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ABSTRACT

We calculate the ux of high-energy (E > 50 GeV) neutrinos from the annihilations

of supermassive (108 GeV < M < 1016 GeV), strongly interacting dark matter parti-

cles in the core of the Sun. These particles, known as \simpzillas," could have been

produced in large quantities towards the end of ination and are a candidate for the

non-baryonic dark matter. If they exist, they can be captured by the Sun, and their

annihilations within will produce a distinctive neutrino signal observable by proposed

Earth-based detectors such as IceCube. We therefore calculate the event rates in a

hypothetical km3 ice detector. We take all signi�cant aspects of neutrino propaga-

tion through matter into account, including charged and neutral current scattering,

oscillations, and charged lepton energy losses.

We �nd, in general, that the neutrino event rate from simpzilla annihilations is

signi�cant and detectable over a large range of simpzilla mass and interaction cross

section, and can be as much as several hundred thousand per year.
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CHAPTER 1

INTRODUCTION

Neutrinos with energies much larger than a GeV are potentially of great utility for

studying the Universe. They are believed to be copiously produced by powerful astro-

physical sources such as active galactic nuclei (AGNs) and gamma ray bursts (GRBs),

and may also result from exotic phenomena such as topological defect decays and dark

matter decays or annihilations. Because neutrinos do not have electromagnetic inter-

actions, they are able to probe ranges of energy and redshift which are inaccessible

to photon astronomy due to interactions of gamma rays with the cosmic microwave

background1. Accurate high-energy neutrino ux measurements could signi�cantly

advance our understanding of astrophysics, and possibly of particle physics beyond

the Standard Model.

High-energy neutrinos may generally be categorized by whether their production is

\top-down" or \bottom-up." In the bottom-up case, they result from the interactions

of particles which have been accelerated to very high energies. For instance, AGN

cores and jets and GRBs could be the sources of cosmic rays with energies above

1020 eV, which have been observed but which no known object in the neighborhood

of our galaxy is capable of producing. Protons in AGNs and GRBs can be excited to

energies of this scale by mechanisms such as �rst-order di�usive shock acceleration,

and their photopionic interactions with the dense radiation �elds typical of these

objects will produce a high-energy neutrino ux. While there are some unresolved

theoretical issues with AGNs and/or GRBs being the sources of the highest energy

cosmic ray primaries2, it would nonetheless be very interesting to observe them with

1At 106 GeV, which is roughly the GUT scale, the gamma ray horizon is less than the radius of

our own galaxy.
2See Halzen (2001) for a good discussion.

1
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a suÆciently powerful neutrino telescope.

In the top-down case, the neutrinos come from the decays or annihilations of

massive non-Standard Model particles. These may include extremely massive GUT

particles produced by the decays of topological defects, which themselves will imme-

diately decay to produce prompt neutrinos at very high energies.

Another top-down possibility is the non-baryonic matter which is believed to ac-

count for approximately one third of the Universe's total density. There are myriad

proposals for what this could be, although the two suggestions which have gotten the

most attention recently are weakly-interacting massive particles known as \wimps"

and a heavier variant called \wimpzillas." Wimps may be the lightest supersymmet-

ric particle, which would be stable and have a mass on the order of the electroweak

symmetry breaking scale (� 250 GeV).

Wimpzillas3, to be discussed in greater detail in the next chapter, can be produced

towards the end of ination by quantum interactions with the inating space-time

(Chung et al. 1998, 1999). Unlike wimps, they are never in thermal equilibrium,

and hence there are no thermodynamic constraints on their masses, which tend to

be on the order of 1010 GeV or more. If they have strong interactions, they can be

captured by the Sun, and their annihilations within will produce a characteristic ux

of high-energy neutrinos.

It is this ux which we have calculated, taking into account all relevant e�ects

of the neutrinos' subsequent propagation to the Sun's surface and the Earth. This

includes neutrino interactions with nucleons, the energy losses of the leptons produced

by charged-current interactions, matter and vacuum avor oscillations, and secondary

3We will use \wimpzillas" as a generic term for all supermassive dark matter particles regardless

of their interactions, and \simpzillas" for that subset which have strong interactions. A simpzilla is

thus a strongly interacting wimpzilla.
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neutrinos produced by � decays. We have found that the ux is well above background

for a large region of parameter space, and should generally be fairly easy to detect

if supermassive, strongly interacting particles comprise a signi�cant fraction of the

dark matter. When neutrino oscillations are included, the avor composition of the

ux at the Earth is roughly 1 : 1 : 1.

With the advent of kilometer-scale neutrino telescopes such as the proposed Ice-

Cube detector in Antarctica, we stand on the threshold of a new era of high-energy

neutrino astronomy. Most models for the di�use neutrino uxes from AGNs, GRBs,

and topological defects predict that the signal emerges from the atmospheric back-

ground only above about 100 TeV; point sources may be observable at lower energies,

but which are still outside the capabilities of past and current detectors. IceCube

should be able to extend this range up to that of the highest-energy cosmic rays,

and will also have the ability to distinguish among di�erent neutrino avors. We will

therefore analyze our calculated uxes from the point of view of their detectability

by an idealized 1 km3 ice �Cerenkov detector.

Note on terminology and notation

Much of the discussion in this paper applies equally to neutrinos and antineutrinos.

In order to avoid unnecessary and potentially confusing duplication, we adopt the

following conventions.

Unless it is speci�cally stated or clear from the context that we are distinguishing

between neutrinos and antineutrinos, we use the word neutrino and the symbols �e,

��, �� to refer to both neutrinos and antineutrinos. We also use the lepton symbols

e, �, � without signs to refer to both leptons and antileptons, as well as the words

muon and tau (though we avoid using electron to refer to a positron).
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When a result is given using this \generic" notation and terminology, it should

be taken as holding for both physically meaningful charge-conjugate expressions. For

example, \W ! e�e" should be read as \W� ! e��e and W+ ! e+��e"; \The ux

of �� is x" = \The ux of �� is x and the ux of ��� is x". (The latter should not be

read as \The ux of �� + ��� is x".)



CHAPTER 2

SUPERMASSIVE DARK MATTER

2.1 Origin

We briey review the production of supermassive dark matter at the end of ination.

We follow the discussion in Peacock (1999).

2.1.1 Ination

Ination is characterized by an exponential time dependence of the scale factor,

a(t) / eHt (2.1)

which arises naturally from the presence of a scalar �eld � (the \inaton") with the

Lagrangian

L =
1

2
@�� @

��� V (�) (2.2)

The corresponding action is S =
R
d4x
p�gL. If we assume an isotropic, homoge-

nous cosmology, then
p�g = a3. By setting ÆS = 0, we obtain the classical equation

of motion for �:

��+ 3H _��r2�+
dV

d�
= 0 (2.3)

The equation of motion for a(t) is the Friedmann equation,

H =
_a

a
=

s
8�

3M2
P l

p
�� (2.4)

5
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where �� �
q

1
2
_�2 + V (�), and we are assuming atness.

Although it is not explicit in (2.3), the � �eld is generally assumed to be coupled

to other matter �elds, which are produced during the post-ination oscillatory phase

(\reheating").

Not all inaton potentials V (�) lead to ination. To produce an exponentially

increasing scale factor of the form (2.1), we must impose the \slow-roll" condition

j��j � j3H _�j;
����dVd�

���� (2.5)

This is equivalent to the conditions

�; � � 1

� � M2
P l

16�

�
V 0

V

�2

� � M2
P l

8�

�
V 00

V

�
(2.6)

If the conditions for ination are met in a particular region, then spatial inho-

mogeneities in � are rapidly redshifted away. Hence, we can in practice ignore the

spatial derivatives in (2.3). Ination typically ends with � executing damped oscil-

lations about a minimum of the potential, assuming that V = 0 there (if not, the

Universe inates forever).

Although ination solves many problems of standard cosmology including atness

and homogeneity, there is no consensus on what the potential V (�) is, or even how to

motivate the existence of the inaton. The simplest form for V (�) is that of a massive

real Klein-Gordon �eld, V (�) = 1
2
m2

��
2. From the observed density perturbation

spectrum of the Universe, it can be shown that m� � 1012 GeV.
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However, this \chaotic" inaton potential, so called because the initial value of

the �eld � is assumed to be randomly distributed before ination, has the drawback

that � must begin at values well above the Planck scale for suÆcient ination1 to

take place. Various modi�cations have been proposed to get around this, for example

\hybrid" ination potentials with two inatons, in which the quantum uctuations of

one cause both of them to roll to a global minimum after the slow-roll period (Linde

1994). The large-�eld problem can also be avoided on inating branes, which causes

the Friedmann equation to be modi�ed by a term quadratic in �� (Maartens et al.

2000).

2.1.2 Wimpzilla production

Although the identity of the inaton and the form of its potential remain a subject of

debate, it has recently been shown that an inationary phase in the early Universe can

very conveniently resolve the dark-matter problem, through the gravitational creation

of very massive particles (Chung et al. 1999, 1998; Kuzmin & Tkachev 1999).

The fundamental mechanism is the interaction of the quantum modes of the X-

particle or wimpzilla �eld, generally considered to be a massive scalar, with the back-

ground space-time. No coupling to the inaton is necessary, although that case has

been studied and wimpzilla production still found to be robust (Chung 1998).

We assume the wimpzilla to be a real scalar particle. The equation of motion for

its �eld is (Chung et al. 2001)

�X + 3H _X � 1

a2
r2X +m2

XX = 0 (2.7)

1To produce a present-day 
 � 1 to the accuracy that has been measured, the scale factor needs

to have expanded by a factor of roughly e60 during ination.
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The interaction with the background spacetime enters through a and H. Note

that there is no direct coupling of X to the inaton.

By simultaneously solving the equations of motion for � (2.3), a (2.4), and X (2.7,

although generally the equivalent di�erential equation for the Fourier modes of X is

solved instead), it can be shown that wimpzillas are abundantly produced for mX in

the vicinity of m�. We refer the reader to the papers cited for more details.

Figure 2.1 shows wimpzilla production for chaotic ination. It has been shown

that wimpzilla production is robust in hybrid and natural ination as well (Chung

et al. 2001). For the rest of this paper, we will assume that wimpzillas (in particular,

strongly-interacting wimpzillas) constitute the entirety of the � 30% of the Universe's

density that is thought to be in the form of non-baryonic matter.

Since wimpzillas are never in thermal equilibrium, their production and present-

day density are not inuenced by whether they have strong, weak, or only gravita-

tional interactions. There are, however, astrophysical arguments against their being

electrically charged2 (Goldman & Nussinov 1989; Gould et al. 1990; Nardi & Roulet

1990).

2.2 Capture by the Sun

Albuquerque et al. (Albuquerque et al. 2001a), whom we follow in this section and

the next, derived the simpzilla capture rate in the Sun as a function of simpzilla

mass mX and interaction cross section �. They assumed that the local dark matter

density of �X � 0:3 GeV=cm3 consists entirely of simpzillas in a Maxwell-Boltzmann

2Charged wimpzillas would collect in neutron stars, form black holes in their cores, and consume

them on a timescale of a few years. The observation of pulsars with ages much greater than this

excludes charged massive particles from being a signi�cant component of the dark matter.
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Figure 2.1 The present-day density fraction of supermassive dark matter as a function
of the dark matter mass mX (which is expressed in units of the inaton mass). The
inaton is assumed to be a massive Klein-Gordon �eld with potential V (�) = 1

2
m2

��
2.

Note the peak at mX � m�. The factors multiplying 
X are: the Hubble parameter
\fudge factor" h � 0:65; the temperature at reheating TRH � 109 GeV; the inaton
mass m� and Planck mass MP l, where m� � 10�6MP l for chaotic ination. The
factors in parentheses are thus of order 1.
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velocity distribution, and that the Sun was many interaction lengths thick (implying

a simpzilla interaction cross section characteristic of the strong force). Extending

the work of Press & Spergel (1985), Gould (1987), and Griest & Seckel (1987), they

calculated the simpzilla capture rate in the Sun. With the de�nitions

q � 20
� mX

1012 GeV

��10�24 cm2

�

��
R�

7� 1010 cm

�2�
2� 1033 g

M�

�

y � 2:5

�
v�

600 km=s

��
uth

240 km=s

�

x � yp
q � 1

(q > 1) (2.8)

the capture rate is

q � 1 :

�C = 1017
�
1 + y2

��1012 GeV
mX

��
uth

240 km=s

��
R�

7� 1010 cm

�2

[s�1]

q > 1 :

�C = 1017
h
1 + y2 � e�x

2 �
1 + y2 + x2

�i�1012 GeV
mX

��
uth

240 km=s

�

�
�

R�
7� 1010 cm

�2

[s�1] (2.9)

Here, uth is the velocity dispersion in the Maxwell-Boltzmann distribution, which

for a spherical dark matter halo is generally taken to be in the range of 300 km=s

(Press & Spergel 1985), and v� is the escape velocity from the Sun, which is roughly

600 km=s. The factors in parentheses in the above equations, apart from the ones

with mX and � (which we vary), are therefore all of order 1.

The two di�erent forms for �C come from the eÆciency of the simpzilla energy
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loss in the Sun. For q � 1, most of the simpzillas are captured. For q > 1, however,

only the lower-velocity portion of the simpzilla distribution is captured.

We show the simpzilla capture rate in Figure 2.2.

2.3 Annihilation

2.3.1 Annihilation rate

The simpzillas captured by the Sun rapidly (i.e. over a time period much shorter than

the age of the Sun) reach equilibrium, where the number annihilated per unit time

equals the number captured. This occurs even for values of �A, the simpzilla annihi-

lation cross section, as small as what is typical of weak interactions. Albuquerque et

al. showed that the resulting simpzilla con�guration at the core of the Sun is stable

and avoids collapse to a black hole. The size of the con�guration is less than 10�5R�.

We take �A = 1
2
�C , where �A is the number of annihilations per unit time (each of

which destroys two simpzillas). Note that this has the e�ect of making the equilibrium

value of �A independent of �A.

We neglect simpzilla decays, which are possible too. Simpzillas are at present

an entirely hypothetical, non-Standard Model particle about which we have already

made several simplifying assumptions (e.g. they are a real scalar �eld, and they

account for the entirety of the � 30% of the Universe's energy density due to non-

baryonic matter), and so in order to avoid overcomplication we also assume them to

be stable. We leave open the possibility that experimental or theoretical advances

could change some of these assumptions.
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Figure 2.2 The rate of simpzilla capture by the Sun, for three di�erent choices of the
simpzilla interaction cross section. The steeper parts of the curves are where only
the low-velocity tail of the simpzilla distribution is being captured. In the less steep
part, most of them are captured.
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2.3.2 Initial neutrino spectrum

Albuquerque et al. assumed that the simpzillas annihilate in the core of the Sun,

with each annihilation producing two quarks or two gluons which then fragment

into hadronic showers. The total number of hadrons produced per annihilation is

1:2 � 107
p
M12, where M12 � mX=10

12 GeV. Of these, 2:8 � 105
p
M12 are hadrons

containing top quarks, with an energy distribution (Hill 1983)

dN

dE
� 2:8� 105

p
M12

2mt

�
E

mt

�� 3

2

(E � mt) (2.10)

where mt � 175 GeV is the top quark mass.

In the dense (� � 200 g=cm3) solar core, hadrons composed of light and charmed

quarks tend to lose most of their energy before decaying. Top hadrons, however,

decay before signi�cant energy loss. The top almost always decays in the channel

t ! Wb, and the W also has a short enough lifetime to decay before losing much

energy. It decays with equal branching ratios (each about 10:5%) into e�e, ���, and

��� . In the latter case, the � , like the top quark and the W , decays at high energies,

with a second �� among the products. 18% of the � decays result in a second �e and

another 18% in a second ��.

We only consider neutrinos with energies � 50 GeV. This value is in the range

of the expected � 100 GeV threshold for muon detection at IceCube (Ahrens et al.

2001), and also close to 1
2
mW , the energy of the neutrino produced in the (two-body)

decay of a W at rest. At these energies, the top quark3 and the W generally decay

3Hadrons containing bottom quarks may be another source of high-energy neutrinos, because

they also have very short lifetimes. However, B mesons have a large number of decay modes, and

it is highly nontrivial to determine the ux of high-energy neutrinos produced when the B decay

products interact signi�cantly with the medium. We neglect high-energy simpzilla neutrinos from
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on-shell. The total neutrino production rate above 50 GeV from t and W decays is

d�`
0

dt
� �`10

4
p
M12�A (2.11)

where �` =
1
2
; 1
2
; 1 for ` = e; �; � respectively.

The initial simpzilla neutrino energy spectrum has been analytically �tted by

Albuqerque et al, giving (in our notation)

d�`
0

dEdt
= �`10

4
p
M12�A

p
Emin � 0:939

� E +mWq
[E +mt]

�
(E +mt)

2 �m2
t

� �
(E +mW )2 �m2

W

�
� �(E � Emin) (2.12)

Here, Emin = 50 GeV. �(x) is the standard step function. The numerical factor

0:939 is a normalization constant.

We take (2.12) as the initial simpzilla neutrino (and antineutrino) distribution.

We plot it in Figure 2.3. Note that the typical neutrino energy is � mX , since there

are � 104
p
M12 produced per annihilation.

bottom hadrons in this paper, although they are certainly deserving of future study and could add

signi�cantly to the total neutrino ux.
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Figure 2.3 The initial energy distribution of neutrinos created in simpzilla annihila-
tions. The factors multiplying d�=dEdt are explained in the text.



CHAPTER 3

HIGH-ENERGY NEUTRINOS: WEAK INTERACTIONS

In this chapter, we discuss the propagation of high-energy neutrinos through matter,

in particular through the Sun. Neutrinos with energies . 100 GeV are likely to pass

through the Sun without interacting. At higher energies, though, neutrino interac-

tions are signi�cant, and the initial ux of neutrinos from simpzilla annihilations at

the core is greatly modi�ed by the time it reaches the surface.

The neutrinos created in simpzilla annihilations at the Sun's core propagate out-

ward through a plasma of protons, 4He nuclei, and electrons. (Other isotopes are not

suÆciently abundant to have a signi�cant e�ect on our calculations.) The composi-

tion of the Sun, including the abundances of hydrogen and helium as a function of

radial distance, is fairly well established, and must be taken into account due to the

di�erent cross sections of neutrinos on protons and neutrons.

The only physical phenomena a�ecting neutrino propagation are weak scatterings

and avor oscillations. We discuss the weak scatterings in this chapter and oscillations

in Chapter 4.

3.1 Weak interactions with nucleons

Neutrinos at suÆciently high energies have signi�cant interactions with nucleons, via

either charged current (CC) (mediated by W ) or neutral current (NC) (mediated

by Z) scattering. In charged current interactions, the neutrino is absorbed and the

corresponding charged lepton is produced. The subsequent energy losses of the lepton,

discussed in Chapter 5, are of critical importance.

To determine the relative importances of the weak interactions, it is necessary to

calculate the charged and neutral current cross sections on nucleons. Previous calcu-

16
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lations of the neutrino-nucleon scattering cross sections at high energies (Gandhi et al.

1996, 1998) have assumed an isoscalar nucleon; that is, that its parton distributions

are the average of those for the proton and neutron. This is a good assumption for a

medium such as the interior of the Earth, which was the motivation for Gandhi et al.'s

cross sections, but in the Sun protons substantially outnumber neutrons. As such,

it is necessary to recalculate the cross sections separately for protons and neutrons,

which we have done. We describe this below, using the formalism of Paschos & Yu

(2002) for deep inelastic scattering (DIS) of a neutrino by a nucleon, which includes

lepton mass e�ects in charged current scattering.

We work in terms of the Bjorken scaling variable x and inelasticity parameter y,

de�ned as

x � Q2

2mA(E� � E 0)

y � E� � E 0

E�

(3.1)

where Q2 is the absolute value of the square of the invariant momentum transfer

carried by the virtual W or Z, mA is the mass of the nucleon1, E� is the initial

neutrino energy, and E 0 is the �nal neutrino (charged lepton) energy in NC (CC)

scattering.

The double di�erential cross section is

d2�

dxdy
=
G2
Fy

16�
�2L��W�� (3.2)

1We will use A in this chapter to refer to a generic nucleon, and N to refer speci�cally to an

isoscalar nucleon.



18

where GF is the Fermi constant, L�� and W�� are respectively the leptonic and

hadronic tensors2 and

� � (CC)
m2

W

Q2 +m2
W

� (NC)
m2

Z

Q2 +m2
Z

(3.3)

where mW and mZ are the masses of the gauge bosons. � in (3.3) should not be

confused with the �` coeÆcient in (2.11).

The di�erential cross section may be put in the form (as before we follow Paschos

& Yu (2002))

d2�

dxdy
=

G2
FmAE�

�
�2
�
y

2x

�
xy +

m2
`

2E�mA

�
F2(x;Q

2)

+

�
1� y � mAxy

2E�

� m2
`

4E2
�

�
F2(x;Q

2)

�
�
xy
�
1� y

2

�
� y

m2
`

4mAE�

�
F3(x;Q

2)

� 1

x

m2
`

2mAE�
F2(x;Q

2)

�
(3.4)

Here, F2 and F3 are the deep inelastic structure functions, which depend on

whether the incident particle is a neutrino or antineutrino, and whether the reac-

tion is charged or neutral current. The sign of the third term is + for neutrinos and

� for antineutrinos. Neutrinos undergoing charged current scattering only interact

with d, s, �u, and �c quarks (in protons and neutrons the latter three are, of course, sea

2The leptonic and hadronic tensors are factors coming from the Feynman diagrams for charged

and neutral current scattering { see e.g. chapters 6 and 8 of Halzen & Martin (1984).
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quarks), and antineutrinos interact with the respective antiquarks. In neutral current

scattering, all quarks and antiquarks contribute to the cross section.

Paschos & Yu (2002) give F2 and F3 for the di�erent processes. For brevity, we

only reproduce the ones for neutrino-proton charged and neutral current scattering

here, and refer the reader to their paper for the others.

The structure functions for neutrino-proton charged current scattering are

F cc
2 (�p) = 2x[d+ s+ �u+ �c]

F cc
3 (�p) = 2[d+ s� �u� �c] (3.5)

and for neutral current scattering are

F nc
2 (�p) = 2x[(g2L + g2R)(u+ c+ �u+ �c) + (g02L + g02R)(d+ s+ �d+ �s)]

F nc
3 (�p) = 2[(g2L � g2R)(u+ c� �u� �c) + (g02L � g02R)(d+ s� �d� �s)] (3.6)

where gL, etc. are de�ned in terms of the Weinberg angle �W as gL = 1
2
� 2

3
sin2 �W ,

gR = �2
3
sin2 �W , g0L = �1

2
+ 1

3
sin2 �W , and g0R = 1

3
sin2 �W . As with Paschos and

Yu, we take sin2 �W = 0:23117.

The quark distribution functions u, d, etc. are functions of x and Q2. Note that

we are neglecting top and bottom quarks, both of which contribute negligibly to the

cross section in our energy range of interest (Gandhi et al. 1996, 1998). We assume

all the other quarks to be massless.

Finally, m` in (3.4) is the mass of the charged lepton produced (if any). In

neutral current scatterings, we obviously set m` = 0. In charged current scatterings,
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the electron and muon masses are too small to have a signi�cant e�ect in our energy

range of interest, and so we may ignore them (which means that the calculated charged

current cross sections for �e and �� are identical). We do not neglect the mass of the

� lepton, however, which is approximately 2 GeV and kinematically suppresses the

cross section up to E� � 102 GeV. Thus, the �� charged current cross sections are

calculated separately. (We should note here that the suppression of the tau neutrino

charged current cross sections turns out to not be very signi�cant for the particular

problem we are studying, because neutrinos in the Sun rarely interact at energies

where the di�erence in cross sections is signi�cant.)

We have calculated the cross sections for 1 GeV � E� � 109 GeV, using the

CTEQ6-L leading-order parton distributions (Pumplin et al. 2002), and numerically

integrating (3.4) over x and y. For all processes except charged current scatterings

of �� and ��� , the range of integration is 0 � x; y � 1. When the � lepton mass must

be taken into account, it modi�es the integration range as shown in equation (2.14)

of Paschos & Yu. Our results are shown in Figures 3.1 through 3.3. Note that the

cross sections are approximately proportional to energy for E < 105 GeV, which is

the regime in which the dominant contributions to the cross section come from the

valence quarks (Gandhi et al. 1996). Above this, though, the dominant contributions

come from the sea quarks, and the momentum transfer Q2 in (3.3) is restricted to

a small interval around the gauge boson mass, thus decreasing the value of �. The

e�ect of this is suppress the growth rate of the cross sections at higher energies.

By integrating (3.4) over only x, we may derive inelasticity parameter distribu-

tions d�=dy. This is equivalent (up to a normalization and change of variable) to a

probability distribution of the �nal neutrino or charged lepton energy E 0, which is of

use for our Monte Carlo code to simulate the propagation of neutrinos through the
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Sun. We show our calculations of d�=dy for some di�erent energies in Figures 3.4

through 3.9.

We note that we are neglecting quasielastic (�`A! �`A
0, �`A! `A0) and resonant

(�`A ! `A0�, �`A ! �`A
0�0) scatterings. At 50 GeV, the lowest energy considered

in our Monte Carlo, the cross sections for these processes are less than 5% of the DIS

cross sections.

We also note the �nding of Paschos & Yu that corrections to DIS cross sections

due to nuclear e�ects are negligible. We neglect them too, treating the nucleons as

free in our code.

The ratio of the proton and neutron densities in the Sun, which we calculate using

the standard solar model given by Bahcall (1989), is shown in Figure 3.10. For our

purposes, isotopes other than 1H and 4He may be neglected.

3.2 Weak interactions with electrons

We neglect neutrino-electron interactions in our calculations. Neutrinos have both

charged and neutral current interactions with electrons, but in general the cross sec-

tions at a given energy are considerably smaller than they are for weak interactions

with nucleons. Gandhi et al. have calculated neutrino-electron scattering cross sec-

tions between 102 and 1012 GeV for �e and �� and their antineutrinos (the ones for

tau neutrinos are similar). Their �e and ��e cross sections are generally 20�200 times
smaller than our �A and ��A cross sections at equivalent energies. As electrons are

roughly as abundant as nucleons in the Sun, this means that there would be at most

a � 5% correction to the interaction length.

There is one exception: the ��ee
� !W� Glashow resonance at 6:3 PeV. In a small

region (of width a few PeV) on either side of the resonance, the ��e-e
� scattering cross
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Figure 3.1 The charged current cross sections for �e, ��, and their antineutrinos
interacting with a neutron (n), a proton (p), and an isoscalar nucleon (N). The
calculation was done using the CTEQ6-L parton distributions.
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Figure 3.2 The neutral current cross sections for all neutrino and antineutrino avors.
The di�erences between the cross sections for scattering o� protons, neutrons, and
isoscalar nucleons are too small to see on this scale (although they are not zero).
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Figure 3.3 The charged current cross sections for �� and ��� interacting with a neutron
(n), a proton (p), and an isoscalar nucleon (N). The cross sections for �e, �� and
their antineutrinos are also plotted to show the kinematic suppression due to the �
mass.



25

Figure 3.4 Di�erential cross sections for a charged current interaction between a �e
or �� and a neutron (n), proton (p), and isoscalar nucleon (N). From top to bottom
at y � 5 � 10�3, the curves correspond to an initial neutrino energy of 10, 102, :::,
109 GeV. The 102 and 103 GeV curves are hard to distinguish on this scale. Note
the sharp fallo� in the 10 GeV curves at y � 3 � 10�3, which occurs because the
momentum transfer at values of y below this is too small for the parton formalism
used to calculate deep inelastic scattering to hold (essentially, the gauge boson cannot
\resolve" the individual quarks). This is a general feature on all our d�=dy plots.
Other scattering processes are dominant in this region; however, energies much below
100 GeV are not of interest to us.
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Figure 3.5 Di�erential cross sections for a charged current interaction between a ��
and a neutron (n), proton (p), and isoscalar nucleon (N). The 10 and (much less
dramatically) 100 GeV curves are kinematically suppressed at large y by the � mass.
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Figure 3.6 Di�erential cross sections for a neutral current interaction between �e, ��,
or �� and a neutron (n), proton (p), and isoscalar nucleon (N).
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Figure 3.7 Di�erential cross sections for a charged current interaction between ��e or
��� and a neutron (n), proton (p), and isoscalar nucleon (N).
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Figure 3.8 Di�erential cross sections for a charged current interaction between a ���
and a neutron (n), proton (p), and isoscalar nucleon (N). The 10 and 100 GeV curves
are kinematically suppressed at large y by the � mass.
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Figure 3.9 Di�erential cross sections for a neutral current interaction between ��e, ���,
or ��� and a neutron (n), proton (p), and isoscalar nucleon (N).
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Figure 3.10 The ratio of the proton and neutron number densities in the Sun as a
function of radius. The relative number density of neutrons is highest in the core,
where more hydrogen has been processed into helium. We neglect isotopes other than
1H and 4He.



32

section exceeds the ��e-A cross section by 1� 2 orders of magnitude. The W� may in

turn decay to any of the three antineutrinos and the associated charged leptons, or

into hadronic channels.

However, we do not expect this to be signi�cant for our results. Only � 1% of

the initial simpzilla neutrino ux is in the range where the Glashow resonance is

important, and of that only the ��e component is directly a�ected.

3.3 \Punch-through" neutrinos

Not all of the initial �� and �e are absorbed by charged current interactions. Some

propagate without experiencing any interactions at all, though the probability of this

declines (roughly exponentially) with energy. Another fraction experience repeated

neutral current scatterings until their energies are reduced to the point where the

probability of further interactions in the Sun is small. They then emerge along with

the down-scattered �� . We discuss the characteristics of the emergent neutrinos fur-

ther in Chapter 6.

This \punch-through" �� and �e ux is currently the subject of a study by E. W.

Kolb, J. F. Beacom, and the author. The Monte Carlo code we have written for the

present calculation (see Chapter 6) takes it into account.



CHAPTER 4

HIGH-ENERGY NEUTRINOS: OSCILLATIONS

There has been a great deal of recent interest in neutrino avor oscillations, largely

because several experiments within the last few years have provided compelling evi-

dence that they take place. The SuperKamiokande measurements of the atmospheric

neutrino ux (Fukuda et al. 1998, 2000) indicate �� $ �� oscillations, and rule out

oscillations of �� to sterile neutrinos
1 at the 99% con�dence level.

Addtionally, it has long been known that there is a de�cit of measured to predicted

electron neutrino ux from thermonuclear reactions in the Sun (Bilenkii et al. 1999).

The recent observations by the Sudbury Neutrino Observatory (Klein 2001; Ahmad

et al. 2002b,a) of a signi�cant non-�e component in the solar neutrino ux have given

the best evidence yet for oscillations of �e to other active avors.

The existence of oscillations, in turn, is evidence that neutrinos have masses { or

more precisely, that they have nondegenerate mass eigenstates which are not aligned

with the avor eigenstates. This means that a given avor eigenstate is a linear

combination of two or more mass eigenstates. Since the mass eigenstates have di�erent

energies, they evolve in time with di�erent phases, and hence the state to which they

sum can evolve away from the original avor eigenstate and pick up contributions from

the other avor eigenstates. There will thus be a probability, possibly substantial or

even 1, that the neutrino will be measured to have a di�erent avor than the one it

began with.

This e�ect can be enhanced when neutrinos are propagating through matter, in

1If there are more than three neutrino mass eigenstates, then there are some linear combinations

of them which are orthogonal to the three known avor eigenstates. These correspond to \sterile"

neutrinos, which do not have weak interactions. We do not consider sterile neutrinos in this paper.

33
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our case the Sun, because in certain energy ranges the di�erent avors have di�erent

weak interactions with the surrounding matter. The classic example, �rst pointed out

by Mikheev, Smirnov, and Wolfenstein (Wolfenstein 1978; Mikheev & Smirnov 1985),

is for solar neutrinos interacting with the electrons in the interior of the Sun. Electron

neutrinos, in addition to the neutral current interactions with electrons and nucleons

that all three avors have, also have charged current interactions with them that allow

for �e � e forward scattering and hence do not disrupt the coherent development of

the neutrino beam. The e�ect of the latter is to add a term to one of the elements in

the avor-basis Hamiltonian; this in turn can enhance the �e oscillations (although,

as we will see, it can also suppress them).

Our Monte Carlo takes both matter and vacuum oscillations into account, for

all three avors and including the e�ects of neutrino absorption. In this section, we

review the physics of neutrino oscillations in vacuum and matter. We �rst go over

the two-avor case, which is somewhat more straightforward algebraically (although

not conceptually di�erent than the three-avor case), and then present the extension

of our results to three avors.

4.1 Two-avor oscillations

4.1.1 In vacuum

In this subsection, we loosely combine the discussions in Beacom & Balantekin (1997),

Kayser (2001), and Mason & Sher (1994). Assume without loss of generality that

neutrinos can be either �e or ��. Let fj�ei ; j��ig be the corresponding orthonormal

avor basis.

We also assume that there are two orthonormal mass eigenstates, j�1i and j�2i,
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with masses m1 and m2. An arbitrary neutrino state j�i can therefore be expressed

as

j�i =  e j�ei+  � j��i =  1 j�1i+  2 j�2i (4.1)

Because the avor and mass bases are orthonormal, the  coeÆcients are related

by a 2� 2 unitary matrix U (U y = U�1):

	F �

2
64  e

 �

3
75 = U

2
64  1

 2

3
75 � U	M (4.2)

where

U �

2
64 cos � sin �

�ei� sin � ei� cos �

3
75 (4.3)

We assume that the avor and mass eigenkets are time-independent (and also

position-independent, which is true in vacuum but not in matter of varying density),

and the  coeÆcients are functions of time. As such, the initial state of the neutrino

at t = 0 is

j�(0)i =  e(0) j�ei+  �(0) j��i (4.4)

Typically, the neutrino will begin in a avor eigenstate (e.g. if it is produced in a

lepton weak interaction), so we will have j e(0)j = 1 and  � = 0, or vica-versa.

The neutrino state at a subsequent time t is then

j�(t)i = exp (�iHt=~) j�(0)i (4.5)
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where H is the Hamiltonian operator. We keep ~ and c explicit in this section, rather

than setting them to 1.

Thus, in the avor basis representation, we have

	F (t) = exp (�iHF t=~)	F
0 (4.6)

where HF is the Hamiltonian matrix in the avor basis, and 	F
0 � 	F (0). This is

the solution of the di�erential equation

d

dt
	F (t) = � i

~
HF	F (t) (4.7)

HF is related to the mass basis representation of the Hamilton, HM , by

HF = UHMU�1 (4.8)

Hence, we have

	F (t) = U exp (�iHM t=~)U�1	F
0 (4.9)

We assume that the neutrino is in a state of de�nite momentum k. The energy

eigenvalues E1;2 of j�1;2i are therefore

E1;2 =
q
k2c2 +m2

1;2c
4 �

�
kc +

(m2
1 +m2

2)c
3

4k

�
�
�
�m2c3

4k

�
(4.10)

We de�ne �m2 � m2
2 �m2

1, assuming without loss of generality that m2 > m1. The

expansion of the radical in (4.10) assumes that the neutrino is ultrarelativistic. For

our purposes this is a good assumption, because the largest neutrino mass is thought

to be under 25 MeV and we are studying energies above 50 GeV.



37

We de�ne the �rst term in brackets in (4.10) as f(k), and the second as g(k). We

then have

HM =

2
64 f(k)� g(k) 0

0 f(k) + g(k)

3
75 (4.11)

and (dropping the k dependence of f and g for brevity)

exp (�iHM t=~) = exp (�ift=~)

2
64 exp (igt=~) 0

0 exp (�igt=~)

3
75 (4.12)

The equivalent expressions in the avor basis are then

HF = UHMU�1 =

2
64 (f � g cos 2�) (e�i�g sin 2�)

(ei�g sin 2�) (f + g cos 2�)

3
75 (4.13)

exp (�iHF t=~) = exp (�ift=~)�2
64
�
cos
�
gt
~

�
+ i sin

�
gt
~

�
cos 2�

� ��ie�i� sin �gt
~

�
sin 2�

�
��iei� sin �gt

~

�
sin 2�

� �
cos
�
gt
~

�� i sin
�
gt
~

�
sin 2�

�
3
75 (4.14)

If we begin in a pure avor eigenstate, say j�ei, then we will have (ignoring complex
phases for simplicity)

	F
0 =

2
64  e(0)

 �(0)

3
75 =

2
64 1

0

3
75 (4.15)

which, using (4.14), will at time t be
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	F (t) =

2
64  e(t)

 �(t)

3
75 = exp (�ift=~)

2
64
�
cos
�
gt
~

�
+ i sin

�
gt
~

�
cos 2�

�
��iei� sin �gt

~

�
sin 2�

�
3
75 (4.16)

The probability for the neutrino to have oscillated, that is to be measured as a ��

at time t, is

Pe�(t) = j �(t)j2 = sin2
�
�m2c3t

4E~

�
sin2 (2�) (4.17)

where we have expanded g(k) and used k � E.

The probability for it to have remained a �e is

Pee(t) = j e(t)j2 = 1� sin2
�
�m2c3t

4E~

�
sin2 (2�)

= 1� Pe�(t) (4.18)

Note that we also have P�e(t) = Pe�. This symmetry, in general, does not hold

for the three-avor case (de Gouvea 2001).

We may de�ne the oscillation length L as

L = L(E) =
4�E~

�m2c2
(4.19)

L is the period (expressed as a distance) of Pe�, and thus oscillations are a max-

imum over L=2. If the size of the region we are considering is much smaller than L,

then neutrino oscillations (for neutrinos produced in that region) are not signi�cant.

Conversely, if we are a considering a beam of neutrinos produced at many points

inside a region of size L=2, then it is trivial to show that half of them have oscillated.
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Note also that Pee and Pe�, which are the observable quantities, do not depend on

f(k) or the complex phase � in the unitary transformation matrix. This is a general

feature of the two-avor neutrino oscillation formalism: complex phases in U (and

thus HF ) and terms in HF which are proportional to the identity matrix do not have

any physically observable consequences if the initial state is a pure avor state, and

so can be neglected. We can use these facts to simplify the math considerably; e.g.

we can evolve the state using a reduced Hamiltonian matrix

~HF = g(k)

2
64 � cos 2� sin 2�

sin 2� cos 2�

3
75 (4.20)

The fundamental physical quantities, which can be deduced from the oscillation

probabilities, are the mixing angle � and the mass-squared di�erence �m2.

4.1.2 In matter

Normal matter consists of nucleons and electrons. All three avors of neutrino can

have neutral current interactions with nucleons and electrons that result in elastic

forward scatterings, and contribute to a coherent development of the neutrino beam.

However, electron neutrinos (and antineutrinos) may also forward-scatter via the

charged current process �e+ e� ! e�+ �e. This channel is not available to the other

two avors, since theW exchange would change their avors and disrupt the coherent

development.

These coherent forward scatterings amplitudes give rise to an interaction potential

energy for the neutrino. The neutral current scatterings apply equally to all avors,

and they contribute a term to the Hamiltonian which is proportional to the identity

(and has no observable consequences). However, the elastic forward charged current
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scattering only applies to �e, and so it contributes only to the electron neutrino part

of the Hamiltonian. As we will see below, this can have the e�ect of enhancing or,

at very high densities and energies, suppressing �e oscillations relative to what they

are in vacuum. For a nice discussion of this \MSW E�ect" (named after Mikheev,

Smirnov, and Wolfenstein) as applied to solar electron neutrinos see Kayser (2001).

We discuss the case of two active avors below.

In this section, we neglect neutrino absorption. An analytical treatment of neu-

trino oscillations in the presence of absorbing matter is highly nontrivial and beyond

the scope of this paper, although there has been some interesting recent work on the

topic (Naumov 2002). Of course, we cannot neglect charged current interactions with

nucleons in our code; indeed, they are the dominant process for neutrinos at high

energies. We will discuss how we integrate the matter-enhanced oscillation formalism

in our code in Chapter 6.

We consider once again the case of a beam of �e and/or ��; the extension to

three avors is simple and is given in the next section. The elastic forward scattering

amplitudes of the �e and �� neutral current interactions are equal, and hence they

contribute terms to HF that are proportional to the identity. As discussed above,

they have no e�ect on oscillation probabilities and can be neglected.

The �e(��e)�e charged current interaction contributes a term to the elastic forward

scattering amplitude of �e(��e) (see e.g. de Gouvea (2001)),

A(x) = �
p
2GFNe(x) (4.21)

where the + sign holds for neutrinos, and the � for antineutrinos, and where Ne(x)

is the number density of electrons at a point x in the medium. Using (4.20) for the

avor-basis Hamilton in vacuum, (4.7) becomes (where g(k) is expanded)
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d

dt
	F (t) = � i

~

0
B@�m2c4

4E

2
64 � cos 2� sin 2�

sin 2� cos 2�

3
75+

2
64 A(x) 0

0 0

3
75
1
CA	F (t) (4.22)

We de�ne (Beacom & Balantekin (1997)):

�(t) � �2
p
2Ne(x(t))E

�m2c4
(4.23)

using the same sign convention as with A(x). (4.22) becomes

d

dt
	F (t) = � i

~

�m2c4

4E

2
64 [�(t)� cos 2�] sin 2�

sin 2� [��(t) + cos 2�]

3
75	F (t) (4.24)

To obtain this, we added a term proportional to the identity matrix, which as dis-

cussed above does not have any physical e�ects and can be neglected.

Mixing is maximal when the diagonal elements are 0; that is, when � = cos 2�.

Note that this in general is possible for neutrinos or antineutrinos, but not both, since

� is �xed while the sign of � is di�erent.

Assuming that � is positive, we have

Ne(x)E =
�m2c4 cos 2�

2
p
2GF

(4.25)

as the condition for resonance, that is, where the electron neutrino oscillations are

maximal.

Conversely, if � � 1 (all the other elements in HF are of order 1), then the Hamil-

tonian is e�ectively diagonal, and oscillations minimal. Matter e�ects, at suÆciently
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high electron number densities and/or neutrino energies, can suppress oscillations

rather than enhance them.

4.2 Three-avor oscillations

There are three known neutrino avors, �e, ��, and �� , and if they have masses then

there must also be at least three nondegenerate neutrino mass eigenstates j�1i, j�2i,
and j�3i. We label them in increasing order of mass.

As in the two-avor case, the avor and mass eigenstates are related by a unitary

matrix (de Gouvea 2001):

U =

2
66664

c!c� s!s!c� s�e
i�

(�s!c� � c!s�s�e
�i�) (c!c� � s!s�s�e

�i�) s�c�

(s!s� � c!c�s�e
�i�) (�c!s� � s!c�s�e

�i�) c�c�

3
77775 (4.26)

where for brevity we abbreviate cos x and sin x as cx and sx.

There are now three mixing angles �, �, and !. There is also a complex phase

� which, unlike in the two-avor case, a�ects the �nal oscillation probabilities and

introduces CP- violating e�ects. There is no experimental information on �, and we

set it to 0.

We also have two independent mass-squared di�erences, which with de Gouvea

we take as �m2
21 and �m2

31 (the third is trivially derivable from the other two).

There is some uncertainty in the numerical values of these quantities, but the

results from the SuperKamiokande atmospheric neutrino observations and the solar

neutrino measurements of SNO and other groups suggest certain regions of parameter

space (given e.g. in de Gouvea (2001)). The atmospheric neutrino results constrain

10�4 eV2 . j�m2
31j . 10�2 eV2, 0:3 . sin2 � . 0:7, and sin2 � . 0:1; we take �m2

31 =
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3 � 10�3 eV2, sin2 � = 0:1, and sin2 � = 0:5. The other parameters, which inuence

solar neutrino oscillations, are constrained to a somewhat broader range. They can

vary depending on whether the �e oscillations are due to vacuum oscillations outside

the Sun or MSW oscillations within it, and even in the MSW case there are several

di�erent regions of parameter space consistent with the experimental data. However,

the choice most currently favored by analysis of the solar neutrino data (Krastev

& Smirnov 2002) is the \large mixing angle" (LMA) solution. We choose �m2
21 =

2 � 10�5 eV2 and sin2 ! = 0:2, which are characteristic of LMA. Our calculations

assume the \normal" mass hierarchy, with m1 < m2 < m3.

We may once again de�ne a quantity � to characterize the matter e�ects. It is

de�ned slightly di�erently than in the two-avor case:

�(t) � �
p
2GFNe(x(t))E

�m2
31c

4
(4.27)

where, as before, the sign is negative for antineutrinos. We may write the di�erential

equation for the avor amplitudes as

d

dt
 �(t) = � i

~

�m2
31c

4

2E

3X
�=1

" 
3X
i=2

�m2
i1

�m2
31

U�
�iU�i

!

+ �(t) (Æ�1Æ�1 � Æ�2Æ�2 � Æ�3Æ�3)

�
 �(t) (4.28)

This can be straightforwardly obtained from equation (3.4) of de Gouvea (2001).

Once again, we have neglected terms proportional to the identity matrix.

Assuming that �m2
21 < �m2

31, all of the terms in the vacuum part of the Hamil-

tonian are of order 1. If � � 1, oscillations of �e to the other avors are suppressed.

(�� $ �� oscillations are not suppressed for large �, because the additional large
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terms have the same sign and can be removed by adding a term proportional to the

identity.) The condition for suppression of �e oscillations is

E � �m2
31c

4

p
2GFNe(x)

(4.29)

4.3 Numerical simulation of neutrino oscillations

4.3.1 Analytical approximation

In theory, three-avor oscillations can be simulated by numerically solving (4.28) as

the neutrinos propagate. In practice, this tends to make the computation extremely

slow. Our code therefore uses the analytical solution for the time-evolution operator

Uf (L) derived by Ohlsson and Snellman (Ohlsson & Snellman 2000):

Uf(L) = e�iL(E1+E2+E3+A)=3
3X

a=1

e�iL�a
1

3�2a + c1

h�
�2a + c1

�
I3 + �a ~T + ~T 2

i
(4.30)

Equation (4.30) is given in natural units with ~ = 1 and c = 1. L is the distance

the neutrino travels, A is from (4.21), and fEig are the energies of the mass eigenstate
neutrinos (of which the avor eigenstate neutrino is a linear combination). I3 is the

3�3 identity matrix, and ~T is the avor-basis representation of HM� tr(HM), where

HM is the mass-basis Hamiltonian. f�ag are the eigenvalues of T , the mass-basis

representation of ~T , and fcig are the coeÆcients in the characteristic equation for

the eigenvalues. For brevity, we do not reproduce the lengthy formulas for these

quantities here and refer the interested reader to the paper.

In Figures 4.1 and 4.2, we show the oscillation probabilities for 50 and 100 GeV

neutrinos emitted from the core of the Sun and propagating without absorption.
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These probabilities have been checked against those computed by integrating (4.28).

To generate these graphs, we compute (4.30) over small enough steps so that the

density at each step may be taken as constant, a technique we also use in our Monte

Carlo code.

4.3.2 Other oscillation parameter choices

We have calculated the emergent ux only for the choice of oscillation parameters

given above. We do not, however, expect that other choices for the parameters

which are consistent with the observational data would cause large di�erences in

the detection rates at Earth. Real detectors (as opposed to the idealized ones we

model in Chapter 7, which detect all charged current events in their volumes) tend

to preferably observe muons created in and around the detector by �� and ���. The

practical question, then, is how much a di�erent choice of oscillation parameters would

change the emergent �� + ��� ux.

The two parameters which a�ect this the most (again, assuming that we restrict

ourselves to ranges allowed by observation) are � and the sign of m2
31. There is

evidence from experiment that m2
21 > 0 (de Gouvea 2001), but no such constraint

exists for m2
31. Our calculations assume that it is also positive. If it were negative,

the e�ect would be to cause ��e rather than �e to have the resonant behavior shown in

Figures 4.1 and 4.2 { the oscillation curves for neutrinos and antineutrinos in those

graphs would essentially be interchanged by a change of sign in m2
31. A change in �

would modify the location and size of the resonance.

The worst-case scenario would be that either of the �� or ��� uxes was depleted

completely by the �e=��e resonance. However, the other would be una�ected. The

combined �� + ��� ux, and hence the muon detection rate, would change at most
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Figure 4.1 The oscillation probabilities of 50 GeV neutrinos in the Sun, assumed to
begin in single-avor states at the center. Note the MSW resonance at about 0:6R�.
Below that, �e oscillations are almost completely suppressed by the large value of �.
��e oscillations, which do not have resonances, are also almost completely suppressed
(the ��e probability is very close to 1 and hard to see on the fourth plot).
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Figure 4.2 The oscillation probabilities of 100 GeV neutrinos in the Sun, assumed to
begin in single-avor states at the center. Note the MSW resonance at about 0:7R�.
Below that, �e oscillations are almost completely suppressed by the large value of �.
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only by roughly a factor of 2.

Therefore, we do not expect that di�erent (reasonable) choices for the oscillation

parameters would greatly alter the total simpzilla neutrino detection rates in a real-

world detector observing �.



CHAPTER 5

CHARGED LEPTON INTERACTIONS

The fate of the charged leptons produced in charged current neutrino-nucleon inter-

actions is by far the most important factor in determining the energy distribution

and avor content of the emergent neutrino ux. While electrons and muons tend to

be stopped by electromagnetic interactions, taus, with much shorter lifetimes, decay

before losing a signi�cant amount of energy. �� are always among the decay products

of � , and hence they are regenerated, albeit at a slightly smaller energy determined

by the inelasticity parameter in the original �� -nucleon scattering and the decay dis-

tribution of � . This downgrading of �� energy continues until there is no longer a

signi�cant probability of interactions over the distance remaining to the surface of

the Sun.

The survival of �� versus that of �e and �� was �rst noted by Ritz & Seckel (1988),

in the context of a calculation of neutrino spectra from thermal wimp annihilations

in the Sun. Kowalski (2001) has also studied tau neutrinos from wimps, including

the e�ects of �� $ �� oscillations. Halzen & Saltzberg (1998) have shown the ��

regeneration phenomenon to hold for high-energy extragalactic neutrinos propagating

through the bulk of the Earth. Dutta et al. (2000) and Becattini & Bottai (2001)

have calculated the e�ect of �� regeneration and �e, �� suppression in the Earth on

high-energy extragalactic neutrino uxes, which are generally expected to have equal

ratios of �e, ��, and �� at the Earth due to oscillations over the long distances they

travel. Both groups found that for uxes which declined less steeply than E�2, the

�� regeneration e�ect produces a substantial excess of �� over �� at the detector in

the 103�106 GeV range at low nadir angles (i.e., when the beam propagates through

close to a full Earth diameter).

49
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Another signal of �� , which would appear in extragalactic neutrino beams from

point sources, is the direction independence of the �� number ux. Although the

�� energies are downgraded, essentially one �� emerges at the detector for every one

that enters the Earth. This is in contrast to the relative numbers of emergent �� and

�e, which are suppressed with decreasing nadir angle. In a detector which observes

upward-going muons created just below it by neutrino charged current interactions,

it would be possible to separate the � due to �� from those due to �� ! � ! � on a

statistical basis.

Simpzilla neutrinos, however, have energies considerably below the Earth's trans-

parency energy, so this direction independence is not of much use experimentally in

their case.

5.1 Electromagnetic energy losses

As charged leptons move through matter, they interact with the surrounding elec-

trons and nuclei and lose energy. Accurately treating the electronic and nuclear

energy losses is of course critical to the �� regeneration phenomenon. We discuss

each briey below, focusing on the heavy charged leptons. For the electronic energy

losses, we follow, with some modi�cations, the discussion in Ritz & Seckel (1988). For

the nuclear energy losses, we use the results of Dutta et al. (2001). (As mentioned

below, we are not concerned with electrons/positrons produced by �e charged current

interactions.)

5.1.1 Electronic

Interactions (classically, collisions) of � and � with e in the Sun are the dominant

component of their energy losses up to around 104 GeV. To calculate these losses, we
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use the energy loss rate for charged particles in plasma given in Ritz & Seckel (1988)

to obtain the mean energy loss per unit column depth:

�
�
dE

dx

�
=
�
9:2� 106

�� Z

A�2c

��
ln (2me�

2)� ln

�r
4��ne
me

�� h
GeV=

� g

cm2

�i
(5.1)

Z and A are the atomic number and weight of the nuclei in the medium; � and

 are the Lorentz parameters for the incident charged particle; c is the speed of

light in cm/s; � is the �ne structure constant; and me and ne are the electron mass

and number density, expressed in natural units (respectively, GeV and GeV3). The

argument of the second logarithm is !p, the plasma frequency, which in the core of

the Sun is approximately 3� 10�7 GeV.

5.1.2 Photonuclear scattering

The simplest electromagnetic interaction between a charged lepton and a nucleus is

the exchange of a virtual photon. The di�erential cross section with respect to the

inelasticity parameter is (Dutta et al. 2001)
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with the parameters de�ned as
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G(x) =
3

x3

�
x2

2
� 1 + e�x(1 + x)

�
x = 0:00282A1=3[�N (E= GeV)=�b]

�N (E) = 114:3 + 1:647 ln2 (0:0213E= GeV) �b

t =
m2

`y
2

1� y

� = 1� 2

y
+

2

y2

m2
1 = 0:54 GeV2

m2
2 = 1:8 GeV2 (5.3)

� is the �ne structure constant, A is the atomic weight of the isotope, and m` is the

mass of the charged lepton (m� or m� ). E is the initial lepton energy.

5.1.3 Brehmsstrahlung

In brehmsstrahlung, a second, real photon is emitted. The di�erential cross section

is (Dutta et al. 2001)

d�
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2Z�e

me

m`

�2
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�
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� 4

3
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#
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`y

2E(1� y)

0 � y � 1� 3m`

4E

p
eZ1=3 (5.4)

This form for d�=dy assumes Z � 10, where Z is the atomic number (1 for hydrogen,
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2 for helium). �e is the Compton wavelength of the electron, 3:8616� 10�11 cm. e is

the number, not the electronic charge.

5.1.4 Pair production

In the pair production interaction between a charged lepton and a nucleus, a second

photon is emitted as in brehmsstrahlung, which then becomes an electron-positron

pair.

The di�erential cross section is (Dutta et al. 2001)

d2�

dyd�
= �4 2

3�
(Z�e)

2 1� y

y

�
�e +

m2
e

m2
`

�`

�
(5.5)

The cross section is di�erentiated not only with respect to y, but also the \asym-

metry parameter" � quantifying the di�erence in the energies of the �nal electron and

positron:

� � E(e+)� E(e�)
E(e+) + E(e�)

(5.6)

The limits on y and � are

4me

E
� y � 1� 3m`

4E

p
eZ1=3

0 � j�j �
�
1� 6m2

`

E2(1� y)

�r
1� 4me

Ey
(5.7)

The other parameters in (5.5) are
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� and � here should not, of course, be confused with the Lorentz parameter and

density.

5.1.5 Total energy losses

We combine the above results into an expression for the total energy loss per unit

column depth for a charged lepton in the Sun. We may consider the matter in the Sun

to consist of two separate components: 1H nuclei and their \associated" electrons;

and 4He nuclei and their \associated" electrons. The electrons are unbound, but from

overall neutrality there is one for each hydrogen nucleus and two for each helium
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nucleus.

To avoid notational confusion, de�ne X and Y as the fractions by mass of 1H and

4He respectively at a given point in the Sun (we obtain these from Bahcall (1989)).

Let distance be denoted by s, and the column depth in each isotope by x1 � X�s

and x4 � Y �s, where � is the total density of the Sun.

Let the index i = f1; 4g refer to respectively 1H or 4He, and let j refer to a nuclear

interaction (brehmsstrahlung, pair production or photonuclear scattering). The mean

energy loss per unit column depth for a speci�c isotope is

�
�
dE

dxi

�
= �i +

X
j

�jiE (5.9)

where �i is the right hand side of (5.1) (using the appropriate Z and A for the isotope)

and �ji is de�ned as

�ji (E) =
N0

Ai

Z ymax

ymin

dy y
d�j

dy
(5.10)

N0 is Avogadro's number, and Ai is once again the atomic weight for the speci�c iso-

tope. In practice, these integrals must be calculated numerically. (�pair also requires

an integration over the asymmetry parameter.)

It is straightforward to show that the energy loss per unit total column depth

x = �s is

�
dE

dx

�
= X

�
dE

dx1

�
+ Y

�
dE

dx4

�
(5.11)
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5.2 Weak energy losses

Weak interactions, apart from decays, are not signi�cant for the charged leptons

created by simpzilla neutrinos. Their weak and electromagnetic energy losses in

matter become comparable only at Elepton � 1016 GeV (Dutta et al. 2001), which is

far above any lepton energies we are considering. We accordingly neglect weak energy

losses in our code.

5.3 Decays

5.3.1 e

The electron or positron created by a �e charged current interaction, of course, never

decays, and hence the �e can be considered to have been removed from the beam.

The only possibility of regenerating a �e is for the e to undergo a charged current

interaction of its own, but as discussed above the probability of this given the elec-

tromagnetic interactions is negligible. Our code does not follow the e produced in

charged current interactions.

5.3.2 �

Virtually all � decays are in the channel �! ��e�e. A fraction � 1% have an addi-

tional photon among the �nal products, and a fraction � :003% have an additional

electron-positron pair (Groom et al. 2000), but we ignore these rare modes.

Almost all of the � created in �� charged current interactions lose their energy

electromagnetically and essentially decay at rest. The resulting �� are emitted in all

directions and have energies below 50 MeV, and are of no interest to us.

To be internally consistent, our code includes both � and � decays above 50 GeV,
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although in this energy range only the � decays are signi�cant. In the rare event that

a � decays in ight (i.e. at a high energy), the distribution of �� energies is equal to

that of the �� energies in � ! ����� and � ! ��e�e decays, which is given below.

5.3.3 �

The � , unlike the �, has several signi�cant decay modes. These, along with their

branching ratios, are (Dutta et al. 2000):

� �! ����� (18%)

�! ��e�e (18%)

�! ��� (12%)

�! ��� (26%)

�! ��a1 (13%)

�! ��X (13%) (5.12)

where X indicates hadrons besides �, a1, or �
1. It is important to explicitly note

that there is no di�erence for our purposes between �� and �+. The �� are produced

in �� charged current interactions, and exclusively have negative parity. Similarly,

the �+ are produced in ��� charged current interactions and have positive parity. By

CP invariance, the energy distributions of �� , ���, and ��e from �� decays are equal to

those of the corresponding (anti)neutrinos from �+ decays. (The same is true for the

1The hadrons in (5.12) are not a signi�cant source of high-energy neutrinos. They and their

charged decay products lose most of their energy before decaying into neutrinos, much like the

muon.
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distributions of �� and ��� from �� decays.)

De�ning z � E�=E� and ri � m2
i =m

2
� , the distribution of �� energies from � decays

(i.e., of �� energies from �� decays and ��� energies from �+ decays) is (Dutta et al.

2000):
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Each term in brackets is the decay distribution for the respective channel in (5.12)

(the � ! ����� and � ! ��e�e modes have the same distribution, hence the factor

of 2 multiplying the �rst term). The numerical coeÆcients in parentheses are the

branching ratios. �(x) is the usual step function and represents the kinematic cuto�s

for the processes involving massive hadrons. We assume that the � is ultrarelativistic,

so its mass and those of the e and � can be neglected.

In Figure 5.1, we show the � decay distributions used by our code.

5.4 Secondary neutrinos from � decays

Beacom et al. (2001) have noted that the � decays which regenerate the �� also

produce a substantial ux of high-energy �e and ��, and these secondary neutrinos

must be taken into account when calculating the detected signal. Roughly 18% of �

decays are in the � ! ����� channel, and another 18% are in the � ! ��e�e channel.
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Figure 5.1 The normalized lab frame probability densities for the energies of �� and ���
produced in �� decays, with z � E�=E� . The �

� is assumed to be ultrarelativistic.
Solid curve: the combined probability density for the �� energy, summing over all
signi�cant �� decay channels. The jagged appearence is due to some channels which
produce massive hadrons becoming kinematically impossible above a certain neutrino
energy. Dashed curve: the probability density for the ��� energy in the �� ! ���

����
channel. Dotted curve: the probability density for the �� energy in the ���-producing
channel. The �� is assumed to have negative parity; hence these distributions also
hold for ��� and �� produced in the equivalent decay channels of postive-parity �+.
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The kinematics of these decays are such that the secondary �� or �e carries on the

order of 1=8 of the �� energy before the interaction. Although the earliest secondary

neutrinos, which have the highest energies, tend to be absorbed, others are created

farther out and at lower energies as the �� propagates with repeated charged current

interactions (and therefore loses energy itself in the regenerations).

Studying the case of high-energy neutrino beams propagating through the Earth2,

Beacom et al. (2001) found that the emergent secondary �e and �� from � decays

each amount to roughly 20% (by number) of the emergent primary �� beam. This is

especially signi�cant since the primary �e and �� are almost completely absorbed.

Our Monte Carlo code includes secondary �e and �� from � decays. We are

considering an initial ux rather than a monoenergetic beam, which falls over several

orders of magnitude with increasing energy, and a large fraction of which is below the

solar transparency energy of � 100 GeV (where �� charged current interactions are

infrequent). Thus, we do not expect, and indeed do not �nd, that secondaries have a

dramatic e�ect on the emergent ux.

It is straightforward to calculate the energy distributions of the secondary �e and

��, which are produced in the �rst two channels of (5.12). We boost the relevant

lepton rest frame distributions obtained in Renton (1990) to obtain

dn

dz
(�e; ��) = �4z3 + 12z2 � 12z + 4 (5.14)

This distribution is also shown in Figure 5.1.

2The neutrinos were assumed to be of extragalactic origin and well above the Earth's transparency

energy of � 100 TeV.



CHAPTER 6

CALCULATION OF THE EMERGENT NEUTRINO FLUX

To calculate the ux of simpzilla neutrinos from the Sun, we have written a Monte

Carlo code to simulate their propagation from the solar core to the Earth, taking into

account all the signi�cant e�ects discussed in the previous three chapters.

Our code is in large part an adaptation of a previous Monte Carlo we wrote

to simulate the propagation of high-energy neutrino beams from extragalactic point

sources through the Earth (Beacom et al. 2001). That code was able to reproduce the

results of a similar calculation by a di�erent group (Halzen & Saltzberg 1998). The

major modi�cation we have made to our code is to include oscillations, which are not

signi�cant for neutrinos with energies above � 100 TeV (the Earth's transparency

energy) in the Earth.

6.1 Monte Carlo code

6.1.1 Without oscillations

We �rst discuss the case of when we are not following neutrino oscillations. All of

the below is used in the neutrino oscillation case too, but for clarity we separate our

discussion of how oscillations are simulated.

Our code follows the trajectories of individual neutrinos as they propagate through

the Sun and to the Earth. At each point inside the Sun, we choose for our step size

the smaller of R�=F and Lint=F , where F = 100 if we are not following oscillations.

When we do follow oscillations, F = 100 for E � 100 GeV; for neutrino energies less

than that, we use F = 1000 in order to have a step size small in comparison to the

oscillation lengths (which decrease with energy).
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Lint is the total interaction length for the neutrino or antineutrino (distance over

which the mean number of interactions it experiences is 1), taking both charged and

neutral current scatterings into account:

Lint(E) =
1

nn (�ccn (E) + �ncn (E)) + np
�
�ccp (E) + �np c(E)

� (6.1)

nn and np are the neutron and proton number densities, which as previously discussed

vary within the Sun (although for the purposes of calculating Lint at each step, we

consider them to be constant). The cross sections also depend somewhat on the

neutrino avor { for tau neutrinos, for example, the charged current cross section is

kinematically suppressed at lower energies and hence its interaction length there is

larger than the �e and �� interaction lengths. (In practice, as we mentioned previously,

this does not make a signi�cant di�erence to our results, because most interactions

happen at energies where the avor di�erences among charged current cross sections

are small.) For each avor, the antineutrino has a smaller cross section on a given

nucleon than the neutrino below about 104 GeV, and so their interaction lengths are

larger too.

If the step length is �, then the probability of the neutrino experiencing an inter-

action over that length is Pint = 1 � e��=Lint . (This is technically the probability of

the neutrino experiencing at least one interaction, but the step size is small enough so

that multiple interactions may be neglected.) The code uses a pseudorandom num-

ber generator to determine whether an interaction took place over the step, and then

to determine whether it was on a neutron or proton and whether it was charged or

neutral current. The interaction is assumed to have taken place at the end of the

step.

In the event of a neutral current interaction, the new neutrino energy is determined



63

by randomly choosing the inelasticity parameter from the appropriate y distribution

for that interaction and energy (y = 1� E 0=E�).

If a charged current interaction takes place, we consider the neutrino to have been

\converted" into the corresponding charged lepton. Electrons, as we have discussed,

are not followed and so �e which have charged current interactions are considered

absorbed. For muons and taus, we choose the step size to be the smallest of hd=100,

hE=100, and R�=100, where hd is the (boosted) decay length of the lepton and hE �
E=
�


dE
dx

�
�
�
is the distance over which the lepton would lose all its energy if the

energy loss rate were constant. (It isn't, but hE is of the same order as the total

range of the lepton in the absence of decays.) We determine the initial lepton energy

similarly to the case of the neutrino in a neutral current scattering, by using the y

distribution.

When we follow a � or � , the probability of a decay is calculated over each step

and then randomly determined whether or not to have occurred. If no decay takes

place, then the lepton's energy is reduced according to


dE
dx

�
.

If a decay takes place, the lepton is considered \converted" back into a neutrino.

The neutrino energy is randomly chosen using the appropriate decay distribution.

When we are following secondary neutrinos from � decay, we �rst randomly determine

(using the branching ratio for the production of secondary ��) whether a decay into

the ��-producing mode has taken place; and if so, we use the distribution for that

mode only to obtain both the �� and secondary �� energies. If not, then we use the �

decay distribution summed over all modes except the ��-producing mode. When we

are not following secondaries, we sum over all � decay modes.

When we are not following oscillations, we do not separately calculate the sec-

ondary �e ux from � decays; we assume this to be equal to the secondary �� ux.
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The branching ratios into the two modes are virtually identical, and �e and �� have

the same cross sections at these energies. The only potential di�erences would come

from the decays of muons in ight, but this is not signi�cant.

The code propagates N `
0 neutrinos through the Sun and then (if they are not

absorbed) to the Earth, recording their initial energies, �nal energies, and �nal avors,

and total number of emergent neutrinos N `
f , where ` speci�es the avor. This data

can be used to construct the probability distribution of �nal neutrino energies n`f (E),

which is related to the ux by

1p
M12�A

d�`

dAdEdt
=

104�`
4�R2

es

 
N `
f

N `
0

!
n`f (E) (6.2)

As before, M12 = mX=10
12 GeV; �A is the simpzilla annihilation rate; and �` = 1 for

�� and
1
2
for �e and ��. Res is the Earth-Sun distance (1 Au).

Typical neutrino propagation

We describe briey the interactions experienced by a (non-oscillating) typical neu-

trino on its way from the Sun's center to the surface. If the neutrino has an energy

much below about 100 GeV { or, in the case of an antineutrino, about 200 GeV {

interactions are not very probable and it passes through the Sun una�ected.

If the energy is above this range, the neutrino (from now on, we use the \generic"

terminology) can have charged or neutral current interactions. The charged current

cross section is around three times the neutral current cross section at the same

energy, and so the charged current interactions are considerably more likely. The

large majority of interactions take place in the �rst tenth of the distance to the

surface.

A �e or �� is almost always absorbed by the �rst charged current interaction
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it experiences. The higher its energy, the deeper inside the core this interaction

takes place. The interaction creates an e or �; either subsequently loses energy in

electromagnetic interactions with the solar medium and is brought to rest. The e

never decays, and the �� from the eventual � decay are at very low energies and

are not of interest to us. The high-energy �e and �� which emerge, then, are the

ones which have not experienced any interactions at all (we neglect the small number

which have had only neutral current scatterings). The probability of emerging without

interactions declines roughly exponentially with energy, and therefore the emergent

�e and �� ux is exponentially attenuated from the intial ux.

A �� , however, is not absorbed in charged current interations due to the short

lifetime of the � , which has negligible energy losses and quickly decays back into a

�� . Each regeneration reduces the �� energy by a factor of about 1=4. A typical high-

energy �� coming from the core thus experiences repeated charged current scatterings,

along with the occasional neutral current scattering, until its energy is reduced to

below about 100 GeV and the probability of further interactions is small. The total

number of charged current scatterings is roughly N = log (E0=Ek)= log 4 (Beacom

et al. 2001), where Ek is the transparency energy (discussed below). The highest

initial energy we consider is E0 = 2 � 104 GeV, where N � 4. Like the �e and ��,

�� generally experience all their interactions during the �rst tenth or so of the way

through the Sun. There are also some �� which emerge without experiencing any

interactions, although the probability declines exponentially with energy just as for

the other avors. However, the crucial di�erence is that the scattered �� are not

absorbed.



66

6.1.2 With oscillations

To simulate oscillations, our code uses the analytical expression for the time-evolution

operator in (4.30) to evolve the probability amplitudes over the step. As mentioned,

we choose a small enough step size so that the oscillation probabilities do not change

signi�cantly over each step.

Each neutrino is considered to begin at the Sun's core in a pure avor state. Over

each step, as in the non-oscillation case, we test for an interaction. In this, we take

advantage of the fact that the cross sections do not di�er substantially among the

avors in the energy range (E & 100 GeV) where interactions are signi�cant, and so

the oscillations should not signi�cantly a�ect the probability of an interaction at a

given energy.

In a charged current interaction, a charged lepton of a certain avor is emitted {

this, unlike a neutral current interaction, amounts to a measurement of the neutrino

avor. As such, when a charged current interaction is determined to have occurred,

we randomly sample using the present oscillation probabilities to determine a new

neutrino avor, and assign the outcoming charged lepton that avor. When (and

if) the lepton decays, the emergent neutrino begins in a pure avor state just as the

initial one did, and the process repeats.

In the case of secondary neutrinos from � decays, �e and �� (and their antineu-

trinos) have signi�cantly di�erent oscillation behaviors as is evident from Figures 4.1

and 4.2. We thus, in contrast to the case with no oscillations, follow secondary �e

and �� separately when they are oscillating.

We also calculate the oscillations in the vacuum between the Sun and the Earth.

When calculating the �nal neutrino ux at the Earth, we assume a 10% energy

resolution in the detector. This means that if the detector is set to measure neutrinos
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of energy E, it will actually measure neutrinos with energies from E� ÆE to E+ ÆE,

where ÆE = 1
20
E. The mean probability measured is

hP i = 1

2ÆE

Z ÆE

�ÆE
d�K sin2

�
�

x

(E + �)

�
(6.3)

where � and K are constants, and x is the distance from the Earth to the Sun. We

assume the range of E is small enough so that the events are uniformly distributed

in it, a fairly good assumption for our uxes. Since � in (6.3) is by assumption much

smaller than E, it can be shown that this is equivalent to holding the energy constant

and averaging over 10% of the distance; that is,

1

2ÆE

Z ÆE

�ÆE
d�K sin2

�
�

x

(E + �)

�
� 1

2Æx

Z x+Æx

x�Æx
dx0K sin2

�
�
x0

E

�
(6.4)

where Æx = 1
20
x. We therefore average the oscillation probabilities over a tenth of the

Earth-Sun distance.

6.2 Numerical results

We present our numerical results for the simpzilla neutrino ux at the Earth in Figures

6.1 through 6.4. We consider four cases: the simplest, with no secondaries from

� decays or oscillations; including secondaries; including oscillations; and including

both.

These uxes are normalized by mX and �A (the latter depends on mX and the

simpzilla-nucleon interaction cross section �). Including the secondaries has a fairly

small e�ect. The oscillations, however, have the e�ect of enhancing the emergent ��

ux and depleting that of the �� . For neutrinos, the �e ux is increased as well. For

antineutrinos, the ��e ux is less a�ected by oscillations because, as is evident from
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Figures 4.1 and 4.2, high-energy ��e never encounter a resonance in the Sun. The

subsequent oscillations of ��e are much smaller than are those of �e.

6.3 Analytical approximation

The reason we have used a computational approach to this problem is that it would

be exceedingly diÆcult, if not impossible, to analytically solve for the emergent ux

in terms of the decay distributions, total and di�erential cross sections, oscillation

parameters, etc. However, it possible to gain some analytical understanding by mak-

ing simplifying assumptions about the emergent uxes. We do so here in the simplest

case, neglecting oscillations and secondary neutrinos from � decays.

�e and ��

The emergent ux of �e and �� consists primarily of neutrinos which have not ex-

perienced any interactions on their way from the Sun's core to its surface. Charged

current interactions, as we have noted, are generally equivalent to absorption of �e

and ��. There is a small \punch-through" component consisting of neutrinos which

have had only neutral current scatterings, but we neglect that here.

Given an initial ux d�0=dEdt, the emergent unscattered ux of �e or �� is (Al-

buquerque et al. 2001a)

d�f

dEdt
=

d�0

dEdt
exp

�
�
Z R�

0

dr [np(r)�p(E) + nn(r)�n(E)]

�
(6.5)

np and nn are the proton and neutron number densities as a function of position, and

�p and �n are the total (charged + neutral current) cross sections. The exponential

factor is the probability that a neutrino of energy E propagates through the Sun
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Figure 6.1 The simpzilla neutrino uxes at the Earth, without taking secondaries or
oscillations into account. M12 is the simpzilla mass in units of 1012 GeV and �A is
the simpzilla annihilation rate in the Sun's core. Note that the initial ux of �� from
simpzilla annihilations is twice that of �e and ��, and similarly for the antineutrinos.
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Figure 6.2 The simpzilla neutrino uxes at the Earth, neglecting oscillations but
taking secondary neutrinos from � decays into account.
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Figure 6.3 The simpzilla neutrino uxes at the Earth, neglecting secondaries but
taking oscillations into account.
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Figure 6.4 The simpzilla neutrino uxes at the Earth, taking both secondaries and
oscillations into account.
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without having any interactions; it generalizes the interaction length to a varying

density.

In the neutrino energy range we are considering, the cross sections are approx-

imately proportional to energy (see Chapter 3). We may make use of this fact to

write

d�f

dEdt
=

d�0

dEdt
e�E=Ek (6.6)

where Ek is de�ned as the energy such that

Z R�

0

dr [np(r)�p(Ek) + nn(r)�n(Ek)] = 1 (6.7)

Ek is called the transparency energy. The Sun is of course not completely trans-

parent to neutrinos at this energy; indeed, about 2
3
of them are still absorbed. But it

is a useful concept for delineating where interactions are signi�cant1.

We �nd numerically that Ek � 133 GeV for �e and ��, and 205 GeV for ��e and ���

(the larger transparency energies of the antineutrinos are due to their smaller cross

sections). We therefore approximate the emergent electron and muon neutrino and

antineutrino uxes by using these values in (6.6), with (2.12) used for the initial ux.

Our results are shown in Figure 6.7. They are in qualitative agreement with the

numerical results shown in Figure 6.1.

��

The �� , as we have discussed, are not absorbed by charged current interactions but

instead are moderated down to lower energies, until the probability of an interaction

1In astrophysics, Ek is sometimes de�ned as the energy where half, rather than two thirds, of the

ux is absorbed.
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is no longer signi�cant. Of course, there are still a number of them which, like the �e

and ��, do not experience any interactions at all.

We therefore approximate the emergent �� ux as consisting of two components:

an unscattered component similar to the �e and �� emergent uxes, and a scattered

component. For the unscattered component, we numerically �nd that Ek � 157 GeV

for �� and 230 GeV for ��� .

To model the scattered component, we use the observation of ourselves and other

groups that the scattered tau neutrinos and antineutrinos tend to emerge in roughly

log-normal distributions near their transparency energies. The log-normal distribu-

tion is de�ned as

dn

dE
=

1p
2� ln 10�E

exp

�
� 1

2�2
log

�
E

Et

��
(6.8)

i.e., when transformed to a distribution in logE, it is a Gaussian centered about

logEt with standard deviation � (whose \units" are decades of energy). The factor

of ln 10 comes from the Jacobian term relating dn=dE and dn=d(logE).

It is plausible that the scattered �� would emerge in this way. The central limit

theorem of statistics states that if x is the sum of a large number of independent

random variables ri, each of which has the same (though unspeci�ed) probability

distribution, then x is itself distributed as a Gaussian (Limpert et al. 2001). A

corollary states that if x is the product of many such ri, with the further restriction

that ri > 0 for all i, then x has a log-normal distribution.

In our case, x = E=E0, where E0 and E are the initial and �nal energies of the �� .

We have E � E0r1r2:::rn. Each ri is the fraction of the �� energy before a charged

current interaction carried away by the �� after the interaction and � decay. (We

ignore neutral current scatterings, which is why this relation is only approximate).



75

The ri are random variables; indeed, their probability distributions are the prod-

ucts of � decay distributions and inelasticity parameter distributions. The latter are

not independent of energy, however, and therefore the ri do not all have exactly the

same distributions. We also have n . 4 in the range of neutrino energy we are

considering, another factor which could cause the distribution in E to di�er from a

log-normal.

However, we do �nd numerically that E obeys an approximately log-normal dis-

tribution, as shown in Figures 6.5 and 6.6. We plot the emergent �� and ��� en-

ergy distributions for an initially monoenergetic beam at the center of the Sun with

E0 = 103 GeV. We also show log-normal �ts to the emergent energy distributions.

As expected, these are not exact, and in both cases somewhat underestimate the

low-energy neutrinos while overestimating the high-energy ones.

We have used di�erent values for E0 and found the log-normal curves to peak

around the same energies; accordingly, we make the assumption that the scattered

simpzilla �� and ��� emerge as log-normal distributions with the given values of � and

Et. Numerically, we �nd that about 80% of the simpzilla �� and ��� are scattered, and

we weight the scattered and unscattered components accordingly.

We show the sums of the scattered and unscattered �� and ��� uxes in Figure 6.7.

The under- (over-) estimation of the low- (high-) energy emergent uxes is apparent,

but qualitatively the curves do not greatly disagree with the numerical results in

Figure 6.7. The pileup of scattered �� and ��� is also the reason that their uxes

exceed those of the other avors by more than the initial factor of 2.
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Figure 6.5 Distribution of emergent �� energies for a monoenergetic beam with initial
energy E0 = 103 GeV. We plot as a distribution in logE rather than E. Oscillations
are neglected. The distribution corresponds approximately (although obviously not
exactly) to a log-normal distribution with the parameters shown.
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Figure 6.6 Distribution of emergent ��� energies for a monoenergetic beam with initial
energy E0 = 103 GeV, and a log-normal �t. The centroids are higher than they are
in the �� case because the antineutrino cross sections are lower.
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Figure 6.7 Analytical approximation for the emergent simpzilla neutrinos uxes at
the Earth, neglecting secondaries and oscillations. We assume the �e and �� uxes
to consist entirely of the remaining unscattered neutrinos, and the �� ux to be the
sum of an unscattered component and a scattered component obeying a log-normal
distribution. We make similar assumptions about the antineutrino uxes, using higher
transparency and log-normal mean energies.



CHAPTER 7

DETECTION OF SIMPZILLA NEUTRINOS

To calculate the event rate from a simpzilla neutrino ux, we assume an idealized

water-ice detector of size 1 km3. By \idealized," we mean that every neutrino charged

current interaction taking place inside the detector above 50 GeV can be detected.

Real detectors will of course be far more complicated than this, and may also be able to

detect muons produced in the rock or ice surrounding the detector, thus increasing the

e�ective detection volume. One must also take energy and direction resolutions, etc.,

into account to a far greater degree than we have done. A sophisticated calculation

of the event rate would require a detector Monte Carlo, which we leave to others.

The probability of a single neutrino of energy E experiencing a charged current

interaction inside the detector is

Pcc(E) = 1� e��=Lint(E) (7.1)

where � = 1 km is the size of the detector, and

Lint(E) =
1

np�ccp (E) + nn�ccn (E)
(7.2)

is the interaction length. Here, np and nn are the proton and neutron number densities

in ice of density �ice = 0:917 g=cm3. The cross sections (and hence Lint and the event

rate) are of course depend on neutrino avor too.

Given an incident neutrino ux d�=dAdEdt, the event rate is

dN

dt
= �2

Z
dE

d�(E)

dAdEdt
Pcc(E) (7.3)

In terms of the energy distribution n`f (E), this can be rewritten as

79
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1p
M12�A

dN `

dt
= �2

�`
4�R2

es

N `
f

N `
0

Z Emax

Emin

dEn`f(E)P
`
cc(E) (7.4)

where ` again denotes the avor, and �` = 1 for ` = � and 1
2
for the other avors.

In Figures 7.1 through 7.4, we show the event rate spectrum dN=dEdt (whose

integral over E is (7.4)) for each neutrino and antineutrino avor. In Figures 7.5

through 7.8, we integrate these to show the total event rates as a function of mX and

� (we choose values of � consistent with the strong interaction).

We note that we are assuming the detector has suÆcient angular resolution to

measure the directions of the simpzilla neutrinos and identify them as coming from

the Sun. The Sun subtends about 1Æ on the sky, and IceCube is expected to have an

angular resolution of that order, so our assumption is probably not unrealistic.

Atmospheric Background

The background from atmospheric neutrinos is approximately (Albuquerque et al.

2001b)

d�atm

dE dAdt d!
= (1:1� 1012)E�3:2 �km�2 yr�1 deg�2 GeV�1� (7.5)

between 50 and 2� 104 GeV, our energy range of interest. The atmospheric neutrino

ux is a function of zenith angle, though the variation is fairly minor above 50 GeV;

(7.5) is the vertical ux, since a realistic ice detector would look only at upward-

coming neutrinos.

Atmospheric neutrinos come from the interactions of cosmic rays with the Earth's

atmosphere. In this energy range, and for the upward-coming ux, they consist almost

entirely of �� and ���. Tau neutrinos are not produced in signi�cant quantities, and
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Figure 7.1 Simpzilla neutrino event rate spectrum in a km3 ice detector on Earth,
without taking oscillations or secondary neutrinos from � decays into account.
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Figure 7.2 Simpzilla neutrino event rate spectrum in a km3 ice detector on Earth,
including secondary neutrinos produced in � decays in the Sun.
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Figure 7.3 Simpzilla neutrino event rate spectrum in a km3 ice detector on Earth,
including neutrino oscillations in the Sun and vacuum.
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Figure 7.4 Simpzilla neutrino event rate spectrum in a km3 ice detector on Earth,
including both oscillations and secondaries.
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Figure 7.5 The total event rate in a km3 ice detector, without taking oscillations or
secondary neutrinos from � decays into account. We plot the rate as a function of
simpzilla mass mX and for three di�erent choices of the simpzilla interaction cross
section �. From left to right, these are: � = 10�26, 10�24, and 10�22 cm2.
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Figure 7.6 The total event rate in a km3 ice detector, taking secondary neutrinos from
� decays into account.
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Figure 7.7 The total event rate in a km3 ice detector, taking neutrino oscillations into
account.
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Figure 7.8 The total event rate in a km3 ice detector, taking both secondaries and
oscillations into account.
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the electron neutrinos come largely from the decays of � produced in the interactions

{ at 50 GeV and above, the latter reach the ground and lose their energy before

decaying.

The angular size of the Sun is approximately one square degree (which is also

about the smallest resolvable angular region by IceCube), and the area of the detector

is 1 km2. By integrating the product of (7.5) and the charged current interaction

probability Pcc(E) over E, as we did in (7.4), we obtain an atmospheric neutrino

event rate of approximately 2 events per year coming from the portion of the sky

occupied by the Sun.

The simpzilla neutrino event rates plotted in Figures 7.5 through 7.8 are generally

higher than this by several orders of magnitude. Hence, unless the simpzilla mass mX

is very high and/or its interaction cross section � is very low, we expect any simpzilla

neutrino signal to be easily observable by a km3 ice detector.



CHAPTER 8

CONCLUSION

We have shown that the annihilations of supermassive, strongly interacting dark

matter particles in the Sun should in general produce a large ux of high-energy

neutrinos easily observable by km3 scale detectors.

Our ux calculation includes all signi�cant processes a�ecting neutrino propaga-

tion and oscillation. We have used a set of oscillation parameters in agreement with

current observational data. The e�ect of oscillations on the ux is to approximately

equalize the uxes of the di�erent avors.

Our event rates are based on several simplifying assumptions about the detector,

and a more realistic calculation of these taking the actual detector response char-

acteristics into account would be necessary to predict the event rate with a high

degree of accuracy. We would not, however, expect a more sophisticated treatment in

this regard to alter our general conclusion that the high-energy neutrino signal from

simzpilla annihilations would be conspicuous.

We also note that even if a large high-energy neutrino signal from the Sun were

observed, further analysis would be necessary to rule out other possible candidate

sources such as thermal wimps, and to constrain mX and �.

The next generation of neutrino detectors should be able to either rule out sim-

pzillas as a signi�cant component of the non-baryonic dark matter, or provide unam-

biguous evidence for them.
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