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La fonction de fragmentation du quark b,
du LEP au TeVatron

Introduction

L’idée de base de cette thèse est la mesure de la fonction de fragmentation du quarkb dans
un environnement de collisionneure+e−, le LEP, à une énergie dans le centre de masse qui est
celle du pic du Z0 et sa transposition dans le cadre d’un collisionneur hadronique, le TeVatron,
à une énergie dans le centre de masse de 1,96 TeV. Pour cela on utilise le cadre de l’expérience
DELPHI au LEP et celui de l’expérience CDF au TeVatron. Ces deux détecteurs sont partic-
ulièrement bien adaptés pour réaliser cette mesure. Tous deux bénéficient du nécessaire ensem-
ble de sous-détecteurs de traces et d’identification de particules très performants. De plus CDF
s’est équipé d’un système de déclenchement novateur, basé sur l’information du trajectographe
gazeux et du microvertex, qui lui permet de tirer le meilleur profit des hauts taux de production
deb en collisionneur hadronique. L’analyse développée ici extrait les composantes QCD per-
turbative et QCD non perturbative de la fonction de fragmentation dans le contextee+e−. En
effet, dans ce cadre, le processus QCD est bien compris, ce qui permet d’extraire la partie non
perturbative directement à partir des données et non pas, comme habituellement, par compara-
ison avec les prédictions de divers modèles de fragmentation introduits dans le Monte Carlo et
en ajustant les paramètres pour faire correspondre au mieux données simulées et réelles. On
peut directement utiliser la partie non perturbative de la fonction de fragmentation ainsi trouvée
à l’environnement d’un collisionneur hadronique, pourvu que l’on se place dans le même cadre
de travail et que l’on tienne correctement compte de tous les processus QCD de production du
b. L’impact de cette étude pour d’autres mesures telle que, par exemple, celle des oscillations
Bs ou celle de la section efficace de production dub au TeVatron est présenté en conclusion de
ce travail.

Théorie

La vie du quarkb peut se résumer par les différentes étapes qu’il traverse à partir de sa
création jusqu’à ce qu’il se matérialise, c’est à dire soit détectable. Considérons pour cela, tout
d’abord, le cas de sa création lors de l’annihilation d’un électron et d’un positron en un vecteur
boson intermédiaireγ ou Z0, qui se désintègre à son tour en une paire de quarksb, c’est un
processus de diffusion électro-faible. Les états initiaux dans cette réaction, nous voulons parler
de l’électron et du positron, irradient des photons ce qui réduit d’autant l’énergie disponible pour
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10 Théorie

le processus fort. L’importance réelle de cet effet est en pratique très faible lorsque l’on effectue
les mesures au voisinage du pôle du Z0. Une fois produits, les quarksb et b̄ irradient à leur tour
des gluons par interaction forte. Ce processus est décrit par la Théorie Chromodynamique
Quantique (QCD) et peut être estimé par les calculs perturbatifs à cause de la haute échelle
d’énergieQ2 >> Λ2

QCD qui implique que le paramètreαS << 1. Cette partie du processus que
l’on étudie, est définie commela composante QCD perturbative de la fragmentationet sera
appelée ainsi tout au long de cette thèse. Elle peut être obtenue par les calculs théoriques de
QCD ou à l’aide de générateurs Monte Carlo.

Une fois que les quarksb et b̄ se séparent, l’échelle d’énergie du processus diminue et
l’interaction de couleur entre les deux quarks devient plus forte. Quand l’échelle d’énergie de-
vient équivalente àΛQCD le processus considéré entre en régime non perturbatif. Grâce aux
interactions entre gluons irradiés, il se crée une région caractérisée par une densité en énergie
de plus en plus élevée. À un certain point, le potentiel d’énergie croît de telle sorte qu’il de-
vient suffisant pour permettre la création, à partir du vide, d’une autre paire de quarksq q̄. Les
quarks de cette paire se propagent à leur tour en répétant le même processus et ainsi de suite
jusqu’à ce que le système crée des réseaux (clusters) de quarks et de gluons de bas moment
interne et de couleur nulle. Il en résulte que le couplage de couleur entre partons à l’intérieur
de ces clusters les transforme en hadrons. Cette partie du processus qui comprend la phase dite
d’hadronisation sera appelée dans toute la suitela partie QCD non perturbative de la fragmen-
tation. Cette partie, comme son nom l’indique, n’est pas calculable. Elle est décrite par des
modèles phénoménologiques d’hadronisation. Cette thèse propose une méthode pour extraire
le comportement de la partie non perturbative directement des données et indépendamment des
hypothèses de tout modèle hadronique.

Finalement les produits du processus d’hadronisation forment à leur tour deux jets de par-
ticules qui se déplacent plus ou moins dans la même direction que les quarksb et b̄ qui ont été
produits dans l’interaction d’origine. Parmi les particules dans ces jets il y a deux hadrons B qui
contiennent les quarksb initiaux. S’ils sont produits au pôle du Z0, ces hadrons B transportent
environ 70% de l’énergie des quarks initiaux. Le restant de l’énergie est distribué entre toutes
les autres particules dans le jet.

Nous pouvons faire ici deux remarques. La première est que le quark top qui est le plus
lourd des quarks, avec une masse beaucoup plus grande queΛQCD, se désintègre par processus
faible, avant hadronisation. La deuxième remarque est que pour les quarks légers (c’est à dire
dont la masse est plus faible queΛQCD), contrairement aux quarks lourds, le quark initial ne
peut être identifié dans les états hadroniques finaux. La possibilité de pouvoir suivre les quarks
b depuis leur production jusqu’à leur désintégration, fournit une sonde unique pour pouvoir
explorer les phénomènes qui interviennent tout au long de ce processus. C’est une motivation
essentielle des études de fragmentation du quarkb. Pour les quarks charmés, le couplage des
gluons aux pairesc c, ne peut-être négligé aux énergies de LEP, ce qui dilue un peu le lien entre
le quark initialement produit et le hadron lourd reconstruit.

Les analyses expérimentales présentées dans cette thèse sont basées sur l’étude des hadrons
B qui se désintègrent par interaction faible. Néanmoins la plupart des hadrons B, à l’issue du
processus d’hadronisation, sont des états excités: des mésons B∗ ou B∗∗. Ces états se dés-
intègrent par interaction forte ou électromagnétique en hadrons B plus légers et en d’autres
particules comme les pions, les kaons et les photons. Dues aux échelles en temps très cour-
tes des interactions forte et électromagnétique, la désintégration de ces états excités se produit
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au voisinage du point d’interaction primaire. La production de ces états est d’ailleurs partie
intégrante de ce que l’on appelle: la fragmentation.

Par contre, les hadrons B qui se désintègrent par processus faible traversent une distance
relativement longue (environ 3 mm au pôle du Z0), avant de se désintégrer. Cette distance est
due au temps de vie du hadron B produit (environ 1.6 ps) et à ce que ce dernier emporte, en
moyenne, une large fraction de l’énergie du quarkb. Comme les produits de désintégration
des hadrons B ont une multiplicité moyenne de cinq traces chargées environ, il est possible
d’étiqueter expérimentalement les hadrons B, par leur temps de vie, en se basant sur des mesures
précises des trajectoires des traces chargées dans le voisinage de la région d’interaction des
faisceaux.

Dans un collisionneure+e−, l’état initial est très bien défini et constitue donc un excellent
laboratoire pour ces études de QCD. Le fait que l’énergie des faisceaux soit une bonne ap-
proximation de l’énergie des quarks initiaux fait que ces machines sont vraiment appropriées
pour les études de fragmentation. Par contre, dans un collisionneur hadronique, l’énergie des
quarksb est inconnue et varie d’un événement à l’autre. Il y a donc une différence cruciale
dans les études sur la fragmentation entre ces deux environnements expérimentaux. La source
dominante de quarksb au TeVatron provient de l’interaction forte. La contribution à la sec-
tion efficace totale de production desb par les processus électrofaibles:W → cb̄ ou Z → bb̄
est petite et peut même être négligée en général. Il y a trois mécanismes qui contribuent à la
production QCD d’une paire de quarksb et b̄. Ce sont: la création de saveur ou processus di-
rect d’annihilation quark-antiquark (ou deux gluons), l’excitation de saveur et le “splitting” de
gluons. Cette thèse illustre leur importance relative.

Considérons maintenant les aspects théoriques de la fragmentation dub. La fonction de
fragmentation du quarkb est la fonction de densité de probabilité de la fraction d’énergie du
quarkb qui sera emportée par le hadron B. Une autre variable communément utilisée dans les
Monte Carlo estz, définie comme étant le rapport entre la somme de l’énergie et de l’impulsion
du hadron, évaluées le long de la direction du quark, et de la somme correspondante pour le
quarkb. Ce rapport est calculé en se plaçant dans le référentiel du centre de masse du sous-
processus qui s’hadronise. Un point délicat est la définition de la frontière entre partie per-
turbative et non perturbative. Elle est en quelque sorte un peu arbitraire. La composante non
perturbative décrit l’hadronisation, mais on doit prendre garde qu’elle contient aussi tous les
termes qui n’ont pas été pris en considération dans la partie perturbative. Le fait que la com-
posante non perturbative de la fonction de fragmentation dépende fortement de la composante
perturbative a été souvent négligé. Ceci a pu amener à des conclusions erronées sur le non
accord entre prédictions de QCD et résultats expérimentaux sur la section efficace du processus
de productionb b̄.

C’est le Théorème de Factorisation de QCD qui permet de séparer les parties perturbatives
et non-perturbatives. Il a comme conséquence importante, pour l’analyse présentée dans cette
thèse, que la partie non perturbative ne dépend pas de l’état initial et donc de l’environnement
correspondant au collisionneure+e− ou hadronique.

Plusieurs approches perturbatives ont été considérées dans l’étude présentée ici. Tout d’abord
l’approche QCD théorique qui donne un développement en série en puissance deαS de la fonc-
tion de fragmentation qui s’arrête au “leading log” (LL), au “next to leading order” (NLL) ou
bien à l’approximation NLL avec “Dressed Gluon Exponentiation”. L’ensemble de ces dif-
férents calculs ont été effectués au départ de cette thèse et comparés avec ceux de leurs auteurs.
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Ces calculs détaillés sont nécessités par l’approche nouvelle employée dans cette thèse afin
d’extraire la fonction de fragmentation (voir le détail dans le chapitre 6 de l’appendice). Une
autre approche consiste à extraire la partie perturbative de la fonction de fragmentation à partir
des générateurs Monte Carlo.

Cette physique doit être complétée par une composante non calculable: la partie non pertur-
bative qui décrit l’hadronisation. D’habitude elle est décrite par un modèle phénoménologique
qui est inclus dans le générateur d’événements. Il est d’usage d’utiliser ces Monte Carlo pour
ajuster les paramètres des modèles afin de les faire correspondre au mieux aux données. Il existe
plusieurs modèles pour décrire la physique de l’hadronisation. Ils utilisent une hadronisation
indépendante ou une modélisation basée sur des cordes (“strings”) ou bien des clusters. Un
certain nombre de ces modèles, parmi les plus utilisés (Peterson, Collins-Spiller, Kartvelishvili,
Lund ou Bowler), sont décrits dans le Chapitre 2 de l’appendice à cette thèse. La partie non-
perturbative de la fonction de fragmentation extraite avec notre approche sera comparée à celles
obtenues avec ces modèles.

Le cadre expérimental

Cette thèse s’est déroulée dans deux cadres expérimentaux. L’un est celui de l’expérience
DELPHI auprès du collisionneure+e− LEP au CERN qui s’est arrêté en Novembre 2000, et
les données utilisées pour ce travail sont celles recueillies au pic du Z0, c’est à dire à l’énergie
dans le centre de masse de 91 GeV, entre 1992 et 1995. L’autre cadre expérimental est celui
de l’expérience CDF auprès du collisionneur proton antiproton, le TeVatron, au Fermi National
Laboratory aux USA dans la phase du Run II. Les données considérées pour cette partie sont
celles qui ont été enregistrées jusqu’à Août 2004, à l’énergie dans le centre de masse de 1,96
TeV.

Dans l’une et l’autre expérience une partie cruciale du système de détection est constituée
par l’ensemble des détecteurs de traces que ce soient les microvertex à microbandes de Silicium
ou les détecteurs centraux gazeux: la TPC (Time Projection Chamber) dans le cas de DELPHI
ou le COT (Central Outer Tracker), chambre avec cellules tiltées, pour CDF. Tous deux donnent
une excellente résolution pour la mesure des impulsions des particules chargées. De plus, grâce
à la mesure du dE/dx, ils permettent d’identifier les particules. Des détecteurs de microver-
tex très performants dans les deux cas permettent de reconnaître des vertex secondaires et de
mesurer les paramètres d’impact des traces chargées ce qui autorise l’étiquetage des particules
issues de la désintégration des hadrons-B. Dans le cas de DELPHI, le détecteur RICH a joué
un rôle pour l’identification des particules chargées. À CDF, un détecteur de temps de vol per-
formant fournit un moyen d’identification des particules très précieux, et pour la physique du
B en particulier. La grande différence entre ces deux expériences est naturellement due à leur
environnement respectif. Dans un collisionneur hadronique le haut taux d’événements nécessite
des systèmes de déclenchement très sophistiqués. Ce n’est pas le cas dans une machinee+e−.
CDF a été le premier détecteur, dans un collisionneur hadronique, à installer un microvertex
performant ceci depuis le Run I en 1992. Pour le Run II, la grande innovation a été d’inclure, au
niveau premier du déclenchement, l’information du COT et, au niveau 2, celle du microvertex.
C’est une première au niveau mondial qui permet de tirer plein profit des hauts taux de produc-
tion deb produits par interaction forte dans les collisionneurs hadroniques. Un déclenchement
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de niveau 1 (XFT = eXtremly Fast Tracker), utilisant l’information des couches axiales du dé-
tecteur de traces gazeux, le COT, dans le barrel central, permet de reconstruire en temps réel les
traces et de déterminer, avec une très bonne précision, leur impulsion transverse (lorsqu’elle est
supérieure à 1,5 GeV/c). Un déclenchement au deuxième niveau part des traces reconstruites
par le XFT dans le COT et les relie à celles qu’il détermine alors dans le microvertex, constitué
de 5 couches double face de microbandes en Silicium. Il peut ainsi déterminer les traces venant
d’un vertex secondaire (produites par désintégration de hadrons charmés ou beaux) et calculer
les paramètres d’impact correspondants. C’est un outil qui révolutionne la manière de faire
la Physique du B ou du charme dans les collisionneurs hadroniques. L’ensemble des trajec-
tographes, le système de déclenchements associés et les outils d’identification des particules de
l’expérience CDF en font un outil de mesure particulièrement adéquat pour l’étude de la frag-
mentation qui est l’objet de cette thèse. Plus de détails sur les environnements expérimentaux
de DELPHI et de CDF peuvent être trouvés dans les chapitres 3 et 4 de l’appendice à cette thèse
ainsi que dans les références qui y sont reportées.

Analyse de DELPHI

Des mesures de la fonction de fragmentation du quarkb, au pôle du Z0, existent et ont été
publiées par d’autres expériencese+e−.

La mesure du spectre de l’énergie du hadron beau, effectuée dans cette thèse, utilise une
méthode inclusive, comme la plupart des expériences précédentes. Seule l’expérience ALEPH
a reconstruit des désintégrations semileptoniques des mésons beaux pour faire ce type d’études.

Les événements retenus pour cette analyse sont issus d’un lot enrichi en beauté. Cet en-
richissement est obtenu en s’assurant de la présence de traces chargées ayant un paramètre
d’impact important par rapport au point d’interaction des faisceaux. Ceci est réalisé par un al-
gorithme (standard dans DELPHI) qui combine les mesures précises de ces traces au niveau du
détecteur de vertex en silicium. Pour les événements situés dans l’acceptance de ce détecteur,
on sélectionne ainsi les événements contenant de la beauté avec une efficacité voisine de 70%
et la pureté de l’échantillon est voisine de 90%.

Il convient alors de distinguer les traces issues de la désintégration des hadrons beaux de
celles provenant de l’hadronisation des quarksb initiaux. Pour cela, dans un même jet, on
détecte la présence de traces chargées ayant un paramètre d’impact significatif par rapport au
vertex primaire de l’événement. Ces traces sont utilisées pour former un vertex secondaire.
Les traces chargées restantes, dans le jet, sont assignées au vertex primaire ou bien au vertex
secondaire en fonction de leurs paramètres d’impact respectifs par rapport à ces deux positions.
Les traces neutres présentes dans le jet sont réparties entre ces deux vertex suivant la valeur de
leur rapidité, mesurée par rapport à l’axe du jet. Les traces les plus “rapides” sont associées
au vertex secondaire comme l’indique la simulation des événements. On s’assure aussi que le
système de traces ainsi formé, représentant les traces issues de la désintégration d’un hadron B,
a une masse inférieure à une valeur maximale de 5,2 GeV, avant d’ajouter une nouvelle trace.

Certaines particules ne sont pas reconstruites pour des raisons physiques (s’il s’agit de
neutrinos) ou bien liées à l’efficacité du détecteur ou bien parce qu’elles interagissent dans
la matière de l’appareillage.

L’estimateur de l’énergie du hadron B est obtenu de la manière suivante. Nous effectuons
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un ajustement de l’ensemble des paramètres cinématiques des traces en tenant compte de leurs
erreurs de mesure, en autorisant pour chaque jet la présence d’un 4-vecteur manquant et en
imposant la conservation de l’énergie-impulsion. Ceci permet notamment de calibrer l’énergie
des jets à partir de l’énergie du faisceau. L’énergie du hadron B est estimée en soustrayant, à
l’énergie du jet celle des traces qui n’ont pas été attribuées au B. Il s’agit d’une méthode orig-
inale par rapport à celles utilisées dans les autres expériences qui utilisent les traces attribuées
au B pour construire un estimateur de son énergie.

À partir du programme MINUIT, on détermine une fonction de pondération à appliquer aux
événements simulés de manière à ce qu’ils reproduisent la distribution en énergie du hadron
B mesurée dans les données réelles, après avoir franchi les mêmes étapes de l’analyse. Les
résultats de ces ajustements sont donnés sur la Figure 1.

Figure 1: Distributions fittées, en fonction de xrec
p = prec

B /p jet, pour les événements sélection-
nés. En haut: échantillon 1994. En bas: échantillon 1995.

Cette fonction de pondération est obtenue en fonction de la valeur de la variablez qui
définit la valeur de la fonction de fragmentation non-perturbative utilisée dans le générateur
d’événements simulés. La Figure 2 montre la fonction ainsi mesurée, qui a un comportement
assez différent de celui de la fonction de Peterson utilisée initialement dans la simulation.

La distribution en énergie du hadron B, corrigée de l’ensemble des effets liés à la sélection
et à la méthode de mesure, est obtenue en appliquant la fonction de pondération ainsi trouvée
aux événements simulés avant toute sélection.

L’analyse est basée sur une statistique de 134000 candidats extraits des données enreg-
istrées en 1994 et de 42000 candidats en 1995. Les incertitudes sont dominées par les effets
systématiques et principalement par ceux liés à la calibration en énergie. L’importance de ce
type d’incertitudes a été évalué en divisant le lot des données en sous-échantillons sur lesquels
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Figure 2: Distributions, en fonction de la variable z, obtenues pour les événements sélectionnés
en 1994. En haut: Distribution fittée des poids. En bas: Comparaison entre la
distribution de Peterson utilisée dans le générateur et la distribution fittée sur les
données.

l’analyse est répétée. Une incertitude liée à la mesure de l’énergie du B est déduite de la dis-
persion des résultats obtenus. Plusieurs autres sources possibles d’incertitudes systématiques
ont été analysées. Elles ont été regroupées en trois catégories: celles liées à l’accord entre
les données réelles et la simulation, celles venant d’incertitudes sur les paramètres définissant
les propriétés des mésons B et celles liées aux sélections faites pour l’analyse. Mise à part
l’incertitude sur la mesure de l’énergie du B, l’autre erreur dominante provient de la modélisa-
tion de la fonction de pondération. Cette dernière a été estimée en comparant les distributions
initiales et reconstruites pour l’énergie des hadrons B dans les données simulées.

Les mesures de la fonction de fragmentation du quarkb ont été fournies sous forme de
valeurs intégrées dans neuf intervalles, pour lesquelles les matrices d’erreur statistique et systé-
matique ont été données. Ces informations sont utilisées, dans le chapitre suivant pour extraire
analytiquement la composante non-perturbative de la fonction de fragmentation du quarkb.

Ces résultats sont comparés, sur la Figure 3, aux mesures obtenues par les autres groupes.
Les mesures effectuées dans cette thèse sont très voisines de celles de SLD. La fonction de
fragmentation trouvée est “moins dure” que celle obtenue par ALEPH. La comparaison, à ce
niveau, fait intervenir l’ensemble du spectre en énergie des hadrons B, nous verrons dans le
chapitre suivant comment se comparent les composantes non-perturbatives correspondant à ces
différentes mesures.

Les valeurs moyennes de ces distributions,< xE >, sont comparées dans la Table 1, avec
les autres mesures similaires effectuées à l’énergie du Z0.
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Figure 3: Comparaison entre les distributions de la variable xE mesurées par ALEPH, DEL-
PHI, OPAL et SLD.

Extraction de la partie non perturbative

Nous venons de présenter dans la section précédente la mesure de la fonction de fragmen-
tation du quarkb dans le cadre de l’expérience DELPHI au LEP. Cette distribution est définie
comme celle de la fraction de l’énergie du faisceau emportée par un hadron B qui se désintègre
par interaction faible et qui est produit dans le processuse+e−→ bb̄ au pôle ou au voisinage du
pôle du Z0. Les expériences ALEPH et OPAL au LEP et SLD au SLC (SLAC) ont également
fait ces mesures, ce qui permet d’avoir un ensemble de résultats précis qui renforcent le résultat
final.

Nous avons précédemment discuté comment, dans le cadre des collisionneurse+e−, la frag-

Experiment < xE > err. stat. err. syst.
Cette thèse 0.704 0.001 0.008

ALEPH 0.716 0.006 0.006
DELPHI (Karl.) 0.715 0.001 0.005

OPAL 0.719 0.002 0.004
SLD 0.709 0.003 0.004

Table 1: Différentes mesures de< xE > à l’énergie du Z0.
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mentation peut être vue comme résultant des trois étapes suivantes: l’interaction primaire, c’est
à dire ici le processus d’annihilatione+e−→ bb̄, une description par la QCD perturbative de
l’émission des gluons par les quarks et une partie QCD non perturbative qui inclut tous les mé-
canismes qui interviennent entre la production des quarksb et leur matérialisation en hadron B
se désintégrant en mode faible. La composante perturbative s’obtient soit par un calcul analy-
tique soit à l’aide de générateurs Monte Carlo. La composante non perturbative est générale-
ment issue d’une paramétrisation selon une modélisation. La comparaison avec les résultats
expérimentaux se fait alors en combinant les deux composantes, suivant l’expression:

Dpredicted(x) =
∫ 1

0
Dpert.(z)×Dmodel

non−pert.(
x
z
)

dz
z

(1)

pour évaluer la dépendence en x attendue. La variablex est par exemple égale àxE = EB/Ef aisc.

qui varie entrexmin = 2mB/
√

s et l’unité. Dans la suite nous utiliserons:

x = pB/pb =
√

x2
E−x2

min/
√

1−x2
min (2)

qui varie entre 0 et 1.
Les paramètres d’un modèle particulier sont ajustés en comparant la dépendance en x de la

distribution de la fragmentation du quarkb mesurée, avec celle attendue. Les différentes expéri-
ences au LEP et à SLC ont déjà fait ces comparaisons en utilisant, pour la partie perturbative,
les calculs par Monte Carlo avec comme générateurs JETSET ou HERWIG qui incluent des
développements en gerbes de partons. Avec la précision actuelle des mesures, il est démontré
que la plupart des modèles disponibles pour la partie non perturbative, sont incapables de re-
produire correctement les résultats expérimentaux. Ceux qui s’en approchent le plus sont les
modèles de Lund et de Bowler. Ces calculs ont été répétés et les résultats ont été rassemblés
dans la Table 6.1 et la Figure 6.7.

L’application de la transformée de Mellin à l’expression 1 permet d’obtenir la distribution
résultante sous forme d’un produit de deux distributions:

D̃(N) = D̃pert.(N)× D̃non−pert(N) (3)

où D̃(N) =
∫ ∞

0 xN−1D(x)dx est le moment d’ordre N de la fonctionD(x). À partir du calcul
des moments de la fonction de fragmentation mesurée, et de ceux de la partie perturbative, il
est possible d’obtenir, de manière indépendante d’un modèle, les moments de la composante
non perturbative. Ceci est une démarche utilisée par plusieurs théoriciens travaillant dans ce
domaine.

L’originalité du travail présenté dans cette thèse a été de calculer la distribution enx de la
fonction non-perturbative en appliquant la transformée de Mellin inverse. On peut ainsi obtenir,
point par point, une distribution qui peut alors être utilisée dans un générateur ou bien comparée
à différents modèles.

La méthode utilisée pour extraire la dépendance enx de la composante non perturbative ne
dépend pas d’une fonction de fragmentation mesurée particulière. Dans cette étude, nous avons
appliqué au départ cette méthode aux résultats de l’expérience ALEPH, et c’est donc la princi-
pale mesure à laquelle il est fait référence dans cette section. Les fonctions de fragmentation
mesurées par les autres expériences sont également présentées dans cette thèse.
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Nous référons à la section 6.2 de l’appendice à cette thèse pour la description détaillée de
la méthode utilisée pour extraire la composante QCD non perturbative. En particulier, dans la
section 6.3 de cet appendice, on trouvera l’extraction faite à partir de plusieurs évaluations de
la composante QCD perturbative utilisant:

• le générateur JETSET, ajusté avec les données de l’expérience DELPHI, pour tenir compte
du développement en gerbes des partons;

• un calcul analytique basé sur la théorie QCD à l’ordre NLL (“Next to Leading Log”);

• un calcul analytique basé sur la théorie QCD à l’ordre NLL (“Next to Leading Log”) avec
DGE (“Dressed Gluon Exponentiation).

Les distributions de la composante QCD non-perturbative de la fonction de fragmentation
du quarkb, obtenues à partir des mesures effectuées dans DELPHI, à l’occasion de cette thèse,
et en utilisant deux approches pour évaluer la composante QCD perturbative, sont représentées
sur les Figures 4 et 5.
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Figure 4: La distribution de la composante QCD non-perturbative de la fonction de fragmenta-
tion du quark b, obtenue à partir des mesures effectuées dans DELPHI, à l’occasion
de cette thèse, et en utilisant le générateur JETSET pour évaluer la composante QCD
perturbative.

Dans la section 6.4 de l’appendice à cette thèse, on trouvera une discussion détaillée sur
les résultats obtenus avec notre méthode. Une paramétrisation de la composante QCD non
perturbative y est donnée, et dans la section 6.5 de l’appendice à cette thèse, sont présentées
différentes vérifications faites pour tester la robustesse de la méthode proposée.

Les principales conclusions de cette étude sont les suivantes:

• la dépendance enx de la composante QCD non-perturbative de la fonction de fragmen-
tation a été extraite d’une manière indépendante de tout modèle de physique hadronique.
Elle dépend étroitement de la façon dont est évaluée la composante QCD perturbative. La
distribution est remarquablement différente de celles prédites par différents modèles.
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Figure 5: La distribution de la composante QCD non-perturbative de la fonction de frag-
mentation du quark b, obtenue à partir des mesures effectuées dans DELPHI, à
l’occasion de cette thèse, et en utilisant un calcul analytique basé sur QCD à l’ordre
NLL pour évaluer la composante QCD perturbative.

• Pourx < 0.6, cette distribution est compatible avec zéro, ce qui est une indication que
la plus grande part de la radiation de gluons est bien reproduite par la composante QCD
perturbative évaluée soit en utilisant le Monte Carlo JETSET pour le développement en
gerbes de partons, soit par un calcul analytique. Comme la distribution QCD non pertur-
bative est évaluée pour toute valeur de la variablex, on peut vérifier si elle reste physique
sur tout l’intervalle [0,1] quand est utilisé un générateur Monte Carlo qui fournit la partie
perturbative. L’évidence pour des régions non physiques indiquerait que la simulation
ou les mesures ne sont pas correctes. Une telle évidence n’a pas été trouvée dans cette
analyse.

• Pourx> 0.6, la distribution obtenue a une forme semblable à celle prédite par les modèles
de Lund symétrique ou de Bowler, quand on prend la partie QCD perturbative donnée par
JETSET. Si l’on prend la composante perturbative calculée par Cacciari et Catani, on
trouve que, à cause du comportement analytique de la composante QCD perturbative, la
distribution de la composante QCD non perturbative doit être prolongée au-delà dex= 1.
Le comportement en x de la composante non perturbative pourx > 1, est déterminé par
l’existence possible d’une valeur nulle deDpert(N), pourN > 0. Si la partie perturbative
a des aspects non physiques, il n’est donc pas justifié de la combiner avec un modèle
physique donné. Nous avons trouvé une approche pour résoudre ce problème et nous
avons proposé une paramétrisation de la distribution ainsi obtenue.

En se basant sur le théorème de factorisation de QCD, la composante non perturbative
ainsi extraite est considérée être valable dans un environnement autre que celui du processus
d’annihilatione+e−, tant que la partie QCD perturbative est évaluée dans le même cadre, c’est
à dire par calcul analytique de QCD ou par un générateur Monte Carlo donné et en utilisant les
même valeurs pour les paramètres qui interviennent dans cette évaluation que ce soient:mpole

b ,
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Λ(5)
QCD, ou bien des valeurs ajustées pour les paramètres du générateur.

Dans la section suivante on présente une étude sur la fragmentation du quarkbdans l’expérience
CDF en utilisant comme cadre de travail celui fourni par le générateur Monte Carlo PHYTIA.

Fragmentation des quarksb mesurée dans CDF

Le travail expliqué dans les sections précédentes est maintenant appliqué à l’analyse de la
production des hadrons B dans le cadre de l’expérience CDF au TeVatron. Ces données vont
être comparées aux distributions attendues par le générateur PYTHIA.

La production de quarksb lors de collisionspp fait intervenir des diagrammes de QCD plus
variés qu’en annihilatione+e−. L’étude présentée ici est exploratoire car les données ont été
enregistrées récemment et la simulation des événements a demandé plusieurs itérations avant
d’être réaliste. La possibilité de pondérer des événements simulés, afin de modifier la partie
non-perturbative de la fonction de fragmentation a été introduite récemment et les premières
données simulées ayant cette facilité sont en cours de production.

Les caractéristiques cinématiques des hadrons B dépendent des contributions respectives
des différents mécanismes de production et de la forme de la composante non-perturbative de
la fonction de fragmentation. Des différences peuvent exister aussi par rapport aux données
simulées si les efficacités du détecteur ne sont pas correctement prises en compte. Afin d’essayer
de distinguer ces différents effets trois types d’objets ont été analysés: les hadrons B, les traces
chargées qui les accompagnent dans le jet et les traces chargées présentes en-dehors de ce
jet. Ces dernières sont principalement utilisées pour vérifier le réalisme de la simulation du
détecteur, pour les traces chargées.

Pour faire cette analyse dans CDF, on utilise l’échantillon des données du canal de produc-
tion exclusif duB±−→ J/ψK±. Avec la luminosité intégrée jusqu’à présent, c’est à dire environ
350 pb−1, plusieurs milliers (environ 6000) désintégrations ont été reconstruites. L’avantage de
ce canal exclusif, par rapport au canal inclusif,B−→ J/ψX analysé par un autre groupe, est
que la quadri-impulsion du méson B est bien mesurée, ceci en prenant avantage de toutes les
spécificités du détecteur CDF II que nous avons précédemment décrites. Ayant reconstruit
l’ensemble des particules issues de la désintégration du méson B il est aussi possible d’étudier
les traces qui l’accompagnent, sans avoir de risque de confusion.

L’analyse comporte les aspects suivants:

• à partir d’une simulation comprenant une sous-classe des mécanismes contribuant à la
production de la beauté au TeVatron, la sensibilité de différentes observables à la forme de
la composante non-perturbative de la fonction de fragmentation a été évaluée. L’information
contenue dans les traces accompagnant le B dans son jet sont souvent plus sensibles à ces
différences que la distribution en impulsion transverse du hadron-B.

• les différences observées entre les mesures et les résultats de ce type de simulation qui
n’inclut que les mécanismes d’annihilationqq et la fusionggsont cependant trop grandes
(et incompatibles entre elles) pour pouvoir être corrigées par un changement dans la mod-
élisation du mécanisme d’hadronisation. Les autres mécanismes contribuant à la pro-
duction deb, dans PYTHIA et expliquées dans la partie théorique de cette thèse, sont
indispensables.
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• les données simulées contenant l’ensemble de ces mécanismes sont trouvées en assez bon
accord avec les distributions mesurées. La sensibilité de ces distributions, à l’importance
des différents mécanismes, a été étudiée. Les données ont été simulées avec la com-
posante utilisée, par défaut, à CDF pour la partie non-perturbative de la fonction de frag-
mentation. Cette distribution est moins piquée à hautes valeurs que la fonction extraite
des données de LEP. Une procédure a été mise en place afin de pouvoir étudier l’effet
d’un changement de modèle à partir d’un nouveau lot d’événements simulés.

Une partie de ces aspects est illustrée par les Figures 6 et 7, qui montrent des comparaisons
entre données et simulation, contenant tous les mécanismes de production du quarkb. La
première figure montre la distribution de l’impulsion transverse au faisceau du méson-B. Sur
cette figure, les contributions des différents mécanismes de production du B ont été séparés. La
deuxième figure montre la distribution de l’impulsion transverse au faisceau des traces dans un
cône défini autour du B.
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Figure 6: Comparaison entre données et simulation, contenant tous mécanismes de production
du quark b. La distribution de l’impulsion transverse au faisceau du méson-B. Les
contributions des différents mécanismes de production du B sont montrés séparément
les une des autres.

On espère pouvoir ainsi déterminer à la fois l’importance des différents mécanismes de pro-
duction deb, présents dans la simulation, et valider l’appliquabilité de la partie non-perturbative
de la fonction de fragmentation, mesurée à LEP, à l’environnement du TeVatron. L’accord entre
données et Monte Carlo est un ingrédient crucial pour la mesure de la fraction de mésons B qui
proviennent des désintégrations:B∗∗ −→ Bπ. Dans ce type d’analyses, PYTHIA est nécessaire
pour aider à contraindre les spectres de masse du bruit de fond des spectresB±π∓ (avec les
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Figure 7: Comparaison entre données et simulation, contenant tous mécanismes de production
du quark b. La distribution de l’impulsion transverse au faisceau des traces dans un
cône défini autour du B

signes de charge corrects: “right sign” RS) et ceux avec les signes de charge incorrects (WS =
“wrong sign”) c’est à direB±π±.

Cependant la réelle importance de réaliser l’accord entre les données et le Monte Carlo
PYTHIA est qu’ainsi on confirmera que PYTHIA ainsi ajusté peut reproduire le comportement
cinématique et les corrélations entre les mésons B et les traces qui l’accompagnent. Si un tel
accord peut être obtenu de manière univoque, CDF pourrait utiliser PYTHIA pour estimer la
dilution dans l’étiquetage dit du Kaon de même signe (“Same Sign Kaon Tagging” , SSKT)
dans les études sur le Bs. Ceci constitue un prerequisit pour obtenir une limite sur la fréquence
des oscillationsB0

sB̄0
s, c’est à dire la mesure de∆ms.

Nous avons obtenu enfin une valeur de la section efficace de production des hadrons B, pour
deux régions en pseudo-rapidité et fourni la variation de cette section efficace en fonction de
l’impulsion transverse du hadron B. Nous avons trouvé1:

σ(pp→ bX, pT(B) > 4GeV/c, |η|< 1.0) = 19.0±0.8(stat.) ±1.6(syst.)µb

σ(pp→ bX, pT(B) > 4GeV/c, |η|< 0.6) = 11.9±0.6(stat.) ±1.0(syst.)µb (4)

La section efficace pourpT(B) > 0 a été estimée comme:

σ(pp→ bX, |η|< 1.0) = 27.5±1.2(stat.) ±2.3(syst.)µb

σ(pp→ bX, |η|< 0.6) = 16.9±0.8(stat.) ±1.4(syst.)µb (5)

La Figure 8 montre la section efficace différentielle de production de quarkb.

1σ(pp→ bX) = σ(pp→ BX)+σ(pp→ B̄X)
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Figure 8: La section efficace différentielle de production du quark b avec pseudo-rapidité in-
férieure à 1.
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Abstract

The b quark fragmentation distribution has been measured, using data registered by the
DELPHI experiment at the Z pole, in the years 1994-1995. The measurement made use of
176000 inclusively reconstructedB meson candidates. The uncertainties of this measurement
are dominated by systematic effects, the principal ones being related to the energy calibration.
The distribution has been established in a nine bin histogram. Its mean value has been found to
be< xE >= 0.704±0.001(stat.)±0.008(syst.)

Using this measurement, and other available analyses of theb-quark fragmentation distri-
bution in e+e− collisions, the non-perturbative QCD component of the distribution has been
extracted independently of any hadronic physics modeling. This distribution depends only on
the way the perturbative QCD component has been defined. When the perturbative QCD com-
ponent is taken from a parton shower Monte-Carlo, the non-perturbative QCD component is
rather similar with those obtained from the Lund or Bowler models. When the perturbative
QCD component is the result of an analytic NLL computation, the non-perturbative QCD com-
ponent has to be extended in a non-physical region and thus cannot be described by any hadronic
modeling. In the two examples, used to characterize these two situations, which are studied at
present, it happens that the extracted non-perturbative QCD distribution has the same shape,
being simply translated to higher-x values in the second approach, illustrating the ability of the
analytic perturbative QCD approach to account for softer gluon radiation than with a parton
shower generator.

Using all the available analyses of theb-quark fragmentation distribution ine+e− collisions,
together with the result from DELPHI presented in this thesis, a combined world averageb
fragmentation distribution has been obtained. Its mean value has been found to be< xE >=
0.714±0.002.

An analysis of theB hadron production at CDF is ongoing. It makes use of∼ 6000 B±

candidates, from 333pb−1 of data recorded by the CDF experiment, fully reconstructed in the
decay channel B±→ J/ψK±. Characteristics ofB mesons and accompanying tracks have been
examined in the perspective of understanding the effect of fragmentation. These studies, done
in the framework of the PYTHIA event generator, also involve the contributions from different
bb̄ production mechanisms. Distributions from a fully reconstructed Monte Carlo sample have
been compared to data, and the agreement has been found to be reasonable. The analysis is
ongoing, and the goal is to fit the fragmentation function parameters and/or the relative con-
tributions from different production mechanisms to improve the agreement between data and
Monte Carlo.

A measurement of theb quark production cross section has been obtained using the same
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data. The analysis is still under way, and therefore the result is preliminary. It has been found:

σ(pp→ bX, pT(B) > 4GeV/c, |η|< 1.0) = 19.0±0.8(stat.) ±1.6(syst.)µb

σ(pp→ bX, pT(B) > 4GeV/c, |η|< 0.6) = 11.9±0.6(stat.) ±1.0(syst.)µb (6)



Chapter 1

Introduction

The research work described in this thesis consists in providing a detailed study of the frag-
mentation ofb-quarks in view of controlling the non-perturbative aspects of this mechanism.

Data registered at LEP, by the DELPHI collaboration, at the Z pole offer a clean environment
to study the distribution of the fraction of the beam energy taken byB hadrons. This distribution
is defined as the fragmentation function ofb-quarks. With these data it is possible to separate
the perturbative QCD processes, mainly gluon radiation, from the non-perturbative QCD part.
In this purpose, the fragmentation function was measured in DELPHI, using a large sample of
inclusively reconstructedB mesons.

The determination of the non-perturbative QCD component is important in the framework of
the factorization theorem of QCD. The decoupling of low-Q2 from high-Q2 processes allows us
to transport the non-perturbative distribution measured ine+e− collisions to other environments,
such as the one prevailing at thepp collider. In Chapter 2, production characteristics ofB-
hadrons at the two colliders are explained.

Chapters 3 and 4 provide information on the two experimental environments: DELPHI at
LEP and CDF at the TeVatron.

The measurement of theb quark fragmentation distribution in DELPHI is explained in
Chapter 5.

From measuredb quark fragmentation distributions, and using a perturbative QCD com-
putation, theorists have evaluated moments of the Mellin-transformed non-perturbative QCD
component. In the thesis, this approach has been extended, so as to provide directly the de-
pendence of the non-perturbative component versus the energy fraction taken by theB hadron.
In this form, such a function can be used in event generators without the need of any hadronic
models. Distributions provided in this thesis are hadronic model independent. All these aspects
are explained in Chapter 6.

The energy distribution ofB hadrons as measured in CDF is considered in Chapter 7. B±

hadrons decaying intoJ/ψK± with theJ/ψ→ µ+µ− have been used in this purpose. The sensi-
tivity of the distribution to different non-perturbative QCD fragmentation modeling is studied.
At the pp collider, one has also to consider the importance of different perturbative QCD mech-
anisms which have been included in the event generator. Their various contributions have been
evaluated. Finally, the effect of the hadronization modeling on the characteristics of the tracks
acompanying theB hadron has been studied. Experimental control of these effects is of impor-
tance in the study of tagging capabilities forB0B̄0 oscillation measurements.
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Chapter 2

Theory of Bottom Production,
Fragmentation and Decay

This chapter will be dedicated to the theoretical aspects of the bottom quark production,
fragmentation and decay, in the two experimental environments considered in this work:e+e−

andpp colliders. A special attention will be given to the theory ofb fragmentation.

2.1 Overview: The Life Story of a Bottom Quark

A scheme of the process that ab quark goes through, from its production until theB hadron
decays to the final states particles that hit the detector, is shown in Figure 2.1. The first stage is
the hard scattering process, where theb andb quarks are produced. In Figure 2.1 this process
is taken as thee+e− annihilation to an intermediate vector bosonγ/Z0 that finally decays to a
bb̄ pair. Initial state electrons may radiate virtual photons before annihilating. This initial state
radiation (ISR) reduces the energy available for the hard process. In a hadronic collider the
actors of the hard scattering change to quarks and gluons.

Once theb andb quarks are produced, they radiate secondary gluons by strong interaction.
This process is described by QCD and can be calculated perturbatively, due to the high virtuality
scaleQ2�ΛQCD

2 that impliesαS� 1. In the following, this part of the process will be referred
to as theperturbative QCD part of the fragmentation. It is calculable either by theoretical QCD
computations or using Monte Carlo generators.

When theb andb quarks separate, the energy scale diminishes and the color interaction
between the two quarks becomes stronger. When the energy scale becomes∼ΛQCD

2 the process
enters the non-perturbative regime. Through the self interaction of the radiated gluons, a region
of higher and higher energy density is created between theb and theb. At some point, the
increasing potential energy is sufficient to create from the vacuum another qq̄ pair despite the
penalty of providing the extra q̄q mass. The outgoing quark and antiquark continue on their
way, and the process repeats until the system creates clusters of quarks and gluons, having
zero net color and low internal momentum. Consequently, the color coupling between partons
inside the clusters is very strong and turns them into hadrons. This part of the process, that
includes the hadronization phase will be referred to as thenon-perturbative QCD part of the
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Figure 2.1: A scheme of the b production, fragmentation and decay.

fragmentation1. The non-perturbative part, as simply indicated by its name, is not calculable.
It is usually described by phenomenological hadronization models. In this work, a method is
proposed to extract the behavior of the non-perturbative part directly from data independently
of any model assumption.

The products of the hadronization process form two jets of particles traveling more or less
in the direction of theb andb quarks that originally came out of the hard process. Among the
particles in the jets there are twoB hadrons that contain the originalb quarks. When produced
at the Z0 pole, thoseB hadrons carry∼ 70% of the original quark’s energy. The remaining
energy is distributed among the other particles in the jet.

An important difference between light and heavy2 quark fragmentation is that, as mentioned
above, in the second case one identifies in the final state’s hadrons the heavy quarks that have
been produced in the hard process. The ability to follow those quarks from their production
until they decay provides a tool to probe the physics processes that intervene all along the way.
This is an essential motivation ofb quark fragmentation studies.

The experimental analyses presented in this work are based onB hadrons decaying by weak

1The terms offragmentationandhadronizationare sometimes mixed up. The “non-perturbative component”
in the terminology adapted in this work is sometimes referred to as the “fragmentation function” in the literature.

2For a quark to be heavy, its mass has to be larger thanΛQCD . Nevertheless, the top quark is too heavy and
decays weakly before hadronizing. Therefore in the context of fragmentation, bottom and charm can be considered
as heavy quarks.
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interaction. Nevertheless, most of theB hadrons outgoing from the hadronization process are
excited states (B∗ andB∗∗ mesons) that decay by strong or electromagnetic interaction to weakly
decayingB hadrons3 and other particles like pions, kaons and photons. Due to the short time
scales of the strong and electromagnetic interactions, the decay of the excited states occurs in a
place that is not experimentally distinguishable from the primary vertex, where the hard process
took place. The decay products of the excitedB hadrons are therefore difficult to discriminate
from the particles created in the fragmentation process.

Contrarily to the excited states, the weakly decayingB hadrons travel along a measurable
distance before they decay4. This distance (∼ 3mmat the Z0 pole) is due to the lifetime of the
weakly decaying hadrons, that is∼ 1.6ps, and to the hard fragmentation of theb quarks.

SinceB decays have a mean charged multiplicity of∼ 5, it is possible to tagB hadrons using
a lifetime tag, based on accurate measurements of charged particle trajectories in the vicinity of
the beam interaction region.

2.2 Bottom Quark Production in The Hard Process

2.2.1 Bottom Quark Production at LEP

In electron positron collisions,b quarks are produced frome+e− annihilation to a Z0 or a
virtual photonγ∗, with a subsequent decay of the intermediate state into a bb̄ pair. The corre-
sponding diagrams, at tree level, are presented in figure 2.2. In this experimental environment
the initial state is very well defined and therefore it is an excellent laboratory for QCD studies.
The fact that in this type of collider the beam’s energy is a good approximation of theb quark’s
energy, makese+e− machines appropriate for fragmentation studies.

Using the electroweak Lagrangian of the standard model, at the tree level (Born approxima-
tion), the cross section is found to be [1]:

σ(e+e−→ γ,Z0→ f f ) = Nc
4πα2

3s
×[

q2
eq2

f︸︷︷︸
γ exchange

+(v2
e +a2

e)(v
2
f +a2

f ) |χ|︸ ︷︷ ︸
Z0 exchange

+2qeqf vev f ℜ(χ)︸ ︷︷ ︸
interference term

]
(2.1)

In this expressionNc is the number of colors for a respective fermion (1 for leptons, 3 for
quarks).

√
s is center of mass energy.qe andqf ate the electric charges in natural units of the

electron and the final state fermion, respectively. ve andae (v f andaf ) are the weak vector and
axial vector couplings of the electron (final state fermion).χ is the Breit-Wigner parametrization
of the Z0 resonance:

χ(s) =
1

4sin2θw cos2θw
× s

s−MZ
2 + iMZΓZ

(2.2)

MZ andΓZ are the mass and the width of the Z0 boson.θw is the weak mixing anglesin2θw =
1− MW

2

MZ
2 , where MW is the mass of theW± bosons.

3Namely, B±, B0
d and B0

s mesons as well asb-baryons.
4The flight distance of a particle is defined asL = γβcτ, whereτ is its proper lifetime.
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Figure 2.2: Fermion pair production at LEP.

As mentioned above, Equation (2.1) gives the cross section at tree level. In order to account
for radiative processes, weak, electromagnetic and QCD corrections should be included. In
particular, the symmetric shape of the Breit-Wigner parametrization of the Z0 resonance given
in Equation (2.2) is distorted by the initial state radiation. When photons are emitted from the
initial state particles, the effective center of mass energy diminishes. Because of the strong
energy dependence of the annihilation cross section around the Z0 resonance, the cross section
for initial state radiation is strongly enhanced above the Z0 resonance, but suppressed on or
just below MZ. The part of this thesis that concerns the DELPHI analysis is based on data
registered at the Z0 pole, where the center of mass energy is

√
s≈MZ. Under these conditions,

the contribution of the initial state radiation is small, and therefore the beam energy can be
taken as a good approximation of theb quark’s energy right after the hard process and before it
radiates any gluons. When

√
s= MZ the interference term of Equation (2.1) vanishes and the

γ exchange term becomes negligible comparing to the Z0 exchange term. At the Z0 pole the
b production cross section is of∼ 6 nb. Hadronic events account for about 70 % of the total
production rate, and among those, the fraction of bb̄ events is∼ 22% 5. This is in fact one of
the advantages of the Z0 region in B physics studies: B hadrons are copiously produced6.

2.2.2 Bottom Quark Production at the TeVatron

Unlike in e+e− collisions near the Z0 pole, in a hadronic collider theb quark’s energy
is unknown and varies from one event to another. This makes a crucial difference between
fragmentation analyses in the two different experimental environments.

The dominant source ofb quarks at the TeVatron is QCD. Contributions to the totalb quark
cross section from electroweak processes as W+ → cb or Z→ bb̄ are small, and can generally
be neglected. The main production mechanism is the gluon-gluon fusion processg+g→ b+b.
A more detailed description of bottom quark QCD production mechanisms is given later in this
section.

The b̄b production cross section can be predicted using perturbative QCD. Theoretical QCD
calculations exist at the next-to-leading-order (NLO) accuracy, and account for all terms to a
fixed orderα3

S [2, 3]. Other computations perform the resummation of the logarithms ofpT/mb,
with next-to-leading logarithmic accuracy (NLL), and the matching with the fixed-order, exact

5The fraction of hadronic events in which a bb̄ pair is produced from gluon splitting was measured to be
∼ 3 10−3. The contribution from this process to theb production near the Z0 pole is therefore negligible.

6 In the intermediate energy region (“continuum”), where theγ exchange term of Equation (2.1) is dominant,
the cross section scales with the energy available in the center of mass (squared), being of the order of 30 pb at 30
GeV and of about 10 pb at 60 GeV. In this energy range the fraction of bb̄ events is∼ 9%.
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NLO calculation for massive quarks (FONLL) [4]. In general, these calculations are effected
by an uncertainty of up to 20− 30% due to the choice of renormalization and factorization
scales (µR, µF ) and by additional uncertainties due to the choice of parton distribution functions
(PDFs) and of the value of theb quark mass.

In the past few years these QCD predictions were thought to underestimate the measured
bottom quark production cross section by a factor that laid between 2 and 3. Recent theoretical
studies [5, 6] accompanied by new available experimental measurements [7, 8] show that the
discrepancy is much smaller, and that in fact it is not significant. A part of the previously
presumed discrepancy disappears by taking into account correctly theb fragmentation function
measured by thee+e− experiments.

Another way to predict the b̄b production cross section is to use the parton shower ap-
proach, implemented in Monte Carlo generators such as PYTHIA and HERWIG. This model
is not exact to any order in perturbation theory. It is based on leading-order matrix elements
and incorporates higher order effects by using a probabilistic model for initial and final state ra-
diation. This probabilistic approach captures the leading-log characteristics of multiple-parton
emission. Parton shower Monte Carlo generators will be discussed in Section 2.3.3.2.

There are three processes contributing in QCD bb̄ production, at the lowest order of dia-
grams7:

• Flavor Creation (also known as direct production). In this category, either a quark and
an antiquark or two gluons from the beam particles interact to give a bb̄ pair in the final
state. Bothb quarks are outcoming from the hard scattering.

• Flavor Excitation In this case ab quark from the sea of one of the beam particles is
scattered through a hard interaction with a parton from the other beam particle. In this
mechanism, only oneb quark participates in the hard scattering.

• Gluon Splitting , This is the case where the bb̄ pair is created from a gluon after the hard
scattering, as a part of the fragmentation process of the event. In this category none of the
b quarks participate in the hard scattering.

Figure 2.3 shows some of the lowest order Feynman diagrams characteristic of each of these
three categories.

When using a Monte Carlo generator, one can classify the bottom production mechanism
in the event in a more detailed way. This classification scheme, that is mentioned in [9]8, is
based on the identification of the incoming and outgoing partons in the hardest 2-to-2 parton
scattering, and on the number ofb quarks in the final state:

0. Non-bb̄ event: These events do not have anyb quarks in the final state, regardless of the
details of the hard scattering.

1. Gluon fusion(g+g→ b+b): In these events, two gluons participate in the hard scattering
to create a b̄b pair.

7One can only classify events in that way in the context of Monte Carlo generators, where the diagrams involved
in the process are completely determined. In reality when interference effects take place, this classification is not
needed. These processes are naturally a part of a NLO calculation, without any need to be treated separately.

8This scheme was originally suggested by R. D. Field.
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Figure 2.3: The lowest order contributions to b production in the TeVatron.

2. Quark Annihilation(q+q→ b+b): In these events, a quark and an antiquark annihilate
in the hard scattering to produce a bb̄ pair. This process includesb+b→ b+b.

3. Gluon-Initiated Flavor Excitation(g+b→ g+b or g+b→ g+b): In these events, the
hardest scattering involves a gluon and ab quark in the initial state going to a gluon and a
b quark in the final state. To preserve bottom quantum number, there is a secondb quark
in the event of the opposite flavor as part of the additional activity in the event.

4. Quark-Initiated Flavor Excitation( q+b→ q+b, q+b→ q+b, q+b→ q+b, q+b→
q+ b, whereq is any quark exceptb). The hardest parton scattering in these events
contains one non-b quark and oneb quark in both the initial state and the final state. Like
the process above, there is a secondb quark generated by the rest of the activity in the
event.

5. Bottom-Quark-Initiated Flavor Excitation(b+ b→ b+ b or b+ b→ b+ b). In these
events, both incoming and outgoing partons in the hardest scattering areb quarks of the
same flavor. The opposite flavor case is part of quark annihilation above. In this class of
event, there will always be fourb quarks in the final state: two from the hard scattering,
and two from the rest of the activity in the event.

6. Gluon Splitting(two gluon final state): Theb quarks in this class of events do not come
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from the hard scattering. The two outgoing partons from the hardest scattering in this
event are both gluons.

7. Gluon Splitting(one gluon final state): Theb quarks in this class of events do not come
from the hard scattering. One of the two outgoing partons from the hard scattering is a
gluon. The other is a quark of some flavor other than bottom.

8. Gluon Splitting(no gluon final state): In this class of events, theb quark does not par-
ticipate in the hardest scattering in the event. Neither of the outgoing partons from the
hardest scattering are gluons.

9. Error: This category is reserved for situations that should not arise from normal QCD
processes, like events with only oneb quark or events containing twob quarks but nob
quarks. These events should only result from bugs in the generator program or generation
of non-QCD events.

Events from classes1 and2 correspond toflavor creation. Classes3, 4, and5 combine to
yield flavor excitation, while gluon splittingis made up from events from categories6, 7, and8.

A study of the contribution to theb production from each one of this mechanisms will be
shown in Chapter 7

The TeVatron RunIIa is currently the most copious source ofB hadrons due to the large bb̄
production cross section. At the center of mass energy of

√
s = 1.96 TeV and selecting events

in the central region, this number is reported to be [7]:

σ(pp→ bX, |yb|< 1) = 29.4 +6.2
−5.4 stat+systµb , (2.3)

where|yb| is theb quark’s rapidity. The differentialb-production cross section depends on the
rapidity and on the transverse momentum.

2.3 Theoretical Aspects ofb Fragmentation

Theb quark fragmentation function is the probability density distribution for the fraction of
theb quark energy taken by theB hadron.

In this section the theoretical aspects of fragmentation function will be reviewed.

2.3.1 Definitions of Fragmentation Functions

In this section, all the variables with the subscriptb refer to theb quark and those with the
subscriptB to theB hadron.E stands for the energy,p for the three-momentum andm for the
mass.

Theb fragmentation function is a probability density function of a variablex:

D(x)≡ 1
σtot

dσ
dx

(2.4)
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In general,x relates the momentum-energy of theb quark and of theB hadron. In the follow-
ing measurements, only weakly decayingB hadrons have been considered9. There are a few
common choices for this variablex. One of them:

xE =
EB

Eb
(2.5)

is the energy taken by the weakly decayingb hadron with respect to the energy of theb quark
right after it is produced in the hard process, before it radiated any gluons. This variable is
appropriate toe+e− collisions, because both the nominator and the denominator are experi-
mentally observable. In particular, as explained in 2.2.1 the denominator is simply the beam
energy. Therefore:

xE =
2EB√

s
=

EB

Ebeam
(2.6)

Another definition uses the ratio between three momenta, assuming thatmB = mb:

xp =
pB

pb
=

√
x2

E−x2
min√

1−x2
min

(2.7)

wherexmin = 2mB√
s is the minimal value ofxE, due to the mass of theB hadron. At a center of

mass energy of 91.2GeV this value isxmin
∼= 0.12. The minimum value ofxp is 0.

Another possible choice for the fragmentation variable isz, sometimes called the light-cone
momentum fraction, defined as:

z=
(E + pL)B

(E + p)b
(2.8)

WherepL is the momentum of the formed hadron along the direction of the quark. This variable
is invariant against Lorentz boosts along the jet direction.

z is commonly used in Monte Carlo generators. In this framework the “quark” in the def-
inition of z is understood to be the parton which has already radiated gluons, just before the
generator routines that create aB hadron are called. When defined in this way,z describes only
the non-perturbative part of fragmentation, it is not an observable quantity, and has a meaning
only in the context of a parton shower Monte Carlo generator. Besides, in the Monte Carlo
generators which use the string model for hadronization (see Section 2.3.4.1), this variable is
defined in the reference system of a string stretched between theb quark and a gluon, an anti-
quark or a diquark.

2.3.2 Perturbative and Non-perturbative Parts

From the simplified description of theb fragmentation process in Section 2.1, one can under-
stand that the frontier between the perturbative and non-perturbative parts is somehow arbitrary.
The non-perturbative component describes the hadronization, but one has to be aware of the
fact that it also includes all the terms that have not been taken into account in the perturbative
component.

9This variable may be also defined for the leadingB hadron, i.e the one directly created by the fragmentation
process, that is the most often an excitedB state. This is not the definition adopted in this work.
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The fact that the non-perturbative component of the fragmentation function depends strongly
on the perturbative one has been sometimes neglected.

The possibility to separate between the perturbative and non-perturbative parts, while still
missing theFactorization theoremof QCD [10], is based on the fact that dynamical processes
taking place on well separated physical scales are quantum-mechanically incoherent. This al-
lows us to treat different subprocesses independently of each other. Applying factorization to
b fragmentation allows us to fold the perturbative and non-perturbative components using the
appropriate convolution product to get a prediction for the observed fragmentation function10:

Dobserved(x) =
∫ ∞

0
Dpert.(z)×Dnon−pert.(

x
z
)

dz
z

(2.9)

wherex is the chosen fragmentation variable.
A consequence of the factorization theorem is that the non-perturbative component, that

describes the physics at a scale lower than the “factorization scale”µF , does not depend on the
initial state.

A clear demonstration of the dependence of the non-perturbative QCD component on the
perturbative one is presented in Chapter 6, where the non-perturbative QCD component is ex-
tracted from the measured fragmentation function for a few perturbative QCD approaches.

2.3.3 Perturbative QCD

Two approaches to predict the perturbative QCD component of the fragmentation function
are considered in the next sections. The first one is based on theoretical QCD calculations, and
the other uses Monte Carlo generators. The second approach is usually adopted by experimen-
talists.

2.3.3.1 Theoretical QCD Calculations

The full expression of the perturbative QCD calculation at orderαS is:

1
σ

dσ
dx = δ(1−x)+ αS(Q2)

2π

{
CF +CF

[
ln Q2

m2

(
1+x2

1−x

)
+

+ 21+x2

1−x lnx−
(

ln(1−x)
1−x

)
+

(
1+x2

)
+ 1

2

( 1
1−x

)
+ (x2−6x−2)

+
(2

3π2− 5
2

)
δ(1−x)

]}
+O

(
m
Q

) (2.10)

whereQ is the center of mass energy,m the quark’s mass andCF = 4/3 the color factor. The
“plus” distribution,

( 1
1−x

)
+ is defined so that its integral with any sufficiently smooth distribu-

tion f is:
1∫

0

dx
f (x)

(1−x)|+
=

1∫
0

dx
f (x)− f (1)

1−x
(2.11)

10The physical distributions vanish forx > 1. The necessity to integrate to infinity will be clarified in Chapter 6
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and
1

(1−x)|+
=

1
1−x

(2.12)

for 0≤ x < 1.
In Equation (2.10), terms containing lnQ2

m2 and 1
1−x are large. They are related to collinear

and soft gluon radiation, respectively.
The perturbative QCD expansion of the fragmentation as a power series inαS contains these

large logarithmic terms, due to soft and collinear gluons, at all orders inαS . One class of such
terms is:

Tn,m = αn
S lnm(1−x)/(1−x) (2.13)

with m≤ 2n−1. The contribution from soft gluons is particularly problematic in the so called
Sudakov region, wherex→ 1. According to the Bloch-Nordsieck theorem [10], the singularities
from soft gluons cancel between real and virtual diagrams, as shown in Figure 2.4. Whenx→ 1

+

++

++ . . . .

2

2

Figure 2.4: Cancellation of real gluon radiation and virtual gluon exchange.

and the phase-space for gluon radiation is suppressed, this cancellation of real gluon radiation
and virtual gluon exchange is incomplete and the theoretical calculation breaks down. Under
these conditions, any finite order perturbative calculation can-not provide reliable predictions.
A resummation of the large logarithmic terms to all orders inαS of the perturbative expansion
is then necessary and solves partially that problem. The higher order resummation of Loga-
rithmic terms is evaluated, the more reliable the computation is, and the closer it goes tox = 1
before breaking down. A LL (Leading Log) resummation takes into account the class of largest
logarithmic contribution at all orders inαS (i.e ∑∞

n=1Tn,2n−1, whereTn,m is defined in Equation
(2.13)). A Next to Leading Log (NLL) resummation, sums up also the next class of logarithms,
∑∞

n=1Tn,2n−2 and so on.
A fixed-order calculation of the fragmentation function at orderα2

S in e+e− annihilation
was done in [11]. This result does not include the resummation of logarithmic classes as de-
scribed above, but does include correctly all terms up to orderα2

S, including terms without any
logarithmic enhancement. A LL resummation formula has been obtained in [12] and a NLL re-
summation has been performed in [13, 14]. An approach that also retains NLL accuracy terms,
the Dressed Gluon Exponentiation (DGE), has been presented in [15].
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In the case of heavy quark fragmentation, the large mass of the quark regulates collinear
singularities and suppresses one class of logarithmic divergences. Yet, the logarithmic contri-
butionsαSln(Q2/m2) of collinear origin become large when the center of mass energyQ is
much larger than the heavy quark’s massm. This is the case at LEP energies, and therefore also
these terms need to be resummed to all orders inαS. This resummation has been performed in
[12] up to NLL level, using Altarelli-Parisi evolution of a perturbatively calculable initial condi-
tion 11. Unlike terms related to soft gluon radiation, the resummation of terms inαSln(Q2/m2)
is important in all regions of thex spectrum.

In Chapter 6 the extraction of thex-dependence of the non-perturbative QCD component of
the fragmentation function is presented. The extraction has been done for a few perturbative
QCD approaches. In this context, we will mainly refer to the NLL computation from [14].
Moreover, the present thesis work started by carrying out this QCD calculation step by step.
The results were compared with those of the authors of [14] and found to be identical. The
detailed computation, beyond its main results that are presented in [14], was needed for the
analysis presented in Chapter 6.

The computation in [14] resums to all orders leading and next-to-leading logarithmic terms
in the perturbative expansion at all orders inαS

12.
The Next to Leading Log with Dressed Gluon Exponentiation (NLL+DGE) computation of

[15] adds two ingredients to the former:

• It also resums in an approximate wayall the subleading logarithmic terms, i.e.αn
Slogn−1(N),

αn
Slogn−2(N),... etc. This approximation, known as the large-β0 approximation, includes

only the logarithms generated by the fermion loops in an emitted gluon. These loops can
be calculated by using a “massive gluon” as a computational tool.

• The series generated by the above procedure is divergent, like all infinite series in QCD.
Therefore a regularization has to be introduced. The functional form of the uncertainty re-
lated to the regularization comes in the form of power corrections, with a specific pattern.
Hence, by regularizing the perturbative series one can gather some pieces of information
about the behavior of the power corrections.

2.3.3.2 Parton Showers in Monte Carlo Generators

The useful and easily understandable “parton shower” picture for the perturbative part of
fragmentation is appropriate for integration in computer Monte Carlo generators. In this model,
partons are created by successive elementary branching processesq→ qg, g→ gg, andg→ qq̄,
where interference between the individual branchings is neglected. It is shown here that this
probabilistic approach captures the leading-log characteristics of multiple-parton emission.

The cross section of the perturbative part of the fragmentation process, that is, the evolution
from an initial parton to the final multi-parton system, may be calculated in theLeading Log-
arithm (LL) Approximation, where only the leading logarithmic terms at all orders inαS are

11This initial condition is the fragmentation function at the scale of the heavy quark mass
12In effect this is done in the moments space by resuming the logarithmic terms of typeαn

Slogn+1(N) and
αn

Slogn(N) in the exponent
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kept in the perturbative expansion:

σ∼= ∑
n

an

(
αS ln

Q2

ΛQCD
2

)n

(2.14)

The expression forαS is:

αS
(
Q2)=

1

β0 ln
(

Q2

ΛQCD

) (2.15)

For the LL approach to be valid, the sum in Equation (2.14) must dominate the asymptotic
behavior of the cross section for a large virtuality scaleQ2. This requires thatαS(Q2) be much
smaller than unity and thatαS(Q2)ln(Q2/ΛQCD)≈ 1. Both requirements are fulfilled according
to Equation (2.15).

q
q q

qg

g

g

gg

Figure 2.5: Elementary processes contributing to the parton shower model.

The LL approximation corresponds to a selection of diagrams according to the topology of
the subprocesses rather than the number of vertices, like a typical fixed orderαS calculation.
Therefore it is well suited to describe final states with a large number of high energy partons.
Gribov and Lipatov show [16] that the LL approximation suppresses diagrams with internal
loops, and that only simple branchings of one parton into two partons, as in Figure 2.5, con-
tribute to the leading logarithms. This means that there is no contribution from interference
between individual branchings. The combination of these elementary steps and the lack of
interference lead to tree-like diagrams like those in Figure 2.5.

This approach simplifies significantly the calculation and simulation of complex parton con-
figurations. It allows a simple iterative modeling of event evolution in parton shower Monte
Carlo generators, where the appearance of branchings to partons of specific types and energies
can be described by classic probabilities. The branching probabilities are expected to fulfill
some basic requirements. The probability should of course be proportional toαS(Q2). The
remaining contributions to the branching probability should be scale-invariant, i.e. only depend
on the types of the final state partonsb andc in a processa→ bc, and on the fractionsz and
(1−z) of the energy associated with partonsb andc, 0< z< 1. This leads to the expression

Q2d2Pa→bc

dzdQ2 =
αS(Q2)

2π
Pa→bc(z) (2.16)

Here,Pa→bc(z) is the scale-independent parton splitting function for the processa→ bc.
Integration of Equation (2.16) over the full z range leads to the Altarelli-Parisi type equation
[17]
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Figure 2.6: A scheme of a parton shower process.

Q2d2Pa→bc

dQ2 =
αS(Q2)

2π

∫
Pa→bc(z)dz (2.17)

Parton splitting functions are obtained as solutions to the above equation. For QCD, the
so-called Altarelli-Parisi splitting kernels [17] in the spin-averaged, lowest order approximation
are

Pq→qg = CF

(
1+z2

1−z

)
Pg→qq̄ = TR

(
z2 +(1−z)2

)
Pg→gg = 2CA

(1−z
z + z

1−z +z(1−z)
)

(2.18)

WhereCF = 4/3 andCA = 3 are the color factors, andTR = nf /2, nf being the number of
flavors.

As expected, the kernels for symmetric final states are invariant under the exchange between
z and 1−z.

Parton shower Monte Carlo models are usually based on the probability that a given parton
branches during a given decrease of the virtuality scaleQ2. This probability can be calculated by
summing the splitting functions for all possible final states and integrating over the considered
Q2 range. Splitting is then applied randomly according to these probabilities. The parton shower
model is only valid for large energy scales; once all partons have been tracked down to an energy
Q0 of the order of 1GeV, parton shower generators usually stop the iterative shower evolution
and proceed to the non-perturbative hadronization of the shower partons.Q0, also called the
virtuality cutoff, andΛQCD are the main parameters of a parton shower model. This cut-off
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limits the allowed range ofz in splittings, so as to avoid the singular regions corresponding to
excessive production of very soft gluons.

In analytical QCD computations, the kernals in Equation (2.18) contain terms inδ(1− z),
and are used with the “plus” distribution 1

(1−z)|+
. These terms ensure the flavor and energy

conservation. The corresponding problem is solved trivially in Monte Carlo programs, where
the shower evolution is traced in detail, and flavor and four-momentum are conserved at each
branching. Indeed, this is reflected by the need to introduce the virtuality cut-off.

Parton shower models are very successful in modeling the distribution of secondary partons
which are comparably soft and almost collinear to the primary partons, but their results for
additional high energy partons with large transverse momentum (leading to three or more clearly
separated jets) is not optimal.

Refinements to the simplest parton shower described in this section were introduced by tak-
ing interference between individual branching into account. It was established that the impact
of interference can be described easily as suppression of certain regions of phase-space during
branching, such that the opening angle of a branching is always smaller than the opening an-
gle of the previous branching. This effect is taken into account in Monte Carlo generators as
JETSET [18], PYTHIA [19], and HERWIG [20].

2.3.4 Non-perturbative QCD

The non-perturbative part of the fragmentation bridges the gap between the perturbative cal-
culable part and the physical fragmentation function measured by an experiment. It is therefore
an important ingredient for comparisons between the predictions of physical observables and
their measured values. As has already been mentioned, this part of the fragmentation describes
the physics at a low energy scale of∼ ΛQCD, where the value ofαS is large.

During the non-perturbative part of the fragmentation, the production of hadrons from the
generated partons takes place. Usually, phenomenological schemes are used to model the
carry-over of parton momenta and flavor to the hadrons. It is also possible to extract the non-
perturbative component directly, without using any model assumption. This is done by theorists
for moments of the fragmentation distribution. In Chapter 6, a method will be proposed to
perform this extraction also for thex-dependence of the fragmentation function.

2.3.4.1 Hadronization in Monte Carlo Generators

The computation of the hadronization process in Monte Carlo programs is not based on first
principals of QCD, but on phenomenological models. The most popular models of hadroniza-
tion are the string model, implemented in the JETSET [18] and PYTHIA [19] Monte Carlo
event generators, and the cluster hadronization of the HERWIG Monte Carlo event generator
[20]. The earliest model, the independent hadronization model is not used in this thesis but
has great historical importance. The analysis presented in this work relies only on PYTHIA
and JETSET. Particular attention will therefore be given to the string hadronization model in
the discussion below. The hadronization models differ in how gluons created during the per-
turbative part are treated; how (if at all) different partons interact during the hadronization;
and the number, type and momentum distribution of the created hadrons. The independent and
string models use phenomenological parametrizations for the fragmentation variable. These
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parametrizations, that are sometimes referred to as “fragmentation functions”, will be reviewed
in Section 2.3.4.2.

Independent Hadronization This is the simplest scheme for generating hadron distributions
from those of partons.In this model, first proposed by Field and Feynman [21], partons are
supposed to fragment independently from one another. Each quark in the system after the
showering process is combined with an antiquark from a qq̄ pair created out of the vacuum to
give a “first generation” meson with energy fractionz of the initial quark. The leftover quark,
with energy fraction 1−z, is fragmented in the same way, over and over, until the leftover energy
falls below a certain threshold. The variablez is distributed according to a given probability
density function, which is the “hadronization model” (see Section 2.3.4.2). The most significant
drawback of this model is the fact that it is not able to simulate interference effects. This model
is still used to simulate events with two well separated jets, where interference factors are less
important. The independent fragmentation can also be used by PYTHIA [19] as a non-default
option.

Cluster Hadronization Cluster fragmentation is used in the HERWIG Monte Carlo generator
[20]. In this model, assuming a local compensation of color, based on the pre-confinement prop-
erty of perturbative QCD [22], the remaining gluons at the end of the parton shower evolution
are split into quark-antiquark pairs. Color singlet clusters of typical mass of a couple of GeV
are then formed from quark and antiquark of color-connected splittings. These clusters decay
directly into two hadrons unless they are either too heavy (then they decay into two clusters) or
too light, in which case a cluster decays into a single hadron, requiring a small rearrangement
of energy and momentum with neighboring clusters. The decay of a cluster into two hadrons
is assumed to be isotropic in the rest frame of the cluster unless a perturbative-formed quark is
involved. A decay channel is chosen based on the phase-space probability, the density of states,
and the spin degeneracy of the hadrons. Cluster fragmentation has a compact description with
few parameters, due to the phase-space dominance in the hadron formation. A scheme of the
cluster fragmentation is shown in Figure 2.7.

String Hadronization A large class of models describes hadronization through the image of
color flux tubes, or strings, each spanned between two quarks created during the perturbative
part of fragmentation. Usually the motion of a string is described by classical, relativistic dy-
namics. The treatment of gluons seems more natural in the string picture than in the cluster
or independent hadronization schemes: perturbative gluons are simply incorporated into the
strings connecting two nearby quarks. They appear as a kink in the string. This complicates
the dynamics, but does not lead to fundamentally different effects. Gluons will therefore be
neglected in the following considerations. A scheme of the string hadronization is shown in
Figure 2.8.

The strength between two color sources, with large mutual distance, is expected to be inde-
pendent of the distance due to the self-interaction of gluons. The energy density, or string ten-
sionκ, is constant along the string, assuming the transverse extension of the string is constant
over its full length and much smaller than the longitudinal extension. The string is estimated to
have a diameter of∼ 1fm and a tension ofκ≈ 1GeV/fm. As the quarks fly apart and the string
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Figure 2.7: A scheme of the cluster hadronization model.

is stretched, the energy stored in the string increases according toE(d) ∝ κd, whered is the
distance between the quark and the antiquark situated at both ends of the string, i.e. the length
of the string. If a virtual q̄q pair fluctuates out of the vacuum, somewhere along the string, and
if this pair has the same color as the endpoint quarks of the string, the color field is locally
compensated and the string breaks into two pieces. This process is repeated until the remaining
energy of the individual string segments is no longer sufficient to transform another virtual qq̄
pair into a real one.

Because the string is assumed to be uniform along its length, the probability of a qq̄ pair
creation occurring on the string per unit length and per unit time is a constantP0. To obtain
the probability that the string breaks due to this pair creation at a given point, the history of
this point has to be taken into account: the probability of a string break is proportional to
the probability that no previous break occurred in its backward light cone. Had there been
any previous break within the light cone, the considered space-time point would not be on the
string, since the endpoints of the newly created sub-strings move apart at the speed of light13

(assuming massless endpoint quarks). The probability for no string break in the backward light
cone is given by the Wilson area law [23]

dP
dA

= P0e−P0A (2.19)

with A being the space-time area in the backward light cone. Essentially this area law states
that evolution of long string pieces over long periods of time without decay is exponentially
suppressed.

13This has the immediate consequence that all string breaks are causally disconnected.
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Figure 2.8: A scheme of the string hadronization model.

The area in the backward light-cone can be calculated in two-dimensional light-cone vari-
ables, in the center of mass system of quark and antiquark, with the string extended along thex
axis:

A =
∣∣∣∣(∆t−∆x√

2

)(
∆t +∆x√

2

)∣∣∣∣= 1
2

∣∣∆t2−∆x2
∣∣= 1

2κ2

∣∣p2
x−E2

∣∣= m2
t

2κ2 (2.20)

Thus the invariant transverse massmt =
√

m2 + p2
t of a string piece is proportional to the area

swept over by the backward light cone. Hence, the area law can be used to deduce the transverse
mass distribution of sub-strings:

dP
dm2

t
=

dP
dA

dA

dm2
t

= P0e−P0A 1
2κ2 = be−bm2

t , b =
P0

2κ2 (2.21)

It should be pointed out again that these results are only valid for massless quarks. Bowler [24]
has performed a modification of this calculation which takes into account a non-zero mass of
the endpoint quarks of a string. This is done by replacing the straight world line of the quarks
by curved lines.

The first string model was proposed by Artru and Mennessier in 1974 [25], based on the for-
malism reproduced above. The problem encountered in this model was that iterative application
of string splitting by the area law lead to an infinite series of ever smaller sub-strings. To avoid
this problem, Artru and Mennessier introduced a mass cut-offm0, below which further string
fission is prohibited. They end up with a finite set of hadronic states with a continuous mass
spectrum, which strongly resembles the clusters described above. These cluster-like resonances
decay into two usual on-shell hadrons.
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Rather than using a strict cut-off atm0, the CalTech II string hadronization scheme [26]
suppresses string splitting to unphysically small mass sub-strings by smoothly decreasing the
probability of further string breaks. This probability is parametrized as

Pbreak=
{

1−e−P0(m−m0)
2/κ2

m> m0

0 m≤m0
(2.22)

If, with the above probability, a further string break takes place, its space-time coordinates are
found according to the area law. If no further string break takes place, the remaining sub-string
decays into two hadrons as in the cluster scheme. If the cut occurs close to one end of the string,
one of the two sub-strings can have an invariant mass below the kinematic thresholdm1 < m0

for production of two hadrons. These very light sub-strings are transformed into a single hadron
which is generally not on-shell. The momentum is then corrected by moving the string break
along the string until the decay into a single hadron is kinematically allowed. Gottschalk and
Morris have shown that the extent to which the string break point has to be moved is smaller
than the transverse extension of the string [26], and that this procedure is therefore acceptable.

Hadron mass shell constraints and uniform splitting probability are irreconcilable, as evi-
dent from the above considerations. The Artru-Mennessier and CalTech II models rely on the
uniform splitting probability and are thus forced to include cluster-like transitions from string
fragments to hadrons.

Probably the most well-known and widely used string hadronization model, invented by
the Lund group [27] and implemented in the Jetset [18] and Pythia [19] Monte Carlo event
generators, abandons the concept of a necessarily constant qq̄ pair creation probability over
the full length of the string. Strings are broken exactly where necessary to ensure the creation
of on-shell hadrons. Since all string breaks are causally disconnected, they can be treated in
any possible order. The Lund scheme makes use of this property to establish a simple iterative
algorithm: hadronization is started at the outer ends of the string, and the creation of hadrons
is continued towards the inside until the invariant mass of the remaining string drops below
a threshold value. This remainder is then split into two hadrons, once again, in analogy to a
cluster decay.

The creation of q̄q pairs along the string in the Lund model takes the quark masses into
account14. This has important consequences: qq̄ pairs are expected to be created locally, i.e.
at one space point. However, in order to transfer a virtual qq̄ pair into mass-shell particles,
energy has to be taken from the string. For quarks of a massmq, and a transverse momentumpt

with respect to the string, the minimum required energy isEmin = 2
√

m2
q + p2

t = 2mt . Here it
is assumed that both members of the qq̄ pair have a transverse momentum of the same size, but
opposite direction. Otherwise the string would acquire a transverse excitation, which is assumed
not to happen. The required energy can only be obtained by a spatial separation of quark and
antiquark along the string of∆xmin = Emin/κ = 2mt/κ. The string fission is thus suppressed by
the probability of a tunneling process of a locally created qq̄ pair to spatially separated on-shell
quarks. The suppression factor was found to be [28]

e−
π
κ(m2

q+p2
t ) = e−

π
κ m2

q×e−
π
κ p2

t (2.23)
14Unfortunately it is not quite clear which quark masses should be used. The Lund model uses so-called kine-

matical masses for hard processes like quark pair creation, and constituent masses fitted to the hadron spectra to
estimate masses of resonances that have not yet been found.
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The first term provides for an automatic suppression production during string hadronization.
The ratio of flavor production rates is estimated to bePu : Pd : Ps : Pc = 1 : 1 : 0.3 : 10−11

using kinematical quark masses. The second term in the tunneling probability corresponds to a
suppression of large transverse momenta. Interestingly, the transverse momentum distribution
is predicted to be independent of the quark flavor. A further prediction is that baryon production
(requiring two quarks and two anti-quarks) is less likely than meson production, in accordance
with observations.

Choice of flavor and transverse momentum for qq̄ pairs is thus strictly regulated in the Lund
string scheme. Hence, the quark content and transverse momentum of hadrons are also well
constrained. Further quantum numbers, e.g. angular momentum, relative spin orientation, etc.,
are chosen based on rather general symmetry assumptions, or according to measured production
ratios. What remains is the longitudinal hadron momentum with respect to the string axis. The
choice of a longitudinal momentum is usually expressed in terms of the fraction of the string’s
light cone momentum to be taken by the hadron, i.e. the variablez introduced in Section 2.3.1.
The probability distributionf (z) of momentum fractions assigned to hadrons can be chosen
arbitrarily. Each choice corresponds to a specific distribution of cut points on the string, which
does not necessarily comply with Wilson’s area law, or a constant breaking probability over
the full string length. The most common parametrizations of f(z) will be discussed later in this
chapter.

A short summary of the Lund recipe amounts to the following: after the quark flavors for a
hadron have been chosen, the next step is to select the remaining quantum numbers (e.g. spin,
orbital angular momentum) for the hadron. Finally, the longitudinal momentum is determined
by the fragmentation function. This function in the Lund model is independently normalized
for each hadron species that is selected for the next hadronization step:

1∫
0

f (z)dz= 1 (2.24)

Since the hadron mass usually enters as a parameter in the fragmentation function, there is in
fact a different fragmentation function for each type of hadron,f (z)→ fh(z).

Baryon Production A common problem arising in all models is the production of baryons.
The primary partons are confined to hadrons by creating additional qq̄ pairs and combining the
additionally created (anti-)quarks to mesons. The formation of baryons is a more complicated
process which is mainly modeled using two different scenarios. One approach is to create a cer-
tain amount of diquark-antidiquark pairs in the same manner as for quark-antiquark pairs [29].
These can then combine with additional single quarks to form hadrons. The other approach,
the so-called popcorn model [30], features a step-by-step baryon production: the creation of qq̄
pairs whose colors do not match their neighboring quarks keeps up a color field in which addi-
tional q̄q pairs can emerge before mesons are formed. Diquark production is applicable to all
hadronization models described above. The popcorn model is mainly used in the string model.
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2.3.4.2 Phenomenological Hadronization Models

There is a number of different phenomenological models that tend to parametrize the energy
fraction taken by theb hadron with respect to the energy of theb quark. These models corre-
spond to different functions of the fragmentation variablez and they usually depend on one or
two parameters. The models are usually used to describe the non perturbative part of fragmen-
tation, and therefore the quark’s energy is understood as the energyafter the perturbative phase.
In the framework of Monte Carlo generators, the last statement is synonym toafter the parton
showering process. The use of the independent or string hadronization models requires the use
of one of the phenomenological parametrizations described below. In particular, one must use
them in the JETSET [18] and PYTHIA[19] Monte Carlo generators that have been used in the
present analysis.

It is a common practice to fit the parameters, those models depend on, when measuring the
b fragmentation function ine+e− collisions. This has been done by ALEPH [31] , OPAL [32]
and SLD [33] as a part of theirb fragmentation analyses, and also by DELPHI [34], previously
to the analysis presented in this work.

Phenomenological hadronization models have sometimes been folded with theoretical QCD
computations of the perturbative component of the fragmentation function. It will be shown in
Chapter 6 that this approach is problematic.

Some of these functions, derived from phenomenological ideas, have been contributed by
Petersonet al. [35], Collins and Spiller [36], and Kartvelishviliet al. [37]. Models that are built
on more basic ideas of the string fragmentation process have been suggested by Andersson
et al. [38] and Bowler [24]. In the sections below, where these models are presented, the
fragmentation variable is noted as z to be consistent with the original publications.

The Peterson Model A simple phenomenological parameterization of the spectra of heavy
hadrons was presented in 1983 by Petersonet al [35]. This model relies on simple kinematical
arguments.

The basic idea behind this model is that when a light quarkq combines with a heavy quark
Q to form a hadronH = Qq, the heavy quark decelerates only slightly. Thus,Q andQq should
carry almost the same energy; this effect is expected to dominate over more subtle dynamical
details.

Therefore the gross feature in the amplitudeM of the transitionQ→Qq+q is supposed to
be given by the energetic gain in the process:

M ∝
1

∆E
=

1
EH +Eq−EQ

(2.25)

this energy difference between the initial and the final state can be written as

∆E =
√

m2
H +z2p2 +

√
m2

q +(1−z)2 p2−
√

m2
Q + p2 (2.26)

Wherep is the three-momentum of the heavy quark just before it hadronizes.mH , mQ andmq

are the masses of the heavy hadron, the heavy quark and the light quark respectively. When
the hadron takes a fractionz of the quark momentum, the rest of the energy is left to the light
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quark. Since the hadron mass is, as a first approximation, not much different from the heavy
quark mass, the last expression can be rewritten as:

∆E =
√

m2
Q +z2p2 +

√
m2

q +(1−z)2 p2−
√

m2
Q + p2 (2.27)

Moreover, for high energy accelerators where the assumptionp/mQ� 1 is justified, the expres-
sion can be approximated by:

∆E '
m2

Q

2p

(
1
z

+
m2

q/m2
Q

1−z
−1

)
∝ 1− 1

z
− ε

1−z
(2.28)

Whereε =
m2

q

m2
Q

. The value ofε can not be calculated exactly, because the light quark mass

in the equation is just a representation of the non-perturbative strong interaction scale. An
estimate for this scale is the constituent mass of light quarks in aρ meson [35]. Using this value

gives an estimate ofε for the case ofb quark fragmentationεb≈
(mρ/2)2

m2
B0

≈ 5 10−3 15. The actual

fragmentation function is supposed to be proportional to the squared amplitudeM 2 of Equation
(2.25), completed by a phase space factor of 1/z. Therefore the following parametrization is
obtained:

DH
Q(z) = N(ε)

1

z
(
1− 1

z−
ε

1−z

)2 (2.29)

WhereN(ε) is an analytically calculable normalization factor.

The Collins-Spiller Model Collins and Spiller noted in 1985 that the Peterson parametriza-
tion shows the behavior∝ (1−z)2 whenz approaches unity [36]. This is in contradiction with
the ∝ (1− z) behavior expected for mesons from dimensional counting arguments by Brod-
sky et al. [39]. For the same reason they stated that the Peterson parametrization cannot ful-
fill the reciprocity relation [40] which connects exclusive heavy mesonH structure functions
FQ

H (z) to exclusive fragmentation functionsDH
Q(z) at highzand expects, at the limitz→ 1, that

FQ
H (z) ≈ DH

Q(z). This may be understood qualitatively by the argument that at largez in both
cases there is a heavy quark that dominates the properties of a hadron, and a low energy re-
mainder. The probability, to create from a quark a hadron with a fractionz of the quark energy,
is therefore expected to be close to the probability to extract a quark with an energy fractionz
from a hadron.

Collins and Spiller have suggested a fragmentation parametrization that ensures the require-
ments from reciprocity and dimensional counting and gives the wanted asymptotic behavior of
(1− z) whenz→ 1. Their model is based on their own prediction of heavy meson structure
functions, which is calculated by perturbative QCD, taking into account off-shell mass effects.
The fragmentation parametrization obtained in [36] for heavy quarks is:

DH
Q(z) = N(ε)

(
1−z

z
+

2−z
1−z

ε
)(

1+z2) 1(
1− 1

z−
ε

1−z

)2 (2.30)

WhereN(ε) is an analytically calculable normalization factor.

15In practiceε is treated as a free parameter.
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The Kartvelishvili Model An approach similar to the one by Collins and Spiller has been
proposed by Kartvelishviliet al. already in 1978 [37]. It also makes use of the reciprocity
relation to derive a heavy quark fragmentation function from the corresponding heavy meson
structure function.

Kartvelishvili et al. derive the fragmentation parametrization:

DH
Q(z) = (α+1)(α+2)zα (1−z) (2.31)

and predict that, forb fragmentation,α≈ 9.

The Lund Symmetric Fragmentation Function According to the string fragmentation model,
hadrons are created iteratively at each end of the string. Thez distribution determines the ac-
tual positions of breaks on the string. Anderssonet al. have imposed the requirement that
hadronization from either end of the string, whether it is a quark or an antiquark, should lead
to the same distribution of string breaks. They have shown [38] that this symmetry condition,
along with additional assumptions like no transverse string excitations and a constant string
tension, is sufficient to constrain the functional form of the fragmentation function to

DQ(z) = N
1
z
zaα

(
1−z

z

)aβ

exp(−bmt

z
) (2.32)

wheremt is the transverse mass of the meson created in the hadronization process.b is a uni-
versal parameter.aα andaβ are parameters for the quark flavor before and after the current
hadronization step. Usually one assumesaα = aβ = a for all flavors. This assumption is not
based on firm theoretical grounds, but on the fact that there are no experimental results contra-
dicting it. It leads to a simplification of the fragmentation function as

DQ(z) = N
1
z
(1−z)aexp(−bmt

z
) (2.33)

It has been mentioned previously that dimensional counting arguments determine the be-
havior of the fragmentation function forz→ 1. The Lund symmetric function behaves like
(1−z)a in the largez region. It depends thus on the parameter choice whether this theoretically
motivated boundary condition mentioned above is fulfilled or not.

The parametersa andb do not only impact the energy spectrum of hadrons produced in the
fragmentation spectrum, but also their rapidity distribution and the multiplicity of hadrons in a
jet. These aspects will not be discussed further in this thesis, although they provide means for
independent cross-checks of parameter fits to the hadron energy spectrum.

In Chapter 6, the Lund model is used to fit the non perturbative component of the fragmen-
tation function. It has been verified that the transverse momentum of a heavy hadron obtained
in the string fragmentation process is negligible when compared to the mass of theb quark, and
therefore the productbm2

t has been used as one fit parameter. The fragmentation analysis of
OPAL [32] has also followed this convention. This remark applies also to the Bowler model
described below.
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The Bowler Model Bowler [24] refers back to the original string model of Artru and Men-
nessier [25] and modifies the light cone area calculation to prove that the inclusion of quark
masses at the endpoints of a string leads to the Lund symmetric function, corrected by an addi-

tional factorz−bm2
Q wheremQ is the transverse mass of the endpoint quark:

DQ(z) = N
1

z1+bm2
Q

(1−z)aexp(−bmt

z
) (2.34)

For heavy quarks, the transverse mass of the heavy quark is approximately equal to the trans-
verse mass of the heavy hadron,mQ≈mt :

DQ(z) = N
1

z1+bm2
t
(1−z)aexp(−bmt

z
) (2.35)

The main modifications of the Bowler model with respect to the original Artru-Mennessier
picture is the replacement of straight lines in space-time (massless particles) by hyperbolae
(massive particles), modifying the area in the history of light-cones to be considered for string
fission. An additional change is the replacement of the continuous mass spectrum of Artru-
Mennessier string decays by a discrete spectrum. This is done by restricting possible string
break points in space-time to discrete hyperbolae corresponding to different invariant masses.
Only those space-time points in the light cone history of a possible string break are taken into
account that coincide with one such hyperbola [41]. This leads to another modification of the
area decay law. The advantage of this approach is that in this way, the uniform probability
for string breaks is ensured despite the mass shell constraints, whereas the Lund symmetric
approach had to give up uniformity.

The ansatz by Bowler is quite different from the symmetry constraint approach by the Lund
group, and yet the results are remarkably similar. Although this might be surprising at first
glance, it is not unexpected. Almost all conditions imposed by the Lund group are intrinsic to
the basic Artru-Mennessier model. The Lund group starts from an iterative string fission ansatz
and tries to ensure that during iteration the symmetries and properties of the basic model are
accounted for. Bowler, on the other hand, starts from the basic model properties and arrives at
a parametrization which is also usable for iterative treatment of the string hadronization.

2.4 Excited States

At the last step of the hadronization process are produced b-hadron resonances of various
masses. The frontier remains unclear between low mass clusters and high mass resonant sys-
tems; usually well defined states are simulated only for first excited states, namely the B∗ and
B∗∗ mesons in-case ofb-flavored mesons.

As the B∗ mass differs by only 46MeV/c2 from the weakly decaying B meson mass, be-
cause of spin counting, it is expected that prompt B∗ production is three times larger than the
prompt production of the peseudo-scalar states. This has been verified by experiments running
at the Z0 pole.

B∗∗ is the generic name for the first orbital excitations (L=1) ofbq bound states. The deter-
mination of B∗∗ production rates in jets is not so precisely determined. This is partly because
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Jq JP B∗∗ state Decay Mode Width

1/2 0+ B∗0 Bπ Broad (Lp = 0, S-wave)
1/2 1+ B∗1 B∗π Broad (Lp = 0, S-wave)
3/2 1+ B1 B∗π Narrow (Lp = 2, D-wave)
3/2 2+ B∗2 B∗π,Bπ Narrow (Lp = 2, D-wave)

Table 2.1: Properties of the fourB∗∗u,d states.

one expects four such states and two of them are supposed to be broad. In addition experimen-
tal signals sit above a large combinatorial background whose shape depends on details of the
b-fragmentation.

In the resulting theoretical framework of Heavy Quark Effective Theory (HQET) [42], the
spin of the b quark (~Sb) in a hadron is decoupled from the total angular momentum of the light
spectator system (~Jq = ~Sq⊕~L). Each energy level of thebq̄-system thus consists of a pair of
states labeled byJq and thetotal spin~J = ~Jq⊕~Sb, i.e. byJ = Jq±1/2. In the heavy quark limit
the two states are degenerate in mass and have the same width.

For orbitally excited states withL = 1, combiningJq = 1/2 and 3/2 with Sb =±1/2 gives
four B∗∗ meson states withJP = 0+, 1+, 1+ and 2+. Parity conservation limits the orbital an-
gular momentum (Lp), present in their 2-body decay modes, to be even valued. Not considering
multi-pion decay channels, leads to the decay modes listed in Table 2.1 for the B∗∗

u,d states. A
similar pattern is expected for B∗∗s states although, isospin conservation demands that - if the
B∗∗s mass is above threshold - these states decay to B(∗)K .

Members of theJq = 3/2 doublet are expected to be narrow, since onlyLp = 2 (D-wave)
transitions are allowed. The other states can decay in an S-wave and are expected to be broad.
The broad state withJ = 1 will be denoted as B∗1 in order not to get confused with the corre-
sponding narrow state.

The widths of the broad states are expected to lie between 200 and 300 MeV/c2 [43, 44].
Properties of orbitally excited charm mesons are expected to follow the same pattern with

corrections to the heavy quark limit given by the ratio between the c and the b quark mass,
mb/mc, i.e. approximately three [42, 45, 46]. This scaling is expected to apply for all mass
splittings which cancel in the heavy quark mass limit. It is well verified for the doublets com-
prising the 0− and 1− states:mB∗−mB' (mD∗−mD)/3.

Evidence for narrow B∗∗u,d states first emerged in analyses at LEP in 1995 in which a charged
pion produced at the primary event vertex was combined with an inclusively reconstructed B
meson [47, 48].

Table 2.2 summarizes measurements of narrow B∗∗
u,d states. To enable a comparison to be

made, published numbers have been adjusted, where possible, to be valid for a common set of
input parameters.

Results in Table 2.2 show some agreement for the measured masses but there is a spread of
values in rate measurements which needs to be understood. In this purpose, the crucial issue
is the control of the combinatorial background contribution which formed the major source of
systematic error in the inclusive measurements, listed in Table 2.2. This has been the main
line followed by a new DELPHI measurement [49] in which depleted and enriched samples
in B∗∗ candidates are used to control, using real data events, the shape of the combinatorial
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m(B∗∗u,d) [MeV/c2] σ(B∗∗u,d)/σb

OPAL incl. 5712±11 0.21±0.05
DELPHI incl. 5732±5±20 0.27±0.02±0.06

ALEPH incl. (all) 5734±3±16 0.214±0.012±0.045+0.030
−0.045

ALEPH incl.(peak) 5734±3±16 0.144±0.008±0.030
L3 incl. B∗2 : 5768±5±6 0.32±0.03±0.06

CDF semi-excl. B1 : 5710±20 0.22±0.05±0.02
ALEPH excl. B∗2 : 5739+8+6

−11−4 0.24±0.07+0.05−0.04

Table 2.2: Current world results for the mass and production rate ofB∗∗u,d states.

background. With this technique, they obtain:

σ(B∗∗u,d) ·BR(B∗∗u,d→ B(∗)π)

σb
= 0.157±0.011(stat)+0.022

−0.014(syst)±0.019(model),

and the narrow B∗∗u,d production rate is about 60 % of this value.

2.5 B-hadron Production Rates

Production rates of the different weakly decaying B-hadron particles have been accurately
determined using measurements from LEP and TeVatron experiments. These determinations
use also results from B−B mixing obtained atb-factories and at the previous facilities.

Several types of data have been combined. They comprise “direct” measurements as the
production rates of B-hadrons decaying into a specific final state of known branching fraction
(semileptonic decays or exclusive channel). A more inclusive approach was also followed by
DELPHI using neural networks to separate charged from neutral b-hadrons. “Indirect” mea-
surements have been used also as the mixing probabilityχ. Forb-hadron jets, produced at high
energy, this probability corresponds to the average of the contributions from B0

d and B0
s mesons:

χ = fdχd + fsχs (2.36)

in which fq are the fractions ofbqmesons in the jet andχd,s are the oscillation probabilities for
B0

d and B0
s meson respectively.

These oscillation probabilities can be obtained by integrating the corresponding time distri-
bution for mixed states.

χq =
1
2

(
∆mqτBq

)2
1+
(
∆mqτBq

)2 (2.37)

∆mdτBd have been accurately determined, present results being dominated by those fromb-
factories. For B0s mesons, the lifetime has been measured with 4% accuracy and a limit exists
on the value of∆ms (≥ 14.5 ps−1 at 95 % CL). This last value implies thatχs > 0.49885 [50].
Having measuredχ in jets at high energy colliders, Equation 2.36 provides a constraint on the
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values of fd,s. Another constraint on these rates comes from the expected equality of B0
d and

B+ production fractions. Such an equality is expected asu andd quarks are almost identical
relative to strong interactions (isospin invariance). In the last steps of the hadronization process
one thus expects similar rates for the creation ofbd andbu systems, which are mainly excited
states decaying into B0d or B+ particles, unless there is isospin violation in the decay of low mass
resonances. These violations were observed forc-hadrons, were D∗0 decays only into D0 and,
as a result, production fractions of D0 and D+ in c-jets were rather different. Forb-hadrons,
all B∗ mesons decay electromagnetically and no asymmetry is introduced between B0

d and B+

production fractions. Also, masses of B∗∗ states are sufficiently above their decay threshold so
that no asymmetry is expected. As a final constraint, it is expected that theb-quark is contained
within one of the possibly produced weakly decaying states:

fd + fu + fs+ fb−baryon= 1 (2.38)

Combining all these informations, the Heavy Flavor Averaging Group obtains:

fd = fu = 0.397±0.010, fs = 0.107±0.011 andfb−baryon= 0.099±0.017. (2.39)

2.6 B Decays

In a pp environment theB decay products are situated in events where the mean multiplicity
is much larger than the one at the Z0 pole. Furthermore the ratioσbb̄/σtot is of the order of a
few permil. As a consequence, only specific channels e.g. with fully reconstructed final states,
or semileptonic decays, can be studied with a reasonable signal-to-background ratio.



Chapter 3

Experimental Framework I- The LEP
Collider and the DELPHI Experiment

3.1 The Large Electron Positron Collider

The Large Electron Positron Collider LEP was a circulare+e− accelerator constructed at
the CERN laboratory in Geneva (Switzerland). It operated from 1989 for 11 years and was,
with a circumference of 27 km, the largest collider designed to that point. It consisted of eight
2.9 km long arcs and eight 0.43 km straight sections housing about 3400 dipole bending mag-
nets, 820 quadrupoles, 500 sextupoles and 700 correcting magnets. Table 3.1 summarizes the
main properties of the LEP collider. An extensive review can be found in [51].

At four points of the LEP circumference thee+ ande− beams crossed. In those interaction
points the four experiments, namely ALEPH, DELPHI, L3 and OPAL, were placed to record
the particles produced in the collisions. Figure 3.1 shows the LEP ring and the four experiments
localization.

The possibility of creating new heavy particles in a collider depends on the center of mass
energy provided in the collision by the accelerated beams. For ane+e− symmetric machine
like LEP, this is

√
s = 2E, whereE is the beam energy. From 1989 to 1995 LEP operated

at the energy of the Z resonance,
√

s = 91.2 GeV. This phase was named the LEP-I period
and allowed for a wide study of Z production and decays. From 1995 onward, the energy of the
beams was increased by progressively adding super-conducting cavities, reaching the maximum
energy of about 210 GeV in the year 2000. This phase was aimed at studyingW+W− pairs,
produced above

√
s = 161 GeV, and to search for new particles such as the Higgs boson and

supersymmetric particles. This phase was called the LEP-II period.
One of the main challenges in circulare+e− accelerators is to compensate for the energy

loss due to the synchrotron radiation. Photons are emitted by electrons along their flight di-
rection due to the transverse acceleration. Since the energy loss by synchrotron radiation is
proportional to the beam energy raised at the fourth power, it can reach large values and has
to be compensated for by the accelerating cavities. In addition, the dissipated power has to be
absorbed by the ring components. At LEP, the synchrotron radiation was about 125 MeV/turn
when running at the Z energy and reached about 3400 MeV/turn in the LEP-II period.

Apart from the mass of the system of created particles, given by
√

s, another important char-
acteristic in a collider is the number of produced events. This is determined by the luminosity

57
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L . For a given physical process with a cross sectionσ, the total number of events produced per
unit of time is:

dN
dt

= Lσ. (3.1)

For two beams of similar dimensions, the luminosity can be expressed as:

L =
kbNe+Ne− frev

4πσxσy
(3.2)

wherekb is the number of particle bunches per beam,Ne+ andNe− are the number of positrons
and electrons per bunch respectively,frev is the revolution frequency andσxσy is the transversal
section of the beams. Figure 3.2 shows the time integrated luminosity1 reached by the LEP
machine during its entire operation period.

Circumference 26.658 km
Mean radius of curvature 4242.893 m
Depth 80-130 m
Interaction points 4
Experiments ALEPH, DELPHI

L3 and OPAL
Injection Energy 22 GeV
Maximum energy reached 208.8 GeV
at the c.m.s. (LEP-II)
Beam size σx = 100−300µm

σy = 2−6µm
Number of Bunches 2 - 4
Particles per bunch ∼ 1011

Revolution frequency 11.2 kHz
Synchrotron radiation ∼ 125−3400 MeV/turn
Luminosity ∼ 1−10× 1031cm−2s−1

Table 3.1: Properties of the LEP e+e− collider. The operation mode depends on the LEP pe-
riod.

The data used in this work was recorded by the DELPHI detector during the years 1992
to 1995 corresponding to the LEP-I period. The integrated luminosity reached by LEP in that
period was 179pb−1.

1The luminosity is usually expressed as an integrated quantity in units of inverse barns (1barn≡ 10−28m2).
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Figure 3.1: LEP collider and the placement of the four experiments.

3.2 The DELPHI Experiment

DELPHI (DEtector withLepton,Photon andHadronIdentification) was designed and in-
stalled at LEP with the aim of providing high precision and granularity, and very effective
particle identification, thanks to the implementation of a Ring Imaging Cherenkov detector. An
advanced silicon detector also allowed very precise tracking and vertex determination.

The DELPHI detector is described in reference [52]. This section only seeks to summa-
rize its main characteristics and sub-detectors. Furthermore, this document will refer only to
the performance of DELPHI during the LEP-I period. It should be noted that many of these
characteristics changed and improved during the years.

The DELPHI ensemble consisted of a cylindrical section in the central part called the “bar-
rel” and two end-caps covering the “forward” regions. Figure 3.3 shows the layout of the barrel
and of one end-cap. The DELPHI standard coordinate system is given by the z axis along the
electron beam direction, the x axis pointing towards the center of LEP and the y axis upwards.
Cylindrical coordinates (R,θ, φ) usually are used,φ and R being the azimuthal angle and radius
in the x-y plane, respectively, andθ the polar angle with respect to the z axis. The super-
conducting solenoid was 7.4 m long with 5.2 m inner diameter. It provided a highly uniform
magnetic field of 1.23 T, corresponding to a current of 5000 A, parallel to the z axis through
the central part of the barrel. The super-conducting cable consisted of 17 wires made of 300
Nb-Ti filaments embedded in copper and cooled by liquid helium at 4.5 K. The main purpose
of the super-conducting solenoid was to curve the trajectory of charged particles allowing their
momentum measurement and identification (see Section 3.5.1).
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DELPHI
Vertex Detector

Inner Detector

Time Projection Chamber

Small Angle Tile Calorimeter

Very Small Angle Tagger

Beam Pipe

Quadrupole

Barrel RICH

Outer Detector

High Density Projection Chamber

Superconducting Coil

Scintillators

Barrel Hadron Calorimeter

Barrel Muon ChambersForward Chamber A

Forward RICH

Forward Chamber B

Forward EM Calorimeter

Forward Hadron Calorimeter

Forward Hodoscope

Forward Muon Chambers

Surround Muon Chambers

Figure 3.3: Schematic layout of the DELPHI detector.

3.3 Tracking Detectors

The tracking system provided the trajectories of the particles by evaluating their momenta
and impact parameters. Detectors in this system were: the Vertex Detector (VD), the Inner
Detector (ID), the Time Projection Chamber (TPC) and the Outer Detector (OD), in the barrel
region; and the tracking chambers (FCA and FCB) in the forward region. They were the most
important detectors for analyses involving B decays as we will see later.

3.3.1 The Vertex Detector

This detector provided a very precise measurement of the passage points of charged par-
ticles near the interaction point. This allowed for the determination of both primary and sec-
ondary vertices and the track impact parameter, providing a track reconstruction with a track
resolution of about 300µm. It is essential in the study of B hadrons coming from Z decays since
their mean decay length is about 3 mm from the primary vertex.

The VD detector consisted of three coaxial cylindrical layers of silicon strip detectors in
the barrel region, at average radii of 6.3 cm, 9 cm, and 10.9 cm around the beam pipe. Each
layer was formed by 24 overlapping (about 10◦ in φ) modules of 23.6 cm length containing four
detector plates each (see Figure 3.4). The polar angle coverage for charged particles hitting all
three layers was 44◦ ≤ θ≤ 136◦. The readout pitch was 50µm in the Rφ plane perpendicular to
the beam direction. In April 1994, the inner and outer layers were equipped with double-sided
silicon detectors. The new detectors increased the polar angle coverage to 24◦ ≤ θ≤ 155◦.
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Figure 3.4: Schematic cross-sections of the DELPHI Vertex Detector (1994-1995 configura-
tion).

The alignment of the VD was necessary for the track reconstruction. A first mechanical
alignment used laser located between the VD and ID detectors determining the position of each
module. After that, dimuonZ → µµ̄ events and hadron tracks were used in order to calibrate
the detector. Tracks in the overlaps were taken into account to refine the Rφ rotations and
translations of the modules in a layer. Overlap and dimuon tracks were also used for the z
alignment.

The intrinsic resolution for a single hit of the detector was about 8µm in the Rφ plane, and
about 9µm for the z coordinate in case of tracks perpendicular to the modules.

3.3.2 The Inner Detector

The Inner Detector was placed between the VD and the TPC. It was responsible for extrap-
olating the reconstructed track elements from the TPC to the vertex detector. It also contributed
to the first and second levels of the DELPHI trigger, reducing the rate due to cosmic and beam
gas events.

The ID consisted of two parts:

• The drift chamber (called Jet-Chamber, at 11.8 cm < R < 22.3 cm) divided into 24 az-
imuthal sectors of 15 degrees inφ. Each sector consisted of 24 sense wires arranged
parallel to the beam direction, which provided about 24 Rφ points per track. The polar
angle coverage was 30◦ ≤ θ ≤ 150◦ until the beginning of 1995. From 1995 onward a
new longer ID was installed, increasing theθ coverage to 15◦ ≤ θ ≤ 165◦. The single
wire resolution was of the order of 90µm in Rφ. The resolution of one track element was
about 40µm in Rφ. The 2-track separation was about 1 mm.

• The trigger layers: until 1995 five cylindrical MWPC (Multi-Wire Proportional Chamber)
layers were arranged surrounding the drift chamber. Each layer consisted of 192 sense
wires spaced by about 8 mm and with 192 circular cathode strips providing Rz informa-
tion for the track elements. The Rφ measurement was mainly used in the trigger. It also
resolved the left-right ambiguity in the drift chamber. Since 1995, the MWPC layers were
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Figure 3.5: Scheme of DELPHI Inner Detector.

replaced by 5 cylindrical layers of straw tube detectors, each layer comprising 192 tubes.
They had the same function as the old MWPC trigger layers but there was no longer a
z measurement. For the old MWPC layers, the z precision from a single layer, for an
isolated track, varied from 0.5 mm to 1 mm depending onθ.

Figure 3.5 shows a scheme of the DELPHI Inner Detector.

3.3.3 The Time Projection Chamber

The Time Projection Chamber, placed between the Inner and Outer Detectors, was the cen-
tral tracking device in DELPHI. Along with the VD, it contributed to the track reconstruction,
providing a precise measurement of the particle momenta. The TPC was a gas-filled (80% ar-
gon and 20% methane) cylinder, 340 cm long and with 120 cm radius, divided into 6 azimuthal
sectors each with 192 sense wires and 16 circular pad rows (see Figures 3.6 and 3.7). Particles
traversing the TPC ionized the gas. Free electrons drifted towards the end-caps by means of a
150 V/cm electric field parallel to the magnetic field of DELPHI. This electric field was created
by a high tension plate (-20 kV) which separated the cylinder in two regions. The charge of
the avalanche created by the drift electrons was collected on the two end plates of the TPC by
means of anode wires and pad rows. This charge provided information on the charged particle
energy loss per unit of lengthdE/dx. The z coordinate was calculated by measuring the drift
time of the electrons and knowing their drift velocity. The TPC provided 16 space points per
particle trajectory at 40 cm < R < 110 cm radii and between polar angles 39◦ ≤ θ ≤ 141◦. The
pad rows gave information about the ionization position in the Rφ plane with a resolution of
250µm per point. The z coordinate resolution was about 900µm.

3.3.4 The Outer Detector

The Outer Detector complemented the TPC, improving the momentum determination for
charged particles and complementing the geometrical acceptance by covering the dead zones
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Figure 3.6: Schematic view of the sense wires and pads rows in one sector of the TPC.
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Figure 3.7: Scheme of the DELPHI Time Projection Chamber.
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of the TPC. It consisted of 3500 drift tubes, operating in the limitedstreamermode. The
tubes were arranged in 5 layers allocated between radii of 197 cm and 206 cm. The tubes, of
4.7 m length, were oriented in the beam direction. The OD detected tracks within the range of
42◦ ≤ θ ≤ 138◦, with a resolution of 100µm in the Rφ plane independent of the drift distance.
Three layers read the z coordinate by timing the signals at the end of the anode wires with a
resolution of 5 cm.

In addition to these tracking detectors, the Forward chambers FCA and FCB formed part of
the tracking system covering the forward and backward regions of DELPHI. They were drift
chambers located at both end-caps, which contributed to the track reconstruction.

3.4 Other Detectors

3.4.1 Ring Imaging Cherenkov Detectors

The Ring Imaging Cherenkov detectors (BRICH in the barrel and FRICH in the forward
regions) were decisive in providing a good particle identification. The barrel RICH was located
between the TPC and the OD detectors (123 cm < R < 197 cm), covering polar angles in the
region 40◦ ≤ θ≤ 140◦. It consisted of 48 sectors, each containing a liquid radiator (C6F14), one
drift tube with multi-wire proportional chambers at the extremes, a gas radiator (C5F12 at 40◦C),
and six mirrors which focused the produced Cherenkov photons. The liquid radiator (refrac-
tive indexn = 1.283) was used for particle identification in the momentum range 0.7-8 GeV/c,
whereas the gas radiator (n = 1.00172) was used for particles in the 2.5-25 GeV/c range. The
angular precision per track (obtained fromZ → µ+µ− events) varied between 5.2 mrad in the
liquid radiator and 1.5 mrad in the gas radiator. Figure 3.8 shows the working principle of the
RICH detector.

3.4.2 Electromagnetic and Hadron Calorimeters

Electron and photon identification was provided in DELPHI primarily by the electromag-
netic calorimetry system. The main electromagnetic calorimeters were the High Projection
Chamber HPC in the barrel region, and the Forward ElectroMagnetic Calorimeter FEMC in
the forward ones. Two additional very forward calorimeters (the Small angle TIle Calorime-
ter, STIC2, and the Very Small Angle Tagger, VSAT) were placed for luminosity monitor-
ing throughe+e− → e+e− Bhabha scattering events. The HPC was made of 144 modules
each consisted of a small time projection chamber with layers of lead wires in the gas vol-
ume used as conversion material. The total absorber thickness corresponded to 18/sinθ ra-
diation lengths. The angular resolution measured for high energy photons was about 2 and
1 mrad inφ and θ respectively, and the energy resolution could be parametrized asσ(E)

E =
32%√
E(GeV)

⊕4.3%. The FEMC, placed in the forward regions, consisted of two arrays with 4532

Cherenkov lead glass blocks. The energy resolution in this calorimeter could be parametrized
as σ(E)

E = 12%√
E(GeV)

⊕ 11%
E(GeV) ⊕3%.

2It replaced the Small Angle Tagger, SAT, in 1994.
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Figure 3.8: Operation principle of the RICH detector.

The hadron calorimeter in DELPHI was the HCAL, which provided energy measurements
of charged and neutral hadrons. It consisted of a sampling gas detector (more than 19000
streamer tubes) incorporated in the iron magnet yoke. Its energy resolution, given by pions
from τ decays, was found to beσ(E)

E = 1.12√
E(GeV)

⊕0.21.

3.4.3 Scintillators

The Time of Flight (TOF) detector in the barrel region (HOF in the end caps) consisted
of a single layer of plastic scintillators which gave a rapid signal (1.2 ns) used in the DELPHI
trigger. In addition to providing a way to distinguish between dimuon and cosmic events, it also
contributed to the alignment and calibration of the DELPHI subdetectors.

3.4.4 Muon Chambers

Three layers of drift chambers in the barrel (MUB), operating in the proportional mode, and
of two layers in the endcaps (MUF)3 formed the muon system. The inner layer was embedded
in the iron of the HCAL, and the other two layers were the most external detectors of DELPHI.
In this way, muons with momenta larger than 2 GeV were the only charged particles that could
traverse the lead and iron of both calorimeters essentially unaffected by them and be detected
by the muon chambers. For dimuon events, the spatial resolution was 2 mm in Rφ and 8 cm in
z.

3In 1994 a layer of Surrounding Muon Chambers (SMC) based on limited streamer tubes was installed on the
endcap’s periphery to fill the gap between barrel and forward regions.
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Detector # measurementsResolution # measurementsResolution
in Rφ per point in z per point

VD 3 8 µm 2 (from 1994) 10µm
ID (jet) 24 90µm - -
ID (trigger) 5 500µm 5 500µm
TPC 16 250µm 192 900µm
OD 5 100µm 3 5 cm

Table 3.2: Number of measured points and resolution given by each tracking detector.

3.5 Particle Identification and Reconstruction

The information given by the DELPHI detectors was combined in order to identify the
detected particles. This information mainly relied on the track reconstruction, the energy loss
of traversing particles and on the lepton identification.

3.5.1 Track Reconstruction

The trajectory of a particle with momentump and chargee in a constant magnetic field~B is
a helix with curvature radiusρ and pitch angleλ. Tracking detectors determined the momentum
from the curvature of the track in the DELPHI magnetic field according to:

ρ[m] =
cosλ p[GeV/c]

0.3 B[T]
(3.3)

Each DELPHI sub-detector provided measured points along the particle trajectory which
allow the track reconstruction (see Table 3.2). DELANA was the DELPHI standard tracking
reconstruction program [53]. It applied detector calibrations, performed track finding and finally
calculated particle track parameters. DELANA started from the information of a track segment
seen in the TPC and hits registered in the VD4 then the track was extrapolated outwards and
inwards to the OD and ID detectors. In the dead zones of the TPC, track elements from the
ID and OD were linked together. Track elements, obtained in this way, were passed through
a track fitting processor. From the calorimeters, clusters of energy were associated to charged
particle tracks. Neutral tracks were obtained from the remaining energy clusters. Hits in the
Muon Chambers were associated to charged tracks. RICH information was used on the fitted
final tracks.

The resulting events were stored on Data Summary Tapes (DST). The DSTs are accessible
from PHDST [54] and SKELANA [55] packages.

4The Vertex Detector was included in the track fitting software in 1996, for the reprocessing of the data (see
Section 3.7.)
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3.5.1.1 Primary Vertex Reconstruction

The accurate primary vertex5 determination is essential to know if tracks in an event corre-
spond to the first particles created in the collision, or to their decay products. Its reconstruction
is done by fitting several selected tracks, constrained by the beamspot position (the point of the
beam crossing). The position of the beamspot is very accurate (a fewµm) but to use it as a
constraint one must consider the intrinsic transverse size of the beams (σx = 100−300µm and
σy = 2−6µm). The selected tracks are required to have at least 2 VD hits, and a rejection pro-
cedure is applied to avoid bias due to wrong hit associations or to tracks coming from secondary
vertices. The position of the primary vertex,~PPV, is obtained by minimising theχ2 function:

χ2(~PPV) = ∑
i

~d2
i

σ2
~di

+

(Pbs
x −PPV

x )2

σ2
Pbs

x

+
(Pbs

y −PPV
y )2

σ2
Pbs

y

 (3.4)

Here,~di (σ~di
its error) is the distance of closest approach of each selected tracki to the primary

vertex position. This quantity is called track impact parameter.Pbs
x,y andσPbs

x,y
are the x and y

coordinates of the beamspot position and its error, respectively.

3.5.1.2 Impact Parameter Reconstruction

The impact parameter~d is the minimal distance between the trajectory of a track and a
determined decay vertex, and it is used to evaluate the probability that the track is coming from
this vertex. It is usually defined with respect to the primary vertex of the event. The Rφ and
Rz components are evaluated separately. Figure 3.9 schematically shows how the two impact
parameters,dRφ anddRz, are defined.

The sign of the impact parameter is defined with respect to the jet direction and it is shown
in Figure 3.10. It is positive if the vector joining the primary vertex to the point of closest
approach of the track is less than 90◦ from the direction of the jet to which the track belongs.

A quantity which is often used is the track significance. It is defined as the ratio of the
impact parameter value to its error,S= d/σd and since two impact parameters are considered,
also the significances are defined in the Rφ and Rz planes. The sign of the significance is taken
to be the same as the impact parameter sign.

3.5.2 Hadron Identification

Charged hadrons, with sufficiently long lifetime to traverse a large part of the DELPHI
detector (such as kaons, pions and protons), are identified by means of the TPC and RICH de-
tectors. The energy loss,dE/dx, measurement in the TPC provides information on the charge,
mass and momentum of the particle according to the Bethe-Bloch equation [56]. The emission
angleθc of the Cherenkov light cone created in the RICH detector gives information on the

massm and momentump of the particle according to cosθc = 1
n

√
1+ m2

p2 , n being the refrac-

tive index of the dielectric medium. By combining these pieces of information through several
techniques, and using the registered data by other detectors, the mass, charge and momentum
of the particles are determined.

5Also called main vertex.
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Tag Loose Standard Tight

e− Efficiency (%) 80 50 45
Misid. Prob. (%) ∼ 1.6 ∼ 0.4 ∼ 0.2

µ− Efficiency (%) 95 86 76

Misid. Prob. (%) ∼ 2. ∼ 0.7 ∼ 0.4

Table 3.3: Lepton tag characteristics.

3.5.3 Lepton Identification

Electrons are identified using thedE/dxmeasurement in the TPC and the energy deposition
in electromagnetic calorimeters. The difficulty in this identification lies in the fact that electrons
also interact in front of the calorimeters. Probabilities from calorimetric measurements and
tracking detectors are combined in a neural network in order to achieve an electron hypothesis.

Muons can be separated from hadrons since most of the hadrons are stopped in the iron of
the hadronic calorimeter. Muons with momenta above 2 GeV pass the hadron calorimeter and
reach the muon chambers, where they are detected. Tracking information joined to hits in the
muon chambers provide the muon identification. Detailed explanations of the DELPHI lepton
identification can be found in [52, 57].

Several cuts are defined to label the detected leptons with a given efficiency and purity.
These cuts give rise to three categories for leptons, theloose, standardandtight criteria6. The
probability of misidentifying a hadron as a muon or an electron has been studied on data by
using anti-b tagged samples. Electrons from photon conversions, mainly produced in the outer
ID wall and in the inner TPC frame, can be rejected by reconstructing the conversion vertex.
In this way, about 80% of them have been removed with negligible loss of signal. In Table 3.3
the usual efficiencies and misidentification probabilities are given separately for electrons and
muons.

3.6 DELPHI Monte-Carlo Simulation

The standard DELPHI simulation software package is called DELSIM [58]. In DELSIM,
the simulation of the physics processes can be carried out using several generators, for which
different parameters are tuned according to the aimed study.

After particles have been generated, they are entered in the DELPHI detector simulation
package. This simulation includes the specific properties of each subdetector. It provides the
necessary information to record hits in the detector components and to treat the simulated parti-
cles as if they were real. The simulated response of the detectors is then processed by DELANA
to produce DST tapes by following the same procedure as for real data.

6For muons another tag corresponding to avery loose criteria, is also available.
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3.7 Data Reprocessing

In 1996 and 1997 the data collected by DELPHI in the LEP-I period was reprocessed. In
addition to the best knowledge of the detector calibrations and alignment, a New Barrel Track-
ing (NBT) software was employed, which comprised three different reconstruction algorithms.
The main feature of this new code was that the Vertex Detector was incorporated leading to a
reduction of the systematics in the track determination, the main cause of uncertainty in several
measurements [59]. Events with heavy quarks largely benefit from this fact because, having
complex topologies, several of their tracks were lost. Apart for improvements in track re-
construction techniques, energy measurements and particle identification were also improved,
resulting in a general higher quality of the data.
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Chapter 4

Experimental Framework II- The
TeVatron Collider and the CDF
Experiment

Fermilab’s TeVatron collider represents the high energy frontier in particle physics. It is
currently the source of the highest energy proton - antiproton (pp) collisions. The collisions
occur at two points on an underground ring, which has a radius of exactly 1 km. At these
collision points are two detectors: the Collider Detector at Fermilab (CDF-II) and D0. This
analysis uses data collected by the CDF-II experiment.

Between 1997 and 2001, both the accelerator complex and the collider detectors underwent
major upgrades, mainly aimed at increasing the luminosity of the accelerator, and gathering
data samples of 2 fb−1 or more. The upgraded machine accelerates 36 bunches of protons and
anti-protons, whereas the previous version of the accelerator operated with only 6. This has
allowed the time between bunch crossings to be decreased from 3.5µs for the previous version
to 396 ns for the current collider.

The new configuration required detector upgrades at CDF-II to ensure a maximum response
time shorter than the time between beam crossings. In the following pages, we describe how
the proton and anti-proton beams are produced, accelerated to their final center of mass energy
of 1.96 TeV, and collided. We then describe the components used to identify and measure
properties of the particles produced in the collision.

4.1 TeVatron - the Source ofpp Collisions

To create the world’s most powerful particle beams, Fermilab uses a series of accelerators.
The diagram in Figure 4.1 shows the paths taken by protons and antiprotons from initial accel-
eration to collision in the TeVatron.

The Cockcroft-Walton[60] pre-accelerator provides the first stage of acceleration. Inside
this device, hydrogen gas is ionized to create H− ions, which are accelerated to 750 keV of
kinetic energy. Next, the H− ions enter a linear accelerator (Linac)[61], approximately 500 feet
long, where they are accelerated to 400 MeV. The acceleration in the Linac is done by a series
of “kicks” from RF cavities. The oscillating electric field of the RF cavities groups the ions into

73



74 Experimental Framework II- The TeVatron Collider and the CDF Experiment

Figure 4.1: Layout of the Fermilab accelerator complex.

bunches.
The 400 MeV H− ions are then injected into the Booster, a circular synchrotron[61] 74.5

m in diameter. A carbon foil strips the electrons from the H− ions at injection, leaving bare
protons. The intensity of the proton beam is increased by injecting new protons into the same
orbit as the circulating ones. The protons are accelerated from 400 MeV to 8 GeV by a series
of “kicks” applied by RF cavities. Each turn around the Booster, the protons accrue about 500
keV of kinetic energy.

Protons are extracted from the Booster into the Main Injector [62], which operates at 53
MHz. It has four functions. It accelerates protons from 8 GeV to 150 GeV before injection
into the TeVatron, it produces 120 GeV protons, which are used for anti-proton production, it
receives anti-protons from the Antiproton Source and accelerates them to 150 GeV for injection
into the TeVatron, and finally, it injects protons and antiprotons into the TeVatron.

The Main Injector replaced the Main Ring accelerator which was situated in the TeVatron
tunnel. The Injector is capable of containing larger proton currents than its predecessor, which
results in a higher rate of anti-proton production. The Main Injector tunnel also houses the
Antiproton Recycler. Not all antiprotons in a given store are used up by the collisions. Recycling
the unused antiprotons and reusing them in the next store would significantly reduce the stacking
time. The task of the Antiproton Recycler is to receive antiprotons from a TeVatron store, cool
them and re-integrate them into the stack, so that they can be used in the next store.

To produce anti-protons, 120 GeV protons from the Main Injector are directed into a nickel
target. In the collisions, about 20 antiprotons are produced per one million protons, with a
mean kinetic energy of 8 GeV. The anti-protons are focused by a lithium lens and separated
from other particle species by a pulsed magnet.

Before the anti-protons can be used in the narrow beams needed in the collider, the differ-
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ences in kinetic energy between the different particles need to be reduced. Since this process
reduces the spread of the kinetic energy spectrum of the beam, it is referred to as “cooling” the
beam. New batches of anti-protons are initially cooled in the Debuncher synchrotron, collected
and further cooled using stochastic cooling [63] in the 8 GeV Accumulator synchrotron. The
principle of stochastic cooling is to sample a particles motion with a pickup sensor and correct
its trajectory later with a kicker magnet. In reality, the pickup sensor samples the average mo-
tion of particles in the beam and corrects for the average. Integrated over a long period of time,
this manifests itself as a damping force applied onto individual particles which evens out their
kinetic energies. It takes between 10 and 20 hours to build up a “stack” of anti-protons which
is then used in collisions in the TeVatron. Anti-proton availability is the most limiting factor
for attaining high luminosities, assuming there are no technical problems with the accelerator
(assuming, for example, perfect transfer efficiencies between accelerator subsystems)[61, 62].

Roughly once a day, the stacked anti-protons (36 bunches of about 3×1010 anti-protons per
bunch) are injected back into the Main Injector. They are accelerated to 150 GeV together with
36 bunches of roughly 3×1011 protons. Both the protons and anti-protons are transferred to the
TeVatron.

The TeVatron is the last stage of Fermilab’s accelerator chain. It receives 150 GeV protons
and anti-protons from the Main Injector and accelerates them to 980 GeV. The protons and
antiprotons circle the TeVatron in opposite directions. The beams are brought to collision at
two “collision points”, B0 and D0. The two collider detectors, the Collider Detector at Fermilab
(CDF-II) and D0 are built around the respective collision points.

The luminosity of collisions can be expressed as:

L =
f NBNpNp

2π(σ2
p +σ2

p)
F

(
σl

β∗

)
(4.1)

where f is the revolution frequency,NB is the number of bunches,Np/p are the number of
protons/anti-protons per bunch, andσp/p are the rms beam sizes at the interaction point.F is a
form factor which corrects for the bunch shape and depends on the ratio ofσl , the bunch length
to β∗, the beta function, at the interaction point. The beta function is a measure of the beam
width, and is proportional to the beam’sx andy extent in phase space.

Table 4.1 shows a comparison of Run I and design Run II[62] accelerator parameters. Figure
4.2 shows peak luminosities for stores used in this analysis.

4.2 The CDF-II Detector

The CDF-II detector [64] is a substantial upgrade of the original CDF-II detector [65]. It
is located at the B0 collision point of the TeVatron collider. The detector is designed to detect
and measure properties of particles emanating frompp collisions. The design of the detector is
not geared toward one particular physics measurement, but rather optimized toward extracting
as a number of different properties about all particle species created in thepp collision. Such
particle detectors are often called multi-purpose detectors.

A diagram of the CDF-II detector is shown in Figure 4.3. A quadrant of the detector is cut
out to expose the different subdetectors. The detector subsystems can be grouped as follows.
The innermost system is the integrated tracking system. The tracking system is barrel-shaped
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Parameter Run I Run II

number of bunches (NB) 6 36
bunch length [m] 0.6 0.37
bunch spacing [ns] 3500 396
protons/bunch (Np) 2.3×1011 2.7×1011

anti-protons/bunch (Np) 5.5×1010 3.0×1010

total anti-protons 3.3×1011 1.1×1011

β∗(cm) 35 35
interactions/crossing 2.5 2.3
integrated luminosity [pb−1] 112 450
peak luminosity [cm−2s−1] 2×1031 1.2×1032

Table 4.1: Accelerator parameters for Run I and Run II configurations.

and consists of cylindrical subsystems which are concentric with the beam. It is designed to
detect charged particles, measure their momenta and displacements from the point of collision
(primary interaction vertex). The tracking system is surrounded by the Time of Flight sys-
tem, designed to provide particle identification for low-momentum charged particles. Both the
tracking and Time of Flight systems are placed inside a superconducting coil, which generates
a 1.4 T solenoidal magnetic field. The coil is surrounded by calorimetry systems, which mea-
sure the energy of particles that shower when interacting with matter. The calorimetry systems
are surrounded by muon detector systems. When interacting with matter, muons act as “mini-
mally ionizing particles” - they only deposit small amounts of ionization energy in the material.
Therefore, they are able to penetrate both the tracking and calorimeter systems. The integrated
material of the tracking system, TOF, solenoid and calorimetry systems serves as a particle fil-
ter. Particles which penetrate through all that material are mostly muons, and they are detected
by leaving tracks in the muon detection system, located outside of the calorimeter.

The most important parts of the detector for this analysis are the tracking system and the
trigger, and these will be described in detail in the following sections. The description of the
remaining systems will be brief. More detailed information on these systems can be found in
the Technical Design Reports of the CDF-II [65, 64].

4.3 Standard Definitions in CDF-II

Because of its barrel-like detector shape, CDF-II uses a cylindrical coordinate system (r,ϕ,z)
with the origin at the center of the detector and thezaxis along the nominal direction of the pro-
ton beam. They axis points upwards. Since the coordinate system is right-handed, this also
defines the direction of thex axis, which is away from the center of the ring. Particles moving
through a homogenic solenoidal magnetic field follow helical trajectories. Reconstructed par-
ticle trajectories are referred to as “tracks”. The plane perpendicular to the beam is referred to
as the “transverse plane”, and the transverse momentum of the track is referred to aspT . As
opposed toe+−e− collisions, inp− p collisions, all of the center of mass energy of thep− p
system is not absorbed in the collision. The colliding partons inside the proton carry only a
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Figure 4.2: Peak luminosities for stores collided between April 2001 and August 2004.

fraction of the kinetic energy of the proton. As a result, the center of mass system of the par-
ton collisions is boosted along the beam direction (the “longitudinal” direction) by an unknown
amount. Quantities defined in the transverse plane are conserved in the collisions. For instance,
the sum of all transverse momenta of particles in the collisions is zero (∑ ~pT = 0).

To uniquely parametrize a helix in three dimensions, five parameters are needed. The CDF-
II coordinate system chooses three of these parameters to describe a position, and two more to
describe the momentum vector at that position. The three parameters which describe a position
describe the point of closest approach of the helix to the beam line. These parameters ared0,
ϕ0, andz0, which are theρ,ϕ andz cylindrical coordinates of the point of closest approach of
the helix to the beam. The momentum vector is described by the track curvature (C) and the
angle of the momentum in ther − z plane (cotθ). From the track curvature we can calculate
the transverse momentum. The curvature is signed so that the charge of the particle matches
the charge of the curvature. From cotθ, we can calculatepz = pt × cotθ. At any given point
of the helix, the track momentum is a tangent to the helix. This basically means that the angle
ϕ0 implicitly defines the direction of the transverse momentum vector at the point of closest
approachpT .

The impact parameter (d0) of a track is another signed variable; its absolute value corre-
sponds to the distance of closest approach of the track to the beamline. The sign ofd0 is taken
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Figure 4.3: The CDF-II detector with quadrant cut to expose the different subdetectors.

to be that of ˆp× d̂ · ẑ, wherep̂, d̂ andẑ are unit vectors in the direction ofpT , d0 andz, respec-
tively. An alternate variable that describes the angle between thez axis and the momentum of
the particle is pseudorapidity (η) which is defined as:

η≡− ln tan(θ/2) (4.2)

For decaying particles, we often define the displacementLxy,

Lxy = ~d · p̂T (4.3)

where~d is the displacement of the decay vertex in the transverse plane, and ˆpT is the unit vector
in the direction of~pT .

4.4 Tracking Systems

The detector has a cylindrical tracking system immersed in a 1.4-T solenoidal magnetic
field for the measurement of charged-particle momenta. We will describe this system starting
from the devices closest to the beam and moving outwards. The innermost tracking device is
a silicon strip vertex detector, which consists of three subdetectors. A layer of silicon sensors,
called Layer 00 (L00) [66], is installed directly onto the beryllium vacuum beam pipe, at a
radius of 1.7 cm from the beam. The beam pipe is made of beryllium because this metal has the
best mechanical qualities, yet lowest nuclear interaction cross section of all materials.

The layer of silicon on the beam pipe is followed by five concentric layers of silicon sensors
(SVXII) [67] located at radii between 2.5 and 10.6 cm. The Intermediate Silicon Layers (ISL)
[68] are the outermost silicon subdetector systems, consisting of one layer at a radius of 22 cm
in the central region and two layers at radii 20 and 28 cm in the forward regions. Surrounding
the silicon detector is the Central Outer Tracker (COT) [69], a 3.1-m-long cylindrical open-cell
drift chamber covering radii from 40 to 137 cm.
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Figure 4.4: A diagram of the CDF-II tracker layout showing the different subdetector systems.

4.4.1 Silicon Tracking Detectors

Silicon tracking detectors are used to obtain precise position measurements of the path of
a charged particle. A silicon tracking detector is fundamentally a reverse-biased p-n junction.
When a charged particle passes through the detector material, it causes ionization. In the case of
a semi-conductor material, this means that electron-hole pairs will be produced. Electrons drift
towards the anode, and holes drift toward the cathode, where the charge is gathered. The amount
of charge is, to first order, proportional to the path length traversed in the detector material by
the charged particle.

By segmenting the p or n side of the junction into “strips” and reading out the charge de-
position separately on every strip, we obtain sensitivity to the position of the charged particle.
All the CDF-II silicon tracking detectors are implemented as micro-strip detectors. The typical
distance between two strips is about 60µm. Charge deposition from a single particle passing
through the silicon sensor will be read out on one or more strips. This charge deposition is
called a “cluster”. There are two types of microstrip detectors: single and double-sided. In
single-sided detectors, only one (p) side of the junction is segmented into strips. Double-sided
detectors have both sides of the junction segmented into strips. The benefit of double-sided
detectors is that while one (p) side has strips parallel to thezdirection, providingr−ϕ position
measurements, the other (n) side can have strips at an angle (stereo angle) with respect to thez
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direction, which will givez position information.
The innermost layer, L00, is made of single-sided silicon sensors which only provider−ϕ

measurements. The SVX-II and ISL are made of double-sided silicon sensors. As shown in
Table 4.2, the SVX-II layers have different stereo angles. Two layers have a small (1.2◦ ) stereo
angle and three have a 90◦ stereo angle. The ISL detector provides small-angle (1.2◦ ) stereo
information.

Property Layer 0 Layer 1 Layer 2 Layer 3 Layer 4

number ofϕ strips 256 384 640 768 869
number ofZ strips 256 576 640 512 869
stereo angle 90◦ 90 ◦ +1.2◦ 90◦ -1.2◦

ϕ strip pitch 60µm 62µm 60µm 60µm 65µm
Z strip pitch 141µm 125.5µm 60µm 141µm 65µm
active width (mm) 15.30 23.75 38.34 46.02 58.18
active length (mm) 72.43 72.43 72.38 72.43 72.43

Table 4.2: Relevant parameters for the layout of the sensors of different SVX-II layers.

Four silicon sensors are stacked length-wise into a “ladder” structure which is 29 cm long.
The readout electronics are mounted onto the ends of the ladders. The ladders are organized in
an approximately cylindrical configuration, creating “barrels”. A SVX-II barrel is segmented
into 12 wedges, each covering approximately 30◦ in ϕ with a small overlap at the edges,
allowing for many Silicon hits per track. There are three SVX-II barrels, adjacent to each other
along thezaxis, covering the nominal interaction point in the center of the CDF-II detector. The
coverage of the silicon detector subsystems is shown in Figure 4.5. The silicon tracking system
is used in stand-alone mode to provide an extension of tracking down to 2.8 in pseudo-rapidity.

4.4.2 Central Outer Tracker

The COT drift chamber provides accurate information in ther −ϕ plane for the measure-
ment of transverse momentum, and substantially less accurate information in ther−zplane for
the measurement of thez component of the momentum,pz. The COT contains 96 sense wire
layers, which are radially grouped into eight “superlayers”, as inferred from the end plate sec-
tion shown in Figure 4.6. Each superlayer is divided inϕ into “supercells”, and each supercell
has 12 sense wires and a maximum drift distance that is approximately the same for all super-
layers. Therefore, the number of supercells in a given superlayer scales approximately with the
radius of the superlayer. The entire COT contains 30,240 sense wires. Approximately half the
wires run along thez direction (“axial”). The other half are strung at a small angle (2◦) with
respect to thez direction (“stereo”).

The active volume of the COT begins at a radius of 43 cm from the nominal beamline and
extends out to a radius of 133 cm. The chamber is 310 cm long. Particles originating from the
interaction point which have|η|< 1 pass through all 8 superlayers of the COT. Particles which
have|η|< 1.3 pass through 4 or more superlayers.

The supercell layout, shown in Figure 4.7 for superlayer 2, consists of a wire plane contain-
ing sense and potential (for field shaping) wires and a field (or cathode) sheet on either side.
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Figure 4.5: Coverage of the different silicon subdetector systems projected into the r−z plane.
The r and z axes have different scales.

Both the sense and potential wires are 40µm diameter gold plated Tungsten. The field sheet is
6.35µm thick Mylar with vapor-deposited gold on both sides. Each field sheet is shared with
the neighboring supercell.

The COT is filled with an Argon-Ethane-CF4 (50:35:15) gas mixture. The mixture is chosen
to have a constant drift velocity across the cell width. When a charged particle passes through,
the gas is ionized. Electrons drift towards the sense wires. The electric field in a cylindrical
system grows exponentially as its radius decreases. As a result, the electric field very close
to the sense wire is large, resulting in an avalanche discharge when the charge drifts close to
the wire surface. This effect provides a gain of∼ 104. The maximum electron drift time is
approximately 100 ns. Due to the magnetic field that the COT is immersed in, electrons drift at
a Lorentz angle of∼ 35◦. The supercell is tilted by 35◦ with respect to the radial direction to
compensate for this effect.

Signals on the sense wires are processed by the ASDQ (Amplifier, Shaper, Discrimina-
tor with charge encoding) chip, which provides input protection, amplification, pulse shaping,
baseline restoration, discrimination and charge measurement [70]. The charge measurement is
encoded in the width of the discriminator output pulse, and is used for particle identification
by measuring the ionization along the trail of the charge particle(dE/dx). The pulse is sent
through∼ 35 ft of micro-coaxial cable, via repeater cards to Time to Digital Converter (TDC)
boards in the collision hall. Hit times are later processed by pattern recognition (tracking) soft-
ware to form helical tracks.

4.4.3 Pattern Recognition Algorithms

As explained in the previous sections, charged particles leave small charge depositions as
they pass through the tracking system. By following, or “tracking” these depositions, pattern



82 Experimental Framework II- The TeVatron Collider and the CDF Experiment

Figure 4.6: Layout of wire planes on a COT endplate.

recognition algorithms can reconstruct the charged particle track.
There are several pattern recognition algorithms used to reconstruct tracks in the CDF-II

tracking system. Most of the tracks are reconstructed using “Outside-In” algorithms which we
will describe here. The name of this group of algorithms suggest that the track is followed from
the outside of the tracking system inward.

The track is first reconstructed using only COT information. The COT electronics report hit
time and integrated charge for every wire in an event. The hit time corresponds to the time that
an avalanche occurred at a sense wire. The hit time can be interpreted as the drift time of the
charge in the gas, but first it has to be corrected for time of flight. The hit timing resolution is
of the order of a few ns; this roughly corresponds to the average spread in collision times. It
is assumed that the collision times always happen at the same time in a cycle during a store.
An average of collision times is done for many previous events and this is used as the event
collision time. Hit times corrected for the collision time are interpreted as drift times and used
in pattern recognition. To perform the final track fit, an additional time of flight correction is
performed assuming massless particles.

The helical track, when projected into the two dimensionalr −ϕ plane, is a circle. This
simplifies pattern recognition, so the first step of pattern recognition in the COT looks for cir-
cular paths in radial superlayers of the COT. Super-cells in the radial superlayers are searched
for sets of 4 or more hits that can be fit to a straight line. These sets are called “segments”.
The straight-line fit for a segment gives sufficient information to extrapolate rough measure-
ments of curvature andϕ0. Once segments are found, there are two approaches to track finding.
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Figure 4.7: Layout of wires in a COT supercell.

One approach is to link together segments for which the measurements of curvature andϕ0 are
consistent. The other approach is to improve the curvature andϕ0 measurement of a segment
reconstructed in superlayer 8 by constraining its circular fit to the beamline, and then adding hits
which are consistent with this path. Once a circular path is found in ther−ϕ plane, segments
and hits in the stereo superlayers are added by their proximity to the circular fit. This results in
a three-dimensional track fit. Typically, if one algorithm fails to reconstruct a track, the other
algorithm will not. This results in a high track reconstruction efficiency (∼ 95%) in the COT
for tracks which pass through all 8 superlayers (pT ≥ 400 MeV/c2 ). The track reconstruction
efficiency mostly depends on how many tracks there are to be reconstructed in the event. If
there are many tracks present close to each other, hits from one track can shadow hits from the
other track, resulting in efficiency loss.

Once a track is reconstructed in the COT, it is extrapolated into the SVX-II. Based on the
estimated errors on the track parameters, a three-dimensional “road” is formed around the ex-
trapolated track. Starting from the outermost layer, and working inward, silicon clusters found
inside the road are added to the track. As a cluster gets added, the road gets narrowed according
to the knowledge of the updated track parameters. Reducing the width of the road reduces the
chance of adding a wrong hit to the track, and also reduces computation time. In the first pass
of this algorithm,r−ϕ clusters are added. In the second pass, clusters with stereo information
are added to the track.

4.4.4 Momentum Scale

As the charged particle traverses through the tracker material, it loses energy. For a track
that passes through the entire SVX-II volume, the amount of energy loss is roughly 9 MeV.
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The value is roughly constant, regardless of the momentum of the particle. In the reconstructed
distribution of invariant mass ofJ/ψ → µ+µ− decays, this effect will be more noticeable for
low-momentumJ/ψ decays than high-momentum decays. Figure 4.8 illustrates this effect. We
use the momentum-dependence of theµ+µ− invariant mass to calibrate the momentum scale
of our detector. TheJ/ψ mass has to be invariant of transverse momentum and match with
the world average [71] value if the momentum scale is correctly calibrated. Our calibration
procedure follows two steps. First, the momentum dependence of theJ/ψ mass is removed by
correctly accounting for the energy loss in the tracker material, and then the overall shift of the
J/ψ mass is removed by correcting the value of the magnetic field used in the conversion of
curvature into transverse momentum.
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Figure 4.8: Dependence of the reconstructed invariant mass of J/ψ → µ+µ− decays on the
transverse momentum of the J/ψ.

There are two types of material in the SVX-II tracker. The silicon sensors are read out and
therefore called active material. Everything else in the silicon tracker (readout chips, cards,
cables, cooling pipes) is passive material. The energy loss in the active material of the tracking
system is taken into account by mapping out the material in the GEANT [72] description of
our detector. The passive material in the detector description is not complete, so some energy
loss is unaccounted for by this method. An additional layer of material is added to the detector
description, to correct for the missing material on average. By tuning the amount of missing
material, the momentum dependence of theJ/ψ mass is removed. The remaining discrepancy
with respect to the PDG average is corrected for by scaling the magnetic field. Because of the
implementation of this procedure, we can not use it to measure theJ/ψ mass, but the results of
the calibration process (the amount of missing material and the corresponding magnetic field)
can be used to correct the momentum scale in any other measurement.
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4.5 Time of Flight

Outside the tracking system, still inside the superconducting magnetic coil, CDF-II has a
Time of Flight (TOF) [73] system. The TOF system is designed to distinguish low momentum
pions, kaons and protons by measuring the time it takes these particles to travel from the primary
vertex of thepp collision to the TOF system. The system consists of 216 bars of scintillating
material, roughly 300 cm in length and with a cross-section of 4×4 cm. The bars are arranged
into a barrel around the COT outer cylinder. They are surrounded by superconducting solenoid
on the outside. Particles passing through the scintillating material of the bars, deposit energy
causing small flashes of visible light. This light is detected by photomultiplier (PMT) tubes
which are attached at the end of each bar. The signal from the photomultiplier tube is processed
by a pre-amplifier circuit mounted directly onto the tube. The amplified signal is sent via a
twisted pair to the readout electronics in the collision hall. The readout electronics perform
both time and amplitude digitization of the signal. The TDC information is a digitization of
the time when the signal pulse reaches a fixed discriminator threshold. This time depends on
the amplitude of the pulse, since a large pulse crosses the threshold earlier (time walk). The
digitization of the pulse amplitude is needed to correct for this effect. After correcting for time
walk effects, the timing resolution of the TOF system is currently about 110 ps for particles
crossing the bar exactly in front of one of the photomultiplier tubes. The timing resolution varies
with displacement from the photomultiplier tube. Large pulses give better timing resolution, and
light attenuates while traveling through the scintillator material. Therefore, particles passing
through the bar near the photomultiplier tube have better timing resolution than those which are
farther away.

4.6 Calorimeters

The main effort of the Run II upgrade of the CDF-II calorimeter system dealt with upgrading
the electronics to handle the faster bunch crossings. The active detector parts were taken over
from Run I without modification. Since this analysis does not use calorimetry information, this
system will be described briefly. A detailed description can be found in the CDF-II Technical
Design Report [65].

The CDF-II calorimeter has a “projective tower” geometry. This means that it is segmented
in η andϕ “towers” that point to the interaction region. The coverage of the calorimetry system
is 2π in ϕ and |η| < 4.2 in pseudo-rapidity. The calorimeter system is divided into three re-
gions: central, plug and forward. Corresponding to these regions, the subsystems will have one
of the letters C, P and F in their acronym. Each calorimeter tower consists of an electromagnetic
shower counter followed by a hadron calorimeter. This allows for comparison of the electro-
magnetic and hadronic energies deposited in each tower, and therefore separation of electrons
and photons from hadrons.

There are two subdetectors for the electromagnetic calorimeter: CEM and PEM. These
correspond to the central and plug regions of|η|, respectively. The CEM uses lead sheets inter-
spersed with scintillators as the active detector medium. The PEM uses proportional chambers.
The hadron calorimeters in the central region are the central (CHA) and endwall (WHA). The
plug region is covered by the PHA calorimeter. The CHA and WHA are composed of alternat-
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System |η| coverage Energy Resolution Thickness

CEM |η|< 1.1 13.5%/
√

ET ⊕3% 18X0

PEM 1.1 < |η|< 2.4 28%/
√

ET ⊕2% 18-21X0

CHA |η|< 0.9 50%/
√

ET ⊕3% 4.5λ0

WHA 0.7 < |η|< 1.3 75%/
√

ET ⊕4% 4.5λ0

PHA 1.3 < |η|< 2.4 90%/
√

ET ⊕4% 5.7λ0

Table 4.3: Pseudorapidity coverage, energy resolution and thickness for the different calorime-
ter subdetectors of the CDF-II experiment. The⊕ symbol means that the constant
term is added in quadrature to the resolution.λ0 signifies interaction lengths and X0

radiation lengths.

ing layers of iron and scintillator. The PHA subdetector is made of alternating layers of iron
and gas proportional chambers. The pseudorapidity coverage, resolutions and thickness for the
different electromagnetic and hadron calorimeters is given in Table 4.3.

4.7 Muon Systems

Muons are particles which interact with matter only by ionization. For energies relevant to
this experiment, they do not cause showers in the electromagnetic or hadronic calorimeters. As
a result, if a muon is created in the collision and has enough momentum, it will pass through the
calorimeter with minimal interaction with the material inside. Therefore, the calorimeter can
be considered as a “filter” which retains particles that shower when interacting with matter and
muons, and passes muons, which do not. Muon detection systems are therefore placed radially
outside the calorimeters.

The CDF-II detector has four muon systems: the Central Muon Detector (CMU) [74], Cen-
tral Muon Upgrade Detector (CMP) [75], Central Muon Extension Detector (CMX) [76], and
the Intermediate Muon Detector (IMU). The CMU and CMP detectors are made of drift cells,
and the CMX detector is made of drift cells and scintillation counters, which are used to reject
background based on timing information. Using the timing information from the drift cells of
the muon systems, short tracks (called “stubs”) are reconstructed. Tracks reconstructed in the
COT are extrapolated to the muon systems. Based on the projected track trajectory in the muon
system, the estimated errors on the tracking parameters and the position of the muon stub, aχ2

value of the track-stub match is computed. To ensure good quality of muons, an upper limit is
placed on the value ofχ2

ϕ, theχ2 of the track-stub match in theϕ coordinate.
Most of the particles that pass through the calorimeter without showering are muons, but it

is also possible for pions or kaons to survive the passage. These particles can then fake muon
signals in the muon chambers. Typically, these fake rates are at the percent level, as seen in
Figure 4.9 for the CMU and CMP detectors combined. The Figure shows the rate at which
charged pions and kaons fake muon signals in the muon systems. The difference betweenK+

andK− rates comes from the different cross section for interaction of these two mesons with
the calorimeter material. The different interaction cross section for these two mesons comes
from their quark content. In theK+, the strange quark is the anti-quark.
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Figure 4.9: Rate of kaon and pion tracks faking muon signals in the CDF-II detector. Roughly

1% of all pions(left) and2−4%of all kaons (right) will fake a muon signal.

4.8 Triggering

Triggering systems are necessary because it is not physically possible to store information
about every singlepp collision. Collisions happen roughly at a rate of 2.5 MHz, and the readout
of the full detector produces an event roughly the size of 250 kB. There is no medium available
which is capable of recording data this quickly, nor would it be practical to analyze all this data
later on. The trigger system is a pre-filter, which reduces data rates and volumes to manageable
levels, according to all foreseen physics prescriptions.

The CDF-II triggering system is designed based on three conditions. The first condition is
that the trigger be deadtimeless. This means that the trigger system has to be quick enough
to make a decision for every single event, before the next event occurs. The second condition
is imposed by the TeVatron upgrade for Run II, and it is the minimum expected time between
collisions, 132ns. The last condition is that the data logging system can write about 30-50 events
per second to tape, because of limited resources. In short, the trigger has to be fast enough to
analyze every collision, and it has to figure out which 50 of 2.5 million events it should save in
a given second. This is achieved by staging trigger decisions in three levels, as shown in Figure
4.10.

Each level of the trigger is given a certain amount of time to reach a decision about accepting
or rejecting an event. By increasing the time allowed for triggering at different levels of the
trigger, the complexity of reconstruction tasks can be increased at every level. At the first level
of the trigger, only very rough and quick pattern recognition and filtering algorithms are used.
In order to do this in time, the Level 1 and Level 2 triggering mechanisms are implemented with
custom electronics. The third level of the trigger is implemented with a PC farm with about 300
CPU’s. Using each CPU as an event buffer allows for nearly one second to be allocated for the
trigger decision. As a result, nearly offline quality of event reconstruction is available at the
third level of triggering. The Level 3 rejection rate is about 10, resulting in 30 events/sec being
accepted by the Level 3 trigger and written to tape.
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The delay necessary to make a trigger decision is achieved by storing detector pre-readout
information in a storage pipeline. At Level 1, for every TeVatron clock cycle, the event is moved
up one slot in the pipeline. By the time it reaches the end of the pipeline, the trigger will have
reached a decision whether to accept or reject this event. If the event is accepted, its information
will be sent to the higher level of the trigger. Otherwise, the event is simply ignored. Since the
Level 1 buffer has 42 slots, the time allocated for making a trigger decision is about 5µs. The
rejection factor after Level 1 is about 150, so the Level 1 accept rate is below 50 kHz. At Level
2, there are 4 event buffers available. This allows for 20µs for the trigger decision. The Level
2 rejection factor is again around 150, and the accept rate is around 300 Hz.

Detector

L1 Trigger

L2 Trigger

L3 Farm Mass storage

L2 Buffers:

DAQ Buffers
Event builder

42 events
pipeline:

L1 Storage

< 50 kHz accept rate
132ns x 42 = 5544 ns

(132 ns clock cycle)
7.6 MHz crossing rate

300 Hz accept rate
20  s latency4 events µ

Tevatron:

Level 1 latency:

Level 2:

L1 + L2 rejection factor 25000:1

Data storage: nominal freq 30 Hz 

Figure 4.10: Diagram of the CDF-II trigger system.

A set of requirements that an event has to fulfill at Level 1, Level 2 and Level 3 consti-
tutes a trigger path. Requiring that an event be accepted through a well defined trigger path
unfortunately eliminates volunteer events. A volunteer event is an event which passed a higher
level (L2, L3) trigger requirement but did not pass the preceding lower level (L1, L1/L2) trigger
requirement. The CDF-II trigger system implements about 100 trigger paths. An event will be
accepted if it passes the requirements of any one of these paths. The trigger path used in this
analysis is the “Two Track” trigger path, which is shown in Figure 4.11, and which we will
describe in detail here. The trigger path is optimized for finding charm and bottom mesons
that decay in hadronic final states. The strategy of the trigger path is as follows. At Level 1,
rough measurements of track momenta are available. By cutting on track momenta and angles,
most of the inelastic background will be rejected. At Level 2, the additional time available for
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reconstruction is utilized to use SVX-II information and obtain better impact parameter mea-
surements of the tracks. Requiring non-zero impact parameters of tracks will require that they
come from decays of long-lived particles: charmed and bottom mesons.
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Figure 4.11: Diagram of the different trigger paths at Level 1 and 2. The data flow for the track
trigger paths is outlined in red.

4.8.1 Level 1 Trigger

The Level 1 trigger decision is based on the information from the eXtremely Fast Tracker
(XFT) [77]. This device examines the hit information of the COT in wedges of 15 degrees.
It reports the measurement of the trackpT andϕ6, the angle of the transverse momentum at
the sixth superlayer of the COT, which is located 106 cm radially from the beamline. Based
on pre-loaded patterns of COT hits, it is capable of recognizing track segments for tracks with
pT > 1.5 GeV/c2 in 15◦ wedges of the COT. Two tracks are reported from a given 15◦ wedge:
the two tracks which are closest to the left and right boundary of a given wedge. As mentioned
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in Section 4.4.3, based on the hit information from a single COT cell, assuming that the track
comes from the beamline, a rough measurement of the trackpT andϕ6 is obtained. This is
the information that the XFT device determines per track. An event is accepted at Level 1 if
two tracks are found in the event such that they have opposite charge, both tracks havepT >
2 GeV/c, the scalar sum of transverse momentapT1 + pT2 > 5.5 GeV/c and theϕ separation
between the tracks at superlayer 6 is|∆ϕ6|< 135◦.

4.8.2 Level 2 Trigger

At Level 2, rough tracking information from the XFT is combined with SVX-II cluster
information by the Silicon Vertex Tracker (SVT) [78]. The goal of the second level of the
trigger is to obtain a precise measurement of the trackd0, and improved measurements ofpT

andϕ0.
Figure 4.12 shows the principle of SVT operation. As mentioned in Section 4.4.1, the SVX-

II is segmented into 12 wedges inϕ and three mechanical barrels inz. The SVT makes use
of this symmetry and does tracking separately for each wedge and barrel. Tracks which cross
wedge and barrel boundaries are only reconstructed under certain circumstances. An SVT track
starts with a two dimensional XFT “seed”. The XFT measurement is extrapolated into the SVX-
II, forming a “road”. Clusters of charge on the inner fourr−ϕ layers of the given wedge have
to be found inside this road. The silicon cluster information and the XFT segment information
are fed into a linearized fitter which returns the measurements ofpt ,ϕ0 andd0 for the track.

Figure 4.12: SVT principle of operation.

As shown in Figure 4.13, the track impact parameter resolution is about 35µm for tracks
with pT > 2 GeV/c. The width of the Gaussian fit for the distribution of track impact param-
eters in Figure 4.13 is 47µm. This width is a combination of the intrinsic impact parameter
resolution of the SVT measurement, and the transverse intensity profile of the interaction re-
gion. The region profile is roughly circular in the transverse plane and can be approximated by
a Gaussian distribution withσ ∼ 35 µm. The intrinsic SVT resolution is obtained by subtract-
ing the beamline width from the width of thed0 distribution in quadrature. The Level 1 trigger
conditions are confirmed with the improved measurements ofpT andϕ0. An event passes Level
2 selection if there is a track pair reconstructed in the SVT such that the tracks have opposite
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charge, each track haspT > 2.0GeV/c and 120µm < |d0|< 1mm. The vertex of the track pair
has to haveLxy > 200µm with respect to the beamline.
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Figure 4.13: SVT impact parameter resolution.

4.8.3 Level 3 Trigger

The third level of the trigger system is implemented as a PC farm. Every CPU in the farm
provides a processing slot for one event. With roughly 300 CPUs, and a input rate of roughly
300 Hz, this allocates approximately 1 second to do event reconstruction and reach a trigger
decision.

Figure 4.14 shows the implementation of the Level-3 farm. The detector readout from the
Level 2 buffers is received via an Asynchronous Transfer Mode (ATM) switch and distributed
to 16 “converter” node PC’s , shown in Figure 4.14 in light blue. The main task of these nodes
is to assemble all the pieces of the same event as they are delivered from different subdetector
systems through the ATM switch. The event is then passed via an Ethernet connection to a
“processor” node, which there are about 150 in the farm and are shown in Figure 4.14 in green.
Each processor node is a separate dual-processor PC. Each of the two CPU’s on the node process
a single event at a time. The Level 3 decision is based on near-final quality reconstruction
performed by a “filter” executable. If the executable decides to accept an event, it is then passed
to the “output” nodes of the farm, which are shown in Figure 4.14 in yellow. These nodes send
the event onward to the Consumer Server / Data Logger (CSL) system for storage first on disk,
and later on tape.
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For most of the data used for this analysis, full COT tracking was being used to reconstruct
tracks. The measurements ofpT ,z0,ϕ0 andcotθ from the COT are combined with thed0 mea-
surement from the SVT to create a further improved track. The Level 1 and Level 2 trigger
conditions (including the requirement on the two-track vertexLxy) are repeated at Level 3 using
improved track measurements. For later data, which is not used in this analysis, full SVX-II
tracking is available, and the trigger conditions are repeated using a combined COT/SVX-II fit
of the track helices.
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Figure 4.14: Event building and Level 3 operating principle: data from the front end crates is
prepared by Scanner CPU’s (SCPU) and fed into the ATM switch (purple). On the
other side of the switch, converter nodes (green) assemble events and pass them
to processor nodes. Accepted events are passed to output nodes (dark blue) which
send them to the Consumer Server and data logging systems (red).

4.9 Luminosity Measurement

At hadron collider experiments the beam luminosity can be measured using the process
of inelasticpp scattering. It has a large cross section,σin ∼ 60mb. The rate of inelasticpp
interactions is given by:

µ· fBC = σin ·L (4.4)

whereL is the instantaneous luminosity,fBC is the rate of bunch crossings in the TeVatron and
µ is the average number ofpp interactions per bunch crossing.

To detect inelasticpp events efficiently, a dedicated detector at small angles, operating at
high rate and occupancy, is required. The Cherenkov Luminosity Counters (CLC) are being
used by CDF to measure the TeVatron luminosity. The CLC is designed to measureµaccurately
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(within a few percent) all the way up to the high luminosity regimeL∼ 2×1032cm−2s−1. The
CLC modules and the luminosity measurement method are described in detail in [79].

There are two CLC modules in the CDF detector, installed at small angles in the proton
(East) and anti-proton (West) directions with rapidity coverage between 3.75 and 4.75. Each
module consists of 48 thin, long, gas-filled, Cherenkov counters. The counters are arranged
around the beam-pipe in three concentric layers, with 16 counters each, and pointing to the
center of the interaction region. The cones in two outer layers are about 180 cm long and the
inner layer counters (closer to the beam pipe) have the length of 110 cm. The Cherenkov light
is detected with fast, 2.5 cm diameter, photomultiplier tubes. The tubes have a concave-convex,
1 mm thick, quartz window for efficient collection of the ultra-violet part of Cherenkov spectra
and operate at a gain of 2×105.

The counters are mounted inside a thin pressure vessel made of aluminum and filled with
isobutane. The Cherenkov angle is 3.1o and the momentum threshold for light emission is
9.3MeV/c for electrons and 2.6GeV/c for pions.

The number ofpp interactions in a bunch crossing follows Poisson statistics with mean
µ, where the probability of empty crossings is given byP0(µ) = e−µ. An empty crossing is
observed when there are fewer than two tubes with signals above threshold in either module of
the CLC. The measured fraction of empty bunch crossings is corrected for the CLC acceptance
and the value ofµ is calculated. The measured value ofµ is combined with the inelasticpp
cross section to determine the instantaneous luminosity using Equation (4.4).

The CLC is one of the upgrades of the CDF Run II detector. It is designed to provide
an improved measurement of the luminosity with respect to the device used in Run I. The
luminosity measured by the CLC is used to monitor the TeVatron’s performance.
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Chapter 5

B Fragmentation at DELPHI

5.1 General Event Selection and Jet Energy Measurement

Hadronic Z decays have been selected by applying the following conditions:

• |cos(θthrust)|< 0.95, whereθthrust is the angle of the event thrust axis relative to the beam
direction,

• at least 15 tracks, charged and neutrals, reconstructed,

• track quality cuts: neutrals must have a momentum larger than 500 MeV/c, charged tracks
must have a momentum larger than 100 MeV/c, a length longer than 20 cm and an esti-
mated uncertainty on the momentum smaller than the momentum value itself. Momentum
of charged tracks is limited to the value of 35 GeV/c. In real data, 18% of VD-only tracks
are removed, randomly, so that their abundance becomes similar to the simulation. VD-
only tracks have been reconstructed using only the hits remaining unassociated to other
track trajectories, in the layers of the vertex detector.

As explained in Section 2.1, charged particles fromb-hadron decays can be separated from
other charged hadrons using their positive impact parameter measured relative to the event main
vertex. For a hadronic event resulting from the hadronization of light quarks, charged track
impact parameters are expected to be compatible with the beam interaction position1. Using
the probability distribution of negative significances,f (S), as measured in data and supposed
to be symmetricf (S) = f (−S), one determines the probability,P(S0), for a track to have a
significance|S|> S0:

P(S0) =
∫ ∞

S0
f (S)dS (5.1)

The values ofP(S0) are expected to have a flat distribution for tracks originating from the
primary vertex, whereas this distribution is peaked at low values for those having large positive
significances. This approach can be generalized for a set of N tracks. Ab-tagging package has
been developed in DELPHI which includes the information from track impact parameters and

1Hadrons interacting in the material surrounding the interaction point or originating from the weak decay of
low energy pions or kaons can have non-zero impact parameters. Usually most of them can be recognized and
eliminated by considering tracks associated with a minimum number of hits in the silicon vertex detector.

95
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Figure 5.1: Distribution of− log10

(
Pbtag

)
in log- (left) and lin- (right) scale.

other variables having a different behavior forb and non-b events [80]. It provides a quantity
Pbtag which can be used to select event samples with different level of purity inb-events.

In Figure 5.1 distributions of this quantity have been compared for real and simulated events.
In the following, samples of hadronic events depleted inb flavor have been selected by a cut
on theb-tagging probability (Pbtag≥ 10 %) evaluated for the whole event whereasb-enriched
samples have been retained usingPbtag≤ 10−3. In Table 5.1, the fraction of selected events in
data and simulation, the expected fraction of non-b events and the efficiency forb-events are
given. According to these values, it is possible to isolate samples of hadronic events, containing
less than 10% contamination from non-b events, with an efficiency higher than 50% for those
originating fromb-quarks. Remaining differences between real and simulated events will be
included in the evaluation of systematics.

cut onP(btag) < 10−3 < 10−4 < 10−5 < 10−6 < 10−8 < 10−10

Data, fract. of
sel. events (%) 17.6 14.3 11.8 9.9 6.8 4.5
MC, fract. of

sel. events (%) 17.2 14.0 11.5 9.5 6.4 4.2
MC, b-purity (%) 88.7 93.5 96.1 97.6 99.0 99.9

MC, b-efficiency (%) 69.4 59.3 50.1 41.9 28.6 19.1

Table 5.1: Variation of the selected event sample composition and efficiency for b events, versus
the cut on the btag-variable.
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5.1.1 Data/Monte-Carlo comparison and adjustments

A few differences between real and simulated events have been identified and corrected to
some extent.

5.1.1.1 Accuracy of track reconstruction

As the reconstruction accuracy for charged tracks depends on the type of attached sub-
detectors, and as more of such detectors are associated, in the simulation, as compared to data,
some of these detectors have been removed. This was done by rescaling the values of measure-
ment errors and by smearing the corresponding track parameter values. These changes depend
on the type of the removed sub-detector and were determined using the simulation.

Changes applied on the 1994 events sample are given in Table 5.2.

Simulated events
attached sub-detectorsabsolute fraction kept sub-detectorsrelative fraction

VD-ID-TPC-OD 29.8% ID-TPC-OD 1.5%
VD-TPC 5.5%

VD-TPC-OD 3.0%
VD-ID 3.6% VD 6.0%

VD-ID-TPC 31.4% ID-TPC 1.0%
Real events

attached sub-detectorsabsolute fraction kept sub-detectorsrelative fraction
VD-TPC 4.7% TPC 10.%
ID-TPC 4.2% TPC 5.%

Table 5.2: Fractions of tracks adjusted in simulated and real events so that the fractions of
attached subdetectors are similar for the two samples.

An additional smearing corresponding to 20% of the measurement uncertainty has been
applied on simulated tracks to account for the fact that weakly decaying particle reconstructed
signals (as those corresponding to the D0 or D+) have a width which is larger in real data by
this amount.

5.1.1.2 Efficiency and track energy distribution

After these corrections have been applied, track energy distributions have been compared
in real and simulated events. These distributions have been normalized to the number of
hadronic events. In Figure 5.2 ratios of these distributions (Data/MC) have been displayed
versus log10(p) separately for charged and neutral tracks. These distributions are given forb-
depleted andb-enriched samples. They show similarities at low momentum. Forb-enriched
samples, one can notice that there is a variation versus the assumed fragmentation model for
b-hadrons. Plots have been provided for the default fragmentation function used in the DELPHI
simulation (a Peterson distribution with parameter equal to 2.29 10−3), for the fitted distribution
as obtained on data, for a softer Peterson distribution (with parameter equal to 6 10−3) and for
the distribution extracted by the Karlsruhe group analysis [34].
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Figure 5.2: Ratio Data/MC for charged (top) and neutral (bottom) track momentum distri-
butions (log10 p). Plots in upper left corners correspond to b-depleted samples.
The others are obtained using b-enriched samples and different models for the b-
fragmentation distribution.
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To match Data/MC distributions, the correction consists in removing tracks alternatively in
Data or in the simulation, depending if the studied ratio is larger or lower than unity. Such
corrections have been determined, separately, forb-depleted andb-enriched samples.

To avoid a possible bias induced by a correlation between the assumed shape of the fragmen-
tation function and the applied correction, the correction has been evaluated iteratively using,
as input in the determination of the correction, the fragmentation distribution measured at the
previous step. In practice one iteration was used as the observed absolute variation, between
second and first step, on the fitted< xE > value was of the order of 10−3.

Track momentum distributions obtained after having applied these corrections are given in
Figure 5.3.

5.1.2 Jet energy reconstruction

Jets are reconstructed using the Lund LUCLUS algorithm with thed join parameter value
set to 5.0 GeV/c.

A first evaluation of the jet energies is obtained using the jet directions, energies, masses
and imposing total energy-momentum conservation for the whole event.

If the missing energy, in a jet, is larger than 1 GeV, a four-vector is added to the jet. Its
direction is taken to be the same as the jet direction and the missing momentum is evaluated
assuming that the missing particle mass is zero.

Energy momentum conservation is then applied again to the whole event and track param-
eters (for charged, neutral and eventually missing) are fitted. It has been assumed, analyzing
simulated events, that the relative uncertainty on the missing energy is 20% and that uncertain-
ties on angles of the missing particle are 50 mrad (it has been checked that similar results are
obtained assuming 50% relative error on the energy and 100 mrad error on the angles). If after
the fit, 4-vectors corresponding to missing particles have an energy lower than 1 GeV they are
removed and a new fit is done.

After this procedure, 4-vectors of charged and neutral tracks have been fitted and possi-
ble new 4-vectors corresponding to missing energy in each jet have been obtained. Energy-
momentum conservation for the whole event is exactly imposed, introducing a non-zero mass
for the missing-energy 4-vectors. Jets are reevaluated using this set of tracks and applying the
same LUCLUS algorithm.

In Figure 5.4 have been compared the jet energy distributions, keeping the three highest
energy jets in each event, obtained in data and in the simulation after the energy-momentum
constrained fit.

In Figures 5.5 and 5.6 have been compared the fitted charged, neutral and missing energy
fractions forb-depleted andb-enriched events selected in real and simulated events. These
fractions are also compared in Table 5.3. Relative differences are at the level of a few 10−3.

A comparison has been made also between the average multiplicities of charged and neutral
tracks and of their variance, results are given in Table 5.4.
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Figure 5.3: Ratio Data/MC for charged (top) and neutral (bottom) track momentum distribu-
tions (log10 p) after having applied corrections.
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b-depleted events
Sample Ech + Eneu Ech Eneu Emiss

Data 0.8644 0.5759 0.2879 0.1363
MC 0.8676 0.5778 0.2893 0.1323

(Data-MC)/MC −0.0037 −0.0033 −0.0048 +0.030
b-enriched events

Sample Ech + Eneu Ech Eneu Emiss
Data 0.8423 0.5891 0.2528 0.1589
MC 0.8423 0.5885 0.2535 0.1579

(Data-MC)/MC 0.0000 +0.0010 −0.0027 +0.0063

Table 5.3: Fitted fractions of charged (Ech) and neutral (Eneu) energies, and of their sum,
reconstructed in b-depleted and b-enriched event samples. The missing energy fitted
fraction is also given.

b-depleted events
Sample charged neutrals

Data 22.93 (7.94) 10.47 (3.84)
MC 22.96 (7.62) 10.56 (3.82)

b-enriched events
Sample charged neutrals

Data 25.34 (7.60) 10.95 (3.80)
MC default 24.74 (7.45) 10.88 (3.82)
MC fitted 25.16 (7.48) 10.96 (3.83)

Table 5.4: Charged and neutral track multiplicities (variance) measured in data and simula-
tion, after corrections.
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Figure 5.4: Comparison, for a depleted b sample, between data (points with error bars) and
simulation (dashed histogram) for the fitted jet energy, normalized to the beam
energy. The three higher energy jets are kept in each event.

5.2 B-Energy Reconstruction

Each jet, pointing through the detector barrel region defined by
∣∣cosθ jet

∣∣< 0.75, is consid-
ered in turn and charged tracks belonging to the jet are used. It is required that these tracks have
at least two VD hits associated in Rφ and a minimum positive impact parameter larger than

√
3σ

relative to the main vertex of the event. A secondary vertex is then reconstructed. Tracks with a
too large contribution to theχ2 are removed from the fit in an iterative way. It is required that at
least 3 tracks, with the Z coordinate measured in the VD, remain and that the distance between
the secondary and the primary vertex, projected along the jet direction, is larger than 500µm.
The reconstructed mass must not exceed the B-mass (all particles are assumed to be pions). If
not, tracks ordered by increasing values of their rapidity, measured relative to the jet axis, are
eliminated in turn. If the reconstructed mass is smaller than the B-mass, tracks belonging to the
same jet, ordered by decreasing rapidity values, are added. For charged tracks, offsets relative
to the primary and secondary vertex are also examined and it is required that the track has a
larger probability to originate from the secondary vertex.

The B-momentum is obtained by subtracting, from the fitted jet momentum, the momentum
of the bunch of tracks, from the jet, that have not been assigned to the B-candidate.

In Figure 5.7 is given the distribution of the difference between the reconstructed and the
simulatedb-momentum, divided by the simulated value.
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Figure 5.5: Comparison, using a depleted b sample, between data (points with error bars) and
simulation (dashed histogram) for charged, neutral and missing energy measure-
ment after applying the constrained on total energy-momentum conservation.

Figure 5.6: Comparison, using a b-enriched sample, between data (points with error bars) and
simulation (dashed histogram) for charged, neutral and missing energy measure-
ment after applying the constrained on total energy-momentum conservation.
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Figure 5.7: (prec− psim)/psim for B-hadrons.

5.3 Selection of B Candidates

For the b-fragmentation measurement the following, more restrictive, cuts have been ap-
plied:

• |cosθthrust|< 0.7

• b-tagging probability for the total event lower than 0.001

• at least three charged tracks at the secondary vertex

• the sum of the jet neutral energy and of the charged energy, for tracks which are simulta-
neously compatible with the primary and secondary vertices, smaller than 20 GeV

According to the simulation this corresponds to an average efficiency for the signal of 19%
(Figure 5.8) and a contamination of 5%. There are 134282 and 42364 events selected in the
1994 and 1995 samples respectively.

Distributions for the fraction of the beam energy taken by theb-hadron momentum (xrec
p, beam=

prec.
B /pbeam) are compared, in Figure 5.9, with expectations from the simulation. Distributions

agree forb-depleted events and show a clear difference for events from theb-enriched sample.
In the following, the needed transformation of the non-perturbative QCD distribution, used in
the simulation, has been determined, such that these two distributions agree.
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Figure 5.8: Fitted acceptance for signal events versus xp = pB/Ebeam.

5.4 Measurement of the B-Fragmentation Distribution

The binned distribution of the reconstructedxrec
p = prec.

B /p jet variable has been fitted in
MINUIT by minimizing a χ2 which includes effects from the Monte-Carlo statistics and the
weighting procedure.

In each bin the number of measured events is compared with an estimated number obtained
in the following way:

• contributions from background events are taken from theqq simulation. They comprise
three components: non-b jets in non-bb events, non-b jets in bb events andb jets from
gluon splitting. These events have been normalized to the number of hadronic events
registered in data. Gluon splitting candidates have been multiplied by 1.5 to correct for
the difference between simulated and measured rates at LEP. For simulated events, the
fractions of these components are respectively equal to 5.2%, 0.45% and 0.24% of the
analyzed events.

• the number of signal events is obtained by weightingbb simulated events. The weight
contains several components which have been determined to correct the values of parame-
ters, used in the simulation, so that they agree with corresponding measured quantities as:
lifetimes, B charged-track multiplicity and B∗∗ fraction in jets. A weight, whose parame-
ters are fitted, is also applied for each value of the simulated z variable. For the analysis
described in this thesis, this distribution consists of a histogram having a non-uniform
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Figure 5.9: Comparison between the measured xrec
p distributions obtained in data (points with

error bars) and in the MC qq simulation (histogram). Top: depleted b-sample;
Bottom: enriched b-sample.
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binning.

• The normalization ofb-events is taken as a free parameter.

To prevent oscillations between the contents of nearby bins of the weight histogram, a reg-
ularization term is included in theχ2:

χ2 = ... + curv× [2×bin(i)−bin(i−1)−bin(i +1)]2 (5.2)

wherecurv is a parameter whose value (curv= 1) has been determined empirically using sim-
ulated events.

Distributions corrected for all effects are then obtained, using corresponding generated dis-
tributions from simulated events, before any selection criteria, and by applying the weight dis-
tribution fitted on real events, which depends on the value of thezvariable transmitted for each
simulatedb-hadron. Statistical uncertainties on these distributions have been obtained using the
full covariance matrix of fitted parameters. Toy experiments are generated, each corresponding
to a given set of values for the parameters and these values have been distributed according to
the error matrix of the fit.

It has been also tried to fit the measured distribution using, for the signal, the generatedxp

distribution multiplied by the acceptance function (Figure 5.8) and convoluted with a resolution
function. This resolution function was obtained usingbb simulated events. For each value of the
simulatedxp a distribution for the reconstructed value,xrec

p , was evaluated and this distribution
was normalized to unity. It was then realized that the resolution function strongly depends on
the assumed shape for the fragmentation distribution and thus the resolution function needs to
be determined at each iteration of the fit. This approach was thus abandoned.

5.4.1 Fit Results on Real Data Events

Results of the fit on real data events are illustrated on Figure 5.10.
The fitted weight distribution obtained with the 1994 sample is given in Figure 5.11. This

figure shows also thezdistribution as favored by the data. It is rather different from the Peterson
distribution which was used in the simulation, and given on the same figure.

As explained previously, using the fittedz-weight distribution, it is possible to construct any
distribution relative tob-hadrons, before having applied selection cuts. This is illustrated on
Figure 5.12 for the variablexE = EB/Ebeam. Average values of these distributions are equal
to < xE >data

rec. = 0.6982± 0.0010 using the 1994 sample and< xE >data
rec. = 0.7089± 0.0016

using the 1995 sample. The indexrec. indicates that values have been reconstructed using the
procedure explained previously. The difference between these two values indicates that the
measurement is mainly limited by systematics. In the following, the central value< xE >data

rec. =
0.704±0.001 will be used which corresponds to the simple average between the two previous
values, assuming that they have a similar weight.

To extract analytically, the non-perturbative QCD component of the fragmentation function,
integrals of the fittedxdata

E rec. distribution over (nine) specified intervals have been used. In each
bin, the quantity

∆F
∆xE

=
1

xmax
E −xmin

E

∫ xmax
E

xmin
E

dF
dxE

dxE (5.3)
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Figure 5.10: Fitted xrec
p = prec

B /p jet distributions on selected events. Top: 1994 sample. Bot-
tom: 1995 sample.

Figure 5.11: Fitted z distribution on 1994 selected events. Top: Distribution of the fitted
weights. Bottom: Comparison between the initial Peterson distribution, used
in the simulation generator, and the corresponding distribution favored by data
events.
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Figure 5.12: Comparison between xE distributions obtained using the 1994 and 1995 events
samples.

is evaluated and the corresponding statistical error matrix is obtained using the approach ex-
plained in the introduction of this section. Valuesxmax

E andxmin
E are the bin limits.

5.4.2 Fit Results on Simulated Events

Results on simulatedqq events are illustrated in Figure 5.13.
Generated events correspond to the average value< xE >sim.

gen.= 0.7057 and have been re-
constructed at< xE >sim.

rec.= 0.7060. The quoted values have been corrected for the effect of the
beam radiation which corresponds to an increase of 0.0015. This average value depends on the
choice for the value of the curvature parameter introduced in theχ2 expression (see Equation
5.2), as given in Table 5.6. Variations are at the level of±0.002 on simulated events and can be
even smaller on real data events.

In the following analysis the valuecurv= 1 has been used. In Figure 5.13 the simulated
and fitted distributions have been compared and the observed difference has been included in
the systematics.

5.5 Systematic Uncertainties

Several sources of uncertainties have been identified; including:
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bin low edge 0.10 0.30 0.42 0.54 0.64 0.73 0.80 0.88 0.94
∆F
∆xE

0.1745 0.4263 0.7083 1.1631 1.9072 2.7371 2.9209 1.6685 0.2601
Error matrix

0.0027 0.9933 0.8251 0.4431 -0.0507 -0.1364 0.2224 0.2808 -0.0394
0.9933 0.0076 0.8648 0.4868 -0.0777 -0.1992 0.1800 0.2498 -0.0322
0.8251 0.8648 0.0117 0.8281 0.0833 -0.3005 0.0354 0.3134 -0.0336
0.4431 0.4868 0.8281 0.0171 0.4971 -0.1817 -0.1430 0.2946 0.0028
-0.0507 -0.0777 0.0833 0.4971 0.0247 0.5337 -0.1735 -0.0375 0.1562
-0.1364 -0.1992 -0.3005 -0.1816 0.5337 0.0398 0.2600 -0.4136 0.2342
0.2224 0.1800 0.0354 -0.1430 -0.1735 0.2600 0.040 -0.1068 -0.0824
0.2808 0.2498 0.3134 0.2946 -0.0375 -0.4136 -0.1068 0.0429 -0.4019
-0.0394 -0.0322 -0.0336 0.0028 0.1562 0.2342 -0.0824 -0.4019 0.0204

Table 5.5: Integral and corresponding statistical error matrix of the fitted fragmentation distri-
bution, over specified intervals. Diagonal elements of the error matrix (σi) corre-
spond to evaluated uncertainties, correlation coefficients (ρi j ) are given in the non-
diagonal elements. Coefficients of the full statistical error matrix can be obtained
from these informations; diagonal elements being equal toσ2

i and non-diagonal to
ρi j σi σ j .

curvvalue 0.02 0.2 1.0 5.0
< xE >sim.

rec. 0.7042±0.0011 0.7050±0.0008 0.7060±0.0008 0.7076±0.0006
< xE >data

rec. 0.6986±0.0015 0.6986±0.0012 0.6982±0.0010 0.6971±0.0008

Table 5.6: Variation of the fitted average value of the beam energy taken by a b-hadron with
the value taken for the curv parameter.

• differences between the detector behavior and its simulation;

• uncertainties coming from those attached to physics parameters;

• uncertainties related to the stability of results versus the values of selection criteria used
in the analysis.

For each source of systematic uncertainty, the variations observed on the average value of
thexE distribution (< xE >) and on the value of∆F

∆xE
, in each of the considered bin inxE, have

been evaluated. Denoting asY, these various quantities, the variations:

δY = Y(modi f ied parameter value)−Y(nominal analysis) (5.4)

have been determined.

5.5.1 Real Data and Simulation Tuning

5.5.1.1 Energy Calibration

The analysis uses the beam energy as a constraint in a global fit of charged and neutral tracks
4-momentum such that the total energy and momentum of the event is conserved.
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Figure 5.13: Comparison between generated and fitted xE distributions. Top: The generated
(full line) and fitted (points with error bars) distributions are compared. Bottom:
The relative difference between the fitted and simulated distributions is given.

Remaining uncertainties have been evaluated in the following way. As the difference be-
tween the values of< xE > obtained using 1994 and 1995 samples is larger than the correspond-
ing statistical accuracy, these samples can be split and observed differences< xE >

sample i
rec. −<

xE >data
rec. are displayed in Figure 5.14. From the dispersion of these values, a systematic uncer-

tainty is evaluated (supposed to be of similar importance for each measurement) such that the
χ2/NDF is equal to unity. This uncertainty amounts to 0.0064.

Corresponding variations on∆F
∆xE

are given in Table 5.7. They have been obtained by com-
paring, in each bin, results using 1994 and 1995 data and measured differences have been scaled
such that they correspond to a variation of±0.0064 on< xE >.

5.5.1.2 Level of the Non-b Background

In the analyzed sample, with the cutP(btag) ≤ 10−3, the estimated fraction of non-b can-
didates amounts to 5.2%. In Table 5.1, it was observed that the fraction of selected events is
a few % (relative) higher in real data. As this effect remains in samples of high purity inb
events, its main origin comes, most probably, from a difference in efficiency between real and
simulatedb-events. A possible underestimate of the selection efficiency to non-b events, in the
simulation, amounts then to 10% (relative), at maximum. The effect of a±20% variation on the
non-b background level has been evaluated; it givesδ < xE >data

rec. = ±0.0012. Corresponding
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Figure 5.14: Differences between the fitted xE values, relative to the average, for different data
samples.

variations on∆F
∆xE

are given in Table 5.7.

5.5.1.3 Track Energy and Multiplicity Tuning

Corrections applied on charged and neutral track distributions have been described in Sec-
tion 5.1.1.2. They induce a rather small variation on< xE > of +0.0017. The corresponding
systematic uncertainty has been evaluated taking the effect of half this correction. Correspond-
ing variations on∆F

∆xE
are given in Table 5.7.

5.5.1.4 Jet Multiplicity

Measured jet multiplicities are different in data and simulated events as displayed in Figure
5.15.

Simulated events have been weighted accordingly so that the two distributions become in
agreement. The systematic uncertainty has been evaluated to be one third of the previous cor-
rection, from the observed differences between the two events samples in Figure 5.15. It corre-
sponds toδ < xE >data

rec. =−0.0001. Corresponding variations on∆F
∆xE

are given in Table 5.7.
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Figure 5.15: Ratio between number of events having a given jet multiplicity in data and in the
simulation. For 2-jet events this ratio has been set to unity. Events depleted and
enriched in b hadrons have been compared.

5.5.1.5 Summary

Systematics related to uncertainties on the tuning of the simulation are summarized in Table
5.7 and are illustrated in figure 5.16.

bin 1 2 3 4 5 6 7 8 9
Energy calibration 0.0063 0.0227 0.0465 0.0695 0.0446 0.0596 0.1546 0.0753 0.0088
non-b background 0.0016 0.0055 0.0096 0.0114 0.0015 0.0170 0.0233 0.0073 0.0012

Track distribution tuning 0.0005 0.0004 0.0020 0.0071 0.0206 0.0208 0.0181 0.0403 0.0057
Jet multiplicity 0.0003 0.0006 0.0004 0.0026 0.0034 0.0008 0.0034 0.0035 0.0007

Table 5.7: Systematic uncertainties, in each bin of xE, related to the tuning of the simulation.

5.5.2 Physics Parameters

Variations of the values of parameters, that govern decay properties or production charac-
teristics of B-hadrons, have been considered.
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Figure 5.16: Systematic uncertainties originating from uncertainties in the tuning of the simu-
lation.

5.5.2.1 b-Hadron Lifetimes

Simulated events have been generated using the same lifetime value ofτ0 = 1.6 ps. Events
have been weighted so that each type ofb-hadron is distributed according to its corresponding
lifetime, as given in PDG. The applied weight is:

wtime(t) =
τ0

τB
exp−t

(
1
τB
− 1

τ0

)
(5.5)

whereτB is the measured B-hadron lifetime andt is its decay proper time, in the studied event.
Taking, as systematics, the variation induced by this correction, the variation on< xE >data

rec. is
equal to−0.0005. Corresponding variations on∆F

∆xE
are given in Table 5.8.
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5.5.2.2 B∗∗ Production Rate

In the simulation, the B∗∗ production rate, in ab-quark jet amounts top0(B∗∗) = 32%.
Recent measurements [81] favor a lower value of(16±1±2±2)%. A weight,wB∗∗, is applied
on B-hadrons which originate from a B∗∗ decays. It has been defined such that:

p(B∗∗) =
wB∗∗p0(B∗∗)

wB∗∗p0(B∗∗)+(1− p0(B∗∗))
. (5.6)

The central valuep(B∗∗) = 20% has been used in the following and the corresponding variation
relative top0(B∗∗) as been taken as a systematic.

The variation on< xE >data
rec. is equal to−0.0009. Corresponding variations on∆F

∆xE
are given

in Table 5.8.

5.5.2.3 b-Hadron Charged Multiplicity

Differences between simulated and measured average charged track multiplicities inb-
hadron decays amount to 0.06.

nPDG
ch (B) = 4.97±0.03±0.06, nsim.

ch (B) = 4.91 (5.7)

This difference has been corrected by weighting events using a weight which has a linear vari-
ation with the actualb-hadron charged track multiplicity in a given event. The simulated mul-
tiplicity distribution has been fitted with a Gaussian of standard deviation(σnch) equal to 2.03
charged tracks. Probability values, for a given charged multiplicityi, Pi , have been transformed
into:

PT
i = Pi [1+β(< n >−i)] . (5.8)

The value ofβ is obtained by expressing that the new average multiplicity, computed usingPT
i ,

is equal tonPDG
ch (B). Then:

β =
nsim.

ch −nPDG
ch

σ2
nch

. (5.9)

The corresponding systematic uncertainty has been evaluated by considering an uncertainty of
±0.1 charged track.

The variation on< xE >data
rec. is equal to∓0.0008 and corresponding variations on∆F

∆xE
are

given in Table 5.8.

5.5.2.4 g→ bb Rate

The rate forb-hadron production originating from gluon coupling tobb pairs has been mea-
sured by LEP experiments and found to be larger than the rate used in the simulation by a factor
1.5. The corresponding systematic uncertainty has been evaluated, considering the uncertainty,
of 30%, obtained by DELPHI on this quantity [82]. The variation on< xE >data

rec. is equal to
−0.0001 and corresponding variations on∆F

∆xE
are given in Table 5.8.
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5.5.2.5 Summary

Systematics related to uncertainties on the values of physics parameters governing B-hadron
decay properties and production characteristics are summarized in Table 5.8 and are illustrated
in Figure 5.17.

bin 1 2 3 4 5 6 7 8 9
b-hadron lifetime 0.0006 0.0020 0.0038 0.0054 0.0033 0.0041 0.0103 0.0078 0.0011

B∗∗ rate 0.0030 0.0054 0.0027 0.0031 0.0043 0.0260 0.0207 0.0045 0.0129
Charged track multiplicity 0.0001 0.0006 0.0020 0.0051 0.0089 0.0061 0.0066 0.0178 0.0079

g→ bb rate 0.0002 0.0005 0.0009 0.0012 0.0003 0.0017 0.0026 0.0009 0.0007

Table 5.8: Systematic uncertainties, in each bin of xE, related to uncertainties on physics pa-
rameters governing B-hadron decay and production characteristics.

5.5.3 Parameters Used in the Analysis

5.5.3.1 Parametrization of the Weight Function

The fitted weight function consists of 11 bins inzwhose content is fitted. Choices for the bin
definition and bin number can induce a systematic on the extracted distribution. This has been
studied by comparing the generated and fitted distributions in simulated events (see Section
5.4.2). The observed difference corresponds to a variation on< xE >data

rec. equal to+0.0003;
corresponding variations on∆F

∆xE
are given in Table 5.12.

5.5.3.2 b-Tagging Selection

The stability of the fitted value,< xE >data
rec. , has been studied for different selections on the

value of theP(btag) variable. Results are summarized in Table 5.9.

cut onP(btag) < 10−3 < 10−4 < 10−6 < 10−10

nb of events 134282 120082 93220 49533
< xE >data

rec. 0.6982±0.0010 0.6989±0.0011 0.6992±0.0012 0.6972±0.0016

Table 5.9: Variation of the fitted average value of the beam energy taken by a b-hadron with
the cut on P(btag).

Results are stable within±0.001. For the corresponding systematic evaluation, half the
differences obtained using cuts at 10−4 and 10−10 have been used. Corresponding variations on
∆F
∆xE

are given in Table 5.12.

5.5.3.3 Jet Clustering Parameter Value

Hadronic jets have been reconstructed using the LUCLUS algorithm with the value of the
parameter defining the jets, djoin=5 GeV. Sensitivity of present results on the value of this
parameter has been studied by redoing the measurements using djoin=10 GeV. The variation on
< xE >data

rec. is equal to+0.0002; corresponding variations on∆F
∆xE

are given in Table 5.12.
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Figure 5.17: Systematic uncertainties originating from uncertainties on physics parameters
governing B-hadron decay and production characteristics.

5.5.3.4 Level of Ambiguous Energy

In a jet, there are charged particles which can be compatible simultaneously with the primary
and the secondary vertex. Neutral particles cannot be either attached with confidence to one of
the two vertices. In the analysis, events have been selected requiring that the total “ambiguous”
energy is lower than 20 GeV. Results stability has been studied, in Table 5.10, by changing the
value for this selection, Taking the differences observed for selections at 10 and 20 GeV, as an
evaluation for the corresponding systematic, the variation on< xE >data

rec. is equal to−0.0034
and corresponding variations on∆F

∆xE
are given in Table 5.12.
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cut on amb. energy < 20GeV < 15GeV < 10GeV
nb of events 134282 102784 62029
< xE >data

rec. 0.6982±0.0010 0.6977±0.0011 0.6947±0.0014

Table 5.10:Variation of the fitted average value of the beam energy taken by a b-hadron with
the cut on “ambiguous” energy value.

5.5.3.5 Secondary Vertex Charged Multiplicity

Events have been selected, requiring at least three charged particles at the candidate B decay
vertex. In Table 5.11, results have been reported for different values of the minimum charged
track multiplicity.

B-vert. mult. ≥ 3 ≥ 4 ≥ 5 ≥ 6
nb of events 134282 80277 41065 17597
< xE >data

rec. 0.6982±0.0010 0.6987±0.0011 0.6994±0.0016 0.6977±0.0024

Table 5.11:Variation of the fitted average value of the beam energy taken by a b-hadron with
the minimal charged track multiplicity at the B decay vertex.

Taking the differences observed for selections with at least three and five charged parti-
cles, as an evaluation for the corresponding systematic, the variation on< xE >data

rec. is equal to
+0.0012 and corresponding variations on∆F

∆xE
are given in Table 5.12.

5.5.3.6 Summary

Systematics related to uncertainties on the values of physics parameters governing B-hadron
decay properties and production characteristics are summarized in Table 5.12 and are illustrated
in Figure 5.17.

bin 1 2 3 4 5 6 7 8 9
fitting procedure 0.0077 0.0213 0.0053 0.0343 0.0656 0.0225 0.0553 0.0078 0.0372
btag selection 0.0012 0.0041 0.0078 0.0105 0.0013 0.0187 0.0205 0.0002 0.0017

jet clustering parameter 0.0012 0.0028 0.0019 0.0036 0.0193 0.0277 0.0148 0.0587 0.0246
ambiguous energy 0.0036 0.0125 0.0233 0.0320 0.0186 0.0209 0.0578 0.0601 0.0034

B-vert mult. 0.0013 0.0039 0.0062 0.0074 0.0026 0.0026 0.0126 0.0027 0.0517

Table 5.12:Systematic uncertainties, in each bin of xE, related to the values and procedures
used in the analysis.

5.6 Comparison with Other Experiments

The present measurement of< xE > is compared, in Table 5.13, with the other results
obtained at the Z energy, by ALEPH [31], DELPHI(Karlsruhe) [34], OPAL [32] and SLD [33]
collaborations.
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Figure 5.18: Systematic uncertainties related to the stability of results versus the values of cri-
teria used in the analysis.

CorrespondingxE distributions have been compared, in Figure 5.19. The total error matrix
of present measurements is given in Table 5.14.

The present measurement is quite compatible with the SLD result, over all the distribu-
tion. The non-perturbative QCD components of theb-fragmentation distribution, extracted from
these various measurements are compared in Section 6.7. The obtained non-perturbative distri-
bution is quite similar with the distributions obtained from SLD and OPAL measurements and
somewhat softer, but compatible within uncertainty, as compared with the one from ALEPH. It
is softer than the non-perturbative distribution corresponding to the measurement from DELPHI
(Karlsruhe).

The ALEPH measurement is using semileptonic decays of B0
d and B+ mesons. The other

experiments are sensitive to decay modes of all weakly decayingb-hadrons. In Figure 5.20,xE

distributions have been compared, corresponding respectively to non-strangeb-mesons and to
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Experiment < xE > Stat. err. Syst. err.
This thesis 0.704 0.001 0.008
ALEPH 0.716 0.006 0.006

DELPHI (Karl.) 0.715 0.001 0.005
OPAL 0.719 0.002 0.004
SLD 0.709 0.003 0.004

Table 5.13:Different measurements of< xE > at theZ energy.

bin low edge 0.10 0.30 0.42 0.54 0.64 0.73 0.80 0.88 0.94
Error matrix

0.0120 0.9838 0.7497 0.3210 -0.1965 -0.6306 -0.3905 -0.4510 0.2314
0.9838 0.0353 0.8389 0.4514 -0.0670 -0.7036 -0.5027 -0.5522 0.2310
0.7497 0.8389 0.0549 0.8618 0.4436 -0.7594 -0.8533 -0.6982 0.0257
0.3210 0.4514 0.8618 0.0869 0.8182 -0.5620 -0.9465 -0.6619 -0.1696
-0.1965 -0.0670 0.4436 0.8182 0.0912 -0.0527 -0.7606 -0.5351 -0.2814
-0.6306 -0.7036 -0.7594 -0.5620 -0.0527 0.0903 0.5406 0.2474 -0.1434
-0.3905 -0.5027 -0.8533 -0.9465 -0.7606 0.5406 0.1878 0.6990 0.0090
-0.4510 -0.5522 -0.6982 -0.6619 -0.5351 0.2474 0.6990 0.1332 -0.2096
0.2314 0.2310 0.0257 -0.1696 -0.2814 -0.1434 0.0090 -0.2096 0.0750

Table 5.14:Total error matrix of the fitted fragmentation distribution, over specified intervals.
Diagonal elements of the error matrix (σi) correspond to evaluated uncertainties,
correlation coefficients (ρi j ) are given in the non-diagonal elements. Coefficients
of the full error matrix can be obtained from these informations; diagonal elements
being equal toσ2

i and non-diagonal toρi j σi σ j .

the sum of B0s andb-baryons components. As the latter have a larger mass, their corresponding
fragmentation distribution is peaked at higher values. Taking into account the various produc-
tion rates ofb-hadrons in jets, one obtains:

< xE >all b−had.=< xE >B0, B+ +0.0011 (5.10)

It is thus expected that the ALEPH measurement is sligtly lower in< xE > as compared with
the other measurements. In practice, considering uncertainties attached to these measurements,
this difference is non-significant.
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Figure 5.19: Comparison between the measured xE distribution and corresponding results ob-
tained by ALEPH, DELPHI, OPAL and SLD.
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Figure 5.20: Comparison between expected xE distributions forB0
d andB+ mesons and forB0

s
and b-baryons.



Chapter 6

Extraction of the x-Dependence of the
Non-perturbative QCD Component

6.1 Introduction

In Chapter 5 a measurement of theb-quark fragmentation distribution has been presented.
It has been defined as the fraction of the beam energy taken by a weakly decayingB-hadron in
e+e−→ bb events registered at, or near, the Z pole. Similar measurements have been obtained
by the ALEPH [31], DELPHI(Karlsruhe) [34], OPAL [32] and SLD [33] collaborations.

As discussed in Chapter 2, this distribution is generally viewed as resulting from three
components: the primary interaction (e+e− annihilation into abb pair in the present study),
a perturbative QCD description of gluon emission by the quarks and a non-perturbative QCD
component which incorporates all mechanisms at work to bridge the gap between the previous
phase and the production of weakly decayingB-mesons. The perturbative QCD component can
be obtained using analytic expressions or Monte Carlo generators. The non-perturbative QCD
component is usually parameterized phenomenologically via a model.

To compare with experimental results, one must fold both components to evaluate the ex-
pectedx-dependence:

Dpredicted(x) =
∫ 1

0
Dpert.(z)×Dmodel

non−pert.(
x
z
)

dz
z

(6.1)

In the present chapter, the fragmentation variable is chosen asxp (see Section 2.3.1). In order
to simplify the notation, The indexp will be omitted all along this chapter and thereforexp will
be referred to asx. The experimental results presented in this thesis work, as well as the other
measurements of the fragmentation function [31, 32, 33] have been originally obtained in terms
of the variablexE = 2EB√

s . One can easily change this variable tox by using

x =

√
x2

E−x2
min√

1−x2
min

(6.2)

wherexmin = 2mB√
s is the minimal value ofxE. The final and the perturbative components are

defined over the[0,1] interval. As explained in the following, the non-perturbative distribution

123
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must be evaluated forx > 1, if the perturbative component is non-physical. The parameters of
the model are then fitted by comparing the measured and predictedx-dependence of theb-quark
fragmentation distribution. Such comparisons have already been made by the different experi-
ments using, for the perturbative component, expectations from generators such as the JETSET
or HERWIG parton shower Monte-Carlo. It has been shown, with present measurement accu-
racy, that most existing models of the non-perturbative part are unable to give a reasonable fit
to the data [31, 34, 32, 33]. Best results have been obtained with the Lund and Bowler models
[38, 24].

In the following, a method is presented to extract the non-perturbative QCD component of
the fragmentation function directly from data, independently of any hadronic model assumption.
This distribution can also be compared with models to learn about the non-perturbative QCD
transformation ofb-quarks intoB-hadrons. It can then be used in another environment than
e+e− annihilation, as long as the same parameters and methods are taken for the evaluation of
the perturbative QCD component. Consistency checks, on the matching between the measured
and predictedb-fragmentation distribution, can be defined which provide information on the
determination of the perturbative QCD component itself.

The method to extract thex dependence of the non-perturbative component does not depend
on a particular measured fragmentation function. In this thesis work, the method has been
originally applied to the result from ALEPH [31], and therefore this is the main measurement
that will be referred to in this chapter. The extracted non-perturbative components for all the
other available measuredb fragmentation functions, including the measurement done in Chapter
5, are presented in Section 6.5 below.

In Section 6.2, the method used to extract the non-perturbative QCD component is pre-
sented. In Section 6.3, the extraction is performed for two determinations of the perturbative
QCD component using:

• the JETSET 7.3 generator [18], tuned on DELPHI data [83], running in the parton shower
mode,

• an analytic computation based on QCD at NLL order [14],

• an analytic computation based on Dressed Gluon Exponentiation (DGE), that also retains
NLL accuracy terms [15].

In Section 6.4 these results are discussed and insights obtained with the present method are
explained. A parametrization for the non-perturbative QCD component is proposed. In Section
6.5 different verifications are presented that have been performed to check the robustness of the
proposed method. Studies of different subjects related to the extraction method are presented.
In Section 6.8 the differences between fitting fragmentation functions and their moments are
discussed. Finally, in Section 6.9 remarks about the non-perturbative QCD component of the
charm fragmentation function are presented.
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6.2 Extracting thex-Dependence of the Non-perturbative QCD
Component

The method is based on the use of the Mellin transformation which is appropriate when
dealing with integral equations as given in (6.1). More details about this integral transforma-
tion and necessary formulas for the computations given in the present chapter are quoted in
Appendix A. The Mellin transformation of the expression forD(x) is:

D̃(N) =
∫ ∞

0
dx xN−1 D(x) (6.3)

whereN is a complex variable. For integer values ofN ≥ 2, the values of̃D(N) correspond to
the moments of the initialx distribution1. For physical processes,x is restricted to be within
the [0,1] interval. The interest in using Mellin transformed expressions is that Equation (6.1)
becomes a simple product:

D̃(N) = D̃pert.(N)× D̃non−pert.(N) (6.4)

Having computed, in theN-space, distributions of the measured and perturbative QCD com-
ponents, the non-perturbative distribution,D̃non−pert.(N) is obtained from Equation (6.4). Ap-
plying the inverse Mellin transformation on this distribution one getsDnon−pert.(x) without any
need for a model input:

Dnon−pert.(x) =
1

2πi

∮
dN

D̃meas.(N)
D̃pert.(N)

x−N (6.5)

in which the integral runs over a contour in the complexN-plane. The integration contour is
taken as two symmetric straight half-lines, one in the upper half and the other in the lower half
of the complex plane. The angle of the lines, relative to the real axis, is larger or smaller than
90 degrees forx values smaller or larger than unity, respectively. These lines are taken to orig-
inate fromN = (1.01,0). The contour is supposed to be closed by an arc situated at infinity in
the negative and positive directions of the real axis, for the two cases respectively. It has been
verified that the result is independent of a definite choice for the contour in terms of the slope of
the lines and of the value of the arc radius. The result is also independent of the choice for the
position of the origin of the lines, on the real axis, as long as the contour encloses the singulari-
ties of the expression to be integrated and stays away from the Landau pole present inD̃pert.(N)
which is discussed in the following. In practice, the Mellin transformed distribution of present
measurements,̃Dmeas.(N), has been obtained after having adjusted an analytic expression to the
measured distribution inx, and by applying the Mellin transformation on this fitted function.
The motivation to proceed in that way rather than calculating the Mellin transformation of the
original histograms will be explained in Section 6.5. The following expression, which depends
on five parameters and gives a good description of the measurements (see Figure 6.1-left), has
been used.

D(x) = p0×
[
p1xp2(1−x)p3 +(1− p1)xp4(1−x)p5

]
(6.6)

1By definitionD̃(1) (= 1) corresponds to the normalization ofD(x).
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,

Figure 6.1: Left: Comparison between the measured (points with error bars) b-fragmentation
distribution and the fitted parametrization using Equation(6.6). Right: Moments
of the measured (full line) x distribution, of the perturbative QCD component
[14](dashed line) and of the generated distribution obtained in JETSET before
hadronization (full line with circles). Data from [31] have been used.

wherep0 is a normalization coefficient. Values of the parameters have been obtained by com-
paring, in each bin, the measured bin content with the integral ofD(x) over the bin. In order to
check the effect of a certain choice of parametrization, the whole procedure has been done re-
placing the expression of Equation (6.6) by another function: a cubic spline, with five intervals
between 0< x < 1, continuous up to the second derivative, normalized to 1, and forced to be 0
at x = 0 andx = 1. This function also depends on five parameters. The results obtained with
the two parametrizations have been found to be similar. The comparison is presented in Section
6.5.

Measurements of theb-fragmentation distribution, in [31], have been published in a binned
form, after unfolding of the experimental energy resolution. Values in the bins are correlated
and, as the bin width is smaller than the resolution, the error matrix is singular. Only positive
eigenvalues of this matrix have been considered and the seven largest eigenvalues have been
used. A detailed explanation of this fit method is presented in Appendix B.

The distribution of moments obtained with data from [31], and computed using the fitted
distribution corresponding to Equation (6.6), is given in Figure 6.1-Right. TheN representation
of the fit function of Equation (6.6) is analytically calculable, as explained in Appendix A. The
expression is:

D̃(N) = p0

[
p1

Γ(p2 +N)
Γ(p2 + p3 +N+1)

+(1− p1)
Γ(p4 +N)

Γ(p4 + p5 +N+1)

]
(6.7)

Quoted uncertainties, in Figure 6.1-Right, correspond to actual measurements and are highly
correlated. They have been obtained by propagating uncertainties corresponding to the covari-
ance matrix of thep1,.,5 fitted parameters. When computing the moments, very similar results
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are obtained, forN < 10, using directly the measuredx-binned distribution. For higherN val-
ues, effects induced by the variation of the distribution within a bin, as expressed by Equation
(6.6), have to be included. More details about this argument will be given in Section 6.5.

The Mellin transformed distribution of the JETSET perturbative QCD component has been
obtained in a similar way, whereas the NLL QCD perturbative component is computed directly
as a function ofN in [14]. At large values ofN, this last distribution is equal to zero for
N = N0' 41.7 and has a Landau pole situated atNL ' 44. Values forN0 andNL depend on the
exact values assumed for the other parameters entering into the computation; see Section 6.3.2
where values of these parameters have been listed.

6.3 x-Dependence Measurement of the Non-perturbative QCD
Component

The x distribution of the non-perturbative QCD component extracted in this way depends
on the measurements and also on the procedures adopted to compute the perturbative QCD
component. In the following, two approaches have been considered. The first one is generally
adopted by experimentalists whereas the second is more frequent for theorists.

6.3.1 The Perturbative QCD Component is Provided by a Generator

A detailed explanation of parton shower Monte Carlo generators and string hadronization is
given in Section 2.3.

The JETSET 7.3 Monte Carlo generator, with values of the parameters tuned on DELPHI
data registered at the Z pole has been used2. Events have been produced using the parton shower
option of the generator and theb-quark energy is extracted, after radiation of gluons, just before
calling the routines to create aB-hadron that takes a fractionz of the available string energy.

z = EB+pB
L

Eb+pb
L

is the boost-invariant fraction of theb-jet energy taken by the weakly decaying B

meson. This variable is defined for a string stretched between theb-quark and a gluon, an anti-
quark or a diquark. In the present analysis only distributions in terms of thex variable have
been used as no string model has been considered. Thex distribution forb-quarks, after gluon
radiation, is displayed in Figure 6.3. It has to be complemented by aδ-function atx = 1 which
contains∼ 4% of all events. In this peak,B-hadrons carry all the energy of theb-quark as no
gluon has been radiated.

Applying the method explained in Section 6.2, the corresponding non-perturbative QCD
component has been extracted, and is displayed also in Figure 6.3. Abovex= 1, it is compatible
with zero, as expected.

The quoted error bar, for a given value ofx, has been obtained by evaluating the values of
Dnon−pert.(x) for different shapes of theb-quark fragmentation distribution which are obtained
by varying parametersp1,.,5 according to their measured error matrix. This matrix has been
obtained by propagating the errors of the measured distribution to the fitted parameters. The
program that generated sets of variablesp1,.,5 took into account also the asymmetrical individual
uncertainty for each parameter. The resulting curves, that have been used to estimate the errors

2It has been verified that the ALEPH tuning [84] of this generator gives similar results. See also Section 6.5.
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on the extracted non-perturbative component are shown in Figure 6.2, together with the curve
that represents the central values ofp1,.,5. The extraction procedure has been applied on each
one of the generated curves, for selected points inx. The error bar represents, for a given value
of x, the standard deviation of the computation results for the different curves.

Figure 6.2: Curves that have been used for the error bar generation (red), together with the
central curve that represents the central values of the parameters p1,.,5 (black).

6.3.2 The Perturbative QCD Component is Obtained by an Analytic Com-
putation Based on QCD

The perturbative QCD fragmentation function is evaluated according to the approach pre-
sented in [14]. This next-to-leading log (NLL) accuracy calculation for the inclusiveb-quark
production cross section ine+e− annihilation, generalizes previous calculations by resumming
the contribution from soft gluon radiation (which plays an important role at largex) to all per-
turbative orders and to NLL accuracy. These computations are done directly in theN-space. As
explained in Section 2.3.3.1, soft gluon radiation contributes to the logarithm of the fragmen-
tation function large logarithmic terms of the type(logN)p, in the exponent, withp≤ n+ 1.
These terms appear at all perturbative ordersn in αs. In the calculation at NLL accuracy [14],
the two largest terms, corresponding top= n+1 andn, have been resummed at all perturbative
orders. The calculation is expected to be reliable whenN is not too large (typically less than
20). To obtain distributions for the variablex from results in moment space, one should apply
the inverse Mellin transformation, that consists in integrating over a contour inN (Section 6.2
and Appendix A). Whenx gets closer to 1, large values ofN contribute and thus the perturbative
fragmentation distribution is not reliable in these regions. This behavior affects also values of
the distribution at lowerx as moments of this distribution are fixed. In addition to the break-
down of the theory for large values ofN, uncertainties attached to the determination of the the-
oretical perturbative QCD component are related to the definition of the scales entering into the
computation. This component also depends on two parameters: theb-quark pole mass (mb) and
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Figure 6.3: x-dependence of the perturbative (dotted line) and non-perturbative (full line) QCD
components of the measured [31] b-fragmentation distribution. These curves are
obtained by interpolating corresponding values determined at a large number of
points in the x-variable. Quoted error bars correspond to measurement uncertain-
ties and are correlated for different x-values. The perturbative QCD component is
extracted from the JETSET 7.3 Monte Carlo generator. The dotted curve has to be
complemented by aδ-function containing 4% of the events, located at x= 1.

Λ(5)
QCD, that have been taken asmpole

b = (4.75±0.25) GeV/c2 andΛ(5)
QCD = (0.226±0.025) GeV.

Scale and parameter depending variations of the moments of the perturbative QCD component
are given in Figure 6.4. These variations are fully correlated versusN.

The extracted non-perturbative component is given in Figure 6.5. Its shape depends on the
same quantities as those used to evaluate the perturbative distribution, and thus similar variations
appear, as drawn also in the Figure.

It has to be noted that the data description in terms of a product of two QCD components,
perturbative and non-perturbative, is not directly affected by uncertainties attached to the de-
termination of the perturbative component. This is because the non-perturbative component, as
determined in the present approach, compensates for a given choice of method or of parameter
values.

To obtain the complete expectedx-distribution ofB-hadrons from the NLL theoretical cal-
culation, one has to be able to evaluate the integral given in Equation (6.1). Whenx becomes
close to 1 the distribution is sensitive to the largeN breakdown of the theory. Consequently, the
high-x (x> 0.96) behavior of the perturbative QCD component has been studied. As mentioned
before, this region corresponds to high-N values where the perturbative approach fails. As a
result, the high-x behavior of the distribution is non-physical; it oscillates. To have a numerical
control of the distribution in this region, it has been decided to take into accountx values which
are below a given maximum value,xmax, above which the distribution is assumed to be equal
to zero. Moments of this truncated distribution show a small discrepancy when compared with
moments of the full distribution. This difference has an almost linear dependence withN. To



130 Extraction of the x-Dependence of the Non-perturbative QCD Component

m =m F={Q/2,2Q}

m 0=m 0F={mb/2,2mb}

NLL perturbative QCD,

central values

scale depending variation

scale depending variation
mb=(4.75  0.25) GeV/c2

ΛQCD=(0.226  0.025) GeV

NLL perturbative QCD,

central values
parameter depending variation

parameter depending variation

+-

+-

Figure 6.4: Variations of the calculated perturbative QCD component [14], depending on the
renormalization scales (µ, µ0), the factorisation scales (µF , µ0F ), the b-quark mass

(mb) andΛ(5)
QCD. The full lines are corresponding to the central values (µ= µF =

Q = 91.2 GeV, µ0 = µ0F = mb, mb = 4.75 GeV/c2 andΛ(5)
QCD = 0.226 GeV).

correct for this effect,xmax is chosen such that the difference between moments is a constant
value (the slope inN being close to zero at this point). This difference can then be corrected by
adding simply aδ-function atx = 1, so that the total distribution is normalized to 1. A typical
value forxmax is 0.997 and theδ component corresponds to 5% of the distribution. We stress
that the truncation atxmaxand the addedδ-function do not contribute in the determination of the
non-perturbative component using Equation (6.5). But this procedure is necessary for check-
ing that the extracted non-perturbative component in thex-space, when convoluted with the
perturbative distribution, effectively reproduces the measurements and also for testing hadronic
models given in thex-space.

Unlike the perturbative QCD component which was defined in [14] within the[0,1] interval,
the non-perturbative component has to be extended in the regionx > 1. This “non-physical”
behavior comes from the zero ofD̃pert.(N) for N = N0 which gives a pole in the expression to
be integrated in Equation (6.5). Using properties of integrals in the complex plane, it can be
shown that, forx> 1, the non-perturbative QCD distribution can be well approximated byx−N0.

Errors bars, given in Figure 6.5, have been obtained using the same procedure as explained
in Section 6.3.1.

The extraction method has been also applied to the NLL+DGE computation of [15]. As
explained in Section 2.3.3.1 this approach is different from the former one by the fact that it
adds an approximate resummation of all the subleading logarithmic terms. When applying the
extraction method on the NLL+DGE calculation, the inverse Mellin transformation of the non
perturbative QCD component becomes numerically complicated whenx is large. The extraction
has been therefore performed only untilx = 0.96.

In Figure 6.6 thex-dependence of the non-perturbative QCD component is presented for
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Figure 6.5: x-dependence of the perturbative (dotted line) and non-perturbative (full line) QCD
components of the measured b-fragmentation distribution. These curves are ob-
tained by interpolating corresponding values determined at a large number of
points in the x-variable. The perturbative QCD component is given by the an-
alytic computation of [14]. The thin lines on both sides of the non-perturbative

distribution correspond to µ0 = µ0F = {mb/2,2mb} (dotted lines) andΛ(5)
QCD =

(0.226±0.025) GeV (dashed lines). Variations induced by the other parameters,
µ = µF = {Q/2,2Q} and mb = (4.75± 0.25) GeV/c2 are smaller. In addition,
quoted error bars correspond to measurement uncertainties and are correlated for
different x-values. The perturbative QCD dotted curve has to be complemented by
a δ-function containing 5% of the events, located at x= 1.

all the three QCD approaches treated in this chapter. From this figure it is clear that when the
accuracy of the QCD approach increases, the non-perturbative component is shifted towards
larger x values. This reflects the fact that the more logarithmic divergences are resummed,
the higher becomes thex value up to which the perturbative QCD computation is reliable.
When the perturbative QCD component is “more reliable” it needs to be complemented by a
smaller non-perturbative one. It is also clear from this figure that forx < 0.6 all of the three
approaches give a vanishing non-perturbative component. In that region3, gluon radiation is
well accounted for, even in the Monte Carlo generator’s LL approach. None of the perturbative
QCD approaches examined above needs to be complemented by a non-perturbative component
in the low x region. The non-perturbative distributions obtained for perturbative components
from a Monte Carlo generator or from a NLL QCD computation are similar in shape. This is
not the case for the NLL+DGE QCD computation.

3The lowx region corresponds typically to hard gluon radiation
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Figure 6.6: Comparison between the not-perturbative component obtained for the three pertur-
bative QCD approaches treated in this chapter: JETSET, a NLL theoretical QCD
computation [14] and a theoretical NLL+DGE computation [14]

6.4 Results Interpretation

Thex-dependence of the non-perturbative QCD component, obtained in this way, does not
depend on any non-perturbative QCD model assumption but its shape is tightly related to the
procedures used to evaluate the perturbative component, and thus, the two distributions have to
be used jointly.

6.4.1 Comparison with Models

Non-perturbative components of theb-quark fragmentation distribution, taken from models,
have been folded with a perturbative QCD component obtained from a Monte Carlo generator
and compared with measurements by the different collaborations [31, 34, 32, 33]. The Lund
and Bowler models were favored in these comparisons. In Figure 6.7 the directly extracted non-
perturbative components are compared with distributions taken from models [37, 35, 36, 38, 24]
whose parameters have been fitted on data from [31]. Results have been obtained by comparing,
in each bin, the measured bin content with the integral, over the bin, of the folded expression
for Dpredicted(x). They are thus independent of the analytic expression given in Equation (6.6).
These results are summarized in Table 6.1. It must be noted that parameters given in this Table,
when the perturbative QCD component is taken from JETSET, may differ from those quoted
in original publications as an analytic computation is done in the present study, using Equation
(6.1), whereas a string model is used in the former; other sources of difference can originate
from the exact values of the parameters used to run JETSET and from the definition ofx which
varies between 0 and 1 in our case. Numerically, if one compares present results with those
obtained by OPAL [32], in their own analysis, for the values of the parameters of the Lund and
Bowler models, differences are situated well within quoted uncertainties.

When the perturbative QCD component is taken from the analytic NLL calculation the Lund
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Model JETSET NLL Pert. QCD
param. χ2/NDF param. χ2/NDF

Kartvelishvili [37] εb = 12.3±0.7±0.4 35/6 εb = 14.6±0.6 60/6
xεb(1−x)
Peterson [35] εb = (4.1+0.4 +0.2

−0.3 −0.1)×10−3 47/6 εb = (2.8±0.2)×10−4 82/6
1
x

(
1− 1

x −
εb

1−x

)−2

C.S [36] εb = (3.3±0.5+0.4
−0.9)×10−3 117/6 εb = (1.1±0.3)×10−4 37/6(

1−x
x + εb(2−x)

1−x

)(
1+x2

)(
1− 1

x −
εb

1−x

)−2

Lund [38] a = 1.68±0.18+0.09
−0.06 7/5 a = 0.00±0.04 11/5

1
x (1−x)a exp

(
− bm2

b⊥
x

)
bm2

b⊥ = 15.6±1.2+0.5
−0.4 bm2

b⊥ = 9.3±0.8

Bowler [24] a = 0.89±0.11±0.10 18/5 a = 0.00±0.02 8/5

1

x1+bm2
b⊥

(1−x)a exp

(
− bm2

b⊥
x

)
bm2

b⊥ = 75.±9.+.5
−9. bm2

b⊥ = 60.±6.

Table 6.1: Values of the parameters and of theχ2/NDF obtained when fitting results from
Equation(6.1), obtained for different models of the non-perturbative QCD compo-
nent, to the measured b-fragmentation distribution. The two situations correspond-
ing, respectively, to the perturbative QCD component taken from JETSET or from
[14] have been distinguished. The Lund and Bowler models have been simplified
by assuming that the transverse mass of the b-quark, mb⊥, is a constant. The last
quoted uncertainty, in the second column corresponds to the variation induced by
selecting, in the fitting procedure, between five and nine eigenvalues of the measured
error matrix. Such an uncertainty is not given in column four as corresponding fits
of models are only indicative there.

and Bowler models give also the bestχ2. Values for the parametera in these models are even
compatible with zero corresponding to a behavior in 1/zα exp(−A/z), to accommodate the
non-zero value of the non-perturbative QCD component atx = 1.

But, as these models have no contribution abovex = 1, their folding with the perturbative
QCD component cannot compensate for the non-physical behavior of the latter. The folded
distribution oscillates at largex-values (see Figure 6.8-Left). In particular, the predicted value
in the last measuredx-bin, which is found to be in reasonable agreement with the measurements
after the fitting procedure when using the Lund and Bowler models, results from a large cancel-
lation between a negative and a positive contribution within that bin. This is more clearly seen
when considering the moments of the overall distribution, which are given by Equation (6.4).
For moments of orderN, the weightxN−1 introduces a variation within thex-bin size, which
was not accounted for in the previous fit inx, and effects are amplified mainly at largeN values
which correspond to the highx region. This is illustrated in Figure 6.8-Right.

This study indicates that all models have to be discarded when folded with the NLL pertur-
bative QCD fragmentation distribution, if one wishes to correctly describe the full measuredx
spectrum. The goodness of the fit inx, as measured by the correspondingχ2 value, does not
reflect all the information because it was not required that the folded distribution remains phys-
ical (positive) over the[0,1] interval. This folding procedure has thus to be considered only as
an exercise and the non-perturbative QCD distribution has to be extracted from data.
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Figure 6.7: Comparison between the directly extracted non-perturbative component (thick
full line) and the model fits on data taken from [31]. Left: the perturbative
QCD component is taken from JETSET. Right: the theoretical perturbative QCD
component[14] is used.

Figure 6.8: Comparison between the measured and fitted x-distributions using different models.
Left: the measured binned-distribution in x is compared with fitted results. Right:
moments of the corresponding distributions are compared.

6.4.2 Proposal for a New Parametrization

As explained in Section 6.2, the non-perturbative QCD component of theb-fragmentation
distribution has been extracted independently of any hadronic model assumption but it depends
on the modeling of the perturbative QCD component.

When a Monte-Carlo generator is used to obtain the perturbative component, it can be ver-
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ified that the non-perturbative component, extracted in this way, has a physical behavior for all
x-values. In Figure 6.3, belowx = 0.6, (5+3

−2)% of the integrated distribution is negative. A
larger deviation would have indicated some inconsistency between experimental measurements
and gluon radiation, as implemented in the generator.

Such a test cannot be made, a priori, when the perturbative QCD component is taken from
an analytic computation, as this distribution is already unphysical in some regions. The non-
perturbative extracted distribution, as given in Figure 6.5, is expected to compensate precisely
for these effects. It can be noted that, also in this case, the distribution is compatible with zero
belowx = 0.6. This shows that the perturbative QCD evaluation of hard gluon radiation is in
agreement with the measurements. The small spike, close tox = 0, related to the multiplicity
problem [85] in the perturbative evaluation, has no numerical effect in practice.

To provide an analytic expression, which agrees better with the extracted point-to-point
non-perturbative QCD distribution, the following function has been used:

Dnon−pert.(x) = N(p)exp−(x−x0)2

2σ2
−

for x < x0;

= N(p)exp−(x−x0)2

2σ2
+

for x0 < x < 1;

= N(p)exp−(1−x0)2

2σ2
+

x−N0 for x > 1; p = (x0,σ−,σ+) (6.8)

N(p) is a normalisation factor such that the integral of the expression, given in Equation (6.8),
between 0 and∞ is equal to unity. This distribution corresponds, for 0< x < 1, to Gaussian
distributions with different standard deviations whenx is situated on either sides ofx0. As
explained in Section 6.2, the behaviour of the non-perturbative distribution forx> 1 is related to
the presence of a zero inDpert.(N) located atN = N0. When the perturbative distribution is taken
from a Monte-Carlo, there is not such a zero and it has been considered thatDnon−pert.(x) = 0
whenx > 1. When the perturbative distribution is taken from theory, the value ofN0 has been
fixed to 41.7. The value forN0 depends a lot on the central values for the parameters and for
the scales, adopted in the perturbative QCD evaluation:

N0 = 41.7−5.8
+4.5(Λ

(5)
QCD)±2.5(mb)+34.6

−21.7(µ0 = µ0F) (6.9)

N0 is independent on the value assumed for the other scaleµ= µF .
The parameter values, obtained when the perturbative QCD component is taken either from

JETSET or from theory, are given in Table 6.2. It can be noted that the shape of the non-
perturbative QCD distribution is similar in the two cases, the maximum being displaced to an
higher value in the latter. The correlation matrices for the fitted parameters are given in Table
6.3.

Comparison, inx- and in moment-space, between the measured and fitted distributions,
using the perturbative QCD component of [14] are given in Figure 6.9. For moments higher
than 40, the fitted moments strongly deviate from the measurements as one is approaching the
Landau pole and the formalism is no longer valid.
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x0 σ− σ+ χ2/NDF
JETSET 0.925±0.003 0.094±0.005 0.031±0.004 6/4

NLL pert. QCD 0.961±0.006 0.091±0.006 0.038±0.006 2/4

Table 6.2: Values for the fitted parameters of the non-perturbative QCD component corre-
sponding to JETSET and NLL perturbative QCD using data from [31].

JETSET NLL pert. QCD


x0 σ− σ+

x0 1 0.23 −0.73
σ− 0.23 1 −0.41
σ+ −0.73 −0.41 1




x0 σ− σ+
x0 1 0.18 −0.83
σ− 0.18 1 −0.27
σ+ −0.83 −0.27 1


Table 6.3: The correlation matrices on the fitted parameters of the proposed parametrization.

Figure 6.9: Comparison between the fitted and measured b-quark fragmentation distributions.
Left: Differences between the fitted and the measured distributions in each x-bin
are shown and the total error bars, relative to the measurements, are displayed.
The fitted results correspond to the averaged values obtained from Equation(6.1)
over the bin. Right: Differences between the fitted and measured moments of the b-
fragmentation distribution. Fitted moments result from the product given in Equa-
tion (6.4) in which D̃non−pert.(N) are the moments of the fitted non-perturbative
QCD distribution corresponding to Equation(6.8) and D̃pert.(N) corresponds to
the analytic computation [14].
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6.5 Checks

In the present chapter, a few checks have been mentioned. They have been designed in order
to verify the robustness of the extracted non-perturbative component under different changes in
the extraction method. Some of these checks are given here with some details and illustrated
with figures.

6.5.1 The Use of a Fitted Parametrization

As explained in Section 6.2, the Mellin transformed distribution of the measured fragmen-
tation function has been obtained after having adjusted an analytic expression to the measured
distribution inx, and by applying the Mellin transformation on this fitted function. The reason
for this choice is that high order moments are sensitive to the shape of the distribution, and
are therefore influenced by the variation of the distribution within a bin. This issue is crucial
when applying the inverse Mellin transformation to extract the non-perturbative QCD compo-
nent. The integration contours sometimes need to reach values of large|N| in order to enable
evaluation of the inversion integral4. The effect of binning on moments of the measuredb
fragmentation function has been estimated using a “toy”, that allowed to isolate the problem.
The parametrization of Equation (6.6) that has been fitted to the fragmentation function from
ALEPH has been considered as the real physical fragmentation function for this check. Inte-
grals of the fitted function have been calculated within the 19 bins chosen by ALEPH. Then,
moments have been obtained for the smooth function and for its binned version. The error on
these moments have been estimated by propagating the errors of the fitted parameters. Figure
6.10 presents the difference between moments of the smooth and the binned distributions di-
vided by the error, as a function of the moment order. With the 19 bins chosen by ALEPH for
their fragmentation analysis, the effect of binning is of 1σ at a moment of order∼ 50. The
same check has been done for 10 bins in x, and for that case a 1σ difference is observed already
at a moment of order 10.

6.5.2 The Effect of Parametrization

The possible effect of a particular choice of parametrization has been also checked. The
extraction of the non-perturbative component has been performed replacing the expression of
Equation (6.6) by another function: a cubic spline, with five intervals between 0< x < 1, con-
tinuous up to the second derivative, normalized to 1, and forced to be 0 atx = 0 andx = 1.
This function also depends on five parameters. The computation of the Mellin transformation
of the spline is presented in Appendix A. The results obtained with the two parametrizations
have been found similar. These results for the fragmentation function from ALEPH, when the
perturbative QCD component has been taken from JETSET are presented in Figure 6.11.

6.5.3 Number of Degrees of Freedom

As mentioned in Section 6.2, the fragmentation distribution from ALEPH, that has been
used in the present chapter, has a singular error matrix. In order to fit a parametrization to

4The inversion integral converges typically for|N| ∼ 1000 for largex
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Figure 6.10: The difference between moments of a smooth fragmentation distribution and its
binned version divided by the error as a function of the moment order.
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Figure 6.11: The extracted non-perturbative component of the fragmentation function from
ALEPH, obtained using two different parametrizations: the power function of
Equation(6.6) and a cubic spline. The perturbative QCD component has been
taken from JETSET.
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the distribution, only the seven largest eigenvalues of the error matrix have been used. The fit
method is explained in Appendix B. The effect of the number of eigenvalues that have been
taken into account is evaluated as a systematic error of the model fits in Section 6.4.1.

Here, in order to illustrate the effect of the number of eigenvalues considered in the fit, the
fragmentation function measured by OPAL [32] is used. The error matrix of this distribution is
also singular and has 14 positive eigenvalues out of 20. The extraction of the non-perturbative
QCD component has been performed using the largest positive eigenvalues, with a different
number of eigenvalues at each time. The results for 6, 7 and 8 eigenvalues are presented in
Figure 6.12. In the same figure, is also presented the result obtained by using only the diagonal
elements of the error matrix, neglecting the correlations between bins. The parameters obtained
for all these cases were found to be compatible. The perturbative QCD component in these
computations has been taken from JETSET.
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Figure 6.12: The non-perturbative component of the fragmentation function from OPAL [32],
obtained with a different number of eigenvalues in the fit of a parametrization to
the measured function. The result for the case where correlations between bins
have been completely neglected is also presented.

6.5.4 Using a Different Tuning of the Monte Carlo

In this chapter, when taking the perturbative QCD component from JETSET 7.3, the gen-
erator’s parameters tuned on DELPHI data have been used. In order to check the effect of
this particular tuning of the generator on the extracted non-perturbative component, the pro-
cedure has been also applied for JETSET 7.3 with the ALEPH tuning [84]. The extracted
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non-perturbative distributions obtained in the two cases are presented in Figure 6.13; results are
hardly distinguishable.
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Figure 6.13: The non-perturbative component for jetset with aleph tuning.

6.6 Combination of Fragmentation Distributions from All Ex-
periments

The fragmentation distributions from ALEPH, OPAL and SLD [31, 32, 33], together with
the result from DELPHI presented in this thesis, have been combined to give a world averageb
fragmentation distribution. Each measurement is given with a different choice of binning and
has a different number of effective degrees of freedom. In order to combine the results, a global
fit has been done, using the smooth parametrization of equation (6.6). Theχ2, minimized in the
fit, is the sum ofχ2 for the different experiments, computed as explained in Section 6.2. The
number of degrees of freedom for ALEPH, OPAL and DELPHI has been chosen to yield aχ2

per degree of freedom close to unity, following the prescription of Appendix B. For SLD, the
diagonal error matrix has been used, as the full error matrix was not detailed in [33]. The fit has
been done for the variablexE.

The fitted parametersp1..p5, that represent the world average fragmentation distribution,
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have been found to be:
p1 = 11.29± .41
p2 = 2.374+0.091

−0.089
p3 = 2.101+0.082

−0.073
p4 = 1.24+0.19

−0.16
p5 = 0.630+0.027

−0.028

(6.10)

The full error matrix onp1..p5 is given in Table 6.4.


p1 p2 p3 p4 p5

p1 .16615 .034469 −.021158 −.044472 .0063418
p2 .034469 .0082353 −.0046156 −.010354 .0012780
p3 −.021158 −.0046156 .0067565 .015063 −.0020707
p4 −.044472 −.010354 .015063 .034758 −.0047225
p5 .0063418 .0012780 −.0020707 −.0047225 .00073397


Table 6.4: The error matrix on the fitted parameters of the combined fragmentation distribu-

tion.

The moments of the combined distribution are given in Table 6.5. They have been calculated
using the analytic expression of Equation (6.7) with the fitted values of the parametersp1..p5.
The error have been propagated from the error matrix on the parameters.

6.7 Comparison of Results for All Experiments

The non-perturbative QCD component has been extracted for all available measuredb frag-
mentation functions frome+e− colliders [31, 34, 32, 33], including the result from DELPHI
presented in this thesis, and the combined fragmentation function of Section 6.6. The extrac-
tion has been done for the two main perturbative QCD approaches considered in this chapter:
JETSET 7.3 parton shower Monte Carlo and the theoretical NLL QCD computation from [14].
Comparisons of the results for the two perturbative QCD approaches are shown in Figures 6.14,
6.15 and 6.16. The distribution measured in the present thesis work is quite similar with those
obtained from SLD and OPAL measurements and is somewhat softer, but compatible within
uncertainty, compared with the one from ALEPH.

6.8 Thoughts about Fitting Moments of Fragmentation Func-
tions

Moments of distributions are naturally strongly correlated. In the case of fragmentation
functions, where bins of the measured distributions of thex variable are highly correlated them-
selves, correlations between moments are even higher. The typical value of correlation between
two consecutive moments of a measured fragmentation function is 1− ε whenε is ∼ 0.1%.
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Figure 6.14: Comparison of the extracted non-perturbative QCD component of the b quark
fragmentation function for ALEPH [31], DELPHI (the result presented in this
thesis), DELPHI- Karlsruhe [34], OPAL [32], SLD [33] and the combined frag-
mentation distribution. Top: the perturbative QCD component has been taken
from JETSET 7.3. Bottom: the perturbative QCD component has been taken from
NLL QCD [14].
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Figure 6.15: The extracted non-perturbative QCD component of the b quark fragmentation
function from the present thesis work, compared separately to the results from
ALEPH [31], DELPHI- Karlsruhe [34], OPAL [32] SLD [33] and the combined
fragmentation distribution. The perturbative QCD component has been taken
from JETSET 7.3.
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Figure 6.16: The extracted non-perturbative QCD component of the b quark fragmentation
function from the present thesis work, compared separately to the results from
ALEPH [31], DELPHI- Karlsruhe [34], OPAL [32] SLD [33] and the combined
fragmentation distribution. The perturbative QCD component has been taken
from NLL QCD [14].



6.8 Thoughts about Fitting Moments of Fragmentation Functions 145

N moment error N moment error

21 .0355 .0008
2 .7140 .0016 22 .0322 .0007
3 .5391 .0020 23 .0292 .0007
4 .4213 .0020 24 .0267 .0007
5 .3372 .0019 25 .0244 .0006
6 .2749 .0018 26 .0223 .0006
7 .2273 .0017 27 .0205 .0006
8 .1903 .0016 28 .0189 .0005
9 .1609 .0015 29 .0174 .0005
10 .1373 .0014 30 .0161 .0005
11 .1181 .0013 31 .0149 .0005
12 .1023 .0012 32 .0138 .0005
13 .0892 .0012 33 .0129 .0004
14 .0783 .0011 34 .0120 .0004
15 .0690 .0010 35 .0112 .0004
16 .0611 .0010 36 .0104 .0004
17 .0544 .0009 37 .0097 .0004
18 .0486 .0009 38 .0091 .0004
19 .0436 .0008 39 .0086 .0004
20 .0393 .0008 40 .0080 .0003

Table 6.5: Moments of the combined fragmentation function for xE. N = 2 is corresponding
to the mean value of the distribution. The moments have been calculated using the
analytic expression of Equation(6.7). Errors have been propagated using the error
matrix of Table 6.4

For example, the correlation between the moments of order 2 and 3 of ALEPH’s fragmentation
function [31] is' 0.998.

Fitting such highly correlated information leads to numerical problems due to singular error
matrices. Correlations contain information about the measured distribution, and ignoring them
is dangerous and might lead to wrong conclusions. An example to illustrate this point, is the
fact that if one neglects the correlations between moments, the Peterson model may give a
reasonable fit withχ2/d.o. f ∼ 1 to the first moments of the non perturbative component of the
fragmentation function; on the other hand, if correlations are taken into account the fit indicates
that this model is excluded. This result is consistent with the observation presented in Section
6.4.1 of the present chapter.

Each moment contains a weighted information from the measured bins. Typically, a high
order moment reflects mainly the information from large x. This is illustrated in Figure 6.17
which presents the contribution from each measured bin of the fragmentation function to the
moment of orderN as a function ofN. It is clear from that figure that the information measured
in thex-space is distributed among moments (not necessarily low order ones).

Moments of fragmentation functions are important for phenomenological studies given that
the theoretical QCD computations are originally performed in theN space. The problem of
fitting a parametrization to these moments is complicated and should be handled with care.
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Figure 6.17: The fraction of the moment of N’th order contributed by the each bin of the mea-
sured fragmentation function . This illustration is based on the result from ALEPH
[31]. The red curves on the small N side of the figure correspond to the smallest
x bins, and the blue curves that mainly contribute to moments of large order N
correspond the largest x bins.

Fitting moments of a distribution or fitting the distribution itself are not necessarily equivalent
and may sometimes bring to different conclusions. The prescription for fitting highly correlated
data with a singular correlation matrix presented in Appendix B may be appropriate to fits of
moments.

6.9 Charm Fragmentation

The charm quark, that has a pole mass of∼ 1.5GeV, may also be considered as a heavy
quark. The NLL QCD computation of [14] may be applied to charm fragmentation, using the
appropriate mass. A measurement of thec quark fragmentation function has been obtained
recently by the CLEO collaboration [86], forD mesons ine+e− annihilation at 10.52GeV. The
extraction of the non-perturbative QCD component may therefore be tried for the charm case as
well.

The measured spectrum from [86] of the scaled momentum (xp), for D0 mesons, is shown
in Figure 6.18. The histogram is normalized to unity. In the same figure, is presented the
parametrization of Equation (6.6), fitted to the histogram. The extraction was done, applying
the procedure explained in the present Chapter, using the NLL QCD computation from [14],
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Figure 6.18: Normalized spectrum of the scaled momentum, xp of D0 mesons in electron-
positron annihilation as measured by CLEO [86]. The dashed curve is the
parametrization of Equation(6.6), fit to the histogram.

with a quark pole mass of 1.5GeV and a center of mass energy of 10.52GeV. The perturbative
and the non-perturbative components are shown together in Figure 6.19. The non-perturbative
component alone is shown in Figure 6.20.

The perturbative components in the two cases considered here: bottom quark at LEP and
charm quark at CLEO, are not directly comparable, because of their dependence on the center
of mass energy. The non-perturbative QCD components, on the other hand, are supposed to
be independent of the initial state, and may be compared. The fact that the non-perturbative
component for the charm is softer than the one for bottom is the expected behavior, considering
the masses of theb andc quarks. In the case of theb quark, the non-perturbative component is
found to be 0 forx < 0.6, indicating that gluon radiation is well accounted for, in that region,
by the perturbative QCD component. This is not valid for the charm quark, for which the non-
perturbative QCD component does not vanish even at smallx values. The non-perturbative
QCD component of thec quark fragmentation has to be extended beyondxp = 1, when used
with the NLL QCD computation, similarly to the case of theb.

In [86], a fit of the non-perturbative component of the fragmentation function has been
performed in the framework of the JETSET event generator. The fit was done to reproduce
the measuredD0 meson spectrum by the Monte Carlo, and adopted the Lund model. The
parameters of the Lund Symmetric Fragmentation function were found to bea= 0.178±0.007
andb = 0.393± 0.006. The function is shown in Figure 6.20, taking the transverse mass as
the D0 meson mass. This fitted function, as the non-perturbtive component corresponding to
the NLL QCD computation, contributes at lowx values and confirms the conclusion about the
insufficiency of the perturbative QCD component in that region. The full extraction procedure
proposed in the present chapter has not been applied, taking the perturbative component form
JETSET. Performing this extraction, and comparing the results with the fitted non-perturbative
component from [86], requires the use of the same parameters of the event generator as used
for the fit.
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Figure 6.19: x-dependence of the perturbative (red dotted line) and non-perturbative (full blue
line) QCD components of the measured charm quark fragmentation distribution.
These curves are obtained by interpolating corresponding values determined at
a large number of points in the x-variable. The perturbative QCD component is
given by the analytic computation of [14].

-0.5

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4
x

Figure 6.20: x-dependence of the non-perturbative QCD components of the measured charm
quark fragmentation distribution. The solid blue curve has been obtained by the
extraction procedure, using the perturbative QCD component given by the ana-
lytic computation of [14]. The red dotted curve described the Lund Fragmenta-
tion function, with the parameters fitted in [86] to reproduce the D0 spectrum:
a = 0.178and b= 0.393. The transverse mass in the Lund model was assumed
here to be the mass of the D0 meson.
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The non-perturbative component of the charm fragmentation function, as in the case of the
bottom, is an ingredient for the theoretical prediction of the charm cross section at hadronic
colliders. This cross section is now experimentally measurable at CDF, thanks to the silicon
vertex trigger. CDF has published its first results, using 6pb−1 of data [87].

6.10 Conclusions

The measuredb-quark fragmentation distribution has been analyzed in terms of its pertur-
bative and non-perturbative QCD components.

The x-dependence of the fragmentation distribution has been extracted in a way which is
independent of any model for non-perturbative hadronic physics. It depends closely on the
way the perturbative QCD component has been evaluated. The obtained distribution differs
markedly from those expected from various models.

Below x = 0.6, this distribution is compatible with zero indicating that most of hard gluon
radiation is well accounted by the perturbative QCD component evaluated using the LUND
parton shower Monte-Carlo or computed analytically.

As the non-perturbative QCD distribution is evaluated for any given value of thex-variable
it can be verified if it remains physical over the interval[0,1] when used with a Monte-Carlo
generator which provides the perturbative component. The evidence for unphysical regions
would indicate that the simulation or the measurements are incorrect. There is not such an
evidence in the present analysis.

Above x = 0.6, the obtained distribution is similar in shape with those expected from the
Lund symmetric [38] or Bowler [24] models, when the perturbative QCD component is taken
from JETSET. When the perturbative QCD component is taken from the analytic result of [14]
it has been found that, because of the analytic behaviour of the perturbative QCD component,
the non-perturbative QCD distribution must be extended abovex = 1. Thex-behaviour of the
non-perturbative component, forx > 1, is determined by the possible existence of a zero in
D̃pert.(N), for N > 0. When the perturbative component has non-physical aspects, it is thus not
justified to fold it with any given physical model. An approach has been proposed to solve this
problem and a parametrization of the obtained distribution has been provided.

The non-perturbative component, extracted in this way, is expected to be valid in a different
environment thane+e− annihilation, as long as the perturbative QCD part is evaluated within
the same framework (analytic QCD computation or a given Monte Carlo generator), and using

the same values for the parameters entering into this evaluation asmpole
b , Λ(5)

QCD or generator
tuned quantities. In the next chapter a fragmentation analysis in the CDF experiment is pre-
sented, where it is proposed to check the validity of the fragmentation function from LEP in the
framework of the PYTHIA Monte Carlo generator.



150 Extraction of the x-Dependence of the Non-perturbative QCD Component



Chapter 7

B Fragmentation and Related Studies at
CDF

7.1 Introduction

As explained in Section 2.2, in ane+e− collider at the Z0 poleb quarks are produced from
e+e− annihilation to a Z0 which then decays to a b̄b pair. The hard process is well defined and
the energies of its initial and final states are known. Under these conditions, the perturbative
QCD component of theb fragmentation function is well understood. On the other hand, in a
hadronic collider there are several diagrams that contribute significantly tob quark production
and the center of mass energy of the hard process is not determined. Perturbative QCD processes
are thus more complex in the second experimental environment.

The non-perturbative QCD component of the fragmentation process, as explained in Sec-
tion 2.3.2 and in Chapter 6, may be obtained from studies ine+e− collider experiments
[31, 34, 32, 33, 88]. This part of the fragmentation should not depend on the initial state
and therefore the distribution of the non-perturbative QCD component obtained by other ex-
periments may be, at least as a first approximation, implemented in CDF studies. The non-
perturbative QCD component depends strongly on the perturbative QCD approach that has
been used for its extraction or fit. In the present analysis the PYTHIA event generator [19]
is employed, and therefore the non-perturbative component obtained frome+e− experiments
that used PYTHIA may be implemented. In [32, 33, 88], the Lund Symmetric Fragmentation
Function [38] and the Bowler model [24] are favored. Part of the present study uses the Lund
model , with the parameters obtained in Chapter 6 . The non-perturbative component is im-
plemented in PYTHIA as the “fragmentation function”, and is set by certain parameters and
switches of the generator.

The observables related to theB meson and tracks in its vicinity are influenced not only by
the perturbative and non-perturbative components of the fragmentation but also by the mech-
anism through which theb quarks were produced in the hard process. The model predictions
depend on the interplay between these three factors. The separation of fragmentation effects
from production mechanisms is a non-trivial issue. However, this separation may be done by
studying the influence of the production mechanisms on observables that are not sensitive to
the fragmentation effects, such as the distributions of tracks whose directions are well separated
from theB meson’s direction.

151
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Another issue closely related to the fragmentation is the production rate ofB∗∗ mesons in
theb jet. TheseB excited states decay by strong interaction to light andB mesons at the primary
vertex. A measurement of theB∗∗ production rate at CDF is under way. For the present analysis,
values of a recent measurement from DELPHI [49] have been used.

In the present analysis the exclusive channel of fully reconstructed B±→ J/ψK± is used.
With the current data collected by CDF, this channel provides a sample of a few thousandB
mesons. The primary advantage of this channel over inclusive ones such asB→ J/ψX is that
the 4-momentum of theB meson is well measured.

The aims of the present analysis are to

• study the influence of the fragmentation function and of the differentb production mech-
anisms on the properties of theB meson and of the tracks in its vicinity. Tracks may be
classified according to their origin: Hadronization (HA), which correspond to tracks in
theb jet and Pile-Up events (PU).

• demonstrate the agreement between data and PYTHIA in a number of variables related
to fragmentation, or to tune PYTHIA until there is agreement.

• measure theb quark production cross section using the exclusive decay channel B± →
J/ψK±.

• study the fragmentation function ofB mesons inpp̄ collisions at TeVatron energies in the
environment of PYTHIA.

The analysis is still in progress, and therefore not all of the above goals have been achieved.
In this chapter, the procedure and current state is presented.

The agreement between data and the PYTHIA Monte Carlo generator is a crucial ingredient
in the measurement of the fraction ofB mesons originating fromB∗∗ → Bπ decays. In that
analysis, PYTHIA is needed to help understand the signal and background distributions of the
mass spectrum of B±π∓ (“right sign” or RS) andB±π± (“wrong sign” or WS) hadronization.

However, the main importance of achieving agreement between the data and PYTHIA at
CDF is in confirming that PYTHIA can reproduce the kinematic behavior and correlations
betweenB mesons and tracks produced around them. If such agreement can be unequivocally
established, CDF could use PYTHIA to estimate the dilution of the Same Side Kaon Tagging
(SSKT) method inBs decays. Obtaining the dilution of SSKT is a requisite ingredient of setting
the limit on theB0

sB̄0
s oscillation frequency,∆ms.

When completed, this analysis will provide both tuning of the PYTHIA generator and an
interesting measurement by itself. The final outcome will be the first measurement of the b
fragmentation function in a hadronic collider.

In section 7.2 the data sample used for the analysis is described. Fiducial, trigger and analy-
sis cuts are detailed and the background subtraction from data is explained. General discussion
of the Monte Carlo samples used for this analysis is given in Section 7.3. The fragmentation
analysis, still in progress, is outlined in Section 7.4. The following sections, 7.5 and 7.6, de-
scribe studies related to the fragmentation analysis. They have been done by comparing differ-
ent types of Monte Carlo samples between them, and to data. A method to fit the fragmentation
function parameters in PYTHIA is proposed in Section 7.7. An ongoing analysis to measure
theb quark cross section is presented in section 7.8
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7.2 Data Sample

The present analysis is based on events collected by the CDF Run-II detector up to August
2004. The exclusive B±→ J/ψK± decay channel is used to assemble a sample of∼ 6000B
meson candidates. These decays are reconstructed from the compressed di-muon trigger data
stream and comprises 333±20 pb−1 of the total offline integrated luminosity (with 1333 good
runs)1.

7.2.1 Reconstruction ofB±→ J/ψK±

The di-muon trigger requires two tracks withpT > 1.5 GeV/c which match to the stubs in
the muon chambers. A maximum opening angle in the transverse plane of∆φ < 135o between
the two tracks is also enforced at the trigger level. The muons are constrained to pass through
a common point. Pairs of oppositely charged muons are then combined to form aJ/ψ. At this
level the invariant mass ofµ+µ− pair must be between 2.9 and 3.3 GeV/c2. Additionally, each
of the reconstructed tracks are required to have at least 10 axial and 10 stereo hits in the drift
chamber, with|η| < 2.0; whereη is the pseudo-rapidity, and at least two hits in the silicon
detector.

The kaon candidates are tracks withpT > 1.0 GeV/c that are consistent with theJ/ψ decay
point. Theµ+µ− invariant mass is then constrained to theJ/ψ PDG value before the determina-
tion of theµ+µ−K decay point. The transverse momentum of the combined system must satisfy
pT(µ+µ−K) > 4.0 GeV/c, and the invariant mass of theµ+µ−K triplet must lie between 4.9 and
5.7 GeV/c2.

For the B± → J/ψK± decay channel, analysis cuts on the candidates have already been
optimized during the Same Side Tagging studies [89]. A full optimization based onS/

√
S+B

was performed, and the resulting analysis cuts are listed in Table 7.1. Analysis cuts on the other
tracks in the event were chosen to ensure that the track was prompt and associated with theB.

For theB meson, the quantityχ2
xy is theχ2 value for the fit of theµ+µ−K decay point in the

transverse (xy) plane of the CDF detector.Lxy is defined as the distance in the transverse plane
from the point where thepp̄ interacted to theµ+µ−K decay point. Requiring a largeLxy/σ(Lxy)
ensures that the reconstructedB meson has traveled out from the interaction point by a distance
consistent with theB lifetime.

The impact parameterd0 measures the distance of closest approach of a track to the inter-
action point if that track were projected back beyond its production point. Requiring a small
d0/σ(d0) ensures that the track is prompt, as it is consistent with the interaction point.R is
defined as a distance in theη-φ plane. Requiring tracks within a cone of opening angle∆R
around theB meson includes mainly tracks associated with the hadronization of theB meson.

Theµ+µ−K invariant mass is shown in Figure 7.1. The flat sidebands to the left and to the
right of this peak can be used as samples of pure combinatorial background, which may then be
subtracted from the various distributions produced with the data in the signal region.

Figure 7.2 shows the breakdown of theB+ → J/ψK+ signal, from a full simulation of the
inclusiveb-hadron decays intoJ/ψX. The invariant mass distribution in Figure 7.2 describes
the physics backgrounds forB+ → J/ψK+ and illustrates why the left sideband can only reach

1In the future, otherB decay channels will be added in order to increase the sample size
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Candidate Cut Value Units
µ± pT > 1.5 GeV/c
J/ψ |m(J/ψ)−3096.88|< 80 MeV/c2

K pT > 1.0 GeV/c
B pT > 4.0 GeV/c

χ2
xy < 15.0

Lxy/σ(Lxy) > 4.5
track d0/σ(d0) < 3.5

∆R(B, track) < 0.7
|∆z(B, track)| < 5.0 cm

pT > 0.4 GeV/c

Table 7.1: Analysis cuts for the decay B±→ J/ψK± (J/ψ → µ+µ−) along with requirements
made on tracks in the vicinity of the B.

down tomJ/ψK+ = 5.17 GeV/c2. The region below 5.17 GeV/c2 also includes physics decays
not present under the signal peak. In addition, the Cabibbo-suppressed decayB+ → J/ψπ+

shows up as a shoulder on the right side of the peak, contributing both to the peak and to the
right sideband. It corresponds to∼ 4% of the B+ → J/ψK+ sample, as predicted from the
ratio of branching ratios for these two decay modes [71]2. This contribution is not taken into
account in the sideband subtraction. Therefore, in the fit shown in Figure 7.1, the B+ → J/ψK+

signal is modeled with two Gaussians of different widths with the means constrained to be the
same. The B+ → J/ψπ+ component is offset from B+ → J/ψK+, and its size is fixed to 4% of
the area of the two signal Gaussians. The combinatorial background is modeled with a linear
function. A sum of these probability density functions is fit to data in the region between 5.17
and 5.66 GeV. The result of this fit is given in Table 7.2.

Fit parameter Value Error
Mean(signal) 5.2792 0.0003
σ(core) 0.0101 0.0011
Norm(core + tail) 60.1 1.8
σ(tail) 0.020 0.004
Mean(B+ → J/ψπ+) 5.33 0 (fixed)
Norm(B+ → J/ψπ+) 4% of B+ → J/ψK+ 0 (fixed)
σ(B+ → J/ψπ+) 0.072 0.058
Comb. bkg. constant 2735 205
Comb. bkg. slope −336 37

Table 7.2: The result of the fit shown in Figure 7.1.

2The quoted branching ratiosBR(B+ → J/ψπ+) and BR(B+ → J/ψK+) in [71] are (4.0± 0.5) · 10−5 and
(1.00±0.04) ·10−3 respectively



7.2 Data Sample 155

2GeV/c
4.8 4.9 5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8

2
ca

n
d

id
at

es
 p

er
 1

0 
M

eV
/c

0

500

1000

1500

2000

2500

 Mass+ Kψ J/→ +B

Figure 7.1: The invariant mass of B±→ J/ψK±, with the fit overlaid. The signal consists of
the two signal Gaussians for B± → J/ψK±, and another one for the Cabibbo-
suppressed decay mode B±→ J/ψπ±, which is fixed to4%of J/ψK±. The combi-
natorial background is modeled as a linear function.

7.2.2 Subtracting the Backgrounds in the Data

Two kinds of distributions have to be considered when subtracting background contribu-
tions: those relative to theB meson, and those relative to the accompanying tracks. In dis-
tributions corresponding toB meson production, characteristic contributions from background
events, such as thepT(B) distribution, have been obtained using sidebands of theB mass distri-
bution. Signal eventsPT(B) distributions are produced by subtracting, after proper normaliza-
tion, thepT(B) distribution corresponding to sideband events from the one obtained by selecting
events in the signal region. When performing the sideband subtraction, the signal region is de-
fined asm(J/ψK+) ∈ [5.2391,5.31935], which corresponds to Mean(signal)±2σ(tail). The
low sideband is defined asm(J/ψK+) ∈ [5.17,5.21904], where the high boundary is taken as
Mean(signal)−3σ(tail). The high sideband is defined asm(J/ψK+) ∈ [5.33941,5.66], where
the lower edge is taken as Mean(B+ → J/ψπ+)+σ(B+ → J/ψπ+).

However, the distributions for tracks suffer from an additional background, which comes
from tracks originating in otherpp̄ interactions. At the instantaneous luminosities which are
typical of the analyzed sample, about one event in four has more than one primary interaction.
Such additional primary interactions are defined as‘Pile-Up’ events (PU). Fortunately, at the
TeVatron the luminous detector region is rather elongated; the beam spot has aσz ∼ 27 cm.
Since theZ0 resolution of the CDF silicon tracker is a few millimeters at worst (without hits
in the layers of the silicon detector with 90o strips), it is relatively easy to remove the majority
of the PU tracks by applying a cut on the absolute value of the distance between theZ coor-
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Figure 7.2: Different contributions to theB+ → J/ψK+ signal, from an inclusive Hb → J/ψX
Monte Carlo simulation (where Hb is a b-flavored hadron).

dinate of theB+ vertex and theZ0 of the surrounding tracks,∆z≡ Z(B+)−Z0(track). In the
present analysis this cut is set at|∆z|< 5 cm. An example of the distribution of∆z is shown in
Figure 7.3.

However, despite the|∆z| < 5 cm cut, some amount of PU tracks ‘leak’ into the signal
region. That contribution must be subtracted, and the “∆z” sidebands are used as a representative
sample of pure background. The sideband subtraction proceeds as usual, with the sidebands
defined as(−60,−20) and(20,60) centimeters from the signal peak at∆z= 0.

Figure 7.4 shows the effect of removing the contribution of PU events by subtracting the
∆z sidebands. This effect is not large, since the ratio of the primary interaction signal and the
Pile-Up background in the signal region is∼ 31 : 1.

The process of removing the∆z sidebands becomes somewhat convoluted as it involves the
m(J/ψK+) sidebands as well. The regions of pure background (referred to as ‘sidebands’) and
the regions with enhanced signal (‘signal regions’) must be clearly defined. The tracks in this
analysis come from four sources:
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Figure 7.3: The distribution of∆z≡ Z(B+)−Z0(track) where Z(B+) is the Z coordinate of
the B+ meson’s decay point, and Z0(track) is the Z coordinate of the point of the
closest approach. The∆z consists of two narrow Gaussians to describe the signal
and a broad Gaussian to describe the contribution of tracks from Pile-Up events.

• Type I: Pure signal. Emitted tracks accompanying the B+ meson in the event.

• Type II: B+ signal but∆zsidebands. These are tracks from Pile-Up interactions from the
events when a real B+ meson was produced.

• Type III: ∆z signal but B+ sidebands. These are tracks produced along with fake B+

mesons (i.e., combinatorial background). These are likely hadronization or decay tracks
from trueb-hadron, but not B+ → J/ψK+.

• Type IV: Sidebands in both B+ mass and∆z. These are PU events in combinatorial
background events.

For simplicity, let us confine the discussion to the yields in the four relevant regions of the
two-dimensional (m(J/ψK+),∆z) space: (SRm,SRz), (SRm,SBz), (SBm,SRz), (SBm,SBz), where
SR stands for ‘Signal Region’ and SB for ‘Sideband’, as illustrated by Figure 7.5. An identical
argument can be made for each bin of any distribution, and thus the prescription below is valid
for an arbitrary distribution, including those shown below.

• (SBm,SBz) contains only Type IV tracks;N(SBm,SBz) = NIV

• (SBm,SRz) contains Type III and Type IV tracks;N(SBm,SRz) = NIII +NIV

• (SRm,SBz) contains Type II and Type IV tracks;N(SRm,SBz) = NII +NIV
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Fit parameter Value± Error
Mean narrow (−12.5±8.9)×10−4

Norm 1 (978.2±2.4)×10+3

σ 1 (994.2±2.6)×10−3

Norm 2 (111.3±2.7)×10+2

σ 2 (479.5±7.3)×10−2

Mean wide 0.0 (fixed)
Norm wide (796.4±3.0)×10+1

σ wide (3062.4±6.5)×10−2

Table 7.3: The result of the fit shown in Figure 7.3.

• (SRm,SRz) contains all four types of tracks;N(SRm,SRz) = NI +NII +NIII +NIV

There are two equivalent ways to proceed:

1. Use all four regions simultaneously. Naively, one would simply subtract (SBm,SRz) and
(SRm,SBz) from (SRm,SRz) to obtain the pure signal, but that would in fact produce(NI +
NII + NIII + NIV )− (NIII + NIV )− (NII + NIV ) = NI −NIV . Therefore, it is necessary to
addNIV = N(SBm,SBz) to get the true signal:

NI = N(SRm,SRz)−N(SBm,SRz)−N(SRm,SBz) +N(SBm,SBz) (7.1)

2. Subtract one type of background first. This is equivalent to rearranging Equation 7.1 into
two groups:

NI = (N(SRm,SRz)−N(SRm,SBz))− (N(SBm,SRz)−N(SBm,SBz))

That is, first subtract the∆z background from the mass signal region and the mass side-
bands, and then subtract the∆z-subtracted mass sidebands from the∆z-subtracted signal
region (or vice versa).

The plots in this chapter are produced using the first method, while the second is used as a
cross-check (as the results should clearly be identical).

Charged tracks from PU events correspond to about 4% of the candidate tracks accompany-
ing theb-hadron, as shown in Figure 7.4.

7.3 Monte Carlo Samples

7.3.1 General Description

The PYTHIA Monte Carlo samples are generated in the CDF analysis framework, and in-
volve the successive use of the following steps (performed by different executables):
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Figure 7.4: The effect of the removal of the pile-up events by subtracting the∆z sidebands on
prel

L , the component of the track momentum parallel to the B meson.

• Generation phase (cdfGen):This phase starts with PYTHIA, which creates an event.
Two types of PYTHIA generation are considered, one in which only abb̄ pair is created
from lowest order QCD diagrams, and another in which all processes are used andbb̄ are
created as only one of several possibilities. Both of these options are described below, in
Section 7.3.2.

Also in the generation phase, theEvtGen program runs to decay theB mesons. In this
analysis the decaysB+ → J/ψK+ andJ/ψ → µ+µ− are forced, when aB+ meson has
been generated (B− decays are not forced).

• Detector simulation (cdfSim): This phase runs a standard simulation of the CDF detec-
tor (from the release 5.3.3). The CDF detector simulation operates at the level of hits
for all detector components except the calorimetry, where the shower evolution is compu-
tationally prohibitive. However, the tracking, especially the hits in the Silicon Detector,
are simulated at a very detailed level, and involve the strip-to-strip variations in perfor-
mance as well as the generation of random noise throughout the detector. The output of
the cdfSim looks like the output from the CDF data acquisition system.

• Trigger simulation (TrigSim++): The detector-like information is then fed into a de-
tailed simulation of the trigger system. Since theB+ → J/ψK+ channel is reconstructed
in theJ/ψ data stream, only the di-muon triggers are included in the TrigSim++ for these
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Figure 7.5: Regions of signal and sidebands for m(J/ψK+) and Deltaz

samples. The TrigSim++ runs as a filter, and transmits only those Monte Carlo events
which would pass the real trigger system.

• Event reconstruction (ProductionExe): Next the simulated events which pass the di-
muon triggers are processed with the standard CDF production executable. At this stage,
the hits in the muon chambers (CMU, CMP, and CMX) are reconstructed and linked into
muon stubs. The hits in the Central Outer Tracker (COT) are reconstructed and linked
into COT tracks. The COT tracks are then extrapolated and matched with the muon stubs.
The other tracks are also extrapolated into the Silicon Detector where the Silicon hits are
attached to these tracks.

• B+ → J/ψK+ analysis (UFind): Finally, the decay is reconstructed using exactly the
same executable used to reconstruct theB+ → J/ψK+ decay mode in data. The combi-
natorial reconstruction algorithm is described in Section 7.2.

7.3.2 PYTHIA Parameters

Two types of PYTHIA event samples are used in this analysis, differing in the choice of the
“msel” parameter of the generator. This parameter determines which hard scattering processes
are generated3. With msel=5, only those with outgoingb andb quarks are created. These kinds
of processes are referred to as ‘Flavor Creation (FC)’. The choice msel=1 generates instead a
generic hard scattering that results in light jets; however, this process occasionally results in the
creation ofbb̄ pair, via any of the possible mechanisms (‘Flavor Creation’, ‘Flavor Excitation
(FE)’, or ‘Gluon Splitting (GS)’). These production mechanisms are explained in detail in
Section 2.2.2 . In both cases an event with aB meson is required at the end of PYTHIA, and
therefore most of the events generated with msel=1 are discarded. For this reason, msel=1 takes
significantly more time to be generated.

3The hard scattering process in PYTHIA is defined as the highest energy primary interaction of two partons in
the colliding beam particles.



7.4 Outline of the Analysis Method 161

In the present analysis the msel=1 sample has been used as a model of the complete contri-
bution from all the production mechanisms of theb quark. In future, the contribution from FC
alone will be replaced by a sample generated with msel=5. The reason is that when msel is set
to 1, PYTHIA uses a massless quark approximation to calculate the matrix elements. Thus,b
quarks arealso treated as massless in the hard scattering process. In the final state, theb quark
3-momentum is rescaled along its direction to make the kinematics consistent with a massive
b quark; the energy is left unchanged. On the other hand, when msel is set to 5 PYTHIA uses
massive matrix elements to generate the twob quarks outgoing from the hard scattering process.

In an msel=1 sample a cut-off on thepT of the hard scattering must be imposed. This
is achieved by setting the variable CKIN(3). The usual setting in CDF is CKIN(3)=5 GeV.
Setting it to 0 in an msel=5 sample is safe, because theb quark is taken as massive and the mass
regulates the cross section. The importance of setting CKIN(3) to 0 for msel=5 PYTHIA can
be seen comparing Figures 7.6 and 7.14. In both figures, comparisons are done between thepT

spectrum of theB meson between data and msel=5 Monte Carlo. In the former, the Monte Carlo
sample has been generated with CKIN(3)=0, and in the later with CKIN(3)=5. It is clear that
the rise of thepT spectrum of theB meson depends on the cut-off defined by CKIN(3). This cut
off has no reason to be set, and therefore in all the data and msel=5 Monte Carlo comparisons
in this document, apart from Figure 7.6, CKIN(3) has been set to 0.

The PYTHIA input parameters for the samples generated for this analysis are briefly detailed
below:

• a set of parameters that have been tuned in CDF for the underlying event. In the collabo-
ration, this set is referred to as “Tune A”4 [90];

• aB∗∗ rate of 20%, as quoted by recent measurement from DELPHI [49]);

• the default values forB∗∗ masses and widths have been replaced by recent measurements
[71];

• samples with three different fragmentation functions (Bowler, soft Peterson and hard Pe-
terson) for msel=5 PYTHIA setting. These three functions are shown in Figure 7.7 and
described in more detail in Section 7.4;

• the default Bowler fragmentation function has been used in the msel=1 sample;

• CKIN(3)=0 in the msel=5 samples.

7.4 Outline of the Analysis Method

The first step of the analysis required defining observables related to theB meson and the
tracks in its vicinity which were sensitive to the fragmentation function. The behavior of these
variables for three primary fragmentation functions has been studied in three different Monte

4The underlying event is defined as all the activity in the event that arises from the hadronization of the debris
of the pp̄ interaction,i.e. of the constituent partons of the incident proton and antiproton which do not participate
in the hard scattering. The Underlying Event is almost completely uncorrelated with the outgoingb andb̄ quarks.
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GeV

Figure 7.6: B+ → J/ψK+ data (black) and PYTHIA with msel=5 (red) and CKIN(3)=5. With
this value of CKIN(3), events are missed when pT(B) is ∼ 5 GeV/c or below. All
other msel=5 plots in this text have been produced with CKIN(3) set to0. The
histograms are normalized to the same number of B mesons.

Carlo samples with the msel=5 PYTHIA setting. These studies will be detailed in 7.6.1. Tracks,
not attached to the studiedb-hadron, corresponding to∆R > 1 have been used as a control
sample to verify the quality of the agreement between simulated and real events.

The fragmentation functions referred to in this document are the following:

• the Bowler model [24] with the parametersa = 0.3, b = 0.58, andrQ = 1. This model
with the specified choice of parameters is the default fragmentation function in PYTHIA.

• the Lund Symmetric Fragmentation Function [38] with the parametersa= 1.68,b= 0.55.
This model with these parameters was shown in Chapter 6 to accurately fit the LEP data.
The Lund model with a compatible choice of parameters has been favored by othere+e−

collider fragmentation analyses [32, 33] .

• the Peterson model [35] with two choices of the parameter:ε = 0.006 andε = 0.002,
referred to in the following as “soft Peterson” and “hard Peterson”, respectively. This
modeling of the fragmentation function is often used by experimentalists. It has been
shown in Chapter 6 and also by [32, 33] that it does not describe welle+e− data. A
motivation for using this model in the present study will be given in Section 7.7.



7.4 Outline of the Analysis Method 163

A comparison between the Peterson, Lund, and Bowler hadronization models with the pa-
rameters detailed above is shown in Figure 7.75. Unless explicitly specified, when the Bowler,
Lund, and Peterson models are mentioned in the following, the values of the parameters spec-
ified above are implied. The Peterson models withε = 0.006 andε = 0.002 are referred to as
soft and hard Peterson, respectively.

The fit of the fragmentation function in PYTHIA has not yet been implemented. However,
the method to proceed has been suggested and the necessary tools have been provided. This
method will be detailed in Section 7.7.

Comparisons between the distributions of track variables in the data and in two types of
Monte Carlo samples, the first with msel=5 and the second with msel=1, have also been done.
This step clearly demonstrated that Monte Carlo msel=5 samples do not give an acceptable
description of the data, as shown in Section 7.6.1. Therefore, the contribution of the different
b quark production mechanisms to the different observables must be studied using an msel=1
sample.

Figure 7.7: Three hadronization models: Peterson [35] withε = 0.006 (soft) andε = 0.002
(hard), Bowler [24] with (a= 0.3, b= 0.58, rQ = 1) (the default in PYTHIA), and
Lund [38] with (a= 1.68 ; b = 0.55).

5The Lund and Bowler models have been plotted taking the transverse mass asmT = 5.3 GeV.
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7.5 Preliminary Monte Carlo Studies

The first step of the present analysis was to study in the Monte Carlo the influence of the
fragmentation function on different variables related to theB meson and to tracks in its vicinity.
One aim of this comparison was to examine qualitatively the effects of modifying the fragmen-
tation function. Additionally, the study was necessary in order to select the variables which are
most sensitive to the fragmentation. These variables will be used later to tune the fragmentation
function in the Monte Carlo.

The present studies were done on four Monte Carlo samples generated by PYTHIA, fully
simulated and analyzed as data. The first sample was generated with the Bowler fragmentation
function, the second one with soft (s) Peterson, the third one with hard (h) Peterson and the
fourth with Lund.

In PYTHIA, when setting the hadronization model to Lund or to Bowler, the same parame-
ters are used for the fragmentation of light and heavy quarks. The direct use of the rather hard
Lund fragmentation function, that has been extracted frome+e− measurements for theb quark,
might therefore lead to wrong conclusions. It is possible to use this function directly when
considering distributions of theB meson itself, but not ones of tracks in the event. However,
in near future, it is planned to use the Lund fragmentation function by reweighting events, as
explained in Section 7.7. This procedure ensures that the fragmentation function is applied only
to b quarks, and that light quark fragmentation remains unaffected. Events generated with the
Bowler model correspond to the default option for the PYTHIA simulation.

Unlike the Lund and Bowler fragmentation, the Peterson model in PYTHIA applies only to
heavy quarks. This is the reason why it is used for the comparisons in this section.

All the samples were generated with msel set to 5. As explained in Section 7.6.1, a Monte
Carlo sample generated with msel=5 fails to describe the data. Initial studies were performed on
this type of sample because it is faster to generate and the effect of the fragmentation function is
still expected to be similar to that seen in a full msel=1 sample. 16 million events were generated
for each of the fragmentation functions,and thus all four samples have the same luminosity.
They are directly comparable to each other without any need for a scale factor.

In order to quantify the sensitivity of a variable to the fragmentation function, aχ2 test has
been done. Histograms of a given variable were compared for the three fragmentation functions
and the definedχ2 is

χ2 = ∑
bins

(N1
i −N2

i )2

(σ1
i )2 +(σ2

i )2
(7.2)

whereN1
i andN2

i are the bin contents for the first and the second cases andσ2
i , σ2

i are the
corresponding errors. Only bins that contained entries for at least one of the samples have been
counted. Theχ2 corresponding to the comparison between the hard Peterson and the default
Bowler fragmentation functions are given in Table 7.4. Comparison plots for a choice of the
examined variables are shown in Figures 7.8 through 7.12. Both in the table and in the plots,
tracks have been considered in a cone of opening∆R= 0.7 in theη-φ plane around theB meson.

pT , for B mesons and tracks, is the transverse momentum, defined as|~p× ẑ| is a unit vector
pointing to thezdirection (the beam axis).The sums over transverse momenta (pT) and energies
refer to all tracks present in the cone defined around theB meson.prel

T andprel
L are the transverse

and longitudinal components, respectively, of the track’s momentum relative to theB meson.
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Variable Number of bins (N) χ2

N (full sample)
pT of theB meson 46 1.9

pT of tracks 54 3.3
∑ pT of tracks 55 2.0

EB−∑Etracks
EB+∑Etracks

38 3.7

prel
T = |~ptrack×~pB|

|~pB| 28 5.4

prel
L = ~ptrack·~pB

|~pB| 59 2.6

pleadingmomentum
T 30 2.2
pleadingdirection

T 29 2.1
Number of tracks in the cone 11 15.3

Table 7.4: A χ2 calculated to compare two Monte Carlo samples, with the Bowler and the hard
Peterson fragmentation functions, for a choice of variables. A larger number indi-
cates better sensitivity for the corresponding variable. pT , for B mesons and tracks,
is the transverse momentum, defined as|~p× ẑ|, whereẑ is a unit vector pointing to
the z direction (the beam axis).

pleadingmomentum
T is the largest transverse momentum of a track in the cone andpleadingdirection

T
refers to the track whose direction is the closest to theB meson’s direction.

An interesting result of this comparison is that other variables have better sensitivity to
discriminate between hadronization models than thepT spectrum of theB meson.

The ability to discriminate between different models is also a function of the number of
events. When the sample is smaller, the discrimination becomes more difficult. The Monte
Carlo samples used for the present comparisons are roughly ten times larger than the actual
data sample.

The totalB hadron production cross section is expected to be independent of the choice of
a given fragmentation distribution. Nevertheless, as measured events have to satisfy selection
criteria, some variations on the number of accepted events can be observed. The global variation
of the measuredB production cross section, expected when considering different fragmentation
models, can be derived from the number of reconstructedB mesons. It was found to be:

• 2.4% (Bowler and hard Peterson).

• 4.0% (Bowler and soft Peterson).

• 3.6% (Bowler and Lund).

• 6.5% (soft Peterson and hard Peterson).

• 6.2% (soft Peterson and Lund).

• 0.3% (hard Peterson and Lund).

Those variations arise from the fact, that different shapes of fragmentation functions result in
migration of events between the observed and non observed parts of the signal, due to analysis
cuts. While the global variation remains relatively small, between 0.3% and 6.5%, the cross
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section may vary by∼ 20% in some regions of thepT spectrum of theB meson. This is
illustrated in Figure 7.13. Similar variations of 20% in the cross section, obtained with the soft
and hard Peterson fragmentation function, in the region ofpT(B)∼ 20GeV have been reported
in [5].
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Figure 7.8: The pT spectrum of the B meson in four Monte Carlo samples, generated with
different fragmentation functions. The Lund model is not shown in corresponding
plots for tracks.

7.6 Data and Monte Carlo Comparisons

7.6.1 Comparisons with msel=5 Samples

An msel=5 PYTHIA sample is simple to generate. Onlyb andb quarks are produced by the
hard scattering simulation, and therefore no event has to be discarded. Nevertheless, the studies
in this section demonstrate that an msel=5 sample is not able to correctly describe the data, and
that in particular, it cannot be used for fragmentation studies.

Comparisons of the data to a msel=5 samples generated with the Bowler and soft Peterson
functions are presented in Figures 7.14 through 7.16. These figures show thepT spectrum of
theB meson (pT(B)), thepT of tracks in a cone of opening∆R= 0.7 around theB meson, and
the η distribution for tracks which have∆R > 1. (control tracks). All the histograms, in this
section, are normalized to the number ofB mesons

From Figure 7.14 it is clear that the msel=5 PYTHIA generation creates apT(B) distribution
which is too soft, i.e., the non-perturbative fragmentation function needed to reproduce the
measured distribution would be peaked very close to 1. Indeed, in the preliminary studies of
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Figure 7.9: The pT spectrum of tracks in a cone around the B meson in three Monte Carlo
samples, generated with different fragmentation functions.
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Figure 7.10: The component of tracks momentum transverse to the B meson, for tracks in a cone
around it in three Monte Carlo samples, generated with different fragmentation
functions.
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Figure 7.11: The pT spectrum of the highest pT track in a cone around the B meson in three
Monte Carlo samples, generated with different fragmentation functions.
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Figure 7.12: The multiplicity of tracks in a cone of opening∆R= 0.7 around the B meson, in
three Monte Carlo samples, generated with different fragmentation functions.
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Figure 7.13: Variation of the B production cross section, expected when considering differ-
ent fragmentation models. Ratios of the production rate expected in bins of the pT

distribution, are presented for Bowler, soft Peterson and hard Peterson fragmenta-
tion functions, with respect to the prediction obtained with the Lund fragmentation
function.
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Figure 7.14: The pT spectrum of the B. Comparison between the data and two Monte Carlo
msel=5 samples with the Bowler and Peterson fragmentation functions. His-
tograms are normalized to the number of B mesons.
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Figure 7.15: The pT spectrum of tracks in a cone around the B meson. Comparison between
the data and two Monte Carlo (msel=5) samples with the Bowler and Peterson
fragmentation functions. Histograms are normalized to the number of B mesons.
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Figure 7.16: Theη spectrum of tracks in a cone with∆R > 1 (control tracks). Comparison
between the data and two Monte Carlo (msel=5) samples with the Bowler and
Peterson fragmentation functions. Histograms are normalized to the number of B
mesons.
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Section 7.5, one can see that theB meson’s spectrum is not very sensitive to the fragmentation
function. This indicates that the data-MC discrepancy inpT(B) distribution is difficult to correct
with fragmentation alone.

In addition, such a fragmentation function would not be able to simultaneously accommo-
date the distributions of the momenta of the tracks in the cone around theB meson, which
requires a softer fragmentation function in order to agree with the data. This can be understood
qualitatively in the distributions for tracks in 7.5, as for example Figure 7.15, which shows the
fact that tracks in the data are harder than in the Monte Carlo.

This study shows clearly that Monte Carlo samples generated with msel=5 fail to describe
the data.

7.6.2 Comparisons with an msel=1 Sample

In contrast to a msel=5 PYTHIA generation, wherebb̄ quarks are created from lowest order
diagrams, all other QCDb production mechanisms are simulated in a msel=1 PYTHIA job.
Adding the otherbb̄ creation mechanisms improves the agreement between data and MC in the
pT of the B distribution. This can be seen in Figure 7.17. All the histograms in the present
section are normalized with respect to the same number ofB mesons.
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Figure 7.17: With the msel=1 PYTHIA setting, there is good agreement between data and
Monte Carlo for the pT of the B meson. Histograms are normalized to the number
of B mesons.

The following plots show that, unlike the msel=5 samples, with msel=1 the data and Monte
Carlo agreement is acceptable simultaneously for thepT spectrum of theB meson (Figure 7.17),
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the tracks in the vicinity of theB meson (Figures 7.18- 7.25), and for control tracks (Figures
7.26- 7.29).

Figure 7.29 indicates a loss of efficiency for track reconstruction in data as compared with
the Monte Carlo. for cross-section measurements, only the region|η|< 1 has been used.

Figure 7.30 shows a map of the track activity in the event in data and for the msel=1 Monte
Carlo sample. These figures show the distance of tracks from theB meson in theη-φ plane (∆η
-∆φ). The activity of tracks in the vicinity of theB meson, which is present in the center of the
plane, is clear. Also the tracks accompanying the opposite sideB meson are visible.
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Figure 7.18: The multiplicity of tracks within a cone of∆R< 0.7 around the B meson in the
msel=1 PYTHIA sample. Histograms are normalized to the number of B mesons.
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Figure 7.19: The transverse momentum pT of all tracks within a cone of∆R< 0.7 around the B
meson in the msel=1 PYTHIA sample. Histograms are normalized to the number
of B mesons.
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Figure 7.20: prel
T of tracks within a cone of∆R< 0.7around the B meson in the msel=1 PYTHIA

sample. Histograms are normalized to the number of B mesons.
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Figure 7.21: prel
L of tracks within a cone of∆R< 0.7around the B meson in the msel=1 PYTHIA

sample. Histograms are normalized to the number of B mesons.
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Figure 7.22: The transverse momentum pT for the leading directional track in a cone of
∆R < 0.7 around the B meson in the msel=1 PYTHIA sample. Histograms are
normalized to the number of B mesons.
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Figure 7.23: The transverse momentum pT for the leading momentum track in a cone of
∆R < 0.7 around the B meson in the msel=1 PYTHIA sample. Histograms are
normalized to the number of B mesons.

Entries  3781
Mean    1.892
RMS     1.432
Integral    3688

GeV
0 1 2 3 4 5 6 7 8

0

200

400

600

800

1000 Entries  3781
Mean    1.892
RMS     1.432
Integral    3688

Entries  3714
Mean    1.947
RMS     1.733
Integral    3752

Entries  3714
Mean    1.947
RMS     1.733
Integral    3752

DATA

MC Bowler

 of charged tracks in a cone around the B mesonTpΣ

Figure 7.24: The sum of transverse momenta of tracks in a cone of∆R < 0.7 around the B
meson in the msel=1 PYTHIA sample. Histograms are normalized to the number
of B mesons.
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Figure 7.25: The distribution of the variableEB−∑Etracks
EB+∑Etracks

, where the sum is over tracks in in a
cone of∆R< 0.7 around the B meson in the msel=1 PYTHIA sample. Histograms
are normalized to the number of B mesons.
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Figure 7.26: Plot of the 3-momentum for control tracks in the msel=1 PYTHIA sample. His-
tograms are normalized to the number of B mesons.
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Figure 7.27: Plot of the impact parameter d0 for control tracks in the msel=1 PYTHIA sample.
Histograms are normalized to the number of B mesons.
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Figure 7.28: Plot of the angular variableφ for control tracks in the msel=1 PYTHIA sample.
Histograms are normalized to the number of B mesons.

The b quark production mechanisms in each event of the Monte Carlo sample have been
classified as explained in Section 2.2.2 . Figures 7.31 through 7.34 show the expected contribu-
tions from each of theb production mechanisms (FC, FE, GS) for a few distributions. In Figure
7.31 the subclasses are also given as a digit from 1 to 8, following the prescription of Section
2.2.2 . The angular distributions in∆η and∆Φ of tracks with respect to theB meson are shown
in Figure 7.34. The distributions ofpT(B) and pT of tracks in a cone around theB meson,
differ between the three production mechanisms. This is illustrated by Figures 7.35 and 7.36,
where histograms for all the three contributions are normalized to unity. A similar comparison
has been done for the angular distributions of tracks,∆η and∆Φ, in Figure 7.37. For these two
variables the shapes of the contributions from FC, FE and GS are similar.

The approximate ratio of contributions from the different mechanisms isFC : FE : GS∼ 1 :
1.9 : 0.8. The FC, which is the only mechanism generated when msel is set to 5, accounts only
for ∼ 27% of the events.

7.7 A Method of Fitting the Fragmentation Function Param-
eters

In this section a method is proposed to fit the fragmentation function in PYTHIA to achieve
the best agreement with the data without any need of model input. The proposed method allows
to proceed with a single Monte Carlo sample, avoiding the generation of multiple large samples
to scan the fragmentation function’s parameter space. This procedure is similar to the one
applied in Chapter 5.
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Figure 7.29: Plot of the pseudo-rapidity variableη for the control tracks in the msel=1 PYTHIA
sample. Histograms are normalized to the number of B mesons.

As explained above, the resulting physics distributions are not solely influenced by the frag-
mentation function, which describes the non-perturbative part of the process. The observables
are also influenced by the physics of the hard scattering process, and the perturbative QCD part
of the fragmentation. Fitting the fragmentation function by the proposed method will be valid
within the choice of PYTHIA parameters that has been used in the Monte Carlo sample used for
the fit. Therefore, before proceeding with the fragmentation fit, the other PYTHIA parameters
should be tuned to the best data and Monte Carlo agreement for physics observables that are
less sensitive to the fragmentation function.

The events generated by PYTHIA are passed through the full simulation of the detector and
the trigger system as described in Section 7.3.1. The application of the method supposes that
this simulation phase is under control. Distributions of tracks in the control region allow to
validate this step.

The idea behind the proposed method is to reweight the Monte Carlo sample with respect
to the light cone variablez. Given that the fragmentation function is the distribution used to
generate this variable in the Monte Carlo, reweighting the sample with respect tozallows direct
modification of the fragmentation function of the sample.

In order to apply the method, it is necessary to generate a Monte Carlo sample and keep
the fragmentation information that intervenes in the string model. This information consists
of the variablez that has been used and of the primaryB hadron it has been applied for. The
identification of the primaryB hadron is given by the line number that refers to it in the PYTHIA
event record . Each primary hadron from ab or c quark fragmentation in the event has its own
value ofz. This information is not kept by default in the CDF framework. As a part of the
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Figure 7.30: The track activity in the∆η-∆φ plane around the B meson in data (top) and the
Monte Carlo msel=1 sample (bottom). The activity in the vicinity of the opposite
side B meson is also visible.
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Figure 7.31: Data and Monte Carlo comparison for pT(B). The upper plot details the different
contributions in the Monte Carlo sample from the FC, FE and GS b quark pro-
duction mechanisms. The lower plot details the contributions for the classes of
processes explained in Section 2.2.2. Histograms are normalized to the number
of B mesons.
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Figure 7.32: Data and Monte Carlo comparison for pT of tracks in a cone around the B me-
son. Contributions in the Monte Carlo sample from the FC, FE and GS b quark
production mechanisms are detailed. Histograms are normalized to the number
of B mesons.
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Figure 7.33: Data and Monte Carlo comparison for prel
L of tracks in a cone around the B me-
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Figure 7.34: Data and Monte Carlo comparisons for the angular distributions of all the tracks
in the event with respect to the B meson direction. The upper plot shows the
distribution for ∆η, and the lower for∆Φ. Contributions in the Monte Carlo
sample from the FC, FE and GS b quark production mechanisms are detailed.
Histograms are normalized to the number of B mesons.



186 B Fragmentation and Related Studies at CDF

0 5 10 15 20 25 30 35
0

0.02

0.04

0.06

0.08

0.1

0.12 FC

FE

GS

 of the b mesonTp

Figure 7.35: Contributions in the Monte Carlo sample from the FC, FE and GS to the pT

distribution of the B meson. Histograms are normalized to unity. Shapes of the
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present work, a tool has been created to retrieve the necessary fragmentation information from
the PYTHIA common blocks and to save it to disk at the time the sample is generated.

It is proposed to generate the Monte Carlo sample for this study using the Peterson frag-
mentation function withε = 0.006. This choice has two reasons:

• In Pythia, the Peterson model does not affect light quark fragmentation. The Parameters
used by the Lund and Bowler models in the generator, on the other hand, apply also for
light quarks.

• The Peterson model, unlike the Lund and Bowler models, has a contribution not only
around the peak region but has a lowz tail. By reweighting events with respect toz,
the tail can be canceled with a vanishing value of the weight function. Conversely, a
tail cannot be created for the Lund or the Bowler model by multiplication with a weight
function. A function with a lowz tail is therefore necessary in order to favor or disfavor
the contribution in the lowz region of the fragmentation function.

• As a first approximation, the fragmentation function in CDF is expected to be similar to
the one extracted ine+e− experiments. The Peterson parameter value ofε = 0.006 has
been chosen because with this value the Peterson model’s peak is close to that of the Lund
function extracted from LEP.

These two last points are illustrated in Figure 7.7.
Thez distribution of theB mesons in the reconstructed Monte Carlo sample is not identical

to the distribution in the generator. One reason is that the original fragmentation function applies
to the primary hadron, and not to the resulting B± mesons. Another reason is the influence of
detector effects and of the analysis selection. However, both distributions can be corrected by
the same weight function.

The Monte Carlo sample necessary for this study is currently being generated in CDF. The
method will be applied to this sample when it is ready.

7.8 An Estimate of theb Production Cross Section

Using the data sample of fully reconstructed B± mesons, a measurement of theb quark
production cross section is performed. The analysis is still under way, and therefore the results
presented in this section are preliminary, and do not include a complete study of systematic
uncertainties.

A similar measurement has been already done in CDF Run-II, using 37pb−1 of data, in the
inclusive decay channelHb→ J/ψX [7], whereHb denotesB hadrons that decay toJ/ψ.

7.8.1 Evaluation of Efficiency

The selection criteria and analysis procedure have been applied to the fully simulated msel=1
Monte Carlo sample described in 7.3. Using the distributions for B± mesons in the Monte
Carlo generator before any detector and reconstruction effects, the total detection and analysis
efficiency of B± has been evaluated as a function ofpT(B). The evaluation has been done over
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two different regions of the pseudo-rapidity:|η|< 1 and|η|< 0.6. The efficiencies for the two
cases are presented in Figure 7.38.

7.8.2 The Inclusiveb Quark Production Cross Section

The differential cross section forpp→ bX in each of the considered intervals in pseudo-
rapidity has been computed for eachpT(B) interval (i) as:

dσi

dpT
=

1
A

1
L

1
∆pT

NB
i

εi
(7.3)

whereL is the luminosity of the data set,NB
i is the corresponding number of B± mesons,∆pT is

the interval width andεi the efficiency.A is the product of branching ratios and B+ production
fraction [71]:

A = BR(B+ → J/ψK+)×BR(J/ψ→ µ+µ−)× f(b→ B+) =
(1.00±0.04) ·10−3× (5.88±0.10) ·10−2× (39.7±1.0) ·10−2 (7.4)

This cross-section has to be divided by two if one is interested in the bb̄ production cross-
section. In the following, the notationσ(pp→ bX) has been used to represent the sum:
σ(pp→ bX)+σ(pp→ bX).

The measured differential cross section is shown in Figures 7.39 and 7.40, for|η| < 1 and
|η|< 0.6, respectively. The distributions have been fit with the functionp1

(pT)p2 in the region 7<
pT(B) < 30GeV/c. p2 was found to be 4.13±0.08 for |η|< 1 and 4.18±0.09 for |η|< 0.6. In
both cases, thepT dependence of this distribution is compatible with the theoretical prediction
of [91, 92]6.

The total cross section has been evaluated by summing the contributions from all intervals
in pT(B):

σ(pp→ bX, pT(B) > 4GeV/c, |η|< 1.0) = 19.0±0.8(stat.) ±1.6(syst.)µb

σ(pp→ bX, pT(B) > 4GeV/c, |η|< 0.6) = 11.9±0.6(stat.) ±1.0(syst.)µb (7.5)

The evaluation of uncertainties is explained in Sections 7.8.3 and 7.8.4.
The cross sections forpT(B) > 0 are estimated using the distribution of B± mesons in the

Monte Carlo sample before detector simulation and analysis procedure. The ratio of B± mesons
in the regionpT(B) > 4GeV/c over the total number of B± mesons was found to be 0.691 for
|η|< 1 and 0.704 for|η|< 0.6. Therefore:

σ(pp→ bX, |η|< 1.0) = 27.5±1.2(stat.) ±2.3(syst.)µb

σ(pp→ bX, |η|< 0.6) = 16.9±0.8(stat.) ±1.4(syst.)µb (7.6)

An additional error has to be assigned to the extrapolated cross section forpT(B) > 0, origi-
nating from the uncertainty on the shape of theB hadron spectrum in the Monte Carlo sample.
A part of this uncertainty is due to the fragmentation function, and to the relative contributions

6The predicted behavior of the cross section isdσ̂b/dp̂T 'A/p̂a
T , Where a is expected to be approximately 4-5.
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Figure 7.38: Total efficiency of detection and analysis effects for theB± mesons, in two regions
of pseudo-rapidity:|η|< 1 (top) and|η|< 0.6 (bottom)
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Figure 7.39: The differential cross section for|η|< 1.
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Figure 7.40: The differential cross section for|η|< 0.6.
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from the differentb production mechanisms. This uncertainty could be better estimated after
the fragmentation fit, proposed in the present chapter, is accomplished. In order to estimate
this additional source of uncertainty, the ratio of B± mesons in the regionpT(B) > 4GeV/c
over the total number of B± mesons has been compared between the Monte Carlo sample used
for the present analysis and the theoretical prediction of [6], given in terms of pseudo rapidity
[93]. This prediction uses the Kartvelishvili hadronization model, with the parameterα = 29.1,
and yields the ratio of 0.682, for|η| < 0.6. The systematic effect of extrapolation is therefore
predicted to be of a few percent.

7.8.3 Statistical Error Estimation

All along the analysis process, when doing operations on histograms, as sideband subtrac-
tion, efficiency calculation etc., the statistical errors on bin contents have been transmitted.
The efficiency corrected yields in each interval of the differential cross section, include all
these effects. The uncertainty on the determination of the selection efficiency, coming from the
statistical uncertainty due to the finite Monte Carlo statistics, has been accounted for by this
procedure.

The statistical errors on the total cross sections have been obtained by adding in quadrature
the statistical errors on the bins of the differential cross section.

7.8.4 Systematic Error Estimation

Systematic uncertainties from several sources have been evaluated. These sources of uncer-
tainty have been assumed to be uncorrelated, and therefore their respective contributions have
been added in quadrature to obtain the total systematic uncertainty. The study of systematic er-
rors given here is preliminary, and is following the lines of a similar study done for the inclusive
cross section measurement [7].

7.8.4.1 Luminosity

The method to measure the instantaneous luminosity in CDF, using the CLC modules, is ex-
plained in Section 4.9. These modules monitor the average number of inelasticpp interactions
in each bunch crossing, which permits to derive the instantaneous luminosity using Equation
(4.4). That information is read out by the main CDF data acquisition and stored in the event
files.

The integrated luminosity is obtained by retrieving this information in all the files in the
used data sample, and integrating the instantaneous luminosity for each file. The numbers are
then summed up to give the total luminosity of the sample.

The systematic error on the luminosity measurement is dominated by three main contribu-
tions [79]:

• uncertainty on thepp cross section (∼ 4%)

• the CLC acceptance (∼ 4%)

• the time dependence of the CLC acceptance (∼ 2%)
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Adding these contributions in quadrature yields the total relative uncertainty of 6% on lumi-
nosity. From Equation (7.3) it is clear that the same relative uncertainty is induced on the
differential and total cross sections.

As mentioned before, the data sample used by the present analysis corresponds to a total
integrated luminosity of 333±20pb−1.

7.8.4.2 Branching Ratios and Production Fraction

The quoted uncertainties on the branching ratios and B+ production fraction in Equation
(7.4) yield a relative error of 5.0% on the value of the productA. The same relative uncertainty
is induced on the differential and total cross sections.

7.8.4.3 Trigger and Reconstruction Efficiencies

In the present section, the systematic effects from trigger and reconstruction efficiencies
are examined. In Section 7.8.1, the msel=1 Monte Carlo sample has been used to evaluate the
total efficiency. The uncertainty on the individual trigger and reconstruction efficiencies, and
possible differences in their behavior in data and in the Monte Carlo sample, may therefore
affect the cross section measurement.

Figures 7.41, 7.42 and 7.43 show comparisons between data and Monte Carlo ofη distri-
butions for theB mesons, and for theJ/ψ and kaon candidates used to reconstruct them. From
these plots, no significant difference between the reconstruction efficiency in data and Monte
Carlo can be seen, in the region|η|< 1, considered for the cross section measurement.

The efficiency of the Level 1 dimuon trigger, used in the present analysis, has been esti-
mated by [7] to have a constant uncertainty of±1.5% over all bins inpT of theJ/ψ candidate.
The total muon reconstruction efficiency, which comprises the tracking, the muon system, and
matching between the muon track and “stub”7 has been also estimated in the same reference.
It was found to have an uncertainty of∼ 2.5%. The track-stub matching efficiency depends
weakly on pT of the muon. Its variations between bins, of order 0.2% have been neglected
here. The separate uncertainty on tracking efficiency, for muons ofpT > 1.5GeV, was found to
be less than 1%. The same estimate has been adopted here for the kaon candidates, which are
required by the present analysis to havepT > 1GeV.

The sources of systematic uncertainty and their contributions are detailed in Table 7.5.

Source Relative Systematic uncertainty
Luminosity 6%

Branching ratios 5%
L1 trigger efficiency 1.5%

Reconstruction of muons 2.5%
Reconstruction of kaons 1%

Total 8.4%

Table 7.5: Summary of the systematic uncertainties in thebb̄ production cross section measure-
ment.

7A stub is a segment resulting from a least square fit to hits in the muon drift cells.
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Figure 7.41: η distributions of the reconstructed B meson, in data and in the Monte Carlo
sample, used to calculate the efficiency. Histograms are normalized to the number
of B mesons.
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Figure 7.42: η distributions of the J/ψ candidates, in data and in the Monte Carlo sample,
used to calculate the efficiency. Histograms are normalized to the number of B
mesons.
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Figure 7.43: η distributions of the kaon candidates, in data and in the Monte Carlo sample,
used to calculate the efficiency. Histograms are normalized to the number of B
mesons.

7.8.5 Comparison with Other Measurements and with Theoretical Pre-
dictions

Using the same notations, an analysis ofHb→ J/ψX, done in CDF has obtained:

σ(pp→ bX, |y|< 0.6) = 35.2±0.8(stat.)+5.0
−4.6(syst.)µb (7.7)

in which y is the rapidity of the B Hadron. Using this variable, instead of the pseudo-rapidity,
η, to selectB hadrons we have measured:

σ(pp→ bX, pT(B) > 4GeV/c, |y|< 0.6) = 14.2±0.7(stat.) ±1.2(syst.)µb (7.8)

Results obtained with a cut ony are not equivalent to the ones with a cut onη. To illustrate
this difference, Figures 7.44 and 7.45 show thepT spectrum ofB mesons that passed each one
of these cuts, and they andη spectra of theB meson with no cuts, respectively. Both figures
have been obtained for generatedB mesons, from the Monte Carlo sample used for the analysis.
It is clear that the cut on|y| selects moreB mesons. The difference is particularly visible in the
low pT region, where the mass of theB meson ensures a flat distribution ofy as a function of
pT .

The two analyses have been compared in Figure 7.46, which gives the variation of the
differential cross-section versus the transverse momentum of the B hadron.

Theb quark cross section inpp collisions at 1.96 TeV has been evaluated, using recent theo-
retical developments [6]. The evaluation includes a resummation of the logarithms ofpT/mb, to
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analysis.
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Figure 7.45: Spectra of y (blue) andη (red) for B mesons at the generator level of the Monte
Carlo sample used for the present analysis. No cuts have been applied.
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NLL accuracy, and the matching with the fixed order, exact NLO calculation for massive quark.
This computation is referred to as FONLL. In order to transform this prediction, obtained at
the b quark level, to theB hadron level, the Kartvelishvili fragmentation function, with the
parameterα = 29.1 has been used in [6]. The FONLL prediction has a few theoretical uncer-
tainties, originating from the choice of scales, quark mass and the Parton Distribution Function
(PDF). A comparison between the measurement, done in the present thesis work, and FONLL
is presented in Figure 7.46. The curve for FONLL is shown without theoretical uncertainties.

Measurements obtained by CDF using the RunIb statistics [94], which correspond to about
400 exclusive decays B± → J/ψK±, have been also compared with present measurements in
Figure 7.47 (note that the selection criterion is now|y|< 1). Present results correspond to a rate
which is about 40% lower.

From present studies one can conclude that the disappearance of the excess ofb-events in
data from RunIb, as compared with QCD expectations, available at that time, comes from:

• a decrease of the experimental cross section by about 40%,

• an increase of theoretical expectations (different PDF, resummation etc.)

The effect coming from the choice of the fragmentation distribution is quite marginal. From
Figure 7.13, the difference observed by changing the Peterson distribution, with parameterε =
0.006, by the fragmentation distribution favored at LEP, varies from less than 1% atPt = 4 GeV
to about 17% atPt = 20 GeV.
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Figure 7.46: The measured differential cross section for|y| < 0.6 (blue histogram with error
bars), and the central value of the FONLL theoretical prediction [6] (red solid
line). Measurements obtained by CDF [7] using Hb → J/ψX final states have
been also displayed (green histogram with error bars).
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Figure 7.47: The measured differential cross section for|y|< 1. obtained in the present thesis
(blue histogram), compared to the similar measurement from CDF RunI [94] (red
histogram).



Chapter 8

Conclusion

The b quark fragmentation distribution has been measured, using data registered by the
DELPHI experiment at the Z pole, in the years 1994-1995. The measurement made use of
176000 inclusively reconstructedB meson candidates. The errors of this measurement are
dominated by systematic effects, the main one being related to the energy calibration. The
distribution has been established in a nine bin histogram. Its mean value has been found to be
< xE >= 0.704±0.001(stat.)±0.008(syst.)

The fragmentation distributions from ALEPH, OPAL and SLD, together with the result from
DELPHI presented in this thesis, have been combined to give a world averageb fragmentation
distribution. Its mean value has been found to be< xE >= 0.714±0.002

The measurement of the scaled energy (x) spectrum of theB hadron may be obtained by
folding a perturbative and a non-perturbative QCD components. Thex dependence of the non-
perturbative part, usually described by a hadronisation model, is extracted in the present work
directly from experimental data, and therefore it does not depend on a hadronization model. On
the other hand, the extracted non-perturbative QCD component depends closely on the way the
perturbative QCD component has been evaluated. In this thesis, the extraction method has been
applied, using the perturbative component taken from the JETSET Monte Carlo event generator
and using a theoretical NLL QCD calculation. The obtained distributions differ markedly from
those expected from various hadronization models. The non-perturbative QCD component cor-
responding to a Monte Carlo generator has been found to be similar to the Lund and Bowler
models. When used with the NLL QCD computation, the non-perturbative component has to
be extended to the regionx > 1.

Below x = 0.6, this distribution is compatible with zero indicating that most of gluon radi-
ation is well accounted by the perturbative QCD component evaluated using the LUND parton
shower Monte-Carlo or computed analytically.

The non-perturbative component, extracted in this way, is expected to be valid in a different
environment thane+e− annihilation, as long as the perturbative QCD part is evaluated within
the same framework (analytic QCD computation or a given Monte Carlo generator), and using

the same values for the parameters entering into this evaluation asmpole
b , Λ(5)

QCD or generator
tuned quantities.

A comparison has been made between the non-perturbative QCD components, correspond-
ing to the fragmentation functions measured by ALEPH, OPAL, SLD and in the present work.
The distribution obtained with this thesis is quite similar with those obtained from SLD and
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OPAL measurements and somewhat softer, but compatible within uncertainty, as compared
with the one from ALEPH.

The conclusions from the previous parts of the work have been applied to the analysis of
the B hadron production at CDF. Distributions of exclusively reconstructedB mesons, in the
decay channel B±→ J/ψK±, and for accompanying tracks has been studied. This analysis uses
a sample of∼ 6000 B± candidates, from 333pb−1 of data registered by the CDF experiment.

Effects of the fragmentation function on these distributions, in the framework of the PYTHIA
event generator, have been examined, together with the effect of different bb̄ production mecha-
nisms in the generator. The distributions in a fully reconstructed Monte Carlo sample have been
compared to data, and the agreement has been found to be reasonable. The analysis is ongoing,
and the goal will be to fit the fragmentation function parameters and/or the relative contribu-
tions from different production mechanisms to improve the agreement between data and Monte
Carlo.

A measurement of theb quark production cross section has been established using the same
data. The analysis is still under way, and therefore the result is preliminary. It has been found:

σ(pp→ bX, pT(B) > 4GeV/c, |η|< 1.0) = 19.0±0.8(stat.) ±1.6(syst.)µb

σ(pp→ bX, pT(B) > 4GeV/c, |η|< 0.6) = 11.9±0.6(stat.) ±1.0(syst.)µb (8.1)

and

σ(pp→ bX, pT(B) > 4GeV/c, |y|< 1.0) = 22.8±1.1(stat.) ±1.9(syst.)µb

σ(pp→ bX, pT(B) > 4GeV/c, |y|< 0.6) = 14.2±0.7(stat.) ±1.2(syst.)µb (8.2)

These measurements are compatible with another recent analysis done at CDF, using a dif-
ferentB hadron decay channel, and they are somewhat lower than results from RunIb.

At present, there is no evidence for an excess ofB hadrons in data collected at CDF, relative
to what is expected from QCD.



Appendix A

The Mellin Transformation

A complete description of the Mellin transformation and its properties may be found in
[95]. In the present Appendix, the aim is only to describe a few computations involving this
transformation used in this document.

The use of the Mellin transformation is appropriate for computing integral equations en-
countered in QCD. In particular, it is useful when dealing with fragmentation functions; the
Mellin transformation of the folding product of the perturbative and non-perturbative distribu-
tions is the simple product of the two Mellin-transformed distributions. Namely, the product:

Dpredicted(x) =
∫ ∞

0
Dpert.(z)×Dnon−pert.(

x
z
)

dz
z

(A.1)

for thex variable, becomes, after applying the Mellin Transformation:

D̃predicted(N) = D̃pert.(N)× D̃non−pert.(N) (A.2)

The Mellin transformation of a distributionD(x) is defined as:

D̃(N) =
∫ ∞

0
dx xN−1 D(x) (A.3)

whereN is a complex variable. For integer values ofN ≥ 2, the values of̃D(N) correspond to
the moments of the initialx distribution1.

The N-space representation,D̃(N), can be transformed back to thex space, applying the
inverse Mellin transformation:

D(x) =
1

2πi

∮
dN D̃(N)x−N (A.4)

in which the integral runs over a closed contour in the complexN-plane. The integration contour
can be taken as two half-lines, symmetric with respect to thex-axis (one in the upper half and
the other in the lower half of the complex plane) and joining at their intersection point with this
axis. The contour is closed by a circular arc at infinity. In practice, the integration is done only
over the line in the upper half of the complex plane (see Figure A.1). Indeed, the fact thatD(x)
is a real function implies that the imaginary parts of the integral (A.4), compensates between

1By definitionD̃(1) = 1 reflects the normalization ofD(x).
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the upper and lower halves of the complex plane. The real parts, on the other hand, give equal
contributions for the two lines of integration. The integral is over the variablez, along the line.
When the angleΦ is larger thanπ/2, the contour is referred to asL−, the other case is referred to
asL+. The choice ofL− or L+ depends on the function and on thex value, so as the contribution
of the circular arc vanishes at infinity (see below).

The inversion formula is therefore calculated as follows:

1
π

∫ ∞

0
Im
(

eiφx−c−zeiφD
(

c+zeiφ
))

dz (A.5)

wherec is the intersection point of the contour with the real axis.

Φ

c

z

Figure A.1: Integration contour for the inverse Mellin transformation.

In Chapter 6, the parametrization:

D(x) = p0×
[
p1xp2(1−x)p3 +(1− p1)xp4(1−x)p5

]
(A.6)

wherep0 is a normalization coefficient, has been used to parametrize the measured fragmenta-
tion functions. Besides being able to fit the experimentally measured fragmentation functions
for bottom and charm quarks, this parametrization has an analytically calculable Mellin trans-
formation. For the function(1−x)β, the Mellin transformation is:

Γ(β+1)Γ(N)
Γ(β+N+1)

(A.7)

It is straightforward to check the following property:

xαD(x)→ D̃(N+α) (A.8)

(whereD̃(N) denotes as above the transform ofD(x)). This simple property allows to calculate
the Mellin transformation ofxα(1−x)β:

Γ(β+1)Γ(N+α)
Γ(α+β+N+1)

(A.9)
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Equation (A.6) is therefore transformed as:

D̃(N) = p0

[
p1

Γ(p2 +N)
Γ(p2 + p3 +N+1)

+(1− p1)
Γ(p4 +N)

Γ(p4 + p5 +N+1)

]
(A.10)

Fitting a fragmentation function with the parametrization of (A.6), one gets directly the
moment-space representation, by using (A.10) with the fitted parameters.

The exact Mellin transformation of the Kartvelishvili parametrization is calculated in a sim-
ilar way as above. For the Peterson and Collin-Spiller models, only the values of moments,
corresponding to positive integer values ofN, are analytically calculable. Moments haven’t
been calculated analytically for the Lund and Bowler models.

In Chapter 6, the Mellin transformation of functions defined piecewise over 0< x < 1 has
also been used. Namely, histograms and a fitted cubic spline have been considered to model
the measured fragmentation function. Here, to illustrate the problem of Mellin inversion of a
function defined separately for different intervals, polynomials of orderJ, defined piecewise for
0 < x < 1 are considered. For simplicity, the discussion is done for two intervals, as shown in
Figure A.2. It can be then easily generalized to a larger number of intervals.

xl 1

D1(x)

D2(x)

Figure A.2: Piecewise defined function for 0< x < 1. In each interval the function is taken as
a polynomial of orderJ.

The distributionD(x) is defined as:

D(x) =


J
∑
j=0

A jx j = D1(x) 0 < x < xl

J
∑
j=0

B jx j = D2(x) xl < x < 1
(A.11)

The Mellin transformation ofD(x) is obtained by two simple integrals, and rearrangement of
the terms:

D̃(N) =
xl∫
0

dxxN−1D1(x)+
1∫

xl

dxxN−1D1(x) =

=
J
∑
j=0

[
A j−B j
N+ j x j+N + B j

N+ j

] (A.12)
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In order to take the inverse Mellin transformation, and get back to the polynomials in thex
space, it is necessary to consider separately two contributions to the integral forD(x):

D(x) = I1(x)+ I2(x) (A.13)

where:

I1(x) =
J
∑
j=0

∮
dN
(

x
xl

)−N
x j

l

(
A j−B j
N+ j

)
I2(x) =

J
∑
j=0

∮
dN x−N

(
B j

N+ j

) (A.14)

This separation is necessary, because different contours (namely eitherL− or L+) must be con-
sidered forI1 andI2, with respect to the value ofx. In order to get a convergent (and computable)

integral, the contribution on the circular arc of the terms
(

x
xl

)−N
andx−N in I1 andI2, respec-

tively, should vanish at infinity. Therefore, the contours must be taken as detailed in Table
A.1.

0 < x < xl xl < x < 1 x > 1

I1 L− L+ L+
I2 L− L− L+

Table A.1: Integration contours for the inverse Mellin transformation for a function defined
piecewise in two intervals over0 < x < 1.

For the present case, whenx > 1, the integration yields 0, because there are no poles in the
right side of the plane. No poles are therefore included in theL+ contour for both integralsI1
andI2.

When the number of intervals is larger than two, a similar but more cumbersome reason-
ing, involving the splitting of the inversion formula forD(x) and an appropriate choice of the
contour, has to be done.

On the contrary, what has been presented for two intervals trivially reduced to the case when
the function is perfectly smooth (indefinitely differentiable) on 0< x< 1; then only one integral
intervenes and the integration contour is taken asL+ for x < 1 andL− for x > 1.



Appendix B

Fitting Histograms of Singular Error
Matrices

Measurements of the b-fragmentation distribution have been published by ALEPH [31],
OPAL [32] and SLD [33] in a binned form, after unfolding the experimental energy resolution.
Values in the bins are correlated and, as the bin width is smaller than the resolution the error
matrix is singular. The effective number of degrees of freedom in these analyses is smaller
than the number of bins in the published distributions. Using directly the published results to
fit a smooth function to the distributions is impossible because the fit requires the inversion
of the error matrix. Doing such a fit was necessary for the extraction of the non-perturbative
component of the fragmentation function as explained in Chapter 6, and therefore, a method
had to be employed to overcome this issue. This method consisted in reducing the number of
degrees of freedom of the error matrix by taking its eigenvalues and considering only the few
largest ones.

Let V be the covariance matrix of theN bins of a histogram. vi andλi (1≤ i ≤ N) are the
eigenvectors ofV and their corresponding eigenvalues. vi are column vectors such that|vi |= 1.
T is a matrix whose columns are the vectors vi .

T =

 v1

 . . .

 vN

 . (B.1)

T is in fact the unitary matrix that may be used to transformV to the basis of its eigenvectors,
where it is diagonal. In this basis the matrix elements ofV are simply its eigenvalues.

V ′ = Tt ·V ·T =

 λ1 0
...

0 λN

 . (B.2)

A vectorδ can also be transformed byT:

δ′ = Tt ·δ (B.3)

The aim is to fit the binned distributions with a smooth functionf (x;a), wherea is a vec-
tor of parameters. Hence, each bin content has been compared to the integral of the function
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within the bin boundaries. The vector of differences between the bin contents and the function
predictions is:

δ =


(bin content)1−

∫
bin1

f (x;a)dx

...
(bin content)N−

∫
binN

f (x;a)dx

 . (B.4)

Theχ2 to minimize is calculated usingV andδ. In the original basis it is expressed in matrix
notation as:

χ2 = δt ·V−1 ·δ (B.5)

In the basis of eigenvectors, where the correlations are vanishing it may be written as the simple
sum:

χ2 =
N

∑
i=1

(δ′i)
2

λi
(B.6)

The χ2 is a scalar, and therefore it does not depend on the basis. However, this is easy to
verify by using the unitarity of the transformation matrixT.

The effective number of degrees of freedom of the analysis is the number of eigenvalues of
v that are significantly positive. Therefore we want to cut off all the negative eigenvalues and
those that are positive but not significantly different than 0. If the eigenvaluesλ1..N are sorted
in an descending order, and if we take then largest eigenvalues, theχ2 to minimize becomes:

χ2 =
n<N

∑
i=1

(δ′i)
2

λi
(B.7)

A special attention has been paid to the following point. In some cases we had to transform
the error matrix. This was necessary in order to move from an error on the mean value in a
bin as published by OPAL [32] to the error on the bin content that has been used for the fit.
A transformation was also needed as a part of the variable changexE −→ xp as explained in
Section 6.1. If one calculates the full rigorousχ2 like in Equations (B.5) or (B.5) it is strictly
equivalent to transform the error matrix before or after calculating the eigenvalues. On the other
hand, once degrees of freedom are cut from the problem as described above, one can’t go back
to the original situation by applying a linear operator. Therefore all the transformations have to
be done on the eigenvalues of the original published error matrix, before cutting some of them
off.

Knowing which one of the positive eigenvalues is compatible with 0 consists in knowing
the error on each eigenvalue. This requires the knowledge of the error on each matrix element
of V. In the present case we did not have this information, and therefore had to determine
the effective number of degrees of freedom approximately. In fact, we took the maximum
number of eigenvalues that yield aχ2 per degree of freedom≈ 1 in the fit. This is based on
the argument that if the fitted function agrees with the actual values one expects theχ2/d.o. f to
be≈ 1, because it is the mean value of theχ2 distribution. This provides an indication that the
errors are neither underestimated nor overestimated [96]. This choice ensures that the errors on
the fitted histogram’s bins are propagated correctly to the fitted parameters.
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As illustrated in Figure B.1 for the case of OPAL, beyond a certain number of eigenvalues,
the χ2 of the fit increases steeply due to the smallness of the eigenvalues ofV that represent
underestimated errors in the diagonal base1.
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Figure B.1: χ2/d.o. f of the fit as a function of number of eigenvalues for OPAL’s fragmentation
function.

The number of effective number of degrees of freedom has been estimated to be 7-8 for
ALEPH’s fragmentation function, where the number of bins is 19 and the error matrix has 13
positive eigenvalues. In the case of OPAL, where the number of the number of bins is 20, and
the error matrix has 14 positive eigenvalues, the number of effective degrees of freedom has
been estimated to be 6. However, it has been verified that using a larger number of degrees of
freedom the parameters of the fitted function do not change significantly, as shown in Section
6.5.

1As mentioned in Section 6.2, the function used to fit the histograms is the one in (6.6), that has 5 parameters.
The number of degrees of freedom is thereforen−5, where n is the number of eigenvalues.
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