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ABSTRACT

In the Tevatron accelerator at Fermilab protons and antiprotons are collided at
a 1.96 TeV center of mass energy. CDF and D@ are the two experiments currently
operating at the Tevatron. At these energies top quark is mostly produced via strong
interactions as a top anti-top pair (¢¢). The top quark has an extremely short lifetime
and according to the Standard Model it decays with ~ 100% probability into a b quark
and a W boson. In the “lepton+jets” channel, the signal from top pair production
is detected for those events where one of the two W bosons decays hadronically in
two quarks which we see as jets in the detector, and the other W decays into a
electrically charged lepton and a neutrino. A relatively unambiguous identification in
the detector is possible when we require that the charged lepton must be an electron
or muon of either charge. The neutrino does not interact in the detector and its
presence is inferred from an imbalance in the transverse energy of the event. We
present a measurement of the top pair production cross section in pp collisions at
1.96 TeV, from a data sample collected at CDF between March 2002 and September
2003 with an integrated luminosity of 193.5 pb=!. In order to bring the signal to
background ratio at manageable levels, measurements in this channel traditionally
use precision tracking information to identify at least one secondary vertex produced
in the decay of a long lived b hadron. A different approach is taken here. Because of
the large mass of the top quark, ¢f events tend to be more spherical and more energetic
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than most of the background processes which otherwise mimic the ¢f signature in the
“lepton+jets” channel. A number of energy based and event shape variables can be
used to statistically discriminate between signal and background events. Monte Carlo
simulation is used to model the kinematics of ¢¢ and most of the background processes.
A neural network technique is employed to combine multiple variables in order to
enhance signal versus background separation. Such a measurement takes advantage
of a larger data sample than the b-tagging based analyses and achieves a comparable
level of precision. A binned likelihood fit to the neural network output distribution for
a 519 events data sample yields a 17.6 £3.0(stat)% fraction of ¢t events. The inclusive

top pair production cross section is measured to be o,z = 6.6+1.1(stat)£1.5(syst) pb.
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CHAPTER 1

INTRODUCTION

1.1 The Standard Model of Particle Physics

The current understanding of the elementary particles and their interactions forms
the basis for the Standard Model of particles and fields (SM). At the atomic level
(< 107'% m), matter is composed of point-like electrons orbiting atomic nuclei which
are tightly packed structures of proton and neutrons. Reducing the scale under the
characteristic size of a proton (107! m), proton and neutrons are revealed to be
composed of spin 1/2 fermions called quarks. Six quark flavors have been discovered so
far: u, d, ¢, s, b and t. The electron is one of the three known charged leptons: e, 4 and
7. The lepton content of the SM is completed by three light neutral leptons v, v,, v;.
Like the quarks, all leptons are spin 1/2 fermions. Within the current experimental
resolution of 107!% m, the quarks and leptons are known to be structureless elementary
particles.

The matter particle in the Standard Model along with the force carriers are shown
in Table 1.1. Four types of forces are known in nature. Listed here in the order of
their strength starting with the weakest, these forces are: gravitation, weak, electro-
magnetic and strong. Except for the case of gravitational forces which will not be
discussed here, the carriers of the interactions are spin 1 gauge bosons.
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particle generation | force
1’st | 2nd | 3'rd | carriers
U c t ¥
d S b g
Ve vy vy Z°
e 7 T W=

Table 1.1: The elementary particles in the Standard Model of particle physics.

As far as the strong force is concerned, the state of a quark can be represented by
a vector in a 3 dimensional space where elements of the SU(3) symmetry group act
as linear operators. A quark can carry one of the three color charges, conventionally
named: red (R), green (G) and blue (B). The three color states form a fundamen-
tal triplet representation for the SU(3) color gauge group. Strong interactions are
mediated by 8 massless gluons which carry two color charges and form an octet rep-
resentation of the color SU(3). Being a nonabelian gauge theory, QCD exhibits the
phenomenon of asymptotic freedom [4, 5]: the color forces are weak at small distances
(high momentum transfers) and strong at large distances (low momentum transfers).
It also exhibits the property of color confinement: the only finite-energy asymptotic
states of the theory are color singlets. Thus the physical bound states of quarks such
as mesons or baryons must exist in a singlet representation of SU(3): RGB, RR etc.
Since quarks carry color charge they are not believed to exist as free on-shell particles,
which is consistent with all the observations made so far [6].

Both the leptons and quarks come in six flavors and can be grouped in three
generations as shown in Table 1.1. Leptons do not carry color charges and thus have no
strong interactions. They interact with other leptons and quarks via electromagnetic
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and weak forces. The electromagnetic and weak forces have a unified description
in the SU(2), x U(1)y gauge theory [1, 2, 3], with the force carrier particles being
a massless photon and the massive W=* and Z° bosons. In SM different helicity
states behave differently with respect to the weak interactions, as shown for particle
states in Table 1.2. The corresponding antiparticle states feature the opposed sign for
additive quantum numbers and reversed helicity. The negative helicity (left-handed)
particle states form SU(2) doublets, the same being true for the positive helicity
(right-handed) antiparticle states. The positive helicity particle states and negative
helicity antiparticle states are SU(2) singlets and thus do not couple to the SU(2)
charged gauge fields W*. They interact with other particles exchanging Z bosons and
photons. The neutrinos carry no electric charge. Only left-handed neutrinos (v1,) and

right handed antineutrinos (Zg) have been directly observed and are accommodated

by the SM [7].
(=), Ge), () (i), (1), ()
e )L v )y T )L d), S/)L b/,
e;{ ,U;z TI;E UR, dR CR, SR tR; bR

Table 1.2: The SU(2) multiplets for the three generations of fermions.

A compact® representation of the interaction terms in the SM Lagrangian [8] for
the first generation of quarks and leptons is given bellow:

L This is not the complete Lagrangian, also the gauge invariance is not manifest here.



L= 2 eQi(f+"N)A"+ %[(Hw“dL + Tery"er) W, + h.c]+
f=ve,u,d

92
cos0

Z [TLfY“fL(T? - QfSin20w) +7R7NfR(_Qf8in20w)]Zua

W f=ve,u,d

where @y is the fractional electric charge and T} is the weak isospin for each
fermion species, e is the unit electric charge?, g, is the weak coupling constant and 6,,
is the Weinberg angle, all free parameters in the Standard Model. As a consequence
of the gauge structure of the SM Lagrangian, the electroweak properties should be
identical for all fermion generations, a fact that is verified experimentally [9].

It was found that charged current exchanges (W¥) do not only couple different
particle (antiparticle) states within the same generation but also states from different
generations. This is possible because quark mass eigenstates and weak eigenstates
are not identical. A quark momentum eigenstate can be written as a mix of three
different weak eigenstates. Mixing is described by the Cabibbo-Kobayashi-Maskawa

(CKM) matrix using an expression like:

dl Vud Vus Vub d
s 1= Vea Ves Ve s |, (1.1)
b’ Vie Vis Vi b

where the (d',s',b') and (d,s,b) are the weak and the mass quark eigenstates re-
spectively. The only constraint that the standard model makes on the CKM matrix
is the unitarity condition, made in order to preserve the anticommutation relations

2The unit electric charge e = 1.6 x 1071° C.



between the quark field operators. Values for any particular element of this matrix
must be obtained from experiment. The diagonal elements of the matrix are close
to unity, which means that the weak current is dominant for quarks within the same
generation. The weak currents between different generations are suppressed due to
much smaller off-diagonal elements. No flavor changing neutral currents reactions
corresponding to tree level enhanced transitions have been detected experimentally.
This observation is accommodated by the Glasohw-Iliopoulos-Maiani (GIM) mecha-
nism [10] which requires that quarks in each generation come in pairs. Soon after the
b quark was discovered, the existence of the ¢ quark was automatically inferred from
the limits on flavor changing neutral b decays [11]. Precision measurements of the
elements in the CKM matrix is today the subject of a very active area of research.
The presence of some complex elements in this matrix is believed to be responsible
for the CP nonconservation observed in ¢ and b meson decays [12].

The principle of gauge invariance is a central feature of the standard model. It
accounts for the local conservation of charges that we observe in nature, provides the
framework for building a renormalizable theory of weak and strong interactions, makes
definite and testable predictions on the phenomenology of electroweak interactions.
In order to keep the gauge invariance of the theory, the gauge bosons are required to
be massless. On the other hand it is a known experimental fact that the W+ and Z
bosons are massive. One method proposed to resolve this contradiction is the Higgs
mechanism. It requires adding to the SM at least one additional field. The Higgs
field must be a spin zero complex SU(2) doublet, with weak hypercharge Y=1 and a

singlet in the color space:



® = ( g ) (1.2)

and contribute to the SM Lagrangian with a potential of the form:

V = ?(99") + A (6¢")%. (1.3)

If the value for y? is negative the potential has a minimum for a nonzero value of
the Higgs field. Vacuum is by definition the lowest possible energy state and thus has
a nonzero expectation value for the Higgs field. As a result, while the Lagrangian of
the theory is still SU(2), invariant, the vacuum is no longer invariant and the SU(2),
symmetry becomes spontaneously broken. Gauge bosons interact with the Higgs field
and acquire an effective mass. Out of the 4 degrees of freedom of the Higgs field, 3
will generate mass for the W*, Z° bosons while the fourth is expected to produce a
massive scalar neutral particle, the Higgs boson. The lepton and quark masses can
be generated using a similar mechanism introducing Yukawa couplings between the
Higgs and fermion fields. The mass of the Higgs itself is not predicted from the theory
since it depends on the unknown Higgs self-coupling constant A\. No Higgs particle
has been discovered yet. The best lower mass limit is 114 GeV established at the 95%
confidence level by the LEP2 experiment [15].

The most comprehensive tests of the SM have been performed in collider exper-
iments for center of mass energies up to ~200 GeV in ete™ collisions, ~2 TeV in
pp collisions and ~300 GeV in e®p collisions. While so far the agreement with SM
predictions has been good, it is expected that the SM is an effective approximation to

whatever new physics may exist at higher energy scales. Possible hints for new physics



beyond SM come from the neutrino oscillation® experiments [16] and astrophysical

observations [17].

1.2 Production and Properties of the Top Quark

The top quark is the heaviest of the known six quarks. It is expected to have elec-
tric charge 2/3, weak isospin T3 = +1/2 and to transform as a triplet under the color
SU(3). While the mass of the top quark (M,,=178.0+4.3 GeV/c?) is known with
better precision than for any other quark, none of its quantum numbers, including
spin, have been directly measured so far. The first measurements are expected to be
performed in the Run2 experiments at the Fermilab pp collider.

The dominant mechanism for the top quark production in pp collisions is QCD
pair production processes Figure 1.1. At /s = 1.96 TeV center of mass energy
~85% of top pairs are produced in gg — tf processes while ~15% will be produced
in a gg fusion process. In addition to the hard scattering processes, pair production
can also occur through Z° or photon exchange but with a much smaller probability.
Contribution from the gg and Gg channels are negligible [18] at Tevatron.

The top pair production cross section can be calculated using perturbative QCD.
The leading order (LO) expression can be written as a sum over parton-parton cross
sections weighted with factors corresponding to parton distribution probability func-

tions (PDF’s) for proton (p) and antiproton (p) respectively:

owp—t0) = > [ dniFP (i) [ doF (w100 (5,07 M) (14)

partons

3In SM vg does not exist so the neutrino cannot acquire mass via the standard Higgs mechanism.
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Figure 1.1: Leading order Feynman diagrams for #¢ production in pp collisions.

Here F?, FJZ_’ are the PDF’s for quarks and gluons in p and p, z; is the fraction
of the proton (antiproton) momentum carried by the i-th parton and 5 ~ sz;x; is
the center of mass energy for the parton-parton hard scattering. The cross section is
dependent on the center of mass energy s, the mass of the top quark M;,,, the strong
coupling arg and the momentum scale p? at which both ag and PDF’s are evaluated.
In QCD calculations higher order contributions are often significant. As a simple
example, the n-th order contributions to a physical cross section for a process like

ete™ — hadrons is of the form:

as(p)" (In(pg /)" +..) (1.5)

where ag(u) is the QCD running coupling calculated at the renormalization scale
ir. The impact of higher order contributions can be reduced by using a renormal-
ization scale pu, relevant for this process. Of course the full QCD cross section is

independent of the choice of the renormalization scale but since the calculation is



performed up to a finite order in perturbation expansion, the calculated cross section
is dependent on 2.

In pp collisions, the PDF’s functions account for soft processes inside the proton
where the coupling constant becomes strong and which can not be calculated using
the perturbation theory. They are derived from fits to experimental data at some
particular energy scale Q> and perturbative equations are used to evolve those PDF’s
up to a factorization scale s relevant to the ¢f production [22]. For top cross section
calculation usually both the factorization and renormalization scales are fixed at
pr=pr=p=M,p. The dependence of PDF’s and o on the choice of scale is logarithmic
and uncertainties are estimated by varying the p by a factor of 2 around the top mass.
This procedure yields a estimate of the uncertainty due to missing higher order terms.

In ref. [18] the full NLO calculation is found to be 25% higher than the LO cross
section. The a2 corrections to the ¢g channel are small whereas for the gg channel
corrections are 70% of the LO term. The cross section is a strong function of top
quark mass. It has been argued that much of the NLO contribution comes from
initial state gluon radiation near the ¢f threshold. This situation suggests that the
soft gluon contribution corresponding to higher order corrections might be important.
Resummation techniques can be used to improve the treatment of soft gluons beyond
NLO, resulting in corrections ranging from 10% [18, 19] to 1% in [20]. Electroweak
corrections are at the level of 1% for a large range of Higgs masses [20].

Significant uncertainties in the predicted cross section arise due to limited knowl-
edge of PDF’s and the assumed value of Agcp which affects the u? dependence of

both ag and PDFE’s.



The most recent estimations for top quark cross section at Tevatron were pre-
sented in ref. [23] and [26]. Cacciari et al [23], perform a NLO calculation and take
into account resummation effects at NLL level. They evaluate the factorization and
renormalization scale uncertainty to be ~ 5%. They use PDF’s extracted using NLO
calculations and propagated using NLO evolution equations. Using the most recent
sets of PDF’s (MRST|[24] and CTEQ[25]) which come with a set of 0 uncertainties
for each parameter in the fit, they evaluate the overall impact of the PDF’s uncertain-
ties on the total ¢f cross section. The largest uncertainty comes from the gg channel
which, depending on the particular choice of PDF’s, accounts for 10 — 20% of the
total cross section. Uncertaintied from the strong coupling constant were evaluated
by varying ag(Mz) between 0.117 and 0.121. At s = 1.96 TeV o is estimated to be
~ 6.7 pb with an overall uncertainty of 15%.

Kidonakis and Vogt [26] perform a NNLO calculation (actually include only dom-
inant NNLO terms) and find a similar central result with a factorization and renor-
malization scale dependence of only 3%. In this calculation the PDF’s uncertainities
are not evaluated (complete NNLO PDF’s are not yet available).

Within the SM, the top quark decays with ~100% branching ratio via t — Wb
with a width T' ~ 1.4 GeV. The top lifetime is ~ 4 x 1072 s while the hadronization
process should occur on ~ 10~2% s time scale. As a result the top quark decays before
hadronizing. The ¢ final state contains a b and a b quark which materialize as jets
in the detector. The W bosons decay on the same time scale as the parent top with
almost the same probability in any of the following channels: (e, v.), (1, V), (7,v7),
(u,d), (¢, s). Since quarks come in 3 colors the probability for producing a particular

species of leptons in a W boson decay is ~ 11% while the probability to observe 2
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jets (regardless of the original quark flavor), is ~ 66%. Thus the signal from top pair

production can be detected in 3 different channels:

e Dilepton channel: both W’s bosons decay leptonically with ete™, putu~ or
e*uT in the final state. Backgrounds tend to be small in this channel but the
branching ratio is also small: 4/81. Some of the 7 lepton events where 7 decays
leptonically will contribute to signal in this channel. The tf signature is 2 high
Pt leptons, large missing transverse energy due to the neutrinos* and possibly

two jets from the b quarks.

e Lepton+jets channel: one W boson decays leptonically while the other decays
hadronically. The branching ratio for e and p channels is 8/27. A small contri-
bution from W — 7v decays is also expected. One high pr lepton, considerable
missing energy, four jets, at least two them heavy flavor jets, are produced in
the final state. This channel has a large background from inclusive W boson
production associated with jets and a smaller backgrounds from QCD jet pro-

duction, Z+jets and dibosons WW, W Z, ZZ + jets and single top production.

e All jets channel: both W’s decay hadronically, the final state has 6 possibly
distinct jets. It has the largest branching ratio (~ 44%) but the background

from multijet QCD processes is 2-3 orders of magnitude larger than the signal.

In the following chapters of this Thesis will report on a measurement of the cross
section for the top pair production in pp collisions at 1.96 TeV performed in the
“lepton+jets” channel by the CDF experiment at the Tevatron.

4Neutrinos do not interact with the detector and their presence is often inferred from an imbalance
in the transverse energy.
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In the next chapter will briefly discuss the Fermilab Tevatron and the CDF detec-
tor. Event reconstruction and simulation of events in the CDF detector are discussed
in Chapter 3. The Chapter 4 contains a brief introduction to the field of Artificial
Neural Networks and their applications to high energy experiments. The ¢ the cross

section measurement and results are presented in Chapter 5.
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CHAPTER 2

THE CDF EXPERIMENT AT THE TEVATRON

2.1 The Fermilab Accelerators Complex

The Fermilab Laboratory is located 40 miles west of Chicago in Batavia, Illinois.
The Tevatron is the largest of the Fermilab accelerators with a circumference of about
4 miles. Here, during Runl (1992-1996), the top quark was jointly discovered by the
CDF and the DO experiments in pp collisions at 1.8 TeV center of mass energy
[27]. After the success of Runl, the Tevatron was upgraded at 1.96 TeV center of
mass energy and higher pp luminosity while both the CDF and the D@ experiments
improved their detectors in order to pursue a detailed study of the top and bottom
quarks, perform various QCD and electroweak measurements and search for new
physics near the TeV scale.

In Figure 2.1 a schematic for the Run2 accelerator complex is presented. The
protons are extracted from hydrogen gas placed under an electrically charged dome.
Negatively charged hydrogen ions are produced and accelerated under the dome-
ground potential difference of 750 KeV. A 500-feet linear accelerator is used to further
accelerate the ions up to 400 MeV. Then, the hydrogen ions pass through a carbon foil
where the electrons are stripped off leaving only the protons. Protons are transfered
to a 75 m radius synchrotron called the Booster, where their energy is increased

13



to 8 GeV. A synchrotron is a circular array of radio-frequency (RF) cavities. As
charged particles move through the synchrotron, they are accelerated by the electric
component of the RF oscillating electromagnetic field in the cavities. The accelerated
particles travel in bunches® which are tens of centimeters long and less than 10~ mm?
thin. Particles build up energy progressively, traveling thousands of times through
the accelerator ring each second. As the velocity of the particles changes, so does the
frequency for each bunch to pass through any given region of the accelerator. The
oscillation of the RF fields is synchronously adjusted with the increasing speed of the
particles, in order to produce always a positive boost upon the particles in the beam.

The next phase of the acceleration takes place in the Main Injector, a synchrotron
having seven times the circumference of the Booster which can accelerate protons up
to 150 GeV.

Some protons are extracted at an energy of 120 GeV from the Main Injector and
used to bombard a nickel target and produce antiprotons which are transfered to the
accumulator and than to the debuncher®. Here antiprotons are stochastically cooled
and initially stored. When enough antiprotons are accumulated they are transfered
into the Main Injector and accelerated up to an energy of 150 GeV.

The Tevatron can accept both protons and antiprotons from the Main Injector
and accelerate them from 150 GeV to 980 GeV. Tevatron magnets are made of su-
perconducting niobium/titanium alloy and are kept to a temperature of 4K. In the
collider mode, after the protons and antiprotons are fully accelerated the beams can
be stored for hours and the Tevatron is functioning as a storage ring. During a normal

5A typical bunch contains up to 10! — 10'2 protons or antiprotons.

6The accumulator and debuncher complex is sometimes referred to as the Antiproton Source.
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Figure 2.1: A schematic of the accelerator complex at Fermilab.
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operation mode, 36 bunches of protons and 36 bunches or antiprotons are circulating
the Tevatron ring. Beam crossings take place every 396 ns at two different locations
in the ring named B0 and DO where the CDF and respectively the D@ experiments
are built. The record instantaneous luminosity achieved so far is 10.3x103! cm=2s~!
(July 2004). This number will hopefully increase over the next few years with the

addition of an antiproton recycler, improved antiproton production, cooling and col-

lection efficiency.

2.2 The CDF Detector

The Collider Detector at Fermilab (CDF) is a general purpose experiment com-
bining tracking, calorimetry and muon detection. It was built with the intention of
exploring a broad range of physics topics in pp collisions at 1.96 TeV. Pending the
start of the LHC scheduled toward the end of this decade, this is the world highest
energy available in the laboratory.

A schematic view of the detector can be found in Figure 2.2. The main tracking
device is a drift chamber having cylindrical symmetry around the beam axis. It is
contained in a 4.8 m long superconducting solenoid, 1.5 m in radius that generates
a 1.4 T magnetic field parallel to the beam axis. Next, outside of the solenoid,
sit the calorimeters where most of the particles are absorbed and their energy is
measured. Muons interact weakly with matter and usually escape the detector. They
are identified in the muon drift chambers, constructed at the periphery of the detector.
Inside the solenoid, closest to the beam pipe, is placed the silicon system yielding

precise position information on charged particle tracks.
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Figure 2.2: Elevation view of one half of the CDF detector.

A more detailed picture the tracker system system is shown in Figure 2.3 where
the detector coverage as a function of pseudorapidity is indicated. The pseudorapidity

7 is defined as a function of the polar angle § made with the proton beam direction.
n = —In(tan(0/2)).
2.2.1 The Silicon Detectors

In Run2 the silicon system (SVX2) has a larger geometric acceptance than the
silicon device used during in Runl. With a total length of 96 cm it covers 2.5 o of

the pp luminous region. It is composed of five layers of double sided silicon microstrip
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Figure 2.3: The CDF tracking system.

detectors with radii between 2.4 and 10.7 cm. The strips are oriented” for r — ¢
measurements on one side and for r — z or stereo measurements on the other. In order
to reduce residual interactions, silicon crystals are supported by low mass substrates
called ladders. Ladders are mounted on precision machined beryllium bulkheads that
also support the water colling system for the read-out electronics. The radiation
hardened read out chips are mounted on electrical hybrids on the surface of the
silicon detectors. A chip has 128 channels, each channel having charge sensitive
amplifiers, pipelined buffers and ADC circuits. The system has a total of 400505
channels and is read out by a highly parallel data acquisition system in 10us. In order
to increase the hit efficiency an additional single sided silicon microstrip detectors

"2,r,¢ are here the cylindrical coordinates where z axis lies along beam direction
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layer called Layer00, has been mounted on the beryllium beam pipe at a radius of 1.7
cm, generating r — ¢ hit information.

A supplementary tracking device is the Intermediate Silicon Layer (ISL). It consist
of a single layer of double sided silicon chips placed at 22 cm radius in the central
region and two layers of double sided silicon chips placed at 20 and 28 cm in the
plug region (1 < |n| < 2), which is otherwise poorly covered by tracking in the drift
chamber. The ISL system has a total 268800 channels.

The integrated silicon system allows impact parameter resolution as precise as
15 pm for high p; tracks which is essential for identification of long lived particles.
The performance of the device versus time will depend on the integrated radiation
dose. The innermost system (Layer00) will receive some 0.5 MRad/fb. The device is
expected to have stable performance up at least to 1.5 MRad. More information on

the silicon system can be found in [28].

2.2.2 The Central Drift Chamber

The Central Outer Tracker (COT) is a cylindrical 3.1 m long drift chamber, with
a 40 cm radius on the interior and 138 cm on the exterior, as shown in Figure 2.4.
It is filled with 50:50 Ar-Et gas which has a drift velocity of ~ 50um/ns. As a
charged particle passes through, it ionizes the gas. Anode wires in the chamber
collect the ionization electrons. By measuring the drift time of the electrons, 140 ym
single hit resolution can be achieved. Wires are grouped on 8 alternating axial® and
stereo® superlayers. Each superlayer has 12 wires, drift times are of the order of 200

ns. The total number of channels is 30240 and the material in the device accounts

8oriented along the z axis

9Yoriented at +2° away from the z axis
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Figure 2.4: Partial view of the COT showing the alternating axial and stereo layers.

for 1.3% radiation length at normal incidence. By matching the hits within each
layer, track segments are reconstructed. Track segments in different layers are then
used to reconstruct the helix of a charged particle trajectory. From the curvature
of a charged particle track moving in magnetic field, the transverse momentum p;
is measured with a resolution of dpr/p% ~ 0.0015 (GeV/c)™!. The longitudinal
momentum p, can be deduced from the p, value and the helix geometry. Charged
particle tracks are measured down to 300 MeV /c transverse momenta. When silicon
information is included the momentum resolution is: dpr/p% < 0.001 (GeV/c) L.
Reduced efficiency may arise not so much from nonexistent signal but from attaching
wrong hits to a track. Tracking reconstruction efficiency depends on the number of

minbias events in the detector and as a consequence on luminosity. For luminosity as
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high as L = 5 x 103! em~2s~!, for isolated tracks with pr > 10 GeV the COT tracking
efficiency is measured to be 98% up to |n| < 1 [29]. The overall tracking efficiency

up to |n| < 1is ~95%. A more detailed description of the COT can be found in [30].
2.2.3 The Calorimeter System

Calorimeters are used to measure particle energies. They are composed of a dense
material where the incident particle losses its energy by successive scatterings produc-
ing a shower of secondary particles. In the course of showering, most of the incident
particle energy is eventually converted into “heat”, which explains the name calorime-
ter. An scintillator material is used to collect the energy. Signal from the scintillators
is sent to photomultipliers, amplified and measured allowing reconstructing the energy
of the incident particle.

The calorimeters are grouped in 2 regions: central (|| < 1.1) and end-plug (1.1 <
In| < 3.6). Cerenkov counter luminosity monitors are placed in the forward region
(3.6 < |n| < 4.2). The electromagnetic calorimeter system (EC) is placed next
to the tracking system, the hadronic calorimeters (HC) are positioned further to
the exterior. Lead absorber is used for the electromagnetic calorimeter (total of 18
radiation lengths), iron for the HC (total of 6.8 absorption lengths). The geometry
of the tower is projective pointing to the nominal interaction point with cell size
AnxAg¢ =~ 0.1x0.15. Located six radiation lengths inside the central electromagnetic
calorimeter, proportional wire chambers provide a shower position measurement in z
and r¢ view, used to distinguish electromagnetic from hadronic showers. Proportional

chambers near the solenoid detect early shower development in the detector coil. By
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matching jets with the tracks reconstructed in the COT, one can infer if the shower
was produced by a charged or neutral particle.

In the case of an incident photon or electron, the incident particle will produce a
shower of secondary electron-positron pairs and photons which is often contained and
thus measured within the electromagnetic calorimeter. The energy resolution for the
central electromagnetic calorimeter (CEM) is 14.0%/+/E. Incident hadrons produce
also nuclear fragments as secondary particles. While the showering may start inside
the EC, the energy will be absorbed fully only in the later layers of the hadronic
calorimeter. The energy resolution for a single jets in the HC is 50.0%/@. An
objective at CDF for Run2 is to calibrate the absolute jet energy scale to a 2.5%
precision. A detailed description of CEM and HC can be found in [33] and [34]
respectively. A review of the latest calorimetry upgrade for Run2-b can be found

in [35].
2.2.4 The Muon System

Muons are identified in drift chambers surrounding the calorimeters, for rapidities
up to || < 1.0 with a lower momentum threshold of p; > 1.4 GeV/c. Muon system
is composed of the Central Muon Detector (CMU) with a rapidity coverage |n| < 0.6,
which consist of muon drift chambers, placed parallel to the beam outside the HC
but protected from residual hadronic interactions by a 5.5 absorption lengths steel
shielding. Further to the exterior, the Central Muon Upgrade (CMP) is also placed
parallel to the beam, protected by an additional 60 cm thick layer of steel, having a
In| < 0.6 rapidity coverage. The chambers form a “box” around the central detector

and consist of four layers of single wire drift tubes. The tubes run in proportional
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mode with a drift time of 1.4 us. The signal from these chambers is read out by a
single TDC per wire and trigger information is formed from coincidences with signal
from nearby wires in the CMU chambers. Also for triggering purposes a layer of
scintillator counters (CSP) is installed outside the surface of the drift chambers wall.

The Central Muon Extension consists of drift tubes (CMX) and scintillator coun-
ters (CSX) located at each end of the central detector between 42° —55° polar angles,
extending the rapidity coverage between 0.65 < n < 1.0. No additional steel shield-
ing was added, at these large angles, since there is already enough material in the
structure of the detector.

The Intermediate Muon System (IMU) extends rapidity coverage up to 1.5. It
consists of a combination of drift chambers and scintillator counters placed behind
toroid magnets. There is no trigger associated with the IMU yet and we will not use
information from IMU for this analysis. More information on the CDF muon system

can be found in [36].
2.2.5 The Event Trigger

The collision rate inside the CDF detector is about 1.7 MHz. However the rate
available for recording useful information on tape for analysis is much smaller: 50-80
Hz. The CDF trigger system is designed to select online events of physics interest
and discard the much more abundant minimum bias events where p and p hardly
interact with each other. One should keep in mind that the ¢ cross section is 9

10 ¢cross section. Having an efficient

orders of magnitude smaller than the minbias
and accurate trigger system is vital to any high luminosity collider experiment. The

10The minbias data is collected with almost no trigger bias, and typically consist of events where
the proton and antiproton hardly interact and a few low pr particles are produced.
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trigger system is designed to look for events where a hard interaction takes place,
resulting in high Pp particles, jets, energetic electrons or muons and events with a
large imbalance in transverse energy signaling the presence of a weakly interacting
neutral particle like a neutrino.

Event triggering is performed at three successive levels as shown in Figure 2.5.
The Level-1 trigger has a 40KHz accept rate. Events that pass Level-1 are further
analyzed by the Level-2 trigger which has a 300 Hz accept rate. Finally the Level-3
trigger will allow events to be written to offline storage at a rate of 50-80 Hz. For
luminosities smaller than 4 x 103! cm™2s7!, the trigger dead-time was less than 10%.

The Level-1 trigger input comes from the calorimeters, the COT and the muon
detectors. An important upgrade made for Run2 is that now tracks are reconstructed
within 2.7 us after each beam crossing collision by a dedicated processor called the
eXtremely Fast Tracker (XFT). A detailed description of the XFT can be found
in [31]. Matching tracks to a electromagnetic cluster in the calorimeter or to track
segment in the muon chambers allows electron and muon identification to be done
on line in time for the Level-1 decision to be made. Tracks are also used in triggers
such as B — mt7~. The decision to keep an event is based on numbers and energies
of electrons, muons, jets, missing transverse energy and tracks. The decision time for
the Level-1 trigger is 5.5 us.

The Level-2 trigger has a 20 us decision time. It is made of custom electronics
using all the information from the Level-1 but with increased precision. Data from
the shower max detector allows improved identification of photons and electrons.
Jet reconstruction is done online. An important component of the Level-2 trigger

is the Silicon Vertex Trigger (SVT), which triggers on tracks having large impact
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Figure 2.5: The Run2 trigger block diagram.

parameter, often a indication for the presence of heavy flavor quarks in the event.
The SVT system is described in detail in [32].

CDF front end electronics is fully pipelined allowing it to store information for
multiple beam crossings. A Level-2 accept initiates a full detector read out. At

the Level-3, a computer farm performs a complete event reconstruction using the
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offline reconstruction software to validate the Level-1 and the Level-2 decision. More

information on CDF trigger system can be found in [37].
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CHAPTER 3

EVENT RECONSTRUCTION AND SIMULATION

3.1 Introduction

Using the event trigger to select events of physics interest out of the 3 million
beam crossings that take place every second inside the CDF detector is the first step
toward physics analysis. After the detector information for the triggered events was
read on-line and delivered to permanent storage, each event is later reconstructed
offline with increased accuracy. In trying to further select collisions of interest for a
given kind of physics, a few classes of objects are reconstructed within each event:
electrons, muons, jets and the missing transverse energy. These objects are the flags

we use for offline event selection before more specialized physics analysis is performed.
3.1.1 Reconstruction of Jets

The initial phase of pp collisions at these energies is dominated by large Q% hard
interactions, which can be described by the perturbative QCD. A number of high
transverse momentum quarks and gluons may be produced, on which the effect of the
p,p remnants is minimal. Quarks and gluons do not exist as free particles and they
fragment into a spray of hadrons collimated along the direction of the initial parton

momentum. These particles are detected as a cluster of energy in the calorimeters,
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forming a jet. Jet structure has been identified in scatterings with transverse energy
as low as 6-8 GeV [38]. At Tevatron in Run2 jets are expected to form with transverse
energy as high as 600 GeV.

Jet reconstruction algorithms aim to find clusters of energy in the calorimeters
and associate these to the energetic partons produced during the initial phase of the
hard scattering process, before their fragmentation into many lower energy particles.
For this analysis the JETCLU [39] reconstruction algorithm has been used. A brief
description of the JETCLU follows here. First, a list of the towers in the calorimeter
and their energy is formed. Towers containing an energy larger than 1 GeV are called
seed towers. Starting from the highest seed tower, additional seed towers are added
within a 7 X 7 tower window, forming preclusters. The preclusters in an event are
ordered according to their E7. For each precluster, a cone of radius A® x An = 0.4
is reconstructed around the E7 weighted centroid. within this cone, additional towers
above 0.1 GeV are added to the precluster, and in this way a cluster is formed. The
process is repeated until the tower list is table. At this point towers are not uniquely
assigned to clusters. Two clusters are merged if common towers carry more that 75%
of the energy of the smallest cluster. Otherwise the clusters are split, the common
towers being assigned to the closest tower. In the end towers are uniquely assigned to
clusters. The process is iterated until the tower list for all clusters is stable. Finally
each cluster is defined as a jet.

This algorithm suffers from a few drawbacks. It is not infrared safe, meaning that
soft radiation between two jets may cause a jet merging when above seed threshold.
It is not collinear safe: jets are not reconstructed if the seed energy is below the

threshold, when jet energy is split among several detector towers. Also sometimes
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the number of reconstructed jets depends on the initial 7 seed ordering. Improved
jet algorithms have been recently developed in order to correct for some of these
drawbacks by looking for stable cones around every seed tower (Midpoint), by not
using seeds at all (Seedless) and by getting away from the cone clustering paradigm
(K7). A brief description of all these algorithms can be found in [40].

In the CDF detector pp collisions take place inside a luminous region having a
Gaussian distribution with o, = 30 cm along the beam axis and o,y ~ 30 pm in
the transverse plane. The spread of the collision points in the plane transverse to the
beam direction has some dependence on z coordinate, which is slightly different along
the x and the y directions. The jet E7 is reconstructed with respect the z position
of the event. The event z position is found using COT+SVX reconstructed tracks
which were fitted using a x? minimization algorithm PrimeVtx [41] which allows
vertex reconstruction with a resolution as high as 15 ym in the z — y plane and 200
pm in the z direction, depending on the number of tracks and the topology of the
event. More than one pp collision can take place during a beam crossing and multiple
primary vertices may be reconstructed. Since we select ¢ events in the “lepton+jets”
channel requiring one isolated high pr lepton, the z position for the hard scattering
event is chosen to be the nearest primary vertex within 5 cm of the z position of the
point of closest approach between the lepton track and the beam line. In order to
ensure good event reconstruction the primary vertex position is required to be within
60 cm from the center of the detector, which covers ~95% of the pp luminous region.

Jet energy measurement is affected by both detector and physics effects. Detector
effects include nonuniformities in the detector response as a function of rapidity,

cracks in the calorimeter and differences between central calorimeter response and
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plug calorimeters. Physics effects arise from the underlying soft interaction of the p,p
remnants, multiple pp interactions and the energy that flows out of the AR = 0.4 cone
radius. Corrections are used to reproduce as accurately as possible, on average, the
energy of the initial partons from the energy deposition measured by the calorimeters.

Jet energy correction are performed on 6 successive correction levels:

e The first correction level accounts for nonuniformities in the detector and are
designed to make detector response a uniform function of rapidity. These are
determined mostly from dijet balancing and are applied to both data and Monte
Carlo simulation (MC). Dijet balancing is performed in two jet events by bal-
ancing energy in two jets, one being measured in a precisely calibrated portion
of the detector (central), the other being measured in some other rapidity region
that needs to be calibrated. The CEM absolute energy scale was set using the

7 — eTe  mass peak, the CHA scale was taken from Runl.

e The second correction level accounts for time dependent modifications in the

calorimeter response due to aging phototubes and is applied only to the data.

e The third correction level takes care of scale differences between detector sim-
ulation and the real detector response. Such differences appear close to the

detector calorimeter boundaries due to energy leaking out of the detector.

e The fourth correction level subtracts the average contribution due to multiple
interactions as estimated from minbias trigger data. The number of recon-
structed secondary vertices is used as a measure for the number of additional

soft pp scatterings.
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e The fifth level of corrections are the absolute energy scale corrections. They
account for nonlinear calorimeter response due to many lower energy particles
in a jet, energy leakage and nuclear absorption. The calorimeter simulation is
based on a parametrization of the calorimeter response to single particles using
data as a function of rapidity, azimuthal angle and particle energy. The central
calorimeter response to single particles (e,m) was determined from test beam
data at high energy and minbias events at low energy. The detector simulation
is tuned to reproduce single particle response. In order to model the response
of the detector to jets, fragmentation models are tuned to reproduce charged

particle multiplicity and pr distribution from data.

e The sixth level of correction accounts for the energy outside the jet clustering
radius and energy from soft interactions of the p and p remnants (the so called
underlying event). These are applied to both data and MC when the energy of

the original parton needs to be known.

The 5-th and 6-th correction levels are applied in those cases where the full energy
of the initial partons is needed, for instance in a top quark mass reconstruction
analysis. Since our strategy for this analysis is to compare data to MC simulation
in order to estimate a tf contribution to the data sample, jets used in this analysis
will be only corrected up to the 4th level which include: relative corrections (data
and MC), time dependent corrections (data), scale corrections (data and MC) and
multiple interaction (data and MC).

The total uncertainty on the jet energy for this analysis is between 5% and 12%,
for jet Er in the 15-100 GeV range [42], with jets in the central calorimeter being
slightly better measured than jets in the plug region. Out of this, the uncertainty
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on the absolute energy scale is ~ 4.5%. In the initial phase of Run2, the jet energy
corrections at CDF have been driven by the previous Runl experience using the
JETCLU cone algorithm. This does not take into account tracking information. Since
some 2/3 of particles in a jet are charged and since the track momentum resolution
is much better than the calorimeter resolution, including tracking information might

improve the jet energy resolution in the future.
3.1.2 Electron and Muon Identification

In a W boson decay e, y or 7 leptons may by produced with the same probability.
The electron and the muon leave distinctive signals in the detector. Tau leptons
have a relatively short lifetime (0.29 ps) and decay soon after being produced. A
fraction of the 7’s can decay into a e or y and two neutrinos and thus contribute
to the signal we observe in the “lepton+jets” channel. In many cases though, the
7’s decay hadronically!! producing jets. Tau jets can in principle be separated from
hadronic jets but this cannot be trivially done. Here, we will limit ourselves to
select events where one high pr, isolated e or p is detected accompanied with jets
and missing transverse energy. The selection criteria described below are designed to
select the leptonic W decays and reject softer e or y produced in b, c meson decays, jets
misidentified as leptons, conversion electrons and cosmic ray muons. Other physics
analysis may use different definitions and cuts for an object identified as electron or
muon.

Electrons are identified by matching a COT track to a cluster of energy in the
EM calorimeter. Only electrons detected in the central calorimeter are considered for

this analysis. A lower 20 GeV cut is made on the lepton energy in order to eliminate

" The 7 lepton decays hadronically ~ 65% of the time.
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softer electrons from background processes. In order to make sure the electron shower
is fully contained within the calorimeter boundaries and well measured, fiducial re-
quirements are made on the electron shower position as identified by the proportional
chambers located inside the CEM calorimeter at the approximate shower maximum.
The momentum of the track associated with the lepton can not be smaller than 1/2 of
the electron energy. This is not a tight requirement and allows for photons being ra-
diated off the electron and detected in the EM calorimeter at the same time with the
original electron. To reject stray charged hadrons like 7% or hadronic jets having only
one charged track, the energy deposited in the hadronic calorimeter can not exceed
a certain fraction of the energy deposited in the electromagnetic calorimeter. Also,
the lateral shower profile in the calorimeter cluster is compared against that observed
for test beams electrons. Jets reconstructed in the electromagnetic calorimeter which
are identified as electrons are removed from the hadronic jets list. A series of quality
requirements are made on the COT electron track, see Table 3.1 for more details.
Sometimes a photon close to the detector components (wires, pipes, metal walls) may
produce a pair of conversion electrons. Electrons from photon conversion are iden-
tified by looking for tracks with opposite charge lying very close in the direction of
the electron track. Events with identified conversion electrons are removed from the
event list.

Muons are identified by matching a COT track to track segments in the muon
chambers. Quality requirements are made on the COT muon track. The muon
transverse momentum is measured from the reconstructed COT track which must
be consistent with being a minimum ionizing particle leaving only a small amount of

energy in the electromagnetic and hadronic calorimeters. The momentum of the track
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must be larger than 20 GeV, and is subsequently corrected for the small deviation in
beam position from the center of the detector. In order to separate muons produced
in a pp event from cosmic ray muons, a cut is made on the distance of closest approach
between the track and the beam line. Further cosmic muon identification is achieved
by using the timing capabilities of the COT to distinguish particles traveling into
from those traveling out of the detector. Events with muons consistent with being
cosmic ray muons (traveling from the exterior into the detector) are removed from
the event list.

Leptons produced in a W boson decay tend to be more isolated than leptons
produced in background processes, mostly b and ¢ quarks decaying leptonically and
misidentified jets. For both electron and muons, we require that the extra calorimeter
energy in a cone of radius R = 0.4 around the lepton direction to be less than 10%

of the lepton energy (the lepton isolation I < 0.1 ).
3.1.3 Missing Transverse Energy Measurement

Neutrinos do not interact in the detector. Since the initial proton and antipro-
tons have negligible transverse motion with respect to the beam!?, the presence of
a neutrino in an event is assumed when large imbalance in the transverse energy is
detected. The transverse energy is defined as Pr=—|%;E';| where E* is the energy
in the calorimeter cell ¢ within |n| < 3.2 and 7; is the direction unit vector of the
tower in the plane transverse to the beam direction. Muons are not typically included
when doing the missing energy budget since many identified muons can be produced
by cosmic rays. Some muon tracks may be fake muons produced by punch-through

into the muon chambers from the hadronic jets in the calorimeter and since they

12 Also the partons inside p,p have negligible transverse momentum.
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Variable

Z and cosmic veto

Value
Global event quantities
applied
> 20 GeV

Missing Erp
A¢(MET,Lead Jet)
# tight leptons

> 0.5 and <2.5 if Fr< 30 GeV
1

Jets

Er
7]

> 15 GeV (corrected to level 4)
<2

Tight electrons

Fiducial and CEM
Er
Pr

E/p (if pr < 50 GeV/c)

Ehad/Epnm

Lshr

|Az|

|Az|

X%trip

| Az

‘thw - ZO‘

# axial segments
# stereo segments
Isolation

Not a conversion

=1

> 20 GeV

> 10 GeV/c

< 2.0

< 0.055 4+ 0.00045*E
< 0.2

< 3cm

> -1.5 and < 3.0 cm
< 10

< 60 cm

< dcm

>3

>3

< 0.1

AA > 0.04 and Ar > 0.2

Tight muons

Region

br

Egm

Enap

\A$|CMU
\A$|CMP
|A-77|CMX

|AZO|

‘thz - ZO‘

do

# axial segments
# stereo segments
Isolation

CMUP or CMX

> 20 GeV/c

< max(2, 2 + 0.0115*(p-100))
< max(6, 6 + 0.0280*(p-100))
< 3.0 cm

< 5.0 cm

< 6.0 cm

< 60 cm

<5 cm

> 0.02(0.2) cm with (without) SVX
> 3

>3

< 0.1

Table 3.1: Summary of the event selection criteria.
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have no corresponding COT track, their momentum can not be precisely measured.
Sometimes real muons resulting from in-flight meson decays may be matched to a
wrong COT track and be mismeasured. However when an isolated energetic muon
originating from the primary vertex is identified, its momentum is subtracted from
the missing energy and to avoid double counting, the Fr calculation is corrected for
the energy in calorimeter cells that contain the muon track.

There are situations where the missing transverse energy is not the result of a
neutrino from a W boson decay: since the calorimeter energy resolution is limited'?
it may happen that the energy of a jet is mismeasured, resulting in fake missing
transverse energy; also neutrinos can be produced in the decay chain of b particles
producing real missing energy. Sometimes a jet containing a single charged track and
several neutral particles like 7%’s, can fake a lepton. When Fr is accompanied by
a real or misidentified lepton, the event has the characteristics of a W — [v event.
Such events where Fr is not from a W boson decay are generically called multijet
fake events (or QCD fakes).

In Figure 3.1 the distributions in £ versus the azimuthal angle between missing
energy transverse direction and the direction of the leading jet, A¢, are shown for a
nonisolated data sample (I > 0.2), the Monte Carlo simulated W+jets background
and the tf signal. The kinematics of the nonisolated data sample are expected to be
similar to the kinematics of multijet fake events. One can see in Figure 3.1 that most
of the events with I > 0.2 are clustered at J7 having small angles with respect to
the leading jet. In order to reduce the occurrence of such events in our data sample
(I <0.1), will try to apply a cut at low Fr by removing events having the direction

13The energy resolution is 14.0%/vE (GeV) for CEM and 50.0%/vE (GeV) for HC.
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of the Fr close in azimuth to the direction of the leading jet in the event. Our
estimates ' for the number of QCD fake events in our data sample show that such
a cut is indeed efficient, removing ~40% of the QCD fakes in our data sample with

the price of only a 5% loss on signal efficieny.

3.2 The Event Selection

We present in this section the event selection requirements for this analysis, see
also Table 3.1 for a compact summary and precise numerical values. We correct jet
energy up to Level 4. We ask for at least three jets with corrected Er > 15.0 GeV and
rapidity 7 < 2.0. In order to make sure the jets and the leptons are reconstructed from
the same interaction point, the event z position is defined by the closest reconstructed
vertex with at least two good quality COT tracks within a 5 cm window from the
z position given by the identified tight lepton track. In order to ensure good event
reconstruction the primary vertex position is required to be within 60 ¢cm from the
center of the detector.

The missing transverse energy after corrections must be larger than 20 GeV, with
the above mentioned cut on Fr direction if 20<H7r<30 (GeV). The various cuts for
electron and muon selection have been studied and optimized by the Top Group at
CDF. In this analysis we use CEM electrons, CMX and CMUP muons. Including
plug electrons could produce a 30% increase in the acceptance for ¢ events. But
since there is no established method to identify conversion electrons from real plug
electrons, we do not yet include plug electrons here. We require a single energetic
lepton (Er > 20 GeV), either a electron or a muon, with isolation I < 0.1. The

14Gee Section 5.3.
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(a) Data Sample (nonisolated leptons), Nz 3

events

events

events

Figure 3.1: The angle between the K and the leading jet in the transverse plane
versus the 7 for (a) our model of the multi-jet background from non-isolated lepton
data sample, (b) ¢t Monte Carlo, and (c¢) W+jets Monte Carlo.
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COT track associated with the lepton must have at least 3 axial and 3 stereo good'®
segments.

In order to distinguish electrons from hadronic jets, a cut is made on the ratio of
energy deposited in the CEM to the energy deposited in the hadronic calorimeter:
FEhea/Egp. The momentum of the track associated with the electron can not be
smaller than 1/2 of the energy measured in the CEM. Cuts are made on the distance
between the extrapolated track position and the CES shower position as measured
in the 7 — ¢ and z views: Az and respectively Az. The X%, is a measure for the
compatibility of the CES shower profile with that from test beam electrons.

Conversion electrons are identified by looking for a nearby oppositely charged
track within Ar < 0.2 cm distance in the r-¢ plane and having up to AA < 0.04
difference between the cotangent of polar angles. Sometimes the conversion partner
has an additional conversion track itself. This may happen when an electron radiates
a virtual photon which is converted into a pair of real electrons. We do not remove
events where multiple conversion partners are found in order to reduce the over-
efficiency of the conversion algorithm.

To reject cosmic ray muons a cut on the muon track impact parameter dy, is made.
Muon tracks in the COT must extrapolate to a track segment in the muon chambers
within a maximum distance Az, and leave an energy deposition in the electromagnetic
(hadronic) calorimeter Egys, (Eyap) consistent with a minimum ionizing particle.

In order to keep the cross section measurement orthogonal with the ¢ cross section
measurement using dilepton decays, events with two isolated leptons are rejected.
When an isolated electron is detected in the plug in addition to a central isolated

15A good track segment must have at least 7 hits out of a total of 12 possible hits.
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electron or muon, the event is also excluded. A measurement of the ¢f cross section
in the dilepton channel has been published elsewhere [43].

We veto events consistent with a Z decay when in addition to the primary lepton
a second object of opposite charge exists forming an invariant mass within the 76-106
GeV window. The second object can be an isolated track or a jet with EM energy

fraction >95% if the primary lepton was an electron.
3.2.1 The Data Sample

The data sample for this analysis was collected by the CDF experiment during
Run2, between March 2002 and September 2003. The datasets were based on the
4.8.4 offline release with calorimeter-dependent reconstruction remade in 4.11.1. In
order to exclude those runs where parts of the detector did not function properly,
quality requirements are made for all runs. Such requirements cover most of the
detector components, however the silicon is not required to be active in this data
sample. The integrated luminosity of the sample was measured [75] to be 193.5 +
11.4 pb~! for CEM and CMUP triggers and 175.3 & 10.3 pb~! for CMX triggers,
were the uncertainty of 5.9% comes from 4.4% uncertainty on the acceptance of the
z cut and 4.0% from the calculation of the total pp cross section (60.7 & 2.4 mb).

Table 3.2 shows the number of observed events in the data as a function of recon-
structed jet multiplicity bin. All of the selection criteria described above have been

applied. The data is broken out in terms of electron+jets and muon+jets.
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Njets | CEM CMUP CMX | Total
0 99454 49672 26531 | 175657

1 9407 4617 2365 | 16389

2 1442 705 349 2496
254 101 46 401
78 33 7 118

w

v
W

Table 3.2: The number of selected events as a function of jet multiplicity for 193.5
pb~! of CEM and CMUP and 175 pb~! of CMX data samples.

3.3 Monte Carlo Event Simulation

Monte Carlo (MC) methods use a set of computer generated pseudo-random
numbers to sample the probability distribution functions for physical processes and
stochastically simulate interactions that take place inside the detector.

Event simulation is critical for the physics analysis at CDF. Because the detector
does not cover the full 47 solid angle and because of inevitable inefficiencies, the
information obtained from any given event is always incomplete. In addition to t¢
events, background events that partially resemble the ¢t final state are more likely to
be produced. In the “lepton+jets” channel the signal to background ratio (S/B) is
~ 1/5. Thus it is very hard, if not impossible, to categorize any given event as signal
or background. However certain event features statistically show different behavior
for signal and background events. MC simulation is the instrument we use to estimate
the behavior of signal and background events for a statistical significant sample which
can be reliably translated to probability distribution functions. By analyzing the data
set we obtain after event selection, the fraction of signal events in the sample can be

estimated using a statistical procedure like a maximum likelihood fit.
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Event simulation is performed at three successive levels:

e The generation level is where physical processes like pp — tt are simulated.
Particles are produced and allowed to decay according to their known properties,
usually those compiled by the Particle Data Group [6] or in some cases those
given by the tree level SM predictions, though the user is allowed to vary most

of the parameters.

e At the second level, MC simulation is used to model the interaction between
particles and the detector “producing” hits in the detector'®, energy deposition
in calorimeters etc. The detector simulation is performed with the CDFSim
package [44] developed by the CDF collaboration. It is based on a parametriza-

tion of the detector response to particle kinematics which is derived from data.

e At the third level, events are reconstructed using the standard offline recon-

struction software as would be done for real data.

The tt events are generated using the PYTHIA [45] and HERWIG [46] MC sim-
ulation programs. Most of the background processes are simulated with ALPGEN
[47] MC simulator. The events are generated starting with the highest momentum
scale interaction described by tree level diagrams with few virtual energetic final state
particles. Shower algorithms are used to evolve the initial partons down in the energy
scale by emitting other partons according to perturbative calculated probability dis-
tributions. Infrared and collinear singularities are avoided by requiring the final state
partons to have a transverse momentum exceeding some fixed cut off value and to be

separated by more than some minimum AR value. When the evolution energy scale

16The COT chamber simulation is not directly a hit level simulation.
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becomes small, the running coupling grows, the phase space fills with mostly soft par-
tons and the perturbation theory breaks down. To deal with this, the perturbative
emission is cut off at a fixed infrared cutoff when partons are confined into hadrons ac-
cording to phenomenological models, in a process referred to as hadronization. Both
PYTHIA and HERWIG have their own hadronization models.

The top quark in particular lives a short time (~ 4 x 1072 s) and it decays before
the cut-off of the parton shower: its decay is just one of the steps in the shower evolu-
tion. The evolution for other heavy quarks is modeled using fragmentation models. In
PYTHIA the b and ¢ quarks are fragmented according to the Peterson parametriza-
tion [48]. HERWIG uses its own fragmentation model. After hadronization, heavy
flavor hadrons are decayed using a dedicated MC calculation developed by the CLEO
experiment [49)].

For pp collisions, in addition to the hard scattering portion of the event, the soft
interaction of the remnants of the proton and antiproton is modeled using data from
minimum bias events.

The ALPGEN MC event generator is designed for simulation of multijet processes
accompanying W= and Z boson production, having exact leading order matrix ele-
ment calculation for up to 6 hard separated partons in the final state. The subsequent
evolution of the final state, including the approximate evolution of the parton shower

and hadronization, is handled using HERWIG MC simulation.
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CHAPTER 4

NEURAL NETWORKS

4.1 Introduction

The original motivation of the research done on neural networks were the early
attempts to model the processes that take place inside the brain. The biological
neuron: Figure 4.1, is a single cell that receives electric signal through dendrites
from ~ 1000 neighboring neurons, performs a integration of the received input on
a limited spatial and temporal domain and produces an output electric potential
that propagates through the axon and, if above a certain threshold, initiates through
synaptic connections similar activity in other neurons. More information on the
anatomy and the function of a biological neuron can be found in [50]. McCulloch and
Pitts are credited to have initiated the investigations on neural networks by proposing
a simple model of a neuron as a binary threshold unit [51]. In this model, a neuron “;”
computes a weighted sum of the inputs it receives from other neurons and produces
the output 1 or 0 depending whether the sum is bellow or above a certain threshold
it

ni(t+1) = @(Z wijng(t) — ;). (4.1)
j
The state of the neurons in this model is synchronously updated, n;(t + 1) is the

output of the neuron 7 at time ¢ + 1, n; is the input received at time ¢ from the j-th

44



Figure 4.1: A graphical representation of a biological neuron.

neuron, weighted with the connection strength w;;. The output of a neuron is mod-
eled by the neuron activation function, chosen in this case to be a unit step function:
O(z) =1ifz > 0 and O(z) = 0 if x < 0. Provided that it is complicated enough,
if adequate values for thresholds and connection weights are chosen, a synchronous
network of such neurons is capable of performing any computation accessible to a
digital computer [52]. The biological realism of this model can be enhanced by im-
plementing continuous nonlinear activation function functions, asynchronous neuron
updating and stochastic neuron response to a given input.

From a slightly different perspective, it is often argued that human pattern recog-
nition is mainly learned and it is believed that by using the large degree of parallelism
and redundancy among the neurons in the brain, inter-neuron connection strengths

are used to store memory.
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While such ideas are still the subject of active investigation [53], today there is
also considerable interest in the study of artificial neural networks (ANN). These sys-
tems were inspired by the original McCulloch and Pitts paradigm but their objective
shifted toward creating structures capable of performing calculations useful for prac-
tical applications. By varying the network parameters (weights, thresholds) these
systems are able to modify their behavior. Algorithms have been identified which
allow modifying parameters in order to produce within some approximation almost
any desired result. In other words, with proper “training” these networks can “learn”
to execute various tasks. ANN inspired methods are especially useful in optimization

[52] and pattern recognition [54] problems.

4.2 Artificial Neural Networks

Often in high energy physics one has to separate the signal for a process of physics
interest out of a sample dominated by background events. A class of ANN useful
for solving such problems are the feed-forward'” networks. Figure 4.2 shows the
schematic for a simple feed-forward network: the units (neurons), are organized in
layers, the output of each unit is transfered forward to the units in the next layer.

The ¢-th unit produces an output of this form:

k

Yi=4g (Z wijYj + wz‘) ; (4.2)
j=1

where y; are inputs from units in previous layers, w;; the connection weights and w; is

a unit bias weight. The neuron activation function g(z), is chosen to be a continuous

"ANN are also used in track reconstruction algorithms, where the recurrent network paradigm
[52] may be preferred.
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nonlinear function, often the sigmoid function:

g9(z) = : (4.3)

The neurons in the first layer (input units), are initialized with variables that dis-
criminate between signal and background events while the network output values can

be used to better distinguish among various classes of input events.

Input Hidden Layer Output
Layer Layer

Input #1 —=

Input #2 —-

Input #3 —=

Figure 4.2: Schematic view of a three layer feed forward network.

Before training, the network parameters are assigned random values. These are
are adjusted by training, which is typically an iterative process. The network is
presented with random signal and background events and the network parameters

are adjusted in order to minimize an error function like:

E = — Y (NN,u(i) — target(i))>. (4.4)

—
In case of a single output unit, target values can be chosen 1 for signal events and

0 for background events. The summation Y, is performed over all events N, in the
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training sample. If the network is properly trained, the network output provides bet-
ter separation between signal and background events than any of the input variables
alone.

In Ref. [53] it is argued that in terms of computing capabilities, the computa-
tional power of such networks are rather modest. Their utility and relevance for
solving practical problems comes from the large computational effort necessary to
find an appropriate set of parameters that accurately describes the training data.
The resulting network can be looked at as a compact representation of the training
data set. When presented with a new event, by making a few simple calculations
the network will be able to predict if the event is more likely to be a signal or a
background event.

As a bonus, in contrast to many parametric methods, no model assumptions need
to be made regarding the relationship and correlations among various input variables.
From a slightly different perspective, it is sometimes argued [52] that neural networks
can be successfully applied to solving problems where the functional relation between

various examples in a data sample is unknown but believed to exist.
4.2.1 A Theoretical Perspective on Classification Problems

When discussing classification problems, the Bayes rule is often invoked to judge
the quality of a classification procedure [54], [55]. A cost (risk) function can be defined
by assigning 0 for an event correctly classified and 1 for a misclassified event. For any
problem there is a lower theoretical limit on the value of the cost function that can be
achieved for a random event sample. Out of a collection of possible outcomes {Cy},

a so-called minimum risk classifier, ascribes an unknown event that is characterized
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by a vector x in a feature space, to the class C} having the highest Bayes posteriori

probability:
P(x|Ck)m(Ck)

(4.5)

where :

e P(x|C}) - is the class conditional probability distribution function, or the so
called likelihood (the probability for the event x if that event was chosen from

the class Ck).

e P(x) - is the class unconditional probability distribution function (the proba-

bility for the event x regardless of the class of the event).

e 7(Cy) is the a priori belief in the classification of the data event x. For a set
containing an equal number of signal and background events, 7(C}) is constant

and may be taken to be 1.

For the purpose of minimizing such a cost function, the Bayes rule (Equation 4.5)
gives an optimum solution to any classification problem. Applying it in practice is
not always easy because determining the class conditional likelihood function becomes
computationally challenging as the dimension of the feature space where x is defined,
increases. It is often said that ANN’s sidestep such difficulty by automatically ac-
counting for variable correlations during the training process. If the error function,
learning algorithms and network architecture are adequately chosen is can be shown
[58] that ANN output provides an estimation for the posteriori probability density

P(Ck\x)
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4.2.2 Finding the Optimum Solution

A legitimate question to ask after the training was completed is how close are
we to the theoretical Bayes bound. This problem is connected to that of finding the
global minimum of an error like Equation 4.4, defined as a function of the network
parameters w over a given training set. In order that the error function adequately
reflects the features of the problem at hand, the size of the training sample should
be large enough. In this subsection we will try discuss the relevance of training
algorithm, requirements for the size of the training sample and the number network
of parameters.

One could easily image that the landscape of the training function gets compli-
cated as the number of network parameters increases, presenting lots of local minima.
Most training algorithms do a reasonable job in finding a minimum but there is no
guarantee that the true global minimum was found or not. Of course, finding a lo-
cal minimum instead of the global minimum, means that the separation provided by
the network is not optimum, but does not automatically invalidate a measurement
obtained when applying the network to the new data.

The most popular minimization algorithms are variations of the gradient descent

method where the network parameters w are modified in small steps like:

OF
Awpy = N5, + aAw, (4.6)

where 7 is the learning rate and is usually chosen to be smaller than 2. The momentum

parameter (0 < « < 1) is added in order to improve learning stability at the end

of training. This is also called the back-propagation method because the partial
O

derivatives 7~ are calculated starting from the output unit and going to the input
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units of the network, the opposite direction of the normal flow of the calculation in
the network. These are iterative learning algorithms and follow a path in the weight
space until a reasonable minimum for the error function is found. It is quite likely that
such minimum will not be the global minimum. Using different starting points (the
random values given to the initial weights) is a method to search for a better solution.
So called global search methods have been developed such as genetic algorithms [56]
or simulated annealing [57] which are not so easily “fooled” by local minima.

There is actually a consensus in the literature that the back propagation methods
fail to find an absolute minimum in most of the cases. The convergence of this
method is relatively slow even on a fast PC. There is another side of the coin here:
it is reasonable to expect that for any problem, there is a asymptotic form of the
error function landscape that can be represented using an infinite sized data set. On
the other hand, for a finite sized training sample, the landscape of the error function
might be slightly displaced. A minimum in the landscape of the training sample may
or may not be the same with a minimum on the “ideal” landscape which, after all,
is the correct representation of the problem. Getting too close to a minimum on the
training sample is not necessarily the best thing to do and to some degree incomplete
convergence will certainly improve generalization.

Using the standard back propagation method in the JETNET [59] package on
a 8000 events training sample (¢f and W+jets), we found that while the training
error keeps on decreasing even after a few thousand training epochs'®, the errors
measured on the training sample are consistently smaller than the errors measured
on an statistically independent testing sample after 200-300 epochs.

8An epoch corresponds to making weight adjustments by reading once all events in a given
training set.
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Another useful way to look at ANN can be as a mapping function between the
input variable space to the output variable space. The above discussion is sometimes
formulated in terms of the overfitting problem: using a complicated network having
many free parameters might result in an mapping function that is a very good rep-
resentation of the training set but exhibits poor generalization (i.e. behaves poorly
when applied to new data). Overfitting can happen when the number of weights
is too large and training was performed for too many iterations. A procedure that
inhibits overfitting to some degree is to use regularization methods [52]. One such

method supported by JETNET adds a penalty term to the error function (4.4):

2
we.
E=FE+\Y —1- (4.7)
o1+ wy;
where A is a Lagrange multiplier. Performing gradient descent on this new error
function:

Awi]— = —n@E/Gwij (48)

is equivalent to subtracting an extra term ﬁgywij out of the weight w;; at each
minimization step. Using this procedure, small weights are driven to zero, removing
unnecessary connections. An alternative procedure uses early stopping algorithms
[54] where a very large number of weights may be used.

Another claim often made in the literature is that back propagation is not an
optimal training algorithm since it is not sensitive to the metric of the error function
landscape and thus does not find the best path toward minimum [55]. Certainly
normalizing the input variables to some common scale often helps in this direction [59].
More advanced algorithms attempt to use the Hessian of the error function in order

to figure out the best path toward the minimum. Since calculating the full Hessian is
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computationally demanding, various approximation methods can be used [52]. This
is now a well known result but to this day back propagation is the most often method
employed in training neural networks. The JETNET authors found it often to be
at least as good as more sophisticated training methods [59]. The claim made in
[60] is that regardless of the number of parameters, feed-forward ANN, using back-
propagation, are biased toward smoother solutions which helps generalization. This
is an optimistic evaluation which agrees with most of the experience we found in NN
literature but there is no rigorous proof for this statement.

A circumspect person might as well interpret a ANN as a very large look-up ta-
ble, providing some connection rule between the input variable space and the output
space according to the content of the training sample. Assuming that we trained the
network to reproduce correctly the training sample, what guarantee do we have that
when presented with a new event it will find the input-output relation we actually
had in mind? There may be, after all, more then one input-output rule consistent
with a given finite sized training set. The connection between the number of network
weights, the number of events in the training sample and the network generalization
ability has been extensively discussed in the literature. A treatment of the problem
from a statistical point of view can be found in [61, 62], also a short summary can
be found in [52] page 153-157. For problems having discrete outputs, a theoretical
expression is found for the minimum number of events in the training sample needed
to put an upper bound on the generalization error, although calculating this number
for real problems is difficult, and that upper bound may much overestimate the size of

the samples that are found to give good results in practice [60]. A similar treatment
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for a network having continuous outputs, using the methods borrowed from statis-
tical mechanics can be found in [63]. The theoretical results mentioned above are
difficult to apply for real problems. However a certain pattern emerges: for any given
problem, there seem always to be a critical size in the statistics of the training sam-
ple beyond which improvements in network training and generalization performance

slowly saturate.
4.2.3 The Choice for the Network Architecture

The layers placed between the input and the output unit layer are called the
hidden layers and the choice for the number of the hidden layers as well as the choice
for the number of units in each hidden layers is somewhat arbitrary. It has been
shown that a network with no hidden layer (perceptron) can be used to separate
signal vs. background only when the problem is linearly separable, e.g. a plane can
be found in the feature space that separate two regions having two possible answers.
Yet there are quite simple problems which are not linearly separable and thus can not
be solved with a simple perceptron: the boolean AND function is linearly separable,
while the exclusive OR (XOR) function is not (for details see [52], pag 94).

The universal approximation theorem for neural networks states that a continuous
function mapping the input variable space to an interval on the real axis can be ap-
proximated arbitrarily closely by a multi-layer perceptron with just one hidden layer,
provided that a large enough number of hidden nodes is used. This result holds for a
nonlinear activation functions (e.g. sigmoidal). Nonlinearity of the activation func-
tion is important because with linear activation functions a multilayer feed forward

network can be shown to be equivalent to a single layer network.
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We will consider here only networks having one hidden layer. Provided that
there is a certain degree of separation in the input space between the regions mostly
populated by signal and the region mostly populated by background, in other words
provided that the S/B separation can be achieved, a feed forward network with one
hidden layer can be trained to separate the signal from background.

A network with two hidden layers can be used to map arbitrarily closely any
function having finite discontinuities. In certain instances two hidden layers might be
useful: using two hidden layers can produce in some instances a reduction of the total
number of hidden units needed to fit a function [59]. On the other hand using two
hidden layers increases the number of local minima. As already mentioned, finding a
local minimum instead of the global minimum is not necessarily a problem.

In general, if a problem is linearly separable the application of ANN methods can
not be expected to result in a improvement in performance. A simple way to test this
is to check the performance of a network having one hidden layer. If the performance
of a network with Np;5q = 1 is close to the network having Np;sq > 1, the problem
is probably linearly separable and traditional linear regression methods might be a
better choice. But since many classification problems are not linearly separable, it
is expected for such problems that ANN methods outperform the more traditional

classification methods like linear discriminants etc.

4.3 Some Aspects of Artificial Neural Networks

The problem of overfitting, finding the minimum training size, using a training
algorithm versus another, have all been extensively discussed in literature and could

make ANN’s seem unreliable tools or as providing approximate solutions at best.
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We try here to argue that this is not the case and that ANN can be used for
making precise and accurate measurements. The problem of overfitting is acute when
example data is scarce. In many applications, especially high energy physics prob-
lems, simulating new data is relatively easy and such difficulties can be avoided in a
straightforward manner. All one has to do, after training and testing is completed,
is to use a statistically independent sample for producing the templates for fitting
the data. This way, the particular choices made during the training process: training
algorithm, the point where training is stopped, the number of network weights, the
number of hidden layers, whether regularization methods!® were used or not, become
irrelevant. An extreme but still true statement is that one might as well think of
pulling the network parameters out of a hat provided that good S/B separation is
obtained when the signal and background MC are processed with the trained network.

One often asks how large these MC-simulated samples need to be, making the
assumption that the more variables are being used in the ANN input, the larger the
training samples need to be in order to have a fine enough sampling of the multi-
dimensional input variable space. Actually it is not the dimension of the input space
important here, but it is the dimension of the output space. For a single dimensional
output, several thousand events should be enough to obtain reliable templates, re-
gardless of the number of input variables?® used by the network [64],[65]. From this
point of view, using a “complicated network” (many input variables, more hidden
nodes) versus a “simpler one” should not make any difference with respect to our

confidence in the final result.

19Regularization methods and/or pruning are in general recommended.

20 As long as the number of input variables is finite.
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On the other hand, if the distribution of the input variables in the feature space
is different in data versus MC simulation, that is, when the correlations between
variables in the training set are different from the correlations in data, erroneous
results will be obtained. This time the problem of “simple” vs. “complicated” can be
put in these terms: which network is more resistant to slight variations in the variable
correlations? A naive answer would be that a simpler network is more likely to be
less affected by such problems. We can answer this question by looking at the output
function of a 1-hidden layer feed forward ANN using the neuron activation function

in Equation 4.3 and having k£ input variables:

k
NNout(yln"'ayk) =g (w(2)+2w21 (sz] y] ))
=1

(1)

where w;"’,w® are the threshold parameters for neurons in the hidden layer and the

z(]),wé? are the connection weights from the input to

output layer respectively. The w
the hidden layer and from the hidden to the output layer respectively. In order that

the above mapping is less sensible to slight variable shifts, it must provide a smooth
mapping:

8NNout ~ 0 82NNout ~
oy, | Oyody;

The first derivative can be written as:
k
(NNous — NN2,;) (Z wPw <g, lew g +w) — gz,z(zl WDy +w§n)>>
j j=
From the expression above one can see that the derivative is small in those regions
of the variable space where the NN,,; — 1 or NN,,; — 0. One could also try to
monitor the behavior of the sum shown above in parenthesis for all events in the

training sample. The benefit of using regularization methods is obvious here since such
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methods tend to drive weights to small values. Since the sign of the weights is more or
less random, summing over a large number of hidden nodes, that is choosing a more
“complicated” network, may provide sometimes a smoother input-output mapping.

The representation of the input variables is important and preprocessing the input
data can help. One should not expect that after throwing all available information
into a network, a typical training procedure will find the best separation that there
is possible. Preprocessing the data sample may be important in order to find better
separation results. Training a network to distinguishing whether a certain number is
divisible by 3 or not, might be difficult if the input numbers are decimals. However,
if the input number are given in the base 3, a network can learn after a few examples
to recognize the last digit.

In those cases where training data is scarce, one often cited “rule of thumb” on
how many independent parameters a network is allowed to have in order to avoid
overtraining, is that the number of training events be at least 10 times the number of
independent parameters of the network. This is a “rule of thumb”, it often holds when
early stopping training algorithms are being used, but there is no real justification

for it.
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CHAPTER 5

CROSS SECTION MEASUREMENT

5.1 Selecting tt Events in the “Lepton+Jets” Sample

This chapter describes a measurement of the cross section for top pair production
in pp collisions at 1.96 TeV performed in the “lepton+jets” channel. The data sample
has a integrated luminosity of 193.5 pb~! and was collected between March 2002 and
September 2003 at the Fermilab Tevatron by the CDF experiment. A description
of the CDF detector was presented in Section 2.2. The event reconstruction tech-
nique and a detailed description of the event selection requirements were presented
in Section 3.1 and Section 3.2 respectively.

In the “lepton+jets” channel we select tf — Wb W ~b events where one W boson
decays hadronically producing two jets while the other W decays leptonically. The
branching ratio for W — ev and W — uv channels is 8/27. Additional contributions
to this channel are expected from the W — 7v decay mode when 7 decays leptonically

and from a small fraction of the dilepton®

events. One high pr isolated lepton,
considerable missing transverse energy and four jets (at least two heavy flavor), are

expected in the final state. Sometimes a jet may be reconstructed under the 15 GeV

threshold or may lie outside the calorimeter geometric coverage. So we select events

2lTn dilepton events both W’s from the tf pair, decay leptonically.
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having at least three central, energetic jets. Extra jets may sometimes be produced
due to initial or final state QCD radiation effects (ISR, FSR). A total of 519 events
pass our selection requirements where for a theory motivated o;; = 6.7 pb we expect
a signal to background ratio S/B ~ 1/5.

The tt signal in this channel has a large background from inclusive W boson
production associated with jets and smaller backgrounds from QCD multijet jet pro-
duction, Z +jets, WW, W Z, ZZ + jets and single top. Table 5.1 list the expected
contributions from these electroweak backgrounds relative to the dominant W+3p

background as calculated with the ALPGEN event generator in the W +2>3 jets mode.

Process Generator o (pb) W —ev (%) W — pv (%)
W — (e, u)v+3 parton 179.8 87.3 84.8
W — 7v+3 parton 89.9 4.6 4.6
7 — {T¢~ + 2 parton 46.6 1.5 4.2
7 — 7t77 4 2 parton 23.3 1.3 1.3
WW +1 parton 4.38 3.8 3.7
W Z+1 parton 2.37 0.4 0.4
single top 3.0 1.0 1.0

Table 5.1: Contributions from other electroweak processes relative to the dominant
W +3p process in the W+2>3 jets mode. The cross section numbers are leading order
estimates and thus are expected to have large uncertainties.

5.2 Simulation of the W+jets Background

The W/Z+jets processes are important for many collider physics studies and the
modeling of such processes via Monte Carlo (MC) simulation has received consid-

erable attention. A short pedagogical discussion of the MC simulation methods for
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hadron collider physics can be found in [73]. A brief description of the MC simulation
programs used in this analysis can be found in Section 3.3.

From a theoretical point of view, W/Z+jets production is an important test for
the QCD calculations and for the knowledge of PDF’s. The use of perturbative
QCD may be justified here since the production of heavy bosons require considerable
parton-parton scattering energy: ag(Q = Mz) ~ 0.118.

Tree level matrix element based simulation programs are currently used to model
both the #t signal and the background processes. However, since we concerned here
with QCD processes, where ag is relatively large, LO cross sections are not precise
enough to predict the the absolute normalization for each of these process in our data
sample. We will trust the numbers shown in Table 5.1 only as a reliable estimation
for the relative contribution from each individual background.

For simulating heavy boson production, the state of the art today is given by the
ALPGEN [47] and the Madevent [66] generators which calculate tree level matrix
elements for production of W/Z plus as many as 6(5) additional jets in case of ALP-
GEN (Madevent). These programs generate event information at the parton level:
bare quarks and gluons. Shower MC programs like those from PYTHIA or HERWIG
are used to evolve partons down the energy scale and fragment the outgoing quarks
and gluons into jets. The shower algorithms are found to model well the energy and
multiplicity of the particles in a jet and can be thought of as simulating the effects of
the missing higher order terms in the matrix element (ME) calculation. The fragmen-
tation model is based on leading log terms in perturbation theory which account for

most of the infrared and collinear singular terms in the perturbation expansion but
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do a not so good job in accounting for nonsingular terms: e.g. emission of a hard glu-
ons at large angles. The parton shower algorithms are combined with ME calculated
at the tree level which provide the exact LO results in the hard scattering region of
the event phase space. The tree level matrix element should include most if not all
the hard partons expected in the event: W + 2, 3,4 hard parton processes should be
relevant for data in the W43 jets mode. This procedure is expected to yield good pre-
dictions, however combining different parton level processes is not exactly trivial if one
wants to avoid double counting events in certain regions of the phase space because
the parton shower can generate the same diagrams with those already considered in
tree level ME. Also, in order to avoid divergences at tree level, a minimum separation
between jets must be required, a step which may produce nonphysical dependences in
the simulation results. Very recently there has been considerable theoretical progress
on combining shower MC with tree level ME calculations [67, 68].

For our analysis here however, we will use W+n parton process to simulate data
in the W+2>n jets mode, relying on parton shower MC to model the emission of extra
jets in the event. Studies performed within the CDF collaboration have shown this
is an acceptable choice for up to one extra jet in the event relative to the number of
hard, well separated partons. The ALPGEN generator was also used for simulation
of diboson+jets processes (Table 5.1). For simulating the electroweak production of
single top we use PYTHIA.

During Runl most of the comparisons between W/Z+jets data and theoretical
prediction were made for LO calculations. Recently a calculation for NLO correction

effects in the W/Z+2 jets events has been performed [69]. Complete NLO calculations
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for larger jet multiplicities are not available yet, see [70] for some latest advances on
this problem.

Combining next to leading order (NLO) exact ME calculations with parton shower
algorithms in MC event simulation is likely to improve the quality of the predictions
since NLO effects will model the radiation of energetic partons at large angles better
than the parton shower algorithms and produce more reliable and more stable?? pre-
dictions for relative normalization of W+n and W+ (n-+1) jet rates. The progress in
this field has been limited so far, see [71] for a basic discussion of the problem. Re-
cently a NLO simulation package which can be interfaced with HERWIG has become

available for a number of QCD processes [72].

5.3 The Model for the Multijet Background

For the QCD multijet fake events we do not have an adequate simulated sam-
ple. A plausible representation for the kinematic properties of this data sample can
be obtained by applying our standard event selection criteria to data but instead
of requiring one isolated lepton we require one lepton having isolation I > 0.2. In
order to estimate the systematic uncertainty associated with this modeling, an al-
ternative sample is built from identified conversion electrons where cuts like lepton
identification, K, number of jets, etc. are kept unmodified.

The fraction of multijet fakes in our data sample can be obtained by assuming that
the lepton isolation and the missing transverse energy Fr are uncorrelated. Using
the usual selection requirements but dropping off the cuts on lepton isolation and Fr,

22Gtable with respect to the choice for factorization and renormalization scale.
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Figure 5.1: The Fr versus isolation distribution for events with a lepton and 3 or
more jets. The structure apparent near 20 GeV comes from removing events where
missing transverse energy lies close to direction of the first jet.

a 2-d plot of lepton isolation versus Fr is constructed as shown in Figure 5.1. The

plot can be divided in four distinct regions:
e A: lepton isolation >0.2 and Fr< 10 GeV
e B: lepton isolation <0.1 and Fr< 10 GeV
e C': lepton isolation >0.2 and F;> 20 GeV
e D: lepton isolation <0.1 and Fr> 20 GeV

Assuming there is no correlation between Iso and Fr, the number of multijet fake
events in the signal region D can be deduced from the event population found in the

control regions which are dominated by generic QCD events:

multijet

np =nc¢ X (ng/na) (5.1)
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In performing this calculation we correct the number of events in the control regions
for contributions from ¢t and W—jets processes using the relative fractions determined
from simulation and from estimating event numbers in the D region using a o7 = 6.7
pb. An effective method to reduce the amount of multijet fakes in our data sample
has proved to be vetoing events where the azimuthal direction of 7 lies close to the
direction of the leading jet in the event. The calculated amount of background in
the W+jets data sample is presented in Table 5.2 where the uncertainties shown are

statistical only.

Jet multiplicity W — ev W — pv Total
1 jet 3.8+ 02% 2.9+02% 3.4+ 0.3%
2 jets 6.1 £0.5% 2.04+02% 4.3+ 0.5%
>3 jets 77 +13% 31+09% 6.3+ 1.6%

Table 5.2: The fraction of multi-jet background in the W+jets data sample as a
function of jet multiplicity. The uncertainties shown are statistical only.

One distinct component of the multijet fake background in the electron sample is
made from unidentified conversion electrons. The efficiency of the conversion removal
algorithm was measured from data to be 72.6 £0.07% [74]. Using the standard event
selection requirements, we find 111 events with identified conversion electrons which
implies a residual background from unidentified conversions of ~9% in the electron

channel.
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5.4 The Signal Acceptance and Efficiency

The acceptance for signal in the lepton+jets cahnnel can be measured using Monte
Carlo simulated tf events. For ¢ simulation there are two generators which are
currently being used: PITHIA and HERWIG. The default HERWIG generator is
known to lack QED radiation for the leptons in the final state. This is why PYTHIA
has been chosen to be the default generator for this analysis.

The acceptance is calculated using ¢ generated events to whom we apply the
standard event selection as we would do for real data except for applying conversion
electron and cosmic ray removal algorithms. At the generator level a lower 8 GeV
cut is made on the parton pr. We use the standard LO set of PDFs available in
PYTHIA, with a factorization and renormalization scale chosen at p = M,,. The
acceptance is calculated separately for the CEM, CMUP and CMX triggers because
the luminosity of the data is different in CEM and CMUP samples with respect to

CMX data sample.

Quantity CEM CMU/CMP CMX
events 17800 10908 4025
5,1:%[0 0.0462 £+ 0.0004 0.0283 £ 0.0003 0.0104 #+ 0.002

Table 5.3: Signal acceptance in the W+ >3 jets sample assuming my,, = 175 GeV /c2.
The number of generated events after the parton pr cuts at the generator level was
384,875.
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For a number of 384,875 generated ttbar events, after event selection we found
the contributions from various decay modes of the ¢t system to the acceptance in the
lepton+jets channel as listed in Table 5.3.

In order to obtain the signal efficiency in data further corrections must be ap-
plied [76]. These numbers must be corrected with the luminous region efficiency, the
data versus MC tracking efficiency scale factor, the lepton trigger efficiency and the
efficiency for lepton identification in data relative to the simulation as determined
from Z — eTe” and Z — putu~ data and MC samples. The contributions from vari-
ous decay modes of the ¢f system to the signal efficiency in the lepton+jets channel

are listed in Table 5.4.

Quantity CEM CMU/CMP CMX
8‘15\%10 0.0462 + 0.0004 0.0283 + 0.0003 0.0104 4+ 0.002
Trigger Eff. 0.962 + 0.006 0.887 £+ 0.007 0.954 4+ 0.004
Lepton Id. 0.965 + 0.014 0.887 + 0.014 1.001 4+ 0.017
Data - MC 1.009 £ 0.002 1.009 £ 0.002 1.009 & 0.002
Track. Scale
Lum. Reg. 0.948 + 0.003 0.948 + 0.003 0.948 + 0.003
£t 0.0412 + 0.0033 0.0213 + 0.0017 0.0095 + 0.0008

Table 5.4: Signal efficiency in the W+ >3 jets sample assuming my,, = 175 GeV/c%.
The overall signal efficiency weighted with respect to the CEM/CMUP/CMX lumi-
nosity is 0.0711 £ 0.0056.

5.5 Principle of Measurement

The traditional method for measuring ¢t cross section in the “lepton-+jets” channel

at CDF relies on the identification of heavy flavor jets which brings the S/B ratio
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close to 3. Because of its large mass, top pair production results in central, spherical,
energetic events. As an alternative to the b-tagging method we will separate top
events using kinematic and topological variables. Since the b-tagging efficiency is
~ 55% and since we do not make silicon quality requirements for the data runs, this
method takes advantage of a larger data set and provides a precise cross check of the
b-tag method result.

We use a neural network (ANN) to combine multiple kinematic and topological
variables in order to better discriminate ¢f from background events. We are con-
sidering feed forward neural networks with some number N; of input variables, one
hidden layer having N, nodes and one output. The shape of the ANN output distri-
bution, obtained after processing our standard MC samples with a trained network,
will be used as discriminating variable. A binned maximum likelihood fit to data is
performed and a tt fraction is extracted. The cross section is calculated using the

following expression:

Ny

2
egl (5:2)

O =

where € is the signal efficiency in the “lepton+jets” channel and £ is the measured
luminosity. The luminosity [75] and the ¢ signal efficiency [76] number was extracted

by the Top Group at CDF.
5.5.1 The Binned Likelihood Fit

Using any particular discriminating variable we can perform a binned likelihood
fit to the data sample and find a most likely number of events from tf production, n;

from minimizing a binned likelihood function like this:
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L(Ntfhuwv,u'q) = H 41

=1

(5.3)

where 11z, ftw, 4 are the parameters of the fit, representing Poisson means for the
number of tt, W-like, and multi-jet events in our data sample. The expected number
of events in the i-th bin is y; = (nzPg ;+ 1w Pui+n¢Py ), where Py, Py, Py; are the
probability of observing an event in bin 4 from tf, W+jets?® and multi-jet processes,
d; is the number of observed data events in the i-th bin. Since the fraction of QCD
events was evaluated with an independent method, we constrain n, in the fit to the
measured fraction of 6.3%. For minimizing of the likelihood the MINUIT [80] package

is used.
5.5.2 Running Pseudo-Experiments

Pseudo-experiments have been performed to test the sensitivity of the method
and estimate the systematic uncertainties for a measurement using some particular
discriminating variable: V. For each pseudo-experiment, the signal and background V
distributions are randomly sampled and a “data” histogram is filled with events. The
numbers for signal and background events are drawn from Poisson distributions with
average contributions corresponding a theory motivated 6.7 pb ¢f cross section. Sub-
sequently a fit is performed as would be done for real data and a most likely fraction
of signal events is determined. By performing a few thousand pseudo-experiments
one can verify if the fit is indeed unbiased and yields Gaussian errors. This way we
also estimate the expected measurement uncertainty and decide a priori which is the
best variable to perform fits with and extract a cross section.

ZThe W+jets background is defined as the sum from W+3(4)p and the other electroweak processes
in the proportions listed in Table 5.1.
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Figure 5.2: Comparison plots of kinematic variables using ALPGEN W+3p and
PYTHIA ¢t for a variety of kinematic variables in the reconstructed W-+>3 jets
mode. The two histograms are normalized to equal area.
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Figure 5.3: Comparison plots of kinematic variables using ALPGEN W+3p and
PYTHIA ¢t for a variety of kinematic variables in the reconstructed W-+>3 jets
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Figure 5.5: Comparison plots for some shape variables using ALPGEN W+3p and
PYTHIA ¢t for a variety of kinematic variables in the reconstructed W+2>3 jets mode.
The two histograms are normalized to equal area.

5.6 Kinematic Variables

The main background to ¢# production in the “lepton+jets” channel comes from
W production associated with hadronic jets. The contribution from QCD-fakes back-
ground, falls off rather fast with the missing transverse energy and generally is as-
sumed to populate less energetic regions of the phase space. In selecting the discrimi-
nating variables and training the ANN we will try to achieve good separation between
tt and W+3, 4 p simulated events. The other backgrounds will be taken into account
in the final fit as well as the associated systematics.

Figure 5.2, 5.3, 5.4, 5.5 show a comparison in the shape of the distribution of
various kinematic quantities for t# and W+3p samples in events with three or more
jets. The definitions for all 20 variables can be found in Table 5.5. A mass for

the hadronically decaying W boson can be reconstructed as the dijet invariant mass
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closest to 66 GeV out of the three highest E7 jets. The 66 GeV reference point was
used instead of the world average for the W mas because full jet energy corrections
are not performed in this analysis. Similar plots for events having four or more
tight jets using ¢t and W+4p MC would show the same trend. There is small loss
of separation power in going from the W+2>3 jet mode to the W+2>4 jet mode
but the expected signal to background fraction in the data sample will increase to
~ 0.9. Besides the energy based variables, additional information can be extracted
from event shape variables. Maximum jet rapidity, average jet rapidity, minimum
dijet separation are all extracted from the three highest E7 jets. Since ¢t events are
expected to be more spherical than the W+jets events we consider two topological
variables: aplanarity and sphericity. These are constructed using the two lowest

eigenvalues (@1 < Q2 < @3) of the normalized momentum tensor:

Aplanarity = 3/2 Q4 (5.4)
Sphericity = 3/2(Q1 + Q2) (5.5)

The normalized momentum tensor is defined as:

> pept
D pzz ’

(5.6)

where the a, b indices run over the three spatial directions and summation is taken
over the five highest Er jets, the lepton and the reconstructed transverse missing
energy. No reconstruction of P,, the z momentum component of the neutrino from
the W — v decay is attempted.

In order have a measure for the individual separation power for various variables,

we looked at the expected statistical sensitivity from fitting the kinematic distribution
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Variable Definition

Hr Scalar sum of transverse energies of all jets, lepton and 7
Aplanarity 3/2Q,

Yp,/YEr Ratio of total jet longitudinal momenta to total jet Er
min (M) Minimum di-jet invariant mass for the three highest Er jets
Nmaz Maximum 7 for the three highest Er jets

Y2 .Er; Sum E7 of third, fourth and fifth jets

min(AR;;) Minimum di-jet separation in 7 and ¢

Y Ery Sum FEr of all jets

Er Missing transverse energy

Sphericity 3/2(Q1 + Q2)

M epent Invariant mass of jets, lepton and Fr

Mg + Mss + M3 Sum of di-jet invariant masses for the three highest Er jets
EJ Er of jet with highest Er

E%Q + Ef’ Sum of Ep of jets with second and third highest Eyp

Mis© Dijet invariant mass closest to 66.0 GeV.

¥n? Sum of n? for the three highest E jets

AD,,, Azimuthal angle between lepton and Fr

E? E7 of jet with second highest Ep

EP Er of jet with third highest Ep

E}' + EF Sum of Ep of jets with first and second highest Erp

Table 5.5: The definition for all the kinematic variables considered in this analysis.
The particular order for listing the variables was obtained from starting with the Hyp
and adding variables one by one in such order that performance in training a ANN
on PHYTIA ¢t and ALPGEN W+3p was maximized during each step.
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of 20 different single variables. The results for both W+2> 3 and W+2> 4 jets mode
are presented in Figure 5.6 and 5.7 respectively. One can see that Er based variables
are better than the shape variables. The merit of the shape variables relative to the
Er based variables is that they are less dependent on the calorimeter calibration.
They depend on the choice of Q% in MC simulation and the uncertainty on PDF’s.
Non of these variables shows to be biased in pseudo-experiments so in principle we
could use all of these to measure a cross section. However one need to take into
account that many of these variables are correlated so combining the measurement

results is not a trivial operation.
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Figure 5.6: Expected statistical sensitivity from fitting variable distribution in the
W+> 3 jets data sample. Points mark the median of the distribution of fit the
uncertainty relative to the fitted ¢ fraction in pseudo-experiments. The error bars
mark the 16-84 percentile interval in the relative uncertainty distribution. One should
note that many of these variables are correlated.
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Figure 5.7: Expected statistical sensitivity from fitting variable distribution in the
W+> 4 jets data sample. Points mark the median of the distribution of fit the
uncertainty relative to the fitted ¢ fraction in pseudo-experiments. The error bars
mark the 16-84 percentile interval in the relative uncertainty distribution. One should
note that many of these variables are correlated.

5.7 ANN Training and Testing

For the network training we use the JETNET [59] package, developed at CERN
and the RootJetnet interface developed by Ohio-State group at CDF [81]. The net-
work will have several input variables, one hidden layer and one continuous output
unit in the range [0,1]. JETNET implements a variety of training algorithms. For
this particular problem we get satisfactory results using the default back-propagation

method with momentum added in order to improve learning stability at the end of
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training. Learning is performed by modifying the network weights in order to mini-
mize a mean square error function with a regularization term added in order to dis-
courage unnecessary weights and avoid over-fitting, see Section 4.2.2 for details. This
can be done by setting the pruning option in JETNET to be “on” (MSTJN(21) = 1).

We use the default JETNET learning rate n = .001 and momentum o« = 0.5.
Ten different patterns are probed before an update of the weights is performed. In
principle all these parameters as well as the training algorithm can be varied but
we did not see any significant improvement in ANN performance. Signal events are
trained for target 1 while background events are trained for target 0. When the input
variables have different orders of magnitudes, sometimes in the learning process they
need to be updated with different rates in order to achieve effective learning, which in
turn requires more complicated learning algorithms. A simple method to avoid this
is to normalize all input variables to a common scale. This is automatically done in
the RootJetnet package, by dividing input variables by the first order of 10" larger
than the maximum value taken by the respective variable. For example: 7,,,, having
values smaller than 2.0, will be divided by 10 when transfered to the network input.

We are using PYTHIA for our default ¢¢ training sample. Training for the W+jets
background is performed on ALPGEN W+3p and W+4p simulated samples for mea-
surements in the W+2> 3 and respectively W+2> 4 jet samples. In the W+> 3 jets
mode, we use 2x4000 events for training, 2x1000 events for testing and the rest of
3200 W+3p (28000 tt) events as a statistically independent validation sample which
we use to check the quality of the training. In the W+> 4 jets mode, we use 2x2400
events for training, 2x 1000 events for testing and the rest of 1600 W+4p (14000 ¢¢)

events for validation.
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A short description of the training procedure follows here. In a first step the net-
work is trained for a duration of 400 epochs. Since training is an iterative process,
an epoch is defined as reading and learning being performed once upon the whole
available training sample. The epoch for which the ANN has the lowest error when
tested on a statistically independent sample is chosen as the reference stopping point.
Than we repeat the training up the selected stopping epoch. In the end an statisti-
cally independent validation sample is used to check the quality training. Figure 5.8
compares the NN performance on a training and testing sample as a function of the
number training epochs. One can see that the network learns quite fast, in about
100-200 epochs. Over-training effects, visible where the network error decreases in the
training sample (red dots) but not in the testing sample (blue dots) are evident after
a few hundred epochs. In the final ANNs used to fit the data, the actual stopping
epoch was 126 for the W+2>3 jet mode and 180 for the W +2>4 jet mode network. One
should note that for a different separation problem or when using a smaller training
sample, overtraining effects can be far more pronounced after 100-200 epochs.

For the our final trained two networks, the ANN output for PYTHIA ¢ compared

with ALPGEN W+3(4)p is shown in Figure 5.9.
5.7.1 Choosing an Optimum Network Configuration

One has considerable liberty when choosing a particular combination of variables
as inputs to the network. Ideally we would like to choose such variables which help
define regions of the phase space where signal and background events are distributed
differently. Figure 5.10 shows the average correlation coefficients for some 26 different

kinematic variables in W+3p (left) and ¢¢ (right) simulated events. There does not
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Figure 5.8: Typical variation of the training and testing ANN error with the number
of training epochs.
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Figure 5.9: The output for ANN’s trained in the W+2>3(4) jets mode using PYTHIA
tt and ALPGEN W+3(4)p MC.
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seem to be significant differences in terms of correlation coefficients between signal

and background.
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Figure 5.10: Average correlations coefficients for some 26 different kinematic variables
in W+3p (left) and ¢¢ (right) simulated events. The ordering of variables in the two
plots is the same.

We have also tried to perform a quasi-exhaustive search hoping that maybe there
is one combination of variables that performs much better than the rest. We trained a
separate network for each combination of 2,3 variables out a total of 24 variables. For
4 to 8 input network configurations we gradually restricted the number of available
variables to choose from down to 18. We also did a partial search for combinations of
17,18 and 20 input variables. Since performing pseudo-experiments for each individual
ANN would take a long time, we monitor as a figure of merit the performance for
the training, defined by the fraction of correct classifications in a test sample. A ¢t
event is correctly classified if ANN output for this event is greater than 0.5 while a
W+jets event is correctly classified if ANN output is less than 0.5. The conclusion

of this study was that there is no single combination of variables that performs much

81



better than the rest. For each given number of input variables, there are a number
of slightly different combinations producing comparatively good results. We also
note that there is an overall improvement in performance while the number of input
variables increases.

Finally, out of the top performers we picked 3-4 different combinations and did
pseudo-experiments in order to estimate the effect of fitting the ANN output. We
use the shapes of the ANN output and generate 1500 pseudo-experiments using a
combination of 19% ¢t events, 6.3% QCD and 74.7% W +3p simulated events. The
average number events in each pseudo-experiment corresponded to a 195~ !pb data
sample. Figure 5.11 (top), shows the fit average fractional uncertainty for different
choices of input combinations as a function of the number of input nodes. The number
corresponding to 1-input is obtained by fitting the Hr shape alone. It is obvious that
the more information is added in the better the fit performance. The overall gain
with respect to a single variable kinematic fit is about 35%.

Systematic uncertainties are approached in a similar manner. The ANN is trained
only once but we use two ANN output shapes, one from the nominal MC and the
other from the systematic-shifted MC sample. We generate pseudo-experiments us-
ing the shifted MC, and do the fit twice using the regular and the shifted shapes.
We take the systematic to be the average of the difference between the two fit re-
sults. In Figure 5.11 (bottom) a plot for the estimated systematic uncertainties®* is
presented. Again, numbers improve with adding more input variables. While for a
given number of hidden variables the spread in fit uncertainty is generally small, the
systematics seem to be more dependent on the particular choice in the combination

24Gystematic uncertainties are discussed in Section 5.9.
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input variables. One should keep in mind that an (n+1)-input ANN sometimes is
quite different from the adjacent n-input configuration.

What we find is that a 7-input ANN is close enough to the overall best. When
choosing a ANN architecture, simplicity may not be a stringent requirement [60],
however we choose here a 7 input network as the minimal configuration yielding good
performance. In future when more statistics in the data will allow a better validation
of the W+jets simulation, a more complicated network or even a tree of multiple

networks might be used to improve the measurement.

5.8 Comparisons Between Data and Simulation

The seven input variables we use are: the total transverse energy, Hr, the event
aplanarity, minimum dijet mass, maximum jet rapidity, minimum dijet separation,
the sum of transverse energy for all jets beyond the third jet, the ratio between jet
longitudinal momenta and the jet transverse energy. This analysis relies on MC to
simulate the background and signal properties. It is important to test our simulated
events against the real data recorded by the detector. We do not have a high statistics
top control sample but the data sample is large enough to test our W+jets model.

In order to validate the W+jets background modeling we looked at a top depleted
region of our data sample: the W + 3 jet exclusive sample. Figure 5.12 shows the
distributions for Fr, leading jet Er, Hr and the other ANN input variables for
W + 3 exclusive jet events compared to the prediction from ALPGEN+HERWIG,
W+3p MC, multi-jet background and PYTHIA ti. For a 6.7 pb cross section
we expect ~ 10% contribution from ¢ in this region. We add this contribution

to overall shape, as well as the expected contributions from QCD and the smaller
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Figure 5.11: Predicted statistical and systematic uncertainties relative to a measured
tt fraction for fitting the ANN output in the 3 ore more jets mode. The average num-
ber events in pseudo-experiments corresponds to a 195 'pb data sample. Statistical
error bars, not shown here, should be slightly smaller in size than the triangles in the
figure.
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background process: Wob2p, WWlp, Wrvdp, WZ0p, Z2p, single-top. The MC
model histogram is normalized to the number of events in the data sample. For a
quantitative evaluation of the compatibility between the two shapes, each plot has
attached the KS test result. The spectrum for the KS test results is expected to be
flat if the shape of the smaller statistics data histogram were drawn from the same
distribution as our MC model. The numbers in Figure 5.12 suggest good overall
agreement between data and the MC simulation.

Variable correlations are also important for a multivariate approach. We use the
following definition for an event by event correlation between two generic variables z

and y:

(z-7) - (y—7)
(Az - Ay)l/2 ~

corr(z,y) = (5.7)

where Z is the average and Az = (z — )2 for the distribution in the z variable.
Comparisons between a simulated model and data in the W +3 jets (exclusive) events
are presented in Figure: 5.13, 5.14, 5.15 and 5.16. The model here is a combination
of 10% tt and 90% W+jets simulated events. For a quantitative evaluation of the
compatibility between the two shapes, each plot has attached the KS test result. The

KS test numbers suggest in general good agreement between data and the MC model.

5.9 Systematic uncertainties

The cross section calculated from Equation: 5.2 is influenced by a series of sys-
tematic uncertainties. Uncertainties affect the luminosity, the signal efficiency and
the ANN shape. The uncertainty on the measured luminosity is 5.9% [75].

Some systematics have impact on both the signal efficiency term and the ANN

shape. When these effects modify the ¢ cross section in the same direction we add
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Figure 5.12: The leading jet Ep, Fr and the ANN input variables distributions in
W+3 jets (exclusive) events compared to the prediction from ALPGEN-+HERWIG
MC, multi-jet background and PYTHIA ¢f MC. These are fit results, the MC model
histogram is normalized to the number of events in the data sample. The KS test
statistic is shown as a measure for the compatibility between the two shapes.
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Figure 5.13: Distribution of the correlation coefficients in data compared to a mix of
10% PYTHIA ¢t and 90% ALPGEN W+3p events. Plots are in the W+3 jets exclusive
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them linearly as they are fully correlated. Numbers originating from different sys-
tematic sources will be added in quadrature for the final result. The systematic un-
certainties on the ¢t fraction for measurement in the W+>3 and W+>4 jets sample
are presented in Table 5.7 and Table 5.8 respectively.

The jet energy uncertainty is a major component of the overall systematic. We
expect, after applying all 6 levels of correction to recover, on average, from the energy
measured in a certain portion of the calorimeter the energy of the original parton.
The jet correction systematics deal with uncertainties associated with each step of the
correction procedure. These are actually uncertainties on how “wrong” the energy
of a jet was measured in a particular portion of the detector. This is why, while we
choose to correct? jet energy only up to the Level-4, jet energy systematics need
to be calculated for the all 6 levels of correction. Acceptance terms are calculated
and listed as the relative variation in the number of events. Shape systematics are
calculated using pseudo-experiments. There are two ways to do this: one is to vary jet
energy corrections according to each systematic effect at a time and add the calculated
systematics from all effects in quadrature; the other is to vary jet energy corrections
according to all systematics once with an amplitude calculated by adding all effects
in quadrature and calculate only one systematic number. We found similar results
using either method.

Systematics associated with the multijet fakes should account for both the model-
ing and our estimation of their contribution to the data samples. For calculating the
modeling systematic we use the conversion electron sample as an alternative model.
Uncertainties associated with the fraction of multijet events are calculated by varying

25Gee section 3.1.1 for a discussion of the jet energy corrections.
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the 6.3% contribution in the fit with 33°% and taking half the difference in the fit
results.

The electroweak backgrounds are not included in the training sample but will be
included for the fit in the final W+jets shape. The total contributions of these back-
grounds to the data sample is estimated to be 11%. The leading order theory cross
section values (see Table 5.1), were used to fix the contribution of each component
relative to the dominant W+3p process. Using pseudo-experiments we estimate the
impact on the fit of including versus not including these and take half of the difference
(2%) as a systematic.

The generator systematic is obtained from comparing PYTHIA and HERWIG
simulated ¢ samples. The systematic for the acceptance calculation is 1.4%. For the
systematics related on the amount of ISR and FSR we considered the following MC

samples recommended by the CDF Top Group [77]:

o ttopbe(ISR less): Lamba QCD = 100 MeV, K f4.10,=2.0 for ISR evolution.
e ttopce(ISR more): Lamba QCD = 384 MeV, Kj400-=0.5 for ISR evolution.
e ttopde(FSR less): Lamba QCD = 100 MeV, K40 =2.0 for FSR PS.

e ttopee(FSR more): Lamba QCD = 384 MeV, K 40,=0.5 for FSR PS.

In addition, a 5% systematic due to the uncertainty on lepton identification effi-
ciency scale factors for data compared to MC has been included. Details on how this
uncertainty was evaluated can be found in [78].

For a systematic associated with our W-jets model we considered several MC

samples generated at various Q2. The nominal ALPGEN MC was generated at Q? =
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My, + Xipt; where pr; is the transverse momentum of the i-th parton. systematic
effects on tt fraction for fits using Hy shape using a number of different samples are
shown in Table 5.6. Based on these number we chose Q* = 4M2, as the alternative
MC sample for calculating this systematic. The results for ANN fits are given in

tables 5.7 and tables 5.8.

Q? W+>3 | W+>4

4+ M2 | -24.0% | -33.5%

0.25 % M3, | -25.0% | -37.0%

i Pt2 | +4.3% | -0.9%
M, -26.5% -
M2, + Pt%, | - 9.5% -

Table 5.6: systematic effects on ¢ contribution extracted from fits using the Hrp
shape.

PDF systematics were calculated according to a method proposed in [79] which
allows one to calculate such systematics independent of the ISR and FSR systematics.
For the standard PYTHIA ¢f MC set generated using the CTEQ5L PDF library, each

event can be re-weighted using various PDF libraries:

f1(z1, Q) NewppF * f2(22, Q) NewPDF
f1($1; Q)CTEQsL * f2(332; Q)CTEQ5L ’

EventWeight = (5.8)

using the incoming partons z; momentum fractions and the event () calculated using
HEPG information. Here we compare MRST72 to MRST75 and the default CTEQ6M

to 2x20 different eigenvalue variations of CTEQ6M (ISET = 101,140). We add in

quadrature contributions for each systematic variation.
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Effect signal efficiency (%) Shape (%) Total (%)

Jet Ep Scale 4.7 12.2 16.9
W+jets Q% Scale - 10.2 10.2
QCD fraction - 0.6 0.6
QCD shape - 1.1 1.1
Other EWK - 2.0 2.0
tt PDF 1.5 2.9 4.4
tt ISR 2.1 1.9 3.0
tt FSR 1.7 1.0 2.7
tt generator 1.4 0.3 1.7
Lepton ID/trigger 2.0 - 2.0
Lepton Isolation 5.0 - 5.0
Luminosity - - 5.9
Total - - 22.3

Table 5.7: Table for systematic uncertainties in the W+2>3 jets mode. The overall
uncertainty is obtained by adding in quadrature the individual effects.

Effect signal efficiency (%) Shape (%) Total (%)
Jet Ep Scale 10.1 9.0 19.1
W+jets Q? Scale - 16.0 16.0
QCD fraction - 0.6 0.6
QCD shape - 2.3 2.3
Other EWK - 0.3 0.3
tt PDF 2.4 2.3 4.7
tt ISR 24 0.7 3.1
tt FSR 2.1 1.0 3.1
tt generator 1.4 0.2 1.6
Lepton ID/trigger 2.0 - 2.0
Lepton Isolation 5.0 - 5.0
Luminosity - - 5.9
Total - - 271

Table 5.8: Table for systematic uncertainties in the W+2>4 jets mode. The overall
uncertainty is obtained by adding in quadrature the individual effects.
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5.10 The Fitting Technique

The overall systematic uncertainty for a measurement using ANN fits in the
W+>3 jets data sample was estimated to be 22.3%. A similar measurement in
the W+>4 jets data sample would have a 27.1% estimated systematic uncertainty.
Statistical sensitivity studies using pseudo-experiments in the W+2>3 jets data sam-
ple predict a statistical error in the range 15-19% for 68% of data-sized experiments,
with a median at 16.5%. In the W+>4 jets data sample we expect a statistical error
in the 19-28% range with a median of 23%. Considering both the systematic and the
predicted statistical uncertainties we conclude that the best measurement results will
be obtained for ANN fits in the W+2>3 jets data sample.

In order to test the fitting method, Figure 5.17 shows the average cross section
measured in 2500 pseudo-experiments as a function of generated top cross section.
No bias in results from fitting the ANN shape is evident from this plot. In Figure 5.18
the fit pull distribution from pseudo-experiments is shown for measurements in the
W+42>3 and W+2>4 jets sample. In both cases the shape of the histogram is consistent

with being a Gaussian with RMS equal to 1.
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5.11 Cross Section Calculation

5.11.1 Results for M;,,=175 GeV/c .

The final fit of the data using the t¢ W+jets and QCD background ANN templates
to the W+2>3 jets data samples are presented in Figure 5.19. In order to give an idea
for the quality of the fit, the uncertainty returned by the fitter is compared to pseudo-
experiments.

A priori our best result is for the ANN fit in the 3 or more jets sample. We
have repeated the analysis in the W+2>4 jet sample, where 118 events pass the event
selection criteria and the expected S/B fraction is 4 times larger. The final fit of data
in the W+>4 data sample is presented in Figure 5.19. The same ANN configuration
was used for both fits but each ANN was trained using the appropriate MC samples:
ALPGEN W+3p for the W+2>3 jets sample and ALPGEN W+4p for the W+2>4 jets
sample.

We extract a tt contribution to these data samples of:

fi& = 0.176 £ 0.030 (W+>3),

fiz = 0.473 £ 0.100 (W+>4),
2

where the uncertainty is statistical only and we have assumed a top mass of 175 GeV /c”.

The measured top pair production cross section is then determined using Equation 5.2:

07 =6.6+1.1=+15pb (W+>3),

0z =75+ 1.6+2.0pb (W+>4),

where the uncertainties are statistical and respective systematic. These numbers

should be compared to the latest theoretical prediction of 6.770%% pb [23].
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Several cross-checks of this result have been done. Figure 5.20 shows the measured
tt cross-section for a single variable fit to all 20 variables listed in Table 5.5 in both the
W+2>3 and the W+2>4 jets data sample. A priori our best results for single variable
fits are expected from measurements in the W+2>3 data sample. In Figure 5.20 the
vertical line marks the expected ¢t fraction for a 6.7 pb cross section. Results look
consistent within errors with the ANN fit result. One should keep in mind that many
of the 20 variables we used are correlated and consequently the fit results are not

expected to be completely independent.
5.11.2 Results as a Function of the Assumed Top Mass.

So far we presented results assuming a top mass of 175 GeV/c?. In Table 5.9
cross section results for several top masses are presented. The change in the signal
efficiency with respect to the central value of 175 GeV/c? is from a linear fit to
HERWIG samples. The uncertainties listed in the Table 5.9 are statistical only.

In Figure 5.21 is shown a plot comparing ¢t cross section results with the theo-
retical predictions [23, 26] for a range of top masses. The error bars represent the
statistical uncertainties. For the point at 175 GeV/c?, systematic uncertainties are

also shown with black, error bars.
5.11.3 Consistency Checks

Assuming that top indeed decays to a W boson and a b quark according to the
SM expectation, a method to increase the signal to background ratio to ~ 3/1 is to
select only b-tagged events. Figure 5.22 shows a comparison between the data sample
tagged with the SECVTX algorithm [82] and simulated ¢¢ MC events. This is not a

fit, instead the two histograms are normalized to equal area. The ANN output for the
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Generated Top Mass Relative Acceptance tf fit fraction (%) o (pb)
160 0.934 19.6+3.4 7.9+1.3
165 0.956 18.943.2 7.5£1.3
170 0.978 18.1+3.1 7.0£1.2
175 1.000 17.5£3.0 6.6+1.1
180 1.022 16.9+2.9 6.3+1.1
185 1.044 16.2+2.8 5.9£1.0
190 1.066 16.0+2.8 5.7£1.0

Table 5.9: The tf production cross section measured in the W+>3 jets data sample
for fits to HERWIG tt MC generated at different top masses. The uncertainties shown

here are statistical only.

Top Production Cross Sections

o (pb)

12

10

[ee]
T | L | L | T 1 | T 1 | T

Theory (ref. [23])

Theory * 1o (ref. [23])
Theory PIM (ref. [26])
Theory 1PI (ref. [26])

155

160

165

170

175

180

185 190

#Top Quark Mass (GeV)

195

Figure 5.21: The tt production cross section in the W+2>3 jets data sample from
fits to HERWIG ¢t MC samples generated at different top masses. The uncertainties
shown are statistical, except for the 175 GeV point where the systematic uncertainties
are shown in black.
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data does tend to cluster near 1, as we would expect for a top-enriched sample. From
an opposite point of view we can argue that our ANN verifies that the kinematics of
the b-tagged events is indeed very top-like.

A cross-check in a top depleted region of the phase space can be done by looking
at the 3-jets exclusive sample where we expect ~ 10% contribution from ¢f. In
Figure 5.23 the ANN output for data in the 3 jet exclusive mode is compared to the
prediction from ALPGEN+HERWIG, W+jets, multi-jet background and PYTHIA
tt. No tagging requirement was made here. Again, this is not a fit, instead the
two histograms are normalized to equal area. The KS test statistics suggests good

agreement between data and the MC simulation.
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Figure 5.22: The SECVTX b-tagged data compared to the tagged PYTHIA ¢ MC in
the W+2>3 jets sample. This is not a fit, instead the two histograms are normalized
to equal area.
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CHAPTER 6

SUMMARY AND CONCLUSIONS

We present a measurement of the top pair production cross section in pp collisions
at 1.96 TeV, from a data sample collected at CDF between March 2002 and September
2003 with an integrated luminosity of 193.5 pb~!. At these energies, the top quarks
are produced mostly via strong interactions in top anti-top pairs (¢¢). The top quark
has an extremely short lifetime and according to the Standard Model decays with
~ 100% probability into a b quark and a W boson. In the “lepton-+jets” channel,
the signal from top pair production is detected for events where one of the W bosons
decays hadronically in two quarks, which we see as jets in the detector, and the other
W decays to a charged lepton and a neutrino. For clean identification, here we require
that the charged lepton must be an electron or muon of either charge. The presence
of a neutrino in the event is inferred from an imbalance in the transverse energy.

In order to bring the signal to background ratio to manageable levels, measure-
ments in this channel traditionally use precision tracking information to identify at
least one secondary vertex produced in the decay of a long lived b hadron. An alterna-
tive approach was taken for this analysis. Because of the large mass of the top quark, ¢t
events tend to be more spherical and more energetic than most background processes
which otherwise mimic the #f signature in the “lepton-+jets” channel. Monte Carlo
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simulation are used to model the kinematics of background and ¢ events. We find a
number of energy based and event shape variables that can be used to statistically
discriminate between signal and background events. A neural network technique is
employed to combine multiple variables in order to enhance signal separation. Such
a measurement takes advantage of a larger data sample than the b-tagging based
analyses and achieves a comparable level of precision.

A binned likelihood fit to the neural network output distribution for a 519 event
W+2>3 jets data sample yields a 17.6 £ 3.0(stat) % fraction of ¢¢ events. The inclusive
top pair production cross section is measured to be o,z = 6.6 +1.1(stat)+1.5(syst) pb.
As a cross check a measurement was also made in the W +>4 jets mode where the tf
cross section is measured to be 7.5 +1.6(stat) +2.0(syst)pb. These numbers should
be compared to the latest theoretical prediction of 6.770:2% pb [23].

The cross section results are consistent with a large range of top masses. The
current result is dominated by systematic uncertainties, somewhat larger than the
15% tolerance on oy calculated from theory. Future improvements in the jet energy
calibration at CDF and in the MC simulation of the W+jets backgrounds are ex-
pected to further reduce systematic uncertainties, while much larger data samples

will improve the statistical precision.
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