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ABSTRACT

MEASUREMENT OF THE TOP QUARK MASS AT CDF 11

Andrew N. Kovalev

Hugh H. Williams

We describe a measurement of the top quark mass using events with two charged
leptons collected by the CDF II Detector from pp collisions with /s = 1.96 TeV at
the Fermilab Tevatron. The posterior probability distribution of the top quark pole
mass is calculated using the differential cross-section for the t¢ production and decay
expressed with respect to observed leptons and jets momenta. The presence of back-
ground events in the collected sample is modeled using calculations of the differential
cross-sections for major background processes. This measurement represents the first
application of this method to events with two charged leptons. In a data sample with

integrated luminosity of 340pb~!, we observe 33 candidate events and measure

My = 165.2 & 6.1440¢ £ 3.4, GeV/c?
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Chapter 1

Introduction

Since the early days of western civilization people invariably tried to answer the two
most fundamental questions of all: “What are the things made of and why do they
behave the way they do?”, and “What’s the purpose of it all”. The second one of these
questions became a foundation of various philosophical and literary endeavors. The
first question is the core and essence of what our contemporaries call “Hard Science”.
The term is quite appropriate, both in terms of the intellectual effort involved and
the amount of physical labor required to build and operate experimental equipment.
Science, hard and less so, has come a long way since the early days. Scientists
have acquired a lot of expertise in breaking things and have perfected the skills
of rummaging through the rubble. Molecules, atoms, nuclei and now elementary
particles — things well beyond the sensory abilities of a man were discovered and
studied in much detail. What we now call “elementary” particles are believed to be
just that  elementary in the sense of being unbreakable. That would have been the
end of it all if not for a relatively novel idea that most of the smallest things are in
constant transmutations and interactions with each other. Thus, the “What” part of

the most fundamental question was mostly exhausted after 1995 when the last one of



the quarks, widely believed to be there even before that, was finally discovered, [1,2].
Scientific focus shifted towards “Why”. Why do these elementary particles behave
the way they do? To answer it we need to know as much as possible about them:
how massive they are, how they interact with each other, how short-lived they are,
are they charged and more.

The top quark is special, and it is not just because it is the youngest child in the
family. Top is the heaviest of quarks and the heaviest observed elementary particle
to date, as well as the most short-lived of all quarks. Such a short life-time is both
a gift and a curse. It means that the top decays so fast that it never forms bound
states, which makes it possible to study in detail different polarization effects — very
hard with other quarks as they depolarize via interactions in hadrons. It also means
that the top hadrons will never be observed directly.

The mass of the top quark, after it was first measured by CDF and D0 experi-
ments at Fermilab Tevatron collider [1], [2], created a lot of excitement and curiosity.
The main reason is that it happened to be so large and thus close to Electro-Weak
Symmetry Breaking energy-scale that it suggested a possibility for a special role the
top quark might play in how the elementary particles acquire their masses.

The Standard Model, which had been extremely successful in explaining and pre-
dicting many aspects of particle interactions, is not quite complete. Why do the 21
free parameters of the Standard Model have the values they do? There seems to be a
general consensus that 21 is too many. The search for the ultimate answer produced
several alternatives of various degrees of plausibility. Most of these predict other wild
and exotic things, yet unobserved. Thus, in the next round of experiments the top
quark becomes a known entity, a background in a series of searches for “new physics”.
This is just another reason for the detailed studies of the properties of the heaviest

of quarks. One of the most important is, of course, the mass.



The goal of the research that forms the foundation of this dissertation was to
measure the mass of the top quark in a particular decay scheme, in which both top
and anti-top decays results in an electron or muon being produced, and the final state
consequently contains at least two leptons. Appropriately named “dilepton channel”,
these events can be identified and collected into a very clean, albeit a relatively
small, dataset. The following chapters document the challenges that were faced and

overcome on our quest to measure the top quark mass as well as possible.



Chapter 2

Top quark physics

Even before the discovery of the top quark, most particle physicists believed in its
existence. The faith was not blind, of course, and was grounded on several theoretical
and experimental observations. First of all, for the Standard Model, which still is
the most respected theory of particles and fields, to be renormalizable, the sum of
electric charges of all left-handed fermions must sum to zero. The charge that would
be missing if the top quark did not exist is exactly 2/3. Secondly, the experimental
limits on flavor changing neutral current decays of the b-quark suggest that b-quark
cannot be an isospin singlet and should be a member of a doublet, [3]. The last bit
of evidence came from the precision measurements of the Z resonance at the ete™
colliders that allowed researched to once again confirm that the b-quark should have a
weak isospin partner. It is possible to get an impression that particle scientists knew

all there is to know about the top-quark back then. Is there anything else to learn?



2.1 The place of the top quark in the Standard

Model

At the time of this writing the Standard Model is the theory of the particles of matter
and their interactions. It has been put through scores of experimental tests and a lot
of evidence has been accumulated that it provides a precise description of Nature on
the microscopic scale that is accessible by modern experimental equipment.

According to the Standard Model, the matter is built of quarks and leptons. All of
them are fermions and as such have spin of % There are six flavors of quarks, grouped
into three generations of two quarks each. Leptons are similarly divided, with each
of charged leptons, e, i or 7 accompanied by a corresponding neutrino. The particles
of matter interact by exchanging spin-1 gauge bosons, with strong interaction being
mediated by eight types of massless gluons, weak by the massive W* and Z-bosons
and electromagnetic by the massless photon.

The Standard Model is a gauge theory, at the heart of which lies SU(3)c X
SU(2) x U(1)y gauge group. For the symmetry described by this group to be exact
the fermions and weak-force bosons would have to be massless. Thus the symmetry
has to be spontaneously broken. Electro-weak symmetry breaking is needed to give
masses to W* and Z bosons, flavor symmetry breaking — to generate the mass hier-
archy of the fermion sector. Both are achieved by the introduction of a Higgs scalar
field that is both coupled to the particles of matter and has a potential term that
makes spontaneous symmetry breaking possible. The Higgs boson is yet unobserved
although several experimental constraints have been placed on its properties. The
precise top quark mass measurement when combined with W-boson mass measure-
ment and calculations of radiative corrections to W mass from virtual t-quark and

Higgs loops enables researchers to set indirect limits on Higgs mass.



Although the Standard Model has proven to be a powerful and consistent theory it
has several deficiencies that stimulate the imagination of the physics community and
taunt with possibilities of various “new physics”. Quite a few observable quantities
are simply postulated by the SM rather than derived from more general principles.
Various extensions to the Standard Model, including supersymmetry (MSSM and
friends) strive to provide us with a better answer. The top quark plays a prominent
role in many of the “beyond Standard Model” theories. Many of these rely on the
large mass of the top quark and hint at the possibilities of major discoveries at the
next generation of particle experiments.

For a more detailed theoretical overview of the Standard Model refer to [4]. Ex-
cellent reviews of the Standard Model top quark can be found in [5], [6], [3] and [7].
Several top quark properties outside of the scope of SM are well-presented in [§]

and [9].

2.2 Production of top quarks

The top quark at present can only be produced at colliding beam facilities, where
center-of-mass frame of reference is the laboratory frame as well. Single top quarks
can only be produced in charge-current weak interactions. The amplitudes are depen-
dent on the CKM matrix elements Vi, (¢ =d,s,b) . Top quarks are also produced
in pairs via the strong interactions qqg — tt, gg — tt. Not surprisingly, the single
top production cross-section is smaller than the cross-section for pair-production. In
addition, the experimental signatures of the single top are harder to identify and sep-
arate from similar background signatures. The Feynman diagrams for the single top
production are shown in Figure 2.1. At the time of this writing the single top produc-

tion is yet to be observed. Consequently, most of the studies of top quark properties
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Figure 2.1: Production of a single top

are based on the events where a pair of top and anti-top quarks are produced.

Top quark pairs are can be created either via quark anti-quark annihilation or via
gluon fusion, Figure 2.2. At 1.96 TeV, gluon fusion is responsible for about 15% of
the ¢t pairs being produced.

The theoretical calculation of the Leading Order(LO) top quark pair production
cross-section atLt—O has a fairly large uncertainty, around 50%  mainly due to different
possible scale choices'. The Next-to-Leading Order(NLO) calculation increases the
cross-section by about 30% and reduces the uncertainty to approximately 12%. The
pair production cross section is a function of the assumed top-quark mass and the
dependence can be seen in Figure 2.3 which shows NLO cross section calculation
as well as several NNLO refinements at /s = 1.96 TeV. The current theoretical
prediction for assumed mass of m; = 175 GeV is

gNNLO-NNNLL (/¢ — 1 96TeV, m; = 175GeV) = 6.77 + 0.42pb (2.1)

tt

!The calculation of the total production cross-section involves factorization into perturbative
series and non-perturbative part. The factorization parameter u is normally taken to be the same as
the renormalization scale p of the perturbative expansion. Were the series expanded to all orders,
none of the observables would depend on u. The presence of such dependence stems from truncation
of the series at some finite number of terms. For tt cross-section the scale is typically set to pu & M.
The aforementioned uncertainty is due to arbitrariness of this choice and is typically estimated by
varying the scale inside the range M;/2 < p < 2My, [3].
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Figure 2.2: Top pair production

as presented in [10].

2.3 Decay of the top quark

The Standard Model top quark decays into a b-quark and a W-boson most of the
time, the predicted branching ratio B(t — W) > 0.998. Charge-current decays into
t — Ws and t — Wd are also allowed but are strongly suppressed by the Cabibbo-
Kobayashi-Maskawa mixing elements with factors of 1073 — 10~*. These two decays
as well as t — WbZ are the only Standard Model decays allowed at tree level, not
counting the radiative decays such as t — Wbg and t — Wbry.

The flavor-changing neutral current (FCNC) decays which are also allowed (but
not at tree level) include such processes as t — cg, t — ¢y, t — ¢Z. The branching
ratios are of the order of 107! which is well below the detection limit of even next

generation particle experiments.
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Figure 2.3: NLO and NNLO pair production cross-section

At Tevatron energies both top and anti-top are produced essentially at rest. As
was already mentioned before, the lifetime of the top-quark is so short (I' & 1.5GeV,
which leads to 7 & 5 x 107 s) that it decays before it is able to form bound states,
or hadronize. Such a short lifetime is in part due to the CKM-allowed decay into the
b-quark.

The W-bosons that come from the predominant ¢ — bW top quark decay, in turn
decay very quickly, on the timescale of 1072° into either a quark-antiquark pair or a
lepton-neutrino pair. The branching ratios for these decays are essentially equal, with

a caveat that all the quark flavors come in three different colors. Consequently, the



Figure 2.4: Top-antitop pair production and decay process

probability for a W to decay into each type of leptons is 1/9, while the probability
to decay into either ud or ¢35 is 2/3. In tf production events, both W-bosons decay
independent of each other. The fraction of events when both W-bosons decay into
electrons, (ee) events, is 1/81, the same is true for (uu), the fraction of (eu) events is
2/81, Figure 2.4.

Events where both W-s decay leptonically are called dilepton events. Taus are not
included in this analysis. The reason for this is that tau-leptons decay leptonically
36% of times, and 64% hadronically. The secondary electrons and muons from taus
are not easily identified as such, due to softer lepton energies and two additional
neutrinos. Overall, dilepton event comprise about 4/81 ~ 4.9% of tt decays.

Events where one of the W-s decay leptonically and the other one hadronically
are known as lepton-+jets events. Around 30% of the ¢t events are expected to be of
this type. And finally, both W-bosons decay hadronically in about 44% of the cases.
This decay channel is normally called all-hadronic.

The b-quarks that are produced in the top decays hadronize and result in a jet?.

2a jet is a collection of energetic colorless particles with spatially collimated momenta. Normally,
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The type of events dealt with in the present analysis is characterized by two leptons, e
or u, two energetic jets and some imbalance in transverse momentum, called missing

transverse energy that is due to the presence of two neutrinos from leptonic W decays.

2.4 Top quark properties

The Standard Model top quark is a fermion with spin of S = %, weak isospin T3 =
%, electric charge @) = % All these important properties, together with lifetime,
CKM mixing |Vp|, gauge couplings, Yukawa coupling Y; and top quark mass are the
objectives of various direct and indirect measurements. The top quark mass is one of
the key properties that is possible to measure directly. In fact there is a whole family
of analyses that strive to measure it in all ¢¢ decay channels to the best possible
precision.

The top quark mass was directly measured at Tevatron Run I, right after top
quark discovery in 1995, using the multitude of methods in all three t¢ decay chan-
nels, see [11 15]. The summary of these results is shown in Figure 2.5. At present,
the research effort directed at the measurement of the mass includes both applica-
tions of the methods used previously, which should benefit from the increased Run II
luminosity and upgrades performed on the detectors, and new sophisticated analysis
techniques, developed based on the expertise that was acquired between now and
then. Chapter 5 will introduce the analysis method used in this study. Inspired by a
method used by DO collaboration in Run I [16], it aims at making the best possible
measurement, of the mass by utilizing all the information content of the data events
and by employing a theoretical description of the underlying physics via computation

of a tree-level matrix element for top-antitop pair production and decay.

fragmentation of a parton results is a cascade of hadrons that propagate in a narrow cone along the
original parton’s direction. Thus, a well-reconstructed jet ideally corresponds to a single parton.

11



Tevatron Top Quark Mass Measurements
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Figure 2.5: The mass measurement at Tevatron Run I

12



Chapter 3

Apparatus

After the discovery of the top-quark, Fermilab remains a host to the only accelerator
facility in the world able to produce pairs of top and anti-top quarks en masse and to
the detector facilities able to record enough event information for the in-depth study
of the top quark properties. The upgraded Tevatron accelerator produces beams
of protons and anti-protons with energies as high as 980 GeV, thus bringing the
center-of-mass energy of the pp collisions to /s = 1.96 TeV. The final state particles
used in this measurement were observed by the CDF II detector and the information
recorded by its subsystems was used in reconstruction of interactions, identification
of the events in which pairs of top and anti-top quarks were produced and ultimately
enabled researchers to measure the quantities of interest. In this chapter both the

Collider and the Detector equipment are described.

3.1 The Collider

The Accelerator complex at Fermilab consists of several key components, that can be

conceptually separated into a series of accelerators that prepare the protons, produce
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and store anti-protons and finally accelerate both protons and antiprotons to center
of mass energy of 1.96 TeV and orchestrate the collisions. The schematic view of the

accelerator chain is shown in Figure 3.1.

FERMILAB'S ACCELERATOR CHAIN

MAIN INJECTOR
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Fermilab 00-635

Figure 3.1: Schematic view of the Tevatron accelerator complex

3.1.1 Proton source

The Pre-accelerator is a linear accelerator that produces negative hydrogen ions and
accelerates them to 750 keV simply by applying the electric field to the ionized hy-
drogen. The output frequency is 15 Hz and the resulting H~ ions then enter into the
Linac or Linear Accelerator.

The Linac is the next step in the acceleration process. It takes negatively charged

hydrogen ions from 750 keV to 400 MeV. The Linac also operates with 15 Hz fre-
14



quency. The modes of operation include feeding the beam to the Booster, feeding the
beam to the Nuclear Therapy Facility or simply dumping the beam into a concrete
block.

The Booster is the first circular accelerator in the proton accelerator chain. It
has a radius of 75 meters and consists of alternating magnets and RF cavities. The
Booster strips electrons of the H™ ions and accelerates the protons from 400 MeV
to 8 GeV. The RF cavities apply the accelerating field while the magnets apply the
bending field to keep protons in the circular orbit and ramp it up in accordance with
the instantaneous energy of the beam.

The Main Injector is a circular accelerator that serves several purposes. For one,
it accelerates the protons that transported from the Booster from 8 GeV to 150 GeV.
In another mode of operation the Main Injector stacks the antiprotons and accelerates
them to 120 GeV. The circumference of this machine is seven times that of the Booster

and it is able to accelerate beam every 2.2 sec.

3.1.2 Anti-proton source

The production of the antiprotons is a technologically challenging task and thus
the antiprotons production and storage capacity is the main limiting factor for the
colliding beams luminosity.

The antiprotons are produced at the Target station when the 120 GeV proton
beam coming from the Main Injector hits a nickel target. In this process many types
of particles are being produced. A system of magnets is then used to separate 8 GeV
antiprotons and direct them to the next stage accelerator.

The purpose of the Debuncher, a triangular synchrotron! machine where antipro-

La circular accelerator in which both magnetic field and accelerating electric field are changed

synchronously as the particles are accelerated, in order to maintain the same particle orbit
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tons are directed after being produced, is not to accelerate them but rather to make
the momentum of the particles inside the beam more uniform — this process is nor-

”2 The mean radius of the Debuncher is 90 meters. The

mally referred to as “cooling
resulting 8 GeV beam of antiprotons is then delivered into the Accumulator.
The Accumulator is located in the same tunnel as the Debuncher and is also a
triangular synchrotron. It is used for storage and further cooling of the antiprotons.
The Recycler is a relatively recent addition to the Fermilab accelerator chain. It
resides in the same tunnel as the Main Injector and is used to decelerate and cool
down the antiprotons left in the Tevatron after the store. Several different cooling

techniques are used in the Recycler which serves an important purpose of improving

the antiproton utilization efficiency.

3.1.3 Tevatron

With the diameter of exactly 2 km the Tevatron is the largest of Fermilab accelerators,
and the only one that uses superconductive niobium/titanium alloy magnets which
are able to create 4.2 T fields. The Tevatron is mainly a storage ring. In the so
called 36 x 36 operation mode there are 36 bunches of protons and 36 of antiprotons
circling the ring in the opposite directions. The bunches of protons and antiprotons
are passing through each other, “bunch-crossing”, every 396 ns.

The beams of protons and antiprotons undergo focusing via quadrupole magnets
in the BO and DO interaction points, around which the CDF and DO detectors are
built. This is done in order to reduce the beam spot size and thus increase the

instantaneous luminosity and the chance of a proton collision with antiproton. The

2another way of looking at it is to consider cooling as a process of increasing particle density in
momentum phase-space
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instantaneous luminosity is given by:

NpN,N;
L=—2rT ;’f (3.1)
2roz0;
where the Np is the number of bunches in the machine, N,; — the number of

protons/antiprotons in a bunch, f is the bunch revolution frequency and 0;15 is the
effective width of the proton/antiproton beams.

The integrated luminosity [ £dt is a measure of the total number of collisions
throughout a certain period of data-taking. This analysis is based on events observed
in [ Ldt = 340pb™" 3, which is about three times the amount of data acquired during
the Run I.

3.2 The CDF II Detector

The Collider Detector at Fermilab, known as CDF, is a multipurpose particle detector
built around the Tevatron B0 interaction point. It is approximately 15 meters long
and 10 meters high and maintains approximate axial and forward-backward symme-
tries. The associated Cartesian coordinate system is defined as a right-handed basis
with the z-axis set by the colliding beams and the protons moving in the positive
z-direction. The x axis points radially outwards and y axis vertically upwards.
Although occasionally it is convenient to work in cylindrical (r,z, ¢) or polar
(r,0,¢) coordinates, where the azimuthal angle ¢ is the (zy) plane angle measured

from the direction of x axis, another coordinate system is commonly used in collider

31 barn = 107?®m? is a unit measure of interaction cross-section; the instantaneous luminosity

is usually measured in units of cm™2s7!, while the time-integrated Iuminosity in units of inverse
. —1 -1
cross-section: pb™ or fb™ .
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physics. In this system the polar angle 6 is replaced by pseudo-rapidity:
0
n = —Intan 3 (3.2)

The utility of the (r,7,¢) coordinate system stems from the axial symmetry of the
experiment and from the nature of proton-antiproton collisions. The latter manifests
itself in the fact that the interactions of colliding partons often result in considerable

longitudinal momentum of the collision products. The rapidity of the system:

1. E+p,
= -1 3.3
C=5hE—. (3:3)
transforms under boosts along the z-axis as ¢’ = ¢ + tanh™' 8 and thus A are

invariant under such transformations. The pseudo-rapidity is the ultra relativistic or

massless approximation to the real rapidity of the system:

. 6
PP _ _ In tan — (3.4)
P —D: 2

In

3
Il
N | —

Many detector components are segmented uniformly in 1 and ¢. Typically the pseudo-
rapidity 7 refers to “detector” n determined with respect to center of the detector
coordinate system. The 7 can also be determined with respect to the point where the
interaction took place — in that case it is called “event” 7.

After each collision the particles that were produced in the interaction traverse
through various detector subsystems. The first one they encounter is the tracking
system, then calorimetry and finally the muon subdetectors. These are the basic
components that provide the data that serves as the foundation of our measurement.
Various other components exist which are essential to some physics analyses, for

instance Cherenkov Luminosity Counters and the Time-of-Flight detector. They
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were not used for this particular analysis and are described elsewhere. The schematic

overview of the CDF detector is shown in Figure 3.2.
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Figure 3.2: CDF II detector

3.2.1 Tracking

The CDF tracking system consists of the Central Outer Tracker (COT) and silicon de-
tector subsystem that in turn consists of Silicon VerteX detector (SVX), Intermediate
Silicon Layers (ISL) and Layer 00 (L00).

The entire tracking volume resides inside a superconducting solenoid magnet with
the radius of 1.5 meters and the length of 4.8 meters. It creates uniform magnetic

field of 1.4 T along the direction of the z-axis. The trajectory of a charged particle in
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magnetic field is a helix. From the parameters of this helix the particle momentum
can be determined, as the magnitude of the magnetic field is known.
The schematic view of the CDF tracking system in the (r — 2z) plane is shown

in Figure 3.3. The region of the detector with || < 1.0 is referred to as “central”.
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Figure 3.3: The CDF tracking system

As can be seen from the above schematic a charged particle that is produced in this
rapidity interval has to travel through the entire COT tracking volume and thus has a
better transverse momentum measurement than a particle with || > 1.0. The region
1.0 < |n| < 3.6 is called “plug” or “forward”.

The first subdetector that a particle created in a collision traverses is the Silicon
detector. The main part, SVX, consists of three cylindrical barrels placed end-to-end

in Z; each is 29 ¢m long with five layers of double sided micro-strip silicon wafers.
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It occupies the space between 2.5 and 10.7 cm. The technology used allows the
measurement of the ionization induced by a charged particle traversing the silicon
wafer, the “hit” position, to be measured with the precision of 12um. The double-
sided silicon microstrips that are used in SVX are arranged so that one side of a chip
has axial* strips, while the other side hosts either 90° stereo® strips or small angle
1.2° stereo® strips. Such an arrangement makes is possible to combine the (r — ¢)
and (r — z) measurements into a three-dimensional position measurement.

Both the ISL and LOO are the extensions to the silicon tracking subsystem. The
LOO comnsists of two sets of single-sided radiation-hard silicon microstrips mounted
directly onto the beampipe at radii of 1.35 and 1.62 cm. It provides the position
measurement closest to the interaction point. The ISL consists of several layers of
double-sided silicon placed at the radii of 22, 20 and 28 cm. It is aimed at extending
the tracking coverage to the region of 1.0 < |n| < 2.0 as well as to provide help with
resolving any ambiguities in matching COT tracks with SVX tracks in a dense-track
environment.

The individual “hits” both from the COT and the silicon detectors are linked
together with pattern-recognition software into a “track”, the entity that describes
the trajectory of a charged particle. The measure of the performance of the track-
ing system can be illustrated by the ability to determine the parameters of the helix
trajectory. The resolution in the impact parameter that is achieved by the track-
ing system is about 40pum, and the zy resolution is about 70um, where z, is the z
coordinate of the closest approach to the z-axis.

The Silicon detector subsystem has 722,432 readout channels. The hit data is

collected, assembled and packed for transmission by radiation hard integrated circuits.

4strips aligned along the z axis, providing finest granularity in (r — ¢)
5thus perpendicular to z
bset at a small angle to z direction
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The data is transported via an optical fiber link to the external data-processing units.

Precise position measurements so close to the interaction point that are possible
with the Silicon Vertex detector are used to extrapolate the tracks all the way to the
collision region. It is crucial for the determination of the vertex position and provides
a measurement that can distinguish a particle which is coming from a primary inter-
action from a particle which was produced at a secondary, displaced vertex and thus
is a decay product of another long lived particle.

After a charged particle exits the Silicon detector it passes through the Central
Outer Tracker. The COT occupies the region with |z| < 155 cm and 44 < r < 132 cm.
It is a cylindrical multi-wire open-cell drift chamber filled with Argon-Ethane gas
mixture, which was chosen as it provides fast drift velocity. This design constraint,
in turn, stems from the need to avoid event pileup; consequently the maximum drift
time is required to be less than 396 ns. The gas mixture used has the maximum drift
time of about 50 ns in the drift field of roughly 2 kV/cm.

The COT consists of 30,240 sense wires grouped into eight superlayers. The
superlayers alternate between axial and stereo, with the latter having the wires strung
at £2° with respect to the axial direction. Each charged particle that escapes the COT
traverses 96 layers of sense wires that ideally can provide the same number of position
measurements. The single hit resolution of the COT is about 140pum. The track
reconstruction software converts the individual hits into the fitted particle trajectories,
the helix parameters of which allow the measurements of charged particle momenta.
It results in the transverse momentum resolution of ‘Z’—TT ~ 0.15%pr(GeV /c)™t.

Whenever possible the hit information from both the COT and the Silicon de-
tector are combined to produce the best track fit possible. For the particles with
very high momenta the parameters of a track are harder to determine precisely as

the curvature of the helix is quite small. Fortunately for some of the particles, in

22



particular, electrons, an additional measurement of their energies is possible via the

Calorimetry subsystem.

3.2.2 Calorimetry

Charged particles with energies greater that 350 MeV may leave the tracking volume
and propagate beyond the solenoid magnet that surrounds it. Neutral particles, both
photons and neutral hadrons, leave the tracking volume undetected. Even if they were
seen by the tracking system no information about their momenta would be available
for a quite obvious reason — their trajectories do not bend in magnetic field. In
many of cases the measurement of their momenta is essential for the understanding
of observed events. The calorimetry subsystem serves the purpose of filling this gap
and is based on the fact that as particles that have reasonably high electromagnetic
or hadronic interaction cross-sections propagate through matter they transfer their
energy to the medium until eventually all of it is absorbed. Some media produce mea-
surable response to such energy depositions by emitting light in amounts dependent
on the amount of energy lost by the particles.

The CDF calorimetry system consist of alternating layers of scintillator and ab-
sorber material. As particles interact with absorber they produce cascades of particles
or “showers” that penetrate the scintillator. The light from the latter is guided into
the photomultipliers. Their response is in turn digitized and with the help of relevant
calibrations converted into the measurement of the deposited energy.

All the calorimeters are divided into segments or “towers” in such a way that
the division boundaries between them point at the interaction point. The entire
calorimetry system consists of two regions, central and forward; the later is also
known as the “plug”.

The central calorimeters cover the region of 27 in ¢ and as far as || < 1.0

23



in pseudorapidity. They are segmented into the “towers” of 0.11 x 15° in n X ¢.
The electromagnetic (CEM) part consists of alternating layers of lead absorber and
polystyrene scintillator, while the hadronic part (CHA) uses thicker steel plates as
the absorber. The CEM is 18X, radiation lengths thick, while the CHA is around
4.5y attenuation lengths thick. The energy resolution of the CEM is estimated to
be:

£ VEBEr

The ¢ notation means that the constant part is added in quadrature. The CHA

13.5
o _ 135% 4 9y (3.5)

resolution is estimated to be:

OR . 50%
= T @ (3.6)

The shower-maximum (CES) and pre-shower (CPR) detectors are also considered
a part of the calorimetry system. The CES is a gas multiwire proportional chamber
with cathode strips that provide measurements of the z position and anode wires that
allow a measurement of the ¢ of the energy deposition. The chamber is embedded into
the CEM at about 5.9X, where the maximum of electromagnetic energy deposition
occurs. The position resolution in both directions is around 2 mm. The CPR consists
of proportional chambers placed between the solenoid and the calorimeter. These two
subsystems, CES and CPR, provide both position measurement that helps in match-
ing energy depositions to tracks and in shower profile measurements — information
used in particle identification to distinguish between e/ and v /m,.

The plug calorimeters cover the pseudorapidity range of 1.1 < |n| < 3.4; the
general segmentation pattern is observed. The electromagnetic section (PEM) uses
calcium-tin-lead alloy as an absorber and is 21X, radiation lengths thick. The

hadronic part (PHA) uses iron and is about 7\, attenuation lengths thick. The

24



energy resolution of the PEM is estimated to be:

E  Er

® 0.7% (3.7)

while the energy resolution of the hadronic part:

ORp . 80%
f_\/T—T%% (3.8)

The plug shower-maximum (PES) detector consists of strips of scintillator located at
about 6X inside the PEM and providing position measurements with resolution of
around 1 mm.

It should be noted that the segmentation of the calorimeters is rather large and
thus it is quite possible that the energy measured by a particular tower was con-
tributed to by multiple particles. Occasionally this poses a problem as the energies
of the individual particles can not be determined. In other situations, most notably
when a “jet” of particles that results from hadronization of a quark or gluon coming
directly from hard scattering hits the calorimeter, the total energy of all component

particles is exactly the information that is needed.

3.2.3 Muon detection

Muons are 200 times heavier than electrons, so they lose substantially less energy
due to electromagnetic interactions as they travel through the calorimeter material.
This allows the muons to pierce through the calorimetry subsystem after they exit
the tracking volume. The CDF muon subsystem consists of several chambers that
are located outside of the calorimeters and includes Central MUon detector (CMU),

Central Muon uPgrade (CMP), Central Muon eXtension (CMX). Due to space and
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Figure 3.4: Muon subsystem coverage

design constraints the muon coverage is incomplete. Figure 3.4 shows the ¢ —n regions
that are instrumented.

The CMU is comprised of series of rectangular drift cells four layers deep. The
hits registered in at least 3 out of 4 layers form a “stub”, which after being properly
matched with the corresponding COT track suggests the presence of a muon.

The CMP subdetector consists of both drift chambers and scintillator plates and
functions similar to the CMU by providing a “stub” that is used in muon reconstruc-
tion. The coverages of CMP and CMP partially overlap, refer to Figure 3.4. The

CMP is placed behind additional 60 cm of steel and thus is less sensitive to remnant
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hadrons that penetrate through CHA (punchthrough hadrons).
The CMX subsystem, like CMP, combines drift cells and scintillator plates ar-

ranged in semi-conical arches that cover the pseudo-rapidity region of 0.6 < |n| < 1.0.

3.2.4 FEvent reconstruction

The event data read out by the CDF detector has to undergo event reconstruction
which, roughly speaking, converts tracking system hits, calorimeter energy deposition
measurements and muon chamber stubs into physics objects that are associated with
certain particles. The physics objects that are immediately relevant to this analysis
consist of so called high- Py leptons — electrons or muons, jets and “missing Frp”, Br
— a measure of transverse momentum imbalance that is associated with neutrinos
that escape the detector.

Electron identification starts with large energy deposition in the EM part of the
calorimeter. An existence of a high-Pp track that matches the calorimeter readout is
required as well as properties of the calorimeter shower profile — unlike a hadronic
shower that spreads into hadronic section and often spills over into neighboring towers,
electromagnetic showers are short and well localized. A number of other requirements
are imposed on an electron candidate and due to different instrumentation these
requirements vary for different pseudo-rapidity ranges.

Central electrons (CEM) propagate through the region of the detector with |n| <
1.1. The following list summarizes the identification criteria that a high- Py central

electron has to satisfy:
o ['r>20 GeV 7

o PT>10G€V8

"determined from the calorimeter energy deposition
8from COT track curvature
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o Ehaa/Eem < 0.055 4 0.00045 X Eyo

e /P <2 when Ep < 100 GeV or Pr < 50 GeV
o L, <027

e —30cm<@xAzr<1.5cm, |Az] <3 cm

o V<2

® Ziortex < 00 cm

e track quality requirement'?

e fiducial'®

e not a conversion

o [so/pguster ()1 M4

Plug electrons are required to have 1.2 < || < 2.0 and energy deposition in
PEM. The electron candidates with no track requirements are called PEM, while so
called Phoenix electrons (PHX) use PES information and PEM energy to find the
best match between them and a silicon track. The identification requirements are

summarized below:

o K > 20GeV 9

9ateral shower profile variable, a measure of deviation of energy depositions in cluster towers
from typical energy depositions observed in electron test-beam data

Az and Az are the r — ¢/r — z distances between the COT track and the matching CES cluster

Heomparison of the CES r — z profile to the electron test beam profile

12track must pass through 3 axial and 3 stereo COT superlayers with at least 7 (out of 12) hits
in each

Bmust traverse a well-instrumented detector region

14k is the energy transverse to the beam direction in the cone of AR < 0.4 around the cluster

excluding the electron cluster itself
1535 measured by PEM
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Ehad/ Bem < 0.05

U5><g Z 0.65 and ‘/E',Xg Z 0.65 16

X§x3 <10 17

ARpgs < 3 cm 18

Ng; > 31

|z0] < 60 cm

B/ Bgvster < .1

Muon candidates are subdivided into several categories according to the detector
subsystems that they propagate through. Muons that produce stubs in both CMU
and CMP chambers are called CMUP muons. The coverage of muon subsystems
is different and the muons that have a stub in either CMU or CMP are labeled
CMU-only or CMP-only muons. Muons that traverse and create a stub in CMX are
called CMX. The COT tracks with no associated stubs are also considered as muon
candidates if they deposit minimum energy in calorimeters. Such muon candidates
are denoted CMIO, central minimum ionizing objects. The list below summarizes

additional criteria that a muon candidate has to satisfy:
o Pr>20 GeV
o || < 60 cm

e impact parameter dy < 0.2 cm for tracks without Silicon hits, dy < 0.02 cm

otherwise

16these variables provide a kind of isolation requirement

17fit of the energy distribution in neighboring nine towers to the electron test-beam data

18the distance between the best fit cluster center and PES centroid position, also applied to PHX
tracks

¥number of Silicon hits
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track quality?

Fum < 2+ max (0;0.0115(P — 100)) GeV

Fhaa < 6 4 max (0;0.0280(P — 100)) GeV

Eom + Enaa > 0.1 GeV (for CMIO only)

|Az|cpu < 3 cm (CMUP or CMU-only)

|Az|cmp < 5 cm (CMUP or CMP-only)

|A$|CMX S 6 cm (CMX)

i /Pp < 0.1 21
e not a cosmic ray??

Quarks and gluons produced in the collisions undergo fragmentation as they travel
away from the interaction point. This results in a stream of energetic colorless parti-
cles propagating in a relatively narrow cone around the original parton’s direction —
a hadronic jet. Most typically a jet consists of charged and neutral pions, kaons and
to a lesser extent light baryons, like protons and neutrons. The energy of the original
parton is inferred from the sum of energy depositions of jet constituents in calorime-
ter towers. Jet clustering is the procedure whereby the energy in nearby calorimeter
cells is joined together in order to include as much as much as possible the energy
depositions associated with the original parton, while excluding the energies that are

not directly related to it.

20at least 7 COT hits on at least 3 axial and 3 stereo COT superlayers

2lwhere EX° is the transverse energy in the cone of AR = 0.4 around the muon track excluding
the tower associated with the track

2¢osmic filter algorithm relies on various timing measurements
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The jet clustering starts with the most energetic calorimeter tower in a clus-
ter, called a seed tower, and computes the energy sum in a cone of a given AR =
/An? + A¢?. This analysis uses the cone size of AR = 0.4. After a cluster is formed

around the seed tower, the position of an Fp-weighted centroid is computed as:

o Ztowersecluster ETn
Tcentroid = Jop
Ztowersecluster T (3 9)
o Ztowersécluster ETd)
¢Centroid - i

Ztowerse cluster E T

The centroid position defines the new cluster center and the new clustering cone is
drawn around it. The process is repeated until the cluster remains unchanged. In
some situations the clusters overlap and are either merged if the overlap is more than
75% or left unchanged.

A jet “raw” four-momentum is then determined based on the energy of the cluster
and the position of the centroid. There are a lot of effects both physics and detector
that contribute to the deviation of the jet four-momentum constructed as outlined
above and the four-momentum of the original parton. Several corrections are applied

to the raw quantities:

E%orr = (E;aw X frel X ftime X fscale - EYI\’/H) X fabs - E;JE + Egc (310>

where the corrections are the following:
e Level 1: relative correction, f.q, detector-n dependent, take into account differ-

ences in tower-by-tower calorimeter response

e Level 2: time-dependent correction, fime, compensates for calorimeter deterio-

ration over time, due, for instance, to aging of the phototubes

e Level 3: raw energy scale, fsae, accounts for non-linearities in single-particle
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response, determined from the photon-jet balancing

e Level 4: multiple interactions, EX!, corrects for the possibility of several inter-
actions in a particular bunch-crossing, parametrized by the number of vertices

in the event

e Level 5: absolute energy correction, f.ns, a Pr-dependent factor obtained from

the Monte Carlo as a mean ratio of parton Py to the jet Pp

e Level 6: underlying event, EYF accounts for any contributions to the jet energy

not coming from the original parton, beam remnants, spectator partons

e Level 7: out-of-cone correction, EQC, parametrized by Pr and determined from
Monte Carlo, accounts for the energy deposited outside of the cone due to gluon

radiation and fragmentation effects.

Jet corrections are important to this analysis as one of the largest systematic uncer-
tainties in the final measurement of the mass is the uncertainty in the jet energy scale.
A lot of effort s been invested by the CDF collaboration into studies of jet energy and
relations between measured jet energy and the energy of the original parton. This
analysis builds upon the understanding accumulated in the process.

The so called “missing energy” or K is a reconstructed object that is not directly
related to a single particle produced in a collision. Considered as a two-component
vector that lies in the plane transverse to the beam direction it is simply the negative
of the sum of all transverse momenta in the event. More precisely, the uncorrected
Fr is the negative of the vector sum of all calorimeter tower depositions projected on
the transverse plane.

The missing energy is often thought of as a measure of the sum of the momenta

of the particles that escape detection, most notably neutrinos. In order to be more
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readily interpretable as such the raw 1 needs to be corrected:

— COIT — raw — — — —
Pr =Fr = ) (Pr—Ep) =) (B — Ef) (3.11)
muons jets
The corrections here account for the fact that a large fraction of the muon energies

are not seen by the calorimeters and for the fact that there is a known discrepancy

between a jet and a corresponding parton energy that can be carefully corrected for.
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Chapter 4

Event Selection

In the previous chapter it was briefly outlined how the proton-antiproton collisions
are produced and how the data is collected and processed to form physics objects.
Obviously, not every event recorded contains a t¢ production and decay. This chapter

delves into how the stream of data is sifted through in order to find top-quarks.

4.1 Trigger System

The Tevatron accelerator produces bunches of protons and anti-protons that pass
through each other at the interaction point every 396 ns. The total proton-antiproton
interaction cross-section and the instantaneous luminosity are such that roughly one
interaction per bunch-crossing is expected.

It is neither possible nor necessary to record every collision event. The storage
capacity and data transfer rates are constrained. It takes about 2 ms to read out the
entire detector and the size of the resulting event record is about 200 kB which in
turn results in a data output of about 250 MB/s.

The CDF Trigger system is designed to reduce the output data rate while retaining
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high efficiency for a variety of physics processes by multi-stage real-time event filtering.
Each level selects “interesting” events according to certain criteria and only events
that are accepted at lower level are passed on to the next trigger level.

The Level 1 trigger is a custom designed hardware trigger that is able to find
simple physics objects, or primitives, and makes decisions based solely on the number
of primitives in the event. The information from the detector is buffered into 42-
event deep pipeline and the processing is done in 3 parallel streams. It may take up
to 5.5us for the Level 1 processor to make a decision. One of the streams analyzes
calorimeter information in search of objects that may further be reconstructed into
electrons, photons or jets. Another stream searches muon subsystems data for track
segments or “stubs”. The third stream deals with tracking data via its eXtremely
Fast Tracker (XFT) and extrapolation unit (XTRP) that matches tracks found by
XFT to calorimeter and muon data. The event rate is reduced from 2.5 MHz to about
50 kHz with the corresponding rejection rate of about 150.

The Level 2 trigger is also a hardware system that includes a special purpose
processor that perform limited event reconstruction on the events accepted by Level
1 and stored in one of the four asynchronous event buffers. After the limited recon-
struction is done the Level 2 programmable processors examine the resulting data
and make a decision based on whether any of the defined Level 2 trigger criteria are
satisfied. The latency of the Level 2 system is around 20 — 30us. The data rate is
further reduced down to 200 — 300 Hz. A Level 2 trigger decision to accept an event
leads to the entire detector to be read out.

After the Level 2 “accept” decision the digital data from the entire detector is sent
to the Event Builder CPU nodes that perform the assembly of all the event fragments
into complete event records suitable for data analysis. The event data is then passed

on to the Level 3 trigger system that consists of a farm of parallel general-purpose
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processor nodes. The full information and improved resolution available at this stage
enables more detailed event reconstruction and accurate trigger decision. In case the
event is accepted by Level 3 the data is passed on to the output node and committed
to the permanent storage. The data rate reduction is about a factor of 4 and the
total event rate becomes 75 Hz which is quite acceptable. The overview of the CDF

trigger system is presented in Figure 4.1.

4.2 DIL dataset

The selection of the events that have a high probability of being a ¢t is a complex
multi-stage process. Other CDF physics analyses, most notably the ¢¢ cross-section
measurement, have the sample composition studies and optimization of the event
selection criteria with respect to number of events selected versus the amount of
background (non-tt) as a centerpiece and a foundation.

Our mass measurement chooses to build upon the expertise acquired by the cross-
section measurement group and follows the event selection criteria that was developed.
The dataset that was adopted for use is called “DIL”, which is very similar in spirit to
that used in the CDF Run I cross-section measurement. The tradeoffs made by this
selection favor lower background levels at the cost of smaller total number of events
in the sample.

The event selection starts with the inclusive central electron, inclusive muon and
plug calorimeter datasets that are described in more detail in Appendix A, which also
lists all the categories of dilepton candidate events that are considered in this analysis.
A number of additional requirements are imposed on these primary datasets. They

are:

e 2 leptons with pr > 20 GeV, at least one of which is considered a well-identified,
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L1 storage

pipeline:
14 clock
cycles deep

L2 buffers:

4 events

Crossing rate 2.53 MHz
(396 ns clock cycle)

2.53 MHz synchronous pipeline
Latency 5544 ns =42 x 132 ns
Trigger Accept rate <50 kHz

Level 1

L1 accept

Asynchronous 2-stage pipeline
Latency ~ 20 us = 1/50 kHz
Trigger Acceptrate 300 Hz

Level 2

L1+L2 rejection factor: 25,000

L2 accept
Mass

|.> Storage

DAQ buffers / Acceptrate < 75Hz
Event Builder Rejection factor: >4

Figure 4.1: CDF Data Acquisition system
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isolated!, lepton.
e 2 or more jets with level 5 corrected £ > 15 GeV and |n| < 2.5
o [y > 25 GeV 2

o if fir < 50 GeV the angle between Fr and any jet or lepton in the event is

required to be at least 20 degrees

e Hp > 200 GeV, where Hrp is the sum of all transverse energies in the event: K

, lepton Ep-s and Ep-s of all tight jets
e require leptons to have opposite sign charges

e /-veto requirement: in ee and pp events with dilepton invariant mass between

76 and 106 GeV require “jet significance” o; > 8.0 * and A¢; > 10 degrees*

In addition to these selection criteria, cosmic ray removal and conversion removal are
performed on events from the data.

For any final dataset, which is determined by the event selection procedure used,
it is possible to estimate the fraction of the events of a certain type that pass all the
requirements. This quantity, called acceptance, depends on the values of event cuts.
In our case it can also be considered a function of the assumed top-quark mass as the
samples of different mass have different spectra in selection variables and thus the
fractions of accepted events to the total are different. Figure 4.2 shows the dependence

of the acceptance on the top quark pole mass. For several reasons that may become

! An isolated lepton is one for which no more than 10% extra energy is measured in a cone of
AR = /(A¢)? + (An)? < 0.4 around the lepton.

2Fr in the events was corrected for the muon energies as well as for jet energy scale corrections

Swhere “jet significance” o; is defined as: o; =fr/ Zk(E} - EX) and the sum is performed over
all tight jets that are in the same hemisphere with K7 vector; the scalar product is understood as
a product of 2D vectors

‘where A¢; is defined as a minimum angle between K and any tight jet in the event
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DIL Selection
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Figure 4.2: Acceptance of the DIL selection as a function of top pole mass,
parametrized by po + p1 M; + po M2

clear later the acceptance curve plays an important role in the measurement of the
mass but the absolute values of the acceptance are not crucial. The most relevant
feature is the shape — relative change of the acceptance with mass.

Another piece of information that this analysis relies on is the expected sam-
ple composition. The knowledge of the expected numbers of events from the signal
process and other processes that contribute to the sample is necessary for the con-
struction of appropriate likelihood expression. Major background processes include
diboson production accompanied by two jets from initial or final state gluon radiation,
Drell-Yan process® with two extra jets, events where one of the reconstructed leptons

is in fact a hadronic jet which has fragmented (and interacted in the detector) in such

5¢¢ pair production via either Z boson production or virtual photon
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Process Nprr,

tt 172+ 14
WWw 1.23£0.21
Wz 0.40 =+ 0.07
DY— [l 4.66 £ 1.3
Fakes 3.5+14
DY— rr 0.77£0.16
Total 277+ 2.3

Table 4.1: Expected sample composition in [ L = 340pb~*. The number of expected
tt events assumes oz = 6.7 pb and M; = 175 GeV.

a was as to pass all the electron identification requirements (“fakes”) and Drell-Yan
production of a Z boson, which then decays to 77, with extra jets. Table 4.1 shows
the expected sample composition for the DIL sample of the appropriate acquired
integrated luminosity.

The number of expected tt events is quoted for the assumed top-quark pole mass
of M; = 175 GeV and the corresponding tf production cross-section oz = 6.7 pb. It is
worth mentioning that the signal cross-section is a strong function of the assumed top-
quark mass and thus the expected sample composition is adjusted by extrapolating the
expected number of signal events via the known functional form of the cross-section
dependence on the mass, as previously shown in Figure 2.3. Both the likelihood

expression and the construction of the appropriate pseudo-experiments rely on it.
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Chapter 5

Matrix Element and the

measurement of mass

The most direct approach to the measurement of the top quark mass is based largely
on Monte Carlo event generators. This approach is well-established among high-
energy physicists and is extensively used in variety of analyses. The detailed theo-
retical understanding of the physics processes is incorporated in these generators to
create events and simulate the entire detector response. This approach works rather
well when the data is abundant and the quantities of interest can be extracted from
just a couple of observables by comparing their distributions in the data to the Monte
Carlo predictions.

One perceived shortcoming becomes obvious when researchers try to incorporate
as much information as possible by using most of the observables in the event. Many
of the methods that rely heavily on Monte Carlo event generation implicitly try to
evaluate probability values for the observed data events by interpolating between
the generated events. To put it another way: the density of Monte Carlo events

in the space of observable variables approximates the probability density which is
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then estimated at the points with observable values from the data. Thus, it is not
surprising that progressively more and more generated events are needed to sample
the space of higher dimensions as the quality of interpolation critically depends on it,
especially for feature-rich observable spaces.

The key idea of the matrix-element based analyses is that it should be possible,
at least in principle, to employ our understanding of the underlying physics process
to explicitly evaluate the likelihood for a particular event, data or Monte Carlo gen-
erated, by computing the squared matrix element and further the differential cross-
section. The latter almost immediately leads to the probability density in the space
of observable variables. The simulation still plays an important role, but now mainly
to provide a model for detector response. The treatment of the underlying physics
changes from approximation to evaluation. The evaluation is not totally precise as
a number of simplifying assumptions needed to be made. However the gain is still

clearly visible as will be shown further.

5.1 Construction of the posterior probability

What does our data tell us about the mass? There are several ways to answer this
question and one of them is to use a Bayesian approach and construct a posterior
probability distribution p(M;|{data}), which tells us, given the data that was taken,
how likely are the different values of the top quark mass.

The construction of the posterior probability starts with the per-event likelihood
p(x|M,), which is the probability of observing an event with the measured variables

X, given a top quark pole mass of M;:

1 do(My)

px|Me) = o(M,)  dx

(5.1)
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where 92 is the per-event differential cross-section. Naturally, the probability density

e
for the entire dataset would be simply a product of the per-event probability densities,

as the events are deemed independent of each other:

p({x;}|M;) = Hp x;| M) (5.2)

where the index, 7, runs over all the events in the dataset.
The explicit assumption of a uniform prior distribution of top-quark mass is made,

within a wide enough interval that encloses the current world’s average:

P(Mi|{x:}) oc p({xi} [ My) (5.3)

The Standard Model could be used to calculate the per-event probabilities directly
if all of the parton level quantities were observed. This is not the case. One of the big
deviations from such ideal situation is due to the presence of two neutrinos that can
not be detected. The other major factor is the impossibility of direct measurement
of quark momentum. It has to be inferred from the momentum of the corresponding
hadronic jet. The detector response is parametrized by the transfer functions that
relate certain observed quantities to the parton-level ones. The quantities that are

not measured directly are effectively “hidden” and have to be integrated over:

ptf(X|Mt) = %/d(bpard-/\/ltf(ppart; Mt)IQf(pobsappart)fPDF(q1)fPDF(q2) (54)

where the integration is done over the phase space of final state partons, unobserved,
and f(Pobs, Ppart) denotes a set of transfer functions that relate parton-level quantities
to the observed ones, effectively parameterizing certain physics like hadronization

and the detector response. The ¢-s are the four-vector of incoming partons, fppr is
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the parton-distribution function of the colliding protons. The overall normalization

constant is such that the integral over the entire space of observables is unity:

/dx p(x|M;) =1 (5.5)

Constraints such as momentum conservation which appear as delta functions and
affect the integration are implicitly included within the phase space volume element.

They are discussed in greater detail later on.

5.2 Treatment of the backgrounds

The per-event signal probability p;z(x|M;) is sufficient to extract the top quark mass
from an event sample that consists entirely of ¢¢ dilepton events. However, the top
quark candidate events collected by CDF include some number of background events
that mimic the ¢f event signature. Thus, the generalized per-event probability ex-

pression takes the form:

(x| M) = ps(x|My)ps + por (X)ps1 + P2 (X) D2 (5.6)

which is a sum of the probability densities for each process, weighted by their respec-
tive prior probabilities.

There are two conceptually different approaches to the mass measurement. Both
are heavily affected by the fact that the top quark cross-section is strongly dependent
on the assumed top mass. The first method, the one that is used in this analysis,
does not use the information about the observed number of events and the measured
acquired luminosity. It focuses on the mass measurement itself and thus has just one

free parameter — the mass. The second method effectively combines the mass mea-
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surement with the cross-section measurement and utilizes both the observed number
of events and the luminosity measurement to extract two parameters simultaneously.

For the ease of presentation the formula presented from this point on have just
one background component. In reality this is trivially extended to include as many

backgrounds as necessary. To reiterate, the single-event likelihood is written as:

p(xi|My) = p(xi]s, My)p(s) + p(xi[b)p(b) (5.7)

where p(s) and p(b) are the a priori probabilities of a given event to be signal or
background. They satisfy the normalization condition: p(s) + p(b) = 1.

Properly normalized conditional probabilities from (5.7) can be expressed in term
of differential cross-sections for signal and background and acceptance-adjusted total

cross-sections:

1 [do
i N ]Vfr = 5 .
plls. M) = - (2 (5.
1 (105
o) =~ () 5.9)

where €, reflects the entire acceptance efficiency, including detector acceptance and
selection efficiency.
The acceptance-adjusted total cross-sections are defined as the integrals of respec-

tive differential cross-section over the accepted regions:

g6y = / @i) dx (5.10)

accepted

oyey = / (%) dx (5.11)

accepted
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The expected number of signal and background events are expressed as (5.12, 5.13)

A = Logeg (5.12)

)\b = EO’bEb (513)

where L is the total luminosity.

It is important to note that the number of signal and background events are in-
dependently Poisson-distributed with parameters given by the above expected num-
bers (5.12, 5.13). The expected number of background events does not depend on
the parameter of interest. The signal fraction of the sample, on the other hand, de-
pends on the mass parameter through the mass-dependent expected number of signal
events.

The total acceptance-adjusted cross-sections can be expressed in term of expected
number of signal and background events. The dependence of the acceptance adjusted
total cross-section on the mass is parametrized with parameters determined using
Monte Carlo samples of different mass. Let us denote the total accepted signal cross-
section as (0s€5)(M;). The sample composition is given by the expected number
of signal events Ag(M;) and background \,. For assumed top mass my the sample
composition is estimated by the ¢ production cross-section measurement group and
are presented in [17] and in more detail in [18]. The expected numbers of events of
each type are dependent on the selection used. We introduce the normalization factors

N, and N, which, when multiplied by the corresponding differential cross-sections,
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produce the proper probability densities:

. dog (0€5)(my)
PO = G (e (M) Noimo)
y(x;) = %j\i@ (5-14)
Ao(M;) = %(%@)(M)

The per-event, probability density is then given by:

As(My) Ap
JAMy) = pa(xa M)~ () — 20
p(X | t) p (X | t>AS<Mt) + )\b +pb(x ))\S( t) 4 )\b

B {das As(mg) n @ﬁ} 1 (5.15)
L No(m)  dxi N |\ 22 ) (M) + A,

(0565)(7”0

The likelihood expression for the entire dataset is, of course, simply a product of

per-event probability densities given by (5.15):

1 da-s )‘s(mO) dab /\b:|
M) = N, '
p({x}|My) ((aizgzgrg_o)(gses)(Mt) + Ab> H {dxif\/s(mo) TN (5.16)
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Chapter 6

Transfer functions

The per-event probability density which was introduced in the previous Chapter is a
function of the observed variables. The model of the underlying physics process, on
the other hand, is defined in terms of parton-level quantities, many of which are not
observed directly in the detector environment. The task of bridging the gap between
the two is assigned to the transfer functions.

It is possible to think of transfer functions in terms of conditional probabilities
that quantify how likely it is to measure certain reconstructed event properties given
“true” underlying values of the parton-level quantities. A conditional probability
distribution that maps all the hidden event quantities to those observed is, at least
in principle, not impossible to construct. It is, however, impractical and, as will be
shown later, computationally expensive. Thus, various simplifying approximations
are made. These approximations allow the transfer function to be factorized into sep-
arate simpler functions, some of which we deliberately replace with Dirac d-functions.
The latter is another way of saying that we presume certain variables to be measured
precisely by the detector. Among these are lepton momenta and jet angles. Jet ener-

gies, on the other hand, although directly related to the energy of the parent b-quark,
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usually are quite different.

In accordance with the general interpretation of transfer functions as the prob-
ability of reconstructing objects with properties y given the corresponding variables
x immediately after the hard-scattering process, the jet energy transfer function
J(Eparton, Ejet) describes the probability of a parton with energy FE,qt0n to be mea-

sured as a jet with energy Ej.; in the CDF detector.

6.1 Parameterization of f(E,uion, Ejet)

The method of extraction and parametrization of the jet energy transfer function
largely follows DO Run I matrix element analyses, [19], [20]. It is based on the joint

distribution of parton and jet energies in the simulated events:
n(Ejeta Eparton)dEjetdEparton - n(Eparton)dEpartanf(Eparton7 Ejet)dEjet (61)

where n(Ejet, Eparton) AEjetd Eparton, vefers to the number of events with jet energy
between Fj.; and Fje+dEj., and parton energy between E,q,10n and Epgrton+dEparton-
The n(Eparton)dEparton is the number of partons with energy between E,.40, and

Eparton + dEparton .

The transfer function itself is parametrized as a sum of two Gaussian distributions:

1 —(0 —p1)? —(0 — pa)?
f(6) = exp —————— + p3 exp 7] (6.2)
V27 (p2 + p3ps) 2p3 2p3
where 0 = Epqrion — Fjer and each p; depends linearly on Eqpi0n:
pi = a; + biEparton (63)
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One of the Gaussian functions is intended to account primarily for the peak in the
joint distribution, the other to describe the tails!. Such parametrization results in ten
fit parameters that need to be determined?. To extract them an unbinned likelihood

fit is performed with the likelihood defined as:

N N
—InL=— Z In n(Ez()fz)rton) - Z In f(Egz)rtonv E](:i)t) (64)
=1 =1

Using b-quarks matched with the jets from HERWIG ¢f events for M; = 178 GeV /c?, the
parameters shown in Table 6.1 are obtained. The joint distribution of jet and parton

energies that these transfer functions aim to parametrize is shown in Figure 6.1.

Di a; b;

p1 | —1.822 +0.623 | —0.0257 + 0.008
pe | 2.535+0.540 0.078 £ 0.005
p3 | 0.670£0.075 0.0 £ 0.001
ps | —1.556 £0.789 | —0.192 £0.012
ps | 7.881 £ 0.665 0.099 £ 0.008

Table 6.1: Parameters for f(Eparton, Fjet) extracted using matched b-jet and quarks
from HERWIG ¢t MC.

6.2 Tests of f(Epurton, Ejet)

A simple test of the jet transfer function can be done by attempting to predict the
jet energy distribution resulting from a known distribution of parton energies from
Monte Carlo generated events run through a full CDF detector simulation. This is

done by integrating the expression for n(Ejet, Eparton)dEjetdEparton in equation 6.1

Lqualitatively, p; and py describe the means of the two Gaussian distributions, p, and ps are
responsible for the corresponding widths and both means and widths are allowed to float linearly
with Eparton

2the parametrization of p; can be refined by, for instance, inclusion of quadratic and cubic (in
Eparton) terms. However, current parametrization performs well as will be shown shortly
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Jet Transfer Function
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Figure 6.1: Joint distribution of E,4t0n, and Eje. This histogram shows (in color) the
density (blue — low to red — high) of simulated partons with energies E, 410, Which
are matched to jets with energies Ejq.

over a slice of parton energy:

Epartonl
H(Ejet) - / n(Eparton)dEpartonf(Epartona Ejet) (65)

Epartong

Such a test using H(FEj.) and a similar test using H(Es) = H(Ejet — Eparton) are
shown in Figure 6.2 for the full parton energy range and in Figure 6.3 for smaller
slices in parton energy.

Since the jet transfer function models the detector response to partons, it should be
independent of the physics process producing these partons. This statement is tested
by using f(Eparton, Ejet) parameterized from M; = 178 GeV/c? events to predict the
jet energy distribution resulting from b-quarks in the Monte Carlo top decays of varied

top masses. Figure 6.4 shows that the jet transfer function derived using partons from

M, = 178 GeV/c? top decays can accurately predict jet energies from top decays of
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M, ranging from 150 GeV/c? through 200 GeV/c2.
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Figure 6.2: A simple test of f(Eparton, Ejet): the histograms show the simulated Eje
and Eprion — Ejer distributions from a known distribution of Epqpi0n. The lines show
the predicted distributions for Eje and Epgrion — Ejer as derived from E, g4, using
J(Epartons Ejet). The bottom plot shows a distribution of parton energies that the
predictions are based upon.
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Chapter 7

Signal Matrix Element

7.1 The Calculation

The evaluation of the per-event probability hinges on the calculation of the per-event
differential cross-section of the top quark pair production and decay. The derivation
of the expression that will be used to compute it starts with the cross-section for a

generic 2 — 2 process:

U_/Z4\/p2ﬂ- |M| 2 2prF(xi)prF(xj)dcbﬁdxidxj (71)

p2 mimsg

At the heart of the calculation is the expression for the matrix element. The ex-
pression for the production and decay process qq — tt — (W+b)(W~b) — (évb)(eib)

evaluated to the leading order (LO) has the following form®:

2 9 pr
IM[? = FF

2.2 (1 — ceqCeq) — B(Cet + Cet) + Begi(ceq + Ceq) + % 28275(1 — Cee)
((2 ! (1 = Gea) (1 - Bec) 2

'the LO matrix element expressions used are from [21,22]
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where s, and ¢, are respectively sine and cosine between particles a and b in the qq
rest frame, 3 is the top-quark velocity in ¢ rest frame, v = (1 — 3?)7*/2 and g, is the

strong coupling constant 2. The top-quark propagator and decay terms are given by:

F = g%“ |: m% _ mél/ :| |:m?(]‘ _ égb) + m%u(l + ééb>2:| (73)
(mi — M7)? 4 (MT)? | | (m2, — M) + (My Ty )?

where m; is the invariant mass of the t-quark decay products, ¢, is the cosine of the

angle between particles a and b in the W™ rest frame.

Y S L . A

T4 [(m2 = ME)? o+ (MT,)? — MZ)? + (My Ty )2

where my is the invariant mass of the t-quark decay products, ¢, is the cosine between
particles a@ and b in W~ rest frame. The M,, I';®>, My, I'y are the pole masses and
widths of the top-quark and W-boson, and g, is the weak coupling constant *.

With the spin correlation term from Equation 7.2 omitted the expression is re-
duced to:

IM|? = gSFF(Q— 262,) (7.5)

In the calculations that follow, only the g — ¢t production matrix element is used.
while gg — tt is neglected. Our motivation for doing so comes from the fact that
only ~ 15% of the t¢ pair at Tevatron are produced via gluon fusion. Nonetheless, we
check the legitimacy of this simplification by evaluating the corresponding systematic
uncertainty, refer to Section 10.7 on page 133.

Expression (7.1) describes the total cross section for this process, 0. We require

do

the differential cross-section with respect to observed quantities, 2. To evaluate

292 /AT = as
ST(t — W) = 3= M3|14b|2(
4GF/\/§ = gu}/SMW

6
Aﬂ%’) at LO

57



the differential cross-section for the observed quantities corresponding to a particular
event configuration, we take the expression inside the integral, introduce conditional
probability terms that relate the observed quantities to the parton level variables and
subsequently integrate over all parton-level phase space.

The matrix element depends on two initial state momenta  incoming ¢; and g¢s.
Outgoing parton-level variables are: b-quarks p; and ps, leptons ¢; and /5, neutrinos
v and 5. Observed quantities consist of jets j; and j5, measured leptons L; and Lo
and two components of missing transverse energy.

The set of assumptions regarding the transfer between parton-level quantities and

the observables consists of the following:

e Leptons are measured perfectly. This assumption effectively translates into

“transfer function” for leptons being a three-dimensional ¢-function

831y — Ly) 6*(ly — Ly)

e Jet angles are measured perfectly. Equivalently,

5(9'1 - 9p1)5(¢j1 - ¢P1)f(Ep17 Ejl) 5(9'2 - 9p2)5(¢j2 - ¢P2)f(Ep2a Ej2)

is the b-parton to jet transfer function. We will normally call the energy part

“jet transfer function” for brevity®.

Sthere is some potential ambiguity here. When dealing with é-functions in spherical coordinates

one would normally need to include extra factors, for instance:
SB(F—r) = 1 8(r —1") 6(cosf — cos @) §(¢p — ¢')
=3

We have some freedom in definition of the transfer functions and we choose to define it so that by
integration in spherical coordinates Jacobian factors are absorbed in f(E;, E,), angular §-functions
are 6(0; — 0,)6(¢; — ¢p), while p%sin(6,)dprdf,ydg, is the volume element. The validity of the
implicit assumption that jet energy transfer functions are independent of  or, equivalently, pseudo-
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e We assume incoming partons to be massless and to have transverse momentum
components ¢, < ¢, g, < ¢, where the coordinate system is chosen so that

z-axis is set along the colliding beam, and x and y are in the transverse plane.

e Masses of the final state leptons are zero, masses of the b-quarks are known.

7.1.1 Introducing the notation

We begin with an expression for the differential cross-section that is given by (7.6).

1 \° .
o= () [ 0kt vt
i,j

m)* q+ @ — b — v —pr— by — vy — p3)

5(q") 8(q¥) dq” dq” fane (€1, Q%) fone (€5, Q°) Frrux(df, 43) dE1 dE}

d30, d3¢
80y — L) 8 (0, — L L2
(6 = L1) °(F QBQQQQ
d3p1 d3p2
f(Epm Ejl) f(Ep27 Ej2)5(0101 - Hj ) 5(0 2 0]'2) 6(¢P1 - ¢j1) 5(¢p2 - ¢j2)—
2Ep1 2Ep2
d3V1 d31/2
YT
V1 v
(7.6)

The Bjorken variables & and fé can be considered as fractions of the beam energy
carried by the interacting incoming partons. We express them in terms of ¢ and ¢35
as &8 = ¢ / Byean and &5 = G5/ Fean- The sum is over possible incoming parton flavors.
We integrate over all the final state parton-level three-momenta (final state particles
are stable).

The 4-functions in g, and g, constrain transverse momenta of the incoming partons

rapidity n is supported by the observation that no strong angular dependence is present. This, of
course, can be refined to allow for angular dependence but is not perceived necessary for our initial
analysis.

29



to be zero. This is not strictly true or necessary. For simplicity we use this in the
derivation of the differential cross-section and show later that by a trivial change
this constraint can be removed and this extra integration can be reintroduced later
together with appropriate prior distributions for ¢, ¢,°.

The fus factor is the unclustered energy transfer function. The motivation for
it as well as a definition is given below. Loosely speaking, this function quantifies
the dependence between parton-level momenta, measured jet energies and measured

missing transverse energy.

7.1.2 Phase space transformation and Integration

In order to efficiently perform integrations over the parton-level variables, we per-
form a phase-space transformation which splits the original phase space into one or
more subspaces, but introduces the equivalent number of extra variables and integra-
tions. These variables are the relevant invariant masses. Some details on the formula
used are provided in Appendix B and in [23]. We introduce invariant masses that
correspond to intermediate ¢ and ¢ quarks and W-bosons.

The entire integrand after the phase space transformation results in (7.7). Each
additional integration over invariant mass of the intermediate particle has a corre-
sponding d-function in squared invariant mass and each intermediate particle four-
momenta has corresponding §*-function for the momentum conservation at the inter-

mediate vertex. It would be easy to integrate over zero-components of intermediate

5Consider two incoming partons and their transverse momentum components: ¢f, ¢¥, ¢/ and
qy. Let us change the variables to g, = %(q"{ +4%), @y = %(qi’ +49), qu = \/ig(qf — ¢%) and
Qv = %(qi’ — ¢¥). Inspecting all the expressions that contain the transverse components we find
out that they may only depend on the ¢, and g,. We may further assume that the initial momenta
components are independent and Gaussian distributed. The ¢, and ¢, in this case are trivially
integrated away — these variables are not present in the integrand and thus the integration over
them (and their density) can be performed to yield unity. The resulting distribution of the ¢, and
gy are also Gaussian, moreover in the absence of correlation between ¢f and ¢35, ¢, will even have
the same o.
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four-momenta that leaves only three-momenta integrals for the intermediate particles,

but the algebra becomes quite involved and we chose a different approach.

6
do :(271')4 |]\4|2 ( ) 54(611 + a2 — tl — tg) (S(t% — Mi) d4t1 5(753 — M1522) d4t2

1
(2m)?
(54(t1 — W — pl) 54(t2 — Wy — pg) 54(11)1 — UV — 51) 54(11)2 — Vy — 62)

d3p1 d3p2 d3V1 d3V2 d3€1 d3€2
*2E, 2E,, 2E, 2E,, 2E,, 2E,,

6w — M7 ) d*wy 6(ws — M) d'w

6(q") 6(q") dq” dq” fe1ux(q1+ G5) fPDF(Eb1_7 QQ) fPJ’DF(EbZ ;QQ) Elg 2 Juts
eam eam beam

53(61 - Ll) 53@2 - L2) f(Epl ) Ejl) f(Ep27 Ej2)

0(Op, = 05,) 0(0p, — 05,) 6(p, — 1) O(bp, — bj) M AM, dMyy, M,
(7.7)

First we integrate over d®(; d*¢y and [optionally]” over dg®dq¥, making use of the

corresponding J-functions. This step results in the expression (7.8)

do =(27)* |M[* ( ) 0((n+ @)’ =t —13) 6 (@1 +q2)* — £ — 15)

1
(2m)3
Ot +13) 6(t] + 13)

S(65 — M7) 6(t5 — M) §(wi — My,) (w3 — Mgy,) d'ty d*ts dwy d*w,
54(t1 —wy; — p1) 54(152 — wy — P2) 54(w1 —uv — L) 54(w2 — vy — Lo)

d3p1 d3p2 d3U1 d31/2 1 1
2F,, 2E,, 2F,, 2E,, 2Fr, 2E1,

. ; qz ) qz dqz dqz
fflux(q17q2)fPDF( L 7@2) flgDF( 2 7@2) 12 2 futf f(Ep17Ej1)f(Ep27Ej2)
Ebea.m Ebeam Ebea_m

5(0171 - ej ) 5(01)2 - 9]'2) 5(975;01 - ¢j1) 5(¢p2 - ¢j2) thQl th22 dMng dMI%Vg
(7.8)

Tintegrations over g, gy can be postponed until the end and integrated with non-é-function

priors.
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Next step consists of integration over

§((r+q)" =t —13) 6 ((n +q)* —t; —t3) dqf dg; (7.9)

The energy components in this expression are then expressed in terms of ¢i and ¢3

in the collider approximation mentioned earlier ®

. The expressions inside these two
0-functions are used to solve for ¢ and ¢5 in terms of the remaining variables. The
entire expression gets an additional factor of 1/2 9.

We carry on the integration with

54(11)1 — V1 — Ll) 64(11)2 — Vo — Lg) d4w1 d4w2 (710)

that imposes the constraint

wy = (L1 +14)
(7.11)
Wo — (L2 + 1/2)
Next integration is over ¢ variables:
54(t1 — W — pl) 54(t2 — W2 — pg) d4t1 d4t2 (712)
that results in:
tv= (L1 +wv1+m)
(7.13)

to = (Lo + v2 + p2)

8massless incoming partons with transverse momenta of the incoming partons ¢; < ¢,. Here

it means that without loss of generality we may substitute ¢¢ = ¢ and ¢) = —¢5 and make sure
energies are positive.

9this is easily shown by either doing integrations over dq? dgi one by one or by noticing that the
system of coupled equations inside the two d-functions has a Jacobian of 2.
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Further integration over the angular variables of b-partons is done by first transform-

ing the parton variables into spherical coordinates!:

d*p — pFsin 0,d0,do,dpr (7.14)

Then the expression takes the form:

o ( ’/T) 2 < (27T)3> fPDF( Ebea_m ) Q ) fPDF( Ebea_m’ Q ) Egeam

S((Li+r+p)et (Lat+va+pa)s) 6 (Li4vi+p1)y+ (Lo +1va+p2)y)
S((Li+ v +p) = M) 6 ((La+va+p2)” = M)

(Lt 1) = M) 8 (Lo + )" = M)

pigpsinb, dpir papsinby,dpsp vy vy 1 1
2F 2F 2E, 2F,, 2B, 2E,,

D1 b2

forux(01+63) fuss [(Epy, Ejy) [(Epy, Ejy) dME dMy, dMyy, dMgy,
(7.15)

Dirac d-functions have a number of properties that are used extensively in sim-
plification of the cross-section integrals. A well known property of a d-function in a
single variable is given by (7.16)

5g(x)) =) e~ z:) (7.16)

9" ()]

i

where z; are the zeros of g(z). For an integral of two-dimensional function of two

variables, it should be reasonably modified to:

3(f(a.y)) = 3 2 (717

i

10 denotes the radial component of a b-parton’s three-momentum
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where J is the determinant of the Jacobian matrix of f evaluated at the zero-points.
Skipping the mathematically rigorous proof we will use (7.17) keeping in mind that
degenerate zeroes should in theory receive special treatment.

Further integrations over 6 components of neutrino momenta and 6 “free” 9-
functions has a twofold effect. First, the integration in question is equivalent to
solving the system of equations that is obtained by requiring the expressions inside
o-function to equal zero. The neutrino solutions obtained in the process should then
be substituted into all the expressions that depend on them and expressing the rest of
the kinematic variables in term of measured variables and components of neutrino mo-
menta. Second, the expressions inside the o-functions are not the neutrino momenta
themselves but some functions of those. Thus the entire expression is combined with
the Jacobian terms that originate from this fact in a way similar to (7.17). There re-
main 6 extra integrations to be done at this point: 2 over the magnitudes of b-parton
momenta, and 4 over the assumed invariant masses of t-quarks and W-bosons. Con-
sequently for the purpose of finding neutrino solutions these quantities are assumed
known, as the final stage integration will vary them and solve for neutrino momenta
at each point of evaluation.

It should be emphasized that the sum over neutrino solutions comes naturally
from the integration of d-function (7.16), namely from the required sum over the
zeroes of the d-function argument; it makes little sense to undertake separation of

neutrino solutions or to “rate” them by which one is perceived as “more likely”.
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7.1.3 Neutrino solutions
The system of equations for neutrino momenta is the following:
(Li + v +p1)? = M}

(L2 + Vo +p2)2 = ]\432

(L1 + 1/1)2 = MI%Vl

(7.18)
(Lo +12)" = Myy,
(L +vi+p1), + (La+v2+p2), =0
(L +vi+p1), + (L + 12+ p2), =0
The first two equations of (7.18) can be rewritten in the following way:
M2 _ M2 _ m2
(v1-p1) = i 2W1 > — (L1 -p1) = aonr ( )
7.19
MR -MR-wm
(v2-p2) = 9 (L - p2) = agy

where we introduced ag; and age as a convenient notation. The second pair of equa-

tions from (7.18) take form:

M2
(Ly-11) = 2W1 = by
. (7.20)
(Ly-1v2) = % = by

with additional notation introduced. Expanding the four-vector products in first four

equation of (7.18) we can express vy, and v,, in terms of z and y components and
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thus exclude them from the system:

Qo1 + V1zP1a + VigP1y + V12P12

Et/l -
Ep (7.21)
E.— boi + vig L1y + viyLiy +vi Ly,
vl — ELl
These two result in:
Vi, :06+5V1z+’)’7/1y (722>
where
o — (plz _ le)_l (&_&)
En B Enn Ep
1
6 _ (plz . le) (le plx) (723>
Eyn  En Er, En
ply
Ey

N = (plz . le)_l (ﬂ _)
Ep  Epn Ep
By making the 1 — 2 index substitution one gets corresponding expression for vy,.

By introducing the notation:

Ao b3, +aly,
Er
B = Ll%m (7.24)
L1
O — Liy +L,
Erq

the original first four equations in (7.18) transform into two equations of the form:

(14 82— B2 + (1497 — 02)]/12y + 2(8y — BC)vypv1y+ (7.25)
.25

2(af — AB)vi, + 2(ay — AC)1y, + (o — A%) =0
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or in yet another notation:
lel/%w + Clyyfy + 201:ryylmyly + 2D1$V1$ + 2D1yV1y + Gl =0 (726)

Now using two remaining equations from (7.18), we substitute vy, through s, and

v, through vy, and arrive at the following system:

2 2
A1V5y + Q2VopV1y + Q3Viy, + Quloy + a5V + a6 = 0

(7.27)
617/22;1; —I— bgl/gwyly —|— b31/12y —I— b41/2z —l— b5l/1y + b6 = 0
with the substitutions given by: v, = —K, — v9, and 1», = —K, — vy, and
Km = (LQCC + D2z + le + plx) (_q:t)
(7.28)

Ky = (Lay + pay + L1y + pyy) (—aqy)

The ¢, and ¢, terms in (7.28) are optional and can be included if the initial system
transverse momentum is non-zero. This refinement will not affect the neutrino solu-
tions themselves, the only adjustment that needs to be made in this case is in the
aforementioned definitions of K, and K. Coefficients in the bi-quadratic system of

equations (7.27) are given by:

first equation second equation
va, Cha Cay
VogV1y _QClccy —QCQacy
i, | Oy Chy (7.29)
Voy 201, K, — 2Dy, 2Dy, — 2C2myKy
Uty 2D, — 2Ch K, 205, K, — 2Dy,
const | C1, K2 —2D1, K, + Gy C2yK§ — 2Dy K, + G
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Figure 7.1: Residual in My, M; and E, for numerical solutions to the equations
required for a change of variables.

The two coupled equations are converted to a single fourth order polynomial which
can be rapidly solved using numerical techniques. We employ the Sturm Sequence
technique; Figure 7.1 demonstrates the accuracy of the solutions for parton-level
quantities. Alternative analytical solutions can be found in Appendix D.

Note that it is possible for a forth order polynomial to have zero, two or four
solutions. Multiple solutions are naturally summed over as our method requires. In
the case where a particular set of observables and parton level quantities does not
have any solutions, the integrand is zero. This does not constitute as issue, however,
because the integration is performed over the entire parton-level phase space. The
integrand may have zero value in a certain region of phase space, but the integral

almost certainly will gain non-zero contribution from other regions.

7.1.4 Jacobian factor

Jacobian factor that appears from integrations over neutrino momenta components

has the form:
dfi

9k (7.30)
OV(1,2)(2,9,2)

|
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The f; are the functions of neutrino momenta that occur inside d-functions:

Ji= (L1 +v1 4+ p1)s + (Lo + 2+ D2)a)

= (L1 +v1+p1)y + (Lo +1v2 + pa)y)
:(L1+1/1+p1 Mtzl)
(7.31)
Ji= (Lo + 12 +p2)* — M7)
= ( L]_ + 1/1 Mng)
= ( (Lo + V2 M{%{@)
The determinant has the form:
10 J 0O Js O
01 Jsy 0O Js O
00 Jg, 0 Js, O
10 0 Jyu 0 Js
01 0 Jgy 0 Jgy
00 0 Jg 0 Js,
that evaluates to:
J = |J3z<]4zJ5yJ6:E - J3yJ4z=]5zJ6:c - J3ZJ4ZJ5ZEJ6y+
+ JSwJ4zJ5zJ6y + J32J4yJ5$J6z - J3zJ4wJ5yJ62+ (732)

+ J3yJ4a;J5zJ62 — JSmJ4yJ5zJ6z|
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with:

J3£L'

J3y

JSZ

J4a:

Juy

J4z

']59:

J5y

J5z

Jﬁm

Joy

Jﬁz

O)Vlz
9 P1
2<L1%_2 + V3,
s _ s
— o p(l))’/ly
~ o 2(L9 + o
0fs3 _ -
2(LY + o
0fs3 _ —s
2(Ly + —
0f4 _ o
7 . pg)’/Qy
= O 2(LY + v
Ofa — - i
— 81/211 VQwO pg)yzz
2(L2+2+1/222
Ofs _ = ,,2y)
" Ovs 2(L9V21w+ —
8f5 - Vlza: + Vly
= 31/1.% \/ 2(L(1)V1y) VQ
2 + 1z
ofs _ —
= 8V1y Q(L?Uu) VQ
2 + 1z
Ofs _ — Uly)
= vy, 2(L81;2w+ V22Z
- - v3, + 13,
3 + 2z
e - V3 +v3,
ofs
- 81/22’

2
Vay,
5, +
2 + I/2y
\/U2x
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)
+p1m
—2(L1s

2(L1y + py)

Q(le + plz)

)
+p21
—2(Loy

2(Lay + pay)

2(L2z + p2z)

— 204,

— 2L,

- 2L1z

- 2L2x

— 2Ly,

— 2L,

(7.33)



7.1.5 Integral: final

After neutrino solutions are found and the d-function induced Jacobian is evaluated

the expression for the unnormalized probability density takes the following form:

do //Z |M|? p3gsind, dpir pagsinb,,dpsg Jt
dx ( 2F2 . 2L, 2L, E, B, Er B,
fliDF( 7@2) fPDF( 7@2) fflux(qlv qQ) futf

Ebeam Ebea.m
f(Ep, E) f(Ep,, Ej,) My, My, My, My, dM,, dM,, dMy, dMy,

(7.34)

In order to obtain the differential cross-section the 6-dimensional integral (7.34) over b-
parton momenta and four invariant masses should be evaluated. The sum is performed
over the incoming parton flavors. The additional sum that needs to be done is over

two possible jet assignments'!

7.1.6 Observed missing transverse energy — another con-

straint

Additional information about the event is available from the observed missing trans-
verse energy Fop . In order to include it in the analysis we need the probability
distribution for observing certain values of the z and y components of the missing
transverse energy given the parton quantities in the event and the measured jet en-
ergies. From this we construct a “pseudo”-transfer function that depends on the
neutrino momenta, b-quark momenta and measured jet energies. If the intitial trans-

verse momentum of the parton system, i.e. prior to the interaction that produced ¢t

For each event it is not known which jet corresponds to which lepton. In our case we have only
two possibilities. If the jet assignment is considered a discrete variable that is not measured, the
total probability is the sum over two possible values.
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pair and prior to intitial state radiation, is ¢, g,, then we have the relationship:

L IO D Ve
L DI WD 3

where E7Y denotes components of total “detectable” transverse momenta, that is

(7.35)

the sum of observed energy from the jets associated with the b quarks, the lepton
energies, and any other energy observed in the calorimeter whether or not it comes
from the ¢t system, v®¥ — the components of “undetectable” transverse momenta
from the neutrinos, p;.:’y are the jet momenta and p*¥ are the momenta of the partons
that produce the jets. The components of F; in an ideal detector are simply —FE7

and —FEY. Hence, we have:

Br™ =) V"> (0" —p))—q"
BY = Zyy+2(py _plj{) —q¥

(7.36)

Mis-measurement of the jet energies is accounted for in the jet energy transfer func-
tion. However, Equation 7.36 gives an additional constraint between the observed
missing transverse energy and the neutrino momenta, which will be integrated over.

The g, and ¢, components are unknown and thus will be integrated over as well.
They are not arbitrary and indeed are expected to be small. We already used this im-
plicitly when we assumed that ¢,, < ¢.. When the integration over invariant masses
of intermediate W-s and t-s is performed, the solutions for corresponding ¢, , vary
from likely to improbable. To quantify this effect and restrict ¢,, to have “reason-
able” values we introduce “prior” p(g,,g,|I) that summarizes our knowledge about
the momentum of the initial parton system. Naively it can be modeled as Gaussian-

distributed deviation from (0, 0) with appropriately chosen o, . Our expression for
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the matrix element multiplied by the appropriate transfer functions and PDF-s gets
an additional factor — initial transverse momentum prior.

As stated above, the transfer function for missing transverse energy characterizes
the probability to observe a particular value of missing transverse energy given the
expected value according to Equation (7.36), prm”®, Brm? |FBr®, Br”) Naively mod-
eling this conditional probability density as a Gaussian'?, we effectively de-weight the
angular and invariant mass solutions tried by the integration routine that correspond
to the true missing transverse energy which differs from the measured by a large
amount. Thus our desired transfer function will encode the resolution in the unclus-
tered energy, or, which is equivalent, the relation between “ideal” Fp of Equation
(7.36) and the “real” [ , measured in the detector.

The two functions!3, introduced above, are the prior for transverse momentum of
the system distribution and the likelihood function for the measured missing trans-
verse energy, conditional on the “true” missing transverse energy. In order to obtain
the posterior probability (or differential cross-section) it is necessary to integrate over
the variables of ignorance ¢, and ¢,. In the extreme case of a very narrow prior, these

conditions effectively degenerate into constraints, removing two of the integrations.

12in our current analysis we use the following parametrization:

1 m:r _ xT\2 1 my _ Y\2
Sforr = Jono exp (_ r O_QET ) > Nor exp (_(ETU—2ET)> (7.37)

with o = 12.0 GeV.

13Tt should be noted that although the effects of the introduction of these functions may appear
to account for ISR and FSR, it does not, at least in a strict sense. Although one may speculate that
ISR may be considered roughly equivalent to giving the system of initial partons a recoil and FSR
as giving a contribution to mis-measurement of K , the reasoning behind such “intuitive” picture
is not straightforward. First of all, the matrix element used in the calculation does not account for
either. Second, the FSR kicks in before the measurement of final state particle momenta are done
and thus the solutions for ¢, , would give a momentum of t¢ system after recoil from FSR. This in
turn means that the wrong momenta are used in calculation of matrix element for both final and
initial state momenta. This makes our interpretation of the model as a leading order calculation
with probabilistic marginalization over unmeasured quantities the preferred interpretation, i.e. the
effects of ISF and FSR are not fully accounted for by any of the transfer functions.
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7.2 'Tests of the signal differential cross-section

The calculation of the differential cross section describes our understanding of the
physical process of the production of top quark pairs and subsequent top-quark de-
cays. However, to limit computational complexity, we introduced some assumptions

that simplify the model. The most important of these are

e Jet-parton matching: we assume that all jets come from b-quarks, rather than

from initial or final state radiation.
e Jel-parton angles: we assume that jet angles reflect perfectly the parton angles.
e Lepton energy. we assume that lepton energies are perfectly measured.

It is possible to measure the effect of these assumptions by testing our ability to
extract the top mass in different sub-classes of events in which these simplifying

assumptions are broken to increasing degrees.

7.2.1 Parton-level tests

We begin with simulated pp — ¢t events generated with Pythia in which all of the
parton-level information from the hard scattering and subsequent decay is known.
Evaluating the matrix element for these events as a function of top-quark pole mass,
see Figure 7.2, we see the sharp peaks which correspond to the invariant mass of each
of the top quarks in the event. Note that with perfect parton-level information, we
do not need to perform any integration.

Individual events are not very instructive; we wish to probe whether the cal-
culation contains a bias, and whether the error can be accurately estimated from
the shape of the probability distribution derived from a sample of events. We form

pseudo-experiments by constructing the joint probability of ten events, see Figure 7.3.
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Figure 7.2: |M|? as a function of pole mass for four parton-level top quark pair events
with M; = 175 GeV.

Choosing the most probable value as the measured mass and extracting the error from
the shape of the probability distribution should, to the extent that our model is ac-

curate, give us an unbiased measure of the top mass and an accurate error estimate.

7.2.2 Smeared parton-level tests

To probe the integration machinery and numerical kinematics solutions, we use a more
realistic test. First, we smear the energy of the b-quarks with Gaussians (where op =
0.1E,4rton) to produce simple jets. In addition, we disregard the b-quark momentum

and all of the information from the v and ». This simulates the amount of information
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Figure 7.3: An ensemble of pseudo-experiments using perfect information for parton-
level top quark pair events with M; = 175 GeV. The extracted mass is the peak of
the joint probability. As these shapes are not necessarily Gaussian, the positive and

negative errors AM;™ are defined such that [ ]\ZZ tjAAAJZI; P(z|M;) = 0.68.

available in actual events, though the events are significantly cleaner and obey all of
the assumptions listed above.

Figure 7.4 shows four example event probabilities. Figure 7.5 shows that the
extracted measurement from pseudo-experiments of ten events each is unbiased and
that the error is accurate.

The analysis machinery can be applied next to a still more realistic set of events
in which the parton momenta are smeared using the shape of the extracted transfer
functions. These events match in their nature the likelihood calculation that is used by
the method. None of the assumptions are explicitly violated and all the components
of the evaluation machinery are being tested. The results suggest that the machinery
is working as expected and when applied to a set of events that hold all the simplifying

assumptions true a reliable estimate of statistical error is obtained, Table 7.1.
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and the four-momentum information of two neutrinos is ignored.

Sample Jets Leptons Pull Width
Parton Gaussian smeared Perfect 1.04
Parton TF smeared Perfect 0.98

Table 7.1: Demonstration of well-behaved pull distributions in pseudo-experiments
drawn from events which obey assumptions regarding jet and lepton resolution.
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quark pair events where the quark energies are smeared by 10% with M, = 175 GeV
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7.2.3 Tests with simulated events

Events which are measured by the CDF detector are far less ideal than smeared
parton-level events. Occasionally, the direction of the jet deviates from the direction
of the b-quark it originated from. While the lepton energy resolution is very good,
especially for electrons, it is not perfect. In some cases, one of the two leading jets

14 The sample also contains

does not originate from a b-quark, but from radiation
events with secondary leptons from W — 7 decays. We isolate and explore these

effects in that order.

Jet Angle Resolution

In formulation of the differential cross-section, the correspondence between jet and
parton angles are described by a d-function. While the angle resolution is excellent in
comparison to the energy resolution, it is not perfect. Figure 7.6 shows the angular
distance between the parton and the reconstructed jet. This distribution has two
features: the width at small AR shows the angular resolution for matched jets and
partons while the high tail and the overflow bin at AR = 0.7 represent jets which are
not, well matched to b-quarks.

In order to isolate the effect of the jet-angle resolution, a subset of events from a
fully simulated sample with M; = 178 GeV is examined. In this subset the effects of
lepton energy resolution are removed by P#p 9 — Pje < 2 GeV requirement placed on
lepton momenta, where Ph% stands for generator-level, or “true”, value of transverse
momentum, while P is the value of transverse momentum reconstructed from fully
simulated detector response. The effects of incorrect jet-parton matching are to a large
extent taken care of by AR < 0.4 condition. Pseudo-experiments using this subset of

events have a pull width of & 1.1, suggesting that the jet-angle resolution contributes

Mmost frequently from initial state gluon radiation
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Figure 7.6: Angular matching between jets and b-quarks from top decay. The width
of distribution demonstrates the angular resolution. Overflow bin at AR = 0.7 illus-
trates the number of jets with no corresponding b-quark.
~ 10% to the pull width.
When the pseudo-experiments with progressively more strict requirements on AR
are performed the pull width decreases smoothly from ~ 1.1 to ~ 1.0, see Figure 7.7.
In order to further confirm the magnitude of this effect, imperfect jet-angle resolu-

tion is simulated via smearing parton-level events, see Figure 7.8. Pseudo-experiments

drawn from these events show a = 10% increase in pull width, Table 7.2.
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Figure 7.7: Variation of pull-width from pseudo-experiments as a function of the
angular matching requirement between jets and partons.

Sample Jets Jet Angles Leptons Pull Width
FullSim Reco AR < 0.1 AP; <2 GeV 1.00
FullSim Reco AR <04 AP; <2 GeV 1.08
Parton TF smeared Perfect Perfect 0.98
Parton TF smeared Smeared Perfect 1.07

Table 7.2: Pull width affected by the jet angle resolution, in fully reconstructed events
and in artificially smeared parton-level events.
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events.
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Figure 7.9: Left, AP, = P9 — Preco for events with 20 < Pp < 60 GeV. Right,
APy for events with Pp > 60 GeV.

Lepton Resolution

Leptons are well measured by CDF, and the approximation that their energy reso-
lution is ideal is quite reasonable. However, electrons and muons four-momenta are
measured differently. While the energies of electrons at high F; are measured by
the calorimeter with a decent precision, the momenta of muons are measured by the
central tracker, whose resolution at large Pr is distinctly reduced. Figure 7.9 shows
the lepton Pr resolution at low and high Py.

In order to isolate the effect of the imperfect momentum resolution, pseudo-
experiments of fully simulated events with only electrons or only muons were con-
structed. Table 7.3 shows that events with muons have a ~ 10% larger pull width
than events with electrons over a variety of jet requirements.

The magnitude of the effect can be confirmed by smearing lepton energies in
parton-level events. Based on studies presented in [24], a two-level Gaussian smearing
of the P;! is done; the results are shown in Figure 7.10. Table 7.4 shows the pull
width of pseudo-experiments drawn from these events, which confirms that lepton

energy resolution can contribute ~ 10% to the pull width.
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Sample Jets Leptons Pull Width

FullSim AR < 4 ee 1.10
FullSim AR < .4 i 1.25
FullSim All ee 1.26
FullSim All L 1.36
FullSim =2 ee 1.12
FullSim =2 o 1.28
FullSim =2 AR< 4 >171 1.20

Table 7.3: Effect of muon momentum resolution on pull widths, for a variety of jet
requirements. The effect of taus is also described. The “jets = 2” denotes the selection
where only the events with exactly two jets are accepted.

Sample Jets Leptons Pull Width

Parton TF-smeared Perfect Perfect 0.98
Parton TF-smeared Perfect Smeared (less)  1.01
Parton TF-smeared Perfect Smeared (more) 1.10

Table 7.4: Effect on the pull width of smearing lepton energies. The parameters of
“less” and “more” smearing are shown in Figure 7.10

- Less smearing (o = 2.5e-3 GeV™)

More smearing (o = 5e-3 GeV™)

Leptons
Leptons

10?

10?

10

] s
0O 10 20 30 40 50 60 70 80 90 100 10O 10 20 30 40 50 60 70 80 90 100
AP, AP,

Figure 7.10: Lepton momentum are smeared by introducing a random term to the
inverse Pr according to a Gaussian. Left, APy for events with Pr < 60 GeV. Right,
APr for events with Pr > 60 GeV.
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Sample Jets Leptons Pull Width

FullSim All ee 1.26
FullSim AR <04 ee 1.10
FullSim All L 1.36
FullSim AR <04 pp 1.25
FullSim All no T 1.34
FullSim AR <04 nor 1.22
FullSim All All 1.42
FullSim AR <04 Al 1.18

Table 7.5: Increase in pull width due to jets which are unmatched to b-quarks. A
~ 20% effect is seen across lepton types.

Jet-Parton Assignment

As demonstrated by Figure 7.6, there is a significant population of jets which do not
correspond to either b-quark from the top-antitop pair decay. This has a significant
effect on the width of the pull distribution, as these events violate an important
assumption and contain significantly less information about the ¢f event constituents
than events with appropriate topologies. In order to estimate the size of the effect on
the pull width a set of pseudo-experiments using only events where both jets match
well to b-quarks is constructed. Table 7.5 shows that matching requirement decreases
the pull width by ~ 20%, and that this effect is observed for all lepton types.

The initial state radiation, or in other words a situation where radiation from
incoming quark or gluon gives rise to a hard jet, is expected to be the largest source
of jets that do not correspond to a b-quark from tf decay. This effect can be probed
in some detail by studying the correlation between the number of jets in the recon-
structed event, and the Pr of the t¢ system, which is a measure of the total recoil
against initial state radiation. Figure 7.11 demonstrates a strong correlation between
these quantities, suggesting that initial state radiation is the major source of extra

jets in the event.
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Pr Pull Width 2 Matched Jets

All 1.42 70%
0<Pr<10 1.27 80%
10 < Ppr <25 1.42 69%
25 < Pr <50 1.64 49%

Table 7.6: Correlation between increased Pr of the tt system, the pull width from
pseudo-experiments, and the fraction of events with 2 jets from b-quarks.

Further analysis of pseudo-experiments formed using events from different P#
bins show a correlation between the pull width and the recoil energy, see Table 7.6.
Together, these suggest that events with significant initial state radiation give rise to

additional reconstructed jets, which in turn contribute to a wider pull distribution.

Summary

Introduction of the events that are not properly described by our probability expres-
sion into the pseudo-experiments leads to an increased uncertainty of the ensemble
mean. There would be a corresponding increase in the ensemble variance if the prob-
ability expression included the terms that describe these extra deviations. In our case
a proper theoretical description of the events that violate the original assumptions
cannot be easily included in the model. Consequently, the statistical uncertainty
as estimated from any given pseudo-experiment is essentially determined by “good”
events and thus stays the same. In summary, events which are not properly described
result in additional random noise in the ensemble means, while no corresponding in-
crease in estimated statistical uncertainty is happening, which in turn results in wider
pull distributions.

Small deviations of the reconstructed mass from the true mass as well as the
best estimate of the statistical uncertainty can be carefully measured in the simu-

lated events. This approach is deemed reasonable as the reasons for these effects are
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well understood and cannot be easily eliminated by refining the model. We discuss

calibration of the response in Chapter 9.
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Chapter 8

Backgrounds

While the di-lepton sample is fairly clean, it is not a pure sample. The major back-

grounds are:

e Drell-Yan production with two jets (including 7 — 77)

pair production of W bosons with two jets

associated production of W and Z bosons with two jets

production of W with three jets, where one is misreconstructed as a lepton

In order to reduce the effect of these events on the measurement of the mass,
calculations of the differential cross-section for the Z+2jet process, the WW+2jet
process and the W + 3jet processes were performed. Section 8.1 discusses the calcu-
lation of the matrix element using the ALPGEN [25] routine, and the subsequent
sections describe the procedure of integration of the matrix element over the phase

space.
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8.1 Matrix Element calculation with Alpgen

Background processes are different from the signal process in an important way.
While the signal process can be well described using a small number of diagrams
(e.g. top quark pair production), the backgrounds to these events with hard jets typ-
ically require more than an order of magnitude more diagrams to accurately describe
them. Furthermore, there is no closed-form expression for the QCD processes which
dominate this production.

The matrix-element calculation machinery was extracted from a well-known Monte
Carlo event generator which employs effective approximations to estimate the matrix
element. There exists a wide variety of Monte Carlo event generators to choose from.
Recently, generators such as COMPHEP and MADGRAPH have provided generation
based directly on the explicit construction and evaluation of the Feynman diagrams.
These generators offer a transparent and clean interface to the matrix element. How-
ever, in the case of a final state with more than a single jet, the number of diagrams
very quickly becomes unwieldy and the calculation very slow. For this reason, to use
the matrix element evaluation of the ALPGEN [25] generator has been chosen as it

offers the following advantages:

e The ALPHA algorithm, presented in [26-28|, avoids explicit generation and

evaluation of every diagram

e Large, well-studied samples of generated events were available at the time of this
writing and formed the basis of understanding of the experimentally collected

data.

In the next sections, the prescription that has been developed for the evaluation of

the matrix element by adapting a portion of the ALPGEN program is discussed in

lwe acknowledge Daniel Whiteson for substantial constributions to this section
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some detail.

8.2 Interface to Alpgen

The matrix element calculated by ALPGEN is a function of the final and initial
state particles spin, color, flavor as well as momentum. To evaluate the differential
cross section for a single event, a sum over all possible configurations of spins, colors
and flavors must be performed.

As the number of final state particles increases, the number of spin and color
configurations grows quickly. A rigorous sum over each of the possibilities is imprac-
tical and unnecessary, however, as it appears to be possible to approximate the total
sum with a statistical sampling. Figure 8.1 shows the distribution of Aln|M|? in
generated events using sums of a specific number of terms. It is clear that the ma-
trix element calculation is sensitive to the configuration and that it converges fairly
rapidly.

Spin and color configurations are being sampled until the sum has converged,

satisfying the criteria

RMS(|M?)
Mean(|M|2)v/N

where € is the convergence tolerance, set to € = 0.25 for these calculations?.

The calculation of the matrix element is well behaved. As an example, Figure 8.2
shows the variation of |My;;|* with the di-lepton invariant mass. It shows the ex-
pected strong peak at M; = M. Another illustration is provided by Figure 8.3 that

shows the separation between 777 and ¢t samples that is made possible by the above

2the form of the stopping criteria and the e value were chosen such as to provide the best
separation of signal and background at parton level while maintaining reasonable computation load
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evaluation.
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8.3 Drell-Yan : Differential cross-section

The previous section described the evaluation of the matrix element using ALPGEN
routines. This section describes the calculation of the differential cross-section for
Z+2jet production, which requires integration of the matrix element over the phase
space. In this case, the number of constraints from the measurement of the final state
objects reduces the number of integrals to exactly zero.

We use the following notation: pi,ps are the four-momenta of the final state
partons which lead to creation of extra jets, L1, L, are the four-momenta of the final
state leptons, q1, g2 — the four-momenta of incoming partons. The expression for the

differential cross-section of this process is of the form:

1 1 1
do = —
’ ; // (277)12 16 EL1EL2EP1EP2

f(EP17 Ejl) f(Ep27 EJQ) pR12 Sln 01)1 pR22 Sln 0p2

(5(¢p1 - ¢j1) 5(61)1 - Hjl) 5(¢p2 - ¢j2) 5(91)2 - ej )

(8.1)
dpf dOy, déy, dpg dOy, Aoy,
o, @ a5 dqi dgs;
fPDF( Eb:am ) QQ) fl:l’)DF( Ebjam’ QQ) lglgea-uf
o)t
54((11 +qo— Ly — Lo —p1 —p2)L|M|2

A(g"V/s)

In the above expression we set the transverse components of incoming parton mo-
menta to zero. This simplification can be removed if necessary by the method similar
to the one used in derivation of the signal differential cross-section.

Using the same collider approximation as before, without loss of generality, we

z

assume ¢ = ¢ and ¢) = ¢5. Integration over dgi d¢i and t and z parts of the

four-dimensional o-function result in the extra overall factor of 1/2 and the following
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substitution:

@i = = (L7 + L3+ pf +p3) + (LY + LY+ p0 +p9))

(8.2)

z

qo =

N~ N =

(L] + L5 + pi + p3) — (LY + L3 + p{ + 1))

Evaluation of the integrals over d®p, d®p, is performed in spherical coordinates, in
order to take advantage of the angular o-functions. After the angular integrations, all
®p, , and 0, , are replaced by corresponding jet angles. Only two integrals and two
d-functions remain — 6(LF + LE + p¥ + p%) 6(LY + LY + p¥ + py) dplt dplt. This leads

to the following system of equations for radial components of the quarks:

(Sin 9]'1 sin ¢j1) (Sin sz sin ¢j2) p]iq | @ Qa2 p{% .
(Sin 9]'1 COS ¢j1) (Sill 0]'2 COS ¢j2) pg ao1 Q99 p§
(8.3)
e\ _ (@ e
e (L1 +L3) [+¢']

where the terms in square brackets have to be added if we allow non-zero transverse
momenta of the incoming partons. As in the signal case, the expressions inside the
O-functions are some functions of the integration variables. The Jacobian factor is
required. Using (7.17), we write down this factor as:

ofi|
61']' N

[/l =

B (sin 9j1 sin ¢j1) (Sin 9]'2 sin ¢j2) o (84)

(sinfj, cos¢j) (siné;, cosg,,)

= sin0;, sin b, sin(¢;, — ¢j,)
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The entire expression for the differential cross-section:

1 1 1
(277-) 1216 ELI EL2 Epl Ep2

o, a q5
(5. Q) (52— @)1

do =

2 2 . .
f(Epla Ejl)f(Epzv Ejz) pf pg S 9]'1 Sin 9j2

Lt MP (8.5)

4(qf"/s) 2

The flux factor 4(¢f™y/s) can be rewritten as 2|¢7¢5|. With some trivial trigonometrical

transformations:

1 1 fPDF(EZ:am’QQ)fPDF( - ’Q2) |-/\/l|2 f(Ep17Ej1)f(Epijz)p{ﬂpgz

do = - Evean :
(2m)® 162 Er, Er, By Ep, 2 g7 g5 ]| sin(j, — ¢j,)]
(8.6)
and the p, plt are the solutions of (8.3):
C1G99 — CoQ a11Co — A91C
{{ _ G102 2012 pg _ 0 21C1 (8.7)
A11Q22 — A12A21 a11a22 — A12021
with
cr = —(L7 + L3) [+4q"]
co=—(L{+13)  [+¢']
(6111@22 — a12a21) = sin 0, sin 0,, Sin(¢p1 - ¢p2) (8'8)

(c1a99 — caar2) = sin b, (LY + LY)sin ¢, — (L] + L%) cos ¢,, )

(CLHCQ — CL2101) = sin 0p1 ((LT -+ Lg) COS ¢p2 — (Lgf + Lg) sin ¢p2)

where, as before, the terms in square brackets should be included if non-zero incoming

transverse momentum is considered.
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Figure 8.4: Evaluation of the Zjj probability for fully reconstructed Z and tt events,
after selection is applied.
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8.3.1 Performance

We evaluate the Zj7 probability on events which have passed the final dilepton selec-
tions 3. The imperfect detector response degrades our ability to separate the signal
from the background events, and the event selection sculpts both sub-samples so that
they are nearly identical kinematically. However, there is still visible discrimination
between the Z events and the other constituents. Figure 8.4 shows the distribution

of the natural logarithm of the Zjj probability densities.

3refer to the Chapter 4 and Appendix A for the description of the event selection
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8.4 Cross section for W pair production

The calculation of the differential cross-section for WW 42 jets production requires
integration of the matrix element over the phase space; it shares quite a few similarities
with the ¢¢ and Drell-Yan calculations, presented in Chapter 7 and Section 8.3.%

An ALPGEN matrix element is used for the calculation, as was done for Drell-Yan.
Unlike the latter, the presence of two neutrinos in the events results in six integrals

to be evaluated.

8.4.1 Differential cross section and notation

We use the following notation: Lq, L, are the measured and ¢4, {5 are the parton-level
four-momenta of the final state leptons, 11, v, are the four-momenta of the final state
neutrinos, pi, po are the four-momenta of the final state partons that lead to creation
of extra jets and ¢, go are the four-momenta of the incoming partons. The same
set of assumptions made in the signal case about the measured lepton energies, jet
angles, and transverse components of the initial parton energies applies here as well.

The differential cross-section for the process then takes the form:

1 \9
do = (W) //Z |M?(2m)*6% (g1 + g2 — &y — 1 — p1 — b — 13 — 2)
Y]

¢ dg;dg]
5((] ) 5( ) dq dq fPDF(Eb Q ) fPDF(Eb Q ) fflux(qh QQ) Ei 2 (8 9)
d3€1 d3€2 |

830y — Ly) 6*(by — Ly)

f(EP17E )f(EpwE )

d3p1 d3p2 d31/1 d3V2
2E, 2k, 2E, 2E,,

25y, 2E,,
5(9171 - 9]'1) 5(91)2 - 9j2) 5(¢p1 - ¢j1) 5(¢p2 - ¢j2)

Here, 0*(¢;—L;), 6(0,, —0;,), and 6(¢,, — ¢;,) enforce the assumptions about lepton

41 would like to acknowledge Bo Jayatilaka for substantial contributions to the material covered
in this section
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momenta and jet angles, as in Equation 7.6. The same collider approximation as in
the signal case, ¢, , < ¢. and massless incoming partons, leads to ¢ = ¢7. Again, the
0-function is g, and ¢, can be refined into smoother distributions of incoming parton
momenta. This would not complicate the formalism substantially, but considerably

more computing resources would be required.

8.4.2 Phase space transformation and integration

Following a prescription analogous to the one developed for the signal case®, a phase-
space transformation is performed in order to make the integration over parton-level
variables more efficient. Invariant masses of intermediate particles are introduced,
in this case, the two W-bosons, using the procedure described in Appendix B. The
integration method is quite similar to the signal case as described in Chapter 7. After
integrating over d*¢; and the d-functions introduced by the phase-space transforma-
tion, we express all the parton variables except the neutrino momenta in spherical

coordinates, integrate over the parton angles and are left with:

_ (MP (1N g 6 1
o= [(en 555 (k) S @) B @)

beam

(L1 +v1+p1)s+ (Lot+va+p2)s) 0 (L1411 +p1)y + (Lo + 12+ p2)y)

5 ((Ll + V1)2 — Mng) (5 ((L2 + V2)2 — M%@)
pigpsinb, dpir papsinby,dpsp dPvy vy 1 1

2F 2k, 2E, 2E, 2Er, 2Fr,

p1

ferux(i,63) f(Epy, Bjy) [(Epy. Ejy) My, dMg,

(8.10)

At this point only the integration over the six neutrino momentum components

Srefer to Chapter 7
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remains to be done. Unlike the signal case, we only have two intermediate state
invariant masses to integrate over. Thus, we must retain two neutrino momentum
components as integration variables. We chose the z-components in order to make
the expressions symmetric and simplify the algebra. We are then left with 6 integra-
tions: 2 over the neutrino components vy, and vs., 2 over the absolute magnitudes
of the momenta of the partons which hadronized into jets piz and psz°, and 2 over
the assumed invariant masses of the W-bosons my, and my,. A proper Jacobian
term (from Equation 7.17) as well as solutions for the remaining four neutrino mo-
mentum components in terms of either known quantities or the integration variables

are required to complete the evaluation.

8.4.3 Neutrino solutions

The system of equations for neutrino momenta for W pairs is the following:

(L1 + I/1)2 = MI%V1
(Lo 20" = My, (8.11)
(Li+vi+p),+(Le+1va+ps), =0

(L1 +1n +p1)y + (La + vy +p2)y =0

The need to solve for only four of the six neutrino components makes the derivation

of neutrino solutions simpler than in the signal case. We define:

Qx = _le - L2z — P1z — P2z
(8.12)

Qy = _Lly - L2y — D1y — P2y

Then, using the last two equations in (8.11), we make the substitutions vy, =

6these can be also looked at as radial components of the parton three-momenta
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@z — 1z and 1oy, = @, — vy, in the first two equations. We expand the first two
equations in (8.11) and derive two coupled quadratic equations in terms of vy, and

Vo, that are of the form:

2 2
a1Vy, + agloglry + asvy, + aslo, + asvyy, + ag =0

(8.13)
bll/gy + bovog vy + b3l/%x + by + bsviy +bg = 0

The two coupled equations are then converted to a single fourth order polynomial
which can be solved numerically using the Sturm Sequence technique [29]. Alterna-

tively, an analytical solution similar to the one shown in Appendix D can be employed.

8.4.4 Jacobian factor

The Jacobian factor that appears from integrations over neutrino momenta compo-

nents has the form:

dfi
sl o
Ov(12)(a,0,2)
The f; are the functions of neutrino momenta that occur inside d-functions:
Sfr= (L1 +v1+p1)s+ (L2 + 12 + p2)s)
Jo= (L1 + 11+ p1)y + (Lo + 12+ p2)y)
fs = (L1 +1)* = My,
(8.15)

Ji= ((L2 +1g)% — ng@)
f5 = V12
fﬁ = Vo,
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The determinant of the Jacobian has the form:

10 Jiw 0 00
01 Jy 0 00
10 0 Ju 00
01 0 Jy 00
00 0 0 10
00 0 0 01

This evaluates to:

J = |J3yJ4m - J3mJ4y|

Where:
Ty = aaf?) B 2Lv1,
VeV v
JSy - §f3 . 2L1V1y
Vs iR v,
Ju — gfs _ 2LYva,
R R
Ty — 0fs _ 2L8V2y

Ovs 2 2 2
Y le+yly+ylz
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8.4.5 Final integral

The Jacobian factor is evaluated after neutrino solutions are found and a final ex-

pression for the unnormalized probability for WW+2 jets events becomes:

= - ( ) //Z | MI* pipsinby, dpin o sin O, dpor
dx  \(2m 2 2E, 2,
I dVldezzprF( C] Q ) fPDF( an)
b, B, B By, Frooan Ebea.m

fﬂHX(qqug)f(Epl: Ejl) f(Ep27 E ) MW1 MW2 dMWl dMWQ

(8.18)

This 6-dimensional integral is very similar to the one obtained in the signal case.

It is evaluated over the parton momenta, the W boson invariant masses, and the

neutrino momenta z components to obtain the differential cross-section.

over 1, j stands for the sum over incoming parton flavors.
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8.4.6 Performance

The ALPGEN W W jj matrix element is shown in Figure 8.5 evaluated over Monte Carlo
generated parton-level W jj and tt events. We also evaluate the W jj probability
on simulated events that have passed final dilepton selections for the DIL sample”.
As with the Zjj case, the event selection accepts the background events which are
kinematically very similar to t¢. There is still, however, visible discrimination between
WW 355 events and ¢t events using the WWjj probability calculation, as seen in
Figure 8.6.

15 ‘2‘20
In M

Figure 8.5: Evaluation of the squared matrix element for pp — WW (— lviv) + 2jets
for parton-level tt and WW + 2p events.

"sample composition described in Chapter 4

107



0.22 R EEEEEEEE S A R
0.2
0.18F
0.16
0.14
0.12
0.1
0.08
0.06
0.04
0.02

—
—*

-50 45 -40 -35 -30 -25 -20 -15 -10 -5 O

In[ do(Wjj)/dx ]

Figure 8.6: Evaluation of the WWjj probability for WW and tt events in fully
simulated events, after the signal selection cuts have been applied.
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8.5 Modeling of backgrounds with fake leptons

Modeling of events with a fake lepton presents a particular challenge, as they do not
correspond simply to a particular physical process.®

These events enter into the sample when a jet fakes a lepton signature, most
typically an electron. As the rate at which jets fake leptons is very small, we expect

the vast majority of the fake events to have a single real lepton and three jets. Events

of this category are typically produced via the process

pp — Wjjj — lvjjj
where the neutrino escapes without detection.

Using this process as the basis for our model, we write

Pfake = PWjjj(jlan; I, [12 - j3]) + PWjjj(jlaj27 [ll - ]'3}, lz)

where we sum over the possibilities that either lepton is a fake originating from a jet.

Calculation of Pyyj;; follows the style of the other probability calculations above.

8.5.1 Wjjj: differential cross section

Calculation of the differential cross-section for W+3jet production requires integra-
tion of the matrix element over the phase space. In this case, the number of constraints
from the measurement of the final state objects reduces the number of integrals to
four.

We use the following notation: pi,ps, ps are the four-momenta of the final state

partons which lead to creation of extra jets, L is the measured four-momentum of the

81 would like to acknowledge Daniel Whiteson for substantial contributions to the material covered
in this section
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final state lepton, v the four-momentum of the final state neutrino and ¢, ¢ — the
four-momenta of incoming partons. The expression for the differential cross-section

of this process is of the form:

1 1 1
-5 [l
%: (2m) 232 EL B, By, E,, E,,
f(Epla E ) f(Ep27 E ) f(Epe7 E ) pR12 sin 9[11 pR22 sin 0;02 pR32 sin Hpg
5(¢P1 - d)jl) 5((9171 - 9]'1) 5(¢p2 - ¢j2) 6((9102 - 9j2> 5(¢P3 ¢J3) ( p3 (9]'3)

dpm dﬁpl doy, dpra db,, Aoy, dprs db,, do,,d*v

(8.19)

q dqi dg;
fPDF( Ebeam Q2) fPDF( Ebzam’ QQ) Ealgeanf
(2m)*

§*"(q1 + g2 — L1 — p1 — pa — p3) (cm\[)|M|2

In the above expression we set the transverse components of incoming parton mo-
menta to zero. This simplification can be removed if necessary by the method similar
to one used in derivation of the signal differential cross-section.

Using the same collider approximation as before, without the loss of generality
¢) = ¢} and ¢) = ¢;. Integration over d¢f dgi and t and z parts of the four-dimensional

d-function result in the extra factor of 1/2 and the following substitution:

(L% +p7 +p5 +p5) + (L + pY + p5 + 13))
(8.20)

z

@ == ((L* 4+ pi +p5 +p3) — (L +p) +p3 +19))

wlr—‘wlr—*

Evaluation of the integrals over dp; d®p, d®ps is performed in spherical coordi-
nates, in order to take advantage of the angular o-functions. After the angular inte-

grations, all ¢,, ,, and 6, ,, are replaced by corresponding jet angles.
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The entire expression for the differential cross-section:

do — Z / / dpr, dpr,dpr,dv,
32 27r 12 ELEI,EplEmEps
f(Eplv E )f(Epzv E )f(Ep3, E )pR12pR22pR32 sin 9j1 sin 9j2 sin 9j3 (8'21)

(2m)* [MJ?
4(qf"/s) 2

e Q) e (. 0

where the sum is over possible incoming parton flavors. The flux factor 4(¢{™\/s) can

be rewritten as 2|q¢iq3|.

8.5.2 Performance

The matrix element for Wjjj evaluated over parton-level events is shown in Fig-
ure 8.7. It is able to separate tt events from Wjjj events quite well. In Figure 8.8,
we have discarded the neutrino information, Gaussian smeared the parton-level quan-
tities and performed the four-dimensional integration using Gaussian transfer func-
tions.

Finally, we evaluate the full fake probability, applying the integration and transfer
functions as above. We employ a sample of events from the data which are candidates

to produce a fake lepton. Figure 8.9 shows the resulting distributions.
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Figure 8.7: Evaluation of the squared matrix element for pp — W(— Ilv) + 3jets for
parton-level ¢t and W + 3p events.
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Figure 8.8: Evaluation of the Wjjj probability for Gaussian smeared Wjjj and tt
events, neutrino information discarded.
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Figure 8.9: Evaluation of the W77 probability for fully simulated ¢¢ and events from
the data which are candidates to produce a fake lepton.
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Chapter 9

Calibration of Response and Error

Estimate

The mass extraction technique used in this analysis works well for the class of the
events that are described by the model of top quark pair production and decay which
was discussed in Chapter 7. It measures the mass without significant bias and with
a well-estimated error®.

The events in the data sample, however, are not restricted to this class of events.
The response of the method is slightly degraded by the presence of poorly recon-
structed jets, mismatched? jets, events with secondary leptons from W — 7 decays
and background processes. Some of the factors that impair the method’s ability to
extract the true value of mass can be accounted for by proper modeling of correspond-
ing effects, for example by introducing background probabilities. However, some of
the effects not accounted for in our simple model (e.g. initial and final state radiation,

W — 71 decay) cannot be easily treated by modifications to the likelihood expression.

Lrefer to Section 7.2.3
2the case where neither of the two jets with highest Ep is a direct product of the parton being
considered in the matrix element evaluation
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Thus, the expression for the posterior probability distribution of top-quark mass that
is used in this analysis lacks terms for hard to model components. We can, however,
explicitly correct for the incomplete nature of the method by measuring any system-
atic shift in the extracted value of the top quark mass and by increasing the estimated
statistical uncertainty of the measurement to agree with the deviations between ex-
tracted mass and the true mass observed in a large ensemble of identical experiments.
In this Chapter, the response of the method is measured and a calibration correction
is derived. We consider sequentially the cases of signal only, signal and background
events present but with only signal accounted for in the likelihood expression, and
signal and background present where the latter is also accounted for, as best one can

do, in the likelihood expression.

9.1 Signal only tests with P,

We first measure the response of the method using only signal events. The number
of events in each pseudo-experiment is a random number, Poisson distributed with
expected number of events shown in Table 4.1. The probability expression in this case
includes only the term that describes leading order ¢t production. Figure 9.1 shows
that the response is linear, with a slope very close to 1.0. The statistical uncertainty
is underestimated due to approximations made in the calculation of the likelihood,
as discussed in detail in Chapter 7.

Figure 9.2 shows the residual® and pull* parameters.

3 DeltaM, = M@¥tracted _ pp,
4 Mtextracted — M,

Oestimated
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9.2 Signal and background tests with P,

At this stage we construct pseudo-experiments that follow the expected sample com-
position shown Table 4.1, while still using only the signal term in the probability
expression. Figure 9.3 shows that the performance degrades significantly as the back-
ground smears out the top mass information. The degradation is manifested by the
decrease in the slope of the response. The reasons for the decrease in sensitivity are
quite obvious — none of the added backgrounds are properly described by signal-only

probability expression.

9.3 Signal and background tests with P, and P,

When the description of the background processes in the form of P, is added to the
likelihood machinery, a significant amount of sensitivity to the top mass is recov-
ered. It should be noted that the only backgrounds that are described are Z-boson
production with two additional jets, W-boson pair production and W boson with
three jets with one of the jets being mis-identified as a lepton. While the inclusion
of the background probabilities improves the description of the events in the pseudo-
experiments, it does not return it to the level of the signal-only case, for two reasons.
First, the background probabilities are an imperfect description of the background
events, due the the same assumptions made during the formulation of the signal prob-
ability. Second, the generated pseudo-experiments contain backgrounds that are not
described by any probability term (Z — 77 and W Z with extra jets).

Figure 9.4 shows the response with the full probability expression. Table 9.1 gives
the estimated statistical error as each background is added to the pseudo-experiments
and likelihood. Again, the introduction of background events increases the estimated
statistical uncertainty, while including the background terms into the probability
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Experiments Likelihood Response slope  Mass RMS
Signal Signal 1.00  8.51 GeV
Signal+7 Signal 0.90  9.82 GeV
Signal+Z Signal+Z 0.95  8.62 GeV
Signal+Fakes Signal 0.83  9.11 GeV
Signal+Fakes Signal+Fake 0.94  8.47 GeV
Signal+WW Signal 0.93  8.84 GeV
Signal+WW Signal+WW 094  8.70 GeV
Signal4+7Z+WW+Fakes  Signal 0.74 11.07 GeV
Signal+7Z+WW+Fakes  Signal+Z+WW-+Fakes 0.86  9.41 GeV
Signal+Bg Signal 0.72 11.17 GeV
Signal+Bg Signal+7Z+WW 0.84 9.50 GeV

Table 9.1: Degradation of the error as background events are added to the simulated
sample, and recovery of the sensitivity as the background probability is included.
These estimates are obtained for the expected sample composition given by Table 4.1

expression we are able to recover part of the sensitivity. It should be noted that the
slope of the response curve also improves when the background terms are included in

the likelihood expression.

9.4 Derivation of response correction

The necessary bias correction is based on the numbers presented in Figure 9.4. We

transform the raw mass into the corrected mass using a linear correction of the form:
M; = 178.0 GeV + (M — M) /s (9.1)

where My = 177.2+0.21 and s = 0.8440.02. The statistical error on the parameters of

this transformation is propagated to a systematic error in the final analysis. Figure 9.6
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Experiments Likelihood Fitted Pull Width
Sig Sig 1.40 £ 0.05
Sig+7Z Sig+7Z 1.37 £ 0.05
Sig+Z+WW S+7Z+WW 1.38 £ 0.06
Sig+7Z+WW-+Fakes S+Z+WW+F 1.44 4+ 0.05
Sig+Z+WW-+Fakes+7 — 77 S+Z+WW-+F 1.46 +0.05
Sig+Z+WW+Fakes+Z7Z — 77+ WZ  S+Z+WW+F 1.49 +£0.05

Table 9.2: Effect on the fitted pull of modeled and unmodeled backgrounds.

Sample Fitted Pull Width
Herwig 1.49 £+ 0.05
Pythia 1.43 £+ 0.06
FSR less 1.44 4+ 0.05
FSR more 1.44 + 0.06
ISR less 1.46 +0.05
ISR more 1.4540.05

Table 9.3: Effect on the fitted pull variation of the signal sample

shows residuals and pull parameters of the slope-corrected and error-corrected top

quark mass.

9.5 Derivation of error correction

The background events that are not taken into account by our likelihood expression
contribute to the underestimate of the error. In Figure 9.5, we can see the effect on
the extracted mass, measured error and fitted pull width as a function of the number
of background events in pseudo-experiments. If the background probability is not
included, the unmodeled background will increase the width of the extracted mass
distribution but not the predicted error, resulting in an underestimate of the actual
error and a larger pull width. When the background probability is included, the width

of the extracted mass is relatively flat, and the result pull widths are stable.
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In Table 9.2, we can see the effect on the fitted pull width in pseudo-experiments
with successively increased backgrounds. Backgrounds for which we have a model
do not increase the pull width, while unmodeled backgrounds do widen the pull.
In Table 9.3, we verify that the final pull width is not very sensitive to reasonable
changes in the underlying model.

We derive a correction factor for the expected error in the mass by fitting the pull

width as a function of mass with a constant function, see Figure 9.6. We measure

Serror = 1.51

and apply this to all samples independent of M;. The final corrected and scaled
performance is illustrated by Figure 9.6 that shows pull width as a function of M,
before and after the error scaling. Figure 9.7 shows the distributions of ensemble
means, errors and pull for the sample with M; = 178 GeV after the slope correction

and the error estimate scaling has been applied.
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Figure 9.1: Top, response for pseudo-experiments of signal events, using only P, to
extract the mass. Bottom, width of pull distributions.
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kept constant. The statistical uncertainty is estimated from a width of the probabil-
ity distribution for a given pseudo-experiment. The mean is taken over all generated
pseudo-experiments.
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Chapter 10

Systematics

The measurement presented in this thesis relies on the Monte Carlo simulated events
in order to correct for various small systematic shifts. The majority of systematic
errors, therefore, come from the uncertainty in how well the simulation is modeling
the data. The correction prescription was presented in Chapter 9 together with a
list of effects responsible for the introduction of such corrections. In this Chapter,
the facets of the simulation which may not accurately describe the observed data are
summarized and the sensitivity of the measurement is estimated.

The strategy used to evaluate the impact of such deviations consists of the fol-
lowing steps: first, pseudo-experiments are performed using a pool of events in which
a certain parameter of the dataset has been modified; second, the average measured
mass is extracted and the typical shift is determined and attributed to the introduced
differences. In some cases, the magnitude of the shift is smaller than its assigned sta-
tistical error. For these effects the magnitude of the statistical error on the shift is

taken as a systematic uncertainty:.
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10.1 Jet response

The measured energy of jets is calibrated using simulated and data events. Due to
some uncertainty associated with the underlying hadronization process and limited
data statistics, there is an uncertainty in the correction which needs to be applied to
the raw jet energy.

The jet energy scale is varied in simulated events within the uncertainty and the

difference in extracted top mass is measured.

Sample | Measured M, for M} = 178.0

JES +1o 181.14 £ 1.20 GeV
JES —1o 176.01 £ 1.20 GeV

Half of the difference between the two measurements, Ajpg = 2.53 GeV, is taken as
the estimate of the corresponding systematic uncertainty.

The jet energy scale calibration is subdivided into several correction “levels” that
account for different effects of hadronization and detector response!. The following
table presents the values obtained for the top mass by changing the scale at every

level by +0 and recording AM;: results in:

Level +o —o | AM,;/2

Relative 179.48 | 177.97 0.75
Multiple Interactions | 178.46 | 178.46 0.00
Absolute Correction | 180.02 | 177.85 1.09

Underlying event 179.4 | 178.75 0.32
Out-of-Cone 181.14 | 176.83 2.16
Splash-out 179.3 | 178.71 0.29

Yfor a description of jet energy scale correction levels refer to Section 3.2.4
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Combination of the above uncertainties in quadrature results in the estimate of the
total uncertainty in the top mass, due to uncertainties in the jet energy scale, of
2.57 GeV. This is in excellent agreement with the value deduced by an overall change
in the energy scale.

The jet energy scale and its systematic errors are derived primarily for events
with light quark and gluon jets. Studies [30] have demonstrated that in lepton+jets
events, the b-jet energy scale may be misestimated by 0.6%. For comparison, we have
measured that moving b-jet energy scale up by 1% changes the extracted mass by

0.8 GeV. Thus, we assign an additional uncertainty of 0.48 GeV.

10.2 Generator

We measure the difference in our extracted mass when using events simulated with

PyTHIA and with HERWIG Monte Carlo event generators.

Sample | Measured M, for M} = 178.0

Herwig 178.2 £ 0.52 GeV

Pythia 178.5 £ 0.64 GeV

We take the difference between the two measurements, Age, = 0.2 £ 0.8 GeV.

10.3 Response calibration

The final corrected mass estimate depends on the parameters of the response curve?.

Uncertainty in these translates directly into uncertainty in our mass measurement.

2refer to Section 9.4
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We vary the response parameters within the statistical errors of the fit, and measure

the difference in the extracted mass.

Variation of (offset,slope)

Sample (+0,+0) (—0,—0) (+0,—0) (—0,+0)

M, =170 171.7 171.9 171.4 172.2
M, =178 178.0 178.5 178.0 178.5
M, =185 183.4 184.1 183.6 183.9

In order to be conservative, we take half of the difference between the pair with the

largest variation, Apges, = 0.4 GeV.

10.4 Sample composition

A knowledge of the expected signal and background composition of the sample is
required in order to construct pseudo-experiments from which the response curve
is extracted. Given the response curve, the difference in the mean extracted mass
of an ensemble of pseudo-experiments can be measured by varying the background
composition within the quoted uncertainties. Note that the uncertainty in the number
of expected tt events includes, and is dominated by, the theoretical uncertainty in the

cross-section of 10%.
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Varied Sample +o —o| A
tt 178.1 178.4 | 0.3
Fakes 178.0 17721 0.4
Z 1773 177.9 | 0.3
Ww 1775 178.1 | 0.3
wWZ 178.1 177.9 ] 0.2
Z =TT 178.1 177.6 | 0.3

These results indicate that we are not strongly sensitive to the background compo-

sition. The size of the tf uncertainty is taken as a systematic error, Agampre = 0.3 GeV.

10.5 PDF uncertainties and o,

To estimate the error due to the uncertainties in the Parton Distribution Functions
(PDFs), we use an event reweighting procedure described in [31]. The uncertainties
in global PDF fit parameters produce an uncertainty in the measured quantities and
a proper propagation prescription is presented in [32]. The eigenvectors in the space
of the PDF fit parameters are obtained by diagonalization of the PDF fit y? Hessian
matrix in the neighborhood of the global minimum. The main idea of the reweighting
prescription is to avoid generating disjoint Monte Carlo samples for different sets of
eigenvectors in question, but rather compute the corresponding event weights and
build the pseudo-experiments appropriately, with sampling based on these weights.
The Pythia sample was reweighted according to 20 sets of positive and negative
eigenvectors and pseudo-experiments were drawn such that events with higher weight
were more likely to be chosen for a given pseudo-experiment. Figure 10.1 shows half

the difference between the positive and negative eigenvectors. The total error added
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Figure 10.1: Difference in extracted mass between the positive and negative PDF
eigenvectors for a Pythia sample.

in quadrature is Appr = 0.53 GeV.
In addition, we compare samples with different PDFs, CTEQ6L and MRST72 and

confirm that their central values agree well.

Sample M,

Pythia, CTEQ5L  178.5 £ 0.64 GeV
Pythia, MRST72  178.6 & 0.59 GeV
Pythia, MRST75 178.3 £ 0.59 GeV

The two samples MRST72 and MRST75 use different values of a, to calculate
the PDFs. The difference in these two provides a measure of our sensitivity to the

uncertainty in agz. We estimate our systematic errors due to variation of ag to be

A,. = 0.25 £ 0.83 GeV.
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10.6 Radiation of additional gluons

Our model does not contain any description of initial (ISR) or final (FSR) state
radiation of gluons, which may contribute significantly to the fraction of mismeasured
events. The rate of initial state radiation can be well studied in Z+jet events, as there
is no final state radiation. The radiation is found to depend smoothly on the energy
transfer [33], and can be examined over a broad range of energies, extending up to
the range of tf production. To measure the uncertainty due to imperfect knowledge
of the rate of radiation, we examine the measured top mass in samples where the the
simulation parameters are varied by very conservative amounts. Final state radiation

can be probed in the same manner, as it is described by the same showering algorithm,

Sample M,

Pythia 178.1 £0.70 GeV
Pythia, ISR less 178.0 £ 0.74 GeV
Pythia, ISR more 178.5 4+ 0.65 GeV
Pythia, FSR less  179.4 + 0.86 GeV
Pythia, FSR more 178.0 +0.62 GeV

The entries in the table labeled less and more correspond to the simulation parameters
with decreased and increased gluon radiation respectively. Therefore, the systematic
error due to modeling of radiation is estimated to be A;sp = 0.24 £ 0.49 GeV, and
Apsr = 0.66 £ 0.53 GeV.

10.7 Gluon fusion contribution to ¢t production

The matrix element quoted earlier describes the production of t¢ pairs via ¢gq annihi-

lation. At the TeVatron, up to 15% of the ¢t pairs may be produced from gg fusion.
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Our leading-order generators, Pythia and Herwig, contain only = 5% g¢g events. To
estimate our sensitivity to this fraction, we vary the composition from 0 to 15% in

the Herwig sample and determine the effect on the extracted top mass.

gg Fraction M,
0% 177.45 £ 0.85 GeV
5% 177.43 £ 0.85 GeV
15% 177.73 £ 1.27 GeV

we take as a systematic error, Ay, = 0.30 GeV.

10.8 Background statistics

To measure our dependence on the relatively small size of background samples, we
split each background sample into twenty pairs of disjoint sets. We measure the
mass in the M; = 178 GeV sample for each of the disjoint sets and take the root
mean square of the difference between them as an estimate of the error due to having
samples of finite size. This is an estimate of the error due to having samples twice as

small as the samples we use, and so we divide the error by v/2.

Background RMS(AM,)/+/(2.0)

Z 0.67 GeV
Fakes 0.95 GeV
WW 0.35 GeV
WZ 0.11 GeV
4 =TT 0.22 GeV

We take the sum in quadrature, Apgsiar = 1.24 GeV.
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10.9 Background modeling

The modeling of the two largest backgrounds may be imperfect. We estimate the

sensitivity of the method to possible imperfections in these background models.

10.9.1 Drell-Yan

Drell-Yan production is difficult to model well, as it has a large cross-section and a
small acceptance. Since there is no real missing energy due to escaping neutrinos, the
probability to pass the missing energy requirement is small. One might be concerned
whether the modeling of large missing energy on the tail of the distribution is accurate.
Figures 10.3-10.5 show the distribution of missing energy in data and in simulation
for events with two leptons in the Z window®. In each case, the simulation describes
the shape of the events seen in data over a range of missing energy. One would be
particularly concerned if there were a considerable number of data events on the tails.

No such effect is apparent.

Prescription 1

To gauge our sensitivity to events on the tails of the /£, distribution, we vary
the composition of our pseudo-experiments by both enhancing and suppressing the
contribution of events on the tails by giving them different sampling probabilities.

We assign a weight to each event as

3with invariant mass of two leptons, My, having a value close to M.
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VALSS

where ny represents the number of events further out on the tail of the missing

w_=1-—

energy distribution than the given event. The event with the largest missing energy
will receive weights (wy = 2,wy = l,w_ = 0). Thus three samples of pseudo-
experiments are constructed, two of which have enhanced or suppressed tails of the

missing transverse energy distribution, and the extracted masses are:

Weights M,
wy 177.8 £ 0.4 GeV
Wy 178.1 £ 0.4 GeV
w_ 177.7+ 0.4 GeV

Prescription II

Another prescription to enhance and suppress events with large missing energy assigns
weights to the events proportional to the measured missing energy, and to the inverse

of the measured missing energy:

wy <

U)():l
-1
w- o< K

The event with the largest missing energy will receive large weights for w, and
small weights for w_. This enhances or suppresses the contribution of events on the
tail as well. Note that the overall normalization of the weights is arbitrary, as the

relative weights are used to form pseudo-experiments. The relative weight between
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two events for the w, case is the ratio of their measured missing energy; for the w_

case, it is the inverse.

Weights M,
Wy 177.8 £ 0.4 GeV
W 178.1 £ 0.4 GeV
w_ 177.7£ 0.4 GeV

The net effect is nearly identical for both prescriptions, and within the statistical
error. As demonstrated by the calibration of the response, the mass measurement
suppresses a good portion of contribution of 757 events to the extracted mass. This
fact makes the result less sensitive to variations in the background shape.

We take as the error due to the shape of this background A%, = = 0.4£0.6 GeV.

10.9.2 Fake background

The fake background is very difficult to model well in the simulation, as it is sensitive
to the smallest details of the detector performance. To avoid issues of modeling, the
events which imitate this background are drawn from the data itself. The events
are selected with a looser requirement on one of the leptons in order to accumulate
a sample of fake candidates, and then weighted by the probability that the loose
lepton would pass lepton identification requirements. These weights are calculated as
a function of the Pr and isolation of the fake candidate, and each candidate has its
own weight (w) and error (Aw).

To gauge our sensitivity to the calculation of the fake rates, we vary the fake
rates in two ways. First (a), we enhance those events with large fake probability, to

exaggerate their effect; second (b), we enhance events with small fake probability:
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Mode w>w w<w

a w—w+Aw w—w—Aw

b w—w—Aw w—w+Aw

We study the effect of this weighting on fully realistic* pseudo-experiments:

Weights M,

w, 178.2 4+ 0.4 GeV
default 178.1 £0.4 GeV
Wy 177.6 £ 0.4 GeV

As argued above, the mass measurement is reasonably successful in reducing the
effect of these background events, which makes the extracted mass less sensitive to
their shapes.

We take the difference as our systematic error, Ag‘;@;ﬁ = 0.6 £ 0.6 GeV, and the

Z

total shape error to be Ag‘;l]fl;i and A,

added in quadrature:

AShape = 0.7+ 0.8GeV.

10.10 Summary

The systematic errors measured in the previous sections are summarized in Ta-
ble 10.10. Our total systematic uncertainty is 3.37 GeV.

Two significant digits are only kept in order to ease the combination of this top
quark measurement with other methods and with measurements in other channels

which have both the same sources of systematic uncertainties and the sources unique

4proper expected sample composition, all backgrounds included
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Source Size

Jet Energy Scale 2.53 GeV
B-jet energy scale 0.48 GeV
Generator 0.24 +0.83 GeV
Response uncertainty 0.4 GeV
Sample composition uncertainty 0.3 GeV
Background MC 1.24 GeV
Background modeling 0.7+ 0.8 GeV
ISR modeling 0.24 +0.49 GeV
FSR modeling 0.66 +0.53 GeV
PDFs 0.53 GeV
Qg 0.25 + 0.83 GeV
Gluon fraction 0.3 GeV
Total 3.37 GeV

Table 10.1: Summary of systematic errors

to each method. Whenever the estimate of a systematic uncertainty is less than the

associated uncertainty on that estimate the larger value is quoted.
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Chapter 11

Data

The collected sample of events in [ L = 340pb ! contains 33 candidate dilepton events.

A summary of their kinematic properties can be found in Appendix E, Table E.1.

11.1 Kinematic properties of observed events

We examine the events observed in the data and compare their kinematic properties
to that predicted from the simulation; the latter is the sum of signal and background
contributions. We note first that the number of observed events is slightly higher
than expected, 33 observed to 29 expected. Given the relatively small statistics,
this is not an unlikely Poisson fluctuation. Examining the kinematic distributions in
Appendix E (see Figures E.1-E.9) does not reveal any dramatic variation in shape for
any variable.

In addition, we compare the expected probability distributions of ¢, 777, “Fakes”
and WW 57 probabilities to the observed events, see Figures 11.1-11.4. These quan-
tities are sensitive to all of the kinematic information in the event, and show no

significant shape discrepancies. They all appear consistent with a positive Poisson
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fluctuation in the number of events.
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Figure 11.1: Comparison of the ¢t probability distribution for simulated events, scaled
by expected contribution to the sample composition, to that for observed events.
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events.
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events.
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11.2 Result

The 33 candidate events in the data have individual posterior probabilities as seen in

Figure 11.5. From the joint probability we extract the uncorrected, unscaled mass,

M™ = 166.42 £ 3417 weedled GeV

After applying the response correction and the error scaling, the final result is:

M; = 165.17 £ 6.13 GeV

The posterior probability curve can be seen in Figures 11.6 and 11.7. The er-
ror we measure is not unexpected when one considers the central value; in pseudo-
experiments where M; = 165 GeV, 17% of the errors are smaller than this value, see
Figure 11.8.

Thus, in [ L = 340pb~! of CDF II data, we measure

M; = 165.17 + 6.13(stat.) & 3.37(syst.)GeV

Summary

The method based on the evaluation of the differential cross-section expressed in
terms of the observed quantities was for the first time applied to the dilepton ¢t
decay channel. The Leading Order matrix element was used in the computation.
The measurement of the top quark mass presented in this dissertation, at the time
of this writing, is the most precise in the aforementioned channel. Combined with

other measurements of the top quark mass, both from different decay channels and
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other experiments, this measurement has a non-negligible effect on the world’s best
estimate of the mass.

Several refinements are considered that will be able to improve the technique de-
scribed herein. Among the few are: replacing the Leading Order matrix element
evaluation with Next-to-Leading Order, re-optimization of the sample selection cri-
teria specifically for mass measurement and various improvements to background

modeling.
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Figure 11.5: Posterior probabilities for each of the 33 candidate events. Each includes

the normalized signal and background probabilities.
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Figure 11.6: Posterior probability density as a function of the top pole mass, for the
33 candidate events, with additional granularity in the evaluation of the probability.
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Figure 11.7: Posterior probability density as a function of the top pole mass with a
Gaussian fit overlaid, for the 33 candidate events, with additional granularity in the
evaluation of the probability.
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Figure 11.8: Distribution of expected errors for M; = 165 GeV. The measured error
is shows as the line; 17% of pseudo-experiments yield a smaller error.
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Appendix A

Datasets

The primary datasets used in this analysis are Inclusive Electron Data, Inclusive

Muon Data and Plug Data.

A.1 Inclusive electron sample

This dataset consists of events that are accepted via ELECTRON_CENTRAL_18

trigger path:

o Level 1 : CEM tower with £5" > 8 GeV and XFT track pointing to it with
Pp > 8.34 GeV and at least 10 hits. If ES™ > 14 GeV EM™d/Eem < 0.125 is

required.

e Level 2 : cluster ES™ > 16 GeV and E"/E™ < (0.125 with XFT track of

Pr > 8.34 GeV that matches seed tower

e Level 3 : reconstructed CEM cluster with Fr > 18 GeV and EPad JE < 0.125
with COT track of Pp > 9 GeV matching it. For data after January 2003,

Lgy < 0.4 and |Azcgs| < 8 cm are also required.
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for E5" < 70 GeV

ES > 70 GeV

o5
Ehad / Fem
E/P
Lshr
|Az|
|Az]

> 18 GeV

< 0.125

<4.0if Pr <9 GeV
< 0.3

< 3.0 cm

< 5.0 cm

> 18 GeV
Pr > 15 GeV

< 3.0 cmm
< 5.0 cm

Table A.1: Additional electron cuts.

Further, at least one electron that satisfies relaxed electron cuts, shown in Table A.1,

is required.

A.2 Inclusive muon sample

This dataset consists of the events that are accepted via either MUON_CMUP18 or

MUON_CMX18. The CMUP path includes the following requirements:

o Level 1: XFT track match with both CMU and CMP hits. Track Pr > 4 GeV

and at least 11 hits per axial super layer required

o Level 2: XFT track with Pr > 8 GeV

e Level 3: reconstructed COT muon track linked with CMU and CMP stubs.

COT track Pp > 18 GeV, track match in the transverse plane within 10 cm for

CMU and 30 cm for CMP.

The CMX trigger path is:

e Level 1: XFT track with Pr > 8 GeV and CMX hits on one of the two wire

pair within the same CMX stack

e Level 2: auto-accepted

156




Pr > 18 GeV
Eo, < 3+ max (0;0.014 x (P —100)) GeV
Ehaa < 94 max (0;0.042 x (P — 100)) GeV

|Az|cmu < 5.0 cim
| Az|cmp < 10.0 cm
|Az|cnmx < 20.0 cm

Table A.2: Additional muon identification requirements

e Level 3: reconstructed COT muon track with Pr > 18 GeV with CMX stub.

Match withing 30 cm in transverse plane is required

The relaxed identification cuts which are also applied are presented in Table A.2

A.3 Plug data sample

The plug data sample consists of events that pass PEM_MET trigger path:

e Level 1: PEM tower with EF" > 8 GeV and Eha“d/Ee’“rl < 0.125 and Er >
15 GeV

e Level 2: PEM cluster with Er > 20 GeV and E"™/E, < 0.125 is required

e Level 3: plug cluster with E$™ > 20 GeV and E"d/Eem < (0.125, PEM 3 x 3

fit convergence and K > 20 GeV

No further selections are applied to the plug sample events.

A.4 Dilepton categories

For the purpose of this analysis a CEM or PHX electron as well as a CMUP or CMX
muon are considered well-identified or “tight” if they satisfy all the selection require-

ments presented in the text. In order to increase the acceptance slightly less well iden-
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ee Ky ep
CEM-CEM CMUP-CMUP CEM-CMUP
CEM-NICEM | CMUP-NICMUP | CEM-NICMUP
PHX-CEM CMUP-CMU CEM-CMU
CMUP-NICMU | CEM-NICMU
CMUP-CMP CEM-CMP
CMUP-NICMP CEM-NICMP
CMUP-CMIO CEM-CMIO
CMUP-CMX CEM-CMX
CMUP-NICMX | CEM-NICMX
CMX-NICMUP | CMUP-NICEM
CMX-CMX CMX-NICEM
CMX-NICMX PHX-CMUP
CMX-CMU PHX-NICMUP
CMX-NICMU PHX-CMU
CMX-CMP PHX-NICMU
CMX-NICMP PHX-CMP
CMX-CMIO PHX-NICMP
PHX-CMIO
PHX-CMX
PHX-NICMX
Table A.3: The dilepton event categories

tified types of leptons are introduced, generally called loose, which are non-isolated
central electrons (NICEM), non-isolated CMUP/CMX muons (NICMUP/NICMX),
isolated or non-isolated CMU-only or CMP-only muons (CMU/CMP/NICMU/NICMP)
and stubless muons (CMIO). A lepton type is denoted non-isolated if only the isola-
tion requirement is removed while all the others are satisfied.

The events selected for this analysis are required to have two leptons with at least
one of them to fall into the “tight” category. All the possible event categories that

were included in the DIL dataset are shown in Table A.3
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Appendix B

Invariant mass

When a process has an intermediate particle, the integration over the phase space of
the event can be simplified by splitting the phase space and introducing the integration

over invariant mass of the decay products. We start out with:

P =3 [ ot ®.1)

— the phase space for the process. The following identity is very useful in reducing
number of integrations. For final state particles, all m; are equal to their real masses.
d'p; d’p;

8(p; —m;) @ = @nIE (B.2)

We will try to split phase space by introducing intermediate particle with momentum

q = sz’ (B-3)
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The phase space then takes the form:

n n d3 J d4q
21)*04(P — q — ; — ; B.4
CrPat (P —a= 3 w1 omE 90~ 20 o (B-4)
i=j+1 i=1 i=1
Change from integration over ¢ to integration over M q2 is done by introducing
5(q* — ng) de (B.5)

and integrating over ¢° using equation (B.2). The following equation:

d3p; d4q
(2m)32E; (2m)3

::]:

4P —q— sz 546]—21?1 (¢ — M)

_]+1 i=1

(27)%dM?  (B.6)

becomes:

mn

i &Py d3q
4p_ 40 3 7772
(P —q E pi) 0°(q g_ | | (2r)72E; (2r)2E, (2m)°d M (B.7)

i=j+1 i=1

or to make it look exactly as in [23]:

n n d3p d3q J n d D
54 P—qg— ; ¢ 54 . ; i
( ! i:jz+lp >z:111 (2m)32E; (2m)32E, @ ;p ) g (2m)32E

The point of the exercise in algebra of Dirac delta-functions and integration was to
show that the cited formula from [23] makes sense, and to emphasize the following
fact — additional integration over q three-momentum has to be performed. Which is
natural since introduction of a four-dimensional delta-function results in necessary

integrations over three momentum components and invariant mass.
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Appendix C

Computation

The computer code that implements the analysis technique outlined in this note
relies on numerical computation, namely Monte Carlo integration and finding roots
of a polynomial. Monte Carlo integration was done using GNU Scientific Library [34].
Operations on Lorentz vectors were done using CLHEP library [35-37]. Polynomial
root finder was implemented using code from [29].

The Monte Carlo integration algorithm VEGAS [38] is used to do the multi-
dimensional integrals. Adaptive techniques employed by VEGAS adjust the integra-
tion grid using the histogram projections on the axes'. When doing Monte Carlo

integration with VEGAS one has to be aware of the number of potential pitfalls
e certain choices of integration variables lead to hard to integrate functions.
e ¢rid adjustment rate has to be reduced for “feature-rich” functions.

e integrals of the Breit-Wigner distributions depend on the choice of integration

limits.

Ldetailed description of the algorithm is presented in [39]
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Searching for solutions of the coupled system of quadratic equations or the equiv-

alent fourth-order polynomial we found the following;:

e although the analytic solution of the system can be obtained it was found to

perform slower and be less forgiving with respect to roundoff errors.
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Appendix D

Analytic neutrino solutions

Analytic solutions to the system of bi-quadratic equations (7.27) were found using
Mathematica system.

122+ poy + sy’ + pax + psy +ps = 0 o.1)

@ + gy + @y + G + g5y + g6 = 0

As a first step we find the most generic solution for y(x) with y expressed in terms

of z:
(Psgs) + P3ds — PagsT + P3qu® — P1gsa” (D2)
D543 — D3G5 — P3q2Z + P2qs3T

y =
For this equation on y to be obtainable the 4-th order equation on x must be satisfied:

4 3.3 2 2 1 0
4+ -+ —z+—2x+-—=0 D.
]{?4 ]{?4 k4 ]{?4 ( 3>
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where:

ko = (paas + a6(P2as — Pspsas + P3ds) + pe(—(P5a3as) + ps(as — 2a346)))/ 45
k1 = (2p4p6a; + P2a3qs — 2P3Pedsqs + 2P3Pedads — P2P6q3ds + P3pade+
P3(—2p4qs + 2p3qs — P205)06 — P5(Pet2ds + Padsds + P3dads + P3dads — 2p20306)) /45
ks = (p3q; + a3(—(P2p6d2) + P1a3 + 2P1P6qs + 2papsqa—
P1P5as — Pa(Psae + D2as) + P3ds) + P3(Peds — P5dada — 2pagsds + 2PaGaqs — P2qags+
p1q§ — P29296 — 2p1Q3Q6))/Q§
ks = (p3(p143 — P2020s — 2P10304 + 2P10205) + G3(—(P1Ps5G2) + 2P1D4ags
+ P3qs — P2(Pagz + 1165))) /45

ks = (p1(psgs + q3(—(p242) + P193))) /45
(D.A4)

ko k1 ko

In terms of ag = 2.ar =3t ap =72 and a3 = ﬁ—z the four solutions to the quartic

equation in x are:

(2¥2By) 2 3v/3(8a1 —4azaz+al)
as A \/<—8a2+3a§—%—23f’+ 1A23 3)

x = |-
1,2,3,4 1 :F4\/§:F /G
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with

B, =

\/ —4B3> + B3

1¥2B
\/8a2—|—3a3 fr !

12&0 + CL2 30,1(13)

(27a] — T2a9a + 2a5

165

+ 93T

— 9ajaqas + 27apa3)

(D.6)



Appendix E

Kinematic details of data events

A summary of the kinematic properties of data events are presented in Table E.1.

Distribution of kinematic variables are shown in Figures E.1-E.9.
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Pr [GeV] Er [GeV] Yr
Run Event Lepton 1 Lepton 2 Jet 1 Jet 2 [GeV]

143257 760520 27.29 2096 4397 37.65 92.24
150418 960369 89.48 87.01 30.75  26.15 68.66
150431 368759 28.27 36.19 55.16 33.70 44.07
150435 2896171 45.37 42.88 88.61 44.66 64.71
151978 507773 35.89 34.72 4759 46.48 91.35
153325 599511 37.11 25.23 50.90 34.56 46.47

153374 2276742 72.02 56.87  85.70 55.74 58.14
153447 2643751 87.45 26.30 107.2  21.10  35.52
154654 7344016 59.42 52.86 36.96 20.32 56.66

155114 478702 34.48 28.47 74.07 36.22 89.96
156484 3099305 35.17 34.31 67.29 34.65 7591
160988 385505 26.05 21.02 87.42 57.05 32.19
161633 963604 40.24 26.49 62.71 36.43 60.52

162820 7050764 33.46 26.24 67.37 52.87 95.84
163012 1438203 119.1 98.54 103.4  74.19 80.55
165198 1827962 34.48 23.82 63.86 32.12 1014
165364 592961 47.35 21.59 78.78 47.89 1279
166063 2833132 41.36 38.04  49.80 49.74 64.97
167053 12011678 75.77 50.43 87.26 26.91 28.47
167629 180103 96.57 78.59 78.22 35.74 28.40
167631 2058969 33.97 31.34 38.49 37.88 61.32
168599 2964061 40.76 23.68 36.14  33.55 96.85
177491 3807306 25.94 21.03 67.55 42.98 79.22
178540 2208375 64.42 34.77 9778 42.85 53.59
178738 10340757 |  50.05 21.39 76.26 36.51 88.40
178738 1660363 99.99 60.59  43.30 36.68 90.26
183963 1259645 84.72 27.04 142.5 29.64 63.14

184779 892809 51.10 44.26  46.33 20.07 48.86
185037 2287335 85.73 56.09 66.04 60.53 26.92
185377 103906 76.00 20.87 71.08 26.37 80.59

185594 3002817 80.50 26.08 143.8 2247 199.2
186598 1618142 69.41 35.75 71.00 70.15 66.96
186598 4194951 54.50 36.05 90.70 58.81 42.65

Table E.1: Run and event numbers and selected kinematic quantities for candidate
dilepton events.
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Figure E.1: Transverse momentum (Pr), azimuthal angle (¢) and pseudo-rapidity (7)
of the leading jet.
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Figure E.2: Transverse momentum (Pr), azimuthal angle (¢) and pseudo-rapidity (7)
of the second jet.

Wl tt (5=6.7pb)
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Figure E.3: Transverse momentum (Pr), azimuthal angle (¢) and pseudo-rapidity (7)
of the leading lepton.
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Figure E.4: Transverse momentum (Pr), azimuthal angle (¢) and pseudo-rapidity (n)
of the second lepton.
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Figure E.5: Transverse momentum (Pr), azimuthal angle (¢) and pseudo-rapidity (n)
of the missing transverse energy.

Wl tt (5=6.7pb)
Fakes

Figure E.6: Transverse momentum (Pr), azimuthal angle (¢) and pseudo-rapidity (7)
of the vector sum of the leptons.
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Figure E.7: Difference in transverse momentum (Pr), azimuthal angle (¢) and pseudo-
rapidity (n) of the two leptons.
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Figure E.8: Transverse momentum (Pr), azimuthal angle (¢) and pseudo-rapidity (n)
of the vector sum of the jets.
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Figure E.9: Transverse momentum (Pr), azimuthal angle (¢) and pseudo-rapidity (7)
of the vector sum of both jets and leptons.
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Figure E.10: Distribution of Hyp.

171




Wl tt (5=6.7pb)
Fakes

O . N W B o o N ® ©

Figure E.11: Transverse momentum (Pr), azimuthal angle
(n) of the difference between the leading jets.
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Figure E.12: Transverse momentum (Pr), azimuthal angle (¢) and pseudo-rapidity
(n) of the difference between the leading lepton and the leading jet.
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Figure E.13: Transverse momentum (Pr), azimuthal angle (¢) and pseudo-rapidity
(n) of the difference between the missing energy and the leading jet.
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