opposite directions in the Tevatron. There are

two points along the ring designated as B0 and D0 (see Figure 2.1), where the beams

are focused and brought into collision. The results of such collisions are observed

by two multi-purpose detectors installed at these points: The Collider Detector at

Fermilab (CDF) and the DØ Detector. The Tevatron is installed inside a tunnel

of exactly 2 km in diameter. A very strong magnetic field of 4.2 T is required to

turn particles with such high energies. Superconducting magnets are used in order

to create the magnetic field. The magnets are made of niobium-titanium alloy and

cryogenically cooled to about 4.6 K with liquid Helium.

The process of loading protons and antiprotons in the Tevatron is called the shot

setup and it begins when the size of the antiproton stack in the Accumulator is large
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enough. The proton bunches are injected first by the transfer system with a fast

kicker magnet having 396 ns rise time. The 36 bunches are injected in 3 trains of

12 coalesced bunches with an abort gap between each train of 2.617 μs. In fact,

a single proton bunch in the Tevatron is a product of merging of several bunches

prepared in the Booster providing an increased intensity of ∼ 30 × 1010 protons per

bunch. The antiproton bunches are injected similarly to the protons when either of

the three abort gaps in the proton beam passes the antiproton kicker magnet. Like

with protons, each bunch is a merging of several antiproton bunches prepared in the

Accumulator resulting in ∼ 30 × 109 antiparticles per bunch.

Once the Tevatron loading is complete, beams are accelerated to the maximum

energy and a stable configuration is reached the data taking period (the store) begins.

During this period the luminosity decreases due to loss of particles in pp̄ collisions

and beam-gas interactions. Also, the beams start to heat up and their effective width

increases due to long range beam-beam interactions. The instantaneous luminosity

is given by the formula

N = σL = σ
fNbNpNp̄

2π
√

s2
p + s2

p̄

, (2.1)

where σ is effective cross section of a particular process, f is the bunches revolution

frequency, Nb is the number of bunches in the beam, Np and Np̄ are the number of

protons and antiprotons in each bunch respectively, sp and sp̄ are the transverse sizes

of the proton and antiproton beams at the interaction point respectively. From the

above relation one can see that a desired gain in the luminosity is achievable either by

increasing the number of (anti)protons or by reducing the effective beam sizes. If the

cross section of specific interaction is σ then the interaction rate R is proportional to

the instantaneous luminosity L
R = σL. (2.2)

While detectors are collecting data, a new stacking period begins in the Accumulator

preparing antiprotons for the next store. A typical store lasts for 15 hours. After
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that time it is more efficient to abort the current store and start a new cycle with

fresh beams. The period of time between two stores is about 2 hours and it can be

used for detector calibrations.

2.2 Collider Detector at Fermilab

2.2.1 Overview and Coordinate System

CDF is a magnetic detector designed to observe a wide range of physics phenomena

in high-energy pp̄ collisions. A general view of CDF is shown in Figure 2.2a and

Figure 2.2b provides a more detailed cross section view. The detector has under-

gone significant upgrades for Run II [21, 22]. The upgrade was necessitated by the

increased Tevatron luminosity and shorter bunch-crossing time. For improved mo-

mentum resolution, b-tagging, electron and muon identification in Run II some old

subdetectors were replaced and new hardware was added to the CDF.

This analysis uses all of the major detector components:

The tracking system is the innermost part of CDF used for particles charge and

momentum measurements. This system is placed inside the superconducting

solenoid of 4.8 m long and 1.5 m radius which produces a 1.4 T magnetic field

coaxial with the beam direction.

The calorimeter system is composed of electromagnetic (EM) and hadronic (HAD)

scintillator-based sampling calorimeters surrounding the solenoid in a projective-

tower geometry. The EM calorimeter features an embedded proportional cham-

ber at shower maximum for precise electron identification and reconstruction.

The muon system is located on the exterior of CDF. Only high energy muons are
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(a) Isometric view of the CDF with cut-away quarter.

(b) Elevation view of one half of the CDF.

Figure 2.2: Collider Detector at Fermilab. The detector has both azimuthal symmetry
with respect to the beamline and forward-backward symmetry with respect to the
nominal collision point.
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able to pass the absorption layers of steel beyond which the muon detectors are

located.

A Cartesian coordinate system is chosen with origin at the geometrical center

of the detector. The x axis is defined in the direction radially outward from the

accelerator center, the y axis is defined perpendicular to the accelerator plane pointing

vertically upward, and the z axis is along the antiproton beam direction. Because of

the cylindrical shape of the detector it is more convenient to identify particle directions

and other locations within the detector in a cylindrical-like coordinate system. The

three coordinates are (z, φ, η), where φ is the regular azimuthal angle in x–y plane

and η is the pseudorapidity expressed in terms of the polar angle θ as

η = − ln

(
tan

θ

2

)
. (2.3)

The pseudorapidity is chosen as a coordinate because it is closely related to the true

rapidity y defined as

y =
1

2
ln

(
E − pz

E + pz

)
, (2.4)

where E is energy and pz is the z component of the momentum of the particle. The

rapidity shows how much the particle is boosted along the z axis. The differences in

rapidity are Lorentz invariant, because under Lorentz transformation to a frame mov-

ing along z direction with velocity β relative to the lab frame, the rapidity modifies

as an additive quantity:

y → y − tanh−1 β, (2.5)

For highly relativistic particles (|�p| � m) pseudorapidity is a good approximation to

rapidity y: η ≈ y. The consequence of Δη invariance under Lorentz transformation

along z axis is that the shape of the pseudorapidity distribution dN
dη

also remains

invariant. This is the main reason why the CDF calorimeter is segmented in equal

units of pseudo-rapidity. Another important Lorentz invariant quantity is the measure
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of an opening angle between two particles given by

ΔR =
√

(Δη)2 + (Δφ)2. (2.6)

2.2.2 Tracking System

The ionization signal due to a charged particle traversing the tracking medium can

be collected on a localized electrode, thereby providing position information, is called

a hit. By detecting many discrete hits along the path the particle’s trajectory can

be reconstructed in a process know as tracking. The CDF tracking system consists

of two major detectors: the silicon detector at the small radii, and an open cell drift

chamber (COT) at larger radii surrounding the silicon detector. Both detectors are

submerged into a uniform magnetic field B = 1.4 Tesla along z axis created by the

solenoid.

The trajectories of charged particles inside the solenoid are helices, which are

described by the five parameters:

z0 – z coordinate of the point of the closest approach to the z

axis;

d0 = q(
√

x2
c + y2

c − R) – distance from the point of closest approach to the z axis,

impact parameter. q is the charge of the particle and

(xc, yc) is the center of the helix projected onto the x–y

plane;

φ0 – azimuthal angle of particles transverse momentum at the

point of closest approach to the z axis;

cot θ – ratio of helix step to its diameter, helix pitch;

C = q
2R

– helix curvature.
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Figure 2.3: Cutaway view of one quadrant of the CDF tracking system showing the
COT and silicon detectors surrounded by solenoid and end-cap calorimeters.

The above parameters can be used to calculate the particle’s transverse and longitu-

dinal momenta:

pT =
cB

2|C| , (2.7)

pz = pT cot θ. (2.8)

The track parameters are determined by the helical track fit. The input to this fitter

is a set of spacial coordinates of the measured hits which specially preselected with the

pattern recognition algorithm. The primary vertex of event is determined from the

reconstructed tracks in the event by fitting them to the same space point and using

the beamline position as a constrain. Tracks with hits in the silicon detector are

reconstructed with high-precision and can be used to reconstruct secondary verticies.

The schematic side view of one quarter of tracking system is shown in Figure 2.3. The

parameters of each component of tracking system will be briefly described below.
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Silicon Detector

Many analyses at CDF require a precise measurement of the decay length of long-

lived B hadrons. The silicon detector is comprised of eight concentric cylindrical

layers of silicon microstrip sensors surrounding the beam-pipe. The layers span radii

from 1.35 cm to 28 cm and extend from 90 cm to almost two meters along the Z

direction. The detector is divided into three sub-systems: Layer-00, SVXII, and

ISL. Each component has a cylindrical form with an axis coinciding with the beam

direction.

The Silicon Vertex Detector (SVXII) is the primary component of the silicon

tracking system, consisting of 5 layers of double-sided microstrip detectors. The most

inner and outer layers have the radii of 2.5 cm and 10.7 cm respectively. Along the

beam pipeline the SVXII covers 2.5σ of the pp̄ luminous region, corresponding to the

length of 96 cm, and in pseudorapidity it covers η < 2.5 (see Figure 2.3). In the axial

direction, the SVXII is divided into three barrels each 29 cm long with beryllium

bulkheads at each end. The bulkheads support the five silicon layers and the cooling

system for readout electronics. In the plane transverse to the beamline, each layer is

segmented in 12 azimuthal wedges as shown in Figure 2.4.

In order to reduce residual interactions, the silicon sensors are supported by light-

weight substrates forming a basic structural unit called ladder. On one side of the

silicon sensors the finely spaced p-type silicon strips run in the axial direction allowing

the measurement of the hits in r–φ plane. On the other side of silicon sensors, n-type

silicon strips are rotated forming either 90◦ (0th, 1st, and 3rd layers) or ±1.2◦ (2nd and

4th layers) stereo angles allowing the measurement of r–z. The number of strips per

ladder in each layer along with other mechanical parameters are shown in Table 2.1.

The signal is detected on a small cluster of non-stereo (r–φ) and stereo strips and

the hit position is determined by the appropriate strip coordinates. The accuracy of
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(a) Isometric view of the three-barrel structure of
SVX.

(b) End view of SVXII bulkhead
supporting 5 layers divided into 12
wedges.

Figure 2.4: CDF Silicon Vertex Detector.

individual hit position measurement is about 12 μm.

The readout units are mounted directly on silicon surface on both ends of each

ladder. Such construction helps to improve readout speed and minimize electronic

noise. Each wedge has 44 readout chip sets and each chip has 128 channels with

charge-sensitive amplifiers. The total number of readout channels for six barrel ends

is 405,504. The signals are converted by special port cards from electrical to optical

Table 2.1: SVX layers technical summary.

Layer
Radius, cm # of strips Strip pitch, μm

Stereo
angle

Ladder
active

width, mmStereo r–φ Stereo r–φ Stereo r–φ
0 2.55 3.00 256 256 60 141 90◦ 15.30
1 4.12 4.57 576 384 62 125.5 90◦ 23.75
2 5.52 7.02 640 640 60 60 +1.2◦ 38.34
3 8.22 2.72 512 768 60 141 90◦ 46.02
4 10.10 10.65 896 896 65 65 −1.2◦ 58.18
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form, and transmitted to the external electronics at 53 MHz rate. The highly parallel

readout permits the entire detector to be read in approximately 10 μm.

In order to further improve the impact parameter resolution, Layer-00 (“Layer zero

zero”) is mounted directly on the beam pipe at a radius of 1.6 cm. The length of Layer-

00 is 80 cm and its azimuthal structure is similar to the SVXII (Figure 2.5). Layer-00

utilizes radiation-tolerant single-sided microstrip sensors. The narrow sensors have

128 channel and wider sensors have 256 channels with a strip pitch of 50 μm. To

��� ��

Figure 2.5: Transverse view of Layer 00 (innermost) inside the first two inner layers
of SVXII.

minimize the radiation exposure of the electronics, Layer-00 is readout via finely

pitched kapton cables connected to the readout chips mounted outside the tracking

volume at |z| > 40 cm.

The ISL is placed outside the SVXII as can be seen in Figure 2.3. There is one

cylindrical layer installed in the central region |η| < 1.0 at radius of 22 cm. Two other

layers are installed at radii of 20 cm and 29 cm, covering the pseudorapidity region

1.0 < |η| < 2.0. Double-sided silicon sensors are used in ISL ladders. On axial side,

the silicon microstrips are spaced by 55 μm and on the stereo side by 73 μm with 1.2◦

stereo angle. In order to reduce the total number of channels (268,800) only every
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other strip is read out in ISL ladders. Hence, the single hit resolution is somewhat

worse than in SVXII, achieving 16 and 23 μm on axial and stereo sides respectively. In

general the design of ISL ladders is similar to the one of the SVXII ladders. Extra hits

provided by ISL are very important for track reconstruction, providing intermediate

hits between the SVXII and the Central Outer Tracker (COT, described below).

Overall, the silicon system measures the impact parameter of high pT tracks with

a resolution of about 40 μm, including 25–30 μm contribution from the beam width.

The long-term performance of the device depends on its resistance to radiation dam-

age. The innermost layer of SVX is the most vulnerable component of the silicon

system and it is expected to last at least 7.4 fb−1. More information on CDF silicon

detector can be found in [23, 24, 25].

Central Drift Chamber

The Central Outer Tracker (COT) is a cylindrical, multi-wire open-cell drift chamber

designed to find tracks of charged particles in the central region η < 1.0. As shown

in Figure 2.3 the COT is located outside the silicon detectors and inside the solenoid,

which provides the magnetic field of 1.4 T. Along z axis the tracker covers the region

of |z| < 155 cm and in radial direction its closed internal volume is between radii of

44 cm and 132 cm. The COT is hermetically sealed and filled with fast gas mixture

of 50:50 Argonne-Ethane, which gives a drift velocity of about 50 μm/ns. Small

drift times are essential in order to prevent the subsequent events to pile-up at high

collision rates.

As charged particles pass through the COT they leave a trail of ionization in the

active medium. The electrons drift to sense wires strung between the COT end plates.

The sense wires are placed in electrostatic drift field created by field-shaping wires

and cathode field panels, both running parallel to the sense wires. The COT cell
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consists of 12 sense wires alternating with 13 potential wires as shown in Figure 2.6.

Two adjacent cells share the same field panel; and four shaper wires (two at each

52 54 56 58 60 62 64 66

R

Potential wires

Sense wires

Shaper wires

Bare Mylar

Gold on Mylar (Field Panel)

R (cm)

Figure 2.6: Cross section of three COT cells in second superlayer. The R-arrow shows
the radial direction. Electrostatic field is perpendicular to the field panels and drift
velocity is perpendicular to the radius.

side) serve to close the cell electrostatically. Because of the magnetic field in the z

direction, the ionization electrons do not move along the electric field lines but rather

cross them at an angle α known as the Lorentz angle. The value of α depends on

the strengths of electric and magnetic fields, and for COT it is � 35◦. Therefore, the

COT cells are rotated by α with respect to the radial direction in order to reduce the

drift length.

The field panels are kept at ground potential, while the potential and sense wires

are operated under potentials of approximately 2 and 3 kV respectively. Within a

cell the actual voltages are slightly varied from wire to wire in order to maintain a

uniform drift field.

There are total 30,240 sense wires in COT. They are arranged in eight radially

spaced superlayers as shown in Figure 2.7. Since there are 12 sense wires in one cell

43



Chapter 2. Experimental Apparatus

Figure 2.7: End view of a one sixth of COT endplate. The wire-plane slots are
grouped into eight concentric super-layers. The slots are tilted by 35◦ with respect
to radial direction.

the total number of possible measurements per track traversing the COT radially is

96. The even layers are non-stereo, i.e. wire plane is parallel to the z axis, and odd

layers have small stereo angle of ±3◦ which is achieved by connecting the wire slots

with eight slot offset on opposite endplates. The number of cells and their radii are

summarized in Table 2.2.

Table 2.2: COT layers summary.

Superlayer Radius at center, cm # of cells Stereo angle
1 46 168 +3◦

2 58 192 0◦

3 70 240 −3◦

4 82 288 0◦

5 94 336 +3◦

6 106 384 0◦

7 119 432 −3◦

8 131 480 0◦
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The signals from sense wires are readout by electronics directly placed on the

chamber endcaps. Specially designed pattern recognition logic in the Level-1 trigger

is used to recognize multiple hits from single wire. The resolution of a single hit

is measured to be about 140 μm, which corresponds to the transverse momentum

resolution of δpT /p2
T ∼ 0.15% (GeV/c)−1. In absolute magnitude the tracks can

be measured down to 300 MeV/c. If information from COT is combined with the

one from silicon detectors, then the transverse momentum resolution is: δpT /p2
T �

0.10% (GeV/c)−1. More information on CDF silicon detector can be found in [26].

2.2.3 Calorimeter System

The purpose of the CDF calorimeter system is to measure the energies of the charged

and neutral particles produced in pp̄ collisions. The absorption and scintillation

materials are the main components of each calorimeter. As particle traverse the

calorimeter it looses its energy by interacting with the dense absorption material and

producing a shower of secondary particles [27]. The number of charged secondary

particles is proportional to the energy of incident particle. A scintillator material is

used to collect these charged particles and release an equivalent amount of energy by

means of photons. The light from scintillators is read out by light guides and converted

into electric signal using photomultipliers (PMT) and amplifiers. The strength and

position of the signals are used in event reconstruction. This information combined

with tracking information leads to better identification of the original particle.

The resolution on energy measurement by a calorimeter, σE

E
, is dominated by sta-

tistical sampling fluctuations and the photo-statistics of the PMTs, which is inversely

proportional to the square root of the incident energy. Other contributions to the

total resolution come from the non-uniform response of the calorimeter, calibration

errors, and electronics noise. These factors are taken into account by adding smaller
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constant term in quadrature.

The calorimeter detectors are installed just outside the solenoid providing 2π

azimuthal coverage out to |η| < 3.6 (Figure 2.2a). The classification of different

calorimeter portions is based on the coverage in pseudorapidity regions: The central

calorimeter provides coverage in the region where |η| < 1.1 and the plug calorimeter

covers the pseudorapidity over 1.1 < |η| < 3.6 corresponding to polar angles between

37◦ and 3◦. The gap between central and plug regions is closed by endwall calorimeter.

Both central and plug calorimeters consist of two sections: Electromagnetic (EM) and

Hadronic (HAD), while the endwall calorimeter has only hadronic section. The EM

section is located on the inner side of the calorimeter, closer to the global detector

center, and HAD section is placed further in radial direction. Such placement is con-

ditioned by the different penetration lengths for the electrons/photons and hadrons.

The high energy electrons lose their energy through the bremsstrahlung processes or

photon radiation, whereas the photons’ primary source of energy loss is the production

of electon-positron pairs. In either case the showers are produced via electromagnetic

processes. In case of hadrons their interaction with matter is more complicated, since

they can undergo electroweak and strong interactions with the latter prevailing. The

hadrons at CDF lose their energy mostly through inelastic collisions with the nuclei

of the absorbing medium. The cross section of nuclear interactions is smaller than

electromagnetic, therefore hadrons travel greater distances before losing all of their

energy. It is convenient to define characteristic penetration depth for EM and HAD

segments independent of specific material they are made of. For electrons and photons

we define the radiation length X0 as the distance at which particle loses on average

1− e−1 of its energy. The nuclear interaction length λI is defined as a mean free path

a hadron can go before inelastic scattering happens.

The central calorimeters consist of 24 azimuthal wedges just like the one shown in

Figure 2.8. Each wedge covers an azimuthal angle of 15◦ and 250 cm along the beam
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Figure 2.8: Central calorimeter wedge with EM and HAD sections. 10 towers in
pseudorapidity are shown.

axis in both positive and negative directions. In radial direction the central electro-

magnetic calorimeter (CEM) section starts at 173 cm and is 35 cm thick, which cor-

responds to 18 radiation lengths. In the outer part of the wedge the central hadronic

calorimeter (CHA) is placed next to the CEM. Each wedge is divided along pseudo-

rapidity forming projective towers pointing back to the nominal interaction point. A

tower covers Δη = 0.11. The CEM calorimeter is made of 0.5 cm thick plastic scintilla-

tor plates interspersed with 0.32 cm thick lead layers as an absorber. Each scintillator

layer of each wedge is readout by two PMTs. The resolution on energy measurement

of a single electron or photon at normal incidence is σE

E
= 13.5%/

√
ET ⊕2%, with the

constant term added in quadrature. In the CHA calorimeter the scintillator layers

are 1 cm thick and the absorption layers made of steal are 2.5 cm thick. The wall

hadronic calorimeter (WHA) has similar to CHA active layers but the steal absorber
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(a) Cross section of an upper part of the plug calorimeter. (b) Tower segmenta-
tion.

Figure 2.9: Plug calorimeter illustration.

is even thicker (5 cm), which corresponds to the fact that the total energy deposited

in this calorimeter is on average a factor
√

2 larger than in the central one for the

particles with the same transverse energy. The width of CHA and WHA in terms of

λI and their resolutions are given in Table 2.3.

The plug calorimeter is divided into concentric η regions, which in turn segmented

in 24 for |η| < 2.11 or 12 for |η| < 2.11 projective towers (see Figure 2.9). The elec-

tromagnetic section of the plug calorimeter (PEM) consists of 23 absorber-scintillator

layers. A calcium-tin-lead alloy enclosed between steel plates serves as an absorber.

The plug hadronic calorimeter (PHA) follows the PEM section and is comprised of

23 unit layers of 5 cm iron and 0.6 cm scintillator. The thickness and the resolution

of the plug calorimeter sections is presented in Table 2.3.
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Table 2.3: Summary of the CDF calorimeter subsystem properties. The energy reso-
lution is given for a single incident electron/photon for EM section and pion for HAD
section. See text for radiation (X0) and interaction (λI) lengths.

Calorimeter Subsystem η coverage Depth Resolution σE

E

CEM |η| < 1.1 18X0 13.5%/
√

ET ⊕ 2%
PEM 1.1 < |η| < 3.6 21X0 16%/

√
ET ⊕ 1%

CHA |η| < 0.9 4.5λI 50%/
√

ET ⊕ 3%
WHA 0.7 < |η| < 1.3 4.5λI 50%/

√
ET ⊕ 3%

PHA 1.2 < |η| < 3.6 7λI 80%/
√

ET ⊕ 5%

A detailed description of EM and HAD calorimeters and changes related to Run II

upgrade can be found in [28, 29].

2.2.4 Muon System

The muons produced in pp̄ collisions and escaped the magnetic field do not interact

heavily with the calorimeters. At such high energies the muons undergo multiple

Coulomb scatterings in the calorimeter without developing a shower. The energy of a

muon must be higher by a factor of ∼
(

mμ

me

)2
, where me and mμ are the muon and the

electron masses respectively, for the radiation energy losses become dominant. The

detection of muons is performed with scintillator and proportional drift chambers

installed on the outermost part of the detector. The muon system is composed of

four subdetectors covering the following regions in pseudorapidity: The Central Muon

(CMU) and the Central Muon Upgrade (CMP) chambers cover the region where

|η| < 0.6, the Central Muon Extension (CMX) chambers cover the pseudorapidity in

the range of 0.6 < |η| < 1.0, and the Intermediate Muon (IMU) detector extend the

coverage further in the forward and backward regions for up to |η| ≈ 2. The muon

detectors do not provide full 2π coverage in φ. The CMU and CMP cover 84% and

63% of the solid angle respectively. Due to CMU and CMP overlap, 53% of the solid

angle is covered by both of them. The complete coverage in φ–η of muon system is

49



Chapter 2. Experimental Apparatus

- CMX - CMP - CMU

φ

η

0 1-1 ��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������

��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������
��������������������������������������

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������

���������������
���������������- IMU

0 1−1

Figure 2.10: Coverage map of four muon subsystems in φ–η plane.

shown in Figure 2.10.

The CMU detectors are located within the central calorimeter wedges, directly

behind the CHA at the radius of 347 cm (see Figure 2.8). The material in the return

yoke of magnet and in the calorimeter serve as an absorber for hadrons protecting

the muon detectors. The amount of the material from the detector’s center to the

CMU is equivalent to a 5.5 hadron interaction lengths, causing the muon rangeout

threshold to be about 1.4 GeV/c. Like CEM and CHA the CMU is spit into 24

azimuthal wedges but the instrumented part of the wedge is only 12.6◦ leaving 2.4◦

gaps between chambers. Each wedge contains three 4.2◦ towers with four radial layers

of four rectangular drift cells forming a CMU chamber. There is a sense wire at the

center of each drift cell running from one end-plate of the cell to the opposite one.

The length of the cells and the wires is 226 cm. The wires in the cells of the first

and the third layers lie in the plane passing through the z axis, while in the second

and fourth layers the wires are shifted by 2 mm with respect to center of the cells in
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order to provide unambiguous φ measurement of the muon track. Single hit position

can be measured with resolution of 250 μm in the r–φ plane and 1.2 mm in the r–z

plane. The z coordinate is determined by comparing the pulse heights at each end

of the sense wires. If the muon has hits on at least 3 of the 4 layers, a muon stub is

reconstructed.

The CMP chambers form a rectangular “box” around the central part of the

CDF. In order to further reduce the number of hadrons entering the CMP detector,

an additional layer of 60 cm of steel is placed in front of the CMP providing extra 2.3λI

and raising the muon momentum threshold to 2.2 GeV/c. The drift cells composing

the CMP are similar to the ones used in the CMU and they are also arranged in four

layers with alternate half-cell staggering. The inner and outer surfaces of the CMP is

lined with scintillator counters (CSP), which are used to provide timing information.

Because of the rectangular shape CMP pseudorapidity coverage varies as a function

of φ, nevertheless at some values of φ the CMP compensates for CMU gaps.

The muon coverage is extended by additional muon chambers composing the CMX

and IMU detectors. The CMX is comprised of two conical arches of drift tubes with

layers of scintillators (CSX) installed at each end of the central part of the detector.

No additional absorption material is added before CMX, since at these polar angles

(45◦–55◦) a particle will traverse through enough detector material. The IMU consists

of a barrel of drift chambers and scintillator counters placed on both sides of toroid

magnets. The IMU drift chambers, scintillators, and read out electronics are identical

to the ones used in CMU. The information from IMU is not used in this analysis

because there is no trigger associated with it.

More information about muon detectors can be found in [30, 31].
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2.2.5 Shower Detectors

The electromagnetic showers are very narrow in transverse direction. The Moliere

radius, within which approximately 90% of the total energy of a EM shower is de-

posited, has typical values of ∼ 2 cm in the central calorimeter. In order to enable a

precise measurement of the shower position, highly segmented detectors are embed-

ded in each tower of central (CES) and plug (PES) electromagnetic calorimeters [32].

These detectors are placed at a depth of about 6 radiation lengths from the front

face of the CEM and PEM detectors corresponding to the average shower (particle

multiplicity) maximum.

The CES detector consists of proportional strip and wire chambers providing the

position and transverse shape of the electromagnetic showers in both z and r–φ direc-

tions. The position resolution of CES measurements is 0.2 cm electrons with energy

of 50 GeV. The PES are made of 0.5 cm pitch scintillator strips and arranged in two

layers. The direction of strips in these layers are rotated at +22.5◦ and −22.5◦ with

respect to the radial direction, to provide a two dimensional position measurement.

The PES position resolution is about 0.1 cm.

There is also a set of multiwire proportional chambers in front of the CEM called

Central Preshower (CPR) chambers. These chambers detect electromagnetic showers

that begin in the solenoid magnet material, providing enhanced photon and soft

electron identification. There is no dedicated preshower detector in front of PEM,

instead the first scintillator layer of PEM is made thicker (1 cm) to yield more light

and is read out separately. This layer is called PPR and used to statistically separate

prompt γs from the two-photons coming from the decay of π0s.
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2.2.6 Event Triggers

The output signals produced by various subdetectors of CDF must be stored on

an event-by-event basis for later analysis. At typical instantaneous luminosities of

� 3 × 1031 cm−2s−1 it is expected to have 1.4 proton-antiproton interactions on

average per bunch crossing which occurs at rate of ∼ 2.5 MHz for 396 ns bunch

spacing. The time required to read out a single event from the entire detector is of

order of 2 ms which is about 5000 times larger than the time between two consecutive

bunch crossings. Another constraint on event acceptance rate comes from the speed at

which information can be recorded on a permanent storage device, which is currently

10–20 ms for a typical event size of 100–200 kB. Therefore, not all the events can be

recorded. However, most of the inelastic scattering events produced in pp̄ collisions

are the result of low-momentum transfer “minimum bias” events, with no significant

energy flow in the directions transverse to incoming partons. The rate of producing

the more interesting large momentum-transfer events probing short-distance physics

typically have cross sections at least of factor of 105 less than the minimum bias cross

section (∼ 60 mb). For example, tt̄ cross section is 9 orders of magnitude less than

minimum bias events cross section. At CDF the trigger system is designed to make an

efficient on-the-fly selection of events with interesting physics signatures and discard

those with low pT particles.

Before being written to tape the data from the detector passes three consecutive

levels of the CDF trigger system, the block diagram of which is shown in Figure 2.11a.

The more detailed block diagram showing the selection logic for the first two levels

is presented in Figure 2.11b. The Level-1 trigger has an acceptance rate of no more

than 50 kHz. The events satisfied the Level-1 requirements are more accurately

analysed by Level-2 trigger with 300 Hz acceptance rate. Finally, the Level-3 trigger

will decide whether to accept the events for offline storage at the maximum possible

writing speed of 75 Hz. Since Level-1 and Level-2 systems have to make fast decisions
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Figure 2.11: CDF data acquisition system and triggers in Run II.

on further event processing they are projected to use only part of the entire event

data. At Level-1 the decisions are made simply by counting the number of physics

objects. These systems equipped with a custom hardware to do a limited event

reconstruction, whereas Level-3 performs almost full event reconstruction using an

appropriate software running on computing farm.

As it shown in Figure 2.11b the inputs for Level-1 are the signals coming from

the calorimeters, the COT, and the muon detectors. Up to 42 events (at 132 ns

clock circle) can be stored in pipelined buffers where the data is stored for 5.5 μs

and analysed by the three parallel synchronous streams. The first stream collects the

information from the object and global calorimeter triggers. The object triggers fire

off when the transverse energy deposited in individual calorimeter towers is above

a certain threshold. The electron/photon trigger make decision based on the EM
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calorimeter energy, while jet trigger sets a threshold on the sum of EM and HAD

energies in a tower. The global trigger compares the total energy from all towers and

compares it to the reference value. All the thresholds and requirements on the number

of objects can be preset to a desired value in the hardware for each detector regions.

The second stream is responsible for finding stubs in the muon chambers. A novel

part of the Level-1 trigger upgrade in Run II is the installation of the Extremely

Fast Tracker (XFT, [33]) forming the third Level-1 trigger stream. The XFT is

able to reconstruct tracks in the transverse plane of the COT. Together with the

extrapolation unit (XTRP) the tracks can be matched to clusters in EM calorimeter

and muon chambers forming electron and muon primitives. The decisions from above

streams are treated with logical AND and OR gates and final decision is formed on

event acceptance at Level-1.

In case an event is accepted by Level-1 trigger all the information about this event

is passed into one of four asynchronous event buffers of the Level-2 trigger system.

In addition the information from shower maximum strip chambers (CES) and from

the r–φ strips of the SVX detector is transmitted to the Level-2 system. The Level-2

buffers are not able to accept more than four events passed the Level-1 requirements.

On average the time required to analyze an event from the buffer is 20 μs during

which the trigger incurs dead time. There are three hardware subsystems helping

to make the final decision at the Level-2: L2CAL, XSEC, and SVT. The L2CAL is

the cluster finder which combines the energies collected by individual towers. Thus

L2CAL provides an approximate measurement of jet ET and direction. The XSEC

system discriminates for a certain threshold on the signals from the strips of CES

detector. This information combined with tracks extrapolated by XTRP is used for

better track-to-cluster matching and therefore electron identification. The Silicon

Vertex Tracker (SVT) reconstructs tracks in silicon vertex detector and provides the

measurement of the track impact parameter. If all the triggers of Level-2 are satisfied

then the full detector readout is initiated.
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After Level-1 and Level-2 triggers have made their decisions the events are trans-

fered to the data acquisition system (DAQ) buffers. The system controlling the DAQ

buffers, called the Event Builder, orders event fragments and sends them to a farm

of conventional PCs serving as the Level-3 trigger. The event fragments are assem-

bled in a block of data, event record, suitable for analysis by CDF reconstruction

software. The reconstruction of an event takes advantage of the full detector infor-

mation and improved resolution not available at the lower trigger levels. If an event

satisfies Level-3 requirements, the corresponding event record is sent for storage on

tape. Each event is marked with a run number corresponding to a continuous period

of time for which the detector was taking data. During each run the configuration of

the detector including calibration constants is stable and later it can be retrieved for

each event.

More information on CDF trigger system can be found elsewhere [34].
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Event Reconstruction and

Selection

If an event satisfies the high-pt single e or μ triggers, the information from the detec-

tor is digitized and saved on permanently storage device, where it can be analyzed.

Before any physics analysis can be done on the data, the physics objects such as

jets, electrons, muons, and missing transverse energy must be made from the raw

data by a sequence of sophisticated pattern recognition and fitting algorithms called

reconstruction. In this Chapter we shall discuss the algorithms used to reconstruct

the high level objects and the selection requirements used to create the final data

set. The reconstruction can be divided into three general steps. First, the hits from

the various detector components are combined to form energy clusters and tracks.

Second, the cluster and tracking information is identified as a particle “candidate”

based on the particle’s signature in the detector as determined by a number of pat-

tern recognition variables. These variables may be used later in the event selection

to improve or “tighten” the particle identification. A first pass or “raw” energy and

momentum is calculated for each particle candidate. Finally, in the third step, the

raw energies and momenta are corrected to achieve the best estimate of the particle’s
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energy-momentum four-vector.

3.1 Jets Reconstruction

According to the parton model of hadron structure as developed by Bjorken and Feyn-

man (and later justified by the asymptotic freedom property of QCD), at high ener-

gies the colliding hadrons can be considered to be composed of free partons (quarks

and gluons), each carrying a certain momentum fraction of the parent hadron. The

partons undergo hard-scattering, and the total cross section is the incoherent sum

of the parton sub-process cross sections. Due to confinement the coloured partons

are transformed into colourless hadrons in the process called hadronization or frag-

mentation1. The typical scale for fragmentation is ∼ 300 MeV—harder for heavy

quark (b,c) fragmentation, which can be parameterized by, for example, the Peterson

function [35]. In the string fragmentation model the energy of interaction between

a scattered parton q and a parton in the hadron remnant q̄ increases as they move

apart. If the potential energy of such interaction is high enough a new pair of q′

and q̄′ quarks will be produced. These quarks along with the initial quarks form

colour-singlet states qq̄′ and q′q̄. The invariant mass of the colourless systems can be

still high enough to cause a new splitting followed by another formation of colorless

states. The chain of such interactions will continue until the potential energy between

the secondary partons will be enough to escape the coupling. As a result, a spray of

collimated hadrons is produced in the the direction of the fragmenting parton. The

final particles share the total energy of the shower-initiator, which, if deposited and

measured in the calorimeter, can be used to estimate the energy of the initial parton.

In the detector the jets of particles are recognized as clusters of energy deposited

1The fragmentation mechanism is not well understood yet from first principles. The
hadronization also assumes the subsequent decay of unstable particles produced during the
fragmentation.

58



Chapter 3. Event Reconstruction and Selection

in adjacent calorimeter towers. Since many jets can be produced in event, the jet clus-

tering algorithm— combining and rejecting certain towers—is required to reconstruct

the correct topology of the event. In this analysis we use the standard CDF cone al-

gorithm [36] for jet reconstruction. First, the seed towers with deposited transverse

energy higher than 1 GeV are chosen. Then, these towers are used as initial centroids

around which all the towers within a particular open angle ΔR =
√

Δφ2 + Δη2

grouped into a cluster. The towers belonging to the cluster and having transverse

energy above 100 MeV are used to calculate a new ET -weighted centroid:

φcentroid =

∑
i⊂ΔR ET,iφi∑
i⊂ΔR ET,i

, (3.1)

ηcentroid =

∑
i⊂ΔR ET,iηi∑
i⊂ΔR ET,i

, (3.2)

where angular coordinates (φi, ηi) define the direction to the center of ith calorimeter

tower with transverse energy deposited in the tower ET,i. The sum in Equations 3.1

and 3.2 is taken over all towers with centers inside the cone with ΔR = 0.4. The new

cone is drawn around the recalculated centroid and a new iteration is performed. The

whole process is repeated until there is no change in the centroid’s angular coordinates.

In the case if two clusters are overlapping, they may be combined or left intact. The

former happens if the energy in the common towers is equal or greater than 75% of

the total energy in the smaller cluster, otherwise, the overlap towers are assigned to

the cluster with the nearest centroid. In either case, the new centroids have to be

recalculated.

Once all stable cones are identified, the following sums over the towers inside each

cluster are used to calculate the raw four-momentum of the jets:

praw
jet ≡ (E; px, py, pz)

=

(∑
i⊂ΔR

Ei;
∑

i⊂ΔR

Ei sin Θi cos φi,
∑

i⊂ΔR

Ei sin Θi sin φi,
∑

i⊂ΔR

Ei cos Θi

)
, (3.3)
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where Ei is the energy deposited in the ith tower and Θi and φi are the polar and

azimuthal angles defining the direction to the center of this tower.

It must be noted that the cone algorithm described above showed a satisfactory

performance in the Monte Carlo studies [37], although it suffers from a few drawbacks.

Two “real” jets can be mistakenly merged into one cluster if the soft emission between

them is above the seed threshold. On the contrary, the jets may not be reconstructed

at all if their energy is evenly distributed among several towers where deposited ET

is less than the seed threshold. Thus, the number of reconstructed jets depends on

empirically determined parameters such as jet cone size and seed threshold.

Before the raw energy of a jet cluster can be associated with the energy of a parton

produced during the hard scattering, it must be corrected. Corrections take care of

differences occurring on average between the measured energy in the calorimeters

and the actual energy of the initial parton. The differences can occur either due

to detector’s imperfections or due to physics effects. Examples of the first kind are

the cracks between towers and calorimeter response as a function of rapidity. The

physical reasons can be related to multiple interactions and particles depositing their

energy outside the cone. Seven additive and multiplicative corrections are applied to

the raw energy in the following way:

ET =
(
Eraw

T × frel × ftime × fscale − EMI
T

)× fabs − EUE
T + EOOC

T . (3.4)

The description of each factor is presented below.

• The relative correction (frel) is responsible for adjusting the responses from

the calorimeter towers at different pseudorapidities making them uniform func-

tion of η. The scale factor is determined from the disagreement in transverse

energy balance in dijet events where one jet is measured in well-calibrated

central region far from the detector cracks and the other is lying outside the

0.2 < |η| < 0.6 region.
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• The time-dependent correction (ftime) is responsible for justifying calorime-

ters responses due to their deterioration in time, e.g. due to scintillator aging.

• The scale correction (fscale) accounts for the differences in Run I and Run II

jet energy measurements,which are due to the fact that there is less inactive

material in the crack regions. The photon energy deposited in the electromag-

netic calorimeter can be measured with high precision, and the scale factor is

determined from the photon-jet balancing:

fscale =
1 + 〈fRun I〉
1 + 〈fRun II〉 , (3.5)

where fRun I,II =
P jet

T −P γ
T

P γ
T

.

• The correction for multiple interactions (EMI
T ) is required if more than

one interaction happens per bunch crossing. The tt̄ events can have extra,

overlapping minimum bias events, the Poisson probability of which increases

with instantaneous luminosity. The energy from these events may fall into the

jet clustering cone and must be subtracted from the raw value. The number

of additional reconstructed vertices is used as measure for the number of soft

pp̄ scatterings. The additional energy per interaction EMI
T in the jet cone of a

given size ΔR = 0.4 is estimated by measuring transverse energy of a random

cone as a function of reconstructed primary vertices in minimum bias events.

• The absolute energy correction (fabs) scales the measured jet energy to

match the energy of the original parton as it defined by Monte Carlo simulation.

The true parton energy is usually underestimated because of nuclear absorption,

energy loss in un-instrumented calorimeter regions, and non-linear response to

neutral and charged pions. The multiplicative factor fabs is determined from

the detector simulation by comparing the sum of PT ’s of the particles within the

cone of same size around the parton direction which matched the jet direction
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with ΔR < 0.4:

fabs =

〈 ∑
i⊂ΔR

PMC particle
T,i

Ejet
T

〉
. (3.6)

• The underlying event correction (EUE) is defined by activities that are

not directly related to the physical process of interest. The sources of such

parasitic activities include the interactions, also referred as underlying events, of

spectator partons and proton-antiproton remnants. Due to this effect, an extra

small amount of energy produced in underlying events needs to be subtracted

from each reconstructed jet. The value of EUE is measured from the minimum

bias data requiring events with only one vertex.

• The out-of-cone correction (EOOC) is conditioned by the fact that not all

particles produced by the initial parton lie inside the jet cone. The usual cause

of such energy leakage is the soft gluons radiation. In order to account for

the escaped particles, the certain amount of energy needs to be added to the

energy of the jet cluster. An exact value of EOOC is determined from the Monte

Carlo simulation by calculating the difference in the actual parton transverse

momentum and the sum of transverse momenta of all daughter particles lying

inside the jet cone:

EOOC =

〈
P parton

T −
∑

i⊂ΔR

PMC particle
T,i

〉
. (3.7)

The application of the corrections to the raw jet energy helps to estimate the true

energy of the parton as accurate as possible. The total systematic uncertainty on

the jet ET is determined from the individual uncertainties assigned to each correction

level. The overall uncertainty depends on jet ET value and varies from 5% to 12%.

The central jets are measured slightly better than the jets in the plug region.

Before applying the final physical cuts we correct the jet energy by applying the

relative frel, time-dependent ftime, scale fscale, and multiple interaction EMI
T correc-
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tions. Other corrections are applied in the analyses, where the full energy of initial

partons is required, for example, in a top quark mass reconstruction. In our case, we

measure signal rates by comparing data to MC simulation. We consider only those

jets that satisfy the physical cuts listed in Table 3.1.

Table 3.1: Summary on jet identification cuts. To be accepted a jet must satisfy the
listed requirements.

Variable Selection Requirement
ET ≥ 15 GeV
|η| ≤ 2

3.2 Lepton Identification

The lepton identification is crucial for this analysis. One or both of the W bosons

produced in tt̄ events decay leptonically producing—with the equal probability—a

highly energetic e±, μ±, or τ±. Unlike electrons, muons and taus are unstable particles

with an average lifetimes τ ≈ 2.2×10−6 and τ ≈ 291×10−15 seconds respectively. The

relativistic muons generated in signal events pass through the detector undecayed due

to their relatively long lifetime. In contrast, the taus have much shorter lifetime and

decay soon after they were produced. With almost 40%-probability the product of

tau decay will include a lighter lepton (e± or μ±) and two neutrinos. Events with such

signature will be classified as signal and contribute to the lepton-plus-jets channel.

However, in about 60% of the time the taus will decay hadronically producing particle

jets. The identification of tau-jets is possible, although not trivial. In this study we

will constrain ourselves to those events where one energetic isolated electron or muon

is observed. In the following subsections we present the identification cuts accepted

by the CDF Top Group, other groups may use different definitions [38, 39].
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3.2.1 Electron

The electron is the lightest electrically-charged lepton. Electron showers differ from

the hadronic showers in jets by its length, shape, and number of tracks. Unlike

hadronic jets, electron jets can be identified by the substantial amount of energy de-

posited in electromagnetic calorimeter and a high-PT track reconstructed in the drift

chamber. Typically, electron jets deposit most of their energy in a single calorimeter

tower, while parton jets are much broader and continue into hadronic calorimeter tow-

ers. The shape and position of electromagnetic shower is measured to high precision

by shower maximum detectors. This information is also used in electron identification.

Only electrons detected in the central calorimeter (CEM, |η| < 1.1) are considered

for this analysis. The full list of all variables and requirements on their values is

presented in Table 3.2 followed by detailed explanations.

Table 3.2: Summary of central electron identification cuts. To be accepted an electron
must satisfy the listed requirements.

Variable Selection Requirement
ET ≥ 20 GeV
pT ≥ 10 GeV/c

E/p (if pT ≤ 50 GeV/c) ≤ 2
EHad/EEM ≤ 0.055 + 0.00045E

|Lshr| < 0.2
|Δz| ≤ 3.0 cm

Q · Δx ≤ 1.5 and ≥ −3.0 cm
χ2

strip < 10
|z0| ≤ 60 cm

number of axial segments ≥ 3
number of stereo segments ≥ 3

Isolation ≤ 0.1
Conversion check ΔΛ > 0.04 and Δr > 0.2 cm

Fiduciality required
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ET ≡ E sin Θ ≥ 20 GeV The transverse energy of EM cluster ET is defined as a

product of total energy deposited in the EM cluster and sin Θ, where Θ is the angle of

a COT track pointing to that cluster. Usually, EM cluster has only one seed tower in

longitudinal and azimuth directions. In order to reject most of the background events,

where electron is not produced from W , we select events only with high values of ET .

pT ≥ 10 GeV/c An electron in magnetic field moves along a helix whose curvature

measures the electron’s transverse momentum pT . The COT’s response to electrons

and positrons has been found to be slightly different, and the curvature of charged

tracks is corrected by a small additive term:

Q

pT
=

Q

praw
T

− 0.00037 − 0.0011 × sin(φ + 0.28), (3.8)

where Q is the charge of particle and φ is track’s azimuthal angle.

E/p ≤ 2 The absolute value of electron’s momentum as measured by COT track

is required to be no less than 50% of the full E measured in EM calorimeter. This

requirement is due to external bremsstrahlung in the material preceding the EM

calorimeter. An electron loses a portion of its energy by emitting a photon while

passing through the material at the inner COT radius. For electrons with pT >

50 GeV/c the radiated photon will almost certainly be collinear with the electron

and contribute to the same calorimetric energy. For less energetic electrons, the

photon can end up in an adjacent EM tower. For the above reasons we use EM

energy for the electron’s four-momentum calculation.

EHad/EEM ≤ 0.055 + 0.00045E In order to avoid misidentification of hadronic

jet as an electron one, the fraction of energy EHad deposited in hadronic calorimeter is

required to be a small fraction of energy EEM deposited in electromagnetic calorimeter.

65



Chapter 3. Event Reconstruction and Selection

The last term compensates for leakage at high energies into the hadronic part of the

calorimeter.

Lshr < 0.2 The energy of the shower deposited in towers adjacent to the seed tower

is expected to match the data from test beam electrons. This lateral shower profile

is characterized by the variable Lshr calculated from the measured energy Emeas in

adjacent towers and the expected energy Eexp:

Lshr = 0.14
∑

towers

Emeas
i − Eexp

i√
(0.14

√
E)2 + (ΔEexp)2

, (3.9)

where 0.14
√

E and ΔEexp are the uncertainties on the measured and expected ener-

gies. Typically, the sum is taken over two nearby towers in a cluster.

|Δz| < 3.0 cm, −3.0 ≤ Q · Δx ≤ 1.5 cm Using CES detector, the shower is

reconstructed as clusters in x and z projections corresponding to “strip” (r–z) and

“wire” (r–φ) views. The electron identification algorithm is searching for the best

COT track matching the CES clusters within ranges given by above Q · Δx and Δz

cuts, where Q is ±1 for e±. The former cut is asymmetric in order to account for an

offset between the track and the CES cluster due to bremsstrahlung from the electron

or positron. These proposed requirements are efficient in rejecting electron candidates

faked by simultaneous penetration of π0 and π± into the same tower.

χ2
strip < 10 This quantity compares the CES shower profile in r–z view to the profile

measured with test beam electrons. The χ2-fit is performed on the distribution of

energy deposited on each of the 11 strips in the CES shower. The purpose of this

requirement is similar to the previous cut, providing discrimination between electrons

and the wider clusters from fully or partially merged showers from π0 decays.
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|z0| ≤ 60 cm The distance along beam direction between the nominal interaction

point z = 0 and the point where the reconstructed track intersects the beam axis. In

order to be well reconstructed, the events are required to be near the center of the

detector. The distribution of event vertices in z due to the long beam bunch size is

well described by a Gaussian distribution with σ = 26 cm.

Number of axial and stereo segments ≥ 3 each In order to ensure a good

quality of the track associated with an electron candidate, it is required to pass

through at least three axial and three stereo superlayers of the COT.

Isolation ≤ 0.1 This variable defines how much energy is left by other particles

outside the EM cluster lying inside the cone ΔR ≤ 0.4 and it is given by

Isolation ≡ Eiso
T

EEM cluster
T

=
Econe

T − EEM cluster
T

EEM cluster
T

, (3.10)

where Econe
T and EEM cluster

T are the transverse energies corresponding to the cone and

EM cluster. This isolation variable is then corrected for two effects [40]: The leakage

of energy into the neighbouring φ wedge, Eleak
T , and the extra energy in the cone from

an underlying events EUE
T . Thus,

Ecorrected iso
T = Eiso

T + Eleak
T − EUE

T . (3.11)

The first correction was determined from Monte Carlo studies and parametrized as a

function of x coordinate in CES:

Eleak
T = EEM cluster

T · p0 · exp p1 · (|xCES| − 21), (3.12)

where p0 = 0.0511±0.0075 and p1 = 0.33±0.061. The second correction is determined

similarly to hadronic jet energy correction described in Section 3.1. In fact, the

Isolation is not an electron identification cut but rather a discriminator between non-

isolated electrons produced in semi-leptonic decays inside hadronic jets and isolated
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electrons coming from W and Z boson decays. This cut has been applied in the final

data set selection, unless otherwise stated.

Conversion removal: ΔΛ > 0.04 and Δr > 0.2 cm Non-prompt electrons

can be produced as a result of photons converting into electron-positron pairs in the

detector material. These electrons are identified matching the electron track to an

oppositely charged track that reconstructs a conversion point with the electron. At

this point, the two helicies are tangent, as determined by a near-zero separation of

the track circles in the r–φ plane, Δr < 2 mm, and a near-zero difference in polar

angles ΔΛ ≡ Δ cotΘ ≤ 0.04. If the high-pT electron is identified as conversion, the

whole event is rejected.

Fiduciality The electrons are required to be in the fiducial (well instrumented)

regions of the detector. The following regions are non-fiducial and excluded:

• 0.77 < η < 1.0 and 75◦ < φ < 90◦ The chimney with supporting cables

and cryogenic suppliers.

• 1.05 < |η| < 1.10 The region with small depth of the EM calorimeter.

• |zCES| < 9 cm and |zCES| > 230 cm The parts of CES detector at the inner

and outer edges of the central EM calorimeter.

3.2.2 Muon

The muons produced in tt̄ processes are highly relativistic and, therefore, traverse

the detector undecayed. In the detector the muons are identified as a near-minimum

ionizing charged track matched to a muon stub. The reconstructed muons are identi-

fied according to where the muons stubs are located, and are called CMU, CMP, and
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CMX accordingly. Muons with both CMU and CMP stubs are called CMUP muons.

In this analysis we use CMUP and CMX muons.

The full list of the muon identification variables and requirements on their values

is presented in Table 3.3 followed by detailed explanations.

Table 3.3: Summary of CMU, CMP, and CMX muon identification cuts. To be
accepted a muon must satisfy the listed requirements.

Variable Selection Requirement
pT ≥ 20 GeV/c

EEM ≤ max(2, 2 + 0.0115 · (p − 100)) GeV
EHad ≤ max(6, 6 + 0.0280 · (p − 100)) GeV

|Δx|CMU ≤ 3 cm
|Δx|CMP ≤ 5 cm
|Δx|CMX ≤ 6 cm

ρ(η, z0)CMX ≥ 140 cm
|z0| ≤ 60 cm
d0 ≥ 0.02 (≥ 0.2) cm with (without) SVX

number of axial segments ≥ 3
number of stereo segments ≥ 3

Isolation ≤ 0.1
Non-cosmic required

pT ≥ 20 GeV/c The transverse momentum of a muon is measured in the same way

as of electron. The curvature correction is also applied for positively and negatively

charged tracks.

EEM ≤ max(2, 2+0.0115·(p−100)) GeV This construction means that muons

with momentum p less than 100 GeV/c are not expected to deposit energy more that

2 GeV in electromagnetic calorimeter. For muons with p < 100 GeV/c the cut is

corrected in order to make it more efficient.
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EHad ≤ max(6, 6+ 0.0280 · (p − 100)) GeV This is similar to the EEM require-

ment, but for energy deposited by the muon in hadronic calorimeter EHad.

|Δx|CMU ≤ 3 cm, |Δx|CMP ≤ 5 cm, |Δx|CMX ≤ 6 cm These constraints

are imposed on the distance in r–φ plane between the muon track extrapolated in

the relevant detector chambers and the muon stub segment. The CMU and CMP

type cuts are related to all muons having hits in either CMU, CMP, or both detector

chambers. The CMP and CMX cuts are looser than for CMU because of additional

multi-coulomb scatterings in the material and the deflection angle is projected over

a longer distance to the chamber surface.

ρ(η, z0)CMX ≥ 140 cm The level 1 CMX18 trigger requires that a track has hits

in all 4 axial superlayers of the COT. However, if track has η close to 1 and |z0|
far from COT center, the high-pT muon will not traverse these layers. In order to

ensure that the track has a minimum number of hits, the cut on COT exit radius ρ

is imposed only for CMX muons. The ρ is defined as

ρ(η, z0) =
sign(η) · zCOT − z0

cot Θ
, (3.13)

where η and z0 are the pseudorapidity and z coordinate of the event vertex, zCOT =

155 cm is the length of the COT, and Θ is the polar angle.

|z0| ≤ 60 cm As for electrons the z coordinate of the event vertex, as reconstructed

from the muon track, must lie within 60 centimeters of the detector’s geometric center.

d0 ≥ 0.02 (0.2) cm with (without) SVX The impact parameter d0 is the

distance between the reconstructed muon track and the beam axis in the r–φ plane.

This requirement selects muons from the primary vertex, removing cosmic muons and

muons from kaon and pion decays.
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Number of axial and stereo segments ≥ 3 each This is identical to the same

requirement on the quality of electron track reconstructed in the COT.

Isolation ≤ 0.1 Again, this is similar to the electron isolation cut: The extra

energy inside the cone with ΔR = 0.4 is required to be less than 10% of the calorimeter

tower associated with the lepton.

Cosmic ray removal Usually, muons in cosmic showers are produced in μ+μ− pairs

with a very high energy. If passed through the detector’s tracking system such pairs

are recognized as nearly straight tracks. In that case, the cut on impact parameter d0

is proven to be very efficient. Cosmic muons can pass through the calorimeter towers

only. To identify such muons the time delay between hits in two adjacent towers is

measured by the Time of Flight detector (TOF). If muon is identified as cosmic then

the whole event is rejected.

3.3 Missing Energy

Neutrinos are electrically-neutral leptons participating only in weak interactions with

other particles. Thus the presence of the neutrino in an event can only be indirectly

deduced from momentum conservation. Since only the total transverse momentum

is detected in the pp̄ collision, only the transverse momentum of the neutrino can

be measured. The initial transverse momentum of the system of interacting partons

is negligible and so must be the vector sum of all final particles momenta projected

on the transverse plane. If the latter is not consistent with zero, the missing trans-

verse energy ( /ET ) is introduced to restore the balance in accordance with the total

momentum conservation law:

�/ET = −
∑

i

�PT,i. (3.14)
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Since the CDF is sealed around the z axis the sum on the right sum in Equation 3.14

can be calculated over all detected particles, and thus the missing transverse energy

can be associated with the neutrino’s transverse momentum. Unlike the transverse

momentum we cannot make any assumptions about the initial longitudinal compo-

nents of the interacting partons. Moreover, many particles with very high pseudora-

pidity are not detected and, therefore, neutrino’s z-component cannot be measured.

The raw value of �/ET is estimated very fast at the trigger level by summing the

transverse energies of all calorimeter towers:

�/Eraw
T = −

∑
i

(Ei sin Θi)�ni ≡ −
∑

i

ET,i�ni, (3.15)

where Ei is the energy deposited in the ith tower, Θi is the polar angle of the vector

pointing from the event vertex to the center of the ith tower, and �ni is the component

of that vector lying in the plane perpendicular to the beam direction. If the azimuthal

angle of �/Eraw
T is φ/ET

then the x and y components are given by

/E
raw
x = /E

raw
T · cos φ/ET

and /E
raw
y = /E

raw
T · sin φ/ET

. (3.16)

All towers with pseudorapidity |ηi| < 3.6 and deposited energy Ei > 100 MeV are

taken into account in Equation 3.15.

Before missing energy can be linked to neutrino’s momentum, its raw value /E
raw
T

should be corrected for mismeasurements due to the detector imperfections. In the

definition of the �/Eraw
T , given by Equation 3.15, the right part initially contains the

information used in determination of uncorrected jet energies and unclustered energy

outside the reconstructed jets:

�/Eraw
T = −

(∑
i⊂jets

ET,i�ni +
∑
i�⊂jets

ET,i�ni

)
= −

Njets∑
j=1

�Euncorr
T,j + �Eunclust

T . (3.17)

From where it follows that, once the jets energies are corrected, the missing transverse

energy has to be recalculated by substituting uncorrected jet energies �Euncorr
T,j with the
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corrected ones �Ecorr
T,j , i.e. in the vector notation we add the former and subtracting

the latter.

Another correction of �/Eraw
T is necessary in order to resolve the possible difference in

muons energies measured by calorimeters and COT. Typically a muon will not deposit

all of its energy in the calorimeter, therefore, its momentum has to be determined

from the track curvature measured in COT. In the case of an energetic isolated muon

coming from the primary vertex, we have to add the muon �PT with a negative sign

and subtract the calorimeter energy �ET deposited by the muon since it was already

counted in �/Eraw
T .

Finally, the correction of the raw transverse missing energy can be written as

�/ET = �/Eraw
T −
⎛⎝Njets∑

j=1

�Ecorr
T,j −

Njets∑
j=1

�Euncorr
T,j

⎞⎠−
(

Nmuons∑
μ=1

�PT,μ −
Nmuons∑

μ=1

�ET,μ

)
. (3.18)

The uncertainty on missing transverse energy primarily comes from the uncertainties

on jet energy and muon momentum measurements.

3.4 Secondary Vertex Tagging

The identification of jets originating from b quarks is called b-tagging. Tagging is

very important for background reduction in top analyses, because most of the tt̄

backgrounds do not contain heavy quarks. Moreover, in this analysis we measure the

rate of top decay to a Wb final state. Therefore, tagging is an essential part of this

analysis.

There are several methods available to tag the b-jets. The most powerful tech-

niques are secondary vertex (SecVtx) and soft lepton (SLT) tagging. The first method

is based on measurable distance traveled by highly relativistic B-mesons before they

decay (several millimeters) which can be measured by the silicon vertex detector. A
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secondary vertex can be reconstructed from the charged decay products. The second

method identifies the low pT (soft) leptons from semileptonic B-hadron decays, oc-

curring with approximately 10% probability. In this measurement we use the higher

efficiency SecVtx algorithm to identify b-jets.

The SecVtx algorithm was used in Run I to discover the top quark. In Run II the

algorithm is essentially the same as it was implemented and used in Run I measure-

ments [41]. The description of this method is given below.

The procedure starts with the reconstruction of the primary vertex on event-by-

event basis. All well-measured tracks in the event are fitted to a common point of

origin. The situation when several collisions occur per one bunch crossing is typical

for high luminosities. The fitter is designed to find several primary vertices, if they are

separated in the z coordinate. In the data used in this analysis, the average number

of reconstructed vertices per event is 1.4. We proceed by considering only the primary

vertex closest to the track associated with the high-pT lepton. The precise location

of that primary vertex (xpv, ypv, zpv) is determined by refitting the tracks in ±1 cm

window around first iteration vertex. Only tracks consistent with the primary vertex

are used in the fit by requiring an impact parameter significance |d0/σd0 | < 3, where

the impact parameter (d0) is the distance of closest approach of the track to the

beamline, and the error (σd0) includes both the uncertainties of on the track and the

beamline.

Once the primary vertex is found, the search for secondary vertex is performed

on a per-jet basis. The algorithm considers all the jets with at least two good tracks

inside a given jet cone. A track is regarded as good if it satisfies a set of requirements

on a number of hits in silicon and COT detectors, the quality of the track fit, and

transverse momentum value. A jet is referred as “taggable” if it has at least two good

tracks. The SecVtx algorithm first tries to find at least three tracks with |d0/σd0 | > 2.5

including two tracks having pT > 0.5 GeV and one track having pT > 1.0 GeV. If
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Figure 3.1: These pictures illustrate the reconstruction of a secondary vertex inside
a b-jet.

this fails, then an attempt is made to find two tracks with g |d0/σd0 | > 3.0, one with

pT > 1.0 GeV and the other with pT > 1.5 GeV. The selected tracks are fitted to a

point of relative closest approach, determining the location of the secondary vertex

(xsv, ysv, zsv). Knowing the coordinates of both primary and secondary vertices one

can calculate the two-dimensional decay length L2D as shown in Figure 3.1. The

transverse component in xy plane of the vector pointing from the primary to the

secondary vertex is projected onto the jet axis giving the decay length L2D. If the

absolute value of angle φ is less than 90◦ then L2D is said to be positive, otherwise,

the L2D is negative. It is expected that secondary vertices from the decay of b and

c hadrons will have larger positive values of L2D than that from occasionally mis-

measured tracks. The jet is positively tagged if L2D/σL2D
> 3 and negatively tagged

if L2D/σL2D
< −3, where σL2D

is the total estimated uncertainty on L2D.

In this analysis we are heavily dependent on the knowledge of the tagging ef-

ficiency, i.e. the probability to positively tag a jet coming from a b quark. The

b-tagging efficiency is measured in data and Monte Carlo samples. A special data
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sample with low-pT non-isolated electrons is prepared. The electrons inside the jets

are believed to be a product of semileptonic decays of bottom and charm hadrons.

The fraction of each kind of heavy flavour events was estimated and a matching

MC sample was generated using the HERWIG package. In both samples the effi-

ciency to tag a heavy flavour jet was calculated in [23] yielding their averaged ratio

of εDATA

εMC
= 0.82 ± 0.06 (stat. + syst.). This ratio is called the tagging scale factor

(SF) and it is used to scale the tagging efficiencies in tt̄ Monte Carlo samples.

3.5 Event Selection

The data sample considered in this analysis was collected at CDF during Run II

period lasting from March 2002 to September 2003. The measured integrated lu-

minosity corresponding to this period and including only those runs where all the

detector parts except for the silicon detector functioned properly is 193.5±11.2 pb−1.

For the same period of time but with additional requirement on silicon detector per-

forming correctly, the integrated luminosity is measured to be 162.1± 9.4 pb−1. The

quoted uncertainties were studied by the CDF luminosity group ([42, 43]). There

are two sources contributing to the total 5.8% uncertainty. First one comes from the

measurement of average number of primary interactions using CLC detector, and its

value is 4.2%. The second contribution of 4.0% comes from the measurement of pp̄

inelastic cross section σpp̄ = 59.3 ± 2.4 mb [44].

After full event reconstruction, the particles are identified using the various cuts

considered in Sections 3.1 and 3.2. In order to select a signal-rich dataset we apply

further selection criteria on the number of reconstructed objects consistent with the

expected final signature of the signal events. All the selection requirements were

studied and optimized by the Top Group at CDF and used in the tt̄ cross section

measurement [45]. In lepton-plus-jets channel we select events with exactly one high-
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pT lepton and at least 4 hadronic jets (Table 3.4).

Table 3.4: List of global event cuts in lepton-plus-jets channel.

Variable Selection Requirement
/ET ≥ 20 GeV

number of leptons = 1
number of jets ≥ 4

In the remainder of the thesis we will refer to the selected inclusive data sample

selected without any b-tag requirement as pretag sample. The pretag sample is split

into three orthogonal subsamples according to the number of b-tags observed in an

event: the 0-tag subsample, the 1-tag subsample, and the 2-tag subsample which

includes events with two and more b-tags. In fact, we do not observe events with

more than 2 b-tags. The summary on total event yields are shown in Table 3.5 as a

function of different tag multiplicities.

Table 3.5: Number of total selected data events (pretag) and subsamples with different
tag multiplicities in 162.1 pb−1.

pretag 0-tag 1-tag 2-tag
107 79 23 5
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Artificial Neural Networks

The method used in this analysis is heavily based on the application of Artificial Neu-

ral Networks (ANN). This work would not be complete without a detailed description

of this technique. Many physics problems require us to establish a functional depen-

dency between two sets of measured or a priori known quantities. For example, in the

simplest case of two single variables the scientist would fit the data points in order

to get an analytical function. Unfortunately, the analytical solution is not always

possible or easy to find, especially if the problem is formulated in many dimensions.

The ANN technique provides a powerful method which, if used correctly, can help to

construct a computational solution to such problems. In this chapter we would like

to describe the fundamental features of the ANN algorithm. Then in Chapter 5.1 we

report in details how this method is applied to the top branching ratio calculation.

4.1 Introduction to Artificial Neural Networks

The computational scheme referred as the Artificial Neural Networks was inspired by

the work done in research fields studying the properties of the human brain. By the
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middle of the twentieth century it was well known that the brain consisted of a large

number of interconnecting cells called neurons. The way individual neuron functions

was qualitatively described by neuroscientists and in 1943 McCulloch and Pitts [46]

introduced an oversimplified model of a neuron as a threshold logic unit. Later,

in 1958, Rosenblatt explored [47] the properties of several reciprocally connected

threshold neurons forming a simple artificial network known as perceptron. Initially,

such configuration seemed to be a powerful tool being able to reproduce binary logical

operations such as AND, OR, and even exclusive OR (XOR), although the latter

required grouping neurons in more than 2 layers. However, the method used to adjust

the inner neuron parameters could not be applied effectively towards the solution of

many practical problems. Moreover, whenever this method worked it required too

large computational times on contemporary machines. These problems were pointed

out by Minsky and Papert in 1969 [48] and, as a result, the interest to ANN has faded

until 1980, when new algorithms were developed and the computer machinery was

improved significantly.

Since its rediscovery, the ANN technique was extensively used in many fields

including Statistical and High Energy Physics. Today the ANN has proven its ability

to solve many practical problems by providing successful classification models. In

order to understand the main idea behind the ANN technique it is advisable to

consider artificial neuron properties inherited from its biological prototype.

4.1.1 Biological Neuron and Its Mathematical Model

One should be very careful when discussing parallels between a real neuron and its

mathematical concept used in ANN theory. An analytical description of the biolog-

ical neuron is indeed meant to simulate its principal functionality, nevertheless, it

should be always kept in mind that a real neuron is much more complicated and still
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ambiguous object. Having said this, it is still worth noticing that systems based on

such oversimplified model preserve the main features of their complex originals.

The neuroscientists estimate the total number of nerve cells in the human brain

to be of the order of 1011, whereas, for instance, the nematode worm has only 302

neurons. The neurons are connected with each other in a complex way. They are

capable in exchanging tiny electrical (or chemical) signals with the neighbouring neu-

rons. A typical biological neuron is shown in Figure 4.1 [49]. It consists of the three

major parts called soma, dendrites, and axon, each having its own purpose:

Soma is the body of the neural cell. The vital functionality of the cell as a whole

depends on the soma.

Dendrites are the short tree-like extensions of the soma. The dendrites are respon-

sible for receiving signals from other neurons and transmitting them to the cell’s

body.

Axon is a much longer projection of the soma transmitting the signals away from

the cell’s body. Each neuron has only one axon, but this axon may branch into

many supplementary terminals connecting with other neuron’s dendrites.

Neurons can have thousands of dendrites making it possible for them to connect

with tens of thousands of other cells. The impulse traveling from one neuron to an-

other is bifurcated at the axon terminal joints affecting more than one other cell.

At the junctions between axon and dendrite tips, the signal propagates through the

special formations called synapses. From a simplified point of view, the synapses

act like signal modulators or resistors altering the strength of the signal. The modi-

fied signals from many cells propagate through the dendrites where their strength is

summed. If the amplitude of the arrived impulse is higher than a specific threshold

level (or activation time is long enough) then the neuron is able to fire its own signal
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Figure 4.1: Artistic interpretation of the biological neuron. The arrows show the
direction in which small electric impulses propagate through the neuron.

and send it to the axon. The generated signal affects other neurons in the similar

way.

Based on the biological neuron functionality described above, one can build its

mathematical model. In our model the neuron will have N number of inputs (den-

drites) and one output (axon). The sketch of a neuron is shown in Figure 4.2a. The

strength of the signal received by the ith input we denote as xi. For simplicity we
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Figure 4.2: Graphical representation of the mathematical model of a neuron (a) and
a simple artificial neural network with N inputs, H hidden units, and one output (b).
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assume that the input signals are linearly scaled by some weight wi (synapse), so that

the neuron receives a set of modified signals (w1x1, w2x2, . . . , wNxN ). In addition

to N neuron inputs we present a so-called bias or threshold term wb which can be

regarded as an extra input with a constant unit signal xN+1 = 1. The meaning of the

bias term will be cleared out later. The weighted input signals are summed within

the neuron:

X = w1x1 + w2x2 + . . . + wNxN + wb, (4.1)

and then some fixed function y(·) takes the sum as an argument to form the output

of the neuron:

Y = y(X) = y(w1x1 + w2x2 + . . . + wNxN + wb). (4.2)

The function y(·) is called the neuron activation function (sometimes it is referred as

the transfer function). In its simplest form proposed by McCulloch and Pitts (1943)

it is defined as a step function with some threshold T :

Y =

⎧⎪⎪⎨⎪⎪⎩
1, if

(
N∑

i=1

wixi + wb

)
≥ T ,

0, if

(
N∑

i=1

wixi + wb

)
< T .

(4.3)

Many other activation functions were studied since then. The form of activation

function is important for it is responsible for the general ability of neural network to

solve the problem. Several questions related to the linearity of activation function

are considered in the next subsection. Another trivial case of a linear function is the

identity function when the input sum
∑N

i=1 wixi + wb remains unchanged. In this

analysis we studied the most commonly used of non-linear functions:

Sigmoid (logistic) function is defined as

y(X) = σ(X) ≡ 1

1 + e−X
. (4.4)

The sigmoid function is very popular among ANN users since it complies with all

the significant requirements peculiar to both biological prototype and numerical
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Figure 4.3: Some neuron activation functions.

computations. Unlike the step function sigmoid is differentiable, making it

easier to adapt small change in the input to an appropriate change in the output.

The confinement of this function is also advantageous for numerical calculations.

Hyperbolic tangent is given by

y(X) = tanh(X) ≡ eX − e−X

eX + e−X
. (4.5)

This function resembles all the features of the sigmoid function, except that it

can produce negative output values as well as positive ones.

Less common examples of activation functions are not considered here but include

arctan and Gaussian functions. The shapes of the different activation functions can be

compared in Figure 4.3. It will be shown that, from the theoretical point of view one

can always find an appropriate continuous function that can be used as an activation

function.

4.1.2 Artificial Neural Networks

Formally an Artificial Neural Network can be defined as a collection of neurons re-

ciprocally connected with each other in a certain way. As an example, let us consider

one of the most widely used ANN structures where the neurons are connected in a

way shown in Figure 4.2b. This ANN has a three-layer structure. The first, from the
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left, layer is called the input layer. The input signals are received by the input layer

and distributed farther among the neurons located in the next layer called the hidden

layer. The last layer where we typically read the output from the neural network is

called the output layer. Depending on the posed problem the number of hidden layers

and the number of neurons in the output layer can be more than one.

From a practical point of view, it rarely makes sense to assign different activa-

tion functions to individual neurons belonging to the same layer. Without a loos of

generality we will assume that the hidden and output neurons are characterized by

activation functions yh(·) and yo(·) respectively. Let us consider the ANN with only

one output, H hidden neurons, and N inputs. Thus, the number of inputs of each

neuron in hidden layer is N and the number of inputs of output neuron is H . We will

denote as (wj1, . . . , wjN , wjb) the weights of the jth hidden neuron and the weights

of output neuron as (v1, . . . , vH , vb). If the signals received by ANN are (x1, . . . , xN)

then according to Equation 4.2 one can write for the output of hidden neurons:

Yj = yh

(
N∑

i=1

wjixi + wjb

)
, (4.6)

and for the ANN output we obtain:

Y = yo

(
H∑

j=1

vjYj + vb

)
= yo

(
H∑

j=1

vj · yh

(
N∑

i=1

wjixi + wjb

)
+ vb

)
. (4.7)

The derived equation represents a multivariate function of N arguments with (N +

2)×H +1 unknown parameters: the neuron weights. Obviously, the output returned

by ANN will depend on input values as well as weights.

The first ANN with simple threshold neurons was constructed by Rosenblatt in

the late 1950’s. Rosenblatt’s ANN did not have a hidden layer and it was capable of

solving only problems with linearly separable patterns. This class of ANNs was called

perceptrons as they could recognize the images of letters. It was noticed later that by

introducing the hidden layer with extra neurons some non-linear problems could be
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solved. For example, the initially non-linear relation between inputs and outputs in

XOR problem can be represented by ANN inner structure in three dimensions where

the problem is linearly solvable. The perceptrons with one and more hidden layers

are called multilayer perceptrons (MLP).

Depending on the problem addressed, the ANN function can be applied for solv-

ing, among others, classification problems. Usually the problem has to be given

numerically by a set of known input variables and matching outputs. By modifying

the weights, the ANN function is required to reproduce the desired output with a

tolerant precision for given inputs. The procedure of adjusting the weights is referred

to as training and the ANN is said to learn the training sets. After successful train-

ing, one can present input data alone to the ANN and the ANN will compute an

output that approximates the desired outputs as learned by training. In classification

problems the desired outputs are usually discrete with values corresponding to two

or more different input classes. The ANN function can be used to interpolate or

even extrapolate the data after it was used to fit the training data. From a slightly

different perspective, the trained ANN can be viewed as a memory device where the

information about the training patterns is memorized among all the weights. Such

outlook is very much favoured by cognitive scientists, who believe that a large degree

of parallelism and redundancy in connections among the neurons in the brain are

used to store memory. The practical side of the ANN method will be considered in

details in Section 4.2. In this analysis we use ANN as a pattern classifier.

There is an important question that remains unanswered: Can one be sure that

MLP will approximate any complex enough function? Amazingly, the very same

question but in more strict mathematical wording was asked by David Hilbert, the

father of functional analysis, almost 90 years before the world learned about MLP.
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4.1.3 Thirteenth Hilbert’s Problem

In order to understand the concepts of ANN more deeply we should consider the

following mathematical formulae. In 1900 on the International Congress of Math-

ematicians at Paris the great German mathematician David Hilbert formulated 23

unsolved problems [50] which he claimed to be the most important at that time.

Although not all of the ”Hilbert problems” are solved, their influence on the devel-

opment of mathematics during the twentieth century was significant. During the

last decades the theory of neural networks was evolving rapidly, and it became clear

that one of the Hilbert’s problems had a strong connection with this technique. In

his 13th problem Hilbert questions: “Is there an analytical function of three argu-

ments x, y, z which cannot be obtained by a finite chain of functions of only two

arguments?” In this statement the finite chain of functions implies the finite num-

ber of insertions of functions, i.e. function f(x, y, z) = xy + xz can be written as

f(x, y, z) = g(h(x, y), h(x, z)), where g(a, b) = a + b and h(a, b) = ab.

The 13th Hilbert problem was solved by Vladimir Arnold in 1957 [51], when he

was a student at the mathematical department of Moscow State University. He

showed that any continuous function of three variables can be represented in terms

of continuous functions of only two arguments. Shortly after this work the soviet

mathematician Andrey Kolmogorov proved a much stronger theorem [52, 53]. Due

to the importance of this theorem for the ANN theory we will formulate it here in its

original form.

Kolmogorov theorem: For every integer dimension N � 2, there exist continuous

real functions hij(x) defined on the initial interval U = [0, 1], such that, for every

continuous real function f(x1, . . . , xN ) defined on the N -dimensional unit hypercube
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UN , there exist real continuous functions gi(x) such that

f(x1, . . . , xN ) =
2N+1∑
i=1

gi

{
N∑

j=1

hij(xj)

}
. (4.8)

Unfortunately, Kolmogorov theorem is not much of a practical use because it does

not provide any clue about neither the specific form of h and g functions nor how

to choose them. Nevertheless, this theorem shows in principle that any continuous

function of several variables can be represented by a superposition of some other

continuous functions of only one variable. One can note that Equation 4.8 has the

same structure as the expression for the MLP output in Equation 4.7. In order to

get more practical conclusions for ANN theory, it is possible to relax some of the

requirements in the Kolmogorov theorem. For example, the function f(x1, . . . , xN)

does not need to be expressed exactly as in Equation 4.8 but rather be approximated

with an expression of similar form as the right part of Equation 4.8. Also, the upper

limit of the first sum (2N + 1) can be independent of N , i.e. we can increase or

decrease the number of neurons in the hidden layer if necessary. This said, in 1989

several authors independently formulated [54, 55, 56] a new version of the Kolmogorov

theorem specifically suited for ANN applications. Here we provide the formulation of

the theorem as it appears in one of the articles.

Universal approximation theorem: For every continuous real function

f(x1, . . . , xN ) of N variables and any arbitrary small number ε > 0, there exist an

integer number H and sets of real numbers wji, wjb and vj, vb, such that

|f(x1, . . . , xN) − Y (x1, . . . , xN)| < ε (4.9)

everywhere on f(x1, . . . , xN) definition interval, and Y (x1, . . . , xN) is given by

Y (x1, . . . , xN) =

H∑
j=1

vj · σ
(

N∑
i=1

wjixi + wjb

)
+ vb, (4.10)
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where σ is a sigmoid function.

An important conclusion can be made based on the above theorem and from

the comparison of Equations 4.7 and 4.10: a MLP with sigmoid and identity

activation functions in the hidden and output layers correspondingly can

reproduce any continuous function. In practice, other activation functions can

be used in order to achieve better approximation or faster training times. A particular

choice of activation functions can also depend on normalization of inputs or a desired

nonlinear transformation of the ANN output. In any case the functions with sigmoid-

like shapes provide better performance of a MLP (e.g. see [57]).

4.2 Practical Issues

In the previous section we presented the basic concepts of ANN technique mostly

from the theoretical point of view. A specific implementation of ANN heavily de-

pends on the particular problem in question and, therefore, theoretical derivations

can only serve as very general guidelines. In this section we will limit ourselves to

the consideration of some practical issues related to the solution of the classification

problem using MLP. In our analysis we prepare two classes of events: signal and

background. These events are described by several variables which are used as inputs

for the ANN. Each event is assigned a desired ANN output (target value): 0, if event

belongs to background class, and 1, if event belongs to signal class. The input variable

along with the corresponding targets form a itraining pattern. The set of all training

patterns is called the training sample.

The ANN we use is implemented as a set of software routines in a package called

Stuttgart Neural Network Simulator (SNNS, [58]). The SNNS is used by many sci-

entists in various disciplines and was proven to provide a flexible environment with

great functionality. The package also provides numerous features for ANN implemen-
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tation. The software code is written in standard ANSI-C and can be compiled as a

software library. In order to naturally integrate the SNNS functionality into the CDF

software environment we developed an interface coupling the SNNS and ROOT ([59])

libraries.

4.2.1 Training

In order for the ANN to solve the classification problem one needs to adjust the

weights so that the ANN output value is close enough to the desired one for a given

vector of inputs. Since the nominal target value is known a priori, the procedure of

adjustment of weights is called supervised learning. The most common supervised

learning algorithm used to train an MLP is based on backward propagation of errors

and referred to as backpropagation. The error of ANN represents a measure of the

discrepancy between the ANN output and the target value, and it is defined as1

Ei =
1

2
(ti − Yi)

2, (4.11)

where ti and Yi are the target and output values correspondingly for the ith training

pattern. As the algorithm’s name suggests, the error Ei propagates backwards from

the output layer to the input layer. First, the weights of output neuron are updated

towards Ei reduction, and then, based on those modified weights, the algorithm

calculates the correction factors for the weights in the previous layer, and so on until

the input layer is reached. The weight changes can be applied after each training

pattern is shown to the ANN or, alternatively, the weights can be updated after ANN

outputs are calculated for all the patterns in the training sample. In the latter case

the cumulative error function is used as a measure of current ANN performance:

E =

Ntrain∑
i

(ti − Yi)
2

Ntrain
, (4.12)

1Note that Equation 4.11 is written for a MLP with a single output, if a MLP has more
outputs the errors for different outputs are summed.
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where Ntrain is the number of training samples. The full cycle including cumulative

error calculation and update of the weights is called epoch. Obviously, the goal of

ANN training is to find such configuration of the weights that will make E as small

as possible. Usually several hundreds of epochs are needed to achieve stable values of

error function.

Technically speaking, the backpropagation is used to calculate the gradient of

the error of the network with respect to the network’s modifiable weights. If one

considers a unit j with weight wij on ith input, then according to the gradient descent

the weights should be updated by

Δwij = −η
∂E

∂wij

= −η
∂E

∂Σj

· ∂Σj

∂wij

= −ηδjxij , (4.13)

where Σj =
∑Ninputs

i wijxij is the weighted sum of all inputs to unit j, η is a constant

learning factor, δj is the difference between the real and teaching outputs of jth unit,

which specific form depends on whether unit j belongs to output of hidden layer,

and xij is the ith input to the jth unit. For a particular case of MLP network with

one hidden layer and yo and yh activation functions in output and hidden layers

respectively, a single training epoch will include the following steps:

1. Forward propagation phase: Calculate the output value of the network by

presenting the input pattern to the network, and consequently calculating the

activations of hidden and output units.

2. Backward propagation phase: Calculate the errors in output of unit j:

δj =

⎧⎪⎨⎪⎩
∂yo(Σj)

∂Σj
(tj − Yj), if j unit is an output unit,

∂yh(Σj)

∂Σj

∑
k δkwjk, if j unit is a hidden unit,

(4.14)

where index k refers to the kth successor unit relative to the current j unit.

Then, according to Equation 4.13 calculate the weight changes Δwij .
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3. Repeat forward and backward phases for all training samples and apply the

sum of all changes Δwij to the corresponding weights.

From the geometrical point of view the error function is a surface in the weight

space. The backpropagation can not guarantee that the minimum of E found for a

given training data set is the global rather than a local one. In practice the simplest

suggested way in avoiding local minimum is to start the minimization from different

starting points by initializing the weights with small random numbers.

As the Equation 4.13 suggests the step size along the error surface is proportional

to the magnitude of the gradient. Such behaviour is not always beneficial since, for

example, flat spots on the error surface are better be traversed rapidly with a few big

steps, while the smaller step sizes are needed in the regions close to a local minimum.

The SNNS package provides an enhanced version of backpropagation algorithm with

an extra regularization term. This term is called the momentum term and it uses

the old weight change as a parameter for the computation of the new weight change.

The new weight change is computed as

Δwij(t + 1) = −ηδjxij + αΔwij(t), (4.15)

where α (0 ≤ α ≤ 1) is a constant specifying the influence of the momentum. This

adaption of the step size can increase the learning speed. We find that, for our data,

the ANN learns fast and accurate enough if η = 0.01 and α = 0.5 which are within

typical intervals suggested by SNNS authors.

4.2.2 Choosing Optimal Structure and Variables

The number of inputs, number of hidden layers, and number of units in the hidden

layers define the structure of the ANN. As it was shown from theoretical point of view

one hidden layer with neurons possessing sigmoid-like activation function is sufficient
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to approximate any function. The choice of nonlinear activation function in hidden

units is essential in our analysis. Without nonlinearity, hidden units would not make

ANN any more powerful than just a plain perceptron. This is because a linear function

of linear functions is again a linear function. In our classification problem the linear

transformation of input signals would be equivalent to a set of rectangular cuts in the

input space. Therefore, we constrain ourselves to MLP with one hidden layer and

nonlinear activation functions.

Except for the number of hidden layers the theory does not provide any clue about

the number of inputs and number of hidden units. There are several “rules of thumb”

relating the number of training cases to the total number of weights. For instance,

a typical recommendation is to use at least 30 times more training templates than

weights. Such recommendations should be considered as a crude approximation for a

proper number of hidden units. The ideal number of hidden units may depend in a

complex way on the number of inputs and outputs, the training algorithm, the type

of activation functions, and the complexity of classification function to be learned.

The best way to determine the number of hidden units is to train several networks

and compare their errors.

It is not feasible to use every imaginable variable as input to ANN, since the large

number of inputs will lead to exponential growth of the hypervolume of the input

space. In order to evenly represent every part of the high-dimension hypervolume

without significant loss in input space coverage, one would need to increase accord-

ingly both the number of training samples and the number of weights. Hence, it is

advisable to select only the most relevant input variables and prevent the waste of

ANN resources representing unimportant portions of input space. In our work we fol-

low the approach where the input variables are selected according to their separation

power in one dimension and then the best of them are combined by the network.

The reprocess of the input variables can also help to find an optimal ANN solution.
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In particular, we consider the normalization of the variables before they are shown to

the network. The reason for data rescaling is based on the fact that different variables

may be defined on different ranges, e.g. the HT variable has typical values from 100

to 500, whereas sphericity of the event is defined on interval [0, 1]. It is not a problem

in itself since the inputs can be rescaled by appropriate changes in corresponding

weights, but large weights can lead to a greater risk of weight saturation while training.

Normalized inputs remove the problem of scale dependence of initial weights. The

deeper reasoning for the input data normalization comes from the interpretation of

each hidden (or output) unit as a separating hyperplane in the N dimensional space,

where N is the number of inputs to that unit. The position and orientation of such

hyperplane is determined by the weights, and the bias determines the distance of

the hyperplane from the origin. Initially, all the hyperplanes are oriented in random

directions, and pass close to the origin. If the data points are not centered at the

origin, the hyperplanes may fail to pass through the data cloud and the chance of

getting stuck in local minimum increase. In our analysis we normalize the input

variables by subtracting the mean, and dividing by the standard deviation, thereby

obtaining a normal variables with mean 0 and standard deviation 1.

The choice of optimal structure of an ANN is closely related to ANN ability to

perform accurately on data which is not in the training set.

4.2.3 Generalization

During learning, the outputs of a supervised neural network come to approximate

the target values given the inputs in the training set. This ability may be useful in

itself, but more often the purpose of using a neural network is to generalize, i.e. to

have the outputs of the network approximate target values given inputs that are not

in the training set.
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Since our goal is to find the network having the best performance on new data,

the simplest approach to the comparison of different networks is to evaluate the error

function using data which is independent of that used for training. Various networks

are trained by minimization of an appropriate error function defined with respect to

a training data set. The performance of the networks is then compared by evaluating

the error function using an independent validation set, and the network having the

smallest error with respect to the validation set is selected. This approach is called the

hold out method. On the other hand, the validation set is used to control overfitting

of ANN and, therefore, the hold out procedure can itself lead to a biased decision

with respect to the validation set. The performance of the selected network should

be confirmed on a third independent set of data called a test set. It is worth noticing

that the error function for the training set, given by Equation 4.12, can be calculated

also for both the validation and test sets at the end of each epoch. These errors are

referred to as validation error and generalization error respectively.

Like many other nonlinear fitting techniques the ANNs can suffer from either un-

derfitting or overfitting of the data. The underfitting usually happens when a network

does not have enough inner parameters to fully represent the true classification func-

tion. In contrary, the overfitting happens when a network is too complex and it can

learn undesired particulars of the finite training sample, e.g. noise. Apparently, the

overtrained ANN should not be expected to provide a good generalization. In order

to avoid underfitting and overfitting we utilize the early stopping approach. The idea

of this method is based on the calculation of the validation error during the training,

for instance, every time the weight are being updated. Since the validation set is

independent of the training one, the validation error rate is expected “to go up” at

the point where further training will cause an overfitting. The validation error can

go up and down several times during the training, hence we train the network to con-

vergence and then find an epoch where the network produced the lowest validation

error.
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Measurement of the Branching

Ratio R =
B(t→Wb)
B(t→Wq)

In Chapter 3 we described the selection of signal-rich dataset collected at CDF. The

identification of jets produced by b quarks is important for this analysis and was pre-

sented in details. We use this information to split the selected events in three groups

based on the number of b-tagged jets. In Chapter 4 we discussed the ANN technique

and its application to classification problems. In this Chapter we first describe the

application of ANN to the determination of the number of tt̄ events in lepton-plus-

jets channel. We then discuss the sources of systematic uncertainties affecting the

ANN output shape and, hence, the measurement of signal and background contribu-

tions. The background contamination is also determined using a direct measurement

in lepton-plus-jets and dilepton channels. Subsequently, we present the measurement

of R using the above information. We finally, establish the lower confidence limit on

the branching ratio using the Feldman-Cousins method.

95



Chapter 5. Measurement of R = B(t→Wb)
B(t→Wq)

5.1 Top Quark Signal Determination in the Lepton-

plus-jets Channel

In the lepton-plus-jets analysis we use ANN to estimate the number of signal and

background events in each tagged subsample.

5.1.1 Signal and Background Modeling

For the proper modeling of the data events passed the lepton-plus-jets selection re-

quirements, we use a combination of Monte Carlo simulation and data. The Monte

Carlo samples used in this analysis undergo complete detector simulation1and stan-

dard event reconstruction as if it was real data. The main background to tt̄ pro-

duction in the lepton-plus-jets channel comes from W production in association with

jets. The background from generic QCD multi-jet processes is the second largest

contributor. Much smaller contributions come from other electroweak processes re-

sulting in at least one high-pt lepton and jets. We will further describe the tt̄ signal

and W+jets Monte Carlo generation since these samples are also used for the ANN

training. The modeling and estimation of QCD multi-jet background is performed

using an independent data sample.

The tt̄ events in our default signal sample are generated with HERWIG Monte

Carlo program [62], which has a leading order matrix element for the parton hard-

scattering convoluted with CTEQ5L parton distribution functions [63]. The top quark

mass is assumed to be 175 GeV/c2 and the default W → lν branching fraction is

11.1% for each lepton flavour l. HERWIG includes initial and final state radiation,

which cannot be turned off, and this appears to be a primary concern in systematic

1The detector simulation is performed with the CDFSim package [60] developed by the
CDF collaboration. The CDFSim is based on GEANT program [61] simulating the passage
of particles through the matter.
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uncertainty associated with our use of HERWIG. We use PYTHIA generator [62] to

study the systematic effects described in Section 5.1.5.

We use the ALPGEN matrix element generator [64], convoluted with the CTEQ5L

parton distribution functions, to generate W + 4 partons (W + 4p) in the final state.

We require parton |η| ≤ 3.0, pT ≥ 8 GeV/c, and a minimum separation ΔR ≥ 0.2

between u, d, s, and g partons at the generator level. Our default momentum transfer

scale for the PDFs is Q2 = M2
W +
∑

i p
2
T,i, where pT,i is the transverse momentum

of the ith parton. For parton shower evolution to the colorless hadrons, the ALP-

GEN information is transfered to the HERWIG where the hadron jets are adequately

modeled with parton shower algorithms. It is assumed that the gluon radiation can

correctly model extra jets in the final state. Our generated sample contains W asso-

ciative production with all parton flavours, but only a small fraction of W bosons is

produced in association with heavy flavour partons. The lack of statistics becomes

sufficient if the b-tagging is required. Thus, we generate W + bb̄ + 2 partons MC

samples to study the W + jets background in the tagged subsamples.

Theoretical predictions for the total rate of the generic QCD processes can not be

easily obtained. A common solution is to model the kinematics of the QCD multi-

jet background with data events that pass all of our standard selection requirements

except for the requirement on lepton isolation, I, which in case of QCD is inverted

I > 0.2. This requirement is consistent with the typical signature of generic QCD

events, i.e. large amount of additional energy deposited in the cone around the

lepton and low missing transverse energy. The fraction of QCD multi-jet events, in

the sample of events passing the default cuts, can be estimated by assuming that the

lepton isolation and the missing transverse energy /ET are uncorrelated. By dropping

off the lepton isolation and /ET cuts from the list of our default selection requirements

we parameterize the events in two dimensional space: Isolation versus /ET . Then we

define the following regions:
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• region A: I > 0.2 and /ET < 10 GeV,

• region B: I < 0.1 and /ET < 10 GeV,

• region C: I > 0.2 and /ET > 20 GeV,

• region D: I < 0.1 and /ET > 20 GeV.

The fraction fQCD of QCD multi-jet events in the signal region D is deduced from the

ratio of event populations found in the above control regions:

fQCD =
NB × NC

NA × ND
. (5.1)

We use the above procedure to calculate the QCD background fractions for all b-tag

subsamples. The results are shown in Table 5.1. We assume a ±50% systematic

uncertainty in the above estimation which is translated to a ±50% variation in the

normalization of the ANN QCD output shape (see Section 5.1.5). We also correct

the QCD background ANN shape for the expected contributions from tt̄ events in the

non-isolated region.

Table 5.1: Number and the fraction of QCD multi-jet events in pretag, 0-tag, 1-tag,
and 2-tag data subsets.

Pretag 0-tag 1-tag 2-tag
Number of QCD events 10.7 8.9 1.0 0.1

QCD fraction (%) 10.0 11.3 4.4 2.0

5.1.2 Kinematic Discriminators

The selection of appropriate ANN input variables is essential for using the ANN

technique. Our choice of ANN inputs is based on kinematic differences between signal

and background processes. One of the most essential characteristics of signal events is
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the production of two massive particles. The top quarks are produced almost at rest,

and, therefore, their decay products are likely to be distributed uniformly in space,

causing final state particles to be distributed more spherically that the background

ones. Also, for the same reason, the signal events are expected to have jets with

higher transverse energy on average. Although, the W + jets background can well

mimic the signal highly energetic lepton and missing energy, the jets with the highest

energies typically come from other QCD processes, and their reconstructed invariant

mass can be used for discriminating from tt̄ events.

The complete list of the initially considered kinematic variables and their short

definitions are presented in Table 5.2. Not all of these variables will be used as

inputs in the final network. The most discriminating inputs are determined at the

training procedure, as described in the next section. Since the training of ANN is

performed only on tt̄ and W + jets samples, we compare their distribution shapes in

Figures 5.1–5.5.

Table 5.2: The list and description of all the kinematic variables considered as inputs
to ANN in this analysis. The reader may refer to the text for detailed definitions of
these variables.

No. Variable Description2

0 ET (j3rd) ET of the third jet.
1 Mmin(jk, jl) Minimum invariant mass of a jet pair among the

four first jets.

2 ET (j2nd) ET of the second jet.

3 HT Sum of the transverse energies of the first four jets,
the lepton and the missing energy.

4 ET (j1st) ET of the first jet.

5 ET (j4th) ET of the fourth jet.

6 MW
T (jk, jl) Transverse mass of the jet pair closest to the W

mass.

2The jets in event are ordered by ET in descending order.
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Table 5.2: (continued)

No. Variable Description

7
P

PzP
PT

Sum of the z momentum-components of the first
four jets, the lepton and the missing energy di-
vided by the sum of corresponding transverse
components.

8 Aplanarity Aplanarity of the event.

9 〈η2〉 Arithmetic average of squared pseudo-rapidities of
the first four jets.

10
ΔRmin(jk,jl)E

min
T

ET (l)
Separation in η–φ space.

11 MW (jk, jl) Invariant mass closest to the W mass of a jet pair
among all jets in an event.

12 ΔRmin(jk, jl) Minimum opening angle,
ΔR =

√
(φjk

− φjl
)2 + (ηjk

− ηjl
)2, between a jet

pair among all jets in event.
13 �ET Missing transverse energy in the event.

14 |η|max Maximum absolute value of pseudo-rapidity among
all jets in the event.

15 Sphericity Sphericity of the event.

16 MW
T (l, ν) Transverse mass of the high-PT lepton and neutrino

( �ET )

Some of the chosen variables are the simple variables like the transverse energies

of the jets, ET (jet), event missing transverse energy, /ET , and jet pseudo-rapidities,

η. However, additional information about an event can be obtained by either con-

structing composite variables or by calculating variables reflecting the features of the

event as a whole. For example, the invariant mass, M , can be calculated for a pair

of particles, for which the full four-momentum, p, is known. For the construction of

variables Mmin(jk, jl) and MW (jk, jl), we calculate the invariant mass for a pair of

jets (kth, lth), using the formula:

M =
√

(pk + pl)2 =
√

(Ek + El)2 − (�pk + �pl)2. (5.2)
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Figure 5.1: Distributions of the considered ANN input variables ET (j3rd), Mmin(jk, jl),
ET (j2nd), and HT . The filled and the empty histograms represent W + 4p and tt̄
Monte Carlo samples correspondingly. The distributions are normalized to the unit
area. These variables will be used as inputs to the ANN, as discussed in Section 5.1.3.

The calculation of the transverse invariant mass, MT does not require the knowledge

of the z component of particles momenta. For a pair (kth, lth) of jets with transverse

momenta pT,i and azimuthal angle φi = arctan(
py,i

px,i
), the transverse mass MT (jk, jl)

101



Chapter 5. Measurement of R = B(t→Wb)
B(t→Wq)

), [GeV]1st (jTE
50 100 150 200 250

pr
ob

ab
ili

ty
 / 

9.
4 

G
eV

0

0.05

0.1

0.15

 W+4p

t t

), [GeV]1st (jTE
50 100 150 200 250

pr
ob

ab
ili

ty
 / 

9.
4 

G
eV

0

0.05

0.1

0.15

), [GeV]4th (jTE
20 40 60 80

pr
ob

ab
ili

ty
 / 

3.
2 

G
eV

0

0.2

0.4

 W+4p

t t

), [GeV]4th (jTE
20 40 60 80

pr
ob

ab
ili

ty
 / 

3.
2 

G
eV

0

0.2

0.4

), [GeV]l, jk (jTM
0 50 100 150

pr
ob

ab
ili

ty
 / 

6 
G

eV

0

0.1

0.2

0.3
 W+4p

t t

), [GeV]l, jk (jTM
0 50 100 150

pr
ob

ab
ili

ty
 / 

6 
G

eV

0

0.1

0.2

0.3

T PΣ / z PΣ
0 1 2 3

pr
ob

ab
ili

ty
 / 

0.
12

0

0.05

0.1

0.15

0.2  W+4p

t t

T PΣ / z PΣ
0 1 2 3

pr
ob

ab
ili

ty
 / 

0.
12

0

0.05

0.1

0.15

0.2

Figure 5.2: Distributions of the considered ANN input variables ET (j1st), ET (j4th),
MT (jk, jl), and

∑
Pz/
∑

PT . The filled and the empty histograms represent W + 4p
and tt̄ Monte Carlo samples correspondingly. The distributions are normalized to
the unit area. These variables will be used as inputs to the ANN, as discussed in
Section 5.1.3.

is given by

MT =
√

2 · pT,k · pT,l · (1 − cos (φk − φl)). (5.3)

The transverse mass of a lepton and the neutrino (/ET ), MT (l, ν), is calculated in a

similar manner.

102



Chapter 5. Measurement of R = B(t→Wb)
B(t→Wq)

Aplanarity
0 0.1 0.2 0.3 0.4

pr
ob

ab
ili

ty
 / 

0.
01

6 
ra

d

0

0.05

0.1

0.15  W+4p

t t

Aplanarity
0 0.1 0.2 0.3 0.4

pr
ob

ab
ili

ty
 / 

0.
01

6 
ra

d

0

0.05

0.1

0.15

> 2η<
0 1 2 3

pr
ob

ab
ili

ty
 / 

0.
14

0

0.05

0.1

0.15

 W+4p

t t

> 2η<
0 1 2 3

pr
ob

ab
ili

ty
 / 

0.
14

0

0.05

0.1

0.15

)
±

(lT / PT
min

) Pl,jk(jmin RΔ
0 1 2 3

pr
ob

ab
ili

ty
 / 

0.
12

0

0.1

0.2

0.3

 W+4p

t t

)
±

(lT / PT
min

) Pl,jk(jmin RΔ
0 1 2 3

pr
ob

ab
ili

ty
 / 

0.
12

0

0.1

0.2

0.3

), [GeV]l, jkM (j
0 50 100 150

pr
ob

ab
ili

ty
 / 

6 
G

eV

0

0.1

0.2

0.3

0.4

 W+4p

t t

), [GeV]l, jkM (j
0 50 100 150

pr
ob

ab
ili

ty
 / 

6 
G

eV

0

0.1

0.2

0.3

0.4

Figure 5.3: Distributions of the considered ANN input variables Aplanarity, 〈η2〉,
ΔRmin(jk ,jl)E

min
T

ET (l)
, and M(jk, jl). The filled and the empty histograms represent W + 4p

and tt̄ Monte Carlo samples correspondingly. The distributions are normalized to
the unit area. The Aplanarity will be used as input to the ANN, as discussed in
Section 5.1.3.

The summed transverse energy, HT , tends to be higher for tt̄ events than W +

jets events even after the application of all the cuts. For the calculation of this

quantity we consider the transverse momenta of lepton, missing energy, and first four
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Figure 5.4: Distributions of the considered ANN input variables ΔRmin(jk, jl), /ET ,
|η|max, and sphericity. The filled and the empty histograms represent W + 4p and tt̄
Monte Carlo samples correspondingly. The distributions are normalized to the unit
area.

jets:

HT = ET (l) + /ET +
4∑

i=1

ET (ji). (5.4)

The separation ΔR =
√

(Δη)2 + (Δφ)2 of a pair of jets in η–φ space can depend
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Figure 5.5: Distributions of the considered ANN input variable MT (l±, ν). The filled
and the empty histograms represent W +4p and tt̄ Monte Carlo samples correspond-
ingly. The distributions are normalized to the unit area.

on their production process. Two jets produced through gluon radiation usually have

smaller separation. We calculate the minimum separation, ΔRmin(jk, jl), between any

two jets passing our cuts. The same quantity is also used in the compound variable

ΔRmin Emin
T (j)

ET (l)
, where the separation ΔRmin is scaled by the ratio of the lower jet ET

in the pair to lepton ET .

The topology of signal and background events can be described by two extra

variables: Aplanarity and Sphericity. The definition of both variables is based on the

calculation of the normalized momentum tensor:

Tab =

∑
q=j1,...,5,l,ν

pa(q) · pb(q)∑
q=j1,...,5,l,ν

|�p(q)|2 , (5.5)

where a and b run over the three spacial dimensions and p(q) is the momentum of

particle q. In our case the sum over q includes the five highest jets, the lepton, and

the neutrino. Tab is a 3× 3 symmetric matrix which can be diagonalized resulting in

three eigenvalues Q1 ≤ Q2 ≤ Q3. The Sphericity and Aplanarity are defined in terms
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of the two lowest eigenvalues as:

Aplanarity =
3

2
Q1, (5.6)

Sphericity =
3

2
(Q1 + Q2). (5.7)

Small values of Aplanarity correspond to coplanar or collinear shape of event. The

Aplanarity can be considered as the fraction of the total momentum out of the highest

pT plane. The Spericity values lie in a range of 0 to 1, with larger values corresponding

to more spherical event shapes and smaller values corresponding to cigar-like shapes.

Similarly, the Sphericity can be interpreted as the fraction of the total momentum

out of the lowest pT plane.

Several of our kinematic variables require the knowledge of the z component of

the neutrino. In general, the problem with measuring the missing longitudinal energy,

/Ez, is that the total particle momentum along the beam direction is not known due

to particles lost along the beam-pipe. However, in tt̄ events, we can assume that most

of the /E is due to the neutrino from the leptonically decaying W boson. Since in

lepton-plus-jets channel only one neutrino is present, we can reconstruct the invariant

mass of W boson which is known for W produced on shell. Therefore, we can deduct

the third component of the neutrino’s momentum from the equation:

M2
W = (pl + pν)

2, (5.8)

where pl and pν are the four-momenta of the lepton and neutrino respectively. The

quadratic equation leads to two possible solutions for /Ez. Once real solutions are

produced, the smaller solution is chosen for the use in our kinematic variables, since

this one is the actual solution in 70% of the times [65].

A number of statistical tests are performed on the kinematic variables in Table 5.2

to help us decide which ones have the highest separation power. There are many uni-

versal statistical methods that allow us to verify whether two data sets are drawn
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from the same underlying distribution function or not. The most generally accepted

test for continuous data is the Kolmogorov-Smirnov (KS) test and for binned data

it is the chi-square test. We can also determine if two data sets are drawn from

functions with the same mean or variance by applying the student’s t-test and f-test

respectively [66]. In this thesis, we use the KS test applied on signal tt̄ and back-

ground W + jets distributions to determine the discriminating power or the proposed

kinematic variables. We actually have conducted all of the mentioned statistical tests

on our variables and found the results consistent with each other. The KS test is

based on a construction from the data points of an unbiased estimator for the cumu-

lative distribution function. Then the two cumulative distribution can be compared

by introducing some measure. In the case of KS statistics, the measure is defined as

the maximum value of the absolute difference between two cumulative distributions.

The detailed description of KS test can be found in [66]. We sort the input variables

in descending order by their discrimination power as determined by the unbinned KS

test (Table 5.3). In the next section we explain how the compiled list of variables is

used for ANN architecture optimization.
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Table 5.3: List of the kinematic variables sorted by the maximum distance (highest
discriminating power) as calculated from Kolmogorov-Smirnov statistical test.

No. Variable KS test dmax

0 ET (j3rd) 0.358
1 Mmin(jk, jl) 0.342
2 ET (j2nd) 0.301
3 HT 0.300
4 ET (j1st) 0.244
5 ET (j4th) 0.268
6 MW

T (jk, jl) 0.219

7
P

PzP
PT

0.239

8 Aplanarity 0.190
9 〈η2〉 0.198

10
ΔRmin(jk,jl)P

min
T

PT (l±)
0.163

11 MW (jk, jl) 0.109
12 ΔRmin(jk, jl) 0.186
13 �ET 0.125
14 |η|max 0.154
15 Sphericity 0.124
16 MW

T (l, ν) 0.076
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5.1.3 Training of the ANN

The purpose of the ANN is to distinguish signal events from background events.

Although there are several different backgrounds to tt̄ production, the W +jets back-

ground is the dominant one. Thus, the ANN is trained on tt̄ and W +4p Monte Carlo

samples. Based on the information in Chapter 4, we choose the basic network archi-

tecture to have one hidden layer and one output providing continuous values between

0 and 1. For the ANN implementation, we use the SNNS [58] software libraries. We

developed a software that interfaces the SNNS with ROOT [59] data analysis tool.

For ANN learning, we use the backpropagation algorithm which is widely accepted

and well-justified for training a network as a classificator.

The training of ANN is performed on 5000 MC events consisting of equal number

of events from the tt̄ and W +4p samples. We also compile a test and validation sets,

1000 events each, consisting of equal number of tt̄ and W + 4p events. The training,

validation, and test samples are constructed with no common events to avoid biases.

Signal events are trained for target 1, while background events are trained for target

0 (see Table 5.4).

Table 5.4: Split of tt̄ and W + jets MC samples into three statistically independent
sets: training, validation, and test.

Sample Target Training Validation Test
tt̄ 1 2500 1000 1000

W + 4p 0 2500 1000 1000

We choose not to use any automatic optimization algorithm for the determina-

tion of the best number of network inputs and hidden units. Instead, we train many

independent networks and then rely on their generalization errors for choosing the

one with the best performance. The networks are built up by sequentially increasing

the dimension of input space while varying the number of hidden units. Thus, we
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start with networks having only one input corresponding to the first variable in the

KS-ordered list (Table 5.3), then we consider networks with two inputs corresponding

to the first two variables from the KS-ordered list, and so on, until, finally we train

networks with as many inputs as there are available variables. For each number of

inputs N the number of hidden units is varied from 1 to 2N + 1 resulting in 2N + 1

separate networks3. The weights of every ANN are initialized by small random num-

bers before training procedure begins. The training, validation, and test distributions

are standardized in advance by subtracting the mean and dividing by the standard

deviation of the training set. The networks are trained until the moving average val-

idation error starts to increase significantly relative to its minimum value. Typically,

this convergence occurs after about 300 training epochs. The training samples are

randomly shuffled before each epoch to mix signal and background events and avoid

memorizing of particular order of the patterns by ANN. At every epoch the error

function is calculated on all three samples. The value of the training error function

can not be used to make any decision on the ANN training. We use the validation

error to determine an epoch at which trained ANN started to loose the generalization

ability, i.e. when the validation error function starts to go up. At this point the ANN

weight configuration is saved along with the error values. The calculation of the error

function on the independent test sample is essential since the validation sample was

already used to make a decision on proper ANN training. We can choose the best

network architecture by plotting the validation and generalization errors as functions

of number of inputs and hidden units as presented in Figure 5.6. The plots show the

desired decrease in both errors when new input variables are added to the network.

An increase in ANNs performance, i.e. the decrease in both validation and gener-

alization errors, is pronounced for the networks with up to 8 input variables. The

networks with more than 9 inputs do not indicate significant improvement in both

validation and generalization errors. One also can notice that for each given number

3The maximum of 2N + 1 is inspired by the Kolmogorov theorem, v.s. Section 4.1.3
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(b) Generalization errors.

Figure 5.6: Each color line corresponds to a trained network with a color representing
the number of hidden units. The validation and generalization errors are calculated
at the epoch when ANN overtraining is indicated from the increase in validation error
function.

of inputs the worst performance is shown by ANNs with very small number of hid-

den units. Moreover, for 9 inputs, the best performance is observed for the network

with more than 10 hidden units. Therefore, as a reasonable trade-off between ANN

complexity and its good performance, we decide to chose the network with 9 inputs

and 10 hidden units.

Figure 5.7 illustrates the development of the training and validation errors for the

chosen 9-10-1 network. The weight configuration of this ANN is saved at the 60th

epoch when the validation error has the lowest value. Although the training error is

decreasing, further training would lead to overfitting of the data.

5.1.4 Measurement of the Top Signal Fraction

The ANN described in Section 5.1.3 is a very useful tool that produces a one-

dimensional distribution for any simulated or measured data set. Now we create

ANN output distributions for the CDF data and all the signal and backgrounds MC
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Figure 5.7: Change in training and validation errors for 9-10-1 neural network. The
minimum of validation error indicates the best configuration of ANN weights.

sets by simply propagating the corresponding samples through the trained ANN.

There are at least two available methods to estimate the number of signal events

in the data sample using the data and MC ANN outputs. The first approach is to set

a classical cut on the ANN output by choosing a single value where the significance

and the purity for such value (as determined from the contributions of signal and

background MC ANN outputs) would be as small as possible in accordance with

the Neyman-Pearson theorem (see e.g. [67]). Once the optimal ANN output value is

determined, the cut at this value can be applied to the data ANN output and thereby

define a number of signal events in this data sample. One of the drawbacks of this

method is that we need to know the normalization for each MC output templates,

i.e. cross section for each component in the model. Another disadvantage is that we

would not use the information about the shapes of the ANN output. The better way

to exploit the shape information is to fit the data shape and let the fitter decide the

appropriate weights for the signal and background.

According to our hypothesis we model the data with three major constituents:
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tt̄ signal, W+jets and QCD multi-jet backgrounds. The ANN output template for

QCD multi-jet background is modeled with the non-isolated data (I > 0.2, v.s. Sec-

tion 5.1.1), whereas the tt̄ and W + jets templates are determined by propagating

an independent test sample through the network. Following our CDF data catego-

rization, we create three separate tt̄ and W + jets subsets with 0, 1, and 2 b-tags per

event respectively. We subsequently propagate them through the ANN to acquire

the output shapes shown in Figures 5.8 and 5.9 for W + jets and tt̄ respectively. In

these figures we compare the 0-tag, 1-tag, and 2-tag ANN output distributions with

the respective pretagged ones. One can conclude that these shapes do not change

considerably as we move from the pretagged to tagged samples, however, in the case

of our default W + jets sample, we run out of statistics in the 1-tag, and 2-tag cases.

At the same time most of the background in those bins comes from the production

of W in association with heavy flavor (W + bb̄ + 2p). Figure 5.10 shows the distribu-

tion of the ANN output for W + bb̄ + 2p for the 0-tag, 1-tag and 2-tag subsamples,

compared to the pretag shape of the W + jets. From the poor agreement between

these shapes, we realize that it is not sufficient to use the W + jets shape to model

the heavy flavor in the 1-tag and 2-tag bins, and we thus use the W + bb̄ +2p shapes.

The similar comparisons of pretagged and tagged ANN output shapes are done for

the QCD multi-jet samples shown in Figure 5.11. Since there is no noticeable dis-

crepancy, we use the pretagged QCD sample ANN output shape as the shape of this

background in the tagged sets, for increased statistics. Summarizing, for the fitting

of the data in the 0-tag case, we use the pretag shapes of tt̄ and W + jets, since

they are almost identical. For the 1-tag and 2-tag cases, we fit the data using the

W + bb̄ + 2p (instead of the and W + jets MC ANN output shapes), and also using

the 1-tag and 2-tag tt̄ MC ANN output shapes respectively, since our MC statistics

allows us. The pretagged QCD shape is used across all the subsamples.

To fit the ANN output distributions we use the binned maximum likelihood

method. The fit is performed in every subsample including pretag sample. Since
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the statistics of the binned data outputs is low, we choose the Poisson distribution as

a probability distribution function (p.d.f.) for the number of events in each bin, and

the likelihood function takes the form:

L =

Nbins∏
b=1

(N exp
b )Db · e−Nexp

b

Db!
, (5.9)

where Db is bth bin content in the data histogram and N exp
b = ftt̄S

tt̄
b +fW+jetsB

W+jets
b +

fQCDBQCD
b is the three-component sum of contributions from tt̄, W + jets, and QCD

histograms in the same bin weighted by fit parameters fα. It is convenient to mini-

mize the negative logarithm of the likelihood L instead of maximizing L itself. Equa-

tion (5.9) is then transformed into

− ln Lfit =
∑Nbins

b=1

(
ftt̄S

tt̄
b + fW+jetsB

W+jets
b + fQCDBQCD

b

)
−
∑Nbins

b=1

(
Db ln(ftt̄S

tt̄
b + fW+jetsB

W+jets
b + fQCDBQCD

b )
)

, (5.10)

where we dropped a constant factorial term. The minimization of the negative loga-

rithmic likelihood is performed using the MINUIT [68] library which is a part of the

ROOT package. During the minimization, the QCD fraction fQCD is kept constant

at the estimated QCD multi-jet background rate (Table 5.1). Since the total number

of events is fixed by the observed event yields in each tagged bin (Table 3.5), the

W + jets background fraction can be constrained as fW+jets = 1 − ftt̄ − fQCD leaving

ftt̄ as the only one free parameter in the fit.

Figures 5.12 to 5.15 show the results of the binned likelihood fit along with the

shape of the negative logarithm likelihood. The summary of final results for the

measurement of the number of signal events by fitting the ANN output shapes are

shown in Table 5.5. The signal rate in pretag subsample is consistent with the similar

result obtained for the cross section measurement performed at CDF [45].
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Table 5.5: Number and the fraction of signal events as measured with 3-component
binned likelihood fit in pretag, 0-tag, 1-tag, and 2-tag data subsets. Statistical un-
certainty is shown.

Pretag 0-tag 1-tag 2-tag
Number of signal events 43.9+10.0

−9.8 16.6+8.1
−7.2 17.2+4.7

−5.1 4.9+0.0
−0.8

Signal fraction (%) 41.1+9.3
−9.2 21.0+10.3

−9.1 74.7+20.5
−22.3 98.0+0.0

−16.5
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Figure 5.8: Comparison of the ANN output shapes of inclusive W + 4p MC sample
(solid histogram) with the W + 4p 0-tag, 1-tag, and 2-tag subsamples (points with
errors).
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Figure 5.9: Comparison of the ANN output shapes of inclusive tt̄ MC sample (solid
histogram) with the tt̄ 0-tag, 1-tag, and 2-tag subsamples (points with errors).
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Figure 5.10: Comparison of the ANN output shapes of inclusive W + 4p MC sample
(solid histogram) with the W +bb̄+2p MC 0-tag, 1-tag, and 2-tag subsamples (points
with errors).
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Figure 5.11: Comparison of the ANN output shapes of inclusive QCD multi-jet data
sample (solid histogram) with the QCD multi-jet 0-tag, 1-tag, and 2-tag subsamples
(points with errors).
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Figure 5.12: The top plot shows a three-component fit to the ANN output distribution
of the pretagged lepton-plus-jets data subset (inverted triangles). The fraction of
QCD multi-jet background (middle histogram) is kept constant in the fit, while the
only free parameter (the fraction of tt̄ signal events) defines the weights for both
W +4p background (upper histogram) and tt̄ signal (lower histogram) MC templates.
The bottom plot shows the shape of the binned maximum likelihood as a function of
the free parameter.
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Figure 5.13: The top plot shows a three-component fit to the ANN output distribution
of the 0-tag lepton-plus-jets data subset (inverted triangles). The fraction of QCD
multi-jet background (middle histogram) is kept constant in the fit, while the only
free parameter (the fraction of tt̄ signal events) defines the weights for both W +
4p background (upper histogram) and tt̄ signal (lower histogram) MC templates.
The bottom plot shows the shape of the binned maximum likelihood as a function of
the free parameter.
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Figure 5.14: The top plot shows a three-component fit to the ANN output distribution
of the 1-tag lepton-plus-jets data subset (inverted triangles). The fraction of QCD
multi-jet background (middle histogram) is kept constant in the fit, while the only
free parameter (the fraction of tt̄ signal events) defines the weights for both W +
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The bottom plot shows the shape of the binned maximum likelihood as a function of
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Figure 5.15: The top plot shows a three-component fit to the ANN output distribution
of the 2-tag lepton-plus-jets data subset (inverted triangles). The fraction of QCD
multi-jet background (middle histogram) is kept constant in the fit, while the only
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5.1.5 Systematic Uncertainties on the Measurement of Top

Signal Fraction

Our measurement of the signal fraction is sensitive to systematic effects that affect

the shape and normalization of ANN output distribution. These systematics also

affect the measurement of the branching ratio. To estimate these systematic effects,

we use the trained ANN to create alternative systematic-shifted ANN output shapes

for each systematic source. In order to create the shifted ANN output shapes, we use

2,000 simulated experiments (pseudo-experiments) based on a model with a particular

systematic effect applied. We generate another 2,000 pseudo-experiments based on

our default signal and background models. The total number of events in a pseudo-

experiment equals on average to the observed data yields listed in Table 3.5. Each

simulated experiment contains Ntt̄ events drawn from a Poisson distribution with

mean given by Table 5.5, NQCD background events drawn from a Poisson distribution

with mean given by Table 5.1, and NW+jets background events drawn from a Poisson

distribution with mean equal to the remainder. In every simulated experiment, we

perform the binned maximum likelihood fit of ANN output to the signal and back-

ground ANN output distributions from our default model. The average difference

in the fitted number of signal events—as calculated in 2,000 pseudo-experiments for

shifted and nominal ANN output shapes—defines the systematic uncertainty for the

particular source. We consider the following systematic sources:

Jet Energy Scale The systematic effect due to jet energy scale variations is the

largest contributor to the total uncertainty. The jet energy corrections with respect

to the measurement of the raw calorimeter was described in Chapter 3. There are

several levels of correction intended to bring the energy of the jet closer to the true

energy of original parton. There are two ways to calculate the overall impact on the

ANN output shapes from the jet energy scale variations. One way is to vary the jet
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energy corrections by varying one particular level of correction at a time and then add

the effects of all levels in quadrature. The other way is to vary jet energy corrections

taking into account all levels of corrections and calculate only one systematic number.

We find similar results using either method.

W+jets background (Q2) The shape of W + jets background is affected by dif-

ferent values of the scale of momentum transfer Q2 in the hard scattering process.

The value of Q2 affects the relative weights of diagrams in the leading order matrix

element. Our default ALPGEN MC is generated with Q = M2
W +
∑

i p
2
T,i, where MW

is the W boson mass and the sum is taken over all partons i with transverse momenta

pT,i. For the estimation of the Q2 systematic we use two W + jets MC samples where

Q2 is Q2 = 4MW and Q2 = 1
4
MW respectively.

QCD multi-jet background There are two kinds of systematic effects related

to this background component: the QCD-modeling and the absolute normalization

of the sample. As an alternative to our default model with non-isolated leptons

we use the sample with identified conversion electrons. A large fraction of QCD

background in the electron channel is expected to come from photon conversions. For

the uncertainty on the multi-jet background normalization, we vary the contributions

by ±50% around the central value [45].

Monte Carlo Generators This uncertainty reflects the choice of tt̄ event genera-

tor. We compare our default generator, HERWIG, with PYTHIA.

Top quark mass, mt The systematic effect due to choice of the top mass is ac-

counted by using two MC samples with mt = 170 GeV and mt = 180 GeV and

comparing with our default model with mt = 175 GeV.
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Initial and Final State Gluon Radiation (ISR/FSR) We produce four PYTHIA

Monte Carlo samples with different values for the transverse momentum scale (de-

fined by ΛQCD and K-factor), tuned to produce either less or more decay products

as the result of ISR and FSR. The number of detected jets directly depends on the

amount of initial or final state gluon radiation and, hence, the event kinematics may

be affected.

Parton Distribution Functions and αs For the calculation of systematic un-

certainty caused by uncertainties in the proton and antiproton PDFs we follow the

method described in [69]. The variations in PDF affect the relative contributions of

the qq̄ → tt̄ and gg → tt̄ processes as well as the momentum of the tt̄ system. The

basic idea of the method is to re-weight the events in the default MC sample using

the shifted PDF, momentum transfer Q, and momentum fractions xi of incoming

particles:

wevent =
F p

i,shifted(xi, Q) · F p̄
j,shifted(xj, Q)

F p
i,default(xi, Q) · F p̄

j,default(xj , Q)
. (5.11)

Our default signal sample is generated using CTEQ5L PDF library. We compare

the results from the default model to the CTEQ6M version of PDFs. The CTEQ6M

PDF is defined by 20 different eigenvalues which are varied up and down within

a 90% confidence interval around their default values. The individual systematic

contributions from 40 CTEQ6M PDFs are added in quadrature. Alternatively 2

MRST PDF sets [70] are utilized returning consistent results. The MRST PDFs are

also used to estimate the αs-systematic uncertainty for two values αs = 0.1125 and

αs = 0.1175 (the default value is αs = 0.115).

The systematic uncertainties are summarized in Table 5.6. For those systematics

where only one variation of the shifted source is available, we quote one number

and use its absolute value to obtain both negative and positive variations on the

signal fraction. For the systematic effects where shifted variations of the source are
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Table 5.6: Systematic uncertainties on the measured signal fraction in pretag, 0-
tag, 1-tag, and 2-tag data subsets. The overall uncertainty is obtained by adding
contributions from each source in quadrature.

Source pretag (%) 0-tag (%) 1-tag (%) 2-tags (%)
central value 41.1 21.0 74.7 98.0

Jet ET +5.82 +4.38 +2.62 +2.54
−1.68 −0.45 −9.63 −4.72

Q2 +5.05 +6.13 +0.322 +1.59
+2.23 +2.09 +3.90 −0.14

QCD (shape) −3.65 −3.13 −2.44 −0.94

QCD (norm.) −0.09 +0.12 −1.06 −1.15
±50% +0.06 +0.04 −0.29 +2.07

MC generator +0.79 +0.44 −4.78 +0.17

mt +2.63 +1.79 −0.47 +2.22
−0.99 −0.37 −6.54 −4.15

FSR +0.44 +0.26 +1.93 −4.68
−0.21 −0.07 +2.21 −2.87

ISR +0.78 +0.41 +3.45 −3.05
+0.37 +0.28 +1.48 −5.06

PDF +0.14 +0.17 +1.81 +2.80
−0.57 −0.41 −1.94 −4.86

αs +0.04 −0.01 −1.15 −0.29
Total ±6.98 ±6.02 ±10.62 ±8.95

available below and above our default value, we quote two numbers accordingly. For

the calculation of the total symmetric uncertainty we use a symmetric uncertainty

±σ for every source, where σ is either the average of the two systematic uncertainties,

if they are of the same sign, or the largest absolute value, if they are of opposite sign.

These symmetric uncertainties are then summed in quadrature, to give the overall

symmetric systematic uncertainty on the signal fraction.

In order to test the overall performance of our fitter, we also generate pseudo-
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experiments following the same pseudo-experiment procedure as the one used for the

systematic uncertainties estimation, using the default ANN output shapes as tem-

plates. We use the pretagged signal and background templates which are statistically

fluctuated using a Poisson distribution with mean corresponding to the expected num-

ber of events for R = 1. The calculation of expected signal events in the three tagged

subsamples is described in Section 5.3.1. We predict the fraction of ≈ 38% signal

events in the pretagged sample with total 107 events. The results of the measure-

ment of signal fraction for the 10,000 pseudo-experiments are shown in Figure 5.16,

along with the parabolic error and pull distribution. We conclude that the perfor-

mance of our fitter is satisfying.
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Figure 5.16: Performance of the ANN output fitter as verified by 10,000 pseudo-
experiments.
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5.1.6 Alternative Background Estimation

It was shown that the signal and background fractions in the pretagged and tagged

data subsamples can be measured using the ANN framework. There is an alternative

method for the background determination. This technique is widely used by the CDF

collaboration and it can be applied in both lepton-plus-jets and dilepton channels.

Despite of small variations in the actual implementation of this method in the two

channels, the general idea is to calculate the contribution of each possible background

component using a combination of data driven and Monte Carlo based techniques.

In the remainder of the thesis we will refer to this method as a priori or direct back-

ground estimations4. Below we give a short overview of the background estimation

in lepton-plus-jets.

In the lepton-plus-jets samples, the dominant background to tt̄ is from W produc-

tion in association with QCD radiation. Once a tagged b-jet is required, i.e. in the

1-tag and 2-tag subsamples, these backgrounds are greatly reduced, and the resid-

ual backgrounds include: W production in association with heavy-flavour jets (Wbb̄,

Wcc̄, Wc); W production in association with light-flavour jets that are mistakenly

tagged (mistags); non-W (generic QCD) events containing fake leptons or incorrectly-

measured missing energy; dibosons (WW , WZ) and single-top quark production. In

the tagged samples, we can make a direct estimate of the background rates. W+

heavy-flavour production backgrounds are estimated using the predicted fraction of

inclusive W + jets events containing heavy-flavour jets and the efficiency to tag those

jets, normalized to the observed number of W + jets events. Mistags are estimated

using determined parameterizations of the rates of incorrect tags measured in comple-

mentary data samples. Non-W rates are estimated in a similar way as it was done for

the ANN QCD background, i.e. we extrapolate the number of events with isolated

leptons and small missing energy into the signal region of large missing energy. The

4By construction, the a priori method applies only to the 1-tag and 2-tag subsamples.
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Table 5.7: Background estimates in the lepton-plus-jets sample, based on the a priori
estimate.

Pretag 0-tag 1-tag 2-tag
Estimated background undetermined undetermined 4.2 ± 0.7 0.2 ± 0.1

remaining backgrounds are estimated using Monte-Carlo-simulated processes, with

rates normalized to their Standard-Model cross sections. In total, these background

rates can be measured to a precision of about 15%, but these techniques cannot be

used to estimate the background in the 0-tag sample, where the absolute rate of W

plus jets production is difficult to predict.

The background estimates in the lepton-plus-jets samples from the a priori estima-

tion method are given in Table 5.7. These results are consistent with the ANN results

in the tagged subsamples where both techniques can be used. For 0-tag sample the

ANN gives a background measurement whereas the a priori method cannot. At the

same time, the a priori estimate provides more precise estimates in 1-tag and 2-tag

subsamples. More details on the a priori background estimation in lepton-plus-jets

channel can be found in [23, 71].

5.2 Top Quark Signal Determination in the Dilep-

ton Channel

The dominant backgrounds in the dilepton sample are Drell-Yan production (for

ee and μμ events only), fake leptons, and diboson (WW , WZ, ZZ) production.

The Drell-Yan rate is estimated using simulations that are normalized to the ob-

served rate of Z events. Fake-lepton background rates are based on measurements

in complementary, lepton-poor data samples, and diboson rates are estimated from

simulations, normalized to the Standard-Model cross sections. However, these es-
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Table 5.8: Background estimates in the dilepton sample, based on the a priori esti-
mate.

Pretag 0-tag 1-tag 2-tag
Estimated background 2.2 ± 0.6 2.0 ± 0.6 0.2 ± 0.1 < 0.01

timates do not address how the backgrounds are distributed across the subsamples

with different numbers of tagged jets. Most of the jets in the background events arise

from generic QCD radiation. To estimate the dibosons amount of background in the

tagged subsamples, we parameterize the probability to tag a generic QCD jet using

complementary jet-data samples, and apply this parameterization to the jets in dilep-

ton candidate events. We correct this estimate for the fact that most of the events

in this sample are in fact tt̄ events and not background. The resulting background

estimates are given in Table 5.8. More details on the a priori background estimation

in dilepton channel can be found in [72].

5.3 Measurement of R = B(t→Wb)
B(t→Wq)

The idea behind the measurement of the ratio of branching fractions R is to describe

the number of top-signal events we expect in our data as a function of R. By compar-

ing our predictions to the number of observed top-signal events, we extract R. This

procedure is performed simultaneously in each of the tagged subsamples in order to

further constrain the measurement. We start by discussing the determination of the

theoretically expected number of top-signal events with different b-tag multiplicities.

The comparison between the number of observed and predicted events is accomplished

by constructing a proper likelihood function.
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5.3.1 Prediction of Number of Signal Events

The ratio R is sensitive to the number of tt̄ signal events in the 0-tag, 1-tag and 2-tag

bins. This sensitivity is due to the fact that the number of tagged jets depends on

both our efficiency to tag a jet and the fractions of top quarks that decay to a b quark.

Tagged jets in tt̄ events arise from a variety of sources. By far the most likely source

is real b quarks that come from the decay t → Wb, and the efficiency to tag such a

b-type jet is εb. If R �= 1, then the decay t → Wq can also occur. If εq is the efficiency

to tag a light quark or gluon, then the efficiency to tag a jet from a top decay is

Eb(R) = Rεb + (1 − R)εq. Along with the b-jet and q-jet tagging efficiencies, we take

into account the efficiency εc to tag c-jets that come from c quarks. All the tagging

efficiency values apply to jets that are within our fiducial acceptance, i.e. the jets

must be taggable5. We use a sample of simulated Monte Carlo tt̄ events, where we can

precisely determine the flavour content of jets, to estimate the efficiencies to tag the

b, c, and q-jets. Note, that the SecVtx tagging algorithm performs differently in data

and Monte Carlo. Therefore, we account for this difference by introducing a scale

factor SF [45], which weights the MC-determined tagging efficiencies. Also, from

the same simulation sample we determine the fractions of events that have different

combinations of taggable jets from different sources, i.e. the fraction of events with i

taggable q-jets, j taggable c-jets, and k taggable b-jets defines the acceptance Fijk.

By using appropriate event combinatorics, applying the proper efficiency values

according to the types of jets that are present in a given event, and weighting by the

acceptances Fijk, we predict the efficiencies ε0, ε1, and ε2 to observe zero, one and two

tags correspondingly in a tt̄ event, as a function of R. Because of imperfect tagging

efficiencies, we may observe either less or more b-tagged jets than the expected two

b-jets in a top-signal event. Since we do not observe events with more that 3 tagged

5A jet is taggable if it has at least two tracks passed quality cuts based on the number
of hits found in CDF tracking systems. Two tracks are needed to reconstruct a secondary
vertex.
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jets, the efficiencies εi, where i ≥ 3, are not considered here. The explicit expressions

for the event tagging efficiencies εi are given below:

ε0(R) =
∑
i,j,k

Fijk(1 − εq)
i(1 − εc)

j(1 − Eb(R))k, (5.12a)

ε1(R) =
∑

i≥1,j,k

Fijk

(
i

1

)
εq(1 − εq)

i−1(1 − εc)
j(1 − Eb(R))k

+
∑

i,j≥1,k

Fijk

(
j

1

)
(1 − εq)

iεc(1 − εc)
j−1(1 − Eb(R))k

+
∑

i,j,k≥1

Fijk

(
k

1

)
(1 − εq)

i(1 − εc)
jEb(R)(1 − Eb(R))k−1, (5.12b)

ε2(R) =
∑

i≥2,j,k

Fijk

(
i

2

)
ε2
q(1 − εq)

i−2(1 − εc)
j(1 − Eb(R))k

+
∑

i,j≥2,k

Fijk

(
j

2

)
(1 − εq)

iε2
c(1 − εc)

j−2(1 − Eb(R))k

+
∑

i,j,k≥2

Fijk

(
k

2

)
(1 − εq)

i(1 − εc)
jE2

b (R)(1 − Eb(R))k−2

+
∑

i≥1,j≥1,k

Fijk

(
i

1

)(
j

1

)
εq(1 − εq)

i−1εc(1 − εc)
j−1(1 − Eb(R))k

+
∑

i≥1,j,k≥1

Fijk

(
i

1

)(
k

1

)
εq(1 − εq)

i−1(1 − εc)
jEb(R)(1 − Eb(R))k−1

+
∑

i,j≥1,k≥1

Fijk

(
j

1

)(
k

1

)
(1 − εq)

iεc(1 − εc)
j−1Eb(R)(1 − Eb(R))k−1. (5.12c)

The sums in Equations 5.12 are calculated over all taggable jets in event and the

summation indexes i, j, and k correspond to the number of taggable q-jets, c-jets,

and b-jets. All additive terms are multiplied by the acceptances Fijk presented in

Table 5.9. The values of jet tagging efficiencies and the scale factor are given in

Table 5.10. The terms in Equations 5.12 are constructed as a product of the binomial

probability distributions
(

n
k

)
(εα)k(1 − εα)n−k, where

(
n
k

)
is a binomial coefficient and

εα and (1 − εα) are the probabilities to tag and not to tag a jet coming from a
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Table 5.9: Most significant acceptances Fijk of fraction of events with i taggable q-jets,
j taggable c-jets, and k taggable b-jets as calculated from tt̄ Monte Carlo sample.

Fijk

i j k
0 1 2 3 4

0 0 0.0357 0.0055 0.0015 0.0003 0.0001
0 1 0.0237 0.0182 0.0082 0.0018 0.0003
0 2 0.0301 0.0308 0.0114 0.0012 0.0002
1 0 0.0148 0.0091 0.0035 0.0007 0.0000
1 1 0.0658 0.0558 0.0172 0.0027 0.0004
1 2 0.1267 0.0875 0.0151 0.0013 0.0003
2 0 0.0136 0.0104 0.0022 0.0002 0.0000
2 1 0.0984 0.0484 0.0070 0.0007 0.0002
2 2 0.1970 0.0457 0.0055 0.0007 0.0001

Table 5.10: Jet tagging efficiencies and the scale factor.

Parameter Central Value Uncertainty
εb 0.532 0.039
εc 0.106 0.015
εq 0.005 0.001
SF 0.820 0.060

partonic source α, correspondingly. The event tagging efficiencies for lepton-plus-jets

and dilepton samples are nearly identical for all values of R. For R = 1 their values

are shown in Table 5.11. In Figure 5.17 the dilepton efficiencies are drawn as functions

of R but in case of lepton-plus-jets the “stacked” curves are drawn instead, so that

the areas between the curves show the fraction of the tt̄ MC sample that has zero,

one, or two tags. This helps to see that at R = 0, the sample is almost completely

composed of 0-tag events; even though no b quarks are produced in that case, there

Table 5.11: Event tagging efficiencies for R = 1.

ε0 ε1 ε2

Lepton-plus-jets 0.45 ± 0.03 0.43 ± 0.02 0.12 ± 0.02
Dilepton 0.47 ± 0.03 0.43 ± 0.02 0.10 ± 0.02
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is still a small chance to tag other jets in the event. At R = 1, the fraction of a the

sample with two tags is at a maximum. The fraction of the sample with only one tag

stays fairly constant in the region of interest at R > 0.7. The measured value of R

will be most sensitive to the ratio of 0-tag to 2-tag event counts, as that ratio changes

more rapidly with R compared to other ratios of tagged events.
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Figure 5.17: The event tagging efficiencies expressed in a unity fractions as functions
of R (c.f. Equations 5.12).

Finally, the number of expected signal events with i tags can be calculated as

N tt̄
exp,i(R) = N tt̄

inc · εi(R), (5.13)

where N tt̄
inc is the inclusive number of tt̄ events before any tagging requirement, as

determined from N tt̄
inc =

∑2
i=0(Nobs,i − Nbkg

obs,i), where the Nobs,i and Nbkg
obs,i are the

numbers of total observed and measured background events with i b-tags.
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5.3.2 ANN Measurement of R in Lepton-plus-jets Channel

In this Section we present the measurement of R using only the ANN measured

number of tt̄events in the three tagged subsamples. A relatively simple likelihood

function can be constructed in this case. Since fitting the ANN data output to

the signal and background templates returns the 100% anti-correlated number of

background and signal events, we can use only the signal measurement to extract R.

The following likelihood is constructed:

L = P (Ñ tt̄
0 ; N tt̄

exp,0(R)) × P (Ñ tt̄
1 ; N tt̄

exp,1(R)) × P (Ñ tt̄
2 ; N tt̄

exp,2(R))

× G(ε̃b; εb, σεb
) × G(ε̃c; εc, σεc) × G(ε̃q; εq, σεq)

× G(Ñ tt̄
0 ; N tt̄

obs,0, σNtt̄
obs,0

) × G(Ñ tt̄
1 ; N tt̄

obs,1, σNtt̄
obs,1

) × G(Ñ tt̄
2 ; N tt̄

obs,2, σNtt̄
obs,2

) (5.14)

where P (Ñ tt̄
i ; N tt̄

exp,i) are Poisson probabilities to observe Ñ tt̄
i events when the expected

mean values are N tt̄
exp,i. G(ε̃α; εα, σεα) are gaussian smearings of the efficiencies ε̃α based

on the mean values εα and uncertainties σεα , and G(Ñ tt̄
i ; N tt̄

obs,i, σNtt̄
obs,i

) are gaussian

smearings of the number of observed signal events Ñ tt̄
i with a mean equal to the

measured values N tt̄
obs,i and a standard variation equal to the measured errors σNtt̄

obs,i
,

as presented in Table 5.5. For the likelihood maximization, we calculate the number

of inclusive tt̄ events as

N tt̄
inc =

Ñ tt̄
0 + Ñ tt̄

1 + Ñ tt̄
2

ε0 + ε1 + ε2
, (5.15)

where Ñ tt̄
i is the floating number of signal events. Note that the ε̃i are also varied

during the minimization procedure, since they depend on R. The minimization of the

negative logarithm of the L is shown in Figure 5.18 and it yields the central value of

R = 1.06+0.27
−0.24, where the uncertainty is statistical only. The systematic uncertainty on

R is calculated by generating pseudo-experiments in a way described in Section 5.1.5.

Every time we extract the number of signal events for the systematically shifted

pseudo-data, we find a new shifted value of R by minimizing the likelihood. The

Gaussian terms are removed in order to measure the systematic effect only. We obtain
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Figure 5.18: Minimization of the negative logarithmic likelihood constructed using
only ANN information in lepton-plus-jets channel. The inset shows the likelihood.
The intersections of the horizontal line lnL = 1 with the likelihood define the statis-
tical 1σ errors on R.

asymmetric shifts of the average systematically shifted R from the central value to

be +0.07
−0.16. If we conservatively assign the highest shift on one systematic direction as

a symmetric uncertainty, our systematic uncertainty on R is ±0.16.

5.3.3 Combined Measurement of R in Lepton-plus-jets and

Dilepton Channels

To improve the statistical and systematic uncertainties of our measurement, we mea-

sure R using both lepton-plus-jets and dilepton samples. For this combined R mea-

surement we follow a slightly different approach in the creation of the likelihood

function. As the a priori estimates have smaller uncertainties in the 1-tag and 2-tag

subsamples, the ANN-determined background level is used only for the 0-tag sub-

sample. The 1-tag and 2-tag statistical uncertainties in lepton-plus-jets background
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Table 5.12: Summary of observed number of events with i tags in the lepton-plus-jets
and dilepton samples, with estimates of background levels and expected event yields.
The a priori backgrounds estimates are given for R = 1. Equations 5.12 and 5.19 are
used for the calculation of the expected total number of events. The statistical and
systematic uncertainties have been combined.

Lepton-plus-jets (LJ) 0-tag 1-tag 2-tag

ANN background, Nbkg
i 62.4 ± 9.0 5.8 ± 5.2 0.1+1.0

−0.1

A priori Background, Nbkg
i undetermined 4.2 ± 0.7 0.2 ± 0.1

Total expected, Nexp,i 80.4 ± 5.2 21.5 ± 4.1 5.0 ± 1.4
Observed, Nobs,i 79 23 5

Dileptons (DIL) 0-tag 1-tag 2-tag

Background, Nbkg
i 2.0 ± 0.6 0.2 ± 0.1 < 0.01

Total expected, Nexp,i 6.1 ± 0.4 4.0 ± 0.2 0.9 ± 0.2
Observed, Nobs,i 5 4 2

measured with the ANN are larger than but consistent with the a priori estimates

shown in Table 5.12. The expected number of total events for R = 1 are also shown

in the same table. Since the fraction of signal events is not determined directly in

tagged subsamples using a priori method, the total number of observed events is

fitted to the corresponding predictions in all three subsamples.

The likelihood function consists of two independent parts describing the lepton-

plus-jets (LJ) and dilepton (DIL) samples and has the following form:

L = LLJ × LDIL × G(S̃F ; SF, σSF ), (5.16)

where each individual likelihood is a product of Poisson and Gaussian probability

functions:

LLJ =

2∏
i=0

P (Nobs,i; Nexp,i(R)) × G(Ñbkg
0 ; Nbkg

obs,0, σNbkg
obs,0

) × G(C̃1; C1, σC1), (5.17)

and

LDIL =

2∏
i=0

P (Nobs,i; Nexp,i(R)) × G(C̃2; C2, σC2) × G(C̃3; C3, σC3). (5.18)
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The Poisson terms P (Nobs,i; Nexp,i(R)) are responsible for constraining the number

of observed events Nobs,i with i tags to an expected number of events Nexp,i within

statistical uncertainty. Here,

Nexp,i = N tt̄
inc × εi + Nbkg

obs,i, (5.19)

where N tt̄
inc is the number of events in the tt̄ sample summed over all numbers of tags.

This quantity is inferred from the populations of the subsamples, and depends on R

through the event tagging efficiencies:

N tt̄
inc =

∑2
i=0(Nobs,i − Nbkg

obs,i)∑2
i=0 εi

. (5.20)

Since
∑2

i=0 εi is nearly unity for all values of R, N tt̄
inc varies very little with R, due to

the dependence of the a priori estimated background on R, and, thus, providing a

strong constraint on the measurement. Also, since we do not use the tt̄cross section

for the determination of N tt̄
inc, our measurement is independent of tt̄cross section.

Systematic uncertainties in the measurement are folded into the likelihood by mul-

tiplying the Poisson functions by a set of Gaussian functions that constrain various

parameters to their expected values with some uncertainty. We assume the uncertain-

ties on the jet tagging efficiencies εα by including an extra gaussian constrain on the

scale factor SF , and, therefore, the uncertainties are correlated across all six subsam-

ples. This constrain is incorporated as a common term in Equation 5.16, since the SF

is the same for both lepton-plus-jets and dilepton samples. The a priori uncertainty

on the lepton-plus-jets 2-tag background is anti-correlated with the uncertainty on the

corresponding 1-tag background, as the 1-tag value was obtained by subtracting the

2-tag estimates from the ≥ 1-tag estimates. The Gaussian term with anti-correlation

coefficient C1 is accounting for this uncertainty. The uncertainty on the lepton-plus-

jets 0-tag background, obtained from the ANN technique, is uncorrelated with all the

other uncertainties. In the dilepton sample, the overall background normalization
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Table 5.13: Correlation coefficients as set by a priori background estimation.

C ± σC

C1 0.00 ± 0.20
C2 0.00 ± 0.20
C2 0.00 ± 0.26

uncertainty is correlated across all the tagged subsamples (C2), whereas the uncer-

tainties on the 0-tag and 1-tag backgrounds are anti-correlated (C3). The values

of various correlation coefficients, coming from the a priori method of background

estimation, are given in Table 5.13.

The minimization of the negative logarithm of the combined likelihood function

is shown in Figure 5.19. We find the central value R = 1.12+0.27
−0.23, where the un-

certainty includes statistical and systematic contributions. The systematic uncer-

tainty is determined by minimization of L with Gaussian components removed. The

final result can be written as R = 1.12+0.21
−0.19(stat) +0.21

−0.19(syst). The dominant sys-

tematic uncertainties arise from the uncertainty on the background measurement in

the 0tag lepton-plus-jets sample (+0.14
−0.11) and from the overall normalization of the

tagging efficiencies (+0.09
−0.06). We also perform a separate minimizations of lepton-plus-

jets and dilepton likelihoods and find consistent results: The lepton-plus-jets sample

alone yields R = 1.02+0.23
−0.20 (stat) +0.21

−0.13 (syst), and the dilepton sample alone yields

R = 1.41+0.46
−0.40 (stat) +0.17

−0.13 (syst). These results are consistent with SM expectations.

We also validate the performance of the branching likelihood fitter by generating

10,000 pseudo-experiments. Each pseudo-experiment is defined by a random smear-

ing of the default likelihood inputs around their expected values. For example, the

number of observed events Nobs,i for each pseudo-experiment is determined by calcu-

lating the number of expected signal events for Rtrue = 1 and by Gaussian smearing

the measured background rates. Since the total expected rates depend on other quan-

tities such as total integrated luminosity and the scale factor, we Gaussian-vary these
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Figure 5.19: Combined likelihood for lepton-plus-jets and dilepton channels (inset)
and its doubled negative logarithm. The intersections of the horizontal line lnL = 1
with the likelihood define the total 1σ errors on R.

quantities as well. The detailed description of pseudo-experiments generation will be

provided in Section 5.4. The results of R measurement in 10,000 pseudo-experiments

for Rtrue = 1 are presented in Figure 5.20. The pull distribution P = R−Rtrue

σR
is

consistent with a Gaussian distribution having mean centered at 0 and unit standard

deviation. The correlation between the measured R and the corresponding uncer-

tainty is due to a significant contribution from the ANN measurement in the 0-tag

subsample. For those experiments where Nobs,0 is large, the returned values of R are

small. At the same time, the likelihood function tends to have a smaller width due

to significant increase in the denominator of the corresponding Poisson term.
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Figure 5.20: Performance of the branching likelihood fitter as verified by measuring
R in 10,000 pseudo-experiments with Rtrue = 1.
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5.4 Confidence Level Limits on R

In the previous Chapter we presented the measurement of R and the estimation of its

statistical and systematic uncertainties. In most measurements these uncertainties

are considered sufficient to describe the range of values the measured quantity can

take. However, in special cases where, for example, the p.d.f. of the estimator is

not gaussian or the parameter’s values must lie within physical boundaries, one can

quote an interval covering the actual true value of the measured quantity with a given

probability. In this final part of our analysis we describe the procedure aiming to set

such boundaries.

The classical way of constructing the confidence level intervals is based on Ney-

man’s procedure [73]. This technique utilizes the frequentist approach in defining the

probability of a given outcome to occur, i.e. the probability distribution function of

the measured quantity is defined after a large number of experiments has been per-

formed. According to Neyman each measurement of quantity x has to be repeated for

a given value of unknown parameter Θ for which we want to construct a confidence

interval. All possible outcomes x will be described by the p.d.f. P (x|Θ), where, gener-

ally speaking, observable x does not have to be a function of Θ. In our case we would

like to determine the probability P (R|Rtrue) that we measure R when the actual value

is Rtrue. Since we perform our experiment only once, we cannot construct P (R|Rtrue)

by repeating the measurement, instead, we generate many pseudo-experiments for a

specific Rtrue and measure R for each one of them, using our analysis machinery.

After the p.d.f.s for different Rtrue values are generated in such way, a number of

methods can be used to proceed with the construction of the confidence intervals. In

this thesis we use a method based on the likelihood ratio ordering principle. This

method is described by G. Feldman and R. Cousins in [74], where the main advan-

tage of the method is pointed: it always providing physical and non-empty6intervals.
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Below we present the pseudo-experiments generation and the confidence belts con-

struction.

During the pseudo-experiment generation process, it is essential to vary all param-

eters which determine the signal and background yields in the three tagged subsam-

ples in both lepton-plus-jets and dilepton channels. Based on the expected signal and

background yields we calculate the total pseudo-experiment yields in each subsample

and use them as input in our combined likelihood function. The block diagram of a

single pseudo-experiment simulation is shown in Figure 5.21. We start by selecting

the true value of Rtrue from interval of physical values between 0 and 1. We smear

the luminosity, L = 193 ± 11.2 pb−1, and theoretical prediction for tt̄ cross section,

σtt̄ = 5.5 ± 0.8 pb, according to their uncertainties, and based on these values, we

calculate the expected mean number of signal events in both channels, which in turn

is smeared by Poisson distribution. The fraction of 0-tag, 1-tag, and 2-tag events are

obtained by utilizing the event tagging efficiencies, ε0,1,2, computed for the chosen

value Rtrue, and smeared by the scale factor SF . The same values of ε0,1,2 and SF

are used to calculate the a priori background expectations in the lepton-plus-jets

tagged samples. The background in the lepton-plus-jets 0-tag and dilepton samples

are randomly chosen within their nominal measured values smeared by Poisson prob-

ability. Finally, we add the computed signal and background events to get the number

of pseudo-experiment data events with different tag multiplicities. These values are

fed into the combined branching likelihood function presented in Section 5.3.3. By

minimizing the negative likelihood, we measure a value R for a given initial Rtrue.

In total 10,000 pseudo-experiments are generated, for each 100 equidistant values of

Rtrue from 0 to 1.

Figure 5.22 shows the further steps we perform in order to construct the confidence

level belts. The results of pseudo-experiments generation are shown in Figure 5.22a,

6Non-empty interval is the interval which can be constructed in principle for a given
Rtrue.
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where the 2-dimensional histogram is filled with the number of pseudo-measurements

of a given Rtrue. For every Rtrue we normalize the entries across the R bins and fit

these distributions with a double bifurcated Gaussian. This way, we create a set

of likelihood distributions P (R|Rtrue) to measure R when the actual mean value is

Rtrue. The set of likelihoods is presented in Figure 5.22b and as an illustration a

single likelihood for Rtrue = 0.61 is shown in Figure 5.22c. Next, according to the

Feldman-Cousins ordering principle we calculate the likelihood ratio

r(R) =
P (R|Rtrue)

P (R|Rbest)
, (5.21)

where Rbest is the value of R that maximizes the likelihood P (R|Rtrue) for a specific

Rtrue. The likelihood ratios for different values of Rtrue are plotted in Figure 5.22d

and Figure 5.22e shows a single likelihood ratio for Rtrue = 0.61. The likelihood ratio

functions r(R) are used to find intervals [Rmin, Rmax] for each Rtrue, satisfying the

following two conditions: First, r(Rmin) = r(Rmax), and second, the area under the

corresponding likelihood function P (R|Rtrue) within [Rmin, Rmax] must be equal to

some desired probability. For example, the vertical lines in Figure 5.22e define the

interval [Rmin, Rmax], such that the 95% of the area under the likelihood function is

constrained within this interval. The R-intervals for all values of Rtrue result to 2-

dimensional bands shown in Figure 5.22f, where the 68% and 90% acceptance intervals

are drawn on top of the 95% intervals. Finally, Figure 5.23 can be used to set the

desired confidence intervals on any measured values of R by drawing a vertical line

at the central value of R and finding the points where this line intersects the bands’

boundaries. If the line intersects the boundary of a coloured band only once, then

only a lower or upper limit can be set, whereas if the line has two intersections with

a band’s boundaries, then a two-sided confidence level interval can be set. For our

case where R = 1.12, we find lower limits R > 0.61, R > 0.69, and R > 0.84 at 95%,

90%, and 68% CL respectively.
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Figure 5.21: Block-diagram showing the general procedure of pseudo-experiment gen-
eration. See text for details.
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Figure 5.22: Step-by-step explanation of the construction of the Feldman-Cousins
confidence bands. See text for details.
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Figure 5.23: Confidence level bands constructed following the Feldman-Cousins tech-
nique. The innermost, middle, and outermost bands can be used to set the 68%, 90%,
and 95% CL intervals or limits correspondingly.
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Chapter 6

Summary and Conclusions

We have presented the measurement of the ratio of top quark branching fractions

R = B(t→Wb)
B(t→Wq)

, which shows how often the top quark decays to a bottom quark com-

pared to any possible quark-channel decay. According to the Standard Model, with

the assumption of three fundamental particle generations, and given CKM matrix

unitarity, the value of R is expected to be very close to unity: R > 0.998 at 90% CL.

Any deviation of the measured R from unity would indicate that one or more of our

SM assumptions are not correct. For example, it would suggest a fourth generation

of quarks, or a non-SM top decay, or a non-SM background to top pair production.

For this measurement we used a part of the data sample collected at CDF during

the Run II period. Only events when all of the CDF subdetectors including SVX

functioned properly are considered here, which corresponds to a total integrated lu-

minosity of 162.1 pb−1. The CDF-detected events are produced from the collisions

of proton and antiproton beams accelerated by the Tevatron accelerator at center-of-

mass energy
√

s = 1.96 TeV. At these energies top quarks are produced mainly in

tt̄ pairs via strong interactions. The top quark has an extremely short lifetime and

decays weakly to a W boson and a quark q. Depending on whether the produced
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W bosons decay hadronically or leptonically, the signal events can be arranged in

three categories with respect to the expected final signatures: dilepton, lepton-plus-

jets, and all-jets. In this analysis we performed the measurement of R using the

lepton-plus-jets and dilepton channels.

The probability of the top quark to decay into bottom quark is measured from

the relative rates of tt̄ events with different number of b-jets. To identify the jets that

originated from b quarks, we use the secondary vertex algorithm based on the long

lifetime of B hadrons. In the data we observe events with 0, 1, or 2 b-tagged jets

and we measure the signal fraction in these subsets. In principle, any two tagging

rates could be used to determine the R uniquely but if all three values are used

simultaneously the sensetivity of the measurement increases. The expected signal

event tagging rates are predicted as a function of R, background rates, and estimation

of jet b-tagging efficiencies from pure signal MC samples. The predicted number of

signal events is compared with the observed ones by means of a likelihood function in

which the unknown ratio R is allowed to vary. The maximum value of the likelihood

corresponds to the best match between observed and predicted number of events and,

therefore, to the most probable value of R.

In the lepton-plus-jets channel the background contamination in the selected

data events is determined by using the Artificial Neural Network technique. This

method allows us to combine multiple kinematic variables in order to enhance signal-

backround separation. Only the best kinematic variables reflecting the difference in

energy distribution and shape between signal and background events are selected.

After training and selection of the most optimal ANN, a binned likelihood fit to

the ANN output distribution is performed in all subsamples yielding the fraction of

signal and background events. The achieved level of precision is comparable to the

traditional background reduction performed on a sample with at least one secondary

vertex. A more precise background estimation in the tagged samples can be achieved
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with an a priori method utilizing the data-driven and simulation-based techniques.

The dominant backgrounds to tt̄ events are W production in association with heavy-

flavour jets (Wbb̄, Wcc̄, Wc) and non-W events containing fake leptons or incorrectly

measured missing energy. Smaller contributions to the background come from dibo-

son (WW , WZ), single top quark production, and associative production of W with

light quark that are mistakenly tagged (“mistags”). While the a priori method is

good for estimating the background in the tagged samples, it cannot be applied to

the 0-tag sample where the total rate of W + jets production is difficult to predict.

The dominant backgrounds in the dilepton sample are Drell-Yan production, fake

leptons, and diboson (WW , WZ, ZZ) events. The background rates are estimated

either from using complementary data samples or from simulations normalized to

the standard-model cross sections. The fraction of tagged events is based on the

probability to tag a generic QCD jet in the complementary data sample, since most

of the jets in dilepton background events are arise from generic QCD radiation.

The likelihood function used to determine the most consistent with the observa-

tions value of R is a product of Poisson and Gaussian terms. The Poisson returns

the probability to observe the measured number of events given an expected number

of events, and the Gaussian reflects the uncertainties on measured quantities. In the

lepton-plus-jets channel we can use information from ANN alone, which results in the

following value:

R = 1.06+0.27
−0.24 (stat) ± 0.16(syst). (6.1)

Replacing the tagged ANN background estimations with the a priori ones, we get:

R = 1.02+0.23
−0.20 (stat) +0.21

−0.13 (syst). (6.2)

Dilepton sample alone yields:

R = 1.41+0.46
−0.40 (stat) +0.17

−0.13 (syst). (6.3)
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Finally, combining lepton-plus-jets and dilepton information, and using the a priori

method for the 1-tag and 2-tag letpon-plus-jets samples, we measure:

R = 1.12+0.21
−0.19 (stat) +0.17

−0.13 (syst). (6.4)

The ratio R can only take on physical values between zero and unity. Using the

combined measurement (Equation 6.4), we set a limit on R following the prescription

proposed by Feldman and Cousins. After generating ensemles of pseudo-experiments

for different values of Rtrue and using the likelihood-ratio ordering principle, we find

that

R > 0.61 at the 95% CL (6.5)

From the last relation a lower limit on Vtb can be also set, using the CKM matrix

unitarity and assuming only three quark generations. The result is

Vtb > 0.78 at the 95% CL (6.6)

The results presented in Equations 6.4, 6.5, and 6.6 can be compared with the

corresponding measurements accomplished at CDF Run I, which are:

R = 0.94+0.26
−0.21 (stat.) +0.17

−0.12 (syst.),

R > 0.56 at 95% CL

Vtb > 0.75 at 95% CL

All of our current measurements are consistent with the Standard Model predic-

tions. The lower limits on R and Vtb are the strongest constraints on these quantities

placed to date. At the moment the results are dominated by statistical uncertainties.

The systematic uncertainties are expected to reduce further with future improve-

ments in the jet energy calibration in the data and MC background simulations. In

Appendix C the reader can find a study on the prediction of future improvements of

these lower limits as functions of the integrated luminosity and two extreme scenarios

of systematic uncertainty development.
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Appendix A

Width of the Top Quark Weak

Decay

Let us consider the weak decay of the top quark t with mass mt and momentum pt

into a W boson and a quark q with masses and momenta correspondingly equal to

mW , mq and pW and pq respectively. The simplest possible Feynman diagram for

such decay is shown in Figure A.1. Due to the conservation of the total charge, the

q quark has to be any “down” type quark (q ≡ d, s, b) with a charge −e/3. This

interaction is represented by three terms in the Standard Model Lagrangian of the

�t(mt,pt)

W+(mW ,pW )

q(mq,pq)

Figure A.1: Feynman diagram of the top quark weak decay.
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form

L ⊃ ig

2
√

2
VmnūmW+

μ γμ(1 + γ5)vn + h.c., (A.1)

where indexes m = t and n = q = d, s, b, and Vmn is an element of the CKM quark-

mixing matrix.

In order to estimate the width Γ of the top quark decay, we can use the standard

decay formula:

Γ(t → W+q) =
(2π)4

2mt

∫
|M|2dΦ, (A.2)

where |M|2 is the squared amplitude of the matrix element corresponding to t → W+b

decay and averaged over the initial and final states polarizations. The integration is

carried out over a 6-dimensional phase space with the dΦ element given by

dΦ = δ4(pt − pW − pq)
d3pWd3pq

(2π)6 · 2EW · 2Eq
, (A.3)

where pt ≡ (−Et;pt), pW ≡ (−EW ;pW ), and pq ≡ (−Eq;pq) are the four-vectors of

the corresponding particles. Applying the Feynman rules for the diagram shown in

Figure A.1 we can write the matrix element as:

M = −eW ū(pq, σq)ε
∗
μ(pW , λW )Vtq [γμ(1 + γ5)] v(pt, σt), (A.4)

where spinors u and v describe the fermions with momentum p and spin σ, and εμ is a

four-vector corresponding to a massive spin-one W boson with polarization λW . Now

we have to square the matrix element and sum over the initial and final polarizations

since we do not measure spins in the detector:

|M|2 =

+1∑
λW =−1

+ 1
2∑

σt=− 1
2

+ 1
2∑

σq=− 1
2

|M|2

= e2
W |Vtq|2

∑
λW

εμε∗ν
∑
σt

∑
σq

[ūγμ(1 + γ5)v] [ūγμ(1 + γ5)v]∗ . (A.5)

The first sum can be calculated using the completeness relation for polarization vec-

tors: ∑
λW

εμε∗ν = ημν +
pWμpWν

m2
W

, (A.6)
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where in the last expression we used the usual Lorentz metric ημν = Diag[− + ++].

The summation over the fermion spinors can be evaluated as a trace over the Dirac

matrices using the following relations:

ūGv =
∑
ij

ūiGijvj = Tr [G(uv̄)] , (A.7)

where G is a set of γ-matrices and (uv̄) stands for the two-component matrix which

elements are given by (uv̄)ij = uiv̄j . Thus, we get:

∑
σt

∑
σq

[ūγμ(1 + γ5)v] [ūγν(1 + γ5)v]∗

= −
∑
σt,σq

[ūγμ(1 + γ5)v] [v̄γν(1 + γ5)u]

= −
∑
σt,σq

Tr [γμ(1 + γ5)vv̄γν(1 + γ5)uū]

= Tr
[
γμ(1 + γ5)(mt − /pt

)γν(1 + γ5)(mq − /pq
)
]
. (A.8)

The last line in this expression is obtained by substituting the sums over the fermion

spins with the identity:

+ 1
2∑

σ=− 1
2

u(p, σ)ū(p, σ) = m − γμpμ ≡ m − /p. (A.9)

In order to calculate the trace in Equation A.8 we use some common relations involv-

ing the Dirac matrices:

1. γ5γ
μ = −γμγ5;

2. Tr[γμ1 . . . γμn ] = 0 and Tr[γ5γ
μ1 . . . γμn ] = 0, if n is odd;

3. Tr[γμγνγλγρ] = 4(ημνηλρ − ημληνρ + ημρηνλ);

4. Tr[γ5γ
μγνγλγρ] = 4iεμνλρ.
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Now with the rules listed above in hand, we transform the trace into the following

expression:

Tr
[
γμ(1 + γ5)(mt − /pt

)γν(1 + γ5)(mq − /pq
)
]

= Tr
[
γμ(1 + γ5)γ

ν(1 + γ5)mtmq − γμ(1 + γ5)/pt
γν(1 + γ5)/pq

]
= Tr
[
γμ(1 − γ2

5)γ
νmtmq − γμ(1 + γ5)

2
/pt

γν
/pq

]
= 8(ημληνρ − ημνηλρ + ημρηλν)ptλpqρ + 8iεμνλρptλpqρ. (A.10)

Finally, combining Equations A.8 and A.10, and substituting the resulting expres-

sion along with Equation A.6 into the expression for the squared matrix element

(Equation A.5), we obtain:

|M|2 = 8e2
W |Vtq|2

(
ημν +

pWμpWν

m2
W

)(
pμ

t p
ν
q + pν

t p
μ
q − ημνpt · pq

)
= 8e2

W |Vtq|2
(
−pq · pt + 2

(pq · pW )(pt · pW )

m2
W

)
(A.11)

= 8e2
W |Vtq|2

(
Eqmt + 2

EW mt(EqEW + |pq|2)
m2

W

)
. (A.12)

In the last line of Equation A.12 we assumed that the system is at rest and the four-

vector pt = (mt; 0). The event kinematics in that case is defined by the following

relations:

mt = Eq + Ew =
√

m2
q + |pq|2 +

√
m2

W + |pW |2, (A.13)

|pq| = −|pW | ≡ |p|. (A.14)

Solving the system of the above equations we obtain for Eq, EW , and |p|:

Eq =
m2

t + m2
q − m2

W

2mt
, (A.15)

EW =
m2

t − m2
q + m2

W

2mt
, (A.16)

|p|2 =
[(mq + mW )2 − m2

t ] [(mq − mW )2 − m2
t ]

4m2
t

. (A.17)
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The expression for the top quark decay width given by Equation A.2 now can be

written in explicit form:

Γ =
(2π)4

2mt

∫
|M|2δ(mt − Eq − EW )δ3(pW + pq)

d3pWd3pq

(2π)6 · 4EWEq

=
(2π)4

2mt

∫
|M|2δ(mt − Eq − EW )

4π|p|2d|p|
(2π)6 · 4EW Eq

=
(2π)4

2mt

∫
|M|2δ(|p′|2 − |p|2) EW Eq

(EW + Eq)

4π|p′|d|p′|2
(2π)6 · 2 · 4EW Eq

=
(2π)4

2mt

{
8e2

W |Vtq|2
(

Eqmt + 2
EWmt(EqEW + |p|2)

m2
W

)}
4π|p|

(2π)6 · 8mt

(A.18)

≡ |Vtq|2Φ(mq). (A.19)

The second line in this chain of identities was derived by taking the integral over

the 3-dimensional delta function corresponding to the condition in Equation A.14.

In going from the second to the third lines we used the fact that E is a function of

|p|, and, therefore, applied the property of the Dirac’s delta function of a function:

δ(g(|p′|2)) = δ(|p′|2−|p|2)
g′(|p|) . The line before the last one simply employs the fact that∫

f(x)δ(x − a)dx = f(a). One can note that the contributions from the partial

top quark decay widths are proportional to the |Vtq|2 with some invariant coefficient

Φ(mq).

Let us assume the following numerical values for the quantities in Equation A.19:

mW = 80.4 GeV, mt = 172.7 GeV, mb = 4.2 GeV, ms = 0.1 GeV, md = 0.006

GeV, and e2
W =

g2
2

(2
√

2)2
= πα2

2
= 0.053. It is natural to neglect the mass of the final

state quark due to its small value comparing to the W boson and top quark masses.

Now, calculating the identities in Equation A.17 and substituting them into the final

expression for the top partial decay width we obtain:

Γ(t → W+q) = |Vtq|2Φ(mq), (A.20)

where Φ(mb) ≈ Φ(ms) ≈ Φ(md) ≈ 1.52 GeV. (A.21)

An explicit calculation, i.e. without neglecting the mass of the light quark q, of the
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top decay width gives the difference in Φ(mb) and Φ(md,s) values less than 0.2%.

Under the restriction that only 3 generations exist, the branching ratio of the top

quark decaying into the bottom quark is:

R(t → W+b) =
Γ(t → W+b)∑

q=b,s,d

Γ(t → W+q)
=

|Vtb|2
|Vtd|2 + |Vts|2 + |Vtb|2 . (A.22)

The denominator in this expression equals unity, as follows from the unitarity of the

CKM matrix V [75].

Up to this moment, we did not assume any particular value for |Vtq|. These values

can be estimated from the unitarity of the CKM matrix, using the identity V †V = 1.

The latter is equivalent to the system of nine equations, where the relevant three are:

|Vud|2 + |Vcd|2 + |Vtd|2 = 1, (A.23)

|Vus|2 + |Vcs|2 + |Vts|2 = 1, (A.24)

|Vub|2 + |Vcb|2 + |Vtb|2 = 1. (A.25)

The elements |Vuq| and |Vcq| are measured with a good precision [10], therefore, the

above conditions give |Vtd| = 0.009, |Vts| = 0.040, and |Vtb| = 0.9992. Since the

partial width decay is proportional to |Vtq|2, we should expect top quark decay into

the bottom quark almost 100% of the time.

Another interesting property of the top quark can be concluded from the expected

value of |Vtb|2 ≈ 1. In that case, the width Γ(t → W+b) ≈ 1.5 GeV converts into an

extremely short lifetime

τ =
�

Γ
≈ 4.1 × 10−25 sec. (A.26)

Such a short lifetime leads to almost immediate decay of the top quark before any

top-flavored hadrons can be formed.
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Method of Maximum Likelihood

The maximum likelihood method was first introduced by R. A. Fisher in 1922. This

method is commonly used in experimental science where one needs to estimate ei-

ther one or a set of several unknown parameters describing a given observation.

Let us denote a set of N unknown parameters defining an expected observation

as Θ ≡ (Θ1, . . . , ΘN) and a set of K independent measurements of quantity x as

x ≡ (x1, . . . , xK). Further, let us assume that the actually measured values x are

coming from an underlying distributions with a known probability density function

(p.d.f.) f = f(x|Θ). The joint p.d.f. of all independent measurements is called the

likelihood function and can be written as

L(Θ) =
K∏

i=1

f(xi|Θ). (B.1)

In this form the likelihood function L(Θ) is understood to be a function of unknown

parameters Θ which values Θ̂ ≡ (Θ̂1, . . . , Θ̂N) are called the best maximum likelihood

estimators if they maximize the likelihood: Lmax = L
∣∣
Θ=Θ̂

.

Sometimes, it is the case that an observable phenomena can require measurements

of several independent quantities x(1), x(2), . . . , x(M) in which case the final likelihood
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function is just a product of M independent likelihoods,

L = L(1) · L(2) · . . . · L(M). (B.2)

The maximum likelihood estimators Θ̂ can be found by solving the system of

likelihood equations

∂L

∂Θi
= 0, i = 1, . . . , N (B.3)

or, most commonly used in practice, by finding the maximum likelihood value Lmax

numerically. Instead of locating maximum of L one can equally search for a minimum

of a negative logarithm of L and obtain the same parameter values Θ̂, i.e. L′
min =

− ln Lmax = − ln L
∣∣
Θ=Θ̂

. This transformation is especially useful when p.d.f.’s are

of exponential form as, for instance, in the Poisson and Gaussian distributions. In

general case, the probability density functions must be normalizable for all possible

values of free parameters. If the observable x is in the range xmin ≤ x ≤ xmax then

∫ xmax

xmin

f(x|Θ)dx = A(Θ), (B.4)

where A(Θ) is required to take only finite values in order for a numerical minimization

procedure to converge, otherwise free parameters may run away to infinity. Actually,

any normalization factor in p.d.f. can be dropped completely if it depends only on

measured values and constants but not on the variable parameters Θi. This can be

also seen from the fact that taking logarithm of L transforms any multiplicative term

into an additive one, causing shift in L′
min absolute value and not affecting the location

of the minimum. The consequence of such arbitrary normalization is the meaningless

of a likelihood value at the solution point. In contrary, the difference in L′ values

between two points in parameter space is important, especially for the estimation of

the parameter’s errors.
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B.1 Parameter’s Uncertainty

The parameters’ errors can be estimated by calculating the error matrix which is

also called the covariant matrix. The covariant matrix V is a N × N matrix which

elements are defined for each pair of all parameters Θ as

Vij =

∫ ∞

−∞

∫ ∞

−∞
(Θi − Θ̄i)(Θj − Θ̄j)L(Θi, Θj)dΘidΘj. (B.5)

The Equation B.5 is a standard definition of the first central moment of parameters Θi

and Θj about their mean values Θ̄i and Θ̄j and a joint probability function L(Θi, Θj).

In the special case where j = i, the covariance Vii is equal to the usual variance

σii ≡ σ2
i of variable parameter Θi.

A reasonable approximation of a general case can be made if marginal p.d.f.’s for

each Θ have a gaussian form. In that case, the shape of the likelihood function L is

also very close to a Gaussian and ln L is a hyper-parabola. Such an approximation

makes an estimation of the covariant matrix elements quite simple. In case of only

one parameter we have:

L = c exp

(
−1

2

(Θ − Θ̄)2

σ2

)
(B.6)

where c is some constant which does not depend on Θ. From this formula we can

write for the variance:

(σ2)−1 = −∂2 ln L

∂2Θ
. (B.7)

The last two equations can be easily generalized to represent a multidimensional case

where L depends on a vector of N parameters Θ and “multidimensional variance” is

represented by the covariant matrix V :

L = c exp

(
−1

2
(Θ − Θ̄)TV −1(Θ − Θ̄)

)
, (B.8)

from where

V −1
ij =

∂ ln L

∂Θi∂Θj
. (B.9)
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One should not forget that the last equality is an approximation, since, in general, L

might not have a gaussian form.

Let us consider one dimensional case again where − ln L(Θ) = −1
2

(Θ−Θ̄)2

σ2 is a

simple parabola, and let us assume that the − ln L(Θ) was minimized. The best es-

timators for the true parameter’s value Θ̄ was found to be Θ̂ such that − ln Lmax =

− ln L(Θ)
∣∣
Θ=Θ̂

. We are interested in determining the uncertainty ±ΔΘ on the mea-

sured parameter’s value Θ̂ numerically. The former can be expressed in terms of s

standard deviation errors from the mean value:

±ΔΘ = ±sσ = Θ − Θ̂. (B.10)

By varying Θ in each direction by ±ΔΘ from the minimum, the variation of ln L can

be written in the following form:

lnL
∣∣
Θ=Θ̂±ΔΘ

− ln L
∣∣
Θ=Θ̂

= ln L(Θ) − lnLmax = −s2

2
. (B.11)

Therefore, determining the uncertainties on Θ̂ is equivalent to finding the intersections

of − ln L with a straight line shifted up by s2

2
from the minimum.

In multidimensional case the situation is similar except that − ln L(Θ) is hyper-

parabola and parameters’ uncertainties are defined by the N -dimensional ellipsoids

(Θ − Θ̂)T V −1(Θ − Θ̂) = s2.

B.2 Likelihood for Normal Distribution

The normal distribution is also commonly known as the Gaussian distribution. It is

interpreted as a probability to measure a true value μ of some random variable x with

a known variance σ2. The probability function is given by the formula:

G(x; μ, σ) =
1

σ
√

2π
e−

(x−μ)2

2σ2 . (B.12)
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Suppose we perform K independent measurements of x, (x1, . . . , xK), then it can be

shown [76] that unbiased estimators for μ and σ are defined as

μ̂ =

∑K
i=1 xi

K
, (B.13)

σ̂ =

√√√√ 1

N − 1

K∑
i=1

(xi − μ)2. (B.14)

The true values μ and σ can be also estimated using the method of maximum likeli-

hood. The joint likelihood function of K measurements has the form:

L =
1

σ
√

2π
e−

(x1−μ)2

2σ2 · . . . · 1

σ
√

2π
e−

(xK−μ)2

2σ2 =
1

(σ
√

2π)K
e−

PK
i=1

(xi−μ)2

2σ2 , (B.15)

and taking logarithm of L yields, it is transformed to:

ln L = −K

2
ln(2π) − K ln σ −

K∑
i=1

(xi − μ)2

2σ2
. (B.16)

In order to calculate the maximum likelihood estimators we take partial derivatives

of ln L with respect to each parameter and set the equations equal to 0:

∂ ln L

∂μ
=

1

σ2

K∑
i=1

(xi − μ) = 0, (B.17)

∂ ln L

∂σ
= −K

σ
+

1

σ3

K∑
i=1

(xi − μ) = 0, (B.18)

from where

μ̂ =

∑K
i=1 xi

K
, (B.19)

σ̂ =

√√√√ 1

N

K∑
i=1

(xi − μ)2. (B.20)

Note that analytical determination of the maximum of L returns the same estimate

for μ as in Equation B.13 but the expression for σ̂ differs from the unbiased one given

by Equation B.14. This difference is negligible if K is a large number.
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There is at least one more type of practical cases where the Gaussian distribution

can appear in a likelihood function. In such cases the normal distribution with known

mean μ and variance σ is used as a constraint on a corresponding model parameter.

This is opposite to the above example where we estimated the mean and the variance

assuming that the measurements are distributed according to the normal probability.

B.3 Likelihood for Poisson Distribution

The Poisson distribution is useful in those cases where we need to know the probability

of selecting n rare events while knowing the prediction for the expected mean number

of selected events. The number of such expected events can be written as λ ≡ Np,

where N is a large number of total trials and p is a probability of choosing an event,

which value is small. Mathematically the Poisson probability is given by the limit of

binomial distribution where N → ∞ and p = λ
N

→ 0:

P (n; λ) = lim
N→∞
p= λ

N

N !

n!(N − n)!
pn(1 − p)N−n

= lim
N→∞

N !

n!(N − n)!

(
λ

N

)n(
1 − λ

N

)N−n

= lim
N→∞

N(N − 1) · . . . · (N − n + 1)

Nn︸ ︷︷ ︸
1

λn

n!

(
1 − λ

N

)N

︸ ︷︷ ︸
e−λ

(
1 − λ

N

)−n

︸ ︷︷ ︸
1

=
λne−λ

n!
. (B.21)

In those experiments where we do not know the a priori value of λ, it can be

estimated by solving the likelihood Equations B.3. Assuming that the measurements

of x are distributed according to the Poisson probability, the joint likelihood function

is given by

L =
e−λλx1

x1!
· . . . · e−λλxK

xK !
=

e−Kλλ
P

i xi

x1! · . . . · xK !
. (B.22)
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It is easier to take logarithm of L and calculate an extremum for ln L, in order to

obtain the best estimator for λ,

ln L = −nλ + lnλ
K∑

i=1

xi − ln

(
K∏

i=1

xi!

)
. (B.23)

Finally, solving for λ̂, the equation

∂ ln L

∂λ
= −n +

∑K
i=1 xi

ln λ
= 0, (B.24)

returns for λ̂

λ̂ =

∑K
i=1 xi

n
. (B.25)

This result indicates that the set of given measurements (x1, . . . , xK) will be best

described by the Poisson distribution with a λ equal to their mean value which, by

the way, does not have to be integer.

In conclusion, an important note can be made on the Poisson distribution. Al-

though, it is primarily defined for processes involving integer number of events n, we

can calculate the Poisson probability for any positive real number. In that case the

factorial in the denominator is replaces by the gamma function extending the Poisson

distribution to the class of non-integer arguments:

n! ≡ Γ(n + 1) ≡
∫ ∞

0

e−ttndt. (B.26)

B.4 Binned Maximum Likelihood Fit

Let us again consider the measurements (x1, . . . , xK) of some quantity x distributed

among M bins with a fixed width w = xmax−xmin

M
. A relevant histogram will be

filled with exactly K events in total and the number of events in each bin will be

(n1, . . . , nM), where nb for the bth bin is given by

nb =

K∑
i=1

∫ xmin+wb

xmin+w(b−1)

δ(x − xi)dx. (B.27)
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One can think of each individual measurement as a successfully selected event if its

value falls inside the bin b. In that case, the probability of measuring nb events

given an expected number of events fb in the same bin is defined by the binomial

distribution:

P (nb|K) = Cnb
K

(
fb

K

)nb
(

1 − fb

K

)K−nb

, (B.28)

where Cnb
K = K!

nb!(K−nb)!
is a binomial coefficient. According to our hypothesis all

measurements come from the expected distribution described by a p.d.f. f(x|Θ),

thus the number of expected events fb can be estimated by the value of the p.d.f. at

the center of a bth bin which is given by fb ≡ fb(Θ) = f(xmin + w(b − 1
2
)|Θ). As it

follows from its definition, this value does not at all need to be an integer.

In the cases where the registered events are rare, i.e. the probability of successes

is small, the conditional probability given by Equation (B.28) can be approximated

with a good precision by a Poisson distribution:

P (nb) =
fnb

b e−fb

nb!
. (B.29)

The likelihood function is given by the joint probability calculated over all bins in the

histogram as:

L(Θ) =

M∏
b=1

fnb
b (Θ)e−fb(Θ)

nb!
. (B.30)

Taking logarithm of this product and multiplying both sides of this equation by −1

we obtain the minimization function:

Λ ≡ − ln L(Θ) = −
M∑

b=1

(nb ln fb(Θ) − fb(Θ)) +

M∑
b=1

ln(nb!), (B.31)

where the last sum can be dropped because it does not depend on Θ.

An interesting conclusion can be made on Λ: If we substitute the nb and return
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back to the exact expression for f(x|Θ) instead of fb in the last equation, we obtain:

Λ ≈ −
M∑

b=1

(
K∑

i=1

∫ xmin+wb

xmin+w(b−1)

δ(x − xi)dx ln fb(Θ)

)
−

M∑
b=1

fb(Θ)

= −
K∑

i=1

(
M∑

b=1

∫ xmin+wb

xmin+w(b−1)

δ(x − xi) ln f(x|Θ)dx

)
− N(Θ)

= −
K∑

i=1

∫ xmax

xmin

ln f(x|Θ)δ(x − xi)dx − N(Θ)

= −
K∑

i=1

ln f(xi|Θ) − N(Θ), (B.32)

where N(Θ) can be considered as a normalization of f(x|Θ). Introducing normalized

likelihood function f ′(x|Θ) = f(x|Θ)
N(Θ)

, Equation B.32 can be rewritten as:

Λ(Θ) ≈
K∑

i=1

ln f ′(xi|Θ), (B.33)

which is equivalent to the definition of unbinned likelihood function given by Equa-

tion B.1. From the comparison of the binned and unbinned likelihood functions one

may conclude that both approaches will give us consistent results. Decrease in the

bins’ width will lead to a better agreement between binned and unbinned likelihood

functions.
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Predictions for R and Vtb Lower

Limits at Higher Luminosities

An interesting prediction can be made on lower limits of R, and hence Vtb, as functions

of luminosity. A study was performed using the same likelihood function as for the

combined lepton-plus-jets and dilepton measurement of R (see Section 5.3). This

investigation is not intented to provide a scrutinized examination of the problem but

rather give a general idea of what future measurements of the top branching fractions

may look like. Therefore, a number of assumptions are made. We begin with the

assumption that the number of signal and background events scales linearly with the

integrated luminosity. Also, we assume that the standard deviations of the established

lower limits on R are solely functions of the uncertainties of the measured value of R

itself.

Ideally, one would need to generate a large set of pseudo-experiments for different

values of Rtrue and a given luminosity value using the same procedure as in the

construction of the Feldman-Cousins CL intervals (see Section 5.4). Given the level

of assumptions, we limit ourselves to only three “ideal” pseudo-experiments for every

170



Appendix C. Predictions for R and Vtb

luminosity value. Here “ideal” means that calculated number of expected signal and

background events are used directly as number of “observed” events, i.e. without

being fluctuated statistically. The selected luminosity values are increased with a step

of
√

2 between 140 pb−1 and 20 fb−1. The three pseudo-experiments are implemented

for three different values of Rtrue, where one of them represents the expected central

value of Rtrue = 1 and the other two are calculated at Rtrue plus or minus one standard

deviation of the central measurement. In order to calculate the central lower limit on

R along with the standard deviations on it, we proceed in the following steps:

1. For a given luminosity and a nominal value of Rtrue = 1 we calculate the ex-

pected number of events with i b-tags, Nexp,i.

2. The pseudo-experiment is simulated by simply assigning Nexp,i to the number

of pseudo-measured events Nobs,i.

3. The numbers of observed events Nobs,i along with the other parameters are used

as input in our combined likelihood function and the first pseudo-measurement

of R is performed by maximizing it. We call the measured value Rc and the

uncertainties ±σRc on Rc are calculated from the shape of the likelihood function

as usual.

4. Two more pseudo-experiments are simulated for the same luminosity but using

R± = Rc ± σRc as Rtrue.

5. The three separate likelihoods corresponding to the three different Rtrue =

Rc, R± are integrated to find 95% Bayesean lower credibility interval for the

given luminosity. The likelihood with nominal Rtrue value provides the central

lower limit on R, whereas the other two correspond to one standard deviation

from the central value.

The lower limit on R and its standard deviations are calculated for all desired
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Figure C.1: Future prediction for the measurement of the lower limit on R and Vtb

as functions of integrated luminosity. The solid lines show the expected central lower
limit and dotted lines correspond to the ±1σ deviations for this value. The lower three
lines represent the case when the systematic uncertainty remains at the current level
and the upper three lines reflect the case when the systematic uncertainty decreases
along with the statistical one.

values of luminosity which can be viewed as functions of σRc . This parametrization

is essential if one wants to see the variation of the lower limits under either of the

two following cases. First, when the total error includes the systematic uncertainty

on the real measurement σsyst
R = +0.17

−0.13 which is added to the σRc in quadrature as

a constant term, and, second, when the systematic uncertainty is scaled down by

the ratio
σRc

σstat
R

, where σstat
R = +0.21

−0.19 is the statistical uncertainty on the current real

measurement. Given this, we plot three curves for each case as shown in Figure C.1a.

Further, assuming existence of only three quark generations, we plot lower limits on

Vtb as shown in Figure C.1b by merely taking the square root of the R curves.
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Nachr. 1900, 253-297, Vandenhoeck & Ruprecht, Göttingen. Translated for the
Bulletin, with the author’s permission, by Dr. Mary Winston Newson, 1902.

[51] V. I. Arnold. Representation of continuous functions of three variables by the
superposition of continuous functions of two variables. Transl., Ser. 2, Am. Math.
Soc., 28:61–147, 1963. Translation from Mat. Sb., N. Ser. 48(90), 3-74 (1959).

[52] A. N. Kolmogorov. On the representation of continuous functions of several vari-
ables by superpositions of continuous functions of a smaller number of variables.
Am. Math. Soc., Transl., II. Ser., 17:369–373, 1956. Translation from Dokl.
Akad. Nauk SSSR 108, 179-182 (1956).

[53] A. N. Kolmogorov. On the representation of continuous functions of many vari-
ables by superposition of continuous functions of one variable and addition.
Transl., Ser. 2, Am. Math. Soc., 28:55–59, 1963. Translation from Dokl. Akad.
Nauk SSSR 114, 953-956 (1957).

[54] White Hornick, Stinchcombe. Multilayer feedforward networks are universal
approximators. Neural Networks, v. 2, #5, 1989.

176



References

[55] Cybenko. Approximation by superpositions of a sigmoidal function. Mathemat-
ical Control Signals Systems, 2, 1989.

[56] Funahashi. On the approximate realization of continuous mappings by neural
networks. Neural Networks, v. 2, #3, 1989.

[57] Maintainer: saswss@unx.sas.com (W. S. Sarle). Neural Network FAQ.
See also ftp://ftp.sas.com/pub/neural/FAQ.html.

[58] A. Zell et al. SNNS: Stuttgart Neural Network Simulator. User Manual, V4.2.
See also http://www-ra.informatik.uni-tuebingen.de/SNNS/.

[59] R. Brun and F. Rademakers. ROOT — An Object Oriented Data Analysis
Framework. Proceedings AIHENP’96 Workshop, Lausanne, Sep. 1996, Nucl.
Inst. & Meth. in Phys. Res. A 389 (1997) 81-86.
See also http://root.cern.ch.

[60] Cdfsim software description.
See also http://www-cdf.fnal.gov/cdfsim_cdfsim_main.html.

[61] R. Brun and F. Carminati. Geant, detector description and simulation tool.
CERN Programming Library Long Writeup, W5013, 1993.

[62] G. Corcella et al. Herwig 6.5: an event generator for hadron emission reactions
with interfering gluons (including supersymmetric processes). JHEP, 01:010,
2001. arXiv:hep-ph/0011363.

[63] J. Pumplin et al. New generation of parton distributions with uncertainties from
global qcd analysis. JHEP, 07:012, 2002.

[64] M. L. Mangano et al. Alpgen, a generator for hard multiparton processes in
hadronic collisions. JHEP, 07:001, 2003. arXiv:hep-ph/0206293.

[65] J. Strologas. Measurement of the differential angular distribution of the W boson
produced in association with jets in proton-antiproton collisions at sqrt(s)=1.8
TeV. PhD thesis, University of Illinois at Urbana-Champaign, 2002.

[66] W. H. Press et al. Numerical recipes in C: the art of scientific computing. Press
Syndicate of the University of Cambridge, 2nd edition, 1992.
See also http://www.numerical-recipes.com.

[67] Pekka K. Sinervo. Signal Significance in Particle Physics.
CDF/PUB/STATISTICS/PUBLIC/6031, July 6, 2002.

177



References

[68] F. James. MINUIT: Function Minimization and Error Analysis. CERN, March
1994. CERN Program Library Long Writeup D506.

[69] Carsten Rott Oscar Gonzalez. Uncertainties due to the PDFs for the gluino-
sbottom search. CDF/PHYS/EXOTIC/CDFR/7051, June 7, 2004.

[70] A. D. Martin, R. G. Roberts, W. J. Stirling, and R. S. Thorne. Physical gluons
and high-e(t) jets. Phys. Lett., B604:61–68, 2004.

[71] D. Amidei J. S. Miller. Method 2 Background Estimation for the Secvtx Tagged
Lepton+Jets Sample and Measurement of the tt̄ Production Cross Section.
CDF/ANAL/TOP/CDFR/6907, March 23, 2004.

[72] D. Acosta et al. Phys. Rev. Lett., 93:142001, 2004. We restrict the 193 pb−1 data
set used here to runs in which the silicon detector was included.

[73] J. Neyman. Philos. Trans. R. Soc., A236:333, 1937.

[74] G. J. Feldman and R. D. Cousins. A unified approach to the classical statistical
analysis of small signals. Phys. Rev., D57:3873–3889, 1998.

[75] Ling-Lie Chau and Wai-Yee Keung. Comments on the parametrization of the
kobayashi-maskawa matrix. Phys. Rev. Lett., 53:1802, 1984.

[76] Eric W. Weisstein. Mathworld—a wolfram web resource.
See also http://mathworld.wolfram.com/.

178


