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ABSTRACT
At the Tevatron, protons and antiprotons ollide with a enter-of-mass energy of1.8 TeV. In this energy range the dominant soure of top quarks is the prodution oft�t pairs via quark-antiquark annhilation and gluon-gluon fusion. We present our anal-yses to determine the mass of the top quark reonstruted through the \lepton+jets"deay hannel in the 106 � 4.1 pb�1 of data olleted by the Collider Detetor atFermilab (CDF) from 1992-1996.In the past, the top mass was obtained by omparing the observed kinematifeatures of top events to those predited for di�erent top quark masses. These dis-tributions are known as templates. While any kinemati variable, whih exhibitssensitivity to the top mass an be used to alulate the mass of the top quark, thelowest statistial unertainty is ahieved by reonstruting the top mass from thedeay produts of the t�t pair. It was also observed that it is possible to obtain abetter estimate of the top mass by �tting the di�erent templates to a smooth fun-tion. Previously, we have used a ombination of a Gaussian and a Gamma funtionto �t the distributions. In this analysis, we �nd that using a Neural Network (NN) to�t the distribution gives slightly better results, and that the NN �tting tehnique isappliable to any kinemati variable. Following this reipe the top mass is measuredto be 177:9�4:7(stat:)�4:6(syst:) GeV/2 when using the reonstruted mass,Mre.ii



When we use the total transverse energy of the events, HT, the mass of the top quarkis found to be 204:4� 9:2(stat:)� 9:2(syst:) GeV/2.As noted, there are di�erent kinemati variables that an be used to alulatethe top mass. A Neural Network provides a simple and elegant way of ombiningall of these variables whih have mass information. The idea is that ombining theinformation from more than one kinemati variable would result in a more auratemeasurement of the top mass. Therefore, this NN based tehnique uses a ombinationof Mre, HT , the invariant mass of the t�t system, Mt�t, and the sum of the PT 's of thetwo leading jets, PT (1) + PT (2). These variables were hosen beause they exhibitthe greatest mass dependene. The Neural Networks attempt to lassify the eventsas t�t signal or bakground. For eah event the NN provides a set of probabilities thatit has ome from any of the top masses used in this analysis, as well as bakground.Using this information we onstrut a disrete likelihood funtion from whih the topmass is alulated to be 181:9� 5:1(stat:)� 5:2(syst:) GeV/2.
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CHAPTER 1INTRODUCTION
In 1995, the top quark was disovered at the Fermilab Tevatron. This was theulmination of nearly two deades of intense researh at partile aelerators aroundthe world. Also, it was a major triumph for the Standard Model of partile physissine it predited the top quark existene. The top quark is by far the heaviestfundamental partile known, and this large mass has aused muh exitement in thephysis ommunity. Sine the top quark mass is lose to the eletroweak sale, itis believed that it plays a role in the breaking of the eletroweak symmetry, andtherefore the origin of the fermion masses.Previous mass analyses have exploited the use of a single kinemati variable toextrat the mass of the top quark. This thesis explores the use of Neural Networksto improve the top mass measurement. Neural Networks are applied in two distintways:� Neural Networks are used as funtion approximators to obtain a funtional form,whih desribes any distribution as a funtion of top mass.� Neural Networks are used for event lassi�ation. This tehnique allows us toombine information from di�erent variables.1



The Standard Model is summarized in Chapter 2 with spei� attention givento the prodution and deay of the top quark. Chapter 3 presents a desriptionof the CDF detetor, emphasizing the subsystems most important in this analysis.Arti�ial Neural Networks are introdued in Chapter 4. Chapter 5 desribes theseletion riteria used to obtain the event sample used in this analysis. The top massreonstrution algorithm is presented in Chapter 6. Here, we also disuss the jetenergy orretions employed in the mass analysis. The desription of the standardtemplate-based likelihood method used to extrat the top mass is given in Chapter7. We introdue a new Neural Network method to parametrized the Mre templates.This tehnique is ompared to the previous Gaussian + Gamma parametrizationmethod. The NN �tting tehnique is also used to parametrize the HT distributions.Chapter 8 presents the standalone Neural Network tehnique, whih ombines themass information from multiple kinemati variables to extrat the mass of the topquark. The systemati unertainties are presented in Chapter 9. In Chapter 10,we desribe a method to measure the gluon ontent in the Run I SVX-tagged datasample. The Run I results from the di�erent analyses presented in this thesis aregiven in Chapter 11. Finally, in Chapter 12 we desribe a powerful tehnique tomeasure the top mass using the large statistial samples of Run II.
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CHAPTER 2THEORY
All known partile physis phenomena are extremely well desribed within theStandard Model (SM) of elementary partiles and their fundamental interations.The SM provides a very elegant theoretial framework and it has suessfully passedvery preise tests in a variety of high-energy interations. Although no signi�ant dis-repanies between experimental data and the Standard Model have yet been found,there are several ritial issues whih remain unsolved. For instane, the StandardModel does not predit the masses of the fundamental partiles nor provides any in-formation why these masses are so di�erent. Furthermore, the Higgs mehanism bywhih the fundamental partiles aquire their mass is ompletely arti�ial. Hene,physis beyond the Standard Model seems inevitable and it is possible that the topquark might be the window to that new physis.2.1 The Standard ModelThis is a simple sketh of the Standard Model of partile physis. There areseveral books available to the reader that give a muh more thorough desription[1℄. The Standard Model is a quantum �eld theory that is based on the gauge sym-metry SU(3)C � SU(2)L � U(1)Y . The �rst gauge group, SU(3)C , orresponds to3



the symmetry of the strong interations, and the seond and third gauge groups,SU(2)L � U(1)Y , orrespond to the symmetry of the eletroweak interations. Thegroup symmetry of the eletromagneti interations, U(1)em, appears in the SM as asubgroup of SU(2)L�U(1)Y and it is in this sense that the weak and eletromagnetiinterations are said to be uni�ed.In the SM there are two kinds of fundamental partiles: fermions and bosons.Fermions are spin-1/2 partiles, whih are the onstituents of matter, and they aredivided into leptons (`) and quarks (q). The known leptons are: the eletron, e�, themuon, �� and the �� with eletri harge Q = -1; and the orresponding neutrinos�e, ��, and �� with eletri harge Q = 0. The known quarks are of six di�erentavors: u, d, , s, t, and b with frational eletri harge Q = 23 , �13 , 23 , �13 , 23 ,and �13 respetively. Quarks also arry a olor harge labelled red, green or blue forreferene. We know that olor is not seen in Nature and therefore elementary quarksmust bind into olorless omposite partiles named hadrons. Fermions are organizedin three families with idential properties exept for mass. The partile ontent ineah family is: 1st family:  �ee� !L, e�R,  ud !L, uR, dR2nd family:  ���� !L, ��R,  s !L, R, sR3rd family:  ���� !L, ��R ,  tb !L, tR, bRand their orresponding antipartiles.The seond kind of elementary partiles, bosons, are the mediators of the funda-mental fores. By leaving apart the gravitational interation, all relevant interations4



in partile physis are known to be mediated by spin-1 bosons. The photon, , isthe exhange partile in eletromagnetism. The photon is hargeless, massless and itdoes not interat with itself. The strong fore is mediated by eight di�erent gluons.Gluons are massless, eletrially neutral and arry olor whih means that they notonly interat with quarks but also with themselves. The W� and Z partiles mediatethe weak interation. The weak bosons are massive and they are self-interating. TheW� is harged with Q = �1 and the Z is eletrially neutral.In the Standard Model, partiles aquire their mass via the \Higgs mehanism". Inorder to aommodate eletroweak and avor symmetry breaking, we must arti�iallyintrodue a weak-isospin doublet of fundamental salar �eld � = ��+�0� with a potentialof the form V (�y�) = �2(�y�) + j�j(�y�)2; (2.1)where � is the self oupling of the salar �eld. If we hoose �2 to be negative, theeletroweak symmetry is spontaneously broken when the �eld is expanded about itsnon-zero vauum expetation value v = q��2=� = (GFp2)� 12 = 246 GeV. Thisvalue is referred to as the eletroweak sale. The spontaneous symmetry breakinggives mass to the W+, W�, and Z0 partiles, and it also gives rise to a spin-0 (salar)partile alled the Higgs boson. Eah quark and lepton has its own Yukawa ouplingto the Higgs boson Gf and thus aquires a mass mf = Gfv=p2, where f stands forfermion.2.2 Constraining the Higgs Mass with the Top MassThe mass of the top quark is one of the most important parameters of the StandardModel. It enters into alulations of higher-order (radiative) orretions whih onnet5



several other Standard Model input parameters. Thus, radiative orretions to manyeletroweak proesses depend on the masses of the top quark and the Higgs bosonvia loop diagrams suh as those shown in Figure 2.1.t�bW W HW W
t�tZ Z HZ ZFigure 2.1: Self-oupling loops ontributing higher order quantum orretions.At one loop, for instane, the � parameter,� = M2WM2Z(1� sin2�W ) � 1 + �r; (2.2)whih relates the W and Z boson masses and the weak angle, gets a radiative orre-tion �r = 3GF8�2p2M2top + p2GF16�2 M2W "113 ln M2HM2W !+ : : :#+ : : : ; (2.3)whih is quadrati in the top mass. Note, however, that the dependene on themass of the Higgs boson is only logarithmi. Therefore, the mass of the top quark isthe dominant term in the orretions for eletroweak proesses. By measuring Mtopvery aurately, and using additional onstraints from the large body of preisioneletroweak data we an test for onsisteny and predit unknowns in the StandardModel. One of suh preditions is the mass of the Higgs boson, whih an be on-strained by the diret measurement of the W boson and the top quark along withother preision data. 6



2.3 Pair Prodution of Top QuarksIn p�p ollisions at a enter-of-mass energy of 1.8 TeV, top quarks are expeted tobe produed by two distint proesses: qq annhilation and gluon-gluon (gg) fusion.Figure 2.2 shows the Feynman diagrams for these proesses. At the Tevatron, therelative ontributions from these proesses are about 90% and 10% respetively. Fora omplete derivation of heavy quark prodution there are several reviews availableto the reader [2℄. Here, only the most important issues of these alulations will bepresented.
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Figure 2.2: Lowest order proesses for t�t pair prodution.The total ross setion for the prodution of heavy quarks has the form,�(p�p! t�t) =Xi;j Z dx1dx2f pi (x1; �2)f �pj (x2; �2)�̂(ij ! t�t; ŝ; �s(�2);Mtop); (2.4)where the sum is over all partons: gluons, light quarks and antiquarks. This formulaexpresses the total ross setion in terms of the parton-parton proesses ij ! tt.The parton distribution funtion fpi orresponds to the probability density of �ndinga parton with a given fration of the proton momentum between x1 and x1 + dx1.7



Calulation Type Struture Funtion �t�t(1) Exat NLO[3, 4℄ NLO only MRSR2[5℄ 4:87+0:30�0:56 pb(2) LSvN[6℄ Resummed MRSD0[7℄ 4:94+0:71�0:45 pb(3) BC[8℄ Resummed CTEQ3[9℄ 5:52+0:07�0:42 pb(4) BCMNT[4℄ Resummed MRSR2 5:06+0:13�0:36 pbTable 2.1: Results of several di�erent p�p! t�t alulations, for Mtop = 175 GeV andps = 1:8 TeV.The funtion f�pj has the same de�nition but it orresponds to the antiproton. Thetotal short-distane ross setion for the parton-parton subproesses that intervene inthe heavy quark prodution is b�. The enter-of mass energy of the i-j parton systemis given by bs and it is related to the pp enter-of-mass energy by bs = x1x2s. Therenormalization sale � is the result of inluding higher order Feynman diagrams. Ifthe alulation ould be arried out to all orders then the dependene on � wouldvanish. The strong oupling onstant is given by �s and Mtop is the mass of the heavyquark.The ross setion for heavy quark prodution is rather sensitive to higher orderorretions to the leading order (LO) alulation. Subsequently, several groups havealulated the omplete next-to-leading order (NLO) ross setion. For top quarkprodution at the Tevatron, the NLO ontribution for the gg proess is roughly 70%that of the size of the LO term, and for the q�q proess it is about 20% that of the LOresult. The theoretial ross setion results are summarized in Table 2.1.The t�t ross setion is small ompared with other proesses whih take plae atthe Tevatron. Of the �ve trillion or so ollisions that ourred at CDF during theentire Run I, one expets about 600 t�t pairs to have been produed. Of these events,8



only a small fration are observed. Throughout the text, it will beome evident whymost of these events fail to be ategorized as top events.2.4 Top Hadronization and DeayWithin the Standard Model, the top quark deays via t!W+b with a branhingratio lose to unity. The deays t ! Ws and t ! Wd are also allowed but theyare suppressed by fator of 10�3-10�4 by the Cabibbo-Kobayashi-Maskawa (CKM)mixings [10℄. The deay of the top quark an be written as,�(t!Wb) = GFM2W8�p2 1M2topV 2tb "(M2top �m2b)2M2W +M2top +m2b � 2M2W#� 2k (2.5)where k denotes the W momentum in the t rest frame and it is,k = q(M2top � (MW +mb)2)(M2top � (MW �mb)2)2Mtop (2.6)Let MW = 80.4 GeV/2, mb = 5 GeV/2, and the top quark massMtop = 175 GeV/2.Substituting these numbers into the above equation gives the following top quarkdeay rate and lifetime:�(t! Wb) � 1:55 GeV =) �t = � 1�t� � 4� 10�25 se: (2.7)At the Tevatron energies, the top quark deays before it has time to hadronize. Thisimplies that the top quark an be treated as a free partile. Note however, that it isnot only the large mass of the top quark whih gives it its extremely short lifetime,but also the fat that it has a CKM-allowed t ! b deay very lose to unity. If thisdeay was more suppressed by the CKM mixings, the lifetime of the top quark wouldbe longer.A t�t �nal state ontains two t!Wb deays. The two b quarks will be observed asa spray or partiles known as jets, and the W bosons will deay into a lepton-neutrino9



Category Deay Mode Branhing RatioLepton+jets t�t! (q�q0b)(`��b) 24/81 (30%)All hadroni t�t! (q�q0b)(q�q0�b) 36/81 (44%)Dilepton t�t! (`�b)(`��b) 4/81 (5%)Table 2.2: Branhing ratios for the three di�erent t�t deay modes. Here q stands fora u; d; ; or s, and ` stands for e and �. � leptoni deays are not inluded.or a quark-antiquark pair. To a good approximation, the possible deays of the Wboson are equally probable. However, one must remember to ount eah quark avorthree times sine there are three di�erent olors for eah of them. Therefore, theprobability that the W boson will deay into either of the three leptons is about 1/9,while the probability that it will deay into a quark-antiquark pair is 2/3. Sine theW bosons deay independently of eah other, the t�t deays an be lassi�ed aordingto the W boson's deay. A summary of the di�erent branhing ratios of the possibledeay hannels is given in Table 2.2.2.5 Deay Signature of the Lepton+jets ChannelFigure 2.3 shows an artist representation of the lepton+jets deay hannel. Fromthis piture we expet the �nal state of the t�t deay to have the following:� An energeti lepton, eletron or muon, oming from the leptoni deay of theW boson. The W boson is a massive objet so in general the lepton produedwhen it deays will have a high energy.� Large missing energy due to the undeteted neutrino from the leptoniallydeaying W boson. Neutrinos do not interat with the CDF detetor so theirpresene is inferred by an imbalane in the total energy measured in the detetor.10



Figure 2.3: Lepton+jets t�t event. One of the W bosons deays into a lepton+neutrinopair while the other one deays into a quark-antiquark pair.
� Four jets, two of them from the b quarks and two more from the two lightquarks produed by the hadroni deay of the W boson. After a high energyollision, a quark or a gluon beomes free from the olor-neutral objet whihontained it. As the partons move apart the energy required to separate theminreases and q�q pairs are reated from the vauum. These new quarks andthe original ones reombine themselves to produe new hadrons. Thus, whatemerges from the ollision is a spray of olorless hadrons, or jet.
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CHAPTER 3THE CDF EXPERIMENT AT THE TEVATRONLoated in Batavia, Illinois, the Fermi National Aelerator Laboratory (Fermilab)is a partile physis experimental faility built in 1967 that is home to the Tevatron,the highest-energy partile aelerator in the world. The Tevatron will ontinue todominate the world of high-energy physis until 2007, when the Large Hadron Col-lider at CERN is sheduled to begin operations. Throughout this doument, the maindata taking periods at the Tevatron are referred to as Run I (1992-1995) and Run II(started 2001). The fous of the analysis presented here is the dataset aumulatedduring Run I by the Collider Detetor at Fermilab (CDF) experiment. In the ma-terial and observations that follow, we will desribe the aelerator and the detetoromponents as they were during Run I1.3.1 The TevatronAt the Tevatron, protons and antiprotons ollide with a enter � of � massenergy of 1.8 TeV. The proton and antiproton beam aquire their �nal energy bypassing through the aeleration hain shown in Figure 3.1. The intermidiate energiesattained at eah step are given Table 3.1.1For Run II, there have been a large number of improvements and additions to the experiment,as part of the upgrade following the 1995 shutdown.12
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Aelerator Component Partile Max. Energy Approximate SizeCokroft-Walton H� 750 keV few metersLina H� 200 MeV L = 150 mBooster p 8 GeV r = 75 mDebunher/Aumulator �p 8 GeV hri = 90 mMain Ring p, �p 150 GeV r = 1 kmTevatron p, �p 900 GeV r = 1 kmTable 3.1: Aeleration stages for protons and antiprotons.At the Cokroft-Walton aelerator, negatively harged hidrogen ions are �rstaelerated before being inserted in the 500-feet Linear aelerator (Lina) . Then,the H� ions pass through a arbon foil whih removes the eletrons, leaving onlythe protons. From here, proton aeleration is done in three stages, orrespondingto eah of the three irular aelerators: Booster, Main Ring, and Tevatron. Theantiprotons are made by olliding a proton beam from the Main Ring into a Tungstentarget. The ollisions in the target produe a wide range of seondary partiles13



Period Typial Instantaneous L Best Instantaneous L Integrated LRun IA 0:5 � 1031 m�2 s�1 0:9� 1031 m�2 s�1 19.6 pb�1Run IB 1:6 � 1031 m�2 s�1 2:8� 1031 m�2 s�1 86.3 pb�1Table 3.2: Typial instantaneous, best instantaneous, and integrated luminositiesduring Run I at the Tevatron (integrated L orresponds to the CDF interationregion).inluiding many antiprotons. These antiprotons are seleted and subsequently passedto the Debunher where they are redued by stohasti ooling and transferred to theAumulator. When a suÆient number of antiprotons (� 1012) has been olleted,the antiprotons are reinjeted into the Main Ring and then into the Tevatron, similarto the protons but revolving in the opposite diretion. The bunhes of protons andantiprotons ross every 3.5 �s. Table 3.2 shows the various luminosity values duringRun IA (1992 � 1993) and Run IB (1994 � 1995) respetively. Further informationabout the Tevatron at Fermilab an be found in referene [11℄.3.2 The CDF DetetorThe CDF detetor is a general purpose detetor designed for good lepton (e,�), photon, and jet identi�ation. It is yllindrially symmetri, and also forward-bakward symmetri with respet to the transverse plane, whih passes throught theenter of the detetor. CDF employs a oordinate system in whih the z-axis isalong the beam line. In this system, we express the partile trak oordinates in thedetetor by the pseudorapidity, � = -ln(tan �2), and �, where � is the polar angle,and � is the azimuthal angle. CDF is omposed of an array of individual detetors,whih are divided into three main ategories: the traking hambers, alorimeters,14
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and muon hambers. First, the traking detetors are the losest to the interationregion. They are enlosed by a superonduting solenoid, whih generates a 1.4 Tmagneti �eld along the inident beam diretion. This magneti �eld allows preisemomentum determination of harged partiles in the entral region. Surrounding thesolenoid are the alorimeters that determine the energies of the outgoing partiles.Finally, the outermost detetors are the muon hambers that measure the energiesand positions of the muons that were not absorbed in the alorimeters. For theomplete desription of the detetor, we point the reader to referene [12℄.15



Figure 3.3: Shemati view of an SVX barrel.
3.2.1 Traking DetetorsThere are three traking omponents, all loated inside the 1.4 T solenoid (Fig-ure 3.2): the Silion Vertex Detetor (SVX), the Vertex Time Projetion Chamber(VTX), and the Central Traking Chamber (CTC).The SVX traking detetor is designed to detet seondary verties from heavyavor deay espeially b hadrons, whih have a marosopi mean deay length2.It onsists of two barrels aligned end-to-end on either side of the z = 0 point, andsurrounding the 1.9 m radius beam pipe. The total overage of the SVX is 51 m inthe z diretion whih orresponds to an j�j < 1:9. As the spread of p�p ollisions is 60m along the z axis, the SVX trak aeptane is roughly 60%. Figure 3.3 shows one2The mean life time in the rest frame is �0 = 1:65� 10�12s (�0 = 0:5mm). A 15 GeV/ b quarkhas a lorentz fator  � 4 16



SVX barrel. In the azimuthal diretion it features 12 wedges of 30Æ eah, with thesilion strip detetors arranged in 4 onentri layers. The number of silion stripshanges with eah layer. The strip lines run parallel to the beam line and provide hitinformation in the r � � plane. The SVX single hit resolution is measured to be 13�m in r�� plane, and the resolution of the impat parameter relative to the primaryvertex is 17 �m. The SVX system plays a major role in just about all areas of topquark physis.The vertex drift hamber lies outside the SVX. The VTX onsists of 28 modulesof otagonal time projetion hambers along the z axis. Eah module is segmentedazimuthally into 8 wedges, and ontains a 50%-50% mixture of argon-ethane gas.It has a entral high voltage grid whih divides the module into two drift regions.The ionization eletrons drift to the two endaps ontaining sense wires runningperpendiular to the longitudinal plane biseting eah wedge. The arrival times ofthe eletrons give the z oordinate of the trak, while the wire loation spei�es thepartiular r. The funtion of the VTX is two-fold. The VTX is able to identify thez position of the primary vertex with a resolution of � 1 mm. In the ase of eventswith multiple interation3, the VTX is used to establish whih interation a primaryvertex and assoiated traks belong to.The CTC is a 3.2 m long ylindrial drift hamber with a 1.3 m radius. TheCTC overs a pseudorapidity range of j�j < 1:0. It onsists of 84 layers of sensewires arranged into 9 superlayers. There are two types of superlayers alternating inradial diretion: axial superlayers (0, 2, 4, 6, 8) are omposed of ells with 12 sensewire layers and provide r � � trak information; stereo superlayers (1, 3, 5, 7) are3There are roughly 1010 partiles in the proton and antiproton bunhes. On average we expetone interation per beam rossing but in some ases there are more than one17



Figure 3.4: Transverse view the Central Traking Chamber (CTC) whih shows thealternating superlayers of axial and stereo ells.
omposed of ells with 6 sense wire layers and provide traking information in the r�zplane. Figure 3.4 shows the transverse view at the endplate of the CTC. Eah ellis tilted by 45Æ with respet to the radial diretion to ensure that the eletrons driftperpendiularly to the radial diretion, whih simpli�es trak reonstrution. Thereare over 6000 sense wires in the CTC, with eah wire having a design resolutionof � 200 �m in the r � � plane, and 4 mm in the r � z plane. The momentumresolution of a harged partiles is given by ÆPT=PT = 0:001 GeV �1 � PT whenthe information from the SVX and CTC are ombined. The transverse momentumis given by PT = Psin�, where P is the total momentum of the partile measuredby the CTC. Further information about the SVX, VTX, and CTC an be loated inreferenes [13℄, [14℄, and [15℄ respetively.18
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3.2.2 CalorimetersThe CDF alorimeters, loated outside the solenoid, are segmented into towers (in��� spae) that point bak to the nominal interation point (Figure 3.2). The entralalorimeter extends over the range j�j < 1:1 and eah of its towers orresponds to asolid angle �� = 15Æ and �� = 0:1. The region 1:0 < j�j < 2:4 is overed by the plugalorimeters with a segmentation of �� = 5Æ and �� = 0:09. Finally, the forwardalorimeters math the pseudorapidity interval 2:4 < j�j < 4:2, with a segmentationof �� = 5Æ and �� = 0:1. Calorimeter energies are given by the transverse energy,ET = Esin�, where E is the total measured energy. A loser look at eah alorimetrysystem follows. 19



The entral alorimeter system is omposed of the entral eletromagneti alorime-ters (CEM), and entral hadroni alorimeters (CHA). There are 48 individual wedgeseah ontaining 10 towers. Figure 3.5 shows one of the entral alorimeter wedges,where the lower and upper regions are oupied by the CEM and CHA alorimetersrespetively. Towers 0 to 8 de�ne the entral region, and towers 6 to 8 share theirhadroni portion with the endwall alorimeter (WHA) as shown in Figure 3.2.The CEM is onstruted by alternating layers of lead and sintillator. The entraleletromagneti shower ounter (CES) is loated at the CEM shower maximum toprovide shower position information in the z�� view. The CES is a proportional stripand wire hamber. The entral preradiator (CPR) omposed of proportional tubes isplaed between the solenoid and the CEM. The CPR samples the early developmentof eletromagneti showers and is used to di�ereniate between eltrons and hadrons.The CHA and WHA alorimeter onsist of alternating layers of iron and sintillator.Further information regarding the physial harateristis of the CEM, CHA andWHA alorimeters an be found in Table 3.3. A detailed desription of eah is givenin referenes [16℄, [17℄.In order to determine the energies of the forward jets, the plug and forwardalorimeters are required. This information is also used to extrat the missing energy6ET in an event (see Setion 8.5). As in the entral alorimetry design, both the plugand the forward alorimeters feature eletromagneti and hadroni setions: PEMand FEM relating to the former and PHA and FHA desribing the latter. Thesealorimeters use a 50%-50% argon-ethane gas mixture as their ative medium. Pro-portional tube arrays ontaining this gas are interleaved with layers of lead for theFEM and steel for the FHA, as summarized in Table 3.4.20



CEM CHA WHACoverage (j�j) 0� 1:1 0� 0:9 0:7� 1:3Tower Size (�� ���) 0:1� 15Æ 0:1� 15Æ 0:1� 15ÆModule Length 250 m 250 m 100 mModule Width 15Æ 15Æ 80 mNumber of Modules 48 48 48Ative Medium polystyrene aryli arylisintillator sintillator sintillatorThikness 5 mm 10 mm 10 mmNumber of Layers 31 32 15Absorber Pb Fe FeThikness 3 mm 25 mm 51 mmNumber of Layers 30 32 15Energy Resolution(�(E)=E(GeV )) 13:7%=pET � 2% 50%=pET � 3% 75%=pET � 4%Table 3.3: The physial properties for the entral and endwall alorimeters. In thelast row, the symbol � indiates that the onstant term is to be added in quadratureto the resolution.
PEM PHA FEM FHACoverage (j�j) 1:1� 2:4 1:3� 2:4 2:2� 4:2 2:3 � 4:2Tower Size (�� ���) 0:1 � 5Æ 0:1 � 5Æ 0:1 � 5Æ 0:1� 5ÆNumber of Layers 34 20 30 27Ative Medium Proportional Tube Chambers with Cathode Pad ReadoutTube Size 7� 7 mm2 14� 8 mm2 10� 7 mm2 15� 10 mm2Absorber Pb Fe 96% Pb, 4% Sb FeThikness 2.7 mm 51 mm 4.8 mm 51 mmEnergy Resolution(�(E)=E(GeV )) 22%=pET � 2% 90%=pET � 4% 26%=pET � 2% 137%=pET � 4%Table 3.4: The physial properties for the plug and forward alorimeters. In the lastrow, the symbol � indiates that the onstant term is to be added in quadrature tothe resolution.
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3.2.3 Muon SystemsA majority of the harged partiles exiting the alorimeters are high-energy muons(PT > 1:5 GeV/). At CDF, muon detetion is aomplished by using single wire,retangular drift tubes. The muon system is omposed of three separate muon de-tetors, all situated in the entral pseudorapidity region: the entral muon detetor(CMU), the entral muon upgrade (CMP), and the entral muon extension (CMX).The CMU [18℄ o�ers a overage of j�j < 0:6, and is loated inside the entral alorime-ter wedges radially outside of the CHA (Figure 3.6). In eah wedge the CMU issegmented into three towers, eah onsisting of 4 radial layers of 4 drift ells. Thetwo outer layers have an o�set of 2 mm to resolve the left-right ambiguity of trakmeasurement in azimuth respet to the two inner layers. The entral muon upgrade(CMP), whih is loated behind an additional 0.6 m of steel, redues the bakgrounddue to the hadrons whih \punh-through" to the CMU. It onsists of 4 layers of driftells and in e�et has the same � overage as the CMU, but it overs most of theCMU gaps. With the addition of the CMX the muon overage inrease to a range of0:6 < j�j < 1:0. The CMX is strutured as four onial arhes of drift tubes.3.2.4 Event TriggersIn Run IB, the p�p ollisions were ourring at a rate of 280 kHz, whih onsid-erably exeeds the rate of writing out the events to tape (� 10 Hz). To solve thisproblem, CDF devised a three-level trigger system that rejets most of the events,while retaining only those events that are potentially useful for various physis analy-ses. The trigger requirements are applied serially. Events passing the Level 1 triggerriteria are passed to Level 2; the events passing Level 2 are allow to propagate to22



Figure 3.6: The loation of the CMU system. Inside eah alorimeter wedge there isa 2:4Æ � interval not overed by the CMU.
Level 3 whih imposes farther uts before deiding whether an event should be writtento tape or not. Typial aeptane rates for the three trigger levels are 1:300, 1:50,and 1:5 for Level 1, Level 2, and Level 3 respetively.Level 1 selets events based on identi�ation of energy lusters in the alorimetersor muon traks in the muon hambers. The time required to make the deision is lessthan 3.5 �s, leaving little dead time in the system. The Level 1 requirements reduethe event rate down to 1 kHz from 280 kHz.The Level 2 deision time is approximately 20 �s during whih further beamrossings are ignored by the detetor resulting in a dead time of a few perent. Thedeision to aept events is based on trak information and lustered energies. Theentral fast traker (CFT), a highly eÆient hardware proessor, reonstruts high23



momentum traks using the hit information from the CTC. Similarly, alorimeterlusters are formed by searhing for a seed tower above a ertain threhold and addingthe neighboring towers. The Level 2 output rate is 20-30 Hz.The Level 3 trigger is a software reonstrution trigger on a farm of Silion Graph-is proessors. If an event passes the Level 2 requirements, the whole detetor is readout, and the event is reonstruted using a simpli�ed version of the offline analysisode. This inludes the reonstrution of the t�t deay objets: lepton, jets, and 6ET .The detetor readout time is 3 ms whih on average results in 10% dead time. Onean event is aepted by Level 3, it will be written to 8 mm tape as part of a partiulardata stream. The Level 3 output rate is 5-10 Hz.
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CHAPTER 4INTRODUCTION TO NEURAL NETWORKS
The mass of the top quark is one of the most important fundamental parametersin the Standard Model. Previous analyses of the top mass have resulted in the mostaurate mass measurement among the quarks. However, there are ways the massanalysis an be improved by using Neural Networks (NN).In this hapter, we give a brief historial bakground on Neural Networks. The�rst network models are introdued giving speial attention to the pereptron. Thisomputational model is the foundation of the multi-layer Neural Network. A desrip-tion of the omponents of the multi-layer NN are given next. In the last few setions,we explain how these networks work and are able to perform a wide range of tasks.4.1 Historial BakgroundArti�ial Neural Networks are loosely based on how the human brain works.About 100 years ago, Santiago Ramon y Cajal, realized that the brain was madeup of disrete units alled neurons, the Greek word for nerves. He desribed neuronsas polarized ells that reeive signals via highly branhed extensions, alled dendrites,and send information along unbranhed extensions, alled axons. This information istransmitted in the form of eletrial pulses alled ation potentials. These potentials25



ause the neuron to release a hemial whih exites or inhibits the neuron's mem-brane. The e�et of all exitations or inhibitions may produe an ation potential inthe next neuron (i.e the neuron �res). An artist rendition of a biologial neuron isshown in �gure 4.1.

Figure 4.1: A biologial neuron. The inset shows the synapse whih is a speializedonnetion between neurons.
The �rst omputational model of the neuron was introdued by MCulloh andPitts in the 1940s. They proposed a binary unit for whih the output, y, is equalto 1 when an ation potential is generated, and 0 otherwise. A weight value wi isassoiated to eah of the ith onnetions of the neuron. These weights are exitatory if26



Figure 4.2: (Left) MCulloh-Pitt model for the omputational neuron. The di�erentweights are either exitatory wi = +1 or inhibitorywi = �1. (Right) Simple graphialrepresention of a pereptron with one output and two inputs.
wi = +1, and inhibitory if wi = �1. A neuron �res when the e�et of the exitationsand inhibitions is larger than a ertain threshold (bias) �. A graphial representationof this model is shown in �gure 4.2.(L). Here, xi are the input values fed into thenetwork.In 1958, Rosenblatt introdued a omputational model of the neuron alled thepereptron. Figure 4.2.(R) shows the graphial representation. The biggest improve-ment from the previous model is that it introdued numerial interonnetion weightsinstead of the simple inhibitory/exitatory onnetions used before. The weightsould now have any real value whih are determined aording to the task the per-eptron has to perform. The mathematial model is the following:y(t) = ( +1 if Pni=1 wi(t)xi > �(t)�1 if Pni=1 wi(t)xi < �(t); (4.1)where y(t) is the output of the pereptron, wi(t) is the weight of the input xi, and�(t) is the bias. One an think of the bias (see Figure 4.2.(R)) as the weight of a unit27



whose value is always set to one. Thus, the biases in the network are determined ina similar way as the weights.In Equation 4.1, the output of the network is a funtion of time beause it hangesas the weights and biases are modi�ed to perform a task. In Appendix A [20℄ we ex-plain how the updating of the weights and biases is aomplished. Rosenblatt proveda remarkable theory about pereptron learning. However, the initial euphoria wassoon replaed by disillusion after Minsky and Papert [21℄ found that the pereptronhas severe restritions on what it an represent as desribed in the next setion.4.2 The Multi-layer PereptronThe single layer preeptron has severe restritions as only linear lassi�ers anbe onstruted, or in the ase of funtion approximation, only linear funtions anbe represented. Minsky and Papert showed that many of these restritions an beoverome by introduing an extra layer of units, but they did not present a solutionto the problem of how to update the weights from input to hidden units. The answerto this question was given by Rumelhart, and it is desribed in Setion 4.3.3. Themathematial derivation is given in Appendix B [20℄.A multi-layer pereptron, or feed-forward Neural Network, has a layered struture.An examples is shown in Figure 4.3. Eah layer onsists of units whih reeive theirinput from units from a layer diretly to the left and send their output to units ina layer diretly to the right of the unit. There are no onnetion within a layer.The Ni input units take their input value from outside the NN, and they push thisinformation to the layer of Nh;1 hidden units. No proessing takes plae in the inputunits. The ativation of the hidden units is a funtion Fi of the weighted inputs, plus28



Figure 4.3: A multi-layer network with l layers of units. The information goes fromthe input units (left) to the output units (right).
a bias as given byyk(t + 1) = Fk(sk(t)) = F(Xj wjk(t)yj(t) + �k(t)); (4.2)where y orresponds to the output value of the units, wjk are the weights, and �kare the biases. The output of the hidden units is distributed to the next layer ofNh2 hidden units, until the last layer of hidden units whose outputs are fed to alayer of output units. The output units may or may not have the same ativationfuntion as the hidden units. The purpose of the output units is to send the data outof the Neural Network. Figure 4.3 shows a graphial representation of a multi-layerpereptron.In general the ativation funtion, F(y) for the hidden and output units is athreshold funtion suh as the sigmoid funtion. The only requirement is that thefuntion must be di�erentiable with respet to the weights and biases in the network.29



When dealing with muti-layer networks, it is ommon to refer to the di�erentnumber of input, hidden, and output units as the arhiteture of the Neural Network.For instane, a NN with �ve inputs, ten units in the hidden layer, and one outputorresponds to an arhiteture of 5-10-1.4.3 Understanding Arti�ial Neural NetworkAs we have seen Neural Networks are loosely based on the human brain. Theyonsist of a series of units arranged in layers that are onneted to eah other throughweighted onnetions. In this setion we explain how Neural Networks work. Firstwe state the pereptron learning rule by whih a network tries to learn a spei�task. For this learning rule there exists a onvergene theorem that says that startingfrom random weights, a network will onverge to some solution in a �nite number ofsteps. In order for the network to reah a solution, there must be a mehanism thatupdates the di�erent weights at eah step. We �nish the setion by desribing thismehanism, alled Bak-propagation.4.3.1 The Pereptron Learning RuleA Neural Network has to be on�gured suh that the appliation of a set of inputvalues produes the desired set of output values. There are various methods we an useto set the weights. One way is to set the weight expliitly, using a priori knowledge.A more ommon way alled supervised learning `trains' the network by feeding itteahing patterns and letting it hange the weights aording to the learning rule.These teahing patterns, (~x; d(~x)), are hosen by the user and they must haraterizethe task that the Neural Network must perform. Muh study goes into the seletionof these learning samples. 30



Suppose we have a set of learning samples onsisting of an input vetor ~x and adesired output d(~x). The pereptron learning rule an be stated as follows:1. Start with random weights for the onnetions.2. Selet a input vetor ~x from the set of learning samples.3. Modify all the weights so that the pereptron's response is as lose to d(~x) aspossible.4. Return to step 2.In the next setions we give the mathematial foundation whih allows the NeuralNetwork to resolve the hallenges at eah of the steps presented above.4.3.2 The Convergene TheoremThe onvergene theorem states that if there exists a set of weights ~w� whihallows the pereptron to perform a spei� task (pattern lassi�ation, funtion ap-poximation, et), the pereptron learning rule will onverge to some solution (whihmay or may not be the same as ~w�) in a �nite number of steps for any initial set ofweights.We de�ne os(~w) = ~w � ~w�k~wk (4.3)where os~w is a measure of how muh the network's urrent weights, ~w, di�er fromthe orret set of weights ~w�. Beause of the nature of the ativation funtion, thelength (norm) of the orret set of weights does not play a role in this proof. Thus,we let k~w�k = 1. 31



After n iterations it an be shown that the dot produt between the orret set ofweights and the n-th set of weights must be ~w(n) � ~w� � n�, where � is the amountthe weights hange from one iteration to the next. Similarly, it an be shown thatthe length of the n-th set of weights is k~w(n)k � n. We an ombine these results torewrite equation 4.3 as: os(~w(n)) = ~w(n) � ~w�k~w(n)k > n�pn: (4.4)In the limit that the number of iterations neessary to update the weights, goesto in�nity we have that limn!1 os(~w(n)) = 1 but by de�nition we know thatos(~w(n)) � 1. Therefore, there must exist an upper limit nmax for the number ofiterations that the NN updates the weights. After nmax modi�ations of the weightsthe network is \orretly"4 performing the task. For a more detailed desription ofthis derivation see [22℄.4.3.3 The Bak-propagation AlgorithmThe Bak-propagation method is a generalization of the Delta rule derived inappendix A. For a mathematial derivation of the Bak-propagation algorithm werefer the reader to appendix B. It is onveninent to beome familiar with the Deltarule and then proeed with the Bak-propagation method. In this setion we explainthe most important points of how the weights are updated without having to reiteall the equations.When the values of a learning pattern, ~x are fed to the Neural Network, theseinitial values are propagated to the output units, and the atual network output is4Corretly does not mean that the network is right 100% of the time. This is not possible inmost real ases. In setion 4.5 we desribe a series of fators that inuene the NN performane32



ompared to the desired output values, d(~x). From this omparison we obtain anerror for eah of the output units. Let's de�ned eo as the error orresponding tooutput unit o. This error is a measure of the di�erene between the network outputand the desired output. The goal is to bring this error to a minimum.The simplest way to do this is the greedy method: we hange the onnetion,weights, in the NN so that the error eo will be zero for this partiular pattern. Fromequation B.7, we know that in order to redue the error orresponding to the outputunits, we have to adapt the weights aording to�who = (do � yo)yh = Æoyh; (4.5)where �who is the hange in the weights onneting the output unit(s) to the hiddenunits, do is the desired output, yo is the output from the output unit(s), and yh is theoutput from the hidden units. However, applying the above equation alone does notomplete the job sine the weights from input to hidden units are not updated. Ifwe stopped here we would not be using the full representational power of the NeuralNetwork. To adapt the weights from input to hidden units we need to apply the Deltarule one more. The problem is that we do not have the value for Æ, the di�erenebetween the Neural Network output and the desired output, for the hidden units.Not to worry, sine Æ for a given hidden unit is equal to the sum of the Æ's from eahoutput it is onneted to multiplied by the weight of that onnetion (Æh = Po Æowho).The amount the hidden units hange is proportional to the amount the output unitshange times the strength of their onnetions. Now, we just have to apply theativation funtion, and the Bak-propagation method an ontinue with the nextpattern. 33



4.4 The Universal Approximation TheoremA multilayer pereptron trained with the bak-propagation algorithm may beviewed as a tool to perform nonlinear input to output mapping. The input-outputrelationship of the network de�nes a mapping from the Eulidean input spae to theEulidean output spae. The most important aspet of this input to output mappingbeomes the number of hidden layers neessary to aomplish it.The universal approximation theorem [23℄ states that only one hidden layer suÆesto approximate any funtion with �nite disontinuities to arbitrary preision, providedthat the ativation funtions are non-linear.Let F(�) be a nononstant, bounded, and monotonially-inreasing ontinuousfuntion. Let IN denote the N-dimensional unit hyperube [0,1℄N , and C(IN) be thespae of ontinuous funtions on IN . Then, given any funtion f 3 C(IN ) and � > 0,there exist a set of real onstants �i, �i, and wij where i = 1; : : : ; L and j = 1: : : : ; Nsuh that we may de�neF (x1; : : : ; xN) = LXi=1 �iF( NXj=1wijxj + �i) (4.6)as an appropiate realization of the funtion f(�); that isjF (x1; : : : ; xN )� f(x1; : : : ; xN)j < � (4.7)for all x1; x2; : : : ; xN that lie in the input spae. The universal approximation theoremsays that a single layer of hidden units is suÆient to approximate any ontinuousfuntion to within a ertain error �, However, it is not implied that a single layer isoptimum in the sense of learning time, ease of implementation, or more importantlygeneralization. Thus, the arhiteture of the NN must be determined by the natureof the problem at hand. 34



4.4.1 Neural Networks and Fourier SeriesThe reader should notie that the universal approximation theorem is basially ageneralization of approximations by Fourier series. From Fourier analysis it is knownthat any ontinuous funtion an be written as an in�nite sum of sine and osineterms: f(x) = 1Xn=0(an os nx + bn sin nx) = a0 + 1Xn=1 n sin(nx + �n); (4.8)where n = q(a2n+ b2n) and �n = artan(b/a). The above equation has the same formas equation 4.2, so we an interpret it as Neural Network with a single ativation unitx, a single output unit orresponding to f(x), and hidden units with an ativationfuntion F = sin(s). The term a0 orresponds to the bias of the output unit, thefators n orrespond to the weights from the hidden units to the output unit, thephase fator �n orresponds to the bias term of the hidden units, and the fator norresponds to the weights between the units of the input and the hidden layer.The basi di�erene between the Fourier approah and the Neural Network methodis that in the Fourier approah the n fators (weights) are integer numbers whihare analitially determined. In ontrast, in the NN method, these weights are realnumbers and are determined through learning.Many people are relutant to use Neural Networks beause of their fany name. Ifwe look beyond this fat we would be surprised to see that sometimes Neural Networksare nothing more than a Fourier expansion!4.5 NN performaneNeural Networks have been around for several deades. There have been manyimprovements over the �rst initial models of the omputational neuron whih have led35



to the use of Neural Networks in many di�erent �elds. Although, Neural Networkshave been very suessful in performing di�erent tasks, this suess depends on aseries of di�erent aspets that impat the network's performane. We desribe themost important aspets and how they impat the analyses presented here:� Information: a neural network will not be able to perform any task if it is notgiven the orret information. If one wants to �t a distribution you must use allthe relevant information whih desribes that distribution. Similarly, for eventlassi�ation we want to use variables that have the most distingushing powerbetween the di�erent lasses of events.� Arhiteture: the number of input and output units is determined by thefuntion one wants to �t. The only thing one must worry about is the numberof hidden units. For funtion approximation one wants to have enough hiddenunits so that the distribution represented by the NN is lose to the original.Two few hidden units will result in a poor �t. If one uses too many, theNN will \�t the noise" (statistial utuations) instead of making a smoothapproximation. In the ase of event lassi�ation, the number of inputs isdetermined by the number of variables with distingushing power. The numberof outputs orresponds to the di�erent types of events we want to lassify. To�gure out how many hidden nodes are needed, it is useful to try many di�erentarhitetures and then hoose the one that performs best.� Number of learning samples: in funtion approximation, we want to haveenough patterns (points) so that the shape of the distribution is well represented.For instane, a straight line an be represented by two points, but a sine funtion36



learly requires more points. For event lassi�ation, we want to use at leastten times the number of learning samples as hidden plus output units are in theNN. In any ase it is better to have more learning samples than less.� Number of iterations or epohs5: in the ase of funtion approximation wede�ne a �2 (Equation 7.1) funtion whih ompares the shape of the distributionwe want to �t to the NN output. We update the weights for as many iterationsas needed so that �2 � 1. At this point, the weights are frozen and thisde�nes the network whih gives a funtional form that is able to approximatethe funtion. In an event lassi�ation task, we stop updating the weights whenthe performane of the testing sample begins to inrease (see Figure 8.7. Atthis point, the NN is begining to learn the spei� features of the learningsample and therefore losing its generality. Funtion approximation and patternlassi�ation are explained in detail in Setions 7.1.1 and 8.2.2 respetively.

5An epoh has passed after all the lerning samples have been presented to the network one37



CHAPTER 5EVENT SAMPLE
The Run I data olleted by the CDF detetor from 1992 to 1995 orresponds toan integrated luminosity of 106.0 � 4.1 pb�1. During that time, roughly 50 millionevents were written to tape. This hapter desribes how events that \look" like t�tare seleted for the mass analysis. First, we desribe how the di�erent objets in thet�t deay are identi�ed. We then give the seletion riteria used to improve the signalto bakground ratio for both the Run I data sample and the Monte Carlo samplesused in this study. In the �nal setion, we desribe the Monte Carlo simulation andgeneration for both t�t signal as well as bakground.5.1 High PT LeptonsFrom the signature of the lepton+jets deay hannel, we are only interested inleptons oming from the deay of a W boson. In general, these leptons are isolated(there is low jet ativity around them) and they are more energeti than the leptonsoming from the semileptoni deay of the b and  quarks.From the Run I data we selet a sample of events whih ontain a high-ET eletron,ET > 20 GeV/, loated in the entral region of the detetor, j�j < 1. Bakgroundsfrom photon onversions and harged hadrons are removed by utting on several38



variables. For a detailed desription of all the di�erent uts we refer the reader to Ref.[24℄. Here we desribe those uts whih provide the largest disrimination betweensignal and bakground. We require the eletrons to have a CTC trak pointingtowards the eletron shower in the CEM. The ratio of the energy in the hadronialorimeter and the energy in the eletromagneti alorimeter, HAD=EM , must beless that 5%. We also require the shower energy divided by the momentum of theassoiated trak to be less than 1.8. Eah of the eletrons must be mathed to aVTX trak, and the invariant mass of this trak assoiated with any other CTCtrak must be greater than 0.5 GeV/2. Using this ut we an remove eletrons fromphoton onversions with an eÆieny of 88% [24℄. The energy of the eletrons ismeasured by the alorimeter energy of the tower to whih the CTC trak points toplus the adjaent towers [27℄. The energy resolution for high-ET eletrons is given by�(ET)=ET = 13:5%=q(ET)� 2%.The high-PT muon sample is reated by seleting entral muons, j�j < 1, with aPT > 20 GeV/. Muon andidates are identi�ed by a mathing a trak segment inthe CMU, CMP, or CMX to one in the CTC. The momentum of the high-PT muonis measured by onstraining the CTC trak to the average beam position. The muontransverse momentum resolutions is given by �(PT)=PT = 0:11%PT. The primarybakground in the muon sample is due to harged hadrons whih \punh through" thealorimeter and produe traks in the muon hambers, and osmi rays. We removethe bakground from the harged hadrons by requiring that their energy depositionin the alorimeter be harateristi of a minimum ionizing partile. The osmi raybakground is removed by requiring that the trak extrapolates bak (in r � �) towithin 3 mm of the beamline, and that it is within 5 m (at r = 0) of the primary39



vertex in the r � z plane. The other muon seletion requirements are given in Ref.[24℄.From these high-PT lepton samples, we only selet those events in whih thelepton is isolated from jet ativity [28℄. In the lepton+jets hannel we require onlyone lepton whih orresponds to the W ! `� deay. We refer to this lepton as theprimary lepton of the event.5.2 Missing Transverse Energy, 6ETThe neutrino produed in the leptoni deay of the W boson does not interatwith the detetor. Thus, its existene is inferred indiretly by an imbalane in thetotal transverse energy measured in the alorimeter. In p�p ollisions, the proton andanti-proton's initial momentum only have a nonzero z-omponent. Thus, from energyonservation6 we expeted the total energy in the transverse plane to be equal to zero.The 6ET is then given by the following�~6ET = ~ET (lepton) + 4Xi=1 ~ET (jet) + ~XT (5.1)suh that the 6ET plus the total alorimeter energy anel eah other. The de�nitionof the quantity ~XT is given in Setion 6.2. The above expression is highly orrelatedwith the jet energies. Thus, the 6ET is not an independent parameter in the mass �t.5.3 Jet ReonstrutionJets will deposit their energy in a loalized luster of alorimeter towers. Theluster identi�ation begins by determining the tower with the highest transverseenergy. This seed tower is required to have an ET > 3.0 GeV. An energy weighted6In the high energy limit, energy and momentum are equivalent up to the onstant  fator40



entroid is alulated for the luster, and only the energy from towers within a oneof radius �R = p��2 +��2 < 0:4 are inluded to determine the energy of thejet. This raw jet energy, ErawT , must be orreted for the various energy loses (seeSetion 6.1) to obtain the true energy of the original parton. A disussion of the jetreonstrution algorithm an be found in Ref. [29, 37℄.5.3.1 Seondary Vertex Tagging of B JetsThe Silion Vertex Tagging (SVX) algorithm [24, 25℄ searhes for displaed vertiesdue to B hadron deays. B hadrons have a life time of about 1.5 pioseonds and theyare expeted to be very energeti in top deays. Thus, b quarks an travel up to 1 or2 m before they deay. The loation of the B hadron deay, seondary vertex, anthen be distinguished from the p�p interation point, primary vertex. This is shownin Figure 5.1.In order to be onsidered for tagging, SVX traks must be assoiated with a jetthat has a raw ET > 15 GeV and j�j < 2.0. These traks must also be within a oneof �R < 0:4 and they must have hits in the silion vertex detetor. The algorithmemploys a two step proess to �nd a seondary vertex. Initially, it attempts toreonstrut displaed verties with three or more traks with PT > 0:5 GeV/, forwhih at least one of them must have PT > 1:0 GeV/. If it fails, it searhes for adisplaed vertex with only two traks with tighter quality uts. This algorithm hasan average eÆieny for Run 1b of 48% for tagging at least one of the b jets in t�t.5.3.2 Soft Lepton Tagging of B JetsThe Soft Lepton Tagging (SLT) algorithm [24, 30℄ searhes for additional leptonsresulting from the semileptoni B hadron deay. These our via b ! `�`X, or41
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Figure 5.1: Shemati view of an event ontaining a seondary vertex shown in thetransverse (r � �) view. The primary vertex is the point where the p�p interationours. The lines denoted 1, 2, and 3 are harged-partile traks reonstruted in theSVX whih yield the seondary vertex. The impat parameter for trak 1 is denotedby d1. Lxy is the 2-dimensional deay distane to the seondary vertex measured inthe r � � plane (adapted from [24℄).
b !  ! `�`X. The lepton is required to have a PT > 2 GeV/ and to be within a�R < 0:4 of a jet with raw energy, ET > 8 GeV. The eÆieny for tagging at leastone of the the b jets in t�t is roughly 15%.The SVX tagging algorithm obtains a higher purity and eÆieny than the SLTmethod. However, the SLT algorithm is employed beause it uses information whih isindependent from the SVX method and adds signi�antly to the aeptane. Finally,we note that not all the jets tagged by either of the algorithms ome from the deayof the B hadron. Displaed verties are also produed by other long-lived partilessuh as  quark, � , K0S, �, et. 42



5.4 Top Mass Candidate SampleIn Setion 5.5 we desribe the largest bakground proesses to t�t prodution.These bakground events do not have any top mass information. Thus, we de�ne aseries of uts that are intended to keep most of the t�t events while removing mostof the bakground events. We hoose events that have four jets, an energeti lepton,and 6ET from the leptoni deay of the W boson. All the events in the mass samplemust pass the following uts:1. The event must have an eletron (muon) with ET > 20 GeV (PT > 20 GeV/)and j�j < 1.2. The raw missing energy, 6ET , must be greater than 20 GeV. If the primary leptonis a muon, the 6ET inludes a orretion for the muon momentum.3. One isolated lepton is required (see Setion 5.1)4. Dilepton events (t�t ! `+��`��b�bX), de�ned aording to the seletion riteriadesribed in Ref. [26℄ are removed.5. We remove events onsistent with Z boson deays Z ! e+e� and Z ! �+��.These events are haraterized by two oppositely harged, same avor high-PTleptons (PT > 20 GeV/) that have an invariant mass between 75 and 105GeV/2. Events with a high-PT photon and whose `` invariant mass fallswithin the Z mass window are also removed.6. The primary vertex of the event must be within 60 m of z = 0.0.7. At least three jets with ET > 15 GeV and j�j < 2:0.43



8. An additional jet with ET > 15 GeV and j�j < 2:0 or ET > 8 GeV and j�j < 2:4.9. After the the mass reonstrution is performed, events are required to pass agoodness-of-�t, �2 < 10:0, where the variable �2 is de�ned in Setion 6.3.In the Run I data, a sample of 324 events pass uts one through seven, and arethe same events used in the CDF measurement of the t�t ross setion [25℄. Imposingut number eight redues the sample to 163 events. The �nal seletion requirementremoves 12 events, from whih we obtain an inlusive sample of 151 W+multi-jetevents. There are 34 of these events that have jets whih are tagged by the SVX orSLT algorithm. To improve the signal-to-bakground (S/B) ratio for the untaggedevents we require them to have four jets with ET > 15 GeV and j�j < 2:0. Thereare 75 untagged events whih do not meet this requirement. Below we disuss thedi�erent mass subsamples used in this analysis.5.4.1 Mass SubsamplesThere are a total of 76 events in the Run I mass sample. These events are arrangedinto four non-overlapping subsamples aording to their tagging information. MonteCarlo simulations show that the statistial unertainty on the mass measurementdereases by 17% when the results from the �ts from the di�erent subsamples areombined together. The four non-overlapping subsamples are desribed as follows:� SVX Double: Events with two SVX tags;� SVX Single: Events with one and only one SVX tag;� SLT: Events with one or two SLT tags, but no SVX tags;44



� No Tags: � 4 jets with ET > 15 GeV and j�j < 2:0.The number of Run I data events for eah subsample is given in Table 5.1. Inthe top quark mass analysis we assume that the four highest ET have ome from thedeay of the t�t pair. Thus, we only onsider the tags on these four jets when wedistribute the events into the subsamples. The table also shows the S/B ratio for thedi�erent subsamples using the bakground estimates presented in Setion 7.2.Data Sample Number of Events Expeted S/BSVX Double 5 24SVX Single 15 5.3SLT 14 0.8No Tags 42 0.4Table 5.1: Subsamples used in the lepton+jets mass analysis and the expeted signalto bakground ratio (S/B) for eah. See Setion 7.2 for bakground estimates forthese subsamples.
5.5 BakgroundsBakground events an mimi the same �nal state as top events, but they areprodued by a di�erent physial proess. The soures of bakground in the lep-ton+jets hannel ome from W+multijet events with heavy avor, non-W events,mistags, single top events, diboson events (WW, ZZ), Z ! �+��, and Drell Yan.Next, we desribe the main soures of bakground for both the SVX and SLT taggingalgorithms.The largest soure of bakground in the SVX tagged sample is inlusive W produ-tion in assoiation with jets ontaining a b or a  quark, for example p�p! Wg(g !45



b�b). The eÆieny for tagging eah bakground soure is alulated from Monte Carlosamples as a funtion of jet multipliity. These eÆenies along with the bakgroundfrations are ompared to the number of W+jets events observed in the data to es-timate the ontribution from eah soure. The seond largest bakground soureomes from mistags. These are jets whih do not ontain a true displaed vertex.From Monte Carlo studies, the transverse deay length, Lxy, distribution is sym-metri about zero. The negative side of the Lxy distribution omes primarily fromreonstrution errors in light quarks. To alulate the bakground from mistags, weparametrize the negative Lxy measured in generi jet data as a funtion of ET, �, andthe number of SVX traks in the jet. This parametrization is applied to the W+jetsdata to predit the number of mistag events.The dominant soure of bakground in the SLT tags omes from \fake" soft leptontags. These are tags due to partiles whih did not originate from heavy avor deay.Fake tags inlude non-leptons that pass the lepton requirements suh as pions fakingan eletron or muon, eletrons from photon onversions, pions or kaons deaying onight, et. The fake bakground is alulated by measuring the fration of tags pertrak in a generi jet sample as funtion of trak PT.The remaining bakground soures are estimated similarly for both taggers. Thenon-W bakground, expeted to be mostly b�b events, is alulated from the data bymeasuring the number of tags as funtion of lepton isolation and 6ET . The single topbakground in determined from Monte Carlo studies by measuring the W � and W -gluon prodution, and normalizing them to the respetive theoretial ross setions.The rest of the bakground soures are relatively small for both taggers and areevaluated from Monte Carlo preditions. 46



5.6 Monte Carlo SimulationWe would like to note that Monte Carlo studies are one of the most important partsof partile physis. Using Monte Carlo samples we an alulate detetor eÆienies,understand the detetor response to a partiular physis proess, develop new analysestehniques, or obtain bakground alulations.Monte Carlo numerial methods are desribed as statistial simulation tehniquesused to simulate a physial proess, whih is desribed by probability density funtions(pdf's), by random sampling from these pdf's. In our ase, the physial proess thatwe want to simulate is the olletion of t�t events by the CDF detetor.Monte Carlo event generators are used to simulate the physis of p�p ollisions.The event generators output a list of four-vetors of the �nal state partiles whihare used as the input to the CDF detetor simulation. Jet and lepton identi�ationare aomplished using the same algorithms that are applied to the real data. Thisallows the same seletion riteria to be applied to the Monte Carlo and the Run Idata.5.6.1 Top SamplesThe Monte Carlo program used to generate t�t events is PYTHIA 6.129a [32℄.Additional heks are provided by Monte Carlo t�t events generated with HERWIG[31℄. PYTHIA is based on the leading order QCD matrix elements for hard satteringproesses. It uses the parton-shower approah for initial and �nal state radiation, andpartons are fragmented using the Lund string model [33℄. The default set of partondistributions funtions is GRV 94L [56℄. B hadron deays are modeled with theCLEOMC pakage [34℄. 47



5.6.2 Bakground SampleThe Monte Carlo program used to study the kinemati harateristis of the bak-ground is VECBOS [35℄. This program is based on tree-level matrix element alu-lations for W+jets prodution. The simulated events produed by VECBOS ontaina W boson and up to four additional �nal state partons. These partons are inputinto the same parton shower evolution and luster hadronization used in the HER-WIG program. The VECBOS events generated for this analysis use the W+3 partonmatrix elements, with a required additional jet produed during parton showering.The VECBOS Monte Carlo generator has been shown to reprodue distributions ofa wide range of kinemati variables in a large sample of Run I W+jets events [36℄.
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CHAPTER 6MASS RECONSTRUCTION
This hapter desribes the orretions applied to all the t�t deay produts tobetter approximate the energy of the original partons. The raw energies are or-reted for non-instrumented regions, non-linear response of the alorimeter, multipleinterations at high luminosity, and other e�ets. These orreted energies serve asinputs to a �2 from whih the orreted four momenta of all the partiles in the lep-ton+jets deay hain, p�p! t�t! `�q�q0b�bX, an be reonstruted by applying a seriesof energy-momentum kinemati onstraints. Therefore, the reonstruted top quarkmass, Mre , an be alulated in an event-by-event basis.6.1 Jet Energy CorretionsBefore the jet energies are used to reonstrut the mass of the top quark, theyare orreted to better estimate the original momenta of the daughter partons in t�tdeay. The orretions applied to the jets are done in two di�erent step. First, a setof generi orretions are applied to all jets with a raw ET > 8 GeV and j�j < 2.4.These adjustments are intended to provide an estimate of the true jet energy fromthe observed jet energy. Then, the seond set of orretions is applied to the leadingfour jets of the event whih are assumed to be the t�t deay partons. These orretions49



are applied after the generi ones, and map the jet momenta to the momenta of thepartons in top events.The generi orretions aount for the mismeasurement of the jet energies dueto detetor e�ets, energy falling outside the lustering one, and ontributions fromthe underlying event and multiple interations. After aounting for all these fators,the orreted energy, PorT an be written in terms of the raw energy, PrawT , as follows:PorT (R) = (PrawT (R)� frel � UEM(R)) � fabs(R)� UE(R) +OC(R): (6.1)The parameter R is the one radius and for this analysis it is set to 0.4. The di�erentorretions are given below:� frel is the relative energy sale, and it orrets for the relative response of thedi�erent alorimeter setions to that of the entral region of the alorimeter,0:2 < j�j < 0:7.� There are two kinds of underlying event orretions: UEM(R) and UE(R). The�rst orretion takes into aount the extra energy of the event due to multipleinterations. The UE(R) orretion takes into aount the extra energy fromthe primary p�p interation due to fragmentation of partiles not assoiated withthe hard sattering.� fabs is the absolute energy sale, and it attempts to map the raw jet energyobserved in a one of radius R into the average true jet energy. This orretionaounts for the detetor response and any e�ets due to the fat that partilesinterat in the alorimeter and are experimentally observed as jets.� OC(R) orrets for the energy expeted to be outside of the jet one radius of0.4. 50



The four leading jets in the t�t deay undergo an additional energy orretion whihdepends on the jet type. In the lepton+jets hannel the jets originate from fourdi�erent soures: a light quark, a hadronially deaying b quark, a b quark deayingsemileptonially into the eletron hannel, and a b quark deaying semileptoniallyinto the muon hannel. To derive the t�t spei� jet momentum orretions we generatea Monte Carlo sample that is proessed using the CDF simulation and reonstrutedin the same way as the data. First, we math the Monte Carlo partons to thereonstruted jets in � � � spae. Then, an average orretion fator is obtained byomparing the PT of the Monte Carlo partons to the PT of the reonstruted jets.The orretion fator is a funtion of the jet's PT and it is given by the median ofthe distribution of �PT = (PT(parton)� PT(jet))=PT(jet).Figure 6.1 shows the size of the t�t spei� orretions for the four types of jets: (A)jets from hadroni W deays. (B) jets from b quarks, (C) b jets ontaining an eletron,(D) b jets ontaining a muon. As we an see the larger orretions orrespond to bjets ontaining a soft lepton in their deay. This is due to the undeteted neutrinoin the semileptoni deay, and for the muon hannel, the orretion also aounts forthe fat that muons deposit very little energy in the alorimeter.6.2 The Unlustered EnergyIn general, t�t events are very energeti, and they show high jet ativity. Thus, wewrite the t�t prodution mehanism as p�p ! t�t + X where X is made up of all theunspei�ed partiles whih reoil against the t�t system. The quantity XT is given byall the energy in the event not ounting the primary lepton and the four leading jets.
51
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Figure 6.1: The t�t-spei� orretions applied to jets aording to available b-jetinformation. The urves show the frational hange to the orreted jet PT after allthe generi jet orretions have been applied. The urves are for: (A) jets from thedeay of W bosons, (B) jets from all b quarks, (C) jets from b quarks ontaining aneletron, and (D) jets from b quarks ontaining a muon.52



The equation an be written as:~XT = ~UT + NjetsXi=5 ~ET (jet) (6.2)where the transverse unlustered energy, UT, is given by all the energy in the alorime-ter whih is not lustered into jets. Eah omponent of the unlustered energy isorreted with a single fator fu:e: = 1:6 based on studies of Z boson events with noextra jets, where the Z boson is well measured by the two leptons it deays into. Thepreision of the unlustered energy is not very well understood so the unertainty ofeah omponent of ~UT is taken to be 100%.6.3 Event ReonstrutionIn Chapter 5 we desribe how the lepton and jets are identi�ed in the CDF de-tetor. From the tagging information it is possible to determine whether a jet hasome from a b quark or not. We have also shown how the existene of the neutrino isinferred by an imbalane in the total transverse energy measured in the alorimeter.Then, by orreting the raw energies of these top deay produts the original energyof the t and �t daughter partons an be better estimated. The hallenge now is howto ombine the deay produts to reonstrut the mass of the top quark.A �tting algorithm is used to alulate the four momenta of the t and �t for a givenevent by reonstruting the four momenta of the six partiles in the deay: `, �, b,�b, q, and �q7. From the orreted observed quantities and their unertainties alongwith a series of kinemati onstraints we are able to onstrut a �2, whih an beminimized to yield the best estimates for the four momenta of the partiles in the t�t7It should be noted that although we sometimes refer to the deay produts at the parton level,it is the mass �tting ode whih determines their �nal assignment53



deay. For the minimization we assume the masses of the partons to be 0.5 GeV/2,exept for the b, and �b whih are assigned a mass of 5.0 GeV/2.The hypothesis of Standard Model t�t implies the prodution proessp�p! t+ �t +X; (6.3)followed by the deays t ! W+ + b; (6.4)�t ! W� +�b; (6.5)W� ! `� + �; (6.6)W� ! q + q0: (6.7)where the quantity X is desribed in Setion 6.2.The �2, whih is minimized with the program MINUIT [38℄, is given below. This�2 formulation inludes the energy and kinemati onstraints imposed by the t�t deayhypothesis. The �2 is expressed as:�2 = X`;jets (P̂T � PT )2�2PT + Xi=x;y (Û 0i � U 0i )2�2U 0i + (M̂`� �MW )2�2MW +(M̂jj �MW )2�2MW + (M̂`�j �Mre)2�2Mre + (M̂jjj �Mre)2�2Mre : (6.8)The notation is as follows: ` represents the primary lepton, � refers to the neutrino,and j refers to one of the four leading jets in the event. The �rst sum is over thelepton and all the jets with ET > 8:0 GeV and j�j < 2:4. The seond sum is over thetransverse omponents of the unlustered energy. The hatted symbols in the sumsrepresent quantities that are modi�ed by the �t proedure, whereas unhatted symbolsrepresent the input values. MW is the mass of the W boson and it is 80.4 GeV/254



with an unertainty, �MW , set to its theoretial width of 2.1 GeV/2. The unertaintyin the top mass is set to its theoretial width of 2.5 GeV/2.In summary, there are �ve e�etive onstraints in our �2: the transverse momen-tum of the omponents of the t�t system must be zero, the invariant mass of the `�system must be equal to the W mass, the invariant mass of the q�q0 system must alsobe equal to the mass of the W boson, the two three-body invariant masses, Mjjj andM`�j, must eah be equal to the reonstruted top mass, Mre. After minimizingthe �2 with respet to all of the available information, we obtain an event-by-eventdetermination of the top quark mass, Mre .6.3.1 CombinatorisDepending on the tagging information of the event there are many di�erent wayswe an ombine the top deay partons to reonstrut the top mass. If none of thejets are tagged by the SVX or the SLT algorithms, there are 12 di�erent ways wean assign the four leading jets to the partons in the �t. Combined with the PZ ofthe neutrino P�Z ambiguity8, there are 24 di�erent on�gurations. If one of the jets istagged as a b andidate, the number of possible on�guration redues to six, 12 if weinlude the P�Z ambiguity. We note that if a jet is tagged by either tagging algorithm,it is automatially assigned to one of the b quarks. If two of the jets have beentagged there are two possible jet assignments, the two b jets an be interhanged, andtherefore four possible on�gurations.When we reonstrut the mass of the top quark, all the possible on�gurations areran through the �tting ode and the ombination with the lowest �2 is hosen as the8The neutrino PZ is determined from the W mass onstraint. Thus solving MW =pE2W � P 2Wleads to two possible solutions. 55



best solution. We require this solution to have a �2 < 10:0 as stated in Setion 5.4.The eÆieny for this ut for eah of the mass subsamples is given in the table below6.1. The table shows the result for t�t signal as well as the VECBOS bakground. TheeÆieny of the �2 ut in the SVX Double bakground subsample is not availablebeause there are only a handful of events.Mass subsample �2 eÆieny (t�t) �2 eÆieny (VECBOS)SVX Double 73:4� 0:6% N/ASVX Single 90:3� 0:4% 81:9� 0:8%SLT 89:7� 0:6% 80:7� 1:3%No Tags 96:5� 0:2% 95:4� 0:4%Table 6.1: EÆieny of the �2 ut for eah of the mass subsamples. The probabilityof �nding a solution with �2 < 10:0 inreases as the number of possible on�gurationsinreases.6.3.2 Gluon radiationFrom the Monte Carlo plus detetor simulation we �nd that roughly 50% of theMtop = 175 GeV/2 t�t events ontain at least one jet that annot be mathed to anyof the top deay partons. These extra jets are emitted during the prodution of the t�tpair, initial state radiation (ISR), or during the t�t deay, �nal state radiation (FSR)[39℄. From a theoretial perspetive, the jets that are produed after the reation ofthe t�t pair should be inluded into the mass reonstrution only if the top quark is onshell. These jets arry a fration of the energy of the top quark and therefore theirinlusion would translate in a more aurate top mass estimate. However, it is notpossible to distinguish jets from ISR to those from FSR. Furthermore, produtionand deay stage radiation annot be di�erentiated from one another in the detetor.56



Thus, in a large fration of the Monte Carlo events the four highest-ET jets do notorrespond to the top deay partons.A possible solution is to add one more jet to the mass �tting ode, but thiswould inrease the number of ombinations by a fator of three, four, and �ve forthe SVX Double, SVX Single or SLT, and No Tags events respetively. The inreasein the number of possible on�gurations dereases the probability of hoosing theorret solution. This is why only the four highest-ET jets are onsidered for themass analysis.A more elegant solution to this problem would be to determine the amount ofgluon radiation in the data. Chapter 10 desribes how this an be aomplished byusing Neural Networks.
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CHAPTER 7TEMPLATE-BASED MASS ANALYSIS
The best estimate of the top mass is obtained by omparing the shape of theMre distribution to Monte Carlo expetations. To improve the mass measurementthese Monte Carlo distributions are �tted with a single funtional form. Using aNeural Network method we an parametrized any distribution with mass information.A maximum likelihood method is used to extrat Mtop from the parametrized formsfor t�t signal and bakground, along with the onstraints of the bakground frations.7.1 Neural Network Template ParametrizationThere is only a �nite number of Monte Carlo statistis we an generate. In t�tMonte Carlo samples, it is observed that the shape of the Mre distributions, de-pend on the generated top quark mass. For di�erent top masses, the shape of thereonstruted mass distributions are very similar. They tend to peak around theirgenerated top mass and they have asymmetri tails. This is quite reasonable, sinewe only hange the mass of the top quark but the physis proesses responsible forthe distributions remain the same. This is the reason why it is reasonable to modelthe parent distribution of the templates by a single funtional form dependent onlyupon the mass of the top quark. 58



In previous analyses, a ombination of a Gaussian plus a Gamma funtion (GG)has been used to �t the mass templates as a funtion of Mtop [40℄. The use of thesedistributions is motivated by the shape of the Mre distributions, but it should benoted any funtion that ould �t the templates ould be used. Thus, we proposeusing a Neural Network to perform this �ts. This tehnique has been employed bythe ALEPH experiment to �t templates of di�erent Higgs masses [41℄.We use the PYTHIA Monte Carlo plus the detetor simulation to model the shapeof the t�t events. For this study we have generated samples raging from a top massof 120 GeV/2 to 230 GeV/2. To model the shape of the bakground we use theVECBOS Monte Carlo program. All the MC generated events are put through thedetetor simulation.7.1.1 Fitting the Mre DistributionsFigure 7.1 shows a 2-D histogram of the reonstruted mass (Mre ) versus thegenerated top mass (Mtop ) for the Single SVX subsample. We want to use a NeuralNetwork to model the t�t reonstruted mass distribution for any given value of theinput top quark mass. For this purpose we have hosen the Neural Network pakageMLP�t [42℄. MLP�t uses the sigmoid funtion, F(y) = 1(1+ey) for the hidden units,and the identity funtion F(y) = y, for the output units.As explained in hapter 4, the nature of the problem ditates how many inputand output units are needed to solve the problem. In this ase the NN has two inputunits: the �rst input is assoiated with the reonstruted mass, the x-axis in Figure7.1, while the seond input orresponds to Mtop , the y-axis in Figure 7.1. For a moredetailed desription of the NN �tting proedure we refer the reader to Appendix C.59
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Figure 7.1: We show a 2-D histogram of all the Single SVX mass templates as afuntion of top mass. The Mre axis is normalized to be between 0 (Mre = 80GeV/2) and 1 (Mre = 380 GeV/2). The Mtop axis is also normalized to be between0 (Mtop = 120 GeV/2) and 1 (Mtop = 230 GeV/2).The arhiteture of the networks for the t�t signal is 2-4-4-1. This orrespondsto 37 possible weights and biases (there are 12 free parameters in the Gaussian plusGamma �t). We would like to emphasize that this is not the only solution to theproblem. It is possible to obtain similar results using a single hidden layer. However,in this ase we have found that with two hidden layers the network onverges to asolution more rapidly and has better generalization.To determine whether or not the networks are able to �t the distributions orretlywe de�ne a �2 funtion as follows:�2 = XMtop=120:::230 60Xbin i (b(i;Mtop)�O(Mre;Mtop))2�2b(i;Mtop)2 (7.1)60



where b(i, Mtop ) is the ontent of th i-th bin of the histogram obtained with a topquark mass Mtop , �2b(i;Mtop)2 is the orresponding bin error, and O(Mre , Mtop ) isthe output given by the NN. The �t �2 per degree of freedom (dof) are shown inTable 7.1. We also show the �t �2 per dof from �tting the same distributions usingthe previous Gaussian plus Gamma parametrization method.Top Subsample NN templates GG templatesSVX Single 0.98 for 919 dof 1.29 for 944 dofSVX Double 1.27 for 778 dof 1.30 for 812 dofSLT 1.08 for 831 dof 1.24 for 856 dofNo Tags 1.37 for 920 dof 1.59 for 945 dofTable 7.1: We show the �2 per degree of freedom for eah of the four subsamples.The results from both �tting tehniques are given.The results from both �tting tehniques are shown in Figures 7.2 through 7.5where the blue urves orrespond to the NN �ts while the green urves show theresults from the GG �ts. Both sets of urves look fairly similar for low top masses.However, at high top masses the NN urves peak higher. Thus, the NN shows betterseparation between the di�erent masses.The bakground distributions do not have any mass dependene. Thus, the arhi-teture of the networks is 1-5-1, whih orresponds to 16 weights and biases (there arethree free parameters in the Gaussian plus Gamma �t). The one input is assoiatedwith reonstruted mass, and the desired output value is set to the number of entriesin eah bin of the bakground subsample. Figure 7.10 shows the parametrizationof the bakground distributions for the Single SVX, SLT, and No Tags subsamples.The results from the GG �ts are given by the green urves, while the NN �t results61



are given by the blue urves. Beause of limited statistis and low probability forobtaining two SVX tagged jets in the VECBOS Monte Carlo simulation, we assumethe same bakground distribution for the SVX-tagged subsamples.This analysis uses the same VECBOS samples generated for past analyses [43℄.The default bakground samples were generated with a sale Q2 = hPT i2. To studythe e�et of the bakground shape on the top measurement, another set of templateswas generated with a sale Q2 = hMW i2. To inrease the bakground statistis wehave ombined both sets of events. We have performed a series of test, whih showthis ombination does not a�et the mass of the top quark (Appendix D).7.1.2 Fitting the HT DistributionsOne of the bene�ts of �tting a distribution with the NN method is that we donot need to make an a priori deision of what the underlying funtion desribing thedistribution is. Thus, a NN an approximate any distribution independently of itsshape.Previous analysis have shown that there are other kinemati variables besidesMre that have mass information [47℄. One of these variables is the total transverseenergy of the event, HT. In Chapter 8, we study the possibility of using the massinformation from several variables to alulate the top mass. Here, we are interestedin showing how the NN �tting method is appliable to any distribution of a singlevariable. The �t �2 per dof for the Single SVX, Double SVX, SLT, and No Tags are:936.5 for 914 dof , 766.3 for 835 dof , 783.1 for 866 dof , and 896.1 for 886 dof . Thesignal HT �t results are shown in Figures 7.6 through 7.9. The bakground HT �tresults are shown in Figure 7.11. Figures only show the NN parametrization results.62



100 150 200 250 300 350
0

20

40

60

80

100

120

GG Templates

NN templates

(TOP 140) Reconstructed mass

100 150 200 250 300 350
0

20

40

60

80

100

120

(TOP 155) Reconstructed mass

100 150 200 250 300 350
0

20

40

60

80

100

(TOP 170) Reconstructed mass

100 150 200 250 300 350
0

10

20

30

40

50

60

70

80

90

(TOP 185) Reconstructed mass

100 150 200 250 300 350
0

10

20

30

40

50

60

70

80

(TOP 200) Reconstructed mass

100 150 200 250 300 350
0

10

20

30

40

50

60

70

(TOP 220) Reconstructed mass

Figure 7.2: Reonstruted mass distributions for single SVX events in t�t Monte Carlogenerated with a top quark mass of (a) 140, (b) 155, () 170, (d) 185, (e) 200, and (f)220 GeV/2. The �ts from the GG templates (green) and the NN templates (blue)are also shown.
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Figure 7.3: Reonstruted mass distributions for double SVX events in t�tMonte Carlogenerated with a top quark mass of (a) 140, (b) 155, () 170, (d) 185, (e) 200, and (f)220 GeV/2. The �ts from the GG templates (green) and the NN templates (blue)are also shown. 63
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Figure 7.4: Reonstruted mass distributions for SLT events in t�t Monte Carlo gen-erated with a top quark mass of (a) 140, (b) 155, () 170, (d) 185, (e) 200, and (f)220 GeV/2. The �ts from the GG templates (green) and the NN templates (blue)are also shown.
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Figure 7.5: Reonstruted mass distributions for events with no SLT or SVX tags int�t Monte Carlo generated with a top quark mass of (a) 140, (b) 155, () 170, (d) 185,(e) 200, and (f) 220 GeV/2. The �ts from the GG templates (green) and the NNtemplates (blue) are also shown. 64
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Figure 7.6: HT distributions for single SVX events in t�t Monte Carlo generated witha top quark mass of (a) 140, (b) 155, () 170, (d) 185, (e) 200, and (f) 220 GeV/2.The �ts from the NN templates are also shown.
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Figure 7.7: HT distributions for double SVX events in t�t Monte Carlo generated witha top quark mass of (a) 140, (b) 155, () 170, (d) 185, (e) 200, and (f) 220 GeV/2.The �ts from the NN templates are also shown.65
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Figure 7.8: HT distributions for SLT events in t�t Monte Carlo generated with a topquark mass of (a) 140, (b) 155, () 170, (d) 185, (e) 200, and (f) 220 GeV/2. The�ts from the NN templates are also shown.
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Figure 7.9: HT distributions for events with no SLT or SVX tags in t�t Monte Carlogenerated with a top quark mass of (a) 140, (b) 155, () 170, (d) 185, (e) 200, and(f) 220 GeV/2. The �ts from the NN templates are also shown.66
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Figure 7.10: Reonstruted mass distributions for VECBOS bakground, whih on-tains events generated with Q2 = hPT i2 and Q2 = hMW i2 (see Appendix D). The �tsfrom the GG templates (green) and the NN templates (blue) are also shown.
100 200 300 400 500 600 700

0

20

40

60

80

 distributionT(SVX VECBOS) H

SVX Tagged

100 200 300 400 500 600 700
0

10

20

30

40

50

60

70

80

90

 distributionT(SLT VECBOS) H

SLT Tagged

100 200 300 400 500 600 700

0

20

40

60

80

100

 distributionT(NOTAG VECBOS) H

No Tag
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7.2 Bakground CalulationThe omputation of the bakground fration in eah mass subsample is �rstahieved by estimating the number of bakground events from the known proessesdesribed in Setion 5.5 for:� lass I: events that have exatly three jets with ET > 15 GeV and j�j < 2 andone or more jets with ET > 8 GeV and j�j < 2.4.� lass II: events with four or more jets with ET > 15 GeV and j�j < 2. Thislass of events has a larger S/B ratio than lass I.The expeted number of t�t and bakground frations in the top mass sample are thenestimated using a maximum likelihood �t that ompares the observed rates of SVXand SLT tagged events with predited rates. The t�t fration is a free parameter inthe �t, and it is allowed to vary to optimize the agreement between the number ofobserved and predited tagged events. The returned t�t fration value is ombinedwith the SVX and SLT tagging probabilities to estimate the expeted amount of t�tsignal and bakground in eah of the mass subsamples. The detailed alulation ofthe bakground is given in Ref. [40℄. Here, the results are presented in Table 7.2.7.3 Likelihood ProedureA maximum likelihood method is used to extrat the value of Mtop for eah masssubsample. The likelihood is used to haraterize the similarity between the reon-struted masses of the data events and the t�t and bakground Monte Carlo samples.In the �t, the bakground fration xb is onstrained by a Gaussian distribution. Theonly parameter that is ompletely unonstrained in the �t is Mtop. Sine the four68



Item SVX SVX SLT# Proess Single Double (no SVX) No Tags Total1 non-W=Z 0.5 0.0 1.0 4.6 6.12 WW 0.1 0.0 0.1 0.6 0.83 WZ 0.0 0.0 0.0 0.1 0.14 ZZ 0.0 0.0 0.0 0.1 0.15 Z ! �� 0.1 0.0 0.2 0.5 0.86 Single Top 0.2 0.0 0.1 0.2 0.47 W+ Z 0.2 0.0 0.8 1.7 2.78 Wb�b+ Zb�b 0.8 0.2 0.4 1.1 2.59 W�+ Z� 0.4 0.0 0.8 2.0 3.210 W=Z + u; d; s 0.2 0.0 4.1 19.6 23.9Bakground sum 2:4+0:8�0:7 0:2� 0:1 7:6� 1:3 30:4+4:3�4:7 40.711 t�t 12.6 4.8 6.4 11.6 35.3Observed events 15 5 14 42 76Table 7.2: Number of bakground events for the four mass subsamples from variousproesses.subsamples are ompletely independent, we an onstrut a joint probability for themass sample by multiplying together the four individual likelihood funtions. Thesefour likelihoods have the same form:L = Lshape � Lbakground (7.2)where: Lshape = NeventsYi=1 [(1� xb)fs(Mi;Mtop) + xbfb(Mi)℄; (7.3)Lbakground = P (xb): (7.4)The term Lshape is the joint probability for a sample of N events to have ome froma parent distribution with a signal fration of (1� xb) and a bakground fration xb.The probability distributions, fs and fb, are derived from either the GG templates69



or the NN templates desribed in the previous setions. Lbakground onstrains thefration of bakground events to the value within its unertainties.In the past, the likelihood funtion inluded a Lparam term to aount for thelimited number of statistis used to obtain the ontinuous funtional forms of thetemplates [40℄. This term depends on the parameters whih determine the fs and fbdistributions and the error matries assoiated with them. It is possible to onstruta Lparam term for the Neural Network �tting method by using the Hessian matrixof the network. However, omputing the Hessian an be extremely time onsumingas the number of network weights inreases [22℄. Furthermore, Monte Carlo studiesshow that the inlusion of this term in the likelihood hanges the returned mass andstatistial error by an average < 0:01 GeV/2.To alulate the top quark mass for eah subsample, we minimize the -log L withrespet to Mtop and xb. The statistial unertainty in the top mass is given by thehange inMtop whih results in a 0.5 unit inrease in the -log L. The overall estimateof Mtop and its unertainty for the entire mass sample is obtained by multiplying theindividual likelihoods together.7.4 Results from Simulated ExperimentsWe ran 2000 pseudoexperiment onsisting of four subsamples with the same num-ber of events (N iobs, i = 1, : : :, 4) as observed in the Run I data (Table 5.1). Thenumber of bakground events in eah of the simulated experiments is alulated in atwo-step proess:1. Calulate random numbers from a Gaussian distribution: N�bkg =Gauss(N iexp; �iexp)2. Calulate random numbers from a Poisson distributions: N ibkg = Poisson(N�bkg)70



where the index i runs over the four subsamples in the mass analysis N iexp and �iexporrespond to the alulated bakground numbers shown in Table 7.2. The number oft�t signal events is then given by N isig = N iobs �N ibkg. The distint values used for thepseudoexperiments are hosen randomly from the signal and bakground templatesfollowing the shape of the distributions. For eah simulated experiment we obtaina top quark mass, a statistial unertainty and a maximum likelihood value. Thelikelihood method is tested by omparing these results with expetations.Table 7.3 shows the median mass and unertainty resulting from the 2000 simu-lated experiments. As we an see the median statistial unertainty when using theMre NN templates is roughly 12% better than the unertainty obtained by using theMre GG templates. Although, we have not added any new information to the topmass analysis, we �nd that by �tting the distributions more preisely we obtain asmaller unertainty in the mass measurement. The results obtained from using theHT NN templates are also presented.Fitting Tehnique Mtop from Mre Mtop from HTGG templates 175.1 � 7.3 GeV/2 N/ANN templates 174.8 � 6.5 GeV/2 174.6 � 11.3 GeV/2Table 7.3: These are the results obtained by using the NN �tting tehnique and theGG �tting method for the reonstruted mass. We only show the results from the HTNN templates sine we were unable to obtain ontinuous templates with the previousGaussian plus Gamma method.The top mass distribution and pull distribution from the Mre NN templates areshown in Figure 7.12. Similar plots for the Mre GG templates and HT NN templatesare shown in Figures 7.13 and 7.14. The pull is onstruted following the reipe71



detailed in [46℄, and it is given by:If M�t � Mtrue : g = Mtrue �Mfit�+ ;otherwise : g = Mfit �Mtrue�� : (7.5)Mfit is the value return by MINUIT, while Mtrue is 175 GeV/2. The positive andnegative MINOS errors [53℄ are given by �+, and �� returned by the �t. This de�ni-tion guarantees that the perentage of pull distributions between �1 and +1 equalsthe overage of the error interval returned by MINOS. This error interval orrespondsto a overage of 68.27% if we require 1� errors. As expeted the pull distributionsshown have a mean of zero and a width lose to one. The pull distributions are notexatly one beause of the limited statistis in the pseudoexperiments. When weinrease the number of events in the simulated experiments, the width of the pulldistributions are loser to one. Furthermore, this slightly wider pull distributionshave also been seen in Ref. [40℄
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Figure 7.12: Results for 2000 pseudoexperiments using Mre NN templates. (Left)Fitted top mass distribution. (Right) Pull distribution. Signal and bakground fra-tions as observed in the Run I data. 72
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Figure 7.13: Results for 2000 pseudoexperiments using Mre GG templates. (Left)Fitted top mass distribution. (Right) Pull distribution. Signal and bakground fra-tions as observed in the Run I data.
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Figure 7.14: Results for 2000 pseudoexperiments using HT NN templates. (Left) Fit-ted top mass distribution. (Right) Pull distribution. Signal and bakground frationsas observed in the Run I data.
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7.5 Combining the Top Mass ResultsWe want to ombine the results obtained using Mre and HT. We ran 1000 pseu-doexperiments in whih we alulate the top mass using Mre and HT independentlyfrom one another. For eah subsample, we onstrut a single top mass measurementas desribed in Appendix E. When we perform this ombination, the orrelation be-tween MMretop and MHTtop is set to the mean orrelation value seen in the Monte Carlo.At this point we have ombined the top mass measurement for eah of the four sub-samples. Sine, these results are 100% independent from one another the �nal topmeasurement is given by the weighted average of the four results from the di�erentsubsamples. Figure 7.15 shows the results from the pseudoexperiments.
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Figure 7.15: Results from 2000 pseudoexperiments in whih we ombine the top massmeasurements obtained using the Mre templates and the HT templates. The lefthistogram shows the top mass distribution, and the right histogram shows the pulldistribution. 74



As expeted, the top mass distribution peaks around 175 GeV/2. However, thewidth of the distribution is wider than we would have expeted. Reall that theMtop distribution obtained from only using the Mre NN templates (Figure 7.12.(L))has a width, whih is 1 GeV/2 smaller that what we get when we ombine theMre and HT results. Furthermore, we see from the pull distribution that the errorsreturned by the �t are underestimated by 60%.Combining the two orrelated measurements beomes a very diÆult task usingtraditional methods. Although, the pseudoexperiments return the orret mass, theerror returned is inorret. We have looked at two di�erent methods based on NeuralNetwork to ombine the information from di�erent variables. These tehniques aredesribed in the following hapters.
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CHAPTER 8STANDALONE NEURAL NETWORK MASS ANALYSIS
The goal of this analysis is to measure the top mass as aurately as possible.Reall that the previous best measurement of the mass only uses the reonstrutedmass variable. However, other analyses have shown that other kinemati quantitieshave top mass information. The hallenge is how to ombine this information. ANeural Network provides a simple and elegant way of adding new information to themass analysis. This hapter desribes a standalone Neural Network method to extratthe top quark mass.8.1 Input VariablesWe want to reate a Neural Network with the apability to distinguish events thatome from top quarks from di�erent top masses. Thus, we need to �nd a set of massdependent variables [47℄. We have looked at di�erent kinemati quantities and havefound that theMre , the HT, the invariant mass of the t�t system, Mt�t, and the sum ofthe PT's of the two leading jets in the event, PT(1)+PT(2) exhibit the greatest massdependene. On the other hand, variables suh as the 6ET or the PT of the primarylepton have very little mass information. The �rst four quantities are desribed belowin further detail: 76



� Mre is desribed in Setion 6.3.� HT is the sum of all the transverse energy in the event inluding the neutrinoas well as the unlustered energy.� Mt�t is the invariant mass of the t�t system. It only inludes the four highest ETjets are well as the lepton and the neutrino.� PT(1)+PT(2) is the sum of the two highest ET jets. No tagging requirement ismade.All of these variables are onstruted after applying the mass analysis orretionsdesribed in Setion 6.1.A good �gure of merit to determine whether a variable has mass information ornot is given by the quantity RMSslope , where the RMS is the average RMS of the di�erentdistributions, and the slope is the slope given by the means of the distributions forthe di�erent top masses. A good variable will be narrow, with a small RMS, and itwill show good separation between the peaks of the distributions, with a large slope.The results from our kinemati study are given in Table 8.1. Variables with a smallRMSslope are more e�etive at measuring the top mass.Variable Avg. RMS slope RMSslopeMre 27.9 0.62 45.1HT 72.3 1.35 53.6Mt�t 83.2 1.58 52.6PT (1) + PT (2) 43.7 0.77 56.8Missing ET 25.7 0.16 161.8lepton PT 27.1 0.15 181.1Table 8.1: We show the slope and RMS values for the single SVX-tagged events.77
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Figure 8.1: (Left) Mean and (Right) RMS, of the reonstruted mass distributionversus the generated top mass.
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Figure 8.3: (Left) Mean and (Right) RMS, of the invariant t�t mass distribution versusthe generated top mass.
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Figure 8.5: (Left) Mean and (Right) RMS, of the missing ET distribution versus thegenerated top mass.
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Figures 8.1 through 8.6 show a graphial representation of the results presentedin Table 8.1. As we an see, the hange in the mean of the distributions is linear forall the kinemati quantities. However, this shift is minimal for variables with poormass information, Figures 8.5.(L) and 8.6.(L) as an be seen by the value of the slope(�t parameter p1). Another interesting aspet is that variables suh as the HT orMt�t have a slope muh larger than the slope for Mre . However, Figures 8.2.(R) and8.3.(R) show that these distributions are muh broader than the Mre distributions.Thus, when we onstrut the RMSslope we see that the Mre variable has the most massinformation. The distributions shown orrespond to events with two SVX tagged jets.Not all the variables are used for the di�erent subsamples. The deision to inludeor exlude an input variable in the Neural Network is based upon the performaneof the network. A desription of the networks used in this study is given in Setion8.2.2.8.2 Extrating Mtop with a Neural NetworkThe Neural Network analysis also takes advantage of the di�erent S/B ratios forthe di�erent mass subsamples. There are a total of four networks, whih lassifyevents into signal and bakground. For this analysis we have generated t�t signalMonte Carlo �les orresponding to a top mass of: 120, 130, 140, 145, 150, 155, 160,165, 167.5, 170, 172.5, 175, 177.5, 180, 182.5, 185, 190, 195, 200, 205, 210, 220, and230 GeV/2. Therefore, our networks have a total of 24 output units, 23 of them areassoiated with signal, and the last one is bakground. For this study we have usedthe MLP�t Neural Network pakage. All the networks were trained using the BFGSmethod [48℄. 81



8.2.1 Neural Network ArhitetureIn the previous setion we found that there are four variables that show goodmass information. Thus, the networks used in this analysis have a maximum of fourinput nodes, and 24 output nodes (23 assoiated with t�t and one with bakground).To determine the �nal arhiteture of the Neural Networks we try multiple arhite-tures and the ones that produe the best Neural Network performane are hosen.This performane is de�ned in the next setion. The di�erent arhitetures for eahsubsample are shown in Table 8.2. We note that for the SLT and the No Tags sub-samples not all the input variables were used. This deision was solely based uponthe performae studies. An explanation of how the di�erent networks were reated isgiven next.Top Subsample NN arhiteture Input Variables Training Evts. Testing Evts.SVX Single 4-60-24 Mre, HT , 38400 7200Mt�t, and PT (1) + PT (2)SVX Double 4-50-24 Mre, HT , 24000 7200Mt�t, and PT (1) + PT (2)SLT 2-50-24 Mre, and HT 19200 6958No Tags 2-50-24 Mre, and HT 50400 7200Table 8.2: Neural Network arhiteture. The hoie of variables depends solely onthe network's performane.
8.2.2 Training and TestingCreating a Neural Network to perform pattern lassi�ation requires training andtesting of the network at eah epoh. During training and testing, all 23 di�erent t�tsignal samples as well as bakground are used.82



During training, we set the desired output target value of eah lass to 1. Forinstane, in the 24-dimensional output spae Mtop = 175 GeV/2 orresponds to (0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) and the bakground targetvalue is given by (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1). Theadvantages of having a di�erent output for eah lass is explained in [50℄. With thisonvention, the output values an be interpreted as a-posteriori Bayes probabilities,and therefore they sum to one. This ondition an also be used to determine whetherthe network was properly trained or not. The sum of the outputs for one of ournetworks is given in 8.7.(L).One the target values for eah lass are set, the network is presented a trainingsample that is used to modify the weights and biases so that the lassi�ation taskan be performed. One all patterns in the training sample have been presented theweights and biases are frozen. The training performae of the network is evaluatedby Ep = 12 NoXo=1(dpo � ypo)2: (8.1)This is the same equation shown in B.3 where the sum is over all the outputs ofthe network, dpo is the desired output for a given pattern p, and ypo is the network'soutput for that same pattern p. The total error is obtained by summing over all thelearning patterns, E = PpEp. A small error E orresponds to a high performaneand vie versa. As the number of epohs inreases, the total error dereases beausethe network is able to learn the harateristis of the di�erent lasses. However, theontinuing improvement in the network's performae is in part due to the fat thatthe network is learning the harateristis of the training samples. The testing stageis used to determine when to stop training the Neural Network.83



During testing, the network obtained from the training session is presented with atesting sample. These testing patterns, whih are di�erent than those in the trainingsample, are used to alulate the testing performane of the network at eah epoh.This is done in the same fashion as explained above. As the number of epohsinreases, the testing performane dereases. However, as the network begins to learnthe harateristis of the training sample it loses its generality. At this point, theperformane obtained from the testing samples begins to inrease. Figure 8.7.(R)shows the training performane, blue urve, and the testing performae, red urve.The inset shows the epoh at whih the network begins to learn the harateristis ofthe training sample. At this point the weights and biases are frozen and this is thenetwork used to extrat the mass of the top quark.
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8.2.3 Likelihood ProedureFor eah event, the NN provide a set of probabilities that it has ome from anyof the top masses used in this analysis, as well as bakground. Reall that eah of84



the probabilities is assoiated with one of the 24 outputs in our network. From thisinformation we extratMtop using a disrete maximum likelihood tehnique. As in thetemplate based method we have two distint parameters in the �t: the bakgroundfration, xb, whih is allowed to vary between its unertainties, and the top mass. Thejoint probability is onstruted by multiplying together the four individual likelihoodfuntions. These likelihoods are written as:Lbin = Lbinshape � Lbakground (8.2)bin = 1; : : : ; 23 orresponds to Mtop = 120, : : :, 230 GeV/2 and:Lbinshape = NeventsXi=1 [(1� xb)Obini + xbO24i ℄; (8.3)Lbakground = P (xb): (8.4)The Neural Network provides the probability that a given event, i, has ome from anyof the generated top masses, Obini , as well as the probability that it has ome frombakground, O24i . Therefore, eah of the bins in the likelihood histogram ontainsan admixture of signal and bakground. The Lbakground term uses a Gaussian toonstraint the bakground frations to be within the values shown in Table 7.2.To alulate the top mass, we �rst minimize the -log L with respet to xb. For eahmass subsample, we use MINUIT to modify the values of xb between their limits. Wehose the values of xb that minimize the log likelihood distribution. One the valuesfor xb are obtained, the top mass and its unertainties are alulated by �tting the-log L with 3rd degree polynomial. This is done to aount for asymmetri errors.The polynomial is entered around the minimum of the -log L distribution, and itslimits are plaed at the points for whih the -log L inreases by at least �ve units.The errors in Mtop are given by the 0.5 unit inrease in the -log L. Figure 8.8 shows85
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Figure 8.9: Results for 2000 pseudoexperiments using the standalone NN method.(Left) Fitted top mass distribution. (Right) Pull distribution. Signal and bakgroundfrations as observed in the Run I data.in the e�etive luminosity of over 70% for the GG template based analysis, and over34% for the NN template based analysis. To make sure the errors are alulatedorretly, we onstrut the pull asg = (Mfit �Mtrue)� ; (8.5)where Mfit is the mass returned by the standalone NN method, Mtrue is the inputtop mass, and � are the errors alulated as desribed above. The pull distributionis shown in Figure 8.9.(R).
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CHAPTER 9SYSTEMATIC UNCERTAINTIES
The systemati errors in the top mass alulation are due to any biases thatmay have ourred in the measurement proedure as well as unertainties in thesimulation used to model the underlying physis. This hapter desribes how thedi�erent systemati unertainties are determined. A summary of the systemati errorsassoiated with eah analysis is given in the last setion.9.1 Jet energy saleThe event reonstrution algorithm uses the measured energy of the lepton, jets,and the unlustered energy to estimate the mass of the top quark. The eletronenergy sale and muon momentum sale are known with a preision better than 0.2%[27℄. From studies, it is observed that large variations in the unlustered energy havevery little e�et on the top mass. The 6ET is alulated from the lepton, jets, and theunlustered energy so it is not an independent measurement. Therefore, the energysale unertainty is dominated by the unertainty in the jet momenta.Setion 6.1 desribes the di�erent orretions applied to the jets to better estimatethe original parton momenta. However, potential systemati unertainties arise fromthe di�erene in the jet ET sales between the Monte Carlo and the data. This88
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additional gluon jets, but also to the fat that gluons are radiated during the pro-dution of the t�t pair and the deay proesses. This ompliates the top momentumreonstrution as well as it makes it very diÆult to orretly identify the top deaypartons.The unertainty assoiated with initial state radiation (ISR)10 is determined byomparing the median mass obtained using the standard Monte Carlo PYTHIA sam-ple to the median mass obtained using a sample for whih the ISR has been turnedo�. After a large number of simulated experiments, the unertainty is given by halfthe di�erene in the median mass between the standard PYTHIA and the no-ISRPYTHIA samples.Obtaining the error due to the �nal state radiation (FSR) is a little bit moreompliated sine PYTHIA desribes the formation of a jet through a parton shower.From the no-ISR PYTHIA sample we selet events that have exatly four jets whihmeet the seletion riteria desribed in Setion 5.4, and are uniquely mathed to thet�t deay partons. Using the proedure of simulated experiments, the unertainty isgiven by half the di�erene in the median mass between the no-ISR PYTHIA samplewith no restrition on the number of jets, and the no-ISR PYTHIA sample with onlyfour jets that are uniquely mathed to the top deay partons. The total systematiunertainty is obtained by adding the ISR unertainty and the FSR unertainty inquadrature.The ISR/FSR unertainty is the seond largest systemati error assoiated withthe mass analysis. In Chapter 10 we explore the possibility of using a Neural Networkto measure the gluon ontent in t�t events.10ISR is the radiation that ours before the t�t pair has been produed. FSR is the radiationwhih ours after the top quarks has been produed.91



9.3 b-TaggingThere is a systemati error assoiated with the unertainty in the SVX and SLTtagging eÆienies. The unertainty in the SVX tagging eÆieny omes primarilyfrom the possible ET dependene. The SVX tagging eÆieny is determined fromMonte Carlo and then orreted by a sale fator. The systemati error is alulatedby varying this sale fator. This results in a mass shift of only 0.1 GeV/2.The SLT error is determined by using large data samples of  ! �� and  ! ee.The relevant unertainty for SLT tags arises in the ratio of true to fake tags in t�tevents. This ratio has a 10-20% unertainty. To study the e�et of this ratio on thetop mass we generate Monte Carlo t�t events in whih all SLT tags are either (a) truetags, or (b) fake tags. We ran a large number of pseudoexperiments in whih all theevents have ome from set (a) or from set (b). These events are then ompared to thestandard Monte Carlo sample. The error assoiated with the SLT tagging eÆienyis half the di�erene between the median mass of set (a) and set (b).9.4 Parton distribution funtionAll the top Monte Carlo samples were generated using PYTHIA with the defaultparton distribution funtion (PDF) GRV 94L. Other PDF hoies are available suhas CTEQ 3L [57℄. We take the shift in the median top mass samples generated withthe two PDF's to be the systemati unertainty.9.5 Monte Carlo generatorsThe unertainty assoiated with the Monte Carlo generators is obtained by om-paring the results from PYTHIA to HERWIG. We run a large number of simulated92



experiments, and the unertainty is given by half the di�erene between the medianmass of the PYTHIA and HERWIG simulations.9.6 Summary of Systemati ErrorsAll the systemati unertainties desribed in the previous setions are given inthe Table 9.1. We provide the systemati errors for the NN-�tted Mre templates,the NN-�tted HT templates, and the standalone Neural Network analysis. The totalsystemati unertainty is obtained by adding the individual errors in quadrature.Unertainty (GeV/2)Soure Mre NN templates HT NN templates Standalone NNJet ET sale 4.1 7.5 4.6ISR/FSR 1.7 (0.5/1.6) 4.5 (2.1/4.1) 2.1 (0.9/1.9)b-Tagging 0.3 1.5 0.4PDF 1.1 2.0 0.9MC generators 0.4 1.1 0.3Total 4.6 9.2 5.2Table 9.1: Summary of the systemati unertainties assoiated with eah of the dif-ferent Neural Network analysis methods desribed in this thesis. In parenthesis wegive the (ISR/FSR) individual systemati errors.
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CHAPTER 10MEASUREMENT OF THE GLUON CONTENT
In the top mass analysis, we assume that the four highest ET jets from an eventorrespond to the top deay partons. However, our Monte Carlo predits that inroughly 50% of the events, one or more of these jets annot be mathed within a oneof �R < 0:4 to any of the deay partons of the t�t pair. Jets whih are not within a�R < 0:4 one of any of the Monte Carlo partons are onsidered to be gluon jets.Gluon jets are produed during the prodution of the t�t pair, initial state radiation(ISR), or during its deay, �nal state radiation (FSR). To obtain a more auratemeasurement of the top mass we would only want to inlude the gluon jets whiharry energy from the top quarks. This is an extremely diÆult task. However, animprovement of the top mass an be obtained by determining the number of eventswith at least one gluon jet among the jets used in the top mass reonstrution. Thisinformation an be used to onstrut templates that model the data more losely. Wedesribe a tehnique to measure the gluon ontent in the SVX tagged Run I data.10.1 Gluon E�et on the Top MassA number of features of the mass analysis from Run I are onsistent with the datahaving fewer gluon events than the Monte Carlo would predit. Examples inlude94



the width of the observed mass distribution and the number of extra jets. We �rstaddress whether a more aurate knowledge of the gluon ontent in the top masssample would lead to a better mass measurement.10.1.1 Gluon Fration in the Monte CarloBy mathing the simulated jets to the Monte Carlo top deay produts we areable to determine whih events have all the top deay produts present and thosewhih do not. We look at the top deay partons at the Monte Carlo level. Then, wetake the four leading jets of an event after it has gone through the detetor simulationand we math eah of these jets to the partons from the Monte Carlo. If a jet is notwithin a one of �R < 0:4 from any parton we onsider this jet to be a gluon jet. Wenote that this de�nition is somewhat arbitrary. The Monte Carlo samples are dividedinto two di�erent sets: gluon templates, and non-gluon templates. Gluon templatesontain only events with at least one gluon jet. Non-gluon templates only ontainevents in whih all jets are uniquely mathed to the top deay produts. In the t�tMonte Carlo we �nd:� 52:7%� 0:7% of the single SVX-tagged events ontain at least one gluon jet asone of their four highest ET jets.� 48:7%� 1:1% of the events in the double SVX-tagged sample ontain at least agluon jet as one of their four highest ET jets.Figures 10.1 and 10.2 show some examples for gluon and non-gluon templates. Gluontemplates tend to peak at a lower mass than the non-gluon templates. Also, non-gluon templates show better separation between Mtop masses and they are narrowerthan the gluon templates. We onstrut the RMSslope quantity to assign a �gure of merit95



to both set of templates (reall from Setion 8.1 that this quantity is an indiation ofhow muh mass information a given quantity exhibits):Gluon Templates : RMSslope = 81:6 (Single SVX); RMSslope = 69:3 (Double SVX) ;Non� gluon Templates : RMSslope = 43:3 (Single SVX); RMSslope = 33:9 (Double SVX) :
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Figure 10.1: Reonstruted top mass distributions for the single SVX Monte Carlosample for (Left) non-gluon events and (Right) gluon events.
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10.1.2 PseudoexperimentsThe goal is to study what happens when we ompare the data to the \wrong" setof templates, whih do not have the same fration of gluon events as the pseudoex-periment data. If the data does not have the same mix as the MC, this is what willresult in the data measurement.In the reonstrution of the top mass, we use a set of top mass templates rangingfrom Mtop = 150 GeV2 to 200 GeV2. For eah simulated experiment we performa disrete likelihood �t [49℄ to determine whih top mass is the most likely to haveprodued a Mre distribution similar to what is seen in the pseudoexperiment data.To keep the study simple, we do not parametrize the templates and bakground isnot used. The top mass and its unertainty is alulated by integrating the -log L.We generate a set of templates for whih the perentage of gluon events is varied.Thus, we have six sets of templates ontaining 0%, 20%, 40%, 60%, 80%, and 100%of gluon events. We ran 1000 pseudoexperiments where we draw the events from eahof these templates and we ompare them to the default Monte Carlo. Reall that thedefault Monte Carlo templates ontain roughly 50% of gluon events. Tables 10.1 and10.2 show the results from this study for the Single SVX and Double SVX subsamplesrespetively. These results an be summarized as:� Inreasing the gluon ontent in the templates results in a derease of the mediantop mass returned by our �t, and an inrease in the median unertainty. Gluonevents are mismeasured low and they widen the template's distribution.� Comparing data events to the wrong templates results in a mismeasurement ofthe top mass that an be signi�ant.97



Gluon Content Median Mre Median error Pull mean Pull width0% 177.1 8.3 0.3 0.8420% 176.0 8.5 0.2 0.9140% 174.7 8.7 -0.02 0.9360% 173.6 8.9 -0.2 1.080% 172.2 9.1 -0.3 1.1100% 169.3 9.2 -0.6 1.3Table 10.1: We show the results from the 1000 pseudoexperiments for the Single SVXsubsample. In eah of the pseudoexperiments, we draw 15 events from the templates,whih we have onstruted with the appropriate amount of gluon events, and weompare them to the default Monte Carlo templates. Bakground is not inluded.Gluon Content Median Mre Median error Pull mean Pull width0% 176.5 9.7 0.2 0.8520% 176.2 9.9 0.2 0.9140% 175.2 10.0 0.04 0.9360% 173.9 10.2 -0.09 0.9580% 172.9 10.4 -0.2 1.1100% 170.3 10.6 -0.4 1.3Table 10.2: We show the results from the 1000 pseudoexperiments for the Double SVXsubsample. In eah of the pseudoexperiments, we draw 5 events from the templates,whih we have onstruted with the appropriate amount of gluon events, and weompare them to the default Monte Carlo templates. Bakground is not inluded.� Comparing the data events to the wrong templates, results in a top mass errorthat is not aurate. When the gluon ontent in the templates is too low theerrors are overestimated. On the other hand, if the gluon ontent is too highthe errors are underestimated.When we ompare the data to the wrong templates, the top mass is biased and thestatistial unertainty reported is not orret. It is very important that we onstrut98



templates that losely mimi the data. An aurate measurement of the gluon ontentin our top mass sample will lead to a better measurement of the top quark mass.10.2 Measuring the Gluon ContentIn the previous setion, we showed that the measurement of the gluon ontentwould lead to a better estimate of the top mass and the reported unertainty. Wehave developed a NN tehnique that attempts to measure the amount of gluon eventsin the data. In order to redue the amount of bakground in our sample, we are onlyusing events whih pass all the mass seletion uts with at least one SVX-tagged jet.10.2.1 Neural Network Input VariablesWe want to develop a NN that an distinguish between gluon events and non-gluonevents. Three variables, shown in Figures 10.3 and 10.4, with good disriminatingpower were seleted for this analysis:� The di-jet invariant mass is onstruted with the untagged jets in the event. Inthe Single SVX ase there are three possible ways to form the di-jet invariantmass. Only two of them are used sine the di-jet mass onstruted with thetwo least energeti jets di�ers very little from gluon events to non-gluon events.Eah di-jet mass is used as an input for the Single SVX network. For doubleSVX-tagged events there is only one way to form the di-jet mass, whih is usingthe two untagged jets in the event. In this subsample, the di-jet distributionis learly narrower for non-gluon events than for gluon events. Also, the di-jetmass distribution peaks around 81 GeV/2, the W mass, when there are nogluon jets in the event. 99



� The number of extra jets with ET > 8:0 GeV and j�j < 2:4 besides the fourjets used in the mass reonstrution. Gluon events have more jet ativity thanthose without gluons.� The �2 returned by the mass reonstrution ode (see Setion 6.3). Events thatontain all the top deay partons tend to have a lower �2 than those with gluonjets.All the above variables have good information regarding whether or not gluon jetsare present in the events. A Neural Network is well suited for this measurement sineit provides us with a simple way of ombining all of the di�erent variables. Inludingmore information will derease the error in the gluon ontent measurement.10.2.2 Neural Network Training and TestingFor this analysis, we are using the JETNET [44℄ subroutines interfaed to ROOTvia the Root Jetnet [45℄ pakage. We use two di�erent Neural Networks: one forevents with a single SVX-tagged jet, and another for events with two SVX-tagged jets.They are both three-layered feed-forward pereptrons with the standard ativationfuntion (tanh saled to (0, 1)). The Neural Network arhitetures are the following:� NN 1SVX! 4-8-1. The single tagged Neural Network has four di�erent inputvariables sine two di-jet masses are used separately.� NN 2SVX ! 3-6-1.We trained the Neural Networks using two di�erent Monte Carlo samples: oneontaining gluon events, and the other one without any gluon events. During training,the desired Neural Network output for non-gluon events was set to 1, while the output100
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10.2.3 De�nition of the LikelihoodMonte Carlo studies show that the amount of gluon events in the Single SVX andDouble SVX subsamples is very similar. We onstrut individual binned likelihoodsfor the two subsamples. Sine they are statistially independent from one another,we an onstrut a joint binned likelihood for the entire sample by multiplying to-gether the two individual binned likelihood funtions. The gluon fration, xg, and thenon-gluon fration, xng, are obtained from a maximum likelihood �t applied to theNeural Network output distributions. Both xg and xng are unonstrained in our �t.The bakground frations for eah subsample, xb, are allowed to vary about their al-ulated value and within their unertainties (see Table 10.3). The individual binnedlikelihood has the form: L = Lshape � Lount � Lbakground (10.1)where: Lshape = N binsXi=1 Ngfg(O) +Nngfng(O) +Nbfb(O)Ng +Nng +Nb ; (10.2)Lount = e�(Ng+Nng+Nb)(Ng +Nng +Nb)NN ! ; (10.3)Lbakground = P (Nb): (10.4)and Ng, Nng, and Nb an be written in term of the fration of events as:Ng = xg �N; Nng = xng �N; Nb = xb �N: (10.5)The quantities Ng, Nng, and Nb, represent the number of gluon events, non-gluonevents, and bakground respetively, N is the number of observed events, and P (xb)onstraints the bakgrounds to be around their entral value and within their un-ertainties. The variable fg(O) is the Neural Network output distribution for gluon103



events. The NN output distribution for non-gluon events is given by fng(O), and thebakground NN output distributions are fb(O). To alulate xg, and xng we mini-mize the -log L, and the statistial unertainties in our measurements are given byhanging -the log L by half a unit respet to its minimum.10.2.4 PseudoexperimentsIn the Run I Single SVX subsample there are a total of 17 events. Two of theseevents do not pass the �2 seletion riteria and are not used in the mass analysis.In the Run I Double SVX subsamples there are a total of �ve events. The �2 ut isremoved to inrease the aeptane . The eÆienies of the �2 ut shown in Table6.1 are used to alulate the new bakground frations. Table 10.3 shows the results.Mass Sample Data Events Observed Predited BakgroundSingle SVX 17 (15) 2:93� 0:92 (2:4� 0:75)Double SVX 5 (5) 0:24� 0:12 (0:2� 0:1)Table 10.3: We show the expeted number of events without the �2 ut. In parenthesiswe show the expeted number of events after the �2 ut. These numbers are takenfrom Table 7.2.We ran 5000 pseudoexperiments with the expeted admixture of signal and bak-ground. For eah simulated experiment we ompare the NN output distribution ofthe data to a ombination of the NN output distribution for gluon events, non-gluonevents, and bakground. Figure 10.6 show the distribution for the gluon fration andnon-gluon fration for the pseudoexperiments. The mean of these distributions is43.5% in the gluon ase and 41.4% for the non-gluon fration as expeted from theMonte Carlo. The remaining ontribution is from the bakground. We expet the104



pull distributions (Equation 7.5) to have a mean of zero and a width of one. However,we �nd that the pull distributions are too narrow suggesting that the errors returnedby the �t are overestimated. This e�et is due to the fat that our simulated experi-ments have very low statistis. Therefore, we sale the errors returned by the �t bya fator of 0.75 for the gluon events, and 0.74 for the non-gluon events [46℄. Afterresaling the errors the median statistial unertainty for the gluon and non-gluonontent is 18.9% and 17.4% respetively. Figure 10.7 shows the pull distributions.During Run IIa, we expet to ollet 2 fb�1 of data or roughly 20 times theamount of statistis olleted during Run I. Assuming Run I onditions, we ran 5000pseudoexperiments in order to estimate the expeted unertainty in the large datasample. The study shows we should be able to measure the gluon ontent in Run IIawith an auray of roughly 5.6% for gluon events, and 4.3% for non-gluon events.The pseudoexperiment results are summarized in Table 10.4.10.3 Measurement of the Gluon Fration in the Run I DataWe apply our analysis to the Run I data. The statistial errors returned are saledby the same fator used in the Monte Carlo study. We �t the Run I data and we �nd:� 23:7%� 20:0% of the events in our single plus double SVX-tagged mass sampleontain a gluon jet among their 4 highest ET jets.� 62:2%� 21:0% of the events are non-gluon events.� 17:0%� 5:3% of the 17 single tagged events are bakground events.� 4:8%� 2:3% of the 5 double tagged events are bakground events.105



Data Sample Predited unertainty in xg Predited unertainty in xngRun I (106 pb�1) 18:9% 17:4%Run IIa (20� Run I) 5:6% 4:3%Table 10.4: This is a summary of the Run I, and Run IIa pseudoexperiment results.
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Figure 10.6: Results from 5000 pseudoexperiments for (Left) fration of gluon eventsand (Right) fration of non-gluon events.
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In Figure 10.8.(L), we ompare the Mre distribution for the Single SVX Run Idata and the Monte Carlo. In the Monte Carlo histograms we show the ontributionsfrom the bakground, yellow, bakground plus gluon events, blue, and bakgroundplus gluon plus non-gluon events, green. Eah ontribution is set aording to our�t results. Figure 10.8.(R) shows the same plot for the Double SVX Run I data. Alower fration of gluon events produes slightly narrower Mre distributions.

100 150 200 250 300 350
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

data1Tm

Nent = 17     

Mean  =  180.7

RMS   =  36.07

Under =      0

Over  =      0

Integ =     17

(1 SVX) Data Top mass distribution data1Tm

Nent = 17     

Mean  =  180.7

RMS   =  36.07

Under =      0

Over  =      0

Integ =     17

bkg + gluon evts + non-gluon evts

bkg + gluon evts

bkg

Standard MC (50% gluon evts)

100 150 200 250 300 350
0

0.5

1

1.5

2

2.5

data2Tm

Nent = 5      

Mean  =  166.4

RMS   =  12.53

Under =      0

Over  =      0

Integ =      5

(2 SVX) Data Top mass distribution data2Tm

Nent = 5      

Mean  =  166.4

RMS   =  12.53

Under =      0

Over  =      0

Integ =      5

Figure 10.8: Reonstruted mass distribution for (Left) Single SVX events and (Right)Double SVX events. The gluon fration in the Monte Carlo is set to that measuredin the Run I data. The dashed line histogram has the standard MC gluon fration(� 50%). Signal and bakground frations as observed in the Run I data.
10.4 Systemati ErrorsFor this analysis we have looked at two di�erent soures of unertainty in the gluonontent measurement. First, we looked at the energy sale. We apply +1� and �1�shifts to the jet momenta in t�t signal and bakground events, and measure the e�eton the gluon ontent estimate. The error is given by half of the di�erene between the
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medians of the +1� and �1� distributions. We �nd that the error assoiated withthe energy sale is less than 0:1% in both the gluon fration and non-gluon fration.In measuring the gluon ontent we have assumed a top mass of 175 GeV/2. Wehange the mass of the top quark to 170 GeV/2 and 180 GeV/2 to see whether ornot this has any e�et on our measurement. The error is given by the half di�erenebetween the medians of the 170 GeV/2 results and the 180 GeV/2 results. In thisase we �nd that the error assoiated with the top mass is also less than 0:1%.10.5 Appliation to the Mass AnalysisThe likelihood proedure used to alulate the top mass is desribed in Setion 7.3.We use the four mass subsamples for this analysis: Single SVX, Double SVX, SLT,No Tags. Using the events in these subsamples we onstrut two sets of templates:� Data-like templates: these are templates in whih the amount of gluon eventsand non-gluon events are set to the mean values returned by the �t in Setion10.3� MC-like templates: these templates ontain the default mixture of gluonevents and non-gluon events.We �t these templates using the NN method (Setion 7.1.1 to obtain the top massdependent funtional form.We run pseudoexperiments for whih we draw the data events from the Data-liketemplates and we ompared them to the Data-like templates and to the MC-like tem-plates. Eah simulated experiment ontains an admixture of signal and bakgroundas desribed previously. The results from 2000 pseudoexperiments are summarizedin Table 10.5. 108



Pseudo. samples Compare to Result (GeV/2)Data-like samples Data-like templates 174:5� 5:5MC-like samples MC-like templates 174:8� 6:5Data-like samples MC-like templates 175:8� 6:1Table 10.5: Median top mass and median statistial MINOS error results for the 2000pseudoexperiments using Run I statistis.We measure the gluon ontent in the Run I data sample to be lower than expetedfrom the default MC. We have shown that samples with lower gluon ontent havesmaller top mass errors. The above MC studies imply that the top mass statistialerror is about 18% smaller for samples with Data-like gluon ontent than for sampleswith the default Monte Carlo gluon ontent. Also, we have shown that the top massmeasurement is biased and its reported unertainty is inaurate when the gluonontent of the pseudoexporiment sample and the templates' gluon omposition di�er.Monte Carlo studies imply that the top mass is biased by + 1.3 GeV/2 and the errorinreases by about (6.1/5.5) = 11% when samples with Data-like gluon ontent areompared to templates onstruted from the default Monte Carlo.
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CHAPTER 11RUN I RESULTS
In this hapter, we apply the di�erent mass analysis tehniques to the Run I datasample. First, we summarize the Monte Carlo results from the previous hapters.The Run I data results are given next. After presenting these results, the onsistenybetween the data and the Monte Carlo expetations for t�t plus bakground events areheked for the di�erent analyses methods.11.1 Summary of Monte Carlo ResultsTable 11.1 presents the di�erent Monte Carlo results. We inlude the resultsobtained from using the templates onstruted with the gluon ontent measured inthe Run I data. However, it should be noted that the error in the gluon ontent israther large (� 20%).11.2 Template-Based Data ResultsThe template based likelihood proedure is applied to the events in the four masssubsamples. To investigate the e�et of the bakground onstraining term the mass �tis performed two di�erent ways: we onstrain the bakgrounds to be within their ex-peted values, and the bakground onstraint is removed. The top mass measurements110



Fitting Method Median error (GeV/2)NN Mre templates 6.5GG Mre templates 7.3NN HT templates 11.3Standalone NN 5.6NN Mre templates (gluon) 5.4GG Mre templates (gluon) 6.0NN HT templates (gluon) 10.6Table 11.1: Summary of the Monte Carlo results. The (gluon) desription means thatthe templates were onstruted with the gluon ontent measured in the data.for eah subsample and the ombined result when using theMre templates �tted witha ombination of a Gaussian plus a Gamma funtion, and the Mre templates �ttedwith a Neural Network, are presented in Table 11.2 and 11.3 respetively. Figure 11.1shows the results from the bakground onstrained ombined �t to all four subsam-ples using the NN-�tted Mre templates. The results when using the HT templatesare given in Table 11.4 and shown in Figure 11.2.Several observations an be made when omparing the mass �t results when thebakground frations are onstrained to those when they are not. The most impor-tant result is that when all the subsamples are used, independently of the templatesor �tting method used, the top mass measurement shows very little sensitivity to thebakground onstraint. For the Mre templates, the unonstrained mass �ts of thetagged subsamples yield a bakground fration of zero, although with large unertain-ties. Also, the �t on the No Tag subsample yields a bakground fration lower thanexpeted. For the HT templates, the unonstrained �t of the SVX tagged subsamplesyield a bakground fration of zero with large unertainties. The unonstrained �t ofthe SLT sample yields a bakground fration larger than the one expeted. The �t on111



the No Tag subsample yields a similar bakground fration whether the bakgroundis onstrained or unonstrained. In general, we would expet an inrease in the sta-tistial error if the bakground onstrained is removed sine not all the information isbeing used. However, most of the measurements seem to indiate the opposite. Thisis due to the fat that in most of the measurements the unonstrained bakgroundfration �tted to a smaller value thus inreasing the number of signal events.When we �t the Mre templates with the Neural Network method we obtaina statistial error whih is 4.75 GeV/2. This orresponds to a (5.8/4.75) = 22%statistial improvement over the result obtained when we �t the templates with aombination of a Gaussian plus Gamma funtions. Using the HT templates �ttedwith the Neural Network method yields a statistial error of 9.25 GeV/2. That is a(12.0/9.25) = 30% statistial improvement over the previous top mass measurementthat used the HT [51℄.Data sample Nobs xfitb Top mass (GeV/2)Constrained Unonstrained Constrained UnonstrainedSVX Double 5 0:04� 0:02 0:0+0:3�0:0 169:8+11:4�10:3 169:6+11:1�10:3SVX Single 15 0:14� 0:05 0:0+0:09�0:0 178:4+9:5�8:6 177:9+8:8�8:0SLT 14 0:53+0:09�0:08 0:0+0:8�0:0 149:3+37:1�21:7 152:2+27:3�20:5No Tags 42 0:65� 0:09 0:41+0:18�0:17 184:8+14:1�10:8 181:7+10:9�8:9All Subsamples 76 0:46� 0:08 0:23� 0:19 177:3+6:0�5:7 177:0+5:6�5:2Table 11.2: Results of applying the mass likelihood proedure using the GGparametrizedMre templates to the four subsamples and for all subsamples ombined.We show the results when the bakground frations are onstrained to their expetedvalues (Table 7.2), and when they are not. The ombined bakground fration is theaverage of the xb �t results weighted by the number of events in the subsamples.
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Data sample Nobs xfitb Top mass (GeV/2)Constrained Unonstrained Constrained UnonstrainedSVX Double 5 0:04� 0:02 0:0+0:4�0:0 172:6+9:2�9:1 172:3� 9:0SVX Single 15 0:15� 0:05 0:0+0:1�0:0 178:1+8:7�7:5 177:5+7:9�7:0SLT 14 0:54+0:09�0:1 0:0+0:7�0:0 168:4+20:7�42:6 145:9+29:5�13:2No Tags 42 0:63� 0:09 0:37+0:18�0:16 183:4+9:5�8:1 181:3+7:4�6:9All Subsamples 76 0:48� 0:08 0:2� 0:18 177:9+4:8�4:7 177:5� 4:4Table 11.3: Results of applying the mass likelihood proedure using the NNparametrizedMre templates to the four subsamples and for all subsamples ombined.We show the results when the bakground frations are onstrained to their expetedvalues (Table 7.2), and when they are not. The ombined bakground fration is theaverage of the xb �t results weighted by the number of events in the subsamples.
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Data sample Nobs xfitb Top mass (GeV/2)Constrained Unonstrained Constrained UnonstrainedSVX Double 5 0:04� 0:02 0:0+0:1�0:0 220:4+21:8�19:4 220:1+21:4�19:1SVX Single 15 0:14� 0:05 0:0+0:07�0:0 196:5+14:1�13:7 194:4+12:9�12:6SLT 14 0:56+0:09�0:08 0:77+0:2�0:2 199:4+38:4�77:5 216:7+51:3�56:2No Tags 42 0:65� 0:07 0:6� 0:1 303:1+19:9�134:7 301:2+20:0�180:2All Subsamples 76 0:49� 0:07 0:47� 0:1 204:4+9:3�9:2 199:9+9:1�9:1Table 11.4: Results of applying the mass likelihood proedure using the HT templatesto the four subsamples and for all subsamples ombined. We show the results whenthe bakground frations are onstrained to their expeted values (Table 7.2), andwhen they are not. The ombined bakground fration is the average of the xb �tresults weighted by the number of events in the subsamples.
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11.3 Comparison of Data to ExpetationsUsing the NN Mre templates to estimate the mass of the top quark yields aresult of 177:9 � 4:8 GeV/2. The result obtained when using the HT templates is204:4� 9:3 GeV/2. Therefore, using di�erent kinemati information from the sameevents produes results, whih di�er from one another by 26.5 GeV/2. We run 2000pseudoexperiments for whih we plot the di�erene between the top mass obtainedusing the NN Mre templates (MMretop ), and the top mass obtained from using the HTtemplates (MHTtop ). Figure 11.3 shows the distribution of the di�erene MMretop - MHTtop .We �nd that roughly 5% of the simulated experiments yield a di�erene in the topmass that is equal or larger than what we see in the data sample. While this numberis small, it is not statistially unreasonable.
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Data sample Nobs xfitb Top mass (GeV/2)Constrained Unonstrained Constrained UnonstrainedSVX Double 5 0:04� 0:02 0:0+0:2�0:0 179:9� 10:6 180:0� 10:4SVX Single 15 0:14� 0:05 0:0+0:06�0:0 172:7� 8:6 172:5� 8:4SLT 14 0:55+0:08�0:08 0:6+0:25�0:37 167:4� 28:8 169:4� 30:0No Tags 42 0:53� 0:08 0:32+0:13�0:1 189:1� 10:0 183:2� 9:8All Subsamples 76 0:42� 0:07 0:29� 0:14 182:4� 5:1 182:0� 4:7Table 11.5: Results of applying the standalone NN method to the four subsamplesand for all subsamples ombined. We show the results when the bakground frationsare onstrained to their expeted values (Table 7.2), and when they are not. Theombined bakground fration is the average of the xb �t results weighted by thenumber of events in the subsamples.It is surprising that the statistial error returned by the standalone NN methodis higher (5.1 GeV/2) than the one returned when we only use the Mre templates(4.8 GeV/2). Adding more information has the opposite e�et that one would ex-pet. This an be due to the fat that the Mre and HT variables favor a top masswhih di�ers from one another by 26.5 GeV/2. Therefore, ombining the informationfrom these variables broadens the likelihood distribution, whih results in a higherstatistial unertainty.11.5 Comparison of Data to ExpetationsWe want to determine whether the orrelation oeÆients between the variablesin the Monte Carlo pseudoexperiments agree with what we see in the Run I data.Figure 11.6 show the di�erent orrelation distributions for all the variables used in thestandalone Neural Network method along with the orrelation values seen in the data.118



As we an see, the orrelations between the di�erent variables in the Monte Carloagrees reasonably well with the data values. We note that the orrelation betweenMre and HT in the data falls in the middle of the Monte Carlo distribution. Thesetwo variables are the ones with the most mass information. We have also heked theunertainty returned by the �t on the data. This error is reasonable.
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CHAPTER 12MEASURING THE TOP MASS IN RUN IIRun II started at the Tevatron in Marh 2001. In this hapter, we outline amethod to measure the top mass during Run II. The tehnique uses the Mre and HTinformation simultaneously. Using this method we present a priori expetations onthe top mass measurement.12.1 MotivationFrom Monte Carlo pseudoexperiments, we know that the best measurement ofthe top mass is obtained from using the standalone NN method. This tehniqueombines the information from several kinemati variables to extrat the top massusing a disrete likelihood funtion. However, this likelihood proedure may havesome problems in Run II:� For Run I, the disrete likelihood onsisted of 23 di�erent points, whih wereassoiated with a di�erent top mass, spaed at intervals as lose as 2.5 GeV/2.As the Run II statistis inrease, we would have to add more points to thelikelihood to take advantage of the expeted smaller statistial unertainty.� Adding more points to the likelihood means that we would have to generatemore t�t Monte Carlo samples at more top masses loser together.120



� Using all the Monte Carlo samples we would have to reate new Neural Networksto perform the event lassi�ation. Beause the networks are so large this wouldtake large amounts of time.In the next setion we desribe a new mass analysis method, whih uses the twomost powerful variables in the standalone NN along with a ontinuous likelihoodproedure to extrat the top mass. We note that this method was not applied to theRun I data sample beause we did not have enough Monte Carlo statistis. However,we expet both methods to give omparable results.12.2 Mre Vs. HT TemplatesThe biggest improvement in the standalone NN method omes from the ombi-nation of the Mre and the HT information. For the measurement of the top mass inRun II we propose the use of 2-D Mre Vs. HT templates. These templates wouldthen be �tted with a NN to obtain a funtional form dependent on the mass of thetop quark.One of the hallenges that one faes when trying to �t 2-D histograms is that theamount of events needed to orretly populate the histograms is very large. Althoughwe have large amounts of t�t and bakground Monte Carlo samples we do not haveenough to onstrut 2-D templates. However, outlining this proedure is still veryimportant sine it may represent an exellent tehnique to extrat the mass of thetop quark. Thus, Appendix F desribes a method to generate \fake" Monte Carloto inrease the sizes of our samples. The resulting 2-D templates losely mimi theshape of the atual Monte Carlo results. Using these distributions, we investigatewhether a Neural Network is able to �t them or not.121



12.3 Fitting ProedureFitting a set of 2-D templates (Mre Vs. HT ) is muh like �tting a 1-D distribu-tions. We just have to make sure that the network gets all the information, and thatthere are enough hidden units to orretly approximate the funtion. For the t�t signalwe have hosen a 3-8-8-1 arhiteture (113 weights and biases). Eah of the inputs isassoiated with a di�erent variable: Mre, HT , andMtop. During training, the desiredNN output is set to the number of entries in eah bin of the 2-D distributions. In ourase, the 2-D distributions have a total of 1600 bins (there are 40 bins in the Mreaxis and 40 in the HT axis), and sine there are 19 di�erent distributions our �tshave over 30,000 degrees of freedom. Figure 12.1 shows a few distributions of our 2-DNeural Network �ts for the SVX Single subsample. Although the network has to �tmany di�erent points, it performs the task very well as we an see from the �2 resultsshown in Table 12.1. The �2 funtion for the 2-D ase has the same form as Equation7.1 with the addition of an extra sum to take into aount the two dimensions of ourtemplates. Top Subsample �2 resultSVX Single 1.02 for 22408 dofSVX Double 1.19 for 23433 dofSLT 1.08 for 24045 dofNo Tags 1.06 for 23150 dofTable 12.1: We show the �2 per degree of freedom for eah of the four subsamples.The NN does an exellent job at approximating the 2-D surfaes.For the bakground we remove the top mass dependeny and the NN arhiteturebeomes 2-5-5-1. This orresponds to a total of 41 weights and biases.122
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statistis are inreased 2, 4, 6, and 10 times respetively. For eah pseudoexperiment,we alulate the top mass using: the HT NN-�tted templates, the Mre GG-�ttedtemplates, the Mre NN-�tted templates, and the Mre Vs. HT NN-�tted templates.The results are shown in Figure 12.2.
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method gave the best Run I top mass measurement. This improvement remains thesame when we use simulated experiments, whih ontain 10 times the amount of RunI statistis (this orresponds to roughly 1 fb�1).The goal for Run II is to measure the top mass with an error less than 2 GeV/2.From a statistial perspetive, this goal an be reahed with roughly 1 fb�1 of datausing the Mre Vs. HT template method. At this time, the error in the top mass willbe dominated by the systemati unertainty.

125



APPENDIX ATHE DELTA RULE
For a single layer network with an output unit with a linear ativation funtionthe output is simply given byy(t+ 1) =Xj wj(t)xj + �(t): (A.1)Suh a simple Neural Network is able to represent a linear relationship between thevalue of the output unit and the values of the input units. We use this simple networkto �t to a set of training samples onsisting of input values xp and desired outputvalues dp. For every given input sample, the output of the Neural Network di�ersfrom the desired output value by (dp�yp), where yp is de�ned above. The Delta Ruleuses an error funtion based on these di�erenes to adjust the weights.The error funtion is just the least mean square (LMS) and the total error isde�ned to be E =Xp Ep = 12Xp (dp � yp)2; (A.2)where the index p ranges over the set of input patterns, and Ep represents the erroron pattern p. The LMS method uses the gradient desent method to �nd the weightsthat minimize the error funtion. The idea is to make the hange in the weight, wj,126



proportional to the negative of the derivative of the error as measured on the urrentpattern, j, with respet to eah weight, wj:�pwj = ��Ep�wj (A.3)where  is a proportionality onstant. The derivative an then be written as�Ep�wj = �Ep�yp �yp�wj : (A.4)Beause we are dealing with linear units (Eq. A.1),�yp�wj = xj and �Ep�yp = �(dp � yp) (A.5)suh that �pwj = Æpxj (A.6)where Æp = dp � yp is the di�erene between the NN output and the desired outputpattern. The Delta rule modi�es the weights aording to the desired output pattern,the input pattern, and the atual NN output. These harateristis have opened upa wealth of new appliations.
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APPENDIX BBACK-PROPAGATIONWe must extend the Delta rule so that it an be applied to networks with manylayers and with non-linear ativation funtions. This generalisation is alled the Bak-propagation method and the entral idea is that errors of the weights assoiated withunits in the hidden layers are determined by bak-propagating the error of the weightsassoiated with the output units.We generalize the Delta rule to the set of non-linear ativation funtions. Theativation, is a di�erentiable funtion of the total input given byypk = F(spk); in whih spk =Xj wjkypj + �k; (B.1)where the index p orresponds to the di�erent patterns, the index k is the numberof units per layer, and the index j keeps trak of the di�erent weights onneting toeah unit. To get the orret generalization of the Delta rule presented in AppendixA, we must set �pwjk = � �Ep�wjk : (B.2)The error measure Ep is de�ned in the same manner as before, and it orresponds tothe quadrati error for pattern p at the output units:Ep = 12 NoXo=1(dpo � ypo)2; (B.3)128



where dpo is the desired output for unit o when the pattern p is used. We further setthe total error to E = PpEp. We an write�Ep�wjk = �Ep�spk �spk�wjk : (B.4)By equation B.1 we see that the seond term is�spk�wjk = ypj : (B.5)When we de�ne Æpk = ��Ep�spk ; (B.6)we have an update rule whih is similar to the Delta rule derived in appendix A. In amulti-layer network with non-linear ativation funtion, the weights hange aordingto: �pwjk = Æpkypj : (B.7)The problem now is how to �gure out what Æpk is for every unit k in the network. Theinteresting results, as we will see, is that there is a simple reursive omputation ofthese Æ's whih an be implemented by propagating the errors bakward through thenetwork.We rewrite equation B.7 using the hain rule as a produt of two terms, oneterm reeting the hange in the error as a funtion of the output of the unit andanother term reeting the hange as a funtion of the hanges in the input of theunit. Therefore, we have Æpk = ��Ep�spk = ��Ep�ypk �ypk�spk : (B.8)From equation B.1, the seond term is�ypk�spk = F 0(spk); (B.9)129



whih is simply the derivative of the non-linear 11 funtion F for the k-th unit,evaluated at the net input spk to that unit. To ompute the �rst term in equation B.7,we onsider two ases. First, assume that the unit k is an output unit k = o of thenetwork. In this ase, it follows from the de�nition of Ep that�Ep�spk = �(dpo � ypo); (B.10)whih is the same result as obtained in appendix A. Substituting this result andequation B.10 into equation B.8, we getÆpo = (dpo � ypo)F 0(spo) (B.11)for any output unit o. Seondly, if k does not orrespond to an output unit but ahidden one k = h, we do not readily know the ontribution of the unit to the totaloutput error of the network. However, we an write the error as a funtion of the netinputs from hidden to output layer. That is, Ep = Ep(sp1; sp2; : : : ; spj ; : : :) and we usethe hain rule to write�Epyph = NoXo=1 �Ep�spo �spo�yph = NoXo=1 �Ep�spo ��yph NhXj=1wjoypj = NoXo=1 �Ep�spo who = � NoXo=1 Æpowho: (B.12)Substituting this into equation B.9 yieldÆph = F 0(sph) NoXo=1 Æpowho: (B.13)Equations B.11 and B.13 give a reursive proedure for omputing all the di�erentÆ's in the network. Equation B.7 is then used to modify the weights. This proe-dure onstitudes the generalized Delta rule for feed-forward networks with non-linearativation funtions.11these funtions are also alled squashing funtions suh that lim�!1F(�) = 1, andlim�!�1F(�) = 0 130



APPENDIX CFITTING WITH A NEURAL NETWORK
We want to use a Neural Network to �t a series of reonstruted mass distributions.An example showing the distributions for a top mass of 120 GeV/2, 175 GeV/2, and230 GeV/2 is given in Figure C.1. As expeted, the distributions peak around thetrue top mass used to generate eah Monte Carlo sample. The goal of this projet isto reate a single Neural Network that is able to dupliate the shape of a distributionas a funtion of the true top mass.We have to put all the information shown in the histograms of Figure C.1 intoa format that the Neural Network an understand. First, all the histograms mustbe saled so that they have the same number of events. Then, the Neural Networkmust have the information that for Mtop = 120 GeV/2 the 10th bin has 122 entries,for Mtop = 175 GeV/2 it has only 19 entries, and for Mtop = 230 GeV/2 the 10thbin has four entries. There is only two ways we an introdue any information into aNeural Network: the input nodes and the output node.We hose one of the input units to be the true top mass, Mtop. The NeuralNetwork must have the information that if the top mass hanges the shape of thedistribution hanges. We hose the seond input unit to be the bin loation alongthe Mre axis. Eah of the reonstruted mass histograms range from 80 to 380131
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Figure C.1: We show the Mre distributions for three di�erent top masses. All of thehistograms have been normalized to the same number of events.GeV/2 and are divided into 5 GeV/2 bins In order for MLP�t to work properly wehave to normalize the input variables so that they are between 0 and 1. Thus, thenormalization equations are the following:input1 = (Bin loation� 80:0)300:0 (C.1)input2 = (Mtop � 120:0)110:0 (C.2)The last piee of information omes in through the output node. In lassi�ationproblems we are used to setting the output node to a single value suh as 1 for signaland 0 for bakground. That is not the ase when we deal with �tting. Now, we setthe target value of the output node to the bin ontent assoiated with both the bin132



loation and the true top mass. An exerpt of a training �le is given below. The�rst olumn orresponds to the bin loation, and the seond olumn is Mtop . Thenumbers on the right have been normalized to unity aording to Equation C.1 andC.2. The last two olumns is what is ultimately fed into the Neural Network.127:5 120:0 =) 0:16 0:0122:0 =) 122:0... ... ... ...127:5 175:0 =) 0:16 0:519:0 =) 19:0... ... ... ...127:5 230:0 =) 0:16 1:04:0 =) 4:0When this information is fed into the Neural Network, it tells the network thatforMtop = 120 GeV/2 there are 122 entries in the 10th bin. Similarly, forMtop = 175GeV/2 there are 19 entries in the 10th bin, and for Mtop = 230 GeV there arefour entries. The above is just a simple example with only three Mre distributions.The atual �le used to train the Neural Network is made up of 1140 entries, whihorrespond to 19 di�erent distributions with 60 bins eah. Training is stopped whenthe �2 funtion de�ned in Setion 7.1.1 is lose to one.One an optimal Neural Network is obtained, we use it muh like a regular fun-tion. The network takes two input parameters, the Mre and Mtop, and the output ofthe Neural Network is interpreted as a probability density funtion. This output isused in the mass analysis likelihood funtion desribed in Setion 7.3.
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APPENDIX DVECBOS BACKGROUND
To inrease the number of bakground events used in this analysis we have om-bined all the VECBOS Monte Carlo generated into a single sample. Thus, our bak-ground sample ombines events generated with a sale Q2 = hPT i2 and Q2 = hMW i2.In this Appendix we present the studies that support that ombining both kinds ofbakground events does not have an e�et on the top mass measurement.In Setion 8.1 we introdued the kinemati variables that ontain the most massinformation. We plot these distributions for both kinds of bakgrounds to see whetheror not they di�er from one another. Figure D.1 shows theMre , HT,Mt�t, and PT (1)+PT (2) distributions for the SVX Single VECBOS sample. The only distributions thatseem to be somewhat di�erent are the Mre distributions. It is important to pointout that the SVX subsamples su�er from the least amount of bakground. Althoughnot shown, the distributions for the SLT and No Tags subsamples show very littledi�erene. We perform a series of Kolmogorov tests between the distributions in eahsubsample to obtain a measure of how di�erent they are. Table D.1 shows the resultsfrom our K-S tests.
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VECBOS Subsample Mre HT Mt�t PT (1) + PT (2)SVX 2.72% 43.4% 77.9% 27.0%SLT 44.9% 34.5% 23.7% 14.0%No Tags 96.5% 97.3% 95.4% 100%Table D.1: We give K-S tests results for eah of the VECBOS subsamples. We notethat the SVX Single bakground is used for both SVX subsamples.The K-S tests are an indiation that both sets of bakground events are fairlysimilar. Next, we investigate whether or not using the entire VECBOS bakgroundhas an e�et on the di�erent mass analyses desribed in this thesis.D.1 Bakground Shape E�et on NN Template MethodWe separate the bakground events into the two di�erent lasses. Using the defaultQ2 = hPT i2 bakground events, we onstrut the Mre bakground template whihis then �tted with the NN method. We generate pseudoexperiments as explained inSetion 7.3 and we alulate the top mass. Next, we generate pseudoexperiments forwhih we draw the bakground events from the Q2 = hMW i2 bakground, and weompare them to the default bakground distributions. When we ompare the resultsfrom the previous two methods, the median top mass was found to di�er by 0:3� 0:2GeV/2. Thus, ombining both lasses of events into a large bakground does nothange the top mass value.D.2 Bakground Shape E�et on Standalone NN AnalysisThe main reason why we want to ombine all of the VECBOS events into a singlebakground sample is to have enough statistis to properly train the networks usedin the Standalone NN analysis. 135
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GeV/2. We perform a similar study for the No Tags subsample and we �nd that thedi�erene in the mass median is 0:0� 0:2 GeV/2.Based on the results from the K-S tests, and the mass analyses tests we thinkthat ombining the Q2 = hPT i2 and Q2 = hMW i2 bakgrounds has no e�et on thetop mass alulation.
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APPENDIX ECOMBINING MEASUREMENTS
Suppose one is trying to determine the value of quantity s and there are n inde-pendent measurements si with their orresponding error �i. The best estimate for sis then given by s = Pi xi=�2iPi 1=�2i : (E.1)Now, suppose that we have n measurements of a quantity s but that eah measure-ment is related to the other n � 1 measurements. In this ase, we say that themeasurements are orrelated. To �nd the best estimate of the quantity s we needmore information than the individual errors. Thus, we de�ne the ovariane matrixVs whose terms are given by (Vs)ij = �ij�i�j; (E.2)and �ij = (Vs)ij�i�j (E.3)where the orrelation oeÆient, �ij, is a measure of the relation between two vari-ables, and it an be proved that it must lie between -1 and +1.We want to onstrut the best linear estimator of the quantity s whih aounts forall the measurements, inluding their errors and orrelations. We de�ne the estimator138



to be s =Xi isi; (E.4)with an error given by �2s =Xij ij(Vs)ij: (E.5)In the previous two equations, i's are the oeÆients that must be found. From anystatistis book [52℄, we �nd that these oeÆients are given byi = Pk(V �1)ikPjk(V �1)jk : (E.6)Note that this expression for i is idential to equation E.1 when the errors areindependent from one another.E.1 InformationImagine that we want to ombine two measurements s1 � �1 and s2 � �2 into asingle measurement s with error �2s . We plot the ombined error �2s for two di�erenterrors �1 and �2 as a funtion of the orrelation, �, between the measurements s1 ands2. Figure E.1.(a) shows the results for the ase when �1 = 5:0 and �2 = 10:0. As wean see from the graph, �2s(�) is not linear. As a matter of fat, the behavior of thefuntion is quite surprising. The plot implies that when the measurements are 100%orrelated (� = +1 or -1) , we will be able to know the quantity perfetly.One expets the ombined error to be at a minimum when the measurementsare 100% unorrelated and then to grow as the orrelation oeÆient inreases. Thenaive interpretation is that as the measurements beome more orrelated the infor-mation one is adding dereases. To determine whether this is true or not we use theFisher information variable [53℄. We assume the two measurements have binormal139
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Figure E.1: (Left) Shows �2s(�). The funtion is not linear and it is equal to 0 whenthe � = +1 or -1. (Right) The Fisher information is shown as a funtion of �. Theinformation is maximum when the measurements are 100% orrelated (values notshown beause they approah in�nity).distributions and we derive: I = �21 + �22 � 2��1�2�21 � �22 � (1� �2) (E.7)Figure E.1.(R) shows that information derease from � = 0 to � = �1=�2, afterwhih it begins to inrease. The explanation to this e�et is somewhat simple. Asthe orrelation inreases beyond a ertain point, you are limiting the freedom ofthe measurements to di�er from the true value strue. Therefore the variane of theombined measurement starts going down. This is most easily understood for thease where � = 1. 140



A orrelation of 100% means that if s1 shifts by f � �1, then s2 has to shift byexatly f � �2. It is straightforward to hek that under suh a ombined hek thevalue of s does not hange. In fat, sine the expetation values of s1 and s2 are bothstrue, and sine they are 100% orrelated, there must exist some real number r suhthat s1 = strue + r � �1 and s2 = strue + r � �2 [54℄. If we substitute this expressioninto equation E.4 we �nd that s = strue. Therefore the result �2s(�1; �2) = 0 makesperfet sense.
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APPENDIX FGENERATION OF \FAKE" MONTE CARLO
The generation of \fake" Monte Carlo is only to see whether or not aNN an �t a set of 2-D distributions. It is not intended to replae theatual Monte Carlo in any way or form.In Chapter 7 we desribe how to obtain the Mtop -dependent funtional formsfor Mre and HT. These funtional forms provide an in�nite amount of statistis.However, these funtions are 100% independent and from Monte Carlo studies weknow that Mre and HT are somewhat orrelated. The results from this orrelationstudy are given in tables F.1. Looking at all distributions from all the generated topmass we �nd that the average orrelation between these variables is roughly 38% forthe t�t signal and about 50% for the VECBOS bakground. Using this informationwe generate \fake" Monte Carlo using the following reipe:� We draw 50 events12 randomly from the Mre and HT funtional forms. Onaverage the orrelation between the 50 events in these subsamples will be � 0.However, in some ases the orrelation will be equal or greater to that observedin the Monte Carlo.12A larger number of events will redue the probability of getting a orrelation lose to what theMonte Carlo predits. 142



Top Mass SVX Single SVX Double SLT No Tags120 GeV 0.42 0.42 0.47 0.44130 GeV 0.41 0.32 0.42 0.41140 GeV 0.37 0.38 0.38 0.46145 GeV 0.36 0.36 0.36 0.37150 GeV 0.37 0.37 0.40 0.39155 GeV 0.37 0.31 0.40 0.42160 GeV 0.36 0.38 0.37 0.40165 GeV 0.37 0.36 0.36 0.39170 GeV 0.39 0.37 0.38 0.37175 GeV 0.36 0.37 0.37 0.39180 GeV 0.38 0.39 0.35 0.39185 GeV 0.38 0.38 0.36 0.38190 GeV 0.37 0.36 0.37 0.40195 GeV 0.38 0.33 0.38 0.36200 GeV 0.37 0.37 0.38 0.36205 GeV 0.35 0.34 0.35 0.37210 GeV 0.38 0.40 0.36 0.40220 GeV 0.39 0.38 0.41 0.37230 GeV 0.38 0.41 0.40 0.37VECBOS 0.53 N/A 0.54 0.51Table F.1: We show the orrelation fator between Mre and HT for all the di�erentMonte Carlo t�t samples.� We only keep the subsamples for whih �j � �MC (this is true for the t�t signalas well as the bakground). If a subsample meets the � requirements we add itto a larger sample for whih �total = PNj=1 �jN : (F.1)By only seleting subsamples with a spei� orrelation we are able to reate asample with a orrelation oeÆient similar to the one observed in the real MC.� The proess is repeated until we have 50,000 events for eah of the signal andbakground mass subsamples. We point out that we do not really need that143



many events to populate the 2-D histograms. 10,000 or fewer events would besuÆient when dealing with the real Monte Carlo.The \fake" Monte Carlo mimis the shape of the real Monte Carlo quite wellas we an see by overlaying the projetions from our \fake" 2-D templates to theatual results from the 1-D funtional forms. Figure F.1 shows an example from theSingle SVX subsample. Therefore, we think that �tting these templates with a NeuralNetwork will tell us whether or not this method an be used on the real Monte Carlo.
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Figure F.1: (a) Lego histogram of our \fake" MC distribution forMtop = 175 GeV/2.(b) Contour plot of the same distribution. () Projetion along the Mre axis of our2-D plot. The blue urve orresponds to the 1-D NN �t of the true MC for a topmass of 175 GeV/2. (d) Projetion of the 2-D plot along the HT axis. The blueurve orresponds to the 1-D NN �t of the true MC for a top mass of 175 GeV/2.144



BIBLIOGRAPHY
[1℄ D. GriÆths, Introdution to Elementary Partiles, Harper and Row Publishers,(1987); F. Halzen and A. Martin, Quarks and Leptons: An Introdutory Coursein Modern Partile Physis, Jhon Wiley and Sons, (1984); V. Barger and R.Phillips, Collider Physis, Addison Wesley Publishing Company, (1987).[2℄ M. Caiari, Symposium of Twenty Beautiful Years of Bottom Physis-b20, AIP,Woodfury, NY (1998); S. Frixione, M. L. Mangano, P. Nason, and G. Ridol�,Heavy Flavors II, Word Sienti�, River Edge, NJ (1997).[3℄ P. Nason, S. Dawson, and R. K. Ellis, Nul. Phys. B 303, 607 (1988).[4℄ R. Boniani, S. Catani, M. L. Mangano, and P. Nason, Report No. CERN-TH/98-31 (1998).[5℄ A. D. Martin, R. G. Roberts, and W. J. Stirling, Phys. Lett. B 387 419, (1996).[6℄ E. Laenen, J. Smith, and W. L. van Neerven, Phys. Lett. B 321, 254 (1994).[7℄ A. D. Martin, W. J. Stirling, and R. G. Roberts, Phys. Lett. B 306, 145 (1993).[8℄ E. L. Berger and H. Contopanagos, Phys. Rev. D 57, 253 (1998).[9℄ H. L. Lai et al., Phys. Rev. D 51, 4763 (1995).[10℄ M. Kobayashi and T. Meskawa, Prog. Theor. Phys. 49, 652 (1973).[11℄ http://www.fnal.gov/ ontains a wealth of information regarding Fermilab.[12℄ F. Abe et al., Nul. Inst. Meth. Phys. Res. Set. A 271, 387 (1988)[13℄ P. Azzi et al., Nul. Inst. Meth. Phys. Res. Set. A 360, 137 (1995)[14℄ F. Snider et al., Nul. Inst. Meth. Phys. Res. Set. A 268, 75 (1988)[15℄ F. Bedeshi et al., Nul. Inst. Meth. Phys. Res. Set. A 268, 50 (1988)[16℄ L. Balka et al., Nul. Inst. Meth. Phys. Res. Set. A 267, 272 (1988)145



[17℄ S. Bertolui et al., Nul. Inst. Meth. Phys. Res. Set. A 267, 301 (1988)[18℄ G. Asoli et al., Nul. Inst. Meth. Phys. Res. Set. A 268, 33 (1988)[19℄ G. Foster et al., Nul. Inst. Meth. Phys. Res. Set. A 269, 93 (1988)[20℄ B. Kr�ose, P. van der Smagt An Introdution to Neural Networks, University ofAmsterdam (1996).[21℄ M. Minsky and S. Papert Pereptrons: An Introdution to Computational Ge-ometry, MIT Press (1969).[22℄ S. Haykin Neural Networks: A Comprehensive Foundation, 2nd edition, PrentieHall (1999).[23℄ H. White, A. R. Gallant, K. Hornik, M. Stinhombe and J. Wooldrige Arti�ialNeural Networks: Approximation and Learning Theory, Blakwell (1992).[24℄ F. Abe et al., Phys. Rev. D 50, 2966 (1994); Phys. Rev. Lett. 73, 225 (1994).[25℄ F. Abe et al., Phys. Rev. Lett. 80, 2773 (1998).[26℄ F. Abe et al., Phys. Rev. Lett. 80, 2779 (1998).[27℄ F. Abe et al., Phys. Rev. D 52, 4784 (1995); F. Abe et al., Phys. Rev. Lett. 75,11 (1995).[28℄ The isolation, I, is de�ned as the ET (PT) within a one of �R < 0:4 enteredon the lepton, but exluding the lepton energy, divided by the ET (PT) of thelepton.[29℄ F. Abe et al., Phys. Rev. D 45, 1448 (1992).[30℄ D. Kestenbaum, Ph.D. Thesis (unpublished), Harvard University (1996)[31℄ G. Marhesini and B.R. Webber, Nul. Phys. B310, 461 (1988); G. Marhesiniet al., Comput. Phys. Comm. 67, 465 (1992).[32℄ T. Sj�ostrand, Computer Physis Commun. 39, 347 (1986) ; T. Sj�ostrand and M.Bengtsson, Computer Physis Commun. 43, 367 (1987); T. Sj�ostrand and M.Bengtsson, Computer Physis Commun. 46, 43 (1987).[33℄ B. Andersson, G. Gustafson, G. Ingelman, and T. Sj�ostrand, Phys. Rep. 97, 31(1983).[34℄ P. Avery, K. Read, G. Trahern, Cornell Internal Note CSN-212, Marh 25, 1985(unpublished). We use Version 9 1 with a b lifetime of 1.45 ps.146



[35℄ F.A. Berends, W.T. Giele, H. Kuijf and B. Tausk, Nul. Phys. B357, 32 (1991).[36℄ F. Abe et al., Phys. Rev. Lett. 79, 4760 (1997).[37℄ F. Abe et al., Phys. Rev. D 47, 4857 (1993).[38℄ MINUIT Referene Manual, CERN Program Library Entry D505 (1994).[39℄ L. Orr, T. Stelzer, and W. J. Stirling, Phys. Rev. D 52, 124 (1995); Phys Lett.B 354, 442 (1995).[40℄ T. A�older et al., Phys. Rev. D 63 (2001).[41℄ B. Tuhming, ALEPH Note 99-073: Two dimensional �ts of Higgs mass shapesas a funtion of Higgs mass with Neural Networks, (1999).[42℄ J. Shwindling and B Mansoulie, MLP�t Neural Network, see:http:/shwind.home.ern.h/shwind/MLPfit.html[43℄ A lear desription of the VECBOS �les generated for the Run I mass analysisan be found at:http://www-df.fnal.gov/internal/physis/top/w m samples.txt[44℄ L. L�onnblad, C. Peterson, H. Pi, and T. R�ognvaldsson, Compu. Phys. Commun.81, 185 (1994).[45℄ C. Ciobanu, R. Hughes, P. Koehn, C. Neu, and B. Winer, A ROOT sriptinterfae to JETNET, CDF Note 5434 (2000). The Root Jetnet pakage an bedownloaded from:http://pdfp2.mps.ohio-state.edu/root to jetnet/rtj.html[46℄ L. Demortier, L. Lyons, Everything you always wanted to know about pulls, CDFNote 5776 (2002).[47℄ A. Beretvas, M.Binkley, Overview of the kinematis of t�t events, CDF Note 4232(1996).[48℄ R. Flether, Pratial methods of optimization, seond edition, Wiley (1987).[49℄ K. Tollefson, Ph.D. Thesis (unpublished), University of Rohester (1997).[50℄ M. D. Rihard, R. P. Lippmann, Neural Computation 3 (1991).[51℄ F. Abe et. al, Phys. Rev. Lett. 75, 3997 (1995).[52℄ R. J. Barlow Statistis: A Guide to the Use of Statistial Methods in the PhysialSienes, Wiley (1995). 147



[53℄ W. Eadie, D. Drijard, F. James, M. Roos, B. Sadoulet Statistial Methods inExperimental Siene, North-Holland, Amsterdam (1971).[54℄ Lu Dermortier, private ommuniation.[55℄ N. Eddy, Ph. D. Thesis (unpublished), University of Mihigan (1998).[56℄ M. Gluk, E. Reya, and A. Vogt, Z. Phys. C 67 433 (1995).[57℄ H Lai et. al, Phys. Rev D. 51, 4763 (1995).

148


