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ABSTRACT

At the Tevatron, protons and antiprotons collide with a center-of-mass energy of
1.8 TeV. In this energy range the dominant source of top quarks is the production of
tt pairs via quark-antiquark annhilation and gluon-gluon fusion. We present our anal-
yses to determine the mass of the top quark reconstructed through the “lepton+jets”
decay channel in the 106 4+ 4.1 pb~! of data collected by the Collider Detector at
Fermilab (CDF) from 1992-1996.

In the past, the top mass was obtained by comparing the observed kinematic
features of top events to those predicted for different top quark masses. These dis-
tributions are known as templates. While any kinematic variable, which exhibits
sensitivity to the top mass can be used to calculate the mass of the top quark, the
lowest, statistical uncertainty is achieved by reconstructing the top mass from the
decay products of the ¢f pair. It was also observed that it is possible to obtain a
better estimate of the top mass by fitting the different templates to a smooth func-
tion. Previously, we have used a combination of a Gaussian and a Gamma function
to fit the distributions. In this analysis, we find that using a Neural Network (NN) to
fit the distribution gives slightly better results, and that the NN fitting technique is
applicable to any kinematic variable. Following this recipe the top mass is measured

to be 177.9+4.7(stat.) +4.6(syst.) GeV/c* when using the reconstructed mass, M.
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When we use the total transverse energy of the events, Hy, the mass of the top quark
is found to be 204.4 + 9.2(stat.) + 9.2(syst.) GeV /c?.

As noted, there are different kinematic variables that can be used to calculate
the top mass. A Neural Network provides a simple and elegant way of combining
all of these variables which have mass information. The idea is that combining the
information from more than one kinematic variable would result in a more accurate
measurement of the top mass. Therefore, this NN based technique uses a combination
of M,.., Hy, the invariant mass of the ¢t system, M,;, and the sum of the P;’s of the
two leading jets, Pr(1) + Pr(2). These variables were chosen because they exhibit
the greatest mass dependence. The Neural Networks attempt to classify the events
as tt signal or background. For each event the NN provides a set of probabilities that
it has come from any of the top masses used in this analysis, as well as background.
Using this information we construct a discrete likelihood function from which the top

mass is calculated to be 181.9 & 5.1(stat.) + 5.2(syst.) GeV/c?.
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CHAPTER 1

INTRODUCTION

In 1995, the top quark was discovered at the Fermilab Tevatron. This was the
culmination of nearly two decades of intense research at particle accelerators around
the world. Also, it was a major triumph for the Standard Model of particle physics
since it predicted the top quark existence. The top quark is by far the heaviest
fundamental particle known, and this large mass has caused much excitement in the
physics community. Since the top quark mass is close to the electroweak scale, it
is believed that it plays a role in the breaking of the electroweak symmetry, and
therefore the origin of the fermion masses.

Previous mass analyses have exploited the use of a single kinematic variable to
extract the mass of the top quark. This thesis explores the use of Neural Networks
to improve the top mass measurement. Neural Networks are applied in two distinct

ways:

e Neural Networks are used as function approximators to obtain a functional form,

which describes any distribution as a function of top mass.

e Neural Networks are used for event classification. This technique allows us to

combine information from different variables.



The Standard Model is summarized in Chapter 2 with specific attention given
to the production and decay of the top quark. Chapter 3 presents a description
of the CDF detector, emphasizing the subsystems most important in this analysis.
Artificial Neural Networks are introduced in Chapter 4. Chapter 5 describes the
selection criteria used to obtain the event sample used in this analysis. The top mass
reconstruction algorithm is presented in Chapter 6. Here, we also discuss the jet
energy corrections employed in the mass analysis. The description of the standard
template-based likelihood method used to extract the top mass is given in Chapter
7. We introduce a new Neural Network method to parametrized the M,.. templates.
This technique is compared to the previous Gaussian + Gamma parametrization
method. The NN fitting technique is also used to parametrize the Hy distributions.
Chapter 8 presents the standalone Neural Network technique, which combines the
mass information from multiple kinematic variables to extract the mass of the top
quark. The systematic uncertainties are presented in Chapter 9. In Chapter 10,
we describe a method to measure the gluon content in the Run I SVX-tagged data
sample. The Run I results from the different analyses presented in this thesis are
given in Chapter 11. Finally, in Chapter 12 we describe a powerful technique to

measure the top mass using the large statistical samples of Run II.



CHAPTER 2

THEORY

All known particle physics phenomena are extremely well described within the
Standard Model (SM) of elementary particles and their fundamental interactions.
The SM provides a very elegant theoretical framework and it has successfully passed
very precise tests in a variety of high-energy interactions. Although no significant dis-
crepancies between experimental data and the Standard Model have yet been found,
there are several critical issues which remain unsolved. For instance, the Standard
Model does not predict the masses of the fundamental particles nor provides any in-
formation why these masses are so different. Furthermore, the Higgs mechanism by
which the fundamental particles acquire their mass is completely artificial. Hence,
physics beyond the Standard Model seems inevitable and it is possible that the top

quark might be the window to that new physics.

2.1 The Standard Model

This is a simple sketch of the Standard Model of particle physics. There are
several books available to the reader that give a much more thorough description
[1]. The Standard Model is a quantum field theory that is based on the gauge sym-

metry SU(3)c x SU(2);, x U(1)y. The first gauge group, SU(3)¢, corresponds to
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the symmetry of the strong interactions, and the second and third gauge groups,
SU(2);, x U(1)y, correspond to the symmetry of the electroweak interactions. The
group symmetry of the electromagnetic interactions, U (1), appears in the SM as a
subgroup of SU(2);, x U(1)y and it is in this sense that the weak and electromagnetic
interactions are said to be unified.

In the SM there are two kinds of fundamental particles: fermions and bosons.
Fermions are spin-1/2 particles, which are the constituents of matter, and they are
divided into leptons (¢) and quarks (q). The known leptons are: the electron, e, the
muon, 4~ and the 7= with electric charge Q = -1; and the corresponding neutrinos

Ve, Vy, and v, with electric charge Q = 0. The known quarks are of six different

3

flavors: wu, d, ¢, s, t, and b with fractional electric charge Q = %, —
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respectively. Quarks also carry a color charge labelled red, green or blue for
reference. We know that color is not seen in Nature and therefore elementary quarks
must bind into colorless composite particles named hadrons. Fermions are organized

in three families with identical properties except for mass. The particle content in
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and their corresponding antiparticles.

each family is:

The second kind of elementary particles, bosons, are the mediators of the funda-

mental forces. By leaving apart the gravitational interaction, all relevant interactions
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in particle physics are known to be mediated by spin-1 bosons. The photon, v, is
the exchange particle in electromagnetism. The photon is chargeless, massless and it
does not interact with itself. The strong force is mediated by eight different gluons.
Gluons are massless, electrically neutral and carry color which means that they not
only interact with quarks but also with themselves. The W= and Z particles mediate
the weak interaction. The weak bosons are massive and they are self-interacting. The
W= is charged with (Q = +1 and the Z is electrically neutral.

In the Standard Model, particles acquire their mass via the “Higgs mechanism”. In

order to accommodate electroweak and flavor symmetry breaking, we must artificially

¢+

¢0) with a potential

introduce a weak-isospin doublet of fundamental scalar field ® = (

of the form

V(T®) = p2(d1d) + |A|(d1D)?, (2.1)

where ) is the self coupling of the scalar field. If we choose ©? to be negative, the
electroweak symmetry is spontaneously broken when the field is expanded about its
non-zero vacuum expectation value v = /—pu2/A = (Gpv/2)"2 = 246 GeV. This
value is referred to as the electroweak scale. The spontaneous symmetry breaking
gives mass to the W, W~ and Z° particles, and it also gives rise to a spin-0 (scalar)
particle called the Higgs boson. Each quark and lepton has its own Yukawa coupling
to the Higgs boson G; and thus acquires a mass m; = va/ﬂ, where f stands for

fermion.

2.2 Constraining the Higgs Mass with the Top Mass

The mass of the top quark is one of the most important parameters of the Standard

Model. It enters into calculations of higher-order (radiative) corrections which connect



several other Standard Model input parameters. Thus, radiative corrections to many
electroweak processes depend on the masses of the top quark and the Higgs boson

via loop diagrams such as those shown in Figure 2.1.

Figure 2.1: Self-coupling loops contributing higher order quantum corrections.

At one loop, for instance, the p parameter,

_ M,
- MZ(1 — sin®0y)

p =1+Ar, (2.2)

which relates the W and Z boson masses and the weak angle, gets a radiative correc-

tion

3Gr V2G 1. [ M?
Ap= 200 ppz o VIR 0y (D) 2.3
ERFEEN s R R T W[3 n(Mgv LR (2:3)

which is quadratic in the top mass. Note, however, that the dependence on the
mass of the Higgs boson is only logarithmic. Therefore, the mass of the top quark is
the dominant term in the corrections for electroweak processes. By measuring M,
very accurately, and using additional constraints from the large body of precision
electroweak data we can test for consistency and predict unknowns in the Standard
Model. One of such predictions is the mass of the Higgs boson, which can be con-
strained by the direct measurement of the W boson and the top quark along with

other precision data.



2.3 Pair Production of Top Quarks

In pp collisions at a center-of-mass energy of 1.8 TeV, top quarks are expected to
be produced by two distinct processes: ¢g annhilation and gluon-gluon (gg) fusion.
Figure 2.2 shows the Feynman diagrams for these processes. At the Tevatron, the
relative contributions from these processes are about 90% and 10% respectively. For
a complete derivation of heavy quark production there are several reviews available
to the reader [2]. Here, only the most important issues of these calculations will be

presented.

g t g t g t

I " jzj}< v §w<

g t 9 t 9 t
Figure 2.2: Lowest order processes for ¢t pair production.

The total cross section for the production of heavy quarks has the form,
o(pp = 1)) = 3 [ duvdas f1 (o1, 1) f1 (02, 12)3 (0] — 15, 03(2%), Migy),  (24)
1:7]' ’
where the sum is over all partons: gluons, light quarks and antiquarks. This formula
expresses the total cross section in terms of the parton-parton processes ij — {f.

The parton distribution function f£ corresponds to the probability density of finding

a parton with a given fraction of the proton momentum between x; and z; + dz;.
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Calculation Type Structure Function O

(1) Exact NLO[3, 4] NLO only MRSR2[5] 4.8770:3 pb
(2) LSvNI6] Resummed MRSD'[7] 4.9470-18 pb
(3) BC[8] Resummed CTEQ3[9] 5.5270:05 pb
(4) BCMNT[4] Resummed MRSR2 5.0670:30 pb

Table 2.1: Results of several different pp — t¢ calculations, for M,,, = 175 GeV and
Vs =18 TeV.

The function ff; has the same definition but it corresponds to the antiproton. The
total short-distance cross section for the parton-parton subprocesses that intervene in
the heavy quark production is . The center-of mass energy of the i-j parton system
is given by § and it is related to the pp center-of-mass energy by § = x3x9s. The
renormalization scale p is the result of including higher order Feynman diagrams. If
the calculation could be carried out to all orders then the dependence on p would
vanish. The strong coupling constant is given by a, and M,,, is the mass of the heavy
quark.

The cross section for heavy quark production is rather sensitive to higher order
corrections to the leading order (LO) calculation. Subsequently, several groups have
calculated the complete next-to-leading order (NLO) cross section. For top quark
production at the Tevatron, the NLO contribution for the gg process is roughly 70%
that of the size of the LO term, and for the gg process it is about 20% that of the LO
result. The theoretical cross section results are summarized in Table 2.1.

The tt cross section is small compared with other processes which take place at
the Tevatron. Of the five trillion or so collisions that occurred at CDF during the

entire Run I, one expects about 600 ¢¢ pairs to have been produced. Of these events,



only a small fraction are observed. Throughout the text, it will become evident why

most of these events fail to be categorized as top events.

2.4 Top Hadronization and Decay

Within the Standard Model, the top quark decays via t — W*b with a branching
ratio close to unity. The decays t — Ws and t — Wd are also allowed but they
are suppressed by factor of 1073-10~% by the Cabibbo-Kobayashi-Maskawa (CKM)

mixings [10]. The decay of the top quark can be written as,

L(t — Wb) = +mp —2M% | x 2k (2.5)

GFMI%/ 1 2 [(ME mg

)2
op 2
871\/§ lMtQOp tb IMIQ/V top

where k denotes the W momentum in the ¢ rest frame and it is,

V(ME, — (My +1m,)2) (M2, — (My — my)?)
2 Mg,

k =

(2.6)

Let My, = 80.4 GeV/c?, m, = 5 GeV/c?, and the top quark mass M,,, = 175 GeV /c?.
Substituting these numbers into the above equation gives the following top quark

decay rate and lifetime:

1
D(t — Wb) ~ 1.55 GeV = 71 = <r_> ~ 4 x 107 sec. (2.7)

t

At the Tevatron energies, the top quark decays before it has time to hadronize. This
implies that the top quark can be treated as a free particle. Note however, that it is
not only the large mass of the top quark which gives it its extremely short lifetime,
but also the fact that it has a CKM-allowed t — b decay very close to unity. If this
decay was more suppressed by the CKM mixings, the lifetime of the top quark would
be longer.

A tt final state contains two t — Wb decays. The two b quarks will be observed as
a spray or particles known as jets, and the W bosons will decay into a lepton-neutrino

9



Category Decay Mode Branching Ratio

Lepton—+jets ¢t — (qq'b)({vb) 24/81 (30%)
All hadronic  #t — (¢q'b)(qq'b) 36/81 (44%)
Dilepton tt — (fvb)(Lvb) 4/81 (5%)

Table 2.2: Branching ratios for the three different ## decay modes. Here ¢ stands for
a u,d,c, or s, and ¢ stands for e and p. 7 leptonic decays are not included.

or a quark-antiquark pair. To a good approximation, the possible decays of the W
boson are equally probable. However, one must remember to count each quark flavor
three times since there are three different colors for each of them. Therefore, the
probability that the W boson will decay into either of the three leptons is about 1/9,
while the probability that it will decay into a quark-antiquark pair is 2/3. Since the
W bosons decay independently of each other, the ¢¢ decays can be classified according
to the W boson’s decay. A summary of the different branching ratios of the possible

decay channels is given in Table 2.2.

2.5 Decay Signature of the Lepton-+jets Channel

Figure 2.3 shows an artist representation of the lepton+jets decay channel. From

this picture we expect the final state of the ¢f decay to have the following:

e An energetic lepton, electron or muon, coming from the leptonic decay of the
W boson. The W boson is a massive object so in general the lepton produced

when it decays will have a high energy.

e Large missing energy due to the undetected neutrino from the leptonically
decaying W boson. Neutrinos do not interact with the CDF detector so their
presence is inferred by an imbalance in the total energy measured in the detector.
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Figure 2.3: Lepton+jets ¢ event. One of the W bosons decays into a lepton+neutrino
pair while the other one decays into a quark-antiquark pair.

e Four jets, two of them from the b quarks and two more from the two light
quarks produced by the hadronic decay of the W boson. After a high energy
collision, a quark or a gluon becomes free from the color-neutral object which
contained it. As the partons move apart the energy required to separate them
increases and ¢qg pairs are created from the vacuum. These new quarks and
the original ones recombine themselves to produce new hadrons. Thus, what

emerges from the collision is a spray of colorless hadrons, or jet.
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CHAPTER 3

THE CDF EXPERIMENT AT THE TEVATRON

Located in Batavia, Illinois, the Fermi National Accelerator Laboratory (Fermilab)
is a particle physics experimental facility built in 1967 that is home to the Tevatron,
the highest-energy particle accelerator in the world. The Tevatron will continue to
dominate the world of high-energy physics until 2007, when the Large Hadron Col-
lider at CERN is scheduled to begin operations. Throughout this document, the main
data taking periods at the Tevatron are referred to as Run I (1992-1995) and Run I
(started 2001). The focus of the analysis presented here is the dataset accumulated
during Run I by the Collider Detector at Fermilab (CDF) experiment. In the ma-
terial and observations that follow, we will describe the accelerator and the detector

components as they were during Run I'.

3.1 The Tevatron

At the Tevatron, protons and antiprotons collide with a center — of — mass
energy of 1.8 TeV. The proton and antiproton beam acquire their final energy by
passing through the acceleration chain shown in Figure 3.1. The intermidiate energies

attained at each step are given Table 3.1.

'For Run II, there have been a large number of improvements and additions to the experiment,
as part of the upgrade following the 1995 shutdown.
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Figure 3.1: The accelerator complex at Fermilab.

Accelerator Component | Particle | Max. Energy | Approximate Size
Cockcroft-Walton H™ 750 keV few meters
Linac H™ 200 MeV L =150m
Booster p 8 GeV r="7T0m
Debuncher/Accumulator D 8 GeV (ry =90m
Main Ring D, P 150 GeV r=1km
Tevatron D, D 900 GeV r=1kkm

Table 3.1: Acceleration stages for protons and antiprotons.

At the Cockroft-Walton accelerator, negatively charged hidrogen ions are first

accelerated before being inserted in the 500-feet Linear accelerator (Linac) .

the H™ ions pass through a carbon foil which removes the electrons, leaving only
the protons. From here, proton acceleration is done in three stages, corresponding
to each of the three circular accelerators: Booster, Main Ring, and Tevatron. The
antiprotons are made by colliding a proton beam from the Main Ring into a Tungsten

target. The collisions in the target produce a wide range of secondary particles
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Period | Typical Instantaneous L | Best Instantaneous L Integrated L
Run IA | 0.5 x 103! e 2 71 0.9 x 103 em =2 571 19.6 pb~!
Run IB | 1.6 x 103! ¢m 2 7! 2.8 x 101 em ™2 57! 86.3 pb !

Table 3.2: Typical instantaneous, best instantaneous, and integrated luminosities
during Run I at the Tevatron (integrated L corresponds to the CDF interaction
region).

incluiding many antiprotons. These antiprotons are selected and subsequently passed
to the Debuncher where they are reduced by stochastic cooling and transferred to the
Accumulator. When a sufficient number of antiprotons (=~ 10'?) has been collected,
the antiprotons are reinjected into the Main Ring and then into the Tevatron, similar
to the protons but revolving in the opposite direction. The bunches of protons and
antiprotons cross every 3.5 pus. Table 3.2 shows the various luminosity values during
Run TA (1992 — 1993) and Run IB (1994 — 1995) respectively. Further information

about the Tevatron at Fermilab can be found in reference [11].

3.2 The CDF Detector

The CDF detector is a general purpose detector designed for good lepton (e,
1), photon, and jet identification. It is cyllindrically symmetric, and also forward-
backward symmetric with respect to the transverse plane, which passes throught the
center of the detector. CDF employs a coordinate system in which the z-axis is
along the beam line. In this system, we express the particle track coordinates in the
detector by the pseudorapidity, n = —ln(tang), and ¢, where 6 is the polar angle,
and ¢ is the azimuthal angle. CDF is composed of an array of individual detectors,

which are divided into three main categories: the tracking chambers, calorimeters,
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Figure 3.2: A quarter view of the CDF showing the locations of the different detector
subcomponents.

and muon chambers. First, the tracking detectors are the closest to the interaction
region. They are enclosed by a superconducting solenoid, which generates a 1.4 T
magnetic field along the incident beam direction. This magnetic field allows precise
momentum determination of charged particles in the central region. Surrounding the
solenoid are the calorimeters that determine the energies of the outgoing particles.
Finally, the outermost detectors are the muon chambers that measure the energies
and positions of the muons that were not absorbed in the calorimeters. For the

complete description of the detector, we point the reader to reference [12].
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Figure 3.3: Schematic view of an SVX barrel.

Tracking Detectors

There are three tracking components, all located inside the 1.4 T solenoid (Fig-

ure 3.2): the Silicon Vertex Detector (SVX), the Vertex Time Projection Chamber

(VTX), and the Central Tracking Chamber (CTC).

The SVX tracking detector is designed to detect secondary vertices from heavy
flavor decay especially b hadrons, which have a macroscopic mean decay length?.
It consists of two barrels aligned end-to-end on either side of the z = 0 point, and
surrounding the 1.9 em radius beam pipe. The total coverage of the SVX is 51 em in
the z direction which corresponds to an |n| < 1.9. As the spread of pp collisions is 60

cm along the z axis, the SVX track acceptance is roughly 60%. Figure 3.3 shows one

2The mean life time in the rest frame is 79 = 1.65 x 10~ '%s (c79 = 0.5mm). A 15 GeV/c b quark

has a lorentz factor v ~ 4

16



SVX barrel. In the azimuthal direction it features 12 wedges of 30° each, with the
silicon strip detectors arranged in 4 concentric layers. The number of silicon strips
changes with each layer. The strip lines run parallel to the beam line and provide hit
information in the r — ¢ plane. The SVX single hit resolution is measured to be 13
pm in 1 — ¢ plane, and the resolution of the impact parameter relative to the primary
vertex is 17 pum. The SVX system plays a major role in just about all areas of top
quark physics.

The vertex drift chamber lies outside the SVX. The VTX consists of 28 modules
of octagonal time projection chambers along the 2z axis. Each module is segmented
azimuthally into 8 wedges, and contains a 50%-50% mixture of argon-ethane gas.
It has a central high voltage grid which divides the module into two drift regions.
The ionization electrons drift to the two endcaps containing sense wires running
perpendicular to the longitudinal plane bisecting each wedge. The arrival times of
the electrons give the z coordinate of the track, while the wire location specifies the
particular r. The function of the VTX is two-fold. The VTX is able to identify the
z position of the primary vertex with a resolution of ~ 1 mm. In the case of events
with multiple interaction®, the VTX is used to establish which interaction a primary
vertex and associated tracks belong to.

The CTC is a 3.2 m long cylindrical drift chamber with a 1.3 m radius. The
CTC covers a pseudorapidity range of |n| < 1.0. It consists of 84 layers of sense
wires arranged into 9 superlayers. There are two types of superlayers alternating in
radial direction: awxial superlayers (0, 2, 4, 6, 8) are composed of cells with 12 sense

wire layers and provide r — ¢ track information; stereo superlayers (1, 3, 5, 7) are

3There are roughly 10'° particles in the proton and antiproton bunches. On average we expect
one interaction per beam crossing but in some cases there are more than one
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Figure 3.4: Transverse view the Central Tracking Chamber (CTC) which shows the
alternating superlayers of axial and stereo cells.

composed of cells with 6 sense wire layers and provide tracking information in the r—z
plane. Figure 3.4 shows the transverse view at the endplate of the CTC. Each cell
is tilted by 45° with respect to the radial direction to ensure that the electrons drift
perpendicularly to the radial direction, which simplifies track reconstruction. There
are over 6000 sense wires in the CTC, with each wire having a design resolution
of &~ 200 pum in the r — ¢ plane, and 4 mm in the r — z plane. The momentum
resolution of a charged particles is given by 6Pt/Pt = 0.001 GeV~'c x Py when
the information from the SVX and CTC are combined. The transverse momentum
is given by Pp = Psin#l, where P is the total momentum of the particle measured
by the CTC. Further information about the SVX, VT'X, and CTC can be located in

references [13], [14], and [15] respectively.
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Figure 3.5: A central calorimeter wedge. There are 24 wedges covering A¢ = 15° on
either side of the transverse plane z = 0.

3.2.2 Calorimeters

The CDF calorimeters, located outside the solenoid, are segmented into towers (in
n—¢ space) that point back to the nominal interaction point (Figure 3.2). The central
calorimeter extends over the range |n| < 1.1 and each of its towers corresponds to a
solid angle A¢ = 15° and An = 0.1. The region 1.0 < |n| < 2.4 is covered by the plug
calorimeters with a segmentation of A¢ = 5° and An = 0.09. Finally, the forward
calorimeters match the pseudorapidity interval 2.4 < |n| < 4.2, with a segmentation
of A¢ = 5° and Anp = 0.1. Calorimeter energies are given by the transverse energy,
Ep = Esinfl, where E is the total measured energy. A closer look at each calorimetry

system follows.
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The central calorimeter system is composed of the central electromagnetic calorime-
ters (CEM), and central hadronic calorimeters (CHA). There are 48 individual wedges
each containing 10 towers. Figure 3.5 shows one of the central calorimeter wedges,
where the lower and upper regions are occupied by the CEM and CHA calorimeters
respectively. Towers 0 to 8 define the central region, and towers 6 to 8 share their
hadronic portion with the endwall calorimeter (WHA) as shown in Figure 3.2.

The CEM is constructed by alternating layers of lead and scintillator. The central
electromagnetic shower counter (CES) is located at the CEM shower maximum to
provide shower position information in the z — ¢ view. The CES is a proportional strip
and wire chamber. The central preradiator (CPR) composed of proportional tubes is
placed between the solenoid and the CEM. The CPR samples the early development
of electromagnetic showers and is used to differenciate between elctrons and hadrons.
The CHA and WHA calorimeter consist of alternating layers of iron and scintillator.
Further information regarding the physical characteristics of the CEM, CHA and
WHA calorimeters can be found in Table 3.3. A detailed description of each is given
in references [16], [17].

In order to determine the energies of the forward jets, the plug and forward
calorimeters are required. This information is also used to extract the missing energy
Fr in an event (see Section 8.5). As in the central calorimetry design, both the plug
and the forward calorimeters feature electromagnetic and hadronic sections: PEM
and FEM relating to the former and PHA and FHA describing the latter. These
calorimeters use a 50%-50% argon-ethane gas mixture as their active medium. Pro-
portional tube arrays containing this gas are interleaved with layers of lead for the

FEM and steel for the FHA, as summarized in Table 3.4.
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CEM CHA WHA
Coverage (|n|) 0-1.1 0-0.9 0.7—-13
Tower Size (An x A¢) 0.1 x 15° 0.1 x 15° 0.1 x 15°
Module Length 250 em 250 ecm 100 em
Module Width 15° 15° 80 cm
Number of Modules 48 48 48
Active Medium polystyrene acrylic acrylic
scintillator scintillator scintillator
Thickness 5 mm 10 mm 10 mm
Number of Layers 31 32 15
Absorber Pb Fe Fe
Thickness 3 mm 25 mm 51 mm
Number of Layers 30 32 15
Energy Resolution
(o(E)/E(GeV)) 13.7%/VEr @ 2% 50%/VEr ®3% 75%/VEr & 4%

Table 3.3: The physical properties for the central and endwall calorimeters. In the
last row, the symbol & indicates that the constant term is to be added in quadrature

to the resolution.

PEM PHA FEM FHA

Coverage (|n|) 1.1-24 1.3-24 2.2 —4.2 2.3 —-4.2
Tower Size (An x Ag) 0.1 x 5° 0.1 x 5° 0.1 x 5° 0.1 x 5°
Number of Layers 34 20 30 27
Active Medium Proportional Tube Chambers with Cathode Pad Readout

Tube Size 7 % 7T mm? 14 x 8 mm? 10 x 7 mm? 15 x 10 mm?
Absorber Pb Fe 96% Pb, 4% Sb Fe

Thickness 2.7 mm 51 mm 4.8 mm 51 mm
Energy Resolution
(o(E)/E(GeV)) 2% /VEr & 2% 90%/vEr ®4% 26%/Er ®2% 137%/v/Er & 4%

Table 3.4: The physical properties for the plug and forward calorimeters. In the last
row, the symbol & indicates that the constant term is to be added in quadrature to

the resolution.
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3.2.3 Muon Systems

A majority of the charged particles exiting the calorimeters are high-energy muons
(Pr > 1.5 GeV/c). At CDF, muon detection is accomplished by using single wire,
rectangular drift tubes. The muon system is composed of three separate muon de-
tectors, all situated in the central pseudorapidity region: the central muon detector
(CMU), the central muon upgrade (CMP), and the central muon extension (CMX).
The CMU [18] offers a coverage of |n| < 0.6, and is located inside the central calorime-
ter wedges radially outside of the CHA (Figure 3.6). In each wedge the CMU is
segmented into three towers, each consisting of 4 radial layers of 4 drift cells. The
two outer layers have an offset of 2 mm to resolve the left-right ambiguity of track
measurement in azimuth respect to the two inner layers. The central muon upgrade
(CMP), which is located behind an additional 0.6 m of steel, reduces the background
due to the hadrons which “punch-through” to the CMU. It consists of 4 layers of drift
cells and in effect has the same 7 coverage as the CMU, but it covers most of the
CMU gaps. With the addition of the CMX the muon coverage increase to a range of

0.6 < |n| < 1.0. The CMX is structured as four conical arches of drift tubes.
3.2.4 FEvent Triggers

In Run IB, the pp collisions were occurring at a rate of 280 kH z, which consid-
erably exceeds the rate of writing out the events to tape (~ 10 Hz). To solve this
problem, CDF devised a three-level trigger system that rejects most of the events,
while retaining only those events that are potentially useful for various physics analy-
ses. The trigger requirements are applied serially. Events passing the Level 1 trigger

criteria are passed to Level 2; the events passing Level 2 are allow to propagate to
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Figure 3.6: The location of the CMU system. Inside each calorimeter wedge there is
a 2.4° ¢ interval not covered by the CMU.

Level 3 which imposes farther cuts before deciding whether an event should be written
to tape or not. Typical acceptance rates for the three trigger levels are 1:300, 1:50,
and 1:5 for Level 1, Level 2, and Level 3 respectively.

Level 1 selects events based on identification of energy clusters in the calorimeters
or muon tracks in the muon chambers. The time required to make the decision is less
than 3.5 ps, leaving little dead time in the system. The Level 1 requirements reduce
the event rate down to 1 kHz from 280 kHz.

The Level 2 decision time is approximately 20 us during which further beam
crossings are ignored by the detector resulting in a dead time of a few percent. The
decision to accept events is based on track information and clustered energies. The

central fast tracker (CFT), a highly efficient hardware processor, reconstructs high
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momentum tracks using the hit information from the CTC. Similarly, calorimeter
clusters are formed by searching for a seed tower above a certain threhold and adding
the neighboring towers. The Level 2 output rate is 20-30 Hz.

The Level 3 trigger is a software reconstruction trigger on a farm of Silicon Graph-
ics processors. If an event passes the Level 2 requirements, the whole detector is read
out, and the event is reconstructed using a simplified version of the of fline analysis
code. This includes the reconstruction of the ¢¢ decay objects: lepton, jets, and .
The detector readout time is 3 ms which on average results in 10% dead time. Once
an event is accepted by Level 3, it will be written to 8 mm tape as part of a particular

data stream. The Level 3 output rate is 5-10 Hz.
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CHAPTER 4

INTRODUCTION TO NEURAL NETWORKS

The mass of the top quark is one of the most important fundamental parameters
in the Standard Model. Previous analyses of the top mass have resulted in the most
accurate mass measurement among the quarks. However, there are ways the mass
analysis can be improved by using Neural Networks (NN).

In this chapter, we give a brief historical background on Neural Networks. The
first network models are introduced giving special attention to the perceptron. This
computational model is the foundation of the multi-layer Neural Network. A descrip-
tion of the components of the multi-layer NN are given next. In the last few sections,

we explain how these networks work and are able to perform a wide range of tasks.

4.1 Historical Background

Artificial Neural Networks are loosely based on how the human brain works.
About 100 years ago, Santiago Ramon y Cajal, realized that the brain was made
up of discrete units called neurons, the Greek word for nerves. He described neurons
as polarized cells that receive signals via highly branched extensions, called dendrites,
and send information along unbranched extensions, called azons. This information is

transmitted in the form of electrical pulses called action potentials. These potentials
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cause the neuron to release a chemical which excites or inhibits the neuron’s mem-
brane. The effect of all excitations or inhibitions may produce an action potential in
the next neuron (i.e the neuron fires). An artist rendition of a biological neuron is

shown in figure 4.1.

Figure 4.1: A biological neuron. The inset shows the synapse which is a specialized
connection between neurons.

The first computational model of the neuron was introduced by McCulloch and
Pitts in the 1940s. They proposed a binary unit for which the output, y, is equal
to 1 when an action potential is generated, and 0 otherwise. A weight value w; is

associated to each of the ¢th connections of the neuron. These weights are excitatory if
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Figure 4.2: (Left) McCulloch-Pitt model for the computational neuron. The different
weights are either excitatory w; = +1 or inhibitory w; = —1. (Right) Simple graphical
represention of a perceptron with one output and two inputs.

w; = +1, and inhibitory if w; = —1. A neuron fires when the effect of the excitations
and inhibitions is larger than a certain threshold (bias) 6. A graphical representation
of this model is shown in figure 4.2.(L). Here, z; are the input values fed into the
network.

In 1958, Rosenblatt introduced a computational model of the neuron called the
perceptron. Figure 4.2.(R) shows the graphical representation. The biggest improve-
ment from the previous model is that it introduced numerical interconnection weights
instead of the simple inhibitory/excitatory connections used before. The weights
could now have any real value which are determined according to the task the per-

ceptron has to perform. The mathematical model is the following:

(4.1)

(1) = +1 if Y wi(t)x; > 0(t)
PI=V =1 8 S0 wilt)ay < 0(1),

where y(t) is the output of the perceptron, w;(t) is the weight of the input z;, and

6(t) is the bias. One can think of the bias (see Figure 4.2.(R)) as the weight of a unit
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whose value is always set to one. Thus, the biases in the network are determined in
a similar way as the weights.

In Equation 4.1, the output of the network is a function of time because it changes
as the weights and biases are modified to perform a task. In Appendix A [20] we ex-
plain how the updating of the weights and biases is accomplished. Rosenblatt proved
a remarkable theory about perceptron learning. However, the initial euphoria was
soon replaced by disillusion after Minsky and Papert [21] found that the perceptron

has severe restrictions on what it can represent as described in the next section.

4.2 The Multi-layer Perceptron

The single layer preceptron has severe restrictions as only linear classifiers can
be constructed, or in the case of function approximation, only linear functions can
be represented. Minsky and Papert showed that many of these restrictions can be
overcome by introducing an extra layer of units, but they did not present a solution
to the problem of how to update the weights from input to hidden units. The answer
to this question was given by Rumelhart, and it is described in Section 4.3.3. The
mathematical derivation is given in Appendix B [20].

A multi-layer perceptron, or feed-forward Neural Network, has a layered structure.
An examples is shown in Figure 4.3. Each layer consists of units which receive their
input from units from a layer directly to the left and send their output to units in
a layer directly to the right of the unit. There are no connection within a layer.
The N; tnput units take their input value from outside the NN, and they push this
information to the layer of Nj; hidden units. No processing takes place in the input

units. The activation of the hidden units is a function JF; of the weighted inputs, plus
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Figure 4.3: A multi-layer network with [ layers of units. The information goes from
the input units (left) to the output units (right).

a bias as given by

ye(t +1) = Frlsk(t)) = FQ_ wi(t)y; () + Ok (2)), (4.2)

where y corresponds to the output value of the units, wj, are the weights, and 6,
are the biases. The output of the hidden units is distributed to the next layer of
N}, hidden units, until the last layer of hidden units whose outputs are fed to a
layer of output units. The output units may or may not have the same activation
function as the hidden units. The purpose of the output units is to send the data out
of the Neural Network. Figure 4.3 shows a graphical representation of a multi-layer
perceptron.

In general the activation function, F(y) for the hidden and output units is a
threshold function such as the sigmoid function. The only requirement is that the

function must be differentiable with respect to the weights and biases in the network.
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When dealing with muti-layer networks, it is common to refer to the different
number of input, hidden, and output units as the architecture of the Neural Network.
For instance, a NN with five inputs, ten units in the hidden layer, and one output

corresponds to an architecture of 5-10-1.

4.3 Understanding Artificial Neural Network

As we have seen Neural Networks are loosely based on the human brain. They
consist of a series of units arranged in layers that are connected to each other through
weighted connections. In this section we explain how Neural Networks work. First
we state the perceptron learning rule by which a network tries to learn a specific
task. For this learning rule there exists a convergence theorem that says that starting
from random weights, a network will converge to some solution in a finite number of
steps. In order for the network to reach a solution, there must be a mechanism that
updates the different weights at each step. We finish the section by describing this

mechanism, called Back-propagation.
4.3.1 The Perceptron Learning Rule

A Neural Network has to be configured such that the application of a set of input
values produces the desired set of output values. There are various methods we can use
to set the weights. One way is to set the weight explicitly, using a priori knowledge.
A more common way called supervised learning ‘trains’ the network by feeding it
teaching patterns and letting it change the weights according to the learning rule.
These teaching patterns, (7, d(Z)), are chosen by the user and they must characterize
the task that the Neural Network must perform. Much study goes into the selection

of these learning samples.
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Suppose we have a set of learning samples consisting of an input vector ¥ and a

desired output d(Z). The perceptron learning rule can be stated as follows:

1. Start with random weights for the connections.
2. Select a input vector & from the set of learning samples.

3. Modify all the weights so that the perceptron’s response is as close to d(Z) as

possible.

4. Return to step 2.

In the next sections we give the mathematical foundation which allows the Neural

Network to resolve the challenges at each of the steps presented above.

4.3.2 The Convergence Theorem

The convergence theorem states that if there exists a set of weights @* which
allows the perceptron to perform a specific task (pattern classification, function ap-
poximation, etc), the perceptron learning rule will converge to some solution (which
may or may not be the same as w*) in a finite number of steps for any initial set of
weights.

We define

w - w*

(4.3)

cos(w) = T

where cosw is a measure of how much the network’s current weights, ), differ from
the correct set of weights w*. Because of the nature of the activation function, the
length (norm) of the correct set of weights does not play a role in this proof. Thus,

we let ||a*|| = 1.
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After n iterations it can be shown that the dot product between the correct set of
weights and the n-th set of weights must be @(n) - @* > nA, where A is the amount
the weights change from one iteration to the next. Similarly, it can be shown that
the length of the n-th set of weights is ||@(n)|| < n. We can combine these results to

rewrite equation 4.3 as:

cos(w(n)) = @ln) - " > % (4.4)

IO IVAD

In the limit that the number of iterations necessary to update the weights, goes
to infinity we have that lim, .. cos(wW(n)) = oc but by definition we know that
cos(w(n)) < 1. Therefore, there must exist an upper limit n,,,, for the number of
iterations that the NN updates the weights. After n,,,, modifications of the weights

4

the network is “correctly”® performing the task. For a more detailed description of

this derivation see [22].
4.3.3 The Back-propagation Algorithm

The Back-propagation method is a generalization of the Delta rule derived in
appendix A. For a mathematical derivation of the Back-propagation algorithm we
refer the reader to appendix B. It is conveninent to become familiar with the Delta
rule and then proceed with the Back-propagation method. In this section we explain
the most important points of how the weights are updated without having to recite
all the equations.

When the values of a learning pattern, & are fed to the Neural Network, these

initial values are propagated to the output units, and the actual network output is

4Correctly does not mean that the network is right 100% of the time. This is not possible in
most real cases. In section 4.5 we describe a series of factors that influence the NN performance

32



compared to the desired output values, d(Z). From this comparison we obtain an
error for each of the output units. Let’s defined e, as the error corresponding to
output unit o. This error is a measure of the difference between the network output
and the desired output. The goal is to bring this error to a minimum.

The simplest way to do this is the greedy method: we change the connection,
weights, in the NN so that the error ¢, will be zero for this particular pattern. From
equation B.7, we know that in order to reduce the error corresponding to the output

units, we have to adapt the weights according to

Awho = (do - yo)yh - (soyha (45)

where Awy, is the change in the weights connecting the output unit(s) to the hidden
units, d, is the desired output, y, is the output from the output unit(s), and yj, is the
output from the hidden units. However, applying the above equation alone does not
complete the job since the weights from input to hidden units are not updated. If
we stopped here we would not be using the full representational power of the Neural
Network. To adapt the weights from input to hidden units we need to apply the Delta
rule once more. The problem is that we do not have the value for ¢, the difference
between the Neural Network output and the desired output, for the hidden units.
Not to worry, since ¢ for a given hidden unit is equal to the sum of the §’s from each
output it is connected to multiplied by the weight of that connection (6, = 3, dowpe)-
The amount the hidden units change is proportional to the amount the output units
change times the strength of their connections. Now, we just have to apply the
activation function, and the Back-propagation method can continue with the next

pattern.
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4.4 The Universal Approximation Theorem

A multilayer perceptron trained with the back-propagation algorithm may be
viewed as a tool to perform nonlinear input to output mapping. The input-output
relationship of the network defines a mapping from the Euclidean input space to the
Euclidean output space. The most important aspect of this input to output mapping
becomes the number of hidden layers necessary to accomplish it.

The universal approzimation theorem [23] states that only one hidden layer suffices
to approximate any function with finite discontinuities to arbitrary precision, provided
that the activation functions are non-linear.

Let F(-) be a nonconstant, bounded, and monotonically-increasing continuous
function. Let Iy denote the N-dimensional unit hypercube [0,1]¥, and C(Iy) be the
space of continuous functions on Iy. Then, given any function f 3 C(Iy) and € > 0,
there exist a set of real constants «;, 6;, and w;; where 7 =1,..., Land j=1...., N

such that we may define

L N
F(zy,...,zy) = Zaif(zwijl"j‘f‘gi) (4.6)
i=1

J=1

as an appropiate realization of the function f(-); that is

F(z1,...,zn) — f(x1,...,2N8)| <€ (4.7)

for all 1, z9, ..., zy that lie in the input space. The universal approximation theorem
says that a single layer of hidden units is sufficient to approximate any continuous
function to within a certain error ¢, However, it is not implied that a single layer is
optimum in the sense of learning time, ease of implementation, or more importantly
generalization. Thus, the architecture of the NN must be determined by the nature

of the problem at hand.
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4.4.1 Neural Networks and Fourier Series

The reader should notice that the universal approximation theorem is basically a
generalization of approximations by Fourier series. From Fourier analysis it is known

that any continuous function can be written as an infinite sum of sine and cosine

terms:
f(x) = (an cos nx + b, sin nz) = ag+ Y _ ¢, sin(nz + 6,), (4.8)
n=0 n=1

where ¢, = \/Eai +b2) and 6, = arctan(b/a). The above equation has the same form
as equation 4.2, so we can interpret it as Neural Network with a single activation unit
x, a single output unit corresponding to f(z), and hidden units with an activation
function F = sin(s). The term aq corresponds to the bias of the output unit, the
factors ¢, correspond to the weights from the hidden units to the output unit, the
phase factor f,, corresponds to the bias term of the hidden units, and the factor n
corresponds to the weights between the units of the input and the hidden layer.

The basic difference between the Fourier approach and the Neural Network method
is that in the Fourier approach the n factors (weights) are integer numbers which
are analitically determined. In contrast, in the NN method, these weights are real
numbers and are determined through learning.

Many people are reluctant to use Neural Networks because of their fancy name. If
we look beyond this fact we would be surprised to see that sometimes Neural Networks

are nothing more than a Fourier expansion!

4.5 NN performance

Neural Networks have been around for several decades. There have been many

improvements over the first initial models of the computational neuron which have led
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to the use of Neural Networks in many different fields. Although, Neural Networks
have been very successful in performing different tasks, this success depends on a
series of different aspects that impact the network’s performance. We describe the

most important aspects and how they impact the analyses presented here:

e Information: a neural network will not be able to perform any task if it is not
given the correct information. If one wants to fit a distribution you must use all
the relevant information which describes that distribution. Similarly, for event
classification we want to use variables that have the most distingushing power

between the different classes of events.

e Architecture: the number of input and output units is determined by the
function one wants to fit. The only thing one must worry about is the number
of hidden units. For function approximation one wants to have enough hidden
units so that the distribution represented by the NN is close to the original.
Two few hidden units will result in a poor fit. If one uses too many, the
NN will “fit the noise” (statistical fluctuations) instead of making a smooth
approximation. In the case of event classification, the number of inputs is
determined by the number of variables with distingushing power. The number
of outputs corresponds to the different types of events we want to classify. To
figure out how many hidden nodes are needed, it is useful to try many different

architectures and then choose the one that performs best.

e Number of learning samples: in function approximation, we want to have
enough patterns (points) so that the shape of the distribution is well represented.

For instance, a straight line can be represented by two points, but a sine function
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clearly requires more points. For event classification, we want to use at least
ten times the number of learning samples as hidden plus output units are in the

NN. In any case it is better to have more learning samples than less.

e Number of iterations or epochs’: in the case of function approximation we
define a x? (Equation 7.1) function which compares the shape of the distribution
we want to fit to the NN output. We update the weights for as many iterations
as needed so that y?> ~ 1. At this point, the weights are frozen and this
defines the network which gives a functional form that is able to approximate
the function. In an event classification task, we stop updating the weights when
the performance of the testing sample begins to increase (see Figure 8.7. At
this point, the NN is begining to learn the specific features of the learning
sample and therefore losing its generality. Function approximation and pattern

classification are explained in detail in Sections 7.1.1 and 8.2.2 respectively.

5An epoch has passed after all the lerning samples have been presented to the network once
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CHAPTER 5

EVENT SAMPLE

The Run I data collected by the CDF detector from 1992 to 1995 corresponds to
an integrated luminosity of 106.0 & 4.1 pb~'. During that time, roughly 50 million
events were written to tape. This chapter describes how events that “look” like ¢t
are selected for the mass analysis. First, we describe how the different objects in the
tt decay are identified. We then give the selection criteria used to improve the signal
to background ratio for both the Run I data sample and the Monte Carlo samples
used in this study. In the final section, we describe the Monte Carlo simulation and

generation for both ¢t signal as well as background.

5.1 High P Leptons

From the signature of the lepton+jets decay channel, we are only interested in
leptons coming from the decay of a W boson. In general, these leptons are isolated
(there is low jet activity around them) and they are more energetic than the leptons
coming from the semileptonic decay of the b and ¢ quarks.

From the Run I data we select a sample of events which contain a high-Er electron,
Et > 20 GeV/c, located in the central region of the detector, |n| < 1. Backgrounds

from photon conversions and charged hadrons are removed by cutting on several
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variables. For a detailed description of all the different cuts we refer the reader to Ref.
[24]. Here we describe those cuts which provide the largest discrimination between
signal and background. We require the electrons to have a CTC track pointing
towards the electron shower in the CEM. The ratio of the energy in the hadronic
calorimeter and the energy in the electromagnetic calorimeter, HAD/EM, must be
less that 5%. We also require the shower energy divided by the momentum of the
associated track to be less than 1.8. Each of the electrons must be matched to a
VTX track, and the invariant mass of this track associated with any other CTC
track must be greater than 0.5 GeV/c2. Using this cut we can remove electrons from
photon conversions with an efficiency of 88% [24]. The energy of the electrons is
measured by the calorimeter energy of the tower to which the CTC track points to
plus the adjacent towers [27]. The energy resolution for high-Er electrons is given by
o(Br)/Er = 13.5%/\/(Br) & 2%.

The high-Pr+ muon sample is created by selecting central muons, |17| < 1, with a
Pt > 20 GeV/c. Muon candidates are identified by a matching a track segment in
the CMU, CMP, or CMX to one in the CTC. The momentum of the high-P muon
is measured by constraining the CTC track to the average beam position. The muon
transverse momentum resolutions is given by o(Pt)/Pr = 0.11%Py. The primary
background in the muon sample is due to charged hadrons which “punch through” the
calorimeter and produce tracks in the muon chambers, and cosmic rays. We remove
the background from the charged hadrons by requiring that their energy deposition
in the calorimeter be characteristic of a minimum ionizing particle. The cosmic ray
background is removed by requiring that the track extrapolates back (in r — ¢) to

within 3 mm of the beamline, and that it is within 5 cm (at r = 0) of the primary
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vertex in the r — 2z plane. The other muon selection requirements are given in Ref.
[24].

From these high-Pr lepton samples, we only select those events in which the
lepton is isolated from jet activity [28]. In the lepton+jets channel we require only
one lepton which corresponds to the W — /v decay. We refer to this lepton as the

primary lepton of the event.

5.2 Missing Transverse Energy, £t

The neutrino produced in the leptonic decay of the W boson does not interact
with the detector. Thus, its existence is inferred indirectly by an imbalance in the
total transverse energy measured in the calorimeter. In pp collisions, the proton and
anti-proton’s initial momentum only have a nonzero z-component. Thus, from energy
conservation® we expected the total energy in the transverse plane to be equal to zero.
The Fr is then given by the following

- s 4 s
—¥r = Er(lepton) + Y _ Er(jet) + Xr (5.1)
i=1
such that the £, plus the total calorimeter energy cancel each other. The definition
of the quantity X is given in Section 6.2. The above expression is highly correlated

with the jet energies. Thus, the £ is not an independent parameter in the mass fit.

5.3 Jet Reconstruction

Jets will deposit their energy in a localized cluster of calorimeter towers. The
cluster identification begins by determining the tower with the highest transverse

energy. This seed tower is required to have an E1 > 3.0 GeV. An energy weighted

6In the high energy limit, energy and momentum are equivalent up to the constant c factor
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centroid is calculated for the cluster, and only the energy from towers within a cone
of radius AR = /AnZ+ A¢? < 0.4 are included to determine the energy of the
jet. This raw jet energy, E", must be corrected for the various energy loses (see
Section 6.1) to obtain the true energy of the original parton. A discussion of the jet

reconstruction algorithm can be found in Ref. [29, 37].
5.3.1 Secondary Vertex Tagging of B Jets

The Silicon Vertex Tagging (SVX) algorithm [24, 25] searches for displaced vertices
due to B hadron decays. B hadrons have a life time of about 1.5 picoseconds and they
are expected to be very energetic in top decays. Thus, b quarks can travel up to 1 or
2 ¢cm before they decay. The location of the B hadron decay, secondary vertex, can
then be distinguished from the pp interaction point, primary vertex. This is shown
in Figure 5.1.

In order to be considered for tagging, SVX tracks must be associated with a jet
that has a raw E+ > 15 GeV and |n| < 2.0. These tracks must also be within a cone
of AR < 0.4 and they must have hits in the silicon vertex detector. The algorithm
employs a two step process to find a secondary vertex. Initially, it attempts to
reconstruct displaced vertices with three or more tracks with Pp > 0.5 GeV/c, for
which at least one of them must have P > 1.0 GeV/c. If it fails, it searches for a
displaced vertex with only two tracks with tighter quality cuts. This algorithm has

an average efficiency for Run 1b of 48% for tagging at least one of the b jets in #t.

5.3.2 Soft Lepton Tagging of B Jets

The Soft Lepton Tagging (SLT) algorithm [24, 30] searches for additional leptons

resulting from the semileptonic B hadron decay. These occur via b — (v, X, or
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Figure 5.1: Schematic view of an event containing a secondary vertex shown in the
transverse (r — ¢) view. The primary vertex is the point where the pp interaction
occurs. The lines denoted 1, 2, and 3 are charged-particle tracks reconstructed in the
SVX which yield the secondary vertex. The impact parameter for track 1 is denoted
by di. L, is the 2-dimensional decay distance to the secondary vertex measured in
the 7 — ¢ plane (adapted from [24]).

b — ¢ — ly,X. The lepton is required to have a P1 > 2 GeV/c and to be within a
AR < 0.4 of a jet with raw energy, E; > 8 GeV. The efficiency for tagging at least
one of the the b jets in ¢t is roughly 15%.

The SVX tagging algorithm obtains a higher purity and efficiency than the SLT
method. However, the SLT algorithm is employed because it uses information which is
independent from the SVX method and adds significantly to the acceptance. Finally,
we note that not all the jets tagged by either of the algorithms come from the decay
of the B hadron. Displaced vertices are also produced by other long-lived particles

such as ¢ quark, 7, K3, A, etc.
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5.4 Top Mass Candidate Sample

In Section 5.5 we describe the largest background processes to tf production.
These background events do not have any top mass information. Thus, we define a
series of cuts that are intended to keep most of the #f events while removing most
of the background events. We choose events that have four jets, an energetic lepton,
and Fr from the leptonic decay of the W boson. All the events in the mass sample

must pass the following cuts:

1. The event must have an electron (muon) with E1 > 20 GeV (P > 20 GeV/c)

and |n| < 1.

2. The raw missing energy, K7, must be greater than 20 GeV. If the primary lepton

is a muon, the Fr includes a correction for the muon momentum.
3. One isolated lepton is required (see Section 5.1)

4. Dilepton events (tt — (Tv/~vbbX), defined according to the selection criteria

described in Ref. [26] are removed.

5. We remove events consistent with Z boson decays Z — ete” and Z — putpu.
These events are characterized by two oppositely charged, same flavor high-P
leptons (Pt > 20 GeV/c) that have an invariant mass between 75 and 105
GeV/c?. Events with a high-Pp photon and whose ¢/v invariant mass falls

within the Z mass window are also removed.
6. The primary vertex of the event must be within 60 cm of z = 0.0.

7. At least three jets with Er > 15 GeV and |n| < 2.0.
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8. An additional jet with E1 > 15 GeV and |n| < 2.0 or Er > 8 GeV and |n| < 2.4.

9. After the the mass reconstruction is performed, events are required to pass a

goodness-of-fit, x? < 10.0, where the variable y? is defined in Section 6.3.

In the Run I data, a sample of 324 events pass cuts one through seven, and are
the same events used in the CDF measurement of the ¢ cross section [25]. Imposing
cut number eight reduces the sample to 163 events. The final selection requirement
removes 12 events, from which we obtain an inclusive sample of 151 W4multi-jet
events. There are 34 of these events that have jets which are tagged by the SVX or
SLT algorithm. To improve the signal-to-background (S/B) ratio for the untagged
events we require them to have four jets with E; > 15 GeV and |n| < 2.0. There
are 75 untagged events which do not meet this requirement. Below we discuss the

different mass subsamples used in this analysis.
5.4.1 Mass Subsamples

There are a total of 76 events in the Run I mass sample. These events are arranged
into four non-overlapping subsamples according to their tagging information. Monte
Carlo simulations show that the statistical uncertainty on the mass measurement
decreases by 17% when the results from the fits from the different subsamples are

combined together. The four non-overlapping subsamples are described as follows:

e SVX Double: Events with two SVX tags;
e SVX Single: Events with one and only one SVX tag;

e SLT: Events with one or two SLT tags, but no SVX tags;
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e No Tags: > 4 jets with Ey > 15 GeV and |n| < 2.0.

The number of Run I data events for each subsample is given in Table 5.1. In
the top quark mass analysis we assume that the four highest E; have come from the
decay of the tt pair. Thus, we only consider the tags on these four jets when we
distribute the events into the subsamples. The table also shows the S/B ratio for the

different subsamples using the background estimates presented in Section 7.2.

Data Sample Number of Events Expected S/B

SVX Double 5 24
SVX Single 15 5.3
SLT 14 0.8

No Tags 42 0.4

Table 5.1: Subsamples used in the lepton+jets mass analysis and the expected signal
to background ratio (S/B) for each. See Section 7.2 for background estimates for
these subsamples.

5.5 Backgrounds

Background events can mimic the same final state as top events, but they are
produced by a different physical process. The sources of background in the lep-
ton+jets channel come from W+multijet events with heavy flavor, non-W events,
mistags, single top events, diboson events (WW, ZZ), Z — 777, and Drell Yan.
Next, we describe the main sources of background for both the SVX and SLT tagging
algorithms.

The largest source of background in the SVX tagged sample is inclusive W produc-
tion in association with jets containing a b or a ¢ quark, for example pp — Wg(g —
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bb). The efficiency for tagging each background source is calculated from Monte Carlo
samples as a function of jet multiplicity. These effiencies along with the background
fractions are compared to the number of W+jets events observed in the data to es-
timate the contribution from each source. The second largest background source
comes from mistags. These are jets which do not contain a true displaced vertex.

From Monte Carlo studies, the transverse decay length, L,,, distribution is sym-

Xy
metric about zero. The negative side of the L,, distribution comes primarily from
reconstruction errors in light quarks. To calculate the background from mistags, we
parametrize the negative Ly, measured in generic jet data as a function of Er, n, and
the number of SVX tracks in the jet. This parametrization is applied to the W+jets
data to predict the number of mistag events.

The dominant source of background in the SLT tags comes from “fake” soft lepton
tags. These are tags due to particles which did not originate from heavy flavor decay.
Fake tags include non-leptons that pass the lepton requirements such as pions faking
an electron or muon, electrons from photon conversions, pions or kaons decaying on
flight, etc. The fake background is calculated by measuring the fraction of tags per
track in a generic jet sample as function of track Pr.

The remaining background sources are estimated similarly for both taggers. The
non-W background, expected to be mostly bb events, is calculated from the data by
measuring the number of tags as function of lepton isolation and /. The single top
background in determined from Monte Carlo studies by measuring the W* and W-
gluon production, and normalizing them to the respective theoretical cross sections.

The rest of the background sources are relatively small for both taggers and are

evaluated from Monte Carlo predictions.
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5.6 Monte Carlo Simulation

We would like to note that Monte Carlo studies are one of the most important parts
of particle physics. Using Monte Carlo samples we can calculate detector efficiencies,
understand the detector response to a particular physics process, develop new analyses
techniques, or obtain background calculations.

Monte Carlo numerical methods are described as statistical simulation techniques
used to simulate a physical process, which is described by probability density functions
(pdf’s), by random sampling from these pdf’s. In our case, the physical process that
we want to simulate is the collection of ¢t events by the CDF detector.

Monte Carlo event generators are used to simulate the physics of pp collisions.
The event generators output a list of four-vectors of the final state particles which
are used as the input to the CDF detector simulation. Jet and lepton identification
are accomplished using the same algorithms that are applied to the real data. This
allows the same selection criteria to be applied to the Monte Carlo and the Run I

data.
5.6.1 Top Samples

The Monte Carlo program used to generate t¢ events is PYTHIA 6.129a [32].
Additional checks are provided by Monte Carlo ¢t events generated with HERWIG
[31]. PYTHIA is based on the leading order QCD matrix elements for hard scattering
processes. It uses the parton-shower approach for initial and final state radiation, and
partons are fragmented using the Lund string model [33]. The default set of parton
distributions functions is GRV 94L [56]. B hadron decays are modeled with the

CLEOMC package [34].
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5.6.2 Background Sample

The Monte Carlo program used to study the kinematic characteristics of the back-
ground is VECBOS [35]. This program is based on tree-level matrix element calcu-
lations for W+jets production. The simulated events produced by VECBOS contain
a W boson and up to four additional final state partons. These partons are input
into the same parton shower evolution and cluster hadronization used in the HER-
WIG program. The VECBOS events generated for this analysis use the W+3 parton
matrix elements, with a required additional jet produced during parton showering.
The VECBOS Monte Carlo generator has been shown to reproduce distributions of

a wide range of kinematic variables in a large sample of Run T W+jets events [36].
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CHAPTER 6

MASS RECONSTRUCTION

This chapter describes the corrections applied to all the ## decay products to
better approximate the energy of the original partons. The raw energies are cor-
rected for non-instrumented regions, non-linear response of the calorimeter, multiple
interactions at high luminosity, and other effects. These corrected energies serve as
inputs to a x? from which the corrected four momenta of all the particles in the lep-
ton-+jets decay chain, pp — tt — (vqq'bbX, can be reconstructed by applying a series
of energy-momentum kinematic constraints. Therefore, the reconstructed top quark

mass, M,.. , can be calculated in an event-by-event basis.

6.1 Jet Energy Corrections

Before the jet energies are used to reconstruct the mass of the top quark, they
are corrected to better estimate the original momenta of the daughter partons in ¢t
decay. The corrections applied to the jets are done in two different step. First, a set
of generic corrections are applied to all jets with a raw Etr > 8 GeV and |n| < 2.4.
These adjustments are intended to provide an estimate of the true jet energy from
the observed jet energy. Then, the second set of corrections is applied to the leading

four jets of the event which are assumed to be the ¢f decay partons. These corrections
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are applied after the generic ones, and map the jet momenta to the momenta of the
partons in top events.

The generic corrections account for the mismeasurement of the jet energies due
to detector effects, energy falling outside the clustering cone, and contributions from
the underlying event and multiple interactions. After accounting for all these factors,

the corrected energy, P’ can be written in terms of the raw energy, P, as follows:
PY"(R) = (PP (R) X fre — UEM(R)) X fas(R) — UE(R) + OC(R). (6.1)

The parameter R is the cone radius and for this analysis it is set to 0.4. The different

corrections are given below:

e f.. is the relative energy scale, and it corrects for the relative response of the
different calorimeter sections to that of the central region of the calorimeter,

0.2 < |n] <0.7.

e There are two kinds of underlying event corrections: UEM (R) and UE(R). The
first correction takes into account the extra energy of the event due to multiple
interactions. The UE(R) correction takes into account the extra energy from
the primary pp interaction due to fragmentation of particles not associated with

the hard scattering.

e fus is the absolute energy scale, and it attempts to map the raw jet energy
observed in a cone of radius R into the average true jet energy. This correction
accounts for the detector response and any effects due to the fact that particles

interact in the calorimeter and are experimentally observed as jets.

e OC(R) corrects for the energy expected to be outside of the jet cone radius of

0.4.
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The four leading jets in the ## decay undergo an additional energy correction which
depends on the jet type. In the lepton+jets channel the jets originate from four
different sources: a light quark, a hadronically decaying b quark, a b quark decaying
semileptonically into the electron channel, and a b quark decaying semileptonically
into the muon channel. To derive the ¢t specific jet momentum corrections we generate
a Monte Carlo sample that is processed using the CDF simulation and reconstructed
in the same way as the data. First, we match the Monte Carlo partons to the
reconstructed jets in 7 — ¢ space. Then, an average correction factor is obtained by
comparing the Pt of the Monte Carlo partons to the Pt of the reconstructed jets.
The correction factor is a function of the jet’s Pt and it is given by the median of
the distribution of Ap,. = (Pr(parton) — Pr(jet))/Pr(jet).

Figure 6.1 shows the size of the ¢ specific corrections for the four types of jets: (A)
jets from hadronic W decays. (B) jets from b quarks, (C) b jets containing an electron,
(D) b jets containing a muon. As we can see the larger corrections correspond to b
jets containing a soft lepton in their decay. This is due to the undetected neutrino
in the semileptonic decay, and for the muon channel, the correction also accounts for

the fact that muons deposit very little energy in the calorimeter.

6.2 The Unclustered Energy

In general, t events are very energetic, and they show high jet activity. Thus, we
write the ¢ production mechanism as pp — tt + X where X is made up of all the
unspecified particles which recoil against the ¢¢ system. The quantity X is given by

all the energy in the event not counting the primary lepton and the four leading jets.
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Figure 6.1: The tt-specific corrections applied to jets according to available b-jet
information. The curves show the fractional change to the corrected jet Py after all
the generic jet corrections have been applied. The curves are for: (A) jets from the
decay of W bosons, (B) jets from all b quarks, (C) jets from b quarks containing an
electron, and (D) jets from b quarks containing a muon.
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The equation can be written as:

Njets
=5

where the transverse unclustered energy, Ur, is given by all the energy in the calorime-
ter which is not clustered into jets. Each component of the unclustered energy is
corrected with a single factor f,. = 1.6 based on studies of Z boson events with no
extra jets, where the Z boson is well measured by the two leptons it decays into. The
precision of the unclustered energy is not very well understood so the uncertainty of

each component of [jT is taken to be 100%.

6.3 Event Reconstruction

In Chapter 5 we describe how the lepton and jets are identified in the CDF de-
tector. From the tagging information it is possible to determine whether a jet has
come from a b quark or not. We have also shown how the existence of the neutrino is
inferred by an imbalance in the total transverse energy measured in the calorimeter.
Then, by correcting the raw energies of these top decay products the original energy
of the ¢ and ¢ daughter partons can be better estimated. The challenge now is how
to combine the decay products to reconstruct the mass of the top quark.

A fitting algorithm is used to calculate the four momenta of the ¢ and ¢ for a given
event by reconstructing the four momenta of the six particles in the decay: ¢, v, b,
b, ¢, and ¢°. From the corrected observed quantities and their uncertainties along

with a series of kinematic constraints we are able to construct a 2, which can be

minimized to yield the best estimates for the four momenta of the particles in the #f

"It should be noted that although we sometimes refer to the decay products at the parton level,
it is the mass fitting code which determines their final assignment
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decay. For the minimization we assume the masses of the partons to be 0.5 GeV/c?,
except for the b, and b which are assigned a mass of 5.0 GeV/c?.

The hypothesis of Standard Model ¢t implies the production process

pp—t+1t+ X, (6.3)
followed by the decays
t — W+, (6.4)
t — W +b, (6.5)
W* - (F 4, (6.6)
WF — ¢+7. (6.7)

where the quantity X is described in Section 6.2.
The x?, which is minimized with the program MINUIT [38], is given below. This
x? formulation includes the energy and kinematic constraints imposed by the ## decay

hypothesis. The x? is expressed as:

]ADT—PT2 A;—U;Q ]\A4Z1/_]\4W2
R S A SN (/A N LIPS V0
£,jets Opr =T,y O-Ulf O My,
(Mj; — My)* L (M — Miec)® L+ (M5 — Myee)” (6.8)
UJQMW 0-12\47-5(: 0-12\47'5(:

The notation is as follows: ¢ represents the primary lepton, v refers to the neutrino,
and j refers to one of the four leading jets in the event. The first sum is over the
lepton and all the jets with Fp > 8.0 GeV and |n| < 2.4. The second sum is over the
transverse components of the unclustered energy. The hatted symbols in the sums
represent quantities that are modified by the fit procedure, whereas unhatted symbols
represent the input values. My, is the mass of the W boson and it is 80.4 GeV/c¢?
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with an uncertainty, oy, , set to its theoretical width of 2.1 GeV /c¢?. The uncertainty
in the top mass is set to its theoretical width of 2.5 GeV/c%.

In summary, there are five effective constraints in our x?: the transverse momen-
tum of the components of the #¢ system must be zero, the invariant mass of the (v
system must be equal to the W mass, the invariant mass of the ¢¢' system must also
be equal to the mass of the W boson, the two three-body invariant masses, M,;; and
My, ;, must each be equal to the reconstructed top mass, M,... After minimizing
the x? with respect to all of the available information, we obtain an event-by-event

determination of the top quark mass, M, .
6.3.1 Combinatorics

Depending on the tagging information of the event there are many different ways
we can combine the top decay partons to reconstruct the top mass. If none of the
jets are tagged by the SVX or the SLT algorithms, there are 12 different ways we
can assign the four leading jets to the partons in the fit. Combined with the Py of
the neutrino P ambiguity®, there are 24 different configurations. If one of the jets is
tagged as a b candidate, the number of possible configuration reduces to six, 12 if we
include the P% ambiguity. We note that if a jet is tagged by either tagging algorithm,
it is automatically assigned to one of the b quarks. If two of the jets have been
tagged there are two possible jet assignments, the two b jets can be interchanged, and
therefore four possible configurations.

When we reconstruct the mass of the top quark, all the possible configurations are

ran through the fitting code and the combination with the lowest x? is chosen as the

8The neutrino Py is determined from the W mass constraint. Thus solving My = \/E}, — P3,
leads to two possible solutions.
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best solution. We require this solution to have a y* < 10.0 as stated in Section 5.4.
The efficiency for this cut for each of the mass subsamples is given in the table below
6.1. The table shows the result for ¢f signal as well as the VECBOS background. The
efficiency of the yx? cut in the SVX Double background subsample is not available

because there are only a handful of events.

Mass subsample x? efficiency (tt) x? efficiency (VECBOS)

SVX Double 73.4 + 0.6% N/A

SVX Single 90.3 + 0.4% 81.9+ 0.8%
SLT 89.7 + 0.6% 80.7 +£ 1.3%
No Tags 96.5 + 0.2% 95.4 + 0.4%

Table 6.1: Efficiency of the y? cut for each of the mass subsamples. The probability
of finding a solution with y? < 10.0 increases as the number of possible configurations
increases.

6.3.2 Gluon radiation

From the Monte Carlo plus detector simulation we find that roughly 50% of the
M., = 175 GeV/c? tt events contain at least one jet that cannot be matched to any
of the top decay partons. These extra jets are emitted during the production of the ¢t
pair, initial state radiation (ISR), or during the ¢¢ decay, final state radiation (FSR)
[39]. From a theoretical perspective, the jets that are produced after the creation of
the t¢ pair should be included into the mass reconstruction only if the top quark is on
shell. These jets carry a fraction of the energy of the top quark and therefore their
inclusion would translate in a more accurate top mass estimate. However, it is not
possible to distinguish jets from ISR to those from FSR. Furthermore, production

and decay stage radiation cannot be differentiated from one another in the detector.
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Thus, in a large fraction of the Monte Carlo events the four highest-Er jets do not
correspond to the top decay partons.

A possible solution is to add one more jet to the mass fitting code, but this
would increase the number of combinations by a factor of three, four, and five for
the SVX Double, SVX Single or SL'T, and No Tags events respectively. The increase
in the number of possible configurations decreases the probability of choosing the
correct solution. This is why only the four highest-E1 jets are considered for the
mass analysis.

A more elegant solution to this problem would be to determine the amount of
gluon radiation in the data. Chapter 10 describes how this can be accomplished by

using Neural Networks.

o7



CHAPTER 7

TEMPLATE-BASED MASS ANALYSIS

The best estimate of the top mass is obtained by comparing the shape of the
M, distribution to Monte Carlo expectations. To improve the mass measurement
these Monte Carlo distributions are fitted with a single functional form. Using a
Neural Network method we can parametrized any distribution with mass information.
A maximum likelihood method is used to extract M,,, from the parametrized forms

for ¢t signal and background, along with the constraints of the background fractions.

7.1 Neural Network Template Parametrization

There is only a finite number of Monte Carlo statistics we can generate. In ¢t
Monte Carlo samples, it is observed that the shape of the M,.. distributions, de-
pend on the generated top quark mass. For different top masses, the shape of the
reconstructed mass distributions are very similar. They tend to peak around their
generated top mass and they have asymmetric tails. This is quite reasonable, since
we only change the mass of the top quark but the physics processes responsible for
the distributions remain the same. This is the reason why it is reasonable to model
the parent distribution of the templates by a single functional form dependent only

upon the mass of the top quark.
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In previous analyses, a combination of a Gaussian plus a Gamma function (GG)
has been used to fit the mass templates as a function of M,,, [40]. The use of these
distributions is motivated by the shape of the M,,.. distributions, but it should be
noted any function that could fit the templates could be used. Thus, we propose
using a Neural Network to perform this fits. This technique has been employed by
the ALEPH experiment to fit templates of different Higgs masses [41].

We use the PYTHIA Monte Carlo plus the detector simulation to model the shape
of the tf events. For this study we have generated samples raging from a top mass
of 120 GeV/c? to 230 GeV/c?. To model the shape of the background we use the
VECBOS Monte Carlo program. All the MC generated events are put through the

detector simulation.
7.1.1 Fitting the M,.. Distributions

Figure 7.1 shows a 2-D histogram of the reconstructed mass (M,.. ) versus the
generated top mass (M, ) for the Single SVX subsample. We want to use a Neural
Network to model the ¢t reconstructed mass distribution for any given value of the

input top quark mass. For this purpose we have chosen the Neural Network package
MLPfit [42]. MLPfit uses the sigmoid function, F(y) = (]J:—e,,) for the hidden units,
and the identity function F(y) = y, for the output units.

As explained in chapter 4, the nature of the problem dictates how many input
and output units are needed to solve the problem. In this case the NN has two input
units: the first input is associated with the reconstructed mass, the x-axis in Figure

7.1, while the second input corresponds to M,,, , the y-axis in Figure 7.1. For a more

detailed description of the NN fitting procedure we refer the reader to Appendix C.
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Figure 7.1: We show a 2-D histogram of all the Single SVX mass templates as a
function of top mass. The M, axis is normalized to be between 0 (M,.. = 80
GeV/c?) and 1 (M, = 380 GeV/c?). The M,,, axis is also normalized to be between
0 (M = 120 GeV/c?) and 1 (M,,, = 230 GeV/c?).

The architecture of the networks for the ¢t signal is 2-4-4-1. This corresponds
to 37 possible weights and biases (there are 12 free parameters in the Gaussian plus
Gamma fit). We would like to emphasize that this is not the only solution to the
problem. It is possible to obtain similar results using a single hidden layer. However,
in this case we have found that with two hidden layers the network converges to a
solution more rapidly and has better generalization.

To determine whether or not the networks are able to fit the distributions correctly

we define a x? function as follows:

XZ _ Z Z (b(i, Mtop) ; O(Mrec, Mtop)) (7‘1)

Myop=120...230 bin i T b(i,Miop)?
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where b(i, My, ) is the content of th i-th bin of the histogram obtained with a top
quark mass M, , a,?(i’Mmp)z is the corresponding bin error, and O(M,.. , My, ) is
the output given by the NN. The fit x* per degree of freedom (dof) are shown in
Table 7.1. We also show the fit x? per dof from fitting the same distributions using

the previous Gaussian plus Gamma parametrization method.

‘ Top Subsample ‘ NN templates ‘ GG templates ‘

SVX Single 0.98 for 919 dof | 1.29 for 944 dof
SVX Double | 1.27 for 778 dof | 1.30 for 812 dof
SLT 1.08 for 831 dof | 1.24 for 856 dof

No Tags 1.37 for 920 dof | 1.59 for 945 dof

Table 7.1: We show the x? per degree of freedom for each of the four subsamples.
The results from both fitting techniques are given.

The results from both fitting techniques are shown in Figures 7.2 through 7.5
where the blue curves correspond to the NN fits while the green curves show the
results from the GG fits. Both sets of curves look fairly similar for low top masses.
However, at high top masses the NN curves peak higher. Thus, the NN shows better
separation between the different masses.

The background distributions do not have any mass dependence. Thus, the archi-
tecture of the networks is 1-5-1, which corresponds to 16 weights and biases (there are
three free parameters in the Gaussian plus Gamma fit). The one input is associated
with reconstructed mass, and the desired output value is set to the number of entries
in each bin of the background subsample. Figure 7.10 shows the parametrization

of the background distributions for the Single SVX, SLT, and No Tags subsamples.

The results from the GG fits are given by the green curves, while the NN fit results
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are given by the blue curves. Because of limited statistics and low probability for
obtaining two SVX tagged jets in the VECBOS Monte Carlo simulation, we assume
the same background distribution for the SVX-tagged subsamples.

This analysis uses the same VECBOS samples generated for past analyses [43].
The default background samples were generated with a scale Q* = (Pr)?. To study
the effect of the background shape on the top measurement, another set of templates
was generated with a scale Q? = (My/)?. To increase the background statistics we
have combined both sets of events. We have performed a series of test, which show

this combination does not affect the mass of the top quark (Appendix D).

7.1.2 Fitting the Hy Distributions

One of the benefits of fitting a distribution with the NN method is that we do
not need to make an a priori decision of what the underlying function describing the
distribution is. Thus, a NN can approximate any distribution independently of its
shape.

Previous analysis have shown that there are other kinematic variables besides
M, .. that have mass information [47]. One of these variables is the total transverse
energy of the event, Hp. In Chapter 8, we study the possibility of using the mass
information from several variables to calculate the top mass. Here, we are interested
in showing how the NN fitting method is applicable to any distribution of a single
variable. The fit x? per dof for the Single SVX, Double SVX, SLT, and No Tags are:
936.5 for 914 dof, 766.3 for 835 dof, 783.1 for 866 dof, and 896.1 for 886 dof. The
signal Hr fit results are shown in Figures 7.6 through 7.9. The background Hr fit

results are shown in Figure 7.11. Figures only show the NN parametrization results.
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Figure 7.2: Reconstructed mass distributions for single SVX events in ¢t Monte Carlo
generated with a top quark mass of (a) 140, (b) 155, (¢) 170, (d) 185, (e) 200, and (f)
220 GeV/c?. The fits from the GG templates (green) and the NN templates (blue)
are also shown.
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Figure 7.3: Reconstructed mass distributions for double SVX events in ¢ Monte Carlo
generated with a top quark mass of (a) 140, (b) 155, (¢) 170, (d) 185, (e) 200, and (f)
220 GeV/c?. The fits from the GG templates (green) and the NN templates (blue)
are also shown.
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Figure 7.4: Reconstructed mass distributions for SLT events in ¢ Monte Carlo gen-
erated with a top quark mass of (a) 140, (b) 155, (¢) 170, (d) 185, (e) 200, and (f)
220 GeV/c?. The fits from the GG templates (green) and the NN templates (blue)
are also shown.
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Figure 7.5: Reconstructed mass distributions for events with no SLT or SVX tags in
tt Monte Carlo generated with a top quark mass of (a) 140, (b) 155, (c¢) 170, (d) 185,
(e) 200, and (f) 220 GeV/c?. The fits from the GG templates (green) and the NN
templates (blue) are also shown.
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Figure 7.6: Hr distributions for single SVX events in ¢ Monte Carlo generated with
a top quark mass of (a) 140, (b) 155, (c¢) 170, (d) 185, (e) 200, and (f) 220 GeV/c2.
The fits from the NN templates are also shown.
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Figure 7.7: Hy distributions for double SVX events in ¢t Monte Carlo generated with
a top quark mass of (a) 140, (b) 155, (c) 170, (d) 185, (e) 200, and (f) 220 GeV/c2.
The fits from the NN templates are also shown.
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Figure 7.8: Hp distributions for SL'T events in ¢t Monte Carlo generated with a top
quark mass of (a) 140, (b) 155, (¢) 170, (d) 185, (e) 200, and (f) 220 GeV/c?. The
fits from the NN templates are also shown.
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Figure 7.9: Hp distributions for events with no SLT or SVX tags in ¢ Monte Carlo
generated with a top quark mass of (a) 140, (b) 155, (c¢) 170, (d) 185, (e) 200, and
(f) 220 GeV/c?. The fits from the NN templates are also shown.
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Figure 7.10: Reconstructed mass distributions for VECBOS background, which con-
tains events generated with Q? = (Pr)? and Q* = (My)? (see Appendix D). The fits
from the GG templates (green) and the NN templates (blue) are also shown.
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Figure 7.11: Hy distributions for VECBOS background, which contains events gen-
erated with Q* = (Pr)? and Q? = (My)? (see Appendix D). The fits from the NN
templates are also shown.
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7.2 Background Calculation

The computation of the background fraction in each mass subsample is first
achieved by estimating the number of background events from the known processes

described in Section 5.5 for:

e class I: events that have exactly three jets with E; > 15 GeV and |n| < 2 and

one or more jets with Ep > 8 GeV and |n| < 2.4.

e class II: events with four or more jets with Ep > 15 GeV and |n| < 2. This

class of events has a larger S/B ratio than class I.

The expected number of #f and background fractions in the top mass sample are then
estimated using a maximum likelihood fit that compares the observed rates of SVX
and SLT tagged events with predicted rates. The tf fraction is a free parameter in
the fit, and it is allowed to vary to optimize the agreement between the number of
observed and predicted tagged events. The returned ¢f fraction value is combined
with the SVX and SLT tagging probabilities to estimate the expected amount of ¢t
signal and background in each of the mass subsamples. The detailed calculation of

the background is given in Ref. [40]. Here, the results are presented in Table 7.2.

7.3 Likelihood Procedure

A maximum likelihood method is used to extract the value of M,,, for each mass
subsample. The likelihood is used to characterize the similarity between the recon-
structed masses of the data events and the #¢ and background Monte Carlo samples.
In the fit, the background fraction x; is constrained by a Gaussian distribution. The

only parameter that is completely unconstrained in the fit is M;,,. Since the four
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Ttem SVX SVX SLT

# Process Single  Double (no SVX) No Tags Total
1 non-W/Z 0.5 0.0 1.0 4.6 6.1
2 ww 0.1 0.0 0.1 0.6 0.8
3 wWZz 0.0 0.0 0.0 0.1 0.1
4 YA 0.0 0.0 0.0 0.1 0.1
5 Z =TT 0.1 0.0 0.2 0.5 0.8
6 Single Top 0.2 0.0 0.1 0.2 0.4
7 We+ Zc 0.2 0.0 0.8 1.7 2.7
8 Wb+ Zbb 0.8 0.2 0.4 1.1 2.5
9 Wee + Zce 0.4 0.0 0.8 2.0 3.2
10 W/Z+wu,d;s 0.2 0.0 4.1 19.6 23.9
Background sum 2.470% 02401 76413 3047% 407
11 tt 12.6 4.8 6.4 11.6 35.3
Observed events 15 5 14 42 76

Table 7.2: Number of background events for the four mass subsamples from various
processes.

subsamples are completely independent, we can construct a joint probability for the
mass sample by multiplying together the four individual likelihood functions. These

four likelihoods have the same form:

L= £shape X £backgrrmnd (72)
where:
Nevents
£shape — H [(1 - xb)fs(Mi; Mtop) + .Z'bfb(M7)], (73)
=1
£backgrrmnd = P(xb) (74)

The term Lgpqp is the joint probability for a sample of N events to have come from
a parent distribution with a signal fraction of (1 — x;) and a background fraction x,.
The probability distributions, f; and f,, are derived from either the GG templates

69



or the NN templates described in the previous sections. Lpysckgrouna constrains the
fraction of background events to the value within its uncertainties.

In the past, the likelihood function included a L,4r0m term to account for the
limited number of statistics used to obtain the continuous functional forms of the
templates [40]. This term depends on the parameters which determine the f; and f,
distributions and the error matrices associated with them. It is possible to construct
a Lpgram term for the Neural Network fitting method by using the Hessian matrix
of the network. However, computing the Hessian can be extremely time consuming
as the number of network weights increases [22]. Furthermore, Monte Carlo studies
show that the inclusion of this term in the likelihood changes the returned mass and
statistical error by an average < 0.01 GeV/c?.

To calculate the top quark mass for each subsample, we minimize the -log £ with
respect to M,,, and x;,. The statistical uncertainty in the top mass is given by the
change in M,,, which results in a 0.5 unit increase in the -log £. The overall estimate
of My, and its uncertainty for the entire mass sample is obtained by multiplying the

individual likelihoods together.

7.4 Results from Simulated Experiments

We ran 2000 pseudoexperiment consisting of four subsamples with the same num-

ber of events (N

obs»

i =1, ..., 4) as observed in the Run I data (Table 5.1). The
number of background events in each of the simulated experiments is calculated in a

two-step process:

1. Calculate random numbers from a Gaussian distribution: Ny = Gauss(N/,,, o

erp’ Y exp

2. Calculate random numbers from a Poisson distributions: Nf,, = Poisson(Ny,)
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where the index 7 runs over the four subsamples in the mass analysis Nﬁ:w and (Iémp
correspond to the calculated background numbers shown in Table 7.2. The number of
tt signal events is then given by N}, = Ni, — Nj. The distinct values used for the
pseudoexperiments are chosen randomly from the signal and background templates
following the shape of the distributions. For each simulated experiment we obtain
a top quark mass, a statistical uncertainty and a maximum likelihood value. The
likelihood method is tested by comparing these results with expectations.

Table 7.3 shows the median mass and uncertainty resulting from the 2000 simu-
lated experiments. As we can see the median statistical uncertainty when using the
M, .. NN templates is roughly 12% better than the uncertainty obtained by using the
M,.. GG templates. Although, we have not added any new information to the top
mass analysis, we find that by fitting the distributions more precisely we obtain a

smaller uncertainty in the mass measurement. The results obtained from using the

Ht NN templates are also presented.

| Fitting Technique | My, from Myee | My, from Hy \
GG templates 175.1 & 7.3 GeV/c? N/A
NN templates 174.8 + 6.5 GeV/c? | 174.6 + 11.3 GeV/c?

Table 7.3: These are the results obtained by using the NN fitting technique and the
GG fitting method for the reconstructed mass. We only show the results from the Hp
NN templates since we were unable to obtain continuous templates with the previous
Gaussian plus Gamma method.

The top mass distribution and pull distribution from the M,,. NN templates are
shown in Figure 7.12. Similar plots for the M,.. GG templates and Ht NN templates

are shown in Figures 7.13 and 7.14. The pull is constructed following the recipe
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detailed in [46], and it is given by:

o Mtrue - an‘
04 ’
o Mfit - Mtrue

o_

If Mg < Mipye @ ¢

otherwise : ¢ (7.5)

My, is the value return by MINUIT, while M, is 175 GeV/c?. The positive and
negative MINOS errors [53] are given by o, and o_ returned by the fit. This defini-
tion guarantees that the percentage of pull distributions between —1 and +1 equals
the coverage of the error interval returned by MINOS. This error interval corresponds
to a coverage of 68.27% if we require 1o errors. As expected the pull distributions
shown have a mean of zero and a width close to one. The pull distributions are not
exactly one because of the limited statistics in the pseudoexperiments. When we
increase the number of events in the simulated experiments, the width of the pull
distributions are closer to one. Furthermore, this slightly wider pull distributions

have also been seen in Ref. [40]
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Figure 7.12: Results for 2000 pseudoexperiments using M,.. NN templates. (Left)
Fitted top mass distribution. (Right) Pull distribution. Signal and background frac-
tions as observed in the Run I data.
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Figure 7.13: Results for 2000 pseudoexperiments using M,.. GG templates. (Left)
Fitted top mass distribution. (Right) Pull distribution. Signal and background frac-

tions as observed in the Run I data.
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Figure 7.14: Results for 2000 pseudoexperiments using Hr NN templates. (Left) Fit-
ted top mass distribution. (Right) Pull distribution. Signal and background fractions

as observed in the Run I data.
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7.5 Combining the Top Mass Results

We want to combine the results obtained using M,.. and Hr. We ran 1000 pseu-
doexperiments in which we calculate the top mass using M,.. and Ht independently
from one another. For each subsample, we construct a single top mass measurement
as described in Appendix E. When we perform this combination, the correlation be-
tween Mt%;“ and Mt};; is set to the mean correlation value seen in the Monte Carlo.
At this point we have combined the top mass measurement for each of the four sub-
samples. Since, these results are 100% independent from one another the final top
measurement is given by the weighted average of the four results from the different

subsamples. Figure 7.15 shows the results from the pseudoexperiments.
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Figure 7.15: Results from 2000 pseudoexperiments in which we combine the top mass
measurements obtained using the M,.. templates and the Hr templates. The left
histogram shows the top mass distribution, and the right histogram shows the pull
distribution.
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As expected, the top mass distribution peaks around 175 GeV/c?. However, the
width of the distribution is wider than we would have expected. Recall that the
M,,, distribution obtained from only using the M,.. NN templates (Figure 7.12.(L))
has a width, which is 1 GeV/c¢? smaller that what we get when we combine the
M,.. and Hp results. Furthermore, we see from the pull distribution that the errors
returned by the fit are underestimated by 60%.

Combining the two correlated measurements becomes a very difficult task using
traditional methods. Although, the pseudoexperiments return the correct mass, the
error returned is incorrect. We have looked at two different methods based on Neural
Network to combine the information from different variables. These techniques are

described in the following chapters.
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CHAPTER 8

STANDALONE NEURAL NETWORK MASS ANALYSIS

The goal of this analysis is to measure the top mass as accurately as possible.
Recall that the previous best measurement of the mass only uses the reconstructed
mass variable. However, other analyses have shown that other kinematic quantities
have top mass information. The challenge is how to combine this information. A
Neural Network provides a simple and elegant way of adding new information to the
mass analysis. This chapter describes a standalone Neural Network method to extract

the top quark mass.

8.1 Input Variables

We want to create a Neural Network with the capability to distinguish events that
come from top quarks from different top masses. Thus, we need to find a set of mass
dependent variables [47]. We have looked at different kinematic quantities and have
found that the M,.. , the Hy, the invariant mass of the ¢f system, Mz, and the sum of
the Pr’s of the two leading jets in the event, Pr(1) 4+ Pr(2) exhibit the greatest mass
dependence. On the other hand, variables such as the £r or the Pt of the primary
lepton have very little mass information. The first four quantities are described below

in further detail:
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e M,.. is described in Section 6.3.

e Hry is the sum of all the transverse energy in the event including the neutrino

as well as the unclustered energy.

e M,; is the invariant mass of the ¢t system. It only includes the four highest Er

jets are well as the lepton and the neutrino.

e Pr(1)+Pp(2) is the sum of the two highest Et jets. No tagging requirement is

made.

All of these variables are constructed after applying the mass analysis corrections
described in Section 6.1.

A good figure of merit to determine whether a variable has mass information or
not is given by the quantity %, where the RM S is the average RMS of the different
distributions, and the slope is the slope given by the means of the distributions for
the different top masses. A good variable will be narrow, with a small RMS, and it

will show good separation between the peaks of the distributions, with a large slope.

The results from our kinematic study are given in Table 8.1. Variables with a small

RMS
slope

are more effective at measuring the top mass.

Variable Avg. RMS ‘ slope ‘ RMS

slope

M, ee 27.9 0.62 | 45.1

Hr 72.3 1.35 | 53.6

M,; 83.2 1.58 | 52.6
Pr(1) + Pr(2) 437 0.77 | 56.8
Missing Er 25.7 0.16 | 161.8
lepton Pr 27.1 0.15 | 181.1

Table 8.1: We show the slope and RM S values for the single SVX-tagged events.
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Figures 8.1 through 8.6 show a graphical representation of the results presented
in Table 8.1. As we can see, the change in the mean of the distributions is linear for
all the kinematic quantities. However, this shift is minimal for variables with poor
mass information, Figures 8.5.(L) and 8.6.(L) as can be seen by the value of the slope
(fit parameter pl). Another interesting aspect is that variables such as the Hy or
M; have a slope much larger than the slope for M,.. . However, Figures 8.2.(R) and
8.3.(R) show that these distributions are much broader than the M, distributions.
Thus, when we construct the ZTN;[E we see that the M,.. variable has the most mass
information. The distributions shown correspond to events with two SVX tagged jets.

Not all the variables are used for the different subsamples. The decision to include
or exclude an input variable in the Neural Network is based upon the performance

of the network. A description of the networks used in this study is given in Section

8.2.2.

8.2 Extracting M;,, with a Neural Network

The Neural Network analysis also takes advantage of the different S/B ratios for
the different mass subsamples. There are a total of four networks, which classify
events into signal and background. For this analysis we have generated ¢ signal
Monte Carlo files corresponding to a top mass of: 120, 130, 140, 145, 150, 155, 160,
165, 167.5, 170, 172.5, 175, 177.5, 180, 182.5, 185, 190, 195, 200, 205, 210, 220, and
230 GeV /c?. Therefore, our networks have a total of 24 output units, 23 of them are
associated with signal, and the last one is background. For this study we have used
the MLPfit Neural Network package. All the networks were trained using the BEFGS

method [48].
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8.2.1 Neural Network Architecture

In the previous section we found that there are four variables that show good
mass information. Thus, the networks used in this analysis have a maximum of four
input nodes, and 24 output nodes (23 associated with ¢ and one with background).
To determine the final architecture of the Neural Networks we try multiple architec-
tures and the ones that produce the best Neural Network performance are chosen.
This performance is defined in the next section. The different architectures for each
subsample are shown in Table 8.2. We note that for the ST and the No Tags sub-
samples not all the input variables were used. This decision was solely based upon

the performace studies. An explanation of how the different networks were created is

given next.
‘ Top Subsample ‘ NN architecture Input Variables ‘ Training Evts. | Testing Evts.
SVX Single 4-60-24 Myee, Hr, 38400 7200
Mz, and PT(l) + PT(Q)
SVX Double 4-50-24 Mee, Hr, 24000 7200
Mz, and PT(I) + PT(2)
SLT 2-50-24 Myee, and Hp 19200 6958
No Tags 2-50-24 M,ee, and Hp 50400 7200

Table 8.2: Neural Network architecture. The choice of variables depends solely on
the network’s performance.

8.2.2 Training and Testing

Creating a Neural Network to perform pattern classification requires training and
testing of the network at each epoch. During training and testing, all 23 different ##

signal samples as well as background are used.
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During training, we set the desired output target value of each class to 1. For
instance, in the 24-dimensional output space M,,, = 175 GeV/c? corresponds to (0,
0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0) and the background target
value is given by (0, 0, 0, 0, 0, 0,0, 0, 0,0, 0,0, 0,0,0,0,0,0,0,0,0,0,0,1). The
advantages of having a different output for each class is explained in [50]. With this
convention, the output values can be interpreted as a-posteriori Bayes probabilities,
and therefore they sum to one. This condition can also be used to determine whether
the network was properly trained or not. The sum of the outputs for one of our
networks is given in 8.7.(L).

Once the target values for each class are set, the network is presented a training
sample that is used to modify the weights and biases so that the classification task
can be performed. Once all patterns in the training sample have been presented the
weights and biases are frozen. The training performace of the network is evaluated
by

1

B = S5 (- yl)® (8.1)
o=1

This is the same equation shown in B.3 where the sum is over all the outputs of
the network, d? is the desired output for a given pattern p, and y? is the network’s
output for that same pattern p. The total error is obtained by summing over all the
learning patterns, £ = >, F,. A small error F corresponds to a high performance
and vice versa. As the number of epochs increases, the total error decreases because
the network is able to learn the characteristics of the different classes. However, the
continuing improvement in the network’s performace is in part due to the fact that
the network is learning the characteristics of the training samples. The testing stage

is used to determine when to stop training the Neural Network.
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During testing, the network obtained from the training session is presented with a
testing sample. These testing patterns, which are different than those in the training
sample, are used to calculate the testing performance of the network at each epoch.
This is done in the same fashion as explained above. As the number of epochs
increases, the testing performance decreases. However, as the network begins to learn
the characteristics of the training sample it loses its generality. At this point, the
performance obtained from the testing samples begins to increase. Figure 8.7.(R)
shows the training performance, blue curve, and the testing performace, red curve.
The inset shows the epoch at which the network begins to learn the characteristics of
the training sample. At this point the weights and biases are frozen and this is the

network used to extract the mass of the top quark.
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Figure 8.7: (Left) Sum over the output values of the Neural Network. (Right) Shows
the training and testing error. The inset shows a close view of the testing error curve.
When this error begins to increase the training is stopped.

8.2.3 Likelihood Procedure

For each event, the NN provide a set of probabilities that it has come from any
of the top masses used in this analysis, as well as background. Recall that each of
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the probabilities is associated with one of the 24 outputs in our network. From this
information we extract M,,, using a discrete maximum likelihood technique. As in the
template based method we have two distinct parameters in the fit: the background
fraction, x;,, which is allowed to vary between its uncertainties, and the top mass. The
joint probability is constructed by multiplying together the four individual likelihood

functions. These likelihoods are written as:

£bin - ‘Cbin X ﬁbackground (82)

shape

bin =1,...,23 corresponds to M,,, = 120, ..., 230 GeV/c? and:

Nevents

Lo e = Y [(1 =)0 + 2,07, (8.3)
i=1

Ebackgrmmd — P(xb) (84)

The Neural Network provides the probability that a given event, i, has come from any
of the generated top masses, O%", as well as the probability that it has come from
background, O?*. Therefore, each of the bins in the likelihood histogram contains
an admixture of signal and background. The Lyuckgrouna term uses a Gaussian to
constraint the background fractions to be within the values shown in Table 7.2.

To calculate the top mass, we first minimize the -log £ with respect to x,. For each
mass subsample, we use MINUIT to modify the values of x;, between their limits. We
chose the values of x, that minimize the log likelihood distribution. Once the values
for x, are obtained, the top mass and its uncertainties are calculated by fitting the
-log £ with 3" degree polynomial. This is done to account for asymmetric errors.
The polynomial is centered around the minimum of the -log £ distribution, and its
limits are placed at the points for which the -log £ increases by at least five units.
The errors in M,,, are given by the 0.5 unit increase in the -log £. Figure 8.8 shows
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Figure 8.8: (Left) The -log £ distribution for a given Run I standalone NN pseudoex-
periment. (Right) Close-up of the left pseudoexperiment. The black curve is the 37
degree polynomial used to calculate the mass and uncertainties. The red line shows
the point at which -log £ changes by 0.5 units.

the results from a pseudoexperiment. As a first approximation, the error in the value
of the -log L for each top mass was set to the RMS of the -log £ distribution for
that given mass. These errors probably overestimate the actual errors in the -log

likelihood.
8.2.4 Results from Pseudoexperiments

We ran 2000 pseudoexperiments with an admixture of signal and background
as shown in Table 7.2. The top mass distribution is shown in Figure 8.9.(L). The
width of the distribution is smaller than the widths of the top mass distributions
shown in Figures 7.12.(L) and 7.13.(L). The median statistical error for this method
is 5.6 GeV/c?, which corresponds to a 30% statistical improvement over the template
based method that uses the Gaussian plus Gamma parametrization technique. The
statistical improvement with respect to the NN parametrization technique is roughly

16% (when using the M, variable). These improvements correspond to an increase
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Figure 8.9: Results for 2000 pseudoexperiments using the standalone NN method.
(Left) Fitted top mass distribution. (Right) Pull distribution. Signal and background
fractions as observed in the Run I data.

in the effective luminosity of over 70% for the GG template based analysis, and over
34% for the NN template based analysis. To make sure the errors are calculated

correctly, we construct the pull as

Mi*Mrue
g = Mrie = Mirue) (8.5)

o

where My, is the mass returned by the standalone NN method, M, is the input
top mass, and o are the errors calculated as described above. The pull distribution

is shown in Figure 8.9.(R).
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CHAPTER 9

SYSTEMATIC UNCERTAINTIES

The systematic errors in the top mass calculation are due to any biases that
may have occurred in the measurement procedure as well as uncertainties in the
simulation used to model the underlying physics. This chapter describes how the
different systematic uncertainties are determined. A summary of the systematic errors

associated with each analysis is given in the last section.

9.1 Jet energy scale

The event reconstruction algorithm uses the measured energy of the lepton, jets,
and the unclustered energy to estimate the mass of the top quark. The electron
energy scale and muon momentum scale are known with a precision better than 0.2%
[27]. From studies, it is observed that large variations in the unclustered energy have
very little effect on the top mass. The K is calculated from the lepton, jets, and the
unclustered energy so it is not an independent measurement. Therefore, the energy
scale uncertainty is dominated by the uncertainty in the jet momenta.

Section 6.1 describes the different corrections applied to the jets to better estimate
the original parton momenta. However, potential systematic uncertainties arise from

the difference in the jet Et scales between the Monte Carlo and the data. This
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Figure 9.1: M,,. distribution for Single SVX tagged events from the PYTHIA ¢t
Monte Carlo simulation using an input top mass of 175 GeV/c¢? for events with (a) a
—1o shift in the jet momenta, (b) no shift in the jet momenta, and (c) a +10 shift
in the jet momenta.

uncertainty is due to two main sources: detector effects and soft gluon effects [55].
Figure 9.1 shows the M,.. distribution for (a) Monte Carlo events in which we have
applied a —1o shift to the jet momenta, (b) default Monte Carlo events, and (c)
Monte Carlo events in which we have applied a +10 shift in the jet momenta.

To obtain the jet E1 uncertainty we apply a +10 and —10 shift to the jet momenta
in ¢t signal and background, and measure the effect on the top mass estimate. We ran
two set of simulated experiments. In the first set, we draw events randomly from the
sample in which the jet momenta is shifted by +10. In the second set we choose events

from the sample in which the jet momenta is shifted by —1o. Both sets of simulated
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Figure 9.2: M,,, distribution returned from the likelihood procedure from simulated
experiments using the NN-fitted M,.. templates. The solid histogram shows the
distribution when the jet Et scale is shifted down by —1o, and the dashed histogram
shows the distribution when the jet E| scale is shifted up +10. The systematic
uncertainty is half the difference between the medians of the distributions.

experiments are fit using the standard templates and likelihood technique described in
Chapter 7°. The error associated with the energy scale is half the difference between
the medians of the —10 and +1o0 pseudoexperiment results. Figure 9.2 shows the

difference between the two distributions.

9.2 Initial and final state radiation

Radiated gluons play a very important roles in the measurement of the top quark

mass. This is not only due to the fact that most #f events are accompanied by

9For the standalone NN method we use the same network and likelihood procedure described in
Section 8.2.
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additional gluon jets, but also to the fact that gluons are radiated during the pro-
duction of the #¢ pair and the decay processes. This complicates the top momentum
reconstruction as well as it makes it very difficult to correctly identify the top decay
partons.

The uncertainty associated with initial state radiation (ISR)'" is determined by
comparing the median mass obtained using the standard Monte Carlo PYTHIA sam-
ple to the median mass obtained using a sample for which the ISR has been turned
off. After a large number of simulated experiments, the uncertainty is given by half
the difference in the median mass between the standard PYTHIA and the no-ISR
PYTHIA samples.

Obtaining the error due to the final state radiation (FSR) is a little bit more
complicated since PYTHIA describes the formation of a jet through a parton shower.
From the no-ISR PYTHIA sample we select events that have exactly four jets which
meet the selection criteria described in Section 5.4, and are uniquely matched to the
tt decay partons. Using the procedure of simulated experiments, the uncertainty is
given by half the difference in the median mass between the no-ISR PYTHIA sample
with no restriction on the number of jets, and the no-ISR PYTHIA sample with only
four jets that are uniquely matched to the top decay partons. The total systematic
uncertainty is obtained by adding the ISR uncertainty and the FSR uncertainty in
quadrature.

The ISR/FSR uncertainty is the second largest systematic error associated with
the mass analysis. In Chapter 10 we explore the possibility of using a Neural Network

to measure the gluon content in #f events.

10ISR is the radiation that occurs before the ¢t pair has been produced. FSR is the radiation
which occurs after the top quarks has been produced.

91



9.3 b-Tagging

There is a systematic error associated with the uncertainty in the SVX and SLT
tagging efficiencies. The uncertainty in the SVX tagging efficiency comes primarily
from the possible E1 dependence. The SVX tagging efficiency is determined from
Monte Carlo and then corrected by a scale factor. The systematic error is calculated
by varying this scale factor. This results in a mass shift of only 0.1 GeV/c?.

The SLT error is determined by using large data samples of ¢y — up and v — ee.
The relevant uncertainty for SLT tags arises in the ratio of true to fake tags in ¢t
events. This ratio has a 10-20% uncertainty. To study the effect of this ratio on the
top mass we generate Monte Carlo ¢ events in which all SLT tags are either (a) true
tags, or (b) fake tags. We ran a large number of pseudoexperiments in which all the
events have come from set (a) or from set (b). These events are then compared to the
standard Monte Carlo sample. The error associated with the SLT tagging efficiency

is half the difference between the median mass of set (a) and set (b).

9.4 Parton distribution function

All the top Monte Carlo samples were generated using PYTHIA with the default
parton distribution function (PDF) GRV 94L. Other PDF choices are available such
as CTEQ 3L [57]. We take the shift in the median top mass samples generated with

the two PDF’s to be the systematic uncertainty.

9.5 Monte Carlo generators

The uncertainty associated with the Monte Carlo generators is obtained by com-

paring the results from PYTHIA to HERWIG. We run a large number of simulated
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experiments, and the uncertainty is given by half the difference between the median

mass of the PYTHIA and HERWIG simulations.

9.6 Summary of Systematic Errors

All the systematic uncertainties described in the previous sections are given in
the Table 9.1. We provide the systematic errors for the NN-fitted M,.. templates,
the NN-fitted Hp templates, and the standalone Neural Network analysis. The total

systematic uncertainty is obtained by adding the individual errors in quadrature.

Uncertainty (GeV/c?)

Source M,.. NN templates | H; NN templates | Standalone NN
Jet E1 scale 4.1 7.5 4.6
ISR/FSR 1.7 (0.5/1.6) 4.5 (2.1/4.1) 2.1 (0.9/1.9)
b-Tagging 0.3 1.5 0.4

PDF 1.1 2.0 0.9

MC generators 0.4 1.1 0.3
Total 4.6 9.2 5.2

Table 9.1: Summary of the systematic uncertainties associated with each of the dif-
ferent Neural Network analysis methods described in this thesis. In parenthesis we
give the (ISR/FSR) individual systematic errors.
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CHAPTER 10

MEASUREMENT OF THE GLUON CONTENT

In the top mass analysis, we assume that the four highest Et jets from an event
correspond to the top decay partons. However, our Monte Carlo predicts that in
roughly 50% of the events, one or more of these jets cannot be matched within a cone
of AR < 0.4 to any of the decay partons of the ¢t pair. Jets which are not within a
AR < 0.4 cone of any of the Monte Carlo partons are considered to be gluon jets.

Gluon jets are produced during the production of the ¢t pair, initial state radiation
(ISR), or during its decay, final state radiation (FSR). To obtain a more accurate
measurement of the top mass we would only want to include the gluon jets which
carry energy from the top quarks. This is an extremely difficult task. However, an
improvement of the top mass can be obtained by determining the number of events
with at least one gluon jet among the jets used in the top mass reconstruction. This
information can be used to construct templates that model the data more closely. We

describe a technique to measure the gluon content in the SVX tagged Run I data.
10.1 Gluon Effect on the Top Mass

A number of features of the mass analysis from Run I are consistent with the data

having fewer gluon events than the Monte Carlo would predict. Examples include
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the width of the observed mass distribution and the number of extra jets. We first
address whether a more accurate knowledge of the gluon content in the top mass

sample would lead to a better mass measurement.
10.1.1 Gluon Fraction in the Monte Carlo

By matching the simulated jets to the Monte Carlo top decay products we are
able to determine which events have all the top decay products present and those

which do not. We look at the top decay partons at the Monte Carlo level. Then, we

and we match each of these jets to the partons from the Monte Carlo. If a jet is not
within a cone of AR < 0.4 from any parton we consider this jet to be a gluon jet. We
note that this definition is somewhat arbitrary. The Monte Carlo samples are divided
into two different sets: gluon templates, and non-gluon templates. Gluon templates
contain only events with at least one gluon jet. Non-gluon templates only contain
events in which all jets are uniquely matched to the top decay products. In the ¢t

Monte Carlo we find:

e 52.7% + 0.7% of the single SVX-tagged events contain at least one gluon jet as

one of their four highest Er jets.

e 48.7% + 1.1% of the events in the double SVX-tagged sample contain at least a

gluon jet as one of their four highest Er jets.

Figures 10.1 and 10.2 show some examples for gluon and non-gluon templates. Gluon
templates tend to peak at a lower mass than the non-gluon templates. Also, non-

gluon templates show better separation between M;,, masses and they are narrower

than the gluon templates. We construct the % quantity to assign a figure of merit
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to both set of templates (recall from Section 8.1 that this quantity is an indication of

how much mass information a given quantity exhibits):
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Figure 10.1: Reconstructed top mass distributions for the single SVX Monte Carlo
sample for (Left) non-gluon events and (Right) gluon events.
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10.1.2 Pseudoexperiments

4

The goal is to study what happens when we compare the data to the “wrong” set
of templates, which do not have the same fraction of gluon events as the pseudoex-
periment data. If the data does not have the same mix as the MC, this is what will
result in the data measurement.

In the reconstruction of the top mass, we use a set of top mass templates ranging
from M,,, = 150 GeVc? to 200 GeVc?. For each simulated experiment we perform
a discrete likelihood fit [49] to determine which top mass is the most likely to have
produced a M,.. distribution similar to what is seen in the pseudoexperiment data.
To keep the study simple, we do not parametrize the templates and background is
not used. The top mass and its uncertainty is calculated by integrating the -log L.

We generate a set of templates for which the percentage of gluon events is varied.
Thus, we have six sets of templates containing 0%, 20%, 40%, 60%, 80%, and 100%
of gluon events. We ran 1000 pseudoexperiments where we draw the events from each
of these templates and we compare them to the default Monte Carlo. Recall that the
default Monte Carlo templates contain roughly 50% of gluon events. Tables 10.1 and

10.2 show the results from this study for the Single SVX and Double SVX subsamples

respectively. These results can be summarized as:

e Increasing the gluon content in the templates results in a decrease of the median
top mass returned by our fit, and an increase in the median uncertainty. Gluon

events are mismeasured low and they widen the template’s distribution.

e Comparing data events to the wrong templates results in a mismeasurement of

the top mass that can be significant.
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‘ Gluon Content ‘ Median M,.. | Median error | Pull mean | Pull width

0% 177.1 8.3 0.3 0.84
20% 176.0 8.5 0.2 0.91
40% 174.7 8.7 -0.02 0.93
60% 173.6 8.9 -0.2 1.0
80% 172.2 9.1 -0.3 1.1
100% 169.3 9.2 -0.6 1.3

Table 10.1: We show the results from the 1000 pseudoexperiments for the Single SVX
subsample. In each of the pseudoexperiments, we draw 15 events from the templates,
which we have constructed with the appropriate amount of gluon events, and we
compare them to the default Monte Carlo templates. Background is not included.

‘ Gluon Content ‘ Median M,.. ‘ Median error | Pull mean ‘ Pull width ‘

0% 176.5 9.7 0.2 0.85
20% 176.2 9.9 0.2 0.91
40% 175.2 10.0 0.04 0.93
60% 173.9 10.2 -0.09 0.95
80% 172.9 10.4 -0.2 1.1
100% 170.3 10.6 -0.4 1.3

Table 10.2: We show the results from the 1000 pseudoexperiments for the Double SVX
subsample. In each of the pseudoexperiments, we draw 5 events from the templates,
which we have constructed with the appropriate amount of gluon events, and we
compare them to the default Monte Carlo templates. Background is not included.

e Comparing the data events to the wrong templates, results in a top mass error
that is not accurate. When the gluon content in the templates is too low the
errors are overestimated. On the other hand, if the gluon content is too high

the errors are underestimated.

When we compare the data to the wrong templates, the top mass is biased and the

statistical uncertainty reported is not correct. It is very important that we construct
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templates that closely mimic the data. An accurate measurement of the gluon content

in our top mass sample will lead to a better measurement of the top quark mass.

10.2 Measuring the Gluon Content

In the previous section, we showed that the measurement of the gluon content
would lead to a better estimate of the top mass and the reported uncertainty. We
have developed a NN technique that attempts to measure the amount of gluon events
in the data. In order to reduce the amount of background in our sample, we are only

using events which pass all the mass selection cuts with at least one SVX-tagged jet.
10.2.1 Neural Network Input Variables

We want to develop a NN that can distinguish between gluon events and non-gluon
events. Three variables, shown in Figures 10.3 and 10.4, with good discriminating

power were selected for this analysis:

e The di-jet invariant mass is constructed with the untagged jets in the event. In
the Single SVX case there are three possible ways to form the di-jet invariant
mass. Only two of them are used since the di-jet mass constructed with the
two least energetic jets differs very little from gluon events to non-gluon events.
Each di-jet mass is used as an input for the Single SVX network. For double
SVX-tagged events there is only one way to form the di-jet mass, which is using
the two untagged jets in the event. In this subsample, the di-jet distribution
is clearly narrower for non-gluon events than for gluon events. Also, the di-jet
mass distribution peaks around 81 GeV/c?, the W mass, when there are no

gluon jets in the event.
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e The number of extra jets with Er > 8.0 GeV and |n| < 2.4 besides the four
jets used in the mass reconstruction. Gluon events have more jet activity than

those without gluons.

e The x? returned by the mass reconstruction code (see Section 6.3). Events that
contain all the top decay partons tend to have a lower 2 than those with gluon

jets.

All the above variables have good information regarding whether or not gluon jets
are present in the events. A Neural Network is well suited for this measurement since
it provides us with a simple way of combining all of the different variables. Including

more information will decrease the error in the gluon content measurement.

10.2.2 Neural Network Training and Testing

For this analysis, we are using the JETNET [44] subroutines interfaced to ROOT
via the Root_Jetnet [45] package. We use two different Neural Networks: one for
events with a single SVX-tagged jet, and another for events with two SVX-tagged jets.
They are both three-layered feed-forward perceptrons with the standard activation

function (tanh scaled to (0, 1)). The Neural Network architectures are the following:

e NN_1SVX — 4-8-1. The single tagged Neural Network has four different input

variables since two di-jet masses are used separately.
e NN_25VX — 3-6-1.

We trained the Neural Networks using two different Monte Carlo samples: one
containing gluon events, and the other one without any gluon events. During training,
the desired Neural Network output for non-gluon events was set to 1, while the output
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Figure 10.3: The four input variables for the SVX Single Neural Network. (a) Di-jet
invariant mass between the two most energetic untagged jets. (b) Di-jet invariant
mass between the most and least energetic untagged jets. (c¢) x? returned by the
top mass kinematic fit. (d) Number of extra jets with Ep > 8.0 GeV and || < 2.4.
Background is not included.

corresponding to the gluon events was set to 0. The updating of the weights was done
using the standard back-propagation algorithm with default training parameters. We
ran a large number of training loops keeping track of the classification performance
of the Neural Network during each of the loops. Recall, this performance is deter-
mined by the number of events in which the Neural Network is able to classify each
class (gluon events, and non-gluon events) correctly. When the classification is best
we freeze the weights. These final weights constitude our optimal Neural Network.
Figures 10.5.(L) and 10.5.(R) show the output for both networks for gluon events,
non-gluon events and background events, which look like gluon events to the Neural

Networks.
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Figure 10.4: The three input variables for the SVX Double Neural Network. (a) Di-

jet invariant mass between the two untagged jets. (b) x? returned by the top mass
kinematic fit. (¢) Number of extra jets with Et > 8.0 GeV and || < 2.4. Background
is not included.
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Figure 10.5: (Left) NN output distribution for the Single SVX subsample. (Right)

NN output distributions for the Double SVX subsample.

background is used for both subsamples.
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10.2.3 Definition of the Likelihood

Monte Carlo studies show that the amount of gluon events in the Single SVX and
Double SVX subsamples is very similar. We construct individual binned likelihoods
for the two subsamples. Since they are statistically independent from one another,
we can construct a joint binned likelihood for the entire sample by multiplying to-
gether the two individual binned likelihood functions. The gluon fraction, z,, and the
non-gluon fraction, w,,, are obtained from a maximum likelihood fit applied to the
Neural Network output distributions. Both z, and z,, are unconstrained in our fit.
The background fractions for each subsample, x;, are allowed to vary about their cal-
culated value and within their uncertainties (see Table 10.3). The individual binned

likelihood has the form:

L= Eshape X ‘Ccount X ‘Cbackground (101)
where:
N bins
Ny f(O) + Npofra(O) + Ny fo (O
ﬁshape — Z _(}f_(}( ) gf _(}( ) bfb( )’ (102)
i=1 N.q + Nng + Ny
*(Nq"‘Nng"'Nb)(N + N+ N, )N
€ n b
£count - N(; : ) (103)
ﬁbackground - P(Nb) (104)
and Ny, N,4, and N, can be written in term of the fraction of events as:
Nyg=x4-N, Npg=axns-N, Ny=uy-N. (10.5)

The quantities Ny, N,4, and N, represent the number of gluon events, non-gluon
events, and background respectively, N is the number of observed events, and P(x;)
constraints the backgrounds to be around their central value and within their un-
certainties. The variable f,(O) is the Neural Network output distribution for gluon
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events. The NN output distribution for non-gluon events is given by f,,,(0O), and the
background NN output distributions are f,(O). To calculate z,, and z,, we mini-
mize the -log £, and the statistical uncertainties in our measurements are given by

changing -the log £ by half a unit respect to its minimum.
10.2.4 Pseudoexperiments

In the Run I Single SVX subsample there are a total of 17 events. Two of these
events do not pass the y? selection criteria and are not used in the mass analysis.
In the Run I Double SVX subsamples there are a total of five events. The x? cut is
removed to increase the acceptance . The efficiencies of the x? cut shown in Table

6.1 are used to calculate the new background fractions. Table 10.3 shows the results.

‘ Mass Sample ‘ Data Events Observed ‘ Predicted Background ‘

Single SVX 17 (15) 2.93+0.92 (2.4 +0.75)
Double SVX 5 (5) 024 +0.12 (02£0.1)

Table 10.3: We show the expected number of events without the x? cut. In parenthesis
we show the expected number of events after the x? cut. These numbers are taken
from Table 7.2.

We ran 5000 pseudoexperiments with the expected admixture of signal and back-
ground. For each simulated experiment we compare the NN output distribution of
the data to a combination of the NN output distribution for gluon events, non-gluon
events, and background. Figure 10.6 show the distribution for the gluon fraction and
non-gluon fraction for the pseudoexperiments. The mean of these distributions is
43.5% in the gluon case and 41.4% for the non-gluon fraction as expected from the

Monte Carlo. The remaining contribution is from the background. We expect the
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pull distributions (Equation 7.5) to have a mean of zero and a width of one. However,
we find that the pull distributions are too narrow suggesting that the errors returned
by the fit are overestimated. This effect is due to the fact that our simulated experi-
ments have very low statistics. Therefore, we scale the errors returned by the fit by
a factor of 0.75 for the gluon events, and 0.74 for the non-gluon events [46]. After
rescaling the errors the median statistical uncertainty for the gluon and non-gluon
content is 18.9% and 17.4% respectively. Figure 10.7 shows the pull distributions.
During Run Ila, we expect to collect 2 fb~! of data or roughly 20 times the
amount of statistics collected during Run I. Assuming Run I conditions, we ran 5000
pseudoexperiments in order to estimate the expected uncertainty in the large data
sample. The study shows we should be able to measure the gluon content in Run Ila
with an accuracy of roughly 5.6% for gluon events, and 4.3% for non-gluon events.

The pseudoexperiment results are summarized in Table 10.4.

10.3 Measurement of the Gluon Fraction in the Run I Data

We apply our analysis to the Run I data. The statistical errors returned are scaled

by the same factor used in the Monte Carlo study. We fit the Run I data and we find:

23.7% £ 20.0% of the events in our single plus double SVX-tagged mass sample

contain a gluon jet among their 4 highest Ep jets.

62.2% =+ 21.0% of the events are non-gluon events.

17.0% + 5.3% of the 17 single tagged events are background events.

4.8% + 2.3% of the 5 double tagged events are background events.
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‘ Predicted uncertainty in z, | Predicted uncertainty

18.9% 17.4%
5.6% 4.3%

‘ Data Sample
Run I (106 pb~!)
Run IIa (20x Run I)

In Tp,

Table 10.4: This is a summary of the Run I, and Run Ila pseudoexperiment results.
H i H gCont : - B ngCont
Fraction of eventswith gluon jets | o o00 Fraction of eventswithout gluon jets | T 000
i) Mean = 0.4424 i) F Mean =0.4241
] L RMS =0.1878 $ 100— RMS =0.1877
IS 100/— Under = 286 IS - Under = 336
5 L Over = 144 5 r Over = 86
S - Integ = 4570 S r Integ = 4578
B = Chi2 / ndf = 158.9 /96 80— Chi2 / ndf = 147.1/94
8 80—~ Prob = 3.068¢-05 8 C Prob = 0.0002557
§ C Constant = 93.39 + 1.725 é L Constant = 93.72 +1.722
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Figure 10.6: Results from 5000 pseudoexperiments
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In Figure 10.8.(L), we compare the M,.. distribution for the Single SVX Run I
data and the Monte Carlo. In the Monte Carlo histograms we show the contributions
from the background, yellow, background plus gluon events, blue, and background
plus gluon plus non-gluon events, green. Each contribution is set according to our
fit results. Figure 10.8.(R) shows the same plot for the Double SVX Run I data. A

lower fraction of gluon events produces slightly narrower M, distributions.

‘ (1 SVX) Data Top mass distribution | daaltm ‘ (2 SVX) Data Top mass distribution | datazTm
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Figure 10.8: Reconstructed mass distribution for (Left) Single SVX events and (Right)
Double SVX events. The gluon fraction in the Monte Carlo is set to that measured
in the Run I data. The dashed line histogram has the standard MC gluon fraction
(~ 50%). Signal and background fractions as observed in the Run I data.

10.4 Systematic Errors

For this analysis we have looked at two different sources of uncertainty in the gluon
content measurement. First, we looked at the energy scale. We apply +10 and —1o
shifts to the jet momenta in #f signal and background events, and measure the effect

on the gluon content estimate. The error is given by half of the difference between the
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medians of the +10 and —1o distributions. We find that the error associated with
the energy scale is less than 0.1% in both the gluon fraction and non-gluon fraction.

In measuring the gluon content we have assumed a top mass of 175 GeV/c?. We
change the mass of the top quark to 170 GeV/c? and 180 GeV/c? to see whether or
not this has any effect on our measurement. The error is given by the half difference
between the medians of the 170 GeV/c? results and the 180 GeV/c¢? results. In this

case we find that the error associated with the top mass is also less than 0.1%.

10.5 Application to the Mass Analysis

The likelihood procedure used to calculate the top mass is described in Section 7.3.
We use the four mass subsamples for this analysis: Single SVX, Double SVX, SLT,

No Tags. Using the events in these subsamples we construct two sets of templates:

e Data-like templates: these are templates in which the amount of gluon events
and non-gluon events are set to the mean values returned by the fit in Section

10.3

e MC-like templates: these templates contain the default mixture of gluon

events and non-gluon events.

We fit these templates using the NN method (Section 7.1.1 to obtain the top mass
dependent functional form.

We run pseudoexperiments for which we draw the data events from the Data-like
templates and we compared them to the Data-like templates and to the MC-like tem-
plates. Each simulated experiment contains an admixture of signal and background
as described previously. The results from 2000 pseudoexperiments are summarized
in Table 10.5.
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Pseudo. samples ~ Compare to Result (GeV/c?)

Data-like samples Data-like templates 174.5+5.5
MC-like samples  MC-like templates 174.8 £ 6.5
Data-like samples MC-like templates 175.8 + 6.1

Table 10.5: Median top mass and median statistical MINOS error results for the 2000
pseudoexperiments using Run I statistics.

We measure the gluon content in the Run I data sample to be lower than expected
from the default MC. We have shown that samples with lower gluon content have
smaller top mass errors. The above MC studies imply that the top mass statistical
error is about 18% smaller for samples with Data-like gluon content than for samples
with the default Monte Carlo gluon content. Also, we have shown that the top mass
measurement is biased and its reported uncertainty is inaccurate when the gluon
content of the pseudoexporiment sample and the templates’ gluon composition differ.
Monte Carlo studies imply that the top mass is biased by + 1.3 GeV/c¢? and the error
increases by about (6.1/5.5) = 11% when samples with Data-like gluon content are

compared to templates constructed from the default Monte Carlo.
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CHAPTER 11

RUN I RESULTS

In this chapter, we apply the different mass analysis techniques to the Run I data
sample. First, we summarize the Monte Carlo results from the previous chapters.
The Run I data results are given next. After presenting these results, the consistency
between the data and the Monte Carlo expectations for ¢¢ plus background events are

checked for the different analyses methods.

11.1 Summary of Monte Carlo Results

Table 11.1 presents the different Monte Carlo results. We include the results
obtained from using the templates constructed with the gluon content measured in
the Run I data. However, it should be noted that the error in the gluon content is

rather large (~ 20%).

11.2 Template-Based Data Results

The template based likelihood procedure is applied to the events in the four mass
subsamples. To investigate the effect of the background constraining term the mass fit
is performed two different ways: we constrain the backgrounds to be within their ex-

pected values, and the background constraint is removed. The top mass measurements
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Fitting Method Median error (GeV/c?)

NN M,.. templates 6.5
GG M,.. templates 7.3
NN Hrt templates 11.3
Standalone NN 5.6
NN M,.. templates (gluon) 5.4
GG M,.. templates (gluon) 6.0
NN Hr templates (gluon) 10.6

Table 11.1: Summary of the Monte Carlo results. The (gluon) description means that
the templates were constructed with the gluon content measured in the data.

for each subsample and the combined result when using the M,... templates fitted with
a combination of a Gaussian plus a Gamma function, and the M,,.. templates fitted
with a Neural Network, are presented in Table 11.2 and 11.3 respectively. Figure 11.1
shows the results from the background constrained combined fit to all four subsam-
ples using the NN-fitted M,,. templates. The results when using the Hy templates
are given in Table 11.4 and shown in Figure 11.2.

Several observations can be made when comparing the mass fit results when the
background fractions are constrained to those when they are not. The most impor-
tant result is that when all the subsamples are used, independently of the templates
or fitting method used, the top mass measurement shows very little sensitivity to the
background constraint. For the M,.. templates, the unconstrained mass fits of the
tagged subsamples yield a background fraction of zero, although with large uncertain-
ties. Also, the fit on the No Tag subsample yields a background fraction lower than
expected. For the Hp templates, the unconstrained fit of the SVX tagged subsamples
yield a background fraction of zero with large uncertainties. The unconstrained fit of

the SLT sample yields a background fraction larger than the one expected. The fit on
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the No Tag subsample yields a similar background fraction whether the background
is constrained or unconstrained. In general, we would expect an increase in the sta-
tistical error if the background constrained is removed since not all the information is
being used. However, most of the measurements seem to indicate the opposite. This
is due to the fact that in most of the measurements the unconstrained background
fraction fitted to a smaller value thus increasing the number of signal events.

When we fit the M,,. templates with the Neural Network method we obtain
a statistical error which is 4.75 GeV/c?. This corresponds to a (5.8/4.75) = 22%
statistical improvement over the result obtained when we fit the templates with a
combination of a Gaussian plus Gamma functions. Using the Ht templates fitted
with the Neural Network method yields a statistical error of 9.25 GeV/c?. That is a
(12.0/9.25) = 30% statistical improvement over the previous top mass measurement

that used the Hr [51].

Data sample | N " Top mass (GeV/c?)
Constrained | Unconstrained | Constrained | Unconstrained
SVX Double 5 | 0.0440.02 0.0 169.87103 169.67141
SVX Single 15 | 0.1440.05 0.0+9-09 178.4792 177.9%58
SLT 14 | 053199 0.0798 1493737 15227273
No Tags 42 | 0.6540.09 041102 184.8%15% 181.774%°
All Subsamples | 76 | 0.46+0.08 | 0.2340.19 177.3789 177.0*28

Table 11.2: Results of applying the mass likelihood procedure using the GG
parametrized M,.. templates to the four subsamples and for all subsamples combined.
We show the results when the background fractions are constrained to their expected
values (Table 7.2), and when they are not. The combined background fraction is the
average of the x; fit results weighted by the number of events in the subsamples.
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Data sample | Ny il Top mass (GeV/c?)
Constrained | Unconstrained | Constrained | Unconstrained
SVX Double 5 | 0.0440.02 0.0705 172.6197 172.3+£9.0
SVX Single 15 | 0.15+0.05 0.0%9- 178.1+87 177.5%79
SLT 14 | 054709 0.057 168.41201 145.972%3
No Tags 42 | 0.63 +0.09 0.377018 183.4793 181.3474
All Subsamples | 76 | 0.48 £0.08 0.240.18 177.973% 17754+ 4.4

Table 11.3: Results of applying the mass likelihood procedure using the NN
parametrized M,.. templates to the four subsamples and for all subsamples combined.
We show the results when the background fractions are constrained to their expected
values (Table 7.2), and when they are not. The combined background fraction is the
average of the x; fit results weighted by the number of events in the subsamples.

Runl| M . fit results
g 10— __
= i
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Figure 11.1: Results from applying the likelihood procedure to the combined four
subsamples using the NN-fitted M,.. templates. The figure shows the Run I data
(histogram), fitted background and signal (shaded region), fitted signal (blue curve),
and fitted background (red curve).
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Data sample | N il Top mass (GeV/c?)
Constrained | Unconstrained | Constrained | Unconstrained
SVX Double 5 | 0.04=£0.02 0.070 220.47238 220.17231
SVX Single 15 | 0.14+0.05 0.07507 196.57137 194.47129
SLT 14 | 0.56%99% 0.77+02 199.4 1384 216.7+313
No Tags 42 | 0.65+0.07 0.6 + 0.1 303.11192. 301.2+2%0,
All Subsamples | 76 | 0.49 +0.07 0.47+ 0.1 204.4153 199.9151

Table 11.4: Results of applying the mass likelihood procedure using the Ht templates
to the four subsamples and for all subsamples combined. We show the results when
the background fractions are constrained to their expected values (Table 7.2), and
when they are not. The combined background fraction is the average of the z; fit
results weighted by the number of events in the subsamples.
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Figure 11.2: Results from applying the likelihood procedure to the combined four
subsamples using the Hy templates. The figure shows the Run T data (histogram),
fitted background and signal (shaded region), fitted signal (blue curve), and fitted
background (red curve).
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11.3 Comparison of Data to Expectations

Using the NN M,,.. templates to estimate the mass of the top quark yields a
result of 177.9 + 4.8 GeV/c?. The result obtained when using the Hr templates is
204.4 + 9.3 GeV/c%. Therefore, using different kinematic information from the same
events produces results, which differ from one another by 26.5 GeV/c?. We run 2000
pseudoexperiments for which we plot the difference between the top mass obtained
using the NN M,... templates (Mt%;“

), and the top mass obtained from using the Hr

M - Mpt

templates (M,7). Figure 11.3 shows the distribution of the difference M,y top -

top
We find that roughly 5% of the simulated experiments yield a difference in the top

mass that is equal or larger than what we see in the data sample. While this number

is small, it is not statistically unreasonable.
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Figure 11.3: Distribution of the difference between the top mass obtained using the
M,.. templates and the top mass obtained using the Ht templates from simulated
experiments of tt (M,,, = 175 GeV /c?) plus background. Also shown is the difference
obtained from the data sample.
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Figure 11.4: Statistical uncertainties from pseudoexperiments of tt (M, = 175

GeV/c?) plus background using (Left) the NN M,.. templates, and (Right) the Hy
templates. Also shown in the statistical uncertainty obtained from the data sample.

The statistical uncertainty obtained from fitting the data with the NN M,... templates
is 4.8 GeV/c?. Figure 11.4.(L) shows the distribution of the statistical uncertainties
from the simulated experiments. We find that roughly 5% of the pseudoexperiments
yield a statistical error which is equal or smaller to that obtained from the data. Fig-
ure 11.4.(R) shows the the distribution of the statistical uncertainty from the pseudo-
experiments which use the Hy templates along with the data result (9.3 GeV/c?). For
this case, we find that 5% of the simulated experiments yield a statistical error which
is equal or smaller to the one obtained from fitting the data with the Ht templates.

Finally, we check the returned log likelihood value from the pseudoexperiments
to the one obtained from the data. Figure 11.5 shows the log likelihood distribution
for pseudoexperiments (L) using the NN M. templates and (R) the Hr templates
along with the log likelihood value from the data sample. We find that 50% of the
pseudoexperiments that use the NN M,.. templates yield a log likelihood larger than
that obtained from the data. Also, 87% of the simulated experiments that use the

Hy templates yield a log £ value larger than the one seen in the data.
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Figure 11.5: Distribution of the minimum value of -log £ from pseudoexperiments of
tt (M, = 175 GeV/c?) plus background using (Left) the M,.. templates, and (Right)
the Hr templates. Also shown in the minimum -log £ value obtained from the data
sample.

11.4 Standalone NN Run I Data Results

The standalone NN method is applied to the events in the four mass subsamples.
To investigate the effect of the background constraining term, the mass is performed
two different ways: the backgrounds are constrained to be within their expected
values, and the background constraint is removed. The results from applying the
standalone NN method are given in 11.5.

As in the template-based method, the unconstrained mass fit of the SVX tagged
subsamples yield a background fraction of zero, although with large uncertainties.
The unconstrained fit to the No Tag samples yields a background fraction lower than
expected. In general we would expect an increase in the statistical uncertainty if the
background constraint is removed. This is not the case because the unconstrained fit
favors fewer background events than what it is expected from Monte Carlo. Over-
all,; the standalone NN method behaves in a similar fashion as the template-based

techniques.
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Data sample | N il Top mass (GeV/c?)
Constrained | Unconstrained | Constrained | Unconstrained
SVX Double 5 | 0.04+0.02 0.0792 179.9410.6 | 180.0 +10.4
SVX Single 15 | 0.14 +0.05 0.0790 172.74+8.6 | 1725+ 8.4
SLT 14 | 0557008 0.670:2 167.44+28.8 | 169.4 + 30.0
No Tags 42 | 0.53+0.08 0.32%51° 189.14+10.0 | 183.2+9.8
All Subsamples | 76 | 0.42+0.07 | 0.2940.14 | 1824451 | 182.0+4.7

Table 11.5: Results of applying the standalone NN method to the four subsamples
and for all subsamples combined. We show the results when the background fractions
are constrained to their expected values (Table 7.2), and when they are not. The
combined background fraction is the average of the x;, fit results weighted by the
number of events in the subsamples.

It is surprising that the statistical error returned by the standalone NN method
is higher (5.1 GeV/c?) than the one returned when we only use the M, templates
(4.8 GeV/c?). Adding more information has the opposite effect that one would ex-
pect. This can be due to the fact that the M,.. and Hy variables favor a top mass
which differs from one another by 26.5 GeV /c?. Therefore, combining the information
from these variables broadens the likelihood distribution, which results in a higher

statistical uncertainty:.

11.5 Comparison of Data to Expectations

We want to determine whether the correlation coefficients between the variables
in the Monte Carlo pseudoexperiments agree with what we see in the Run I data.
Figure 11.6 show the different correlation distributions for all the variables used in the

standalone Neural Network method along with the correlation values seen in the data.
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As we can see, the correlations between the different variables in the Monte Carlo
agrees reasonably well with the data values. We note that the correlation between
M, .. and Ht in the data falls in the middle of the Monte Carlo distribution. These
two variables are the ones with the most mass information. We have also checked the

uncertainty returned by the fit on the data. This error is reasonable.
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Figure 11.6: Distribution of the correlation coefficient between the different vari-
ables used in the standalone NN mass analysis along with the correlation value seen
in the data sample. (a) Correlation between M,.. and Hy, (b) correlation between
Pr(1) + Pr(2) and Hr, (¢) correlation between Pp(1) + Ppr(2) and M, , (d) corre-
lation between Pr(1) + Pr(2) and My, (e) correlation between Hy and My, and (f)
correlation between M, .. and M.
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CHAPTER 12

MEASURING THE TOP MASS IN RUN II

Run II started at the Tevatron in March 2001. In this chapter, we outline a
method to measure the top mass during Run II. The technique uses the M,.. and Hr
information simultaneously. Using this method we present a priori expectations on

the top mass measurement.

12.1 Motivation

From Monte Carlo pseudoexperiments, we know that the best measurement of
the top mass is obtained from using the standalone NN method. This technique
combines the information from several kinematic variables to extract the top mass
using a discrete likelihood function. However, this likelihood procedure may have

some problems in Run II:

e For Run I, the discrete likelihood consisted of 23 different points, which were
associated with a different top mass, spaced at intervals as close as 2.5 GeV /c?.
As the Run II statistics increase, we would have to add more points to the

likelihood to take advantage of the expected smaller statistical uncertainty.

e Adding more points to the likelihood means that we would have to generate
more tt Monte Carlo samples at more top masses closer together.
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e Using all the Monte Carlo samples we would have to create new Neural Networks
to perform the event classification. Because the networks are so large this would

take large amounts of time.

In the next section we describe a new mass analysis method, which uses the two
most powerful variables in the standalone NN along with a continuous likelihood
procedure to extract the top mass. We note that this method was not applied to the
Run I data sample because we did not have enough Monte Carlo statistics. However,

we expect both methods to give comparable results.

12.2 M,.. Vs. Hy Templates

The biggest improvement in the standalone NN method comes from the combi-
nation of the M,.. and the Ht information. For the measurement of the top mass in
Run II we propose the use of 2-D M,.. Vs. Hr templates. These templates would
then be fitted with a NN to obtain a functional form dependent on the mass of the
top quark.

One of the challenges that one faces when trying to fit 2-D histograms is that the
amount of events needed to correctly populate the histograms is very large. Although
we have large amounts of ## and background Monte Carlo samples we do not have
enough to construct 2-D templates. However, outlining this procedure is still very
important since it may represent an excellent technique to extract the mass of the
top quark. Thus, Appendix F describes a method to generate “fake” Monte Carlo
to increase the sizes of our samples. The resulting 2-D templates closely mimic the
shape of the actual Monte Carlo results. Using these distributions, we investigate

whether a Neural Network is able to fit them or not.

121



12.3 Fitting Procedure

Fitting a set of 2-D templates (M,.. Vs. Hr) is much like fitting a 1-D distribu-
tions. We just have to make sure that the network gets all the information, and that
there are enough hidden units to correctly approximate the function. For the ¢f signal
we have chosen a 3-8-8-1 architecture (113 weights and biases). Each of the inputs is
associated with a different variable: M,.., Hr, and M,,,. During training, the desired
NN output is set to the number of entries in each bin of the 2-D distributions. In our
case, the 2-D distributions have a total of 1600 bins (there are 40 bins in the M,
axis and 40 in the Hyp axis), and since there are 19 different distributions our fits
have over 30,000 degrees of freedom. Figure 12.1 shows a few distributions of our 2-D
Neural Network fits for the SVX Single subsample. Although the network has to fit
many different points, it performs the task very well as we can see from the x? results
shown in Table 12.1. The y? function for the 2-D case has the same form as Equation
7.1 with the addition of an extra sum to take into account the two dimensions of our

templates.

‘ Top Subsample ‘ x? result ‘

SVX Single 1.02 for 22408 dof
SVX Double 1.19 for 23433 dof
SLT 1.08 for 24045 dof

No Tags 1.06 for 23150 dof

Table 12.1: We show the x? per degree of freedom for each of the four subsamples.
The NN does an excellent job at approximating the 2-D surfaces.

For the background we remove the top mass dependency and the NN architecture

becomes 2-5-5-1. This corresponds to a total of 41 weights and biases.
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Figure 12.1: M,.. Vs. Hp surfaces generated from the functional form obtained by
fitting the “fake” Monte Carlo Single SVX subsample. (a) Contour plot for M,,, =
150 GeV/c?. (b) Contour plot for My, = 175 GeV/c% (c¢) Contour plot for M, =
200 GeV/c?. (d) Surface plot for My, = 175 GeV /c*.

12.4 Run II Expectations

To estimate the mass of the top quark we use the continuous likelihood method
described in Section 7.3. In this case, the functional forms for the signal and back-
ground use both the M,,. and Hr information from each event. In the likelihood
fit, the mass of the top is the only free parameter and the background fractions are
constrained to be within their expected values. We run 2000 simulated experiments
with the admixture of signal and background as expected in Run I. During Run II, we

expect to collect over 1 fb~! of data. We run a set of pseudoexperiments for which the
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statistics are increased 2, 4, 6, and 10 times respectively. For each pseudoexperiment,
we calculate the top mass using: the Hp NN-fitted templates, the M,.. GG-fitted

templates, the M,.. NN-fitted templates, and the M,,. Vs. Hp NN-fitted templates.

The results are shown in Figure 12.2.

Run 2 Expectations
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Figure 12.2: We apply the different template-based analyses methods to 2000 simu-
lated experiments. The graph shows the median error obtained from the pseudoex-
periments containing 1, 2, 4, 6, and 10 times the Run I statistics. For the standalone
NN method we only show the results from the Run I simulated experiments.

Using the Run 1 statistics, the M,.. Vs. Hp template method returns a median
error of 5.7 GeV/c?. This error is slightly higher than that obtained by the stan-
dalone NN method technique (5.6 GeV/c?), and (7.3/5.7) = 28% better than the

M,.. template fitted with the Gaussian plus Gamma functions. Recall, that this
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method gave the best Run I top mass measurement. This improvement remains the
same when we use simulated experiments, which contain 10 times the amount of Run
[ statistics (this corresponds to roughly 1 fb™1).

The goal for Run IT is to measure the top mass with an error less than 2 GeV/c?.
From a statistical perspective, this goal can be reached with roughly 1 fb~! of data
using the M,.. Vs. Hp template method. At this time, the error in the top mass will

be dominated by the systematic uncertainty.
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APPENDIX A

THE DELTA RULE

For a single layer network with an output unit with a linear activation function

the output is simply given by
y(t+1) ij Jx; +0(1). (A1)

Such a simple Neural Network is able to represent a linear relationship between the
value of the output unit and the values of the input units. We use this simple network
to fit to a set of training samples consisting of input values P and desired output
values dP. For every given input sample, the output of the Neural Network differs
from the desired output value by (d? —y?), where 3" is defined above. The Delta Rule
uses an error function based on these differences to adjust the weights.

The error function is just the least mean square (LMS) and the total error is

defined to be

E=Y = Y@ -y (A2

p

where the index p ranges over the set of input patterns, and EP represents the error
on pattern p. The LMS method uses the gradient descent method to find the weights

that minimize the error function. The idea is to make the change in the weight, wj,
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proportional to the negative of the derivative of the error as measured on the current

pattern, j, with respect to each weight, w;:

P
Ny OE

P = T e,
j

where 7 is a proportionality constant. The derivative can then be written as

DEP  QEP dyP

ow;  Oyr Owi’

Because we are dealing with linear units (Eq. A.1),

9 _
owi

OE?
z; and o —(dP —yP)

such that

C— ~SPr
Aywj = yoPx;

(A.3)

(A.6)

where 67 = dP — yP is the difference between the NN output and the desired output

pattern. The Delta rule modifies the weights according to the desired output pattern,

the input pattern, and the actual NN output. These characteristics have opened up

a wealth of new applications.
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APPENDIX B

BACK-PROPAGATION

We must extend the Delta rule so that it can be applied to networks with many
layers and with non-linear activation functions. This generalisation is called the Back-
propagation method and the central idea is that errors of the weights associated with
units in the hidden layers are determined by back-propagating the error of the weights
associated with the output units.

We generalize the Delta rule to the set of non-linear activation functions. The

activation, is a differentiable function of the total input given by

yp = F(s), inwhich sf =3 wyl + 0 (B-1)
J

where the index p corresponds to the different patterns, the index £ is the number
of units per layer, and the index j keeps track of the different weights connecting to
each unit. To get the correct generalization of the Delta rule presented in Appendix

A, we must set
OF?
" awjk )

prjk = (BQ)

The error measure EP is defined in the same manner as before, and it corresponds to

the quadratic error for pattern p at the output units:
1Yo

BEf =35 > (dh—yh)?, (B.3)
o=1
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where d? is the desired output for unit o when the pattern p is used. We further set
the total error to £ =3, EP. We can write

OE?  OE” st

= : B.4

Owr 08}, Owjk (B-4)
By equation B.1 we see that the second term is
s} p

=P, B.5

Py Y (B.5)

When we define

OF?

o = ——— B.6

k asz ) ( )

we have an update rule which is similar to the Delta rule derived in appendix A. In a
multi-layer network with non-linear activation function, the weights change according
to:

Apwik = Y0y (B.7)

The problem now is how to figure out what ¢% is for every unit & in the network. The
interesting results, as we will see, is that there is a simple recursive computation of
these §’s which can be implemented by propagating the errors backward through the
network.

We rewrite equation B.7 using the chain rule as a product of two terms, one
term reflecting the change in the error as a function of the output of the unit and
another term reflecting the change as a function of the changes in the input of the

unit. Therefore, we have
OE?  OEP Oy

o = — =———". B.8

k dsh dyp. Osh (B.8)
From equation B.1, the second term is
Ay,

= F'(sh), (B.9)
dsh,
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which is simply the derivative of the non-linear "' function F for the k-th unit,
evaluated at the net input s? to that unit. To compute the first term in equation B.7,
we consider two cases. First, assume that the unit £ is an output unit £ = o of the

network. In this case, it follows from the definition of EP that

OEP
ash,

—(df —y5), (B.10)

which is the same result as obtained in appendix A. Substituting this result and

equation B.10 into equation B.8, we get

0y = (df — yp) F'(s7) (B.11)

]

for any output unit o. Secondly, if £ does not correspond to an output unit but a
hidden one £ = h, we do not readily know the contribution of the unit to the total

output error of the network. However, we can write the error as a function of the net

inputs from hidden to output layer. That is, EP = EP(s,s5,...,s},...) and we use

the chain rule to write

oE» Yo oErost  Xeorr o o e oEr Ne
- —0 _ — Y Wiy = Y = Whe = — Y Pwp,.  (B.12)
VERP SRR TP Sy M D S A Py E A

Substituting this into equation B.9 yield
No
o = F'(sh) > 62w, (B.13)
o=1

Equations B.11 and B.13 give a recursive procedure for computing all the different
0’s in the network. Equation B.7 is then used to modify the weights. This proce-
dure constitudes the generalized Delta rule for feed-forward networks with non-linear

activation functions.

these functions are also called squashing functions such that limy_,,F(A) = 1, and
limAH,OOf()\) =0
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APPENDIX C

FITTING WITH A NEURAL NETWORK

We want to use a Neural Network to fit a series of reconstructed mass distributions.
An example showing the distributions for a top mass of 120 GeV/c¢?, 175 GeV/c¢?, and
230 GeV/c? is given in Figure C.1. As expected, the distributions peak around the
true top mass used to generate each Monte Carlo sample. The goal of this project is
to create a single Neural Network that is able to duplicate the shape of a distribution
as a function of the true top mass.

We have to put all the information shown in the histograms of Figure C.1 into
a format that the Neural Network can understand. First, all the histograms must
be scaled so that they have the same number of events. Then, the Neural Network
must have the information that for M,,, = 120 GeV/c? the 10" bin has 122 entries,
for M,,, = 175 GeV/c? it has only 19 entries, and for M,,, = 230 GeV/c? the 10"
bin has four entries. There is only two ways we can introduce any information into a
Neural Network: the input nodes and the output node.

We chose one of the input units to be the true top mass, M,,,. The Neural
Network must have the information that if the top mass changes the shape of the
distribution changes. We chose the second input unit to be the bin location along
the M,.. axis. Each of the reconstructed mass histograms range from 80 to 380
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Figure C.1: We show the M,,. distributions for three different top masses. All of the
histograms have been normalized to the same number of events.

GeV/c? and are divided into 5 GeV/c? bins In order for MLPfit to work properly we
have to normalize the input variables so that they are between 0 and 1. Thus, the

normalization equations are the following:

(Bin location — 80.0)

input, — C.1
bttt 300.0 (C.1)
_ (Mypp — 120.0)

t, = C.2
fnputs 110.0 (C2)

The last piece of information comes in through the output node. In classification
problems we are used to setting the output node to a single value such as 1 for signal
and 0 for background. That is not the case when we deal with fitting. Now, we set

the target value of the output node to the bin content associated with both the bin
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location and the true top mass. An excerpt of a training file is given below. The
first column corresponds to the bin location, and the second column is M,,, . The
numbers on the right have been normalized to unity according to Equation C.1 and
C.2. The last two columns is what is ultimately fed into the Neural Network.

127.5 120.0 == 0.16 0.0
122.0 == 122.0

12.7.5 17;’).0 - O.i6 0:5
19.0 - 19.0
12.7.5 236.0 == 0.i6 1:0
4.0 - 4.0
When this information is fed into the Neural Network, it tells the network that
for My, = 120 GeV/c? there are 122 entries in the 10" bin. Similarly, for Mo, = 175
GeV/c? there are 19 entries in the 10" bin, and for M., = 230 GeV there are
four entries. The above is just a simple example with only three M,... distributions.
The actual file used to train the Neural Network is made up of 1140 entries, which
correspond to 19 different distributions with 60 bins each. Training is stopped when
the x? function defined in Section 7.1.1 is close to one.
Once an optimal Neural Network is obtained, we use it much like a regular func-
tion. The network takes two input parameters, the M,.. and M,,,, and the output of
the Neural Network is interpreted as a probability density function. This output is

used in the mass analysis likelihood function described in Section 7.3.
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APPENDIX D

VECBOS BACKGROUND

To increase the number of background events used in this analysis we have com-
bined all the VECBOS Monte Carlo generated into a single sample. Thus, our back-
ground sample combines events generated with a scale Q% = (Pr)? and Q% = (My/)2.
In this Appendix we present the studies that support that combining both kinds of
background events does not have an effect on the top mass measurement.

In Section 8.1 we introduced the kinematic variables that contain the most mass
information. We plot these distributions for both kinds of backgrounds to see whether
or not they differ from one another. Figure D.1 shows the M, , Hy, My, and Pr(1)+
Pr(2) distributions for the SVX Single VECBOS sample. The only distributions that
seem to be somewhat different are the M,,.. distributions. It is important to point
out that the SVX subsamples suffer from the least amount of background. Although
not shown, the distributions for the SLT and No Tags subsamples show very little
difference. We perform a series of Kolmogorov tests between the distributions in each
subsample to obtain a measure of how different they are. Table D.1 shows the results

from our K-S tests.
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| VECBOS Subsample | M,.. | Hp | My | Pr(1)+ Pp(2) |

SVX 2.72% | 43.4% | 77.9% 27.0%
SLT 44.9% | 34.5% | 23.7% 14.0%
No Tags 96.5% | 97.3% | 95.4% 100%

Table D.1: We give K-S tests results for each of the VECBOS subsamples. We note
that the SVX Single background is used for both SVX subsamples.

The K-S tests are an indication that both sets of background events are fairly
similar. Next, we investigate whether or not using the entire VECBOS background

has an effect on the different mass analyses described in this thesis.

D.1 Background Shape Effect on NN Template Method

We separate the background events into the two different classes. Using the default
Q? = (Pr)? background events, we construct the M,,. background template which
is then fitted with the NN method. We generate pseudoexperiments as explained in
Section 7.3 and we calculate the top mass. Next, we generate pseudoexperiments for
which we draw the background events from the Q? = (My)? background, and we
compare them to the default background distributions. When we compare the results
from the previous two methods, the median top mass was found to differ by 0.3 +0.2
GeV/c?2. Thus, combining both classes of events into a large background does not

change the top mass value.

D.2 Background Shape Effect on Standalone NN Analysis

The main reason why we want to combine all of the VECBOS events into a single
background sample is to have enough statistics to properly train the networks used
in the Standalone NN analysis.
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Figure D.1: Comparisons of the VECBOS background generated with two different
values of Q? for SVX-tagged events for (a) reconstructed top mass, M. , (b) Hr, (c)
tt invariant mass, My;, and (d) Pr(1) + Pr(2).

We have generated two new networks: one for the Single SVX subsample, and
another for the No Tags subsample. These new networks have the same architecture as
the ones shown in Table 8.2. However, they are trained using only default background
events. We have not generated a network for the SL'T subsample because there are
not enough events in the default background sample to train the network correctly.

We ran pseudoexperiments for the Single SVX subsample in which we draw the
background events from the default background sample. Next, we ran pseudoex-
periemnts for which we draw the background events from the Q% = (My)? back-

ground sample. We find that the difference in the top mass median is 0.2 + 0.2
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GeV/c?. We perform a similar study for the No Tags subsample and we find that the
difference in the mass median is 0.0 + 0.2 GeV/c?.

Based on the results from the K-S tests, and the mass analyses tests we think
that combining the Q* = (Pr)? and Q? = (My/)? backgrounds has no effect on the

top mass calculation.
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APPENDIX E

COMBINING MEASUREMENTS

Suppose one is trying to determine the value of quantity s and there are n inde-
pendent measurements s; with their corresponding error g;. The best estimate for s

is then given by
>ixi/o}
>il/o?

Now, suppose that we have n measurements of a quantity s but that each measure-

S =

(E.1)

ment is related to the other n — 1 measurements. In this case, we say that the
measurements are correlated. To find the best estimate of the quantity s we need
more information than the individual errors. Thus, we define the covariance matriz

Vs whose terms are given by

(Vi)ij = pijoioj, (E.2)
and
Vs )ij
pij = () (E.3)
O'Z'(J'j

where the correlation coefficient, p;;, is a measure of the relation between two vari-
ables, and it can be proved that it must lie between -1 and +1.
We want to construct the best linear estimator of the quantity s which accounts for

all the measurements, including their errors and correlations. We define the estimator
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to be

5= Z CiSi, (E.4)

[

with an error given by
0% = Zcicj(Vq)ij- (E.5)
ij
In the previous two equations, ¢;’s are the coefficients that must be found. From any

statistics book [52], we find that these coefficients are given by

_ eV )ik
ik (V )ik '

Ci

(E.6)

Note that this expression for ¢; is identical to equation E.1 when the errors are

independent from one another.

E.1 Information

Imagine that we want to combine two measurements s; + oy and sy £+ 09 into a
single measurement 5 with error 02. We plot the combined error o2 for two different
errors o1 and oy as a function of the correlation, p, between the measurements s; and
s9. Figure E.1.(a) shows the results for the case when o; = 5.0 and 09 = 10.0. As we
can see from the graph, o2(p) is not linear. As a matter of fact, the behavior of the
function is quite surprising. The plot implies that when the measurements are 100%
correlated (p = +1 or -1) , we will be able to know the quantity perfectly.

One expects the combined error to be at a minimum when the measurements
are 100% uncorrelated and then to grow as the correlation coefficient increases. The
naive interpretation is that as the measurements become more correlated the infor-
mation one is adding decreases. To determine whether this is true or not we use the

Fisher information variable [53]. We assume the two measurements have binormal
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Figure E.1: (Left) Shows oZ(p). The function is not linear and it is equal to 0 when
the p = +1 or -1. (Right) The Fisher information is shown as a function of p. The
information is maximum when the measurements are 100% correlated (values not
shown because they approach infinity).

distributions and we derive:

2 2
oy + 05 — 2po109

| =
o703 (1— )

(E.7)

Figure E.1.(R) shows that information decrease from p = 0 to p = 01/09, after
which it begins to increase. The explanation to this effect is somewhat simple. As
the correlation increases beyond a certain point, you are limiting the freedom of
the measurements to differ from the true value s4.,.. Therefore the variance of the
combined measurement starts going down. This is most easily understood for the

case where p = 1.
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A correlation of 100% means that if s; shifts by f x oy, then s, has to shift by
exactly f x o9. It is straightforward to check that under such a combined check the
value of s does not change. In fact, since the expectation values of s; and s, are both
Strue, and since they are 100% correlated, there must exist some real number r such
that s1 = e + 17 X 01 and sg = Sypye + 17 X 09 [54]. If we substitute this expression
into equation E.4 we find that § = sy.4.. Therefore the result o2Z(oy,09) = 0 makes

perfect sense.
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APPENDIX F

GENERATION OF “FAKE” MONTE CARLO

The generation of “fake” Monte Carlo is only to see whether or not a
NN can fit a set of 2-D distributions. It is not intended to replace the
actual Monte Carlo in any way or form.

In Chapter 7 we describe how to obtain the M,,, -dependent functional forms
for M,.. and Hy. These functional forms provide an infinite amount of statistics.
However, these functions are 100% independent and from Monte Carlo studies we
know that M,,.. and Hp are somewhat correlated. The results from this correlation
study are given in tables F.1. Looking at all distributions from all the generated top
mass we find that the average correlation between these variables is roughly 38% for
the tt signal and about 50% for the VECBOS background. Using this information

we generate “fake” Monte Carlo using the following recipe:

e We draw 50 events'? randomly from the M,.. and Hr functional forms. On
average the correlation between the 50 events in these subsamples will be ~ 0.
However, in some cases the correlation will be equal or greater to that observed

in the Monte Carlo.

12 A larger number of events will reduce the probability of getting a correlation close to what the
Monte Carlo predicts.
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‘ Top Mass ‘ SVX Single ‘ SVX Double ‘ SLT ‘ No Tags

120 GeV 0.42 0.42 047 0.44
130 GeV 0.41 0.32 042 041
140 GeV 0.37 0.38 0.38 | 0.46
145 GeV 0.36 0.36 0.36 | 0.37
150 GeV 0.37 0.37 040 | 0.39
155 GeV 0.37 0.31 040 | 0.42
160 GeV 0.36 0.38 0.37 | 040
165 GeV 0.37 0.36 0.36 | 0.39
170 GeV 0.39 0.37 038 | 037
175 GeV 0.36 0.37 0.37 | 0.39
180 GeV 0.38 0.39 0.35 | 0.39
185 GeV 0.38 0.38 0.36 | 0.38
190 GeV 0.37 0.36 0.37 | 040
195 GeV 0.38 0.33 0.38 | 0.36
200 GeV 0.37 0.37 0.38 | 0.36
205 GeV 0.35 0.34 0.35 | 0.37
210 GeV 0.38 0.40 0.36 | 0.40
220 GeV 0.39 0.38 041 ] 037
230 GeV 0.38 0.41 040 | 037
| VECBOS| 053 | N/A  [054] 051 |

Table F.1: We show the correlation factor between M,.. and Hy for all the different
Monte Carlo ¢t samples.

e We only keep the subsamples for which p; > pye (this is true for the ¢ signal
as well as the background). If a subsample meets the p requirements we add it

to a larger sample for which

> o
Ptotal = J]\/} ]- (Fl)

By only selecting subsamples with a specific correlation we are able to create a

sample with a correlation coefficient similar to the one observed in the real MC.

e The process is repeated until we have 50,000 events for each of the signal and

background mass subsamples. We point out that we do not really need that
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many events to populate the 2-D histograms. 10,000 or fewer events would be

sufficient when dealing with the real Monte Carlo.

The “fake” Monte Carlo mimics the shape of the real Monte Carlo quite well
as we can see by overlaying the projections from our “fake” 2-D templates to the
actual results from the 1-D functional forms. Figure F.1 shows an example from the
Single SVX subsample. Therefore, we think that fitting these templates with a Neural

Network will tell us whether or not this method can be used on the real Monte Carlo.

M Vs H; for fake M,,, = 175 GeV M Vs H for fake M,,, = 175 GeV I

200
N PR N RN RS FETE FUTE FETE FET FTTl T S
100 120 140 160 180 200 220 240 260 280 300 320 340
rec

| X-axis projection | | Y-axis projection |

5000 4000 @ fake Monte Carlo

— NN functional form
for real MC

4000
3000

2000 1500

1000

AR | P P R
0
100 120 140 160 180 200 220 240 260 280 300 320 340 200 300 400 500 600
rec T

Figure F.1: (a) Lego histogram of our “fake” MC distribution for M,, = 175 GeV /c?.
(b) Contour plot of the same distribution. (c¢) Projection along the M, axis of our
2-D plot. The blue curve corresponds to the 1-D NN fit of the true MC for a top
mass of 175 GeV/c?. (d) Projection of the 2-D plot along the Hz axis. The blue
curve corresponds to the 1-D NN fit of the true MC for a top mass of 175 GeV/c?.
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