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ABSTRACT
At the Tevatron, protons and antiprotons 
ollide with a 
enter-of-mass energy of1.8 TeV. In this energy range the dominant sour
e of top quarks is the produ
tion oft�t pairs via quark-antiquark annhilation and gluon-gluon fusion. We present our anal-yses to determine the mass of the top quark re
onstru
ted through the \lepton+jets"de
ay 
hannel in the 106 � 4.1 pb�1 of data 
olle
ted by the Collider Dete
tor atFermilab (CDF) from 1992-1996.In the past, the top mass was obtained by 
omparing the observed kinemati
features of top events to those predi
ted for di�erent top quark masses. These dis-tributions are known as templates. While any kinemati
 variable, whi
h exhibitssensitivity to the top mass 
an be used to 
al
ulate the mass of the top quark, thelowest statisti
al un
ertainty is a
hieved by re
onstru
ting the top mass from thede
ay produ
ts of the t�t pair. It was also observed that it is possible to obtain abetter estimate of the top mass by �tting the di�erent templates to a smooth fun
-tion. Previously, we have used a 
ombination of a Gaussian and a Gamma fun
tionto �t the distributions. In this analysis, we �nd that using a Neural Network (NN) to�t the distribution gives slightly better results, and that the NN �tting te
hnique isappli
able to any kinemati
 variable. Following this re
ipe the top mass is measuredto be 177:9�4:7(stat:)�4:6(syst:) GeV/
2 when using the re
onstru
ted mass,Mre
.ii



When we use the total transverse energy of the events, HT, the mass of the top quarkis found to be 204:4� 9:2(stat:)� 9:2(syst:) GeV/
2.As noted, there are di�erent kinemati
 variables that 
an be used to 
al
ulatethe top mass. A Neural Network provides a simple and elegant way of 
ombiningall of these variables whi
h have mass information. The idea is that 
ombining theinformation from more than one kinemati
 variable would result in a more a

uratemeasurement of the top mass. Therefore, this NN based te
hnique uses a 
ombinationof Mre
, HT , the invariant mass of the t�t system, Mt�t, and the sum of the PT 's of thetwo leading jets, PT (1) + PT (2). These variables were 
hosen be
ause they exhibitthe greatest mass dependen
e. The Neural Networks attempt to 
lassify the eventsas t�t signal or ba
kground. For ea
h event the NN provides a set of probabilities thatit has 
ome from any of the top masses used in this analysis, as well as ba
kground.Using this information we 
onstru
t a dis
rete likelihood fun
tion from whi
h the topmass is 
al
ulated to be 181:9� 5:1(stat:)� 5:2(syst:) GeV/
2.
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CHAPTER 1INTRODUCTION
In 1995, the top quark was dis
overed at the Fermilab Tevatron. This was the
ulmination of nearly two de
ades of intense resear
h at parti
le a

elerators aroundthe world. Also, it was a major triumph for the Standard Model of parti
le physi
ssin
e it predi
ted the top quark existen
e. The top quark is by far the heaviestfundamental parti
le known, and this large mass has 
aused mu
h ex
itement in thephysi
s 
ommunity. Sin
e the top quark mass is 
lose to the ele
troweak s
ale, itis believed that it plays a role in the breaking of the ele
troweak symmetry, andtherefore the origin of the fermion masses.Previous mass analyses have exploited the use of a single kinemati
 variable toextra
t the mass of the top quark. This thesis explores the use of Neural Networksto improve the top mass measurement. Neural Networks are applied in two distin
tways:� Neural Networks are used as fun
tion approximators to obtain a fun
tional form,whi
h des
ribes any distribution as a fun
tion of top mass.� Neural Networks are used for event 
lassi�
ation. This te
hnique allows us to
ombine information from di�erent variables.1



The Standard Model is summarized in Chapter 2 with spe
i�
 attention givento the produ
tion and de
ay of the top quark. Chapter 3 presents a des
riptionof the CDF dete
tor, emphasizing the subsystems most important in this analysis.Arti�
ial Neural Networks are introdu
ed in Chapter 4. Chapter 5 des
ribes thesele
tion 
riteria used to obtain the event sample used in this analysis. The top massre
onstru
tion algorithm is presented in Chapter 6. Here, we also dis
uss the jetenergy 
orre
tions employed in the mass analysis. The des
ription of the standardtemplate-based likelihood method used to extra
t the top mass is given in Chapter7. We introdu
e a new Neural Network method to parametrized the Mre
 templates.This te
hnique is 
ompared to the previous Gaussian + Gamma parametrizationmethod. The NN �tting te
hnique is also used to parametrize the HT distributions.Chapter 8 presents the standalone Neural Network te
hnique, whi
h 
ombines themass information from multiple kinemati
 variables to extra
t the mass of the topquark. The systemati
 un
ertainties are presented in Chapter 9. In Chapter 10,we des
ribe a method to measure the gluon 
ontent in the Run I SVX-tagged datasample. The Run I results from the di�erent analyses presented in this thesis aregiven in Chapter 11. Finally, in Chapter 12 we des
ribe a powerful te
hnique tomeasure the top mass using the large statisti
al samples of Run II.
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CHAPTER 2THEORY
All known parti
le physi
s phenomena are extremely well des
ribed within theStandard Model (SM) of elementary parti
les and their fundamental intera
tions.The SM provides a very elegant theoreti
al framework and it has su

essfully passedvery pre
ise tests in a variety of high-energy intera
tions. Although no signi�
ant dis-
repan
ies between experimental data and the Standard Model have yet been found,there are several 
riti
al issues whi
h remain unsolved. For instan
e, the StandardModel does not predi
t the masses of the fundamental parti
les nor provides any in-formation why these masses are so di�erent. Furthermore, the Higgs me
hanism bywhi
h the fundamental parti
les a
quire their mass is 
ompletely arti�
ial. Hen
e,physi
s beyond the Standard Model seems inevitable and it is possible that the topquark might be the window to that new physi
s.2.1 The Standard ModelThis is a simple sket
h of the Standard Model of parti
le physi
s. There areseveral books available to the reader that give a mu
h more thorough des
ription[1℄. The Standard Model is a quantum �eld theory that is based on the gauge sym-metry SU(3)C � SU(2)L � U(1)Y . The �rst gauge group, SU(3)C , 
orresponds to3



the symmetry of the strong intera
tions, and the se
ond and third gauge groups,SU(2)L � U(1)Y , 
orrespond to the symmetry of the ele
troweak intera
tions. Thegroup symmetry of the ele
tromagneti
 intera
tions, U(1)em, appears in the SM as asubgroup of SU(2)L�U(1)Y and it is in this sense that the weak and ele
tromagneti
intera
tions are said to be uni�ed.In the SM there are two kinds of fundamental parti
les: fermions and bosons.Fermions are spin-1/2 parti
les, whi
h are the 
onstituents of matter, and they aredivided into leptons (`) and quarks (q). The known leptons are: the ele
tron, e�, themuon, �� and the �� with ele
tri
 
harge Q = -1; and the 
orresponding neutrinos�e, ��, and �� with ele
tri
 
harge Q = 0. The known quarks are of six di�erent
avors: u, d, 
, s, t, and b with fra
tional ele
tri
 
harge Q = 23 , �13 , 23 , �13 , 23 ,and �13 respe
tively. Quarks also 
arry a 
olor 
harge labelled red, green or blue forreferen
e. We know that 
olor is not seen in Nature and therefore elementary quarksmust bind into 
olorless 
omposite parti
les named hadrons. Fermions are organizedin three families with identi
al properties ex
ept for mass. The parti
le 
ontent inea
h family is: 1st family:  �ee� !L, e�R,  ud !L, uR, dR2nd family:  ���� !L, ��R,  
s !L, 
R, sR3rd family:  ���� !L, ��R ,  tb !L, tR, bRand their 
orresponding antiparti
les.The se
ond kind of elementary parti
les, bosons, are the mediators of the funda-mental for
es. By leaving apart the gravitational intera
tion, all relevant intera
tions4



in parti
le physi
s are known to be mediated by spin-1 bosons. The photon, 
, isthe ex
hange parti
le in ele
tromagnetism. The photon is 
hargeless, massless and itdoes not intera
t with itself. The strong for
e is mediated by eight di�erent gluons.Gluons are massless, ele
tri
ally neutral and 
arry 
olor whi
h means that they notonly intera
t with quarks but also with themselves. The W� and Z parti
les mediatethe weak intera
tion. The weak bosons are massive and they are self-intera
ting. TheW� is 
harged with Q = �1 and the Z is ele
tri
ally neutral.In the Standard Model, parti
les a
quire their mass via the \Higgs me
hanism". Inorder to a

ommodate ele
troweak and 
avor symmetry breaking, we must arti�
iallyintrodu
e a weak-isospin doublet of fundamental s
alar �eld � = ��+�0� with a potentialof the form V (�y�) = �2(�y�) + j�j(�y�)2; (2.1)where � is the self 
oupling of the s
alar �eld. If we 
hoose �2 to be negative, theele
troweak symmetry is spontaneously broken when the �eld is expanded about itsnon-zero va
uum expe
tation value v = q��2=� = (GFp2)� 12 = 246 GeV. Thisvalue is referred to as the ele
troweak s
ale. The spontaneous symmetry breakinggives mass to the W+, W�, and Z0 parti
les, and it also gives rise to a spin-0 (s
alar)parti
le 
alled the Higgs boson. Ea
h quark and lepton has its own Yukawa 
ouplingto the Higgs boson Gf and thus a
quires a mass mf = Gfv=p2, where f stands forfermion.2.2 Constraining the Higgs Mass with the Top MassThe mass of the top quark is one of the most important parameters of the StandardModel. It enters into 
al
ulations of higher-order (radiative) 
orre
tions whi
h 
onne
t5



several other Standard Model input parameters. Thus, radiative 
orre
tions to manyele
troweak pro
esses depend on the masses of the top quark and the Higgs bosonvia loop diagrams su
h as those shown in Figure 2.1.t�bW W HW W
t�tZ Z HZ ZFigure 2.1: Self-
oupling loops 
ontributing higher order quantum 
orre
tions.At one loop, for instan
e, the � parameter,� = M2WM2Z(1� sin2�W ) � 1 + �r; (2.2)whi
h relates the W and Z boson masses and the weak angle, gets a radiative 
orre
-tion �r = 3GF8�2p2M2top + p2GF16�2 M2W "113 ln M2HM2W !+ : : :#+ : : : ; (2.3)whi
h is quadrati
 in the top mass. Note, however, that the dependen
e on themass of the Higgs boson is only logarithmi
. Therefore, the mass of the top quark isthe dominant term in the 
orre
tions for ele
troweak pro
esses. By measuring Mtopvery a

urately, and using additional 
onstraints from the large body of pre
isionele
troweak data we 
an test for 
onsisten
y and predi
t unknowns in the StandardModel. One of su
h predi
tions is the mass of the Higgs boson, whi
h 
an be 
on-strained by the dire
t measurement of the W boson and the top quark along withother pre
ision data. 6



2.3 Pair Produ
tion of Top QuarksIn p�p 
ollisions at a 
enter-of-mass energy of 1.8 TeV, top quarks are expe
ted tobe produ
ed by two distin
t pro
esses: qq annhilation and gluon-gluon (gg) fusion.Figure 2.2 shows the Feynman diagrams for these pro
esses. At the Tevatron, therelative 
ontributions from these pro
esses are about 90% and 10% respe
tively. Fora 
omplete derivation of heavy quark produ
tion there are several reviews availableto the reader [2℄. Here, only the most important issues of these 
al
ulations will bepresented.
�q
q

�t
t

g
g

�t
t + g

g
�t
t + g

g
�t
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Figure 2.2: Lowest order pro
esses for t�t pair produ
tion.The total 
ross se
tion for the produ
tion of heavy quarks has the form,�(p�p! t�t) =Xi;j Z dx1dx2f pi (x1; �2)f �pj (x2; �2)�̂(ij ! t�t; ŝ; �s(�2);Mtop); (2.4)where the sum is over all partons: gluons, light quarks and antiquarks. This formulaexpresses the total 
ross se
tion in terms of the parton-parton pro
esses ij ! tt.The parton distribution fun
tion fpi 
orresponds to the probability density of �ndinga parton with a given fra
tion of the proton momentum between x1 and x1 + dx1.7



Cal
ulation Type Stru
ture Fun
tion �t�t(1) Exa
t NLO[3, 4℄ NLO only MRSR2[5℄ 4:87+0:30�0:56 pb(2) LSvN[6℄ Resummed MRSD0[7℄ 4:94+0:71�0:45 pb(3) BC[8℄ Resummed CTEQ3[9℄ 5:52+0:07�0:42 pb(4) BCMNT[4℄ Resummed MRSR2 5:06+0:13�0:36 pbTable 2.1: Results of several di�erent p�p! t�t 
al
ulations, for Mtop = 175 GeV andps = 1:8 TeV.The fun
tion f�pj has the same de�nition but it 
orresponds to the antiproton. Thetotal short-distan
e 
ross se
tion for the parton-parton subpro
esses that intervene inthe heavy quark produ
tion is b�. The 
enter-of mass energy of the i-j parton systemis given by bs and it is related to the pp 
enter-of-mass energy by bs = x1x2s. Therenormalization s
ale � is the result of in
luding higher order Feynman diagrams. Ifthe 
al
ulation 
ould be 
arried out to all orders then the dependen
e on � wouldvanish. The strong 
oupling 
onstant is given by �s and Mtop is the mass of the heavyquark.The 
ross se
tion for heavy quark produ
tion is rather sensitive to higher order
orre
tions to the leading order (LO) 
al
ulation. Subsequently, several groups have
al
ulated the 
omplete next-to-leading order (NLO) 
ross se
tion. For top quarkprodu
tion at the Tevatron, the NLO 
ontribution for the gg pro
ess is roughly 70%that of the size of the LO term, and for the q�q pro
ess it is about 20% that of the LOresult. The theoreti
al 
ross se
tion results are summarized in Table 2.1.The t�t 
ross se
tion is small 
ompared with other pro
esses whi
h take pla
e atthe Tevatron. Of the �ve trillion or so 
ollisions that o

urred at CDF during theentire Run I, one expe
ts about 600 t�t pairs to have been produ
ed. Of these events,8



only a small fra
tion are observed. Throughout the text, it will be
ome evident whymost of these events fail to be 
ategorized as top events.2.4 Top Hadronization and De
ayWithin the Standard Model, the top quark de
ays via t!W+b with a bran
hingratio 
lose to unity. The de
ays t ! Ws and t ! Wd are also allowed but theyare suppressed by fa
tor of 10�3-10�4 by the Cabibbo-Kobayashi-Maskawa (CKM)mixings [10℄. The de
ay of the top quark 
an be written as,�(t!Wb) = GFM2W8�p2 1M2topV 2tb "(M2top �m2b)2M2W +M2top +m2b � 2M2W#� 2k (2.5)where k denotes the W momentum in the t rest frame and it is,k = q(M2top � (MW +mb)2)(M2top � (MW �mb)2)2Mtop (2.6)Let MW = 80.4 GeV/
2, mb = 5 GeV/
2, and the top quark massMtop = 175 GeV/
2.Substituting these numbers into the above equation gives the following top quarkde
ay rate and lifetime:�(t! Wb) � 1:55 GeV =) �t = � 1�t� � 4� 10�25 se
: (2.7)At the Tevatron energies, the top quark de
ays before it has time to hadronize. Thisimplies that the top quark 
an be treated as a free parti
le. Note however, that it isnot only the large mass of the top quark whi
h gives it its extremely short lifetime,but also the fa
t that it has a CKM-allowed t ! b de
ay very 
lose to unity. If thisde
ay was more suppressed by the CKM mixings, the lifetime of the top quark wouldbe longer.A t�t �nal state 
ontains two t!Wb de
ays. The two b quarks will be observed asa spray or parti
les known as jets, and the W bosons will de
ay into a lepton-neutrino9



Category De
ay Mode Bran
hing RatioLepton+jets t�t! (q�q0b)(`��b) 24/81 (30%)All hadroni
 t�t! (q�q0b)(q�q0�b) 36/81 (44%)Dilepton t�t! (`�b)(`��b) 4/81 (5%)Table 2.2: Bran
hing ratios for the three di�erent t�t de
ay modes. Here q stands fora u; d; 
; or s, and ` stands for e and �. � leptoni
 de
ays are not in
luded.or a quark-antiquark pair. To a good approximation, the possible de
ays of the Wboson are equally probable. However, one must remember to 
ount ea
h quark 
avorthree times sin
e there are three di�erent 
olors for ea
h of them. Therefore, theprobability that the W boson will de
ay into either of the three leptons is about 1/9,while the probability that it will de
ay into a quark-antiquark pair is 2/3. Sin
e theW bosons de
ay independently of ea
h other, the t�t de
ays 
an be 
lassi�ed a

ordingto the W boson's de
ay. A summary of the di�erent bran
hing ratios of the possiblede
ay 
hannels is given in Table 2.2.2.5 De
ay Signature of the Lepton+jets ChannelFigure 2.3 shows an artist representation of the lepton+jets de
ay 
hannel. Fromthis pi
ture we expe
t the �nal state of the t�t de
ay to have the following:� An energeti
 lepton, ele
tron or muon, 
oming from the leptoni
 de
ay of theW boson. The W boson is a massive obje
t so in general the lepton produ
edwhen it de
ays will have a high energy.� Large missing energy due to the undete
ted neutrino from the leptoni
allyde
aying W boson. Neutrinos do not intera
t with the CDF dete
tor so theirpresen
e is inferred by an imbalan
e in the total energy measured in the dete
tor.10



Figure 2.3: Lepton+jets t�t event. One of the W bosons de
ays into a lepton+neutrinopair while the other one de
ays into a quark-antiquark pair.
� Four jets, two of them from the b quarks and two more from the two lightquarks produ
ed by the hadroni
 de
ay of the W boson. After a high energy
ollision, a quark or a gluon be
omes free from the 
olor-neutral obje
t whi
h
ontained it. As the partons move apart the energy required to separate themin
reases and q�q pairs are 
reated from the va
uum. These new quarks andthe original ones re
ombine themselves to produ
e new hadrons. Thus, whatemerges from the 
ollision is a spray of 
olorless hadrons, or jet.

11



CHAPTER 3THE CDF EXPERIMENT AT THE TEVATRONLo
ated in Batavia, Illinois, the Fermi National A

elerator Laboratory (Fermilab)is a parti
le physi
s experimental fa
ility built in 1967 that is home to the Tevatron,the highest-energy parti
le a

elerator in the world. The Tevatron will 
ontinue todominate the world of high-energy physi
s until 2007, when the Large Hadron Col-lider at CERN is s
heduled to begin operations. Throughout this do
ument, the maindata taking periods at the Tevatron are referred to as Run I (1992-1995) and Run II(started 2001). The fo
us of the analysis presented here is the dataset a

umulatedduring Run I by the Collider Dete
tor at Fermilab (CDF) experiment. In the ma-terial and observations that follow, we will des
ribe the a

elerator and the dete
tor
omponents as they were during Run I1.3.1 The TevatronAt the Tevatron, protons and antiprotons 
ollide with a 
enter � of � massenergy of 1.8 TeV. The proton and antiproton beam a
quire their �nal energy bypassing through the a

eleration 
hain shown in Figure 3.1. The intermidiate energiesattained at ea
h step are given Table 3.1.1For Run II, there have been a large number of improvements and additions to the experiment,as part of the upgrade following the 1995 shutdown.12
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ProtonsAntiprotons

Tevatron

Booster

Antiproton Storage Ring

Cockroft-Walton

LinacCDFFigure 3.1: The a

elerator 
omplex at Fermilab.
A

elerator Component Parti
le Max. Energy Approximate SizeCo
k
roft-Walton H� 750 keV few metersLina
 H� 200 MeV L = 150 mBooster p 8 GeV r = 75 mDebun
her/A

umulator �p 8 GeV hri = 90 mMain Ring p, �p 150 GeV r = 1 kmTevatron p, �p 900 GeV r = 1 kmTable 3.1: A

eleration stages for protons and antiprotons.At the Co
kroft-Walton a

elerator, negatively 
harged hidrogen ions are �rsta

elerated before being inserted in the 500-feet Linear a

elerator (Lina
) . Then,the H� ions pass through a 
arbon foil whi
h removes the ele
trons, leaving onlythe protons. From here, proton a

eleration is done in three stages, 
orrespondingto ea
h of the three 
ir
ular a

elerators: Booster, Main Ring, and Tevatron. Theantiprotons are made by 
olliding a proton beam from the Main Ring into a Tungstentarget. The 
ollisions in the target produ
e a wide range of se
ondary parti
les13



Period Typi
al Instantaneous L Best Instantaneous L Integrated LRun IA 0:5 � 1031 
m�2 s�1 0:9� 1031 
m�2 s�1 19.6 pb�1Run IB 1:6 � 1031 
m�2 s�1 2:8� 1031 
m�2 s�1 86.3 pb�1Table 3.2: Typi
al instantaneous, best instantaneous, and integrated luminositiesduring Run I at the Tevatron (integrated L 
orresponds to the CDF intera
tionregion).in
luiding many antiprotons. These antiprotons are sele
ted and subsequently passedto the Debun
her where they are redu
ed by sto
hasti
 
ooling and transferred to theA

umulator. When a suÆ
ient number of antiprotons (� 1012) has been 
olle
ted,the antiprotons are reinje
ted into the Main Ring and then into the Tevatron, similarto the protons but revolving in the opposite dire
tion. The bun
hes of protons andantiprotons 
ross every 3.5 �s. Table 3.2 shows the various luminosity values duringRun IA (1992 � 1993) and Run IB (1994 � 1995) respe
tively. Further informationabout the Tevatron at Fermilab 
an be found in referen
e [11℄.3.2 The CDF Dete
torThe CDF dete
tor is a general purpose dete
tor designed for good lepton (e,�), photon, and jet identi�
ation. It is 
yllindri
ally symmetri
, and also forward-ba
kward symmetri
 with respe
t to the transverse plane, whi
h passes throught the
enter of the dete
tor. CDF employs a 
oordinate system in whi
h the z-axis isalong the beam line. In this system, we express the parti
le tra
k 
oordinates in thedete
tor by the pseudorapidity, � = -ln(tan �2), and �, where � is the polar angle,and � is the azimuthal angle. CDF is 
omposed of an array of individual dete
tors,whi
h are divided into three main 
ategories: the tra
king 
hambers, 
alorimeters,14
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Figure 3.2: A quarter view of the CDF showing the lo
ations of the di�erent dete
torsub
omponents.
and muon 
hambers. First, the tra
king dete
tors are the 
losest to the intera
tionregion. They are en
losed by a super
ondu
ting solenoid, whi
h generates a 1.4 Tmagneti
 �eld along the in
ident beam dire
tion. This magneti
 �eld allows pre
isemomentum determination of 
harged parti
les in the 
entral region. Surrounding thesolenoid are the 
alorimeters that determine the energies of the outgoing parti
les.Finally, the outermost dete
tors are the muon 
hambers that measure the energiesand positions of the muons that were not absorbed in the 
alorimeters. For the
omplete des
ription of the dete
tor, we point the reader to referen
e [12℄.15



Figure 3.3: S
hemati
 view of an SVX barrel.
3.2.1 Tra
king Dete
torsThere are three tra
king 
omponents, all lo
ated inside the 1.4 T solenoid (Fig-ure 3.2): the Sili
on Vertex Dete
tor (SVX), the Vertex Time Proje
tion Chamber(VTX), and the Central Tra
king Chamber (CTC).The SVX tra
king dete
tor is designed to dete
t se
ondary verti
es from heavy
avor de
ay espe
ially b hadrons, whi
h have a ma
ros
opi
 mean de
ay length2.It 
onsists of two barrels aligned end-to-end on either side of the z = 0 point, andsurrounding the 1.9 
m radius beam pipe. The total 
overage of the SVX is 51 
m inthe z dire
tion whi
h 
orresponds to an j�j < 1:9. As the spread of p�p 
ollisions is 60
m along the z axis, the SVX tra
k a

eptan
e is roughly 60%. Figure 3.3 shows one2The mean life time in the rest frame is �0 = 1:65� 10�12s (
�0 = 0:5mm). A 15 GeV/
 b quarkhas a lorentz fa
tor 
 � 4 16



SVX barrel. In the azimuthal dire
tion it features 12 wedges of 30Æ ea
h, with thesili
on strip dete
tors arranged in 4 
on
entri
 layers. The number of sili
on strips
hanges with ea
h layer. The strip lines run parallel to the beam line and provide hitinformation in the r � � plane. The SVX single hit resolution is measured to be 13�m in r�� plane, and the resolution of the impa
t parameter relative to the primaryvertex is 17 �m. The SVX system plays a major role in just about all areas of topquark physi
s.The vertex drift 
hamber lies outside the SVX. The VTX 
onsists of 28 modulesof o
tagonal time proje
tion 
hambers along the z axis. Ea
h module is segmentedazimuthally into 8 wedges, and 
ontains a 50%-50% mixture of argon-ethane gas.It has a 
entral high voltage grid whi
h divides the module into two drift regions.The ionization ele
trons drift to the two end
aps 
ontaining sense wires runningperpendi
ular to the longitudinal plane bise
ting ea
h wedge. The arrival times ofthe ele
trons give the z 
oordinate of the tra
k, while the wire lo
ation spe
i�es theparti
ular r. The fun
tion of the VTX is two-fold. The VTX is able to identify thez position of the primary vertex with a resolution of � 1 mm. In the 
ase of eventswith multiple intera
tion3, the VTX is used to establish whi
h intera
tion a primaryvertex and asso
iated tra
ks belong to.The CTC is a 3.2 m long 
ylindri
al drift 
hamber with a 1.3 m radius. TheCTC 
overs a pseudorapidity range of j�j < 1:0. It 
onsists of 84 layers of sensewires arranged into 9 superlayers. There are two types of superlayers alternating inradial dire
tion: axial superlayers (0, 2, 4, 6, 8) are 
omposed of 
ells with 12 sensewire layers and provide r � � tra
k information; stereo superlayers (1, 3, 5, 7) are3There are roughly 1010 parti
les in the proton and antiproton bun
hes. On average we expe
tone intera
tion per beam 
rossing but in some 
ases there are more than one17



Figure 3.4: Transverse view the Central Tra
king Chamber (CTC) whi
h shows thealternating superlayers of axial and stereo 
ells.

omposed of 
ells with 6 sense wire layers and provide tra
king information in the r�zplane. Figure 3.4 shows the transverse view at the endplate of the CTC. Ea
h 
ellis tilted by 45Æ with respe
t to the radial dire
tion to ensure that the ele
trons driftperpendi
ularly to the radial dire
tion, whi
h simpli�es tra
k re
onstru
tion. Thereare over 6000 sense wires in the CTC, with ea
h wire having a design resolutionof � 200 �m in the r � � plane, and 4 mm in the r � z plane. The momentumresolution of a 
harged parti
les is given by ÆPT=PT = 0:001 GeV �1
 � PT whenthe information from the SVX and CTC are 
ombined. The transverse momentumis given by PT = Psin�, where P is the total momentum of the parti
le measuredby the CTC. Further information about the SVX, VTX, and CTC 
an be lo
ated inreferen
es [13℄, [14℄, and [15℄ respe
tively.18
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entral 
alorimeter wedge. There are 24 wedges 
overing �� = 15Æ oneither side of the transverse plane z = 0.
3.2.2 CalorimetersThe CDF 
alorimeters, lo
ated outside the solenoid, are segmented into towers (in��� spa
e) that point ba
k to the nominal intera
tion point (Figure 3.2). The 
entral
alorimeter extends over the range j�j < 1:1 and ea
h of its towers 
orresponds to asolid angle �� = 15Æ and �� = 0:1. The region 1:0 < j�j < 2:4 is 
overed by the plug
alorimeters with a segmentation of �� = 5Æ and �� = 0:09. Finally, the forward
alorimeters mat
h the pseudorapidity interval 2:4 < j�j < 4:2, with a segmentationof �� = 5Æ and �� = 0:1. Calorimeter energies are given by the transverse energy,ET = Esin�, where E is the total measured energy. A 
loser look at ea
h 
alorimetrysystem follows. 19



The 
entral 
alorimeter system is 
omposed of the 
entral ele
tromagneti
 
alorime-ters (CEM), and 
entral hadroni
 
alorimeters (CHA). There are 48 individual wedgesea
h 
ontaining 10 towers. Figure 3.5 shows one of the 
entral 
alorimeter wedges,where the lower and upper regions are o

upied by the CEM and CHA 
alorimetersrespe
tively. Towers 0 to 8 de�ne the 
entral region, and towers 6 to 8 share theirhadroni
 portion with the endwall 
alorimeter (WHA) as shown in Figure 3.2.The CEM is 
onstru
ted by alternating layers of lead and s
intillator. The 
entralele
tromagneti
 shower 
ounter (CES) is lo
ated at the CEM shower maximum toprovide shower position information in the z�� view. The CES is a proportional stripand wire 
hamber. The 
entral preradiator (CPR) 
omposed of proportional tubes ispla
ed between the solenoid and the CEM. The CPR samples the early developmentof ele
tromagneti
 showers and is used to di�eren
iate between el
trons and hadrons.The CHA and WHA 
alorimeter 
onsist of alternating layers of iron and s
intillator.Further information regarding the physi
al 
hara
teristi
s of the CEM, CHA andWHA 
alorimeters 
an be found in Table 3.3. A detailed des
ription of ea
h is givenin referen
es [16℄, [17℄.In order to determine the energies of the forward jets, the plug and forward
alorimeters are required. This information is also used to extra
t the missing energy6ET in an event (see Se
tion 8.5). As in the 
entral 
alorimetry design, both the plugand the forward 
alorimeters feature ele
tromagneti
 and hadroni
 se
tions: PEMand FEM relating to the former and PHA and FHA des
ribing the latter. These
alorimeters use a 50%-50% argon-ethane gas mixture as their a
tive medium. Pro-portional tube arrays 
ontaining this gas are interleaved with layers of lead for theFEM and steel for the FHA, as summarized in Table 3.4.20



CEM CHA WHACoverage (j�j) 0� 1:1 0� 0:9 0:7� 1:3Tower Size (�� ���) 0:1� 15Æ 0:1� 15Æ 0:1� 15ÆModule Length 250 
m 250 
m 100 
mModule Width 15Æ 15Æ 80 
mNumber of Modules 48 48 48A
tive Medium polystyrene a
ryli
 a
ryli
s
intillator s
intillator s
intillatorThi
kness 5 mm 10 mm 10 mmNumber of Layers 31 32 15Absorber Pb Fe FeThi
kness 3 mm 25 mm 51 mmNumber of Layers 30 32 15Energy Resolution(�(E)=E(GeV )) 13:7%=pET � 2% 50%=pET � 3% 75%=pET � 4%Table 3.3: The physi
al properties for the 
entral and endwall 
alorimeters. In thelast row, the symbol � indi
ates that the 
onstant term is to be added in quadratureto the resolution.
PEM PHA FEM FHACoverage (j�j) 1:1� 2:4 1:3� 2:4 2:2� 4:2 2:3 � 4:2Tower Size (�� ���) 0:1 � 5Æ 0:1 � 5Æ 0:1 � 5Æ 0:1� 5ÆNumber of Layers 34 20 30 27A
tive Medium Proportional Tube Chambers with Cathode Pad ReadoutTube Size 7� 7 mm2 14� 8 mm2 10� 7 mm2 15� 10 mm2Absorber Pb Fe 96% Pb, 4% Sb FeThi
kness 2.7 mm 51 mm 4.8 mm 51 mmEnergy Resolution(�(E)=E(GeV )) 22%=pET � 2% 90%=pET � 4% 26%=pET � 2% 137%=pET � 4%Table 3.4: The physi
al properties for the plug and forward 
alorimeters. In the lastrow, the symbol � indi
ates that the 
onstant term is to be added in quadrature tothe resolution.
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3.2.3 Muon SystemsA majority of the 
harged parti
les exiting the 
alorimeters are high-energy muons(PT > 1:5 GeV/
). At CDF, muon dete
tion is a

omplished by using single wire,re
tangular drift tubes. The muon system is 
omposed of three separate muon de-te
tors, all situated in the 
entral pseudorapidity region: the 
entral muon dete
tor(CMU), the 
entral muon upgrade (CMP), and the 
entral muon extension (CMX).The CMU [18℄ o�ers a 
overage of j�j < 0:6, and is lo
ated inside the 
entral 
alorime-ter wedges radially outside of the CHA (Figure 3.6). In ea
h wedge the CMU issegmented into three towers, ea
h 
onsisting of 4 radial layers of 4 drift 
ells. Thetwo outer layers have an o�set of 2 mm to resolve the left-right ambiguity of tra
kmeasurement in azimuth respe
t to the two inner layers. The 
entral muon upgrade(CMP), whi
h is lo
ated behind an additional 0.6 m of steel, redu
es the ba
kgrounddue to the hadrons whi
h \pun
h-through" to the CMU. It 
onsists of 4 layers of drift
ells and in e�e
t has the same � 
overage as the CMU, but it 
overs most of theCMU gaps. With the addition of the CMX the muon 
overage in
rease to a range of0:6 < j�j < 1:0. The CMX is stru
tured as four 
oni
al ar
hes of drift tubes.3.2.4 Event TriggersIn Run IB, the p�p 
ollisions were o

urring at a rate of 280 kHz, whi
h 
onsid-erably ex
eeds the rate of writing out the events to tape (� 10 Hz). To solve thisproblem, CDF devised a three-level trigger system that reje
ts most of the events,while retaining only those events that are potentially useful for various physi
s analy-ses. The trigger requirements are applied serially. Events passing the Level 1 trigger
riteria are passed to Level 2; the events passing Level 2 are allow to propagate to22



Figure 3.6: The lo
ation of the CMU system. Inside ea
h 
alorimeter wedge there isa 2:4Æ � interval not 
overed by the CMU.
Level 3 whi
h imposes farther 
uts before de
iding whether an event should be writtento tape or not. Typi
al a

eptan
e rates for the three trigger levels are 1:300, 1:50,and 1:5 for Level 1, Level 2, and Level 3 respe
tively.Level 1 sele
ts events based on identi�
ation of energy 
lusters in the 
alorimetersor muon tra
ks in the muon 
hambers. The time required to make the de
ision is lessthan 3.5 �s, leaving little dead time in the system. The Level 1 requirements redu
ethe event rate down to 1 kHz from 280 kHz.The Level 2 de
ision time is approximately 20 �s during whi
h further beam
rossings are ignored by the dete
tor resulting in a dead time of a few per
ent. Thede
ision to a

ept events is based on tra
k information and 
lustered energies. The
entral fast tra
ker (CFT), a highly eÆ
ient hardware pro
essor, re
onstru
ts high23



momentum tra
ks using the hit information from the CTC. Similarly, 
alorimeter
lusters are formed by sear
hing for a seed tower above a 
ertain threhold and addingthe neighboring towers. The Level 2 output rate is 20-30 Hz.The Level 3 trigger is a software re
onstru
tion trigger on a farm of Sili
on Graph-i
s pro
essors. If an event passes the Level 2 requirements, the whole dete
tor is readout, and the event is re
onstru
ted using a simpli�ed version of the offline analysis
ode. This in
ludes the re
onstru
tion of the t�t de
ay obje
ts: lepton, jets, and 6ET .The dete
tor readout time is 3 ms whi
h on average results in 10% dead time. On
ean event is a

epted by Level 3, it will be written to 8 mm tape as part of a parti
ulardata stream. The Level 3 output rate is 5-10 Hz.

24



CHAPTER 4INTRODUCTION TO NEURAL NETWORKS
The mass of the top quark is one of the most important fundamental parametersin the Standard Model. Previous analyses of the top mass have resulted in the mosta

urate mass measurement among the quarks. However, there are ways the massanalysis 
an be improved by using Neural Networks (NN).In this 
hapter, we give a brief histori
al ba
kground on Neural Networks. The�rst network models are introdu
ed giving spe
ial attention to the per
eptron. This
omputational model is the foundation of the multi-layer Neural Network. A des
rip-tion of the 
omponents of the multi-layer NN are given next. In the last few se
tions,we explain how these networks work and are able to perform a wide range of tasks.4.1 Histori
al Ba
kgroundArti�
ial Neural Networks are loosely based on how the human brain works.About 100 years ago, Santiago Ramon y Cajal, realized that the brain was madeup of dis
rete units 
alled neurons, the Greek word for nerves. He des
ribed neuronsas polarized 
ells that re
eive signals via highly bran
hed extensions, 
alled dendrites,and send information along unbran
hed extensions, 
alled axons. This information istransmitted in the form of ele
tri
al pulses 
alled a
tion potentials. These potentials25




ause the neuron to release a 
hemi
al whi
h ex
ites or inhibits the neuron's mem-brane. The e�e
t of all ex
itations or inhibitions may produ
e an a
tion potential inthe next neuron (i.e the neuron �res). An artist rendition of a biologi
al neuron isshown in �gure 4.1.

Figure 4.1: A biologi
al neuron. The inset shows the synapse whi
h is a spe
ialized
onne
tion between neurons.
The �rst 
omputational model of the neuron was introdu
ed by M
Cullo
h andPitts in the 1940s. They proposed a binary unit for whi
h the output, y, is equalto 1 when an a
tion potential is generated, and 0 otherwise. A weight value wi isasso
iated to ea
h of the ith 
onne
tions of the neuron. These weights are ex
itatory if26



Figure 4.2: (Left) M
Cullo
h-Pitt model for the 
omputational neuron. The di�erentweights are either ex
itatory wi = +1 or inhibitorywi = �1. (Right) Simple graphi
alrepresention of a per
eptron with one output and two inputs.
wi = +1, and inhibitory if wi = �1. A neuron �res when the e�e
t of the ex
itationsand inhibitions is larger than a 
ertain threshold (bias) �. A graphi
al representationof this model is shown in �gure 4.2.(L). Here, xi are the input values fed into thenetwork.In 1958, Rosenblatt introdu
ed a 
omputational model of the neuron 
alled theper
eptron. Figure 4.2.(R) shows the graphi
al representation. The biggest improve-ment from the previous model is that it introdu
ed numeri
al inter
onne
tion weightsinstead of the simple inhibitory/ex
itatory 
onne
tions used before. The weights
ould now have any real value whi
h are determined a

ording to the task the per-
eptron has to perform. The mathemati
al model is the following:y(t) = ( +1 if Pni=1 wi(t)xi > �(t)�1 if Pni=1 wi(t)xi < �(t); (4.1)where y(t) is the output of the per
eptron, wi(t) is the weight of the input xi, and�(t) is the bias. One 
an think of the bias (see Figure 4.2.(R)) as the weight of a unit27



whose value is always set to one. Thus, the biases in the network are determined ina similar way as the weights.In Equation 4.1, the output of the network is a fun
tion of time be
ause it 
hangesas the weights and biases are modi�ed to perform a task. In Appendix A [20℄ we ex-plain how the updating of the weights and biases is a

omplished. Rosenblatt proveda remarkable theory about per
eptron learning. However, the initial euphoria wassoon repla
ed by disillusion after Minsky and Papert [21℄ found that the per
eptronhas severe restri
tions on what it 
an represent as des
ribed in the next se
tion.4.2 The Multi-layer Per
eptronThe single layer pre
eptron has severe restri
tions as only linear 
lassi�ers 
anbe 
onstru
ted, or in the 
ase of fun
tion approximation, only linear fun
tions 
anbe represented. Minsky and Papert showed that many of these restri
tions 
an beover
ome by introdu
ing an extra layer of units, but they did not present a solutionto the problem of how to update the weights from input to hidden units. The answerto this question was given by Rumelhart, and it is des
ribed in Se
tion 4.3.3. Themathemati
al derivation is given in Appendix B [20℄.A multi-layer per
eptron, or feed-forward Neural Network, has a layered stru
ture.An examples is shown in Figure 4.3. Ea
h layer 
onsists of units whi
h re
eive theirinput from units from a layer dire
tly to the left and send their output to units ina layer dire
tly to the right of the unit. There are no 
onne
tion within a layer.The Ni input units take their input value from outside the NN, and they push thisinformation to the layer of Nh;1 hidden units. No pro
essing takes pla
e in the inputunits. The a
tivation of the hidden units is a fun
tion Fi of the weighted inputs, plus28



Figure 4.3: A multi-layer network with l layers of units. The information goes fromthe input units (left) to the output units (right).
a bias as given byyk(t + 1) = Fk(sk(t)) = F(Xj wjk(t)yj(t) + �k(t)); (4.2)where y 
orresponds to the output value of the units, wjk are the weights, and �kare the biases. The output of the hidden units is distributed to the next layer ofNh2 hidden units, until the last layer of hidden units whose outputs are fed to alayer of output units. The output units may or may not have the same a
tivationfun
tion as the hidden units. The purpose of the output units is to send the data outof the Neural Network. Figure 4.3 shows a graphi
al representation of a multi-layerper
eptron.In general the a
tivation fun
tion, F(y) for the hidden and output units is athreshold fun
tion su
h as the sigmoid fun
tion. The only requirement is that thefun
tion must be di�erentiable with respe
t to the weights and biases in the network.29



When dealing with muti-layer networks, it is 
ommon to refer to the di�erentnumber of input, hidden, and output units as the ar
hite
ture of the Neural Network.For instan
e, a NN with �ve inputs, ten units in the hidden layer, and one output
orresponds to an ar
hite
ture of 5-10-1.4.3 Understanding Arti�
ial Neural NetworkAs we have seen Neural Networks are loosely based on the human brain. They
onsist of a series of units arranged in layers that are 
onne
ted to ea
h other throughweighted 
onne
tions. In this se
tion we explain how Neural Networks work. Firstwe state the per
eptron learning rule by whi
h a network tries to learn a spe
i�
task. For this learning rule there exists a 
onvergen
e theorem that says that startingfrom random weights, a network will 
onverge to some solution in a �nite number ofsteps. In order for the network to rea
h a solution, there must be a me
hanism thatupdates the di�erent weights at ea
h step. We �nish the se
tion by des
ribing thisme
hanism, 
alled Ba
k-propagation.4.3.1 The Per
eptron Learning RuleA Neural Network has to be 
on�gured su
h that the appli
ation of a set of inputvalues produ
es the desired set of output values. There are various methods we 
an useto set the weights. One way is to set the weight expli
itly, using a priori knowledge.A more 
ommon way 
alled supervised learning `trains' the network by feeding ittea
hing patterns and letting it 
hange the weights a

ording to the learning rule.These tea
hing patterns, (~x; d(~x)), are 
hosen by the user and they must 
hara
terizethe task that the Neural Network must perform. Mu
h study goes into the sele
tionof these learning samples. 30



Suppose we have a set of learning samples 
onsisting of an input ve
tor ~x and adesired output d(~x). The per
eptron learning rule 
an be stated as follows:1. Start with random weights for the 
onne
tions.2. Sele
t a input ve
tor ~x from the set of learning samples.3. Modify all the weights so that the per
eptron's response is as 
lose to d(~x) aspossible.4. Return to step 2.In the next se
tions we give the mathemati
al foundation whi
h allows the NeuralNetwork to resolve the 
hallenges at ea
h of the steps presented above.4.3.2 The Convergen
e TheoremThe 
onvergen
e theorem states that if there exists a set of weights ~w� whi
hallows the per
eptron to perform a spe
i�
 task (pattern 
lassi�
ation, fun
tion ap-poximation, et
), the per
eptron learning rule will 
onverge to some solution (whi
hmay or may not be the same as ~w�) in a �nite number of steps for any initial set ofweights.We de�ne 
os(~w) = ~w � ~w�k~wk (4.3)where 
os~w is a measure of how mu
h the network's 
urrent weights, ~w, di�er fromthe 
orre
t set of weights ~w�. Be
ause of the nature of the a
tivation fun
tion, thelength (norm) of the 
orre
t set of weights does not play a role in this proof. Thus,we let k~w�k = 1. 31



After n iterations it 
an be shown that the dot produ
t between the 
orre
t set ofweights and the n-th set of weights must be ~w(n) � ~w� � n�, where � is the amountthe weights 
hange from one iteration to the next. Similarly, it 
an be shown thatthe length of the n-th set of weights is k~w(n)k � n. We 
an 
ombine these results torewrite equation 4.3 as: 
os(~w(n)) = ~w(n) � ~w�k~w(n)k > n�pn: (4.4)In the limit that the number of iterations ne
essary to update the weights, goesto in�nity we have that limn!1 
os(~w(n)) = 1 but by de�nition we know that
os(~w(n)) � 1. Therefore, there must exist an upper limit nmax for the number ofiterations that the NN updates the weights. After nmax modi�
ations of the weightsthe network is \
orre
tly"4 performing the task. For a more detailed des
ription ofthis derivation see [22℄.4.3.3 The Ba
k-propagation AlgorithmThe Ba
k-propagation method is a generalization of the Delta rule derived inappendix A. For a mathemati
al derivation of the Ba
k-propagation algorithm werefer the reader to appendix B. It is 
onveninent to be
ome familiar with the Deltarule and then pro
eed with the Ba
k-propagation method. In this se
tion we explainthe most important points of how the weights are updated without having to re
iteall the equations.When the values of a learning pattern, ~x are fed to the Neural Network, theseinitial values are propagated to the output units, and the a
tual network output is4Corre
tly does not mean that the network is right 100% of the time. This is not possible inmost real 
ases. In se
tion 4.5 we des
ribe a series of fa
tors that in
uen
e the NN performan
e32




ompared to the desired output values, d(~x). From this 
omparison we obtain anerror for ea
h of the output units. Let's de�ned eo as the error 
orresponding tooutput unit o. This error is a measure of the di�eren
e between the network outputand the desired output. The goal is to bring this error to a minimum.The simplest way to do this is the greedy method: we 
hange the 
onne
tion,weights, in the NN so that the error eo will be zero for this parti
ular pattern. Fromequation B.7, we know that in order to redu
e the error 
orresponding to the outputunits, we have to adapt the weights a

ording to�who = (do � yo)yh = Æoyh; (4.5)where �who is the 
hange in the weights 
onne
ting the output unit(s) to the hiddenunits, do is the desired output, yo is the output from the output unit(s), and yh is theoutput from the hidden units. However, applying the above equation alone does not
omplete the job sin
e the weights from input to hidden units are not updated. Ifwe stopped here we would not be using the full representational power of the NeuralNetwork. To adapt the weights from input to hidden units we need to apply the Deltarule on
e more. The problem is that we do not have the value for Æ, the di�eren
ebetween the Neural Network output and the desired output, for the hidden units.Not to worry, sin
e Æ for a given hidden unit is equal to the sum of the Æ's from ea
houtput it is 
onne
ted to multiplied by the weight of that 
onne
tion (Æh = Po Æowho).The amount the hidden units 
hange is proportional to the amount the output units
hange times the strength of their 
onne
tions. Now, we just have to apply thea
tivation fun
tion, and the Ba
k-propagation method 
an 
ontinue with the nextpattern. 33



4.4 The Universal Approximation TheoremA multilayer per
eptron trained with the ba
k-propagation algorithm may beviewed as a tool to perform nonlinear input to output mapping. The input-outputrelationship of the network de�nes a mapping from the Eu
lidean input spa
e to theEu
lidean output spa
e. The most important aspe
t of this input to output mappingbe
omes the number of hidden layers ne
essary to a

omplish it.The universal approximation theorem [23℄ states that only one hidden layer suÆ
esto approximate any fun
tion with �nite dis
ontinuities to arbitrary pre
ision, providedthat the a
tivation fun
tions are non-linear.Let F(�) be a non
onstant, bounded, and monotoni
ally-in
reasing 
ontinuousfun
tion. Let IN denote the N-dimensional unit hyper
ube [0,1℄N , and C(IN) be thespa
e of 
ontinuous fun
tions on IN . Then, given any fun
tion f 3 C(IN ) and � > 0,there exist a set of real 
onstants �i, �i, and wij where i = 1; : : : ; L and j = 1: : : : ; Nsu
h that we may de�neF (x1; : : : ; xN) = LXi=1 �iF( NXj=1wijxj + �i) (4.6)as an appropiate realization of the fun
tion f(�); that isjF (x1; : : : ; xN )� f(x1; : : : ; xN)j < � (4.7)for all x1; x2; : : : ; xN that lie in the input spa
e. The universal approximation theoremsays that a single layer of hidden units is suÆ
ient to approximate any 
ontinuousfun
tion to within a 
ertain error �, However, it is not implied that a single layer isoptimum in the sense of learning time, ease of implementation, or more importantlygeneralization. Thus, the ar
hite
ture of the NN must be determined by the natureof the problem at hand. 34



4.4.1 Neural Networks and Fourier SeriesThe reader should noti
e that the universal approximation theorem is basi
ally ageneralization of approximations by Fourier series. From Fourier analysis it is knownthat any 
ontinuous fun
tion 
an be written as an in�nite sum of sine and 
osineterms: f(x) = 1Xn=0(an 
os nx + bn sin nx) = a0 + 1Xn=1 
n sin(nx + �n); (4.8)where 
n = q(a2n+ b2n) and �n = ar
tan(b/a). The above equation has the same formas equation 4.2, so we 
an interpret it as Neural Network with a single a
tivation unitx, a single output unit 
orresponding to f(x), and hidden units with an a
tivationfun
tion F = sin(s). The term a0 
orresponds to the bias of the output unit, thefa
tors 
n 
orrespond to the weights from the hidden units to the output unit, thephase fa
tor �n 
orresponds to the bias term of the hidden units, and the fa
tor n
orresponds to the weights between the units of the input and the hidden layer.The basi
 di�eren
e between the Fourier approa
h and the Neural Network methodis that in the Fourier approa
h the n fa
tors (weights) are integer numbers whi
hare analiti
ally determined. In 
ontrast, in the NN method, these weights are realnumbers and are determined through learning.Many people are relu
tant to use Neural Networks be
ause of their fan
y name. Ifwe look beyond this fa
t we would be surprised to see that sometimes Neural Networksare nothing more than a Fourier expansion!4.5 NN performan
eNeural Networks have been around for several de
ades. There have been manyimprovements over the �rst initial models of the 
omputational neuron whi
h have led35



to the use of Neural Networks in many di�erent �elds. Although, Neural Networkshave been very su

essful in performing di�erent tasks, this su

ess depends on aseries of di�erent aspe
ts that impa
t the network's performan
e. We des
ribe themost important aspe
ts and how they impa
t the analyses presented here:� Information: a neural network will not be able to perform any task if it is notgiven the 
orre
t information. If one wants to �t a distribution you must use allthe relevant information whi
h des
ribes that distribution. Similarly, for event
lassi�
ation we want to use variables that have the most distingushing powerbetween the di�erent 
lasses of events.� Ar
hite
ture: the number of input and output units is determined by thefun
tion one wants to �t. The only thing one must worry about is the numberof hidden units. For fun
tion approximation one wants to have enough hiddenunits so that the distribution represented by the NN is 
lose to the original.Two few hidden units will result in a poor �t. If one uses too many, theNN will \�t the noise" (statisti
al 
u
tuations) instead of making a smoothapproximation. In the 
ase of event 
lassi�
ation, the number of inputs isdetermined by the number of variables with distingushing power. The numberof outputs 
orresponds to the di�erent types of events we want to 
lassify. To�gure out how many hidden nodes are needed, it is useful to try many di�erentar
hite
tures and then 
hoose the one that performs best.� Number of learning samples: in fun
tion approximation, we want to haveenough patterns (points) so that the shape of the distribution is well represented.For instan
e, a straight line 
an be represented by two points, but a sine fun
tion36




learly requires more points. For event 
lassi�
ation, we want to use at leastten times the number of learning samples as hidden plus output units are in theNN. In any 
ase it is better to have more learning samples than less.� Number of iterations or epo
hs5: in the 
ase of fun
tion approximation wede�ne a �2 (Equation 7.1) fun
tion whi
h 
ompares the shape of the distributionwe want to �t to the NN output. We update the weights for as many iterationsas needed so that �2 � 1. At this point, the weights are frozen and thisde�nes the network whi
h gives a fun
tional form that is able to approximatethe fun
tion. In an event 
lassi�
ation task, we stop updating the weights whenthe performan
e of the testing sample begins to in
rease (see Figure 8.7. Atthis point, the NN is begining to learn the spe
i�
 features of the learningsample and therefore losing its generality. Fun
tion approximation and pattern
lassi�
ation are explained in detail in Se
tions 7.1.1 and 8.2.2 respe
tively.

5An epo
h has passed after all the lerning samples have been presented to the network on
e37



CHAPTER 5EVENT SAMPLE
The Run I data 
olle
ted by the CDF dete
tor from 1992 to 1995 
orresponds toan integrated luminosity of 106.0 � 4.1 pb�1. During that time, roughly 50 millionevents were written to tape. This 
hapter des
ribes how events that \look" like t�tare sele
ted for the mass analysis. First, we des
ribe how the di�erent obje
ts in thet�t de
ay are identi�ed. We then give the sele
tion 
riteria used to improve the signalto ba
kground ratio for both the Run I data sample and the Monte Carlo samplesused in this study. In the �nal se
tion, we des
ribe the Monte Carlo simulation andgeneration for both t�t signal as well as ba
kground.5.1 High PT LeptonsFrom the signature of the lepton+jets de
ay 
hannel, we are only interested inleptons 
oming from the de
ay of a W boson. In general, these leptons are isolated(there is low jet a
tivity around them) and they are more energeti
 than the leptons
oming from the semileptoni
 de
ay of the b and 
 quarks.From the Run I data we sele
t a sample of events whi
h 
ontain a high-ET ele
tron,ET > 20 GeV/
, lo
ated in the 
entral region of the dete
tor, j�j < 1. Ba
kgroundsfrom photon 
onversions and 
harged hadrons are removed by 
utting on several38



variables. For a detailed des
ription of all the di�erent 
uts we refer the reader to Ref.[24℄. Here we des
ribe those 
uts whi
h provide the largest dis
rimination betweensignal and ba
kground. We require the ele
trons to have a CTC tra
k pointingtowards the ele
tron shower in the CEM. The ratio of the energy in the hadroni

alorimeter and the energy in the ele
tromagneti
 
alorimeter, HAD=EM , must beless that 5%. We also require the shower energy divided by the momentum of theasso
iated tra
k to be less than 1.8. Ea
h of the ele
trons must be mat
hed to aVTX tra
k, and the invariant mass of this tra
k asso
iated with any other CTCtra
k must be greater than 0.5 GeV/
2. Using this 
ut we 
an remove ele
trons fromphoton 
onversions with an eÆ
ien
y of 88% [24℄. The energy of the ele
trons ismeasured by the 
alorimeter energy of the tower to whi
h the CTC tra
k points toplus the adja
ent towers [27℄. The energy resolution for high-ET ele
trons is given by�(ET)=ET = 13:5%=q(ET)� 2%.The high-PT muon sample is 
reated by sele
ting 
entral muons, j�j < 1, with aPT > 20 GeV/
. Muon 
andidates are identi�ed by a mat
hing a tra
k segment inthe CMU, CMP, or CMX to one in the CTC. The momentum of the high-PT muonis measured by 
onstraining the CTC tra
k to the average beam position. The muontransverse momentum resolutions is given by �(PT)=PT = 0:11%PT. The primaryba
kground in the muon sample is due to 
harged hadrons whi
h \pun
h through" the
alorimeter and produ
e tra
ks in the muon 
hambers, and 
osmi
 rays. We removethe ba
kground from the 
harged hadrons by requiring that their energy depositionin the 
alorimeter be 
hara
teristi
 of a minimum ionizing parti
le. The 
osmi
 rayba
kground is removed by requiring that the tra
k extrapolates ba
k (in r � �) towithin 3 mm of the beamline, and that it is within 5 
m (at r = 0) of the primary39



vertex in the r � z plane. The other muon sele
tion requirements are given in Ref.[24℄.From these high-PT lepton samples, we only sele
t those events in whi
h thelepton is isolated from jet a
tivity [28℄. In the lepton+jets 
hannel we require onlyone lepton whi
h 
orresponds to the W ! `� de
ay. We refer to this lepton as theprimary lepton of the event.5.2 Missing Transverse Energy, 6ETThe neutrino produ
ed in the leptoni
 de
ay of the W boson does not intera
twith the dete
tor. Thus, its existen
e is inferred indire
tly by an imbalan
e in thetotal transverse energy measured in the 
alorimeter. In p�p 
ollisions, the proton andanti-proton's initial momentum only have a nonzero z-
omponent. Thus, from energy
onservation6 we expe
ted the total energy in the transverse plane to be equal to zero.The 6ET is then given by the following�~6ET = ~ET (lepton) + 4Xi=1 ~ET (jet) + ~XT (5.1)su
h that the 6ET plus the total 
alorimeter energy 
an
el ea
h other. The de�nitionof the quantity ~XT is given in Se
tion 6.2. The above expression is highly 
orrelatedwith the jet energies. Thus, the 6ET is not an independent parameter in the mass �t.5.3 Jet Re
onstru
tionJets will deposit their energy in a lo
alized 
luster of 
alorimeter towers. The
luster identi�
ation begins by determining the tower with the highest transverseenergy. This seed tower is required to have an ET > 3.0 GeV. An energy weighted6In the high energy limit, energy and momentum are equivalent up to the 
onstant 
 fa
tor40




entroid is 
al
ulated for the 
luster, and only the energy from towers within a 
oneof radius �R = p��2 +��2 < 0:4 are in
luded to determine the energy of thejet. This raw jet energy, ErawT , must be 
orre
ted for the various energy loses (seeSe
tion 6.1) to obtain the true energy of the original parton. A dis
ussion of the jetre
onstru
tion algorithm 
an be found in Ref. [29, 37℄.5.3.1 Se
ondary Vertex Tagging of B JetsThe Sili
on Vertex Tagging (SVX) algorithm [24, 25℄ sear
hes for displa
ed verti
esdue to B hadron de
ays. B hadrons have a life time of about 1.5 pi
ose
onds and theyare expe
ted to be very energeti
 in top de
ays. Thus, b quarks 
an travel up to 1 or2 
m before they de
ay. The lo
ation of the B hadron de
ay, se
ondary vertex, 
anthen be distinguished from the p�p intera
tion point, primary vertex. This is shownin Figure 5.1.In order to be 
onsidered for tagging, SVX tra
ks must be asso
iated with a jetthat has a raw ET > 15 GeV and j�j < 2.0. These tra
ks must also be within a 
oneof �R < 0:4 and they must have hits in the sili
on vertex dete
tor. The algorithmemploys a two step pro
ess to �nd a se
ondary vertex. Initially, it attempts tore
onstru
t displa
ed verti
es with three or more tra
ks with PT > 0:5 GeV/
, forwhi
h at least one of them must have PT > 1:0 GeV/
. If it fails, it sear
hes for adispla
ed vertex with only two tra
ks with tighter quality 
uts. This algorithm hasan average eÆ
ien
y for Run 1b of 48% for tagging at least one of the b jets in t�t.5.3.2 Soft Lepton Tagging of B JetsThe Soft Lepton Tagging (SLT) algorithm [24, 30℄ sear
hes for additional leptonsresulting from the semileptoni
 B hadron de
ay. These o

ur via b ! `�`X, or41
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Figure 5.1: S
hemati
 view of an event 
ontaining a se
ondary vertex shown in thetransverse (r � �) view. The primary vertex is the point where the p�p intera
tiono

urs. The lines denoted 1, 2, and 3 are 
harged-parti
le tra
ks re
onstru
ted in theSVX whi
h yield the se
ondary vertex. The impa
t parameter for tra
k 1 is denotedby d1. Lxy is the 2-dimensional de
ay distan
e to the se
ondary vertex measured inthe r � � plane (adapted from [24℄).
b ! 
 ! `�`X. The lepton is required to have a PT > 2 GeV/
 and to be within a�R < 0:4 of a jet with raw energy, ET > 8 GeV. The eÆ
ien
y for tagging at leastone of the the b jets in t�t is roughly 15%.The SVX tagging algorithm obtains a higher purity and eÆ
ien
y than the SLTmethod. However, the SLT algorithm is employed be
ause it uses information whi
h isindependent from the SVX method and adds signi�
antly to the a

eptan
e. Finally,we note that not all the jets tagged by either of the algorithms 
ome from the de
ayof the B hadron. Displa
ed verti
es are also produ
ed by other long-lived parti
lessu
h as 
 quark, � , K0S, �, et
. 42



5.4 Top Mass Candidate SampleIn Se
tion 5.5 we des
ribe the largest ba
kground pro
esses to t�t produ
tion.These ba
kground events do not have any top mass information. Thus, we de�ne aseries of 
uts that are intended to keep most of the t�t events while removing mostof the ba
kground events. We 
hoose events that have four jets, an energeti
 lepton,and 6ET from the leptoni
 de
ay of the W boson. All the events in the mass samplemust pass the following 
uts:1. The event must have an ele
tron (muon) with ET > 20 GeV (PT > 20 GeV/
)and j�j < 1.2. The raw missing energy, 6ET , must be greater than 20 GeV. If the primary leptonis a muon, the 6ET in
ludes a 
orre
tion for the muon momentum.3. One isolated lepton is required (see Se
tion 5.1)4. Dilepton events (t�t ! `+��`��b�bX), de�ned a

ording to the sele
tion 
riteriades
ribed in Ref. [26℄ are removed.5. We remove events 
onsistent with Z boson de
ays Z ! e+e� and Z ! �+��.These events are 
hara
terized by two oppositely 
harged, same 
avor high-PTleptons (PT > 20 GeV/
) that have an invariant mass between 75 and 105GeV/
2. Events with a high-PT photon and whose ``
 invariant mass fallswithin the Z mass window are also removed.6. The primary vertex of the event must be within 60 
m of z = 0.0.7. At least three jets with ET > 15 GeV and j�j < 2:0.43



8. An additional jet with ET > 15 GeV and j�j < 2:0 or ET > 8 GeV and j�j < 2:4.9. After the the mass re
onstru
tion is performed, events are required to pass agoodness-of-�t, �2 < 10:0, where the variable �2 is de�ned in Se
tion 6.3.In the Run I data, a sample of 324 events pass 
uts one through seven, and arethe same events used in the CDF measurement of the t�t 
ross se
tion [25℄. Imposing
ut number eight redu
es the sample to 163 events. The �nal sele
tion requirementremoves 12 events, from whi
h we obtain an in
lusive sample of 151 W+multi-jetevents. There are 34 of these events that have jets whi
h are tagged by the SVX orSLT algorithm. To improve the signal-to-ba
kground (S/B) ratio for the untaggedevents we require them to have four jets with ET > 15 GeV and j�j < 2:0. Thereare 75 untagged events whi
h do not meet this requirement. Below we dis
uss thedi�erent mass subsamples used in this analysis.5.4.1 Mass SubsamplesThere are a total of 76 events in the Run I mass sample. These events are arrangedinto four non-overlapping subsamples a

ording to their tagging information. MonteCarlo simulations show that the statisti
al un
ertainty on the mass measurementde
reases by 17% when the results from the �ts from the di�erent subsamples are
ombined together. The four non-overlapping subsamples are des
ribed as follows:� SVX Double: Events with two SVX tags;� SVX Single: Events with one and only one SVX tag;� SLT: Events with one or two SLT tags, but no SVX tags;44



� No Tags: � 4 jets with ET > 15 GeV and j�j < 2:0.The number of Run I data events for ea
h subsample is given in Table 5.1. Inthe top quark mass analysis we assume that the four highest ET have 
ome from thede
ay of the t�t pair. Thus, we only 
onsider the tags on these four jets when wedistribute the events into the subsamples. The table also shows the S/B ratio for thedi�erent subsamples using the ba
kground estimates presented in Se
tion 7.2.Data Sample Number of Events Expe
ted S/BSVX Double 5 24SVX Single 15 5.3SLT 14 0.8No Tags 42 0.4Table 5.1: Subsamples used in the lepton+jets mass analysis and the expe
ted signalto ba
kground ratio (S/B) for ea
h. See Se
tion 7.2 for ba
kground estimates forthese subsamples.
5.5 Ba
kgroundsBa
kground events 
an mimi
 the same �nal state as top events, but they areprodu
ed by a di�erent physi
al pro
ess. The sour
es of ba
kground in the lep-ton+jets 
hannel 
ome from W+multijet events with heavy 
avor, non-W events,mistags, single top events, diboson events (WW, ZZ), Z ! �+��, and Drell Yan.Next, we des
ribe the main sour
es of ba
kground for both the SVX and SLT taggingalgorithms.The largest sour
e of ba
kground in the SVX tagged sample is in
lusive W produ
-tion in asso
iation with jets 
ontaining a b or a 
 quark, for example p�p! Wg(g !45



b�b). The eÆ
ien
y for tagging ea
h ba
kground sour
e is 
al
ulated from Monte Carlosamples as a fun
tion of jet multipli
ity. These eÆen
ies along with the ba
kgroundfra
tions are 
ompared to the number of W+jets events observed in the data to es-timate the 
ontribution from ea
h sour
e. The se
ond largest ba
kground sour
e
omes from mistags. These are jets whi
h do not 
ontain a true displa
ed vertex.From Monte Carlo studies, the transverse de
ay length, Lxy, distribution is sym-metri
 about zero. The negative side of the Lxy distribution 
omes primarily fromre
onstru
tion errors in light quarks. To 
al
ulate the ba
kground from mistags, weparametrize the negative Lxy measured in generi
 jet data as a fun
tion of ET, �, andthe number of SVX tra
ks in the jet. This parametrization is applied to the W+jetsdata to predi
t the number of mistag events.The dominant sour
e of ba
kground in the SLT tags 
omes from \fake" soft leptontags. These are tags due to parti
les whi
h did not originate from heavy 
avor de
ay.Fake tags in
lude non-leptons that pass the lepton requirements su
h as pions fakingan ele
tron or muon, ele
trons from photon 
onversions, pions or kaons de
aying on
ight, et
. The fake ba
kground is 
al
ulated by measuring the fra
tion of tags pertra
k in a generi
 jet sample as fun
tion of tra
k PT.The remaining ba
kground sour
es are estimated similarly for both taggers. Thenon-W ba
kground, expe
ted to be mostly b�b events, is 
al
ulated from the data bymeasuring the number of tags as fun
tion of lepton isolation and 6ET . The single topba
kground in determined from Monte Carlo studies by measuring the W � and W -gluon produ
tion, and normalizing them to the respe
tive theoreti
al 
ross se
tions.The rest of the ba
kground sour
es are relatively small for both taggers and areevaluated from Monte Carlo predi
tions. 46



5.6 Monte Carlo SimulationWe would like to note that Monte Carlo studies are one of the most important partsof parti
le physi
s. Using Monte Carlo samples we 
an 
al
ulate dete
tor eÆ
ien
ies,understand the dete
tor response to a parti
ular physi
s pro
ess, develop new analyseste
hniques, or obtain ba
kground 
al
ulations.Monte Carlo numeri
al methods are des
ribed as statisti
al simulation te
hniquesused to simulate a physi
al pro
ess, whi
h is des
ribed by probability density fun
tions(pdf's), by random sampling from these pdf's. In our 
ase, the physi
al pro
ess thatwe want to simulate is the 
olle
tion of t�t events by the CDF dete
tor.Monte Carlo event generators are used to simulate the physi
s of p�p 
ollisions.The event generators output a list of four-ve
tors of the �nal state parti
les whi
hare used as the input to the CDF dete
tor simulation. Jet and lepton identi�
ationare a

omplished using the same algorithms that are applied to the real data. Thisallows the same sele
tion 
riteria to be applied to the Monte Carlo and the Run Idata.5.6.1 Top SamplesThe Monte Carlo program used to generate t�t events is PYTHIA 6.129a [32℄.Additional 
he
ks are provided by Monte Carlo t�t events generated with HERWIG[31℄. PYTHIA is based on the leading order QCD matrix elements for hard s
atteringpro
esses. It uses the parton-shower approa
h for initial and �nal state radiation, andpartons are fragmented using the Lund string model [33℄. The default set of partondistributions fun
tions is GRV 94L [56℄. B hadron de
ays are modeled with theCLEOMC pa
kage [34℄. 47



5.6.2 Ba
kground SampleThe Monte Carlo program used to study the kinemati
 
hara
teristi
s of the ba
k-ground is VECBOS [35℄. This program is based on tree-level matrix element 
al
u-lations for W+jets produ
tion. The simulated events produ
ed by VECBOS 
ontaina W boson and up to four additional �nal state partons. These partons are inputinto the same parton shower evolution and 
luster hadronization used in the HER-WIG program. The VECBOS events generated for this analysis use the W+3 partonmatrix elements, with a required additional jet produ
ed during parton showering.The VECBOS Monte Carlo generator has been shown to reprodu
e distributions ofa wide range of kinemati
 variables in a large sample of Run I W+jets events [36℄.
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CHAPTER 6MASS RECONSTRUCTION
This 
hapter des
ribes the 
orre
tions applied to all the t�t de
ay produ
ts tobetter approximate the energy of the original partons. The raw energies are 
or-re
ted for non-instrumented regions, non-linear response of the 
alorimeter, multipleintera
tions at high luminosity, and other e�e
ts. These 
orre
ted energies serve asinputs to a �2 from whi
h the 
orre
ted four momenta of all the parti
les in the lep-ton+jets de
ay 
hain, p�p! t�t! `�q�q0b�bX, 
an be re
onstru
ted by applying a seriesof energy-momentum kinemati
 
onstraints. Therefore, the re
onstru
ted top quarkmass, Mre
 , 
an be 
al
ulated in an event-by-event basis.6.1 Jet Energy Corre
tionsBefore the jet energies are used to re
onstru
t the mass of the top quark, theyare 
orre
ted to better estimate the original momenta of the daughter partons in t�tde
ay. The 
orre
tions applied to the jets are done in two di�erent step. First, a setof generi
 
orre
tions are applied to all jets with a raw ET > 8 GeV and j�j < 2.4.These adjustments are intended to provide an estimate of the true jet energy fromthe observed jet energy. Then, the se
ond set of 
orre
tions is applied to the leadingfour jets of the event whi
h are assumed to be the t�t de
ay partons. These 
orre
tions49



are applied after the generi
 ones, and map the jet momenta to the momenta of thepartons in top events.The generi
 
orre
tions a

ount for the mismeasurement of the jet energies dueto dete
tor e�e
ts, energy falling outside the 
lustering 
one, and 
ontributions fromthe underlying event and multiple intera
tions. After a

ounting for all these fa
tors,the 
orre
ted energy, P
orT 
an be written in terms of the raw energy, PrawT , as follows:P
orT (R) = (PrawT (R)� frel � UEM(R)) � fabs(R)� UE(R) +OC(R): (6.1)The parameter R is the 
one radius and for this analysis it is set to 0.4. The di�erent
orre
tions are given below:� frel is the relative energy s
ale, and it 
orre
ts for the relative response of thedi�erent 
alorimeter se
tions to that of the 
entral region of the 
alorimeter,0:2 < j�j < 0:7.� There are two kinds of underlying event 
orre
tions: UEM(R) and UE(R). The�rst 
orre
tion takes into a

ount the extra energy of the event due to multipleintera
tions. The UE(R) 
orre
tion takes into a

ount the extra energy fromthe primary p�p intera
tion due to fragmentation of parti
les not asso
iated withthe hard s
attering.� fabs is the absolute energy s
ale, and it attempts to map the raw jet energyobserved in a 
one of radius R into the average true jet energy. This 
orre
tiona

ounts for the dete
tor response and any e�e
ts due to the fa
t that parti
lesintera
t in the 
alorimeter and are experimentally observed as jets.� OC(R) 
orre
ts for the energy expe
ted to be outside of the jet 
one radius of0.4. 50



The four leading jets in the t�t de
ay undergo an additional energy 
orre
tion whi
hdepends on the jet type. In the lepton+jets 
hannel the jets originate from fourdi�erent sour
es: a light quark, a hadroni
ally de
aying b quark, a b quark de
ayingsemileptoni
ally into the ele
tron 
hannel, and a b quark de
aying semileptoni
allyinto the muon 
hannel. To derive the t�t spe
i�
 jet momentum 
orre
tions we generatea Monte Carlo sample that is pro
essed using the CDF simulation and re
onstru
tedin the same way as the data. First, we mat
h the Monte Carlo partons to there
onstru
ted jets in � � � spa
e. Then, an average 
orre
tion fa
tor is obtained by
omparing the PT of the Monte Carlo partons to the PT of the re
onstru
ted jets.The 
orre
tion fa
tor is a fun
tion of the jet's PT and it is given by the median ofthe distribution of �PT = (PT(parton)� PT(jet))=PT(jet).Figure 6.1 shows the size of the t�t spe
i�
 
orre
tions for the four types of jets: (A)jets from hadroni
 W de
ays. (B) jets from b quarks, (C) b jets 
ontaining an ele
tron,(D) b jets 
ontaining a muon. As we 
an see the larger 
orre
tions 
orrespond to bjets 
ontaining a soft lepton in their de
ay. This is due to the undete
ted neutrinoin the semileptoni
 de
ay, and for the muon 
hannel, the 
orre
tion also a

ounts forthe fa
t that muons deposit very little energy in the 
alorimeter.6.2 The Un
lustered EnergyIn general, t�t events are very energeti
, and they show high jet a
tivity. Thus, wewrite the t�t produ
tion me
hanism as p�p ! t�t + X where X is made up of all theunspe
i�ed parti
les whi
h re
oil against the t�t system. The quantity XT is given byall the energy in the event not 
ounting the primary lepton and the four leading jets.
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Figure 6.1: The t�t-spe
i�
 
orre
tions applied to jets a

ording to available b-jetinformation. The 
urves show the fra
tional 
hange to the 
orre
ted jet PT after allthe generi
 jet 
orre
tions have been applied. The 
urves are for: (A) jets from thede
ay of W bosons, (B) jets from all b quarks, (C) jets from b quarks 
ontaining anele
tron, and (D) jets from b quarks 
ontaining a muon.52



The equation 
an be written as:~XT = ~UT + NjetsXi=5 ~ET (jet) (6.2)where the transverse un
lustered energy, UT, is given by all the energy in the 
alorime-ter whi
h is not 
lustered into jets. Ea
h 
omponent of the un
lustered energy is
orre
ted with a single fa
tor fu:e: = 1:6 based on studies of Z boson events with noextra jets, where the Z boson is well measured by the two leptons it de
ays into. Thepre
ision of the un
lustered energy is not very well understood so the un
ertainty ofea
h 
omponent of ~UT is taken to be 100%.6.3 Event Re
onstru
tionIn Chapter 5 we des
ribe how the lepton and jets are identi�ed in the CDF de-te
tor. From the tagging information it is possible to determine whether a jet has
ome from a b quark or not. We have also shown how the existen
e of the neutrino isinferred by an imbalan
e in the total transverse energy measured in the 
alorimeter.Then, by 
orre
ting the raw energies of these top de
ay produ
ts the original energyof the t and �t daughter partons 
an be better estimated. The 
hallenge now is howto 
ombine the de
ay produ
ts to re
onstru
t the mass of the top quark.A �tting algorithm is used to 
al
ulate the four momenta of the t and �t for a givenevent by re
onstru
ting the four momenta of the six parti
les in the de
ay: `, �, b,�b, q, and �q7. From the 
orre
ted observed quantities and their un
ertainties alongwith a series of kinemati
 
onstraints we are able to 
onstru
t a �2, whi
h 
an beminimized to yield the best estimates for the four momenta of the parti
les in the t�t7It should be noted that although we sometimes refer to the de
ay produ
ts at the parton level,it is the mass �tting 
ode whi
h determines their �nal assignment53



de
ay. For the minimization we assume the masses of the partons to be 0.5 GeV/
2,ex
ept for the b, and �b whi
h are assigned a mass of 5.0 GeV/
2.The hypothesis of Standard Model t�t implies the produ
tion pro
essp�p! t+ �t +X; (6.3)followed by the de
ays t ! W+ + b; (6.4)�t ! W� +�b; (6.5)W� ! `� + �; (6.6)W� ! q + q0: (6.7)where the quantity X is des
ribed in Se
tion 6.2.The �2, whi
h is minimized with the program MINUIT [38℄, is given below. This�2 formulation in
ludes the energy and kinemati
 
onstraints imposed by the t�t de
ayhypothesis. The �2 is expressed as:�2 = X`;jets (P̂T � PT )2�2PT + Xi=x;y (Û 0i � U 0i )2�2U 0i + (M̂`� �MW )2�2MW +(M̂jj �MW )2�2MW + (M̂`�j �Mre
)2�2Mre
 + (M̂jjj �Mre
)2�2Mre
 : (6.8)The notation is as follows: ` represents the primary lepton, � refers to the neutrino,and j refers to one of the four leading jets in the event. The �rst sum is over thelepton and all the jets with ET > 8:0 GeV and j�j < 2:4. The se
ond sum is over thetransverse 
omponents of the un
lustered energy. The hatted symbols in the sumsrepresent quantities that are modi�ed by the �t pro
edure, whereas unhatted symbolsrepresent the input values. MW is the mass of the W boson and it is 80.4 GeV/
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with an un
ertainty, �MW , set to its theoreti
al width of 2.1 GeV/
2. The un
ertaintyin the top mass is set to its theoreti
al width of 2.5 GeV/
2.In summary, there are �ve e�e
tive 
onstraints in our �2: the transverse momen-tum of the 
omponents of the t�t system must be zero, the invariant mass of the `�system must be equal to the W mass, the invariant mass of the q�q0 system must alsobe equal to the mass of the W boson, the two three-body invariant masses, Mjjj andM`�j, must ea
h be equal to the re
onstru
ted top mass, Mre
. After minimizingthe �2 with respe
t to all of the available information, we obtain an event-by-eventdetermination of the top quark mass, Mre
 .6.3.1 Combinatori
sDepending on the tagging information of the event there are many di�erent wayswe 
an 
ombine the top de
ay partons to re
onstru
t the top mass. If none of thejets are tagged by the SVX or the SLT algorithms, there are 12 di�erent ways we
an assign the four leading jets to the partons in the �t. Combined with the PZ ofthe neutrino P�Z ambiguity8, there are 24 di�erent 
on�gurations. If one of the jets istagged as a b 
andidate, the number of possible 
on�guration redu
es to six, 12 if wein
lude the P�Z ambiguity. We note that if a jet is tagged by either tagging algorithm,it is automati
ally assigned to one of the b quarks. If two of the jets have beentagged there are two possible jet assignments, the two b jets 
an be inter
hanged, andtherefore four possible 
on�gurations.When we re
onstru
t the mass of the top quark, all the possible 
on�gurations areran through the �tting 
ode and the 
ombination with the lowest �2 is 
hosen as the8The neutrino PZ is determined from the W mass 
onstraint. Thus solving MW =pE2W � P 2Wleads to two possible solutions. 55



best solution. We require this solution to have a �2 < 10:0 as stated in Se
tion 5.4.The eÆ
ien
y for this 
ut for ea
h of the mass subsamples is given in the table below6.1. The table shows the result for t�t signal as well as the VECBOS ba
kground. TheeÆ
ien
y of the �2 
ut in the SVX Double ba
kground subsample is not availablebe
ause there are only a handful of events.Mass subsample �2 eÆ
ien
y (t�t) �2 eÆ
ien
y (VECBOS)SVX Double 73:4� 0:6% N/ASVX Single 90:3� 0:4% 81:9� 0:8%SLT 89:7� 0:6% 80:7� 1:3%No Tags 96:5� 0:2% 95:4� 0:4%Table 6.1: EÆ
ien
y of the �2 
ut for ea
h of the mass subsamples. The probabilityof �nding a solution with �2 < 10:0 in
reases as the number of possible 
on�gurationsin
reases.6.3.2 Gluon radiationFrom the Monte Carlo plus dete
tor simulation we �nd that roughly 50% of theMtop = 175 GeV/
2 t�t events 
ontain at least one jet that 
annot be mat
hed to anyof the top de
ay partons. These extra jets are emitted during the produ
tion of the t�tpair, initial state radiation (ISR), or during the t�t de
ay, �nal state radiation (FSR)[39℄. From a theoreti
al perspe
tive, the jets that are produ
ed after the 
reation ofthe t�t pair should be in
luded into the mass re
onstru
tion only if the top quark is onshell. These jets 
arry a fra
tion of the energy of the top quark and therefore theirin
lusion would translate in a more a

urate top mass estimate. However, it is notpossible to distinguish jets from ISR to those from FSR. Furthermore, produ
tionand de
ay stage radiation 
annot be di�erentiated from one another in the dete
tor.56



Thus, in a large fra
tion of the Monte Carlo events the four highest-ET jets do not
orrespond to the top de
ay partons.A possible solution is to add one more jet to the mass �tting 
ode, but thiswould in
rease the number of 
ombinations by a fa
tor of three, four, and �ve forthe SVX Double, SVX Single or SLT, and No Tags events respe
tively. The in
reasein the number of possible 
on�gurations de
reases the probability of 
hoosing the
orre
t solution. This is why only the four highest-ET jets are 
onsidered for themass analysis.A more elegant solution to this problem would be to determine the amount ofgluon radiation in the data. Chapter 10 des
ribes how this 
an be a

omplished byusing Neural Networks.
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CHAPTER 7TEMPLATE-BASED MASS ANALYSIS
The best estimate of the top mass is obtained by 
omparing the shape of theMre
 distribution to Monte Carlo expe
tations. To improve the mass measurementthese Monte Carlo distributions are �tted with a single fun
tional form. Using aNeural Network method we 
an parametrized any distribution with mass information.A maximum likelihood method is used to extra
t Mtop from the parametrized formsfor t�t signal and ba
kground, along with the 
onstraints of the ba
kground fra
tions.7.1 Neural Network Template ParametrizationThere is only a �nite number of Monte Carlo statisti
s we 
an generate. In t�tMonte Carlo samples, it is observed that the shape of the Mre
 distributions, de-pend on the generated top quark mass. For di�erent top masses, the shape of there
onstru
ted mass distributions are very similar. They tend to peak around theirgenerated top mass and they have asymmetri
 tails. This is quite reasonable, sin
ewe only 
hange the mass of the top quark but the physi
s pro
esses responsible forthe distributions remain the same. This is the reason why it is reasonable to modelthe parent distribution of the templates by a single fun
tional form dependent onlyupon the mass of the top quark. 58



In previous analyses, a 
ombination of a Gaussian plus a Gamma fun
tion (GG)has been used to �t the mass templates as a fun
tion of Mtop [40℄. The use of thesedistributions is motivated by the shape of the Mre
 distributions, but it should benoted any fun
tion that 
ould �t the templates 
ould be used. Thus, we proposeusing a Neural Network to perform this �ts. This te
hnique has been employed bythe ALEPH experiment to �t templates of di�erent Higgs masses [41℄.We use the PYTHIA Monte Carlo plus the dete
tor simulation to model the shapeof the t�t events. For this study we have generated samples raging from a top massof 120 GeV/
2 to 230 GeV/
2. To model the shape of the ba
kground we use theVECBOS Monte Carlo program. All the MC generated events are put through thedete
tor simulation.7.1.1 Fitting the Mre
 DistributionsFigure 7.1 shows a 2-D histogram of the re
onstru
ted mass (Mre
 ) versus thegenerated top mass (Mtop ) for the Single SVX subsample. We want to use a NeuralNetwork to model the t�t re
onstru
ted mass distribution for any given value of theinput top quark mass. For this purpose we have 
hosen the Neural Network pa
kageMLP�t [42℄. MLP�t uses the sigmoid fun
tion, F(y) = 1(1+ey) for the hidden units,and the identity fun
tion F(y) = y, for the output units.As explained in 
hapter 4, the nature of the problem di
tates how many inputand output units are needed to solve the problem. In this 
ase the NN has two inputunits: the �rst input is asso
iated with the re
onstru
ted mass, the x-axis in Figure7.1, while the se
ond input 
orresponds to Mtop , the y-axis in Figure 7.1. For a moredetailed des
ription of the NN �tting pro
edure we refer the reader to Appendix C.59
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Figure 7.1: We show a 2-D histogram of all the Single SVX mass templates as afun
tion of top mass. The Mre
 axis is normalized to be between 0 (Mre
 = 80GeV/
2) and 1 (Mre
 = 380 GeV/
2). The Mtop axis is also normalized to be between0 (Mtop = 120 GeV/
2) and 1 (Mtop = 230 GeV/
2).The ar
hite
ture of the networks for the t�t signal is 2-4-4-1. This 
orrespondsto 37 possible weights and biases (there are 12 free parameters in the Gaussian plusGamma �t). We would like to emphasize that this is not the only solution to theproblem. It is possible to obtain similar results using a single hidden layer. However,in this 
ase we have found that with two hidden layers the network 
onverges to asolution more rapidly and has better generalization.To determine whether or not the networks are able to �t the distributions 
orre
tlywe de�ne a �2 fun
tion as follows:�2 = XMtop=120:::230 60Xbin i (b(i;Mtop)�O(Mre
;Mtop))2�2b(i;Mtop)2 (7.1)60



where b(i, Mtop ) is the 
ontent of th i-th bin of the histogram obtained with a topquark mass Mtop , �2b(i;Mtop)2 is the 
orresponding bin error, and O(Mre
 , Mtop ) isthe output given by the NN. The �t �2 per degree of freedom (dof) are shown inTable 7.1. We also show the �t �2 per dof from �tting the same distributions usingthe previous Gaussian plus Gamma parametrization method.Top Subsample NN templates GG templatesSVX Single 0.98 for 919 dof 1.29 for 944 dofSVX Double 1.27 for 778 dof 1.30 for 812 dofSLT 1.08 for 831 dof 1.24 for 856 dofNo Tags 1.37 for 920 dof 1.59 for 945 dofTable 7.1: We show the �2 per degree of freedom for ea
h of the four subsamples.The results from both �tting te
hniques are given.The results from both �tting te
hniques are shown in Figures 7.2 through 7.5where the blue 
urves 
orrespond to the NN �ts while the green 
urves show theresults from the GG �ts. Both sets of 
urves look fairly similar for low top masses.However, at high top masses the NN 
urves peak higher. Thus, the NN shows betterseparation between the di�erent masses.The ba
kground distributions do not have any mass dependen
e. Thus, the ar
hi-te
ture of the networks is 1-5-1, whi
h 
orresponds to 16 weights and biases (there arethree free parameters in the Gaussian plus Gamma �t). The one input is asso
iatedwith re
onstru
ted mass, and the desired output value is set to the number of entriesin ea
h bin of the ba
kground subsample. Figure 7.10 shows the parametrizationof the ba
kground distributions for the Single SVX, SLT, and No Tags subsamples.The results from the GG �ts are given by the green 
urves, while the NN �t results61



are given by the blue 
urves. Be
ause of limited statisti
s and low probability forobtaining two SVX tagged jets in the VECBOS Monte Carlo simulation, we assumethe same ba
kground distribution for the SVX-tagged subsamples.This analysis uses the same VECBOS samples generated for past analyses [43℄.The default ba
kground samples were generated with a s
ale Q2 = hPT i2. To studythe e�e
t of the ba
kground shape on the top measurement, another set of templateswas generated with a s
ale Q2 = hMW i2. To in
rease the ba
kground statisti
s wehave 
ombined both sets of events. We have performed a series of test, whi
h showthis 
ombination does not a�e
t the mass of the top quark (Appendix D).7.1.2 Fitting the HT DistributionsOne of the bene�ts of �tting a distribution with the NN method is that we donot need to make an a priori de
ision of what the underlying fun
tion des
ribing thedistribution is. Thus, a NN 
an approximate any distribution independently of itsshape.Previous analysis have shown that there are other kinemati
 variables besidesMre
 that have mass information [47℄. One of these variables is the total transverseenergy of the event, HT. In Chapter 8, we study the possibility of using the massinformation from several variables to 
al
ulate the top mass. Here, we are interestedin showing how the NN �tting method is appli
able to any distribution of a singlevariable. The �t �2 per dof for the Single SVX, Double SVX, SLT, and No Tags are:936.5 for 914 dof , 766.3 for 835 dof , 783.1 for 866 dof , and 896.1 for 886 dof . Thesignal HT �t results are shown in Figures 7.6 through 7.9. The ba
kground HT �tresults are shown in Figure 7.11. Figures only show the NN parametrization results.62
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Figure 7.2: Re
onstru
ted mass distributions for single SVX events in t�t Monte Carlogenerated with a top quark mass of (a) 140, (b) 155, (
) 170, (d) 185, (e) 200, and (f)220 GeV/
2. The �ts from the GG templates (green) and the NN templates (blue)are also shown.
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Figure 7.3: Re
onstru
ted mass distributions for double SVX events in t�tMonte Carlogenerated with a top quark mass of (a) 140, (b) 155, (
) 170, (d) 185, (e) 200, and (f)220 GeV/
2. The �ts from the GG templates (green) and the NN templates (blue)are also shown. 63



100 150 200 250 300 350
0

20

40

60

80

100

120

GG Templates

NN templates

(TOP 140) Reconstructed mass

100 150 200 250 300 350
0

20

40

60

80

100

(TOP 155) Reconstructed mass

100 150 200 250 300 350
0

10

20

30

40

50

60

70

80

90

(TOP 170) Reconstructed mass

100 150 200 250 300 350
0

10

20

30

40

50

60

70

80

90

(TOP 185) Reconstructed mass

100 150 200 250 300 350
0

10

20

30

40

50

60

70

80

(TOP 200) Reconstructed mass

100 150 200 250 300 350
0

10

20

30

40

50

60

70

(TOP 220) Reconstructed mass

Figure 7.4: Re
onstru
ted mass distributions for SLT events in t�t Monte Carlo gen-erated with a top quark mass of (a) 140, (b) 155, (
) 170, (d) 185, (e) 200, and (f)220 GeV/
2. The �ts from the GG templates (green) and the NN templates (blue)are also shown.
100 150 200 250 300 350

0

20

40

60

80

100

120

GG Templates

NN templates

(TOP 140) Reconstructed mass

100 150 200 250 300 350
0

20

40

60

80

100

(TOP 155) Reconstructed mass

100 150 200 250 300 350
0

20

40

60

80

100

(TOP 170) Reconstructed mass

100 150 200 250 300 350
0

10

20

30

40

50

60

70

80

90

(TOP 185) Reconstructed mass

100 150 200 250 300 350
0

10

20

30

40

50

60

70

(TOP 200) Reconstructed mass

100 150 200 250 300 350
0

10

20

30

40

50

60

70

(TOP 220) Reconstructed mass

Figure 7.5: Re
onstru
ted mass distributions for events with no SLT or SVX tags int�t Monte Carlo generated with a top quark mass of (a) 140, (b) 155, (
) 170, (d) 185,(e) 200, and (f) 220 GeV/
2. The �ts from the GG templates (green) and the NNtemplates (blue) are also shown. 64
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Figure 7.6: HT distributions for single SVX events in t�t Monte Carlo generated witha top quark mass of (a) 140, (b) 155, (
) 170, (d) 185, (e) 200, and (f) 220 GeV/
2.The �ts from the NN templates are also shown.
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Figure 7.7: HT distributions for double SVX events in t�t Monte Carlo generated witha top quark mass of (a) 140, (b) 155, (
) 170, (d) 185, (e) 200, and (f) 220 GeV/
2.The �ts from the NN templates are also shown.65



100 200 300 400 500 600 700

0

20

40

60

80

 distributionT(TOP 140) H

NN templates

100 200 300 400 500 600 700

0

10

20

30

40

50

60

70

80

90

 distributionT(TOP 155) H

100 200 300 400 500 600 700

0

20

40

60

80

 distributionT(TOP 170) H

100 200 300 400 500 600 700

0

10

20

30

40

50

60

70

80

90

 distributionT(TOP 185) H

100 200 300 400 500 600 700

0

10

20

30

40

50

60

70

80

 distributionT(TOP 200) H

100 200 300 400 500 600 700

0

10

20

30

40

50

60

70

 distributionT(TOP 220) H

Figure 7.8: HT distributions for SLT events in t�t Monte Carlo generated with a topquark mass of (a) 140, (b) 155, (
) 170, (d) 185, (e) 200, and (f) 220 GeV/
2. The�ts from the NN templates are also shown.
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Figure 7.9: HT distributions for events with no SLT or SVX tags in t�t Monte Carlogenerated with a top quark mass of (a) 140, (b) 155, (
) 170, (d) 185, (e) 200, and(f) 220 GeV/
2. The �ts from the NN templates are also shown.66
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Figure 7.10: Re
onstru
ted mass distributions for VECBOS ba
kground, whi
h 
on-tains events generated with Q2 = hPT i2 and Q2 = hMW i2 (see Appendix D). The �tsfrom the GG templates (green) and the NN templates (blue) are also shown.
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7.2 Ba
kground Cal
ulationThe 
omputation of the ba
kground fra
tion in ea
h mass subsample is �rsta
hieved by estimating the number of ba
kground events from the known pro
essesdes
ribed in Se
tion 5.5 for:� 
lass I: events that have exa
tly three jets with ET > 15 GeV and j�j < 2 andone or more jets with ET > 8 GeV and j�j < 2.4.� 
lass II: events with four or more jets with ET > 15 GeV and j�j < 2. This
lass of events has a larger S/B ratio than 
lass I.The expe
ted number of t�t and ba
kground fra
tions in the top mass sample are thenestimated using a maximum likelihood �t that 
ompares the observed rates of SVXand SLT tagged events with predi
ted rates. The t�t fra
tion is a free parameter inthe �t, and it is allowed to vary to optimize the agreement between the number ofobserved and predi
ted tagged events. The returned t�t fra
tion value is 
ombinedwith the SVX and SLT tagging probabilities to estimate the expe
ted amount of t�tsignal and ba
kground in ea
h of the mass subsamples. The detailed 
al
ulation ofthe ba
kground is given in Ref. [40℄. Here, the results are presented in Table 7.2.7.3 Likelihood Pro
edureA maximum likelihood method is used to extra
t the value of Mtop for ea
h masssubsample. The likelihood is used to 
hara
terize the similarity between the re
on-stru
ted masses of the data events and the t�t and ba
kground Monte Carlo samples.In the �t, the ba
kground fra
tion xb is 
onstrained by a Gaussian distribution. Theonly parameter that is 
ompletely un
onstrained in the �t is Mtop. Sin
e the four68



Item SVX SVX SLT# Pro
ess Single Double (no SVX) No Tags Total1 non-W=Z 0.5 0.0 1.0 4.6 6.12 WW 0.1 0.0 0.1 0.6 0.83 WZ 0.0 0.0 0.0 0.1 0.14 ZZ 0.0 0.0 0.0 0.1 0.15 Z ! �� 0.1 0.0 0.2 0.5 0.86 Single Top 0.2 0.0 0.1 0.2 0.47 W
+ Z
 0.2 0.0 0.8 1.7 2.78 Wb�b+ Zb�b 0.8 0.2 0.4 1.1 2.59 W
�
+ Z
�
 0.4 0.0 0.8 2.0 3.210 W=Z + u; d; s 0.2 0.0 4.1 19.6 23.9Ba
kground sum 2:4+0:8�0:7 0:2� 0:1 7:6� 1:3 30:4+4:3�4:7 40.711 t�t 12.6 4.8 6.4 11.6 35.3Observed events 15 5 14 42 76Table 7.2: Number of ba
kground events for the four mass subsamples from variouspro
esses.subsamples are 
ompletely independent, we 
an 
onstru
t a joint probability for themass sample by multiplying together the four individual likelihood fun
tions. Thesefour likelihoods have the same form:L = Lshape � Lba
kground (7.2)where: Lshape = NeventsYi=1 [(1� xb)fs(Mi;Mtop) + xbfb(Mi)℄; (7.3)Lba
kground = P (xb): (7.4)The term Lshape is the joint probability for a sample of N events to have 
ome froma parent distribution with a signal fra
tion of (1� xb) and a ba
kground fra
tion xb.The probability distributions, fs and fb, are derived from either the GG templates69



or the NN templates des
ribed in the previous se
tions. Lba
kground 
onstrains thefra
tion of ba
kground events to the value within its un
ertainties.In the past, the likelihood fun
tion in
luded a Lparam term to a

ount for thelimited number of statisti
s used to obtain the 
ontinuous fun
tional forms of thetemplates [40℄. This term depends on the parameters whi
h determine the fs and fbdistributions and the error matri
es asso
iated with them. It is possible to 
onstru
ta Lparam term for the Neural Network �tting method by using the Hessian matrixof the network. However, 
omputing the Hessian 
an be extremely time 
onsumingas the number of network weights in
reases [22℄. Furthermore, Monte Carlo studiesshow that the in
lusion of this term in the likelihood 
hanges the returned mass andstatisti
al error by an average < 0:01 GeV/
2.To 
al
ulate the top quark mass for ea
h subsample, we minimize the -log L withrespe
t to Mtop and xb. The statisti
al un
ertainty in the top mass is given by the
hange inMtop whi
h results in a 0.5 unit in
rease in the -log L. The overall estimateof Mtop and its un
ertainty for the entire mass sample is obtained by multiplying theindividual likelihoods together.7.4 Results from Simulated ExperimentsWe ran 2000 pseudoexperiment 
onsisting of four subsamples with the same num-ber of events (N iobs, i = 1, : : :, 4) as observed in the Run I data (Table 5.1). Thenumber of ba
kground events in ea
h of the simulated experiments is 
al
ulated in atwo-step pro
ess:1. Cal
ulate random numbers from a Gaussian distribution: N�bkg =Gauss(N iexp; �iexp)2. Cal
ulate random numbers from a Poisson distributions: N ibkg = Poisson(N�bkg)70



where the index i runs over the four subsamples in the mass analysis N iexp and �iexp
orrespond to the 
al
ulated ba
kground numbers shown in Table 7.2. The number oft�t signal events is then given by N isig = N iobs �N ibkg. The distin
t values used for thepseudoexperiments are 
hosen randomly from the signal and ba
kground templatesfollowing the shape of the distributions. For ea
h simulated experiment we obtaina top quark mass, a statisti
al un
ertainty and a maximum likelihood value. Thelikelihood method is tested by 
omparing these results with expe
tations.Table 7.3 shows the median mass and un
ertainty resulting from the 2000 simu-lated experiments. As we 
an see the median statisti
al un
ertainty when using theMre
 NN templates is roughly 12% better than the un
ertainty obtained by using theMre
 GG templates. Although, we have not added any new information to the topmass analysis, we �nd that by �tting the distributions more pre
isely we obtain asmaller un
ertainty in the mass measurement. The results obtained from using theHT NN templates are also presented.Fitting Te
hnique Mtop from Mre
 Mtop from HTGG templates 175.1 � 7.3 GeV/
2 N/ANN templates 174.8 � 6.5 GeV/
2 174.6 � 11.3 GeV/
2Table 7.3: These are the results obtained by using the NN �tting te
hnique and theGG �tting method for the re
onstru
ted mass. We only show the results from the HTNN templates sin
e we were unable to obtain 
ontinuous templates with the previousGaussian plus Gamma method.The top mass distribution and pull distribution from the Mre
 NN templates areshown in Figure 7.12. Similar plots for the Mre
 GG templates and HT NN templatesare shown in Figures 7.13 and 7.14. The pull is 
onstru
ted following the re
ipe71



detailed in [46℄, and it is given by:If M�t � Mtrue : g = Mtrue �Mfit�+ ;otherwise : g = Mfit �Mtrue�� : (7.5)Mfit is the value return by MINUIT, while Mtrue is 175 GeV/
2. The positive andnegative MINOS errors [53℄ are given by �+, and �� returned by the �t. This de�ni-tion guarantees that the per
entage of pull distributions between �1 and +1 equalsthe 
overage of the error interval returned by MINOS. This error interval 
orrespondsto a 
overage of 68.27% if we require 1� errors. As expe
ted the pull distributionsshown have a mean of zero and a width 
lose to one. The pull distributions are notexa
tly one be
ause of the limited statisti
s in the pseudoexperiments. When wein
rease the number of events in the simulated experiments, the width of the pulldistributions are 
loser to one. Furthermore, this slightly wider pull distributionshave also been seen in Ref. [40℄
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Figure 7.12: Results for 2000 pseudoexperiments using Mre
 NN templates. (Left)Fitted top mass distribution. (Right) Pull distribution. Signal and ba
kground fra
-tions as observed in the Run I data. 72



)
2

 (GeV/ctopM
150 160 170 180 190 200 210

0

20

40

60

80

100

120

140

160

mass
Nent = 1998   
Mean  =  175.2
RMS   =  8.533
Under =     11
Over  =      1
Integ =   1986
Chi2 / ndf = 68.49 / 44
Prob  = 0.008738

 4.086 ±Constant = 134.7 
 0.1828 ±Mean     = 175.1 
 0.1588 ±Sigma    = 7.949 

) Fitted top mass distribution (GG)rec(M mass
Nent = 1998   
Mean  =  175.2
RMS   =  8.533
Under =     11
Over  =      1
Integ =   1986
Chi2 / ndf = 68.49 / 44
Prob  = 0.008738

 4.086 ±Constant = 134.7 
 0.1828 ±Mean     = 175.1 
 0.1588 ±Sigma    = 7.949 

-5 -4 -3 -2 -1 0 1 2 3 4 5

E
nt

ri
es

0

50

100

150

200

250

300

pull

Nent = 1998   

Mean  = 0.01157

RMS   =  1.083

Under =      0

Over  =      3

Integ =   1995

Chi2 / ndf = 22.74 / 18

Prob  = 0.2006

 8.625 ±Constant = 296.8 

 0.02404 ±Mean     = -0.005657 

 0.01952 ±Sigma    = 1.061 

) Pull distribution (GG)rec(M pull

Nent = 1998   

Mean  = 0.01157

RMS   =  1.083

Under =      0

Over  =      3

Integ =   1995

Chi2 / ndf = 22.74 / 18

Prob  = 0.2006

 8.625 ±Constant = 296.8 

 0.02404 ±Mean     = -0.005657 

 0.01952 ±Sigma    = 1.061 

Figure 7.13: Results for 2000 pseudoexperiments using Mre
 GG templates. (Left)Fitted top mass distribution. (Right) Pull distribution. Signal and ba
kground fra
-tions as observed in the Run I data.
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Figure 7.14: Results for 2000 pseudoexperiments using HT NN templates. (Left) Fit-ted top mass distribution. (Right) Pull distribution. Signal and ba
kground fra
tionsas observed in the Run I data.
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7.5 Combining the Top Mass ResultsWe want to 
ombine the results obtained using Mre
 and HT. We ran 1000 pseu-doexperiments in whi
h we 
al
ulate the top mass using Mre
 and HT independentlyfrom one another. For ea
h subsample, we 
onstru
t a single top mass measurementas des
ribed in Appendix E. When we perform this 
ombination, the 
orrelation be-tween MMre
top and MHTtop is set to the mean 
orrelation value seen in the Monte Carlo.At this point we have 
ombined the top mass measurement for ea
h of the four sub-samples. Sin
e, these results are 100% independent from one another the �nal topmeasurement is given by the weighted average of the four results from the di�erentsubsamples. Figure 7.15 shows the results from the pseudoexperiments.
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Figure 7.15: Results from 2000 pseudoexperiments in whi
h we 
ombine the top massmeasurements obtained using the Mre
 templates and the HT templates. The lefthistogram shows the top mass distribution, and the right histogram shows the pulldistribution. 74



As expe
ted, the top mass distribution peaks around 175 GeV/
2. However, thewidth of the distribution is wider than we would have expe
ted. Re
all that theMtop distribution obtained from only using the Mre
 NN templates (Figure 7.12.(L))has a width, whi
h is 1 GeV/
2 smaller that what we get when we 
ombine theMre
 and HT results. Furthermore, we see from the pull distribution that the errorsreturned by the �t are underestimated by 60%.Combining the two 
orrelated measurements be
omes a very diÆ
ult task usingtraditional methods. Although, the pseudoexperiments return the 
orre
t mass, theerror returned is in
orre
t. We have looked at two di�erent methods based on NeuralNetwork to 
ombine the information from di�erent variables. These te
hniques aredes
ribed in the following 
hapters.
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CHAPTER 8STANDALONE NEURAL NETWORK MASS ANALYSIS
The goal of this analysis is to measure the top mass as a

urately as possible.Re
all that the previous best measurement of the mass only uses the re
onstru
tedmass variable. However, other analyses have shown that other kinemati
 quantitieshave top mass information. The 
hallenge is how to 
ombine this information. ANeural Network provides a simple and elegant way of adding new information to themass analysis. This 
hapter des
ribes a standalone Neural Network method to extra
tthe top quark mass.8.1 Input VariablesWe want to 
reate a Neural Network with the 
apability to distinguish events that
ome from top quarks from di�erent top masses. Thus, we need to �nd a set of massdependent variables [47℄. We have looked at di�erent kinemati
 quantities and havefound that theMre
 , the HT, the invariant mass of the t�t system, Mt�t, and the sum ofthe PT's of the two leading jets in the event, PT(1)+PT(2) exhibit the greatest massdependen
e. On the other hand, variables su
h as the 6ET or the PT of the primarylepton have very little mass information. The �rst four quantities are des
ribed belowin further detail: 76



� Mre
 is des
ribed in Se
tion 6.3.� HT is the sum of all the transverse energy in the event in
luding the neutrinoas well as the un
lustered energy.� Mt�t is the invariant mass of the t�t system. It only in
ludes the four highest ETjets are well as the lepton and the neutrino.� PT(1)+PT(2) is the sum of the two highest ET jets. No tagging requirement ismade.All of these variables are 
onstru
ted after applying the mass analysis 
orre
tionsdes
ribed in Se
tion 6.1.A good �gure of merit to determine whether a variable has mass information ornot is given by the quantity RMSslope , where the RMS is the average RMS of the di�erentdistributions, and the slope is the slope given by the means of the distributions forthe di�erent top masses. A good variable will be narrow, with a small RMS, and itwill show good separation between the peaks of the distributions, with a large slope.The results from our kinemati
 study are given in Table 8.1. Variables with a smallRMSslope are more e�e
tive at measuring the top mass.Variable Avg. RMS slope RMSslopeMre
 27.9 0.62 45.1HT 72.3 1.35 53.6Mt�t 83.2 1.58 52.6PT (1) + PT (2) 43.7 0.77 56.8Missing ET 25.7 0.16 161.8lepton PT 27.1 0.15 181.1Table 8.1: We show the slope and RMS values for the single SVX-tagged events.77
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Figure 8.1: (Left) Mean and (Right) RMS, of the re
onstru
ted mass distributionversus the generated top mass.
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Figures 8.1 through 8.6 show a graphi
al representation of the results presentedin Table 8.1. As we 
an see, the 
hange in the mean of the distributions is linear forall the kinemati
 quantities. However, this shift is minimal for variables with poormass information, Figures 8.5.(L) and 8.6.(L) as 
an be seen by the value of the slope(�t parameter p1). Another interesting aspe
t is that variables su
h as the HT orMt�t have a slope mu
h larger than the slope for Mre
 . However, Figures 8.2.(R) and8.3.(R) show that these distributions are mu
h broader than the Mre
 distributions.Thus, when we 
onstru
t the RMSslope we see that the Mre
 variable has the most massinformation. The distributions shown 
orrespond to events with two SVX tagged jets.Not all the variables are used for the di�erent subsamples. The de
ision to in
ludeor ex
lude an input variable in the Neural Network is based upon the performan
eof the network. A des
ription of the networks used in this study is given in Se
tion8.2.2.8.2 Extra
ting Mtop with a Neural NetworkThe Neural Network analysis also takes advantage of the di�erent S/B ratios forthe di�erent mass subsamples. There are a total of four networks, whi
h 
lassifyevents into signal and ba
kground. For this analysis we have generated t�t signalMonte Carlo �les 
orresponding to a top mass of: 120, 130, 140, 145, 150, 155, 160,165, 167.5, 170, 172.5, 175, 177.5, 180, 182.5, 185, 190, 195, 200, 205, 210, 220, and230 GeV/
2. Therefore, our networks have a total of 24 output units, 23 of them areasso
iated with signal, and the last one is ba
kground. For this study we have usedthe MLP�t Neural Network pa
kage. All the networks were trained using the BFGSmethod [48℄. 81



8.2.1 Neural Network Ar
hite
tureIn the previous se
tion we found that there are four variables that show goodmass information. Thus, the networks used in this analysis have a maximum of fourinput nodes, and 24 output nodes (23 asso
iated with t�t and one with ba
kground).To determine the �nal ar
hite
ture of the Neural Networks we try multiple ar
hite
-tures and the ones that produ
e the best Neural Network performan
e are 
hosen.This performan
e is de�ned in the next se
tion. The di�erent ar
hite
tures for ea
hsubsample are shown in Table 8.2. We note that for the SLT and the No Tags sub-samples not all the input variables were used. This de
ision was solely based uponthe performa
e studies. An explanation of how the di�erent networks were 
reated isgiven next.Top Subsample NN ar
hite
ture Input Variables Training Evts. Testing Evts.SVX Single 4-60-24 Mre
, HT , 38400 7200Mt�t, and PT (1) + PT (2)SVX Double 4-50-24 Mre
, HT , 24000 7200Mt�t, and PT (1) + PT (2)SLT 2-50-24 Mre
, and HT 19200 6958No Tags 2-50-24 Mre
, and HT 50400 7200Table 8.2: Neural Network ar
hite
ture. The 
hoi
e of variables depends solely onthe network's performan
e.
8.2.2 Training and TestingCreating a Neural Network to perform pattern 
lassi�
ation requires training andtesting of the network at ea
h epo
h. During training and testing, all 23 di�erent t�tsignal samples as well as ba
kground are used.82



During training, we set the desired output target value of ea
h 
lass to 1. Forinstan
e, in the 24-dimensional output spa
e Mtop = 175 GeV/
2 
orresponds to (0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) and the ba
kground targetvalue is given by (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1). Theadvantages of having a di�erent output for ea
h 
lass is explained in [50℄. With this
onvention, the output values 
an be interpreted as a-posteriori Bayes probabilities,and therefore they sum to one. This 
ondition 
an also be used to determine whetherthe network was properly trained or not. The sum of the outputs for one of ournetworks is given in 8.7.(L).On
e the target values for ea
h 
lass are set, the network is presented a trainingsample that is used to modify the weights and biases so that the 
lassi�
ation task
an be performed. On
e all patterns in the training sample have been presented theweights and biases are frozen. The training performa
e of the network is evaluatedby Ep = 12 NoXo=1(dpo � ypo)2: (8.1)This is the same equation shown in B.3 where the sum is over all the outputs ofthe network, dpo is the desired output for a given pattern p, and ypo is the network'soutput for that same pattern p. The total error is obtained by summing over all thelearning patterns, E = PpEp. A small error E 
orresponds to a high performan
eand vi
e versa. As the number of epo
hs in
reases, the total error de
reases be
ausethe network is able to learn the 
hara
teristi
s of the di�erent 
lasses. However, the
ontinuing improvement in the network's performa
e is in part due to the fa
t thatthe network is learning the 
hara
teristi
s of the training samples. The testing stageis used to determine when to stop training the Neural Network.83



During testing, the network obtained from the training session is presented with atesting sample. These testing patterns, whi
h are di�erent than those in the trainingsample, are used to 
al
ulate the testing performan
e of the network at ea
h epo
h.This is done in the same fashion as explained above. As the number of epo
hsin
reases, the testing performan
e de
reases. However, as the network begins to learnthe 
hara
teristi
s of the training sample it loses its generality. At this point, theperforman
e obtained from the testing samples begins to in
rease. Figure 8.7.(R)shows the training performan
e, blue 
urve, and the testing performa
e, red 
urve.The inset shows the epo
h at whi
h the network begins to learn the 
hara
teristi
s ofthe training sample. At this point the weights and biases are frozen and this is thenetwork used to extra
t the mass of the top quark.
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8.2.3 Likelihood Pro
edureFor ea
h event, the NN provide a set of probabilities that it has 
ome from anyof the top masses used in this analysis, as well as ba
kground. Re
all that ea
h of84



the probabilities is asso
iated with one of the 24 outputs in our network. From thisinformation we extra
tMtop using a dis
rete maximum likelihood te
hnique. As in thetemplate based method we have two distin
t parameters in the �t: the ba
kgroundfra
tion, xb, whi
h is allowed to vary between its un
ertainties, and the top mass. Thejoint probability is 
onstru
ted by multiplying together the four individual likelihoodfun
tions. These likelihoods are written as:Lbin = Lbinshape � Lba
kground (8.2)bin = 1; : : : ; 23 
orresponds to Mtop = 120, : : :, 230 GeV/
2 and:Lbinshape = NeventsXi=1 [(1� xb)Obini + xbO24i ℄; (8.3)Lba
kground = P (xb): (8.4)The Neural Network provides the probability that a given event, i, has 
ome from anyof the generated top masses, Obini , as well as the probability that it has 
ome fromba
kground, O24i . Therefore, ea
h of the bins in the likelihood histogram 
ontainsan admixture of signal and ba
kground. The Lba
kground term uses a Gaussian to
onstraint the ba
kground fra
tions to be within the values shown in Table 7.2.To 
al
ulate the top mass, we �rst minimize the -log L with respe
t to xb. For ea
hmass subsample, we use MINUIT to modify the values of xb between their limits. We
hose the values of xb that minimize the log likelihood distribution. On
e the valuesfor xb are obtained, the top mass and its un
ertainties are 
al
ulated by �tting the-log L with 3rd degree polynomial. This is done to a

ount for asymmetri
 errors.The polynomial is 
entered around the minimum of the -log L distribution, and itslimits are pla
ed at the points for whi
h the -log L in
reases by at least �ve units.The errors in Mtop are given by the 0.5 unit in
rease in the -log L. Figure 8.8 shows85
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Figure 8.8: (Left) The -log L distribution for a given Run I standalone NN pseudoex-periment. (Right) Close-up of the left pseudoexperiment. The bla
k 
urve is the 3rddegree polynomial used to 
al
ulate the mass and un
ertainties. The red line showsthe point at whi
h -log L 
hanges by 0.5 units.the results from a pseudoexperiment. As a �rst approximation, the error in the valueof the -log L for ea
h top mass was set to the RMS of the -log L distribution forthat given mass. These errors probably overestimate the a
tual errors in the -loglikelihood.8.2.4 Results from PseudoexperimentsWe ran 2000 pseudoexperiments with an admixture of signal and ba
kgroundas shown in Table 7.2. The top mass distribution is shown in Figure 8.9.(L). Thewidth of the distribution is smaller than the widths of the top mass distributionsshown in Figures 7.12.(L) and 7.13.(L). The median statisti
al error for this methodis 5.6 GeV/
2, whi
h 
orresponds to a 30% statisti
al improvement over the templatebased method that uses the Gaussian plus Gamma parametrization te
hnique. Thestatisti
al improvement with respe
t to the NN parametrization te
hnique is roughly16% (when using the Mre
 variable). These improvements 
orrespond to an in
rease86
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Figure 8.9: Results for 2000 pseudoexperiments using the standalone NN method.(Left) Fitted top mass distribution. (Right) Pull distribution. Signal and ba
kgroundfra
tions as observed in the Run I data.in the e�e
tive luminosity of over 70% for the GG template based analysis, and over34% for the NN template based analysis. To make sure the errors are 
al
ulated
orre
tly, we 
onstru
t the pull asg = (Mfit �Mtrue)� ; (8.5)where Mfit is the mass returned by the standalone NN method, Mtrue is the inputtop mass, and � are the errors 
al
ulated as des
ribed above. The pull distributionis shown in Figure 8.9.(R).
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CHAPTER 9SYSTEMATIC UNCERTAINTIES
The systemati
 errors in the top mass 
al
ulation are due to any biases thatmay have o

urred in the measurement pro
edure as well as un
ertainties in thesimulation used to model the underlying physi
s. This 
hapter des
ribes how thedi�erent systemati
 un
ertainties are determined. A summary of the systemati
 errorsasso
iated with ea
h analysis is given in the last se
tion.9.1 Jet energy s
aleThe event re
onstru
tion algorithm uses the measured energy of the lepton, jets,and the un
lustered energy to estimate the mass of the top quark. The ele
tronenergy s
ale and muon momentum s
ale are known with a pre
ision better than 0.2%[27℄. From studies, it is observed that large variations in the un
lustered energy havevery little e�e
t on the top mass. The 6ET is 
al
ulated from the lepton, jets, and theun
lustered energy so it is not an independent measurement. Therefore, the energys
ale un
ertainty is dominated by the un
ertainty in the jet momenta.Se
tion 6.1 des
ribes the di�erent 
orre
tions applied to the jets to better estimatethe original parton momenta. However, potential systemati
 un
ertainties arise fromthe di�eren
e in the jet ET s
ales between the Monte Carlo and the data. This88
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Figure 9.1: Mre
 distribution for Single SVX tagged events from the PYTHIA t�tMonte Carlo simulation using an input top mass of 175 GeV/
2 for events with (a) a�1� shift in the jet momenta, (b) no shift in the jet momenta, and (
) a +1� shiftin the jet momenta.un
ertainty is due to two main sour
es: dete
tor e�e
ts and soft gluon e�e
ts [55℄.Figure 9.1 shows the Mre
 distribution for (a) Monte Carlo events in whi
h we haveapplied a �1� shift to the jet momenta, (b) default Monte Carlo events, and (
)Monte Carlo events in whi
h we have applied a +1� shift in the jet momenta.To obtain the jet ET un
ertainty we apply a +1� and �1� shift to the jet momentain t�t signal and ba
kground, and measure the e�e
t on the top mass estimate. We rantwo set of simulated experiments. In the �rst set, we draw events randomly from thesample in whi
h the jet momenta is shifted by +1�. In the se
ond set we 
hoose eventsfrom the sample in whi
h the jet momenta is shifted by �1�. Both sets of simulated89
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Figure 9.2: Mtop distribution returned from the likelihood pro
edure from simulatedexperiments using the NN-�tted Mre
 templates. The solid histogram shows thedistribution when the jet ET s
ale is shifted down by �1�, and the dashed histogramshows the distribution when the jet ET s
ale is shifted up +1�. The systemati
un
ertainty is half the di�eren
e between the medians of the distributions.experiments are �t using the standard templates and likelihood te
hnique des
ribed inChapter 79. The error asso
iated with the energy s
ale is half the di�eren
e betweenthe medians of the �1� and +1� pseudoexperiment results. Figure 9.2 shows thedi�eren
e between the two distributions.9.2 Initial and �nal state radiationRadiated gluons play a very important roles in the measurement of the top quarkmass. This is not only due to the fa
t that most t�t events are a

ompanied by9For the standalone NN method we use the same network and likelihood pro
edure des
ribed inSe
tion 8.2. 90



additional gluon jets, but also to the fa
t that gluons are radiated during the pro-du
tion of the t�t pair and the de
ay pro
esses. This 
ompli
ates the top momentumre
onstru
tion as well as it makes it very diÆ
ult to 
orre
tly identify the top de
aypartons.The un
ertainty asso
iated with initial state radiation (ISR)10 is determined by
omparing the median mass obtained using the standard Monte Carlo PYTHIA sam-ple to the median mass obtained using a sample for whi
h the ISR has been turnedo�. After a large number of simulated experiments, the un
ertainty is given by halfthe di�eren
e in the median mass between the standard PYTHIA and the no-ISRPYTHIA samples.Obtaining the error due to the �nal state radiation (FSR) is a little bit more
ompli
ated sin
e PYTHIA des
ribes the formation of a jet through a parton shower.From the no-ISR PYTHIA sample we sele
t events that have exa
tly four jets whi
hmeet the sele
tion 
riteria des
ribed in Se
tion 5.4, and are uniquely mat
hed to thet�t de
ay partons. Using the pro
edure of simulated experiments, the un
ertainty isgiven by half the di�eren
e in the median mass between the no-ISR PYTHIA samplewith no restri
tion on the number of jets, and the no-ISR PYTHIA sample with onlyfour jets that are uniquely mat
hed to the top de
ay partons. The total systemati
un
ertainty is obtained by adding the ISR un
ertainty and the FSR un
ertainty inquadrature.The ISR/FSR un
ertainty is the se
ond largest systemati
 error asso
iated withthe mass analysis. In Chapter 10 we explore the possibility of using a Neural Networkto measure the gluon 
ontent in t�t events.10ISR is the radiation that o

urs before the t�t pair has been produ
ed. FSR is the radiationwhi
h o

urs after the top quarks has been produ
ed.91



9.3 b-TaggingThere is a systemati
 error asso
iated with the un
ertainty in the SVX and SLTtagging eÆ
ien
ies. The un
ertainty in the SVX tagging eÆ
ien
y 
omes primarilyfrom the possible ET dependen
e. The SVX tagging eÆ
ien
y is determined fromMonte Carlo and then 
orre
ted by a s
ale fa
tor. The systemati
 error is 
al
ulatedby varying this s
ale fa
tor. This results in a mass shift of only 0.1 GeV/
2.The SLT error is determined by using large data samples of  ! �� and 
 ! ee.The relevant un
ertainty for SLT tags arises in the ratio of true to fake tags in t�tevents. This ratio has a 10-20% un
ertainty. To study the e�e
t of this ratio on thetop mass we generate Monte Carlo t�t events in whi
h all SLT tags are either (a) truetags, or (b) fake tags. We ran a large number of pseudoexperiments in whi
h all theevents have 
ome from set (a) or from set (b). These events are then 
ompared to thestandard Monte Carlo sample. The error asso
iated with the SLT tagging eÆ
ien
yis half the di�eren
e between the median mass of set (a) and set (b).9.4 Parton distribution fun
tionAll the top Monte Carlo samples were generated using PYTHIA with the defaultparton distribution fun
tion (PDF) GRV 94L. Other PDF 
hoi
es are available su
has CTEQ 3L [57℄. We take the shift in the median top mass samples generated withthe two PDF's to be the systemati
 un
ertainty.9.5 Monte Carlo generatorsThe un
ertainty asso
iated with the Monte Carlo generators is obtained by 
om-paring the results from PYTHIA to HERWIG. We run a large number of simulated92



experiments, and the un
ertainty is given by half the di�eren
e between the medianmass of the PYTHIA and HERWIG simulations.9.6 Summary of Systemati
 ErrorsAll the systemati
 un
ertainties des
ribed in the previous se
tions are given inthe Table 9.1. We provide the systemati
 errors for the NN-�tted Mre
 templates,the NN-�tted HT templates, and the standalone Neural Network analysis. The totalsystemati
 un
ertainty is obtained by adding the individual errors in quadrature.Un
ertainty (GeV/
2)Sour
e Mre
 NN templates HT NN templates Standalone NNJet ET s
ale 4.1 7.5 4.6ISR/FSR 1.7 (0.5/1.6) 4.5 (2.1/4.1) 2.1 (0.9/1.9)b-Tagging 0.3 1.5 0.4PDF 1.1 2.0 0.9MC generators 0.4 1.1 0.3Total 4.6 9.2 5.2Table 9.1: Summary of the systemati
 un
ertainties asso
iated with ea
h of the dif-ferent Neural Network analysis methods des
ribed in this thesis. In parenthesis wegive the (ISR/FSR) individual systemati
 errors.
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CHAPTER 10MEASUREMENT OF THE GLUON CONTENT
In the top mass analysis, we assume that the four highest ET jets from an event
orrespond to the top de
ay partons. However, our Monte Carlo predi
ts that inroughly 50% of the events, one or more of these jets 
annot be mat
hed within a 
oneof �R < 0:4 to any of the de
ay partons of the t�t pair. Jets whi
h are not within a�R < 0:4 
one of any of the Monte Carlo partons are 
onsidered to be gluon jets.Gluon jets are produ
ed during the produ
tion of the t�t pair, initial state radiation(ISR), or during its de
ay, �nal state radiation (FSR). To obtain a more a

uratemeasurement of the top mass we would only want to in
lude the gluon jets whi
h
arry energy from the top quarks. This is an extremely diÆ
ult task. However, animprovement of the top mass 
an be obtained by determining the number of eventswith at least one gluon jet among the jets used in the top mass re
onstru
tion. Thisinformation 
an be used to 
onstru
t templates that model the data more 
losely. Wedes
ribe a te
hnique to measure the gluon 
ontent in the SVX tagged Run I data.10.1 Gluon E�e
t on the Top MassA number of features of the mass analysis from Run I are 
onsistent with the datahaving fewer gluon events than the Monte Carlo would predi
t. Examples in
lude94



the width of the observed mass distribution and the number of extra jets. We �rstaddress whether a more a

urate knowledge of the gluon 
ontent in the top masssample would lead to a better mass measurement.10.1.1 Gluon Fra
tion in the Monte CarloBy mat
hing the simulated jets to the Monte Carlo top de
ay produ
ts we areable to determine whi
h events have all the top de
ay produ
ts present and thosewhi
h do not. We look at the top de
ay partons at the Monte Carlo level. Then, wetake the four leading jets of an event after it has gone through the dete
tor simulationand we mat
h ea
h of these jets to the partons from the Monte Carlo. If a jet is notwithin a 
one of �R < 0:4 from any parton we 
onsider this jet to be a gluon jet. Wenote that this de�nition is somewhat arbitrary. The Monte Carlo samples are dividedinto two di�erent sets: gluon templates, and non-gluon templates. Gluon templates
ontain only events with at least one gluon jet. Non-gluon templates only 
ontainevents in whi
h all jets are uniquely mat
hed to the top de
ay produ
ts. In the t�tMonte Carlo we �nd:� 52:7%� 0:7% of the single SVX-tagged events 
ontain at least one gluon jet asone of their four highest ET jets.� 48:7%� 1:1% of the events in the double SVX-tagged sample 
ontain at least agluon jet as one of their four highest ET jets.Figures 10.1 and 10.2 show some examples for gluon and non-gluon templates. Gluontemplates tend to peak at a lower mass than the non-gluon templates. Also, non-gluon templates show better separation between Mtop masses and they are narrowerthan the gluon templates. We 
onstru
t the RMSslope quantity to assign a �gure of merit95



to both set of templates (re
all from Se
tion 8.1 that this quantity is an indi
ation ofhow mu
h mass information a given quantity exhibits):Gluon Templates : RMSslope = 81:6 (Single SVX); RMSslope = 69:3 (Double SVX) ;Non� gluon Templates : RMSslope = 43:3 (Single SVX); RMSslope = 33:9 (Double SVX) :
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Figure 10.1: Re
onstru
ted top mass distributions for the single SVX Monte Carlosample for (Left) non-gluon events and (Right) gluon events.
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Figure 10.2: Re
onstru
ted top mass distributions for the double SVX Monte Carlosample for (Left) non-gluon events and (Right) gluon events.
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10.1.2 PseudoexperimentsThe goal is to study what happens when we 
ompare the data to the \wrong" setof templates, whi
h do not have the same fra
tion of gluon events as the pseudoex-periment data. If the data does not have the same mix as the MC, this is what willresult in the data measurement.In the re
onstru
tion of the top mass, we use a set of top mass templates rangingfrom Mtop = 150 GeV
2 to 200 GeV
2. For ea
h simulated experiment we performa dis
rete likelihood �t [49℄ to determine whi
h top mass is the most likely to haveprodu
ed a Mre
 distribution similar to what is seen in the pseudoexperiment data.To keep the study simple, we do not parametrize the templates and ba
kground isnot used. The top mass and its un
ertainty is 
al
ulated by integrating the -log L.We generate a set of templates for whi
h the per
entage of gluon events is varied.Thus, we have six sets of templates 
ontaining 0%, 20%, 40%, 60%, 80%, and 100%of gluon events. We ran 1000 pseudoexperiments where we draw the events from ea
hof these templates and we 
ompare them to the default Monte Carlo. Re
all that thedefault Monte Carlo templates 
ontain roughly 50% of gluon events. Tables 10.1 and10.2 show the results from this study for the Single SVX and Double SVX subsamplesrespe
tively. These results 
an be summarized as:� In
reasing the gluon 
ontent in the templates results in a de
rease of the mediantop mass returned by our �t, and an in
rease in the median un
ertainty. Gluonevents are mismeasured low and they widen the template's distribution.� Comparing data events to the wrong templates results in a mismeasurement ofthe top mass that 
an be signi�
ant.97



Gluon Content Median Mre
 Median error Pull mean Pull width0% 177.1 8.3 0.3 0.8420% 176.0 8.5 0.2 0.9140% 174.7 8.7 -0.02 0.9360% 173.6 8.9 -0.2 1.080% 172.2 9.1 -0.3 1.1100% 169.3 9.2 -0.6 1.3Table 10.1: We show the results from the 1000 pseudoexperiments for the Single SVXsubsample. In ea
h of the pseudoexperiments, we draw 15 events from the templates,whi
h we have 
onstru
ted with the appropriate amount of gluon events, and we
ompare them to the default Monte Carlo templates. Ba
kground is not in
luded.Gluon Content Median Mre
 Median error Pull mean Pull width0% 176.5 9.7 0.2 0.8520% 176.2 9.9 0.2 0.9140% 175.2 10.0 0.04 0.9360% 173.9 10.2 -0.09 0.9580% 172.9 10.4 -0.2 1.1100% 170.3 10.6 -0.4 1.3Table 10.2: We show the results from the 1000 pseudoexperiments for the Double SVXsubsample. In ea
h of the pseudoexperiments, we draw 5 events from the templates,whi
h we have 
onstru
ted with the appropriate amount of gluon events, and we
ompare them to the default Monte Carlo templates. Ba
kground is not in
luded.� Comparing the data events to the wrong templates, results in a top mass errorthat is not a

urate. When the gluon 
ontent in the templates is too low theerrors are overestimated. On the other hand, if the gluon 
ontent is too highthe errors are underestimated.When we 
ompare the data to the wrong templates, the top mass is biased and thestatisti
al un
ertainty reported is not 
orre
t. It is very important that we 
onstru
t98



templates that 
losely mimi
 the data. An a

urate measurement of the gluon 
ontentin our top mass sample will lead to a better measurement of the top quark mass.10.2 Measuring the Gluon ContentIn the previous se
tion, we showed that the measurement of the gluon 
ontentwould lead to a better estimate of the top mass and the reported un
ertainty. Wehave developed a NN te
hnique that attempts to measure the amount of gluon eventsin the data. In order to redu
e the amount of ba
kground in our sample, we are onlyusing events whi
h pass all the mass sele
tion 
uts with at least one SVX-tagged jet.10.2.1 Neural Network Input VariablesWe want to develop a NN that 
an distinguish between gluon events and non-gluonevents. Three variables, shown in Figures 10.3 and 10.4, with good dis
riminatingpower were sele
ted for this analysis:� The di-jet invariant mass is 
onstru
ted with the untagged jets in the event. Inthe Single SVX 
ase there are three possible ways to form the di-jet invariantmass. Only two of them are used sin
e the di-jet mass 
onstru
ted with thetwo least energeti
 jets di�ers very little from gluon events to non-gluon events.Ea
h di-jet mass is used as an input for the Single SVX network. For doubleSVX-tagged events there is only one way to form the di-jet mass, whi
h is usingthe two untagged jets in the event. In this subsample, the di-jet distributionis 
learly narrower for non-gluon events than for gluon events. Also, the di-jetmass distribution peaks around 81 GeV/
2, the W mass, when there are nogluon jets in the event. 99



� The number of extra jets with ET > 8:0 GeV and j�j < 2:4 besides the fourjets used in the mass re
onstru
tion. Gluon events have more jet a
tivity thanthose without gluons.� The �2 returned by the mass re
onstru
tion 
ode (see Se
tion 6.3). Events that
ontain all the top de
ay partons tend to have a lower �2 than those with gluonjets.All the above variables have good information regarding whether or not gluon jetsare present in the events. A Neural Network is well suited for this measurement sin
eit provides us with a simple way of 
ombining all of the di�erent variables. In
ludingmore information will de
rease the error in the gluon 
ontent measurement.10.2.2 Neural Network Training and TestingFor this analysis, we are using the JETNET [44℄ subroutines interfa
ed to ROOTvia the Root Jetnet [45℄ pa
kage. We use two di�erent Neural Networks: one forevents with a single SVX-tagged jet, and another for events with two SVX-tagged jets.They are both three-layered feed-forward per
eptrons with the standard a
tivationfun
tion (tanh s
aled to (0, 1)). The Neural Network ar
hite
tures are the following:� NN 1SVX! 4-8-1. The single tagged Neural Network has four di�erent inputvariables sin
e two di-jet masses are used separately.� NN 2SVX ! 3-6-1.We trained the Neural Networks using two di�erent Monte Carlo samples: one
ontaining gluon events, and the other one without any gluon events. During training,the desired Neural Network output for non-gluon events was set to 1, while the output100
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Figure 10.3: The four input variables for the SVX Single Neural Network. (a) Di-jetinvariant mass between the two most energeti
 untagged jets. (b) Di-jet invariantmass between the most and least energeti
 untagged jets. (
) �2 returned by thetop mass kinemati
 �t. (d) Number of extra jets with ET > 8:0 GeV and j�j < 2:4.Ba
kground is not in
luded.
orresponding to the gluon events was set to 0. The updating of the weights was doneusing the standard ba
k-propagation algorithm with default training parameters. Weran a large number of training loops keeping tra
k of the 
lassi�
ation performan
eof the Neural Network during ea
h of the loops. Re
all, this performan
e is deter-mined by the number of events in whi
h the Neural Network is able to 
lassify ea
h
lass (gluon events, and non-gluon events) 
orre
tly. When the 
lassi�
ation is bestwe freeze the weights. These �nal weights 
onstitude our optimal Neural Network.Figures 10.5.(L) and 10.5.(R) show the output for both networks for gluon events,non-gluon events and ba
kground events, whi
h look like gluon events to the NeuralNetworks. 101



0 50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

(2 SVX) MC W mass (no gluons)

non-gluon events

gluon events

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(2 SVX) MC Chi**2 (no gluons)

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(2 SVX) MC extra Jets (no gluons)
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10.2.3 De�nition of the LikelihoodMonte Carlo studies show that the amount of gluon events in the Single SVX andDouble SVX subsamples is very similar. We 
onstru
t individual binned likelihoodsfor the two subsamples. Sin
e they are statisti
ally independent from one another,we 
an 
onstru
t a joint binned likelihood for the entire sample by multiplying to-gether the two individual binned likelihood fun
tions. The gluon fra
tion, xg, and thenon-gluon fra
tion, xng, are obtained from a maximum likelihood �t applied to theNeural Network output distributions. Both xg and xng are un
onstrained in our �t.The ba
kground fra
tions for ea
h subsample, xb, are allowed to vary about their 
al-
ulated value and within their un
ertainties (see Table 10.3). The individual binnedlikelihood has the form: L = Lshape � L
ount � Lba
kground (10.1)where: Lshape = N binsXi=1 Ngfg(O) +Nngfng(O) +Nbfb(O)Ng +Nng +Nb ; (10.2)L
ount = e�(Ng+Nng+Nb)(Ng +Nng +Nb)NN ! ; (10.3)Lba
kground = P (Nb): (10.4)and Ng, Nng, and Nb 
an be written in term of the fra
tion of events as:Ng = xg �N; Nng = xng �N; Nb = xb �N: (10.5)The quantities Ng, Nng, and Nb, represent the number of gluon events, non-gluonevents, and ba
kground respe
tively, N is the number of observed events, and P (xb)
onstraints the ba
kgrounds to be around their 
entral value and within their un-
ertainties. The variable fg(O) is the Neural Network output distribution for gluon103



events. The NN output distribution for non-gluon events is given by fng(O), and theba
kground NN output distributions are fb(O). To 
al
ulate xg, and xng we mini-mize the -log L, and the statisti
al un
ertainties in our measurements are given by
hanging -the log L by half a unit respe
t to its minimum.10.2.4 PseudoexperimentsIn the Run I Single SVX subsample there are a total of 17 events. Two of theseevents do not pass the �2 sele
tion 
riteria and are not used in the mass analysis.In the Run I Double SVX subsamples there are a total of �ve events. The �2 
ut isremoved to in
rease the a

eptan
e . The eÆ
ien
ies of the �2 
ut shown in Table6.1 are used to 
al
ulate the new ba
kground fra
tions. Table 10.3 shows the results.Mass Sample Data Events Observed Predi
ted Ba
kgroundSingle SVX 17 (15) 2:93� 0:92 (2:4� 0:75)Double SVX 5 (5) 0:24� 0:12 (0:2� 0:1)Table 10.3: We show the expe
ted number of events without the �2 
ut. In parenthesiswe show the expe
ted number of events after the �2 
ut. These numbers are takenfrom Table 7.2.We ran 5000 pseudoexperiments with the expe
ted admixture of signal and ba
k-ground. For ea
h simulated experiment we 
ompare the NN output distribution ofthe data to a 
ombination of the NN output distribution for gluon events, non-gluonevents, and ba
kground. Figure 10.6 show the distribution for the gluon fra
tion andnon-gluon fra
tion for the pseudoexperiments. The mean of these distributions is43.5% in the gluon 
ase and 41.4% for the non-gluon fra
tion as expe
ted from theMonte Carlo. The remaining 
ontribution is from the ba
kground. We expe
t the104



pull distributions (Equation 7.5) to have a mean of zero and a width of one. However,we �nd that the pull distributions are too narrow suggesting that the errors returnedby the �t are overestimated. This e�e
t is due to the fa
t that our simulated experi-ments have very low statisti
s. Therefore, we s
ale the errors returned by the �t bya fa
tor of 0.75 for the gluon events, and 0.74 for the non-gluon events [46℄. Afterres
aling the errors the median statisti
al un
ertainty for the gluon and non-gluon
ontent is 18.9% and 17.4% respe
tively. Figure 10.7 shows the pull distributions.During Run IIa, we expe
t to 
olle
t 2 fb�1 of data or roughly 20 times theamount of statisti
s 
olle
ted during Run I. Assuming Run I 
onditions, we ran 5000pseudoexperiments in order to estimate the expe
ted un
ertainty in the large datasample. The study shows we should be able to measure the gluon 
ontent in Run IIawith an a

ura
y of roughly 5.6% for gluon events, and 4.3% for non-gluon events.The pseudoexperiment results are summarized in Table 10.4.10.3 Measurement of the Gluon Fra
tion in the Run I DataWe apply our analysis to the Run I data. The statisti
al errors returned are s
aledby the same fa
tor used in the Monte Carlo study. We �t the Run I data and we �nd:� 23:7%� 20:0% of the events in our single plus double SVX-tagged mass sample
ontain a gluon jet among their 4 highest ET jets.� 62:2%� 21:0% of the events are non-gluon events.� 17:0%� 5:3% of the 17 single tagged events are ba
kground events.� 4:8%� 2:3% of the 5 double tagged events are ba
kground events.105



Data Sample Predi
ted un
ertainty in xg Predi
ted un
ertainty in xngRun I (106 pb�1) 18:9% 17:4%Run IIa (20� Run I) 5:6% 4:3%Table 10.4: This is a summary of the Run I, and Run IIa pseudoexperiment results.
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Figure 10.6: Results from 5000 pseudoexperiments for (Left) fra
tion of gluon eventsand (Right) fra
tion of non-gluon events.
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In Figure 10.8.(L), we 
ompare the Mre
 distribution for the Single SVX Run Idata and the Monte Carlo. In the Monte Carlo histograms we show the 
ontributionsfrom the ba
kground, yellow, ba
kground plus gluon events, blue, and ba
kgroundplus gluon plus non-gluon events, green. Ea
h 
ontribution is set a

ording to our�t results. Figure 10.8.(R) shows the same plot for the Double SVX Run I data. Alower fra
tion of gluon events produ
es slightly narrower Mre
 distributions.
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Figure 10.8: Re
onstru
ted mass distribution for (Left) Single SVX events and (Right)Double SVX events. The gluon fra
tion in the Monte Carlo is set to that measuredin the Run I data. The dashed line histogram has the standard MC gluon fra
tion(� 50%). Signal and ba
kground fra
tions as observed in the Run I data.
10.4 Systemati
 ErrorsFor this analysis we have looked at two di�erent sour
es of un
ertainty in the gluon
ontent measurement. First, we looked at the energy s
ale. We apply +1� and �1�shifts to the jet momenta in t�t signal and ba
kground events, and measure the e�e
ton the gluon 
ontent estimate. The error is given by half of the di�eren
e between the
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medians of the +1� and �1� distributions. We �nd that the error asso
iated withthe energy s
ale is less than 0:1% in both the gluon fra
tion and non-gluon fra
tion.In measuring the gluon 
ontent we have assumed a top mass of 175 GeV/
2. We
hange the mass of the top quark to 170 GeV/
2 and 180 GeV/
2 to see whether ornot this has any e�e
t on our measurement. The error is given by the half di�eren
ebetween the medians of the 170 GeV/
2 results and the 180 GeV/
2 results. In this
ase we �nd that the error asso
iated with the top mass is also less than 0:1%.10.5 Appli
ation to the Mass AnalysisThe likelihood pro
edure used to 
al
ulate the top mass is des
ribed in Se
tion 7.3.We use the four mass subsamples for this analysis: Single SVX, Double SVX, SLT,No Tags. Using the events in these subsamples we 
onstru
t two sets of templates:� Data-like templates: these are templates in whi
h the amount of gluon eventsand non-gluon events are set to the mean values returned by the �t in Se
tion10.3� MC-like templates: these templates 
ontain the default mixture of gluonevents and non-gluon events.We �t these templates using the NN method (Se
tion 7.1.1 to obtain the top massdependent fun
tional form.We run pseudoexperiments for whi
h we draw the data events from the Data-liketemplates and we 
ompared them to the Data-like templates and to the MC-like tem-plates. Ea
h simulated experiment 
ontains an admixture of signal and ba
kgroundas des
ribed previously. The results from 2000 pseudoexperiments are summarizedin Table 10.5. 108



Pseudo. samples Compare to Result (GeV/
2)Data-like samples Data-like templates 174:5� 5:5MC-like samples MC-like templates 174:8� 6:5Data-like samples MC-like templates 175:8� 6:1Table 10.5: Median top mass and median statisti
al MINOS error results for the 2000pseudoexperiments using Run I statisti
s.We measure the gluon 
ontent in the Run I data sample to be lower than expe
tedfrom the default MC. We have shown that samples with lower gluon 
ontent havesmaller top mass errors. The above MC studies imply that the top mass statisti
alerror is about 18% smaller for samples with Data-like gluon 
ontent than for sampleswith the default Monte Carlo gluon 
ontent. Also, we have shown that the top massmeasurement is biased and its reported un
ertainty is ina

urate when the gluon
ontent of the pseudoexporiment sample and the templates' gluon 
omposition di�er.Monte Carlo studies imply that the top mass is biased by + 1.3 GeV/
2 and the errorin
reases by about (6.1/5.5) = 11% when samples with Data-like gluon 
ontent are
ompared to templates 
onstru
ted from the default Monte Carlo.
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CHAPTER 11RUN I RESULTS
In this 
hapter, we apply the di�erent mass analysis te
hniques to the Run I datasample. First, we summarize the Monte Carlo results from the previous 
hapters.The Run I data results are given next. After presenting these results, the 
onsisten
ybetween the data and the Monte Carlo expe
tations for t�t plus ba
kground events are
he
ked for the di�erent analyses methods.11.1 Summary of Monte Carlo ResultsTable 11.1 presents the di�erent Monte Carlo results. We in
lude the resultsobtained from using the templates 
onstru
ted with the gluon 
ontent measured inthe Run I data. However, it should be noted that the error in the gluon 
ontent israther large (� 20%).11.2 Template-Based Data ResultsThe template based likelihood pro
edure is applied to the events in the four masssubsamples. To investigate the e�e
t of the ba
kground 
onstraining term the mass �tis performed two di�erent ways: we 
onstrain the ba
kgrounds to be within their ex-pe
ted values, and the ba
kground 
onstraint is removed. The top mass measurements110



Fitting Method Median error (GeV/
2)NN Mre
 templates 6.5GG Mre
 templates 7.3NN HT templates 11.3Standalone NN 5.6NN Mre
 templates (gluon) 5.4GG Mre
 templates (gluon) 6.0NN HT templates (gluon) 10.6Table 11.1: Summary of the Monte Carlo results. The (gluon) des
ription means thatthe templates were 
onstru
ted with the gluon 
ontent measured in the data.for ea
h subsample and the 
ombined result when using theMre
 templates �tted witha 
ombination of a Gaussian plus a Gamma fun
tion, and the Mre
 templates �ttedwith a Neural Network, are presented in Table 11.2 and 11.3 respe
tively. Figure 11.1shows the results from the ba
kground 
onstrained 
ombined �t to all four subsam-ples using the NN-�tted Mre
 templates. The results when using the HT templatesare given in Table 11.4 and shown in Figure 11.2.Several observations 
an be made when 
omparing the mass �t results when theba
kground fra
tions are 
onstrained to those when they are not. The most impor-tant result is that when all the subsamples are used, independently of the templatesor �tting method used, the top mass measurement shows very little sensitivity to theba
kground 
onstraint. For the Mre
 templates, the un
onstrained mass �ts of thetagged subsamples yield a ba
kground fra
tion of zero, although with large un
ertain-ties. Also, the �t on the No Tag subsample yields a ba
kground fra
tion lower thanexpe
ted. For the HT templates, the un
onstrained �t of the SVX tagged subsamplesyield a ba
kground fra
tion of zero with large un
ertainties. The un
onstrained �t ofthe SLT sample yields a ba
kground fra
tion larger than the one expe
ted. The �t on111



the No Tag subsample yields a similar ba
kground fra
tion whether the ba
kgroundis 
onstrained or un
onstrained. In general, we would expe
t an in
rease in the sta-tisti
al error if the ba
kground 
onstrained is removed sin
e not all the information isbeing used. However, most of the measurements seem to indi
ate the opposite. Thisis due to the fa
t that in most of the measurements the un
onstrained ba
kgroundfra
tion �tted to a smaller value thus in
reasing the number of signal events.When we �t the Mre
 templates with the Neural Network method we obtaina statisti
al error whi
h is 4.75 GeV/
2. This 
orresponds to a (5.8/4.75) = 22%statisti
al improvement over the result obtained when we �t the templates with a
ombination of a Gaussian plus Gamma fun
tions. Using the HT templates �ttedwith the Neural Network method yields a statisti
al error of 9.25 GeV/
2. That is a(12.0/9.25) = 30% statisti
al improvement over the previous top mass measurementthat used the HT [51℄.Data sample Nobs xfitb Top mass (GeV/
2)Constrained Un
onstrained Constrained Un
onstrainedSVX Double 5 0:04� 0:02 0:0+0:3�0:0 169:8+11:4�10:3 169:6+11:1�10:3SVX Single 15 0:14� 0:05 0:0+0:09�0:0 178:4+9:5�8:6 177:9+8:8�8:0SLT 14 0:53+0:09�0:08 0:0+0:8�0:0 149:3+37:1�21:7 152:2+27:3�20:5No Tags 42 0:65� 0:09 0:41+0:18�0:17 184:8+14:1�10:8 181:7+10:9�8:9All Subsamples 76 0:46� 0:08 0:23� 0:19 177:3+6:0�5:7 177:0+5:6�5:2Table 11.2: Results of applying the mass likelihood pro
edure using the GGparametrizedMre
 templates to the four subsamples and for all subsamples 
ombined.We show the results when the ba
kground fra
tions are 
onstrained to their expe
tedvalues (Table 7.2), and when they are not. The 
ombined ba
kground fra
tion is theaverage of the xb �t results weighted by the number of events in the subsamples.
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Data sample Nobs xfitb Top mass (GeV/
2)Constrained Un
onstrained Constrained Un
onstrainedSVX Double 5 0:04� 0:02 0:0+0:4�0:0 172:6+9:2�9:1 172:3� 9:0SVX Single 15 0:15� 0:05 0:0+0:1�0:0 178:1+8:7�7:5 177:5+7:9�7:0SLT 14 0:54+0:09�0:1 0:0+0:7�0:0 168:4+20:7�42:6 145:9+29:5�13:2No Tags 42 0:63� 0:09 0:37+0:18�0:16 183:4+9:5�8:1 181:3+7:4�6:9All Subsamples 76 0:48� 0:08 0:2� 0:18 177:9+4:8�4:7 177:5� 4:4Table 11.3: Results of applying the mass likelihood pro
edure using the NNparametrizedMre
 templates to the four subsamples and for all subsamples 
ombined.We show the results when the ba
kground fra
tions are 
onstrained to their expe
tedvalues (Table 7.2), and when they are not. The 
ombined ba
kground fra
tion is theaverage of the xb �t results weighted by the number of events in the subsamples.
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Data sample Nobs xfitb Top mass (GeV/
2)Constrained Un
onstrained Constrained Un
onstrainedSVX Double 5 0:04� 0:02 0:0+0:1�0:0 220:4+21:8�19:4 220:1+21:4�19:1SVX Single 15 0:14� 0:05 0:0+0:07�0:0 196:5+14:1�13:7 194:4+12:9�12:6SLT 14 0:56+0:09�0:08 0:77+0:2�0:2 199:4+38:4�77:5 216:7+51:3�56:2No Tags 42 0:65� 0:07 0:6� 0:1 303:1+19:9�134:7 301:2+20:0�180:2All Subsamples 76 0:49� 0:07 0:47� 0:1 204:4+9:3�9:2 199:9+9:1�9:1Table 11.4: Results of applying the mass likelihood pro
edure using the HT templatesto the four subsamples and for all subsamples 
ombined. We show the results whenthe ba
kground fra
tions are 
onstrained to their expe
ted values (Table 7.2), andwhen they are not. The 
ombined ba
kground fra
tion is the average of the xb �tresults weighted by the number of events in the subsamples.
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11.3 Comparison of Data to Expe
tationsUsing the NN Mre
 templates to estimate the mass of the top quark yields aresult of 177:9 � 4:8 GeV/
2. The result obtained when using the HT templates is204:4� 9:3 GeV/
2. Therefore, using di�erent kinemati
 information from the sameevents produ
es results, whi
h di�er from one another by 26.5 GeV/
2. We run 2000pseudoexperiments for whi
h we plot the di�eren
e between the top mass obtainedusing the NN Mre
 templates (MMre
top ), and the top mass obtained from using the HTtemplates (MHTtop ). Figure 11.3 shows the distribution of the di�eren
e MMre
top - MHTtop .We �nd that roughly 5% of the simulated experiments yield a di�eren
e in the topmass that is equal or larger than what we see in the data sample. While this numberis small, it is not statisti
ally unreasonable.
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Figure 11.4: Statisti
al un
ertainties from pseudoexperiments of t�t (Mtop = 175GeV/
2) plus ba
kground using (Left) the NN Mre
 templates, and (Right) the HTtemplates. Also shown in the statisti
al un
ertainty obtained from the data sample.The statisti
al un
ertainty obtained from �tting the data with the NNMre
 templatesis 4.8 GeV/
2. Figure 11.4.(L) shows the distribution of the statisti
al un
ertaintiesfrom the simulated experiments. We �nd that roughly 5% of the pseudoexperimentsyield a statisti
al error whi
h is equal or smaller to that obtained from the data. Fig-ure 11.4.(R) shows the the distribution of the statisti
al un
ertainty from the pseudo-experiments whi
h use the HT templates along with the data result (9.3 GeV/
2). Forthis 
ase, we �nd that 5% of the simulated experiments yield a statisti
al error whi
his equal or smaller to the one obtained from �tting the data with the HT templates.Finally, we 
he
k the returned log likelihood value from the pseudoexperimentsto the one obtained from the data. Figure 11.5 shows the log likelihood distributionfor pseudoexperiments (L) using the NN Mre
 templates and (R) the HT templatesalong with the log likelihood value from the data sample. We �nd that 50% of thepseudoexperiments that use the NN Mre
 templates yield a log likelihood larger thanthat obtained from the data. Also, 87% of the simulated experiments that use theHT templates yield a log L value larger than the one seen in the data.116
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Figure 11.5: Distribution of the minimum value of -log L from pseudoexperiments oft�t (Mtop = 175 GeV/
2) plus ba
kground using (Left) theMre
 templates, and (Right)the HT templates. Also shown in the minimum -log L value obtained from the datasample.11.4 Standalone NN Run I Data ResultsThe standalone NN method is applied to the events in the four mass subsamples.To investigate the e�e
t of the ba
kground 
onstraining term, the mass is performedtwo di�erent ways: the ba
kgrounds are 
onstrained to be within their expe
tedvalues, and the ba
kground 
onstraint is removed. The results from applying thestandalone NN method are given in 11.5.As in the template-based method, the un
onstrained mass �t of the SVX taggedsubsamples yield a ba
kground fra
tion of zero, although with large un
ertainties.The un
onstrained �t to the No Tag samples yields a ba
kground fra
tion lower thanexpe
ted. In general we would expe
t an in
rease in the statisti
al un
ertainty if theba
kground 
onstraint is removed. This is not the 
ase be
ause the un
onstrained �tfavors fewer ba
kground events than what it is expe
ted from Monte Carlo. Over-all, the standalone NN method behaves in a similar fashion as the template-basedte
hniques. 117



Data sample Nobs xfitb Top mass (GeV/
2)Constrained Un
onstrained Constrained Un
onstrainedSVX Double 5 0:04� 0:02 0:0+0:2�0:0 179:9� 10:6 180:0� 10:4SVX Single 15 0:14� 0:05 0:0+0:06�0:0 172:7� 8:6 172:5� 8:4SLT 14 0:55+0:08�0:08 0:6+0:25�0:37 167:4� 28:8 169:4� 30:0No Tags 42 0:53� 0:08 0:32+0:13�0:1 189:1� 10:0 183:2� 9:8All Subsamples 76 0:42� 0:07 0:29� 0:14 182:4� 5:1 182:0� 4:7Table 11.5: Results of applying the standalone NN method to the four subsamplesand for all subsamples 
ombined. We show the results when the ba
kground fra
tionsare 
onstrained to their expe
ted values (Table 7.2), and when they are not. The
ombined ba
kground fra
tion is the average of the xb �t results weighted by thenumber of events in the subsamples.It is surprising that the statisti
al error returned by the standalone NN methodis higher (5.1 GeV/
2) than the one returned when we only use the Mre
 templates(4.8 GeV/
2). Adding more information has the opposite e�e
t that one would ex-pe
t. This 
an be due to the fa
t that the Mre
 and HT variables favor a top masswhi
h di�ers from one another by 26.5 GeV/
2. Therefore, 
ombining the informationfrom these variables broadens the likelihood distribution, whi
h results in a higherstatisti
al un
ertainty.11.5 Comparison of Data to Expe
tationsWe want to determine whether the 
orrelation 
oeÆ
ients between the variablesin the Monte Carlo pseudoexperiments agree with what we see in the Run I data.Figure 11.6 show the di�erent 
orrelation distributions for all the variables used in thestandalone Neural Network method along with the 
orrelation values seen in the data.118



As we 
an see, the 
orrelations between the di�erent variables in the Monte Carloagrees reasonably well with the data values. We note that the 
orrelation betweenMre
 and HT in the data falls in the middle of the Monte Carlo distribution. Thesetwo variables are the ones with the most mass information. We have also 
he
ked theun
ertainty returned by the �t on the data. This error is reasonable.
)ρCorrelation (

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
nt

ri
es

0

20

40

60

80

100

120

140

160

correlation_0
Nent = 2000   
Mean  = 0.4833
RMS   = 0.1011

)T Vs. HrecCorrelation coefficient (M correlation_0
Nent = 2000   
Mean  = 0.4833
RMS   = 0.1011

Data

)ρCorrelation(
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
nt

ri
es

0

50

100

150

200

250

300

350

400

correlation_1

Nent = 2000   

Mean  =  0.855
RMS   = 0.04565

)T Vs. HTCorrelation coefficient (sum P correlation_1

Nent = 2000   

Mean  =  0.855
RMS   = 0.04565

Data

)ρCorrelation (
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
nt

ri
es

0

20

40

60

80

100

120

140

160

correlation_2
Nent = 2000   
Mean  = 0.5195
RMS   =  0.109

)rec Vs. MTCorrelation coefficient (sum P correlation_2
Nent = 2000   
Mean  = 0.5195
RMS   =  0.109

Data

)ρCorrelation (
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
nt

ri
es

0

20

40

60

80

100

120

140

160

180

200

correlation_3

Nent = 2000   

Mean  = 0.6675

RMS   = 0.08325

)tt Vs. MTCorrelation coefficient (sum P correlation_3

Nent = 2000   

Mean  = 0.6675

RMS   = 0.08325

Data

)ρCorrelation (
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
nt

ri
es

0

20

40

60

80

100

120

140

160

180

correlation_4

Nent = 2000   

Mean  = 0.6659

RMS   = 0.08887

)tt Vs. MTCorrelation coefficient (H correlation_4

Nent = 2000   

Mean  = 0.6659

RMS   = 0.08887

Data

)ρCorrelation (
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
nt

ri
es

0

20

40

60

80

100

120

140

160

180

200

correlation_5

Nent = 2000   

Mean  = 0.7066

RMS   = 0.08523

)tt Vs. MrecCorrelation coefficient (M correlation_5

Nent = 2000   

Mean  = 0.7066

RMS   = 0.08523

Data

Figure 11.6: Distribution of the 
orrelation 
oeÆ
ient between the di�erent vari-ables used in the standalone NN mass analysis along with the 
orrelation value seenin the data sample. (a) Correlation between Mre
 and HT, (b) 
orrelation betweenPT (1) + PT (2) and HT, (
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 , (d) 
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CHAPTER 12MEASURING THE TOP MASS IN RUN IIRun II started at the Tevatron in Mar
h 2001. In this 
hapter, we outline amethod to measure the top mass during Run II. The te
hnique uses the Mre
 and HTinformation simultaneously. Using this method we present a priori expe
tations onthe top mass measurement.12.1 MotivationFrom Monte Carlo pseudoexperiments, we know that the best measurement ofthe top mass is obtained from using the standalone NN method. This te
hnique
ombines the information from several kinemati
 variables to extra
t the top massusing a dis
rete likelihood fun
tion. However, this likelihood pro
edure may havesome problems in Run II:� For Run I, the dis
rete likelihood 
onsisted of 23 di�erent points, whi
h wereasso
iated with a di�erent top mass, spa
ed at intervals as 
lose as 2.5 GeV/
2.As the Run II statisti
s in
rease, we would have to add more points to thelikelihood to take advantage of the expe
ted smaller statisti
al un
ertainty.� Adding more points to the likelihood means that we would have to generatemore t�t Monte Carlo samples at more top masses 
loser together.120



� Using all the Monte Carlo samples we would have to 
reate new Neural Networksto perform the event 
lassi�
ation. Be
ause the networks are so large this wouldtake large amounts of time.In the next se
tion we des
ribe a new mass analysis method, whi
h uses the twomost powerful variables in the standalone NN along with a 
ontinuous likelihoodpro
edure to extra
t the top mass. We note that this method was not applied to theRun I data sample be
ause we did not have enough Monte Carlo statisti
s. However,we expe
t both methods to give 
omparable results.12.2 Mre
 Vs. HT TemplatesThe biggest improvement in the standalone NN method 
omes from the 
ombi-nation of the Mre
 and the HT information. For the measurement of the top mass inRun II we propose the use of 2-D Mre
 Vs. HT templates. These templates wouldthen be �tted with a NN to obtain a fun
tional form dependent on the mass of thetop quark.One of the 
hallenges that one fa
es when trying to �t 2-D histograms is that theamount of events needed to 
orre
tly populate the histograms is very large. Althoughwe have large amounts of t�t and ba
kground Monte Carlo samples we do not haveenough to 
onstru
t 2-D templates. However, outlining this pro
edure is still veryimportant sin
e it may represent an ex
ellent te
hnique to extra
t the mass of thetop quark. Thus, Appendix F des
ribes a method to generate \fake" Monte Carloto in
rease the sizes of our samples. The resulting 2-D templates 
losely mimi
 theshape of the a
tual Monte Carlo results. Using these distributions, we investigatewhether a Neural Network is able to �t them or not.121



12.3 Fitting Pro
edureFitting a set of 2-D templates (Mre
 Vs. HT ) is mu
h like �tting a 1-D distribu-tions. We just have to make sure that the network gets all the information, and thatthere are enough hidden units to 
orre
tly approximate the fun
tion. For the t�t signalwe have 
hosen a 3-8-8-1 ar
hite
ture (113 weights and biases). Ea
h of the inputs isasso
iated with a di�erent variable: Mre
, HT , andMtop. During training, the desiredNN output is set to the number of entries in ea
h bin of the 2-D distributions. In our
ase, the 2-D distributions have a total of 1600 bins (there are 40 bins in the Mre
axis and 40 in the HT axis), and sin
e there are 19 di�erent distributions our �tshave over 30,000 degrees of freedom. Figure 12.1 shows a few distributions of our 2-DNeural Network �ts for the SVX Single subsample. Although the network has to �tmany di�erent points, it performs the task very well as we 
an see from the �2 resultsshown in Table 12.1. The �2 fun
tion for the 2-D 
ase has the same form as Equation7.1 with the addition of an extra sum to take into a

ount the two dimensions of ourtemplates. Top Subsample �2 resultSVX Single 1.02 for 22408 dofSVX Double 1.19 for 23433 dofSLT 1.08 for 24045 dofNo Tags 1.06 for 23150 dofTable 12.1: We show the �2 per degree of freedom for ea
h of the four subsamples.The NN does an ex
ellent job at approximating the 2-D surfa
es.For the ba
kground we remove the top mass dependen
y and the NN ar
hite
turebe
omes 2-5-5-1. This 
orresponds to a total of 41 weights and biases.122
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Figure 12.1: Mre
 Vs. HT surfa
es generated from the fun
tional form obtained by�tting the \fake" Monte Carlo Single SVX subsample. (a) Contour plot for Mtop =150 GeV/
2. (b) Contour plot for Mtop = 175 GeV/
2. (
) Contour plot for Mtop =200 GeV/
2. (d) Surfa
e plot for Mtop = 175 GeV/
2.12.4 Run II Expe
tationsTo estimate the mass of the top quark we use the 
ontinuous likelihood methoddes
ribed in Se
tion 7.3. In this 
ase, the fun
tional forms for the signal and ba
k-ground use both the Mre
 and HT information from ea
h event. In the likelihood�t, the mass of the top is the only free parameter and the ba
kground fra
tions are
onstrained to be within their expe
ted values. We run 2000 simulated experimentswith the admixture of signal and ba
kground as expe
ted in Run I. During Run II, weexpe
t to 
olle
t over 1 fb�1 of data. We run a set of pseudoexperiments for whi
h the123



statisti
s are in
reased 2, 4, 6, and 10 times respe
tively. For ea
h pseudoexperiment,we 
al
ulate the top mass using: the HT NN-�tted templates, the Mre
 GG-�ttedtemplates, the Mre
 NN-�tted templates, and the Mre
 Vs. HT NN-�tted templates.The results are shown in Figure 12.2.
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Figure 12.2: We apply the di�erent template-based analyses methods to 2000 simu-lated experiments. The graph shows the median error obtained from the pseudoex-periments 
ontaining 1, 2, 4, 6, and 10 times the Run I statisti
s. For the standaloneNN method we only show the results from the Run I simulated experiments.Using the Run I statisti
s, the Mre
 Vs. HT template method returns a medianerror of 5.7 GeV/
2. This error is slightly higher than that obtained by the stan-dalone NN method te
hnique (5.6 GeV/
2), and (7.3/5.7) = 28% better than theMre
 template �tted with the Gaussian plus Gamma fun
tions. Re
all, that this124



method gave the best Run I top mass measurement. This improvement remains thesame when we use simulated experiments, whi
h 
ontain 10 times the amount of RunI statisti
s (this 
orresponds to roughly 1 fb�1).The goal for Run II is to measure the top mass with an error less than 2 GeV/
2.From a statisti
al perspe
tive, this goal 
an be rea
hed with roughly 1 fb�1 of datausing the Mre
 Vs. HT template method. At this time, the error in the top mass willbe dominated by the systemati
 un
ertainty.
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APPENDIX ATHE DELTA RULE
For a single layer network with an output unit with a linear a
tivation fun
tionthe output is simply given byy(t+ 1) =Xj wj(t)xj + �(t): (A.1)Su
h a simple Neural Network is able to represent a linear relationship between thevalue of the output unit and the values of the input units. We use this simple networkto �t to a set of training samples 
onsisting of input values xp and desired outputvalues dp. For every given input sample, the output of the Neural Network di�ersfrom the desired output value by (dp�yp), where yp is de�ned above. The Delta Ruleuses an error fun
tion based on these di�eren
es to adjust the weights.The error fun
tion is just the least mean square (LMS) and the total error isde�ned to be E =Xp Ep = 12Xp (dp � yp)2; (A.2)where the index p ranges over the set of input patterns, and Ep represents the erroron pattern p. The LMS method uses the gradient des
ent method to �nd the weightsthat minimize the error fun
tion. The idea is to make the 
hange in the weight, wj,126



proportional to the negative of the derivative of the error as measured on the 
urrentpattern, j, with respe
t to ea
h weight, wj:�pwj = �
�Ep�wj (A.3)where 
 is a proportionality 
onstant. The derivative 
an then be written as�Ep�wj = �Ep�yp �yp�wj : (A.4)Be
ause we are dealing with linear units (Eq. A.1),�yp�wj = xj and �Ep�yp = �(dp � yp) (A.5)su
h that �pwj = 
Æpxj (A.6)where Æp = dp � yp is the di�eren
e between the NN output and the desired outputpattern. The Delta rule modi�es the weights a

ording to the desired output pattern,the input pattern, and the a
tual NN output. These 
hara
teristi
s have opened upa wealth of new appli
ations.
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APPENDIX BBACK-PROPAGATIONWe must extend the Delta rule so that it 
an be applied to networks with manylayers and with non-linear a
tivation fun
tions. This generalisation is 
alled the Ba
k-propagation method and the 
entral idea is that errors of the weights asso
iated withunits in the hidden layers are determined by ba
k-propagating the error of the weightsasso
iated with the output units.We generalize the Delta rule to the set of non-linear a
tivation fun
tions. Thea
tivation, is a di�erentiable fun
tion of the total input given byypk = F(spk); in whi
h spk =Xj wjkypj + �k; (B.1)where the index p 
orresponds to the di�erent patterns, the index k is the numberof units per layer, and the index j keeps tra
k of the di�erent weights 
onne
ting toea
h unit. To get the 
orre
t generalization of the Delta rule presented in AppendixA, we must set �pwjk = �
 �Ep�wjk : (B.2)The error measure Ep is de�ned in the same manner as before, and it 
orresponds tothe quadrati
 error for pattern p at the output units:Ep = 12 NoXo=1(dpo � ypo)2; (B.3)128



where dpo is the desired output for unit o when the pattern p is used. We further setthe total error to E = PpEp. We 
an write�Ep�wjk = �Ep�spk �spk�wjk : (B.4)By equation B.1 we see that the se
ond term is�spk�wjk = ypj : (B.5)When we de�ne Æpk = ��Ep�spk ; (B.6)we have an update rule whi
h is similar to the Delta rule derived in appendix A. In amulti-layer network with non-linear a
tivation fun
tion, the weights 
hange a

ordingto: �pwjk = 
Æpkypj : (B.7)The problem now is how to �gure out what Æpk is for every unit k in the network. Theinteresting results, as we will see, is that there is a simple re
ursive 
omputation ofthese Æ's whi
h 
an be implemented by propagating the errors ba
kward through thenetwork.We rewrite equation B.7 using the 
hain rule as a produ
t of two terms, oneterm re
e
ting the 
hange in the error as a fun
tion of the output of the unit andanother term re
e
ting the 
hange as a fun
tion of the 
hanges in the input of theunit. Therefore, we have Æpk = ��Ep�spk = ��Ep�ypk �ypk�spk : (B.8)From equation B.1, the se
ond term is�ypk�spk = F 0(spk); (B.9)129



whi
h is simply the derivative of the non-linear 11 fun
tion F for the k-th unit,evaluated at the net input spk to that unit. To 
ompute the �rst term in equation B.7,we 
onsider two 
ases. First, assume that the unit k is an output unit k = o of thenetwork. In this 
ase, it follows from the de�nition of Ep that�Ep�spk = �(dpo � ypo); (B.10)whi
h is the same result as obtained in appendix A. Substituting this result andequation B.10 into equation B.8, we getÆpo = (dpo � ypo)F 0(spo) (B.11)for any output unit o. Se
ondly, if k does not 
orrespond to an output unit but ahidden one k = h, we do not readily know the 
ontribution of the unit to the totaloutput error of the network. However, we 
an write the error as a fun
tion of the netinputs from hidden to output layer. That is, Ep = Ep(sp1; sp2; : : : ; spj ; : : :) and we usethe 
hain rule to write�Epyph = NoXo=1 �Ep�spo �spo�yph = NoXo=1 �Ep�spo ��yph NhXj=1wjoypj = NoXo=1 �Ep�spo who = � NoXo=1 Æpowho: (B.12)Substituting this into equation B.9 yieldÆph = F 0(sph) NoXo=1 Æpowho: (B.13)Equations B.11 and B.13 give a re
ursive pro
edure for 
omputing all the di�erentÆ's in the network. Equation B.7 is then used to modify the weights. This pro
e-dure 
onstitudes the generalized Delta rule for feed-forward networks with non-lineara
tivation fun
tions.11these fun
tions are also 
alled squashing fun
tions su
h that lim�!1F(�) = 1, andlim�!�1F(�) = 0 130



APPENDIX CFITTING WITH A NEURAL NETWORK
We want to use a Neural Network to �t a series of re
onstru
ted mass distributions.An example showing the distributions for a top mass of 120 GeV/
2, 175 GeV/
2, and230 GeV/
2 is given in Figure C.1. As expe
ted, the distributions peak around thetrue top mass used to generate ea
h Monte Carlo sample. The goal of this proje
t isto 
reate a single Neural Network that is able to dupli
ate the shape of a distributionas a fun
tion of the true top mass.We have to put all the information shown in the histograms of Figure C.1 intoa format that the Neural Network 
an understand. First, all the histograms mustbe s
aled so that they have the same number of events. Then, the Neural Networkmust have the information that for Mtop = 120 GeV/
2 the 10th bin has 122 entries,for Mtop = 175 GeV/
2 it has only 19 entries, and for Mtop = 230 GeV/
2 the 10thbin has four entries. There is only two ways we 
an introdu
e any information into aNeural Network: the input nodes and the output node.We 
hose one of the input units to be the true top mass, Mtop. The NeuralNetwork must have the information that if the top mass 
hanges the shape of thedistribution 
hanges. We 
hose the se
ond input unit to be the bin lo
ation alongthe Mre
 axis. Ea
h of the re
onstru
ted mass histograms range from 80 to 380131
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Figure C.1: We show the Mre
 distributions for three di�erent top masses. All of thehistograms have been normalized to the same number of events.GeV/
2 and are divided into 5 GeV/
2 bins In order for MLP�t to work properly wehave to normalize the input variables so that they are between 0 and 1. Thus, thenormalization equations are the following:input1 = (Bin lo
ation� 80:0)300:0 (C.1)input2 = (Mtop � 120:0)110:0 (C.2)The last pie
e of information 
omes in through the output node. In 
lassi�
ationproblems we are used to setting the output node to a single value su
h as 1 for signaland 0 for ba
kground. That is not the 
ase when we deal with �tting. Now, we setthe target value of the output node to the bin 
ontent asso
iated with both the bin132



lo
ation and the true top mass. An ex
erpt of a training �le is given below. The�rst 
olumn 
orresponds to the bin lo
ation, and the se
ond 
olumn is Mtop . Thenumbers on the right have been normalized to unity a

ording to Equation C.1 andC.2. The last two 
olumns is what is ultimately fed into the Neural Network.127:5 120:0 =) 0:16 0:0122:0 =) 122:0... ... ... ...127:5 175:0 =) 0:16 0:519:0 =) 19:0... ... ... ...127:5 230:0 =) 0:16 1:04:0 =) 4:0When this information is fed into the Neural Network, it tells the network thatforMtop = 120 GeV/
2 there are 122 entries in the 10th bin. Similarly, forMtop = 175GeV/
2 there are 19 entries in the 10th bin, and for Mtop = 230 GeV there arefour entries. The above is just a simple example with only three Mre
 distributions.The a
tual �le used to train the Neural Network is made up of 1140 entries, whi
h
orrespond to 19 di�erent distributions with 60 bins ea
h. Training is stopped whenthe �2 fun
tion de�ned in Se
tion 7.1.1 is 
lose to one.On
e an optimal Neural Network is obtained, we use it mu
h like a regular fun
-tion. The network takes two input parameters, the Mre
 and Mtop, and the output ofthe Neural Network is interpreted as a probability density fun
tion. This output isused in the mass analysis likelihood fun
tion des
ribed in Se
tion 7.3.
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APPENDIX DVECBOS BACKGROUND
To in
rease the number of ba
kground events used in this analysis we have 
om-bined all the VECBOS Monte Carlo generated into a single sample. Thus, our ba
k-ground sample 
ombines events generated with a s
ale Q2 = hPT i2 and Q2 = hMW i2.In this Appendix we present the studies that support that 
ombining both kinds ofba
kground events does not have an e�e
t on the top mass measurement.In Se
tion 8.1 we introdu
ed the kinemati
 variables that 
ontain the most massinformation. We plot these distributions for both kinds of ba
kgrounds to see whetheror not they di�er from one another. Figure D.1 shows theMre
 , HT,Mt�t, and PT (1)+PT (2) distributions for the SVX Single VECBOS sample. The only distributions thatseem to be somewhat di�erent are the Mre
 distributions. It is important to pointout that the SVX subsamples su�er from the least amount of ba
kground. Althoughnot shown, the distributions for the SLT and No Tags subsamples show very littledi�eren
e. We perform a series of Kolmogorov tests between the distributions in ea
hsubsample to obtain a measure of how di�erent they are. Table D.1 shows the resultsfrom our K-S tests.
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VECBOS Subsample Mre
 HT Mt�t PT (1) + PT (2)SVX 2.72% 43.4% 77.9% 27.0%SLT 44.9% 34.5% 23.7% 14.0%No Tags 96.5% 97.3% 95.4% 100%Table D.1: We give K-S tests results for ea
h of the VECBOS subsamples. We notethat the SVX Single ba
kground is used for both SVX subsamples.The K-S tests are an indi
ation that both sets of ba
kground events are fairlysimilar. Next, we investigate whether or not using the entire VECBOS ba
kgroundhas an e�e
t on the di�erent mass analyses des
ribed in this thesis.D.1 Ba
kground Shape E�e
t on NN Template MethodWe separate the ba
kground events into the two di�erent 
lasses. Using the defaultQ2 = hPT i2 ba
kground events, we 
onstru
t the Mre
 ba
kground template whi
his then �tted with the NN method. We generate pseudoexperiments as explained inSe
tion 7.3 and we 
al
ulate the top mass. Next, we generate pseudoexperiments forwhi
h we draw the ba
kground events from the Q2 = hMW i2 ba
kground, and we
ompare them to the default ba
kground distributions. When we 
ompare the resultsfrom the previous two methods, the median top mass was found to di�er by 0:3� 0:2GeV/
2. Thus, 
ombining both 
lasses of events into a large ba
kground does not
hange the top mass value.D.2 Ba
kground Shape E�e
t on Standalone NN AnalysisThe main reason why we want to 
ombine all of the VECBOS events into a singleba
kground sample is to have enough statisti
s to properly train the networks usedin the Standalone NN analysis. 135
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Figure D.1: Comparisons of the VECBOS ba
kground generated with two di�erentvalues of Q2 for SVX-tagged events for (a) re
onstru
ted top mass, Mre
 , (b) HT, (
)t�t invariant mass, Mt�t, and (d) PT (1) + PT (2).We have generated two new networks: one for the Single SVX subsample, andanother for the No Tags subsample. These new networks have the same ar
hite
ture asthe ones shown in Table 8.2. However, they are trained using only default ba
kgroundevents. We have not generated a network for the SLT subsample be
ause there arenot enough events in the default ba
kground sample to train the network 
orre
tly.We ran pseudoexperiments for the Single SVX subsample in whi
h we draw theba
kground events from the default ba
kground sample. Next, we ran pseudoex-periemnts for whi
h we draw the ba
kground events from the Q2 = hMW i2 ba
k-ground sample. We �nd that the di�eren
e in the top mass median is 0:2 � 0:2136



GeV/
2. We perform a similar study for the No Tags subsample and we �nd that thedi�eren
e in the mass median is 0:0� 0:2 GeV/
2.Based on the results from the K-S tests, and the mass analyses tests we thinkthat 
ombining the Q2 = hPT i2 and Q2 = hMW i2 ba
kgrounds has no e�e
t on thetop mass 
al
ulation.
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APPENDIX ECOMBINING MEASUREMENTS
Suppose one is trying to determine the value of quantity s and there are n inde-pendent measurements si with their 
orresponding error �i. The best estimate for sis then given by s = Pi xi=�2iPi 1=�2i : (E.1)Now, suppose that we have n measurements of a quantity s but that ea
h measure-ment is related to the other n � 1 measurements. In this 
ase, we say that themeasurements are 
orrelated. To �nd the best estimate of the quantity s we needmore information than the individual errors. Thus, we de�ne the 
ovarian
e matrixVs whose terms are given by (Vs)ij = �ij�i�j; (E.2)and �ij = (Vs)ij�i�j (E.3)where the 
orrelation 
oeÆ
ient, �ij, is a measure of the relation between two vari-ables, and it 
an be proved that it must lie between -1 and +1.We want to 
onstru
t the best linear estimator of the quantity s whi
h a

ounts forall the measurements, in
luding their errors and 
orrelations. We de�ne the estimator138



to be s =Xi 
isi; (E.4)with an error given by �2s =Xij 
i
j(Vs)ij: (E.5)In the previous two equations, 
i's are the 
oeÆ
ients that must be found. From anystatisti
s book [52℄, we �nd that these 
oeÆ
ients are given by
i = Pk(V �1)ikPjk(V �1)jk : (E.6)Note that this expression for 
i is identi
al to equation E.1 when the errors areindependent from one another.E.1 InformationImagine that we want to 
ombine two measurements s1 � �1 and s2 � �2 into asingle measurement s with error �2s . We plot the 
ombined error �2s for two di�erenterrors �1 and �2 as a fun
tion of the 
orrelation, �, between the measurements s1 ands2. Figure E.1.(a) shows the results for the 
ase when �1 = 5:0 and �2 = 10:0. As we
an see from the graph, �2s(�) is not linear. As a matter of fa
t, the behavior of thefun
tion is quite surprising. The plot implies that when the measurements are 100%
orrelated (� = +1 or -1) , we will be able to know the quantity perfe
tly.One expe
ts the 
ombined error to be at a minimum when the measurementsare 100% un
orrelated and then to grow as the 
orrelation 
oeÆ
ient in
reases. Thenaive interpretation is that as the measurements be
ome more 
orrelated the infor-mation one is adding de
reases. To determine whether this is true or not we use theFisher information variable [53℄. We assume the two measurements have binormal139
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Figure E.1: (Left) Shows �2s(�). The fun
tion is not linear and it is equal to 0 whenthe � = +1 or -1. (Right) The Fisher information is shown as a fun
tion of �. Theinformation is maximum when the measurements are 100% 
orrelated (values notshown be
ause they approa
h in�nity).distributions and we derive: I = �21 + �22 � 2��1�2�21 � �22 � (1� �2) (E.7)Figure E.1.(R) shows that information de
rease from � = 0 to � = �1=�2, afterwhi
h it begins to in
rease. The explanation to this e�e
t is somewhat simple. Asthe 
orrelation in
reases beyond a 
ertain point, you are limiting the freedom ofthe measurements to di�er from the true value strue. Therefore the varian
e of the
ombined measurement starts going down. This is most easily understood for the
ase where � = 1. 140



A 
orrelation of 100% means that if s1 shifts by f � �1, then s2 has to shift byexa
tly f � �2. It is straightforward to 
he
k that under su
h a 
ombined 
he
k thevalue of s does not 
hange. In fa
t, sin
e the expe
tation values of s1 and s2 are bothstrue, and sin
e they are 100% 
orrelated, there must exist some real number r su
hthat s1 = strue + r � �1 and s2 = strue + r � �2 [54℄. If we substitute this expressioninto equation E.4 we �nd that s = strue. Therefore the result �2s(�1; �2) = 0 makesperfe
t sense.
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APPENDIX FGENERATION OF \FAKE" MONTE CARLO
The generation of \fake" Monte Carlo is only to see whether or not aNN 
an �t a set of 2-D distributions. It is not intended to repla
e thea
tual Monte Carlo in any way or form.In Chapter 7 we des
ribe how to obtain the Mtop -dependent fun
tional formsfor Mre
 and HT. These fun
tional forms provide an in�nite amount of statisti
s.However, these fun
tions are 100% independent and from Monte Carlo studies weknow that Mre
 and HT are somewhat 
orrelated. The results from this 
orrelationstudy are given in tables F.1. Looking at all distributions from all the generated topmass we �nd that the average 
orrelation between these variables is roughly 38% forthe t�t signal and about 50% for the VECBOS ba
kground. Using this informationwe generate \fake" Monte Carlo using the following re
ipe:� We draw 50 events12 randomly from the Mre
 and HT fun
tional forms. Onaverage the 
orrelation between the 50 events in these subsamples will be � 0.However, in some 
ases the 
orrelation will be equal or greater to that observedin the Monte Carlo.12A larger number of events will redu
e the probability of getting a 
orrelation 
lose to what theMonte Carlo predi
ts. 142



Top Mass SVX Single SVX Double SLT No Tags120 GeV 0.42 0.42 0.47 0.44130 GeV 0.41 0.32 0.42 0.41140 GeV 0.37 0.38 0.38 0.46145 GeV 0.36 0.36 0.36 0.37150 GeV 0.37 0.37 0.40 0.39155 GeV 0.37 0.31 0.40 0.42160 GeV 0.36 0.38 0.37 0.40165 GeV 0.37 0.36 0.36 0.39170 GeV 0.39 0.37 0.38 0.37175 GeV 0.36 0.37 0.37 0.39180 GeV 0.38 0.39 0.35 0.39185 GeV 0.38 0.38 0.36 0.38190 GeV 0.37 0.36 0.37 0.40195 GeV 0.38 0.33 0.38 0.36200 GeV 0.37 0.37 0.38 0.36205 GeV 0.35 0.34 0.35 0.37210 GeV 0.38 0.40 0.36 0.40220 GeV 0.39 0.38 0.41 0.37230 GeV 0.38 0.41 0.40 0.37VECBOS 0.53 N/A 0.54 0.51Table F.1: We show the 
orrelation fa
tor between Mre
 and HT for all the di�erentMonte Carlo t�t samples.� We only keep the subsamples for whi
h �j � �MC (this is true for the t�t signalas well as the ba
kground). If a subsample meets the � requirements we add itto a larger sample for whi
h �total = PNj=1 �jN : (F.1)By only sele
ting subsamples with a spe
i�
 
orrelation we are able to 
reate asample with a 
orrelation 
oeÆ
ient similar to the one observed in the real MC.� The pro
ess is repeated until we have 50,000 events for ea
h of the signal andba
kground mass subsamples. We point out that we do not really need that143



many events to populate the 2-D histograms. 10,000 or fewer events would besuÆ
ient when dealing with the real Monte Carlo.The \fake" Monte Carlo mimi
s the shape of the real Monte Carlo quite wellas we 
an see by overlaying the proje
tions from our \fake" 2-D templates to thea
tual results from the 1-D fun
tional forms. Figure F.1 shows an example from theSingle SVX subsample. Therefore, we think that �tting these templates with a NeuralNetwork will tell us whether or not this method 
an be used on the real Monte Carlo.
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Figure F.1: (a) Lego histogram of our \fake" MC distribution forMtop = 175 GeV/
2.(b) Contour plot of the same distribution. (
) Proje
tion along the Mre
 axis of our2-D plot. The blue 
urve 
orresponds to the 1-D NN �t of the true MC for a topmass of 175 GeV/
2. (d) Proje
tion of the 2-D plot along the HT axis. The blue
urve 
orresponds to the 1-D NN �t of the true MC for a top mass of 175 GeV/
2.144



BIBLIOGRAPHY
[1℄ D. GriÆths, Introdu
tion to Elementary Parti
les, Harper and Row Publishers,(1987); F. Halzen and A. Martin, Quarks and Leptons: An Introdu
tory Coursein Modern Parti
le Physi
s, Jhon Wiley and Sons, (1984); V. Barger and R.Phillips, Collider Physi
s, Addison Wesley Publishing Company, (1987).[2℄ M. Ca

iari, Symposium of Twenty Beautiful Years of Bottom Physi
s-b20, AIP,Woodfury, NY (1998); S. Frixione, M. L. Mangano, P. Nason, and G. Ridol�,Heavy Flavors II, Word S
ienti�
, River Edge, NJ (1997).[3℄ P. Nason, S. Dawson, and R. K. Ellis, Nu
l. Phys. B 303, 607 (1988).[4℄ R. Bon
iani, S. Catani, M. L. Mangano, and P. Nason, Report No. CERN-TH/98-31 (1998).[5℄ A. D. Martin, R. G. Roberts, and W. J. Stirling, Phys. Lett. B 387 419, (1996).[6℄ E. Laenen, J. Smith, and W. L. van Neerven, Phys. Lett. B 321, 254 (1994).[7℄ A. D. Martin, W. J. Stirling, and R. G. Roberts, Phys. Lett. B 306, 145 (1993).[8℄ E. L. Berger and H. Contopanagos, Phys. Rev. D 57, 253 (1998).[9℄ H. L. Lai et al., Phys. Rev. D 51, 4763 (1995).[10℄ M. Kobayashi and T. Meskawa, Prog. Theor. Phys. 49, 652 (1973).[11℄ http://www.fnal.gov/ 
ontains a wealth of information regarding Fermilab.[12℄ F. Abe et al., Nu
l. Inst. Meth. Phys. Res. Se
t. A 271, 387 (1988)[13℄ P. Azzi et al., Nu
l. Inst. Meth. Phys. Res. Se
t. A 360, 137 (1995)[14℄ F. Snider et al., Nu
l. Inst. Meth. Phys. Res. Se
t. A 268, 75 (1988)[15℄ F. Bedes
hi et al., Nu
l. Inst. Meth. Phys. Res. Se
t. A 268, 50 (1988)[16℄ L. Balka et al., Nu
l. Inst. Meth. Phys. Res. Se
t. A 267, 272 (1988)145



[17℄ S. Bertolu

i et al., Nu
l. Inst. Meth. Phys. Res. Se
t. A 267, 301 (1988)[18℄ G. As
oli et al., Nu
l. Inst. Meth. Phys. Res. Se
t. A 268, 33 (1988)[19℄ G. Foster et al., Nu
l. Inst. Meth. Phys. Res. Se
t. A 269, 93 (1988)[20℄ B. Kr�ose, P. van der Smagt An Introdu
tion to Neural Networks, University ofAmsterdam (1996).[21℄ M. Minsky and S. Papert Per
eptrons: An Introdu
tion to Computational Ge-ometry, MIT Press (1969).[22℄ S. Haykin Neural Networks: A Comprehensive Foundation, 2nd edition, Prenti
eHall (1999).[23℄ H. White, A. R. Gallant, K. Hornik, M. Stin
h
ombe and J. Wooldrige Arti�
ialNeural Networks: Approximation and Learning Theory, Bla
kwell (1992).[24℄ F. Abe et al., Phys. Rev. D 50, 2966 (1994); Phys. Rev. Lett. 73, 225 (1994).[25℄ F. Abe et al., Phys. Rev. Lett. 80, 2773 (1998).[26℄ F. Abe et al., Phys. Rev. Lett. 80, 2779 (1998).[27℄ F. Abe et al., Phys. Rev. D 52, 4784 (1995); F. Abe et al., Phys. Rev. Lett. 75,11 (1995).[28℄ The isolation, I, is de�ned as the ET (PT) within a 
one of �R < 0:4 
enteredon the lepton, but ex
luding the lepton energy, divided by the ET (PT) of thelepton.[29℄ F. Abe et al., Phys. Rev. D 45, 1448 (1992).[30℄ D. Kestenbaum, Ph.D. Thesis (unpublished), Harvard University (1996)[31℄ G. Mar
hesini and B.R. Webber, Nu
l. Phys. B310, 461 (1988); G. Mar
hesiniet al., Comput. Phys. Comm. 67, 465 (1992).[32℄ T. Sj�ostrand, Computer Physi
s Commun. 39, 347 (1986) ; T. Sj�ostrand and M.Bengtsson, Computer Physi
s Commun. 43, 367 (1987); T. Sj�ostrand and M.Bengtsson, Computer Physi
s Commun. 46, 43 (1987).[33℄ B. Andersson, G. Gustafson, G. Ingelman, and T. Sj�ostrand, Phys. Rep. 97, 31(1983).[34℄ P. Avery, K. Read, G. Trahern, Cornell Internal Note CSN-212, Mar
h 25, 1985(unpublished). We use Version 9 1 with a b lifetime of 1.45 ps.146



[35℄ F.A. Berends, W.T. Giele, H. Kuijf and B. Tausk, Nu
l. Phys. B357, 32 (1991).[36℄ F. Abe et al., Phys. Rev. Lett. 79, 4760 (1997).[37℄ F. Abe et al., Phys. Rev. D 47, 4857 (1993).[38℄ MINUIT Referen
e Manual, CERN Program Library Entry D505 (1994).[39℄ L. Orr, T. Stelzer, and W. J. Stirling, Phys. Rev. D 52, 124 (1995); Phys Lett.B 354, 442 (1995).[40℄ T. A�older et al., Phys. Rev. D 63 (2001).[41℄ B. Tu
hming, ALEPH Note 99-073: Two dimensional �ts of Higgs mass shapesas a fun
tion of Higgs mass with Neural Networks, (1999).[42℄ J. S
hwindling and B Mansoulie, MLP�t Neural Network, see:http:/s
hwind.home.
ern.
h/s
hwind/MLPfit.html[43℄ A 
lear des
ription of the VECBOS �les generated for the Run I mass analysis
an be found at:http://www-
df.fnal.gov/internal/physi
s/top/w m
 samples.txt[44℄ L. L�onnblad, C. Peterson, H. Pi, and T. R�ognvaldsson, Compu. Phys. Commun.81, 185 (1994).[45℄ C. Ciobanu, R. Hughes, P. Koehn, C. Neu, and B. Winer, A ROOT s
riptinterfa
e to JETNET, CDF Note 5434 (2000). The Root Jetnet pa
kage 
an bedownloaded from:http://
pdfp
2.mps.ohio-state.edu/root to jetnet/rtj.html[46℄ L. Demortier, L. Lyons, Everything you always wanted to know about pulls, CDFNote 5776 (2002).[47℄ A. Beretvas, M.Binkley, Overview of the kinemati
s of t�t events, CDF Note 4232(1996).[48℄ R. Flet
her, Pra
ti
al methods of optimization, se
ond edition, Wiley (1987).[49℄ K. Tollefson, Ph.D. Thesis (unpublished), University of Ro
hester (1997).[50℄ M. D. Ri
hard, R. P. Lippmann, Neural Computation 3 (1991).[51℄ F. Abe et. al, Phys. Rev. Lett. 75, 3997 (1995).[52℄ R. J. Barlow Statisti
s: A Guide to the Use of Statisti
al Methods in the Physi
alS
ien
es, Wiley (1995). 147



[53℄ W. Eadie, D. Drijard, F. James, M. Roos, B. Sadoulet Statisti
al Methods inExperimental S
ien
e, North-Holland, Amsterdam (1971).[54℄ Lu
 Dermortier, private 
ommuni
ation.[55℄ N. Eddy, Ph. D. Thesis (unpublished), University of Mi
higan (1998).[56℄ M. Glu
k, E. Reya, and A. Vogt, Z. Phys. C 67 433 (1995).[57℄ H Lai et. al, Phys. Rev D. 51, 4763 (1995).

148


