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ABSTRACT

AN UPDATED MEASUREMENT OF sin 2�

WITH MULTIPLE FLAVOR TAGS

USING A TAG-COMBINING ALGORITHM

This thesis reports an updated measurement of Standard Model CP violation parameter sin 2�

using the CDF detector at Fermilab. The signal samples of B0= �B0 ! J= KS and B0= �B0 !

 (2S)KS are extracted from the 110 pb�1 of p-�p collisions at
p
s = 1:8 TeV. The 
avor of the

neutral B mesons is identi�ed at the time of production by three tagging algorithms: a same-side

tag, a soft-lepton tag, and an opposite-side-jet tag. The opposite-side-jet tag is a combination of

the previously used jet-charge tag and a few new tags. A generic algorithm is developed to combine

the tags to improve the tagging performance. A maximum likelihood �tting method is used to

determine sin 2� = 0:91+0:37
�0:36

. The uncertainties are improved over the previous CDF measurement.

The value is consistent with the standard model prediction of a large positive CP asymmetry in

this decay mode. It is also consistent with the world average value of sin 2�.
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Chapter 1

Introduction

1.1 Standard Model and CKM Matrix

In the Standard Model fermions are arranged in three generations. Since the quark weak eigenstates

di�er from their mass eigenstates, mixing matrices are needed to connect weak and mass eigenstates.

By convention, in the weak interaction Lagrangian the charge �1
3
quarks are mixed by the Cabibbo-

Kobayashi-Maskawa (CKM) [1] matrix VCKM0
BBBBBBBB@

d0

s0

b0

1
CCCCCCCCA
=

0
BBBBBBBB@

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1
CCCCCCCCA

0
BBBBBBBB@

d

s

b

1
CCCCCCCCA
: (1.1)

The Wolfenstein [2] notation is

VCKM =

0
BBBBBBBB@

1� �2=2 � A�3(�� i�)

�� 1� �2=2 A�2

A�3(1� �� i�) �A�2 1

1
CCCCCCCCA
; (1.2)
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where parameters �, A, � and � are all real numbers. The parameter � � 0:22 corresponds to the

Cabibbo mixing through � = sin �c, where �c is the Cabibbo angle [3]. The parameter A � 0:8 and

� and � are close to unity. VCKM has four real parameters and is unitary, i.e. V y
CKMVCKM = 1. One

particular relation from the unitary constraint on VCKM is

VudV
�
ub + VcdV

�
cb + VtdV

�
tb = 0; (1.3)

which, in the �-� plane, is shown in Fig. 1.1.

A

BC

A

BC

α

βγ

α

βγ

(ρ,η)

(b)

(0,0) (1,0)

Vub
*

Vtd

Vcb
*λ

(a)

Figure 1.1: (a): The triangle relation between VCKM elements from the unitary constraint on the

�rst and third columns. (b): The same relation expressed in Wolfenstein parameters with the

baseline normalized to 1.

1.2 CP Violation in Neutral B Decay Due to Mixing

The symmetries C (charge conjugation) and P (space inversion) both hold for strong and elec-

tromagnetic interactions. In the weak interaction, they are violated. In 1964 CP violation was

observed in K0 decays at a level represented by the parameter � = 2:3 � 10�3 [4]. If the CKM

matrix is the cause for that, larger CP violation is expected in B0 decays, where we can compare

2



B0 and �B0 decays. The CP asymmetry is de�ned as

ACP =
�(B0

phys(t)! f)� �( �B0
phys(t)! �f)

�(B0
phys(t)! f) + �( �B0

phys(t)! �f)
; (1.4)

where � is the decay rate and f stands for the �nal state of the decay and �f is the CP conjugate

state of f . We will see how it is related to neutral B mixing. The mass eigenstates of neutral B

mesons (light and heavy) are

jBLi = pjB0i+ qj �B0i (1.5)

jBHi = pjB0i � qj �B0i (1.6)

where j q
p
j = 1 but q

p
may have a non-zero phase. Therefore, an initial pure 
avor eigenstate of the

neutral B evolves over time as

jB0
phys(t)i = g+(t)jB0i+ (q=p)g�(t)j �B0i (1.7)

j �B0
phys(t)i = (p=q)g�(t)jB0i+ g+(t)j �B0i (1.8)

where

g+(t) = e�i(M� i
2
�)t cos(�Mt=2) (1.9)

g�(t) = e�i(M� i
2
�)ti sin(�Mt=2) (1.10)

and M = 1
2
(ML +MH) and �M =MH �ML; since �H � �L we use � for the decay rates. That is,

a pure 
avor state B0 or �B0 evolves over time into a mixture of both.

Let A be the decay amplitude of B0 ! f , �A the amplitude of �B0 ! �f and de�ne �0 =
q �A
pA
. We

have the decay rates

�(B0
phys(t)! f) = jAj2e��t[1 + j�0j

2

2
+
1� j�0j2

2
cos(�Mt) � Im�0 sin(�Mt)] (1.11)

�( �B0
phys(t)! �f) = jAj2e��t[1 + j�0j

2

2
+
1� j�0j2

2
cos(�Mt) + Im�0 sin(�Mt)] (1.12)
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Therefore the CP asymmetry due to mixing is

ACP (t) =
(1� j�0j2) cos(�Mt) � 2Im�0 sin(�Mt)

1 + j�0j2 : (1.13)

To measure ACP requires knowledge of �0. There are two components in �0, the mixing and the

decay amplitude. The neutral B mixing mechanism is illustrated in Fig. 1.2.

d

b
–

b

d
–W

W

B0 B
– 0u

–
,c
–
,t
–

u,c,t

d

b
–

B0 W W

u
–
,c
–
,t
–

u,c,t b

d
–

B
– 0

Figure 1.2: Box diagrams of the neutral B mixing.
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The box diagram is dominated by the top quark due to its large mass. Therefore, we have

q

p
=
V �
tbVtd
VtbV �

td

: (1.14)

1.3 The Golden Mode: B0= �B0
! J= KS

Now we are ready for the decay-amplitude component of �0. In a hadron collider the decay mode

of choice is B0= �B0 ! J= KS and B0= �B0 !  (2S)KS because of their relatively clean signals and

the absence of competing diagrams with di�erent weak phases. Through the decay chain b! c�cs,

we have

�A

A
=
VcbV

�
cs

V �
cbVcs

: (1.15)

However, the decay product K0 can also mix due to the same mechanism of neutral B mixing albeit

with the charm quark dominating the box diagram. This contributes another component to �0

q0

p0
=
VcsV

�
cd

V �
csVcd

: (1.16)

With all three components included we have

�0 =
VtdVcbV

�
cd

V �
tdV

�
cbVcd

: (1.17)

From the unitary triangle we have

Im�0 = � sin 2�: (1.18)

Since ACP is induced only by mixing, that is, jA�A j = 1, we have

ACP = sin 2� sin�Mt: (1.19)
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Another decay mode, B0= �B0 !  (2S)KS with  (2S)! �+�� or  (2S)! �+���+��, having

the same CP property as B0= �B0 ! J= KS , can be added to increase the sample size. We will use

both decay modes to measure sin 2�.
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Chapter 2

The CDF Detector

The Collider Detector at Fermilab (CDF) is a general purpose magnetic detector for studying 1.8

TeV center-of-mass energy p-�p collisions at the Fermilab Tevatron [5]. The detector covers all of the

solid angle down to 2Æ from the beam direction and the complete azimuthal angle. Event analyses

utilize charged particle tracking, muon identi�cation and calorimetry information, etc.

For this analysis, we will concentrate on the central part of the detector, where our samples

of B decays are selected and the tracking system works to its utmost capability. Fig. 2.1 shows a

quarter of the detector.

2.1 Tracking

Tracking of charged particles is achieved by a silicon detector (SVX) immediately surrounding the

beam pipe, a vertex detector (VTX) outside the SVX, and a central tracking drift chamber (CTC)

outside the VTX. A 1.5 Tesla magnetic �eld in the beam direction is used for measurement of the

7



Figure 2.1: A quarter of the CDF detector.

track momentum. A typical CDF event is shown in Fig. 2.2. The CTC also has the capability of

measuring the dE=dx of the charged tracks, which is encoded as the pulse width from the charge

deposited by each hit. The average width of 80% wire hits is recorded for each track. The top 20%

of the width distribution is not used due to its long attenuating shape (Landau tail). The dE=dx

information is used for particle identi�cation [25].

2.2 Calorimeters

Calorimeters are used to measure the energy 
ow of particles from the collisions. They are situated

outside the tracking system and segmented into towers. Each tower occupies 15Æ in azimuth and
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0.1 in pseudorapidity, de�ned as � = � ln tan �
2
where � is the polar angle from the proton beam

direction (z). The towers all project back to the nominal interaction point on the beamline.

2.3 Muon Detection

The CDF muon detectors consist of CMU (Central MUon detector), CMP (Central Muon uPgrade)

and CMX (Central Muon eXtension). CMU and CMP are located outside the central electro-

magnetic and hadronic calorimeters. They cover the detector region of j�j < 0:7, where muons

penetrating the calorimeters are detected.

2.4 Event and Tracks

Each track in an event is uniquely described by a set of �ve helix parameters (d0; z; c; cot �; �0),

where d0 is the impact parameter, z is z-coordinate of the track production point, c is the curvature

of the charged track in the magnetic �eld, cot � is the helix angle of the track, and �0 is the

azimuthal angle of the track production point. From these parameters, with the knowledge of an

event's primary vertex and the precision of the SVX detector, the track probability Tp [24]|the

probability that a track is from the primary vertex|can be derived. Tracks of less stable particles

can be reconstructed from their stable daughters. For example, the CDF subroutine CTVMFT

uses 4-momenta conservation and a vertex constraint to derive the parent particle's momentum and

mass. The transverse displacement of the reconstructed secondary vertex from the primary vertex

is de�ned as Lxy =
~L� ~pT
j~pj

. The tracking system applies a cuto� at 0:4GeV=c on the track pT .
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Figure 2.2: A typical CDF B event. The trigger is the decay B0 ! J= K� and subsequently

J= ! �+�� and K� ! K+��. The other b-quark decay can also be seen at the lower portion

of the plot as a jet. Notice that, because of the B meson's lifetime, both secondary vertices are

signi�cantly separated from the primary vertex.
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Chapter 3

dE=dx and Particle Identi�cation

CDF Run 1 is capable of measuring a (80% truncated) mean value of track dE=dx using the CTC.

The cross section of the CTC is shown in Fig. 3.1, where superlayers and cells can be seen. The

dE=dx information is used to improve the jet-charge tag. A brief evaluation of how this information

is obtained and used is presented here.

3.1 CDF Run 1 dE=dx

The rate a charged particle loses energy in media through ionization is de�ned as dE=dx. To a good

approximation, dE=dx is a function of the particle's velocity [6]. If the momentum of the particle

is measured, dE=dx is able to shed some light on the particle's identity. Although a signi�cant

amount of work has been done on dE=dx by A. Wicklund [7], H. Keutelian [8] and M. Peters [9] et

al., we took another look at its usefulness for B 
avor tagging in Run I as a means of preparing for

Run II. In particular we are interested in low pT kaon tagging.
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Figure 3.1: The cross section of the CTC. It has 9 superlayers: 5 stereo superlayers that are

capable of measuring the z coordinate of tracks, and 4 axial superlayers that can only measure the

x-y coordinate of tracks. All superlayer cells are tilted by the Lorentz angle (determined by the

magnetic �eld) from the radial direction.

3.1.1 CDF Run I CTC dE=dx

CTC dE=dx uses an 80% truncated mean value (QCTC) of all wire hits that make up a track. The

mean and number of hits (NCTC) of a track are available. There are several corrections to QCTC in

the standard Run I o�ine code, which are applied in the subroutine DEDXUN. Corrections have been

applied to QCTC for path length, saturation, NCTC dependence, pulse height and pulse width.

We will not focus on correcting and re�ning QCTC here. Our goal is to obtain a universal dE=dx

curve that is useful for particle identi�cation, in particular �-K separation. Due to an abrupt run
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number dependence of QCTC in Run IB at run 67390 (see Fig. 3.8), we �t three universal curves

to represent events in Run 1A, Run 1B (< 67390) and Run 1B (> 67390).

3.1.2 The Bethe-Bloch Equation

The Bethe-Bloch equation [10] gives the mean energy loss rate of a charged particle in material due

to ionization of the medium,

*
dE

dx

+
=

4�Ne4

mc2�2
z2
 
ln
2mc2�2
2

I
� �2 � Æ(�)

2

!
: (3.1)

In this equation, N is the electron density of the medium, m is electron mass, z is the incident

particle charge, I is the mean excitation energy of the medium atoms, � = v=c, 
 = 1=
p
1� �2,

and Æ(�) re
ects a correction to the density e�ect at high �. The energy transferred to an electron

is an integral of the force (f) on the electron over the displacement (d) of the electron. When the

particle travels with low �, a classical model is suitable to describe the dE=dx. The force f � 1
r2

is only signi�cant within a range r0. It is in this range that the electron gets accelerated. The

displacement is then d = 1
2
at2, where t is the duration that the incident particle spends within r0

and is approximately r0
�c
. Thus we have d / 1

�2
and the transferred energy �E � hfid / 1

�2
, noting

that hfi is the average force in the range d and a constant. This describes the fall of dE=dx at low

�
 before reaching the minimum. For larger �, relativistic e�ects take place and the classical model

is no longer suitable. Dynamically, the �eld of the traveling particle becomes stronger and thus

increases the ionization cross-section; kinematically, with larger � the maximum transfer energy can

go higher. The two factors combine to give the logarithmic term. The relativistic rise is dampened

by the shielding of the �eld of the incident particle | medium atoms that surround the particle
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are polarized. The medium polarization does not cancel the kinematic part of the logarithmic rise.

The kinematic part is responsible for the residual slow rise of dE=dx in very large �.

In practice, instead of the energy lost by the incident particle, it is the energy deposited in

the electrons that is measured. CDF measures dE=dx via the pulse width (units of nanoseconds)

returned from CTC sense wires. This quantity is not translated into a charge (coulombs). The

dE=dx of a track has a wide distribution. So it is necessary to measure dE=dx many times along

the track to extract a fair representation of it. The distribution has a long tail in large dE=dx,

which makes the average dE=dx diverge logarithmically [10]. Thus a truncated mean of 80% of hits

on a track is the estimated dE=dx at CDF. Considering these practical reasons, we do not �t to

the exact form of the Bethe-Bloch equation. Instead, we have adopted an empirical variation from

H. Keutelian [8] given by

Q0 =
1

�2

"
c0 + c1 ln(

�


�
 + b
)

#
+ a1(� � 1) + a2(� � 1)2: (3.2)

This form (pseudo Bethe-Bloch equation) has all the features that are present in the Bethe-

Bloch equation. Parameters c0 and c1 gives the intensities of the 1=�
2 fall and the logarithmic rise

respectively. Parameter b is associated with the CTC gas properties, e.g. mean excitation energy

of the gas atoms. Parameters a1 and a2 provide further adjustment, especially in low �
 region.

3.2 Sample Selections

The ultimate goal is to tag kaons from B decays for CP violation studies. Using the J= dataset

for the dE=dx is appropriate because the track pT distributions are well matched to our needs.
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3.2.1 Muons

We use the J= ! �+�� date set to obtain a clean sample of muons. Fig. 3.2 shows the re-

constructed J= mass. The signal-to-background ratio (S=B) is roughly 10 : 1. The selection

requirements are:

J/ψ Mass

Figure 3.2: Reconstructed J= mass. Events with M�� within �M�� of MJ= are selected.

� muon matching cuts (between CTC track and muon system track):

{ CMU: matching in x-direction �2x < 9, matching in z-direction �2z < 12

{ CMP: matching in x-direction �2x < 9

{ CMX: matching in x-direction �2x < 9
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� two-track (�+��) vertex �t:

{ CTVMFT (CDF vertex �tting subroutine) �2 < 7

{ jm�� �mJ= j < ���

3.2.2 Pions

We use pions from KS ! �+��. The reconstructed events are shown in Fig. 3.3. The following

Ks Mass (∆M=M-0.4977 (GeV))

Figure 3.3: Reconstructed KS mass. The parameters in the plot are the number of signal events (p1),

the center of the Gaussian (p2), the width of the Gaussian (p3), the mean height of the background

(p4) and the slope of the background (p5).

requirements are applied:
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� pion track cut:

{ SVX track: impact parameter d > 1:5 �d

{ CTC track: no impact parameter cut

� two-track (�+��) vertex �t:

{ Lxy > 4 �Lxy and Lxy < 4:5 cm

{ CTVMFT (CDF vertex �tting subroutine) �2 < 7

� jm�� �mKS
j < 2 ��� and ��� < 0:004GeV=c2

3.2.3 Protons

We use protons from �0 ! p��. Fig. 3.4 shows the reconstructed events. The following requirements

are applied to optimize the signal/background ratio:

� two-track (p�) vertex �t: CTVMFT �2 < 7

� �0 Lxy > 5 �Lxy and Lxy > 0:2 cm, where Lxy is the distance the �
0 travels in the x-y plane

and �Lxy is its error

� jmp� �m�0 j < 2 �p� and �p� < 0:002GeV=c2

� The absolute values of the impact parameters for both proton and pion must be greater than

3 times their uncertainties

� The track with higher momentum is chosen as the proton

17



Λ Mass (∆M=M-1.1157 (GeV))

Figure 3.4: Reconstructed � mass. Events with Mp� within 2 �Mp� of M�0 are selected. The same

notation for parameters as in Fig. 3.3 is used.
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3.2.4 Electrons and Positrons

We use conversion elections and positrons for the electron/positron sample. The following criteria

are used to select pairs of electrons and positrons from photon conversions [11]. Fig. 3.5 shows the

variables that are cut on.

1

Beam line
d

e+

e-

∆φ

r - φ plane

s

R

o

o

2

Figure 3.5: Schematic of electron conversions. The electron and positron tracks are represented as

arcs that are part of two circles. �� is the azimuthal angle between the tracks at the intersection

point. s is the distance between tracks at their tangential points. d is the photon impact parameter.

� separation between tangential points in the r-� plane s < 0:2 cm;

� �cot � between the electron and the positron < 0:03;

� �z between the electron and the positron < 2:0 cm;
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� conversion radius 22:0 cm < R < 30:0 cm. This is the region where the CTC inner cylinder

and the SVX outer cylinder reside. In this region, conversion electrons and positrons are

produced with a higher purity;

� �� between the electron and the positron at the conversion radius < 0:01;

� pointing deviation from origin (beamline) d < 1 cm.

The reconstructed mass spectrum from the conversions is shown in Fig. 3.6.

Reconstructed Photon Mass (Mee)
GeV

Uncertainty on Mee

GeV

Mee/σMee

Figure 3.6: Reconstructed conversion electron-positron mass.
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3.2.5 Low Momentum Tracks

In order to obtain a good �t to the universal curve, tracks at the low �
 are needed. The fact that

the low �
 region is also the most rapidly changing region of the Bethe-Bloch function makes it

more important to have data in this region. The protons from �0 decays do not e�ectively cover

the low momentum region due to the selection rule that always picks the higher pT track to be

the proton. The pions from �0 decays have pT > 0:4GeV=c because of the tracking system cuto�.

Since the protons carry much of the momenta in �0 decays, the result is that protons have even

higher momenta. We need to look elsewhere for the low �
 tracks. Fortunately we can collect

protons from beam pipe interactions. These events have large impact parameters (they come from

the beam pipe), and are easily selected with an impact parameter cut.

The requirement is:

� impact parameter d > 4 �d, where �d is the uncertainty of the impact parameter. This

enhances the proton fraction.

3.3 MINUIT Fit

We use MINUIT [12] to �t for the dE=dx universal curve (Q0) of the form in Eqn. 3.2; c0, c1, b,

a1 and a2 are the parameters to be �tted. We have also investigated the dE=dx resolution as a

function of NCTC. A log-likelihood method is used and is given by

� logL = �X
i

logPi; (3.3)
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where the sum is over all tracks, Pi is the ith track's probability

Pi = G(
QCTCi �Q0

�
); (3.4)

where a Gaussian distribution is assumed and G(x) = e�
1
2
x2 ; QCTCi is the track's QCTC value;

Q0 is the mean dE=dx that is determined by the �t parameters and � is the width of the Gaussian

distribution.

3.3.1 Low �
 Region

In addition to the parameters in the pseudo Bethe-Bloch equation, we need other parameters to

re
ect the fact that in the low �
 region deuterons, kaons and pions co-exist with protons, although

protons are more numerous. The proton contamination can be seen in the low �
 region of Fig. 3.8,

in which we use the proton mass to calculate �
. In this region, tracks should not be assumed to be

protons only. Instead, their probabilities should each be a weighted sum of Gaussian distributions

corresponding to proton, kaon, pion and deuteron. Additional parameters are needed to represent

the percentages of proton, kaon, deuteron and pion (we need 3 parameters for 4 types of particles

since the �nal p.d.f. should be normalized). We choose the three parameters probD, probp and

prob� as the corresponding percentages for deuterons, protons and pions. Thus the probability for

such a track is

Pi =
X
j

probjG(
QCTCi �Q0j

�
); (3.5)

where the index j runs over kaon, pion, proton and deuteron; and Q0j is the mean dE=dx calculated

assuming the track is of type j.
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3.3.2 Resolution as a Function of NCTC

It is essential to look at the resolution's dependence on NCTC since NCTC varies in a wide range.

To do this, we assign a parameter to represent the width of the Gaussian distribution. Then we

�t for the universal curve only using events with a particular NCTC. We repeat this process for

NCTC=11 to 30; tracks with NCTC < 11 are not used because 10 hits are not considered enough

to provide a valid 80% truncated mean for QCTC. The relation between the resolution and NCTC

is shown in Fig. 3.7. The �rst plot is a histogram of NCTC. The remaining plots show the dE=dx

resolution vs. NCTC. Various simple functional forms are attempted. From the plots, we choose

the simple and accurate form

� =
s

NCTC
: (3.6)

The constant s will be determined in the overall unbinned MINUIT �t.

3.3.3 Overall Fit

We �t the universal dE=dx curve for all tracks using the relation � = s
NCTC

to re
ect that the

dE=dx width di�ers according to NCTC of each track. The results of the �t are shown in Table 3.1.

As the result indicates, Run 1B events with run number > 67390 di�er signi�cantly from Run

1A and earlier 1B events. The percentage of kaons can be obtained by subtracting the percentages

of proton, pion and deuteron from unity. The universal curves are plotted in Fig. 3.8. We have also

applied the �t to positive tracks and negative tracks separately and observed no di�erence.
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Figure 3.7: QCTC resolution and its dependence on NCTC. The �rst plot shows the histogram of

NCTC, the peaks at a few NCTC values are caused by the truncated mean operation; the other

plots show di�erent �ts to � as a function of NCTC, where p1 and p2 are constants in relations

shown in the plots. From these �ts, � = p1
NCTC

is a simple and accurate relation to use.
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Figure 3.8: QCTC dE=dx universal curves. For �
 < 1, tracks marked as K, � and D have their

�
 calculated using the proton mass. Upper left: 1A; upper right: 1B, run number < 67390; lower

left: 1B, run number > 67390; lower right: all three curves. The two Run 1B curves can be well

related by a constant ratio of 1.2.
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Table 3.1: Parameters of Run 1 universal dE=dx �t.

parameter value

1A 1B (nrun< 67390) 1B (nrun> 67390)

c0 31:6� :042 32:1� :015 37:2� :032

c1 6:06� :030 6:08� :009 7:38� :017

b 28:3� :572 30:3� :166 25:2� :279

a1 �58:5� :752 �59:3� :331 �73:0� :498

a2 �29:0� 1:94 �22:4� :853 �27:4� 1:24

s(ns) 78:9� :158 83:6� :102 97:5� :161

probD :036� :004 :050� :002 :064� :002

probp :476� :013 :528� :004 :619� :004

prob� :366� :014 :326� :004 :214� :004

3.4 dE=dx For Particle ID

The main use of dE=dx in B tagging is K-� separation and low energy electron identi�cation.

Fig. 3.9 shows the dE=dx separation in units of � (resolution) for tracks with 31 hits (NCTC = 31).

For tracks with momenta > 2 GeV=c, the separation is about 1:5 �. Fig. 3.10 shows the separation

power for tracks with 11 hits. The separation is about 0:5 � for tracks with momenta > 2 GeV=c.

While Run I dE=dx does not show complete K-� separation, we can utilize this information on a

probabilistic basis. For example, instead of returning a track's identity, dE=dx can return a track's

probability of being a kaon in the opposite-side B tagging.
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nrun < 67390
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Figure 3.9: QCTC separation power for tracks of NCTC=31.
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Figure 3.10: QCTC separation power for tracks of NCTC=11.

27



Chapter 4

Flavor Tagging

Flavor tagging is used to determine the b-quark content of a B meson when it is produced. A tag

is a quantity that reveals such b quark content. To measure CP violation in B0= �B0 ! J= KS or

B0= �B0 !  (2S)KS decays, we need to tag the 
avor of the neutral B meson at production time.

Generally, 
avor tagging is done on a probabilistic basis, i.e., given a (neutral) B meson, only the

probability (P ) of it being b (or �b) quark can be estimated. Another aspect of a 
avor tag is how

often events are being tagged in a given sample. A typical scenario would be, for example, 40% of

the events in a sample are tagged with 60% chance of being a b quark. Because of the probabilistic

nature of the 
avor tagging, the measured sin 2� value from a sample is the true sin 2� diluted,

i.e., sin 2�M = D sin 2�T. The factor D, called dilution, is a characteristic of the tagging method

in use. Its value is usually calibrated using an independent sample. This description is suitable

for tags that have discrete values. In the case where a tag has a continuous spectrum of values, a

probability density function is used to describe the frequency that certain tag values occur. Then

for a given tag value, the probability of it being a b quark is also a function of the tag value.
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Several 
avor tagging methods have been implemented in the CDF detector environment.

4.1 Same-Side Tag

The same-side tag uses the charge of the pion from the fragmentation of the same-side (trigger-side)

B to tag its 
avor [13]. That is, a �+ is more likely to accompany a B0 in the process.

Therefore, the charge of the pion that is \closest" to the neutral B meson may tag its 
avor.

The use of the same-side tag at CDF is detailed in [14] and [15]. We will use the existing same-side

tag in this analysis.

4.2 Soft-Lepton Tag

The soft-lepton tag uses the charge of the lepton from the opposite-side B semileptonic decay to

tag the 
avor of the same-side B. In B semileptonic decay b! cl�, the charge of the lepton l can

be used to tag the b quark on the opposite side. Since the B's are produced in pairs and hence

have opposite 
avors initially, the trigger-side B 
avor is tagged. The use of the soft-lepton tag at

CDF is detailed in [16] and [17]. We will use the existing CDF soft-lepton tagging procedure in this

analysis.

4.3 Jet-Charge Tag

The jet-charge tag uses the charge of the opposite-side B jet to tag its 
avor, from which the 
avor

of the same-side B is inferred. If the charged jet is from a b quark, it tends to have a negative
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charge. Since the b quarks are produced in pairs, the trigger-side B 
avor at production is the

opposite. The use of the jet-charge tag at CDF is detailed in [18][19]. The jet-charge tag involves

clustering tracks into jets and �nding the tag jet. In this analysis, we will improve the jet-charge

tag by combining more tags with it. That is, the jet-charge tag itself remains unchanged.

4.4 Kaon Tag

The identi�cation of the kaon track in a B decay can be used to tag the B 
avor due to the decay

chain b ! c ! s. That is, knowing the kaon charge one can reveal the opposite-side B 
avor and

hence the trigger-side B 
avor. The kaon identi�cation is achieved using CTC dE=dx information

on a probabilistic basis, since such information does not provide enough precision to separate kaon

tracks from other charged tracks on a track-by-track basis.

4.5 Neutral Tag

Some kinematical information, unable to tag the B 
avor when used alone, may improve 
avor

tagging when combined with a 
avor tag. In opposite-side tagging, such information is selected,

re�ned and formulated into tags, then combined with the jet-charge tag. The result is a better

tagging power �D2. Embedded in the combining algorithm we will address in later sections, these

neutral tags improve the overall tagging not by directly distinguishing b quark from �b quark, but

rather by distinguishing true opposite-side b=�b-jets from non-b=�b jets.
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Chapter 5

An Algorithm of Combining Tags

5.1 Introduction

In the previous CDF sin 2� analysis [23] three 
avor tags were used (same-side pion tag, opposite-

side soft-lepton tag, opposite-side jet-charge tag); they were de�ned to minimize any correlation

between them. Jet charge used the opposite-side B-jet to tag the 
avor of the same-side B meson.

In this analysis, we improve the opposite-side-jet tag while leaving the same-side tag and the soft-

lepton tag unchanged.

Here, the jet charge (Qjet) is calculated exactly as speci�ed in [18]. However, we will add

information related to the opposite-side jet to improve its performance; this information does not

necessarily tag the B 
avor by itself. In particular, we look for information that reveals the quality

of the jet (is it more or less like a B jet?) as well as the particle 
avor information. Here, we

formulate all such information into tags and combine them.

Unlike in the previous analysis, the tags being considered here are highly correlated since they
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are all built upon the same clustering algorithm. For this reason, we have developed an algorithm

that can cope with tag correlations to combine these tags.

In this analysis, tags that do not tag the B 
avor by themselves are called neutral tags, and

those which can tag the B 
avor are called 
avor tags. The latter includes not only the traditional


avor tags, such as the jet-charge tag and the soft lepton tag, but also any quantity that �ts the

de�nition. One example of the latter case is the signed dilution.

Given a sample of N events and a tagger, let n(b) be the number of times an event is tagged as a

b-quark event and n(�b) the number of times an event is tagged as a �b-quark event. The probability

of tagging a b-quark event from this sample is then P (b) = n(b)
N
. In 
avor tagging, dilution is de�ned

as D = 2P � 1. From its de�nition, D 2 [�1; 1]. If the tagger is not biased, i.e., has the same

chance of tagging b and �b events, then D = 0. If the tagger is completely biased, i.e., tag only

one type of events, then D = 1 for tagging b events only and D = �1 for tagging �b events only.

Generally, with more than one tag, the signed dilution

D =
n(b)� n(�b)

n(b) + n(�b)
(5.1)

is a function of a set of tagging quantities (Qi), i.e. D = D(Q1; Q2; : : :).

5.2 The Algorithm

In a sample of N events, suppose two tagging quantities, Q1 and Q2, are available. We will use �

for the particular operation that combines two tags in this algorithm. It is convenient to make all

tagging quantities in the range [�1; 1]. The central idea of this algorithm is to combine two tagging

quantities into one using a dilution matrix.
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The construction of a dilution matrix requires each event's 
avor be known. Monte Carlo events

are used for this purpose. It proceeds as follows:

1. Calculate Q1i and Q2i for each event i, i = 1; : : : ; N ;

2. Populate events in the Q1-Q2 plane according to their coordinates (Q1; Q2);

3. Quantize the Q1 and Q2 axes into m �nite bins to obtain a grid in Q1-Q2 plane;

4. Calculate the signed dilution in each bin (i; j): Dij =
nij(b)�nij(�b)

nij(b)+nij(�b)
; Dij is the (i; j) element of

a matrix (dilution matrix M12);

5. Fit the dilution matrix M12 to a dilution function f = D12(Q1; Q2);

6. Now we have combined Q1 and Q2 into one combined tag Q12 = D12(Q1; Q2), the signed

dilution.

To calculate a combined tag Q12 for an event is relatively easy:

1. Calculate Q1 and Q2 for this event;

2. Q12 = D12(Q1; Q2).

It is important to know that Q1 and Q2 can be combined tags themselves. By repeatedly using

the procedure, one can combine an arbitrary number of tags. This algorithm takes two tags as

input and returns one tag as output in each step. The output tag is a signed dilution, while the

input tags can be either the usual tagging quantities like the jet charge or signed dilutions. Indeed,

a signed dilution is a tagging quantity. Qjet is a tagging quantity only because given its value a

signed dilution can be derived, while a signed dilution is a tagging quantity for which this derivation
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is trivial (has already been performed). Therefore we can combine a signed dilution Q12 found after

the previous step (Q1 �Q2) and a third tagging quantity Q3 to give another signed dilution Q123.

The fact that at any given moment only two tags are being combined leaves 
exibility in the

order of tag association, e.g. (Q1 � Q2)� Q3 or Q1 � (Q2 � Q3). Whether one particular order is

more favorable will be addressed in Section 5.5.

The �nal signed dilution is obtained after all tagging quantities are combined and is denoted as

Q�nal.

Once dilution matrices are constructed and dilution functions �tted, given n individual tags

(fQig, i = 1; : : : ; n), Q�nal for each data event can be calculated by stepping through the dilution

functions in the same order the matrices are constructed. The following is the procedure that is

used:

� M12: Q1 �Q2 ! Q12

� M12;3: Q12 �Q3 ! Q12;3

� M1:::n�1;n: Q1:::n�1 �Qn ! Q1:::n; Q�nal � Q1:::n

An alternative tag-combination scheme would be to combine the n tags in one step using an

n-dimensional dilution matrix. While clearly optimum, this scheme is impractical since it would

require orders of magnitude more Monte Carlo events (and years of CPU time) to compute the

n-dimensional dilution matrix (with mn ' 107 bins) to suÆcient accuracy.
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5.3 The Tags

We will start with a brief overview of the jet-charge tag. Then we will add new tags to the jet-

charge tag to increase the �nal �D2 using this algorithm. There are two classes of tags that are of

particular interest, jet-related neutral tags and dE=dx related tags.

5.3.1 Jet-Charge Tag

The jet-charge tag uses the charge of the opposite-side B-jet to tag its 
avor, i.e. a positive charge

indicates a �b quark. The steps are the same as in [18].

In forming a candidate set of tracks, a cone in �-� space centered around the reconstructed B

event is excluded to eliminate non-opposite-side tracks. Then higher pT (> 1:75 GeV) tracks are

selected as seeds, which are merged to minimize pseudo jet mass (pseudo, because in each stage of

merging, the jet and track masses are set to zero) until its upper limit (
p
24 GeV) is reached. When

the seed-merging is over|a few jets may emerge|other quali�ed tracks are used in the same way

if there are more. Tracks are merged with a jet until the pseudo jet mass upper limit is met|in

each step of merging, the track that yields the minimal pseudo jet mass is chosen. This process

continues until right before the upper limit is reached or all quali�ed tracks are used. After the

jet clustering, if there is more than one jet formed, only one jet is picked. The jet that has the

lowest jet probability [24] (probability of being associated with the primary vertex, de�ned using

impact parameters of component tracks) below 0.2 is selected. Otherwise a jet with the highest pT

is selected. Then the jet charge is calculated as
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Qjet =

P
tracks0

qipT i(2� Tpi)P
tracks0

pT i(2� Tpi)
; (5.2)

where qi is the charge of the ith track, Tpi the track probability, and the summation is over all

tracks with pT > 0:75GeV=c.

5.3.2 Jet-related Neutral Tags

In the jet-charge tag, once Qjet is calculated, information for selecting the jet is not used further.

Although this information may not reveal the B 
avor, it may di�erentiate the quality of the

opposite side jet.

In the jet-charge tag, the number of tracks used in the jet cannot tag the 
avor of the B-jet and

so we refer to that information as 
avor-neutral. Among jets with the same jet charge, the ones

with more tracks are likely to be better tagged (have greater jDj) because they are less a�ected by

jet clustering defects or errors.

Similar arguments can be applied to other properties of the jet. A jet that is more back-to-back

against the trigger B in the azimuthal direction is more likely to be the true opposite-side B-jet.

A jet with a smaller jet probability is less likely to have come from the primary vertex and is thus

more likely to be a B-jet. A jet with a smaller cone half-angle is more \jet-like" geometrically.

These jet properties are quanti�ed and stretched so as to give an approximately 
at distribution

in the range of [�1; 1]. They are listed as follows:

� Q��: calculate the azimuthal �� angle between the jet and trigger B, �� should be within
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[0; �], and the tag is de�ned as

Q�� = 2��=� � 1: (5.3)

� Qnused: count the number of tracks used in the jet-charge calculation nused, the tag is de�ned

as

Qnused =
2

m
(min(nused; m� 1) +

1

2
)� 1; (5.4)

where m is the number of bins. This arrangement is only to �t Qnused into [�1; 1]; the bin

index still equals the value of nused.

� Qjp: jet probability [24] is the probability that if a jet comes from the primary vertex, that

the jet will be found greater than that distance from the primary vertex.

The tag is de�ned as

Qjp =
2

(1� 1
2
log(jetprob))

� 1: (5.5)

In the jetprob distribution, a large number of jets (those containing tracks from B decay) pile

up in the region near zero. The logarithm is used in the expression to stretch that particular

segment over several bins.

� Qsprd: calculate jet spread as

jetsprd =

Pn
i=1 cos(��i)

n
; (5.6)

where � is the angle between the track and the jet direction and n is the total number of

tracks in the jet. We de�ne

Qsprd = 2 � jetsprd� 1: (5.7)
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5.3.3 dE=dx Tag

Besides jet-related neutral tags, we also make use of the CTC dE=dx information to implement a

kaon tag. Kaons from B decays can be used to tag the B 
avor due to the decay chain b! c! s.

This requires that kaons be identi�ed among other tracks. For CDF Run 1, CTC dE=dx is the

designated tool for the charged particle identi�cation [25]. We are able to calculate the probability

of a track being a kaon (kprob) using the dE=dx information. The kaon tag is de�ned as follows:

The CTC dE=dx information is used to calculate the kaon probability, which is de�ned as

kprob =
fK �G(QCTC �Q0(

p
mK

); �)P5
i=1 fi �G(QCTC �Q0(

p
mi
); �)

; (5.8)

where the index i runs over proton, kaon, pion, muon and electron,

G = G(x; �) =
1p
2��

e�
1
2
( x
�
)2 ; (5.9)

Q0 is the predicted mean dE=dx and is a function of �
 as shown in Fig. 3.8, � is the dE=dx

resolution, p is the momentum of the particle, fi is the percentage of the ith species in J= data,

and fK is the kaon percentage. We obtain the fi's from our Monte Carlo samples. mi is the mass

of particle i. The tag is de�ned as

QK =
X
j

kprob2j � qj (5.10)

where index j runs over all tracks in the jet, and qj is the charge of the jth track.

5.4 Optimization Using the Monte Carlo Sample

5.4.1 Monte Carlo Sample

There are several bene�ts of using Monte Carlo samples to optimize our algorithm:
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� the true b=�b 
avor is known;

� suÆcient number of events to minimize statistical 
uctuations;

� no background events;

� the data can be reserved for calibration.

We use Monte Carlo B0= �B0 ! J= KS events to optimize the tags and to construct the dilution

matrices. Tuned PYTHIA 5.702 [26] is used for event generation and CLEOMC (QQ9.0) is used to

decay the particles. Since the clustering is tracking based, we can simulate the detector behavior

without using CDFSIM. We also simulate the SVX acceptance using simple geometrical parameters.

The B lifetime is simulated and track impact parameters are smeared with the run 1 SVX resolution.

On average, only 3 � 10�5 of generated B events will decay to �+���+�� through B0= �B0 !

J= KS without forcing the decay. Therefore we force B0= �B0 ! J= KS decays to speed up gen-

eration while at the same time being careful to keep the decay spectrum of the opposite-side B

una�ected:

Events with at least one neutral B meson are candidates for forcing a B0= �B0 ! J= KS decay,

all others are discarded. Mixing is turned on for all neutral B mesons in CLEOMC: for B0= �B0

mixing, xd = 0:723 is used; for B0
S=

�B0
S mixing, xs = 15:0 is used. When there is only one B0= �B0

produced, we force it to decay to �+���+�� through J= KS and let the other B product decay

naturally.

If an event has a B0 and a �B0, we have to choose one as the trigger and let the other one decay

naturally. Thus a B0= �B0 meson has a 50% probability to be the trigger in double neutral B events,

while in single B0= �B0 events it is always the trigger. This is quite di�erent from simply picking out
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B0= �B0 ! J= KS events, which is more natural but too slow. To assign the same opportunity to

the forced B0= �B0 ! J= KS decay in both the single-B event and the double-B event, we throw

away at random a half of the single-B events.

5.4.2 Binning

We collected � 250; 000 Monte Carlo events. We use 11 � 11 binning to construct the dilution

matrices. If, during the process of �lling a matrix, a bin is found to have too few entries (< 20), it

is absorbed by neighboring bins.

In this analysis we choose to add new tags to the jet-charge tag in the order of Qnused, Qjetsprd,

Q��, Qjetprb and QK.

5.4.3 Dilution Matrices and Dilution Functions

In each step of the algorithm, once a dilution matrix is constructed, a dilution function is �tted and

will be used by later steps. The forms of the dilution functions are chosen empirically. The �ts are

checked through both the �2 values and the randomness of the sign of the residuals.

In the following dilution functions, the parameter vector ~p is expressed through its components

pi. The errors of the parameters are used for estimating the overall error of �D2 in Monte Carlo

data. They are not used in the calibration �t or the sin 2� �t.

Qjet �Qnused

Fig. 5.1 shows the dilution matrix M12 constructed given an event's Qjet and Qnused. When an

event has only one track used for the jet-charge calculation, its Qjet is either 1 or �1. This is seen
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in the row with the lowest Qn-value in the matrix. For �xed Qjet, there is a trend that larger nused

gives a larger jDj.
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Figure 5.1: Top: The dilution matrix. Bottom: The �t.
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Qjet:nused =

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

0 nused = 1, jQjetj 6= 1

p4Qjet nused = 1, jQjetj = 1, p4 = 0:208� 0:011

p1Qjet nused = 2, p1 = 0:283� 0:009

p2Qjet + p3QjetQnused 3 � nused � 7, p2 = 0:339� 0:008, p3 = 0:072� 0:022

p5Qjet + p6QjetQnused 8 � nused, p5 = 0:510� 0:062, p6 = �0:379� 0:118

(5.11)

Qjet:nused �Qjetsprd

The signed dilution produced from the previous step is rescaled to fully cover the range [�1; 1].

This new quantity is now the \base charge", ready to combine with Qjetsprd to form a new matrix

M12;3, shown in Fig. 5.2. Rows with larger x-values are events with jets whose tracks cluster closer

in the direction of the jet axis; they also have better dilutions.

Qjet:n:jd = p1Qjet:n + p2Qjet:nQjd + p3(4Q
3
jet:n � 3Qjet:n) + p4Qjet:n(2Q

2
jd � 1): (5.12)

The parameters are: p1 = 0:292 � 0:008, p2 = 0:089 � 0:010, p3 = �0:027 � 0:004, p4 =

0:024� 0:009.

Qjet:nused:jetsprd �Q��

Repeating the process, we obtain a matrix of Qjet:nused:jetsprd and Q��, shown in Fig. 5.3. Rows with

larger x-values are events with jets more back-to-back to the trigger B. They generally have larger

jDj as can be seen from the matrix.

Qjq:n:jd:�� = p1Qjet:n:jdQ�� + p2Qjet:n:jd: (5.13)
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Figure 5.2: Top: The dilution matrix. Bottom: The �t.
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Figure 5.3: Top: The dilution matrix. Bottom: The �t.
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The parameters are: p1 = 0:295� 0:012, p2 = 0:203� 0:008

Qjet:nused:jetsprd:�� �Qjetprb

We next add Qjetprb to Qjet:nused:jetsprd:��. In Fig. 5.4 Rows with larger x-values are events with jet

probabilities closer to 1, and rows with smaller x-values are events with jet probabilities closer to 0.

Events with smaller jet probability, i.e. far away from the primary vertex, tend to have a greater

jDj.
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Figure 5.4: Top: The dilution matrix. Bottom: The �t.

Qjq:n:jd:��:jp = p1Qjet:n:jd:��Qjp + p2Qjet:n:jd:��: (5.14)
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The parameters are: p1 = �0:214� 0:010, p2 = 0:401� 0:005.

Qjet:nused:jetsprd:��:jetprb �QK

The dilution matrix is shown in Fig. 5.5. Notice the matrix is diagonally symmetric instead of

left-right symmetric as in the previous cases, because the kaon tag is a symmetric (anti-symmetric,

D(�Q) = �D(Q)) tag just like the jet-charge tag. The dilutions achieve greater amplitudes when

the two charges (QK and the base charge) more or less agree, i.e., around the primary diagonal

line (from (�1;�1) to (1; 1)) of the matrix. The opposite happens when events fall along the other

diagonal line. This is because the kaon tag uses the same 
avor-charge relation as the jet-charge

tag. When QK disagrees with Qjet:nused:jetsprd:��:jetprb, the latter dominates the sign of the dilutions.

Qjq:n:jd:��:jp:K = p1QK + p2Qjq:n:jd:��:jp: (5.15)

The parameters are: p1 = 0:158� 0:007, p2 = 0:506� 0:006.

Given the individual tags, the �nal quantity returned from calling the dilution functions is the

Monte Carlo predicted dilution. Each data event with the individual tagging quantities calculated

will traverse all the dilution functions in the same order to calculate the Monte Carlo predicted

dilution Q�nal.

5.5 Tag Association Order

Generally, the order in which the tags are combined is not associative. A more relevant question is

by how much the resulting �D2 from di�erent orders di�er, or if there exists a particular order that
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Figure 5.5: Top: The dilution matrix. Bottom: The �t.
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maximizes �D2. Before trying out all possible association orders, it helps that we categorize them

and eliminate some that will never work.

Clearly we do not combine two neutral tags. Recall that the combined tag is a dilution quantity,

by doing so we simply get a trivial dilution function f(Q1; Q2) = 0. We also do not combine two

tags if the resulting global pattern (dilution function) empirically does not depend on both of them.

Given the above guideline, we compiled three association orders. The results are listed in

Table 5.1.

Table 5.1: Tag Association Order

Tags �D2 (%) Tags �D2 (%)

Qjet 2:31� 0:09 Qjet 2:31� 0:09

�Qnused 2:54� 0:09 �Qnused 2:54� 0:09

�Qjd 2:66� 0:09 �Qjd 2:66� 0:09

�QK 2:75� 0:10 �Q�� 2:81� 0:10

�Q�� 2:82� 0:10 �Qjp 2:92� 0:10

�Qjp 3:04� 0:10 �QK 3:22� 0:10

The �D2s in Table 5.1 are calculated, very much like during the construction of the dilution

matrices, as follows:

� step-1:for each event, a combined tag is calculated using the dilution function from �tting to

the dilution matrix;

� step-2: group events according to this combined tag;
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� step-3: for each group, calculate dilution using D = n��n
n+�n

;

� step-4: sum D2 for all groups, with each group weighted by (n+ �n).

We �nd no signi�cant order dependence of this algorithm with our particular tags. The fact

that we have used tags distinctive in their physical bases helps to decouple the overall �D2 from

the association order. In this analysis, we pick the tags and the association order in column two of

Table 5.1.

5.6 Gory Details

All tagging quantities are scaled and stretched as 
at as simplicity and monotonicity allow to �ll

in the range of [�1; 1], because each bin in the dilution matrices should have enough events for

calculating the dilution and its error. This e�ort will be seriously undermined if we do not do

the same to the combined tags (the intermediate dilutions) since they are mostly in the range

of [�0:5; 0:5] thus leaving bins outside that range unoccupied. For this reason, the intermediate

dilutions in each matrix are scaled by a factor that is set by the largest dilution in that matrix.

The result is that in each matrix, the base charge always ranges from �1 to 1.

Some tags possess an intrinsic (anti)symmetry, for example, in jet charge tag, D(q) = �D(�q).

The kaon tag and all the intermediate dilutions also have this symmetry, while the neutral tags

do not. This tagging symmetry should be re
ected in the dilution matrices. Limited by the

Monte Carlo sample size, the dilution matrices are not born symmetric. Therefore an explicit

symmetrization is in order. In symmetrizing the dilution matrices we also reduce the statistical

uncertainty in each bin. The symmetrization consists of �nding the symmetric pairs of bins in the
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matrix and making them satisfy the above relation. For a dilution matrix of one symmetric tag (Q1)

and one non-symmetric tag (Q2), D(Q1; Q2) = �D(�Q1; Q2). Hence the symmetric pair is (i; j)

and (m+1� i; j), where m is the dimension of the matrix. For a dilution matrix of two symmetric

tags, D(Q1; Q2) = �D(�Q1;�Q2). Hence the symmetric pair is (i; j) and (m + 1� i;m + 1� j).

The dilution for a pair is calculated as such: suppose there are n1 b and �n1 �b events in bin (i; j),

and n2 b and �n2 �b events in its partner; de�ne n = n1 + �n2 and �n = �n1 + n2; then the dilution

D(i; j) = n��n
n+�n

, the dilution of its partner is �D(i; j).

5.7 Tag Correlation

We have experimented with a variety of tags to optimize the algorithm and to further our under-

standing. One feature of this algorithm is that it handles the tag correlation automatically|nothing

is assumed about the relation of the tags being combined. Yet it is instructional to see if there exists

a connection between the tag correlation and the tagging improvement.

To quantify the discussion, de�ne the pseudo correlation between two tags as

� =
�1D

2
1 + �2D

2
2 � �12D

2
12

min(�1D2
1; �2D

2
2)

; (5.16)

where the �D2 terms are the tagging powers|they correspond to the �D2 columns in Table 5.2.

� = 1 means complete overlap; � = 0 means no correlation; and � being a large negative number

indicates one of the tags is neutral because in case of a neutral tag the denominator is � 0 and the

numerator is negative because the combined �D2 works better than the originals (see Appendix A)..

Table 5.2 shows the result from various tags being added to the jet-charge tag. �D2 terms are

obtained by summing over all bins. The improvement from adding the second tag to jet-charge tag

50



is shown as the ratio of the combined tag �D2 to that of the jet-charge tag. For one case (JETQ),

we combine jet-charge tag with itself; the result, as expected, is that no improvement occurs. Due

to correlations, two good tags do not necessarily produce a better combined tag, as demonstrated

by the PT tag which very much resembles the jet-charge tag|with the jet probability information

dropped. On the other hand, a neutral tag can improve the jet-charge tag, e.g. DEPHI (Q��)

boosts the �D2 by 21%. As another category, KPRB2Q (QK) improves the jet-charge tag by about

57% while still having a 28% correlation because it is a 
avor tag containing particle ID information

that is not in the jet-charge tag.

5.8 Summary

This new generic algorithm combines arbitrary tags. In particular, the algorithm is not restricted to

combining uncorrelated tags. Neutral tags are combined with 
avor tags to improve �D2. Using this

algorithm, in later chapters we will improve the opposite-side-jet tag by adding the jet-kinematics

tags and the kaon dE=dx tag.
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Table 5.2: Adding a Second Tag to Jet Charge Tag (part 1 of 3)

2nd Tag Formula �D2 (%) Ratio �

Jet Q Tag 2nd Tag Combined

ALL1
P

kppT e
1�tpqP

kppT e
1�tp 2:58� 0:16 1:70� 0:13 3:26� 0:18 1:26 0:60

DEALPHA cos�jetB 2:36� 0:15 0:02� 0:02 2:71� 0:16 1:15 �13:78

DEETA 2

1+j
�jet+�B
�jet��B

j
� 1 2:37� 0:15 0:02� 0:01 2:65� 0:16 1:12 �17:23

DEPHI 2��
�
� 1 2:45� 0:15 0:02� 0:01 2:96� 0:17 1:21 �27:61

DR2 2
1+(��2+��2)

� 1 2:49� 0:16 0:02� 0:01 2:76� 0:16 1:11 �16:01

JETETA 2
1+j�jetj

� 1 2:35� 0:15 0:01� 0:01 2:63� 0:16 1:12 �17:40

JETKPRB 2 � jKp � 1 2:38� 0:15 0:03� 0:01 2:43� 0:15 1:02 �0:95

JETM 2(
M2

jet

24
)2 � 1 2:48� 0:16 0:03� 0:02 2:77� 0:16 1:12 �8:64

JETPRB 2
1� 1

2
log(jp)

� 1 2:52� 0:16 0:03� 0:02 3:01� 0:17 1:19 �13:60

JETPRB2 2jp � 1 2:49� 0:16 0:03� 0:02 2:93� 0:17 1:17 �16:34

JETPT 1:44 log(pjetT =5)� 1 2:33� 0:15 0:02� 0:02 2:50� 0:15 1:07 �5:72

JETQ
P

pT (2�tp)qP
pT (2�tp)

2:36� 0:15 2:36� 0:15 2:36� 0:15 1:00 1:00

JETQLIKE
P

kppT (2�tp)qP
kppT (2�tp)

2:49� 0:16 1:49� 0:12 3:11� 0:17 1:25 0:58

JETSPRD
P

cos�jetiP
1

2:31� 0:15 0:01� 0:01 2:48� 0:16 1:07 �13:32
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Table 5.2: Adding a Second Tag to Jet Charge Tag (part 2 of 3)

2nd Tag Formula �D2 (%) Ratio �

Jet Q Tag 2nd Tag Combined

KPRB 2max(fkpg)� 1 2:57� 0:16 0:03� 0:02 2:89� 0:17 1:12 �9:50

KPRB2Q
P
k2pq 2:45� 0:15 1:96� 0:14 3:86� 0:19 1:57 0:28

KPRBCUT KPRBQ, kp > 0:2 2:53� 0:16 1:83� 0:13 3:71� 0:19 1:47 0:36

KPRBPTQ
P
kppT q 2:46� 0:16 2:16� 0:14 3:58� 0:19 1:45 0:48

KPRBQ
P
kpq 2:55� 0:16 2:14� 0:14 3:98� 0:19 1:56 0:33

KPRBQRN KPRBQ � randomsign 2:33� 0:15 0:03� 0:02 2:59� 0:16 1:11 �9:29

KPRBTRKP
P
kp(2� tp)q 2:44� 0:15 1:54� 0:12 3:16� 0:17 1:29 0:53

KPRBV
P

(1�kp)qP
(1�kp)

2:49� 0:16 0:28� 0:05 2:83� 0:16 1:13 �0:18

NJET number of jets 2:35� 0:15 0:01� 0:01 2:40� 0:15 1:02 �8:36

NKAON n of kaons (kp > 0:999) 2:58� 0:16 0:02� 0:01 2:63� 0:16 1:02 �2:25

NONE
P
qi 2:54� 0:16 1:59� 0:13 2:76� 0:16 1:09 0:86

NTRK n of tracks in jet 2:42� 0:15 0:03� 0:02 2:64� 0:16 1:09 �7:42

NUSED n of tracks used 2:45� 0:15 0:02� 0:01 2:68� 0:16 1:09 �11:12

ONEKAONQ q of max(fkpg) 2:45� 0:15 1:31� 0:11 3:09� 0:17 1:26 0:51
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Table 5.2: Adding a Second Tag to Jet Charge Tag (part 3 of 3)

2nd Tag Formula �D2 (%) Ratio �

Jet Q Tag 2nd Tag Combined

PPRB2Q
P
p2pq 2:51� 0:16 0:30� 0:05 2:85� 0:17 1:13 �0:13

PPRBCUT PPRBQ, pp > 0:2 2:30� 0:15 0:17� 0:04 2:71� 0:16 1:18 �1:33

PPRBPTQ
P
pppT q 2:66� 0:16 0:20� 0:04 3:01� 0:17 1:13 �0:79

PPRBQ
P
ppq 2:59� 0:16 0:20� 0:04 2:98� 0:17 1:15 �0:95

PT
P

pT qP
pT

2:49� 0:16 2:36� 0:15 2:59� 0:16 1:04 0:96

PT2
P

p2
T
qP

p2
T

2:52� 0:16 2:30� 0:15 2:65� 0:16 1:05 0:94

REPT
P

q=pTP
1=pT

2:47� 0:16 0:87� 0:09 2:73� 0:16 1:11 0:70

SSPT 1:44 log(pBT =5)� 1 2:35� 0:15 0:01� 0:01 2:58� 0:16 1:10 �20:68

TRKP
P

(2�tp)qP
(2�tp)

2:41� 0:15 1:64� 0:13 2:62� 0:16 1:09 0:87

TRKP3
P

tpqP
tp

2:38� 0:15 0:60� 0:08 2:70� 0:16 1:13 0:47

TRKP4
P

(1�tp)qP
(1�tp)

2:51� 0:16 1:13� 0:11 2:83� 0:16 1:13 0:72

TRKP5
P

(1�log(max(tp;�)))qP
(1�log(max(tp;�)))

2:47� 0:16 1:91� 0:14 2:67� 0:16 1:08 0:89

WORST
P

tpq=pTP
tp=pT

2:34� 0:15 0:31� 0:06 2:71� 0:16 1:16 �0:19

54



Chapter 6

Measuring sin 2�

6.1 Introduction

In a previous CDF analysis [21], the Standard Model CP -violation parameter sin 2� was measured

in B0= �B0 ! J= KS decay. Three tagging methods were used in that analysis: a same-side tag, a

soft-lepton tag and a (opposite-side) jet-charge tag.

In this analysis, we have improved the opposite-side-jet tagging by combining the jet-charge

tag with information from jet kinematics and a kaon dE=dx tag. The jet-kinematics information

includes characteristics of a jet, such as the number of tracks used by the jet-charge tag, the

azimuthal angle between the opposite-side jet and the trigger B, the jet probability and the half-

angle of the jet. For generality, these quantities are treated as tags, referred to as \neutral" tags,

which, by themselves, have no 
avor tagging power. The kaon tag uses CTC dE=dx information to

evaluate the weight (probability of being a kaon) of each track in the jet, returning a weighted sum

of track charges as the result. To make use of all the tags in a manner that maximizes the overall
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�D2, we have developed a generic algorithm to combine them. The algorithm is detailed in [22].

Nonetheless, for the completeness of this note, an overview of the algorithm and some updates are

addressed here.

In this analysis, similar to [23], tagging eÆciency and dilution are both functions of the tag.

However, instead of having discrete tag values of +1, 0 and �1, the tag Q�nal is now a continuous

variable between [�1; 1]. A good reference for a generalized discussion of tagging can be found in

[20].

The same-side tag and the soft-lepton tag remain the same as in the previous analysis.

6.2 Tagging With Asymmetry

Symmetric tagging is at best an approximation in an experimental setup. Therefore, we naturally

would like to deal with a tagging asymmetry. In the previous analysis [23], since all tags take

discrete values, tagging asymmetry was re
ected in the di�erent eÆciencies and dilutions for +,

�, and 0 bins. Due to the tagging asymmetry, the 0 bin (jQjetj < 0:2) has non-zero dilutions. In

this analysis, with continuous Q�nal, tagging with asymmetry involves �nding the proper forms to

parameterize " and D as functions of Q�nal. The tagging asymmetry should be incorporated into

the functions.

6.2.1 EÆciency and Dilution Functions

The Q�nal distribution in the inclusive J= events, B0= �B0 ! J= KS and B
� ! J= K� events can

be well-summarized by a concentric double Gaussian distribution|a symmetric function. To allow
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the tagging eÆciency to be asymmetric, an anti-symmetric component is needed. We use the odd

Chebyshev polynomials for this anti-symmetric component. The eÆciency function, the normalized

Q�nal distribution, takes the form

"(Q) = �0Æ(Q) + (1� �0)

 
fp
2��1

e
� 1

2

Q2

�2
1 +

1� fp
2��2

e
� 1

2

Q2

�2
2

!
[1 + c1T1(2Q) + c3T3(2Q)] ; (6.1)

where Æ(Q) is a Æ-function representing events which do not have jets. The eÆciency asymmetry is

described by the two odd Chebyshev polynomials T1 and T3 (multiplied by the double Gaussian).

Since Chebyshev polynomials are orthogonal over [�1; 1] and the Monte Carlo predicted dilution

Q�nal is mostly in [�0:5; 0:5], we scaled the variable Q by a factor of 2 in Ti's. Their coeÆcients c1

and c3 are determined from the inclusive J= events.

For a symmetric dilution function, D(�Q) = �D(Q). With the same logic as in the eÆciency

function, the dilution asymmetry is handled by adding even Chebyshev polynomials. Selecting the

lowest order polynomial|the 0th order|we have the dilution function

D(Q) = �Q+ �; (6.2)

where � is the coeÆcient of the Chebyshev polynomial T0 = 1. Rather than being a free parameter,

� is related to other tagging parameters in both the eÆciency and the dilution functions, as shown

in the next section.

6.2.2 A Relation Between EÆciency and Dilution Asymmetry

Note that equal numbers of b-quarks and �b-quarks are produced (associated-production), and that

there is no charge bias in the J= data set. That is, the events trigger on either di-muon or a single

muon with very high pT , neither presents a charge bias; Moreover, the triggers are not used by the
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tagging algorithms. Therefore, the prior probability of starting with a b-quark is 50%. That is, the

tagging eÆciency and dilution functions satisfy the following relation

1Z
�1

"(Q)P (Q)dQ =
1

2
; (6.3)

where "(Q) is the normalized eÆciency function (a probability density function). "(Q)dQ gives the

probability of observing Q�nal 2 [Q;Q+dQ). P (Q) is the probability that the trigger-B in an event

with Q�nal = Q contains a b-quark, and is related to the signed dilution via D = 2P � 1. We have

the following relation after the substitution

1Z
�1

"(Q)D(Q)dQ = 0: (6.4)

This relation is referred to as the beauty conservation rule in the text that follows.

The parameters in "(Q) (�0, f , �1, �2, c1 and c3) and the parameters in D(Q) (� and �) are

constrained by the integral relation addressed above. Evaluating that integral, we have

0 =

1Z
�1

(
�0Æ(q) + (1� �0)

 
fp
2��1

e
� 1

2

q2

�2
1 +

1� fp
2��2

e
� 1

2

q2

�2
2

!
[1 + c1T1(2q) + c3T3(2q)]

)
(�q + �)dq

=

1Z
�1

�0Æ(q)�dq +

1Z
�1

(1� �0)

 
fp
2��1

e
� 1

2
q2

�2
1 +

1� fp
2��2

e
� 1

2
q2

�2
2

!
[� + �c1qT1(2q) + �c3qT3(2q)] dq

= �0� + (1� �0)� + (1� �0)�

1Z
�1

 
fp
2��1

e
� 1

2
q2

�2
1 +

1� fp
2��2

e
� 1

2
q2

�2
2

! h
(2c1 � 6c3)q

2 + 32c3q
4
i
dq

Now we are left with integrals of types
R
e�

1
2
x2x2dx and

R
e�

1
2
x2x4dx.

bZ
a

e�
1
2
x2x2dx = e�

1
2
x2(�x)

���b
a
�

bZ
a

(�1)e� 1
2
x2dx

= �be� 1
2
b2 + ae�

1
2
a2 +

p
2� (6.5)
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and

bZ
a

e�
1
2
x2x4dx = e�

1
2
x2(�x3)

���b
a
�

bZ
a

e�
1
2
x2(�3x2)dx

Since �1; �2 � 1, the absolute values of the integral limits a = � 1
�
and b = 1

�
are both � 1.

The integrals are simpli�ed to be
bZ
a

e�
1
2
x2x2dx =

p
2� (6.6)

and
bZ
a

e�
1
2
x2x4dx = 3

p
2� (6.7)

Using these results and with some rescaling of the integral variable we obtain a relationship of

the tagging parameters,

�� = (1� �0)�
n
(2c1 � 6c3)

h
f�21 + (1� f)�22

i
+ 96c3

h
f�41 + (1� f)�42

io
(6.8)

Both SVX and CTC events follow the above \beauty conservation rule", although they use

di�erent parameter sets when applicable.

6.2.3 EÆciency Asymmetry Using Inclusive J= 

The eÆciency asymmetry is expected to be small. In [23] eÆciency asymmetry was handled by

constraining �+=�� using inclusive J= data. Here we use the same data sample to constrain the

asymmetry parameters c1 and c3.

The inclusive J= sample provides a large data sample after a B lifetime cut removes J= 's

that are not from B decays. The selection requirements of the inclusive J= events are as follows:
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� CTC covariance matrix scale factor = 2:0

� SVX alignment

{ Run 1A: 39101

{ Run 1B: 51110

� both muons SVX (� 3 hits)

� CTVMFT 2-track vertex-constrained �t

{ �2 < 15 (Prob(�2) > 0:01%)

{ Lxy > 0:02 cm

{ J= pT > 4:5GeV=c

The Q�nal distribution of these events is shown in Fig. 6.1. Two odd Chebyshev polynomials (T1

and T3) are used to describe the eÆciency asymmetry. The coeÆcients of the two terms are small:

c1 = 0:153� 0:039 (6.9)

c3 = �0:043� 0:018: (6.10)

The values and uncertainties (actually the full error matrix) of c1 and c3 will be used to constrain

their counterparts in the B� ! J= K� calibration �t and the sin 2� �t on B0= �B0 ! J= KS and

B0= �B0 !  (2S)KS .
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Figure 6.1: The histogram is the Q�nal distribution for inclusive J= events that have jets. The

solid line is a �t to the eÆciency function of the form described in the text. The dashed line is a �t

to the eÆciency function without the two odd Chebyshev polynomial terms.

6.2.4 Source Of Tagging Asymmetry

Sources of the tagging asymmetry include the tracking asymmetry that is present in the CTC and

beam pipe protons in the kaon dE=dx tag.

The CTC super-layer cells are rotated by the Lorentz angle (45Æ) away from the radial direction.

For low pT tracks, positive and negative tracks curve in opposite ways in the magnetic �eld. This

causes one type of track to encounter more super-layer cells but fewer sense wires per cell, and the

other type of track to encounter fewer cells but more sense wires per cell. This built-in asymmetry

in the CTC geometry results in the asymmetry in tracking eÆciency.

In the kaon dE=dx tag|unlike in the jet-charge tag where only tracks with pT > 0:75GeV=c
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are used to calculate the jet charge|all tracks in the jet are used to calculate the weighted kaon

charge of the jet. That is, low-pT protons from beam pipe interactions are included if present in

the jet since they have relatively large impact parameters just like tracks from the B jet. Thus the

excessive positive tracks from beam pipe protons lead to more events with positive Q�nal. In order

to maximize the dE=dx particle identi�cation capability, we keep the low-pT tracks in the kaon tag.

Since tagging asymmetry is handled throughout the analysis anyway, there is no need to cut o� the

low-pT tracks just to make the tagging more symmetric.

6.3 Calibration Using B� ! J= K�

We use Run 1 B� ! J= K� events from the J= dataset to calibrate the D vs Q�nal relation.

6.3.1 Event Selection

The B� ! J= K� selection cuts are listed as follows:

� CTC covariance matrix scale factor = 2:0

� SVX alignment:

{ Run 1A: 39101

{ Run 1B: 51110

� CTVMFT 2-track (�+��) vertex-constrained �t:

{ �2 < 15:136 (Prob(�2) > 0:01%)
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{ jm�� � 3:097j < 0:05GeV=c2

� CTVMFT 3-track (�+��K�) vertex and J= -mass constrained �t:

{ �2 < 16:811 (Prob(�2) > 1:0%)

{ 5:15GeV=c2 < m��K < 5:40GeV=c2 or j(m��K � 5:279)=�j < 20

{ pT (K
�) > 1:25GeV=c

{ pT (B
�) > 6:0GeV=c

We collected 613 SVX and 390 CTC signal events, and 9355 SVX and 12647 CTC background

events.

6.3.2 Q�nal Tag

For each event, individual tags are �rst calculated, i.e. Qjet, Qnused, Qjetsprd, Q��, Qjetprb and QK .

They are then used as input to the combining algorithm to give Q�nal as the output. The eÆciency

function "(Q) is used to describe this distribution, with its parameters to be determined by a �t

where the tagging asymmetry parameters (c1 and c3) are constrained by inclusive J= data and the

rest of the parameters 
oat freely.

6.3.3 Dilution vs. Q�nal

For each event of a given Q�nal value, we need to know the dilution D. Since Q�nal is nothing but a

dilution, albeit a dilution that is calculated using Monte Carlo data rather than measured directly,

we expect D � Q�nal.
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In order to have the dilution function D(Q�nal) accommodate the tagging asymmetry, we have

written D(Q) = �Q + �, where � is the parameter we need to obtain for the sin 2� �t, and �,

expressed through the beauty conservation rule, provides the mechanism of dilution asymmetry.

6.3.4 The Calibration Fit

A log-likelihood method is used to do the comprehensive �t that contains B mass, lifetime and


avor information. This calibration �t has the same structure as the sin 2� �t in [23]. However,

instead of three taggers (SST, SLT, JCH), we have two taggers: the Q�nal tag and the \perfect"

tag, that is, the 
avor of the trigger B in B� ! J= K� .

In [23] dilutions and eÆciencies have discrete values for +, � and 0 tags. We keep this feature

for the \perfect" tag since it is always either a + tag or a � tag. However, for the Q�nal tag, since

both dilution and eÆciency are continuous functions of Q�nal, corresponding changes are made in

this part of the �tter.

Figure 6.2 and Fig. 6.3 show the Q�nal distributions of B
� ! J= K� 5� mass region events,

SVX and CTC, respectively. The smooth curves are overlays using the results (f , �1 and �2 for

signal and background, asymmetry parameters c1 and c3) from the log-likelihood calibration �t.

The number of signal and the number of background events are free �t parameters in both �gures

since in the log-likelihood �t a much wider mass window is used.

The �t parameters are summarized in Table 6.1.
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B± → J/ψK±

SVX event with jet

(5σ mass region)

Qfinal

Figure 6.2: Q�nal distribution for signal region B
� ! J= K� SVX events that have jets. All events

satisfy jm�� � 5:279j < 5�; c�B > 0:005cm.

B± → J/ψK±

CTC event with jet

5σ mass region

Qfinal

Figure 6.3: Q�nal distribution for signal region B
� ! J= K� CTC events that have jets. All events

satisfy jm�� � 5:279j < 5�; c�B > 0:005cm.
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Table 6.1: B� ! J= K� calibration �t parameters and their de�nitions (part 1 of 3)

parameter symbol description

1 mscale Sm B-mass error scale

2 mslopep �P
m mass-slope of the prompt background

3 mslopel �L
m mass-slope of the long-lived background

4 tscale SSVXt SVX lifetime error scale

5 bklife �SVX+ mean lifetime of long-lived SVX background

6 tneg �SVX� � SVX background lifetime

7 nfracl F SVX
� � lifetime frac. of long-lived SVX background

8 mscalectc SCTCm CTC B-mass error scale

9 mslopepctc �PCTC
m CTC mass-slope of the prompt background

10 mslopelctc �LCTC
m CTC mass-slope of the long-lived background

11 tscalectc SCTCt CTC lifetime error scale

12 bklifectc �CTC+ mean lifetime of CTC long-lived background

13 tnegctc �CTC� � CTC background lifetime

14 nfraclctc FCTC
� � lifetime frac. of long-lived CTC background

15 bklifep �SVX+0 2nd + SVX background lifetime

16 fracp F SVX
+0 2nd + SVX background fraction

17 nsigsvx NSVX
S number of SVX signal events

18 nbgsvx NSVX
B number of SVX background events

19 fraclsvx F SVX
L long-lived fraction of SVX background

20 nsigctc NCTC
S number of CTC signal events
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Table 6.1: B� ! J= K� calibration �t parameters and their de�nitions (part 2 of 3)

parameter symbol description

21 nbgctc NSVX
B number of CTC background events

22 fraclctc FCTC
L long-lived fraction of CTC background

23 dslope �SVX coeÆcient of Q�nal in SVX dilution func.

24 esjetf fS frac. of dominant Gaussian in SVX signal Q�nal distribution

25 esjets1 �1S width of dominant Gaussian for SVX signal

26 esjets2 �2S width of other Gaussian for SVX signal

27 epjetf fP frac. of dominant Gaussian in SVX prompt bg Q�nal distribution

28 epjets1 �1P width of dominant Gaussian for SVX prompt background

29 epjets2 �2P width of other Gaussian for SVX prompt background

30 eljetf fL frac. of dominant Gaussian in SVX long-lived bg Q�nal distribution

31 eljets1 �1L width of dominant Gaussian for SVX long-lived bg

32 eljets2 �2L width of other Gaussian for SVX long-lived bg

33 b0life �B0 mean B0 lifetime

34 kplusf fK
+

S fraction of K+ in SVX signal

35 kpluspf fK
+

P fraction of K+ in SVX prompt bg

36 kpluslf fK
+

L fraction of K+ in SVX long-lived bg

37 effs �SVX0S jet-clustering eÆciency for SVX signal

38 effp �SVX0P jet-clustering eÆciency for SVX prompt bg

39 effl �SVX0L jet-clustering eÆciency for SVX long-lived bg

40 bgslope �SVXB coe�. of Q�nal in SVX bg dilution func.
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Table 6.1: B� ! J= K� calibration �t parameters and their de�nitions (part 3 of 3)

parameter symbol description

41 bgslopec �CTCB coe�. of Q�nal in CTC bg dilution func.

42 esjetfc fCTCS fract. of dominant Gaussian in CTC signal Q�nal distribution

43 esjets1c �CTC1S width of dominant Gaussian for CTC signal

44 esjets2c �CTC2S width of other Gaussian for CTC signal

45 epjetfc fCTCP frac. of dominant Gaussian in CTC prompt bg Q�nal distribution

46 epjets1c �CTC1P width of dominant Gaussian for CTC prompt bg

47 epjets2c �CTC2P width of other Gaussian for CTC prompt bg

48 eljetfc fCTCL frac. of dominant Gaussian in CTC long-lived Q�nal distribution

49 eljets1c �CTC1L width of dominant Gaussian for CTC long-lived bg

50 eljets2c �CTC2L width of other Gaussian for CTC long-lived bg

51 effsc �CTC0S jet-clustering eÆciency for CTC signal

52 effpc �CTC0P jet-clustering eÆciency for CTC prompt bg

53 efflc �CTC0L jet-clustering eÆciency for CTC long-lived bg

54 chebpar1 c1 coe�. of �rst Chebyshev Polynomial in eÆciency func.

55 chebpar2 c3 coe�. of third Chebyshev Polynomial in eÆciency func.

56 bgdoff �0SVX dilution o�set for SVX background

57 bgdoffc �0CTC dilution o�set for CTC background
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The signal dilution D is related to Q�nal by the coeÆcient �. Such a relation is also used for

background events in the �t, where a residual correlation between the B 
avor and the charge

of X in B ! J= X may exist, thus leading to a small positive coeÆcient. Two such background

coeÆcients are supplied in the �t, one for SVX (�SVXB ) and one for CTC (�CTCB ), due to the di�erent

cuts that are applied to SVX and CTC events.

The calibration �t returns the coeÆcient relating Q�nal to D for signal events as

� = 1:277� 0:380; (6.11)

which is consistent with 1.0, indicating the Monte Carlo models the data well. The �t results are

shown in Table 6.2. Figure 6.4 shows the calibration �t result of D vs. Q�nal relation. A direct �2

�t is also shown for comparison. The apparent large negative o�set from the latter �t is partially

due to more B+ ! J= K+ in the calibration sample than B� ! J= K�. In the log-likelihood

�t, the tagging asymmetry caused by this apparent charge bias, purely statistical, is constrained to

result from the inclusive J= sample.
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6.3.5 The Improved Tagging Power

The tagging power of the Q�nal tag is

[�D2] =
Z 1

�1
"(Q)[D(Q)]2dQ: (6.12)

Substituting the eÆciency function "(Q) and dilution function D(Q) and calculating the integral,

we have

[�D2] = (1� �0)�
2[f�21 + (1� f)�22 ]� �2; (6.13)

where the parameters are de�ned in 6.2.1. The error on [�D2] is

�[�D2] =
X
i;j

@[�D2]

@xi
�xi�xj

@[�D2]

@xj
(6.14)

where xi; xj are parameters in [�D2] expression, and the term �xi�xj is the error matrix element

relating xi and xj. Using the parameter values from the sin 2� �t (see Section 6.5), for SVX signal

events, we have

[�D2] = 0:025� 0:014: (6.15)

For CTC signal events, we have

[�D2] = 0:019� 0:011: (6.16)

This is the tagging power of the Q�nal tag in the context of two other tags (SLT and SST).

6.3.6 Validity of Dilution vs. Q�nal Relation

To verify that D = �Q + � is suÆcient to describe the relation between the dilution and Q�nal,

(Chebyshev) polynomials of higher orders are added. Note that any addition of polynomials of even
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Table 6.2: Calibration �t result with B� ! J= K� (part 1 of 3)

parameter symbol value parabolic error

1 mscale Sm 1:375 0:066

2 mslopep �P
m 0:014 0:001

3 mslopel �L
m �0:005 0:003

4 tscale SSVXt 1:002 0:010

5 bklife �SVX+ 1:125 0:046

6 tneg �SVX� 0:780 0:116

7 nfracl F SVX
� 0:068 0:011

8 mscalectc SCTCm 1:107 0:096

9 mslopepctc �PCTC
m 0:018 0:001

10 mslopelctc �LCTC
m 0:010 0:003

11 tscalectc SCTCt 1:326 0:013

12 bklifectc �CTC+ 2:463 0:079

13 tnegctc �CTC� 3:428 0:251

14 nfraclctc FCTC
� 0:170 0:015

15 bklifep �SVX+0 0:100 constant

16 fracp F SVX
+0 0:000 constant

17 nsigsvx NSVX
S 612:56 31:528

18 nbgsvx NSVX
B 9355:4 98:672

19 fraclsvx F SVX
L 0:119 0:005

20 nsigctc NCTC
S 395:28 34:974
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Table 6.2: Calibration �t result with B� ! J= K� (part 2 of 3)

parameter symbol value parabolic error

21 nbgctc NSVX
B 12642: 116:04

22 fraclctc FCTC
L 0:154 0:006

23 dslope �SVX 1:277 0:380

24 esjetf fS 0:911 0:071

25 esjets1 �1S 0:159 0:009

26 esjets2 �2S 0:045 0:026

27 epjetf fP 0:778 0:058

28 epjets1 �1P 0:152 0:004

29 epjets2 �2P 0:079 0:009

30 eljetf fL 0:865 0:066

31 eljets1 �1L 0:165 0:007

32 eljets2 �2L 0:051 0:019

33 b0life �B0 1:655 0:068

34 kplusf fK
+

S 0:520 0:021

35 kpluspf fK
+

P 0:509 0:004

36 kpluslf fK
+

L 0:498 0:013

37 effs �SVX0S 0:603 0:024

38 effp �SVX0P 0:558 0:006

39 effl �SVX0L 0:645 0:018

40 bgslope �SVXB 0:010 0:099
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Table 6.2: Calibration �t result with B� ! J= K� (part 3 of 3)

parameter symbol value parabolic error

41 bgslopec �CTCB 0:258 0:104

42 esjetfc fCTCS 0:207 0:336

43 esjets1c �CTC1S 0:169 0:103

44 esjets2c �CTC2S 0:085 0:020

45 epjetfc fCTCP 0:264 0:076

46 epjets1c �CTC1P 0:160 0:010

47 epjets2c �CTC2P 0:096 0:004

48 eljetfc fCTCL 0:445 0:193

49 eljets1c �CTC1L 0:146 0:016

50 eljets2c �CTC2L 0:082 0:012

51 effsc �CTC0S 0:535 0:040

52 effpc �CTC0P 0:548 0:005

53 efflc �CTC0L 0:617 0:017

54 chebpar1 c1 0:135 0:036

55 chebpar2 c3 �0:052 0:017

56 bgdoff �0SVX �0:033 0:010

57 bgdoffc �0CTC �0:003 0:009
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order to the right-hand side of the equation implies a dilution asymmetry, which is a small e�ect

already described by �|there is no need to complicate it by adding high order terms. Given this,

it is straight forward to add the next order Chebyshev polynomial T3 in the equation:

D = �Q + �1T3(2Q) + �; (6.17)

where �1 is the coeÆcient of the new term.

A straightforward calculation of the associated production (beauty conservation) of b=�b gives

�� = (1� �0)�
n
(2c1 � 6c3)

h
f�21 + (1� f)�22

i
+ 96c3

h
f�41 + (1� f)�42

io
+

(1� �0)�1
n
12(3c3 � c1)

h
f�21 + (1� f)�22

i
+ 192(c1 � 6c3)

h
f�41 + (1� f)�42

i
+

15360c3
h
f�61 + (1� f)�62

io
: (6.18)

With the additional term the calibration �t yields

�1 = 0:06� 0:09: (6.19)

�1 being a small number and consistent with zero within 1� uncertainty indicates that our choice

of D = �Q+ � is suÆcient in describing the relation between the dilution and Q�nal.

6.3.7 No-jet Events

One question arises when considering events with no jet and events with Q�nal = 0: do they have

the same dilution? For an unbiased sample, naturally both would have a dilution of zero. In case

of asymmetric tagging, we believe both types are subject to the same bias, i.e., D = �. Just as

there is no need to distinguish dilutions of jets with di�erent number of tracks provided they have

the same Q�nal value, there is no need to single out the case where the number of tracks is zero.
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To check and verify this argument, a �t with the two types of events having di�erent dilutions is

conducted. For events with no jets found, a new parameter Dnotag is introduced into the �t. The

beauty conservation expression is adjusted accordingly to

�� = �
n
(2c1 � 6c3)

h
f�21 + (1� f)�22

i
+ 96c3

h
f�41 + (1� f)�42

io
+

�0
(1� �0)

Dnotag (6.20)

The resulting dilution parameters are � = 1:29 � 0:38 and Dnotag = 0:031 � 0:047, both are

consistent with the �t used in this analysis.

6.4 Tags Revisited

6.4.1 Neutral Tags in b-jets vs. non-b-jets

A direct piece of evidence that a neutral tag does distinguish b(�b)-jets from non-b(�b) jets is the

di�erence in its distributions in the two categories. For this purpose, the b content of a jet in the

Monte Carlo must be known. There are two types of tracks in the jet|the ones that originated

from the opposite-side b quark, i.e., the b-tracks that the jet-charge algorithm targeted; and the

rest, i.e., the noise tracks. Whether a track is a b-track or a noise track is known in the Monte

Carlo since track parent information is available. Figure 6.5 shows a histogram of the percentage

of the target (opposite-side-b) tracks in the jet (the dotted line); as a comparison, the percentage

of tracks from the same-side-b is also plotted (the solid line)|the low percentage is due to the

fact that these tracks are e�ectively disquali�ed during the clustering process. From Fig. 6.5, it

is reasonable to categorize the jets with the opposite-side-b percentage � 0:6 as b(�b)-jets, and jets
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with the opposite-side-b percentage � 0:4 as non-b(�b)-jets.

With b-jets and non-b-jets de�ned, the neutral tags are ready for display in these two categories.

In Fig. 6.6, four pieces of di�erent neutral information are shown, i.e. the neutral tags Qjd, Q��

and Qjp, and the jet pT .

Clearly the neutral tags have di�erent distributions between b-jets and non-b-jets.

6.4.2 Tags in Monte Carlo vs. data

As presented in [22] the combining algorithm that maximizes the overall �D2 is optimized (or

trained) with the Monte Carlo sample. Naturally some degree of resemblance between the Monte

Carlo sample and the data is required to retain the algorithm's behavior in the data. A slight

mismatch should not introduce a systematic uncertainty since the true tagging power in data is

determined by the calibration procedure. Nonetheless, comparing the tags between Monte Carlo

and data ensures that the calibration relation is justi�ed. That is, a linear dilution vs. Q�nal

(the Monte Carlo predicted dilution) relation is acceptable if the Monte Carlo resembles the data.

Veri�cations of this calibration relation are discussed in sections 6.3.6 and 6.7.3. Figure 6.7 shows

the tags in the Monte Carlo vs. in the calibration sample. The degree of their resemblance gives

con�dence in our method.

6.4.3 Q�nal sensitivity to samples with di�erent �� characteristics

There have been concerns that the PYTHIA/QQ Monte Carlo simulation does not yield the correct

azimuthal distributions of tracks. Such concern leads to questions on whether Q�nal behavior in

the Monte Carlo resembles that in the data. Figure 6.7 con�rms that the tags do behave the same

76



in Monte Carlo and the data, yet it is worthwhile to know that Q�nal is not drastically sensitive

to sample selections. For such an investigation, a sample with di�erent azimuthal characteristics

is in order. Such a di�erent sample can be easily produced. In the original sample, each event is

assigned a weight 2 [0; 1]. A random number generator is used to decide if an event is going to

be discarded. This will e�ectively produce a sample with di�erent characteristics. The weight is

de�ned as w = ��=�, where �� is the azimuthal angle between the b-�b quarks.

With two samples of di�erent azimuthal characteristics, two di�erent sets of dilution matrices

(functions) are constructed. Then a third sample is produced to have the same characteristics as one

of the previous two samples. By using both sets to calculate the Q�nal, for each event in this sample,

there are two Q�nal's produced|one using the correct set of dilution functions, and the other using

the incorrect set. Figure 6.8 shows the comparison of the two Q�nal's. A linear relation between the

two is evident in the plot, which can be correctly handled by the linear D(Q) calibration process.

6.5 Measuring sin 2�

The CP asymmetry parameter sin 2� is measured in CDF run 1 B0= �B0 ! J= KS events and

B0= �B0 !  (2S)KS events. Since these two decay modes have the same CP property, they can be

combined into a single sample. The di�erence in the error-scale of their normalized mass spectra is

recognized (� (2S)).
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6.5.1 B0= �B0
! J= KS Event Selection

For B0= �B0 ! J= KS , the same selection criteria as in [23] are used. We reiterate the selection

criteria here:

� CTC covariance matrix scale factor = 2.0

� Material scale factor = 1.00

� SVX alignment:

{ Run 1A: 39101

{ Run 1B: 51110

� muon matching cuts (CMP/CMX and CMU/CMP/CMX muons not allowed)

{ CMU: �2x < 9, �2z < 12

{ CMP: �2x < 9

{ CMX: �2x < 9

� SVX/CTC track selection:

{ muon: use CTC-only �t if any of the following is true:

� Prob(�2(SVX)=hit) < 1%

� less than 3 SVX hits

{ pion: use CTC-only track �t if any of the following is true:

� Prob(�2(SVX)=hit) < 1%
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� less than 3 SVX hits

� CTVMFT 2-track (�+��) vertex-constrained �t:

{ j(m�� �mJ= )=���j < 5

� CTVMFT 2-track (�+��) vertex-constrained �t:

{ j(m�� �mK0
S
)=���j < 5

{ Prob(�2) > 0:1%

{ We originally allow the tracks from the K0
S to be SVX tracks. If the �tted vertex has a

radius greater than 4.5 cm, then we use the CTC �t for both tracks.

{ We accept mixed K0
S track pairs (i.e. one SVX track and one CTC track).

{ Lxy=�Lxy > 5

� CTVMFT 4-track �t: muon pair is vertex and J= -mass constrained; pion pair is vertex and

K0
S mass constrained; K0

S is required to point to the dimuon vertex and the B is required to

point to the primary vertex:

{ j(m���� �mB0)=�j < 20

{ pT (B) > 4:5GeV=c

{ pT (K
0
S) > 700MeV=c

{ Prob(�2) > 0:01% (Standard 3-D �2 returned from CTVMFT.)

We collected 201 SVX and 193 CTC signal events, and 1619 SVX and 2185 CTC background events.

Figure 6.9 shows the normalized mass distribution of the sample.
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6.5.2 B0= �B0
!  (2S)KS Event Selection

For B0= �B0 !  (2S)KS , there are two categories of events:  (2S) ! �+�� and  (2S) !

�+���+��, both with K0
S ! �+��. We only list the selection criteria that are di�erent from

B0= �B0 ! J= KS :

�  (2S)! �+��

{ j(m�� �m (2S))=���j < 5:

�  (2S)! J= �+�� and subsequently J= ! �+��:

{ CTVMFT 4-track �t to  (2S) (�+���+��): Prob(�2) > 0:1%;

{ CTVMFT 6-track �t to B.

We collected 18 SVX and 35 CTC signal events, and 195 SVX and 372 CTC background events.

Fig. 6.10 shows the  (2S) events.

6.5.3 Calculate Q�nal

Q�nal is calculated for each event the same way as in the B� ! J= K� calibration.

6.5.4 Fit for sin 2�

A log-likelihood method is designed to simultaneously �t multiple parameters of the samples in-

volved. sin 2� is one of the parameters. For a detailed discussion of the likelihood function, one

should refer to [23]. The likelihood function consists of contributions of each event's probability and

constraints on the parameters. The probability of an event has three components|signal, prompt
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background and long-lived background probabilities. Each component in turn, is the product of its

probabilities of lifetime, mass and tagging-eÆciency. This tagging-eÆciency is really the combined

eÆciency of the three tags. The procedure to combine un-correlated tags based on their dilutions

and eÆciencies is based on the procedure used in the previous measurement [23]:

1. Initialize: set n = 1, D = 0, and " = 1

2. Update ": set " = ""n(1 +DDn)

3. Update D: set D = (D +Dn)=(1 +DDn)

4. Increment: set n = n+ 1 and go to step 2 if n � number of tags

5. Terminate: D and " now have their �nal values

Now that the Q�nal tag is a continuous tag, whose dilution and eÆciency are continuous functions

of Q�nal, the above steps are still valid. We simply need to replace its " and D with "(Q�nal) and

D(Q�nal).

Now we can focus on our newly-improved opposite-side jet-tag. The same form of eÆciency

functions are used for the B0= �B0 ! J= KS and the B0= �B0 !  (2S)KS samples as in B� !

J= K� , that is, the double-Gaussian with fractions of asymmetries and the Æ-function. Events

of di�erent categories, i.e. SVX or CTC, signal or background, all have the same widths of the

Gaussian components, but the relative weights of the Gaussians di�er among categories.

The D vs. Q�nal relation from the calibration sample is supplied as a constraint to the sin 2�

�t. Unlike the background in the calibration �t, where the charge of X in B ! J= X may have

residual correlations to Q�nal, here background dilutions are zero because K0
S is charge symmetric.
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The same-side tag and the soft-lepton tag are unchanged. The greedy feature of the soft-lepton tag

is turned on|for an event in which both SLT and Q�nal tags exist, only SLT tag is used [23] due to

its large dilution. The reason for using only one tag (SLT) when both are present in the event is the

possible correlation between the two since they are both opposite-side tags. This is a conservative

step. The free parameters are listed in Table 6.3.

The parameters are returned via a simultaneous �t with all tags using all events. The �t result

is listed in Table 6.4. The log-likelihood as a function of sin 2� is shown in Fig. 6.11. The �t is

illustrated in Fig. 6.13.

Figure 6.12 shows the log-likelihood as a function of sin 2� when only Q�nal tag is used in the

�t. It has a well-determined minimum.

A summary of a variety of sin 2� �ts are shown in Table 6.5.

A simultaneous �t to both sin 2� and �mB0 with the latter not constrained to the world average

yields sin 2� = 1:06+0:39
�0:37

and �mB0 = 0:66�0:12ps�1. The �mB0 result agrees with the PDG value

at the level of � 1:6�.
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Calibration Fit Using B± → J/ψ K±

Log-likelihood fit (dot line):
slope = 1.277 ± 0.380

slope = 0.99 ± 0.42
offset = -0.07 ± 0.04

χ2 fit (dash line):

Qfinal

D
ilu

tio
n

Figure 6.4: Dilution vs. Q�nal in B
� ! J= K� sample.
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Opposite-side-b and Same-side-b Track Percentages

Percentage

opposite-side

same-side

Figure 6.5: Percentages of tracks from opposite-side b and same-side b. The jet clustering algorithm

has removed much of the same-side tracks, resulting in their low percentage in the jet.
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b vs. non-b jets

QjdQjd Q∆φQ∆φ

QjpQjp jet p Tjet p T

Figure 6.6: Solid: b-jet; Dash: non-b jet. Plots show that the neutral variables di�erentiate b jets

from non-b jets.
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Tags in Data vs. Monte Carlo

QjetQjet QjdQjd

Q∆φQ∆φ QKQK

Jet ProbabilityJet Probability nusednused

Figure 6.7: The dash line shows the tag distribution in the Monte Carlo. The points with error bars

show the tag distribution in the B� ! J= K� data. In the nused tag plot, a small disagreement

can be seen. The algorithm is veri�ed to be not sensitive to this di�erence.
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Figure 6.8: Q�nal's calculated using two sets of dilution matrices are plotted as 2D histogram. The

diagonal line is y = x. The Q�nal calculated using the proper dilution matrices have slightly higher

amplitudes. A linear relation is retained between the two Q�nal's, i.e., we can still use the linear

D(Q) calibration relation.
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(M-5.279)/σM

409 ± 39
signal events

Figure 6.9: The normalized mass of B0= �B0 ! J= KS .
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CDF Preliminary

ψ(2S) → µµ

37.39 ± 12.38

ψ(2S) → µµππ

24.61 ± 8.45

SVX ψ(2S)

24.98 ± 7.58

CTC ψ(2S)

34.73 ± 12.75

All ψ(2S)

60.36 ± 18.54

(M-MB)/σM

Figure 6.10: B0= �B0 !  (2S)KS mass.
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Figure 6.11: The negative log-likelihood function near the sin 2� minimum.
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Figure 6.12: The negative log-likelihood function near the sin 2� minimum. Only the Q�nal tag is

used in the �t.
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Figure 6.13: The true asymmetry (sin 2� sin�mdt) as a function of the lifetime for B
0= �B0 ! J= KS

and B0= �B0 !  (2S)KS events. The data points are sideband-subtracted. The non-SVX events are

shown on the right indicating a time-integrated measurement of sin 2�. Courtesy of Kevin Pitts,

UIUC.
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Table 6.3: Free parameters in mass-time-tag �t for sin 2� with B0= �B0 ! J= KS and B0= �B0 !

 (2S)KS (part 1 of 4)

parameter symbol description

1 mscale Sm B-mass error scale

2 mslopep �P
m mass-slope of the prompt background

3 mslopel �L
m mass-slope of the long-lived background

4 tscale SSVXt SVX lifetime error scale

5 bklife �SVX+ mean lifetime of long-lived SVX background

6 sin2beta sin 2� asymmetry due to CP violation

7 nsig NSVX
S number of SVX signal events

8 nbck NSVX
B number of SVX background events

9 nlfrac F SVX
L long-lived fraction of SVX background

10 tneg �SVX� � SVX background lifetime

11 nfrac F SVX
� � lifetime frac. of long-lived SVX background

12 ap ASSTSVX
P asymmetry of prompt SSTSVX background

13 al ASSTSVX
L asymmetry of long-lived SSTSVX background

14 epsp �SSTSVXP tagging e�. for prompt SSTSVX background

15 epsl �SSTSVXL tagging e�. for long-lived SSTSVX background

16 apctc ASSTCTC
P asymmetry of prompt SSTCTC background

17 alctc ASSTCTC
L asymmetry of long-lived SSTCTC background
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Table 6.3: Additional free parameters in mass-time-tag �t for sin 2� with B0= �B0 ! J= KS and

B0= �B0 !  (2S)KS (part 2 of 4)

parameter symbol description

18 epspctc �SSTCTCP tagging e�. for prompt SSTCTC background

19 epslctc �SSTCTCL tagging e�. for long-lived SSTCTC background

20 apsel ASLT
P asymmetry of prompt SLT background

21 alsel ASLT
L asymmetry of long-lived SLT background

22 epspsel �SLTP tagging e�. for prompt SLT background

23 epslsel �SLTL tagging e�. for long-lived SLT background

24 tscale2 SCTCt CTC lifetime error scale

25 bklife2 �CTC+ mean lifetime of long-lived CTC background

26 tneg2 �CTC� � CTC background lifetime

27 nlfrac2 FCTC
L long-lived fraction of CTC background

28 nfrac2 FCTC
� � lifetime frac. of long-lived CTC background

29 d0sstp DSSTSVX
+ SSTSVX + dilution

30 d0sstn DSSTSVX
� SSTSVX � dilution

31 d0selp DSLT
+ SLT + dilution

32 d0seln DSLT
� SLT � dilution

33 d0ctcp DSSTCTC
+ SSTCTC + dilution

34 d0ctcn DSSTCTC
� SSTCTC � dilution

35 epssstp �SSTSVX+ SSTSVX + tag eÆciency

36 epssstn �SSTSVX� SSTSVX � tag eÆciency
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Table 6.3: Additional free parameters in mass-time-tag �t for sin 2� with B0= �B0 ! J= KS and

B0= �B0 !  (2S)KS (part 3 of 4)

parameter symbol description

37 epsselp �SLT+ SLT + tag eÆciency

38 epsseln �SLT� SLT � tag eÆciency

39 epsctcp �SSTCTC+ SSTCTC + tag eÆciency

40 epsctcn �SSTCTC� SSTCTC � tag eÆciency

41 nsigctc NCTC
S number of CTC signal events

42 nbckctc NCTC
B number of CTC background events

43 b0life �B0 mean B0 lifetime

44 deltamb0 �mB0 B0- �B0 mixing frequency

45 nppk N+
OST no. J= K+ constraining opposite-side tags

46 nmpk N�

OST no. J= K� constraining opposite-side tags

47 empkslt �SLT
0

� J= K� SLT � tag eÆciency

48 bklifep �SVX+0 2nd + SVX background lifetime

49 nfracp F SVX
+0 2nd + SVX background fraction

50 mscalec SCTCm CTC B-mass error scale

51 mslopepc �PCTC
m CTC mass-slope of the prompt background

52 mslopelc �LCTC
m CTC mass-slope of the long-lived background

53 nppksst N+
SST no. J= K+ constraining SST

54 nmpksst N�

SST no. J= K� constraining SST

55 emls �
SST0

SVX

� J= K� SSTSVX � tag eÆciency

56 dmls D
SST0

SVX

� J= K� SSTSVX � tag dilution

57 emlc �
SST0

CTC

� J= K� SSTCTC � tag eÆciency

58 dmlc D
SST0

CTC

� J= K� SSTCTC � tag dilution

94



Table 6.3: Additional free parameters in mass-time-tag �t for sin 2� with B0= �B0 ! J= KS and

B0= �B0 !  (2S)KS (part 4 of 4)

parameter symbol description

59 dslope � signal coeÆcient of Q�nal in dilution func.

60 gwidth1 �1 width of wide Gaussian component of eÆciency func.

61 gwidth2 �2 width of narrow Gaussian component of eÆciency func.

62 esjetf fS frac. of wide Gaussian in SVX signal Q�nal distribution

63 epjetf fP frac. of wide Gaussian in SVX prompt bg Q�nal distribution

64 eljetf fL frac. of wide Gaussian in SVX long-lived bg Q�nal distribution

65 effs �SVX0S jet-clustering eÆciency for SVX signal

66 effp �SVX0P jet-clustering eÆciency for SVX prompt bg

67 effl �SVX0L jet-clustering eÆciency for SVX long-lived bg

68 esjetfc fCTCS frac. of wide Gaussian in CTC signal Q�nal distribution

69 epjetfc fCTCP frac. of wide Gaussian in CTC prompt bg Q�nal distribution

70 eljetfc fCTCL frac. of wide Gaussian in CTC long-lived bg Q�nal distribution

71 effsc �CTC0S jet-clustering eÆciency for CTC signal

72 effpc �CTC0P jet-clustering eÆciency for CTC prompt bg

73 efflc �CTC0L jet-clustering eÆciency for CTC long-lived bg

74 chebpar1 c1 coe�. of �rst Chebyshev Polynomial in eÆciency func.

75 chebpar2 c3 coe�. of third Chebyshev Polynomial in eÆciency func.

76 mspsip � (2S) multiplier for B0= �B0
!  (2S)KS mass error scales w.r.t. B0= �B0

! J= KS

95



Table 6.4: sin 2� �t result with B0= �B0 ! J= KS and B0= �B0 !  (2S)KS (part 1 of 4)

parameter symbol value parabolic error

1 mscale Sm 1:388 0:107

2 mslopep �P
m 0:011 0:002

3 mslopel �L
m 0:003 0:006

4 tscale SSVXt 1:024 0:026

5 bklife �SVX+ 1:109 0:082

6 sin2beta sin 2� 0:943 0:378

7 nsig NSVX
S 221:01 18:683

8 nbck NSVX
B 1812:0 44:044

9 nlfrac F SVX
L 0:197 0:015

10 tneg �SVX� 0:760 0:143

11 nfrac F SVX
� 0:147 0:030

12 ap ASSTSVX
P 0:019 0:035

13 al ASSTSVX
L 0:077 0:077

14 epsp �SSTSVXP 0:669 0:013

15 epsl �SSTSVXL 0:797 0:029

16 apctc ASSTCTC
P 0:013 0:032

17 alctc ASSTCTC
L 0:018 0:063
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Table 6.4: sin 2� �t result with B0= �B0 ! J= KS and B0= �B0 !  (2S)KS (part 2 of 4)

parameter symbol value parabolic error

18 epspctc �SSTCTCP 0:756 0:012

19 epslctc �SSTCTCL 0:854 0:021

20 apsel ASLT
P 0:002 0:095

21 alsel ASLT
L �0:290 0:144

22 epspsel �SLTP 0:048 0:004

23 epslsel �SLTL 0:086 0:013

24 tscale2 SCTCt 1:692 0:047

25 bklife2 �CTC+ 4:095 0:262

26 tneg2 �CTC� 4:342 0:375

27 nlfrac2 FCTC
L 0:250 0:017

28 nfrac2 FCTC
� 0:354 0:028

29 d0sstp DSSTSVX
+ 0:190 0:045

30 d0sstn DSSTSVX
� 0:158 0:043

31 d0selp DSLT
+ 0:688 0:188

32 d0seln DSLT
� 0:431 0:200

33 d0ctcp DSSTCTC
+ 0:190 0:051

34 d0ctcn DSSTCTC
� 0:179 0:049

35 epssstp �SSTSVX+ 0:360 0:020

36 epssstn �SSTSVX� 0:349 0:020

37 epsselp �SLT+ 0:034 0:009

38 epsseln �SLT� 0:035 0:009

39 epsctcp �SSTCTC+ 0:403 0:022

40 epsctcn �SSTCTC� 0:390 0:021
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Table 6.4: sin 2� �t result with B0= �B0 ! J= KS and B0= �B0 !  (2S)KS (part 3 of 4)

parameter symbol value parabolic error

41 nsigctc NCTC
S 233:33 28:184

42 nbckctc NCTC
B 2561:7 55:876

43 b0life �B0 1:530 0:038

44 deltamb0 �mB0 0:467 0:018

45 nppk N+
OST 544:71 31:341

46 nmpk N�

OST 456:31 30:058

47 empkslt �SLT
0

� 0:034 0:005

48 bklifep �SVX+0 0:100 constant

49 nfracp F SVX
+0 0:000 constant

50 mscalec SCTCm 1:667 0:255

51 mslopepc �PCTC
m 0:008 0:002

52 mslopelc �LCTC
m 0:010 0:005

53 nppksst N+
SST 294:65 22:996

54 nmpksst N�

SST 359:09 25:807

55 emls �
SST0

SVX

� 0:300 0:012

56 dmls D
SST0

SVX

� 0:171 0:085

57 emlc �
SST0

CTC

� 0:324 0:012

58 dmlc D
SST0

CTC

� 0:197 0:078
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Table 6.4: sin 2� �t result with B0= �B0 ! J= KS and B0= �B0 !  (2S)KS (part 4 of 4)

parameter symbol value parabolic error

59 dslope � 1:330 0:365

60 gwidth1 �1 0:150 0:004

61 gwidth2 �2 0:086 0:009

62 esjetf fS 1:000 constant

63 epjetf fP 0:846 0:091

64 eljetf fL 1:000 constant

65 effs �SVX0S 0:587 0:041

66 effp �SVX0P 0:572 0:014

67 effl �SVX0L 0:620 0:036

68 esjetfc fCTCS 1:000 constant

69 epjetfc fCTCP 0:658 0:098

70 eljetfc fCTCL 0:445 0:137

71 effsc �CTC0S 0:427 0:053

72 effpc �CTC0P 0:562 0:014

73 efflc �CTC0L 0:699 0:028

74 chebpar1 c1 0:157 0:038

75 chebpar2 c3 �0:041 0:018

76 mspsip � (2S) 1:675 0:377
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Table 6.5: Fit sin 2� results

data tag(s) sin 2� + error � error

B0= �B0 ! J= KS all 0.94 0.39 0.37

and SST 2.25 0.81 0.73

B0= �B0 !  (2S)KS SLT 0.31 0.57 0.72

Q�nal 0.57 0.85 0.76

B0= �B0 ! J= KS all 0.92 0.37 0.38

SST 2.03 0.84 0.77

SLT 0.52 0.61 0.75

Q�nal 0.57 0.88 0.79
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6.6 The Goodness-of-�t

The goodness of the sin 2� �t should indicate the level of agreement between the theoretical event

distribution and the one experimentally observed. The statistics section of Particle Data Book

[27] gives a formula for evaluating the goodness-of-�t for Poisson-distributed events in a counting

experiment. The complete sample of events is binned and for each bin the counts are compared

between prediction and observation.

6.6.1 Event binning in 5 dimensions

The log-likelihood function has 5 dimensions|SST, SLT, Q�nal, B normalized mass, and B lifetime,

that is, each event's probability is the product of the �ve component probabilities. This 5-D space

is binned into 3 � 3 � 5 � 5 � 5 bins, in the above order. Each dimension is binned between its

lower and upper limits. The SST and SLT naturally have �, 0 and + three bins. The Q�nal tag

ranges 2 [�0:5; 0:5]; the normalized B mass ranges 2 [�20; 20]; the B lifetime ranges 2 [�10; 10]

ps. For convenience, in each dimension the central bin is indexed as 0. For each bin, the observed

number of events is simply counted; the predicted number of events is the sum of all events' p.d.f.

integrated in that bin. Table 6.6 shows the comparison for leading bins.
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Table 6.6: Event Distribution Comparison (part 1 of 2)

Bin Index Observation Prediction $ Expectation variance

SST SLT Q c� m

1 0 0 0 0 239 252.124 0.695 1.001 2.003

-1 0 0 0 0 258 242.188 1.011 1.001 2.003

1 0 0 0 2 211 208.517 0.029 1.001 2.003

1 0 0 0 1 163 200.351 7.441 1.001 2.003

-1 0 0 0 2 186 200.106 1.019 1.001 2.003

-1 0 0 0 1 184 192.228 0.357 1.001 2.004

0 0 0 0 0 208 177.733 4.884 1.001 2.004

1 0 0 0 -1 168 174.618 0.254 1.001 2.004

-1 0 0 0 -1 149 167.399 2.101 1.001 2.004

1 0 0 0 -2 179 157.051 2.934 1.001 2.004

0 0 0 0 2 176 152.410 3.476 1.001 2.004

-1 0 0 0 -2 137 150.450 1.240 1.001 2.004

0 0 0 0 1 156 145.444 0.748 1.001 2.005

0 0 0 0 -1 133 125.845 0.399 1.001 2.005

0 0 0 0 -2 121 113.211 0.524 1.001 2.006
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Table 6.6: Event Distribution Comparison (part 2 of 2)

Bin Index Observation Prediction $ Expectation variance

SST SLT Q c� m

1 0 0 1 0 30 49.041 8.595 1.003 2.014

-1 0 0 1 0 62 47.406 4.092 1.004 2.015

1 0 1 0 0 53 44.268 1.619 1.004 2.016

-1 0 1 0 0 51 42.349 1.658 1.004 2.017

1 0 1 0 2 41 35.789 0.725 1.005 2.020

1 0 -1 0 0 41 35.782 0.726 1.005 2.020

1 0 1 0 1 35 34.414 0.010 1.005 2.021

-1 0 -1 0 0 31 34.334 0.335 1.005 2.021

-1 0 1 0 2 39 34.228 0.636 1.005 2.021

-1 0 1 0 1 31 32.901 0.112 1.005 2.022

0 0 1 0 0 30 31.136 0.042 1.006 2.023

1 0 -1 0 2 22 30.088 2.400 1.006 2.024

1 0 1 0 -1 34 30.039 0.501 1.006 2.024

0 0 0 1 0 41 29.396 4.075 1.006 2.024

1 0 -1 0 1 42 28.842 5.254 1.006 2.025

-1 0 -1 0 2 31 28.777 0.167 1.006 2.025

-1 0 1 0 -1 29 28.687 0.003 1.006 2.025

-1 0 -1 0 1 26 27.581 0.092 1.006 2.026
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6.6.2 Goodness-of-�t $

If the number of events in each bin is Poisson distributed, the quantity of merit indicating the

goodness-of-�t for that bin is [27]

$i = [2(N th
i �Nobs

i ) + 2Nobs
i ln(Nobs

i =N th
i )]; (6.21)

where Nobs
i is the number of events observed in the ith bin and N th

i is the number of events predicted

by theory (p.d.f.). The expectation value and variance for $ can be calculated [28] and are listed

in Table 6.6.

Extra caution should be taken in interpreting the quantity $, since it is only a good approxi-

mation when N th is large [28]. In any case, the goodness-of-�t should be judged using a bin-by-bin

comparison between observed and predicted values. For an overall evaluation of the goodness-of-

�t, the summations should be used. We have $ =
P

$i = 485:09, with its expectation value

h$i = 448:78 and its variance �2$ = 735:14, corresponding to an uncertainty of
p
�$ = 27:11. This

is approximately an 1:3� di�erence.

6.7 Fits to Toy Monte Carlo Data

To ensure the �t returns a valid result, that is, parameters �tted are consistent with parameters

generated, Monte Carlo simulations of Run 1 B0= �B0 ! J= KS are generated and �tted. The main

focus is the sin 2� parameter, whose pull ((sin 2�Fit� sin 2�Gen)=�sin 2�) distribution is investigated

to check the behavior of the �tter.
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6.7.1 Generation of tags

Each sample is generated in such a way that it resembles the data in every aspect from the �tter's

standpoint [23], e.g. mass, lifetime and tags, signal, background, except that we assign an arbitrary

value to sin 2�. As an example, the generation of the Q�nal tag is shown here.

float penn_tag(float eps,float f, float s1, float s2,

float ch1, float ch3, int btyp,

double (*ru)(void), float slope){

float offset;

offset=(f*s1*s1+(1-f)*s2*s2)*(2*ch1-6*ch3);

offset=offset + (f*s1*s1*s1*s1+(1-f)*s2*s2*s2*s2)*96*ch3;

offset=-eps*slope*offset;

if( ru()<(1.0-eps)*(1.0-btyp*offset) ) return 0.0;

float q,prob;

do {

if( ru()<f ){

q = s1*gauss_gen(ru);

}else{

105



q = s2*gauss_gen(ru);

}

//Chebyshev odd terms for asymmetric tagging

const float ch = (2*q)*(ch1+ch3*(16*q*q-3));

if(ch>=0){

;

}else if(ru()+ch>0){

;

}else{

q=-q;

}

const float qmax = 0.5;

if (q > qmax) q = qmax;

if (q <-qmax) q = -qmax;

prob = 0.5*(1.0 - btyp*( slope*q + offset)) ;

} while ( ru() > prob );

return q;

}
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CDF Preliminary

σsin2 β

∆sin2 β/σsin2 β

Figure 6.14: Top: Distribution of �sin 2� from multiple �ts to Monte Carlo data generated with

sin 2� = 0:25. Bottom: Distribution of sin 2� pull (�t-sin 2�� 0:25)=�sin 2� and a Gaussian �t. The

mean pull is �0:002� 0:035, which is consistent with zero.

This function takes a b quark type as well as the tagging parameters (�0; f; �1; �2; c1; c3) and returns

a Q�nal value accordingly based on the underlying probability.

The number of events that are generated corresponds to the total number of B0= �B0 ! J= KS

and B0= �B0 !  (2S)KS events we collected. Figures 6.14-6.16 show the distribution of the 1�

MINOS errors and the pull of the sin 2� at di�erent generated values. The MINOS error is calculated

as the distance that sin 2� is allowed to move around its central value while the negative log-

likelihood value increases by 0.5. The widths of the pull distribution are all close to 1. A breakdown

of the pull distribution according to �sin 2�, low, medium and high �sin 2�, gives the widths of pull

distributions consistent with each other [23]. This indicates the MINOS errors are correct estimates

of the true error.
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CDF Preliminary

σsin2 β

∆sin2 β/σsin2 β

Figure 6.15: Top: Distribution of �sin 2� from multiple �ts to Monte Carlo data generated with

sin 2� = 0:8. Bottom: Distribution of sin 2� pull (�t-sin 2� � 0:8)=�sin 2� and a Gaussian �t. The

mean pull is 0:041� 0:034.

6.7.2 Fitter Bias of sin 2�

Slight shifts from zero in the pull at large generated sin 2� values are observed in these toy Monte

Carlo studies. The shift on average moves sin 2� away from zero and is approximately linear to the

sin 2� value. Figure 6.17 shows the pattern and a linear �t. The bias only exists when there are

multiple tags in the �tter and they have di�erent opinions on the sin 2� values. There is no shift

when the �t is done with each tag alone. When using the Q�nal tag alone, the tagging parameter �

returned is very close to its generated (= constrained) value; when another tag is activated, its return

value 
uctuates further around the constrained value. The same happens to SVX-SST and CTC-

SST: individually either SVX or CTC returns its dilutions close to their generated values, but when
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CDF Preliminary

σsin2 β

∆sin2 β/σsin2 β

Figure 6.16: Top: Distribution of �sin 2� from multiple �ts to Monte Carlo data generated with

sin 2� = 1:0. Bottom: Distribution of sin 2� pull (�t-sin 2� � 1:0)=�sin 2� and a Gaussian �t. The

mean pull is 0:102� 0:027.

both are used, the dilutions 
uctuate more. This communication between tags is possible because

they are connected by the sin 2� parameter. This slight bias in the sin 2� result is con�rmed to be

associated with �ts that use multiple tags in a Monte Carlo study of a simpler scenario (Appendix

B), where the linear dependence of the pull on sin 2� is supported. Therefore we adjust the measured

sin 2� value to remove the bias.

In order to correct for the bias in the �tter, the dependence of the bias on the true sin 2� must

be known. This is achieved by �tting the bias vs. generated sin 2� value in the toy Monte Carlo

as shown in Fig. 6.17. For a generalized discussion, let the relation be pull = f(sin 2�). If sin 2�

is precisely measured, the bias would be determined by f(sin 2�). However, in reality sin 2� is

measured with uncertainties, which we can approximate with a Gaussian distribution centered at
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Figure 6.17: The average pull shift at di�erent generated sin 2� values. A linear �t is returns a

slope of 0:111� 0:016. If the shift were zero, the points would be aligned around y = 0.

sin 2� with a width of �sin 2�. Given this p.d.f. of the sin 2� the p.d.f. of the pull can be derived using

p(y) = p(x)dx=dy, where x will be replaced by sin 2� and y by the pull, and dx=dy is calculated

from the empirical function f . A linear �t to Fig. 6.17 gives pull = (0:111 � 0:016) sin 2�T, i.e.

dx=dy = 1=0:111 is a constant. Therefore the p.d.f. of the pull is the p.d.f. of sin 2� rescaled. That

is, the most probable pull value corresponds to the most probable sin 2� value, i.e., the measured

sin 2�.

From the pull de�nition

pull =
sin 2�M � sin 2�T

�Msin 2�
(6.22)

and its dependence on sin 2�T

pull = 0:111� sin 2�T (6.23)
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the adjustment should be

sin 2�T =
sin 2�M

1 + 0:111� �Msin 2�
; (6.24)

where the superscript \T" denotes \true" value, and \M" denotes \measured" values. It is conve-

nient to de�ne �P = 1 + 0:111� �Msin 2�.

It is straightforward to correct the �sin 2� caused by the bias in pull. Just remember, however,

there is one more piece to it| the linear function f 's own uncertainty. Since the two sources of

uncertainties are orthogonal, the total error is obtained through the quadratic sum of components,

�Tsin 2� = [(
�Msin 2�
�P

)2 + (
�f sin 2�

M�Msin 2�
�2P

)2]
1
2 : (6.25)

where �f = 0:016 is the uncertainty of the slope of the pull function. The second term in the above

expression is orders of magnitude smaller than the �rst term. A second approach using Neyman's

construction of con�dence interval gives the same result [30]. After correcting for the bias (a down

shift of 0.03), the �nal result becomes

sin 2� = 0:91
+0:37

�0:36 : (6.26)

6.7.3 Deviation from linear calibration relation

As mentioned in Section 6.3.6, where a non-linear addition to the D vs. Q�nal relation is shown to

be insigni�cant, it is instructive to investigate the e�ect of such addition from another angle, i.e.,

what if the additional term in D(Q) exists and we �t for sin 2� without (or pretending not) knowing

it? To explore the possibility that some degree of deviation from the linear relation of D vs Q�nal

exists in the calibration data, we generate in the toy Monte Carlo sample the alternative D vs. Q�nal

relation as in section 6.3.6, i.e., D = �Q + � + �1T3(2Q) with �1 = 0:1 to approximately simulate
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CDF Preliminary

σsin2 β

∆sin2 β/σsin2 β

Figure 6.18: Top: Distribution of �sin 2� from multiple �ts to Monte Carlo data generated with

sin 2� = 1:0 and the non-linear D(Q). Bottom: Distribution of sin 2� pull (�t-sin 2� � 1:0)=�sin 2�

and a Gaussian �t. The mean pull is �0:025� 0:034.

the pattern in the calibration relation (Fig. 6.4). The D(Q)'s are shown in Fig. 6.19. Then still

using the linear calibration relation without the additional term we �t to the generated samples.

The resulting sin 2� uncertainty and pull of � 1000 �ts are shown in Fig. 6.18 with generated

sin 2� = 1:0.

The amount of change in both sin 2� value and its error caused by the non-linear assumption is

not suÆcient to justify the existence of such a term.
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Figure 6.19: A non-linear calibration relation of D vs. Q�nal.
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Chapter 7

Conclusion

We have improved the opposite-side jet-charge tag by adding jet-related tags and a kaon dE=dx

tag. These tags are combined by a generic algorithm we developed. The improvement on the

tagging power �D2 is seen in the Monte Carlo sample as from (2:31 � 0:09)% to (3:22 � 0:10)%.

Even though this improvement is not shown in the data due to limited sample size, the Q�nal tag

returns a di�erent sin 2� = 0:57 from the jet-charge tag. Moreover, the Q�nal tag sin 2� value is

much closer to the �nal result than the jet-charge tag was. Because the log-likelihood function is

not parabolic far away from the minimum, the jet-charge tag could not contribute to reducing the

overall uncertainties of sin 2� as Q�nal tag does. We also increased the sample size by adding Run

1 B0= �B0 !  (2S)KS data to B0= �B0 ! J= KS data. The result is

sin 2� = 0:91
+0:37

�0:36 (7.1)

The errors returned by the �t include both the statistical error on sin 2� and the systematic error

from uncertainties of the tagging parameters. By �xing the dilution parameters to their constrained
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values in the �t, we obtain the statistical error of sin 2�, from which the systematic error can be

calculated. The result with errors separated is

sin 2� = 0:91� 0:32(stat)� 0:18(syst): (7.2)

The world average is shown in Fig. 7.1.

OPAL

ALEPH

CDF

BELLE

BABAR

Figure 7.1: The world average is calculated using sin 2� results from �ve experiments: OPAL,

ALEPH, BELLE, BABAR and CDF.

The tag-combining algorithm showed how both tagging and non-tagging information can be

combined to maximize �D2. This algorithm can be further generalized to include the soft-lepton

tag and the same-side tag in the future 
avor tagging e�ort. With the improved CDF Run 2 particle

identi�cation, the kaon tag will have a greater contribution in the frame of this algorithm.
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Appendix A

Combining Tags Does Not Reduce �D2

In 
avor tagging, the tagging power is expressed in �D2, where � is the probability the event is

tagged as Q, and D is de�ned through D = 2P � 1 where P is the probability that an event with

tag Q is a b quark. We want to prove that by combining two tags �D2 is no worse than the original

tags.

A.1 Background

For a set of N events and a given tagging variable with value Q, assume n events are b quark events,

�n events are �b quark events. The eÆciency of obtaining this tag value Q is given by

� =
n + �n

N
;

the probability of an event with tag Q being a b quark event is

P =
n

n + �n
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and the dilution of tag Q is

D =
n� �n

n+ �n
:

The power of this tag is described by �D2.

Question: By adding 
avor-neutral information to the existing tagger, can �D2 be improved?

A.2 Preparation

In the following text,
P

is the sum over i,
P 0 is the sum over i and j where i 6= j. xi is a set of

measured data.

Let

X
xi = n�x;

we have

n�x2 =
1

n
(
X

xi)
2

=
1

n
(
X

x2i +
X

0xixj)

� 1

n
(
X

x2i +
1

2

X
0(x2i + x2j))

where x2 + y2 � 2xy is used. But

X
0(x2i + x2j) =

X
0x2i +

X
0x2j

= 2
X

0x2i

= 2
X
i

X
j;j 6=i

x2i

= 2
X
i

(n� 1)x2i
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= 2(n� 1)
X
i

x2i ;

insert this relation into the previous equation, we have

n�x2 � 1

n
(
X

x2i + (n� 1)
X

x2i )

the r.h.s. is simply
P
x2i . Hence,

n�x2 �X
x2i :

A.3 Flavor-neutral Information

Suppose some additional information leads to the n + �n tagged events being divided into smaller

groups, i.e., each with eÆciency �i and dilution Di,

X
�i = �;

X
ni = n;

X
�ni = �n;

Di =
ni � �ni
ni + �ni

:

De�ne the relation

X
�iDi = � �D

we have, from the previous discussion,

X
�iD

2
i � � �D2:
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but

�D =
1

�

X
�iDi

=
1

n+ �n

X
(ni + �ni)

ni � �ni
ni + �ni

=
1

n+ �n

X
(ni � �ni)

=
n� �n

n+ �n

= D:

Thus we proved by adding new information to a tag, �D2 cannot get worse.
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Appendix B

A Model for Bias in sin 2� Toy MC

This appendix, authored by Joel Heinrich of University of Pennsylvania, is included in this thesis

because it is not yet publicly accessible.

B.1 Introduction

During the course of running the toy MC to check the sin 2� analysis we uncovered a bias that

occurs when we generate large sin 2�. However, in general, this bias occurs only when we have two

or more independent sets of dilutions 
oating in the �t. For example, the likelihood function has

separate dilutions for SST-SVX and SST-CTC-only. If we only produce SVX events in the toy MC,

the [sin 2�(�t)� sin 2�(generated)]=�sin 2�, or pull, distribution is well centered on zero. The same

is true when we �t CTC-only toy MC samples (see lines 1 and 2 in the table below).

The bias does happen when we �t to a combination of SVX and CTC-only type events|the

mean pull is then 0:106� 0:031 (line 3), which is 3� above zero. This e�ect is repeatable; it is not a
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statistical 
uctuation. It seems to happen whenever we simulate multiple tags, the SST-SVX and

SST-CTC-only case is only one example.

In lines 1 and 2 of the table, the dilutions, although 
oating, always stay very close to their

constrained values. This is because the dilutions appear in the likelihood as D sin 2�, and sin 2�

is unknown. In multiple tag �ts (like line 3), the �t's �nal values for the dilutions vary from �t to

�t. This happens because the data for one tag, together with the dilution constraint for that tag,

determine sin 2�. Using that sin 2�, the �tter can get a better estimate of second tag's dilution,

based on the second tag's dilution constraint and the estimated sin 2� (If you know sin 2� you can

calculate the dilution of a tagging algorithm from J= K0
S data.) The result is that each tag pulls

on the other tag's dilutions.

Same Side Tag 1000 Fit Toy MC Runs

All cases generated sin 2� = 1:0

Mean pull is from �t to Gaussian

Description Mean Pull

1 SVX �0:001� 0:033

2 CTC-only 0:026� 0:031

3 SVX & CTC-only 0:106� 0:031

4 SVX & CTC-only, all dilutions �xed �0:020� 0:033

5 SVX & CTC-only, only SVX dilutions 
oat 0:036� 0:033

6 SVX & CTC-only, only CTC-only dilutions 
oat �0:016� 0:032

In line 4, we do not permit the dilutions for the SVX and CTC-only tags to 
oat: they are �xed

rigidly to their constrained values (the constrained values of the dilutions are also the generated
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values). In this case the shift (or bias) in the pull vanishes. The same is true if we only �x one of

the tag's dilutions, while letting the other's dilutions 
oat (lines 5 and 6).

The bias in the pull (in the 2-tag case) is � 0:1 when we generate sin 2� = 1:0, consistent

with zero when we generate sin 2� = 0:0, and � �0:1 when we generate sin 2� = �1:0. Having

exhausted other explanations, we are faced with the possibility that the bias observed in the toy

MC is intrinsic to the form of the likelihood itself. This would not be totally unexpected, but in

the past we have not seen clear evidence of this. The next section will show that such biases do

exist in a very simple model of the sin 2� �t.

B.2 Model sin 2� Fit

The purpose of the model sin 2� �t is to preserve the essential features of the real �t, while sim-

plifying as much a possible. This allows us to see more clearly what is going on, and enables us to

run many more �ts than is possible in the case of the toy MC. We run 1000 toy MC �ts in about

24 hours; the model �t runs at a rate of � 106 �ts per minute.

The following expression gives the negative log likelihood for the model �t:

1

2

 
D1 sin 2� � A1

�A1

!2
+
1

2

 
D2 sin 2� � A2

�A2

!2
+
1

2

 
D1 � C1

�C1

!2
+
1

2

 
D2 � C2

�C2

!2

The case we are addressing has two mutually exclusive tags with dilutions D1 and D2 (similar to

the SST-SVX and SST-CTC-only case). The dilutions are constrained to the values C1 � �C1
and

C2�C2
, which in the real �t would come from calibration data. The two values A1 and A2 represent

the J= K0
S data. That is, A1 � �A1

is the best estimate of D1 sin 2� using the data. For the model

�ts we will generate A1 and A2 directly. The model �t di�ers from the real �t mainly in the shape
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of the log likelihood: the real �t's log likelihood as a function of D sin 2� is not parabolic in general.

It will be seen, however, that even this simple model will lead to a bias in the pull distribution.

One could minimize the above expression for sin 2�, D1, and D2 simultaneously, get the 3 � 3

error matrix, etc., but, because we are in fact interested only in sin 2� it is convenient to eliminate

D1 and D2 �rst. For a �xed value of sin 2� we can trivially minimize the log likelihood above with

respect to D1 and D2, giving:

D1 =
A1 sin 2� �

2
C1
+ C1�

2
A1

sin2 2� �2C1
+ �2A1

D2 =
A2 sin 2� �

2
C2

+ C2�
2
A2

sin2 2� �2C2
+ �2A2

Substituting these equations back into the negative log likelihood given above yields

`(sin 2�) =
1

2

"
(C1 sin 2� � A1)

2

sin2 2� �2C1
+ �2A1

+
(C2 sin 2� � A2)

2

sin2 2� �2C2
+ �2A2

#

Thus, instead of minimizing a function of many variables, as in the real �t, the model �t reduces to

a numerical minimization of a function of only one variable. In spite of the apparently simple form

assumed initially, the model `(sin 2�) is quite non-parabolic unless �C1
� �A1

and �C2
� �A2

. For

example, as sin 2� ! �1, `(sin 2�)! 1
2
[(C1=�C1

)2 + (C2=�C2
)2] (naively one might have expected

`(sin 2�)!1), and `(sin 2�) will in general have local maxima as well as minima. For reference,

the derivative `0(sin 2�) is given by

(C1 sin 2� � A1)(A1 sin 2� �
2
C1
+ C1�

2
A1
)

(sin2 2� �2C1
+ �2A1

)2
+
(C2 sin 2� � A2)(A2 sin 2� �

2
C2

+ C2�
2
A2
)

(sin2 2� �2C2
+ �2A2

)2

and the expression for `00(sin 2�), while straightforward to calculate, is too big to conveniently

reproduce here.

The following plot shows a very pathological case of `(sin 2�) that has two local minima and

two local maxima:
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`(sin 2�) vs sin 2�.

A1 = �0:18� 0:10, A2 = 0:1425� 0:0400

C1 = 0:18� 0:10, C2 = 0:19� 0:15

What allows this case to be so pathological is that �C1
and �C2

are rather large. Were MINUIT

used to �nd the minimum in this example, it might fail to locate the lowest minimum, and would

not be able to successfully calculate MINOS errors.

A nicely behaved (and more typical) case is shown next:
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`(sin 2�) vs sin 2�.

A1 = 0:135� 0:200, A2 = 0:285� 0:230

C1 = 0:18� 0:04, C2 = 0:19� 0:05

The only complaint one might encounter in this example is a \non-positive de�nite error matrix"

message if MINUIT strayed too far from the minimum.

125



B.3 Model sin 2� Fit Results

To obtain the pull distribution for �ts to the model, one needs to generate cases corresponding

to a �xed value of sin 2�, obtain the minimum of `(sin 2�) and the MINOS errors, and plot the

resulting pulls. To generate A1 and A2 (which replace the J= K0
S data) is trivial: A1 is generated

as a Gaussian centered on C1 sin 2� with RMS equal to �A2
, for example. The following table shows

the mean of the pull distribution for a series of runs with di�erent values of generated sin 2�.

sin 2� C1 �C1
C2 �C2

�A1
�A2

mean pull

(generated)

1:00 0:18 0:04 0:19 0:05 0:20 0:23 0:027� 0:001

0:75 0:18 0:04 0:19 0:05 0:20 0:23 0:021� 0:001

0:50 0:18 0:04 0:19 0:05 0:20 0:23 0:014� 0:001

0:25 0:18 0:04 0:19 0:05 0:20 0:23 0:007� 0:001

0:00 0:18 0:04 0:19 0:05 0:20 0:23 0:000� 0:001

�0:25 0:18 0:04 0:19 0:05 0:20 0:23 �0:007� 0:001

�0:50 0:18 0:04 0:19 0:05 0:20 0:23 �0:014� 0:001

�0:75 0:18 0:04 0:19 0:05 0:20 0:23 �0:021� 0:001

�1:00 0:18 0:04 0:19 0:05 0:20 0:23 �0:028� 0:001

Model Fit: 106 Fit Runs

The size of the bias in the pull distribution for the model �ts is linearly proportional to the

generated sin 2�. Because of the high statistics, one can be more certain of one's conclusions here|

the 1000 �t toy MC runs can leave some doubt about whether a bias is present or not in any
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particular case, due to statistical 
uctuations.

The pull distribution and a Gaussian �t for the generated sin 2� = 1:0 case are shown in the

following �gure.

With � 106 �ts in the plot, one can easily see that the distribution is nearly Gaussian, but with a

small discontinuity at zero pull where the switch is made from negative to positive MINOS errors.
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B.4 Conclusions

Qualitatively, the model �ts show a bias that behaves similarly to the toy MC �ts. In the case of

the model �ts, the source of this shift in the pull distribution can only be due to the non-parabolic

shape of the negative log likelihood functions. This suggests that we should expect a similar bias

in the toy MC, and in the �t to the real data.
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