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Abstract

Differential cross sections for the production of D∗±(2010) mesons produced in 500

GeV/c π−-nucleon interactions from Fermilab experiment E791, are reported as func-

tions of Feynman-x (xF ) and transverse momentum squared (p2
T ) and fitted to stan-

dard distributions. The D∗± charge asymmetry and spin-density matrix elements

as functions of these variables are also reported. The asymmetry curve is compared

to Pythia Monte Carlo models. Investigation of the spin-density matrix elements

shows no evidence of polarization. The average values of the spin alignment are

〈η〉 = 0.01±0.02 and −0.01±0.02 for leading and non-leading particles, respectively.
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3.8 Čerenkov Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.9 Calorimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.9.1 Electromagnetic Calorimeter (SLIC) . . . . . . . . . . . . . . 49

3.9.2 The Hadrometer. . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.10 Muon Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Trigger and Data Acquisition System 56

4.1 Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.1 Pretrigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.2 Et trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Data Acquisition System . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.1 Front-end Controllers . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.2 Event FIFO Buffers . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.3 VME Crates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

vi



4.2.4 The VAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.5 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Event Reconstruction and Data Reduction 69

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Computing Farms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3 Filtering and Reconstruction . . . . . . . . . . . . . . . . . . . . . . . 72

5.3.1 Track reconstruction . . . . . . . . . . . . . . . . . . . . . . . 72

5.3.2 Vertex finding . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.3 Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.4 Release 5 and Release 7 reconstruction code differences . . . . 76

5.4 Physics Cut Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4.1 D Impact Parameter (DIP) . . . . . . . . . . . . . . . . . . . 77

5.4.2 Invariant Mass (m) . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4.3 Proper Decay Time (τ) . . . . . . . . . . . . . . . . . . . . . . 79

5.4.4 PT balance (PTBAL) . . . . . . . . . . . . . . . . . . . . . . . 79

5.4.5 Ratio of impact parameters (RAT) . . . . . . . . . . . . . . . 80

5.4.6 Secondary vertex χ2/ν . . . . . . . . . . . . . . . . . . . . . . 81

5.4.7 Vertex Z coordinate . . . . . . . . . . . . . . . . . . . . . . . 81

5.4.8 Significance of ∆Z (SDZ) . . . . . . . . . . . . . . . . . . . . 81

5.4.9 Target sigma (TSIG) . . . . . . . . . . . . . . . . . . . . . . . 82

5.4.10 Track Category (JCATSG/NEWCATSG) . . . . . . . . . . . 82

5.5 Stream A Strip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.6 Kansas State Substrip . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 D∗± Sample and Monte Carlo 87

6.1 Decay channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

vii



6.2 Decay Q-value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3 Signal optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.4 Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.4.2 Monte Carlo Sample . . . . . . . . . . . . . . . . . . . . . . . 105

6.4.3 Correcting Monte Carlo Distributions . . . . . . . . . . . . . . 106

7 Differential Production Cross Sections 113

7.1 Kinematic Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.2 Fitting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.3 Variable D0 Mass Cut . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.4 Differential Cross Sections . . . . . . . . . . . . . . . . . . . . . . . . 120

7.5 Consistency Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.6 Fits and Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.6.1 Traditional Forms . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.6.2 Alternate Forms . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.6.3 Comparisons to Previous Experiments . . . . . . . . . . . . . 136

7.6.4 Comparison to Pythia Models . . . . . . . . . . . . . . . . . . 136

8 Production Asymmetries between D∗+ and D∗− 138

8.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.2 Asymmetry Measurement . . . . . . . . . . . . . . . . . . . . . . . . 140

8.3 Results and Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . 140

9 D∗± Polarization 145

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

9.2 Measurement of Spin Density Matrix Elements . . . . . . . . . . . . . 151

viii



9.3 Spin Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

10 Systematic Errors 161

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

10.2 Determination of Systematic Errors . . . . . . . . . . . . . . . . . . . 162

10.2.1 D0 Mass Resolution . . . . . . . . . . . . . . . . . . . . . . . . 162

10.2.2 Monte Carlo Production Model . . . . . . . . . . . . . . . . . 163

10.2.3 Tracking Efficiency . . . . . . . . . . . . . . . . . . . . . . . . 163

10.2.4 Fitting Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 167

10.2.5 Hole Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

10.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

11 Conclusions 170

A Angular Distributions in the Production and Decay of a Spin-1 Par-

ticle 173

A.1 Notation and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 174

A.1.1 Rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

A.1.2 Boosts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

A.1.3 Parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

A.2 Helicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

A.3 Spin Density Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

A.4 Angular Distribution of Decay Products . . . . . . . . . . . . . . . . 183

Bibliography 187

ix



List of Tables

2.1 Summary of E791 target information . . . . . . . . . . . . . . . . . . 26

3.1 Summary of E791 SMD information. . . . . . . . . . . . . . . . . . . 36

3.2 Summary of E791 PWC information. . . . . . . . . . . . . . . . . . . 37

3.3 E791 Magnet Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 E791 Drift Chamber Summary . . . . . . . . . . . . . . . . . . . . . . 41
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Chapter 1

Introduction

In this dissertation, the hadroproduction of the D∗±(2010) particle is investigated, us-

ing data from Fermilab experiment E791, a fixed target, high-statistics charm physics

experiment. These results have been published [Ai02], and this document describes in

detail the analysis leading to those results. This introductory chapter presents some

of the basic definitions and concepts needed to understand the analysis, as well the

theoretical framework which motivated the measurements made. Since this analysis

predominantly involves hadron physics, a brief introduction to QCD is first presented.

1.1 The Standard Model

Modern elementary particle physics is best described by a theoretical framework

known as the “Standard Model”. It includes a description of the elementary particles

and all the interactions which govern them, with the exception of gravity. These in-

teractions give rise to forces which govern the dynamics of these elementary particles

and in addition they can cause particles of one type to transform (or “decay”) into
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other particles. There are three interactions which are unified in the Standard Model:

the weak interaction, the electromagnetic interaction, and the strong interaction.

Particles which participate in the strong interaction are known as hadrons. Fa-

miliar examples include the protons and neutrons which make up the nucleus of the

atom. There are other elementary particles known as leptons which do not partic-

ipate in the strong interactions. Electrons are the most familiar example. Hadrons

and leptons together make up all the known matter in the universe.

According to the Standard Model, hadrons are not elementary particles, but are

made up of smaller particles called “quarks”. There are six known types or “flavors”

of quarks, three with charge1 +2
3
: the up (u), charm (c), and top (t) quarks, and three

with charge −1
3
: down (d), strange (s), and bottom (b). Associated with each quark is

an anti-quark of equal and opposite charge. Hadrons fall into two categories: baryons

which consist of three quarks (or anti-baryons consisting of three anti-quarks), and

mesons, which consist of one quark and one anti-quark. In addition to an electric

charge, the quarks also carry an intrinsic angular momentum2 (or “spin”) of 1
2
. Thus

baryons, which consist of an odd number of quarks, are fermions (particles with half

odd integer spin), and mesons, consisting of an even number of quarks, are bosons

(particles with integer spin).

When the quark model was introduced [Ge64], existing evidence was consistent

with three quarks: up, down, and strange. Strong and electromagnetic interac-

tions preserve quark flavors, but weak interactions are able to change them, allowing

hadrons containing a strange quark to decay into hadrons containing only the lighter

up and down quarks. Also, the force-carrying particles of the weak interaction come

in both neutral and charged varieties. However, strangeness changing weak inter-

1All electric charges are expressed in units of e, the absolute value of the electron charge.
2Spins are expressed in units of ~ (Planck’s constant divided by 2π).
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actions were observed to occur almost exclusively via a charged current interaction.

This was a puzzle, until a fourth quark, called “charm”, was proposed [Gl70], whose

existence introduced a term in the neutral current matrix element almost exactly can-

celing the one responsible for a strangeness changing interaction. This cancellation

would be exact except for the fact that the up and charm quarks differ in mass. The

charm quark was predicted to be much heavier than the strange quark explaining the

fact that it hadn’t been observed. When the J/ψ meson, consisting of a charm and

anti-charm (cc) quark was subsequently discovered [Au74a, Au74b] it provided strong

confirmation of the quark model.

1.2 Quantum Chromodynamics (QCD)

The quark model was highly effective at describing the known mesons and baryons,

but there was an outstanding puzzle. The baryon ∆++ has a charge of +2 and spin

3
2
. It was known to consist of three up quarks, each of spin 1

2
, which must be in

a spin-symmetric state in order for the baryon to have a spin of 3
2
. So all three

quarks must be in the same quantum state. This, however, is forbidden by the well-

established Pauli exclusion principle which states that no two fermions can occupy the

same quantum state. To get around this dilemma, a new quantum number, known

as “color” was hypothesized [Gr64]. In addition to flavor, quarks possess one of three

colors: red (r), green (g), or blue (b). Anti-quarks possess an “anti-color” (anti-red

(r), etc.) The three quarks in a baryon each have a different color, and thus the

problem of the ∆++ was resolved. The existence of color was confirmed by observing

the ratios of hadronic to non-hadronic decay rates, for instance the ratio of the rates

of reactions for e+e− → hadrons vs. e+e− → µ+µ− is proportional to the number of

colors (Nc), and all measurements are consistent with Nc = 3.
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Color also turned out to be the key to constructing a quantum field theory for

strong interactions. In analogy with quantum electrodynamics (QED) which de-

scribes electromagnetic interactions by means of the exchange of virtual field quanta

(photons), the theory was named quantum chromodynamics (QCD).

QCD has some similarities and some differences with QED. Unlike QED which

has one charge (a negative charge is simply the “anti-charge” of a positive charge),

QCD has three charges: the colors, introduced to get around the exclusion principle

problems. The field quanta are known as “gluons”, and they themselves carry a

color/anti-color charge pair, for instance rb. Because there are three colors (and

three anti-colors) we might expect 9 gluons, but the color singlet state rr + gg + bb

is excluded, yielding eight. The fact that gluons themselves carry color leads to two

important differences between QCD and QED. The photons of QED do not change

the charge of the particles with which they interact, whereas gluons, which carry

color and anti-color, can change the colors of the quarks with which they interact.

Also, because gluons carry a color charge, the gluons themselves can absorb or emit

other gluons. This gives rise to an inverse charge screening effect. The further one

moves away from a bare color charge, the stronger it appears to be. The result is that

hadrons must be colorless (as in mesons) or “white” (as in baryons: rgb), in order to

avoid infinite field strengths. This is why free quarks are never observed: they would

always carry a bare color charge.

This suggests that the coupling strength for the strong interaction increases as

the distance scale increases. When the coupling is mediated by a virtual particle, the

uncertainty principle dictates that the distance scale is inversely proportional to the
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momentum transferred. The QCD coupling strength is, in fact, given by:

αs(Q
2) =

12π

(11Nc − 2Nf ) ln(Q2/Λ2)
(1.1)

whereQ2 is absolute value of the square of the 4-momentum transferred in the process,

Nc = 3 is the number of colors, and Nf is the number of quark flavors accessible at

the energy scale involved. (At energy scales sufficient to produce charm, but not

heavier quarks, Nf = 4.) Λ is a constant known as the “QCD mass scale parameter”.

Coupling constants in general have an arbitrary parameter which must be determined

experimentally, and it is an artifact of the renormalization process that it has units

of mass in Equation (1.1). Λ is expected to be roughly the mass of a hadron, and is

found experimentally to be 216± 25 MeV/c [Ha02, p. 95]. For Q2 � Λ2, αs is small,

and perturbation theory can be used in QCD calculations, but for Q2 ≈ Λ2, αs ∼ 1

and perturbation theory is inappropriate. Physically this means that at high energies,

quarks behave as free particles, but at low energies they are very tightly confined in

hadrons. Note also that gluons can create virtual qq pairs, and so a hadron consists of

three types of constituents: the permanent quarks that make up the hadron, known as

valence quarks, the gluons, and virtual quarks and anti-quarks, known as sea quarks.

1.3 Hadroproduction of Charm

The production of heavy quarks in high energy hadronic interactions provides a use-

ful testing ground for QCD. Because the mass of the charm quark (believed to be

between 1.0 and 1.4 GeV/c2 [Ha02, p. 29]) is greater than ΛQCD, perturbation theory

should be applicable to charm quark production. The analysis described in this dis-

sertation involves the production of D∗±(2010) mesons resulting from the interaction
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of 500 GeV/c π− mesons (ud) with fixed nuclear targets: protons (uud) and neutrons

(udd).

Recall that mesons are bound states of a quark and anti-quark. As with other

bound systems, they can exist in a ground state or one of several excited states.

Ground state mesons are the lightest mesons with a given quark content. Ground

state mesons in which the quark and anti-quark are of different flavor can decay only

via the weak interaction, the only interaction which doesn’t preserve quark flavor.

Excited mesons can decay via the strong interaction to lower lying mesons. This

gives rise to their extremely short lifetimes. The D∗+(2010) meson is an excited

meson which consists of a charm and anti-down quark (cd). The “2010” refers to its

mass of 2010 MeV/c2. The D∗− (cd) is its anti-particle. Unlike the ground state D+

(mass 1869 MeV/c2) which has spin 0, the D∗± is a vector meson (spin 1).

There are several advantages to studying production of D∗ particles over the low-

lying D mesons. First, their spin causes their production to be favored three-fold over

the pseudoscalar mesons at high center of mass energies. Second, they are more likely

to have been produced directly in the initial interaction, rather than arising from the

decay of an excited meson. Third, the fact that they have non-zero spin allows an

investigation of their polarization through an angular distribution study. This last

point will be explained in more detail later.

Hadroproduction of D∗’s has been studied experimentally before [Ad99, Al94b,

Ba91, Ba88, Ag86], but the E791 experiment, described extensively in subsequent

chapters, provides the largest sample yet of hadroproduced D∗ mesons, thus enabling

measurements with much smaller error bars than previous results.
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1.3.1 Measured Quantities

The measurable properties of particles fall into two broad categories: the intrinsic

properties, common to all particles of the same type, such as intrinsic spin, lifetime,

mass, electric charge, etc., and the extrinsic properties such as momentum, spin

direction, etc. If the particle and anti-particle are considered together, the ratio of

the numbers of particles of one charge to the opposite in a sample can be considered

an extrinsic property as well. If one wishes to study the physics of the interaction

which produced a particle, it is the extrinsic properties which are important. In this

analysis these three extrinsic properties: momentum, charge asymmetry, and spin

direction, of the D∗ particles produced in E791 are studied in Chapters 7, 8, and

9, respectively. First, these quantities will be more precisely defined, then physical

models which predict these quantities will be discussed.

Differential Cross Sections

When a beam of particles is directed on a target, the probability of an interaction

per unit time is clearly directly proportional to the number of beam particles striking

the target per unit time (which is equal to the flux φ times the cross sectional area

of the beam A), and also to the density of the target material, expressed as number

of particles per unit volume nA, as well as its thickness L, assuming it is thin enough

that the beam flux remains approximately constant as the beam traverses the target.

In other words:

W = σφAnAL (1.2)

where W represents the number of interactions per unit time. Clearly, all of the

underlying physics describing the interaction is contained in the proportionality con-

stant σ, which has units of area. It is called a cross section in analogy with classical
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ballistics experiments where the interaction probability depends on the cross sectional

area of the target. One can measure a total cross section, or instead study how the

cross section depends on other quantities, such as the distribution in phase space of

decay products. Measurements of the latter type are called differential cross sections,

and are denoted dσ/dX where X represents some physical quantity or quantities on

which the interaction probability depends.

Momentum Distributions

As stated above, the first of the three measurements performed in this analysis is a

study of the momentum spectrum of the produced D∗’s. Measurement of the mo-

mentum in an arbitrary frame and coordinate system clearly would make comparisons

with other experiments difficult, so a standard system has been employed. The beam

direction gives a physically meaningful reference direction, and so the momentum is

first resolved into components parallel and perpendicular to the beam.

The perpendicular component has both a magnitude and direction, an azimuthal

angle measured about the beam axis. The symmetry of the system suggests no inter-

esting dependence on this azimuthal angle, so the square magnitude of the transverse

momentum is measured. This magnitude is clearly invariant under boosts along the

beam direction, so the value in the lab frame and center of mass frame of the interact-

ing particles is the same. The distribution is expressed as a differential cross section,

denoted dσ/dp2
T , where p2

T denotes square transverse momentum.

The component of ~p parallel to the beam is slightly more complicated. Firstly,

it does not have the same value in the lab and center of mass frame. Since the lab

frame is arbitrary as far as the underlying physics is concerned, the measurement is

boosted to the center of mass frame of the interacting particles. Also, unlike p2
T , the

parallel momentum, even in the center of mass frame, is heavily dependent on the

8



beam particle momentum. This would make comparisons with distributions obtained

from other experiments with different beam energies difficult. For this reason, the

momentum is divided by a scale factor, the maximum kinematically allowed parallel

momentum, to make the distribution approximately independent of beam energy.

This scaled quantity is called “Feynman-x”, denoted by xF :

xF =
p∗

q

p∗
q max

(1.3)

Here, the asterisks indicate the quantities are evaluated in the center of mass frame.

Clearly, −1 ≤ xF ≤ 1. The measured differential cross section is denoted by dσ/dxF .

Charge Asymmetry

Asymmetries in the rate of production of a particle and its antiparticle can arise from

the quark composition of the interacting particles. When one of the two produced

particles has a valence quark with the same flavor as a valence quark in the beam

particle, the produced particle is called a leading particle.

The bare asymmetry, σL − σNL is obviously going to be proportional to the total

number of particles produced in the experiment, so it isn’t physically meaningful.

(Here L and NL refer to the leading and non-leading particle respectively.) It is thus

customary to divide the asymmetry by this total, to yield the asymmetry parameter:

A =
σL − σNL

σL + σNL

(1.4)

Clearly, −1 ≤ A ≤ 1, with A = 0 when there is no asymmetry.
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Angular Momentum

Although the magnitude of the angular momentum is an intrinsic property of a par-

ticle (1 for a D∗), the direction of the angular momentum vector can depend on the

production physics. Spins might be preferentially aligned with the direction of the

interacting particles in the center of mass frame, for instance. If the spin directions

are not distributed evenly on the unit sphere, the sample is said to have a non-zero

polarization.

The polarization can be characterized numerically by means of a spin density

matrix. The elements of the spin density matrix can be determined by examining the

angular distributions of the decay products. Both the spin density matrix, and its

effect on angular distributions are discussed in detail in Chapter 9.

1.3.2 The Parton Model

Even before the QCD theory was formulated, evidence existed for a hadron substruc-

ture. So-called deep inelastic scattering experiments, in which leptons were scattered

off nuclear targets, provided evidence that hadrons were composed of point-like con-

stituents. The parton model was developed to explain these results.

The original parton model describes nucleons as being composed of point-like

subparticles, called partons, each of which carries a fraction x of the nucleon’s 4-

momentum. Furthermore, these fractional momenta were not fixed, but rather gov-

erned by parton distribution functions (PDFs), Fi(x), where Fi(x) is the probability

that a parton of type i carries a fraction x of the hadron’s 4-momentum. The subscript

i refers to the fact that different parton constituents could have different interaction

cross-sections or angular distributions. According to the original parton model, the

functions F (x) were independent of the energy scale (the square of the 4-momentum
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Figure 1.1: Parton distribution functions for protons and pions obtained using
PDFLIB package [Pl95]. They were computed at Q2 = 5 (GeV/c)2 and Λ =
190 MeV/c. The proton PDFs used the HMRS B data set [Ha90], and the pion
used SMRS 2 [Su92b].

transfer, q2) used to probe the hadron. This is known as the Bjorken scaling hypothe-

sis [Bj67]. Experimental results were approximately consistent with this assumption.

QCD accommodated the parton model with a few modifications. The partons

were identified as the valence quarks, sea quarks, and gluons which make up hadrons.

The fact that lepton-nucleon scattering experiments could account for only about

half of the parton constituents of the nucleon provided good supporting evidence

for the existence of gluons, which carry no electric charge. The gluons, however,

are capable of producing virtual qq pairs, and the number of these would increase

as the time-scale of the interaction decreases according to the uncertainty principle,

∆E∆t ≥ ~. Since the time-scale is inverse to the energy transferred in the interaction,

the number of partons goes up with q2. This results in a violation of the scaling
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hypothesis, with PDFs at high q2 having more weight at lower x than those at lower q2.

Fortunately, the evolution of PDFs can be calculated exactly by means of the Altarelli-

Parisi equations [Al77], and so measurements at one value of q2 are sufficient. The

original parton model also did not include any momentum component of the partons

transverse to the momentum of the hadron. But Fermi motion, as well as the emission

and absorption processes internal to the hadron, result in some transverse momentum.

An intrinsic momentum kT is thus added to the partons, usually according to a

Gaussian distribution. Typical widths are a few hundred MeV/c. Sample PDFs for

both the proton and pion are shown in Figure 1.1.

1.3.3 Charm Production Cross Section

Because the strong interaction conserves flavor, charm quarks must be produced to-

gether with an anti-charm quark. Of course, these quarks will eventually form hadrons

which are observed, but the time scale for hadronization is much longer than that of

heavy quark production, so it is hypothesized that the two processes can be considered

separately. This is the so-called factorization hypothesis.

Figure 1.2 depicts our model for the process of heavy quark production in hadron-

hadron interactions. The differential cross section for the process is given by:

dσc

d3k
=
∑
i,j

∫
dxa dxb

[
dσ̂ij(xaPa, xbPb, k,mc, q

2)

d3k

]
F a

i (xa, q
2) F b

j (xb, q
2) (1.5)

Here, the indicies i and j run over the parton constituents of hadrons a and b

respectively. k and mc represent the charm quark momentum and mass, respectively.

q2 is the square of the 4-momentum transferred in the process, typically taken to

be the square of the charm quark mass in charm quark production. F a
i and F b

j are

the parton distribution functions for hadrons a and b and partons i and j, respec-
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Pa

Pb

xaPa

xbPb

k

Figure 1.2: The parton picture of heavy quark production in hadron-hadron interac-
tions. Here k represents the momentum of the heavy quark produced in the interac-
tion of two hadrons with momenta Pa and Pb.

tively. The expression in square brackets is the parton-parton cross section for charm

production, at a given momentum, k.

As stated earlier, the fact that the charm quark mass is greater than ΛQCD sug-

gests that the parton-parton cross section is calculable using perturbative techniques.

Because mc 6� ΛQCD, it isn’t clear how accurate these predictions will be. These cal-

culations have been done up to leading order (LO) [Jo78] and next-to-leading order

(NLO) [Na89]. There are four diagrams which contribute at leading order to heavy

quark production: three gluon-gluon fusion diagrams and one quark–anti-quark an-

nihilation diagram. They are depicted in Figure 1.3. Because they each contain

two vertices, they contribute to the amplitude at order α2
s. Next-to-leading order

calculations involve terms up to order α3
s. Many diagrams contribute at this level.

Four gluon-gluon fusion diagrams are shown in Figure 1.4. The upper two are α3
s

diagrams, and the lower two are α4
s, but they interfere with leading order diagrams
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Figure 1.3: The four leading order (α2
s) diagrams for charm quark production in

parton-parton interactions.
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Figure 1.4: Four examples of next-to-leading order diagrams for charm quark pro-
duction in parton-parton interactions. The upper two are α3

s diagrams; the lower two
are α4

s which interfere with leading order diagrams at the same order as α3
s diagrams.
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and the interference terms contribute to the probabilities at the same order as α3
s

diagrams.

1.3.4 Hadronization

The final stage in charm hadroproduction is the formation of hadrons from the quarks,

anti-quarks, and gluons which result from the hard parton-parton scattering process.

There is generally sufficient energy in the process to result in radiation of soft gluons

which create several light quark/anti-quark pairs. Also, the original interacting par-

ticles can contribute additional partons to the process. Eventually, all these partons

must form colorless hadrons which can subsequently decay or propagate through the

detector. The process by which these partons are transformed into hadrons is called

hadronization or fragmentation.

In the context of the factorization theorem, the hadronization process can be

represented by fragmentation functions, Dh
q (z), which represents the probability that

a quark q will become part of a hadron h which carries a fraction z of the quark’s

momentum. The differential cross section for the production of a charm hadron h with

momentum p can be expressed in terms of the charm quark production cross section

derived in the previous section by convoluting it with the appropriate fragmentation

function:

dσh(p) ∝
∫ 1

0

dσc(p/z) D
h
c (z) dz (1.6)

The fragmentation functions can’t be computed directly from first principles as

the energy scale for hadronization is well below that amenable to perturbative QCD.

Fragmentation functions have thus been proposed in order to agree with experimental

results.
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For heavy quark production, the Peterson function [Pe83] has been quite popular:

D(z) ∝ 1

z
(
a− 1

z
− εQ

1−z

)2 , (1.7)

where εQ is a free parameter scaling with the heavy quark mass as εq ∝ 1/m2
Q.

The Peterson function describes data from e+e− collisions quite well where a heavy

quark and its anti-quark initially have equal and opposite momenta. In hadroproduc-

tion, however, the heavy quarks frequently combine with remnants of the interacting

hadrons and the Peterson function doesn’t model this adequately.

Another popular fragmentation function is derived from the Lund String Model.

The lines of color force in a color dipole field between a quark and oppositely colored

anti-quark or diquark tend to attract one another as a result of the triple gluon vertex

of QCD. This gives rise to narrow “flux tubes” between them. The width of the tube

is assumed to be independent of length (roughly 1 fm), and so the energy in the field is

proportional to distance between the quarks. This is analogous to a stretching string

with a spring constant of roughly 1 GeV/fm. In the string model of fragmentation,

these color strings join quarks, anti-quarks, and diquarks which together would form

a color singlet state. These partons have a momentum, and as they move they stretch

the string, losing kinetic energy and adding to the energy of the string until the string

has enough energy to create a real qq pair. The string thus breaks, with the new qq

at each end. This process continues until there is not enough energy left to create

new qq pairs, and the resulting joined pairs form hadrons. This process is expected

to be symmetric between the quark and anti-quark ends of the string, and this gives

rise to the Lund symmetric fragmentation function [An83]:

D(z) ∝ (1 − z)a

z
exp

(−b(m2
h + p2

T )

z

)
(1.8)
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where mh is the hadron mass, and p2
T its square transverse momentum.

When one end of the string contains a heavy quark, however, the situation is not

symmetric and the Lund function is modified [Bo81]:

D(z) ∝ (1 − z)a

z1+rQbm2
Q

exp

(−b(m2
h + p2

T )

z

)
(1.9)

where rQ is a constant which may depend on the flavor of the heavy quark.

1.3.5 Interpreting Data

Previous experiments have fit xF and p2
T distributions with the functional forms:

dσ

dxF

∝ (1 − xF )n and
dσ

dp2
T

∝ exp(−Bp2
T ) (1.10)

These arose from early models with the xF form valid only at large xF and the p2
T

form at low p2
T . Neither fit data from high statistics experiments very well, but fits

to these forms can facilitate comparison with other experiments.

The functional form:

dσ

dp2
T

=

(
C

bm2
c + p2

T

)β

(1.11)

has been shown to fit NLO QCD Monte Carlo predictions very well [Fr94]. If this curve

fits our p2
T distribution, it would lend support to the validity of using perturbative

QCD to model charm quark production.

The software package Pythia [Sj94] simulates high energy physics interactions.

It uses only leading order QCD to simulate the hard processes, but it also employs

a parton shower model to simulate the radiative corrections which occur at higher

order. The Lund string model using the Bowler fragmentation function (Eq. (1.9)) is

used to model hadronization.
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The dσ/dxF and dσ/dp2
T distributions are fit with the above mentioned functional

forms and compared to Pythia models.

1.3.6 Asymmetry Models

A large number of previous studies of hadroproduction of charm show strong evidence

for enhanced production of leading particles at high xF . (See Refs. [Al94a, Ai96]

and references therein.) Many models have been developed to explain this so-called

“leading particle effect”.

Leading order QCD predicts no asymmetry in the production of c and c at any

momentum. Next-to-leading order QCD does predict a small enhancement of the

leading particle at high xF arising from subprocesses qg → c(c) + X and qq →
c(c)+X [Na89]. The predicted asymmetry, though, is at least an order of magnitude

too low to agree with experiment [Ai96].

Another proposed model is the intrinsic charm model [Vo95], which depends on

the intrinsic charm content of the beam particle. In particular, the beam π− is

assumed to fluctuate into a |udcc〉 Fock state which is broken in the interaction.

Since the charm quarks are close in phase space to the pion’s valence quarks, they

are more likely to recombine with them, forming leading particles. This model does

not appear to be in good agreement with experimental results [Ai96].

The Lund string fragmentation model also predicts a strong leading particle ef-

fect. This arises from a phenomenon known as “beam dragging”. The charm and

anti-charm quarks are produced perturbatively with roughly the same momentum

distributions. However, in forming color strings, one of these quarks can form a color

string with a beam remnant which has a high forward momentum in the center of

mass frame. This beam parton pulls the heavy quark forward thus giving it a large
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Figure 1.5: An example of heavy quark recombination into a meson. The heavy
line represents the heavy quark and the shaded circle represents hadronization into a
meson containing the heavy quark.

forward momentum. As a result the asymmetry between leading and non-leading par-

ticles increases steeply at large xF . The default Pythia program actually predicts a

larger leading particle effect than is seen in data [Ai96]. Parameters were tuned to

bring about better agreement in that analysis, but only at the expense of selecting

kT and charm quark masses that might be unphysically large.

Another model is the recombination model [Da77]. In this model, some of the cc

pairs are produced by a short-distance process within the beam hadron. They are

thus close in phase space to the beam remnants and may preferentially recombine

with them. This is related to the intrinsic charm model in that the charm quarks

exist in the beam particle, but instead of existing there in an initial Fock state, they

are produced (possibly perturbatively) by interaction with a target parton. (See

Figure 1.5.)

In order to test these models, we plot the asymmetry parameter (Eq. (1.4)) for

D∗± as functions of both xF and p2
T . Our asymmetry results are compared both

to tuned and untuned Pythia models, which is a further test of the Lund string
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fragmentation model. The xF results are also compared to a model which incorporates

both fragmentation and recombination.

1.3.7 Polarization

Perturbative QCD does not predict any polarization of heavy quark hadrons produced

in hadron-hadron interactions. The discovery of momentum dependent polarization

in Λ hyperons produced in proton-nucleon interactions thus presented a puzzle. In

this experiment [Bu76], it was found that the Λ polarization increased monotonically

with transverse momentum. Since then, numerous experiments involving hyperon

hadroproduction have observed significant polarization effects. (See Ref. [Tr03], and

references therein.)

As there have been no previous attempted measurements of polarization of hadropro-

duced vector heavy quark mesons, there are few, if any, models specific to that case.

Existing models are specific to hyperon hadroproduction or D∗ mesons produced in

e+e− collisions. Both types of models usually involve either the fragmentation pro-

cess, or a production model other than the simple factorization scheme discussed

earlier. An example of a hyperon polarization model is the recombination model

for production, together with a Thomas precession model for polarization [An97].

For D∗’s produced in e+e−, the Suzuki model [Su86] predicts a polarization arising

from processes where hadronization occurs via the emission of a single gluon from

the heavy quark. Neither of these models appears to be applicable to hadroproduced

charm mesons, however.

Because of the heavy mass of the charm quark, one might expect its spin to be

retained in the produced hadron. It has been argued that despite its heavy mass,
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fragmentation effects would dominate and hide any polarization arising from the

quark production process [Fa94].

In any case, an attempt to measure such a polarization would fill an important

gap in experimental data, and may help to clear up some of the outstanding mysteries

in this sector.
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Chapter 2

Beam Line and Target

Experiment E791, “Continued Studies of Heavy Flavors”, was performed at the Fermi

National Accelerator Laboratory (FNAL, also known as “Fermilab”) in Batavia, Illi-

nois. Its purpose was to collect a high statistics sample of charm particle events

produced by a beam of negatively charged pions with an average energy of about

500 GeV striking a fixed target. The detector was located at Fermilab’s Tagged Pho-

ton Lab (TPL) in the Proton-East experimental area, and recorded data during the

1991–2 fixed target run.

2.1 Accelerator

This section describes the Fermilab accelerator as it was configured during the E791

run, which predated the addition of the Main Injector.

To produce the beam, a primary beam of 800 GeV protons was produced in the

Fermilab accelerator. This beam was created in several stages.

Firstly, electrons were added to hydrogen atoms producing negative ions. A
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Cockcroft-Walton power supply produced a potential of 750 kV, through which the

ions were accelerated, producing a beam of ions with an energy of 0.75 MeV.

The ions then entered a linear accelerator (Linac) approximately 150 m long. The

Linac contained very intense electric fields which alternated in direction. The ions

moved through drift tubes which shielded them from the field where its direction

opposed their motion, and they were accelerated in the gaps between the tubes where

the direction of the field increased their energy. Here the ions were accelerated to

approximately 200 MeV and then passed through a carbon foil which stripped off the

electrons leaving only protons.

The protons entered the booster, which was a synchrotron 150 m in diameter.

Here, magnets kept the protons moving in a circular path as RF cavities accelerated

them. The protons traveled around the booster 20 000 times where their energy was

raised to 8 GeV.

The next stage was the Main Ring, another proton synchrotron, four miles in

circumference, and containing 1000 copper coiled magnets. The main ring accelerated

the protons to 150 GeV.

Housed in the same tunnel as the Main Ring is the Tevatron, another synchrotron,

containing 1000 superconducting magnets. When running in fixed target mode, the

Tevatron accelerated the protons to an energy of 800 GeV. The protons were extracted

in pulses lasting 23 s containing approximately 2 × 1013 protons.

2.2 Fixed Target Beamline

When the accelerator operated in fixed-target mode, protons extracted from the Teva-

tron were sent to a switchyard where they were split into three beams which were sent

to the meson area, the neutrino area, and the proton area. The proton area beam
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Figure 2.1: Fermilab beam lines (c1991).
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was then split into Proton West, Proton Center, Proton East, and Wideband beams.

The Proton East beam was directed onto a 30 cm beryllium target. Dipole magnets

and collimators were used to select secondary π− particles with an energy of 500 GeV

which were sent to the E791 experimental target. (See Fig. 2.1).

The choice of beam particle was governed by the desire to maximize the size of the

charm sample [Su92a]. A photon beam would have produced more charm particles

per hadronic interaction1, but it wouldn’t have been possible to get enough photons

to generate the amount of charm possible with a hadron beam, owing to both the

greater cross section for hadronic interactions and greater luminosity possible with a

charged hadron beam. Pions were chosen rather than protons because they have a

stiffer gluon distribution [Mc83] (See also Figure 1.1.), and it is believed that charm

is produced predominantly by gluon-gluon fusion [Jo78]. Finally, negative pions were

chosen as proton contamination would have been substantial in a π+ beam.

The complete cycle time was 57 s. 34 s were required to ramp up the synchrotron,

and the spill lasted 23 s. During each spill, 2 × 1013 protons left the Tevatron, and

2× 1012 protons were allocated to Proton East. This resulted in roughly 2× 107 π−’s

being sent to the E791 target.

2.3 Target

Several considerations went into the target design. In fixed target charm physics

experiments it is crucial to be able to find clean secondary vertices, and these must be

distinguished from vertices resulting from multiple scattering in the target material.

This consideration would tend to favor a thin target. One also would like to increase

1In the photon-gluon fusion model, all the beam particle’s energy goes into the production of
a qq pair, thus favoring heavier quark production at higher beam energies. In the gluon-gluon
fusion model of hadroproduction, only a part of the beam particle’s energy (governed by the gluon
distribution function) goes into the qq production, thus favoring the production of lighter quarks.
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Table 2.1: Summary of E791 target information

Foil Material Z Pos. Thickness Diameter Interaction
Number (cm) (cm) (cm) Length (%)

1 Pt -8.191 0.052 1.61 0.584
2 C -6.690 0.157 1.37 0.589
3 C -5.154 0.157 1.38 0.586
4 C -3.594 0.153 1.37 0.582
5 C -2.060 0.158 1.36 0.582

the number of interactions, and this requires more target material. To accomplish

these two goals, E791 used five separate target foils spaced roughly 1.5 cm apart.

The thinness of the foils necessitated a fairly dense material in order that a useful

fraction of the incident pions interact (roughly 2%). The first target foil was made of

platinum (ρ = 21.4g/cm3), and the remaining four were made of carbon (industrial

diamond, ρ = 3.2g/cm3). The use of two different materials allowed one to study the

dependence of charm production cross section on the number of nucleons in a target

nucleus. (A = 195 for platinum and A = 12 for carbon.)

The foils were roughly 1 cm in diameter and were mounted in lexan. (See Table

2.1). The thinness and spacing of the targets allowed one to reconstruct secondary

vertices between the foils. One can then require a minimum significance of separation

between a secondary vertex and the nearest target foil to reduce background due to

multiple scattering. Also, the thinness of the target material allowed one to obtain

the z-position of the primary vertices to a resolution of between 250 and 450 µm.

(See Fig. 2.2).
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Figure 2.2: Z position of reconstructed primary vertices. First five peaks are at
location of target foils. The sixth one is at the interaction counter.
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Chapter 3

Spectrometer

3.1 History

Fermilab experiment E791 was housed in the Tagged Photon Lab. The spectrome-

ter was originally built for E516 [Sl85], a charm photoproduction experiment which

began in 1979 and ran in the early 1980’s. For the following experiment, the highly

successful E691 [Ra88], nine silicon microstrip detectors were used for very high ver-

tex resolution. This produced 10,000 fully reconstructed charm events, more than a

fifty-fold increase over E516. The next experiment, E769 [Al92], used a hadron beam

consisting of pions, kaons, and protons rather than a photon beam.

Several improvements [Su92a] were made in upgrading to E791. The number of

silicon microstrip planes was increased to 23. A second muon wall was added, and

the data acquisition system was greatly enhanced to handle the high data taking rate

necessitated by the open trigger design and high luminosity produced by a hadron

beam. Also, for E791 only a pion beam was used.

E791 took data during the 1991 fixed target run (July 1991 to January 1992).
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Despite the fact that hadron beams were used since E769, the name “Tagged Photon

Lab” remained.

3.2 Spectrometer Introduction

The E791 spectrometer1(Fig. 3.1) was designed for charm physics. Crucial to obtain-

ing a charm signal is the ability to observe a clear separation between the primary

vertex (where a charm particle may be produced) and a secondary vertex (where the

charm particle decayed.) Because of the short lifetime of charm particles (on the

order of a picosecond or less) good vertex resolution was important. Consider for

example a D+ with a mass of 1.869 GeV/c2, and lifetime 1.057 ps. A typical D+

momentum in E791 is 50 GeV/c. This gives a Lorentz factor,

γ ≈ p/mc ≈ 27. (3.1)

This yields a mean flight length

l ≈ γcτ ≈ 9mm. (3.2)

Thus, vertex resolutions would have to be on the order of tens of microns to obtain

clean charm samples. This is especially true in a hadroproduction experiment like

E791 where a large number of particles (typically 10 per event) were produced at the

primary vertex. Thus the silicon microstrip detectors were a critical part of the E791

spectrometer. 23 planes were used: 6 upstream of the target and 17 downstream.

In order to measure the charge and momentum of the decay tracks, two magnets

1Much of the information in this chapter was obtained from previous E791 dissertations[Wi94,
Wi96].
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Figure 3.1: E791 Spectrometer. (Source: Fermilab)
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were used. Drift chambers were placed upstream, downstream and between the mag-

nets with proportional wire chambers also placed upstream of the first magnet. Two

Čerenkov counters provided particle identification. To assist in particle identification

and triggering, E791 had two calorimeters, a segmented liquid ionization calorimeter

(SLIC) for identification of photons, electrons, and positrons, and a hadrometer for

detection of hadrons and muons. Finally two walls of scintillating paddles were used

for muon identification.

3.3 E791 Coordinate System

Much of the discussion of the geometry of the detectors will be done in terms of the

E791 coordinate system which is discussed here. A right-handed Cartesian system is

used with the positive Z axis pointing in the direction of the beam. The Y axis is

vertical with the positive axis pointing up. The X axis is roughly in the east-west

direction, and right-handedness requires that the positive axis points west.

The origin was chosen on the beam with z = 0 at the interaction counter, roughly

1.5 cm downstream of the last target foil. Unless otherwise indicated, coordinate

measurements are in centimeters.

Many of the tracking detectors (SMDs, Drift Chambers, and PWCs) were oriented

along the X or Y axis, but some were mounted at an angle. Drift chamber wires, for

instance, would sag if they were hung horizontally, so in order to do three dimensional

tracking, some chambers were hung vertically and some were mounted at an angle

(20.5◦) with respect to the vertical. For this reason, additional coordinates are defined

to make it easier to describe these detectors. The additional coordinates are U , V ,

W , and W ′ where the U axis is rotated counterclockwise with respect to the X axis

(in the right-handed sense) by an angle of 20.5◦, the V axis is rotated clockwise w.r.t.
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the X axis by 20.5◦, the W axis is rotated counterclockwise by an angle of 60◦ w.r.t.

the X axis and the W ′ axis is rotated clockwise 60◦ w.r.t. the X axis.

Note that an X-view detector makes a measurement in the X direction, and thus

has strips or wires which are vertical.

3.4 Silicon Microstrip Detectors

E791 used a total of 23 silicon microstrip detectors (SMDs). 6 were upstream of the

target foils and were used for beam tracking. The remaining 17 were downstream

of the target foils and were used for the vertex tracking. The angular acceptance of

the silicon system was roughly 200 milliradians. The beam track information was

used to accurately determine the x and y coordinates of the primary vertex, and the

remaining tracks were used in constructing secondary vertices. The SMDs used in

E791 came from four sources and are discussed below.

3.4.1 E691 SMDs

The E691 SMDs were nine planes inherited from E691, in the form of three X-Y -V

triplets, the first having an area of 676 mm2, and the other two 2500 mm2.

The planes consisted of silicon wafers approximately 300 µm thick. The strips

were spaced 50 µm apart, and were slightly less than 50 µm wide. To form a strip,

each side of the wafer was ion implanted: one side with boron (p-type), and the other

with arsenic (n-type). Aluminum was deposited over both the n-type and p-type

doped layers for good ohmic contact. Thus a p-n junction diode was formed, which

was reverse biased at 90 V. The first triplet wafers were manufactured by Enertec,

and the other two by Micron.

When a charged particle crossed a strip an average of 23,000 electron-hole pairs
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were excited into the conduction band, which corresponds to a charge of 3.7 fC.

Signals this small could not travel more than a meter, so they were fanned out to

pre-amplifiers. The fan-outs were copper printed on Kapton and G10.

The planes and fan-outs were mounted inside light-tight RF boxes on which were

mounted pre-amplifier cages made of silver-plated aluminum for RF shielding. The

cages each contained 32 four-channel Laben MSD2 preamplifier cards which had a

current gain of 200. These signals were then transmitted over 4 m long shielded ca-

bles to the discriminator cards (slightly modified eight-channel Nanosystems MWPC

models 5710/810).

3.4.2 E769 SMDs

These SMDs were inherited from E769, the experiment which followed E691 in the

TPL. These consisted of two pairs of X and Y planes. One pair was located upstream

of the target for beam tracking. The other two were downstream of the target, placed

closest to the target (upstream of the 691 planes.)

The beam planes had 384 instrumented strips at a 25 µm pitch, and the down-

stream planes had the same and in addition 304 50 µm strips in the outer region.

Having a finer pitch in the inner region increased the resolution for most vertices,

without sacrificing angular acceptance.

The planes were reverse biased at 90 V, and amplified by 4-channel differential

output Laben MSP1 preamplifiers. The signals were then sent to 8-channel Nanosys-

tem 5710/810 amplifier-discriminator cards.
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3.4.3 OSU SMDs

These SMDs were provided by Ohio State University for E791. They had been orig-

inally constructed for Fermilab E653. These were the largest SMD planes in the

experiment and were placed furthest downstream. There were six such planes, two

each in the X, Y , and V views.

The planes were manufactured by Micron, and were n-type phosphorus doped

with a depletion voltage of 45 V. LeCroy HQV810 preamps were used, and the signal

was further amplified by cards designed by Ohio State University.

The planes were each 100 cm2 and had an inner pitch of 50 µm and an outer pitch

of 200 µm.

3.4.4 Princeton SMDs

Princeton University provided four new planes for E791. They were placed upstream

of the target and used for beam tracking. They consisted of one X plane, one Y plane

and two W planes.

The planes had an inner pitch of 25 µm and an outer pitch of 50 µm. The planes

were reverse biased at 70 V and the signals were fanned out to MSP1 preampli-

fiers. The preamp signals were sent over twisted pair ribbon cables to eight-channel

Nanometric N339A amplifier-discriminator cards.

3.4.5 Princeton SMD scanners

In order to read out the nearly 16,000 channels from the SMDs ten scanner boards

were built by Princeton. Each board contained eight scanners each of which could

read 256 channels as one large shift register. Thus 80 channels could be processed in

parallel.
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The discriminator cards were designed to be read out as a shift register. A clock

signal from the scanner was sent to the discriminator which returned the clock signal

along with a data signal. A high signal on the data line means the strip corresponding

to the clock signal was hit.

Up to eight scanner boards could be placed in one VME crate, and each crate

had a controller board which read out its scanner boards and packed the data, by

storing only the strip numbers of hit strips rather than the ones and zeros corre-

sponding to each strip. This information was then sent to the event FIFO buffer.

(See Section 4.2.2.)

3.5 Proportional Wire Chambers

The E791 proportional wire chambers (PWCs) consisted of a series of evenly spaced

wires suspended in a gas mixture of 82.7% Argon, 17% CO2, and 0.3% CF4. An

electric field was set up by field wires, and when a charged particle passed through, it

ionized some of the gas molecules, leaving a train of electron-ion pairs. The electrons

were accelerated by the electric field and gained enough energy to ionize more gas

molecules. These electrons migrated to the nearest sense wires and the electric charge

was amplified and read out. In the E791 system, the planes could be read out in 4 ns.

The field was chosen to be in a range in which the output pulse is proportional to

the number of primary ion-electron pairs produced. If the field were too weak, the

primary electrons would not gain enough energy to further ionize any molecules. If

the field were too strong an avalanche condition would result in which the output

pulse would no longer be proportional to the number of primary electron-ion pairs.

In E791, PWCs were used for both beam tracking and downstream tracking. Eight

beam PWCs were placed well upstream of the target (one set of four was roughly
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Table 3.1: Summary of E791 SMD information.

Plane Type† View‡ Z Pos. Dimen. Pitch Number of Effic-
Number (cm) (cm × cm) Inr./Outr. Instr. iency

(µm) Strips (%)

1 769 Y -80.250 1.× 1. 25/50 384 90
2 769 X -79.919 1.× 1. 25/50 384 90
3 Pr. W -74.529 1.× 1. 25/50 448 90
4 Pr. W -33.163 1.× 1. 25/50 448 90
5 Pr. X -30.133 1.× 1. 25/50 416 90
6 Pr. Y -29.483 1.× 1. 25/50 416 90
7 769 Y 0.670 1.6 × 1.6 25/50 688 83
8 769 X 1.000 1.6 × 1.6 25/50 688 85
9 691 X 1.931 2.6 × 2.6 50/50 512 93
10 691 Y 3.015 2.6 × 2.6 50/50 512 95
11 691 V 6.684 2.6 × 2.6 50/50 512 96
12 691 Y 11.046 5.× 5. 50/50 768 98
13 691 X 11.342 5.× 5. 50/50 768 97
14 691 V 14.956 5.× 5. 50/50 768 94
15 691 X 19.915 5.× 5. 50/50 1000 90
16 691 Y 20.254 5.× 5. 50/50 1000 88
17 691 V 23.878 5.× 5. 50/50 1000 93
18 OSU V 27.558 10.× 10. 50/200 864 98
19 OSU X 31.848 10.× 10. 50/200 864 96
20 OSU Y 34.548 10.× 10. 50/200 864 98
21 OSU X 37.248 10.× 10. 50/200 864 99
22 OSU Y 39.948 10.× 10. 50/200 864 99
23 OSU V 45.508 10.× 10. 50/200 864 99

†See Secs. 3.4.1 thru 3.4.4
‡See Sec. 3.3
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Table 3.2: Summary of E791 PWC information.

No. of Planes Views† Z Pos. (cm) Wire Spacing (cm) Size (cm×cm)

4 X, Y , X ′‡, W -3116.0 0.1 6.4 × 3.2
4 X, Y , X ′, W -1211.0 0.1 6.4 × 3.2
1 Y 118.5 0.2 53 × 28.8
1 Y 161.1 0.2 53 × 28.8

†See Sec. 3.3
‡X ′ coordinate offset 1/2 cell from X coordinates.

30 m upstream and the other 12 m upstream (See Table 3.2.)). This long lever arm

gave a good angular resolution of ∼ 10 µrad. In addition, two PWCs were located

downstream of the SMDs but before the drift chambers and magnets to assist in

linking the SMD tracks to the drift chamber tracks.

3.6 Magnets

Magnets were necessary for measuring the momentum of charged tracks. When a

particle of charge +e passes through a magnetic field perpendicular to its path, it

undergoes a deflection through an angle θ, given by [Fe86, p. 327]:

θ ≈
∫
B dl

3.333p
(3.3)

where p is the particle’s momentum, measured in GeV/c, B is the magnitude of the

magnetic field in Tesla, and the infinitesimal length element dl is measured in meters.

Thus the momentum resolution can be expressed in terms of the angular resolution

as:

δp

p
=
δθ

θ
. (3.4)
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Table 3.3: E791 Magnet Parameters

Magnet M1 M2

Z bend point (cm) 275.08 620.65
Front aperture (cm×cm) 154×73 154×69
Rear aperture (cm×cm) 183×91 186×86

Current (A) 2500 1800
Coils 2 4∫

B dl (T-m) 0.711 1.077
pt kick (GeV) 0.212 0.320

If the magnets bend in the x direction, and r is the lever arm to the x measurement:

δθ =
δx

r
(3.5)

Substituting into the previous equation we obtain:

δp

p
=

3.333p δx

r
∫
B dl

(3.6)

This equation tells us that good momentum resolution depends on having good x

position resolution, a long lever arm and a large
∫
B dl.

In E791, two large-aperture, copper-coil dipole magnets (Figs. 3.2,3.3) were used

for momentum measurement. For most E791 particle tracks the momentum compo-

nent transverse to the Z axis (pt) was much smaller than the Z component (pz), the

effect of Equation (3.3) can be approximated by saying a pt “kick” is imparted to the

particle by a magnet. The E791 magnet parameters are summarized in Table 3.3.

For both magnets the field pointed in the −Y direction, giving positively charged

particles a kick in the +X direction. In track reconstruction, a single-bend point
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Coils

Figure 3.2: First magnet: M1 (Source: Fermilab)

approximation was used, in which the pt kick was applied at a single point. This was

a good approximation to reality and saved reconstruction time.2

3.7 Drift Chambers

The SMDs (Sec. 3.4) provided high resolution tracking for reconstructing vertices.

To measure the momenta of particles, it was necessary to measure how much they

were deflected by the magnets. For this reason, tracking had to be done between and

downstream of the magnets. Because these regions are much further downstream of

the target, detectors with a much greater area than that practical with SMDs were

required to maintain a reasonable angular acceptance. A total of 35 drift chamber

planes were used by E791 for this purpose.

A drift chamber is similar in principle to a PWC (Sec. 3.5) but achieves a much

2Actually, some of the data was reconstructed using a “full field” model. This is discussed in
Section 5.3.4.
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Coils

Figure 3.3: Second magnet: M2 (Source: Fermilab)

better resolution by using time information in addition to simply recording which

wires are hit. The E791 drift chambers were mounted inside gas-tight rf boxes filled

with a mixture of 89% Ar, 10% CO2, and 1% CF4. Inside were alternating cathode

and sense planes, and the sense planes consisted of alternating sense wires and field-

shaping wires. The cathode planes were held at a potential of -2.1 kV to -2.5 kV, with

the field-shaping wires 0.4 kV to 0.6 kV higher, and the sense wires were grounded.

This created a fairly uniform field. The field strength and gas mixture were chosen so

that when electrons were liberated by an ionizing particle, they drifted with a fairly

constant velocity, vd, to the nearest sense wire. By measuring the time required for

the signal to appear (∆t), and using the simple relation d = vd∆t, one can determine

the distance from the sense wire that the ionizing particle passed, and, up to a left-

right ambiguity, the particle’s coordinate. (Having more than one plane helps to clear
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Table 3.4: E791 Drift Chamber Summary

Asmbly Stat. Z Pos. Views Size Chan. Res.
(cm) (cm×cm) (µm)

1 D1 142.5 to 148.5 X, X ′, U , V 126 × 71 672 400
2 D1 177.6 to 183.6 X, X ′, U , V 126 × 71 864 400
3 D2 382.3 to 385.5 U , X, V 285 × 143 544 300
4 D2 424.9 to 428.1 U , X, V 285 × 143 544 300
5 D2 466.6 to 469.8 U , X, V 285 × 143 640 300
6 D2 497.7 to 500.9 U , X, V 285 × 143 672 300
7 D3 928.2 to 931.5 U , X, V 323 × 143 480 300
8 D3 970.8 to 974.0 U , X, V 323 × 143 480 300
9 D3 1012.5 to 1015.8 U , X, V 323 × 143 480 300
10 D3 1044.3 to 1047.6 U , X, V 323 × 143 512 300
11 D4 1737.8 to 1749.3 U , X, V 511 × 259 416 450

up the left-right ambiguity.) The gas and field strengths used in E791 resulted in a

drift velocity of 50 µm/ns.

The drift chambers measured in theX, U , and V views (See Sec. 3.3). No Y planes

were used because the horizontally hung wires would sag too much, and degrade the

resolution. The drift chambers were divided into four stations, labeled D1, D2, D3,

and D4. (See Table 3.4.) D1 consisted of eight planes located before the first magnet

(M1) downstream of the SMDs and PWCs. It increased the acceptance of region one

tracking.3 D2 was located between the magnets and consisted of four triplets and

was used for region 2 tracking. Downstream of M2, D3 also consisted of four triplets

and was used for region 3 tracking. Just upstream of the calorimeters was another

triplet (D4). Its long lever arm could have improved momentum measurements, but

its poor resolution limited its usefulness.

The drift chamber signals were read out by Lecroy DC201 Nanomaker N-277C

3The region upstream of M1 was known as region 1. Region 2 was between the two magnets and
region 3 was downstream of the magnets.
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amplifier/discriminators. The signals were then transmitted via twisted pair cables

to Philips 10C6 time-to-digital converters (TDCs) which were read out by Fastbus

Smart Crate Controllers to the DA system.

The TDCs were operated in common stop mode. They started counting when

the corresponding sense wire received a signal and were all stopped at the same time

by a delayed trigger. The drift time could then be obtained by the following simple

formula:

tdrift = tdel − ttdc − (tabs + trel) (3.7)

where tdel represents the delay time between the trigger and the TDC stop signal, tabs

is an absolute time offset due to detector offsets, and trel is a relative time offset for

each channel resulting from differences in cable lengths and responses for each sense

wire channel.

The drift chambers performed well, but did suffer from a problem resulting from

the use of charged beam particles. Most such particles did not interact, and passed

right through the detector system. The large number of ionizing particles passing

through the central regions of the drift chambers caused deposits to gradually build

up on the drift chamber wires in those regions resulting in localized losses of efficiency,

known as “drift chamber holes”. These holes changed in size and shape during the

run period, which made acceptance modeling difficult.

3.8 Čerenkov Counters

In reconstructing the momenta of charm particles, it is necessary to know not only

the momenta of the decay products, but the rest masses and hence the identities of

the particles as well. In many modes, such as the Cabibbo favored D+ → K−π+π+,
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the charge of the particles can be used to identify them. In a suppressed mode such

as D+ → K−K+π+, however, charge alone is not sufficient. In order to help identify

the particles, E791 used Čerenkov counters. [Ba87]

When a charged particle passes through a dielectric medium with a velocity greater

than light travels in the medium (c/n where n is the index of refraction for the

medium), it emits light which is confined to a cone centered on the particle’s path

which makes an angle θ with the particle’s path where cos θ = c/vn.

The condition that v > c/n means the particle must have a momentum greater

than a threshold momentum pth to emit Čerenkov light. Since p = γmv we have:

pth =
γmc

n
(3.8)

And γ = (1 − (v/c)2)−1/2 so at threshold γ = (1 − n−2)−1/2. And so,

pth =
mc√
n2 − 1

(3.9)

The number of photonsN emitted by a singly charged particle per unit wavelength

λ per unit length l is given by [Fe86, p. 181]:

dN

dl dλ
=

2πα

λ2

(
1 − v2

th

v2

)
(3.10)

where α is the fine structure constant. In terms of measured quantities, this becomes:

dN

dl dλ
=

2πα

λ2

(
1 − m2c2 + p2

n2p2

)
(3.11)

Thus, with a known index of refraction and a given mass hypothesis, one can predict

the number of photons that will be emitted at a given momentum. By measuring
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Figure 3.4: First Čerenkov Counter: C1 (Source: [Ba87])

Access

Door

Seal

Mirror String 
Adjusters

Rear Window

Rubber Gasket

Front Window

Beam

Winston Cone

Portals

Figure 3.5: Second Čerenkov Counter: C2 (Source: [Ba87])
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Figure 3.6: Winston Cone used by E791. (Source: [Ba87])

the momentum and number of photons, one can assign probabilities to various mass

hypotheses and use this information in particle identification.

E791 used two Čerenkov counters labeled C1 and C2. (See Figs. 3.4 and 3.5). The

first was filled with N2, and the second with a mixture of 80% He and 20% N2. By

using two different gas mixtures, the two counters had different indices of refraction

and thus could identify particles in different momentum regions. C1 was located just

downstream of magnet M2, and C2 was located between drift chambers D3 and D4.

In order to maximize the number of photons collected, the E791 Čerenkov counters

used mirrors and Winston cones to collect the light. A Winston cone is a reflecting

surface whose geometry is chosen to collect incident light up to an angle θmax w.r.t.

the optical axis onto the face of a photomultiplier tube. The E791 Winston cones

had θmax ≈ 20◦. (See Fig. 3.6).

The photomultiplier tubes used in E791 were RCA 8854 5-inch tubes. They

were chosen because of their very good linearity, i.e. the output signal was roughly

proportional to the number of photoelectrons. This feature was tested and calibrated

using highly attenuated laser light. The output was digitized by LRS 2249 ADCs

and single, double, and triple photoelectron peaks were observed with the expected

number of ADC counts. In addition to this calibration, each mirror-cone-phototube

assembly was calibrated using high-momentum, isolated tracks that were centered on
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Table 3.5: Summary of E791 Čerenkov detector information.

C1 C2

Length (cm) 370 660
# of mirrors 28 32
Gas Mixture 100% N2 80% He 20% N2

n− 1 290 × 10−6 86 × 10−6

a single mirror. The momentum of the track was required to be high enough so that

dN/dl was nearly constant. That way, the number of photons depended only on the

path length of the track through the region where light is expected to be collected by

the given cone. By comparing the number of predicted to the number of measured

photons the efficiency of each assembly could be determined.

The arrangement of the mirrors in E791’s detectors is shown in Figure 3.7 and the

characteristics are shown in Table 3.5. The mirrors ranged in size from 6650 cm2 in the

outer regions down to 300 cm2 in the inner regions where there were a larger number

of particles. In C2, light was reflected off a mirror plane into the Winston cones, and

in C1, space constraints required double bounce optics as shown in Figure 3.8.

To use the Čerenkov detector for particle identification, measured photons were

first assigned to the various charged tracks passing through the detector. Then, a

probability was constructed for observing the measured number of photons (Nmeas)

when the predicted number of photons is Npred. This is given by the Poisson distri-

bution:

fij(N
pred
ij ;Nmeas

i ) =
(Npred

ij )Nmeas
i e−Npred

ij

Nmeas
i !

(3.12)

Here, the label i ∈ {1, 2} refers to the counter number and j refers to a mass hy-

pothesis. The joint probability for a given measurement in the two counters is then

fj = f1j × f2j. This gives the probability for an observed measurement given a mass
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Figure 3.7: Mirror arrays for E791 Čerenkov detectors.
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Figure 3.8: Optical arrangements for E791 Čerenkov detectors. (Source: [Ba87])

hypothesis. To turn this around and find the probability for a given mass hypothesis,

we must apply Bayes’s theorem and include the a priori probabilities for detecting

each particle:

Pj =
fj × Aj∑
k fk × Ak

(3.13)

which gives the probability for a given mass hypothesis j. The E791 Čerenkov de-

tectors were designed to detect electrons, muons, pions, kaons, and protons. The a

priori probabilities in E791 were Ae = 0.02, Aµ = 0.01, Aπ = 0.81, AK = 0.12, and

Ap = 0.04.

3.9 Calorimetry

The calorimeters served two main purposes in E791. One was triggering which is

discussed in the next chapter. The other was to provide identification for electrons

and neutral hadrons.

Although the Čerenkov detectors were very good at distinguishing pions from

kaons, electrons generally emitted light in both detectors, making them of limited

48



usefulness in identifying electrons. Also, neutral hadrons and photons don’t leave

tracks in other parts of the detector, and so calorimetry is quite useful in identifying

those particles.

E791 employed both a segmented liquid ionization calorimeter for electromagnetic

particles and a steel-acrylic scintillator calorimeter for hadrons.

3.9.1 Electromagnetic Calorimeter (SLIC)

When photons and electrons (or positrons) with an energy above about 10 MeV

interact with matter, bremsstrahlung and pair production are the dominant processes.

Electrons and positrons emit photons by bremsstrahlung, and photons produce e+e−

pairs. This results in an exponential growth in the number of electromagnetic particles

until the energy of the resulting particles falls below the level at which bremsstrahlung

and pair-production are the dominant processes. As a result, the depth of the shower

in space is roughly proportional to the log of the energy of the incident particle. This

explains why electromagnetic showers are relatively short.

During this shower, energy can be transferred to a scintillating material by Comp-

ton scattering or ionization. The light emitted by the scintillator is thus proportional

to the energy of the incident particle.

For electromagnetic calorimetry, E791 employed a segmented liquid ionization

calorimeter (SLIC). [Bh78, Bh85] The SLIC consisted of 60 layers of corrugated alu-

minum filled with a mineral oil based liquid scintillator (NE235H). (See Figure 3.9).

Each corrugation was 3.17 cm wide and 1.27 cm deep. The aluminum was coated

with teflon which has a lower index of refraction than the oil, so that each corruga-

tion formed a totally internally reflecting light pipe for light with an angle of inci-

dence less than about 20◦. Separating the corrugated aluminum sheets were 0.63 cm
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Figure 3.9: The SLIC. (Source: [Bh85])

aluminum-laminated lead sheets, which helped to initiate and maintain the showers.

(See Figure 3.10.)

The layers alternated in U , V , and Y views (the U view had corrugations at an

angle of 20.5◦ with respect to the vertical, the V view −20.5◦, and the Y view had

horizontal corrugations.)

Channels were read out individually in the central region and in groups of two

in the outer regions. At one end of each channel was a mirror with a reflectivity of

80%, and the other was connected to a waveshifter bar which connected all channels

at a given position in a given view. The waveshifter bar was doped with a waveshift-

ing material (BBQ), which absorbed the ultraviolet light from the scintillator and

re-emitted it as green light. This light was collected by 2 inch RCA 4902 photomulti-

plier tubes attached to the end of the waveshifters. The linear pulses from the PMTs

were digitized by Fast Encoding and Readout ADCs (FERAs). The SLIC was cali-
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Figure 3.10: Layer construction of the SLIC. (Source: [Bh85])

brated periodically throughout the run period using muon and electron runs. SLIC

characteristics are tabulated in Table 3.6.

Particle energies were calculated as follows. [Su85] First, “cells” were found where

a cell is defined as a cluster of counters with enough light to be above an energy

threshold. Because multiple particles may contribute to a cell, each cell was examined

for multiple peaks. “Sectors” were thus formed where a sector corresponded to a single

peak. The V and Y positions of the sector were matched with drift chamber tracks

to predict a corresponding U , and this was required to match the sector’s U position.

The energy for the particle candidate was found by minimizing:

χ2 =
∑

i

(ei −
∑

j αijεj)
2

σ2
i

(3.14)

where ei are the sector energies with errors σi, αij are position dependent energy
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Table 3.6: Summary of E791 SLIC information.

Z position (cm) 1866 to 1962
# of U channels 109
# of V channels 109
# of Y channels 116

Usable area (cm × cm) 490 × 240
Radiation Lengths 20
Absorption Lengths 1.5

correction factors, and εj are the energies of the particle candidates, which were the

fit parameters.

The SLIC made it possible to reconstruct energy showers with an energy resolution

of:

(
∆E

E
)2 ≈ (11.5%)2 + (

17.4%

E
)2

and a position resolution of 7 mm.

3.9.2 The Hadrometer.

Hadronic shower processes are different from those of electromagnetic showers. About

half the incident energy goes into the production of fast secondaries whose large

transverse momentum components give rise to showers of greater lateral extension

than electromagnetic showers. The remainder goes into the production of slow pions

and other particles.

The E791 hadrometer [Ap86] was located just downstream of the SLIC. Since the

SLIC absorbed roughly 99% of the energy of electromagnetic showers, hadrons could

be distinguished by the fact that they deposited a significant amount of energy in the

hadrometer as well as a wider shower in the SLIC. Neutral hadrons could be identified

after subtracting the hadronic energy associated with charged tracks.
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Figure 3.11: The E791 hadrometer. (Source: [Ap86])

Table 3.7: Summary of E791 hadrometer information.

Z position (cm) 1973 to 2131
# of channels 142

Usable area (cm × cm) 490 × 270
Absorption Lengths 6

The hadrometer (see Figure 3.11) consisted of 36 layers of acrylic scintillator

separated by 2.5 cm thick steel plates. The scintillator layers alternated in x and y

views, consisting of vertical (x) and horizontal (y) strips, each 14.5 cm wide. The

hadrometer was divided into two modules, and for each module light from strips of

the same x (or y) position were collected in a single phototube. 5 inch EMI 9791KB

phototubes were used, and the output was digitized by FERAs.

The hadrometer was calibrated using muon runs, where the muons were known to

deposit an average energy of 2.4 GeV in the hadrometer, and by minimizing the energy

resolution of charged hadrons by requiring the SLIC energy plus the hadrometer
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Table 3.8: Summary of E791 muon detector information.

X wall Y wall

Z position (cm) 2143 2319
Usable area (cm × cm) 550 × 300 300 × 232

Number of paddles 15 + 4 16

energy to add up to the energy calculated from the measured momentum. The energy

resolution of the hadrometer was roughly ∆E
E

= 75%√
E

.

The hadrometer information is summarized in Table 3.7.

3.10 Muon Detector

Because muons and pions are fairly close in mass, the Cerenkov detector is not effective

in identifying muons. The muon detector consisted of two walls of plastic scintillator

paddles, downstream of the hadrometer and separated from it by 102 cm of steel (6

absorption lengths). The steel absorbed most of the remaining hadrons, and particles

reaching the muon walls were a priori assumed to be muons.

The X wall (originally constructed for E516) consisted of 15 plastic scintillator

paddles mounted vertically and housed in a light tight box. The 3 center-most pad-

dles were 61 cm wide and the remaining 12 were 41 cm wide, and all paddles were

300 cm long, with paddles in the central region divided lenghwise into three pieces

(120 cm, 60 cm, and 120 cm), each read out by their own photomultiplier tube. Light

from the scintillator was collected by EMI9791KB phototubes placed at the top of

each paddle. No timing information was provided by this system; only a latched

signal was recorded. Because the centermost paddle was directly in the beamline, it

was the most noisy and inefficient. Therefore, four additional X-view paddles were
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mounted on a block of concrete downstream of the X-wall, in a position overlapping

the center paddle. The performance of the X wall was rather poor, with an efficiency

of approximately 69%.

The newer Y wall was located downstream of the X wall and was smaller. It

consisted of 16 NE110 plastic scintillator paddles mounted horizontally to measure

the Y coordinate of charged particles passing through. The paddles were 14.5 cm

wide and 300 cm long. Phototubes on the east side of the paddles collected the light.

TDCs operated in common-stop mode were used to record timing information of

the signals; larger counts corresponded to hits closer to the phototubes. An X-view

resolution of 66 cm was possible using this timing information. The Y wall was much

more efficient than the X wall, with an efficiency of approximately 99%.

The characteristics of the muon system are summarized in Table 3.8.
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Chapter 4

Trigger and Data Acquisition

System

4.1 Trigger

Data from the detector components were written out to tape in a series of discrete

packets called “events”. Ideally, each event represents the detector data corresponding

to one beam particle interaction. In order to determine when such an interaction has

taken place, a set of criteria are established, and hardware is built which can rapidly

determine when these criteria are satisfied. This system is called a “trigger”, and a

signal from the trigger causes data from all detector systems to be read out, packaged

into an event record, and written to tape.

The goal of E791 was to collect a large set of events in which a charm particle

is produced. Charm events were quite rare, and determining whether or not an

interaction produced a charm particle required tracking and vertexing information

which was difficult to produce in real-time, especially at the high rate of interaction

in a hadroproduction experiment. For this reason E791 elected to use a very “open”
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trigger, essentially requiring only a simple interaction, and to do the search for charm

events in software.

The trigger was divided into two parts, a “pretrigger” used to determine that

some form of interaction took place, and information from the calorimeters, used to

determine that a certain amount of energy was deposited away from the beam axis.

4.1.1 Pretrigger

The pretrigger consisted of three pieces of scintillator located near the target. Fig-

ure 4.1 shows their position relative to the target, and Table 4.1 summarizes their

geometry information. The Beam Spot counter and Beam Halo counter were located

upstream of the target foils. The Beam Spot counter was used to determine that a

pion was incident on the target. It had a low and high energy threshold: the low

threshold was set to require that at least one beam pion passed through it, and the

high threshold was set to ensure that at most one beam particle reached the target.

The Beam Halo counter was located between the Beam Spot counter and the target.

It was larger than the Beam Spot counter and had a 1 cm hole drilled in the center.

Its purpose was to reject off axis beam particles, for which the tracking system had

very low acceptance. Downstream of the target foils was the Interaction Counter. Its

purpose was to ensure that some form of interaction took place by requiring that at

least four minimum ionizing particles passed through it. To summarize, the pretrigger

required the following three conditions to be true:

1. Beam Spot counter detected one and only one beam pion, AND

2. Beam Halo counter had no signal, AND

3. Interaction counter detected at least four minimum ionizing particles.
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Figure 4.1: Scale drawing of pretrigger scintillator paddles and target foils.

Table 4.1: Summary of E791 pretrigger counter geometry.

Beam Spot Beam Halo Interaction Counter

Area (cm× cm) 1.3 × 1.3 7.6 × 7.6 4.0 × 4.0
Thickness (cm) 0.3 0.6 0.3
Hole dia. (cm) N/A 1.0 N/A
Z position (cm) -22.7 -16.3 0.0

The pretrigger took 160 ns to compute. During a 23 second spill (see Section 2.2),

approximately 350,000 pretriggers were collected from 2 × 107 incident beam pions,

for an average rate of approximately 16,000 pretriggers per second during the spill.

4.1.2 Et trigger

E791 ran in a few different trigger modes. Some were used for calibration and detector

alignment, but the predominant mode, used for physics analysis, was the Et trigger

mode, and it will be the only one discussed here.

Information from the calorimeters (see Section 3.9), was used to ensure a sufficient

amount of energy was deposited away from the beam axis. Signals from the last
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dynode of each photomultiplier tube were summed together giving greater weight to

those channels further from the beam. The resulting quantity is referred to as the

“transverse energy” or Et. The measured Et was compared to high and low thresholds

which could be adjusted. The low threshold was used to primarily to reject diffractive

pion events and the high threshold was used to reject multiple beam particle events.

The full Et trigger required the following:

1. Pretrigger was true, AND

2. Et > 4 GeV to reject diffractive pion events, AND

3. Etot < 700 GeV to reject multiple beam particle events.

It took 470 ns to collect the calorimetry information and compute Et. Approxi-

mately 180,000 full triggers were taken per spill, about half the number of pretriggers.

When a full trigger was registered, data from all detectors were digitized and sent to

buffers for packing and recording.

4.2 Data Acquisition System

As described in Section 2.2 pions were delivered to the target during a 23 s spill,

followed by a 34 s interspill period. As noted in the previous section, roughly 180,000

triggers are taken per spill, meaning that events had to be acquired by the data

acquisition (DA) system at a rate of at least 7,800 per second and written to tape at

a rate of over 3,000 per second, as events were buffered and written to tape during

both the spill and interspill periods. In order to lose as few events as possible, the DA

system was designed to have a dead time of only 50 µs while digitizing and reading

out the 24,000 detector channels. Also, a single compressed event required roughly
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2.3 kilobytes to store, so the tape system had to be capable of writing at a rate

of 9 megabytes per second. This required a highly parallel design with rapid error

recovery.

The data acquisition system [Am93] consisted of several parts. The front-end con-

trollers read data from the various digitizers. The Event FIFO Buffers (EFBs) stored

data so events could be processed during both the spill and interspill periods. VME

crates housed the various boards which read data from the EFBs and compressed

and formatted the events into tape records. The Exabyte tape drives continuously

recorded the events for later processing. Finally, a VAX 11/780 computer allowed the

operator to control and monitor the DA system, and to start and stop data taking

runs.

4.2.1 Front-end Controllers

The task of the front-end controllers [Ha87b, Br02] was to read data from the various

digitizers belonging to the different detector elements, and to send the data to the

EFBs. The controllers had to pack the data into 32-bit longwords, which were then

transmitted to the EFBs along 32-bit wide RS-485 lines together with a RS-485 strobe

signal. The maximum data rate for a controller was 100 ns per longword. Different

controllers had to be built for the different types of detectors, but the interface to the

EFBs was common to all controllers. Each data segment sent to the EFBs included

a leading word count as well as a 4-bit event synchronization number, which ensured

that data for a given event was not mixed up with data from another event. These

synchronization numbers were generated by a scaler and sent to all the front-end

controllers to be included in their data segments. Since there were a total of 16

front-end controllers, and only 8 EFBs, each controller had to share a data path with
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one other controller, and a simple token passing mechanism was used to enable this

sharing.

4.2.2 Event FIFO Buffers

The Event FIFO (First-in First-out) Buffers held the event data before it was written

to tape. This allowed the tape drives to run continuously, writing data during both

the spill and interspill periods. Each of the 8 EFBs consisted of an I/O card, a FIFO

controller card, and 5 16 Mb memory cards, as well as a custom backplane. They

were housed 2 per crate in 9U by 220 mm Eurocrates.

Input and output was done along 32-bit RS-485 data paths, and each was capable

of receiving data at burst speeds of up to 40 Mb/s and concurrently delivered data

at several Mb/s. A Near Full status line was used to inhibit the trigger if any EFB

was in danger of becoming full.

4.2.3 VME Crates

A total of 6 VME crates housed the electronics which read data from the EFBs,

compressed the data and packaged them into events, and wrote them to tape.

Figure 4.2 shows a schematic of the VME part of the DA system. Each VME

crate housed 8 Event Buffer Interface (EBI) boards, each of which was connected to

an EFB, 9 CPU boards (8 Event Handler (EH) boards and one Boss board), 2 SCSI

Magnetic Tape Controller boards (MTC) and a Branch Bus to VME Interface (BVI)

board for connection to the VAX.
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Event Buffer Interface

The job of the Event Buffer Interface (EBI) boards was to strobe data out of the

EFBs and make them available to the VME CPU boards. Data for a single event are

spread across all eight EFBs, so each CPU required access to all of the EFBs. Each

crate therefore contained 8 EBIs, one for each of the EFBs. Thus, the output of each

EFB was connected to 6 crates through the EBIs. The EBIs used a token passing

mechanism to establish which of the 6 had control of the RS-485 datapath at a given

time. The EBI strobed data from the EFB only when it had the token. When the

controlling CPU finished reading data from that EFB, the token was passed to the

corresponding EBI in the next crate.

VME CPU Boards

The VME CPU boards (Fermilab ACP 1 nodes) contained a 16 MHz Motorola 68020

microprocessor, a 68881 coprocessor, and 2 Mb of memory. Software for the boards

was written in Absoft Fortran, with time-critical parts written in assembly language.

Each of the crates contained 9 such boards: one Boss and eight Event Handler

(EH) boards. The EH boards could be in one of two possible states: “grabber”

or “muncher”. The Boss was responsible for controlling the states of the EH’s. Each

crate had only one EH in the grabber state at any given time; the others were in

the muncher state. While in the grabber state, the EH read data from the EFBs

in sequence (through the EBIs), collecting the data from whole events, and storing

them in its on-board memory. When the grabber’s on-board memory became nearly

full (approximately 200–300 whole events), the Boss switched the EH’s state from

grabber to muncher, and assigned a new grabber for the crate.

We can now see how the high degree of parallelism was achieved. At the beginning
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of a run, the first crate’s EBIs had all the tokens, and the crate had one EH in the

grabber state. It began reading the first segment of the first event from the first EFB.

Once that segment was read, it passed the token for the first EFB to the second crate

and read the next segment of the first event from the second EFB. While it was doing

this, the second crate’s grabber was reading the first segment from the second event

from the first EFB. After this step, the first crate read the third segment from the

first event while the second crate read the second segment from the second event

while the third crate read the first segment from the third event, and so on. Soon,

grabbers from all six crates were busy reading data out of the EFBs.

While reading data, the grabbers checked the word counts and event synchroniza-

tion numbers to ensure that they were collecting whole events. It would have been

disastrous if some missing data caused a piece of one event to be assembled with data

from another event, and furthermore this error would propagate forward to all future

events in the run. If a grabber detected such an error (usually due to a failure in a

front-end controller) it notified the Boss, which notified the VAX, which caused all

EFBs to be flushed and the system restarted. This took well under a minute, and

only a few spills a day were lost due to such errors.

While in the muncher state, the EH boards compressed the data and assem-

bled events into the E791 standard event format, each event requiring an average of

2.3 kilobytes. Data was packed into tape output buffers in records of 64 kb, and the

Boss was notified when a buffer was ready for output. Each muncher had 10 such

tape buffers. The Boss also assigned other duties to munchers, such as supplying

status information and creating histograms of detector channels for the operator.

The CPU board running the Boss program had a variety of tasks to perform. Its

primary duties were controlling the status of the EH boards as grabbers or munchers

and managing the tape writing. The Boss periodically polled the EH boards for lists
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of buffers ready for writing, and sent commands to the MTC command queues to

read these buffers from the EH’s and write them to tape. When a buffer was written,

the MTC informed the Boss, which in turn notified the EH that its buffer was ready

for reuse. The Boss also gathered status information and recoverable error reports to

be sent to the VAX. The Boss also queried the MTCs for tape writing error reports.

If a non-recoverable error was reported by a drive, it was taken offline. Also, if an EH

didn’t respond to a Boss request within a given time, it was reset and temporarily

taken offline.

Magnetic Tape Controllers and Tape Drives

E791 used Exabyte 8200 8 mm tape drives. Each tape stored 2.3 Gigabytes, and took

about three hours to fill. Exabytes were chosen because of their low media costs,

which was a major factor considering the large amount of data to be collected. 7

drives were connected to each crate for a total of 42 drives, all running in parallel.

Four drives writing at streaming speed were enough to saturate a SCSI bus, so each

crate had two Magnetic Tape Controllers (MTCs), with four drives on one and three

on the other. The controllers were Ciprico RF3513 VME to SCSI interfaces.

4.2.4 The VAX

The DA system was managed and monitored by a VAX-11/780 which was connected

to the VME crates by a DR11-W on the VAX Unibus, a QBBC branch bus controller,

and branch bus to VME interfaces (BVI) in each of the six VME crates [Ha87a].

Connected to the VAX were the control console, as well as several status displays.

(See Figure 4.3.) The control console was used to start and stop runs as well as

to monitor a run’s progress. The Bosses polled the tape drives for remaining tape
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capacities and sent that information to the VAX. When 20% of the drives were at least

95% full, the VAX ended the run. End of file marks were written on the tapes which

were rewound and ejected, and the operator replaced the 42 tapes with blanks, closed

the drive doors, and started the next run by issuing a start command on the control

console. (Each run lasted roughly three hours, and contained about 90 gigabytes of

data.)

The VAX allowed on-line monitoring of events in two ways. First, the event

handlers always saved a few events which the VAX retrieved and placed in an online

event pool, which could be accessed by other workstations in the cluster. More rapid

monitoring of a part of the detector could be accomplished by requesting a histogram

of detector elements, in order to identify noisy or dead channels. The user used a

program to select a particular section of the detector. This program sent the request

to the VAX using the DEC Mailbox facility. The VAX sent the request to the event

handlers which accumulated all events for approximately one minute. The Bosses

and then the VAX summed up the histogram contributions from each EH, and made

the resulting histogram available in the online event pool. The program retrieved the

histogram and allowed the user to view it in a variety of ways. This allowed the user

to obtain very high statistics hit maps in a very short time.

At the end of each run, the VAX also created a disk file containing statistics about

the run, such as number of events written to each tape, soft error counts, and other

relevant data.
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Figure 4.3: The role of the VAX in E791’s DA system. (Source: [Am93])
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4.2.5 Performance

The DA system performed very well. After problems were ironed out during initial

testing, there were very few failures, with the exception of the Exabyte tape drives

which often required head replacement after about 2000 hours of operation.

After a 5 month period of data taking, 20 billion raw events were recorded on a

total of 24,000 8 mm tapes, comprising about 50 terabytes of raw data. E791 was

the first high energy physics experiment to take so much raw data over such a short

period of time.
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Chapter 5

Event Reconstruction and Data

Reduction

5.1 Introduction

As discussed in the previous chapter, E791’s philosophy was to simply record as many

interactions as possible and do the search for the relatively rare events in which charm

particles were produced in software, after the data had been collected. As noted, this

resulted in a huge (50 terabyte) sample of raw data, and thus a massive computing

effort was required to process this data and reduce the dataset to a manageable size

for physics analysis.

The first step involved event reconstruction and filtering. Reconstruction refers

to the process by which raw detector hit data is used to create lists of tracks (hy-

pothesized particle trajectories) and vertices (hypothesized points at which particles

are created or decay). Filtering was the first stage in reducing the size of the event

sample, rejecting those events in which it was unlikely a charm particle could be iden-
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tified. The reconstruction and filtering were done together, as explained in subsequent

sections.

The data used in this analysis underwent another reduction step called “stripping”.

Like filtering, stripping involved discarding events that weren’t of interest according

to some predefined selection criteria, which generally take the form of greater-than or

less-than “cuts” on certain physics variables. The strip also involved multiple output

streams optimized for different types of analyses.

Next, the sample was “substripped”. This step was designed to reduce the num-

ber of events to an amount feasible for individuals to perform physics analyses, by

retaining only those events for which it is very likely a charm candidate can be found.

5.2 Computing Farms

Of all the tasks outlined in the previous section, the first, reconstruction and filtering,

was by far the most CPU intensive. In fact, although data was recorded over a period

of only nine months, reconstruction and filtering took approximately two and half

years to complete!

This enormous task was carried out at four institutions: the University of Missis-

sippi, Kansas State University (moved from Ohio State University), Fermilab, and the

Centro Brasileiro de Pesquisas Fisicas (CBPF) in Brazil. Although a large amount

of data had to be processed, the fact that each event was processed independently

of all other events meant that the job was highly parallelizable, with large clusters

(or “farms”) of CPUs working at essentially 100% capacity. The work at Fermilab

was done on IBM RS6000 and SGI farms, totaling approximately 3000 MIPS (Million

Instructions Per Second). The University of Mississippi and Kansas State University

each used clusters of Unix based DecStations, 2900 MIPS total at U. Miss., and 2500
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Table 5.1: Number of events processed at each institution.

Institution Events processed (×109)

CBPF 1.8
Fermilab 4.7

Ohio/Kansas State Univ. 6.2
Univ. of Miss. 6.4

MIPS at KSU. CBPF used ACP-II computers from Fermilab totaling 1000 MIPS.

The total number of events processed by each institution is listed in Table 5.1.

Each institution ran the same filtering and reconstruction code, but each used its

own software to manage the parallel processing. What follows is a brief summary

of the system used at Mississippi [Br96]. Although the systems at other institutions

differed slightly, the basic principles were the same. A set of Unix workstations were

connected via Ethernet, and used TCP/IP protocols to communicate. The farm con-

sisted of a few server computers, and a much larger number of rack-mounted diskless

client computers. Communication between the servers and clients occurred through

both the NFS (Network File System) protocol by which clients could mount disks

connected to the servers and read and write files to them as if they were connected

locally, and directly through TCP/IP sockets where greater throughput was required

than could be supplied by disks. The servers read events from the raw data tapes,

and distributed events to the least busy client computer through TCP/IP. After pro-

cessing, the clients wrote the reconstructed and filtered events to server disks using

the NFS protocol. Servers were responsible for transferring these disk files to tape.

The reconstruction effort did go smoothly, and all 24 000 tapes were processed

between November, 1992, and June, 1994.
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5.3 Filtering and Reconstruction

The reconstruction and filtering process took place in three stages. First, tracks were

reconstructed using information from proportional wire chambers (PWCs), silicon

microstrip detectors (SMDs), and drift chambers (DCs). Vertices were then recon-

structed using these tracks. The second stage was to apply the filter selection criteria

and reject those events which did not pass the filter. Those events which passed were

then fully reconstructed by using Čerenkov and calorimetry information to assign

particle identification probabilities and to reconstruct the showers.

Some improvements were made to the reconstruction and filtering code while

the data was being processed. Because of the massive computing effort required

to reconstruct the data, it was decided not to re-reconstruct data that had been

processed with the older code. The original code is referred to the “Release 5” code,

and the newer code as “Release 7”. The numbers “5” and “7” are simply code version

numbers. Approximately 75% of the data was reconstructed with the Release 5 code,

and the remaining 25% with the Release 7 code. Differences between the two versions

are discussed when relevant.

5.3.1 Track reconstruction

Two different algorithms were used in SMD track reconstruction. Recall that the SMD

planes measured the hit position in one of three “views”: X, Y , and W upstream of

the target, and X, Y , and V downstream. (See Section 3.4.)

For track reconstruction in the region downstream of the target, “1-view” tracks

were first reconstructed in each of the three views. This was done by first forming

“seed tracks”, which were all possible lines between pairs of hits in two different

planes in a given view. The line was projected through other planes in its view, and
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hits from these other planes were added if the track passed sufficiently close to them.

Tracks were kept if they had at least 4 hits in X or Y view, or 3 hits in V . Track

parameters were adjusted to minimize their χ2 to pass through their assigned hits.

These 1-view tracks were then combined with tracks from other views to form the full

three dimensional tracks. This algorithm was approximately 92% efficient at finding

tracks.

For beam tracking (upstream of the target) three dimensional tracks were searched

for directly, by first looping over all hits in all upstream SMD planes. Track candidates

were selected based on a chi-square requirement which depended on the number of hits

assigned to the track. A final three dimensional fit was done using PWC information

as well. The beam tracking algorithm had an efficiency of approximately 95%.

Tracks found in the SMD system were then projected into the drift chamber

system. Note that drift chamber planes occur in (X,U, V ) triplets (see Table 3.4).

The first step in tracking was to combine hit information from each of the three planes

in a triplet to calculate hit positions. Silicon tracks were matched with drift chamber

tracks by comparing their projected y positions since the magnets bent the tracks in

the xz plane. Tracks were first projected into D3 (see Section 3.7) and upstream hits

were added to the tracks. All tracks with an acceptable χ2 per degree of freedom

were kept. The track momenta were also calculated at this time. (See Section 3.6 for

a discussion on momentum calculation.)

After silicon tracks were matched to drift chamber hits, remaining drift chamber

hits were used to reconstruct “drift chamber only” tracks. These were used chiefly to

search for K0
s and Λ particles which tended to decay downstream of the SMD system

and were not used in the present analysis.
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5.3.2 Vertex finding

Vertices were found geometrically, by considering the chi-square per degrees of free-

dom (χ2/ν) for tracks to intersect. The primary vertex is the point at which the

beam particle interacts in the target foil, possibly producing a charm particle. Sec-

ondary vertices are the points at which particles produced at the primary vertex

decay, producing two or more “daughter” particles.

Primary vertices were found by finding the intersection point between a beam

track and two or more good SMD tracks, while constraining the vertex to be in or

very near a target foil. Other good tracks were added to the primary vertex as long

as χ2/ν remained less than 10. Primary vertex reconstruction was 95% efficient for

events with a beam track, and less than 2% of reconstructed events had no beam

track.

All good tracks with a momentum greater than 2.0 GeV were candidates for

inclusion in secondary vertices, with the exception of those tracks belonging to the

primary vertex with a χ2/ν < 3.5 with respect to the primary. A secondary vertex was

created by combining the two tracks with the smallest distance of closest approach

downstream of the primary vertex, and then adding tracks which do not inflate the

χ2/ν beyond 15. More than one secondary vertex was allowed per event.

5.3.3 Filter

After the tracking and vertexing described above, events were filtered before they

were fully reconstructed. To pass the filter, any one of the following had to be true:

1. A secondary vertex clearly separated from the primary vertex. This requirement

is discussed in detail below.
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2. A reconstructed Λ → pπ or K0
s → π−π+ candidate which decayed upstream of

the first magnet (Release 5 & 7) or in the aperture of the first magnet (Release 7

only).

3. A reconstructed φ → K+K− candidate (Release 5) or a Ds → φ + X or

Pentaquark → pφπ, pK∗K (Release 7).

4. Events whose reconstructed tracks had a net negative charge, a total momentum

greater than 350 GeV/c, and momentum transverse to the beam, pT less than

2 GeV/c. (Release 7) (This requirement was used in diffractive jet analyses.)

The present analysis used events selected based on the first of the above criteria;

the others are not relevant here. The specific requirements of item 1 are as follows.

We first define the quantity ∆z = zsec − zpri to be the longitudinal separation (in

z) between the primary and secondary vertices. Also, let σzp and σzs denote the

measurement errors on the z coordinates of the primary and secondary vertices, re-

spectively. Assuming these errors are uncorrelated (a reasonable assumption), the

error on the separation becomes σ∆z =
√
σ2

zp
+ σ2

zs
. We then define the quantity

SDZ =
∆z

σ∆z

. (5.1)

So SDZ is the number of standard deviations that the secondary vertex is separated

from the primary vertex in the z direction. We also define an n-prong vertex to be

a decay vertex with n reconstructed tracks associated with it. Requirement 1 can

now be stated precisely as follows: at least one secondary vertex must be present,

and further, we require that SDZ > 6 for 2-prong vertices, or SDZ > 4 for n-prong

vertices with n ≥ 3.
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Events which passed one of the above filter requirements were then completely

reconstructed by using the information from the Čerenkov detector to assign particle

identification probabilities as described in Section 3.8, and calorimetry information

to reconstruct the showers as described in Section 3.9.

Approximately 15% of events passed the filter. 55% of those 15% were selected

based on the secondary vertex SDZ requirement. The average event size increased to

5.2 kilobytes with the addition of reconstructed information (track lists, vertex lists,

etc.). The filtered dataset occupied roughly 8000 Exabyte tapes.

5.3.4 Release 5 and Release 7 reconstruction code differences

In addition to the changes to the filter requirements, there were several differences

between the Release 5 and 7 reconstruction code, some of which have an effect on

the acceptance shapes used in the present analysis. The important differences are

outlined briefly here, and detailed comparisons of results are shown in the analysis

chapters where appropriate.

In Release 5, a single bend point approximation for the magnets was used in

projecting tracks through the magnets, as discussed in Section 3.6. In Release 7, the

effect of the full field was used instead which more accurately modeled the trajectories

of the particles through the magnets. Also, a misalignment between the coordinate

systems in the SMD system and drift chambers which existed in Release 5 was found

and corrected in Release 7. Both these changes improved the quality of the momentum

measurements of tracks.

Drift chamber resolutions were updated more frequently in Release 7 than 5, and

a position dependent resolution was also employed in Release 7 to account for some

loss in resolution near the center of the drift chamber where the beam pions pass
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Figure 5.1: The DIP cut variable. The dashed line is the extension of the Psec vector
backward toward the primary vertex.

through. These changes increased the track reconstruction efficiency. Some minor

changes were made to the calculation of the χ2/ν for tracks, and some bugs were

corrected in the momentum error calculations. Also, some changes were made to the

information written out to tape, but no changes which affect the present analysis.

5.4 Physics Cut Variables

Before discussing the further stages of data reduction, it will be helpful to introduce

some of the physics variables used in the selection criteria. These selection criteria

generally take the form of “cuts”, which are typically upper or lower bounds placed on

one of these variables. Events for which the variable in question does not satisfy the

inequality are rejected. Most of the variables described in this section are categorized

as upper bound or lower bound variables.

5.4.1 D Impact Parameter (DIP)

(Upper bound.) The D impact parameter (DIP) is defined as follows: First the vector

momenta of the daughter particles associated with the secondary vertex are summed
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to form a total momentum, Psec. A line passing through the secondary vertex with

the same direction as Psec is extended backward to the z position of the primary

vertex. The DIP is defined as the distance from this line to the primary vertex at the

z position of the primary vertex. (See Figure 5.1.)

The primary purpose of this cut is to ensure that the particle decaying at the

secondary vertex indeed originated at the primary vertex. Also, if tracks were mis-

assigned to the secondary vertex, or if tracks were missing from the secondary vertex

(neutral particles, which don’t leave a track, for instance), then the DIP would be

larger, as well, so this cut also helps to ensure correct vertexing.

5.4.2 Invariant Mass (m)

(Lower and/or upper bound.) To calculate the invariant mass for a secondary vertex,

it is first necessary to assign particle identification hypotheses to the daughter parti-

cles. Once this is done, their masses, obtained from the Particle Data Book [Ha02]

are used, along with momentum information, to obtain the invariant mass according

to the standard formula (in units with c = 1):

m =

√√√√( n∑
i=1

√
pi · pi +m2

i

)2

−
(

n∑
i=1

pi

)2

(5.2)

where n is the number of daughter particles, pi is the vector 3-momentum of particle

i, and mi is its mass hypothesis.

Bounds are placed on the invariant mass to exclude those events which are incon-

sistent with charm. The cuts are chosen to allow ample sidebands in mass histograms.
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5.4.3 Proper Decay Time (τ )

(Upper bound.) Charm particles are fairly short-lived, so by making a cut on the

decay time at several lifetimes, one can hope to reduce background without much

loss of signal.

The proper decay time is defined as the time interval between the creation of the

particle at the primary vertex, and the decay at the secondary vertex in the rest frame

of the decaying particle. It is given by the formula:

τ =
`m

|∑i pi| (5.3)

where ` is the distance from the primary vertex to the secondary, pi is the measured

momentum of the ith daughter track associated with the secondary vertex, and m is

either a mass hypothesis for the decaying particle obtained from the Particle Data

Book, or the reconstructed mass obtained via Equation (5.2).

5.4.4 PT balance (PTBAL)

(Upper bound.) The transverse momentum (pT ) balance is defined as the component

of Psec (see the definition of DIP, above) transverse to the line joining the primary

and secondary vertices. (See Figure 5.2.) Note that if all daughter particles are re-

constructed and correctly assigned to the secondary vertex and have zero momentum

errors, then this quantity should be zero.

The primary purpose of this cut is to ensure that all daughter particles tracks are

reconstructed and assigned to the secondary vertex, and that no additional tracks

are. In particular, this cut helps to reduce the number of secondary vertices which

include neutral particles in their decays, which can’t be reconstructed.
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Figure 5.2: The PT balance cut variable. Note that the π0 momentum vector does
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5.4.5 Ratio of impact parameters (RAT)

(Upper bound.) Most of the reconstructed tracks in a typical event correspond to

particles produced in the primary interaction, therefore it is not unlikely that some

tracks assigned to the secondary vertex are actually not daughter particles of the

decaying particle, but mis-assigned primary tracks. The purpose of the ratio cut is

to reduce the number of events where such a mis-assignment occurred.

The quantity is defined as follows. For any track, we define the impact parameter

with respect to a vertex to be the distance from the vertex to the track at the z

coordinate of the vertex. (This is a good approximation to the distance of closest

approach and can be calculated more rapidly.) The quantity RAT is defined as the

product over all secondary vertex daughter tracks of the ratio of the impact parameter

with respect to the secondary vertex to the impact parameter with respect to the

primary. In other words, if we let Ti refer to the ith daughter track assigned to the

secondary vertex, and let VP denote the primary vertex, and VS denote the secondary,
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and let IP(T, V ) denote the impact parameter function defined above, then:

RAT =
∏

i

IP(Ti, VS)

IP(Ti, VP )
. (5.4)

5.4.6 Secondary vertex χ2/ν

(Upper bound.) This is simply the chi-square per degree of freedom for the daughter

tracks assigned to a secondary vertex to intersect. The measured quantities are the

track geometry parameters (4 per track), and the unmeasured parameters are the

three spatial coordinates of the secondary vertex. The constraint equations require

that each track pass through the vertex (2 constraints per track). Thus there are a

total of 4n− 2n− 3 degrees of freedom for an n-prong vertex. A cut on this variable

helps to reduce the number of fake secondary vertices.

5.4.7 Vertex Z coordinate

(Upper bound.) A cut is placed on this variable to ensure the primary and secondary

vertices were upstream of the interaction counter. The reason has to do with trigger-

ing. If a vertex was downstream of the interaction counter, it didn’t contribute to the

trigger for the event, and so something else did, such as a second beam pion. Such

events have a large number of tracks and contribute more to background than signal.

5.4.8 Significance of ∆Z (SDZ)

(Lower bound.) This quantity was defined in Equation (5.1) in Section 5.3.3. It is

the significance of separation (in the z direction) between the primary and secondary

vertices. Analysis selection criteria generally employ a tighter cut than that used in

the filter. This is by far the most powerful cut at our disposal, and does a great deal
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Table 5.2: Track category region definitions.

Physical region Region number JCATSG contribution (= 2r−1)

Upstream of first magnet 1 1
(SMDs, PWCs, D1)

Between magnets (D2) 2 2
Downstream of magnets (D3) 3 4
Upstream of calorimeters (D4) 4 8

to reduce the very high background levels present in fixed target hadroproduction

experiments.

5.4.9 Target sigma (TSIG)

(Lower bound.) Some secondary vertices were found inside a target foil. Such vertices

may have been the result of a secondary interaction rather than a decay. For this

reason, it is desirable to eliminate those vertices. We define the quantity TSIG as:

TSIG =
ε |zsec − ztgt|

σzsec

(5.5)

where ztgt is the z coordinate of the target foil edge nearest the secondary vertex,

zsec is the z coordinate of the reconstructed secondary vertex, σzsec is its error, and

ε = 1(−1) if the secondary vertex is outside (inside) a target foil.

5.4.10 Track Category (JCATSG/NEWCATSG)

(Integer variable.) The variable JCATSG is a bitfield which indicates the regions

of the detector which the track was observed to pass through. The regions were

categorized according to Table 5.2, and the JCATSG contributions from each region

where the track was observed were summed to form the variable JCATSG.
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Thus, a particle which decays in the second magnet will be associated with a

category 3 track, and a charged particle produced after the silicon system may be

associated with a category 14 track. A real particle may have been missed by one of

the regions during reconstruction if, for instance, it passed a region of low efficiency

(center of the drift chamber), or if too many nearby hits created confusion that re-

sulted in tracking inefficiency. Tracks that failed to be reconstructed downstream of

the second magnet have a poorer momentum resolution than those observed in all

regions, and tracks which fail to be seen beyond the first magnet have no momentum

measurement associated with them at all. Drift chamber only tracks (those with

JCATSG even) have poor geometrical resolution and can’t be associated with a sec-

ondary vertex upstream of the interaction counter. So, for analyses which depended

on momentum measurements and vertexing (such as the present one) tracks with

category other than 3, 7 or 15, were generally rejected. Tracks with category 7 or 15

were generally accepted.

Tracks with category 3 were a more complicated matter. A large number of

such tracks were “ghost” tracks, not corresponding to a real particle. (This can

arise through combinatoric matching of hits which happen to fall in a straight line,

but arise from different particles, for instance.) Many were good tracks with good

measurements, however. (These facts were determined through Monte Carlo studies.)

A neural net [Lo92] was trained to filter category three tracks based on chi-square,

degrees of freedom, number of non-shared SMD hits, and distance from the center

of the drift chamber, where efficiency is lower. To facilitate usage in older code, the

routine was called NEWCATSG, and returned a value equal to JCATSG, except for

tracks with JCATSG=3. For those tracks passing the neural net requirements, a value

of 3 was returned, otherwise a value of 28 (indicating a “bad” track) was returned.
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5.5 Stream A Strip

The 8000 tapes that resulted from the filtering and reconstruction process (see Sec. 5.3.3)

were still too many for individual researchers to deal with when performing physics

analyses. More data reduction steps were needed to bring the dataset to a reasonable

size.

The next such step was known as “stripping”, and included many physics tags,

written to two separate output streams, labeled Stream A and Stream B. Stream A

primarily included events with secondary vertices, making it useful for charm meson

studies, as well as charm baryons which decay to charged particles, such as Λ+
c →

pK−π+. Stream B included tags for longer lived particles such as Ks and Λ which

could be used for other charm baryon studies, as well as searches forB particles. Other

tags were included as well. The Stream A strip was used in the present analysis.

Stripping took place at the same institutions as the reconstruction/filtering, with

the exception of CBPF whose tapes were stripped at Fermilab. Because the data sam-

ple had already been reconstructed, stripping was much less computationally intensive

than reconstruction/filtering. It was more “I/O-bound” rather than “CPU-bound”,

and thus stripping was done on individual workstations equipped with Exabyte EXB-

10 tape stackers.

The tags used in the present analysis were the 2, 3 and 4 prong vertex tags which

all required that:

• JCATSG = 3, 7, or 15 for all daughter tracks.

• SDZ > 5

• PTBAL < 1.0 GeV/c

• Total charge = 0(±e) for even(odd) numbered prongs.
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(See Section 5.4 for definitions of cut variables.) In addition, for two prong vertices,

it was required that

• m > 1.7 GeV/c2

where m is the invariant mass under the following hypotheses: Kπ, KK, ππ (charged

particles only). If any of the hypotheses satisfied the inequality, the condition was

satisfied.

Other tags saved events based on other criteria, such as two secondary vertices,

dilepton events, and events with proton daughters, but they were not used in the

present analysis. The stream A strip data occupied approximately 2400 Exabyte

tapes.

5.6 Kansas State Substrip

Even 2400 tapes were quite a lot to deal with. Fortunately some of the physicists

who did the first analyses performed another data reduction stage before applying

their own final analysis cuts. This next stage of data reduction, referred to as a

“substrip” was designed to be of general usefulness to many common types of meson

analyses. One such substrip was begun at Ohio State University, and moved to Kansas

State University along with their physics team and reconstruction farms. Another

was begun at Princeton University and moved to the University of South Carolina.

Because KSU was a reconstruction institution, they had earlier access to the strip

data, and thus their substrip was completed first. Since it was just as inclusive as

the other, it was decided not to complete the Princeton/South Carolina substrip.

The “Kansas State Substrip” as it has become known, was the starting point for a

substantial fraction of the E791 analyses, including the present one.
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Table 5.3: Cuts used in the Kansas State Substrip.

Prongs 2 3 4

Zprim (cm) < −0.35 < −0.35 < −0.35
Total charge 0 ±e 0
m (GeV/c2) > 1.7 > 1.7 > 1.7

PTBAL (GeV/c) < 0.40 < 0.35 < 0.45
SDZ > 8 > 8 > 7
τ (ps) < 5.0 < 5.0 < 4.0

JCATSG 3, 7, 15 3, 7, 15 3, 7, 15
DIP (cm) — < 0.01 < 0.012

The KSU substrip was designed to keep events with a 2, 3, or 4 prong vertex

consistent with a D0, D±, D±
s , or Λ±

c . The cuts are summarized in Table 5.3. The

mass is computed for several hypotheses of daughter particles, the heaviest being

K−K+, K−K+π+, K−K+π+π+ for 2, 3, and 4 prongs respectively. Since the lower

bound cut is the same for all hypotheses, only the heaviest daughter hypotheses are

relevant as far as the cut is concerned. For the proper decay time cut, the mass

was assumed to be that of the D0, D±, and D0 for the 2, 3, and 4 prong vertices

respectively.

Also, when writing the KSU substrip tapes, the raw data (detector hit positions,

etc.) were removed from the event records, and only the reconstruction information

was retained. The resulting data sample fit on 33 Exabyte tapes, copies of which

were made for several participating institutions for physics analyses.
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Chapter 6

D∗± Sample and Monte Carlo

6.1 Decay channels

The first step in collecting a data sample for analysis is to decide which decay modes to

use in the search for the particle of interest. Since accurate momentum measurements

of all the daughter particles were needed to accurately determine the momentum

distribution of the D∗± particles, any decays which had neutral particles in their final

states were excluded. This follows from the simple fact that momentum measurements

are done by measuring the angle through which tracks are bent by the magnets, and

neutral particles don’t leave tracks. Also, it was pointless to search in modes which

are heavily suppressed; only modes with substantial branching ratios were considered.

These two considerations alone determined the decay modes used in this analysis.

The D∗+ decays predominantly via the strong interaction into either D+π0 or

D0π+ [Ha02, p. 623]. Since the π0 is a neutral particle, we considered only the decay:

D∗+ → D0π+ (6.1)
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It is important to note at this point that unless otherwise indicated, charge conjugate

modes are implied as being included in any decay written. Thus, (6.1) is understood

to include D∗− → D
0
π− as well.

Of course, the D0 is neutral, but its short lifetime generally resulted in decays

upstream of the E791 tracking system. There are an almost overwhelming number

of decay modes which have been observed for the D0 [Ha02, p. 607]. They can be

divided broadly into semi-leptonic modes, which contain leptons and hadrons in their

final states, and hadronic modes which contain only hadrons in their final states.

The semi-leptonic modes all include neutrinos in their final states, and could thus be

eliminated. Again, hadronic modes with neutral particles such as π0’s or K0’s were

eliminated. The only decays remaining, which are not suppressed by the Cabibbo

rules [Pe87, p. 233], are those involving K− and charged pions in their final states.

This leaves only two decay modes:

D0 → K−π+ (6.2)

and

D0 → K−π+π+π−. (6.3)

Both modes were used in this analysis.

6.2 Decay Q-value

In any data sample containing decays one wishes to study, there are both “signal”

events which correspond to the true particle, and “background” events which arise

most often from random track combinations which happen to satisfy the selection

criteria. To examine such a sample, one generally creates a mass distribution. That
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is, for each candidate decay, the invariant mass is calculated by Equation (5.2), and

the results are plotted in a histogram. The signal events will give rise to a peak near

the particle’s true mass1, and the background events will generally exhibit a much

broader shape.

In D∗ studies, it is more common to deal with Q-value or mass difference distri-

butions rather than straight mass distributions. First, we shall define Q, then the

reasons for its use will be explained.

From the Particle Data Book [Ha02, p. 623], the difference in mass between the

D∗+ and the D0 is ∆m = 145.42 MeV/c2, while the charged pion mass [Ha02, p. 440]

is mπ+ = 139.57 MeV/c2. Thus the phase space available for the decay shown in

Equation (6.1) is a mere ∆m − mπ+ = 5.85 MeV/c2. This means the π+ resulting

from that decay will have a relatively small momentum. For this reason, it is referred

to as the “slow pion”. Contrast this with the decay (6.3), which has a phase space of

952 MeV/c2, so each of the 4 final particles has an average momentum of 238 MeV/c.

Thus the slow pion indeed generally has a much lower momentum than the other

daughter particles.

We define the Q-value for the decay (6.1) by the following equation:

Q = m(D∗+) −m(D0) −m(π+) (6.4)

where m(D∗+) and m(D0) refer to the reconstructed masses of the D∗+ and D0,

respectively, and m(π+) is the PDB charged pion mass (139.57 MeV/c2).

The advantage in using Q instead of the mass is the much greater experimental

resolution in Q rather than m. The reason, put simply, is that the contributions of

1Measurement errors give rise to deviations from the true mass: statistical errors give the peak
a finite width, and systematic errors can result in a shift in the mean from the true value as well as
contributing to the width.
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momentum measurement errors of the D0 daughter particles tend to approximately

cancel in the difference m(D∗+)−m(D0), and thus the error in Q is usually dominated

by the momentum measurement errors (both magnitude and direction) in the slow

pion.

To see how this approximate cancellation works, consider the general expression

for invariant mass of a decaying particle (in units with c = 1):

m =
√
E2 − P 2 (6.5)

here

E =
∑

i

Ei =
∑

i

√
pi · pi +m2

i (6.6)

where Ei is the energy of the ith daughter particle, pi is its vector momentum, and

mi is its mass. Also,

P 2 =

(∑
i

pi

)2

. (6.7)

Let pij denote the jth component of pi, and let Pj denote the jth component of

the decaying particle’s momentum, i.e.

Pj =
∑

i

pij (6.8)

Now, consider the effect of a measurement error δpij on pij. Denote the resulting

change in the calculated mass m by δmij, given by

δmij ≈ ∂m

∂pij

δpij (6.9)
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Carrying out the partial derivative, we obtain

δmij ≈ 1

m

(
E

Ei

pij − Pj

)
δpij (6.10)

Equation (6.10) is valid for any decaying particle. In particular, let m refer to

the D∗+ mass. The daughter particles are the slow pion and the daughters of the

D0 which is created in the D∗ decay. Let i refer to one of the D0 daughters. Then

Equation (6.10) becomes:

δmD∗ij ≈ 1

mD∗

(
ED∗

Ei

pij − PD∗j

)
δpij (6.11)

where we have added a subscript to identify the decaying particle in the total mass,

momentum, and energy variables.

Now, let ∆m = m(D∗+) −m(D0) be the difference in the reconstructed masses,

and so,

δ∆mij ≈ ∂∆m

∂pij

δpij =

[
1

Ei

(
ED∗

mD∗
− ED0

mD0

)
pij −

(
PD∗j

mD∗
− PD0j

mD0

)]
δpij (6.12)

Now, m(D∗)−m(D0) � m(D∗), and as the slow pion carries away only a relatively

small amount of energy then ED∗ − ED0 � ED∗ , and PD∗j − PD0j � PD∗j, as well.

Thus the difference terms in parentheses in Equation (6.12) are small compared with

the corresponding terms in Equation (6.11). So we would expect δ∆mij � δmD∗ij.

The overall error on ∆m, however, contains contributions from the slow pion momen-

tum measurements, but it should still be much less than the overall error on the D∗

mass. Since Q differs from ∆m by a constant, then its error is the same as that on

∆m.

This improvement in resolution resulting from the use of Q rather than m is
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Figure 6.1: Comparison of widths of D∗± mass and Q-value distributions. Note the
difference in horizontal scale in the two histograms.
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illustrated quite dramatically in Figure 6.1, which shows both mass and Q-value

distributions for the D∗ sample used in this analysis. (The selection criteria used

to obtain this sample are described later in this chapter.) The fits shown are for

illustrative purposes only, and assume a Gaussian shape for the signal, and a third

order polynomial for the background. The signal widths displayed show more than

an order of magnitude difference in resolution. Note that the large tick marks in the

top plot are 20 MeV apart, the full width of the lower histogram!

Because the Q-value has a much narrower signal distribution than the mass, there

are many fewer background events under the signal. This allows for a much more

accurate estimation of the number of signal events in a sample. Since this analysis

hinges on such estimations, Q-value histograms are used throughout.

6.3 Signal optimization

Once the decay modes are chosen for an analysis, it is then necessary to establish

selection criteria which maximize the statistical significance of the signal.

For very small samples, Monte Carlo methods are typically used to determine

selection criteria. This prevents bias due to tuning cut variables on statistical fluctu-

ations, and artificially enhancing the size of the signal. For samples which are very

large compared to the number of cut variables, however, it is more common to tune

cuts on the data directly. This way, one is not biased by imperfections in the Monte

Carlo model. The latter approach was used in this analysis.

To obtain a sample of D∗ candidates a first-order filter was used on the 33 Kansas

State Substrip tapes. (See Section 5.6.) The filter worked as follows. Firstly, D0

candidates were formed by examining two and four prong vertices from the vertex
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list.2 The track with the greatest Čerenkov probability to be a kaon was assumed

to be such, and the other tracks were assumed to be pions. The invariant mass

was calculated, and required to fall within the range 1.77 ≤ m ≤ 1.97, measured

in GeV/c2. Next, tracks not used in the D0 vertex were examined as slow pion

candidates. The charge was required to be opposite to that of the kaon candidate

(which must be true in Cabibbo-favored D0 decays). The invariant mass and Q-

value for the D∗ candidate was computed and the Q-value was required to be less

than 21 MeV/c2. All events containing at least one D∗ candidate were saved to disk.

The resulting file was about 500 Mb long and contained 2.3 × 105 events. (This file

included the 3-prong candidates discussed in the previous footnote which were later

discarded.)

The statistical significance of the signal is defined as the measured number of

signal events divided by the error on that measurement. Let S denote the number

of measured signal events. If there were no background at all, the error on S would

simply be
√
S. In a realistic situation, we must subtract the number of background

events B in the signal region from a total count of events in the signal region to

obtain S. Adding the errors due to these two components in quadrature, we obtain

an expression
√
S +B for the error on S. So, the task of signal optimization is one

of maximizing the quantity

S√
S +B

.

A rapid method of computing S/
√
S +B was needed. It was assumed for this pur-

pose that the shape of the background in theD∗ Q-value distribution was independent

2Three prong vertices were also examined both as Kπ, and K3π candidates, by discarding one
track or adding another track from the event, respectively, and revertexing. Although a number
of good candidates were found this way, the background levels were sufficiently higher as to not
enhance the overall statistical significance of the signal, even with further optimization. As a result,
only two and four prong vertices from the vertex list were used in this analysis.
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Figure 6.2: Signal and background regions used in optimization.

of the choice of cuts. This was not strictly true, but a good enough approximation

for optimization purposes. A signal region was defined which included most of the

signal peak (4.4 MeV/c < Q < 7.6 MeV/c), and a background region was chosen to

the right of the signal. The width of the background region was chosen to contain

the same number of events as a fitted background shape integrated under the signal

region. Thus for any D∗ sample under consideration, B was simply the number of

events in this background region, and S + B was the number of events in the sig-

nal region. These two quantities were used to compute S/
√
S +B. The signal and

background regions chosen are shown in Figure 6.2.

The strongly decaying D∗± has a lifetime far too short to produce a secondary

vertex which could be distinguished from the primary, so most of the cuts examined

were based on the D0 vertex. Plots were made of S/
√
S +B as functions of cut

values of various cut variables. These are shown the modes D0 → K−π+ and D0 →

95



Sec. χ2

0 8 16 24
0

40

80

120

Ckv Kaon

0.00 0.40 0.80
0

40

80

120

Ckv Pion

0.00 0.40 0.80
0

40

80

120

DIP

 0.00*10-4 40.00*10-4 80.00*10-4
0

40

80

120

PTBAL

0 0.80
0

40

80

120

RAT

 0.00*10-4 40.00*10-4 80.00*10-4
0

40

80

120

SDZ

0 20 40
0

40

80

120

TSIG

0 12.5 25
0

40

80

120

PIP

0.000 0.040 0.080
0

40

80

120

Figure 6.3: S/
√
S +B of D∗± vs. cut value for cut variables for (Kπ)π sample.
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K−π+π+π− in Figures 6.3 and 6.4, respectively. The first eight variables shown:

secondary vertex χ2/ν, Čerenkov kaon probability, Čerenkov pion probability, DIP,

PT balance, RAT, SDZ, and TSIG are based on the candidate D0 vertex (these cuts

are defined in Section 5.4, and the last, PIP (pion impact parameter), is defined as

the distance between the candidate slow pion track and the primary vertex at the

z coordinate of the primary vertex. (It is an upper bound cut variable.) Despite

all this, the quantity S/
√
S +B was computed, for all cuts, from the D∗± Q-value

histograms, since that was the signal to be optimized.

Examination of the plots in Figures 6.3 and 6.4 reveals no clear peaks. This

suggests that signal significance cannot be significantly enhanced by tightening the

cuts on any of these variables. This is due chiefly to the fact that the D∗± peak

sits right at the edge of phase space and already has very little background under

the signal. It also should be noted that all the S/
√
S +B curves flatten out as they

reach the point where cuts had already been applied (at the Kansas State substrip

level). This is a very good thing, as it demonstrates that previously applied cuts were

not already too tight. Very loose cuts if any needed to be applied to create a final

analysis sample.

Tighter cuts on the invariant mass of the D0 would, of course, increase the signif-

icance of the D∗± signal as the above mentioned samples included ample sidebands

in the D0 mass histogram. The resolution of the D0 is strongly dependent on the

momenta of its daughter particles, and hence the width of the signal is highly corre-

lated with xF , one of the production variables under investigation. For this reason a

variable cut was placed on the D0 mass at the time of analysis. This is discussed in

detail in Section 7.3.

To summarize, the final cuts used to create the analysis sample are listed in

Tables 6.1 and 6.2. The resulting signals are shown for the two modes separately
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Figure 6.5: D∗± samples passing final analysis cuts obtained from the two decay
modes of the D0.
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Figure 6.6: Combined D∗± samples passing final analysis cuts.
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Table 6.1: Final analysis cuts on D0 candidates.

Cut Var. D0 → K−π+ D0 → K−π+π+π−

zsec (cm) < −0.35 < −0.35
χ2

sec/ν < 100 —
SDZ > 8 > 7
PT bal. (GeV/c) < 0.4 < 0.45
TSIG > 0 > 0
DIP (cm) < 0.01 < 0.01
RAT < 1 < 1
NEWCATSG(K, π) ∈ {3, 7, 15} ∈ {3, 7, 15}
m(D0) (GeV/c2) 1.77–1.97 1.77–1.97

Table 6.2: Final analysis cuts on D∗± candidates, in addition to D0 cuts.

Cut Var. D∗+ → D0π+

NEWCATSG(π) ∈ {3, 7, 15}
Q(D∗) (MeV/c2) ≤ 21
Charge(D∗) 6= Charge(K)
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in Figure 6.5 and combined in Figure 6.6. To fit the distributions, the signal was

modeled as the sum of two Gaussian distributions with different areas and widths,

but constrained to have the same mean. The background was modeled by a third

order polynomial. The reported signal area is the sum of the areas of the two Gaussian

distributions. A binned maximum likelihood fit was employed. The numbers of signal

events found were 13 295 ± 252 and 4563 ± 136 for the (Kπ)π and (K3π)π modes,

respectively. The fit to the combined sample yields 17 818 ± 286 signal events. The

errors on the numbers of signal events are larger than one would naively expect due

to uncertainty in the background shape under the signal. This is discussed more

thoroughly in the next chapter where a more powerful fitting technique is employed

which virtually eliminates this uncertainty and hence reduces these error bars.

The D0 signal corresponding to those events with with a D∗± candidate is shown

in Figure 6.7.

6.4 Monte Carlo

6.4.1 Introduction

Not every D∗± which is produced and decays in one of the examined modes shows

up as an event in the final data sample. In fact, the vast majority do not. There are

many reasons for this: one of the daughter particles might have a trajectory which

takes it outside the instrumented region of the detector, detector inefficiencies might

result in too few hits for a track to be reconstructed, tracks left by more than one

particle might be too close to each other to be resolved, selection criteria might reject

good events that happen to fall outside the required window, etc.

If these inefficiencies were uniform in the variables examined in this study, there
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Figure 6.7: D0 signal from final analysis sample.

would be no cause for concern, but unfortunately that was not even approximately the

case. Events with a very high Feynman-x (xF ), for instance, tended to produce tracks

which passed through the central regions of the the drift chambers where efficiencies

were much poorer. Events of very low or negative xF frequently escaped the detector

entirely. Transverse momentum (p2
T ) efficiencies were somewhat flatter, but not flat

enough to be neglected.

In a physics analysis, we are interested in obtaining true distributions arising from

physics processes, not detector and reconstruction effects. We therefore model these

effects using acceptance functions (also known as efficiency functions). An acceptance

function is proportional to the probability that an event will be “accepted” (i.e. reach

the final data sample) as a function of some variable. So, if we wish to measure a

distribution of some physics variable x, we divide the observed distribution by the

acceptance function of x to obtain an estimate of the true distribution.
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In high energy physics, by far the most common technique for calculating accep-

tance functions is the Monte Carlo method. It involves creating a software simulation

of the experiment in which large numbers of simulated events are generated according

to physics models and then reconstructed. The resulting reconstructed distributions

are divided by the generated distributions to obtain acceptance functions.

Three stages are involved in the creation of a Monte Carlo sample to be used in

modeling acceptance: generation, digitization, and reconstruction.

Generation refers to the process by which the interactions of the beam particles

and target are modeled in order to produce further particles. Also, the subsequent

decay of such particles, as well as further interactions (elastic or inelastic) in down-

stream target foils or detector matter must be simulated as well. Pre-existing software

libraries are often employed. E791 used the Pythia/Jetset package [Sj94] to model

these interactions. The output of the generation phase is a list of particles which in-

cludes the particle identity, momentum components, birth and death coordinates, etc.

This list is referred to as a truth table, since it lists the “true” quantities which do

not yet have measurement errors or inefficiencies associated with them.

The next step is digitization. This is where the response of the detectors to parti-

cles is simulated. Truth table information is used to determine a particle’s trajectory

through the detector. Where a charged particle passes through an SMD plane, for

instance, a hit is recorded on the strip through which it passed. It is at this stage

where detector performance characteristics must be taken into account. These char-

acteristics were frequently measured using real data. To measure the efficiency of

an SMD plane, for instance, tracks were reconstructed using all but the plane under

consideration. Good tracks were projected through that plane and it was observed

whether or not a hit was recorded on the appropriate strip. This was done for nu-

merous tracks to determine efficiencies. Also, noisy and “hot” strips were observed.
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Figure 6.8: D∗± signal from Monte Carlo sample.

Special muon runs were used to calibrate calorimetry systems. All this performance

information is used during digitization to simulate the way the detector responds to

an event. The output of the digitization phase is an event record in exactly the same

format as that used by the DA system when recording real data.

Reconstruction takes place exactly as for real data. In fact, in E791, the very

same code is used, ensuring that reconstruction effects are modeled correctly by the

Monte Carlo.

6.4.2 Monte Carlo Sample

To generate acceptance functions, it was necessary to create a Monte Carlo sample of

D∗± particles decaying through the channels used in the analysis. Because statistical

errors associated with acceptance functions should not dominate those in data, a D∗±
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sample with approximately ten times the statistics of the signal observed in real data

was generated. The reconstructed Monte Carlo was then passed through all the same

cuts as the real data: Filter, Stream A strip, Kansas State Substrip, and final analysis

strip.

This was a fairly CPU intensive task. A DEC Alpha and dual processor Pentium II

computer at the University of South Carolina spent more than a month on the task.

Both the release 5 and release 7 reconstruction code (see Section 5.3) were employed

in the same ratio as that used in reconstructing the data. The D∗± signal obtained

from this Monte Carlo sample is shown in Figure 6.8. The actual acceptance functions

are shown in the relevant analysis chapters.

6.4.3 Correcting Monte Carlo Distributions

The accuracy of the acceptance functions depends on how closely the Monte Carlo

system models reality. The reconstruction phase is identical for both data and Monte

Carlo, and the digitization depends on measurements of detector characteristics made

using real data. The generator, however, depends on physics models and parameters

which are determined, in part, by analyses such as the present one. But this analysis,

of course, depends on accurate acceptance functions. This apparent “chicken and egg”

situation is partly resolved by observing that a measurement of a differential cross

section in one production variable, say xF , is independent of the Monte Carlo distri-

bution of that variable. The reason is simply that the acceptance function is found

by dividing a reconstructed Monte Carlo distribution by a truth table distribution,

so the shape of the generated distribution cancels in the ratio.

It is important to note, however, that when computing an acceptance function of

one variable, we are effectively integrating over all other variables, and discrepancies
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between real and simulated distributions in some of these variables may lead to in-

accuracies in the acceptance function. These variables fall into two broad categories.

In the first category are characteristics of the event as a whole, such as track multi-

plicity. If there are more high momentum tracks coming from the primary vertex in

real data than are simulated in Monte Carlo, then the acceptance at high xF will be

overestimated in the Monte Carlo due to an underestimation of the amount of track

“confusion” in the central regions of the detector through which high momentum

tracks tend to pass, for example. The second category includes production charac-

teristics and lifetimes of the particles of interest. There are correlations between xF

and transverse momentum squared p2
T in the generation, so errors in the distribution

of one variable can give rise to inaccuracies in the acceptance functions of the other.

As to the first category described above, the E791 Monte Carlo program had

been tuned so that relevant quantities such as track multiplicity were correct. The

production characteristics of individual particles had some discrepancies, however. Of

particular importance are the momentum distributions of the D∗± particles studied,

as reflected in their xF and p2
T distributions.

As will be shown below, substantial differences exist between the data and Monte

Carlo distributions, particularly in p2
T . Since this analysis involves one dimensional

acceptance corrections in both xF and p2
T , it is necessary to correct these distributions

in Monte Carlo. There are two possible ways to do this. The first would be to tune

some parameters in the generator in order to attempt to make the distributions agree.

The second would be to apply a weighting factor to events in the Monte Carlo sample

after the fact, to correct for the differences. The latter approach was used in this

analysis for two reasons. Firstly, tuning the generator would involve regenerating the

entire Monte Carlo sample, possibly several times, and as explained earlier, it was a

very CPU intensive task. Secondly, changing generation parameters could conceivably
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disturb other event characteristics which had already been tuned to agree with data.

For this reason, a weighting scheme was used on the existing sample.

To examine the quality of agreement between real and Monte Carlo distributions,

it was assumed that the ratio of reconstructed data to reconstructed Monte Carlo is

a good approximation to the ratio of the true distributions to the generated distri-

butions. It was in fact the best approximation available; acceptance-correcting the

data and comparing to the generated distribution would lead to the exact same ra-

tio. The only complication was that our samples contain both signal and background

events, and only signal events should be used in the comparison. To estimate the

signal-only distributions, the technique of background subtraction was employed. A

background-only distribution was created using only events which fall within a Q-

value window well away from the signal peak. A signal plus background distribution

was created by making tight cuts around the signal peak and using only events falling

inside that Q-value window. The former distribution was subtracted from the lat-

ter, after normalizing it to have the same number of events as the estimated number

of background events in the signal plus background distribution. This estimation

was obtained by fitting the signal and background of the Q-value histogram, and

integrating the background function over the signal region chosen.

The ratio of the data xF distribution to reconstructed Monte Carlo is shown

in Figure 6.9. As can be seen, there is a bit more data at very low and high xF

than is modeled by the Monte Carlo. The discrepancy is not too bad. A quadratic

polynomial was fit to the distribution and the linear and quadratic coefficients (a and

b respectively) are shown on the plot. Both are several standard deviations from zero,

so some correction was needed. For this reason, a “weighting curve” of

w = 9.426(0.12 − 0.15xF + 0.215x2
F ) (6.13)
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was employed. All Monte Carlo events were weighted according to the above equation,

except where generating acceptance functions in xF .

The xF discrepancy was found to be fairly small, but the situation is quite different

for p2
T . Ratios of data to reconstructed MC are plotted in Figure 6.10. Clearly the

data shows a much stiffer p2
T distribution than the Monte Carlo. Because it was found

to be much more significant than the xF ratio, the p2
T ratio was computed in four

different regions of xF to investigate a second-order dependence of the correction curve

on xF . As can be clearly seen, there is such a dependence. To obtain a weighting

curve, the parameters themselves had to be fit as functions of xF . Straight lines were

used because a higher order curve would have been inappropriate for only four points.

Smaller bins in xF would have yielded more points, but the error bars would have

become too large to be useful. Although a line doesn’t fit really well, it is a step better

than assuming no dependence on xF at all. These fits are shown in Figure 6.11. The

fits yielded a weighting curve of:

w = 3.12[7.2 × 10−2 +

(2.64 × 10−2 − 9.494 × 10−2xF )p2
T +

(3.624 × 10−3 + 1.9385 × 10−2xF )(p2
T )2]. (6.14)
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Chapter 7

Differential Production Cross

Sections

7.1 Kinematic Variables

As discussed in Chapter 1, one of our goals is to measure the dependence of D∗±

production cross sections on the kinematic variables Feynman-x (xF ) and square

transverse momentum (p2
T ). The transverse momentum pT is simply the component

of the D∗ momentum vector transverse to the beam particle direction. Since the beam

tracking system measures this direction for us, and theD∗ momentum is reconstructed

from its decay tracks, calculation of p2
T is trivial.

xF is slightly more complicated. Recall its definition (Eq. 1.3),

xF =
p∗

q

p∗
q max

(7.1)

where pq is the component of the D∗ momentum vector parallel to the beam particle

direction, and the asterisks indicate the quantities are evaluated in the production
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center of mass frame. It is thus necessary to define precisely what is meant by the

“production center of mass frame” and how is p∗
q max computed.

To define the center of mass frame, it is necessary to know precisely which particles

are interacting to produce the D∗. Clearly the beam pion is one such particle. A

nucleon in the target material is clearly also involved. One might argue that because

the nucleon is bound in an atomic nucleus that we should consider the entire nucleus

as the target particle, but at the energy scales involved here the nuclear binding forces

are not significant, and it makes sense to define the target as a free nucleon. One

might then argue that at our energy scales it is more correct to define a parton as the

target, and not the whole nucleon, but since one of the purposes of a differential cross

section study is to probe the parton structure of the nucleon, the entire nucleon must

be considered as the target particle. The target particle might, of course, be either

a proton or neutron, but fortunately, their masses are close enough that it doesn’t

matter; we simply use the proton mass (938 MeV/c2) as the target mass. The target

nucleon is assumed to be at rest in the lab frame, and the beam pion is assumed to

have a momentum of 500 GeV/c. This, together with a measurement of the beam

particle’s direction, is sufficient to precisely define the center of mass frame.

It is also possible to calculate the square total energy in the COM frame (in units

with c = 1):

s = (p̃B + p̃T )2 = m2
p +m2

π + 2mpEB ≈ 939 GeV2 (7.2)

where p̃B and p̃T are the 4-momenta of the beam and target particles respectively. The

D∗ will have maximum forward momentum when all other products move backward in

the COM frame with total momentum equal and opposite to that of theD∗. Assuming

both are relativistic, the energy is split evenly between the two, so ED∗ =
√
s/2. Thus,
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pD∗ =
√
s/4 −mD∗ . We thus arrive at the form used to compute xF in this analysis:

xF =
p∗

q√
s
4
−mD∗

(7.3)

where mD∗ is the reconstructed mass of the D∗.

7.2 Fitting Procedure

In Section 6.4.3, background subtraction was used to create xF and p2
T distributions

in order to compare data and Monte Carlo. That technique was sufficient for that

purpose, but for the analysis proper a more accurate approach is required. In doing

a simple background subtraction, it is necessary to assume that the xF and p2
T dis-

tributions in the background region are the same as those of the background events

in the signal region. This is equivalent to assuming that the background shape does

not depend on either xF or p2
T . As we shall see, that assumption is not really valid.

A more precise technique which does not depend on that assumption is to first

divide the data sample into bins of xF (or p2
T ) and create Q-value distributions for

each of those bins. Then, one can fit the Q-value distributions to determine the

numbers of signal events. These numbers are then plotted as functions of xF (or p2
T )

to give the data distributions. Thus, a reliable and efficient method for fitting D∗

Q-value distributions is needed.

In Section 6.3, the final data sample was fit with a double Gaussian model for the

signal and a third order polynomial for the background (see Figure 6.6). Although

the fit looks good to the eye, the error bar on the signal area reveals it is, in fact,

not a good fit at all. We argued in Section 6.3 that the error on this number should

be approximately
√
S +B. Integrating the background curve under the signal (3.5 ≤
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Q ≤ 8.5 MeV/c2), yields roughly 8890 background events under the signal. The fit

reports 17 818 signal events, so
√
S +B ≈ 163. The reported error of 286 is about

75% larger than it should be.

The explanation for this discrepancy lies in the difficulty in ascertaining the back-

ground shape under the signal. Because the D∗ Q-value signal sits right at the edge

of phase space, the background shape changes rapidly under the signal. To the right

it is almost described by a horizontal line; to the left, by a small shoulder much lower

than the level on the right. Contrast this with a D0 mass plot (see Figure 6.7), where

a straight line fit to the background on one side could be projected under the signal

and closely match the background on the other side, thus leaving very little uncer-

tainty about the background shape under the signal. With the D∗, however, there

are many reasonable ways the right and left background regions could be joined, and

thus the error on S is not purely statistical, but has a large systematic component

due to this uncertainty.

A background model which does not suffer from this uncertainty can be obtained

directly from the data by using the technique of event mixing. Since the background

in a D∗ sample is due to combining slow pion candidates with D0 candidates which

don’t originate from a common D∗, background events are modeled by combining D0

candidates with slow pion candidates from different events. The exact same selection

code is used, only the slow pion candidates and D0 candidates must be from different

events. Since it is possible to combine a D0 candidate with slow pion candidates

from several other events, the event-mixed sample can be many times larger than

the actual data sample, so that errors from fits are dominated by the statistics of the

data sample, not the background model. Using this technique, the only free parameter

associated with the background portion of the fit is an overall normalization, which
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Figure 7.1: Background model obtained by event mixing.

can be well determined by the ample sideband to the right of the signal; there is no

uncertainty in shape under the signal.

Figure 7.1 shows the background shape model obtained by event mixing from the

entire analysis sample. Figure 7.2 shows a fit to the D∗ signal using a double Gaussian

for the signal (as in Figure 6.6) and event mixing to model the background. The error

reported for S is 187, much closer to the expected value. Also, a visual examination

of the fit suggests that the shape predicted by event mixing does indeed fit the real

background very well on either side of the signal. It is therefore quite reasonable to

assume it is correct under the signal, as well.

Although a double Gaussian models the signal shape for the complete data sample

very well, problems were encountered during attempts to fit the sample when divided

into bins of p2
T and xF . In some bins of xF a single Gaussian provided a better fit,

and the double Gaussian fit was unstable. Other bins required a double Gaussian,
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Figure 7.2: D∗± analysis sample with fit. A double Gaussian was used to model the
signal, and event mixing to model the background.

and some bins were not fit well by either. This resulted in some fits not converging

properly, therefore having one model for the signal shape is not sufficient.

The background was fit with a shape obtained from event mixing. This is a phys-

ically meaningful hypothesis, unlike the double Gaussian fit for the signal, which is

not motivated by physics, but merely by the fact that it fits the full data sample quite

well. In fitting the event-mixed histogram to the background, the only parameter is

a scale factor. Since we are interested in obtaining only the number of signal events,

and not widths or means, we really don’t need to fit the signal at all if we have a

good model for the background. All that is necessary is to determine the correct scale

factor for the background, and once that is done, the number of signal events can be

obtained by subtracting the integral of the scaled background function over the signal

region of the histogram from the total number of events in that region. To obtain the

correct scale factor, we fit only in a region well away from the signal.
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Figure 7.3: D∗± analysis sample with background fit only.

As a consistency check, the analysis sample was fit using this technique, as shown

in Figure 7.3. The signal region was chosen as 0 ≤ Q < 12 MeV/c2 and the back-

ground region was chosen as 12 ≤ Q < 20 MeV/c2. The reported yields differ by only

0.2σ, which suggests the fitting technique is sound. The error on the yield is higher

(241) owing to the statistical errors obtained when fitting the background model to

the histogram, but it is still substantially less than that shown in Figure 6.6.

7.3 Variable D0 Mass Cut

In Section 6.3, it was indicated that the width of the D0 signal is highly correlated

with xF . This is illustrated in Figure 7.4 which shows the D0 signal in two different

ranges of xF . What would be a reasonable cut on the D0 mass for the left-hand plot

would cut into the signal on the right-hand plot. The reason for this can be found
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Figure 7.4: D0 signal in regions of low and high xF illustrating the dependence of
resolution on xF .

in Equation (3.6): the error on momentum measurements goes up with momentum.

High xF D0s have a greater momentum than low xF ones, and thus their daughter

tracks tend to have a high momentum as well. This leads to a greater measurement

error on the reconstructed mass, and a greater signal width.

For this reason, different cuts on the D0 mass had to be employed in the different

bins of xF or p2
T under consideration. In each such bin, a D0 mass histogram was

created and fit with a single Gaussian and a linear background. The mean and width

were extracted and only those D0 candidates with a mass within a window of 2.5σ

on either side of the mean were retained.

7.4 Differential Cross Sections

The data sample was divided into twelve bins each of xF and p2
T . Owing to the

much higher statistics at lower xF and p2
T narrower bins were used in those regions.
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In the range −0.1 < xF < 0.4, the bins have a width of 0.05, and in the range

0.4 < xF < 0.6 the bins have a width of 0.1. In the range 0 < p2
T < 2 (GeV/c)2

bins have a width of 0.5 (GeV/c)2, and in the range 2 < p2
T < 10 (GeV/c)2 bins

have a width of 1 (GeV/c)2. When using non-uniform bins, it is necessary to divide

the yields by the corresponding bin widths before plotting them, in order that the

points on the plot model a probability density function. This procedure is followed

throughout. For the sake of consistency, the p2
T analysis used only data with an xF

in the range studied (−0.1 < xF < 0.6) and the xF analysis used only data in the

range 0 < p2
T < 10 (GeV/c)2.

In each bin of xF or p2
T , D∗± Q-value histograms were created. The event-mixed

sample was divided into the same bins in order that the differences in background

shape in these different bins were modeled correctly. The histograms were fit as

described in Section 7.2, using the same signal and background regions as before.

In Figure 7.5, the Q-value histograms, along with their fits are plotted for each of

the xF bins. Figure 7.6 shows the same for the p2
T bins.

The procedure described above for the data was applied to the Monte Carlo sample

(see Section 6.4.2) and each of the resulting yields was divided by the number of events

generated (as obtained from truth tables) in the corresponding bin to obtain binned

relative acceptance functions. The term “relative” here means that the absolute

vertical scale is arbitrary. For a differential cross section study the absolute acceptance

is not required. These acceptance functions are plotted in Figure 7.7.

The shapes of the acceptance functions are consistent with expectations. The

detector is designed only to detect forward going particles, so there is very little

acceptance at negative xF . Because the center of mass frame is boosted forward in

the lab frame, there is some acceptance at negative xF , but nothing really below −0.1.

At high xF tracks were more likely to pass through the centers of the drift chambers
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Figure 7.5: Fits of D∗± Q-value histograms in bins of xF to determine the numbers
of signal events, using event mixing to model the backgrounds.
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Figure 7.6: Fits of D∗± Q-value histograms in bins of p2
T to determine the numbers

of signal events, using event mixing to model the backgrounds.
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where efficiency was lower. Also, at very high xF , daughter tracks had less separation

and a greater probability of approximately overlapping. It was difficult to resolve

more than one track when they passed through the same channels of tracking system

detectors. Also, at very high xF , secondary vertices may have fallen outside the

volume at which they were accepted. (Beyond the interaction counter, for example.)

This accounts for the sharp drop in acceptance at high xF . The p2
T acceptance is much

flatter. The dip at low p2
T is probably due to the fact that such particles’ daughters

may be more likely to pass through the central regions of the drift chambers.

Each of the yields measured from the data sample was divided by the correspond-

ing point in the acceptance function to obtain the points in the differential cross

section plots shown in Figure 7.8. Because p2
T distributions are expected to decrease

exponentially with p2
T , a logarithmic vertical scale was used in that plot.

7.5 Consistency Checks

Although a detailed, quantitative study of systematic errors will be carried out in

Chapter 10, some basic consistency checks on the result can be done at this point.

Recall that ourD∗± sample was obtained through two different modes of theD0 decay:

Kπ and Kπππ. The momentum distributions of the D∗s depend on their production

mechanism only, and can’t be affected by the subsequent decay channels of their

daughter D0’s. Thus any discrepancy in the measured D∗ xF and p2
T distributions

between the two D0 decay modes must be due to errors either in modeling acceptance

or fitting our Q-value distributions. In fact, since the K3π mode has two more

daughter tracks than the Kπ mode, such a comparison would be an excellent test of

our modeling of the tracking efficiency. If the Monte Carlo overestimated our tracking

efficiency at high xF , for example, then the corrected xF distribution for the Kπ mode
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Figure 7.9: Ratios of corrected D∗± xF and p2
T distributions from channel D0 → K3π

to D0 → Kπ with straight line fit.

should not fall as quickly as the K3π mode. Since the acceptance is dominated by

tracking efficiency, such a comparison provides an excellent consistency check.

To perform this comparison, the analysis described in Section 7.4 was carried out

on the two subsamples of our data sample corresponding to the two decay modes of

the D0 considered. This involved computing new background models and acceptance

functions for the two modes separately. Ratios of the resulting distributions are shown

in Figure 7.9, along with straight line fits, which should be horizontal if the results are

consistent. For the xF ratio, the slope is 0.39±0.53 and for p2
T it is (1.1±2.6)×10−2.

Both are consistent with zero, suggesting our acceptance model is good.

Recall from Section 5.3 that two different versions of reconstruction code were

used on the dataset, named “Release 5” and “Release 7”. It is important to check

that the two subsamples reconstructed with the two different code versions agree.

Ratio plots similar to those comparing the D0 decay modes are shown in Figure 7.10,

also with linear fits. The p2
T fit shows a slope of (−0.44 ± 1.59) × 10−2, consistent
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Figure 7.10: Ratios of corrected D∗± xF and p2
T distributions from release 7 data to

release 5 with straight line fit.

with zero. The xF fit has a slope of −0.37 ± 0.27. This is a 1.4σ effect, larger than

one would like, but not entirely inconsistent with zero. In fact, visual inspection of

the plot shows fluctuations of the points exhibiting no clear trend, so it is reasonable

to conclude the results are consistent.

One might be tempted to compare subsamples of D∗+ and D∗− this way, but

differences there might be due to the physics of production, rather than acceptance

modeling problems. In fact, such physics is the subject of the next chapter.
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7.6 Fits and Comparisons

7.6.1 Traditional Forms

The xF and p2
T distributions have traditionally been parameterized by the following

functional forms [Al94b]:

dσ

dxF

∝ (1 − xF )n (7.4)

and

dσ

dp2
T

∝ exp(−Bp2
T ). (7.5)

These have been found, in the past, to agree with data only in restricted ranges:

at high xF for Equation (7.4), and at low p2
T for Equation (7.5). For this reason, and

for ease of comparison with other experiments, the xF distribution was fit only in the

range 0.1 < xF < 0.6 and the p2
T distribution was fit only in the range 0 < p2

T <

4 (GeV/c)2. The results are shown in Figures 7.11 and 7.12. The error bars on these

plots include systematic as well as statistical errors. Systematic errors will be dealt

with in Chapter 10, but they are included here as they might affect the error bars on

the fit results.

The fits both exhibit rather poor chi-square per degree of freedom (χ2/ν) even in

the restricted ranges used. For the xF fit, χ2/ν = 2.4 and for p2
T , χ2/ν = 3.4. This

suggests the functional forms, especially for p2
T , do not describe our data well at all.

7.6.2 Alternate Forms

Another functional form for the p2
T distribution has been suggested because it fits

distributions computed in next-to-leading-order perturbative QCD extremely well
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Figure 7.11: Acceptance corrected D∗± xF distribution fit with functional form (1 −
xF )n in the range 0.1 < xF < 0.6.
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130



over a broader p2
T range [Fr94]:

dσ

dp2
T

=

(
C

bm2
c + p2

T

)β

(7.6)

The quantity mc here is meant to be the charm quark mass, but we choose bm2
c as

a free parameter as there is some uncertainty as to its exact value. A fit of the p2
T

distribution in our full range of p2
T (0 < p2

T < 10 (GeV/c)2) is shown in Figure 7.13.

Clearly, this functional form provides a much better fit than Equation (7.5). If the

χ2/ν of 0.57 seems impossibly low, remember that the error bars in the plot include

a systematic component as well as statistical. If we perform a similar fit to a plot

with statistical errors only, χ2/ν = 0.96.

Because the xF distribution is not peaked at exactly zero, a modified version of

the functional form was tried:

dσ

dxF

∝ (1 − |xF − x0|)n′
(7.7)

where x0 is a parameter which is supposed to represent the peak of the distribution.

The function was fit in both in the range xF > 0.1 and the full range of xF . The

results of these fits are shown in Figure 7.14, along with a fit of the standard function

for comparison. Clearly in the restricted xF range the x0 parameter assumes the

rather unphysical value of 0.12, the approximate location of the leftmost data point

in the fit region. Also, the χ2/ν is 2.5, greater than the value of 2.4 obtained when

using the standard function. Putting bounds on the x0 parameter didn’t help; the fit

kept forcing it to the upper limit.

When used on the full range of xF , the x0 is a more reasonable 9.86 × 10−3, but

χ2/ν is 2.8, again worse than before. Moreover, the curve completely misses some
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Figure 7.13: Acceptance corrected D∗± p2
T distribution fit with functional form
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points at low xF . This is not surprising as this functional form was never meant to

model data at low xF , and the peak shape of the curve (a sharp cusp, arising from

the use of the absolute value function) is nothing like that of either data or Monte

Carlo models.

Since the modified functional form neither models our data better (as evidenced

by the χ2/ν’s) nor admits easy comparison to previous experiments, it is not used in

this analysis.

Another form, used successfully in a D0 analysis [Ai99], was the modified form

above, joined to a Gaussian at lower xF to model the peak area of the distribution.

Ideally the Gaussian central value would converge on the peak of the distribution,

enabling one to determine the “turnover” point.

dσ

dxF

=




A1(1 − |xF − xc|)n′
, |xF − xc| > xb

A2 exp[−1
2

(
xF−xc

σ

)2
], |xF − xc| < xb

(7.8)

There are six parameters in the above equation: A1, A2, n
′, xc, xb, and σ. By

requiring the function and its first derivative to be continuous at xF = xb, we eliminate

two parameters (A2 and σ) and allow the other four to float.

The result of the fit is shown in the lower right plot of Figure 7.14. Although the

parameters converge to reasonable values (xc = 0.0122 ± 0.0127), the fit quality is

not much improved (χ2/ν=2.1), so it is not clear if it is meaningful to interpret xc

as the peak of the data distribution. Moreover, even if we are willing to accept that

interpretation, the statistical significance is not good: we see the peak is less than 1σ

from zero.
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Figure 7.14: Acceptance corrected xF distributions, fitted with (A) (1 − xF )n, as
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|xF − xC | < xB.
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Table 7.1: Parameters from fits to π±N differential D∗± cross sections vs. xF and
p2

T , including comparisons to other experiments ([Ad99, Al94b, Ba91, Ba88, Ag86]).
Column labels refer to fit parameters of the same name defined by Equations (7.4)–
(7.6). The labels “l” and “nl” refer to leading and non-leading particles, respectively.
Asterisks (*) indicate extended range of p2

T used in fit of Equation (7.6). Errors shown
on E791 results include both statistical and systematic components.

Expt.
xF fit
range

n p2
T fit rng.

(GeV/c)2

B
(GeV/c)−2

bm2
c *

(GeV/c)2 β *

E791 0.1 to 0.6 3.8 ± 0.2 0 to 4 0.75 ± 0.02 5.1 ± 0.8 5.0 ± 0.6
l. (D∗−) 3.6 ± 0.2 or 0.73 ± 0.02 6.1 ± 1.5 5.6 ± 1.0
nl. (D∗+) 4.1 ± 0.3 0 to 10* 0.77 ± 0.03 4.0 ± 1.1 4.4 ± 0.8

WA92[Ad99] 0 to 0.6 4.3 ± 0.4 0 to 4 0.84 ± 0.05 3.6 ± 0.8 4.7 ± 0.7
l. 4.9 ± 0.5 or
nl. 3.9 ± 0.4 0 to 14*

E769[Al94b] 0.1 to 0.6 3.5 ± 0.3 0 to 4 0.70 ± 0.07
l. 2.9 ± 0.4 0.58 ± 0.09
nl. 4.1 ± 0.5 0.79 ± 0.09

NA32[Ba91] 0 to 0.8 3.14+0.40
−0.39 0 to 10 0.79 ± 0.07

l. 2.62+0.53
−0.49 0.71+0.09

−0.08

nl. 3.83+0.66
−0.62 0.90 ± 0.11

NA32[Ba88] 0 to 0.7 2.8+1.1
−0.9 0 to 5 0.9+0.3

−0.2

l. 4.7+1.9
−1.6

nl. 1.7+1.4
−1.0

NA27[Ag86] 0 to 0.5 4.3+1.8
−1.5 0 to 3 0.9 ± 0.4
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Figure 7.15: Acceptance corrected D∗ xF and p2
T distributions showing fits (Eqs. (7.4)

and (7.6)), and both default and tuned Pythia models.

7.6.3 Comparisons to Previous Experiments

The D∗− and D∗+ subsamples were also analyzed and fit separately, as their dis-

tributions might be different. The resulting fit parameters, along with comparisons

to other experiments, are shown in Table 7.1. As can be seen, results are largely

consistent with previous measurements.

7.6.4 Comparison to Pythia Models

The leading model for describing xF and p2
T distributions is the Pythia model [Sj94],

which employs the Lund string fragmentation model. This model has many tunable

parameters. In a previous E791 analysis on D+/D− production asymmetry [Ai96],

several parameters were tuned to improve the agreement between the Pythia model

and experimental data. Specifically, PMAS(4,1), the charm quark mass in GeV/c2

was changed from 1.35 to 1.7, PARP(91), the average k2
T in (GeV/c)2 was increased
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from 0.44 to 1.0, PARP(93), the maximum allowable kT in GeV/c was increased from

2.0 to 5.0, and MSTP(92) the remnant quark-diquark energy splitting function, was

changed from 4 to 3. These variables are all described in detail in reference [Sj94].

The effect of most of these changes is to increase the cross sections at higher p2
T .

The xF and p2
T distributions are shown in Figure 7.15, along with the fits shown

previously, and comparisons to both the default and tuned Pythia models. In xF ,

there is very little difference between the tuned and untuned models, and they fit the

data reasonably well although they seem to predict a slightly stiffer xF distribution.

The tuned and untuned models are quite different in the p2
T distribution, the tuned

model yielding a much stiffer distribution, which agrees with the data fairly well.

Equation (7.6), which is based on fits to NLO QCD distributions, describes the data

better, however, our data having a slightly stiffer distribution than the tuned Pythia

model.
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Chapter 8

Production Asymmetries between

D∗+ and D∗−

8.1 Definitions

Recall that a leading particle (for xF > 0) is a final state particle which has a quark

in common with the beam particle while its antiparticle does not. In E791, a π−

(u d) beam was used. The D∗+ (c d) has no quark in common with the beam particle,

whereas the D∗− (c d) has a d quark in common with the beam particle. Therefore,

the D∗− is a leading particle and the D∗+ is a non-leading particle.

The asymmetry parameter A is thus defined as (cf. Eq. 1.4):

A =
σ(D∗−) − σ(D∗+)

σ(D∗−) + σ(D∗+)
(8.1)
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tions of xF and p2

T for D∗+ and D∗−.
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8.2 Asymmetry Measurement

The analysis technique is virtually identical to that described in the previous chapter

on differential cross sections. The data sample was divided into bins of xF and

p2
T using the same binning as before. This time the D∗+ and D∗− samples were

analyzed separately. The fitting technique is the same as used previously, and separate

acceptance functions were computed for D∗+ and D∗− using the Monte Carlo sample.

The acceptances and corrected distributions are shown in Figure 8.1.

The acceptances are roughly the same for the two charges. This is not surprising,

as the D∗± decays into a D0 which has equal numbers of positively and negatively

charged daughter tracks, and a charged pion with a very small momentum, making it

unlikely to be bent into the drift chamber “holes” through which the beam particles

passed, even at high xF .

With these distributions, the asymmetry parameter can be computed in each bin

using the formula

A =
N(D∗−) −N(D∗+)

N(D∗−) +N(D∗+)
(8.2)

where N denotes the acceptance corrected number of signal events in each bin of the

production variable.

8.3 Results and Comparisons

The asymmetry parameter is plotted as a function of xF and p2
T in Figures 8.2 and 8.3

along with those measured by E791 for D+/D− asymmetry [Ai96] and the D+
s /D

−
s

asymmetry [Ai97] for comparison. TheD∗± results are consistent with theD± results.

Note that neither the D+
s (c s) nor the D−

s (c s) are leading particles. It is therefore

not surprising that the asymmetry is lower (in fact, consistent with zero) and does
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Figure 8.4: Asymmetry parameter for D∗± compared to default and tuned Pythia
models, as well as the recombination model (xF plot only)[Av03].

not rise with xF . As in the D± system, we observe a strong enhancement in A

at high xF , the so-called “leading particle effect”, which suggests that NLO QCD

calculations by themselves are not sufficient to account for the asymmetries, and

therefore fragmentation plays a role. The p2
T asymmetry is consistent with being flat.

The overall asymmetry observed is probably due to the fact that we use data only

in the range −0.1 < xF < 0.6 (essentially positive xF ) so the leading particle effect

would thus give rise to an overall asymmetry in the p2
T curve.

The results are also plotted in Figure 8.4, along with comparisons to the Pythia

model. Both the default Pythia model and a Pythia model with parameters tuned

as discussed in Section 7.6.4 are shown. Recall that the parameters were originally

tuned specifically to bring about better agreement with D± asymmetry results. The

agreement with the observed D∗± asymmetry is not as good. Both the tuned and

untuned models predict roughly the correct shape but they predict a greater overall

asymmetry than observed. The tuned model is closer to the measured results, how-
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ever. It is interesting to note that although the D∗± results agree with the measured

D± results, the Pythia model predicts a greater asymmetry in the D∗± system than

it does in the D± system. Overall, it can be concluded that the Lund String model

can account for the shape, but with default parameters, it predicts far too large an

asymmetry.

Also shown in Figure 8.4 is a fit[Av03] which includes contributions from both a

fragmentation model (the Peterson function) and a recombination model (Das and

Hwa[Da77]). It provides a much better fit to the data than either the untuned or

tuned Pythia models.
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Chapter 9

D∗± Polarization

9.1 Introduction

The D∗±(2010) is a spin-1 particle, and therefore it can exist in one of three possible

spin angular momentum states, with ms = −1, 0, or 1 along any chosen quantization

axis. In a high energy physics experiment, many such particles are observed, and so

a means of characterizing the distributions of these spin states is needed.

A quantum mechanical system which consists of a statistical mixture of identi-

cal subsystems, each of which can be described by a state vector, can in general be

characterized by a density operator [Bl96]. A density operator is a linear combi-

nation of projection operators onto the possible states weighted by their statistical

probabilities:

ρ =
∑

i

wi|ψi〉〈ψi| (9.1)

where the {|ψi〉} is a set of state vectors describing the subsystems, and wi is the

probability that any subsystem is in a state described by |ψi〉.
With respect to a given orthonormal basis |ui〉, we can define the density matrix
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as:

ρij = 〈ui|ρ|uj〉 (9.2)

From the definition (9.1), it immediately follows that ρij is hermitian, and the fact

that
∑
wi = 1 implies that

Tr(ρij) = 1 (9.3)

The angular momentum distribution of a sample of D∗± particles can thus be

described by a spin density matrix. In any given basis, there are three possible states,

so ρ is a 3 × 3 matrix. A general complex 3 × 3 matrix has 18 real independent

components, but hermiticity and the fact that Tr(ρij) = 1 reduces the number to 8.

The D∗’s are produced in a strong interaction, and parity conservation can be shown

to further reduce this number to 4. (See Appendix A). For relativistic particles, it

is often most convenient to work in a helicity basis where the spin quantization axis

is chosen along the particle’s momentum vector. In such a basis, the spin density

matrix takes the form given by Equation (A.38):

ρ =




ρ11 ρ10 ρ1−1

ρ∗10 1 − 2ρ11 −ρ∗10
ρ1−1 −ρ10 ρ11


 (9.4)

with ρ1−1 and of course ρ11 real.

The angular distributions of the decay products of the D∗ depend on the elements

of the spin density matrix, and so measurements of these angular distributions can

be used to determine the spin density matrix elements of the D∗. It is necessary to

define a coordinate system and reference frame in which to define the angles that

describe the directions of the decay products. The E791 coordinate system defined
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Figure 9.1: Coordinate system used to define angular distribution of D∗ decay prod-
ucts.

in Section 3.3 is not convenient, as it is related to detector elements rather than the

particles under consideration. A helicity basis was chosen, so that the z-axis points

along the D∗ boost vector in the lab frame. The y-axis is defined as pointing normal

to the production plane. That is, the positive y-axis points in the direction d × b

where d is the D∗ boost vector and b is a vector pointing in the direction of the beam

particle’s momentum. The choice of a right-handed coordinate system then uniquely

determines the direction of the x-axis. (See Figure 9.1).

The decay product angles are evaluated in the rest frame of the D∗. One might

object to the fact that the definition of the z-axis (along the D∗ boost vector) makes

no sense in the D∗’s rest frame, but if the x and y axes are defined in the lab frame,

they will be invariant under a boost to the D∗ rest frame as they are perpendicular

to the boost direction, and they can be used to define the z-axis in the D∗ rest frame.

Spherical polar coordinates are used to measure the direction of one of the decay

products (the slow pion). θ is the angle between the slow pion momentum vector and
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the z-axis. φ is the angle between the projection of the slow pion momentum vector

in the xy-plane and the x-axis.

With these definitions, the angular dependence of the cross section is given by

Equation (A.52):

dσ

dΩ
∝ 1

4π
[1+ (1− 3 cos2 θ)(3ρ11 − 1)− (3

√
2 sin 2θ cosφ)Re ρ10 − (3 sin2 θ cos 2φ)ρ1−1].

(9.5)

Note that this distribution depends on only three of the four independent components

of the spin density matrix, namely: ρ11, Re ρ10, and ρ1−1. Thus Im ρ10 cannot be

determined from an angular distribution study.

Recall that the slow pion was somewhat arbitrarily chosen as the decay particle

whose angles were measured. The D∗ has two decay products: the slow pion and the

D0, which emerge back to back in the D∗ rest frame. Thus choosing the D0 rather

than the slow pion is equivalent to replacing θ by π − θ and φ by φ + π. A quick

check shows that Equation (9.5) is invariant under such a replacement, so the results

don’t depend on that arbitrary choice.

Equation (9.5) is a probability defined per unit solid angle:

dΩ = sin θ dθ dφ = −d(cos θ) dφ (9.6)

and so in order for an angular distribution histogram to approximate a probability

density function, cos θ and φ must be chosen as independent variables, rather than

θ and φ. (It would also be possible to multiply both sides of Equation (9.5) by sin θ

and use θ and φ as independent variables, but the former technique is simpler as the

unpolarized case leads to a flat distribution in cos θ and φ.)

Note that if the D∗s are unpolarized, (i.e. all three helicity states occur with equal
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Figure 9.2: Angular dependence of dσ/dΩ for various values of spin density matrix
elements. (Plot 1 of 2)
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probability) then ρij = (1/3)δij, so that the three parameters are ρ11 = 1/3, Re ρ10 =

0, and ρ1−1 = 0. The functional form in Equation (9.5) is illustrated in Figures 9.2 and

9.3 where it is plotted for various values of the parameters. For the unpolarized case

discussed above, the distribution is flat, as expected. The remaining plots show the

effect of one parameter being different from the unpolarized value, and the last plot

shows a more general case where all three parameters differ from their unpolarized

values.

9.2 Measurement of Spin Density Matrix Elements

Measuring the spin density matrix elements involved two steps. First, angular dis-

tribution histograms were created, and second, these histograms were fit with Equa-

tion (9.5) to obtain the three measurable spin density matrix elements.

The angular distribution histograms are two dimensional histograms in which the

numbers of events falling in bins of cos θ and φ are plotted versus cos θ and φ.

As before, the data sample was divided into bins of xF and p2
T . Because the

subsamples needed to be further divided into bins of cos θ and φ, fewer xF and p2
T

bins were used than in Chapters 7 and 8 so as not to reduce the statistics in the angular

distribution histograms to a level where bin populations no longer approximate the

values of a probability density function. For this reason as well, non-uniform bins in

xF and p2
T were chosen such that each bin contained roughly the same number of raw

data events. The bins are shown in Tables 9.1 and 9.2.

For each of these bins, an 8 × 8 two dimensional histogram was created by uni-

formly dividing both the regions −1 ≤ cos θ ≤ 1 and −π ≤ φ ≤ π each into 8 equal

parts. To efficiently calculate the bin populations, a bin by bin background subtrac-

tion technique was employed. In each of these bins, Q-value histograms were created
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Table 9.1: xF bins used in angular distribution study.

Bin Lower limit Upper limit

1 -0.1 0.05
2 0.05 0.09
3 0.09 0.13
4 0.13 0.19
5 0.19 0.6

Table 9.2: p2
T bins used in angular distribution study.

Bin Lower limit (GeV/c)2 Upper limit (GeV/c)2

1 0. 0.025
2 0.025 0.0.175
3 0.175 0.75
4 0.75 3.5
5 3.5 10.

from both the real data and event-mixed data samples (see Section 7.2). Events

were counted both above and below a Q-value of 10 MeV/c2 in both histograms. A

comparison of the number of events in the data and mixed data sample in the back-

ground region (Q > 10 MeV/c2) yielded a scale factor which was used in subtracting

the number of background events from the signal region (Q < 10 MeV/c2). In other

words, if S1 denotes the number of events counted in the data sample with a Q-value

less than 10 MeV/c2, S2 denotes the number of events from the same sample with a

Q-value greater than 10 MeV/c2, and B1 and B2 denote the corresponding quantities

obtained from the mixed data sample, then the number of signal events could be

computed as

S = S1 −B1
S2

B2

. (9.7)

These S values, and their errors were then used to fill the 2-d histograms. (Errors
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Figure 9.4: Comparison of cos θ and φ distributions for background regions to the left
(solid circles) and right (hollow circles) of D∗ signal. The chi-squares per degrees of
freedom shown are for the left and right regions of those one-dimensional projections
to match. The chi-square per degrees of freedom for the full 2-dimensional histograms
(not shown) to match is 1.02.

were computed assuming a
√
n error on each of the counted values S1, B1, S2, and

B2, and assuming these errors to be uncorrelated.)

This technique assumes that the background shape is modeled accurately by event

mixing in each bin of cos θ and φ. This can be checked by comparing the cos θ and

φ distributions of the sidebands to the left and right of the signal. If they agree,

it is likely that the background events under the signal have the same shape. This

would imply that variations in the background shape among the cos θ and φ bins are

modeled correctly by event mixing. The left sideband was defined as Q < 3.5 MeV/c2,

and the right sideband by 10 < Q < 15 MeV/c2. Two dimensional histograms were

created in these two sidebands and compared. The chi-square per degree of freedom

for them to agree was 1.02, suggesting a good match. In Figure 9.4, projections of
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these histograms on the cos θ and φ axes are shown, with the two sideband regions

overlaid. The agreement appears to be good, consistent with the good chi-square.

The procedure used to create the data histograms was also applied to the Monte

Carlo sample, and those resulting histograms were divided by the generated distri-

butions to obtain binned acceptance functions in cos θ and φ. The data histograms

were divided by the acceptance histograms to obtain acceptance corrected histograms.

(See Figure 9.5.)

These two dimensional histograms were fit with Equation (9.5) to obtain values

for the spin density matrix elements on which it depends. It is difficult to show two

dimensional functions overlaid on two dimensional histograms, so one dimensional

projections of the histograms and fits are shown in Figure 9.6. The χ2/ν for the full

two dimensional fits range from 0.76 to 2.73, with an average value of 1.46.

The resulting spin density matrix elements are plotted in Figure 9.7. The results

are clearly consistent with no polarization. (The dashed line in the upper plots is at

ρ11 = 1/3, the unpolarized value.) There are fluctuations, of course, from bin to bin,

but no clear trends as functions of xF or p2
T .

As a consistency check, the results are shown separately for the two decay modes

of the D0 in Figure 9.8. The results are consistent, with no trends in either case.

Finally, there may be physical reasons for D∗+ and D∗− to be individually polar-

ized when total sample shows no average polarization. The results from the two D∗

charges are shown in Figure 9.9. Again, no polarization or trends were observed.
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9.3 Spin Alignment

In the previous section, it was shown that no polarization is observed at the level of

sensitivity of the experiment. It is useful to be able to quantify that result, that is to

put a numerical upper limit on the polarization.

A quantity employed by other experiments [Ku91] is the spin alignment parameter.

Using our notation for the spin density matrix elements, it has the form:

η = 1 − 3ρ11 (9.8)

Clearly η = 0 in the unpolarized case, so the spin alignment can be thought of as a

measurement of the amount of polarization. More specifically, a positive value of η

corresponds to an excess of particles in the Jz = 0 helicity state above that found in

the Jz = ±1 states.

η was computed by averaging the values of ρ11 in both the xF and p2
T histograms

which yielded the same central values and error bars, an important consistency check.

Because there is no reason to assume the same values for leading and non-leading

particles, separate calculations were done for D∗+ and D∗−. The results obtained

for the average values of the spin alignment are: 〈η〉 = 0.01 ± 0.02 for the D∗− and

〈η〉 = −0.01 ± 0.02 for the D∗+.

Although this is a first attempt at such a measurement of D∗ spin alignment in a

hadroproduction experiment, numerous measurements have been performed on D∗s

produced in e+e− collisions [Br98], most of which are consistent with no polarization.

Some experiments [Ab87, Ac97], however, have measured a positive value for η.
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Chapter 10

Systematic Errors

10.1 Introduction

Associated with any measurement of a physical quantity is a range of uncertainty,

or error. Such errors consist of two components: a statistical error and a systematic

error.

Interactions in high energy physics are governed by the laws of quantum mechan-

ics. The fundamental laws give rise to probability distributions, and thus by making

individual measurements, one is sampling probability density functions. The physi-

cal quantities ultimately measured thus have errors arising from sampling statistics.

These errors are proportional to 1/
√
n where n is the number of measurements taken.

In high energy physics experiments, n corresponds to the number of signal events

used in the final analysis.

But there are many other sources of error which may scale differently than 1/
√
n.

These systematic errors arise from imperfections in the measurement process itself.

Examples can include inaccuracies in the acceptance functions resulting from imper-

fect detector simulations, fitting inaccuracies resulting from imperfect modeling of the
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signal or background shape, incorrect modeling of the time dependence of detector

performance, etc. These errors can be more difficult to quantify than statistical ones

and require careful study.

10.2 Determination of Systematic Errors

The technique employed to quantify systematic errors was to compare results com-

puted in different ways and examine the differences. Differences were studied bin by

bin, and reported as fractions of the statistical errors on these bins. The root mean

squares of these fractions over all bins were used as an approximation of the system-

atic errors in order to reduce the effect of bin by bin fluctuations. This technique is

only valid, of course, if the ratio of systematic error to statistical error is approxi-

mately constant over all bins. It will be shown that this assumption is justified for

nearly all types of systematic errors studied. Systematic errors are thus reported as

percentages of statistical errors. Finally, these percentages are added in quadrature

to determine an overall factor by which to scale the statistical errors to obtain the

overall error.

In subsequent subsections, different sources of systematic errors are discussed. For

each of these, the differences in results divided by the statistical error are plotted in

Figures 10.1 and 10.2. The RMS values of these ratios taken over all xF and p2
T bins

are listed in Table 10.1.

10.2.1 D0 Mass Resolution

In order to reduce the background level, a cut was placed on the candidate D0 mass

at 2.5σ on either side of the mean. (See Section 7.3.) If the Monte Carlo modeling

of the D0 mass resolution wasn’t perfect, this could lead to errors in the acceptance
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function and hence the resulting distributions. To ascertain the sensitivity to this

cut, results were compared using a cut at 2.5σ and 3σ.

10.2.2 Monte Carlo Production Model

As discussed in Section 6.4.3, it was necessary to weight the Monte Carlo events to

correct for the discrepancy between the observed xF and p2
T distributions of D∗s in

data and that in the Monte Carlo. The correction curves could not be determined

perfectly, due both to limited statistics in data, and to simplified models (low order

polynomials) for the curve shapes.

To estimate the effect on the results, the p2
T weighting curve parameters were

varied by 1σ from the values obtained by the fit. Results were compared with the

weighting curve as used in the analysis.

Since the xF weighting curve was less significant, results were simply compared

to results where no xF weighting curve was employed.

10.2.3 Tracking Efficiency

As discussed in Section 7.5, a comparison of results for the two decay modes of the

D0 (Kπ and K3π), provided a means of checking the modeling of tracking efficiency.

Results obtained from the subsamples corresponding to the two modes were therefore

compared.

This comparison was somewhat complicated by the fact that the sample sizes are

different and the samples are statistically independent. To address the first problem,

corrected yields in the K3π mode were multiplied by the branching ratio Γ(D0 →
K−π+π+π−)/Γ(D0 → K−π+) = 1.96 obtained from the Particle Data Book [Ha02,
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Figure 10.1: Differences divided by statistical errors for various systematic checks as
functions of xF and p2

T . (Plot 1 of 2)
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Figure 10.2: Differences divided by statistical errors for various systematic checks as
functions of xF and p2

T . (Plot 2 of 2)
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p. 613]. Comparisons yielded RMS ratio values of 0.955 and 0.881 over xF and p2
T

bins, respectively.

Unlike other comparisons discussed in this chapter which involved comparisons of

the same data set analyzed in different ways, this comparison involved two statistically

independent data samples. For differences of the former kind the RMS values obtained

in the differences divided by statistical errors would hopefully be smaller than one, and

indeed this is the case for all such errors studied. The situation is more complicated

in the present case, however.

If there is no systematic difference between two statistically independent samples,

we would expect this RMS value to be close to unity, and if there is a systematic

difference, the RMS value should be larger. What then do we make of the present

result, where the samples are independent and the RMS values are both less than

one? It might appear that this suggests our method of computing statistical errors is

incorrect and they are being overestimated, so this was investigated as follows.

The sample was split into two halves, based on a random number generator with

a uniform distribution. For each event a random number between 0 and 1 was gen-

erated, and if it was less than 0.5 the event was included in sample A, otherwise it

was included in sample B. This created two statistically separate samples of equal

size with no systematic differences between them. A comparison between the xF and

p2
T distributions was done in the same way used to generate the plots in this section.

The root mean square values of the differences divided by the statistical errors over

all bins of xF and p2
T was calculated, again as in the other errors studied. This ex-

periment was repeated for a total of 100 times, and the resulting RMS values were

plotted. The resulting plots are shown in Figure 10.3.

The results have a mean of about 1.0 as expected, and the spread is large enough
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Figure 10.3: Distributions of RMS values of differences divided by statistical errors
over xF and p2

T bins between statistically independent subsamples of equal size.

to explain the low RMS values obtained in the tracking efficiency study. Therefore,

there doesn’t seem to be a problem with our statistical error calculations.

This large width in the RMS plots does, however, make it difficult to extract a

systematic error when comparing two independent samples for which the systematic

error does not dominate the statistical error. In these cases, a systematic error equal

to 25% of the statistical error was assigned, as it is about the largest error which

could produce comparison results consistent with no error. Thus a value of 0.25 is

shown in Table 10.1 for the tracking efficiency.

10.2.4 Fitting Procedure

Since event mixing was used to model the background, and the signal was not fit at

all, the only variable involved was the definition of the signal and background regions.
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Recall that the signal region was defined asQ < 12 MeV/c2 and the background region

was defined as Q > 12 MeV/c2. The choice of 12 MeV/c2 as the cutoff point was

arbitrary, so results were compared with those obtained using a cutoff of 14 MeV/c2.

10.2.5 Hole Modeling

As explained in Section 3.7, over the period of E791’s run, the 500 GeV π− beam

caused a significant amount of ionization in certain regions of the drift chambers,

which caused deposits to gradually form on the drift chamber wires in the regions

through which the beam passed. This eventually caused a loss in tracking efficiency

for decay tracks which passed through those same regions. These drift chamber

“holes” were modeled by the Monte Carlo in a time dependent fashion by dividing

the run period into five parts and modeling the hole separately for these parts. In

practice the full data set was corrected by the average hole position and size. As a

systematic check, the full data set corrected with the average hole was compared to

various subsets corresponding to one of the five run periods and corrected with the

appropriate hole model. The first two comparisons are plotted in Figure 10.2. A

scaled version of the hole 2 difference was used in assigning a systematic error. This

technique was motivated by previous E791 analyses which did similar studies.

10.3 Summary

Table 10.1 summarizes the systematic errors as fractions of statistical errors. Re-

call that the assumption made was that these fractions are approximately constant,

independent of the statistical error itself. Examination of the plots of these ratios

(Figures 10.1 and 10.2) shows that for all but one of the sources of error, the xF

and p2
T Monte Carlo weighting, the points seem to be randomly scattered about the
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Source Syst / Stat err ratio (xF ) Syst / Stat err ratio (p2
T )

D0 mass cut 0.211 0.27
p2

T /xF weighting 0.137 0.123
Tracking efficiency 0.25 0.25
D∗ fitting 0.453 0.334
Hole modeling 0.62 0.55

Total 0.85 0.75

Table 10.1: Summary of systematic error fractions.

horizontal axis and show no trends as functions of statistical error. The xF weighting

and even more so the p2
T weighting show a strong dependence. The ratios become

larger as the statistical error becomes smaller, consistent with a constant error rather

than one which scales with the statistical error. The overall magnitude of this error,

however, is small compared with the other errors, and is in fact the smallest error

reported in Table 10.1, and therefore it was not considered problematic to treat it

like the other sources of error.

An overall error of 80% of the statistical error was assigned to the systematic error.

Adding this in quadrature to the statistical error means that all statistical error bars

need to scaled by a factor of 1.3 to take into account the systematic error. All the

plots in the analysis chapters which indicate that systematic errors are included used

this scale factor. Errors reported on fits to these plots thus include a systematic as

well as statistical component.
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Chapter 11

Conclusions

Differential cross sections for the production of D∗±(2010) mesons in 500 GeV/c π−–

nucleon interactions as functions of Feynman-x (xF ) and square transverse momentum

(p2
T ) have been reported. Fits to the traditional forms given by Equations (7.4) and

(7.5), show poor agreement with data, except in limited regions of xF , but nowhere

for p2
T . The Pythia model shows good agreement with the xF distribution, but with

default parameters, poor agreement with our p2
T distribution which is much stiffer than

the model. A tuned Pythia model with an increased charm quark mass, increased

intrinsic kT , and other changes fits the data much better. The best model for our p2
T

distribution, however, is Equation 7.6, which fits our data over the entire range with a

chi-square per degrees of freedom of almost exactly one. This equation was suggested

as it fit next-to-leading order QCD predictions very well, so the good fit suggests

that perturbative QCD is very effective at describing p2
T distributions. Also, the good

fit of Pythia to the xF distributions suggests this as well, since Pythia employs

leading order QCD along with parton showers as a production model. Fragmentation

is believed to have a greater effect on xF distributions than p2
T distributions, which
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makes simple comparisons with direct NLO QCD models as in Equation (7.6) difficult

in the xF case.

The charge asymmetry parameter (Eq. (8.1)) was also reported as functions of

both xF and p2
T . As expected, there is strong evidence for the leading particle ef-

fect with the asymmetry rising steeply at high xF . Pythia models, both tuned

and untuned, predict a leading particle effect considerably greater than is seen in

our data. The D∗± asymmetry data is consistent with E791 D± asymmetry data,

whereas Pythia predicts more asymmetry in the D∗ case. A model incorporating

both fragmentation and recombination provides a much better fit to both the D∗ and

D data. This suggests the Lund string fragmentation model alone is not sufficient to

describe these asymmetries. The asymmetry is approximately constant as a function

of p2
T ; while it dips to zero near p2

T = 0, data points in this region are consistent with

the average value.

Spin density matrix elements for the D∗s have been reported also as functions of

xF and p2
T , and the average value of the spin alignment parameter η was calculated as

well. We see no evidence of polarization, either on average or as a function of xF or

p2
T . An upper limit on the polarization is provided by our measurements of the spin

alignment parameter: η = 0.01± 0.02 for leading particles, and η = −0.01± 0.02 for

non-leading particles. This suggests that mechanisms which give rise to polarization

in the hadroproduced hyperons are not present in the meson case, or the effects are

possibly washed out by fragmentation.

With its large data set, E791 has proven an effective testing ground for charm

production models, and for the applicability of perturbative QCD in heavy quark

production. Having the largest hadroproduced charm sample in the world enabled

us to significantly reduce error bars over those in previous measurements of the same
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phenomena. Also, it allowed a first investigation of possible polarization in hadropro-

duced heavy quark mesons.

The attention of the high energy physics community is now focused elsewhere,

particularly on B physics. E791 was, in a sense, the last of its kind. In addition to

providing interesting physics in its own right, studies like the present one can also

be used to tune Monte Carlo models which describe the backgrounds in B experi-

ments, where significant amounts of charm may be produced. Understanding these

backgrounds accurately is crucial to successful analysis in the B sector. We believe

that the results presented here, as well as other E791 analyses, and the E791 data set

itself, will be very useful in a rich variety of ways for many years to come.
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Appendix A

Angular Distributions in the

Production and Decay of a Spin-1

Particle

In this appendix, the angular distribution of decay products of a spin-1 particle pro-

duced in a parity-conserving interaction and decaying into two spin-0 particles, is

derived and related to the spin density matrix elements of the spin-1 particle in a

helicity basis. This result is applicable to the following system

π− +N → D∗+ +X (A.1)

D∗+ → D0 + π+ (A.2)

studied in the analysis described in this document. The derivation follows that given

by Chung [Ch71], but it can be found in many texts.
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A.1 Notation and Definitions

The behavior of one and two particle states under rotations, boosts, and parity will be

needed, so the notation used here to describe these operations must first be defined.

A.1.1 Rotations

The symbol R(α, β, γ) denotes a rotation by the Euler angles (α, β, γ).1 Clearly, any

unit vector β̂ having direction (θ, φ) in a spherical polar coordinate system (with

polar angle θ and azimuthal angle φ), is given by:

β̂ = R(φ, θ, 0)ẑ (A.3)

where ẑ is a unit vector pointing along the positive z-axis.

Corresponding to every rotation R is a unitary operator U [R] which acts on state

vectors. Clearly the group property

U [R1R2] = U [R1]U [R2] (A.4)

must hold for arbitrary rotations R1 = R(α1, β1, γ1) and R2 = R(α2, β2, γ2). This

unitary operator is given by:

U [R(α, β, γ)] = e−iαJze−iβJye−iγJz (A.5)

Where Ji denotes the i-th component of the angular momentum operator.

Let |jm〉 denote a system of total angular momentum j and z-component of

1In this formalism, the system is first rotated by an angle γ about the z axis, followed by a
rotation β about the y axis, and finally a rotation α about the z axis. Note that these are “active”
rotations: the system is rotated, not the coordinate axes.
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angular momentum m. Clearly j is invariant under any rotations, and so a rotated

system must be a linear combination of states |jm′〉. Using the notation of Rose[Ro57]:

U [R(α, β, γ)]|jm〉 =

j∑
m′=−j

Dj
m′m(α, β, γ) |jm′〉 (A.6)

where

Dj
m′m(α, β, γ) = 〈jm′|U [R(α, β, γ)]|jm〉

= 〈jm′|e−iαJze−iβJye−iγJz |jm〉

= e−im′α dj
m′m(β) e−imγ (A.7)

and

dj
m′m(β) = 〈jm′|e−iβJy |jm〉. (A.8)

Tables of d-functions can be found in the literature[Ha02, p. 245]. Two properties

of the D-functions will be needed. The first follows immediately from the group

property (A.4):

Dj
m′m(R2R1) = 〈jm′|U [R2]U [R1]|jm〉

=
∑

k

〈jm′|U [R2]|jk〉〈jk|U [R1]|jm〉

=
∑

k

Dj
m′k(R2)D

j
km(R1) (A.9)

Secondly, from the unitarity of U [R]:

Dj∗
m′m(R) = 〈jm′|U [R]|jm〉∗

= 〈jm|U [R]†|jm′〉
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= 〈jm|U [R−1]|jm′〉

= Dj
mm′(R

−1) (A.10)

A.1.2 Boosts

The notation L(~p) is used to denote a Lorentz transformation (boost) that takes a

particle of mass m at rest to a frame in which the particle has momentum ~p. In the

special case where the boost direction is along the z-axis, the notation Lz(p) is used.

Clearly, if ~p has direction (θ, φ) and magnitude p, then

L(~p) = R(φ, θ, 0)Lz(p)R
−1(φ, θ, 0). (A.11)

As before, the unitary operator corresponding to this operator is U [L(~p)] which sat-

isfies a group property similar to that for rotations. Thus,

U [L(~p)] = U [R(φ, θ, 0)] U [Lz(p)] U
−1[R(φ, θ, 0)]. (A.12)

A.1.3 Parity

Finally, we define the parity operator P , which reverses the direction of the spatial

coordinates:

P : (x, y, z) → (−x,−y,−z) (A.13)

Clearly position and momentum vectors change sign under P :

P(~r) = −~r P(~p) = −~p (A.14)
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but angular momentum ~J = ~r × ~p doesn’t change:

P( ~J) = ~J. (A.15)

And thus, if we let Π = U [P ] denote the unitary operator associated with P , then

for states of definite angular momentum

Π|jm〉 = η|jm〉 (A.16)

where η = ±1 is the intrinsic parity of the state.

A.2 Helicity

Helicity states are angular momentum states in which the quantization axis is chosen

along the direction of the particle’s momentum. Helicity states can transform differ-

ently than the canonical states under transformations which change the momentum,

as the quantization axis can change. The letter λ is conventionally used to denote the

component of angular momentum along ~p. For a particle at rest, the quantization axis

is generally chosen along z, so the helicity states and canonical states are identical.

A helicity state of momentum ~p (where ~p has direction (θ, φ)), can be constructed

from a rest state |jλ〉 in two ways. The rest state can be rotated to the direction

of ~p and then boosted by L(~p), or it can first be boosted along the z-axis and then

rotated. This follows from Equation (A.12):

|~p, jλ〉 = U [L(~p)] U [R(φ, θ, 0)] |jλ〉

= U [R(φ, θ, 0)] U [Lz(p)] |jλ〉. (A.17)

177



Next, we consider the problem of constructing two particle helicity states, which

will be needed later. Let si, wi, and ~pi denote the spin, mass, and momentum of

the i-th particle where i ∈ {1, 2}. We work in the center of mass frame, where

~p1 = −~p2 = ~p. Let (θ, φ) represent the direction of ~p in a spherical polar coordinate

system.

The state is constructed by first boosting the rest states of the two particles along

the ±z axes, and then applying the appropriate rotation:

|φθλ1λ2〉 = aU [R(φ, θ, 0)] {U [Lz(p)]|s1λ1〉 U [L−z(p)]|s2 −λ2〉}

= U [R(φ, θ, 0)] |00λ1λ2〉 (A.18)

where |siλi〉 is the rest state of particle i and the normalization constant a is chosen

so that:

〈Ω′λ′1λ
′
2|Ωλ1λ2〉 = δ(2)(Ω′ − Ω)δλ′

1λ1
δλ′

2λ2
. (A.19)

Also note the minus sign appearing in the rest state for particle 2 is necessary so that

its helicity quantum number is +λ2.

Equation (A.18) gives a basis of states of definite direction (a “plane wave” basis).

States of definite angular momentum J (a “spherical wave” basis) can be constructed

from these as follows:

|JMλ1λ2〉 =
NJ

2π

∫
dRDJ∗

Mµ(R)U [R] |00λ1λ2〉 (A.20)

whereNJ is a normalization constant, and µ is to be determined later, and the integral

is over all three Euler angles of R. To show that (A.20) represents a state of definite

angular momentum, it suffices to show that it transforms as such under an arbitrary
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rotation. So applying a rotation R′:

U [R′]|JMλ1λ2〉 =
NJ

2π

∫
dRDJ∗

Mµ(R)U [R′′] |00λ1λ2〉 (A.21)

where R′′ = R′R. Now, using Equations (A.9) and (A.10):

DJ∗
Mµ(R) = DJ∗

Mµ(R′−1R′′)

=
∑
M ′

DJ∗
MM ′(R′−1)DJ∗

M ′µ(R′′)

=
∑
M ′

DJ
M ′M(R′)DJ∗

M ′µ(R′′).

Also, since R′ is fixed, dR = dR′′, so that

U [R′]|JMλ1λ2〉 =
∑
M ′

DJ
M ′M(R′)|JM ′λ1λ2〉, (A.22)

and thus the state (A.20) does transform as a state of angular momentum J .

To determine µ, we explicitly write R = R(φ, θ, γ), then

U [R(φ, θ, γ)] |00λ1λ2〉 = U [R(φ, θ, 0)]U [R(0, 0, γ)] |00λ1λ2〉

= e−i(λ1−λ2)γ U [R(φ, θ, 0)] |00λ1λ2〉 (A.23)

In obtaining the last line, use is made of the fact that rotations about the z-axis

commute with boosts along the same axis:

[R(0, 0, γ), L±z(p)] = 0. (A.24)

Substituting Equation (A.23) into (A.20):
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|JMλ1λ2〉 =
NJ

2π

∫
dRDJ∗

Mµ(φ, θ, 0) eiµγ e−i(λ1−λ2)γ U [R(φ, θ, 0)] |00λ1λ2〉

= NJ

∫
dΩDJ∗

Mλ(φ, θ, 0) |φθλ1λ2〉 (A.25)

where λ = λ1 − λ2. In the second line we have integrated over γ and in the process

find µ = λ, and in the first line, Equation (A.7) was used to obtain the dependence

on γ of D(R).

A.3 Spin Density Matrix

Consider the parity conserving interaction:

a+ b→ c+ J, (A.26)

where c may represent a multi-particle system, and J denotes a particle of spin J for

which we will construct the spin density matrix. Initial state particles a and b are

assumed to be in an unpolarized state.

Recall that a mixture of states |ψi〉, having fractional populations wi can be char-

acterized by the density operator:

ρ =
∑

i

wi|ψi〉〈ψi|. (A.27)

We first write the density operator for the initial state of Equation (A.26) in terms of

two-particle helicity states in the center of mass frame. We fix the initial momentum

~pi = ~pa = −~pb with direction (θ = 0, φ = 0), and the final momentum ~pf = ~pJ = −~pc

with direction Ω0 = (θ0, φ0). Since the initial state is unpolarized, all possible initial
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helicities occur with equal weight, so the density operator becomes:

ρ(i) ∝
∑
λaλb

|~piλaλb〉 〈~piλaλb|. (A.28)

(The proportionality constant can be chosen so that Tr(ρ) = 1, but it will not be

needed here.)

Now, let T denote the transition operator corresponding to the interaction (A.26).

The final state density operator can be constructed from ρ(i) by applying the operator

to the states appearing in the sum:

ρ ∝
∑
λaλb

T |~piλaλb〉 〈~piλaλb|T †. (A.29)

Now, to construct the spin density matrix corresponding to J we take the trace over

all other final state variables:

ρJ
ΛΛ′ ∝

∫
dΩ0

∑
λaλbλc

〈~pfλcΛ|T |~piλaλb〉 〈~piλaλb|T †|~pfλcΛ
′〉

=

∫
dΩ0

∑
λaλbλc

〈~pfλcΛ|T |~piλaλb〉 〈~pfλcΛ
′|T |~piλaλb〉∗. (A.30)

We now use the parity conservation of T to find a symmetry relation in ρJ
ΛΛ′ . First

we define the coordinate system so the interaction (A.26) takes place in the xz plane.

Next, we define the y-parity operator by

Py = PR(0, π, 0). (A.31)
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Clearly, Py represents a reflection in the xz-plane:

Py : (x, y, z) → (x,−y, z). (A.32)

The corresponding unitary operator is denoted:

Πy = U [Py] = Πe−iπJy . (A.33)

Clearly Πy commutes with both rotations about the y axis and boosts in the xz-plane:

[Πy, U [Ry]] = 0 [Πy, U [L(~p)]] = 0, where ~p · ŷ = 0 (A.34)

And thus, when applied to the helicity states in (A.30), Πy acts directly on the

rest states |siλi〉:

Πy|siλi〉 = ηi

∑
λ

dsi
λλi

(π) |siλ〉

= ηi(−1)si−λi|si −λi〉 (A.35)

where we have used the identity[Ch71, p. 77]:

dj
m′m(π) = (−1)j−mδm′,−m. (A.36)

Now, using these results in Equation (A.30),

ρJ
−Λ−Λ′ =

∫
dΩ0

∑
λaλbλc

〈~pfλc −Λ|T |~piλaλb〉 〈~pfλc −Λ′|T |~piλaλb〉∗

= (−1)sc−λcηc(−1)J−Λη(−1)sc−λcηc(−1)J−Λ′
η ×
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∫
dΩ0

∑
λaλbλc

〈~pf −λcΛ|ΠyT |~piλaλb〉 〈~pf −λcΛ
′|ΠyT |~piλaλb〉∗

= (−1)Λ−Λ′
∫
dΩ0

∑
λaλbλc

〈~pf −λcΛ|TΠy|~piλaλb〉 〈~pf −λcΛ
′|TΠy|~piλaλb〉∗

= (−1)Λ−Λ′
(−1)sa−λaηa(−1)sb−λbηb(−1)sa−λaηa(−1)sb−λbηb ×∫

dΩ0

∑
λaλbλc

〈~pf −λcΛ|T |~pi −λa −λb〉 〈~pf −λcΛ
′|T |~pi −λa −λb〉∗

= (−1)Λ−Λ′
ρΛΛ′ (A.37)

In the last line, we have used the fact that a sum over −λi is the same as a sum

over λi.

Now, we consider the case of a spin-1 particle, J = 1. The spin density matrix is

thus a 3 × 3 matrix. The fact that it is Hermitian and normalized so that Tr(ρ) = 1

means it will have eight independent real components. The symmetry relation (A.37),

however, reduces this number to four:

ρ =




ρ11 ρ10 ρ1−1

ρ∗10 1 − 2ρ11 −ρ∗10
ρ1−1 −ρ10 ρ11


 (A.38)

with ρ1−1 and ρ11 real. Here we have used the convention that the first row or column

of the matrix correspond to helecity state λ = +1 and the last to λ = −1.

A.4 Angular Distribution of Decay Products

Now we consider both the production and decay of a resonance with spin-J

a+ b→ c+ J J → 1 + 2 (A.39)
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We shall also use the same notations as used in the previous section. If we let Md

denote the decay operator of the resonance J , then the overall amplitude for (A.39)

can be written:

Mfi ∝
∑

Λ

〈~p λ1λ2|Md|JΛ〉〈~pfλcΛ|T |~piλaλb〉 (A.40)

Let Ω = (θ, φ) denote the decay angle of particle 1 in the rest frame of the resonance

J . Integrating over the other variables, the differential cross section becomes:2

dσ

dΩ
∝
∫
dΩ0

∑
|Mfi|2. (A.41)

Combining (A.41), (A.40), and substituting (A.30) into the result, we obtain:

dσ

dΩ
∝

∑
ΛΛ′λ1λ2

〈~p λ1λ2|Md|JΛ〉ρJ
ΛΛ′〈JΛ′|M†

d|~p λ1λ2〉. (A.42)

For the decay amplitude of the resonance of the spin-J particle with Jz = M , we

can write

〈φθλ1λ2|Md|JM〉 = 〈φθλ1λ2|JMλ1λ2〉〈JMλ1λ2|Md|JM〉 (A.43)

since the decay operator necessarily conserves angular momentum. From (A.25) and

the normalization (A.19), it follows that

〈θφλ1λ2|JMλ1λ2〉 = NJD
J∗
Mλ(φ, θ, 0) (A.44)

where λ = λ1 − λ2. Now, since Md is a rotational invariant, the second bracket in

(A.43) must depend only on the rotationally invariant quantities J , λ1, and λ2. So

2We assume here that the transition operator T is approximately constant over the width of the
resonance, and so we don’t explicitly show the integration over the Breit-Wigner distribution.
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we can write,

〈φθλ1λ2|Md|JM〉 = NJ F
J
λ1λ2

DJ∗
Mλ(φ, θ, 0). (A.45)

If we let

gJ
λ1λ2

∝ |F J
λ1λ2

|2 (A.46)

then we can substitute this result into (A.42) to obtain:

dσ

dΩ
∝ N2

J

∑
ΛΛ′λ1λ2

ρJ
ΛΛ′ DJ∗

Λλ(φ, θ, 0)DJ
Λ′λ(φ, θ, 0)gJ

λ1λ2
(A.47)

where λ = λ1 − λ2.

In our case, we have J = 1, and particles 1 and 2 each have spin-0. Therefore,

the factor gJ
λ1λ2

= g1
00 is a constant, and λ = λ1 − λ2 = 0, and so we have

dσ

dΩ
∝
∑
ΛΛ′

ρΛΛ′D1∗
Λ0(φ, θ, 0)D1

Λ′0(φ, θ, 0) (A.48)

From Equation (A.7), we have D1
M0(φ, θ, 0) = eiMφd1

M0(θ). From tables of d-

functions[Ha02, p. 245], we find:

d1
0 0(θ) = cos θ (A.49)

and

d1
−1 0(θ) = −d1

1 0(θ) =
sin θ√

2
(A.50)
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Substituting the above, along with (A.38) into (A.48), we obtain

dσ

dΩ
∝
(

−e−iφ sin θ
√

2 cos θ eiφ sin θ

)



ρ11 ρ10 ρ1−1

ρ∗10 1 − 2ρ11 −ρ∗10
ρ1−1 −ρ10 ρ11







−eiφ sin θ
√

2 cos θ

e−iφ sin θ




(A.51)

Performing the matrix multiplication and simplifying, we obtain

dσ

dΩ
∝ I(θ, φ) =

1

4π
[1 + (1 − 3 cos2 θ)(3ρ11 − 1)

−(3
√

2 sin 2θ cosφ)Re ρ10

−(3 sin2 θ cos 2φ)ρ1−1] (A.52)

where I(θ, φ) has been normalized so that

∫
I(θ, φ) dΩ = 1. (A.53)
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