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ABSTRACT

In the proton-antiproton collisions at the Fermilab Tevatron collider, individual

top quarks are expected to be produced by an electroweak mechanism referred to as

single top production. We present here a Neural Networks method of searching for

single top quarks in the 106 pb�1 of data collected by the Collider Detector at Fermilab

(CDF) from 1992-1996. The prospects for observing single top in the current run at

the Tevatron are also discussed.

In searching for single top, improvement to signal to noise can be obtained by

requiring a charged lepton and missing energy from the W decay, as well as a B-

tagged jet. We conduct our search in the W + 1; 2, and 3 jets channels, where we

impose additional selections to further reduce background contributions from QCD

multijet (W+jets) processes and top pair production t�t respectively. Speci�cally, in

the W + 1 jet channel we require exactly one additional jet with ET > 8 GeV and

j�j < 2:4, while in the W + 3 jets channel we require no such additional jets.

After applying these selection cuts to Monte Carlo samples, we are able to estimate

the Run I expected contributions as: 4.2 single top events, 43:3� 8:4 W+jets events,

and 7:4 � 2:2 t�t events. The signal purity is therefore 8%, which makes the Neural

Networks approach particularly suitable for the single top analysis. To distinguish

between signal and background we select seven event variables with good separating

power. These variables are: the transverse energies of the leading two jets, the lepton,
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and the neutrino: Ejet1
T , Ejet2

T , Elepton
T , 6ET , the transverse momentum of the leading

two-jet system P jj
T , the total transverse energy in the event HT , and the product

Q � � between the primary lepton charge and the pseudorapidity of the highest-ET

non B-tagged jet. The Neural Networks used is a three-output perceptron with one

hidden layer trained on Monte Carlo generated events. We use the Monte Carlo

signal and backgrounds output templates to estimate the composition of the 64-

event Run I dataset passing our above selection. By using a simple binned-likelihood

function with Gaussian background constraints to �t the data, we obtain the following

contributions:

nsignal = 23:6� 7:7; nQCD = 36:2� 6:2; nt�t = 7:6� 2:0 (events)

We note that the �t result is approximately 2.5 standard deviations away from the

expected value of 4.2 signal events. We further use this result to extract a 95% C.L.

upper limit on single top cross section of 24:4 pb, roughly 10 times higher than the

Standard Model prediction of 2:43 pb. For Run II, we expect a single top cross section

measurement at 4� precision level with roughly 2 fb�1 of data.
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CHAPTER 1

INTRODUCTION

1.1 The Standard Model

What is the World made of? This is a fundamental question that scientists have

tried to answer over the centuries. Tremendous progress into understanding the struc-

ture of matter has been made since the beginning of the last century, when the quan-

tum theory of matter was founded. Today, particle physicists everywhere dedicate

their e�orts to studying the basic constituents of matter and the forces acting among

them. There are four known types of interactions in the Universe: the strong, the

electromagnetic, the weak, and the gravitational interaction. The Quantum Chromo-

dynamics (QCD) describes the strong interaction, while the electromagnetic and the

weak forces were uni�ed in the framework of Electroweak Model [1, 2, 3] developed

by Glashow, Weinberg, and Salam in the late 1960's. At microscopic level, the fun-

damental particles generate a gravitational �eld which is orders of magnitude weaker

than its electromagnetic counterpart, and can therefore be neglected1. QCD and the

Electroweak Model form the Standard Model, currently the best-established theory

to describe the behavior of matter at fundamental level. In the Standard Model, the

fundamental particles are fermions (spin 1=2 particles) and bosons (spin 1 particles).

1For cosmological distance scales however, gravity is the most important force.
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The fermions are grouped in three generations of quarks and leptons:

 
u
d

!  
c
s

!  
t
b

!
quarks

 
e
�e

! 
�
��

! 
�
��

!
leptons

The electron e, muon �, and tau � are massive, have negative electric charge (-1),

and interact both electromagnetically with their antiparticle counterparts e+, �+,

�+, and weakly with their corresponding neutrinos �e, ��, and �� . Being electrically

neutral, the neutrinos experience only weak interactions. Recent neutrino oscillation

experiments indicate that the neutrinos posses a small rest mass [4]. The charge

properties of quarks are di�erent from those of leptons. First, quarks' electric charge

has fractional value: 2=3 for u, c, t, and �1=3 for d, s, b. Second, quarks also posses

color charge red R, green G, or blue B. The quarks bind in colorless states (e.g. RGB,

RGB, RR) to form the hadrons. It has been observed experimentally that mixing

between quark generations occurs via weak interactions. Cross-generational coupling

was �rst introduced by Cabbibo [5], and further developed by Glashow, Iliopulos,

and Maiani [6] to fully explain the mixing between the �rst two generations. The

extension to three generations is due to Kobayashi and Maskawa [7], who described

quark mixing in terms of a 3 � 3 unitary matrix. This matrix is referred to as the

Cabibbo-Kobayashi-Maskawa (CKM) matrix, and is de�ned by the following relation:

0B@ d0

s0

b0

1CA =

0B@ Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

1CA
0B@ d
s
b

1CA
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where the left (right) hand side column-matrix represents the eigenstates of the weak

(strong) interactions. By convention, the lower elements of the quark doublets (i:e:

d, s, b) were used in expressing the mixing. It is the Vtb element of the CKM matrix

that we attempt to probe in the analysis to be presented in this document.

The Standard Model bosons are: the 8 gluons g which carry the strong force, the

photon 
 that mediates the electromagnetic interaction, and the W+, W�, and Z0

which carry the charged and neutral weak forces. The Standard Model also predicts

the existence of the Higgs boson, a spin 0 neutral particle which provides mass to the

fundamental particles. The exchange of the Higgs boson would represent the �fth

type of interaction in Nature. To date, no experimental evidence of the Higgs boson

exists, although a signi�cant excess consistent with the production of a 115 GeV=c2

mass2 Higgs boson has been recently reported by the ALEPH Collaboration [8].

We note that all existing data concerning elementary particles are consistent with

the Standard Model, down to distance scales as small as 10�18 m. However, a major

drawback of this theory is that it contains a number of arbitrary parameters that

must be measured and put into the theory by hand. For this reason, many physicists

believe that the Standard Model is a low energy approximation to a more fundamental

theory, and that clues to this theory should appear at collider energies of several TeV 's

or more [9].

2A GeV is a unit for energy: 1 GeV = 0.001 TeV = 1:6 � 10�10 J . Here c is the speed of light: c
= 3 � 108 m=s. A GeV=c2 is therefore a mass unit: 1 GeV=c2 = 1:8 � 10�27 kg.
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1.2 Overview of the Analysis

This paper presents a search for electroweakly-produced single top quarks in the

proton-antiproton collisions at the Tevatron. As already mentioned, this measure-

ment can be used to extract one of the Standard Model parameters, namely the

CKM matrix element Vtb, corresponding to the coupling between the top and the

bottom quarks. In Chapter 2 we describe the two processes W* and W -gluon that

are expected to produce single top quarks at the Tevatron. We also discuss the impli-

cations of an experimental measurement of the single top cross section, both within

and outside the Standard Model framework.

Chapter 3 presents a brief overview of the accelerator complex at Fermilab, and

the Collider Detector at Fermilab (CDF) experimental setup.

Chapter 4 contains an introduction to the Arti�cial Neural Network (ANN) tech-

nique. In the beginning of this chapter we introduce the standard terminology and

give a brief history of the ANN �eld of research. We then focus on a particular class

of ANN's called perceptrons, and explain how these can be used in feature recogni-

tion problems. Finally, we pick a simple example to show how multi-class separation

can be achieved using a multi-output perceptron, and illustrate the relation between

perceptron's outputs and the Bayesian (posteriori) class probabilities.

The event selection for this analysis is detailed in Chapter 5. Single top identi�-

cation starts from understanding its speci�c �nal state signatures. The �nal state of

the W* single top channel consists of one t quark and one b quark. The top quark

decays into a W boson and a b quark almost exclusively [10], and therefore the W*

�nal state features two b quarks and the decay products of the W . Similarly, the

W -gluon channel is characterized by two b quarks and the W decay products, plus
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an additional light quark jet (u, d). As explained in Section 5.1.5, jets are sprays of

hadrons produced by a fast-moving quark or gluon.

Consequently, we will be looking for events having one, two or three good jets, that

is jets with high transverse energy ET > 15 GeV and pseudorapidity3 j�j < 2:0. We

ask that at least one of the good jets have come from a B-hadron, as measured by the

silicon tracking component of the CDF detector. A very distinctive signal is provided

by the leptonic decays of the W boson. We accordingly demand the presence of a

lepton and a neutrino4 with a high transverse momentum PT> 20 GeV=c. The main

backgrounds surviving these cuts are the QCD multijetW -production (W+jets), and

top pair-production t�t. To reduce these backgrounds even further, we impose extra

requirements on the number of additional jets in the event. These are jets having

ET> 8 GeV , j�j < 2:4, and were not previously counted as good jets. Speci�cally,

QCD rejection is signi�cantly improved by requiring the presence of one additional jet

in the W + 1 jet channel, while t�t suppression is achieved by requiring no additional

jets in the W + 3 jets events. After applying all these selection cuts to Monte Carlo-

generated samples, we are able to estimate the Run I expected contributions as: 4.2

single top events, 43.3 W+jets events, and 7:4 t�t events.

The low signal-to-background ratio (� 0:08) makes the ANN technique the ideal

approach to single top recognition. ANN's allow us to combine the information from

many di�erent variables while naturally accounting for the correlations among these.

Single top identi�cation with ANN's is described in Chapter 6. We �rst present the

3Pseudorapidity is de�ned as: � = �ln tan(�=2), where � is the polar angle using the z vertex
and the proton beam axis. For a detailed explanation of these quantities, see Chapter 3.

4The neutrino does not interact in the detector. Its presence is inferred from the amount of
missing transverse energy in the event:

�!
6ET �

�!
ET (�) = �

P
i

�!
ET (i).
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method we developed for choosing an appropriate input variable set. The best signal-

background separation is obtained for the following set of input variables: Ejet1
T ,

Ejet2
T , Elepton

T , 6ET , HT , P
jj
T , and Q � �. Here, jet1 and jet2 are the highest-ET jets

in the event, HT is the total transverse energy, jj refers to the jet1 � jet2 system,

and Q � � is the product between the charge of the lepton and the pseudorapidity

of the highest-ET non-b jet. Next, we proceed to construct a perceptron whose task

is to recognize the single top events in the data. To train the perceptron we use

Monte Carlo-simulated signal and background events. Once the network is trained,

we test the sensitivity of our ANN technique on fake-Run I experiments, or pseudo-

experiments. A pseudo-experiment does not contain real data events; instead, Monte

Carlo signal and background events are combined in the proportion that we expect to

see in the Run I data. A measure of the sensitivity is the a priori 95% C.L. limit on

single top production, which we �nd to be 10:5 pb, including the systematic e�ects.

This result is 22% lower than the the limit obtained in the previous CDF search

for the (W*, W -gluon) combined single top signal, and 4.4 times higher than the

theoretical cross section �single top = 2:4 pb. Further, we give the a posteriori single

top results obtained from the data collected during Run I. The ANN output �t to

the data yields a signal content of 23:6� 7:7 events, which represents a 2.5 � excess

over the expected value of 4.2 signal events. We set an a posteriori upper limit on

single top cross section of 24:4 pb. To close Chapter 6, we discuss the perspectives

for observing single top in Run II at the Tevatron. The conclusions of this analysis

are presented in Chapter 7.
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CHAPTER 2

THEORETICAL PERSPECTIVE

The existence of the top quark was experimentally established in 1995 at Fermilab

by the CDF [11] and D� [12]. The top quark was observed in the strong produc-

tion channel, or t�t, via quark-antiquark annihilation q�q ! t�t and gluon-gluon fusion

gg ! t�t. However, the Standard Model also allows for the top quark to be produced

along with a b quark through electroweak interactions. This electroweak mechanism

is referred to as single top production, because the �nal state features one top quark

- as opposed to two in the t�t case. There are three processes expected to generate

single top quarks: (a) s-channel production q�q0 ! t�b, usually called W* production,

(b) t-channel production qg ! t�bq0, called W -gluon fusion production, and (c) asso-

ciated production with a W boson bg ! tW , known as the Wt production. The Wt

process proceeds via gluon-b interaction, which makes the cross section negligible at

the Tevatron5 (approximately 7% of the total single top cross section). The repre-

sentative Feynman diagrams for the W* and W -gluon channels are shown in Figure

2.1(a, e). The next two sections present a summary of the theoretical calculations for

W* and W -gluon single top. The implications of an experimental measurement of

the single top cross section are discussed in the third and �nal section of this chapter.

5This channel will account for about 30% of the single top cross section at the Large Hadron
Collider at CERN.
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2.1 The W* Channel.

A high-energy proton beam may be usefully regarded as an unseparated, broad-

band beam of quarks, antiquarks, and gluons [13]. The parton model is extremely

accurate for hard scattering phenomena, where the momentum transfer is much larger

than the QCD scale. The essence of the parton model is to regard the colliding proton

as a collection of quasi-free partons which share its momentum. A proton of momen-

tum P is envisaged as being made up of partons carrying longitudinal momenta xiP ,

and negligible transverse momenta. In this model, theW* process has a leading order

cross section given by:

�(p�p! t�b+X) =
X
i;j

Z 1

0
dx1

Z 1

0
dx2 [qi(x1; �) �qj(x2; �)+�qi(x1; �)qj(x2; �)]��̂ij(ŝ) (2.1)

where �̂ij(ŝ) refers to the W* diagram shown in Figure 2.1(a), and has the following

analytical expression [14]:

�̂ij(ŝ) =
��2

W jVijj2jVtbj2
q
q20 �m2

t

2(ŝ�m2
W )2

 
q0 � m2

t + 2q20
3
p
ŝ

!
; q0 � ŝ+m2

t �m2
b

2
p
ŝ

: (2.2)

The de�nitions of the quantities appearing in the previous two equations are:

� qi(x1; �)dx1 is the probability of �nding the constituent quark i with momentum

x1P in the proton. The structure function �qj(x2; �) has a similar interpretation

in antiproton. The argument � is the particular factorization scale where the

structure functions are evaluated.

� ŝ is the square of the center-of-mass energy of the (i, j) parton system, and is

related to the p�p center-of-mass energy S by ŝ = x1x2S.
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� �W = g2=4� � p2G�m
2
W=�. Equivalently, �W = �=sin2�W , where � is the �ne

structure constant, and �W is the weak mixing (Weinberg) angle.

� mW ; mt; and mb are the rest masses of the W -boson, top quark, and bottom

quark respectively.

� Vij and Vtb are the CKM matrix elements corresponding to the coupling between

initial state quarks (i; j), and �nal state (t; b) respectively.

The integral in Eqn. (2.1) can be performed numerically using mt = 175 GeV ,

� =Mtb (the mass of the top-bottom quark pair), CTEQ5L structure functions, and

p
S = 1:8 TeV to obtain �LO(p�p! t�b +X) = 0:49 pb [15].

The next-to-leading-order corrections were evaluated by Smith and Willenbrock

in [16]. The most important corrections to the O(�2
W ) leading order cross section

are the QCD corrections of O(�s), processes involving gluon radiation either in the

initial or in the �nal state6 (initial state gluon examples are given Figures 2.1(b,c)). By

averaging the results found separately using two di�erent sets of parton distribution

functions (CTEQ3L,3M and MRS(A')), the authors �nd:

�NLO(p�p! t�b +X) = 0:73� 0:04 pb; at
p
S = 1:8 TeV: (2.3)

The systematic sources of uncertainty in the above �NLO are:

{ the choices for the � and �R, introducing an uncertainty of approximately 4%.

{ the choice for a particular set of PDF's, together with the average taken in

obtaining (2.3), which are assigned a 6% uncertainty.

6In [16] both the factorization scale � and the renormalization scale �R for �s are set to
p
q2.
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{ the uncertainty in the top quark mass mt taken to be 6 GeV , which is estimated

to generate a 15% uncertainty.

Very importantly, we note that only the PDF uncertainty of 6% is quoted in the

result (2.3). Adding all three systematic e�ects in quadrature yields:

�NLO(p�p! t�b +X) = 0:73� 0:12 pb.

The higher order QCD corrections introduce a cross section uncertainty at the level

of �4%, included in the above result via the � scale uncertainty.

2.2 The W -gluon Channel.

The W -gluon fusion channel is in some ways similar to the W* single top. How-

ever, in theW* process the excitedW boson is timelike with q2 > (mt+mb)
2, whereas

the W -gluon fusion involves a spacelike W with q2 < 0. These two production chan-

nels are therefore complementary since they probe the charged-current interaction

of the top quark in di�erent regions of q2 [17]. We can interpret the W -gluon dia-

gram shown in Fig. 2.1(d) as top quark production from a W boson fusing with a b

quark which is in the proton sea, with the sea generated by gluons splitting into b�b

pairs [18, 19]. The W -gluon cross section calculation starts with this leading-order

diagram, and using a b quark sea distribution function. Unlike the light-quark dis-

tribution functions, the b distribution function can be calculated perturbatively, as it

involves energies of order mb and larger; however, the gluon and light quark distribu-

tion functions are inputs to this calculation. The LO cross section of Figure 2.1(d) is

given by [18]:

d�̂

dt̂
=
��2

W jVijj2jVtbj2
4

ŝ�m2
t

(ŝ�m2
b)(t̂�m2

W )2
(2.4)
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Figure 2.1: Single top production at the Tevatron: (a) LO diagram forW* single top,
(b)-(c) NLO corrections to W*, (d) LO W -gluon single top, (e)-(f) NLO corrections
of order 1/ln(m2

t=m
2
b), (g)-(k) NLO corrections of order �s. Note that for the W*

channel (a)-(c) the W boson has q2 > (mt + mb)
2, while for the W -gluon channel

(d)-(k) the W has q2 < 0.
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for a quark-quark or antiquark-antiquark collision, and:

d�̂

dt̂
=
��2

W jVijj2jVtbj2
4

û�m2
b

(ŝ�m2
b)

2

û�m2
t

(t̂�m2
W )2

(2.5)

for a quark-antiquark collision, where

t̂ = � ŝ
2

"
1� m2

b

ŝ

# "
1� m2

t

ŝ

#
(1� z) (2.6)

and ŝ+ t̂ + û = m2
t +m2

b . In Eqn. (2.6) z is the cosine of the scattering angle in

the parton-parton center-of-mass frame. To compute the leading-order cross section

[19], the scales are chosen �2 = Q2 for the light-quark pdf's, and �2 = Q2 + m2
t

for the b-quark pdf respectively, where Q2 = �q2W . Calculations performed in the

MS scheme using the CTEQ4M pdf set,
p
S = 1:8 TeV , and mt = 175 GeV yield:

�LO(p�p! qt�b +X) � 1:87 pb.

As shown in reference [19], there are two independent next-to-leading-order cor-

rections: of order 1/ln(m2
t=m

2
b), and of order �s respectively. The diagrams corre-

sponding to the two types of corrections are shown in Figures 2.1(e-f), and Figures

2.1(g-k) respectively. Using the same assumptions as for the leading-order calculation,

the NLO result is [20]:

�NLO(p�p! qt�b+X) = 1:70� 0:09 pb; at
p
S = 1:8 TeV: (2.7)

In this expression, the 0.09 pb uncertainty is associated with varying the � scale

in the b pdf (5%). It does not incorporate systematics from the pdf (10%), top mass

(9%), and the uncertainty associated with the gluon distribution function, which

would re
ect itself in an uncertainty in the b pdf. As in the previous section, we can

add the systematic uncertainties in quadrature to obtain:

�NLO(p�p! qt�b +X) = 1:70� 0:24 pb.
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The e�ect of the higher order corrections is estimated to be �5% of the NLO cross

section, and was included in the previous �NLO result via the � scale uncertainty.

2.3 The Implications of Measuring Single Top

An experimental measurement of the single top cross section is important for a

number of reasons.

First, the single top production cross section7 depends on the Cabbibo-Kobayashi-

Maskawa (CKM) matrix element Vtb, one of the few parameters of the Standard

Model not yet directly measured. Assuming three generations, the unitarity of the

CKM matrix implies that jVtbj is close to unity [21]: 0:9990 < jVtbj < 0:9993 at 90%

con�dence level. In the �rst attempt to directly probe Vtb, the CDF collaboration [10]

measured the ratio jVtbj2=(jVtdj2 + jVtsj2 + jVtbj2) = 0:94+0:31
�0:24. However, if there are

more than three quark generations, jVtbj could in principle be any positive number

less than unity. In this case, the experimental single top cross section coupled with

an accurate theoretical calculation may provide the best direct estimate of jVtbj [17],

independently of the assumption of the number of generations. Obtaining jVtbj in this

manner presents both experimental and theoretical challenges. Experimentally, the

main obstacle is isolating the signal from the large underlying background in order

to accurately measure the single top rate. On the theory side, a key issue is the

precise estimation of the gluon distribution function. Assuming that this is known to

a reasonable degree of accuracy8, then Vtb can be treated as a free parameter in the

7This is in contrast to the t�t channel, where Vtb appears in the decay portion of the diagrams.

8Matching or exceeding the experimental accuracy.
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NLO cross section calculation 9, and subsequently found by equating this result with

the experimentally measured value.

Another important reason for studying single top is that this is a signi�cant

background to other processes, such as the Higgs boson production q�q0 ! WH,

with H ! b�b. This is the main decay channel for an intermediate mass Higgs:

90 < MH < 130 GeV . Therefore understanding single top will be crucial for all

future searches for the Higgs boson at the Tevatron or the LHC at CERN.

Beyond the Standard Model, single top could probe a variety of new phenomena,

among which we mention the following:

(a) the existence of a new charged vector boson W 0 which would enhance the mea-

sured single top cross section. The W 0 boson is predicted by the left-right sym-

metric extensions of the Standard Model, where the the massive right-handed

W 0 suppresses the V + A charged current interaction W 0 ! t�b [22].

(b) anomalous Wtb couplings [23, 24, 25]. As calculated in [24], such couplings can

considerably enhance the Standard Model single top cross section at the Run

II Tevatron.

(c) 
avor changing neutral currents (FCNC) couplings �tug and �tcg. If these cou-

plings exist, they would lead to a signi�cantly larger single top cross section, as

calculated in [26].

9The previous cross section results (2.3), (2.7) were calculated in the assumption that Vtb = 1.
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(d) CP-violation e�ects within the Minimal Supersymmetric Standard Model (MSSM)

[27]. Depending on the squark masses (particularly the stop) the W* cross sec-

tion can feature an t�b - �tb asymmetry of the order 1% at the Tevatron with 30

fb�1 of data.

(e) Kaluza-Klein excitedW -boson within the MSSM. The Kaluza-Klein excitations

can couple to the Standard Model quarks. As a result, the W* single top cross

section can be reduced by almost 25% for a mass of the WKK of � 1 TeV [28].

To close this chapter, we summarize the most important aspects of a single top

cross section measurement: within the Standard Model, it probes the Vtb coupling and

impacts the future searches for the Higgs boson. Outside the Standard Model, this

measurement has the potential to validate or invalidate several exotic phenomena

such as the existence of heavy gauge bosons, 
avor changing neutral currents, or

supersymmetric extensions of the Standard Model.
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CHAPTER 3

THE CDF EXPERIMENT AT THE TEVATRON

Fermi National Accelerator Laboratory (Fermilab), is a particle-physics experi-

mental facility built in 1967 in Batavia, Illinois. Its largest component, the Tevatron,

is currently the highest-energy accelerator in the world. The Tevatron will continue

to dominate the arena of high-energy physics until 2007, when the Large Hadron Col-

lider at CERN is scheduled to begin operations. Throughout this document, the main

data taking periods at the Tevatron are referred to as Run I (1992-1995) and Run II

(started 2001). The focus of the analysis presented here is the dataset accumulated

during Run I by the Collider Detector at Fermilab (CDF) experiment. Consequently,

in what follows we will describe the accelerator and the detector components as they

were during Run I10.

3.1 The Tevatron

The Tevatron is a proton-antiproton superconducting collider which for Run I ran

at an energy level of
p
S = 1.8 TeV . To attain this energy, the proton and antiproton

beams go through the acceleration chain shown in Figure 3.1 and brie
y described in

Table 3.1. For protons, the acceleration process starts with the production of H� ions

10For Run II, there have been a large number of improvements and additions to the experiment,
as part of the upgrade following the 1995 shutdown.
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LinacCDF

Figure 3.1: The accelerator complex at Fermilab.

Accelerator Component Particle Max. Energy Approximate Size

Cockcroft-Walton H� 750 keV few meters

Linac H� 200 MeV L = 150 m

Booster p 8 GeV R = 75 m

Debuncher/Accumulator �p 8 GeV hRi = 90 m

Main Ring p, �p 150 GeV R = 1 km

Tevatron p, �p 900 GeV R = 1 km

Table 3.1: Acceleration stages for protons and antiprotons.

by ionizing Hydrogen gas. The H� ions are �rst accelerated in a Cockcroft-Walton

electrostatic accelerator followed by a linear accelerator (the Linac). The ions further

pass through a carbon foil that strips o� the electrons and permits the protons to

pass through. From here, proton acceleration is done in three stages, corresponding

to each of the three circular accelerators: Booster, Main Ring, and Tevatron. The

protons are injected into the Tevatron as individual bunches. In Run I, the Tevatron
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Period Typical Instantaneous L Best Instantaneous L Integrated L

Run IA 0:5 � 1031 cm�2 s�1 0:9� 1031 cm�2 s�1 19.65 pb�1

Run IB 1:6 � 1031 cm�2 s�1 2:8� 1031 cm�2 s�1 86.34 pb�1

Table 3.2: Typical instantaneous, best instantaneous, and integrated luminosities
during Run I at the Tevatron (integrated L corresponds to the CDF interaction
region).

operated in a six-bunch regime, with the six proton bunches spaced evenly across the

ring (3.5 �s temporal separation between successive bunches).

The antiprotons are made by colliding a proton beam from the Main Ring with a

Tungsten target. Among the various particles created in this collision are the antipro-

tons, which are subsequently passed to the Debuncher and next to the Accumulator.

When a large number of antiprotons (� 1012) are collected in the Accumulator, they

are grouped in a bunch to be injected �rst into the Main Ring and then into the Teva-

tron, similar to the protons but revolving in the opposite direction. Table 3.2 shows

the various luminosity values during Run IA (1992�1993) and Run IB (1994�1995)

respectively. Further information about the Tevatron at Fermilab can be found in

reference [29].

3.2 The CDF Detector

The two detectors for p�p collisions at Fermilab are CDF and D�. Each of these

detectors is located at one of the two high luminosity interaction regions (B0, and

D0 respectively) along the Tevatron ring. CDF is a multi-purpose detector designed

for good lepton (e, �), photon, and jet identi�cation. It is cylindrically symmetric,

and also forward-backward symmetric with respect to the the transverse plane which
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passes through its center. The CDF coordinate system de�nes the z direction along

the direction of the proton beam, � as the polar angle, and � as the azimuthal angle.

Instead of the polar angle �, it is customary to use the pseudorapidity � expressed via

the transformation: � = �ln[tan(�=2)]. CDF is composed of an array of individual

detectors, each of which is designed for a speci�c type of measurement. According

to their functionality, the various sub-detectors that make up CDF can be divided

in three main categories: tracking chambers, calorimeters, and muon chambers. The

tracking detectors are the closest to the interaction region. They are situated inside

a 1.5 m radius superconducting solenoid which is co-axial with the beam pipe. The

1.4 T magnetic �eld generated by the solenoid causes a charged particle to follow a

curved path, or track, whose radius can be used to infer particle's transverse momen-

tum. Surrounding the solenoid are the calorimeters, which determine the energies

of the outgoing particles. Finally, the outermost detectors are the muon chambers

which measure the energies and positions of the muons that were not absorbed in

the calorimeters. In the following section we will take a closer look at each of these

three detector sub-systems. For the complete description of the detector, we point

the reader to reference [30].

3.2.1 Tracking Detectors

There are three tracking components, all located inside the 1.4 T solenoid (Fig-

ure 3.2): the Silicon Vertex Detector (SVX), the Vertex Time Projection Chamber

(VTX), and the Central Tracking Chamber (CTC).

The SVX surrounds the 1.9 cm radius beam pipe and lies within 2:86 < r < 7:87

cm radial zone. It consists of two identical barrels located on either side of the
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Figure 3.2: A quarter view of the CDF showing the locations of the di�erent detector
subcomponents.

z = 0 point, giving a total active length of 51 cm and a coverage of j�j < 1:9. The

p�p collisions occur within a range of roughly 60 cm along the z axis, which brings

the SVX track acceptance to about 60%. Figure 3.3 shows one SVX barrel. In the

azimuthal direction it features 12 wedges of 30Æ each, with the silicon strip detectors

arranged in 4 concentric layers. In a given layer, the silicon strip detectors are bonded

longitudinally in groups of three called ladders, for a total length of 25.5 cm. The

total number of ladders is 96, and within each ladder the number of silicon strips is

(depending on the layer): 256, 384, 512, 768 for layers 1 to 4 respectively. This gives

a total of 46080 SVX channels which are read by 360 readout chips, or one chip per

every 128 channels. Even though the read out is done is parallel and in sparse mode,

the SVX readout time is still relatively long, about 2 ms per event. The role of the
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Figure 3.3: Schematic view of an SVX barrel.

SVX detector is to provide r � � information (2-D tracking in the transverse plane)

about the secondary vertices from b quark decays which have a mean decay length of

� 0.5 mm. The identi�cation of b quark jets, or B� tagging, has played a major role

in the discovery of the top quark [11] and impacts almost every aspect of top quark

physics, including the search for single top presented here.

Surrounding the SVX is the VTX time-proportional drift chamber. In the radial

direction it extends out to 21 cm, while longitudinally features 8 modules with a

combined length of 2.8 m. Each module is segmented azimuthally into 8 wedges,

and contains a 50%-50% mixture of argon-ethane gas. It has a central high voltage

grid which divides the module into two 15.25 cm drift regions. The ionization elec-

trons drift to the two endcaps containing sense wires running perpendicular to the
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Figure 3.4: Transverse view the Central Tracking Chamber (CTC) which shows the
alternating superlayers of axial and stereo cells.

longitudinal plane bisecting each wedge. The arrival times of the electrons give the

z coordinate of the track, while the wire location speci�es the particular r. The role

of the VTX is to get the positions of the primary vertices by �tting the tracks in

the r � z plane. This information is subsequently used in the 3-dimensional CTC

track reconstruction. In the multiple-interaction events, the VTX also helps establish

which interaction a primary vertex and associated tracks belong to. The pseudora-

pidity coverage of the VTX is j�j < 3:5, and the primary vertex z resolution is 1� 2

mm. The last component of the tracking system is the CTC, which is a 3.2 m long

cylindrical drift chamber whose inner and outer radii are 30.9, and 132.0 cm respec-

tively. It covers a pseudorapidity range of j�j < 1:0. The CTC consists of 84 layers

of sense wires which are grouped in 9 superlayers, numbered 0 to 8. There are two
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types of superlayers, alternating in radial direction: axial superlayers (0,2,4,6, and 8)

providing r� � track information, and stereo superlayers (1,3,5, and 7) giving track-

ing information in the r� z plane. Figure 3.4 presents a transverse view of the CTC,

where each of the cells contains either 12 axial or 6 stereo wires and is tilted by 45Æ

with respect to the radial direction. The tilt ensures that the electrons are drifting

perpendicularly to the radial direction, which simpli�es track reconstruction. The

axial wires are strung parallel to the z direction, while the stereo wires are rotated by

�3Æ relative to the beamline. The total number of sense wires in the chamber is 6156,

and each wire has a design resolution of � 200�m (r � �), and 4 mm (r � z). The

CTC is �lled with a gas mixture (argon/ethane/alcohol as 49.6% : 49.6% : 0.8%) in

which the maximum drift time of the electrons to the wires is less than 800 ns. The

track reconstruction in the CTC consists in �tting the hit wire pattern to a helix.

The momentum of a charged particle traversing the CTC is determined from the re-

constructed trajectory radius and has a resolution of: ÆPT=PT = 0:002 GeV �1c�PT .

When information from the SVX is included in the reconstruction, the resolution

becomes: ÆPT=PT = 0:001 GeV �1c� PT .

More detailed information about the SVX, VTX, and CTC, can be found in

references [31], [32], and [33] respectively.

3.2.2 Calorimeters

The CDF calorimeters, located outside the solenoid, are segmented into towers (in

��� space) which point back to the center of the detector (Figure 3.2). The central

calorimeter extends over the range j�j < 1:1 and each of its towers corresponds to a

solid angle �� = 15Æ and �� = 0:1. The region 1:0 < j�j < 2:4 is covered by the plug
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Figure 3.5: A central calorimeter wedge. There are 24 wedges covering �� = 15Æ on
either side of the transverse plane z = 0.

calorimeters with a segmentation of �� = 5Æ and �� = 0:09. Finally, the forward

calorimeters match the pseudorapidity interval 2:4 < j�j < 4:2, with a segmentation

of �� = 5Æ and �� = 0:1. We will describe each calorimetry system in what follows.

The central calorimeter system is composed of the central electromagnetic calorime-

ters (CEM), and central hadronic calorimeters (CHA). It is structured as 48 individual

wedges each containing 10 towers. Figure 3.5 presents one of the central calorime-

ter wedges, where the lower and upper regions are occupied by the CEM and CHA

calorimeters respectively. Towers 0 to 8 de�ne the central region, and towers 6 to 8

share their hadronic portion with the endwall calorimeter (WHA) as shown in Figure

3.2. The relevant physical characteristics of the central calorimeters are summarized
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CEM CHA WHA

Coverage (j�j) 0� 1:1 0� 0:9 0:7� 1:3
Tower Size (�� ���) 0:1� 15Æ 0:1� 15Æ 0:1� 15Æ

Module Length 250 cm 250 cm 100 cm
Module Width 15Æ 15Æ 80 cm
Number of Modules 48 48 48
Active Medium polystyrene acrylic acrylic

scintillator scintillator scintillator
Thickness 5 mm 10 mm 10 mm
Number of Layers 31 32 15

Absorber Pb Fe Fe
Thickness 3 mm 25 mm 51 mm
Number of Layers 30 32 15

Energy Resolution
(�(E)=E(GeV )) 13:7%=

p
ET � 2% 50%=

p
ET � 3% 75%=

p
ET � 4%

Table 3.3: The physical properties for the central and endwall calorimeters. In the
last row, the symbol � indicates that the constant term is to be added in quadrature
to the resolution.

in Table 3.3. A detailed description of the CEM, CHA, and WHA calorimeters is

given in references [34], [35]. The CEM is constructed of alternating layers of lead

and scintillator, and has an e�ective thickness of 18 radiation legths. Similarly, the

CHA is composed of alternating layers of iron and scintillator, with a thickness of 4.7

attenuation lengths. Besides CEM and CHA, each wedge contains a proportional

strip chamber (CES) which measures the electromagnetic showers produced by the

incident electrons or photons. The CES is positioned inside the CEM at roughly 6

radiation lengths - where the shower activity is expected to peak. Finally, a set of

proportional tubes called CPR or the central pre-radiator are placed in the central

region between the solenoid and CEM. The role of CPR is to detect the development

of the early showers produced by electrons as they traverse the solenoid coil.
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PEM PHA FEM FHA

Coverage (j�j) 1:1� 2:4 1:3� 2:4 2:2� 4:2 2:3 � 4:2
Tower Size (�� ���) 0:1 � 5Æ 0:1 � 5Æ 0:1 � 5Æ 0:1� 5Æ

Number of Layers 34 20 30 27
Active Medium Proportional Tube Chambers with Cathode Pad Readout
Tube Size 7� 7 mm2 14� 8 mm2 10� 7 mm2 15� 10 mm2

Absorber Pb Fe 96% Pb, 4% Sb Fe
Thickness 2.7 mm 51 mm 4.8 mm 51 mm

Energy Resolution
(�(E)=E(GeV )) 22%=

p
ET � 2% 90%=

p
ET � 4% 26%=

p
ET � 2% 137%=

p
ET � 4%

Table 3.4: The physical properties for the plug and forward calorimeters.

In the reminder of this subsection we will very brie
y review the plug and forward

calorimeters. These are used to determine the energies of the forward jets (and in-

directly to extract the missing energy 6ET in an event). As in the case of the central

calorimetry, both the plug and the forward calorimeters feature electromagnetic and

hadronic sections: PEM, FEM, and PHA, FHA respectively. These calorimeters use a

50%-50% argon-ethane gas mixture as their active medium. Proportional tube arrays

containing this gas are interleaved with layers of lead and steel, as summarized in

Table 3.4. PEM and FEM have thicknesses of 18-21 and 25 radiation lengths respec-

tively, while their hadronic counterparts PHA and FHA have 5.7 and 7.7 attenuation

lengths respectively.

3.2.3 Muon Systems

Most of the charged particles exiting the calorimeters are high energy muons

(PT > 1:5 GeV=c). At CDF, muon detection is accomplished by using single wire,

rectangular drift tubes. The muon system is composed of three separate muon de-

tectors, all situated in the central pseudorapidity region: the central muon detector
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(CMU), the central muon upgrade (CMP), and the central muon extension (CMX).

The CMU [36] o�ers a coverage of j�j < 0:6, and is located inside the central calorime-

ter wedges radially outside of the CHA (Figure 3.6). The coverage in � is about 85%

of the full 2� range due to the 2:4Æ gaps between detector modules located in adjacent

wedges. In each wedge the CMU is segmented into three towers, each consisting of 4

radial layers of 4 drift cells. In turn, each drift cell is �lled with a mixture of 49.6%

argon, 49.6% ethane, and 0.8% ethanol gas, and has a sense wire running parallel to

the z direction (2260 mm). To resolve the ambiguity as to which side of the wires a

given track has passed, the upper and lower layers are shifted relatively by 2 mm in

the azimuthal direction. The r � � track coordinates are inferred from the locations

of the hit wires and the di�erences in the arrival times of the drift electrons. The

track z information is obtained by comparing the pulse heights at each end of the

sense wires. The CMU resolution is 250 �m in the transverse plane, and 1.2 mm

longitudinally. To further reduce the number of hadrons outside the CMU, CDF uses

a 60 cm - thick layer of steel provided by two side walls and the return magnet yoke.

Behind this steel layer there is the CMP which consists of 4 layers of drift cells. CMP

has essentially the same � range as the CMU, and covers most of the CMU gaps. The

muon coverage was extended in the pseudorapidity range of 0:6 < j�j < 1:0 with the

addition of the CMX system. CMX is structured as four conical arches of drift tubes

covering 71% of the solid angle in the 0:6 < j�j < 1:0 interval. CMX inner and outer

surfaces feature scintillator planes called CSX which provide timing information used

in the CMX muon trigger as described in the following section.
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Figure 3.6: The location of the CMU system. Inside each calorimeter wedge there is
a 2:4Æ � interval not covered by the CMU.

3.2.4 Event Triggers

In the Run IB, the p�p collisions were occurring at a rate of 280 kHz, which

considerably exceeds the maximum event storage rate, or the rate of writing out the

events to tape (� 10 Hz). Consequently, CDF devised a three-level trigger system

which rejects most of the events, while retaining only those which are potentially

useful for various physics analyses. Events passing the requirements of the Level 1

trigger are passed to Level 2; the events passing Level 2 are allowed to propagate to

Level 3 which impose further requirements before the events are ready to be written

to tape. Typical acceptance rates for the three trigger levels are of the order 1:300,

1:50, and 1:5 for Level 1, Level 2, and Level 3 respectively. Level 1 and Level 2

triggers are implemented in hardware, while Level 3 is a software trigger.
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The Level 1 does not have any dead time as the decision of accepting an event

is made in less than 3.5 �s. It is based on identi�cation of energy clusters in the

calorimeters or muon tracks in the muon chambers. The Level 1 decision is a logical

OR of the following calorimetry conditions: for inclusive electrons and jets, a single

tower above a threshold of 8 GeV for CEM, 11 GeV for PEM, 12 GeV for CHA, 51

GeV for PHA, FEM, and FHA. These are further OR-ed with the muon conditions,

which �rst require hits on two radially aligned sense wires in the CMU or CMX

systems. The PT of the muon is obtained by �rst measuring the slope of the track

(given by the di�erence between the electron drift times) and then extrapolating

back to the CTC to get track's de
ection in the magnetic �eld. The events having

muons with PT > 6 GeV=c are accepted if the CMU track segment matches with hits

in the CMP, or if the CMU hits are in time with the hadronic calorimeter TDC's

(this rejects the cosmic muon events). The last muon trigger requirement demands a

PT > 10 GeV=c track segment in coincidence with the CSX response and the hadron

TDC's.

The Level 2 decision time is approximately 20 �s during which further beam

crossings are ignored by the detector (dead time of a few percent). The decision to

accept events is made based on calorimeter clusters, high-PT tracks in the CTC, and

muon candidates. A hardware calorimeter cluster �nder outputs a list of clusters

by searching for a seed tower above a speci�c threshold accompanied by neighboring

towers exceeding a second lower threshold. The process is repeated until no new

seed towers are found, and for each cluster found, the ET is calculated along with

average values for � and �. Track information is provided by the Central Fast Tracker

[37], or CFT, a highly eÆcient hardware processor that uses hits to reconstruct high
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momentum tracks in the transverse plane with a resolution of ÆPT=P
2
T = 3:5%. To

form a muon candidate at Level 2, the muon track segments in the CMU, CMP, and

CMX that triggered Level 1 are required to have a matching CFT track. Similarly,

the Level 2 central electron candidates are required to have energy clusters in the

CEM with ET > 9 GeV matched to CFT tracks with PT > 9:2 GeV=c and a ratio of

CHA/WHA to CEM cluster energies less than 0.125. The electromagnetic clusters

are formed by demanding a seed CEM tower over 9 GeV and possible adjacent towers

exceeding 7 GeV .

If the Level 2 trigger passes the event, the whole detector is read out, and the

information is fed to the Level 3 which consists of FORTRAN 77 �lter algorithms run

on a farm of Silicon Graphics processors. The detector readout time is 3 ms which

on average results in 10% dead-time. The trigger software reconstructs events using

a simpli�ed version of the offline analysis code. Electrons and muons from Level

2 have their tracks fully reconstructed in 3 dimensions, and are required to match a

reconstructed electromagnetic cluster or a muon stub. Once an event is accepted by

Level 3, it will be written to 8 mm tape as part of a particular data stream.
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CHAPTER 4

NEURAL NETWORKS

4.1 Introduction to Arti�cial Neural Networks

Arti�cial Neural Networks (ANN) are inspired from the structure of biological

neural networks and their functioning [38, 39]. Though extremely primitive from a

neurophysiological point of view, the ANN models are still valuable for gaining insight

into how the human brain works. As we will see, just using a simple mathematical

function to approximate the complex nerve cell allows us to reproduce the essential

collective behavior of a large network of interacting cells.

The human brain contains approximately 1011 nerve cells, or neurons. Figure 4.1

shows an image of single neuron, and a network of such cells (inset). The cell body

receives an input from the surrounding cells by means of electric signals (ions 
ow)

arriving through the dendrites. If the input signals exceed a threshold value �the

resting potential of the cell body� then an electric discharge takes place via the axon

which is in turn connected to the dendrites of other cells. The discharge process is

customarily referred to as \�ring". In 1943, McCulloch and Pitts [40] developed the

�rst mathematical approach for modeling the networks of neurons. In this model,

a neuron is seen as a binary threshold unit, and its connections to the surrounding
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Figure 4.1: A single nerve cell, or neuron, photographed by scanning electron mi-
croscopy. The inset shows a microscopy image of a biological neural network.

neurons are represented by real numbers, called weights. Figure 4.2(b) presents

a graphical picture of the McCulloch - Pitts model, where the idealized neuron i

performs the following calculation:

ni = �(
X
j

wijnj � �i); where �(x) =
�
1; if x � 0;
0; if x < 0:

(4.1)

In this equation, ni is the output of neuron i and represents the state of the neuron:

1 = firing, 0 = not firing. The weight wij represents the strength of the connection

between neuron j and neuron i. The output of neuron j is denoted by nj, which is in
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Figure 4.2: McCulloch-Pitts model: the connections between neurons are associated
real numbers, or \weights", which are adjusted to implement a given task. (a) An
arti�cial network of 5 neurons with 4 input terminals. In our notation, this is a
4-3-2 two-layered perceptron. (b) The McCulloch-Pitts neuron � seen as a binary
threshold unit, where the weighted inputs are summed; the output is 1 if this sum
exceeds a threshold �i, or 0 if not.

fact an input for neuron i. Finally, �i is the threshold value for neuron i; the weighted

sum of the inputs must reach or exceed this threshold for the neuron to �re.

The following terms are conventionally used when referring to ANN modeling:

� node, unit for the neuron

� architecture for the con�guration of nodes

� activation function g(x) for the unit calculation

In Eqn. (4.1) the activation function g(x) was the Heaviside step function �(x). In

general, continuous s-shaped, or \sigmoid" functions are used, such as the hyper-

bolic tangent g(x) = tanh(x). There are two di�erent kinds of ANN architectures:

feed-forward and feed-back. In a feed-forward network (see Figure 4.2(a)), signal

33



processing starts from a set of input terminals whose only role is to feed input in-

formation to the network. After this can come one or more intermediate layers of

nodes11, followed by a �nal output layer where the result of the calculation is read

o�. In contrast, feed-back networks process information bidirectionally, and the com-

putation continues until a �xed point is reached, similar to the equilibrium state

in a statistical mechanics system. In high-energy physics applications, feed-forward

networks are used for pattern recognition problems such as signal/background sep-

aration, while feed-back architectures are used for optimization problems as in the

case of track-�nding algorithms.

4.2 Multi-layered Perceptrons

Neural networks learn from examples [41]. This statement is obviously true for the

brain, but arti�cial networks also adapt their \synaptic" weights to a set of examples.

In what is called the learning phase, the weights are changed iteratively until the

network acquires some ability to generalize, to make predictions for input informa-

tion not seen before. Learning in arti�cial systems has �rst been demonstrated in

1962 by Rosenblatt [42] who devised a special class of feed-forward networks called

perceptrons. In a perceptron, the nodes are organized into layers and the unidimen-

sional connections run only between nodes in consecutive layers. For example, Figure

4.2(a) presents a 4-3-2 two-layer12 perceptron. In what follows we will illustrate how

multi-layered perceptrons (MLP's) can be used in feature recognition (or pattern

classi�cation) situations.

11These are usually referred to as hidden nodes, because they have no connection to the outside
world, neither input nor output.

12The bottom (input) layer is not counted because it contains no neurons. As mentioned in the
text, its only role is to feed the input information to the network.
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In a general classi�cation problem, one wants to categorize the input data into

classes based on a set of distinctive features. This task can always be cast in the

form of asking a particular output pattern
�!
T k in response to the kth input pattern

�!
xk.

That is, one wants the actual output pattern
�!
Ok to be equal to the target pattern

�!
T k:

�!
Ok =

�!
T k (desired) (4.2)

The dimension N of the input space gives the number of input terminals needed in

the input layer. The number M of output nodes is directly related to the number of

di�erent classes (categories). As we will explain in the next section, it is particularly

advantageous to use one output node for each data category. Given the notations of

Figure 4.2(a), the output of the network
�!
Ok depends on the input pattern

�!
xk as:

Ok
m = g

 
��m +

HX
h=1

Wmh � g
 
��h +

NX
n=1

whn � xkn
!!

; for m = 1; � � � ;M (4.3)

In the above equation, Ok
m is themth component of output pattern

�!
Ok = (Ok

1 ; � � � ; Ok
M);

xkn is the n
th component of input pattern

�!
xk = (xk1; � � � ; xkN); �m, �h are the thresholds

for the mth output node and hth hidden node respectively; H is the total number of

nodes in the hidden layer.

There are a total of H �(M+N)+H+M free parameters in Eqn. (4.3): the weight

connectionsWmh, whn, and the thresholds �m, �h. In adjusting these parameters, one

needs to have a list or training set of correct input/output pairs as examples: (
�!
xk;

�!
T k)

with k = 1; � � � ; Ntrain. To achieve the desired condition of Eqn. (4.2), one minimizes

an error function, as for example:
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Ek(
�!
W;�!w ;�!� ) = 1

2
j�!T k ��!Okj2 = 1

2

MX
m=1

(T k
m �Ok

m)
2 (4.4)

If g(x) is a di�erentiable function (e.g. tanh(x)), then Ek(
�!
W;�!w ;�!� ) is also di�er-

entiable with respect to every weight and threshold, therefore we can use a gradient

descent algorithm to �nd the appropriate parameters. Speci�cally, after feeding train-

ing pattern
�!
xk to the net, we adjust the weights by:

�Wmh = �� @Ek

@Wmh

; and �whn = �� @E
k

@whn

: (4.5)

The parameter � is called the learning rate. Similar equations can be written for

the thresholds. The partial derivatives can be easily worked out starting from Eqn.

(4.4) and Eqn. (4.3). In calculating these derivatives, one �nds that the changes in

the input-hidden weights �whn depend on the hidden-output weight changes �Wmh.

Therefore the errors appear to propagate backwards in the network, reason for which

this algorithm is called back � propagation. One can apply this weight-updating

procedure for each and all training examples (
�!
xk;

�!
T k) 13.

Besides training, the other important aspect of learning is the generalization.

After exhausting the training set, the weights are \frozen", and the generalization

performance of the network is tested on a separate set of Ngen patterns: (
�!
xj ;
�!
T j),

j = 1; � � � ; Ngen. The weights are not updated at this stage. The generalization

performance is usually lower than the performance on the training set, although

for very large data sets the two performances can be approximately equal. A good

indicator of the performance is, for example, the mean error:

Etrain =
1

Ntrain

NtrainX
k=1

Ek; and Egen =
1

Ngen

NgenX
j=1

Ej (4.6)

13We say that an epoch has passed after all training patterns were presented to the network once.
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where Ek, Ej are de�ned by Eqn. (4.4). Obviously, a high performance implies a low

error and vice-versa. If the generalization performance is unsatisfactory, one should

execute the training procedure again. Depending on the complexity of the network

and also on the task involved, there can be as many as a few thousand epochs until

the weights converge to the optimal set of values.

The role of the generalization set (
�!
xj ;
�!
T j) is to help us establish when to stop

training. There is therefore a dependence of the networks' parameters on the gener-

alization set, even if the latter was not used in updating the weights. For this reason,

a third set of examples (
�!
xl ;
�!
T l), independent of the training and generalization sets,

is often used to gauge the expected performance of the net for data not seen before.

This third set is called the validation set, and its performance is de�ned as in Eqn.

(4.6).

4.3 Connection to Bayesian Statistics

In the previous section we have shown how neural networks can be used for clas-

si�cation. In order to understand the connection between perceptrons and Bayesian

probabilities, it is useful to consider the problem of pattern classi�cation in the larger

statistical context.

The purpose of a pattern classi�er is to assign every input pattern (x1; x2; � � � ; xN) �
�!x to one of a small number M of discrete classes or groups C1; C2; � � � ; CM [43].

Each input pattern �!x is fed into a classi�er which calculates M output numbers

(O1; O2; � � � ; OM) � �!O and based on these values assigns the pattern to one of the M

classes14. The two major statistical approaches to classi�cation are to use probability

14We note again that this discussion applies but is not limited to neural networks.
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distribution functions or PDF's, and posteriori or Bayes probabilities. These ap-

proaches di�er in the statistical quantity their outputs model, and in the procedure

used for training. We will illustrate both methods through the following example

taken from [44]. In the conclusion of this chapter we will discuss the similarity be-

tween this example and our single top identi�cation task.

The problem. Consider the simplest case N = 1, where an input pattern is

de�ned by one real number x. Further, let us assume that we have M = 3 categories

of patterns. Figure 4.3(A) shows the three probability distribution functions P(xjC1),

P(xjC2), P(xjC3) of x for classes C1, C2, C3 respectively. All three PDF's are unit

variance, gaussian distributions and di�er only in their means. For a given class Ci,

the probability that the input value is in the [x, x + dx] interval is:

dPi(x) = P(xjCi) dx; with
Z
1

�1

P(xjCi) dx = 1; for i = 1; 2; 3: (4.7)

As already stated however, we are interested in deriving class probabilities given a

certain value of x15. This are called Bayes probabilities, and are denoted by P (Cijx).

We point out that these are not probability densities, as can be seen from the nor-

malization condition:

P (C1jx) + P (C2jx) + P (C3jx) = 1; for all x 2 R: (4.8)

The solution. The PDF's P(xjCi) and the posteriori probabilities P (Cijx) are

related via the Bayes theorem:

P (Cijx) � dP (x) = P(xjCi) dx � P (Ci); for i = 1; 2; 3 and all x 2 R: (4.9)

15Since the three PDF's overlap, an input pattern x can not be assigned with 100% certainty to
any one class. The classi�cation task reduces therefore to calculating the probabilities that pattern
x originated from class C1, C2, or C3.
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Here, dP (x) = P(x) dx is the unconditional probability that the input is situated

in the [x; x + dx] interval, and P (Ci) is the a priori or prior class probability of

class Ci. More precisely, P (Ci) is the probability that a random selection of a new

input pattern will come from class Ci, and can be obtained by measuring the relative

frequency of occurrence of patterns from di�erent classes. Solving Eqn. (4.9) for

P (Cijx), we obtain:

P (Cijx) = P(xjCi) � P (Ci)

P(x) (4.10)

We note that P(x) does not play any role in the classi�cation process, because it
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Figure 4.3: The two statistical approaches to classi�cation. This example assumes
three distinct classes of one-dimensional patterns. In both graphs, the horizontal
axis represents the variable x that speci�es the input patterns. As the three PDF's
overlap, the classi�cation can only be done in terms of probabilities.
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is the same for the three classes. It is customary to treat P(x) as a constant factor,

which we can calculate from the normalization condition (4.8). Based on expression

(4.10), we can compute the three Bayesian P (Cijx) as function of the input x. These

are plotted in Figure 4.3(B), where we assumed that the prior class probabilities are

equal: P (C1) = P (C2) = P (C3) = 1=3.

Practical implementation. Conventional PDF classi�ers do not estimate pos-

terior probabilities directly. Instead, they estimate the PDF's and the prior probabil-

ities for each class, i.e. the right hand side of Eqn. (4.10). The most common PDF's

used for PDF classi�ers are gaussian distributions whose means and variances for

each class are estimated from the training data using simple non-iterative algorithms.

Examples of this type of classi�ers are linear discriminants, as for example Fisher

discriminants in the case M = 2.

In contrast, Bayesian classi�ers estimate posterior probabilities directly, i.e. left

hand side of Eqn. (4.10). Richard and Lippmann [44] have shown that perceptrons

are such classi�ers, when the network has one output for each class, target (desired)

outputs are 1 of M (the output corresponding to the correct class is 1, all other out-

puts are 0), and a squared-error function (4.4) is used. When posterior probabilities

are estimated accurately, the M output node values will sum up to unity, and these

outputs can be treated as probabilities.

Analogy to single top. This simple example exhibits the essential features

of our single top search. As it will be described in the next chapter, we attempt

to classify patterns (events) into three classes corresponding to the three physical

processes: QCD, single top, and top pair production. The patterns are characterized

by N = 7 real numbers, which are �nal state particles' energies, momenta, angles
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(or combinations of these) in the event. The individual PDF's for these seven inputs

have a signi�cant overlap among the three classes, similar to Figure 4.3(A). We will

use a 3-output perceptron, where in the training we turn on one output for each

corresponding process. To train the network we use Monte Carlo generated events.

Further, we assume no prior knowledge with respect to classes: P (C1) = P (C2) =

P (C3) = 1=3, therefore we train the network with equal number of events from

each class16. The actual class probabilities, or process rates, are subsequently found

by comparing (�tting) the output distribution of the entire Run I dataset to the

individual Monte Carlo output distributions corresponding to each process. This is

precisely how we extract the single top cross section from the Run I data.

16Appendix A gives a more detailed discussion on the prior class probabilities.
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CHAPTER 5

EVENT SELECTION AND MONTE CARLO SAMPLES

The data studied for this analysis were collected with the CDF detector during

Run I, and correspond to an integrated luminosity of 106:0�4:1 pb�1. For both single

top production channels W�gluon and W*, the �nal state features a W boson and

two b-quarks. To improve signal resolution, we select only the events in which the

W decayed leptonically. We are therefore looking for events having a high transverse

momentum lepton and a large amount of missing transverse energy 6ET from the

neutrino. We require at least one high transverse energy jet from a B hadron, and

reject dilepton events from Z boson or t�t decays (Z ! ll or t�t! ll��jj). After this

initial selection, we use a jet counting variable Nj8 to further reduce the backgrounds.

The �nal section of this chapter discusses the Monte Carlo acceptances for signal and

backgrounds, along with the expected Run I contributions.

5.1 Initial Selection

We present here the selection criteria for electrons, muons, missing energy, and

jets. We do not explicitly consider � leptons here, as their hadronic decay channel

makes the identi�cation considerably more diÆcult.
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5.1.1 Electron Identi�cation

Electrons deposit most of their energy in the electromagnetic calorimeter, and the

shower is usually contained within a small cluster of towers (one or two towers in the

CEM). In addition, an electron has a CTC track which points towards the cluster.

At the Level 1 trigger stage, a CEM cluster is classi�ed as an electron candidate if it

has ET > 8 GeV . At Level 2, an electron candidate is de�ned by a CEM cluster with

ET > 16 GeV which matches a CTC track with PT > 12 GeV=c, or a CEM cluster

with ET > 16 GeV and at least 20 GeV of missing transverse energy. Additional cuts

are applied at Level 3, which are looser versions of the �nal selection cuts given in

the list below. The variables used to identify electrons, along with the speci�c cuts,

are:

� ET - transverse energy in the CEM cluster. Require: ET > 20 GeV .

� E=P - the ratio of electromagnetic calorimeter energy E to the track momentum

P . Require: E=P < 1:8.

� HAD=EM - the ratio of the energyHAD deposited in the hadronic calorimeters

to the energy EM deposited in the electromagnetic calorimeter (within the

electron cluster). Require: HAD=EM < 0:05.

� Lshr - the lateral shower pro�le for electrons, which compares the energy in

adjacent CEM towers to the seed tower for the cluster. Lshr is de�ned as:

Lshr � 0:14
X
i

Eobs
i � Eexp

ir
(0:14

p
E)2 + �2

E
exp
i

(5.1)

where the sum is over the towers adjacent to the seed tower, Eobs
i is the elec-

tromagnetic energy measured in tower i, Eexp
i is the energy expected from test
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beam electrons, 0:14
p
E is the CEM energy resolution, and �Eexp

i
is the uncer-

tainty in Eexp
i . We require: Lshr < 0:2.

� j�xj and j�zj - the separation between the extrapolated CTC track position

and the CES chamber position in the r� � plane, and r� z plane respectively.

Require: j�xj < 1:5 cm, and j�zj < 3:0 cm.

� �2strip - the �
2 resulted from the comparison of the CES shower pro�le in the z

direction between the electron candidate and test beam electrons. We require:

�2strip < 10.

� z-vertex match - the distance along the beam axis z between the primary vertex

(interaction point) and the reconstructed track. If there is more than one vertex

in the event, the distance to the closest vertex is used. The closest vertex is

required to have jzj < 60 cm measured from the z = 0 point. We require:

z-vertex match < 5:0 cm

� Iso - electron isolation. Iso = (Econe
T � ET )=ET , where E

cone
T is the sum of

the transverse energies in towers within a cone of R = 0:417 around the track

direction, and ET is the electron cluster transverse energy. We require: Iso <

0:1.

� Fiducial cut on the electron. The electron is required to be in the �ducial

volume, which covers 84% of the solid angle in the region j�j < 1:0. With this

requirement we seek to avoid the regions where the detection response is not

accurate (cracks, or inter-module spacing).

17R is de�ned by: R �
p
(��)2 + (��)2
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The combined eÆciency for these cuts was measured using electrons from Z decays,

and is approximately 82% without including the isolation cut. The process Z !

e+e� was used because of its very distinct signatures; the electrons coming from W

decays are expected to have similar kinematic characteristics. In addition to these

requirements, an algorithm is applied to remove the photon conversion electrons [45],

with an eÆciency of 91%.

5.1.2 Muon Identi�cation

Depending on the muon system subcomponent they traverse, the muons are clas-

si�ed as: (a) CMU-CMP muons is they are reconstructed in both CMU and CMP

chambers, (b) CMU-only or CMP-only if the muon is reconstructed in only one of

the CMU and CMP chambers, and (c) CMX muons if they pass through the CMX

detector. The Level 1 muon trigger requires a pair of hits in two parallel muon drift

tubes (within a certain time window). The hits in CMU, CMP, and CMX are then

linked into track segments, or stubs. At Level 2, the muon candidates are de�ned by

a CTC track with PT > 12 GeV=c pointing to within 5Æ of a Level 1 muon stub. The

Level 2 selection criteria are given in Table 5.1 [45]. The Level 2 triggers having a

very high event rate are prescaled, which means that only 1 out of every n triggers

is accepted. The Level 3 muon trigger runs full o�ine reconstruction of muon stubs

and a simpli�ed version of the o�ine tracking code. It requires that the distance

j�xj between the extrapolated CTC track and the muon stub be less than 10 cm for

CMU-only or CMU-CMP, 25 cm for CMX muons, and 40 cm for CMP-only muons.

Finally, the following conditions are imposed for muon candidates passing the Level

3:
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Triggers Prescaled

CMU-only muons

1) 6ET> 35 GeV and two jets with ET> 3 GeV NO

2) CTC track with PT> 12 GeV=c matched to CMU stub YES

3) CTC track with PT> 12 GeV=c matched to CMU stub
and one jet with ET> 15 GeV

NO

CMU-CMP muons

1) 6ET> 35 GeV and two jets with ET> 3 GeV NO

2) CTC track with PT> 12 GeV=c matched to CMU
and CMP stubs

NO

3) CTC track with PT> 12 GeV=c matched to CMU
and CMP stubs and one jet with ET> 15 GeV

NO

CMP-only muons

1) 6ET> 35 GeV and two jets with ET> 3 GeV NO

CMX muons

1) 6ET> 35 GeV and two jets with ET> 3 GeV NO

2) CTC track with PT> 12 GeV=c matched to CMX stub YES

3) CTC track with PT> 12 GeV=c matched to CMX stub
and one jet with ET> 15 GeV

YES

Table 5.1: Level 2 trigger requirements for primary muons.

� PT - transverse momentum of the muon track in the CTC. Require: PT >

20 GeV=c.

� EM , HAD - the energy deposition in the electromagnetic, and hadronic calorime-

ters. As muons are minimum ionizing particles, we require: EM < 2 GeV ,

HAD < 6 GeV , and also EM +HAD > 0:1 GeV .

� d0 - the impact parameter. This is de�ned as the distance of closest approach

between the reconstructed muon track and the beam axis in the r � � plane.

Require: d0 < 3 mm.

� j�xj - the track-stub separation. Require: j�xj < 2 cm for CMU muons, and

j�xj < 5 cm for CMP or CMX muons.
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� z-vertex match (de�ned in the previous subsection). Require: z-vertex match

< 5:0 cm. Also require that the closest vertex to have jzj < 60 cm measured

from the z = 0 point.

� Iso - muon isolation. Iso = (Econe
T � Etower

T )=PT , where E
cone
T is the sum of

the transverse energies in towers within a cone of R = 0:4 around the track

direction, Etower
T is the transverse energy measured in the tower associated with

the muon track, and PT is the transverse momentum of the muon track. We

require: Iso < 0:1.

� Fiducial cut on the muon. The muons are required to be in the �ducial volume

within a pseudorapidity range of j�j < 1:2.

Similar to the electrons, muon cut eÆciencies are extracted from the Z boson decays

Z ! �+��. Excluding the isolation cut, the combined cut eÆciencies are 91% for

CMX muons, 90% for CMU-only muons, 88% for CMP-only muons, and 94% for the

CMU-CMP muons.

5.1.3 Missing Transverse Energy 6ET

The neutrinos originating from W boson decays do not interact in the detector.

Their presence however can be inferred indirectly by calculating the total transverse

momentum in the event 18. The latter should be equal to zero, as the incoming proton

and antiproton were moving in the longitudinal direction. The deviation from zero

is caused by the undetected neutrino(s), and is referred to as the missing transverse

energy. The so called raw missing transverse energy 6ET
raw is the negative of the

18It is customary to use energy instead of momentum, as this is what the calorimeters measure.
In the high-energy limit, the two quantities are equivalent up to the constant c factor.
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Electron cuts Muon cuts

ET > 10 GeV PT > 10 GeV=c

HAD=EM < 0:12 If associated with a stub If no stub

E=P < 2:0 (if in CEM) EM < 5 GeV , HAD < 10 GeV EM < 2 GeV , HAD < 6 GeV

Iso < 0:2 j�xjCMU; CMP; or CMX < 5 cm j�j < 1:1

Iso < 0:1 Iso < 0:2

Table 5.2: Quality cuts designed to identify the secondary lepton from Z-decays.

vector sum of all transverse energy in the calorimeter towers with j�j < 3:6. The

thresholds for each calorimeter tower included in the sum are: 0:1 GeV for CEM,

CHA, and WHA, 0:3 GeV for PEM, 0:5 GeV for PHA and FEM, and 0:8 GeV for

FHA towers. If the primary lepton is a muon, the missing energy 6ET is obtained

from 6ET
raw by vectorially adding the PT of the muon track and subtracting the

ET of the calorimeter tower associated with the muon. If the primary lepton is an

electron, then 6ET= 6ET
raw. We do not include jet corrections in calculating 6ET . For

our analysis, we select events having 6ET> 20 GeV .

5.1.4 Z Boson Decays and t�t Dilepton Events Removal

We remove events consistent with Z boson decays: Z ! e+e� and Z ! �+��.

On of the two leptons resulting from the decay is identi�ed by the selection cuts in

Sections 5.1.1, 5.1.2. A Z-decay candidate is �rst required to have a secondary lepton

passing the cuts listed in Table 5.2 [45]. Second, we demand that the invariant mass

of the ee or �� satisfy: 75 < Mee; M�� < 105 GeV=c2. If both these conditions are

met, the event is rejected.

For t�t background suppression, dilepton events are also removed. These are events

having two opposite-sign leptons (e or �) with PT > 20 GeV=c, missing transverse
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energy 6ET> 25 GeV , and two jets with ET > 20 GeV [46]. In addition, we reject

events with an isolated track with PT> 15 GeV=c and charge opposite to that of the

primary lepton. The track isolation requirement is
P
PT < 2 GeV=c in a cone of

radius R = 0:4 around the lepton candidate track.

5.1.5 Jet Identi�cation

Colored quarks and gluons can be regarded as free during a hard collision. Shortly

afterwards (� 10�24 s) the color forces will organize them into colorless hadrons in

a process known as hadronization. A quark or gluon therefore exits the interaction

region as a narrow spray of hadrons, or jet. Jets will deposit their energy in a

localized cluster of calorimeter towers. Cluster identi�cation starts from seed towers

featuring a transverse energy deposition ET of 3 GeV or more. Neighboring towers

with ET above 1 GeV are further added to the cluster. An energy weighted centroid

is calculated for the cluster, and only towers within a cone of radius R = 0:4 about

the centroid are considered in estimating jet energy. The raw energy Eraw
T is de�ned

as the transverse energy sum within the 0.4 radius cone. Eraw
T is in general di�erent

from the true energy of the original parton, for the following possible reasons:

{ A fraction of jet energy may be deposited outside the cone (out-of -cone losses).

{ Extra energy in the calorimeters due to multiple hard interactions, and/or soft

interactions between the spectator partons in the event (underlying event).

{ Calorimeters non-linearity and response at the boundaries between modules.

{ The low momentum tracks in the jet that curl and fail to exit the CTC.

{ Muons and neutrinos in the jet which are not detected in the calorimeters.
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For this analysis, we use the raw ET values for the jets, therefore we do not correct

for the e�ects listed above. We select only events having one, two, or three jets with

Eraw
T > 15 GeV and j�j < 2:0.

Secondary Vertex Tagging of B Jets.

Secondary Vertex Tagging (SVX) allows the identi�cation of the jets produced by

b quarks. This method exploits the long life time of B hadrons19, which implies that

they can travel up to 1� 2 cm before their decay. The spatial location of a B decay

(secondary vertex) is therefore measurably displaced from the the p�p interaction point

(primary vertex). This is illustrated in Figure 5.1.

Primary
Vertex

Jet Axis

Secondary
   Vertex

Lxy

3

1

2

d1

Figure 5.1: Schematic view of an event containing a secondary vertex shown in the
transverse (r � �) view. The primary vertex is the point where the p�p interaction
occurs. The lines denoted 1, 2, and 3 are charged-particle tracks reconstructed in the
SVX which yield the secondary vertex. The impact parameter for track 1 is denoted
by d1. Lxy is the 2-dimensional decay distance to the secondary vertex measured in
the r � � plane (adapted from [47]).

19The mean life time in the rest frame is �0 = 1:65 � 10�12 s (c�0 = 0:5 mm). A 15 GeV b quark
has a Lorentz factor 
 � 4.
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The primary vertex in each event is found by a weighted �t of the SVX tracks

and the VTX z event vertex position. An iterative search removes tracks from the �t

which have large impact parameters. The impact parameter d is the distance of the

closest approach of a track to the primary vertex in the r�� (transverse) plane. The

uncertainty in the �tted primary vertex coordinates in the transverse plane depends

on the number of tracks and the event topology, and ranges between 6 and 36 �m.

If there are multiple primary interactions in the event, then the primary vertex is

chosen to be the one with the greatest total PT of associated tracks. All tracks used

in the vertex �t and in the analysis are required to extrapolate to within 5 cm of this

vertex in the z direction.

The B�tagging algorithm is applied to groups of two or more SVX tracks associ-

ated with jets having Eraw
T > 15 GeV and j�j < 2:0. An SVX track is associated with

a jet if the opening angle between track direction and the jet direction (given by the

calorimeter) is less than 35Æ. These tracks are also required to have PT> 2 GeV=c

and impact parameter signi�cance jdj=�d � 3, where �d is the uncertainty on d. A

2-dimensional vertex constrained �t is performed for the tracks, which yields the

transverse displacement Lxy and its uncertainty �Lxy . A jet is tagged as a B�jet if

the secondary vertex has signi�cance jLxyj=�Lxy > 3:0, and Lxy > 0. The sign of Lxy

is given by the dot product of the Lxy direction and the direction of the vector sum

of the tracks' momenta.

We �nally note that not all B-tags identi�ed by this algorithm come from B

hadrons. Displaced vertices are also produced by other long-lived particles, as c, � ,

K0
S, � etc. In addition, \fake" secondary vertices may result from the reconstruction

of mismeasured tracks.

51



5.2 Monte Carlo Simulations

Monte Carlo is a numerical method of sampling the probability distribution func-

tions (pdf's) for a physical system by using sequences of random numbers. How can

Monte Carlo computer simulations be applied to high energy physics analyses?

First, let us review the main stages in our experiment: (1) the Tevatron accelerator

produces p�p interactions, (2) the CDF detector measures the various particles resulted

from the interaction and writes interesting events to tape (3) recorded events are

reconstructed, i.e. the electronic signals from the detector subsystems are translated

in a setup of charged tracks, jets, etc., and (4) the �nal stage - physics analysis.

In the \Monte Carlo world" the similar stages are: (1') the Monte Carlo generator

produces a user-speci�ed type of events e.g. W*, t�t, etc., (2') the Monte Carlo

detector simulation models the subsequent interactions and decays within the detec-

tor, and its output has the same format as the real data recorded to tape, (3'), (4')

same as (3), (4) above. The purpose of Monte Carlo generation and simulation is

therefore to model detector's response to certain type (physical process) of events.

The program we use for Monte Carlo generation of events is PYTHIA 6.129a [48].

This program implements a variety of tree-level Standard Model processes of interest

at a hadron collider. The parton-shower approach is employed for initial and �nal

state radiation, and string fragmentation [49] is used to model parton hadronization.

The default set of parton distribution functions is GRV 94L. B-hadron decays are

modeled with the CLEOMC software [50]. Detector simulation is performed with the

QFL' package developed by the CDF collaboration.

52



The processes we generated for our analysis are:

� electroweak single top production q�q0 ! t�b, qg ! t�bq0

� strong top pair production: q�q ! t�t, gg! t�t (see Figure 5.2)

� W + jets QCD production: q�q0 ! gW , qg ! q0W (see Figure 5.2)
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Figure 5.2: Representative Feynman diagrams for the main backgrounds to single top
production. The t�t background (a-d) dominates in the region of high energy and high
jet multiplicity. At the other end of the spectrum (low energy and low jet multiplicity),
the Wb�b (e), Wc�c, and Wc (f) represent the most signi�cant background.

53



N
j8

0
1

2
3

4
5

N
j

1
2

3
4

0

1000

2000

3000

4000

5000

6000

7000

Jets distribution
N

ent = 14412  

W
* single top

Jets distribution
N

ent = 14412  

N
j8

0
1

2
3

4
5

N
j

1
2

3
4

0
1000
2000
3000
4000
5000
6000
7000
8000

Jets distribution
N

ent = 19238  

W
-gluon single top

Jets distribution
N

ent = 19238  

N
j8

0
1

2
3

4
5

N
j

1
2

3
4

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

Jets distribution
N

ent = 18884  

non-top background
Jets distribution
N

ent = 18884  

N
j8

0
1

2
3

4
5

N
j

1
2

3
4

0

1000

2000

3000

4000

5000

Jets distribution
N

ent = 17252  

tt background
Jets distribution
N

ent = 17252  

Number of events

Number of events

Number of events

Number of events

F
igu

re
5.3:

N
j8
versu

s
N
j
d
istrib

u
tion

for
sign

al
an
d
b
ack

grou
n
d
even

ts
p
assin

g
th
e

in
itial

selection
of
S
ection

5.1.
W
e
n
ote

th
at

m
ost

of
th
e
sign

al
resid

es
in

th
e
N
j
=
2

ch
an
n
el.

T
o
su
p
p
ress

th
e
n
on
-top

(Q
C
D
)
b
ack

grou
n
d
w
e
req

u
ire

N
j8
=
1
for

even
ts

w
ith

N
j
=

1.
W
e
red

u
ce

th
e
t �t

b
ack

grou
n
d
b
y
im
p
osin

g
N
j8

=
0
for

even
ts

w
ith

N
j
=
3
(see

S
ection

5.2.1).

54



The main W + jets QCD processes are Wb�b, Wc�c, and Wc production. However,

we used the W + jets QCD sample as a model for the entire non-top background (see

Table 5.5 for a list of all non-top contributors). We have checked that the mistags

are well modeled by our Monte Carlo sample, and that the W+1 jet Run I data is

also in agreement with our model.

5.2.1 Monte Carlo Acceptances and Run I Expectations

Let us �rst introduce the terminology which will be used in what follows:

� Initial selection - the ensemble of selection requirements listed in Section 5.1

� Nj - the number of jets with E
raw
T > 15 GeV and j�j < 2:0 in an event

� Nj8 - the number of jets with Eraw
T > 8 GeV and j�j < 2:4, which were not

previously counted in the above Nj jets

� W + N jets event - an event which satis�es the initial selection requirements,

and has a total of N = Nj jets with E
raw
T > 15 GeV and j�j < 2:0

� Nj8 selection - the Nj8 requirements de�ned as:

{ in the W+1 jet channel (Nj = 1), require Nj8 = 1

{ in the W+3 jet channel (Nj = 3), require Nj8 = 0

We will justify the Nj8 selection later in this Section.

� Final selection - the initial selection plus the Nj8 selection. This is the tightest

and �nal set of selection criteria we will use in our analysis.

55



W* sample: Ngen = 0:5 million events

Cuts Imposed W + 1 jet W + 2 jets W + 3 jets

Lepton and 6ET 11040 20497 5522

AND � 1 B-tag 3057 9091 2492

AND Z and dilepton removal 3011 8951 2450

AND Nj8 selection 1308 8951 1785

W�gluon sample: Ngen = 0:905 million events

Cuts Imposed W + 1 jet W + 2 jets W + 3 jets

Lepton and 6ET 31493 33480 5732

AND � 1 B-tag 7570 10070 1999

AND Z and dilepton removal 7451 9838 1949

AND Nj8 selection 2958 9838 1466

QCD (non-top) sample: Ngen = 37:85 million events

Cuts Imposed W + 1 jet W + 2 jets W + 3 jets

Lepton and 6ET 13661 5633 1129

AND � 1 B-tag 12822 5296 1051

AND Z and dilepton removal 12663 5192 1029

AND Nj8 selection 3032 5192 756

t�t sample: Ngen = 0:6 million events

Cuts Imposed W + 1 jet W + 2 jets W + 3 jets

Lepton and 6ET 4865 19961 29930

AND � 1 B-tag 1406 8134 13408

AND Z and dilepton removal 712 5076 11464

AND Nj8 selection 304 5076 4912

Table 5.3: Numbers of events passing the selections described in Sections 5.1 and
5.2.1. A total of Ngen events were generated with PYTHIA 6.129a for each Monte
Carlo sample.

The acceptances after making various cuts on the Monte Carlo samples can be ex-

tracted from Table 5.3. In this Table, the initial selection corresponds to the fourth

row below each listed process. The �fth and last row presents the numbers of events

which pass the �nal selection.

56



W* W -gluon t�t

Number of W + 2 jet events 1:2 � 0:3 1:8� 0:5 3:7� 1:1

Table 5.4: Run I expected numbers of W + 2 jets events passing the initial cuts of
Section 5.1 (from [52]).

Source W + 1 jet W + 2 jets W + 3 jets

Mistags 18 � 7 6:3� 2:6 1:6 � 0:6
Wb�b+Wc�c 18 � 7 9:0� 2:5 1:7 � 0:5
Wc 17 � 6 4:3� 1:5 0:6 � 0:2
Z+hf 1:5 � 0:5 0:7� 0:3 0:2 � 0:1
Diboson 1� 0:4 1:4� 0:5 0:3 � 0:1
Non-W 9� 4 2:3� 1:0 0:8 � 0:4

Total Events 65 � 13 24� 4:5 5:2 � 1:1

Table 5.5: Predicted numbers of non-top background events in Run I data after the
initial cuts of Section 5.1 have been imposed (from [51]).

Nj8 Selection and Run I Expected Contributions

The Run I expected contributions in the W+2 jets channel at CDF have been

studied previously [51, 52, 53]. Table 5.4 gives these expectations for the top quark

processes, derived by normalizing Monte Carlo contributions to the theoretical predic-

tions for single top and t�t. The numbers in this Table include the various data/simulation

ratios as the lepton trigger and identi�cation scale, B-tag eÆciency scale, and muon

trigger prescaling. Table 5.5 gives the W+1,2,3 jets expected numbers of events in

Run I for the non-top processes20. The non-top backgrounds were normalized to the

data content of the W + 1 jet channel, with no B-tag requirement.

20In this document we often refer to the non-top background as \QCD". We note however that
in addition to Wb�b, Wc�c, and Wc events, the non-top backgrounds also include mistags, Z+heavy

avor jets, diboson, and other non-W processes [51].
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W* signal W -gluon signal QCD (non-top) t�t

�Nj8(W + 1 jet) 43.4% 39.7% 23.9% 42.7%

�Nj8(W + 3 jet) 72.9% 75.2% 73.5% 42.8%

�Nj8(W + 1,2,3 jet) 83.6% 74.1% 47.6% 59.7%

Table 5.6: Nj8 cut eÆciencies for signal and background. These numbers can be
derived from the fourth and �fth rows below each process listed in Table 5.3.

We notice that for Run I, in the W+2 jets channel, single top contribution is

considerably smaller than the combined backgrounds contribution. This is even more

true for theW+1 jet andW+3 jets channels. We investigated the possibility of reduc-

ing the backgrounds by exploiting jet multiplicity distributions. Figure 5.3 presents

the distributions of Nj versus Nj8 for signal and backgrounds. An optimization study

shows that optimal signal to background ratio is obtained by selecting events that

satisfy the following criteria:

� in the W+1 jet channel (Nj = 1), require Nj8 = 1

� in the W+3 jet channel (Nj = 3), require Nj8 = 0

Note that because both W* and W�gluon processes peak in the Nj = 2 channel,

there is no Nj8 cut for the W+2 jets events. For the W + 1 jet events, the Nj8 cut

eÆciency �Nj8
(W +1 jet) is de�ned as the ratio between the number of events passing

the �nal cut and the number of events passing the initial cut. Similarly, we can de�ne

�Nj8
(W +3 jets) and �Nj8

(W + 1,2,3 jet) for theW +3 jets channel, and the combined

W +1; 2; 3 jet channels respectively. These eÆciencies can be derived from Table 5.3,

and are given in Table 5.6.

We are now in position to calculate the Run I expected numbers of events passing

the �nal selections. For the top samples, the W+1, 3 jets contributions (before Nj8
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Process W +1 jet W+2 jets W+3 jets Total events

W � 0:2� 0:04 1:2 � 0:3 0:2� 0:1 1:6� 0:4

W -gluon 0:5� 0:2 1:8 � 0:5 0:3� 0:1 2:6� 0:7

QCD (non-top) 15:6� 3:1 24:0� 4:5 3:8� 0:8 43:3� 8:4

t�t 0:2� 0:1 3:7 � 1:1 3:6� 1:1 7:4� 2:2

Table 5.7: Run I expectations for signal and backgrounds after the �nal selection.

cuts) are obtained by normalizing to the W + 2 jets predictions given in Table 5.4.

The normalization factors can be extracted from Table 5.3. We then factor in the

Nj8 cut eÆciencies (Table 5.6) to arrive at the values listed in Table 5.7. To illustrate

how this is done, we give the W+1 jet calculation for the W* process below:

1:2 � 3011
8951

� 43:4% = 0:175 � 0:2 (events)

To �nd the amount of non-top background expected in Run I, we start from the

W + 1, 2, and 3 jets predictions given in Table 5.5. Next, we take into account the

Nj8 eÆciencies for theW + 1 jet channel, andW + 3 jets channel respectively (Table

5.6). The resulting non-top Run I contributions are given in Table 5.7.

We close this Section with a brief remark on single top identi�cation. According

to Table 5.7, we should expect 4.2 single top events and 50.7 background events in

the Run I dataset. The signal to background ratio is therefore 0.08, which implies

that signal identi�cation is very challenging. In this case, Arti�cial Neural Networks

appear more suitable than a cut-based analysis, as they use a greater amount of

information. To better understand how small the 0.08 value is, let us consider the

t�t production whose cross section is �t�t = 2:7 � �single top. In the lepton+jets channel,

where the top quark was originally discovered, the signal to background ratio is 2.6,

more than 30 times higher than our single top value.
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CHAPTER 6

MEASURING THE SINGLE TOP PRODUCTION CROSS

SECTION

The analysis presented in this Chapter starts from the �nal selection requirements

presented in Chapter 5. In Section 6.1, the Neural Networks technique for single top

event identi�cation is explained. The expected (a priori) sensitivity of this technique

for the Run I data is discussed in Section 6.2. The results obtained from the Run

I dataset are presented in Section 6.3. Section 6.4 contains the future prospects for

observing single top in Run II at the Tevatron. We close this Chapter with a brief

summary of the results obtained.

6.1 Identifying Single Top with Neural Networks

ANN's o�er a simple way of combining the information from many kinematic and

geometry variables, which in principle increases our potential to resolve the signal

in the data. Our Neural Network is a two-layer perceptron (see Figure 4.2) with

standard activation function: g(x) = 0:5 � [1+tahn(x)]. For training, we use JETNET

v3.5 [54] subroutines interfaced to ROOT [55] via the Root Jetnet [56] package. The

weights and thresholds are updated according to the Manhattan Back-Propagation

algorithm with the default parameters. Our method for selecting the optimal set
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of seven variables for the input layer is explained in Section 6.1.1. The left plots

in Figures 6.3, 6.4, 6.5 show the distributions of the seven variables for W* events

and W -gluon events. These distributions are very similar, with the exception of

Q � �. To make up for this di�erence, we train the network with W* and W -gluon

in the proportion expected in Run I (Table 5.7). It is important to note that, for

all six kinematic variables the two background components QCD and t�t peak on

di�erent sides of the signal, as shown by the right plots in Figures 6.3, 6.4, 6.5. It

is this major di�erence between the two backgrounds that requires the use of three

output categories: single top signal (W* and W -gluon), QCD background, and t�t

background. For training we use 10000 events from each class, or 30000 total. We

require an output of (1,0,0) for the QCD events, (0,1,0) for the single top events, and

(0,0,1) for the t�t events respectively. As discussed in Section 4.3, the outputs have

a straightforward interpretation: each one of them estimates the a posteriori Bayes

probability for the corresponding class.

6.1.1 Input Variables

To distinguish between signal and background, a set of variables with good sepa-

ration power is needed. Our procedure for choosing the input set is described below.

First, we form a large set of input variables based on previous single top studies

[52, 57, 58, 59], and also on a visual study of the individual variable distributions

for signal and backgrounds. The following 18 variables were found to have some

separation potential: Ejet1
T , Ejet2

T , Elepton
T , 6ET , HT ,

p
ŝ, M l�b, M jj, P jj

T , �jj, �jet1,

�jet2, Q� �, cos( blq), Rmin, Nj, Nj8, Nb�tags. Here, jet1 and jet2 are the leading jets

in the event, HT is the total transverse energy, l�b refers to the lepton, neutrino, and
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leading b-jet system, jj refers to the jet1� jet2 system, Q�� is the product between

the charge of the lepton and the pseudorapidity of the highest-ET untagged jet (q),

blq is the angle between the direction of the lepton and that of the q jet, Rmin is the

minimum separation
q
(Æ�)2 + (Æ�)2 among all possible pairs of jets in the event.

N Best combination
�!
X mean P (%) mean E H

1 HT 59.4 0.524 5

2 HT ,E
jet1
T 61.5 0.500 4

3 HT ,E
jet1
T ,Nj 62.7 0.487 6

4 HT ,E
jet1
T ,Ejet2

T ,Elepton
T 64.5 0.471 9

5 HT ,E
jet1
T ,Ejet2

T ,Elepton
T ,6ET 66.5 0.453 11

6 HT ,E
jet1
T ,Ejet2

T ,Elepton
T ,6ET ,P

jj
T 67.3 0.444 10

7 HT ,E
jet1
T ,Ejet2

T ,Elepton
T ,6ET ,P

jj
T ,Q� � 67.9 0.436 19

8 HT ,E
jet1
T ,Ejet2

T ,Elepton
T ,6ET ,P

jj
T ,M jj,M lnb 68.1 0.434 12

9 HT ,E
jet1
T ,Ejet2

T ,Elepton
T ,6ET , P

jj
T ,M jj,M lnb,Q� � 68.3 0.433 16

18 A L L V A R I A B L E S 68.2 0.449 21

Table 6.1: Averaged performance P and error E for the best combinations of N
variables. The last column lists the number of hidden nodes H for each case.

Second, we proceed to investigate a large number of combinations
�!
X ofN variables

that can be drawn from the 18-variable set21. To be able to compare the relative

performances of two sets of input variables
�!
X1 and

�!
X2, we use two quantities: the

performance P and the error E. The performance is de�ned as the rate of correct

classi�cations, while the error measures how far the output is from the desired value.

The exact de�nitions of P and E are given in Appendix B. We note that the two

quantities are correlated; the better a network is, the higher the performance, and

the lower the error. To facilitate the
�!
X1 vs

�!
X2 comparison, we have to deal with the

variations of P and E from epoch to epoch. These variations are usually of the order

21For N > 9, only combinations containing the core fHT ,E
jet1
T ,Ejet2

T ,Elepton
T ,6ET ,P

jj
T g were tested.
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Figure 6.2: Averaged performance and error for the best combinations of N variables
as functions of the number of hidden nodes H. See Table 6.1 for the list of the input
variables for each value of N .
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Figure 6.3: Monte Carlo distributions for the input variables. Left plot shows the
two signal processes W* (open) and W -gluon (shaded). Right plot shows the QCD
background (shaded), signal mixed according to Table 5.7 (open), and t�t background
(lighter shade). For comparison purposes, all histograms are normalized to unit area.

= 18 variables results in less signal-background separation than that obtained for N

= 7, 8, 9. In principle, this should not happen, as the amount of information is larger

for N = 18. In practice however, the training sample is limited, while the space

that must be searched for minimization is considerably expanded, making it more

diÆcult to �nd a good minimum. Further, by performing a study of the systematic

uncertainties for the cases N = 7, 9 we found that the a priori limit is in fact better

for N = 7. In conclusion, we select for the input layer the following seven variables:

Ejet1
T , Ejet2

T , Elepton
T , 6ET , HT , P

jj
T , Q� �. The corresponding distributions for Monte

Carlo signal and backgrounds are shown in Figures 6.3, 6.4, 6.5. Note the signi�cant

overlap among the three distributions shown in the right plots of these Figures, which

makes single top identi�cation a challenging task.
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Figure 6.4: Monte Carlo distributions for the input variables. Left plots show the
two signal processes W* (open) and W -gluon (shaded). Right plots show the QCD
background (shaded), signal mixed according to Table 5.7 (open), and t�t background
(lighter shade). For comparison purposes, all histograms are normalized to unit area
(cont'd). 66
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Figure 6.5: Monte Carlo distributions for the input variables. Left plots show the
two signal processes W* (open) and W -gluon (shaded). Right plots show the QCD
background (shaded), signal mixed according to Table 5.7 (open), and t�t background
(lighter shade). For comparison purposes, all histograms are normalized to unit area
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6.1.2 Neural Network Output

As mentioned previously, to train the network we require the outputs to be one for

the correct class, and zero for the other two classes. The seven input variables require

seven nodes in the input layer. Within a range of 7 to 30 nodes in the hidden layer,

we found the generalization performance to vary slightly, with 17 nodes providing

the best classi�cation. Our Neural Network is therefore a 7-17-3 perceptron with 190

parameters adjusted by training. We stopped the training procedure at epoch 124,

when the generalization performance was optimal. Appendix C presents the network

obtained, which we will use to derive our Run I single top results.

Using the standard activation function implies that each output takes values in

the (0,1) interval, therefore the output space is a cube of side one. After the training

is completed, we run the three Monte Carlo samples22 through the trained net to get

the 3-dimensional distributions presented in Figure 6.6.

We note that the output points (O1, O2, O3) are not spread throughout the

cube, but rather tend to lie in the same plane. The reason for this, as mentioned in

Section 4.3, is that the outputs estimate the a posteriori Bayes probabilities, which

means that O1+O2+O3 � 1:0. But O1+O2+O3=1.0 is the equation of the plane

determined by the three target output points, and this explains the planar appearance

mentioned above. From Figure 6.7 we see that the output sum distributions for

signal and background events have means of approximately 1.0 with small variances,

consequences of the successful training process. The output sum being equal to one

essentially reduces the output space to two dimensions. It is therefore natural to

22Our signal sample is obtained by mixing Monte Carlo W* and W -gluon events in the Run I
expected proportion of Table 5.7.
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Figure 6.6: Neural Network output (O1, O2, O3) for Monte Carlo signal and back-
ground events. As required in the training, the QCD background events tend to
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The signal is more spreadout inside the output cube, with most of the events located
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consider projecting the 3-dimensional output distributions onto the O1+O2+O3=1.0

plane. For an arbitrary event, the projection mapping (O1, O2, O3))(x, y) is given

by:

x = �1

2
� (a�

p
a2 + 4b2 � 4ab); y =

p
3

2
� (a + 1

3
�
p
a2 + 4b2 � 4ab) (6.1)

where a = (1 +O1 � O3)=
p
2, and b = (1 +O2 � O3)=

p
2

A graphical representation of the projection mapping is presented in Figure 6.8. The

resulting 2-dimensional distributions for the three Monte Carlo samples are shown in

Figure 6.9. In the next section, we will describe how these 2-dimensional templates

are used to extract the signal from a sample containing a mixture of signal and

background events.

6.1.3 Extracting the Signal by Fitting the Neural Network

Output

In what follows we will illustrate how the signal can be extracted from a dataset.

The problem. Suppose we are given a mixed sample of single top, QCD, and t�t

events, whose exact composition is unknown. We want to �nd out the signal content

of this sample, by using the Neural Network developed in the previous Section.

The solution. First, we run the sample through the network, and obtain a 2-

dimensional distribution (x; y) as described in Section 6.1.2. For convenience, let us

use the same binning as in Figure 6.9, where the number of bins is Nbins = 202 = 400.

Further, we �t this (x; y) distribution as the weighted sum of the three Monte Carlo

templates shown in Figure 6.9. The �t is performed by maximizing the following

standard binned likelihood function [60]:

L(nsignal; nQCD; nt�t) =
NbinsY
i=1

e�ni � ndii
di!

(6.2)
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Figure 6.8: Graphical representation of the projection mapping (O1; O2; O3)) (x; y).
We expect the dotted area to be little populated, as events in this region would have
to have: O2 < O1, O3. However, since our Network is mostly ET -based, the signal
should in general be situated in between the two backgrounds (Figures 6.3, 6.4, 6.5).
Figure 6.9 shows that this is indeed the case.

x-0.6
-0.4

-0.2
0

0.2
0.4

0.6

y
0

0.2
0.4

0.6
0.8

1
1.2

1.4
0

200
400
600
800

1000
1200
1400
1600
1800

Monte Carlo QCD 
Nent = 16055  
Mean x = -0.2033
Mean y =  1.099
RMS x  = 0.3385
RMS y  = 0.2165

x-0.6
-0.4

-0.2
0

0.2
0.4

0.6

y
0

0.2
0.4

0.6
0.8

1
1.2

1.4
0

100

200

300

400

500

600

Monte Carlo Signal
Nent = 23522  
Mean x = 0.1895
Mean y = 0.9889
RMS x  = 0.2812
RMS y  = 0.2625

x-0.6
-0.4

-0.2
0

0.2
0.4

0.6

y
0

0.2
0.4

0.6
0.8

1
1.2

1.4
0

200

400

600

800

1000

1200

1400

Monte Carlo tt
Nent = 12659  
Mean x = 0.1137
Mean y = 0.4818
RMS x  = 0.1628
RMS y  = 0.3573

N
um

be
r 

of
 e

ve
nt

s

N
um

be
r 

of
 e

ve
nt

s

N
um

be
r 

of
 e

ve
nt

s

Figure 6.9: Monte Carlo signal and background 2-dimensional output distributions
resulted from projecting all output points onto the plane of equation O1+O2+O3 = 1:
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The quantities appearing in expression (6.2) are de�ned below:

� nsignal, nQCD, nt�t are the parameters of the �t, representing the numbers of

single top, QCD, and t�t events in the sample

� ni = nsignal � fsignal;i + nQCD � fQCD;i + nt�t � ft�t;i is the expected23 number of

events in the i-th bin of the (x; y) output space. fsignal;i, fQCD;i, ft�t;i are the

probabilities that a Monte Carlo single top, QCD, or t�t event appears in the i-th

bin. These probabilities are derived by simply normalizing the 2-dimensional

distributions of Figure 6.9.

� di is the number of events in the sample that populate the i-th bin, often called

the observed number.

In conclusion, the signal and background contents of the sample are given by the

values nsignal, nQCD, nt�t which maximize the likelihood in Eqn. (6.2). We will refer

to these values as the fitted numbers of signal and background events.

6.2 A priori Study of Run I Single Top Cross Section

Before even running on the Run I data, we can ask ourselves how sensitive the

NN method is expected to be. To calculate this a priori sensitivity we use Monte

Carlo events to mimic the real data, starting from the contributions of Table 5.7.

The �rst step is constructing fake-Run I datasets, or pseudo-experiments. A

pseudo-experiment is composed of Nsignal, NQCD, and Nt�t Monte Carlo signal, QCD,

and t�t events respectively. We generate the values of Nsignal, NQCD, and Nt�t according

to the following recipe:

23This is the total number of events in the i-th bin that we would expect based on our Monte
Carlo samples.
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� Start from the Run I expected contributions: �signal = 4.2, �QCD = 43.3, and

�t�t = 7.4 (events), with the uncertainties: �QCD = 8.4, and �t�t = 2.2 (events).

� Generate random numbers from Gauss distributions: N 0

QCD = Gauss(�QCD,

�QCD), and N
0

t�t = Gauss(�t�t, �t�t).

� Generate random numbers from Poisson distributions: Nsignal = Poisson(�signal),

NQCD = Poisson(N 0

QCD), and Nt�t = Poisson(N 0

t�t).

Next, we randomly draw Nsignal, NQCD, Nt�t events from our Monte Carlo samples to

form the pseudo-experiment. Note that we do not constrain the sum Nsignal+NQCD+

Nt�t to the number of events observed in the Run I data. To get the signal content of

this fake-Run I dataset we apply the procedure described in the Section 6.1.3. The

only di�erence is that we introduce a likelihood constraint factor Lconstr(nQCD; nt�t) in

Eqn. (6.2) [53]. This factor accounts for the fact that we already have backgrounds

estimates which have been measured in separate analyses: �QCD��QCD and �t�t��t�t.

Our likelihood function is therefore L0 = Lconstrain � L, or explicitly:

L0(nsignal; nQCD; nt�t) = e
�

(nQCD��QCD)2

2�2
QCDp

2��QCD
� e

�
(nt�t��t�t)

2

2�2
t�tp

2��t�t

NbinsY
i=1

e�ni � ndii
di!

(6.3)

We generate and �t 10000 pseudo-experiments in this manner.

If the likelihood �t is working properly, then the �tted values nsignal, nQCD, nt�t

should be (on the average) close to the original values used in generating each pseudo-

experiment: �signal, �QCD, �t�t. Figure 6.10 shows that this is precisely the case.

To further test our �tting method, we calculate the signal and backgrounds pulls

for each-pseudo-experiment. We de�ne the pulls as:

Psignal =
(nsignal � �signal)

esignal
; PQCD =

(nQCD �N 0

QCD)

eQCD
; Pt�t =

(nt�t �N 0

t�t)

et�t
(6.4)
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Figure 6.10: Results from 10000 pseudo-experiments. The 88 pseudo-experiments not
shown have nsignal < �23:0, or nQCD < 2:0 (events).

where esignal, eQCD, and et�t are the errors returned by the �t. We use these de�nitions

for the pulls, because nsignal, nQCD, and nt�t estimate
24 the corresponding Poisson

means: �signal, N
0

QCD, and N
0

t�t (rather than the actual amounts Nsignal, NQCD, Nt�t).

If our �tting procedure is unbiased and returns the correct errors, then the pulls

distributions should be centered on zero and have unit standard deviation. Figure

6.10 demonstrates that our �tter satis�es both of these conditions.

Note. In less than one percent of the 10000 experiments, the likelihood �t did

not converge. This is due to the low values of �signal and �t�t, which can lead to

problematic 
uctuations as for example Nsignal = Nt�t = 0. To eliminate these cases,

24For an explanation of this, we point the reader to Appendix C of Ref. [57].
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we demand that the �tted contributions satisfy: nsignal > �23:0, nQCD > 2:0, and

nt�t > 0:0 (hence 9912 entries instead of 10000).

Finally, Figure 6.10 shows that the percent uncertainty in the �tted number of

signal events is approximately 146%, which determines us to continue this a priori

study by setting an upper limit on the Run I single top production.

6.2.1 Setting the a priori Statistical Upper Limit

Our Bayesian approach to setting the a priori 95% C.L. con�dence limit is de-

scribed in Refs. [52, 57, 61]. We use the set of pseudo-experiments constructed

previously, and we extract a limit �95 from each individual pseudo-experiment. For

example, if a given pseudo-experiment has the �tted signal contribution of n0 events,

then the limit �95 is de�ned by the following equation:

Z �95

0
L(�sjn0)d�s = 0:95 �

Z
1

0
L(�sjn0)d�s (6.5)

where L(�sjn0) is the likelihood that the true signal mean is �s, given the observed

n0. In Appendix D we describe how L(�sjn0) can be obtained. We solve Eqn. (6.5)

for each and every one of the 9912 pseudo-experiments, histogram �95, and de�ne our

95% C.L. on single top production as the mean of the �95 distribution (Figure 6.11).

We conclude that the statistical a priori 95% C.L. limit on single top production is

16.65 events, or equivalently 9.63 pb.

6.2.2 Folding the Systematic Uncertainties into the Con�-

dence Limit

Following the procedure of Ref. [64], we divide the systematic uncertainties into

two groups. The �rst group consists of those systematics that can modify both the

shape of the NN output templates as well as the number of events accepted. The
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� Generate new signal and backgrounds Monte Carlo samples where the i-th sys-

tematic e�ect was shifted by one standard deviation or a reasonable approxi-

mation of this.

� Compute the new acceptance rates, and also get the new 2-dimensional NN

output templates by running the new Monte Carlo samples through the Neural

Network25. We will use these templates only for pseudo-experiment generation,

and not for �tting (see below).

� Using the newly calculated acceptances and NN output distributions, construct

10000 pseudo-experiments as described in Section 6.2, and �t each of these to

the standard (unshifted) set of NN output templates. Let hnisignali denote the

mean of the distribution of the �tted number of signal events nisignal.

� De�ne �Si as the di�erence jhnisignali��isignalj, or half this di�erence for certain

e�ects (ISR, FSR).

The systematic e�ects in this group are summarized below. For each of these we

explain how we generate the shifted Monte Carlo samples and how we de�ne �Si.

� Jet ET scale

The jet ET systematic uncertainty is attributed to (a) calorimeter response and

(b) fragmentation-related e�ects [65]. In the �rst case, the parameters that

describe the calorimeter's response to incident electrons, photons, and pions

have uncertainties due to �nite statistics and assumptions which are made.

Additional uncertainty comes from the non-linear response of the calorimeters,

25For the systematics study we use the same 7-17-3 Neural Network constructed in Section 6.1.2.
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Systematic E�ect i �Si=�SM
Jet ET Scale (+1�) 0.503

Jet ET Scale (-1�) 0.264

Initial State Radiation 0.061

Final State Radiation 0.116

Parton Distribution Function 0.041

Top Mass 170 GeV 0.028

Top Mass 180 GeV 0.042

Signal Generator 0.033

Background Generator 0.043

Sum in quadrature �S 0.413

Table 6.2: Systematic uncertainties for e�ects modifying both event rates and NN
output shapes. The uncertainties are expressed as fractions of the theoretical pre-
diction of �SM = 4:2 signal events. As explained in the text, we average the two
Jet ET Scale entries, and we use the larger Top Mass systematic (corresponding to
Mtop = 180 GeV ).

and energy deposition in cracks between calorimeter cells. In the second case,

the uncertainty in the fragmentation parameters comes from the modeling of

the tracking eÆciency in jets, and the level of agreement between simulation

and data. The contributions to the jet ET uncertainty from these sources are

evaluated by shifting the corresponding parameters by +1 and �1 standard

deviations, and calculating the resulting shift in jets' energies. We apply these

shifts to both signal and backgrounds samples. �SJet ET is taken to be the

average (j�S+1�j+ j�S�1�j)/2.

� Initial State Radiation (ISR)

The QCD radiation (e:g: gluon emission) originating from the incoming partons

is referred to as initial state radiation, and increases the jet content of an

event. To study the associated systematic uncertainty, we turn o� the initial
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state radiation in PYTHIA and generate new signal and backgrounds samples.

The uncertainty �SISR is taken to be one half of the shift in the mean �tted

signal contribution.

� Final State Radiation (FSR)

The �nal state radiation is de�ned as the QCD radiation from the outgoing

partons, and leads to extra jets in the �nal state. To isolate the e�ect of FSR,

we start from Monte Carlo samples generated with the initial state radiation

turned o�. From these noISR samples we select the subset noISR�noFSR of

events in which every jet matches to a �nal state parton within a (�, �) distance

of 0.4. Since we did not store the generator level information for QCD events,

we only consider the noISR, noISR�noFSR shifted signal and t�t samples. We

take �SFSR to be half the di�erence: (�SISR;FSR ��SISR)/2.

� Parton Distribution Function

Our Monte Carlo samples used to measure the single top cross section are gen-

erated with the GRV 94L [66] set of parton distribution functions (PDF), which

is the default choice in PYTHIA 6.129a. Other PDF choices are available as

well, as for example CTEQ 3L [67]. To evaluate the associated systematic un-

certainty, we generate new signal and backgrounds samples using the CTEQ 3L

functions. �SPDF is de�ned as the shift in the mean signal �tted contribution.

� Top quark mass

The top mass result measured by CDF is: Mtop = 176:1� 5:1 GeV=c2 [65]. We

therefore change the default top quark mass Mtop = 175 GeV to 170 GeV and
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180 GeV respectively, and generate new W*, W -gluon, and t�t samples. We

take �SMtop to be the larger of the di�erences �S170 and �S180.

� Signal Generator

To estimate this systematic e�ect, we use W* and W -gluon generated with

HERWIG [68] instead of PYTHIA. The two generators are similar for the most

part. There are however a few di�erences, among which we note the hadroniza-

tion approach (cluster model in HERWIG versus string model in PYTHIA)

and the underlying event modeling (HERWIG model is based on UA5 Collab-

oration data study [69], while PYTHIA uses the multiple interactions model

described in Ref. [70]). We de�ne �SSig:Gen: as the shift in the mean signal

�tted contribution.

� Background Generator

To estimate this systematic e�ect, we use Wb�b and t�t samples generated in

HERWIG instead of PYTHIA. To model the QCD (non-top) background we

mix HERWIG Wb�b with PYTHIA Wc�c and Wc. The mixing proportion was

derived from our standard PYTHIA QCD sample. As in the previous cases, we

de�ne �SBck:Gen: as the shift in the mean signal �tted contribution.

The systematic uncertainties divided by the theory prediction are given in Table 6.2.

Systematic uncertainties e�ecting event acceptance rates only

Let �Ri be the contribution of the i-th e�ect to �R. To calculate �Ri we shift

the i-th e�ect by one standard deviation, and recompute signal acceptance Ai. We

de�ne the uncertainty as the relative di�erence: (Ai � A0)/A0 � �Ri, where A0 is
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Systematic E�ect i (Ai �A0)/A0

Trigger and Lepton ID 0.10

B-tag EÆciency 0.10

Luminosity 0.04

Sum in quadrature �R 0.15

Table 6.3: Systematic uncertainties for e�ects modifying event rates only.

the acceptance in the standard case (i:e: before shifting the systematic e�ect). The

rate uncertainties are listed in Table 6.3. The 10% systematic associated with lepton

triggering and identi�cation was derived in Ref. [71]. The B-tag systematic comes

from the B-tag eÆciency scale factor of 1:0 � 0:1 [57]. Finally, the uncertainty on

luminosity of 4.1% was taken from Ref. [72].

Incorporating Systematic Uncertainties in the a priori Limit

To include the e�ect of the systematic uncertainties in the calculation of the a

priori limit, we follow the method of Ref. [52]. We use the same 9912 pseudo-

experiments as in Section 6.2.1, and we extract a limit �95 from each individual

pseudo-experiment. The calculation is similar to the one performed in the case of the

statistical a priori limit. The di�erence is, however, that before solving Eqn. (6.5)

we smear the likelihood function L(�sjn0). The smeared likelihood Lsmear(�sjn0) is

obtained by executing the following procedure a large number (106) of times:

� Draw a random number r with probability density L(�sjn0); only positive values

are allowed;

� Draw a Gaussian random number g1 with mean 0 and width 1 and such that 1

+ g1�R > 0, where �R = 0.15 was obtained in the previous section;
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� Draw a Gaussian random number g2 with mean 0 and width 1;

� Set r0 = r=(1 + g1�R) + g2�S, where �S = 1.73 events was obtained in the

previous section26. The second term has a straightforward interpretation, while

the �rst term is justi�ed below. If the acceptance changes from A0 to A
0, we

have n0 = n0 � A0=A0, and the likelihood shifts to:

L0(�sjn0) = L0
�
�s

����n0 A0

A0

�
= L

�
�s
A0

A0

����n0�

We can also express this in terms of probabilities. If r and r0 are random

numbers drawn from L0(�jn0) and L(�jn0), then:

P (r0 < �s) = P (r < �sA
0=A0) = P (rA0=A

0 < �s)

which explains the ratio A0=A
0 = 1=(1 + g1�R) appearing in the r0 de�nition;

� Histogram r0.

The resulting histogram de�nes Lsmear(�sjn0). To �nd �95 we have to solve the

following equation, which replaces Eqn. (6.5):

Z �95

0
Lsmear(�sjn0)d�s = 0:95 �

Z
1

0
Lsmear(�sjn0)d�s (6.6)

An example of likelihood smearing is given in Appendix D. Solving Eqn. (6.6) for

each pseudo-experiment yields the �95 distribution shown in Figure 6.12. We conclude

that the a priori limit with systematics included is 18.14 signal events, or equivalently:

�single top < 10:5 pb at 95% C.L. (a priori, including systematics) (6.7)

26Note that �S listed in Table 6.2 is expressed as a fraction of the theoretical prediction of 4.2
signal events.
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Figure 6.13: Output sum for Run I data events (left). Run I data 2-dimensional
distribution resulted from projecting the 64 output points onto the plane of equation
O1 +O2 +O3 = 1 (right).

We feed the 64 Run I events to our 7-17-3 Neural Network. The outputs for all

events are given in Appendix E. Figure 6.13 shows the (x, y) projections of the 64

output points, along with a histogram of the output sum. We note that the sum of

the three outputs has a mean of approximately 1.0 and a small variance, similar to

the Monte Carlo distributions of Figure 6.7.

To extract the signal content of the Run I dataset, we �t the (x; y) distribution of

Figure 6.13 as the weighted sum of the three (x; y) Monte Carlo templates of Figure

6.9. We use the likelihood function de�ned in Eqn. (6.3). The result of the �t is:

nsignal = 23:61� 7:70; nQCD = 36:18� 6:24; nt�t = 7:59� 2:00 (events) (6.8)

In cross section units, the signal content of Eqn. (6.8) corresponds to:

�single top = 13:66� 4:46 pb (6.9)
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not including the systematic uncertainties.

6.3.1 A posteriori Limit on Single Top Cross Section

Statistical a posteriori Limit

To obtain the 95% C.L. statistical limit, we use the Bayesian technique presented

in Section 6.2. The likelihood function L(�sj23:61) corresponding to the Run I data

�t result is shown in Figure 6.14. By solving the following equation for �95:Z �95

0
L(�sj23:61)d�s = 0:95 �

Z
1

0
L(�sj23:61)d�s (6.10)

we extract an upper limit �95 = 38:25 single top events, or equivalently 22:13 pb. Next,
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Figure 6.14: Run I data likelihood function L(�sj23:61). The arrow marks the 95%
C.L. upper limit of �95 = 38.25 single top events (22:13 pb).

we perform a frequentist check of this upper limit. We generate pseudo-experiments

using a signal mean of �s = �95 = 38:25 events and default backgrounds, and then
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extract the fraction of pseudo-experiments returning a �tted signal contribution less or

equal to the Run I data result of 23.61 events. We �nd this fraction to be 3.8%, which

indicates that our Bayesian-calculated limit is in agreement (slightly conservative)

with the frequentist point of view.

Including Systematic Uncertainties in the a posteriori Limit

The de�nitions of the di�erent �S and �R uncertainties were given in Section

6.2.2, and their values are listed in Tables 6.2 and 6.3.

We point out that the individual �S values of Table 6.2 were calculated for the

Run I expected single top contribution �SM = 4:2 events. However, if we want to

get a limit from the data we must decouple ourselves from the theoretical predic-

tion, and consider a range of possible �s values. We therefore have to investigate

how the systematics �S depend on the particular �s, which requires varying �s in

constructing the pseudo-experiments. From Table 6.2 we see that the dominant sys-

tematic is associated with the jet energy scale27 and accounts for approximately 93%

of the total �S. We studied the dependence �SJet ET (�s) by running 10000 pseudo-

experiments for each of the 14 values of �s shown in Figure 6.15, while background

contributions are kept constant. The circles represent the �S+1� systematics ob-

tained by increasing the jet transverse energy scale by one standard deviation, the

squares are �S�1� systematics corresponding to a decrease in the jet ET scale of one

standard deviation, and the triangles represent the combined systematics, de�ned as

the average �SJet ET = (j�S+1�j + j�S�1�j)=2. We notice that �SJet ET increases

roughly quadratically with �s (the �t shown is a parabola). To account for the other

27Five of our seven input variables are a�ected by changing the jet ET scale: ET (jet1), ET (jet2),
6ET , HT , and PT (jj).
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systematic e�ects contributing to the total �S we make the assumption that their

relative ratio to �SJet ET does not signi�cantly change as �s vary, or equivalently:

�S(�s) � 1:1 ��SJet ET (�s) for all �s: (6.11)

As we will see, this assumption should yield correct results, as the con�dence limit

is dominated by the statistical uncertainties and the impact of �S(�s) on the limits

is relatively small. For example, we found the limit to vary by less than two events

when changing the systematics from �S(0) to �S(50).
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Figure 6.15: Jet ET scale systematics as functions of �s. The circles correspond to
a +1� increase in jets' transverse energies, the squares correspond to a -1� decrease,
while the triangles represent the average and de�ne �SJet ET .

We smear the likelihood function L(�sj23:61) using the recipe given in Section

6.2.2. For the systematics, we use �R = 0.15, and �S = �S(�s = 23:61) = 3:02

events. Note that we use the measured result nsignal = 23:61�7:70 as the estimate for

the true signal mean which generated the Run I data set. After likelihood smearing,
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we solve Eqn. (6.6) to obtain a 95% C.L. limit of 42.1 single top events, or in terms

of cross section:

�single top < 24:4 pb at 95% C.L. (a posteriori, including systematics) (6.12)

6.3.2 A posteriori Limit Interval on Single Top Cross Section

In Figure 6.14 we note that the likelihood function L(�sj23:61) goes to zero in

the vicinity of �s = 0. It is natural therefore to consider deriving a con�dence

interval (upper and lower limits), rather than an upper limit only. In the frequentist

approach, we can use the result (6.8) to derive a con�dence interval via the Feldman-

Cousins technique [62]. References [62, 73, 74] discuss the advantages of this method,

among which we mention that it de�nes a proper coverage28 of the parameter to be

determined, and also makes a smooth transition between setting a limit and making

an actual measurement.

Statistical Con�dence Intervals

The construction of the Feldman-Cousins con�dence belts starts from the PDF's

P (nsignalj�s) (referred to as the \likelihood templates" in Appendix D.2.2). P (nsignalj�s)

represents the probability of observing nsignal signal events given the \true" rate of

�s signal events. For this study, we use the same likelihood templates as in Appendix

D.2.2. Suppose we want to construct a 95% C.L. interval [n1, n2] for a given value of

�s: �s = �0. To do this, we compute the quantity R(nsignal) for the entire range
29

28If � denotes the single top cross-section, then correct coverage means that the 95% con�dence
intervals [�1, �2] cover � at the 95% con�dence level (see Section II B. of Ref. [62]).

29In practice, we choose a discrete set of equally spaced nsignal values which span the relevant
(non-zero probability) range. The spacing in nsignal is 0.2 events, which matches the spacing in �s
(See Appendix D.2.2).
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of nsignal values:

R(nsignal) = P (nsignalj�0)=P (nsignalj�best) (6.13)

where �best is that value of �s which maximizes P (nsignalj�s) for the given nsignal. R

determines the order in which values of nsignal are added to the acceptance interval

at the particular value of �s = �0. This means that for the given �0, we �nd the �

C.L. con�dence interval [n1, n2] by requiring:

R(n1) = R(n2) and
Z n2

n1

P (nsignalj�0)dnsignal = � �
Z
1

�1

P (nsignalj�0)dnsignal (6.14)

We considered three values for �: 0.95, 0.90, and 0.6826 (one-sigma level). The n1,

n2 form horizontal intervals which are plotted for each �s and shown in Figure 6.16.

We use the value found from the Run I data nsignal = 23:61 events to draw

a vertical line in the (nsignal, �s) two-dimensional space. The intersections of this

vertical line with the band of horizontal intervals de�ne the con�dence interval for

�s. The results expressed in numbers of events (not pb) are:

(�1; �2) = (9:7; 41:1) at 95% C.L.
(�1; �2) = (11:5; 38:1) at 90% C.L.
(�1; �2) = (15:9; 32:5) at 68.3% C.L.

Note that no systematic uncertainties are included in the above results.

6.3.3 Comparison with Other Single Top Analyses

We will discuss here how the a posteriori results obtained in this Section compare

with the other experimental searches for single top. We will only consider CDF and

D� analyses, as the Tevatron is at present the only accelerator with energy suÆcient

for producing top quarks.

We note that none of the analyses conclusively observed single top production.

In general, the observation of a physical process requires a measurement of a signal
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Figure 6.16: The Feldman-Cousins con�dence belt. The con�dence intervals [�1, �2]
are de�ned by the intersection of the belt with a vertical line drawn through the
Run I �tted contribution of 23.61 signal events. The black, light grey, and dark
grey horizontal lines represent the [n1, n2] intervals corresponding to � = 95%, 90%,
and 68.26% respectively. The circle with error bars located in the lower left corner
represents the theoretically predicted value �s = 4.2 events.

content at least �ve standard deviations away from zero. Therefore, upper limits on

Run I single top cross section are set (see Table 6.5).

For the two D� analyses, we note that the Neural Networks study �nds signi�-

cantly lower limits than the cut-based analysis. This is also true in the case of the

a priori results in the CDF analyses, where our limit of 10:5 pb is 22% lower than

that obtained in the combined search cut-based study CDF-2 [57]. This improvement
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Analysis W* (95% C.L. limit) W -gluon (95% C.L. limit)

CDF-1 (cut-based) 18 pb 13 pb

CDF-2 (cut-based) 14 pb

CDF-3 (3-output ANN) 24 pb

D�-1 (cut-based) 39 pb 58 pb

D�-2 (1-output ANN array) 17 pb 22 pb

Table 6.5: Upper limits on single top cross section from CDF [53] and D� [76, 75]
analyses of Run I data. Our result is listed as CDF-3.

comes primarily from two sources: (a) the Nj8 cut selection yields a higher signal

to background ratio than the Ml�b cut used in CDF-2, and (b) the neural network

combines information from seven variables which results in better signal separation.

However, because we �nd a large excess of signal events, the posteriori limit increases

accordingly, and in fact exceeds the cut-based CDF-2 result by 10 pb.

Further, it is worth pointing out that all CDF analyses, including the NN analysis

presented here, have measured an excess in the number of Run I single top events.

Below we list the �t results for each single top study, along with the corresponding

signal expectations (in number of events):

CDF-1 . W* : 7:6+5:9
�4:8 expect 0:32� 0:07; W -gluon : 0:6+4:8

�4:0 expect 1:4� 0:3

CDF-2 . W* and W -gluon : 8:7� 7:8 expect 4:3� 0:6

CDF-3 . W* and W -gluon : 23:6� 7:7 expect 4:2� 0:9

In every case, the uncertainty in the �tted result is not suÆciently low to claim

single top observation. We �nally stress out that Table 6.5 or the above �t results can

not be used to judge the sensitivity of the particular analyses. Sensitivity comparison

only results from the a priori studies, where a large number of pseudo-experiments
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Luminosity Single top QCD (non-top) t�t

2 fb�1 140 1040 340

10 fb�1 700 5200 1700

Table 6.6: W+2 jets signal and background events expected in Run IIA (�rst row)
and Run IIB (second row).

are performed. In this respect, we have shown that using the NN technique we are

able to achieve a lower a priori limit than that of the cut-based approach [57].

6.4 Run II Prospects for Observing Single Top

Run II at the Tevatron started in March 2001. The target integrated luminosity

at CDF in Run IIA is 2 fb�1, almost 20 times greater than the Run I luminosity. In

addition to getting more data, the p�p center-of-mass energy
p
S = 2:0 TeV is also

higher than in Run I (
p
S = 1:8 TeV ). This leads to an increase in the combined

single top cross section by roughly 38% [77]. Finally, the upgraded CDF detector

has a better overall acceptance than the Run I CDF detector. Taking into account

these factors, the Run II-expected contributions in the W + 2 jets channel are listed

in Table 6.6 from Ref. [78].

We studied single top production in the W+2 jet channel. Since the statistics are

considerably better than those of Run I, we did not consider including theW +1, and

W +3 jets channels and optimizing the search. Two more variables were added to the

input layer of the Neural Network used for Run I: M l�b and M jj, where l�b refers to

the lepton, neutrino, and leading b-jet system, while jj refers to the leading two jet

system jet1� jet2. We trained a 9-18-3 Neural Network as explained in Section 6.1.

Further, we constructed Run IIA pseudo-experiments by mixing Monte Carlo events
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Figure 6.17: Fractional uncertainty in the single top cross section measurement versus
integrated luminosity in Run II. A 3� e�ect is expected to be observed with 1:2 fb�1

of data. No systematic uncertainties are included.

according to the contributions of Table 6.6. For 2 fb�1 of Run IIA, the �tted signal

distribution has a mean of 140.0 events with a standard deviation of 36.7 events. The

fractional uncertainty is therefore 26.2%, roughly corresponding to a 4� single top

cross section measurement. We can repeat this simple study for intermediate Run

IIA luminosity values. Figure 6.17 shows the fractional uncertainty versus integrated

luminosity within the range of 0:2 � 2 fb�1. All points in this graph assume the

theoretically predicted value for single top cross section.

With the higher luminosity of Run IIB, we should be able to measure the single

top cross section with an uncertainty better than 10% [79].
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6.5 Summary of the Results

Table 6.7 gives a brief summary of the main results obtained in our analysis:

Run I a priori results

�single top < 9:6 pb at 95% C.L. (stat.)

�single top < 10:5 pb at 95% C.L. (stat. + syst.)

Run I a posteriori results

NN output �t result: �single top = 13:7� 4:5 pb

�single top < 22:1 pb at 95% C.L. (stat.)

�single top < 24:4 pb at 95% C.L. (stat. + syst.)

Cross section 95% C.L. interval: [5:6; 23:8] (pb) (stat. only)

Run II expected results

With 2 fb�1 of data, roughly expect a 4� measurement

Table 6.7: The most important results of our single top analysis.
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CHAPTER 7

CONCLUSIONS

Measuring single top is an important test of the Standard Model, as its produc-

tion cross section is directly proportional to jVtbj2, where Vtb represents the coupling

between the top and the bottom quarks. In addition, it impacts the future searches

for the Higgs boson, and has the potential to validate a number of phenomena outside

of the Standard Model.

We have developed a Neural Networks technique to identify single top events.

In this case the signal to noise is very small (8%), and therefore the NN approach

is more suitable than a cut based analysis as it allows combining information from

multiple event variables. Rather than using an array of networks [75], we devised a

three-output perceptron with one intermediate layer, whose output nodes estimate

signal and backgrounds probabilities. We searched for Standard Model single top

production in the 106 pb�1 of data collected by the Collider Detector at Fermilab

(CDF). Performing a Run I a priori study we found an expected 95% C.L. limit

on single top cross section of 10:5 pb, roughly 22% lower than that obtained in the

previous cut-based CDF analysis [57]. Using a sample of 64 W + 1; 2; 3 jets events

from Run I, the �t to the Neural Network output yields a signal content of 23:6� 7:7

events, approximately 2.5 standard deviations away from the theoretically predicted
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value of 4.2 events. We employed a fully Bayesian treatment to set an upper limit on

single top production of 24:4 pb at 95% C.L., including systematic uncertainties.

A �nal comment regards the observed excess of single top events. Among the

di�erent possible sources, we note that the excess can be caused by a statistical


uctuation, or a slightly larger single top cross section which 
uctuated high, or by

other processes with similar �nal state. Our measurement does not have the precision

necessary to claim single top observation. However, with the higher statistics of Run

II, this method has the potential to yield conclusive results on single top production.
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APPENDIX A

EVENT RATIOS IN THE TRAINING SET

A question that often arises regards the particular class proportions that should

be used in the training phase. Should we use the relative proportions expected from

theory and previous experimental studies? Or should we assume no prior knowledge

about the rates for each class? The latter would imply using the same number of

events from each class for training. It is de�nitely a sensible thing to do, especially

when there are the process rates that we are trying to measure.

The �rst argument in the favor of training with equal proportions of training

events is purely intuitive: we would like the network to recognize signal or the di�erent

backgrounds with similar precision. Take for example the case of single top, whose

rate is approximately 10 times smaller than that of the W+ jets background. If we

were to use 10 times more QCD events for training, than the single top would have

very little role in the updating of the weights, essentially being treated as noise by

the network.

But does the training sample resemble the real data? The second argument will

show that there is a simple transformation which compensates for the di�erences in

the compositions of the training and real data sets. It is important to clearly state

the problem, because confusion can easily arise.
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The problem. Let us study the example of section 4.3, where our training and

testing set contained equal numbers of patterns from each class. This implies that in

training/testing P (C1) = P (C2) = P (C3) = 1=3. Let us denote NN0 the perceptron

trained with this set. Further, let us assume that in the real world the actual class

priors are P 0(C1); P
0(C2); P

0(C3). We want now to �nd a transformationNN0 7! NN 0

that allows us to use the same training/testing set, but reproduce real data output.

For example, when we present NN 0 with 60 training patterns30, we want to get the

same output distribution that NN0 would produce for 60 real data events.

The solution. As argued in section 4.1 of [44], it turns out that we need not

retrain the network with the correct priors P 0(Ci). The reason is that the class

priors occur only as multiplicative terms in producing the outputs, according to Eqn.

(4.10). We can therefore simply multiply the three output nodes by the correct

P 0(Ci)
31 obtained from �tting the Run I data. In this way, we essentially normalize

the output distributions for each class i to the corresponding probability P 0(Ci) (see

Eqn. (A.4)). A rigorous derivation of this transformation is immediate, as shown in

what follows.

When the network NN0 is trained with equal proportions, we have P (C1) =

P (C2) = P (C3) = 1=3, and therefore Eqn. (4.10) becomes:

Oi(x) � P (Cijx) = P(xjCi)

P(x) � 1
3
; for i = 1; 2; 3: (A.1)

However, given that the actual proportions are in fact P 0(C1); P
0(C2); P

0(C3), the new

network NN 0 should output:

O0

i(x) � P 0(Cijx) = P(xjCi)

P(x) � P 0(Ci); for i = 1; 2; 3: (A.2)

30We mean a random selection here; therefore � 20 patterns from each class.

31More precisely, the factors should be P 0(Ci)=(
1=3), as it will be explained later in the text.
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Therefore, NN 0 can be constructed by starting from NN0 and merely transforming

the output values as:

O0

i(x) = Oi(x) � 3P 0(Ci); for i = 1; 2; 3: (A.3)

What about the sum of the NN 0 outputs O0

1; O
0

2; O
0

3? To check this, we integrate

Eqn. (A.2) with respect to x:

Z
1

�1

O0

i(x)P(x)dx �
Z
1

�1

P(xjCi)�P 0(Ci)dx = P 0(Ci)
Z
1

�1

P(xjCi)dx = P 0(Ci) (A.4)

Using the above relation to sum over the class index i, we obtain:

Z
1

�1

h
O0

1(x) +O0

2(x) +O0

3(x)
i
P(x)dx � P 0(C1) + P 0(C2) + P 0(C3) = 1 (A.5)

which implies that the mean of the output sum is unity. We �nally note that NN 0

was designed to and should be used only for samples containing equal numbers of

events from each class. It should not be applied to real data sets, as this will imply

accounting twice for the correct class priors.

The interpretation. There are therefore two ways to make the classi�cation

equivalent for the cases of real data and training datasets. One way is to �t the

real data output as the sum of the three Monte Carlo distributions (one output

distribution for each class), and then use the �t parameters P 0(C1); P
0(C2); P

0(C3)

when mixing training events to reproduce the real data. The second way is to keep

equal proportions of events in the training sample, but transform the outputs of the

network as in Eqn. (A.3), which guarantees that the real data output will be correctly

modeled. Obviously, the two procedures are fully equivalent.
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APPENDIX B

NEURAL NETWORK PERFORMANCE INDICATORS

To quantify how well a Neural Network performs, we use two indicators: perfor-

mance P and error E.

The performance P is the fraction of events correctly classified by the network:

P =
Ncorrect

Nevents

(B.1)

Classi�cation is realized by assigning event k to the class m having the least distance

j�!Ok � �!Tmj2 among all classes m = 1; : : : ;M . The notations of Section 4.2 are used,

and
�!
Tm are the target output vectors for the M = 3 classes. For example, an event

which produces the output
�!
O = (0:7; 0:4; 0:6) has the following distances:

j�!O ��!T 1j2 = (0:7� 1)2 + (0:4� 0)2 + (0:6� 0)2 = 0:61

j�!O ��!T 2j2 = (0:7� 0)2 + (0:4� 1)2 + (0:6� 0)2 = 1:21

j�!O ��!T 3j2 = (0:7� 0)2 + (0:4� 0)2 + (0:6� 1)2 = 0:81

and is therefore assigned to class 1, which is the QCD (non-top) background. The

classi�cation is considered correct if the event was indeed originating from the Monte

Carlo QCD sample.

Unlike the performance P , which �nds the closest target output
�!
Tm, the error E

accounts for how close the correct target output
�!
T k is relative to the actual output
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�!
Ok. It is therefore a more accurate measure of the NN capability, being de�ned as:

E =
1

Nevents

�
NeventsX
k=1

j�!Ok ��!T kj2 = 1

Nevents

�
NeventsX
k=1

3X
m=1

[Ok
m � T k

m]
2 (B.2)

where
�!
T k is the target output corresponding to the correct class. Note that in cal-

culating both P and E we assumed that the correct class for each event k is known.

Therefore P and E can only be evaluated on Monte Carlo generated samples, and

not on real data. We also point out that P and E are highly correlated; a low E

implies a high P and vice versa.

Finally, we mention that the allowed ranges for P and E are (0,1) and (0,3)

respectively. However, the minimum performance is obtained in the case of purely

random classi�cation. For our three-class problem we have: Pmin =
1 =3 and Emax = 1.
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APPENDIX C

NEURAL NETWORK USED FOR SINGLE TOP

IDENTIFICATION

Tables C.1, C.2 present the set of 190 parameters which de�ne the Neural Network

developed for single top event recognition.

Node Ejet1
T Ejet2

T Elepton
T 6ET P jj

T HT Q� �

h1 2.479 3.934 -0.287 -0.514 -1.905 -23.658 -2.829

h2 1.171 -0.338 3.176 0.867 -1.059 -26.491 0.784

h3 -2.848 -13.358 0.200 -3.323 -6.019 9.408 -1.465

h4 -3.270 2.765 1.219 9.327 -0.894 26.917 0.340

h5 -4.099 -8.271 2.922 -3.253 1.412 20.729 0.244

h6 5.183 -0.433 5.322 3.412 0.895 -26.168 -1.249

h7 0.989 16.437 -9.306 8.457 0.105 9.110 0.733

h8 4.265 9.316 -0.784 0.545 -0.600 -19.234 3.610

h9 9.805 1.502 -1.407 5.326 8.963 28.308 0.086

h10 -2.933 -0.273 -0.788 3.150 -5.392 28.160 0.366

h11 -19.387 -8.953 -6.598 -1.335 -13.492 -21.724 0.182

h12 -4.774 -4.095 -0.968 -2.556 -4.620 21.391 -0.169

h13 6.624 2.262 3.880 3.087 4.203 -26.995 -0.036

h14 6.151 6.365 3.021 2.006 2.439 12.290 -5.623

h15 -8.930 -17.259 13.602 -5.164 4.293 -27.734 0.265

h16 -7.655 -5.274 -1.448 -6.974 -11.927 -3.571 -0.315

h17 -1.622 3.247 -10.288 -17.986 7.680 21.025 0.108

Table C.1: Connection weights between the input and the hidden layers.
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Node Threshold
O1 0.743
O2 0.966

Node O1 O2 O3 O3 0.725
h1 -0.498 4.167 -6.182 h1 -0.823
h2 -0.508 2.751 -4.688 h2 -0.482
h3 -1.689 -3.433 4.240 h3 0.799
h4 -6.385 -9.119 9.889 h4 -2.131
h5 -1.476 -2.423 6.314 h5 -0.705
h6 1.518 3.386 -3.918 h6 -0.159
h7 -1.521 0.334 0.157 h7 0.737
h8 -8.445 10.160 -10.425 h8 -1.761
h9 -0.757 -5.279 2.496 h9 -1.755
h10 -5.205 -5.343 11.729 h10 -1.465
h11 13.109 -9.530 -13.340 h11 0.345
h12 -3.838 -1.722 5.537 h12 -1.490
h13 3.089 4.025 -4.911 h13 0.431
h14 -1.311 -0.143 0.759 h14 -1.598
h15 6.037 -7.432 -19.684 h15 -1.235
h16 0.678 -3.403 -0.212 h16 1.212
h17 -7.466 -9.970 12.877 h17 -0.821

Table C.2: Connection weights between the output and the hidden layers (left table),
and thresholds for the output and hidden nodes (right table).

The activation function for the hidden and output neurons is:

g(x) =
1

2
� [1 + tanh(x)] =

1

1 + e�2x
(C.1)

Before we run an event through the network, the seven input variables are

transformed as follows: 10�3 � Ejet1
T (GeV ), 10�3 � Ejet2

T (GeV ), 10�3 � Elepton
T (GeV ),

10�3� 6ET (GeV ), 10
�3 � P jj

T (GeV=c), 10�4 �HT (GeV ), and 10�1 � Q � �. This scaling

is necessary to ensure that the argument of the exponential in Eqn. (C.1) stays of

order O(1) so that the exponential does not \blow up".
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Classi�ed as QCD Classi�ed as signal Classi�ed as t�t

QCD sample 65.8% 26.9% 7.3%

Signal sample 19.3% 67.0% 13.7%

t�t sample 5.6% 24.1% 70.3%

Table C.3: NN classi�cation rates for Monte Carlo signal and background events.

Table C.3 shows how Monte Carlo signal and background events are classi�ed

by our network, using the classi�cation de�nition given in Appendix B. The overall

correct classi�cation rate is P = 67:7%.
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APPENDIX D

CALCULATING THE INDIVIDUAL CONFIDENCE

LIMIT �95

The con�dence limit �95 for one pseudo-experiment is obtained by solving Eqn.

(6.5): Z �95

0
L(�sjn0)d�s = 0:95 �

Z
1

0
L(�sjn0)d�s

To solve this equation, we need to know the likelihood L(�sjn0). There are two

Bayesian methods for obtaining L(�sjn0), which we will describe in what follows.

D.1 Standard Method

This simple procedure is the most widely used in upper limit analyses. It involves

maximizing Eqn. (6.3) with respect to the background contributions nQCD, nt�t only,

while the signal contribution is �xed to the value nsignal = �s. In mathematical

translation, we maximize:

L00(nQCD; nt�t) = e
�

(nQCD��QCD)2

2�2
QCDp

2��QCD
� e

�
(nt�t��t�t)

2

2�2
t�tp

2��t�t

NbinsY
i=1

e�ni � ndii
di!

(D.1)

where ni = �s � fsignal;i + nQCD � fQCD;i + nt�t � ft�t;i is the expected number of events in

the i-th bin. We then set:

L(�sjn0) = L00(nQCD; nt�t)
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Section 4.3 Section D.2.1

Class Ci Model �s
Input vector �!x Observed data n0
PDF P(�!x jCi) PDF P (n0j�s)

Posteriori P (Cij�!x ) Likelihood L(�sjn0)

Table D.1: Notation equivalence between Section 4.3 and Section D.2.1.

Note that the dependence on �s and n0 in the RHS of the above relation is given

by the ni and di appearing in Eqn. (6.3) de�ning L00. By its very construction, the

function L(�sjn0) will peak at �s = n0.

D.2 Alternate Method

There is another Bayesian procedure for obtaining L(�sjn0), which can be applied

with minimal modi�cations to a frequentist study (e:g:, Feldman-Cousins intervals).

The equivalence to the standard approach is described in Section D.3. Before pre-

senting this alternate method, we go through the exercise of re-deriving Eqn. (6.5),

with the purpose of introducing the terminology.

D.2.1 Bayesian Approach to Setting a Limit Revisited

We start by introducing a few basic concepts and notations in Bayesian statistics

[62]. The concepts were brie
y encountered in Section 4.3, but the notations were

di�erent. For reference, Table D.1 presents the analogy to the discrete-class ANN

study of Section 4.3.

The problem. We wish to make an inference about the single top rate, whose

true value �s is unknown. As in the case of the Run I data, suppose we do this by
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making a single measurement (NN output �t) whose result is n0 signal events. If the

uncertainty in the �tted result n0 is large, we want to derive an upper limit for �s.

The solution. Let us denote P (n0j�s) the probability of measuring n0 events

given the true value �s. In the Bayesian formalism we associate a probability to

each possible value of �s; these probabilities, or PDF's, represent the degree of belief

about �s. To make inferences about the single top rate, one looks at the \posteriori"

distribution, or likelihood L(�sjn0), which is the probability that the true rate is �s,

given the observed n0 events (\posteriori" = after we measured the n0 events).

The posteriori L(�sjn0) can be used to construct Bayesian intervals [�1; �2] corre-

sponding to a con�dence level � by requiring:

Z �2

�1

L(�sjn0)d�s = � �
Z
1

0
L(�sjn0)d�s (D.2)

In the present study, we choose �1 = 0, and denote �2 = ��. We only investigate

the case � = 95%, and refer to �95 as the 95% C:L: confidence limit. Making these

substitutions into the previous equation, we arrive at Eqn. (6.5).

D.2.2 Alternate Method for Deriving the Likelihood

In Section D.1 we have shown how L(�sjn0) can be obtained. In what follows we

present the alternate method for constructing L(�sjn0) based on the Bayes theorem.

This theorem states that the probability that an element is in both sets A and B is

P (AjB)P (B) = P (BjA)P (A). Applying this to our case, we get:

L(�sjn0) = P (n0j�s)P (�s)=P (n0) (D.3)

Typically, the denominator is just a normalization constant, and so the major issue is

what to use for P (�s), which is called the \prior" distribution. Following the Particle
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Data Group review of the Bayesian approach [63], we claim no prior knowledge,

so that before the measurement all physically reasonable values of �s are equally

probable: P (�s) = const: for �s � 0. The previous equation becomes therefore:

L(�sjn0) = constant � P (n0j�s) (D.4)

This is precisely how we obtain L(�sjn0) from the PDF's P (n0j�s). We will explain

next in which conditions the constant factor in Eqn. (D.4) can be ignored.

Implementation. We will describe the steps necessary to derive L(�sjn0) using

the Alternate Method. In order to perform the integral in Eqn. (6.5) we need to

know the function L(�sjn0) for 0 � �s < 1. In practice, we derive L(�sjn0) for a

discrete set of N values:

�s = �1; �2; �3; : : : ; �N

For a given �i in this set, we construct the PDF P (nsignalj�i) by running a large

number (e:g: 10000) pseudo-experiments starting with �i signal events, 43:3 � 8:4

QCD events, and 7:4 � 2:2 t�t events respectively, as in Section 6.2. The resulting

nsignal histogram of 10000 entries represents the un-normalized PDF P (nsignalj�i).

We repeat this procedure for each value of �i (i = 1; 2; : : : ; N), and store the resulting

N distributions P (nsignalj�i), to be referred to as \likelihood templates". For greater

precision, we smooth these templates and perform a cubic spline �t for each.

Once this is done, we are ready to build the likelihood function L(�sjn0) corre-

sponding to a given measurement n0. From Eqn. (D.4), we have:

L(�ijn0) = constant � P (n0j�i); i = 1; 2; : : : ; N (D.5)

where P (n0j�i) are extracted from the N likelihood templates P (nsignalj�i) by setting

nsignal = n0. We point out that since all likelihood templates were constructed by
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Figure D.1: The likelihood function
L(�sj5:19). The corresponding con�dence
limit is �95 = 17:22 events.
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Figure D.2: The smeared likelihood func-
tion Lsmear(�sj5:19). The corresponding
con�dence limit is �95 = 18.64 events.

running the same number of pseudo-experiments, there is no need to normalize the

individual P (nsignalj�i)'s. Also, the overall normalization (including the constant

factor) of the likelihood function L(�sjn0) is not important, since it factors out in

Eqn. (6.5).

An example. Let us suppose that the �t to one of the 9912 Run I-like pseudo-

experiments returns n0 = 5:19 signal events. We look up this n0 value into each of

the N likelihood templates and read out the N values P (5:19j�i), which, as explained

previously, are in fact the N likelihood points L(�ij5:19) (via Eqn. (D.5) where we

ignore the constant factor). We plot these values32 as shown in Figure D.1. Next, we

integrate the likelihood function L(�sj5:19) of Figure D.1 and solve Eqn. (6.5) to get

the limit: �95 = 17.22 events.

Let us use the same example to illustrate the smearing of the likelihood L(�sj5:19).

Starting from the systematic uncertainties values of �S = 1:73 events and �R = 0:15,

32We have selected N = 300 equally spaced �i values: 0 < �i < 60 (events).
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we execute the smearing procedure given in Section 6.2.2 one million times. The new

likelihood function is denoted by Lsmear(�sj5:19), has a higher mean and RMS than

L(�sj5:19), and is presented in Figure D.2. Integrating Lsmear(�sj5:19) to solve Eqn.

(6.6) yields: �95 = 18.64 events.

D.3 Equivalence between Methods

The methods described in Sections D.1 and D.2.2 give very similar results. By

performing a 10000 pseudo-experiment comparison, we found the a priori 95% C.L.

limit to di�er by 0.07 pb. However, we do point out that the Standard Method is

theoretically more rigorous, as it calculates L(�sjdata), rather than L(�sjn0). By

L(�sjdata) we understand:

L(�sjdata) = L(�sjd1; d2; : : : ; dNbins
)

where di is the number of data events in the i-th bin of the (x; y) space.

In contrast, the Alternate Method yields L(�sjn0). One can imagine that there are

multiple experiments (d1; d2; : : : ; dNbins
) which are �tted the same amount of signal

n0. L(�sjn0) is therefore an average of L(�sjdata) over all data sets having n0 �tted

signal events.
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APPENDIX E

NEURAL NET OUTPUT FOR RUN I DATA

Tables E.1, E.2, E.3 present the Run and Event numbers for the Run I events pass-

ing the �nal selection requirements described in Chapter 5. The last three columns

give the Neural Network output (O1, O2, O3) for the events. As explained in Section

4.3, the values of O1, O2, O3 estimate the Bayes probabilities that the event originates

from a QCD, single top, and t�t process respectively.

Run Event O1 (QCD) O2 (signal) O3 (t�t)

42640 55874 0.848 0.206 0.010

58400 230496 0.975 0.031 0.002

58485 4226 0.991 0.013 0.001

63127 173868 0.751 0.292 0.008

64021 46988 0.840 0.180 0.001

64311 43078 0.377 0.544 0.202

64700 98497 0.295 0.817 0.007

64880 623030 0.891 0.100 0.004

65426 273116 0.433 0.548 0.112

67561 450608 0.889 0.163 0.004

67842 5949 0.933 0.090 0.005

68110 123757 0.934 0.088 0.003

68685 411056 0.988 0.013 0.001

69007 60885 0.933 0.053 0.000

Table E.1: Run I W+1 jet events passing the �nal selection of Chapter 5.
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Run Event O1 (QCD) O2 (signal) O3 (t�t)

40190 98182 0.256 0.642 0.174

41627 87219 0.303 0.667 0.193

45776 386857 0.024 0.135 0.897

46357 511399 0.639 0.314 0.039

47439 128290 0.708 0.346 0.044

47689 80060 0.058 0.279 0.729

60705 93795 0.610 0.402 0.039

60766 299452 0.261 0.591 0.037

61167 368226 0.012 0.563 0.407

61377 114526 0.508 0.534 0.030

63603 4029 0.226 0.450 0.141

63883 935 0.242 0.582 0.249

63946 43019 0.444 0.262 0.070

64126 52063 0.125 0.628 0.186

64916 499208 0.471 0.431 0.008

64997 46557 0.120 0.593 0.198

65022 34157 0.589 0.369 0.042

65298 907072 0.321 0.435 0.214

65384 266051 0.076 0.614 0.289

65470 4390 0.584 0.544 0.057

65741 654870 0.084 0.385 0.474

65750 106257 0.376 0.636 0.131

66103 190513 0.454 0.395 0.139

66103 563542 0.600 0.299 0.086

66103 743101 0.044 0.799 0.115

66412 121506 0.173 0.457 0.396

66518 203555 0.113 0.206 0.739

67692 420568 0.115 0.766 0.098

68044 53510 0.123 0.746 0.120

68231 157759 0.724 0.404 0.024

68374 364586 0.344 0.468 0.092

68423 3326 0.148 0.658 0.141

68464 275644 0.613 0.385 0.058

68593 37659 0.250 0.698 0.110

68637 225974 0.260 0.416 0.309

68774 150313 0.332 0.614 0.167

69498 36574 0.342 0.184 0.326

69520 136405 0.915 0.059 0.006

69683 21986 0.046 0.815 0.093

69709 173294 0.223 0.460 0.255

69761 157205 0.455 0.458 0.051

Table E.2: Run I W+2 jet events passing the �nal selection of Chapter 5.
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Run Event O1 (QCD) O2 (signal) O3 (t�t)

59124 31243 0.224 0.319 0.516

61074 103772 0.034 0.061 0.949

61548 284898 0.039 0.146 0.875

64934 416715 0.326 0.332 0.410

65025 152 0.079 0.289 0.706

65277 209495 0.420 0.264 0.302

67879 407958 0.051 0.554 0.333

67899 82457 0.125 0.173 0.810

70627 56836 0.069 0.179 0.824

Table E.3: Run I W+3 jet events passing the �nal selection of Chapter 5.
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