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We present new measurements of the branching ratios and decay distributions

for the decays D+ ! K
�0
`+�`. We observe an asymmetry in the K

�0
angular decay

distribution that we interpret as evidence for a previously unobserved s-wave K��+

amplitude that interferes with the K
�0
. These measurements are taken from the data

collected by the Fermilab charm photoproduction experiment E831(FOCUS) during

1996-97.

iii



To God, with whom \all things are possible."

iv



Acknowledgments

This research is made possible by the inspiration and tireless dedication of all those

who worked on the FOCUS experiment, an international collaborative e�ort of over

a hundred scientists and technicians from seventeen di�erent institutions. I could

not mention all the people who have contributed vitally to this experiment, and this

analysis in particular, in such a brief space. But I would like to give particular

recognition to those individuals with whom I've worked most closely.

First and foremost, I thank my advisor Jim Wiss, who has spent hours each week

teaching me about all aspects of the experiment and guiding this analysis steadily

toward completion. Jim has worked hard to unite his small group into a cohesive

team. He has earned great respect in the collaboration for this and his outstanding

analytical insights.

Amir Rahimi, a fellow graduate student, has been a vital team member in our

group. He has contributed in countless ways to the experiment. He and I would often

bounce ideas around, and learn from each other. Our recent post-docs, Rob Gardner,

Erik Gottschalk, and Doris Kim, have all played important roles in this analysis too.

They have helped with my education and with the tremendous task of �ne-tuning

the FOCUS reconstruction and Monte Carlo to the level required for high-precision

measurements such as this. Fred Cogswell, our machinist, was instrumental to the

design and construction of the inner muon arrays.

I would also like to acknowledge those directly responsible for my ability and

opportunity to conduct this exciting research near the high-energy frontier. My wife

Heather has been a great support to me by providing encouragement, companionship,

v



patience, and faith. My parents and parents-in-law have also been entirely supportive

and enthusiastic during this venture. I would also like to thank my undergraduate

professors for helping to prepare me for this work, and in particular Dr. David Cornell,

whose great enthusiasm and high standards easily rub o� on his students.

This research is funded in part by the U.S. Department of Energy under contract

DOE F4650.2

vi



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Semileptonic Form Factors . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Previous Experimental Data . . . . . . . . . . . . . . . . . . . . . . . 6

2 Semileptonic Decay Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 Heuristic Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 The complete decay width expression . . . . . . . . . . . . . . . . . . 13

3 The E831 Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1 Beamline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Photon Beam . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 FOCUS Detector Overview . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Silicon Strip Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4.1 Target Silicon Detector . . . . . . . . . . . . . . . . . . . . . . 23
3.4.2 Microstrip Detector . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 The Analysis Magnets . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.6 Multiwire Proportional Chambers (MWPC's) . . . . . . . . . . . . . 26
3.7 The Straw Tube System . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.8 �Cerenkov System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.9 Calorimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.9.1 Outer Electromagnetic Calorimeter (OE) . . . . . . . . . . . . 30
3.9.2 Inner Electromagnetic Calorimeter (IE) . . . . . . . . . . . . . 30
3.9.3 Hadron Calorimeter (HC) . . . . . . . . . . . . . . . . . . . . 30

3.10 Muon Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.11 Inner Muon Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.12 Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.12.1 First Level Trigger . . . . . . . . . . . . . . . . . . . . . . . . 36
3.12.2 Second Level Trigger . . . . . . . . . . . . . . . . . . . . . . . 38

4 Analysis Techniques in FOCUS . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1 MWPC Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.1 Microstrip Track Reconstruction . . . . . . . . . . . . . . . . . 40
4.1.2 PWC Track Reconstruction . . . . . . . . . . . . . . . . . . . 41
4.1.3 Linking of SSD and PWC tracks . . . . . . . . . . . . . . . . 42
4.1.4 Momentum Determination . . . . . . . . . . . . . . . . . . . . 43

vii



4.2 Vertex Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.1 DVNUCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.2 DVFREE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.3 Vertex Isolation Cuts . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 �Cerenkov Identi�cation Algorithm . . . . . . . . . . . . . . . . . . . . 47
4.4 Data Reconstruction and Skims . . . . . . . . . . . . . . . . . . . . . 52

4.4.1 Pass One . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4.2 Skim One . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4.3 Skim Two . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5 Performance of the Inner Muon System . . . . . . . . . . . . . . . . . 54
4.5.1 EÆciency Studies . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.5.2 Analysis EÆciency . . . . . . . . . . . . . . . . . . . . . . . . 58
4.5.3 Muon misidenti�cation studies . . . . . . . . . . . . . . . . . . 59
4.5.4 Tighter muon cuts . . . . . . . . . . . . . . . . . . . . . . . . 64
4.5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.6 Neutrino Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.7 Studying Neutrino Closure with D0 ! K3� . . . . . . . . . . . . . . 72

4.7.1 The D0 ! K3� pion blanking method . . . . . . . . . . . . . 73
4.7.2 Resolution Studies . . . . . . . . . . . . . . . . . . . . . . . . 73
4.7.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.8 MCFOCUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.8.1 Particle Dictionary . . . . . . . . . . . . . . . . . . . . . . . . 79
4.8.2 Event Generation . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 D+ ! K
�0
`+�`=K�� relative branching ratio . . . . . . . . . . . . . . . . . 87

5.1 The SLEPNRM skim . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.2 Analysis Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.3 Analysis of the line shape . . . . . . . . . . . . . . . . . . . . . . . . 92
5.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4.1 The ETD method . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.5 Results and comparison to previously published data . . . . . . . . . 101
5.6 Systematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6 Fitting the Form Factor Ratios . . . . . . . . . . . . . . . . . . . . . . . . 108
6.1 Kinematic Binning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.2 Las Vegas Reweighting Technique . . . . . . . . . . . . . . . . . . . . 109
6.3 Phase Space Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . 111
6.4 Assessing the Goodness of Fits . . . . . . . . . . . . . . . . . . . . . . 111
6.5 Fitting Simulated Data . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7 Analysis of the D+ ! K
�0
`+�` . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.1 D+ ! K
�0
�+�� Signal . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.1.1 Wrong Sign . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.1.2 Skim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

viii



7.1.3 Baseline Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.2 The Form Factor Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.2.1 Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.2.2 Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.3 Mass Terms, r3, and pole masses . . . . . . . . . . . . . . . . . . . . 126
7.4 Fit Variants, Split Samples . . . . . . . . . . . . . . . . . . . . . . . . 128

7.5 Some Known Backgrounds to D+ ! K
�0
�+�� . . . . . . . . . . . . . 133

7.5.1 D�+ ! D0�+ ! (K��+��)�
+ . . . . . . . . . . . . . . . . . . 134

7.5.2 D+ ! K��+�+ . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.6 Cut Response and Event Properties . . . . . . . . . . . . . . . . . . . 138

7.7 D+ ! K
0
1(1270)�

+�� . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.7.1 Simulated Signal . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.7.2 Search for D0 ! K�

1 (1270)�
+�� ! (K��+��)�+�� . . . . . . 149

7.8 Deconvolution of the cos �v distribution . . . . . . . . . . . . . . . . . 152
7.8.1 Deconvolution Method . . . . . . . . . . . . . . . . . . . . . . 153
7.8.2 Deconvolution Results . . . . . . . . . . . . . . . . . . . . . . 157
7.8.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8 A model for the cos �v asymmetry . . . . . . . . . . . . . . . . . . . . . . . 160
8.1 The toy model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
8.2 Mass dependence of the cos �v asymmetry in the toy model . . . . . . 161
8.3 Comparing the asymmetries in the toy model to the data . . . . . . . 163
8.4 Distortions to the line shape . . . . . . . . . . . . . . . . . . . . . . . 166
8.5 Could the s-wave amplitude be resonant? . . . . . . . . . . . . . . . . 168
8.6 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 170
8.7 Comparison with Other Experiments . . . . . . . . . . . . . . . . . . 172

8.7.1 E687 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
8.7.2 E791 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
8.7.3 Beatrice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

9 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
9.1 The Usual Suspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
9.2 New Physics (?) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

A Weighted Histograms and Averages . . . . . . . . . . . . . . . . . . . . . . 189
A.1 Weighted Histogram . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
A.2 How much does weight variation in
ate errors? . . . . . . . . . . . . . 190
A.3 Errors on a Weighted Average . . . . . . . . . . . . . . . . . . . . . . 191

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

ix



List of Figures

1.1 quark-level diagram of the semileptonic decay D+ ! K
�0
�+�� . . . . 4

1.2 Previous measurements and predictions of r2 and rv from D+ ! K
�0
`+�` 7

1.3 Previous measurements and predictions of r2 and rv from D+
s ! � `+�` 8

1.4 � mass for D+
s ! � �+�� candidates . . . . . . . . . . . . . . . . . . 9

2.1 De�nition of the decay angles �v, �`, and � . . . . . . . . . . . . . . . 11

2.2 Angular momentum conservation in W+ ! �+� and K
�0 ! K��+

decays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Wideband photon beamline schematic . . . . . . . . . . . . . . . . . 20
3.2 Z distribution for the primary and secondary vertices . . . . . . . . . 22
3.3 FOCUS spectrometer . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Target region and SSD con�guration . . . . . . . . . . . . . . . . . . 25
3.5 PWC orientation looking downstream . . . . . . . . . . . . . . . . . . 28
3.6 HC schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.7 Inner Muon array schematics . . . . . . . . . . . . . . . . . . . . . . 33
3.8 Pulses from muons in the inner muon detectors . . . . . . . . . . . . 34
3.9 IMH timing eÆciency plateau . . . . . . . . . . . . . . . . . . . . . . 35
3.10 H � V and OH schematic . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 Schematic representation of isolation cuts ISOP and ISO2 . . . . . . 46
4.2 Invariant mass plot for three golden mode decays . . . . . . . . . . . 49
4.3 The log likelihood di�erence W� �WK distribution . . . . . . . . . . 50
4.4 Illustration of the e�ectiveness of �Cerenkov cuts . . . . . . . . . . . . 52
4.5 Muon hit multiplicity in a given run . . . . . . . . . . . . . . . . . . . 56
4.6 EÆciency of MH1X versus run number . . . . . . . . . . . . . . . . . 57
4.7 Ratio of data and Monte Carlo yields versus muon con�dence level . . 58
4.8 Muon misidenti�cation of Golden mode secondaries . . . . . . . . . . 60
4.9 Golden mode sample and sidebands for misidenti�cation studies . . . 61
4.10 Misidenti�cation of golden mode secondaries versus momenta . . . . . 62
4.11 Average number of struck inner muon counters per event versus the

number of tracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.12 Golden mode misidenti�cation signal for tight and loose muon selection 65
4.13 Muon misidenti�cation versus momentum. . . . . . . . . . . . . . . . 66
4.14 A cartoon illustrating the method used to estimate the neutrino mo-

mentum from the D+ line-of-
ight . . . . . . . . . . . . . . . . . . . . 68

x



4.15 The primary vertex cone. . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.16 Signal and sidebands used for golden mode resolution \blanking" studies 74
4.17 Resolution plots for cos �v . . . . . . . . . . . . . . . . . . . . . . . . 74
4.18 Resolution plots for 4 kinematic variables . . . . . . . . . . . . . . . . 76
4.19 Degradation in resolution when one \blanks" the hardest pion. . . . . 77
4.20 Flowcharts for MCFOCUS c�c mode and the ideal for speci�ed decays. 81
4.21 Abstract 
owchart for methods (1)-(3). . . . . . . . . . . . . . . . . . 83

5.1 Two D+ ! K
�0
�+��signals . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 D+ ! K
�0
�+��signal to noise for various cut sets . . . . . . . . . . . 91

5.3 Two �ts to the K�0line shape. . . . . . . . . . . . . . . . . . . . . . . 93
5.4 �2 pro�les for three K�0line shape parameters. . . . . . . . . . . . . . 94
5.5 Trigger eÆciency for two HC models. . . . . . . . . . . . . . . . . . . 98
5.6 Comparison of average properties of signal to MC models . . . . . . . 100
5.7 K��+ mass spectra for 4 ETD bins . . . . . . . . . . . . . . . . . . . 100
5.8 Branching ratio for 32 cut sets compared to previous data . . . . . . 103
5.9 Cut variant systematics for �(D+ ! �K��+�)=�(D+ ! K��+�+) . . 104
5.10 �(D+ ! �K��+�)=�(D+ ! K��+�+) for three di�erent ETD bin

averages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.11 Our measurements of �(D+ ! �K��+�)=�(D+ ! K��+�+) compared

to previous data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.1 Fits of simulated data . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.2 CL distribution of �ts . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.1 D+ ! K
�0
`+�` signal with baseline cuts . . . . . . . . . . . . . . . . 120

7.2 Bin populations and predictions for baseline �t . . . . . . . . . . . . . 121
7.3 �2 contours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.4 Projections by integrating over bins . . . . . . . . . . . . . . . . . . . 123
7.5 Detailed conditional projections . . . . . . . . . . . . . . . . . . . . . 124
7.6 Integrated Q2distribution with and without mass terms . . . . . . . . 126
7.7 rv and r2 for �t variants . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.8 hcos �vi for �t variants . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.9 rv and r2 for split samples . . . . . . . . . . . . . . . . . . . . . . . . 132
7.10 hcos �vi for split samples . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.11 Evidence of the background from D�+ ! D0�+ ! (K��+��) �

+ in data134
7.12 E�ect of M(D�+)�M(D0) cut on M(K�) . . . . . . . . . . . . . . . 135
7.13 Properties of the D�+ ! D0�+ ! (K��+��)�

+ background in the
K�0 mass region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.14 Evidence of D+ ! K��+�+ background . . . . . . . . . . . . . . . . 137
7.15 Well-behaved event properties distributions . . . . . . . . . . . . . . . 138
7.16 hcos �vi as a function of well-behaved event properties . . . . . . . . . 139
7.17 Problematic event properties . . . . . . . . . . . . . . . . . . . . . . . 142
7.18 K� mass distributions and cos �v asymmetry variation . . . . . . . . 143

7.19 Some properties of simulated D+ ! K
0
1(1270)�

+�� background . . . 145

xi



7.20 Predicted and simulated K� mass distribution for K0
1(1270) . . . . . 147

7.21 Predicted relative branching ratio for K0
1 (1270) . . . . . . . . . . . . 147

7.22 Predicted hcos �vi for D+ ! K
0
1(1270)�

+�� . . . . . . . . . . . . . . . 148
7.23 Normalizing �ts for D0 ! K�

1 (1270)�
+�� ! (K��+��)�+�� search . 149

7.24 D0 ! K�
1 (1270)�

+�� ! (K��+��)�+�� �tted signals in data and
Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.25 Expected cos �v projection. . . . . . . . . . . . . . . . . . . . . . . . 152
7.26 Reconstructed cos �v in bins of actual cos �v . . . . . . . . . . . . . . 155
7.27 Monte Carlo tests of the deconvolution method . . . . . . . . . . . . 156
7.28 Tight and loose cut selections for D+ ! K

�0
�+�� . . . . . . . . . . . 157

7.29 Deconvolution of two data selections . . . . . . . . . . . . . . . . . . 158

8.1 The interference term in the toy model . . . . . . . . . . . . . . . . . 162
8.2 Toy model and observed cos �v projections for sin2 �� > 0:75 . . . . . 164
8.3 Toy model and observed cos �v projections for sin2 �� < 0:75 . . . . . 165
8.4 Toy model predictions for the K��+ invariant mass . . . . . . . . . . 166
8.5 The K��+ invariant mass for s-wave MC events passing analysis cuts 167
8.6 The interference term in the toy model for several models . . . . . . . 169
8.7 E687 cos �vresidual asymmetry . . . . . . . . . . . . . . . . . . . . . 174
8.8 E791 cos �v distributions . . . . . . . . . . . . . . . . . . . . . . . . . 175
8.9 FOCUS cos �v distributions . . . . . . . . . . . . . . . . . . . . . . . 176
8.10 BEATRICE cos �v distribution . . . . . . . . . . . . . . . . . . . . . 178

9.1 Experimental data on rv and r2 . . . . . . . . . . . . . . . . . . . . . 183
9.2 �(D+ ! �K��+�)=�(D+ ! K��+�+) measurements . . . . . . . . . . 185

xii



List of Tables

3.1 SSD speci�cations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 PWC speci�cations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 �Cerenkov counter speci�cations . . . . . . . . . . . . . . . . . . . . . 29

4.1 Super-stream Descriptions . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Monte Carlo event generation test results . . . . . . . . . . . . . . . . 86

5.1 Additional cuts designed to remove backgrounds . . . . . . . . . . . . 90
5.2 EÆciency of various cut cuts relative to baseline cuts. . . . . . . . . . 92
5.3 K� line shape �t parameters . . . . . . . . . . . . . . . . . . . . . . . 93
5.4 Initial �(D+ ! �K��+�)=�(D+ ! K��+�+) measurements . . . . . . 96
5.5 Additional cuts designed to remove backgrounds . . . . . . . . . . . . 101
5.6 Error sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.1 Baseline cuts for D+ ! K
�0
�+�� . . . . . . . . . . . . . . . . . . . . 119

7.2 Form factor measurement results for baseline �t . . . . . . . . . . . . 121
7.3 Fit variants for D+ ! K

�0
�+��. . . . . . . . . . . . . . . . . . . . . . 128

7.4 Split samples for D+ ! K
�0
�+��. . . . . . . . . . . . . . . . . . . . . 131

7.5 Cuts used in the search for D0 ! K�
1 (1270)�

+�� ! (K��+��)�+�� . 150

xiii



xiv



Chapter 1

Introduction

The �eld of charm physics is currently open to a lot of interesting high-precision

measurements and studies of rare decay processes.

FOCUS, or experiment E831 at Fermilab, collected data during the 1996-1997

�xed target run at Fermilab. The design goal was to be able to fully reconstruct a

million charm meson decays. In this way and others, the experiment exceeded expec-

tations. FOCUS is an upgrade from E687, which ran from 1987 through 1991. One of

the more important upgrades for this analysis was a new inner muon hodoscope con-

structed of about 500 scintillators. I participated in the construction, commissioning

and software for this array.

Other FOCUS upgrades included a new outer muon detector, four planes of target

microstrip detectors, a new hadrometer, and various upgrades and improvements to

existing detectors. The trigger and data acquisition systems were some of the more

important upgrades.

This thesis is concerned with studying the semileptonic decay mechanism of ground

state charm mesons. The ground state charm mesons are states that contain a charm

quark and a light (�u; �d; �s) anti-quark to form a system with zero spin. Semileptonic

decays have a �nal state involving a daughter hadron, a charged lepton and a neutrino.

In this work the daughter hadron will be a spin one (vector) meson. The motivation

for such studies is to provide incisive tests of Lattice Gauge theory and quark models.
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There are still many important questions in �eld of semileptonic physics which can

be resolved using the FOCUS sample. It is important to test the models used to

predict semileptonic form factors since they provide the principal means to compute

the hadronic matrix elements required to extract the CKM matrix elements and CP

violation in the strange, charm, and beauty sectors.

The goal of this thesis is a study of Cabibbo-allowed vector-`-� semileptonic decays

for charmed mesons such as D+ ! K
�0
�+�� and D+

s ! � �+��. Our original

intention was to measure the form factor ratios rv, r2, and r3 in the decays D+ !
K
�0
`+�` and D

+
s ! � `+�`. After exhaustive e�orts we found that we were unable

to get acceptable quality �ts to the D+ ! K
�0
�+�� form factors. In particular, we

observed a statistically signi�cant asymmetry in the K��+ angular distribution that

cannot be accommodated in the model discussed in Chapter 2. This asymmetry could

be a result of interference between the K�0 and a slowly varying s-wave amplitude.

The possibility of interfering amplitudes in D+ ! K��+�+� is rather unexpected. In

all previous experimental analyses of the decay D+ ! K��+`+�` it has been assumed

that the decay was completely dominated by D+ ! K
�0
`+�`. Indeed there is little if

any evidence in the K��+ invariant mass spectrum in D+ ! K��+�+� decays for

anything other than a single Breit-Wigner resonance with the known parameters of the

K
�0
. This is true in this analysis (See Chapter 5) and in previous analyses.[3][10][17].

Chapter 2 discusses the relevant decay intensity functions. Chapter 3 describes

the experimental apparatus and the history of the FOCUS data run, with an em-

phasis on those detectors particularly important to this analysis. Chapter 4 explains

a variety of methods used to reconstruct the FOCUS data and to �nd clean charm

semileptonic decay candidates. It also describes some important aspects of the FO-

CUS simulation program. Chapter 5 presents an analysis of the relative branching

ratio between the D+ ! K
�0
�+�� and D+ ! K��+�+ �nal state. The stability of

this branching ratio over a wide range of analysis cuts helps to validate the simulation

as well as demonstrating the e�ectiveness of our methods for suppressing backgrounds

and \counting" the D+ ! K
�0
�+�� �nal state. Chapter 6 will present the technique
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used to measure the form factor ratios and assess the goodness of the �t. Chapter

7 describes the form factor �t for D+ ! K
�0
�+��, identi�es problems with the �t,

and then narrows down the possible causes for the problem. Chapter 8 presents a toy

model for a broad s-wave amplitude, and shows how the interference of this with the

K�0 produces the anomalous e�ects we observe in data. Final results are summarized

in the last chapter.

The study of semileptonic decay is particularly interesting with the FOCUS data

set, partly because we are able to reconstruct many more events with D+ ! K
�0
`+�`

than any previous experiment. In 1998, E791 at Fermilab provided the best previous

measurement of these form factor ratios. FOCUS provides roughly a factor of fourteen

more events than E791 used, and a factor of nearly thirty more events than E687. This

would, in principle, allow us to measure the form factor ratios with unprecedented

accuracy, and also provide a better way of comparing the theoretical decay intensity

distribution with observation.

1.1 Semileptonic Form Factors

Form factor measurements provide an incisive test of QCD-based calculational tech-

niques. Semileptonic decays are more tractable since there are no �nal-state inter-

actions between the leptons and the hadrons that would otherwise complicate the

situation. An additional simpli�cation is due to the relative \heaviness" of the charm

quark on the the QCD scale.

All the QCD e�ects for semileptonic decays are contained in Q2-dependent form

factors which describe how the hadronic weak current between the parent and daugh-

ter is constructed from their four-momenta. Figure 1.1 shows how a semileptonic

decay can be visualized. The coupling of the virtual W+ to the charm quark as it

transforms to a strange quark is a well-understood application of the charged weak

current interaction involving the CKM matrix element Vcs and a V-A current inter-

action. The probability for the resultant s�u to materialize as a K�0 as a function
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Figure 1.1: quark-level diagram of the semileptonic decay D+ ! K
�0
�+��.

of momentum transfer (the squared invariant mass �� system in Figure 1.1) can be

computed from �rst principles using non-perturbative QCD methods such as Lattice

Gauge Theories or through the use of phenomenological quark model wave functions.

Lorentz invariance, when applied to the case of D0 ! K�`+� where the daughter

is a spinless particle, limits the weak current to a very simple form:

< DjJy�jP > = f+(Q
2) (P +D)� + f�(Q

2) (P �D)� (1.1)

Here D represents the parent charm meson's wavefunction and 4-momentum, and P

is the daughter pseudoscalar.

Only the f+(Q
2) form factor plays an important role in decay intensities since all

terms involving f�(Q
2) multiply the charged lepton mass which is very small. The

decay D+ ! K���+� is also a quasi-three body decay1. But the fact that the �K� is a

vector particle complicates the Lorentz structure of the weak current < D+jJW j �K� >.

Because of �K�0 spin, this current is described by three dominant Q2-dependent form

factors2 | two axial and one vector (A1(Q
2); A2(Q

2); V (Q2)).

1Studies of the K��+ mass distribution suggests that the four-body decay D+ ! K��+�+�

is strongly dominated by the quasi-three-body process D+ ! K���+�. By �tting the M (K��+)

versusM (K��+�+) for the detached events, E687[8] showed that less than 12% ofD+ ! K��+�+�

decays are other than K���+�.
2Experimentalists generally analyze their data assuming that the Q2 dependence of these form

factors are of the pole form with the D�+
s and D+

s1 poles.
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The three form factors control the helicity state of the virtual W+. This in turn

a�ects the decay angular distribution in the strong decay K�+ ! K��+, the weak

decay W+ ! �+�, and the angle (called \acoplanarity" ) between the two decay

planes. The fourth and �nal observable, Q2, is the squared mass of the ��. The

decay angles are de�ned more precisely in Chapter 2, and illustrated in Figure 2.1.

One can measure the ratio of the form factors by �tting the observed D+ !
K
�0
�+�� decay probability density, which is a function of these four kinematic ob-

servables. Traditionally one measures the ratios rv = V (Q2 = 0)=A1(Q
2 = 0) and

r2 = A2(Q
2 = 0)=A1(Q

2 = 0). Once the rv and r2 shape variables are determined, one

can measure A1(0) from the decay width since the overall decay intensity becomes

proportional to jA1(0)j2. The total decay width follows from the D+ lifetime and its

branching fraction into the D+ ! K
�0
�+�� �nal state. This branching fraction can

be evaluated using the analysis presented in Chapter 5.

In charm semileptonic decay, the weak link between experimental measurements

and theory is the need for experiments to assume a phenomenological Q2 dependence

to �t the data and compare to theory. We will describe this problem in detail below.

For charm semileptonic decays which represent heavy-to-light transitions, the pri-

mary theoretical tools have been Lattice Gauge Theory (LGT) and quark models.3

In LGT[21], form factors are evaluated as the expectation value of 3-point correlation

functions describing the parent, current, and daughter. These expectation values in-

volve evaluating integrals by summation over a four-dimensional space-time lattice of

size L and spacing a. Naively, computation times would scale as (L=a)4, so there is

a computational premium in keeping L as small as possible (but no smaller than the

extent of the hadron wave function � 1 fm), and a as large as possible (but smaller

than the daughter wavelength). To minimize computational time, calculations are

typically performed in the long wavelength limit where the daughter is essentially at

rest in the parent rest frame. This con�guration gives the largest possible Q2 to the

3In b to c decays, Heavy Quark E�ective Theory, provides considerable understanding of beauty

semileptonic decay physics.
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neutrino-lepton system. This is also true of Quark Model calculations which utilize

quark wavefunctions. As the daughter momentum increases and Q2 approaches Q2
min,

the form factor probes the tail of the wave function, which is the least-accurately-

known part.

Unfortunately, the observed decay intensity is peaked near the maximum daughter

momentum of Q2 ! Q2
min where theory has the most diÆculty predicting. In order

to bridge the gap between Q2
min where the data is measured and Q

2
max where the data

is predicted, most groups use the pole form ansatz given by Equation 1.2.

f(Q2) =
f(0)

1�Q2=m2
pole

(1.2)

Expectations are that mpole will be the lowest mass Qq resonance with the same spin-

parity as the hadronic weak current proportional to VQq. E687 and other groups have

made measurements of the pole mass parameter through �ts to the D0 ! K�`+�

decay intensity, and have obtain pole masses that are roughly consistent (within 2 �)

with the mass of the D�+
s which is the expected value. No attempts have been made

to measure the Q2 dependence of the D+ ! K
�0
`+�` form factors.

For the case of pseudoscalar-`+-�` decays, the current of Equation 1.1 gives the

di�erential width expression given by Equation 1.3.

d2�

dQ2
=
G2
F jVQqj2j~h(D)j3

24�3
fjf+(Q2)j2 +m2

` jf�(Q2)j2:::g (1.3)

where ~h(D) is the three momentum of the daughter hadron in the D rest frame. These

three powers of j~h(D)j (one from phase space and two from the squared amplitude

modulus), severely deplete the intensity near Q2
max.

1.2 Previous Experimental Data

Figure 1.2 compares measurements of the r2 and rv form factor ratios to those pre-

dicted by quark models and lattice gauge theories for the process D+ ! K
�0
`+�`.

In general, agreement is fairly good although error bars are large. Figure 1.3 com-

pares measurements of the r2 and rv form factor ratios for D+
s ! � `+�` to both
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s ! � `+�`. There is a
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Figure 1.4: � mass for D+
s ! � �+�� candidates. The plot on the left has cuts

which are about as loose as might be possible for a form factor measurement.
These are: DCL>1%, `=� > 5, Iso2ex<0.1, IMU only, minimum kaonicity>3,
the D ! K�K+�+ normalized mass is > 2� away from the true D+ and D+

s

masses, and �-misspl<2. For the plot on the right, additional cuts are applied:
DCL>10%, and CL� > 0:05
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Chapter 2

Semileptonic Decay Intensity

In this chapter we present the di�erential decay rate for charm mesons decaying into a

vector meson, a charged lepton, and its neutrino (Figure 1.1). Although this intensity

applies to any decay of the form D ! V `�, we will present it in terms of the speci�c

decay D+ ! K
�0
`+�. We begin by a simple heuristic treatment of the decay that

describes the polar angular dependence of the D+ ! K
�0
`+�` decay intensity. These

two polar angles �V and �` (see Figure 2.1) describe the decay of the K
�0

and the

virtual W+. We then follow this with an expression that frequently appears in the

literature for the full decay amplitude that is di�erential in all �ve kinematic variables.

This decay intensity can be factorized into phase space factors, a Breit-Wigner line

shape for the K
�0
and three types of terms that relate the decay angular dependence

to helicity basis form factors. The �rst of this series of terms describe the polar decay

angle dependences, the second describes the acoplanarity angle � between the decay

planes, and the third describe terms that vanish in the limit that the charged lepton

mass approaches zero.

2.1 Heuristic Treatment

Before summarizing the formal phenomenology of the semileptonic decay distribu-

tions, we give a simpli�ed, heuristic picture of the angular decay distribution which is
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Figure 2.1: De�nition of the decay angles �v, �`, and �

schematically illustrated in �gure 2.2. We wish to show that one expects considerable

anisotropy in the decay distribution due to simple consequences of the lefthanded

nature of the weak interaction and conservation of angular momentum. For de�ni-

tiveness, consider the case of the D+ decaying to K
�0
`+� in the m` ! 0 limit.

In this simple picture, the virtualW+ that orients both the �+� andK
�0 ! K��+

decays can exist in any of the three possible helicity states m = �1 ; 0 ; or + 1 with

a probability proportional to a width �m. The helicity states m = �1 correspond to

transverse W+'s where the W spin lies along or against its momentum vector (in the

D0 rest frame) (like the spin of a photon); the helicity state m = 0 corresponds to

the longitudinal W+. The W+ momentum vector relative the D+ will serve as the

spin quantization (polar) axis.

Angular momentum conservation applied in the K
�0
rest frame (see Figure 2.2a)

tells us that this decay amplitude is proportional to the Wigner D-matrix d10m (cos �v)

where �v is the angle of the kaon with respect to the polar axis in the K
�0

rest

frame. The fact that the kaon and pion are spinless implies that the W+ has zero

angular momentum along the K
�0
decay axis while simultaneously having an angular

11



Figure 2.2: (a) We are in the K
�0
frame. The polar axis is the momentum of

the W+ with respect to the D when viewed in this rest frame.(b) We are in
the W+ frame. The polar axis is the momentum of the W+ with respect to
the D when viewed in this rest frame.

momentum of m along the W+ spin quantization axis. The probability for the K
�0

to be in this spin state with respect to these two axes is just jd10m (cos �v)j2 We turn

next to the decay of the virtual W+. The polar axis is the spin quantization axis

for the W+. We now consider the spin state along the `+� decay axis. Since the �

must be left-handed while the �+ is overwhelmingly right-handed implies that the

W+ ! �+� must have a spin component of +1 with respect to the decay axis. The

virtual W+ decay amplitude is thus proportional to d11m (cos �`) where �` is the angle

of the �+ with respect to the spin quantization axis in the W rest frame (see Figure

2.2 b). We then expect:

d2�

d cos �v d cos ��
/

m=1X
m=�1

�m j d11m (cos ��) j2 jd10m (cos �v) j2 (2.1)

/ sin2 �v f(1 + cos ��)
2 �+ + (1� cos ��)

2 ��g+ 4 cos2 �v sin
2 �� �0

where we have averaged over the azimuthal angle between the �+� and K��+ decay

planes and ignored any possible Q2 dependance on the �m's. If all three �m's were

equal (not the case in reality!) there would be no net alignment e�ects and isotropic

decay distributions would result. The degree of cos �v anisotropy is directly related
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to the ratio of the longitudinal �` = �0 and transverse (�t = �+ + ��) widths:

d�

d cos �v
/ 1�

�
2
�`
�t
� 1

�
cos2 �v (2.2)

We note in this heuristic argument that, according to Equation 2.2, we can at most

have quadratic terms in cos �v. Equation 2.1 shows that the curvature in cos �v

depends heavily on sin2 ��, but there are no linear terms that would create a forward-

backward asymmetry in the decay angle �v. On the other hand, Equation 2.1b tells us

that if �+ 6= �� one expects (and observes) forward-backward asymmetry in cos ��.

We also anticipate a considerable dependence of the decay angles on Q2 since the

various \helicity" widths are Q2-dependant.

2.2 The complete decay width expression

From the Lorentz structure of the weak currents involved in D+ ! K
�0
`+�`, four

Q2-dependent form factors are required to fully specify the decay: V , A1, A2, and

A3. The form factors can only depend on the square of the virtual W+ mass or the

squared mass of the `+� system. We will call kinematic variable t � Q2 � M2(�+�)

We will assume that t dependence of the three axial and the vector form factors are

given by:

Ai(t) =
Ai(0)

1� t=M2
A

V (t) =
V (0)

1� t=M2
V

(2.3)

The pole parameters MV and MA are traditionally taken as the lowest masses of

bound state system c�s system with vector or axial vector quantum numbers. These

would be the D�+
s (MV ' 2:112 GeV=c2) and the D+

s1 (MA ' 2:536 GeV=c2).[2]

Given this (somewhat questionable) ansatz for the t dependence, the shape of the

di�erential decay width is fully speci�ed by 3 form factor ratios (taken at t = 0):

rv � V (0)=A1(0), r2 � A2(0)=A1(0), and r3 � A3(0)=A1(0). The total decay width

| proportional to the absolute branching fraction B(D+ ! K
�0
`+�`) divided by the

D+ lifetime | is then proportional to single constant jA1(0)j2.
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The vector and axial vector form factors are combined (with some rather ugly

kinematic factors) in a helicity basis given by Equation 2.4. The \K" appearing in

Equation 2.4 is the momentum of the K
�0
in the D+ rest frame.

H�(t) = (MD +MK�)A1(t)� 2
MDK

MD +MK�

V (t) (2.4)

H0(t) =
1

2MK�

p
t

"
(M2

D �M2
K� � t)(MD +MK�)A1(t)� 4

M2
DK

2

MD +MK�

A2(t)

#

Ht(t) =
MDK

MK�

p
t

"
(MD +MK�)A1(t)� (M2

D �M2
K� + t)

MD +MK�

A2(t) +
2t

MD +MK�

A3(t)

#

The squared moduli of the H� and H0 are essentially the helicity widths in our

heuristic expression (equation 2.1) that give the t-dependent probability that theW+

exists in each of its three possible spin states: (jH+j2 ; jH0j2 ; jH�j2) / (�+ ; �0 ; ��).

The in
uence of the Ht form factor disappears as the charged lepton mass approaches

zero and only contributes to what we will call \mass" terms. A term analogous to

Ht does not appear in our heuristic expressions since we assume that the leptons are

completely left handed | an assumption that is violated for V �A weak interactions

with a probability (1� (v=c))=2 / m2
` where v is the velocity of the lepton in the D+

rest frame.

Equation 2.5 gives an expression for the di�erential decay width that depends

on t and the 3 decay angles �v, �`, and � de�ned in Figure 2.1. To our knowledge,

the problem of D+ ! K
�0
`+�` has only been worked out in the limit of a stable

K
�0
. To account for �nite width of the K

�0
, it is traditional to \graft" on a Breit-

Wigner factor making a width expression that is di�erential in M2
K� as well | for a

�ve-fold di�erential width. We begin with the prefactors and overall structure of the

di�erential width.

d5�

dM2
K� dt d cos �v d cos �` d�

= G2
F jVcsj2

3

2(4�)5
MK�

M2
DMK�

(2.5)

MK��

(M2
K� �M2

K�)
2 +M2

K��
2
Kt

 
1� m2

`

t

!2

"
diagonal terms + cross terms +

m2
`

2t
(mass terms)

#
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As be�ts a weak process, the width is proportional to the square of the Fermi constant

GF and is proportional to the Cabibbo favored CKM coupling jVcsj2. We note a factor

of MK� in the denominator. We believe this is a remnant of writing our di�erential

as d�=dM2
K�, whereas the traditional Breit-Wigner is di�erential in mass rather than

squared mass: dM2
K�=MK� = 2dMK�. We also note a power of the K

�0
momentum

(K) and two powers of (1 � m2`=t). The factor K and one power of (1 � m2`=t)

represent phase space factors. The phase space factors need to be included since

equation 2.5 is an expression for the decay rate rather than the squared modulus

decay amplitude.1 We begin with the diagonal terms:

diagonal terms = sin2 �v
�
(1 + cos �`)

2 jH+(t)j2 + (1� cos �`)
2 jH�(t)j2

�
+ 4 cos2 �v sin

2 �` jH0(t)j2 (2.6)

The diagonal terms give the same (acoplanarity averaged) angular decay distributions

as those expected from simple angular momentum arguments of our heuristic form

| Equation 2.1 with jHj2 / �. The o�-diagonal terms give the dependence of the

decay width on the acoplanarity angle �.

cross terms = �2 sin2 �v sin2 �` cos 2� Re(H�
+H�)

� 4 sin �v cos �v sin �`(1 + cos �`) cos� Re(H�
+H0)

+ 4 sin �v cos �v sin �`(1� cos �`) cos� Re(H�
�H0) (2.7)

These \cross" terms are proportional to trig functions of � and disappear when av-

eraging over the acoplanarity angle. Finally, we include \mass" terms that have no

in
uence in the limit of zero mass charged leptons. We note from the form of Equation

2.5 the importance of the mass terms should be largest at low t. 2

1Because of this distinction, one must be careful to remove these factors when simulating these

decays using a phase space generator.
2We mention that this form for the mass terms agrees with Korner and Schuler, but di�ers

from that of Dr. Ray Culbertson | an alumnus of the E687 Illinois group. Ray had jM j2 =

::: +
m2

`

t
(mass terms), which is too much \mass terms" by a factor of two. Ray also had mistaken

one of the mass terms, 8 cos2 �vjHtj
2, for 8 cos2 �vjH0j

2 which he merged into the second term. The
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mass terms = 2 sin2 �v sin
2 �`(jH+j2 + jH�j2)

+ 8 cos2 �v cos
2 �`jH0j2

+ 4 sin2 �v sin
2 �` cos 2� Re(H+H

�
�)

+ 2 sin 2�v sin 2�` cos� Re(H+H
�
0 +H�H

�
0 )

+ 16 cos2 �v cos �` Re(HtH
�
0 )

+ 4 sin 2�v sin �` cos� Re(H+H
�
t +H�H

�
t )

+ 8 cos2 �vjHtj2 (2.8)

We have written these expressions for the general case of complex form factors. Our

understanding is that the form factors must all be relatively real to the extent that

D+ ! K
�0
`+�` exhibits negligible CP violation.

�rst mistake was important, but the second one doesn't make much di�erence (unless you're �tting

for r3).[3]
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Chapter 3

The E831 Apparatus

In this chapter, we review the E831 apparatus and beamline, concentrating on those

aspects which bear directly on the analysis presented in this thesis. The E831 ex-

periment studies the production of charmed particles by high energy photons with

wavelengths on the order of 1/500 the diameter of a proton. Photoproduction of-

fers signi�cant advantages in the study of charm physics over e+e� annihilation and

hadroproduction. Charm physics is the principal goal of our experiment, although

there are interesting things to learn about the photoproduction process itself which

tests perturbative QCD. Photoproduced charm is relatively clean with few parti-

cles accompanying the charm-anticharm pair compared to hadroproduction. This

ultimately allows a smaller data sample to reconstruct and study, because we can

construct a trigger that favors hadronic events, and the events themselves are less

complex. Unlike charm studies at e+e� annihilation, the charm particles are pro-

duced at ultra-relativistic velocities. This means that the charm decay products are

produced at very forward angles and our apparatus need only subtend the forward

100 miliradians. Compared to charm hadroproduction, a relatively large fraction of

the incident photon energy is given to the charm particles, so acceptance tends to be

greater. The high momentum of the charm particles allows us to e�ectively separate
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them from a copious background of non-charm events1 through their short but �nite

lifetime. The high momentum of the charm secondaries allows us to identify them

using relatively inexpensive conventional gas threshold �Cerenkov counters.

3.1 Beamline

The FOCUS beamline is unique in the world since it is high intensity, high energy,

and is relatively free from neutral hadron contaminants such as Ko
` 's and neutrons.2

The photon beam is classi�ed as a tertiary beam since it is the result of three stages.

In the �rst stage, 800 GeV protons at the rate of about 5 � 1012 per 40 second

spill impinge on a liquid deuterium target and produce hadronic secondaries. The

charged secondaries are swept out by magnets, leaving photons (which are decay

products of �0's and �'s) and other neutral hadrons. These photons then strike the

photon converter, a lead sheet 60% of a radiation length thick, and converted to e+e�

pairs. After being focused with quadrapole magnets, these electrons and positrons are

bent around a dump which absorbs the remaining neutral particles. Here the beam

momentum is selected by being passed through collimators. For most of the FOCUS

run, the beam momentum was chosen to be 250GeV=c � 15%. This is a relatively

wide momentum bite, hence the designation \Wide Band Photon Lab". On the

other side of the beam dump, the electron and positron beams are recombined, and

�nally encounter a lead foil \radiator", which is 27% of a radiation length thick. Here

bremsstrahlung photons are produced, and it is these that strike our experimental

target and hopefully produce charm. The recoiling electrons and positrons are swept

out by magnets and hit the RESH and POSH scintillator paddles, followed by a beam

dump.

1As a crude guide, about 1/500 photons create hadronic �nal states as opposed to e+e� pairs

and about 1% of the photohadronic cross section contains charmed particles.
2It is crucial to reduce hadronic contaminants, since their cross-section into hadronic �nal states

is approximately a hundred times larger than that of photons. These hadronic interactions would

create a much higher level of light hadronic backgrounds in the events.
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3.1.1 Photon Beam

In the �xed target mode, the proton beam is extracted into a switchyard and there it

is directed to three major areas designated as \Proton," \Neutrino", and \Meson."

These designations are for historical reasons, for the Tevatron protons are sent to all

three areas. The Proton area beam is split again into other beamlines, one of which

is Wideband Photon beamline. To create photons, the protons interact with a liquid

deuterium target. At this stage the goal is to maximize the number of hadronic

interactions producing �o's and �'s. The mean free path for �0 and � production

is given by the interaction length, while the mean free path for photon absorption

is given by the radiation length. The target material is chosen to maximize the

radiation-length-to-interaction-length ratio by maximizing the number of nucleons

relative to the number of protons:

�hadronic
�electromagnetic

/ number of protons and neutrons (A)

(number of protons (Z))2
(3.1)

The photons and other neutral hadrons impinge on a 60% radiation length lead

foil which creates e+e� pairs. Lead with a high absorption-length-to-radiation-length

ratio is a good choice for this foil (called a converter), since it creates a generous

number of pairs while minimizing the unwanted hadronic interactions of the neutral

hadron contaminants.

The converted e+e� pairs are transported around the large neutral dump shown

in Figure 2.3 using a beamline replete with magnets, collimators and beam tagging

components which will be discussed shortly. The primary purpose for the \double-

dog-leg" transport was to absorb neutral hadrons (such as neutrons, Ko
` 's and �o's)

before they could interact in our experimental target. Neutral hadrons could create

severe backgrounds to the photoproduction events that the experiment was designed

to study, since they have � 100� the interaction cross section with our nuclear target.

The collimators de�ne a central transport momentum for electrons and positrons

which ultimately speci�es the end point energy of the bremsstrahlung spectrum of our

photon beam. The transported beam has a nearly Gaussian momentum distribution
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with an RMS spread of 15% about the central value. For the bulk of the data

reported here, our central transport momentum (ie endpoint energy) was adjusted

to be � 250 GeV/c. The photons which interact with our experimental target are

produced as bremsstrahlung radiation from the secondary electrons and positrons as

they pass through the radiator. The radiator is a 27% radiation-length lead foil. The

bremsstrahlung photon spectrum is approximately of the form dN
=dE
 / 1=E
 up

to the endpoint energy of 250 GeV=c2, so the bulk of the bremsstrahlung photons are

soft. We designed triggers to select events from the upper end of the bremsstrahlung

spectrum where our acceptance is best and the cross section for photoproduced charm

particles is appreciable. Our typical triggered energy is � 180 GeV.

3.2 Target

The FOCUS experiment uses a segmented target con�guration. This increases the

number of charm decays occurring in air. Based on the experience from E687, cleaner

charm signals are obtained when the secondary vertices form outside the target.[15]

We believe this is because a major background to charm are events with multiple

interactions which can \fake" detached vertices. For example, a non-charm hadronic

photon interaction can produce a secondary which can undergo a subsequent inelastic

scattering within the target. The �nal state will have separated vertices just like a

charm event and thus can not be eliminated with a detachment cut. But it can be

eliminated by requiring that one vertex is in the gap between target segments.

The FOCUS segmented target was constructed from slabs of beryllium oxide

(BeO), totalling 15% of an interaction length. Having a low average Z, BeO has

a fairly large radiation-length-to-interaction-length ratio and a fairly high density.

The large radiation length minimizes multiple Coulomb scattering within the target,

as well as suppressing the production of e+e� pairs in the target. The relative high

density allows us to use thin target segments. Using thin segments increases the num-

ber of charm decays which take place in the air gaps between target segments. This
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is demonstrated in Figure 3.2. These \out-of-target" decays are especially clean.

Each target segment is 6:75mm thick in the beam direction and 25:4�25:4(mm)2

in area transverse to the beam. The targets are separated by 10mm. The bulk of

the data were taken with this target con�guration, though a di�erent con�guration

was used for the �rst couple months.

3.3 FOCUS Detector Overview

To reconstruct charged particles, FOCUS uses three general classes of detectors: those

which together resolve vertex and line-of-
ight information, those which measure

momentum and charge, and those which determine the rest mass through particle

identi�cation. To reconstruct neutral particles, various calorimeters are used.

FOCUS uses silicon strip detectors (SSD's) in order to resolve particle production

and decay vertices, and measure the particle line-of-
ight. The other major tracking

system in FOCUS is the proportional wire chambers (PWCs). The PWC's allow us

to measure the bend in particle trajectories through the two analysis magnets. By

linking a track found in the microstrips (having accurate trajectory information) with

a track found in the PWC system (having well-measured momentum and charge), we
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can reconstruct the 4-momentum of the particle. To determine the particle identity,

we use �Cerenkov detectors and muon detectors.

3.4 Silicon Strip Detectors

The SSD detectors provide a spatial resolution of roughly 7! 14�m (depending on

the plane). They are composed of separate readout strips which collect charge that

are freed when ionizing particles traverse through it. The thickness of the detector is

usually on the order of 300�m. For minimum-ionizing particles, average energy loss

in the silicon is about 39KeVc�2=100�m so that about 100 electron-ion pairs/�m

are created [16]. Therefore, about 30,000 ion pairs are created in the detector. This

implies both high eÆciency and a good signal-to-noise ratio to suppress Johnson noise.

Each silicon strip is pulse-height analyzed.

Figure 3.4 shows two silicon detector systems, the \SSD" or silicon microstip

system, and the \TSSD" or target microstrip system. The microstrip system is more

complete in terms of the number of stations and redundancy of views, and it is used

to �nd tracks. The target microstrip system is a later addition, and is used primarily

to re�ne the tracking information.

3.4.1 Target Silicon Detector

Four planes of silicon microstrips are installed in two stations of two planes (X and

Y) each, to help improve the vertex resolution.3 The components of the target silicon

consist of four planes of 25�-pitch 300�-thick planes of silicon microstrip detector.

Each silicon plane has 1024 channels, or about an inch of active area, which covers

the majority of the photon beam size at the E831 target. As shown in Figure 1, these

target silicon planes were interleaved between the experimental target segments. The

target silicon information is present for roughly two thirds of the FOCUS data, as it

3The target silicon provides a hit coordinate close to the vertex position before a substantial lever

arm for multiple Coulomb scattering gets a chance to develop.
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was installed part-way through the run.

3.4.2 Microstrip Detector

The microstrip detector is located about 5 cm downstream of the most downstream

experimental target segment. By measuring the trajectories of charged particles with

high precision, one can exploit the lifetime of charm particles (typically 1 cm decay

length for D meson) to identify charm signals. Referring to the diagram in Figure

3.4, the microstrip system consists of twelve planes arranged into four stations of

three planes each. In each station, one plane measures in the y-direction and two

planes are titled in opposite direction from the y-axis by 45o. Each plane is divided

into an inner high-resolution region and an outer lower-resolution region. The strips

in the planes of the most upstream station have 25� pitches in the inner region and

50� pitches in the outer region. The remaining stations have 50� and 100� pitches,

respectively. The SSD is described in Table 3.1.
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Station Total Active Area High Res. Active Area Strip Pitch

1 2:5� 3:5cm2 1:0� 3:5cm2 25�m; 50; �m

2 5:0� 5:0cm2 2:0� 5:0cm2 50�m; 100; �m

3 5:0� 5:0cm2 2:0� 5:0cm2 50�m; 100; �m

4 5:0� 5:0cm2 2:0� 5:0cm2 50�m; 100; �m

Table 3.1: SSD speci�cations. Each station consist of 3 planes in y, u and v
views. The u and v views are titled in opposite direction from the y-axis by
45o.

3.5 The Analysis Magnets

Momentum analysis of charged particles is performed by measuring the de
ection

in the �elds of two dipole magnets M1 and M2. These magnets are used to de
ect

charge tracks in opposite directions. The transverse momentum kick is 0:4 GeV=c

for M1 and 0:85 GeV=c for M2. The \kick" of a magnet is a measurement of the

integral of the B-�eld such that the angular de
ection of a charged particle traversing

the magnet is given by the kick over momentum (to leading order in 1/momentum).

The ratio of the transverse kicks is such that the tracks come back to their original

unde
ected position toward the downstream end of the spectrometer. This ratio was

chosen so that the e+e� pairs converted in the experimental target (which are nearly

parallel to the beam direction) would tend to focus toward the central electromagnetic

calorimeter hole rather than creating additional showers and radiation damage for the

lead glass blocks located close to the central median plane.

3.6 Multiwire Proportional Chambers (MWPC's)

The multiwire proportional chamber system consists of twenty signal planes grouped

into �ve stations with four planes per station. Each station has four views. The

X view wires run vertically and measured horizontal position. The stereo angle for

U and V views is 11:3o from the Y view. The orientation of the wires is shown in

Figure 3.5. This arrangement concentrates the information in the vertical readout
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Properties P0 P1 P2 P3 P4

Aperture (in2) 30 x 50 60 x 90 60 x 90 30 x 50 60 x 90

Wire Spacing (mm) 2.0 3.0 3.0 2.0 3.3

No. X-view Wires 376 480 480 376 480

No. Y-view Wires 640 704 704 640 704

No. U/V-view Wires 640 768 768 640 768

Gas Used Argon-Ethane(65/35)

Bubbled through 0o C ethyl alcohol

Voltage 2.80-3.20 kilovolts

Table 3.2: PWC speci�cations.

direction, because it is the vertical change in a particle's trajectory that determines

its momentum. The chambers P0, P1 and P2 are located between the two analysis

magnets, and P3 and P4 are located downstream of the second analysis magnet.

P0 and P3 are smaller than the other chambers because they are located directly

downstream of the the analysis magnets M1 and M2. These magnets constrict the

aperture of the P0{P2 chambers, and the P3{P4 chambers. Particle traces which pass

through both M1 and M2 are called \tracks", while particles passing through M1 but

not M2 are called \stubs." The speci�cations of the chambers are summarized in

Table 3.2.

3.7 The Straw Tube System

Three straw tube wire chambers are used to measure tracks in the high-intensity

\pair region" | a vertical stripe down the center of the spectrometer | where the

conventional MWPC's were deadened. Each chamber has three views, and within

each view there are three nested straw layers. All three chambers have a vertical

(X-measuring) view and two views angled �11:33o from vertical. The straw tube

system is also capable of providing timing information, since the signals are sent into

TDCs. The information from this system has yet to be used to its full potential.
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Figure 3.5: PWC orientation looking downstream. There views u and v are
tilted 11:3o with respect to the horizontal.

3.8 �Cerenkov System

�Cerenkov radiation in a medium occurs when a charged particle travels faster than

speed of light in that medium. The speed of light in the medium is given by:

� =
P

E
>?

1

N
(3.2)

where N is the index of refraction of the medium. Therefore, a particle emits �Cerenkov

light when its speed exceeds c=N .

There are three multi-cell threshold �Cerenkov detectors in the experiment, referred

to as C1, C2 and C3. The detectors are operated at atmospheric pressure and in the

threshold mode. The gases are chosen so that the di�erent indices of refraction

(i.e. di�erent light velocities) establish di�erent momenta in which pions, kaons, and

protons will begin to radiate �Cerenkov light (see Table 3.3).

For convenience, we summarize a few useful formulae for �Cerenkov counters using
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Table 3.3: �Cerenkov counter speci�cations. The momentum threshold for the
three charged particles are give for each counter.

counter Gas Threshold (GeV/c) No. of Cells Ave. Number of Photoelectrons

pion kaon proton

C2 N2O 4.5 15.9 30.2 110 8� 11

C1 He�N2 8.4 29.7 56.5 90 2:5� 3:6

C3 He 17.4 61.5 117 100 9

a gas with index of refraction N � 1 + Æ and the relevant approximate forms when

Æ � 1. The minimum (threshold) momentum for a particle of mass m to emit

�Cerenkov light is:

PThreshold =
mq

1� 1=N2
� mp

2Æ

and the angle of emitted �Cerenkov radiation is :

�C = cos�1
1

N�
� m

PThreshold

s
1�

�
PThreshold

P

�2

Finally, the number of �Cerenkov photons produced per unit radiator length is propor-

tional sin2(�c) which approaches (m=PThreshold)
2 as P � PThreshold. This requires the

high threshold counters to be very long. Many of the relevant �Cerenkov properties

can be computed by specifying the pion threshold or PThreshold for particles of mass

m = m� � 0:140GeV=C2 and the number of photoelectrons recorded for a � = 1

track. For our system, the three pion thresholds were chosen to be 4.5, 8.4 and 17.4

GeV/c by use of appropriate gas mixtures, and the photo-electron yield ranged from

roughly 2.5 to 20 depending on the phototube and �Cerenkov counter.

Our �Cerenkov algorithm (described in depth in the next chapter) exploits the

threshold behavior, size of the �Cerenkov cone and number of �Cerenkov photons to

identify charged particles. Some of the �Cerenkov counter speci�cations are summa-

rized in Table 3.3
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3.9 Calorimetry

The inner and outer electromagnetic calorimeters, OE and IE, are not directly used in

this analysis because I chose not to study electrons. The hadron calorimeter and inner

electromagnetic calorimeter are used in the trigger. They are also major contributors

to mulciple Coulomb scattering for muons, so they needed to be modeled for the

muon identi�cation and calibration algorithms.

3.9.1 Outer Electromagnetic Calorimeter (OE)

The OE measures the wide angle electromagnetic particles (photons and e�) that pass

outside the acceptance of the second analysis magnet. It is located just downstream

of the M2 magnet. The OE is a sampling calorimeter with alternating layers of lead

and plastic scintillator, and it consists of x; y and z planes. There are 100 scintillator

tiles per plane. The scintillation light in each tile is carried out through �ber optic

cables, and directed into photomultiplier tubes.

3.9.2 Inner Electromagnetic Calorimeter (IE)

The IE measures the electromagnetic particles that pass through the second analysis

magnet. It is composed of lead glass blocks arranged in a tower geometry. There

are two sides to the detector with a central gap. The gap allows the passage of the

intense beam of non-interacting photons and e+e� pairs. Again, the IE only a�ected

this analysis due to its role in the trigger.

3.9.3 Hadron Calorimeter (HC)

The hadronic calorimeter is constructed with 18 alternate layers of 4.4 cm-thick iron

plates and 0.7 mm-thick scintillating tile planes using �ber readout in tower geometry,

with smaller tiles in the center and larger ones at the outside region. The layers are

arranged into three sections, with the �rst section having nine layers, the second

section having 15 layers and the third section having 4 layers (Figure 3.6). This
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Figure 3.6: HC schematic .
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scheme allows for deposited energy to be measured as a function of depth. The

scintillators have fast response, enabling the HC to be included in the �rst level

trigger. The HC is useful for triggering events with hadronic �nal states rather than

e�.

3.10 Muon Detector

Muons do not su�er signi�cant energy loss due to electromagnetic showering because

their mass is larger than the electron. They do not undergo hadronic absorption be-

cause they don't interact strongly. Therefore, muon detectors are placed downstream

of large iron blocks which act as �lters to �lter out electrons and hadrons and let the

muons through. There are two sets of muon detectors. The Outer Muon detector

uses a Resistive Plate Chamber system to detect high angle muons. The Inner Muon

detector consista of three stations made of scintillating counter arrays called MH1,

MH2, and MH3. The MH1 and MH2 stations consist of x and y views and MH3

consist of u and v views. Figure 3.7 shows one view from each station. MH1 and

MH2 were built, designed, and commissioned by the University of Illinois group, a

project in which I was actively involved.

3.11 Inner Muon Arrays

Figure 3.7 shows the layout of the three inner muon stations. The individual detec-

tors in these arrays are designed to overlap each other for complete coverage. They

are shielded from delta-rays by 1/4"-thick aluminum plates mounted directly on the

upstream sides of the detectors.

The signal cables for the muon detectors were salvaged from the E687 electromag-

netic calorimeter. These cables were repaired, and their lengths were individually

measured by \pinging" them with a pulse generator and oscilloscope, set up to mea-

sure the round-trip time of voltage pulses. Cables of similar lengths were grouped
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Figure 3.8: Pulses from muons in the inner muon detectors. This is a collec-
tion of electronic pulses at the input to the discriminators. There is a main
clustering of pulses which represent genuine muon hits. The average height
of these pulses were measured and used to tune the high voltage setting for
the given PMT. For this detector, the minimum pulse height was roughly 126
mV. The discriminator voltage would have been set to about half this value.

together in bundles, and ran from the detectors into the counting room.

Initial voltages were adopted based on source tests of the detectors, but these were

re�ned by measuring the pulse heights during muon test-beam running. Figure 3.8

shows an example of this measurement process.

The signals from the inner muon PMT's went into discriminators, and then into

latches with programmable delays. One common delay is used for each module holding

32 channels. At two or three times during the run, the inner muon array timing was

adjusted by stepping through various delays in each latch module and constructing a

plot of eÆciency versus delay. The eÆciency function looked like a plateau, and the

center of the plateau was chosen for each latch module. Figure 3.9 shows an example

timing plateau for a certain module.
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Figure 3.9: Inner muon timing eÆciency plateau. The eÆciency is a crude
estimate based on the number of �rings per event, normalized to the peak of
each plateau. The dashed line represents the optimal value for the PCOS latch
delay. The height of the plateau is approximately 40 ns, which is the width of
the latch gate. The di�erent colors represent the 32 channels going into this
module.
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3.12 Trigger

The electronic logic that is required to select the interesting events from the back-

ground is called the trigger. FOCUS typically had about 108 interactions per spill

(mostly electromagnetic) and triggered on about 30,000 interactions per spill (mostly

hadronic). It is known that in high-energy photoproduction interactions, the hadronic

interaction rate is about 1/500 of the rate for pair production. The e� pairs gener-

ally are produced at a small transverse momentum, thus very low angle trajectories,

whereas the hadronic interactions produce particles with larger transverse momen-

tum and wider trajectories. The hadrons also deposit larger energies in the hadronic

calorimeter. Therefore, the main purpose of the trigger is to trigger on the events

with wide-angle tracks and signi�cant energy deposited in the HC.

The �rst level of main hadronic trigger is called the \Master Gate" (MG). The

MG trigger occurs within 200ns from the time that interaction takes place. It takes

about 160ns to transfer the information from the spectrometer, and the remaining

40ns is used to make a decision.

If the MG accepts the event, then the readout process and evaluation of the second

level trigger begins. The second level trigger decision takes 1:2�s. If the event is

accepted by the second level trigger, all the detector information for that event is

written to magnetic tape for o�-line analysis. Afterward, the readout electronics are

reset and the process is repeated. The reset takes 1�s.

3.12.1 First Level Trigger

The �rst level trigger checks to ensure that the photon has interacted in the target

and that charged particles are emitted from the target. This is achieved by TR1,

which is located at the upstream of the �rst SSD plane (see Figure 3.4). The TR1

counter consists of a scintillator counter and a PMT. The TR2 counters are located

downstream of the last SSD plane, and ensures that the charged particles that pass

through TR1 also go through the microstrips. TR2 consists of four scintillator coun-
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ters and PMT's.

The requirement that there are wide-angle tracks in the event is ensured by using

the H � V array. These scintilation detectors are located downstream of M2 after

the last PWC station. A fast trigger logic module determines if the �ring pattern is

consistent with one charged particle, (H � V )1, or more than one, (H � V )2. The

array has a central gap to let the e� pairs through without counting them.

Another set of scintillator counters called OH are located upstream of OE to assure

passage of at least one particle.

The hadronic MG requirement is:

MG1 = TR1 � TR2 � f(H � V )2 + [(H � V )1 �OH1]g � EHI (3.3)

where EHI ensures the energy deposited in HC by the hadrons is above a high thresh-

old.
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3.12.2 Second Level Trigger

The second level trigger requires evidence of a suÆcient number of tracks outside the

pair region. This is done by evaluating a logic signal with a voltage proportional to

the number of hits in each plane that is derived from the PWC read-out module.

The information from each plane is combined, and evidence of at least three tracks

outside the pair region is required (MULT4).

The inner electromagnetic calorimeter (IE) is also used at the second level trigger.

The electromagnetic energy deposited in the IE is required to be over a threshold,

and at least two hits above threshold in IE is required (EIE�2). This threshold is very

low, and is intended to help validate the HC energy requirement.

The hadronic second level trigger requirement is:

TRIG1 = MG1 � EIE�2 �MULT4 (3.4)
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Chapter 4

Analysis Techniques in FOCUS

In this section we summarize some critical aspects of our track reconstruction, ver-

texing, particle identi�cation algorithms and the data reduction techniques used to

skim our data down into manageable sets.

To a large extent, tracks are found independently in the microstrip detectors and

the MWPC system. An SSD and MPWC track can be \linked" to each other if they

are consistent with being due to a single particle interacting with the two systems.

Although this strategy was primarily historical (e.g. a US group wrote the MWPC

reconstruction code and built the chambers, and an Italian group built the SSD

system and wrote the SSD tracking code), it turned out to be a wise decision since

we discovered relative motions between the systems on the order of a millimeter due

to ground motions. By comparing the MWPC and SSD trajectories, we could correct

for this motion and thus maintain a high linking eÆciency over time.

In general, charm decay products that are long-lived and electrically charged (elec-

trons, muons, pions, kaons, and protons) are required to be linked tracks. These tracks

have complete, well-measured 4-momenta. Wide-angle tracks, reconstructed by the

SSD system but missing links to the PWC, are allowed to be included in the primary

vertex. We believe the inclusion of unlinked primary vertex tracks signi�cantly in-

creased the eÆciency of our vertex algorithm. We begin with a discussion of MWPC

tracking.
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4.1 MWPC Tracking

There are three major categories of tracks in FOCUS. The tracks which hit P0, pass

through the downstream magnet (M2) aperture, and leave some hits in P3 and P4

are called \5-chamber" tracks.

Tracks with hits only in P0, P1, and P2 are called \stubs" or \3-chamber" tracks.

These tracks are not able to traverse the M2 aperture, either because they are wide

angle, or they have low momentum and are de
ected too much by M1 to traverse the

M2 aperture.

The third category are the \recon" tracks which are from decays downstream of

the �rst wire chamber, that do not leave hits in P0. This category includes secondaries

from the long lived neutral \vees" decaying into two charged tracks between P0 and

P2, and \kinks" (track segments which join with other track segments but with a

�nite angle between the segments).

It is important to be cognizant of whether a particle trace is a track or a stub, since

tracks had signi�cantly better fractional momentum resolution than stubs. Many of

the reconstruction algorithms make use of the anticipated tracking momentum error in

constructing vertices and computing quantities such as the normalized mass.1 Also,

tracks typically interact with the \inner" systems (IE, HC, and IMU) while stubs

interact with the \outer" ones (OE and OMU).

4.1.1 Microstrip Track Reconstruction

The algorithm for SSD track reconstruction is based on projection-�nding on the

three separate views. Of the four planes in each view, a minimum of three planes

are required to form a projection. Projections are formed into tracks if the group

of projections pass a test on the hypothesis that they are consistent with a line. If

the �2 per degree of freedom for the hypothesis is less than 8, the projections are

1A normalized mass for say a D+ ! K��+�+ candidate would be the di�erence between the

reconstructed mass and the nominal mass divided by the anticipated mass error.
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considered to form a track. The parameters of the �t are slope and intercept of the

track in the granite block coordinate system.

The class of hits that are not associated with any reconstructed track are used to

search for wide angle tracks and for highly multiple-Coulomb-scattered tracks.

The reconstruction eÆciency of the SSD tracks is proportional to momentum, with

higher momentum tracks having better eÆciency. The resolution of the SSD tracks

is also a function of momentum, for lower momentums tracks have a larger multiple

Coulomb scattering, hence a worse resolution. The resolution on the intercept of a

track extrapolated to the center of our target can be expressed as:

�x = 11 �

s
1 +

�
17:5 GeV

P

�2
; �y = 7:7 �

s
1 +

�
25:5 GeV

P

�2
(4.1)

where P is the track momentum. The constants 11�m and 7:7�m are the granularity

of SSD strips. This equation applies to tracks which traverse the high-resolution por-

tion of each of the SSD microstrips. It includes the multiple scattering contributions

in the SSD and TR1. In fact, we often do better than this because of the target

silicon.

4.1.2 PWC Track Reconstruction

The algorithm proceeds by reconstructing projections in all views in each station.

The projections in the X (non-bend) view are formed by matching the hits on the

PWC planes with the seed track extensions in the SSD. The Y, U and V (bend)

view projections are formed independently from the PWC hits alone. Then, the X

projection is matched to the U, V, and Y projections to form a track. After all the

tracks from the SSD-extended projections are used, new projections in the X view

are formed using the hits that were not used in the previous steps. These projections

are in turn matched to the unused U, V, and Y projections to form more tracks.

The reconstruction algorithm requires that the reconstructed tracks have hits in

the �rst PWC station, P0. It also requires that the tracks can miss a maximum of

four hits in all PWC stations, and that they can miss a maximum of two hits per
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PWC station.

At this stage, a �2 �t is performed on all candidate tracks, where the �t parameters

are the slope and intersection of each track in X and Y views in the M2 magnet bend

plane. An additional �t parameter for the 5-chamber tracks is the change in slope in

the Y view between the track segments upstream and downstream of M2. Finally, a

�2=DoF cut is applied to select the legitimate tracks from the candidate list.

There are tracks that leave the PWC geometrical acceptance before P2. To try

to recover these tracks, the algorithm uses the SSD tack extensions to search for the

unused hits in the X view of P0 and P1, which are then combined with the U, V, Y

projections to form tracks. The tracks which extend only to P0 are required to have

hits in all four views, and the tracks which extend to P1 are required to have at least

three hits in each station.

There are higher-order corrections to the linear least-squares �ts described above.

Because of the �nite length of M2, one correction is to account for the sudden bend

approximation implied by the above parameterization. There also other magnetic

corrections such as counting for the fringe �eld, and the fact that the components of

the ~B �eld are not constants but are functions of x, y and z.

4.1.3 Linking of SSD and PWC tracks

Linking is performed by extending the SSD track to the M1 center and matching

them with the PWC tracks. In addition, for the 5-chamber PWC tracks, bend angles

inside the M1 and M2 magnetic �eld should be consistent. We signi�cantly reduce

backgrounds by requiring that the PWC and SSD track segments \link". Those PWC

tracks which do not link can be used as possible \vees" and \kinks" (such as Ks, �,

��, and 
� decays).
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4.1.4 Momentum Determination

The momentum associated with a track is calculated by the bend angle of the track in

M1 and M2 magnets. Depending on the type of the track, di�erent methods are used

to calculate the momentum. For example, in 5-chamber tracks the bend angle in M2

is calculated using the track parameters upstream and downstream of M2. For the

3-chamber tracks, the SSD and PWC portions of the track are used for calculating the

bend angle in M1. The algorithm takes into account the magnetic �eld corrections.

The following expressions give our approximate momentum resolution in M1:

�

P
= 3:4%

�
P

100GeV

�s
1 +

�
17GeV

P

�2
(4.2)

and in M2

�

P
= 1:4%

�
P

100GeV

�s
1 +

�
23GeV

P

�2
(4.3)

where the second terms inside the square root account for the multiple Coulomb

scattering.2

4.2 Vertex Reconstruction

The fully-reconstructed charm sample discussed here was both selected and recon-

structing using the DVERT vertex �nder developed at the University of Illinois.

DVERT is a \candidate driven" (rather than \topological") vertex �nder which re-

mains eÆcient at short detachment distances. We illustrate the vertexing and selec-

tion philosophy with the state D+ ! K��+�+, which is one of the states analyzed

in this thesis as a normalizing mode (see Chapter 5).

Rather than searching for a primary and secondary decay vertex using pattern

recognition techniques, we begin by looping over all potential three-track combina-

tions having a net charge of �1 as possible D+ ! K��+�+ candidates. We typically
2These are correct expressions in the absence of adjacencies. One gets an adjacency when several

adjacent MWPC wires �re for a given track due to the presence of Æ-rays, or sharing of the ionization

cloud.
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require the DCL (\Dee" con�dence level) of the K��+�+ vertex to be larger than

1%. This DCL is computed by selecting an xo ; yo ; and zo which minimizes a �2.

The extrapolation errors �xy are approximately those of Eq. 4.1.
3 For K��+�+, this

�2 would be converted to a con�dence level using 3 degrees of freedom.

In order to identify a charm production (or primary) vertex, we employ one of

three di�erent algorithms. DVNUCL is used for all fully-reconstructed charm decays,

where the decay vertex is de�ned by two or more tracks from charged daughters. In

essence, DVNUCL uses the reconstructed charm momentum as a virtual track, and

\nucleates" other tracks about this one, forming the primary vertex. In semileptonic

decays, where an undetectable neutrino is present, the D is not fully reconstructed,

and we have no D momentum vector to point back with. In these cases, we use the

DVFREE algorithm, which simply searches for all possible vertices. We will describe

these two alrorithms in more detail below. A third alrogithm, DVNUCG, is used when

the charm momentum vector is known, but only one daughter track is available. This

is somewhat similar to DVNUCL, except that the vertex is not constrained to be on

a line (\seed track"), but rather is constrained to a half-plane.

4.2.1 DVNUCL

In most charm decay studies, the charm state will be fully reconstructed, and we will

have multiple tracks in the SSD system which de�ne a decay vertex. In order to locate

the primary vertex, a \seed track" is constructed which begins at the decay vertex,

and points back opposite to the D momentum vector. The seed track has much

better measurement error than any of its constituent tracks because its intercept is

averaged. We then search for all intersections of the seed track with any of the unused

tracks in the event. The DVNUCL algorithm tries to form the largest-multiplicity

primary vertex with a PCL (Primary vertex Con�dence Level) in excess of 2%). If a

primary vertex is found, we compute the detachment of the three-dimensional sepa-

3However, we include information from the target silicon, and weight points appropriately for

being in the high versus low resolution region of the SSD system.
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ration between the primary and secondary vertex (`) and divide it by the anticipated,

event-by-event RMS resolution, �`. `=� is an excellent measure of the detachment

of secondary vertex from the primary vertex. Cuts on this detachment improve the

signal-to-noise ratio by requiring larger `=�, at the cost of some signal.

4.2.2 DVFREE

The semileptonic samples reported here were reconstructed using an alternative vertex

algorithm called DVFREE. DVFREE is a routine that can �nd a primary vertex in

the case that there is no seed track from a charm candidate. This occurs for decays

with �'s, such asK��� or unreconstructed �0's, such asK��0. Because the daughters

are not all found, the D direction is not known, so we cannot create a seed track.

Typically, a set of tracks forming a good vertex are taken as a D candidate. These

tracks are entered in the exclusion list, then DVFREE is called. DVFREE returns a

set of vertices formed from the remaining tracks in the event and a primary vertex is

chosen. Usually the most-upstream vertex or the highest multiplicity vertex are used.

The DVFREE algorithm begins with �nding any pair of tracks that form a vertex

with a con�dence level greater than 1%. It then adds as many tracks as possible to

that vertex as long as the con�dence level remains above 1%. The tracks are not

searched or included in any particular order.

The routine then chooses a track that is not in the �rst vertex and attempts

to cluster other tracks around it. When it is looking for these additional tracks, it

considers tracks that might already be in another vertex. This way, a track may be in

any number of vertices. This process (of choosing a track that is not in a vertex and

clustering around it) is repeated until all tracks are in every vertex they are consistent

with, or in no vertex at all.
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Figure 4.1: Schematic representation of isolation cuts ISOP and ISO2
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4.2.3 Vertex Isolation Cuts

Isolation cuts are often used to greatly suppress non-charm and charm re
ection

backgrounds. The �rst type of cut, which we will call the primary isolation cut or

ISOP, is basically a requirement that no charm-secondary track is consistent with

pointing to the primary vertex. For the case of D+ ! K��+�+, we �nd the highest

con�dence level vertex constructed from the primary vertex tracks and each of the

K��+�+ tracks forced in the vertex one at a time. ISOP is the largest con�dence

level found, and cuts on this variable require it to be small.

The second type of isolation cut is based on the con�dence level of the hypothesis

that other tracks are consistent with the decay vertex. We call this the secondary

isolation con�dence level, or ISO2.

We compute ISO2 by testing all other tracks in the SSD system, searching for the

largest con�dence level that a track �ts in the decay vertex. There are two variants

of this technique: one where we exclude primary vetrex tracks from the search list,

and one where we consider all tracks (except the tracks used to form the secondary

vertex, of course). The purpose of the ISO2 cut is to remove backgrounds from higher-

multiplicity charm decays. In principle the primary vertex tracks, which are already

accounted for, need not be considered. Thus the secondary isolation cut exclusive

of primary vertex, \ISO2EX", is usually prefered. Since ISO2 uses some tracks not

used in ISO2EX, it is always true that ISO2EX � ISO2. Therefore the ISO2EX cut

is more eÆcient, and inclusive of a ISO2 cut.

4.3 �Cerenkov Identi�cation Algorithm

This section describes the algorithm used to identify charged tracks in FOCUS. (I

was involved in the development of the FOCUS �Cerenkovalgorithm.) We begin by

describing the algorithm and conclude by illustrating the algorithm's performance

using physics signals.

The �Cerenkov algorithm used in FOCUS is given the acronym CITADL (for
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�Cerenkov Identi�cation of Tracks by an Algorithm using Digital Likelihood). CITADL

returns relative likelihoods that the track had a �Cerenkov pattern consistent with that

expected for the electron, pion, kaon, or proton hypothesis. CITADL constructs a

log likelihood variable based on the �ring probability for all �Cerenkov cells that a

given track could potentially a�ect | all cells within the track's � = 1 �Cerenkovcone.

Assume for the moment that a cell only �red in response to �Cerenkov light. If the

cell �red, and � photoelectrons were expected, the log likelihood was incremented by

log(1 � exp(��)); while if the cell failed to �re the log likelihood was incremented

by log(exp(��)). Cells which overlapped more than one track's �Cerenkov� = 1 cone

were considered \confused" and excluded from the sum. The likelihood returned by

CITADL is similar in spirit to the traditional continuous likelihood used in �tting.

The only di�erence is that each event has only two outcomes | on or o�. For this

reason, we call it a \digital" likelihood.

We found signi�cant improvements in the performance of the �Cerenkovalgorithm

by including the e�ects of accidental cell �ring due to untracked electromagnetic

debris. We determined the accidental �ring rate by measuring the fraction of times

a �Cerenkov cell would �re, even if it were outside of the � = 1 �Cerenkov cone of all

observed tracks. The accidental rate varied considerably, and for central cells it was

very large. It is easy to incorporate accidental �ring rates in the �ring probability.

The prescription is Pfire = a + (1 � exp(��)) � a (1 � exp(��)), where a and �

are the accidental rate and the number of photoelectrons expected for the given cell.

We found that a was often proportional to the beam intensity, particularly for cells

near the beam axis. The inclusion of accidental rates signi�cantly improved the

performance of CITADL.

CITADL returns its identi�cation in the form of �2-like variables which we will

call We, W�, WK , and WP . They are de�ned by Wi � �2Pj logPj, where Pj is

the probability for the observed outcome (on or o�) for that cell under each of the

4 particle hypotheses. One would typically require that kaon hopefuls (from charm

decay candidates) pass a minimum cut on a likelihood di�erence variable such as
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Figure 4.2: Invariant mass plot for three golden mode decays D0 !
K��+; K��+�+��, and D+ ! K��+�+. The reconstructed D+ mass was
shifted by 5 MeV so that its peak will reconstruct in the same place as the
peak of the D0. This data has vertex quality, and kinematic cuts only. No
�Cerenkov cuts were used. The vertical lines denote signal and sideband regions
which will be used to make a background subtraction.

�WK � W� �WK. A large �WK implies that the kaon hypothesis is signi�cantly

favored over the pion hypothesis.

We found that it was possible to use golden mode charm as a monitor of �Cerenkov

performance. Figure 4.2 shows a 405,000 golden mode charm sample obtained (using

about 75% of our data) without any �Cerenkovcuts. A selection of stringent cuts

on vertex detachment, isolation, the D�+�D0 mass di�erence, and momentum were

used to obtain this reasonably clean sample. Also shown are sideband regions used for

background subtraction. Figure 4.3 shows the likelihood di�erence �WK = W��WK

for the kaon and pion daughters of these background-subtracted charm decays, in two

ranges of momentum. For convenience, we will call the variable �WK � W� �WK

\kaonicity". A positive kaonicity implies that a given track is more likely to be a

kaon as opposed to a pion.

Figure 4.3(a) shows the kaonicity distribution for charm kaons and pions in a

momentum range above the pion threshold of C2 (the lowest threshold counter) but
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Figure 4.3: The log likelihood di�erence W� �WK distribution obtained from
background subtracted kaons and pions from golden mode charm signal shown
in Figure 4.2. The pion distributions were rescaled to have the same area as
the kaon distributions. Plot (A) is for tracks with momenta in the range 5 <
P < 60 GeV/c. Plot (B) is for tracks with momenta in the range 9 < P < 16
GeV/c. There are o�-scale spikes in the 0 bin consisting of 20,000 and 4,500
events for Plots (A) and (B).
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below the kaon threshold of C3 (the highest threshold counter). Outside of this

momentum range, the FOCUS �Cerenkov system is incapable of much K-� separation,

and the kaonicity distribution is strongly peaked near zero. Figure 4.3(b) shows the

kaonicity distribution in the more restricted range from 9 to 16 GeV. In this range

kaon-pion discrimination is particularly e�ective, since it lies above the pion threshold

for C1 but below the kaon threshold of C2.

Figure 4.3 shows that even though the likelihoods are constructed from the discrete

�rings of �Cerenkov cells, the kaonicity distribution for kaons is reasonably continuous

except near �WK = 0. As Figure 4.3(a) shows, averaged over the accepted charm

momentum spectrum, pion backgrounds to kaons can be e�ectively eliminated while

still maintaining high eÆciency for charm kaons. A cut just above kaonicity of zero

rejects a large fraction of pions. The fraction of background pions then dies away

exponentially for �WK > 0 beyond zero. Over the more restricted range from 9 to

16 GeV, where cells from both C1 and C2 discriminate pions from kaons, the �WK

distribution for kaons broadens considerably. One can make a very stringent kaonicity

cut to suppress pion backgrounds and still maintain good eÆciency for real kaons.

As Figure 4.2 shows, it was indeed possible to get reasonably clean charm signals

without the use of �Cerenkov information. However, many FOCUS analyses employed

�Cerenkov cuts as an e�ective way of increasing signal-to-noise, while maintaining

reasonable eÆciency. Figure 4.4 illustrates the e�ectiveness of kaon and pion �Cerenkov

cuts for D0 ! K��+�+�+ events selected using an `=� > 9 detachment cut but

without any �Cerenkov cuts. The kaon cut is on \kaonicity", or the log likelihood

di�erence �WK � W��WK discussed previously. The pion cut is based on a variable

which we will call \piconicity", de�ned as �W� � Wmin�W�. The �W� cut is placed

on all D decay pions and is meant to insure that no pion being considered as a charm

daughter is grossly inconsistent with the pion hypothesis. A cut such as �W� > �2
means that none of the other three particle hypotheses are favored over the pion

hypothesis by more than a factor of exp(2=2) = 2:71. For the D0 ! K��+�+�+

sample, the requirement �WK > 0 preserves 84% of the yield while increasing the
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Figure 4.4: Illustration of the e�ectiveness of �Cerenkov cuts in reducing back-
grounds to D0 ! K��+�+��. Note the logarithmic scale. The upper curve
has no �Cerenkov cuts. The second histogram requires �WK > 0. The third
requires �WK > 2. The fourth histogram requires �WK > 2 and �W� > �2.
The �tted signal yields in these plots are 15307, 12783, 11699, and 9996 re-
spectively.

signal to noise by a factor of 6.2. The more stringent �WK > 2 and �W� > �2
preserves 75% of the un-cut signal yield but increases the signal-to-noise by a factor

of 16.

4.4 Data Reconstruction and Skims

During the 1996-97 run, FOCUS collected about 6.5 billion photon triggers on about

6000 8mm \Exabyte" magnetic tapes. This amounted to nearly 30 TB of data.

Because of the large amount of data, the reconstruction and skimming process of

data consisted of three stages, as described below.

4.4.1 Pass One

The Pass One reconstruction process involved analyzing the raw data and writing the

reconstructed data on another set of 6000 tapes. Pass One reconstruction required
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Table 4.1: Super-stream Descriptions

Superstream Description Skim Two Institution

1 Semi-leptonic Puerto Rico

2 Global Vertex and Ks Illinois

3 EM Neutrals and � Skims CPBF, Brazil

4 Baryons Fermilab

5 Di�ractive, Leptonic and Out-of-Target California, Davis

6 Fully Reconstructible Charm Decay Modes California, Davis

running the reconstruction algorithms for all the detectors.

A Fermilab software product called CPS (Cooperative Process Software) was em-

ployed to construct a \farm" consisting of a \server" node and about 10 \worker"

nodes. This increased the computing power substantially, allowing the Pass One

processing to occur in parallel.

Up to eight computing \farms" at Fermilab consisting of up to 90 worker nodes

were employed for the Pass One. The types of workstations used included SGI

workstations based on the MIPS R5000 CPU and IBM workstations based on the

IBM/Motorola PowerPC CPU. Pass One processing took roughly one year to com-

plete.

4.4.2 Skim One

The purpose of Skim One is to divide the data into smaller data sets, each set con-

taining data based on various classes of physics (see Table 4.1). This skim divided the

Pass One data set to six super-streams. Each superstream required 200-500 tapes.

University of Colorado and Vanderbilt University ran the Skim One on two com-

puter clusters of about 4000 MIPS each, which began in October 1998 and �nished

in February 1999.
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4.4.3 Skim Two

Skim Two constitutes the �nal skimming stage, where the Skim One output tapes

were further split into smaller skims with more speci�c physics topics. Generally,

5{12 sub-streams were written from each super-stream. Skim Two was done in �ve

institutions, listed in Table 4.1. It began in January 1999 and was completed by June

1999. I was primarily responsible for the software and operations of Skim Two of

superstream 2.

In the form factor analysis, the data were taken from the semileptonic+meson

subskim, FSAA. This was a subskim of superstream 1. The events in this subskim

were required to have a muon track, with either an inner-muon or outer-muon con�-

dence level greater than 1%, intersecting with another track. The vertex con�dence

level must exceed 1%. At least one of the intersecting tracks must be consistent with

a kaon, having a kaonicity > 1.

The data for the branching ratio measurement were taken from a special skim

called SLEPNRM, described in Chapter 5.

4.5 Performance of the Inner Muon System

In this section, we assess the performance of the inner muon system in terms of eÆ-

ciency and muon misidenti�cation. Most of our studies use a convenient golden mode

(K� ;K2� ; and K3�) sample designed to study �Cerenkov algorithm performance.

Our conclusion is that the inner muon system performed extremely well during our

FOCUS run with essentially 100% eÆciency and nearly no noise.

The eÆciency studies form an important validation of the Monte Carlo model

used in this thesis to measure form factors and the D+ ! �K��+�=K��+�+ relative

branching fraction. The misidenti�cation studies will form the underpinning of our

studies of backgrounds for the K
�0
�+� state discussed in Section 7.5.
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4.5.1 EÆciency Studies

There are two components to determining muon identi�cation eÆciency | the eÆ-

ciency of the individual muon detectors, and the eÆciency of the muon algorithm.

We have to study these eÆciencies in a rather indirect way since we have no easily

accessible signal to supply us with an independent unbiased source of muons, short of

the semileptonic decays studied here. The obvious source of muons would be the co-

pious FOCUS sample of photoproduced J= ! ���+ decays. Unfortunately, we only

collect these events using a dimuon trigger that would signi�cantly bias the studies

of muon identi�cation.

We use the copious supply of muon halo tracks present in our data to monitor

the eÆciency of the counters comprising the six inner muon arrays MH1X,MH1Y...

MH3Y. A large number of triggered events included an inner muon due to accelerator

backgrounds. These halo tracks helped to satisfy our muon triggers and therefore

appeared quite often in the data that we wrote to tape. The muon halo rate in our

main-line hadrometer-triggered data was much smaller.

Figure 4.5 shows evidence for muon halo present at the � 20% level in a typical

run. This very copious supply of halo tracks served as an essentially continuous

monitor of the eÆciency of the planes of the inner muon array. A \time-line" of the

average eÆciency of one of the muon arrays is plotted as a function of run number

in Figure 4.6. The eÆciency for a given plane is based on events where all other

muon array planes �re due to a halo muon. The eÆciency is then the fraction of

times all 6 planes �re. As shown in Figure 4.6, the typical eÆciency in the inner

muon system was superb | generally in excess of 99%. Although achieving this high

eÆciency was very satisfying, we expected excellent performance. The inner muon

array used 1.5 cm thick high grade (NE110) scintillator. The counter and phototube

mounts were designed to collected more than 500 photoelectrons per traversing muon.

In bench tests, cosmic rays often produced several-volt signals from our phototubes

when running at nominal high voltage.
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Figure 4.5: We plot the fraction of events in Run 14547 with the number of
struck counters in the inner muon system equal to or exceeding the abscissa. A
clear \knee" can be seen at 6 or more hits which we attribute to a muon halo
track traversing all 6 counter planes that comprise the inner muon system.
This knee is rather broad because of range out, wide angle muons that pass
wide of the last detector plane, and muons that �re adjacent counters.
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Figure 4.6: The average eÆciency of the MH1X array based on the fraction of
times this array �res in events where all other muon planes �re. The eÆciency
of all other planes is very comparable to the eÆciency of this plane. The
2% ineÆciency dip near 7250 was due to a slight shift in the latch timing.
We corrected this timing immediately after discovering the problem | thus
restoring the eÆciency to its original level.
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Figure 4.7: Comparison of the ratio of data and Monte Carlo yields for WS
subtracted D+ ! �K��+� events as a function of the muon con�dence level.
We show results with the original muon con�dence level and a more re�ned
con�dence muon con�dence level incorporating better multiple scattering and
granularity errors. The new con�dence level points are shifted slightly horizon-
tally for clarity. The vertical scale is arbitrary since it is based on an arbitrary
number of MC events.

4.5.2 Analysis EÆciency

In this section, we use D+ ! �K��+� events to measure the eÆciency of our analysis

algorithm. The inner muon algorithm provides a con�dence level (�CL) that a given

track is a muon by matching its trajectory to hits in the inner muon array. Figure

4.7 compares the ratio of the the yield for D+ ! �K��� signal events in data over the

yield in Monte Carlo, in bins of the returned muon con�dence level. The method for

\event" counting is discussed in Chapter 5.

We believe that both muon con�dence levels are well simulated by the Monte

Carlo, since the data-to-MC ratios are nearly independent of either muon con�dence

level. The most likely source of a mismatch would be a mismodeling of the multiple

scattering in the Monte Carlo. Our multiple scattering simulation has been checked

using a variety of techniques. We also have explicitly checked, using the techniques

described in Chapter 5, that the relative branching fraction forD+ ! �K���=K��+�+

is essentially independent of the muon momentum. We compare this relative branch-
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ing fraction computed for muons with P� > 10 GeV to that obtained in a sample

with P� > 30 GeV . Only 32% of the D+ ! �K��� of the 10 GeV sample had a

momentum exceeding 30 GeV. The two samples had branching fractions that di�ered

by an average of only 1.2 � over 16 di�erent sets of clean up cuts. We believe that a

mismatch between the Monte Carlo multiple scattering simulation and the data would

reveal itself in an inconsistency between these di�erent muon momenta samples.

4.5.3 Muon misidenti�cation studies

We have studied the misidenti�cation of pions and kaons using a large golden mode

charm sample. Figure 4.8 provides a general impression of the fraction of golden

mode pions and kaons that are misidenti�ed as muons. For example, the fraction

of kaons satisfying an inner muon con�dence level cut in excess 1 � 10�4 is about

0.9% averaged over all momenta. The term misidenti�cation is somewhat misleading

in this context, since it is probably dominated by legitimate charm secondaries that

decay in 
ight prior to reaching the calorimeters or the muon steel.

We have devised a way of studying the momentum dependence of misidenti�ed

pions and kaons. Our approach studies the fraction of golden mode secondary 5 cham-

ber tracks that satisfy muon identi�cation cuts. In order to subtract backgrounds,

we make weighted averages of the fraction of times a track is identi�ed as a muon.

Our weight is +1 if the candidate mass falls within the signal regions of Figure 4.9,

and �1 if the mass falls within either sideband.4 The signal and sideband regions are

illustrated in Figure 4.9.

Figure 4.10 compares the observed muon misidenti�cation versus momentum in

data to that in two golden-mode Monte Carlos that di�er by their assumed level of

muon halo. The data has slightly more misidenti�cation than a \noiseless" simulation

(PILEMU = 0), and signi�cantly less than the noisy one (PILEMU = 0.5). PILEMU

is the Poisson average number of halo muons in each event. The halo muon distri-

bution was, at the time of this study, more of a guess than a measurement, and the

4The technique for computing errors of such weighted averages is described in Appendix A.
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Figure 4.8: Golden mode charm samples used for muon misidenti�cation stud-
ies. (a) The golden mode signal when no pion has been misidenti�ed as a muon.
(b) The golden mode signal when at least one pion has been misidenti�ed as
a muon. (c) The golden mode signal when the kaon track was not misiden-
ti�ed as a muon. (d) The golden mode signal when the kaon track has been
misidenti�ed as a muon.
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Figure 4.9: We show the golden mode sample and sidebands used in
the muon misidenti�cation sample. (a) All three golden modes: D0 !
K��+; K��+�+�� and D+ ! K��+�+ combined into a single mass plot.
The yield of this particular (no �Cerenkov cut) selection is about 1/2 million
events. (b) The K��+ mass plot showing the D0 peak and the signal and two
sideband regions used for background subtraction. (c) The K��+�+ mass plot
showing theD+ peak and the signal and sideband regions. (d) TheK��+�+��

mass plot showing the D0 peak and the signal and sideband regions.

61



Figure 4.10: Misidenti�cation of golden mode kaons and pions (5 chamber
tracks) as inner muons as a function of track momentum. For this plot we use
a loose criteria for muons: an inner muon con�dence level exceeding 1� 10�4.
The data is background-subtracted using the sideband method. The data is
compared to two Monte Carlos: a zero noise Monte Carlo and one with a much
higher muon halo rate than is present in typical charm data.
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Figure 4.11: The average number of struck inner muon counters in a given
array versus the number of reconstructed 5-chamber tracks compared to two
Monte Carlos. The �rst Monte Carlo assumes no halo (PILEMU = 0), the
second assumes a halo with a rate speci�ed by (pilemu = 0.5). The three plots
are for: (a) MH1X (b) MH2x (c) MH3X. The data is for sideband-subtracted
golden mode charm.

rate of 0.5 seemed to match the rate of hits in the muon arrays for some raw events

processed in our \expressline analysis".

Figure 4.11 con�rms many of these conclusions by comparing the number of struck

counters in background-subtracted golden mode data to those in two Monte Carlo

simulations. We plot the average number of struck MH counters in three inner muon

arrays as a function of the number of reconstructed 5-chamber tracks in an event.

Figure 4.11 has several interesting features worthy of comment. Except for MH1

(Figure 4.11a), the average MH plane multiplicity is an excellent match to a Monte

Carlo with no halo and no other source of noise. One might expect more noise in

MH1X and MH1Y since these arrays have the least amount of hadronic shielding. We

do not simulate hadronic punch through in the Monte Carlo simulation. The average

63



number of struck counters has a component that is proportional to the number of

chamber tracks. Presumably this is due to kaons and pions that decay to muons

prior to reaching the inner muon steel. The slope of this average number versus track

is the same between the two simulations. We are not sure exactly why there appears

to be an o�set of about 1/10 of a struck counter even when there are no detected 5-

chamber tracks in a given event, but we are reassured by the fact that the same o�set

appears in our noiseless Monte Carlo. Most likely, this represents either a �ducial

mismatch between the PWC system and the inner muon muon detector area or a

tracking ineÆciency.

We believe that the mismatch in charm secondaries that are misidenti�ed between

the data and the \noisy" Monte Carlo with PILEMU = 0.5 is likely due to the

unrealistically high level of struck counters in this simulation relative to the data.

At very low momenta, we use a large \search" radius of muon counters that can be

associated with a given track due to an increased multiple scattering smearing. We

thus expect the large di�erence between the misidenti�cation level at low momenta

between the halo and no halo Monte Carlos that is clear in the misidenti�cation

curves of Figure 4.10.

More recently we have revised the muon halo parameterization in MCFOCUS

after a more careful study of the data. The high rate initially seen was due to events

accepted through a di-muon trigger. The new halo distribution met the demands

of this analysis with an insigni�cant amount of noise in the inner muon system, yet

accounts for the considerable noise in the outer muon RPC's. The current muon rate

is 0.15 per event, and the dispersion of the halo has been increased signi�cantly.

4.5.4 Tighter muon cuts

Figure 4.12 demonstrates that one can substantially decrease the muon misidenti�ca-

tion of golden mode secondaries by tightening the muon identi�cation cuts. We will

typically require at most one missing muon plane, increase the inner muon con�dence

level cut to �CL > 5%, and require P� > 10 GeV . These cuts are 86% eÆcient for
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Figure 4.12: We show a comparison of the golden mode misidenti�cation sig-
nals with the very loose muon identi�cation �CL > 1 � 10�4 and a tighter
muon identi�cation requiring: (1) �CL > 0:05 (2) 0 or 1 missing planes (3)
momentum > 4 GeV (4) Iso� < 0:1. Plot (a) has a misidenti�ed kaon and (b)
has at least one misidenti�ed pion.

D+ ! �K��� signal. As shown in Figure 4.12, somewhat looser cuts than this reduce

the fraction of golden mode secondary kaons and pions by a factor of roughly 2.5.

Figure 4.12 includes an additional muon isolation cut5 but has a much weaker (> 4

GeV) momentum cut.

Figure 4.13 compares the background-subtracted charm secondary muon misiden-

ti�cation level with the additional missing plane requirement to the previous misiden-

ti�cation rate in data. These studies show that a variety of cuts can be used to

signi�cantly reduce hadron as muon misidenti�cation without substantial eÆciency

loss.

5This is a cut (ISO�) on the maximum con�dence level that another track matches the muon hit

pattern associated with the given identi�ed muon
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Figure 4.13: Comparison of the charm secondary muon misidenti�cation rate
in data for �CL > 1� 10�4 with and without a cut on the number of missing
inner muon planes
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4.5.5 Conclusions

We hope this section has supported the following conclusions:

1. The inner muon arrays were extremely (> 99%) eÆcient throughout the FOCUS

run. We will assume that they are 100% eÆcient in Monte Carlo simulations.

2. We also believe that our analysis cuts primarily based on the muon con�dence

level (�CL) are well simulated:

(a) The ratio of background subtracted D+ ! K��+� events in data and

Monte Carlo are constant as a function of �CL.

(b) The fraction of D+ ! K��+� with P� > 30 GeV in data is well matched

to that in the Monte Carlo.

3. We have performed several studies of muon misidenti�cation of golden mode

charm secondaries that help in estimating backgrounds to semileptonic signals.

These studies conclude that the data is well simulated using a Monte Carlo with

negligible hadronic punch through and no additional noise from muon halo.

(a) The momentum dependence of the muon misidenti�cation rate for charm

secondaries is reproduced by our zero-noise Monte Carlo.

(b) The zero-noise Monte Carlo reproduces the average number of struck coun-

ters in each muon array as a function of the number of observed 5-chamber

tracks.

4.6 Neutrino Closure

In this section, we describe the method used to estimate the neutrino momentum and

energy using the D+ line-of-
ight. We need this information in order to compute Q2

and the decay angles that are analyzed in this thesis. Figure 4.14 illustrates our basic

technique. In FOCUS, our microstrip system gives us a very good secondary vertex
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Figure 4.14: A cartoon illustrating the method used to estimate the neutrino
momentum from the D+ line-of-
ight

for the K��+�+ system and for tracks that emanate from the primary vertex. The

displacement of the secondary from the primary vertex de�nes the D+ line of 
ight.

Imagine boosting along theD+ line-of-
ight until the ~Pc = ~P (K�)+~P (�+)+~P (�+)

or \charged system" momentum 3 vector lies perpendicular to the boost direction.

We will call this reference frame the \transverse" frame to di�erentiate it from the

actual D+ rest frame. By momentum balance we know that the neutrino must be

equal and opposite to the boosted ~Pc. By a simple invariance argument, we also

know the energy of the neutrino in the \transverse" frame. The P? balance gives

us the line in Figure 4.14. The neutrino energy constraint gives us the circle. The

two intersections of the line with the circle determines the neutrino kinematics in the

transverse frame to within a two-fold ambiguity. We can either compute invariants

by boosting the K��+�+ into the transverse frame, or by boosting the neutrino back

to the lab.

The transverse frame neutrino energy

Before discussing some of the complications of this method, we will discuss the calcu-

lation of the neutrino energy in the transverse frame. We will call the neutrino energy
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Figure 4.15: The primary vertex cone.

in the transverse frame !� and the energy of the charged system E�c . We write ~� and

~c for the 4-vectors of the neutrino and K��+� system. The D+ 4-vector is then ~�+~c.

(~� + ~c)2 = m2
D = m2

c + 2~� � ~c = m2
c + 2!�E�c + 2P 2

? (4.4)

Thus !� =
m2

D �m2
c � 2P 2

?

2E�c
=
m2

D �m2
c � 2P 2

?

2m?

(4.5)

where m? =
q
m2

c + P 2
? (4.6)

We note that E�c = m? since E�2c � P 2
? = m2

c in the � or transverse frame.

Unphysical solutions

Because the DVFREE primary vertex is often badly measured (since it is often pulled

by recoil charm tracks that are improperly included), we often get unphysical solu-

tions. These solutions would have P? > !� and correspond to the line lying outside

of the circle in Figure 4.14. This happens roughly 40% of the time for the cuts used

for our typical D+ ! K
�0
�+�� signals. The best we can do in these situations is

to force such solutions to be physical by moving the primary vertex so that it lies

within the physical cone shown in Figure 4.15. The physical cone corresponds to the

case where the P? = !� | that is the case where the P? line just touches the circle

of Figure 4.14. The apex of this cone passes through the well-determined secondary

69



vertex, its axis is about the well-measured ~Pc vector and it opens upstream of the

secondary vertex. The cone 1/2 angle is determined as the maximum lab angle that

the charged system can make with respect to the D+ momentum, given the known

D+ and the well-measured charged-system mass. When the solution is unphysical,

the primary vertex lies outside the cone, and we move it the minimal distance so it

lies just within the cone boundary. We do this by rotating the unit D̂ line-of-
ight

unit vector about the normal to the plane of Figure 4.15. This rotation axis is along

the cross-product of the initialD+ line-of-
ight and the charged momentum. We thus

have the following topology of solutions. If the primary vertex naturally lies within

the cone, we have two solutions and !� < P?. Otherwise, after the recover operation,

we will have a single solution with !� = P? and will essentially have a modi�ed boost

direction to boost the single neutrino solution back to the laboratory.

Resolving the two-fold ambiguity

In cases where the primary vertex naturally lies within the physical cone, we have the

added chore of choosing one of the two solutions. Like many �xed target experiments

before us, we chose the \backward" hemisphere solution where the component of the

neutrino momentum with respect to the boost direction is negative in the transverse

frame. We believe that either solution is equally likely according to the decay dis-

tribution, since the D+ has zero spin, and thus it carries no information about its

laboratory momentum. Traditionally, groups use the backward hemisphere solution,

since it thrusts the charged system forward in the lab, which is a con�guration more

likely to be accepted in a forward spectrometer.

Self-criticism of the Closure Technique

Although our method of recontructing the neutrino is essentially what previous �xed-

target experiments with microstrip vertexing have done, we suspect there may be

many alternative techniques that o�er better resolution. In particular, one can imag-

ine exploring many alternative closure methods:
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The problem with charm photoproduction is that there are few legitimate pri-

mary vertex tracks. We believe the DVFREE vertex used for the primary vertex in

semileptonic decays is rather poor compared to the DVNUCL primary vertex used

for fully reconstructed charm states. The DVFREE vertex is missing an important

constraint: the \D" seed track that passes through the secondary vertex and is di-

rected against its momentum vector. The seed track is the seed about which the other

tracks nucleate to create a reasonably reliable primary vertex. Without the luxury of

a seed track, DVFREE is much more less constrained and much more susceptible to

making false vertices from true primary vertex tracks and tracks from recoil charm

particles. It is hard to believe that a constraint that the primary vertex lies within

the physical cone would not serve as a powerful tool in arbitrating between potential

tracks to include in a DVFREE vertex. Although we made a few attempts to use

this information, we were not able to see dramatic improvements in resolution. But

we did not make exhaustive studies.

Although the backward hemisphere solution does a somewhat better job at recon-

structing the four kinematic invariants involving the neutrino, it is a close contest.

One can think of many other aspects to consider for a superior arbitration solution.

1. In cases where the only viable primary vertex is close to the physical cone, one

could simply default to the !� = P? solution since the two solutions are close

enough. In such a case, we could use the shift between the two solutions as an

(inverse) weighting factor in incorporating the event in a �t.

2. In some cases, the shift in kinematics is so large, that the event could not

possibly be accepted in the spectrometer for a given hemispheric choice. The

unaccepted solution can then be chosen with a high weight.

3. In some cases, one closure solution may produce a D that has an atypical

momentum relative to the measured production momentum spectrum for fully

reconstructed D+'s. Where a given event's momentum lies relative to the known

spectra can be used as a component to an \arbitration" likelihood.
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4. The two solutions will generally produce di�erent proper times for a given event

with a given vertex separation. This proper time can be converted to an \arbi-

tration" likelihood contribution from the known D+ lifetime.

5. Events with little arbitration likelihood separations, but with large kinematic

shifts can be either severely down weighted or eliminated from the �t completely.

Although it is diÆcult to believe that the neutrino kinematics could not be improved

upon from some combination of the above ideas, we believe that the resolution we

obtain from the traditional method is adequate for the studies summarized in this

thesis. The critical issue is whether the Monte Carlo \understands" the resolution of

the �ve kinematic variables describing the D+ ! K
�0
�+�� decay. This crucial issue

is addressed in the next section.

4.7 Studying Neutrino Closure with D0
! K3�

Several of the studies reported in this thesis require that we understand the resolution

on Q2, the decay angles �v, �`, and the acoplanarity angle �. Because these kinematic

quantities depend on an undetected neutrino, they are poorly measured compared to

the typical 1/10 mradian resolution that FOCUS has for reconstructed charged tracks.

As discussed in Section 4.6, we determine the momentum of the neutrino to a two

fold ambiguity using P? balance about the D+ line-of-
ight. This line-of-
ight is

taken as the ray between the primary and secondary vertex. The secondary vertex

is well-measured with understood errors. The FOCUS primary vertex is not as well

measured in semileptonic events. For example, tracks from the recoil charm particle

are often included with the primary vertex, creating a downstream pull with large

non-Gaussian tails. The primary vertex depends on the primary vertex multiplicity

and momenta spectra | details that cannot be computed from �rst principles but

rather rely on the Pythia fragmentation model.
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4.7.1 The D0
! K3� pion blanking method

We have developed a method for verifying our Monte Carlo models for the resolution

on the four kinematic variables germane to the form factor analysis. Our method uses

the abundant reconstructed D0 ! K3� events as a \surrogate" for the semileptonic

decay D+ ! (K��+)�+�. Our basic method will be to \blank" one of the pions in a

reconstructed D0 ! K3� event, and use the line-of-
ight technique to reconstruct the

\blanked" pion momenta. We can then compare the reconstructed decay kinematics

using the line-of-
ight reconstruction with the very well-measured decay kinematics

from fully reconstructed charged tracks. The distribution of the di�erences of the

line-of-
ight and a given fully reconstructed variable provides a resolution plot for

the given variable. The resolution plot measured directly in \blanking" data can

then be compared to that in the Monte Carlo in order to test the �delity of our

simulation.

Since our only reliable simulation is for charm events (rather than non-charm

backgrounds), it is necessary to subtract the backgrounds. We subtract these back-

grounds using mass sideband weights. Figure 4.16 illustrates the D0 ! K3� sample

and signal and sideband regions used for this analysis.

In order to subtract backgrounds, we make weighted histograms of the resolution

plots where the weight is +1 if the candidate mass falls within the signal regions of

Figure 4.16 and �1 if the mass falls within either sideband.

4.7.2 Resolution Studies

Figure 4.17 illustrates the power and limitations of the line-of-
ight method by com-

paring the cos �v resolution plots in data and MC for \blanked" and background

subtracted D+ ! K��+�+�� events. In this Figure, the \blanked" pion that serves

as the neutrino surrogate is the softest of the three pions. We show the distribution

for 3 primary vertex choices. Figure 4.17 (a) shows cos �v distribution where the

DVNUCL algorithm is used to �nd the primary vertex. This is a cheat in the context
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Figure 4.16: The K��+�+�� mass plot showing the D0 peak and the signal
and sideband regions used for the resolution study.

Figure 4.17: We show resolution plots or the distribution of � cos �v. We show
the di�erence between cos �v reconstructed using the line-of-
ight method on a
\blanked" K3� sample minus the cos �v computed from a fully reconstructed
sample. The \blanked" pion representing the neutrino is the softest pion.
Black is data and red is Monte Carlo. The data and Monte Carlo have been
background subtracted using the sidebands illustrated in Figure 4.16. The
plots use di�erent primary vertices to compute the line of 
ight: (a) The
DVNUCL vertex, (b) the most detached DVFREE vertex, and (c) A ZVRT
vertex chosen to give the D0 a nominal 0o line-of-
ight along the direction of
the incident photon.
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of neutrino closure, since the DVNUCL primary vertex uses the fully reconstructed

D0 momentum, which is unavailable in legitimate semileptonic events because of the

undetected neutrino. DVNUCL and DVFREE are discussed in Section 4.2. Figure

4.17(b) shows the cos �v distribution where the PVRT algorithm is used to �nd the

primary vertex. The PVRT vertex is the most detached of primary vertices found

by the DVFREE algorithm. This is the standard primary vertex used throughout

this thesis. As you can see, the realistic PVRT vertex produces a noticeably poorer

resolution than one could get by using DVNUCL algorithm were that possible. Fi-

nally, Figure 4.17(c) shows what the resolution would be if one used a nominal 0o

line-of-
ight for D0 rather than measuring the D0 line of 
ight from the separation

of the primary and secondary vertex. We call this the ZVRT or Zero degree VeRTex.

Several conclusions are possible from Figure 4.17. One is clearly able to improve

resolution by utilizing the D0 line-of-
ight from the PVRT vertex, but the resolution

is compromised by the poorer primary vertex information available using DVFREE.

Perhaps the most important conclusion is that in all three vertex cases the resolution

plots observed in sideband subtracted data are well matched by the Monte Carlo.

Figure 4.18 shows background-subtracted resolution plots for all 4 kinematic vari-

ables. Again, we \blank" the softest (lowest momentum) pion to represent the missing

neutrino. We use the most detached primary vertex to compute the D0 line-of-
ight,

as usual. The Monte Carlo points are an excellent match to the observed resolution

function in data.

The kinematic resolution is a strong function of the momentum of the missing

neutrino. Figure 4.19 dramatically illustrates this by showing the four resolution

plots where we \blank" the hardest (highest momentum) pion in the K3� candidate.

The most dramatic degradation in resolution is for cos �`. This behavior is also well

modeled by the MC.
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Figure 4.18: We show resolution plots observed in background subtracted data
(black) to those in Monte Carlo (red). The most detached vertex is used for the
time-of-
ight method. The softest pion in the K3� is \blanked" to represent
the missing neutrino. The four plots give the the resolutions of :(a) Q2, (b)
cos �v, (c) cos �` and (d) the acoplanarity angle �.
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Figure 4.19: We show resolution plots observed in background subtracted data
(black) to those in Monte Carlo (red). The most detached vertex is used for
the time-of-
ight method. The hardest pion in the K3� is \blanked" to
represent the missing neutrino. The four plots give the the resolutions of :(a)
Q2, (b) cos �v, (c) cos �` and (d) the acoplanarity angle �.
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4.7.3 Conclusions

We have used a background-subtracted D0 ! K3� sample to study the resolution

on the Q2 and the 3 decay angles using the line-of-
ight method to reconstruct the

kinematics of the missing neutrino in D+ ! K��� events. Our technique involves

\blanking" one of the pions and reconstructing its momentum using the line-of-
ight

technique. We then compare the decay kinematics to that deduced from fully recon-

structed D+ ! K��� events. We have reached the following conclusions:

1. The line-of-
ight technique that uses information on the primary and secondary

vertex is indeed an improvement over a method where the D0 is given a nominal

line-of-
ight along the incident photon direction.

2. The DVFREE vertex gives poorer resolution than the DVNUCL vertex in these

studies. Unfortunately, we need to use the DVFREE vertex in decays with

missing neutrinos.

3. The resolution of kinematic variables (especially cos �`) depends dramatically

on the momentum carried by the neutrino.

4. In all of these studies, the Monte Carlo resolution plots are very well matched

to the observed resolution plots for all four kinematic variables.

4.8 MCFOCUS

The FOCUS Monte Carlo, called MCFOCUS, is a complete and reliable simulation of

the FOCUS experiment. A complete simulated event is produced in four stages. The

�rst stage is the generation, where the photon-gluon fusion process is simulated and

decay modes are chosen as well as masses, lifetimes, and momenta. The generation

handles all the particles created at the radiator and the particles produced from the

photons at the target. The second stage is the simulation, in which the interaction

of the particles with the rest of the experiment is simulated. The primary business
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of the simulation stage is to simulate the \raw" detector responses. Various types

of scattering, both elastic and inelastic, are also simulated as each generated particle

is \traced" through the spectrometer. The third stage is the reconstruction, which

interprets the detector response in order to reconstruct the event. This includes the

track �nding algorithms, the �Cerenkov and muon identi�cation, and so on. The

�nal stage is the analysis or skimming stage during which, for example, charm decay

candidates would be searched for. The same reconstruction code is also used on real

data. MCFOCUS is just the event generator and simulation.

In this section, we discuss the (new) organization of decay modes and describe

the algorithm allowing multiple decay modes to be requested in a simulation.

4.8.1 Particle Dictionary

The MCFOCUS particle dictionary �le contains all the particle properties and decay

modes known to MCFOCUS. The particle properties include the mass, lifetime (or

width), charge, spin, and parity.

The decay modes for each particle are grouped into �nal states. A �nal state

is the set of quasi-stable particles that are the �nal decay products of the charm

decay. Each �nal state is reached through one or more decay paths. Decay paths

will describe the chain of decays, usually involving unstable particles, which lead to

the given �nal state. The distinction between quasi-stable and unstable particles is

an important one. It is somewhat arbitrary, but there are practical rami�cations.

Particles such as the K�(890) are certainly \unstable", but the K+ is not. The �0 is

considered quasi-stable, as well as the K0. K0 decays are handled as if the particle

immediately \decays" into a Ks or Kl, but for the purposes of cataloging �nal states,

the K0 is stable. The general idea is that no quantum-mechanical interference can

arise between di�erent �nal states. It's generally true that particles which can decay

on the strong-interaction time scale would be considered unstable, while others would

not.

A �nal state is simply an unordered list of particles, which are the �nal decay
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products. But a decay path is a more complex object, a tree-like structure where

each particle has a speci�c parent and daughters. In addition, a decay path can

specify a \matrix element" for each parent particle in the decay chain. This allows

for the simulation of decay dynamics, including conservation of angular momentum

and quantum coherence between multiple resonances.

This structure of �nal states and their corresponding lists of decay paths is very

convenient for the event generation, and also allows gradual improvements to take

place. For example, the decay D+ ! K��+�+ was originally represented by a series

of decay paths. This is equivalent to an incoherent description of the decay dynamics

involving various distinct resonances. Later on, the results of a careful Dalitz analysis

were applied, and a matrix element was included which described the fully-coherent

3-body decay. The multiple decay paths were replaced by a single one that referenced

thsi K2� matrix element.

4.8.2 Event Generation

The event generation algorithm in MCFOCUS uses Pythia to produce a list of prod-

ucts from the primary vertex interaction. Imagine this as a black box: give it the 4-

momentum of a charm-producing photon, and it returns the 4-momenta and \LUND"

particle IDs of the resulting particles. Two of these will be charm particles, and MC-

FOCUS handles the decay of these and everything else.

A c�c Monte Carlo is straightforward. We address the more interesting question of

what to do when only certain particle decays are requested. The objective is to provide

the requested decays in such a way that the resulting distributions of all event

properties are identical to what is produced if one ran c�c Monte Carlo and

immediately discarded all events not containing any of the decays speci�ed.

We now will examine algorithms and evaluate their practicality and whether or not

they achieve this objective.

Figure 4.20 shows a schematic for MCFOCUS that illustrates the ideal event

generator for requested decays. This ideal model would not usually be practical,
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Figure 4.20: Flowcharts for MCFOCUS c�c mode and the ideal for speci�ed
decays.

since it may require hundreds or even millions of Pythia events for just a single event

of interest. The Pythia event generator is somewhat time-consuming, so it is necessary

to use it more eÆciently.

Production Rates

It is helpful to describe the average number of decays of a certain type per Pythia

call given a variety of di�erent generation methods.

We will �rst consider the case where one or more decays were requested for each

of two di�erent \stable" charm species. The case of requested decays from a single

charm species is degenerate with this one. More complex cases involving excited

charm states and more than three species will be brie
y discussed later. Consider a

minimal set of charm species: A, B, and C. These could represent particles such as

D+, D0, D+
s , �c, and so on. Two of these, A and B, will be the species involved in

the requested decays. C will represent all other charm species not requested. Each

species will have a set of decay modes we are requesting, represented as A ! � and
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B ! �, having branching ratios BA!� and BB!� .

Pythia's production model will be abstracted as a matrix (G) of probabilities for

each possible pair of charm and anti-charm particles. GAB will, for example, signify

the probability of an A �B event. In a c�cMonte Carlo ofNP Pythia events, the expected

number of decays A! � and B ! � (including charge conjugate modes) are:

hNA!�(c�c)i
NP

=
X

i=(A;B;C)

BA!�(GAi +GiA)

= BA!� [2GAA + (GAB +GBA) + (GAC +GCA)] (4.7)

hNB!�(c�c)i
NP

= BB!� [2GBB + (GBA +GAB) + (GBC +GCB)] (4.8)

For the Monte Carlo where A ! � and B ! � were requested, we would like to

be able to generate these requested decays eÆciently. We ought to be able to produce

these decays with fewer Pythia calls than a c�cMC. The simplest method for improving

eÆciency was implemented in the E687 Monte Carlo, Rogue. Rogue allowed one decay

to be speci�ed. It would generate events through Pythia until either one of the charm

particles produced was of the species requested. It would decay this particle in the

mode requested, and the other one according to its branching ratio tables. For a

particle with a 1% branching ratio, this method is roughly 100 times more eÆcient.

But it is not without drawbacks. We can expand on this to allow multiple requested

decays even for di�erent charm species and correct a bias in the recoil species that

it produces. Being able to specify multiple decay modes can be a great bene�t for

many analyses, especially those investigating speci�c sets of backgrounds, or for those

measuring relative branching ratios.

At the beginning of the job, all requested decays modes are organized into groups

with common parent charm species. All of the decay modes A! � are in one group,

and the modes B ! � in another. The sum of the branching ratios of each group are

computed and symbolized as follows:

SA =
X
�

A! � SB =
X
�

B ! �

Next, each requested species is assigned an acceptance probability, aA and aB for
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owchart for methods (1)-(3).

this example, which is proportional to the total branching ratio S of the requested de-

cays from that species. The charm species with the highest total requested branching

ratio is assigned an acceptance probability of unity, and all other species' acceptance

probabilities are scaled accordingly. For convenience here, we will choose species A

to be the one with the highest branching ratio. Thus,

SA � SB aA � 1 aB � SB
SA

We will now consider various candidate algorithms and evaluate their performance

against equations 4.7-4.8.

Method (1): Consider an algorithm that generates an event from Pythia, randomly

chooses a charm particle to examine, and compares this to the list of charm species

requested. If the chosen charm particle is not any of the requested species, the

event is rejected and a new one is drawn from Pythia. If the chosen particle is a

requested species, a random draw is taken against the acceptance probability a. If

this acceptance challenge is passed, the successful charm particle is \forced" to decay

as speci�ed. The other (recoil) charm particle decays \naturally" | according to the

particle dictionary's branching ratios.
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To help clarify this procedure, Figure 4.21 shows the basic code structure of this

method. The events from Pythia are tested according to these rules:

1. Decide which particle to attempt a match on. 50% chance to choose c, 50% �c.

2. Is the particle the right type?

� A | keep always (aA = 1)

� B | keep with probability aB

� C | reject always (aC = 0)

3. Decay matched particle | x decays into � with probability Bx!�=Sx

4. Decay unmatched particle | x decays into 
 with probability Bx!


With this algorithm, the expected number of decays per Pythia event is:

hNA!�(M1)i
NP

= GAA

�BA!�

SA
+ BA!�

�
+
1

2

BA!�

SA
(GAC +GCA)

+ (GAB +GBA)
�
1

2

BA!�

SA
+
1

2
aBBA!�

�

=
�

1

2SA

�
BA!�

h
2(1 + SA)GAA

+ (1 + SB)(GAB +GBA) + (GAC +GCA)
i

(4.9)

hNB!�(M1)i
NP

= GBBaB

�BB!�

SB
+ BB!�

�
+
1

2

BB!�

SB
(GBC +GCB)

+ (GBA +GAB)
�
aB

1

2

BB!�

SB
+
1

2
BB!�

�

=
�
aB
2SB

�
BB!�

h
2(1 + SB)GBB

+ (1 + SA)(GBA +GAB) + (GBC +GCB)
i

(4.10)

We will consider the �rst of these factors to see the reasoning behind all of them.

GAA

�
BA!�

SA
+ BA!�

�
is the contribution from those events where A �A were generated.

For each event of this type, one of the charm particles will be chosen and will match.

Of those matched particles, BA!�

SA
will decay into �. Each of these events will also

have an unmatched A which will decay into � with probability BA!�.
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Note the prefactors are identical:
�
aB
2SB

�
=
�

1
2SA

�
. Comparing equations 4.9-4.10

with 4.7-4.8, we see two di�erences. One di�erence is the universal scaling factor of�
1

2SA

�
, which actually represents the increase in eÆciency over a c�c Monte Carlo. The

other di�erences are the undesirable factors (1 + SA) and (1 + SB). Note that these

factors are usually unimportant since SA and SC are typically small. Even so, we can

exactly compensate for these by introducing an additional rejection step based on the

unmatched (recoil) charm particle.

Method (2): We can achieve the right decay populations if we include an additional

probability to reject an event based on the recoil charm species. Here, we add a second

acceptance challenge for each event. During this new step, the probability to accept

an event is 1=(1 + Sx), where the recoil particle is x. If the recoil is not a requested

parent (x = C), the event always passes the second rejection step. SC = 0, so

1=(1+SC) = 1. The motivation for this additional rejection lies in the algebra, where

the undesirable terms all miraculously cancel. Again, we will only look at A ! �,

since B ! � is essentially the same except for a few extra factors of aB.

hNA!�(M2)i
NP

= GAA

1

1 + SA

�BA!�

SA
+ BA!�

�
+
1

2

BA!�

SA
(GAC +GCA)

+ (GAB +GBA)
1

2

�BA!�

SA

1

1 + SB
+ aB

1

1 + SA
BA!�

�

=
�

1

2SA

�
BA!�

h
2GAA

+ (GAB +GBA) + (GAC +GCA)
i

(4.11)

These additional rejection factors turn out to exactly cancel the unwanted terms

in equations 4.9-4.10, leaving the correct expected number of decays for each mode.

We are not able to show how every conceivable distribution matches that of a c�c

Monte Carlo, but the fact that this particular distribution matches piece-by-piece

provides a great deal of con�dence.

To test this algorithm, once implemented, we ran various generation-only Monte

Carlos and counted the number of Golden Mode charm decays. One run was a c�c

run with 100,000,000 events, the next two were speci�c Monte Carlos requesting both
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c�c MC: D+ ! K��+�+ 3388485

D0 ! K��+ 4475548

NK��+=NK��+�+ 1:32081� 0:00095

old speci�ed MC: D+ ! K��+�+ 2208493

D0 ! K��+ 2956805

NK��+=NK��+�+ 1:3388� 0:0012

di�erence 11:8�

new speci�ed MC: D+ ! K��+�+ 5812036

D0 ! K��+ 7685748

NK��+=NK��+�+ 1:32238� 0:00073

di�erence 1:3�

Table 4.2: Monte Carlo event generation test results

D+ ! K��+�+ and D0 ! K��+ decays. These decay modes are common, easy to

count, and have very di�erent branching ratios (9% and 3.85% respectively) which

tends to exacerbate any problems. For comparison, we generated one data set with

the original algorithm, which is equivalent to method (1) but with an additional

step. This extra step tried to match the recoil charm particle to the requested decay

if the �rst chosen charm particle failed to match. This was a bad idea since it

introduces some additional biases. Finally, we generated a data set with the new,

correct algorithm representing Method (2). The results, summarized in table 4.2,

show that the proposed algorithm is consistent with a c�c Monte Carlo to at least the

0.1% level. The original algorithm was o� by about 1.5%.
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Chapter 5

D+
! K�0`+�`=K�� relative

branching ratio

In this chapter we present new, precise measurements of the relative branching ratio1

of

BR =
�(D+ ! K

�0
�+� ! (K��+)�+�)

�(D+ ! K��+�+)

There are several motivations for this work. Besides providing useful \engineering"

numbers for other experiments that count charm particles through their semileptonic

decays to electrons or muons, the semileptonic width sets the scale of the a1(0) form

factor and therefore provides a further test of Lattice Gauge calculations.2 Such

tests of the overall form factor scale are particularly relevant to the determination

of CKM matrix element ratio jVcu=Vcsj2, which is related to (for example) �(D+ !
��+�)=�(D+ ! K

�0
�+�).

1We will always report on the relative BR for the K
�0

to decay via K
�0
! K��+. One needs to

multiply the BR we are reporting by a factor of 3/2 to obtain the full D+ ! K
�0
�+� including all

K�0 decays: K
�0
! �K0�

0 as well as K
�0
! K��+

2The absolute K��+�+ branching fraction multiplies the K�0��/K�� relative ratio to produce

an absolute branching fraction for K�0��. This can be converted to a decay width by dividing by

the known D+ lifetime. The width is proportional to the CKM matrix element jVcsj
2, the ja1(0)j

2

form factor and an expression involving phase space integrals over the intensity shape that depends

on the RV , R2 and R3 form factor ratios.
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In the context of this thesis, a principal motivation is to demonstrate that our

Monte Carlo does an adequate job at simulating the acceptance and analysis cut

response for the D+ ! �K��+�. Such a demonstration is a critical ingredient to

the form factor ratio measurement and shows that the cos �V anomaly discussed in

Chapter 8 is not an artifact of backgrounds or mismodeled acceptance. In particular,

stability of the branching ratio over a wide range of cuts of varying eÆciencies and

associated background levels will be demonstrated.

5.1 The SLEPNRM skim

The data used for this analysis were taken from a special SemiLEPtonicNoRMalizing

skim. This skim was designed to select semileptonic decays in the same skim as

\normalizing" hadronic decay modes. The normalizing modes are decays with well-

measured branching fractions such as D+ ! K��+�+, D+
s ! ��+�, and D0 !

K��+.

This skim was principally designed (by the University of Illinois FOCUS group)

to minimize any controllable sources of systematic error. The SLEPNRM skim was

a sub-skim of the global vertex skim. By selecting the numerator as well as the

denominator sample simultaneously rather than relying on separate skims, one avoids

the inevitable complication that the two quotient samples represent slightly di�erent

data sets owing to tape mishandling, processing crashes, etc. We also tried to use

similar analysis cuts for both samples in order to cancel common systematics to the

extent practical. We did not use any cuts requiring a primary vertex, so that neither

DVFREE or DVNUCL were needed at the skimming stage. This allowed for the

possibility of using either primary vertex algorithm (or a new one altogether) at the

time of analysis. For the muon part of the semileptonic states, we simply required

that the muon verticized with another linked track with a con�dence level exceeding

1 � 10�4. For the normalizing D+ ! K��+�+ mode, we required a 3 -track vertex

to the same con�dence level and a broad mass cut of 1:7 < MK�� < 2:1 GeV .
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We also applied fairly soft �Cerenkov cuts to the hadronic normalizing sample: the

kaon track passed a kaonicity cut W� �WK > 1, while the pion passed a piconicity

cut of Wmin�W� > �7. In order to reduce number of candidates to a tolerable level,

we demanded that the D+ ! K��+�+ was either out of the target material by 3 �

or had an isolated secondary vertex.3 The entire SLEPNRM sample resided on less

than 300 GB of tape storage.

5.2 Analysis Cuts

Our lowest-level cuts (baseline cuts) for the K��� sample were the following:

1. A secondary to primary vertex separation of `=� > 5. The primary vertex was

found for both the K��� and K�� sample using DVFREE.

2. The muon was required to be an inner muon with a con�dence level greater

than 5%, a momentum greater than 10 GeV/c, and at most two missing hits in

the inner muon array.

3. The kaon was required to have a kaonicity exceeding 1; the pion was required

to have a pionicity exceeding 1.

4. In order to suppress backgrounds from D�+ ! �+(K��+�) we required �m =

M(K��+��+) � M(K��+�) > 180 MeV=c2. The � kinematics were recon-

structed using the line-of-
ight closure technique described in Section 4.6. This

cut was applied since the D�+ background creates a pronounced re
ection. This

re
ection greatly complicates the K� �t to the K� mass spectra.

5. We required that the event was admitted to the sample via the hadron calorime-

ter trigger rather than less-reliable triggers such as the dimuon trigger.

3The ISO2 cut required that no additional track formed a 4 track vertex with the K��+�+

candidate with a con�dence level exceeding 1%.
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Figure 5.1: We show two D+ ! K
�0
`+�` signals. (a) The K

��+ mass spectra
subjected to baseline cuts. (b) The K��+ mass spectra subjected to baseline,
detachment, out-of-material, and secondary isolation cuts. The RS signal is
plotted in black and WS signal is plotted in red.

The muon selection cuts were fairly sti�, designed to keep muon misidenti�cation

backgrounds below the 0:5% level. Apart from these muon cuts, the baseline require-

ments on the D+ ! K��+�+ normalizing sample were identical to those used for

K���. To further reduce systematics by forcing similar decay topologies, we required

that one of the pions in the D+ ! K��+�+ candidate was a 5-chamber track, since

there was a 5-chamber track requirement on the muon in K��� candidates.

Table 5.1: Additional cuts designed to remove backgrounds

Cut Description Value

is2 secondary isolation CL < 1� 10�3

el primary secondary detachment `=� > 20

OoM Out of Material Zv � Zedge > 3�

In order to assess systematic uncertainties, we analyzed our data using many

di�erent additional cut selections designed to probe a wide range of signal purity

and speci�cally search for known, potential systematic problems. Table 5.1 gives a

summary of those cuts designed primarily to eliminate backgrounds. Requiring more

stringent detachment cuts and/or out-of-material cuts should substantially eliminate
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Figure 5.2: This �gure shows the relative cleanliness of the D+ ! K
�0
`+�`

signal when subjected to the some of the cuts described in Table 5.1. We
plot the ratio of the wrong-sign (WS) to right-sign (RS) K� yield where in RS
events the kaon has the opposite charge as the muon, and in WS events the
kaon and muon have the same charge.

non-charm backgrounds. Our most e�ective background reducing cut was a cut on

isolation of the secondary vertex. Such a cut should reduce feed down from higher

multiplicity charm decays that will generally have extra tracks in the secondary vertex.

We are a bit mysti�ed why the cut is as e�ective as it is in reducing backgrounds in

the data. Figure 5.1 shows the baseline signal and the signal after all three additional

clean up cuts are applied. Figure 5.1 (b) is particularly clean. There is very little

wrong sign signal. When the wrong sign signal is subtracted, there is no evidence for

a nonresonant contribution (or any non-K�(890) resonance) in the K��+ spectrum

in our D+ ! K��+�+� candidates.

Figure 5.2 gives an indication of the signal purity by plotting the ratio of the

K� signal yield in WS over RS events. This yield is based on �tting the K� mass

spectra to a Breit-Wigner line shape over a polynomial background. Our line shape

is described in the next section. Figure 5.2 shows that the cut primarily responsible

for eliminating WS K� backgrounds is the secondary isolation cut.
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Table 5.2: This Table shows the eÆciency (relative to baseline)for the cuts ex-
plored in the K���=K�� branching fraction analysis. We show the individual
eÆciencies as well as the eÆciency as each cut is sequentially applied. Finally,
we show the accumulated product of the cuts.

5.3 Analysis of the line shape

It is important to have an adequate �t to the K�(890) line shape in order to get

an accurate estimate of the D+ ! K��+� yield. Rather than worrying about line

shapes suggested in the literature, we opted to use the line shape that best �ts our

experimental data. In particular we �t to line shapes of the relativistic form :

dN

dm
/ �

(m2 �m2
o)

2 + (m�)2
(5.1)

As an expedient, we did not correct for potential mass dependent eÆciency variation

in these �ts, since our primary use of the �t is event counting.

A variety of forms appear in the literature concerning the mass dependence of the

width �. We �t to the form:

� = �o

�
P

Po

�N
(5.2)

where Po is the momentum of the kaon (or pion) in the K� rest frame when the K�

mass is at its resonant value (mo), and P is the center of mass momentum at a K�

mass of m. In our �ts, mo, �o and the power N are free parameters.4 In certain
4We also allow for an o�set and linear term to model backgrounds that are not eliminated through
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Figure 5.3: This �gure compares our observed RS-WS subtracted K��+ mass
spectra to our �t for two di�erent (clean) signal selections.

treatments the power N is assumed to be 2`+1 = 3 for a spin one K�. The expected

values of the other parameters are mo = 0:896 GeV and �o = 0:051 GeV .

Table 5.3: K� line shape �t parameters

�t mo (MeV) �o (MeV) N Con�d Lev

(a) 894.7 � 0.3 50.1 � 0.86 -0.14 � 0.12 97%

(b) 895.0 � 0.4 51.1 � 1.17 -0.10 � 0.17 6.2%

Figure 5.3 and Table 5.3 show the results of our �ts to the K� mass spectra for

two of our clean K��� spectra. In both cases, we obtain good-to-excellent quality

�ts (judging from the con�dence level deduced from the �2 of the �ts) with width

and mass parameters consistent with the known K� parameters. Figure 5.4 gives

\likelihood" contours for the three shape parameters mo, �o, and the power N . These

contours are plots of �2 as a function of each �t parameter as all other �t parameters

are held constant. In these �ts, the contours appear parabolic with a �2 change of

one unit occurring at roughly 1� away from the minimizing �t parameter.5

the RS - WS subtraction procedure. The illustrated �ts results varied slightly (primarily in width)

when these \background" terms are left out.
5The parabolic contour suggest a nearly Gaussian errors. The shift of one �2 unit by varying a
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Figure 5.4: This �gure shows �2 as a function of the mass, width, and width
power for the �t shown in 5.3 (a). The horizontal bar is 1 unit from the �2

minimum and the 
ats are located at �1�.

Interestingly enough, the power in both cases is consistent with zero | implying

a constant rather than energy dependent width. This result is not expected, but no

experiment has ever approached our statistics and cleanliness for �K�'s produced via

D+ decay. It is possible (albeit unlikely) that the true K� line shape is a p-wave

Breit-Wigner with N = 3, but K� mass dependent eÆciency variation or in
uence

of the D+ ! K��� matrix element transform an essentially p-wave Breit-Wigner

into a nearly perfect observed s-wave line shape.6 Alternatively, the mysterious shape

transformation could be due to interference with the same (s-wave?) amplitude re-

sponsible for the cos �V anomaly described in Chapter 8. Although we have no ready

explanation for the unexpected simplicity in the K� line shape, our �ts indicate that

it is quite adequate for the \counting" purposes used in the present analysis.

given parameter by �1� while holding the other parameters constant implies that it is only weakly

correlated with the others.
6Certainly the D+ ! K��� is known and used throughout this work. The problem is that it has

always been calculated in the quasi-stable limit and the Breit-Wigner line shape has therefore been

\grafted on" as a factor in order to �t experimental data.
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5.4 Methodology

In the process of performing this analysis, we learned that the model used for the

simulation of the hadron calorimeter trigger produced a major systematic error on

the �(D+ ! �K��+�)=�(D+ ! K��+�+) branching ratio. Fortunately we were able

to develop a method (that we will call the ETD method) to control this systematic

to a level commensurate with other systematic sources. We begin by describing

those features of our method common to both approaches before describing the ETD

method.

1. A large Monte Carlo sample is generated containing both D+ ! K��+�+ and

D+ ! �K��+� events in their approximate known branching ratio. In both

cases the known (highly structured) decay intensity is used for the simulation.

The D+ ! �K��+� decay intensity used at generation employed the previous

world average values of the form factor ratios.

2. We then �t the D+ ! K��+�+ mass peak to a Gaussian over a polynomial

background, and we separately �t the K� spectra for right sign and wrong sign

�K��+� combinations to an s-wave Breit-Wigner over a polynomial background.

We next form the ratio of RS - WS subtracted K� yields to the �tted D+ !
K��+�+ yield in both data and MC. These ratios are obtained for every cut

set. Apart from the muon identi�cation and mass di�erence cut, the same cuts

are applied to the K��+�+ and �K��+� candidates.

3. Our measured value for �(D+ ! �K��+�)=�(D+ ! K��+�+) was the ratio

of �K��+�/K��+�+ yields obtained in the data, divided by that in the Monte

Carlo sample, times the assumed relative BR used in the Monte Carlo.

Comparison of the �(D+ ! �K��+�)=�(D+ ! K��+�+) values for the typically

64 cut sets was then used to get an estimate of the systematic error. When this

analysis was initially performed with our default shower library based on GEANT

simulations (SHW), we obtained remarkably consistent relative branching ratios over
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a large range of cuts but obtained values that were considerably higher than the

world average branching ratio of � 0:36. What was more disturbing was that we

found a signi�cant reduction in the branching ratio when an alternative \crude" pa-

rameterization of the hadrometer response was used (CRD). The branching fractions

are compared for 8 cuts in Table 5.4.

Table 5.4: Initial �(D+ ! �K��+�)=�(D+ ! K��+�+) measurements

Cut CRD SHW

base 0.408�0.008 0.475�0.009
iso2 0.434�0.005 0.508� 0.005

el20 0.426�0.007 0.491�0.008
iso2,el20 0.407�0.006 0.509�0.006
OoM 0.454�0.006 0.48�30.007
OoM,iso2 0.422�0.007 0.505�0.007
OoM,el20 0.417�0.007 0.491�0.008
OoM,iso2,el20 0.426�0.007 0.506�0.008

The shower library parameterization produced relative branching ratios that were

typically 15 - 17% higher than those of the crude parameterization. We thought this

shift was unacceptably large given that our statistical error bars were typically 1 {

2%.

5.4.1 The ETD method

It is not that surprising that the HC calorimeter trigger simulation is likely to be a

major source of errors on �(D+ ! �K��+�=�(D+ ! K��+�+), since the semileptonic

state deposits far less energy in the hadrometer than the hadronic state (since in

semileptonic decays neither the neutrino nor the muon will leave much energy). It is

not that easy to obtain a precise model for calorimetric response on charm events. It

is relatively easy to measure the response on unbiased data, but there is no guarantee

that a charm event of a given visible energy will have the same response as unbiased

data of the same energy. For example it is conceivable that charm data may have
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a larger fraction of unobserved Ko
` or neutrons produced in charm events than the

bulk of unbiased photoproduced events (that are dominated perhaps by vector meson

di�ractive dissociation).

The method we developed was to bin our data in bins of a variable that we will call

ETD. ETD is the total visible momentum of the D+ secondaries that are 5 chamber

tracks which extrapolate to the calorimeter.

1. We compute the acceptance corrected yield of �(D+ ! �K��+�=�(D+ ! K��+�+)

within each ETD bin to cancel HC systematics.

2. We can then make (inverse variance) weighted averages of these individual bin

branching ratios in order to preserve statistical accuracy.

In computing the ETD for the semileptonic state, we have considered two ETD

variables: (1) the muon is assigned zero hadronic energy or, (2) a small nominal

(constant) dE=dx energy loss.

The Monte Carlo studies summarized in Figure 5.5 serves to illustrate the validity

of the ETD method by showing the simulated trigger eÆciency for our two models

and the two quotient D+ decay modes. Although the trigger eÆciency is substantially

higher in the CRD simulation compared to that in the SHW simulation, the trigger

eÆciencies for K�� and K��� within the same ETD bin are nearly identical within

a given model. One might expect this behavior since the calorimeter responds to the

energy striking it from the D+ secondaries, along with those from the charm recoil

and primary vertex fragmentation products. To the extent that the recoil charm and

primary vertex tracks have roughly the same momenta for the D+ ! K��+�+ and

D+ ! �K��� events of equal ET, the trigger eÆciency will be the same as evidenced

by Figure 5.5.

The hadronic trigger �res in a narrow range of actual deposited energy at a thresh-

old of about 25 GeV| the value where the triggering eÆciency is 50%. The triggering

eÆciency when expressed as a function of ETD has a much more broad distribution

(shown in Figure 5.5) because of 
uctuations in the recoil charm and primary vertex
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Figure 5.5: We show the HC trigger eÆciency as a function of the total track
momenta from D+ secondaries (ETD) striking the calorimeter system for two
di�erent HC models and our two states D+ ! K��+�+ and D+ ! �K���
(marked ksmn) in the �gure.

cuts, and the large 
uctuations in energy lost in the inner electromagnetic calorimeter

that lies immediately upstream of the hadrometer.

The ETD method has another more subtle bene�t | the elimination of need

for \post-hoc" corrections to insure that the MC matches important variables that

control the two mode's relative acceptance such as the momentum distribution and

multiplicity of the primary vertex. Although our Pythia-based Monte Carlo genera-

tion model did a fairly good job at matching momenta, PT , and the primary vertex

multiplicity and primary track momenta spectra, we have not been able to �nd a per-

fect tune of Pythia parameters to match all observable distributions. In particular,

the tunes that best match momenta spectra tend to predict a higher primary vertex

distribution than observed in background subtracted charm events. One can force

agreement between (for example) the generated and observed momentum spectra for

a given charm particle by a \post hoc" rejection based on keeping events with a prob-

ability proportional to the ratio of the observed to simulated momenta spectra. The
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branching fractions presented in Table 5.4 were subjected to an additional rejection

step based on the product of a multiplicity dependent and momentum dependent

post-hoc rejection. This adjustment to the simulated momenta and primary vertex

distribution shifted the �(D+ ! �K��+�=�(D+ ! K��+�+) value by about 9% in

the SHW simulation and by about 6% in the CRD simulation.

It would be diÆcult to obtain separate post-hoc corrections in every bin of ETD,

but fortunately we found that it was not necessary for variables such as visible mo-

menta. It is easy to understand why. If the Monte Carlo produces the correct decay

kinematics in the D+ rest frame, it should be able to predict the fraction of the D+

energy in the form of 5-chamber tracks and thus the average ETD for a given bin of

total D+ momenta. Turning this relationship around, for a given bin of ETD, one

should have a correct prediction for the average D+ momentum or any other variables

(such as the visible energy) that depends on the D+ momenta and decay kinematics.

Hence to the extent that the decay kinematics are well modeled, one is essentially

forced to get the D+ kinematics correct in each ETD bin. One can then choose to run

the Monte Carlo simulations using Pythia parameters that best model the observed

primary vertex multiplicity to get all relevant variables correct.

Figure 5.6 demonstrates the validity of this argument by showing the average vis-

ible momenta and primary vertex multiplicity in bins of ETD for the D+ ! �K��+�

events for both the CRD and SHW Monte Carlos to the averages observed in back-

ground subtracted data for our base line data sample. These plots are obtained by

averaging the variables weighted by a factor of +1 for RS events and �1 for WS

events for events in the K* region (0:8 < MK� < 1:0 GeV=c2).

Except for the two lowest ETM bins, where signal to noise is particularly poor

in data (see Figure 5.7), there is excellent agreement in the multiplicity and average

visible momentum. Agreement in other D+ ! �K��+� variables such as the total

event multiplicity, and the fraction of the D+ tracks that are 5-chamber (as opposed

to 3-chamber), are equally impressive as are the ETD binned averages for (mass)

sideband subtracted D+ ! K��+�+ candidates.
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Figure 5.6: We compare average properties of the (base line) D+ ! �K���
signal in data and in our two MC models in bins of ETD: (a) Compares the
average visible energy (the energy of the kaon pion and muon) (b) Compares
the multiplicity of the primary vertex.

Figure 5.7: We show K� mass spectra from 4 D+ ! K��� samples selected
with base line cuts in 4 di�erent ETD ranges. a) 0 < ETD < 10 GeV . (b)
20 < ETD < 30 GeV (c) 40 < ETD < 50 GeV . (d) 60 < ETD < 70 GeV .
The RS signal is plotted in black and WS signal is plotted in red.
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As shown in Figure 5.7, the signal to background improves dramatically as the

ETD bin is increased. The lowest ETD bins are also the most sensitive to the trig-

gering threshold model that is designed to �re at a nominal energy of about 25 GeV.

In light of these considerations, we felt the most reliable results were based on the

weighted average of the seven 10 GeV bins that start beyond 30 GeV. The choice of

averaging range will be considered as a source of systematic error.

5.5 Results and comparison to previously published

data

Figure 5.8 compares our measurements of the �(D+ ! �K��+�)=�(D+ ! K��+�+)

relative branching ratio for 32 cut selections using the ETD method to the �ve

previously published measurements from CLEO[17], the Omega spectrometer [18],

ARGUS[19], E687 [7], and E653[20]. The 64 measurements follow by considering

all combinations (25) of the �ve cuts summarized in Table 5.5 as well as our two

(extreme) HC models: CRD and SHW.

Table 5.5: Additional cuts designed to remove backgrounds

Cut Description Value

1 IS2 secondary isolation CL < 1� 10�3

2 EL20 primary secondary detachment `=� > 20

3 OoM Out of Material Zv � Zedge > 3�

4 RN run number 9875 < run # < 13815

5 Wide out of low e� region jxj > 4 cm or jyj > 4 cm

The fourth and �fth cuts in Table 5.5 require explanation. The RN cut restricts the

run numbers to a period with relatively stable trigger and apparatus. In particular,

this data was taken with a functioning and fully installed target microstrip system

and before any crystal radiator running was undertaken7. The Wide cut was a

7The crystal radiator was an attempt to sti�en (increase the average photon energy) by taking
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cut requiring that no D+ secondary track intersected the P2 wire chamber within a

central 8 cm by 8 cm box. We learned that there was a considerable run-dependent

and intensity-dependent eÆciency loss in the central area of the PWC system. We

went through considerable e�orts to model this eÆciency loss, presumably due to

accumulated polymerization damage by forward Bethe Heitler pairs, and photons

interacting in the chamber rather than our experimental target. We include the

Wide cut, with an 8 cm by 8 cm box which is actually considerably larger than the

central chamber damage area, as a systematic check on our eÆciency model.

The average of all 64 relative branching ratio estimates is 0.401. A good repre-

sentative measurement is the CRD version of the third cut set (with IS2 and EL20).

This measurement with its statistical error is:

BR =
�(D+ ! �K��+� ! (K��+)�+�)

�(D+ ! K��+�+)
= 0:406� 0:006

We have selected this value as representative since it (1) produces a number close

to the average of all 64 variants and (2) is a defendable choice from the standpoint

of cleanliness, high statisics, and having a \better" HC model. We believe that the

CRD simulation was indeed the better of the two models since the value for cut set

3 using the ETD method was 0:406� 0:006 and much closer to the unbinned method

CRD MC value of 0:407� 0:006 than it was to the unbinned method SHW MC value

of 0:509� 0:006 shown in Table 5.4.

5.6 Systematics

Calculating systematics errors is more of an art than a science. We have considered

several separate sources of systematic error summarized in Table 5.6. Our systematic

error analysis concludes that uncertainties due to the K� line shape, uncertainties

as to the ETD averaging range, and variation in the results obtained under di�erent

advantage of coherent bremmstrahlung. It was performed at the end of run primarily as a way of

assesssing its advantages for a possible future run of the FOCUS experiment.
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Figure 5.8: Measurements of �(D+ ! �K��+�)=�(D+ ! K��+�+) for 32
cut sets and two HC simulations along with previously published data from
the 6 indicated experiments. The cut set number is binary coded as I =
IS2 + 2 � EL20 + 4 � OoM + 8 � RN + 16 �Wide where (for example) the
variable IS2 equals one when the isolation cut is applied and is zero otherwise.
The cut acronyms are described in Table 5.1

cuts sets are the dominant sources of systematics. Each of these dominant systematic

sources contributed roughly 2.3% errors on our BR of 0.406 for a quadrature summed

total error that was about 3 times the statistical error. In this section we will sum-

marize how each systematic estimate was made. We hope to convince the reader that

we used conservative estimates of the true systematic error.

Table 5.6: Error sources

Description Value

Statistical Error �0:006
Cut variants �0:010
Line shape �0:009
ETD averaging range �0:009
Form factor �0:002
Total sys error �0:016

We evaluated the largest systematic error, the cut set variant, by computing the
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Figure 5.9: Our estimate of the (fractional) systematics on �(D+ !
�K��+�)=�(D+ ! K��+�+) as the cuts are varied. We plot the accumu-
lated sample variance of the branching ratio starting from the �rst two cuts.
A roughly constant relative systematic error of about 2.5% is reached after the
�rst four cut variants are considered. Based on this plot, we attribute a 2.5%
relative systematic error due to cut variation.

accumulated sample variance over the branching ratio obtained over the 64 cut sets8.

We use the sample variance under the assumption that any of the three estimates is

equally probable. This tends to give a pessimistic estimate of the error since it ignores

any statistical 
uctuation between the cut variants. By ignoring these 
uctuations we

are e�ectively assuming that each of the 64 estimates are fully correlated statistically,

while in reality only a small fraction of the sample used to get the 64th measurement

are in the �rst (base line) measurement. The accumulated sample variances are shown

in Figure 5.9. After the �rst eight cuts are included, the sample variance appears to

stablize to a value of about 2.5% of our representative relative branching fraction of

0.406.

The line shape systematic of about 2.3% was estimated by comparing the sub-

tracted K� yield di�erence �xing the width dependent power to N = 0 to that

8The 64 cut sets include the 32 cut sets plotted in Figure 5.8 and an additional cut requiring an

HC energy deposition greater than 60 GeV. This additional cut was used to further check of the

validity of the HC model at the high end of the HC spectra.
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Figure 5.10: We plot �(D+ ! �K��+�)=�(D+ ! K��+�+) as the cuts are
varied for three di�erent ETD averaging schemes. Based on the sample vari-
ance of the 3 averaging schemes averaged over the 64 cut sets considered, we
attribute a 2.2% relative systematic error due to averaging variation.

obtained �xing the power to N = 1 in Equation 5.2 for a variety of cut sets. Again

we believe this somewhat conservative estimate since our �ts typically gave width

powers in the range from N = �0:2! +0:5.

The ETD averaging systematic of about 2.2% was estimated by computing the

average of the 64 cut variant branching ratios using the CRD HC simulation and three

ETD averaging schemes: (a) all ten 10 GeV wide ETD bins (2) the seven highest ETD

bins and (3) the four highest ETD bins. The branching ratio obtained using these

three ETD average schemes are shown in Figure 5.10.

Our �nal systematic was obtained by reweighting our Monte Carlo events by

intensity-based form factor ratios that were �3� from their world avarge values. Eight

such MC reweighting estimates were obtained corresponding to �3� shifts of rv, r2and
r3. The major e�ect (that was very small compared to other systematic e�ects) was

obtained by comparing the relative BR obtained using a MC generated with r2 = 0:99

that is 3 � shifted from its world average value of artoo = 0:78. Although a great

deal of e�ort went into this determination of the form factor systematic error, the
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Figure 5.11: Our measurements of �(D+ ! �K��+�)=�(D+ ! K��+�+)
compared to previously published data from the 6 indicated experiments. Our
value including our systematic uncertaintly is given by the solid and dashed
horizontal lines. Our (fractional) uncertainty including systematic errors is
about 3 times smaller than that obtained in previous experiments.

systematic was negligible even under the conservative assumption of a 3� shift.

5.7 Conclusions

In this chapter, we have produced a new measurement of

BR =
�(D+ ! �K��+� ! (K��+)�+�)

�(D+ ! K��+�+)
= 0:406� 0:006 (stat)� 0:016 (sys)

We compare this result to previously published results in Figure 5.11. Our value

represents a considerable improvement in the precision of this branching fraction over

previous experiments in spite of our rather large systematic error.

Besides obtaining a new measurment of this branching fraction, we believe that

this analysis has established several facts germane to the rest of this thesis.

1. The stability of the relative branching ratio as a function of 1st eight cut sets

shown in Figure 5.8 underscores the validity of the RS�WS background sub-
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traction technique. As shown in Figure 5.1 and 5.2, the OoM and EL20 and IS2

cuts dramatically change the ratio of RS to WS events, and yet the resultant

branching ratios are very consistent from the very dirty baseline sample 5.1(a)

to the very clean sample shown in 5.1(b). We will use the same subtraction

technique in the form factor analysis to follow.

2. The stability of the relative branching ratio for the 32 cut sets shown in Figure

5.8 further suggests that the Monte Carlo does an excellent job at computing

the relative eÆciencies of these various cut sets. This is a worthwhile accom-

plishment given the factor of 6 di�erence between eÆciency for the loosest and

tightest cut sets. In particular, it was re-assuring that the OoM cut results were

consistant with the other results, given that this cut was one of the two pseudo-

detachment cuts employed by the SLEPNRM skim for the K��+�+ reference

state.

3. We found that the K� ! K� line shape was quite consistant with nearly a

perfect s-wave Breit-Wigner. This line shape was that assumed in our MC

model.

4. Although we initially found a considerable di�erence in branching ratios between

the CRD and SHW models in our unbinned analysis for the HC simulation, we

obtained results that were very close to the (unbinned) CRD simulation after

applying the ETD method. Since the ETD bin is designed to be insensitive

to the HC model, we believe that the CRD simulation provides a good HC

simulation model for subsequent analyses.
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Chapter 6

Fitting the Form Factor Ratios

Here we address the problem of �tting the semileptonic decay intensity to measure

the form factor ratios.

We choose to use a binned likelihood �t because it is easy to understand and readily

provides means for assessing goodness of �t. Our goal is to make a measurement with

the least systematic errors possible even if it is at the expense of some statistical

accuracy.

6.1 Kinematic Binning

A binning scheme is employed which segregates each event into a kinematic bin based

on a set of kinematic invariants. The events (decay candidates) in each bin are counted

and the distribution of signal events in all bins are thus measured. The principle of

this �tting technique is to �nd what form factor ratios produce the best match to the

observed bin populations.

This thesis is concerned with four-body semileptonic decays, and the four-body

decay phase space is �ve-dimensional. We choose one of the dimensions to be the K�

invariant mass. This is used for our indicator plots | to count the amount of signal

present in each kinematic bin. Most of the K� mass distribution is the Breit-Wigner,

which can be factored out of the decay rate (Equation 2.5). In other words, to a large
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extent the form factors do not in
uence the shape of the K� mass spectrum. To

measure the form factor ratios, we choose four more kinematic invariants that span

the remaining four dimensions of phase space. These become the binning variables.

The most obvious kinematic invariants to choose are the ones used in describing

the di�erential decay rate: Q2, cos �v, cos �`, and �. We will begin by binning in these

four variables, though other choices are possible. For convenience, we choose bins of

uniform size. Q2=Q2
max is used instead of Q2 because it has a nice upper bound at 1.

Since the decay rate only contains even functions of �, we will bin in j�j instead of

�, folding the full range into 0 � j�j � �.

The technique of measuring the signal events in each bin will be discussed more in

chapters 5 and 7. But it will either involve performing �ts to the vector meson (K�)

mass spectrum or event counting within a certain signal region. For D+ ! K
�0
`+�`,

a wrong-sign sample can be used for background subtraction.

6.2 Las Vegas Reweighting Technique

The idea of this binned �t is to maximize the agreement between the set of observed

bin populations fnig and the set of expected populations f�ig for a given set of form

factor parameters. This is accomplished by having the �t vary the form factor ratios

to minimize the �2 given by Equation 6.1.

�2 =
X
i

(ni � �i)
2

�2ni + �2�i
(6.1)

The anticipated bin population uncertainties, ��i , are estimated either as the uncer-

tainty in the �tted yield, or by Poisson statistics if we use sideband or wrong-sign

subtraction to estimate the yield.

The complication in the procedure is that the expected bin populations for a

given set of form factors, f�ig, must re
ect the considerable di�usion of events into

and out of a given reconstructed bin due to the sizeable errors in reconstructing the

missing neutrino and computing Q2 and the decay angles. Additionally, we must

account for variations from bin to bin in our event acceptance eÆciency. In order
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to properly handle the possible biases and error in
ation, we devised a variant of

the �tting technique developed by the E691[22] collaboration, which we call the Las

Vegas reweighting method.

We would like to use the FOCUS simulation, MCFOCUS, to account for the

eÆciency variation and resolution. The most simple method would be to pick trial

values for the form factors, simulate a large data set with these form factors, apply

the analysis cuts, and duplicate the data analysis. After normalizing the total signal

yield to that of the data, the simulated bin populations become the predicted bin

populations. This ideal method is impractical since it is too time consuming. We

would like the simulated data set to be much larger (say, 20 times larger) than the

data so that counting-statistics in the Monte Carlo do not contribute signi�cantly to

the measurement errors. This data set would take at least a day to accumulate with

our best computing clusters. Since there are typically about a hundred �t iterations

necessary before convergence on the best-�t form factors, this method would take

several months to perform one �t. This is why the Las Vegas reweighting method is

essential, because it allows all �t iterations to be performed with one simulated data

set.

This method exploits the fact that form factors only in
uence the relative inten-

sity for an event with a given set of kinematic variables and not its acceptance or

resolution. Hence as the �t changes its trial form factors, we can compute the new bin

populations by reweighting the previously generated events rather than regenerating

a fresh sample.

We simulate a large data set with no matrix element simulation. For a given

trial value of the form factors, each simulated event is given a weight. This weight

is the full semileptonic di�erential decay rate with the given form factors divided

by the simulated decay rate. In other words, our decay rate is the product of the

phase-space distribution times the matrix element, jMj2. The matrix element is our
weight. The e�ect of this reweighting is to produce the equivalent to a Monte Carlo

sample generated with the given trial form factors.
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6.3 Phase Space Monte Carlo

The details of the Monte Carlo generation become important at this stage. Our

weighting must be proportional to the semileptonic decay rate divided by the gener-

ated decay rate.

We generate the semileptonic decays such as D+ ! K
�0
`+�` in three steps. First,

the mass of the resonance (such as K�0) is drawn according to a Breit-Wigner distri-

bution, with the threshold conditions dictated by the masses of the D and �nal state

particles. Next, the three-body decay (D+ ! K
�0
`+�`) is drawn uniform in phase

space. Finally the two-body decay (K
�0 ! K��+) is simulated isotropically. This

produces the simulated decay rate in Equation 6.2.

d4�

dM2
K� dt d cos �v d cos �` d�

/ MK�

M2
DMK�

MK��

(M2
K� �M2

K�)
2 +M2

K��
2
K

 
1� m2

`

t

!

(6.2)

The weights for each event are given by Equation 2.5, with factors appearing in

Equation 6.2 removed along with any constant prefactors.

6.4 Assessing the Goodness of Fits

With this binned technique, there are several ways we can assess the goodness of �t.

This is essentially a means of determining if the semileptonic decay model is consistent

with the data. We can apply a �2 test, examine various conditional projections, and

check the consistency of particle and anti-particle samples.

We expect the best-�t �2 to follow a chi-square distribution with a number of

degrees of freedom equal to NKB �NFFR � 1, where NKB is the number of kinematic

bins and NFFR is the number of free �t parameters, the form factor ratios. The

additional loss of a degree of freedom comes from the normalization condition. This

allows us to form a con�dence level by comparing the �t's minimum �2 with the

integrated chi-square distribution of the appropriate number of degrees of freedom.

This ought to be a valid test, provided that the statistical 
uctuations in the predicted
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and observed bin populations are Gaussian. As long as the observed number of events

in each bin are large, this condition will be nearly true. If the bin populations became

small, we could try a minimum likelihood �t instead. But in that case we would have

to deal with the statistics of the subtracted wrong-sign distribution as well.

The other consistency checks are simple. Projections of di�erent binning variables

can be obtained by summing the bins in the other dimensions, and this will prove to

be a valuable tool. Often conditional projections, or the projections of a distribution

subjected to a cut on another variable, will be helpful. Since the semileptonic decay

rate for particles versus anti-particles has been a tricky subject historically (fraught

with mistakes), it will be important to check the projections with these split samples

in particular.

6.5 Fitting Simulated Data

We can test our �tting technique for biases by �tting a simulated data set with known

values of rv and r2. On average, we expect the form factor �t to recover these input

values. We use our acceptance Monte Carlo for D+ ! K
�0
�+�� for both purposes,

dividing the data into twenty portions, each roughly the size of one FOCUS data set.

One subset is treated like data. Analysis cuts are applied, and events are counted

when they fall within the signal region of 0:8 < M(K�) < 1:0 GeV=c2. Wrong sign

events are subtracted. We also give each event a weight based on the matrix element

computed with the input values of rv and r2. The remaining sets are used as the

acceptance Monte Carlo for the �t. This process can be repeated twenty times with

each of the subsets treated as data.

Figure 6.1 shows how well the �t results match the input values. There is no

signi�cant bias in the �tting method.

The distribution of con�dence levels for these �ts appears in Figure 6.2. We do

not have enough �ts to judge the uniformity of the distribution, but there do not

appear to be any serious problems.
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Figure 6.1: Fits of simulated data. Black points are the individual �t results
with their errors. The red lines are the averages of these �ts, and dashed blue
lines are the input values. These are hidden underneath the red line but are
centered between the dotted blue lines.
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Figure 6.2: CL distribution of �ts.
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Chapter 7

Analysis of the D+
! K�0`+�`

The decay D+ ! K
�0
`+�` ! (K��+)`+�` is the easiest semileptonic decay to observe

in the FOCUS data. It makes a natural choice for developing the form factor ratio

measurement technique. This decay is relatively abundant as it requires a D+ (one

of the most common charm hadrons) and has a branching ratio of about 3%.

Previous measurements of the form factor ratios for this decay mode are consistent

with each other and agree with recent theoretical predictions. The world average

values for rv and r2 have comparable errors to recent LGT predictions, and have

much smaller errors than the form factor ratios for D+
s ! � `+�`. However, it is

still important to perform this measurement with the FOCUS data. The most recent

LGT predictions are a few years old now, and can be signi�cantly improved upon

at this time. But more importantly, the high level of statistics available for this

decay mode allow for unprecedented consistency checks of the di�erential decay rate

model and the measurement technique. The emphasis in this case will be on making

a measurement with many consistency checks and hopefully low systematic errors,

rather than making the most accurate measurement possible. This emphasis will

in
uence the method of the �t as well as the cuts that are chosen.

In this chapter we focus exclusively on the muon decay mode. The electron sam-

ple is likely to be more diÆcult to understand, and at present the electron particle

identi�cation algorithms and calorimeter simulations have not been as exhaustively
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studied as the muon systems.

We �rst present a set of cuts used in this analysis, establish a somewhat arbitrary

baseline set of cuts, and present the results of a �t with these cuts. This �t shows many

problems, the most notable being an asymmetry in cos �v that is not predicted by the

decay rate model or the FOCUS Monte Carlo. We then examine some noteworthy

backgrounds, show some �t variants and split samples, and look in more detail at

cut responses and other event properties. Throughout all this, our primary objective

is to understand the origin of this discrepancy in the �t. The key to unlocking the

puzzle turns out to be the way in which the cos �v asymmetry varies with the K�

invariant mass. Next we investigate some other possible backgrounds which turn out

not to contribute signi�cantly. At last we come up with a toy model that represents

a broad scalar resonance or non-resonant contribution to the K��� �nal state. The

interference between the scalar contribution and the vector resonance can produce

exactly the kind of asymmetry that we observe in cos �v.

7.1 D+
! K

�0
�+�� Signal

For measuring the D+ ! K
�0
�+�� form factors, the \indicator" plot we use is the

invariant K� mass, in which the K�o appears as a Breit-Wigner over a slowly-varying

background. We call this an indicator plot because the distribution of the signal events

is easily distinguishable from the background distributions, and thus the signal can

be counted. The basic technique for measuring the signal is to ensure clean particle

identi�cation and vertex quality by a set of analysis cuts, and then count the number

of K�0s seen in the K� mass spectrum.

7.1.1 Wrong Sign

The strangeness of the K�0 is evidenced in the charge of its decay products, and this

can be compared with the sign of the muon. In this semileptonic decay, the c quark in

the D meson changes into an s quark, emitting a W+. This decay relates the charge
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of the muon to the strangeness of the K�0. If the charge of the muon is opposite

that of the charged kaon, is is a right-sign candidate, otherwise it is a wrong-sign

candidate. The wrong-sign population is representative of most of the backgrounds

present in the right sign sample, in particular those from events where the muon and

K�0 did not originate from the same decay. This class of backgrounds includes lighter

(non-charm) hadronic events and cases where a muon from the recoil charm decay

was confused with the K�0 vertex. By subtracting the wrong-sign sample from the

right-sign, we obtain a rather clean signal. The extent to which various backgrounds

are subtracted out with this method will be explored later.

7.1.2 Skim

We use the semi-muonic subskim to search for this signal (see section 4.4.3). This is

eÆcient since any reasonable analysis cuts will be tighter than the cuts used in this

skim. The rare exceptions are cases when the 3-track K�� vertex has a much better

con�dence level than the K� vertex. For the baseline cuts used in this thesis, the

skim cuts are about 99.1% eÆcient.

7.1.3 Baseline Cuts

Various types of vertexing cuts are important. The cut on the K�� vertex con�dence

level (DCL) is of primary importance, and is e�ective even at 1%. Raising this

cut to 5% further reduces backgrounds from various processes including those where

the pion was really from a D� decay. The �delity of the simulation also seems to

improve somewhat at larger vertex con�dence levels. Cuts demanding isolation of the

secondary vertex (ISO2 and ISO2ex) are also important to eliminate contamination

from decay modes with higher multiplicity, particularly in this analysis where we do

not fully reconstruct the D. Although there is no evidence of higher multiplicity

semileptonic decays, there are many 4+-body fully hadronic charm decays, and in

these are many possibilities for kaons and pions to be mistaken for a muon. Enforcing
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primary vertex isolation (ISOP) helps to reduce contamination from decays such as

D�+ ! D0�+ ! (K��+��)�
+. The D� decays quickly, so the pion from the D�

should be consistent with coming from the primary vertex. Explicit cuts on the

D��D mass di�erence are more eÆcient and e�ective at excluding these backgrounds,

so primary vertex isolation cuts are largely redundant.

�Cerenkov cuts are used on the kaon and pion tracks. Because kaons are more rare

in FOCUS data, a cut on the kaonicity of the kaon is extremely e�ective, and used as

a baseline cut. A loose pionicity cut can also be helpful, but does not seem absolutely

necessary. Without any pionicity cut, one can observe a small distortion to the K�

mass spectrum from D+
s ! � `+�`. This appears equally in the wrong-sign sample,

so it is easily subtracted away, but it may be a problem when �tting the individual

right-sign and wrong-sign samples.

The main diÆculties in this analysis are that clean muon identi�cation is essential,

and that the K�0 is a fairly broad resonance. The most obvious and threatening

backgrounds are from fully hadronic charm decays where a pion is misidenti�ed as a

muon. Cabbibo-favored decays, such as D+ ! K��+�+ or K��+�+�0 are always

right-sign events when a pion is misidenti�ed. Only Cabbibo-suppressed decays would

contribute to the wrong-sign. To make matters worse, typical charm decays include a

K�0 resonant component which will be indistinguishable from the semileptonic signal.

The fact that pions naturally decay into muons means that in principle we cannot

completely eliminate muon misidenti�cation backgrounds. In practice, we can reduce

these backgrounds to an extremely low level and show that they do not have much

e�ect on the analysis. Cuts demanding a minimum muon momentum, good muon ID

con�dence level, minimum missing planes, and good track �t con�dence level are all

helpful and discussed earlier in Chapter 4.

A variety of cuts based on kinematics are helpful. The minimum D mass (see

section 4.6) is somewhat useful for reducing a wide variety of backgrounds. Cuts

on the minimum visible (K��) momentum helps the signal-to-noise a great deal,

perhaps to reduce backgrounds from light hadron events. An important cut used
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in this analysis is based on the M(D�0) � M(D+) mass di�erence. To compute

this di�erence, we reconstruct the neutrino and suppose that the K��� combination

is really from the decay chain D�+ ! D0�+ ! (K��+��)�
+. Demanding that

this mass di�erence is greater than 180 MeV/c2 almost completely eliminates this

class of events, with very little loss of signal. It is also possible to explicitly reject

backgrounds from D+ ! K��+�+ by assuming the muon track has the mass of a

pion, and rejecting candidates that reconstruct to within 2 or 3 � of the D+ mass.

It is surprising how little of this background makes it through the other cuts, but

since this particular cut is so eÆcient, we use it mostly on principle. Finally, a cut

requiring that the invariant mass of the visible daughters be less than the D+ mass

is necessary to close the neutrino kinematics properly. This turns out to be a very

permissive cut, and can practically be ignored.

The baseline cuts used for this analysis are summarized in Table 7.1. Signal plots

with these cuts applied are shown in Figure 7.1

DVERT CL > .05

`=� > 8

ISO2ex < .001

Kaonicity > 2

Pionicity > -2

CL�(new) > .05

missing muon planes � 1

jP�j > 8 GeV=c

jM (K��)�M (D+)j > 3�

M(D�+ �D0) > 180 GeV=c2

jPK��j > 30 GeV=c

M(charged daughters) < 1:869 GeV=c2

Table 7.1: Baseline cuts for D+ ! K
�0
�+��
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Figure 7.1: D+ ! K
�0
`+�` signal with baseline cuts. The plot on the right is

wrong-sign subtracted, and �tted with a Breit-Wigner (non-relativistic spin-
less) convoluted with a 5 MeV-wide Gaussian plus a linear background. The
�tted signal yield is 32159� 268 events.

7.2 The Form Factor Fit

Before discussing further details of the D+ ! K
�0
`+�` signal, it is helpful to show the

results of the form factor ratio measurements. We will observe some severe problems

with the �t. This provides a context in which to explore possible sources of diÆculty

such as the �delity of the Monte Carlo, the semileptonic decay model, and background

contamination.

7.2.1 Baseline

For the baseline �t, we use three bins in cos �v, cos �`, j�j, and Q2=Q2
max. This makes

a total of 81 bins. Three bins in each of these distributions is just enough to capture

slope and curvature, while keeping the event count in each bin large enough for the

�2 �t technique. We count signal by subtracting wrong-sign events from right sign in

a K�0 mass window from 0.8 { 1.0 GeV=c2. The results of the �t are summarized in

Table 7.2.

These results are diÆcult to believe, because with a �t con�dence level of 10�26,

clearly the model is not �tting the data. The most obvious test is whether or not a
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r2 = 0:754� 0:034

rv = 1:694� 0:051

�2=DOF = 3.727

con�dence level = 2:9� 10�26

Table 7.2: Form factor measurement results for baseline �t

Figure 7.2: Bin populations and predictions for baseline �t. 3 bins in cos �v,
cos �`, Q

2=Q2
max, and j�j for a total of 81 bins. The red points with error

bars are the observed bin populations. The black lines are the best-�t bin
predictions.
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Figure 7.3: �2contours for the baseline �t. The blue cross-hairs are one unit
above the �t minimum, and 1� to the left and right. If the contour is truly
parabolic, and the �t parameters are not strongly correlated, it will intersect
at these points. It evidently does. According to the �tter, there is a 21%
anti-correlation between rv and r2, which is not severe.

valid minimum was found in the rv{r2 plane. Figure 7.3 shows that the �
2 �t function

is well behaved (smooth and parabolic). This can be expected since the predicted bin

populations are sums of weights, and the weights have at most quadratic dependencies

on the form factors. We conclude that the �t is technically correct insofar as a unique

and stable minimum was found, but the height of this minimum indicates that the

model is unable to represent the data with any choice of rv and r2.

7.2.2 Projections

We now address the question \Where in phase space is the mismatch between the

model and data the most severe?" Since the four-dimensional phase space is unwieldy,

we must make projections. The most simple way to form these projections is to add

up sets of bins used in the form factor �t. These are shown in �gure 7.4. With only

3 bins in each dimension, this gives us poor resolution. We also miss a lot of the

behavior of the decay intensity because these projections fail to show the correlations

between the variables. Even so, one severe mismatch is evident here in cos �v.

Figure 7.5 shows a more detailed set of conditional projections with the data over-
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Figure 7.4: Projections formed by integrating over bins orthogonal to the
variable of interest. Agreements between the best-�t prediction and the data
in cos �`, Q

2=Q2
max, and � seem almost reasonable. But there is an asymmetry

in cos �v that is observed but not correctly predicted.
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Figure 7.5: Projections with �ner binning. The red points are the observations,
and black lines are predictions with best-�t form factors. Dashed magenta
lines indicate the prediction with the 2000 world average form factor ratios:
rv = 1:82, r2 = 0:78, and r3 = 0.[2] cos �v and cos �` projections are broken
into events with Q2=Q2

max < 1=2 and Q2=Q2
max > 1=2. The � projection is

divided into three regions of cos �v. The predicted distributiosn are normalized
to the data yield, and this normalization factor is preserved in the splits.
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laid with two predictions | the �tted form factor ratios, and the 1998 world average

values. Here we see a variety of interesting features. There is a lot of information in

these projections.

All of the distributions exhibit behavior that is strikingly similar between the

data and the prediction. This gives us a fair amount of con�dence in the decay rate

expression, and our interpretation of the internal angles. It is particularly reassuring

to see the primary features in the acoplanarity distributions matched so well by

our model. Note that although the integrated acoplanarity distribution in Figure 7.4

contained little variation, these conditional projections show how the decay rate truly

is a strong function of acoplanarity. All the variations and correlations will be \felt"

by the �tter using 81 bins.

By comparing the current world-average [2] predictions with the best-�t predic-

tions, we get some crude sense of how the form factor ratios can in
uence these

distributions. Our measured values are very close to the world average values, so the

di�erences are subtle. The cos �` distribution seems to have the most in
uence over

the form factor measurement, and so the �tter has the most 
exibility to match this

distribution. The degree of concavity of cos �v can be a�ected by the form factor

ratios. But any asymmetry in this distribution can only be accounted for by exper-

imental acceptance e�ects. This leads to the conclusion that our problems in the �t

are best assessed by looking at the cos �v distributions. It is possible that these same

problems are a�ecting cos �` in ways that are masked by the �t, but which bias the

results. For this reason that we cannot trust the form factor ratios from this �t.

We will concentrate on the observed asymmetry in cos �v since it cannot be ac-

counted for by a shift in the form factors. There are also imperfections in cos �` at low

Q2, and the Q2 distribution is also poorly modeled. All of these plots share common

normalization factors, which explains why the � plots do not appear to match. Since

they are divided into regions of cos �v, the asymmetric deviation in cos �v upsets the

proper normalization within each � projection.
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Figure 7.6: Integrated Q2distribution with and without mass terms. The solid
black curve represents this decay rate with no mass terms, and the dashed red
curve includes the mass terms. Both are normalized to unit area. The decay
rate is numerically integrated in �, cos �v, and cos �`. The K� mass is �xed
at the K�0 pole.

7.3 Mass Terms, r3, and pole masses

In the baseline �t, we included the mass terms although we assumed the A3 form factor

was zero. Is it possible that a particular value of r3 could improve the goodness of �t?

Here we address the issues of how the mass terms a�ect the decay rate, how sensitive

we are to r3, and whether or not we can measure the axial and vector pole masses

assumed in f(Q2).

Figure 7.6 shows the decay rate (Equation 2.5) as a function of Q2 (t � Q2),

with and without the mass terms. These terms cause an increase at low Q2, and are

signi�cant in this analysis. One might initially guess that the mass terms, proportional

to m2
`=2t, would constitute only 1% of the total decay rate since the muon mass is

� :1GeV=c2 while 2t � 1(GeV=c2)2. Yet the mass terms are numerous, and have

large multiplicative factors. They amount to 4.5% of the integrated decay rate.

In order to measure our sensitivity to Q2, we repeat the studies performed in Sec-

tion 6.5, allowing all three form factor ratios to be �t simultaneously. For additional

�delity, instead of weighting the input simulation data, we use rejection to sculpt the

matrix element.
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In these �ts, the reported uncertainty in r2 and r3 are within 20% of the uncer-

tainties reported in the baseline �t, so our Monte Carlo sample is roughly comperable

to the FOCUS data. According to the simulated �ts, we �nd that r3 is measured

without bias, but with an uncertainty of �3:1. This seems reasonable. A3 multiplies

roughly one third of Ht, which itself multiplies only about a third of the mass terms.

Since the mass terms account for about 5% of the total decay rate, we expect that

A3 multiplies about 0.5% of the rate, whereas V and A2 will multiply perhaps half of

the rate. Therefore changes in r3 should have only 1% of the e�ect that changes in rv

and r2 would have. Our predicted error in r3 is in fact about 100 times larger than

our errors in rv and r2. It is diÆcult to understand how E791, with about 1/14 of

the K
�0
�+�� signal that FOCUS has, is reportedly able to measure r3 to a statistical

accuracy of �0:33 (only 3 times their statistical uncertainty in rv)[10].

In addition to this, we predict that the correlation between r3 and r2 is large: 86%

positive correlation. By including r3 in the �t, we double the measurement error of

r2. For this reason, and because we are not getting a consistent �t, we do not attempt

to measure r3 in this analysis. Incidentally, when we do attempt this we obtain values

of r3 in the neighborhood of -20, and the goodness of �t is not improved. This is

clearly unreasonable, and must be caused by the �tter struggling to compensate for

a model that simply cannot match the observed data.

It would also be valuable if we could measure the vector and axial pole masses

used in f(Q2). Our sensitivity to the pole masses was predicted a-priori to be around

0.16{0.38 GeV=c2 in a 1995 conference [12]. Again using our Monte Carlo, we predict

that we could measure the vector pole mass to �:56, and the axial pole mass to

�0:27 GeV=c2. With 81 bins, we are only splitting Q2 into 3 regions, and we might

be able to do a little better with �ner binning. Even so, our sensitivity is not good

enough to make this a compelling measurement, and there are severe correlations

to the form factor ratios. rv and MV are 91% correlated, and r2 and MA are 85%

correlated using this 81-bin �t. It is best to leave measurements of f(Q2) to the

simpler pseudoscalar-`-� decays.
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Label Cut Yield RS=WS �2=DOF

tb baseline 27861 4.84 3.73

dcl1 DCL > .01 30036 4.35 3.29

dcl2 DCL > .25 22040 5.34 3.55

ip1 ISOP < .1, no M(D�+ �D0) cut 24795 5.26 4.15

ip2 ISOP < .1 24701 5.29 4.16

is1 ISO2ex < .01 28853 4.58 3.68

is2 ISO2inc < .0001 20587 7.84 4.21

ka1 Kaonicity > 6 20420 5.99 3.54

pi1 no Pionicity cut 28530 3.78 3.66

pi2 Pionicity > 2 20204 5.22 3.52

kpp1 no M(K��) cut 28060 4.83 3.69

mu1 � TRKFIT CL > 1% 23606 7.48 3.41

mu2 mu1, CL�(new) > :15 20948 8.06 3.19

mu3 mu1, CL�(new) > :20, jP�j > 12 GeV=c2 17907 9.07 2.65

ls1 L=� > 12 23851 5.97 4.05

ls2 L=� > 16 20441 6.57 3.87

ls3 L=� > 20 17570 6.87 3.82

mdm1 1.4 < min D mass < 2.2 GeV=c2 23139 8.17 4.17

mdm2 1.6 < min D mass < 2.0 GeV=c2 17612 11.17 3.59

mv1 no M(charged daughters) cut 27897 4.75 3.70

pv1 no jPK��j cut 28173 4.48 3.72

pv2 jPK��j > 50 GeV=c 23444 6.34 3.67

Table 7.3: Fit variants for D+ ! K
�0
�+��.

7.4 Fit Variants, Split Samples

Perhaps the best way to investigate the problems with this baseline �t is to explore

di�erent sets of cuts. We will vary certain cuts, and we will also make several split

samples. If the source of the problem is a distinct background or a performance

mismatch in the Monte Carlo, we ought to be able to identify it with these studies.

Table 7.3 introduces a series of cut variants. These variants loosen and/or tighten

a variety of cuts with respect to the baseline. The minimum �2 for these �ts does

not improve signi�cantly for any of these �t variants. The labels for the cut variants

appear in Figures 7.7 and 7.8.
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Figure 7.7: rv and r2 for �t variants. The blue dashed and dotted lines indicate
the world average values.[2]

In Figure 7.7 we see the stability of the form factor ratios for these variants.

These results are somewhat stable. The minimum D mass cuts and muon cleanup

cuts appear to shift the results noticeably. Additional detachment (`=�) cuts also

appear to a�ect r2.

Figure 7.8 shows the di�erence in the average value of cos �v between the data and

the model. This quanti�es the asymmetry e�ect seen in Figure 7.5. The predicted

asymmetry is entirely due to experimental acceptance. We now see how signi�cant

this di�erence is: 8� with the baseline �t!

The most obvious feature here is the severe asymmetry introduced by a tighter

pionicity cut. In contrast with the baseline cuts (which require a pionicity greater

than -2), this requires positive pion identi�cation in the �Cerenkov system. Moving

from the cut at -2 to +2, we cross the discontinuity at 0 and reject pions that are

indistinguishable from kaons. If the pion momentum is high enough, both kaons and

pions would be fast enough to emit �Cerenkov light, so at high momentum, kaons and
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Figure 7.8: hcos �vi for �t variants. Black points are the data, red points are
the �t predictions, and the blue points are the di�erences between the two.

pions are indistinguishable in the �Cerenkovdetectors. So this positive pionicity cut

e�ectively sculpts the distribution of cos �v. The Monte Carlo simulates this perfectly,

and we see that the di�erence between data and the predicted asymmetry is stable

under these cut variants. The primary isolation cuts also behave in a similar way. If

the pion were nearly at rest in the D+ rest frame, �vwould be roughly �, and in the

lab frame, the pion track would point back to the production vertex. This part of

phase space would be excluded by the primary isolation cut.

It appears that the only variant which tends to alleviate the problem with the

cos �v asymmetry is dcl1, which relaxes the decay vertex requirement from 5% to

1%. By loosening this cut, we may be allowing in more backgrounds such as D�+ !
D0�+ ! (K��+��)�

+. In these events, the pion originates very near the production

vertex. But since the D�+ decay is so near threshold, the pion will not have much

energy with respect to the D0, and so the pion track will come very close to the D0

vertex. However, the pion track will not usually be consistent with the secondary

130



Label Cut Yield RS=WS �2=DOF

tb baseline 27861 4.84 3.73

dc1 D� 14953 5.43 3.06

dc2 D+ only 12908 4.32 1.83

tm1 Q2=Q2
max < 0:5 12926 4.72 3.54

tm2 Q2=Q2
max > 0:5 14935 4.95 1.78

km1 M(K�) < :9GeV=c2 16558 5.17 4.62

km2 M(K�) > :9GeV=c2 11303 4.48 1.69

ph1 physical � closure 11779 3.66 2.04

ph2 unphysical � closure 16082 6.69 3.19

om1 decay vtx in material 5354 2.41 1.29

om2 decay vtx out of material 22507 7.53 3.82

pim1 primary vtx in material 23195 5.69 3.71

pim2 primary vtx out of material 4666 3.02 1.00

np1 � 4 tracks in primary 19271 4.68 2.81

np2 � 5 tracks in primary 8590 5.25 2.10

rn1 run number � 9475 7461 4.73 1.51

rn2 run number � 9476 20400 4.88 3.14

io2 outer muons 5069 3.20 1.28

Table 7.4: Split samples for D+ ! K
�0
�+��.

vertex since it does not truly originate there. These types of backgrounds have a

highly positive asymmetry which tends to mask the real problem.

Next we investigate several split samples. These are described in Table 7.4, and the

�t results are shown in Figures 7.9 and 7.10. The unphysical neutrino closure refers

to events where the primary vertex was outside of the physically-allowed cone, and

was adjusted to be on the cone for purposes of determining the neutrino's momentum

(see Section 4.6). In general, the results are again quite stable but this time there are

some exceptions.

rv changes somewhat when we split on particle versus anti-particle, but this could

be a 
uke. What we are most concerned with is whether or not our conventions for

de�ning the angles are correct, and whether or not there should be some sign-changes

in the decay rate expression. Historically, this has been the subject of much confusion
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Figure 7.9: rv and r2 for split samples.

Figure 7.10: hcos �vi for split samples.
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and errors, and we would see a terrible �2=DOF for one of the �ts if we had interpreted

any conventions incorrectly or made a sign error. We see no evidence of any severe

problems like that, and the conditional projections look generally reasonable (not

shown). Curiously, the D+ sample provides a much better �t. The Q2 distribution is

a much better match for the D+.

The high-Q2 sample provides a better �t, for reasons we will understand later.

Looking at the table, we see that it may be worthwhile demanding the primary ver-

tex be within some material (target segments or silicon microstrips) and the secondary

vertex out of the material. These could be useful clean-up cuts. We get quite inconsis-

tent results for the events that decay inside material, so there may be some signi�cant

background contamination here still. Other split samples produce consistent results.

The most remarkable split is on the K� mass, roughly split above and below

the nominal K�0 mass. Although rv and r2 do not change signi�cantly, the cos �v

asymmetry completely disappears at high K� mass! This is a surprising and helpful

result, since it eliminates a lot of potential explanations for the e�ect and suggests

some sort of �nal state interference phenomenon which we discuss in Chapter 8.

The signal in these �ts is measured by subtracting wrong-sign events from right

sign ones, when 0:8 < M(K�) < 1:0GeV=c2. This is a somewhat narrow band of

mass, and yet we see a large variation within this band. None of the cuts we use

sculpt this K� mass spectrum noticeably, so any hypothetical \ill e�ects" from the

mismodeling of cuts by our Monte Carlo are now all but eliminated from considera-

tion.

7.5 Some Known Backgrounds to D+
! K

�0
�+��

There are a few charm decays which are prominent sources of backgrounds in this

analysis. Understanding the nature of these as backgrounds will be important.
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Figure 7.11: Evidence of the background from D�+ ! D0�+ ! (K��+��)�
+

in data subject to three additional cuts. The upper-left plot is a loose-cut
sample with no e�ective cuts against this background.

7.5.1 D�+
! D0�+ ! (K��+��)�

+

The decay chain D�+ ! D0�+ ! (K��+��) �
+ is a fairly common one, and a

signi�cant background for D+ ! K
�0
�+�� ! (K��+)�+��. The D� decay has a

small phase space, so in the laboratory frame the D0 and �+ trajectories are nearly

collinear. This makes it easy to mistakenly associate the pion track with the D0 decay

vertex. Since the pion is nearly at rest in the D0 rest frame, and the kaon is also slow

in that frame being the most massive decay product, the K� invariant mass is low,

near threshold. This gives us a large right-sign contamination below the K�0 mass

peak in the K� mass plots.

Figure 7.11 shows clear evidence for this background present in the data as a

bump in K� mass, in between threshold and the K�0 resonance. Three di�erent cuts

are applied which are more or less e�ective at reducing this background. The explicit

M(D�+)�M(D0) mass di�erence cut is apparently the most e�ective at reducing the
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Figure 7.12: Response of the simulated signal and background to an explicit
cut on M(D�+) � M(D0). The distributions in black (X's) are wrong-sign

subtracted plots of the simulated D+ ! K
�0
�+��decay. The red distribution

is for the simulated D0 ! K��+�� background process. In the signal sample,
events having a D�+ in the recoil state are removed.

re
ection peak, which would present diÆculties when measuring the K�0 yield with

a �t.

In this analysis, we generally measure the K�0 yield by counting right-sign events

and subtracting wrong-sign events in the K� mass window from 0.8{1.0 GeV=c2.

Figure 7.12 shows simulated D+ ! K
�0
�+�� signal and the D�+ ! D0�+ !

(K��+��)�
+ background separately. Here we see the distribution in K� mass for the

background, and how the M(D�+)�M(D0) mass di�erence cut a�ects it. Although

it would be more apparent with looser cuts than the ones used here, there is a small

tail of this background that survives the mass di�erence cut.

If we relax the DCL and `=� cuts from the baseline, and look entirely in the K�

mass window from 0.8{1.0 GeV=c2, we see a trace of background from the D0 !
K��+�� decay. Comparing the red and blue points in Figure 7.13, we see that the
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Figure 7.13: Properties of the D�+ ! D0�+ ! (K��+��) �
+ background

in the K�0 mass region. We show simulated signal and D�+ ! D0�+ !
(K��+��)�

+ background in four distributions where the di�erence is most
striking. The cuts are relaxed from the baseline cuts: DCL > 1%, `=� >
7, and no D� � D mass di�erence cut. The black distribution is simulated

D+ ! K
�0
�+�� signal, and the blue and red distributions are this background,

ampli�ed 12 times with respect to the signal. The blue distribution has the
additional M(D�+)�M(D0) > :180GeV=c2 cut applied.

mass di�erence cut does little to the background directly under the K�0 resonance.

So when we are not concerned with �tting the K�0 peak, the mass di�erence cut

becomes largely cosmetic. Cuts on DCL, `=�, and primary vertex isolation (ISOP)

will all help to control this part of the background.

It is important to control this background and backgrounds due to muon misiden-

ti�cation in hadronic D0 decays. Because the pion from the D�+ is so slow in the

supposed D0 rest frame, in the K�0 rest frame the pion is always heading in the

direction of the D0. This causes cos �v to peak toward 1 (see Figure 7.13). Since this

creates an asymmetry in cos �v opposite to the anomaly we are concerned with, this

background actually tends to mask the asymmetry problem.
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Figure 7.14: M(K��) mass spectrum. The background contamination from
D+ ! K��+�+ is evident as a small bump on the right side. In black is a
wide, skim-levelK�0 mass cut requiringM(K�) < 1:3 GeV=c2. The red distri-
bution primarily isolates the K�0 resonant part of the spectrum by demanding
0:8 < M(K�) < 1:0GeV =c2. The particular muon cuts used are relevant here:
CL�(new) > .05, missing � planes � 1, and jP�j > 10 GeV=c.

7.5.2 D+
! K��+�+

An obvious source of background contamination is D+ ! K��+�+. If either of the

two pions are misidenti�ed as muons, this could appear as a right-signD+ ! K
�0
�+��

decay. This ought to give us a broad contribution the theK� mass spectrum as well as

a legitimateK�0 bump. According to the 2000 PDG[2], theK�0 resonance contributes

to about 14% of the K��+�+ decay mode.

We can deal with this simply by reconstructing the mass of the D+ under the

assumption that there are no other neutral particles such as neutrinos, and that the

muon track really has the mass of a pion. Because pion in-
ight decay is a common

mechanism causing mis-identi�cation as a muon, we expect that the pion momentum

may be poorly measured. The pion track may have \kinked" while in between PWC

chambers. We expect more than the usual amount of smearing of the D+ mass peak

because one of the pions probably has a bad momentum measurement.

It turns out that we see some, but surprisingly little, evidence of this particular

background. Figure 7.14 shows the M(K��) mass spectrum in FOCUS data. It is

apparent from the �gure that the level of this background is small, and also that it

can be easily removed with cuts on this mass.
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Figure 7.15: Distributions of some well-behaved cut variables and event prop-
erties. The black points are data, blue lines are predictions from a signal
Monte Carlo, and red points are predictions from a background Monte Carlo.

7.6 Cut Response and Event Properties

It will be helpful at this stage to examine in detail the behavior of predicted and ob-

served yields, and hcos �vi as a function of various cut variables and event properties.

Figure 7.15 shows the distributions of some event properties which are matched

well with the FOCUS Monte Carlo. This �gure shows three samples: one from real

FOCUS data, one from a signal simulation, and one from simulated backgrounds.

The signal simulation is meant to indicate the response of pure D+ ! K
�0
�+��

signal, although there may be some impurity. Each of the events in this simulated

data set contain exactly one D+ ! K
�0
�+�� decay. But there is no track-by-track

match to the simulation's \God's Block", so whether each candidate found in these

events represents the correct choice of well-measured tracks or not is indeterminate.

Regardless, this sample is considerably more clean than the real data.
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Figure 7.16: hcos �vi as a function of well-behaved event properties. Again
black, blue, and red are data, signal Monte Carlo, and background Monte
Carlo, respectively.
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It's worth mentioning that in previous experience, matching reconstructed tracks

to the particles in the \God's Block" introduces signi�cant biases. The track-matching

algorithm is not 100% eÆcient, and this eÆciency varies with the kinematics of the

underlying event. For this reason we do not use track matching in this analysis,

but instead rely upon our analysis cuts and wrong-sign subtraction to remove all

backgrounds from a pure-signal Monte Carlo.

The background simulation in Figures 7.15{7.18 is a c; �c Monte Carlo, where

roughly three times the FOCUS data were simulated. The background events are all

those where the decay of interest, D+ ! K
�0
�+��, was not simulated. This sample

is normalized to the data by a factor which equalizes the measured yields of the data

and full c; �c Monte Carlo.

The results in Figure 7.15 are encouraging. There is a dip evident in the center of

the muon X-intercept distribution. This is due to an ineÆciency in the Proportional

Wire Chambers (PWC's) near the center | the e+=e� pair region. The ineÆciency

is thought to be caused by combined e�ects such as polymerization of the wires and

voltage sagging where the hit rate is high. If a muon fails to �re enough of the wires,

its track will not be reconstructed. These e�ects have been included in the simulation,

as is apparent from the plot.

There is still a considerable amount of background present in the wrong-sign-

subtracted signal, and it is evidently diÆcult to remove it with any of these cuts.

The distribution of the right-sign-excess background events is noticeably di�erent in

the jP�j and M(K��) distributions but broad in both cases.

Looking at the way hcos �vi varies as a function of these event properties, we learn
more about the anomaly. Figure 7.16 shows these behaviors. The �rst thing to note

is how hcos �vi is, on average, positive for the simulated backgrounds. From this we

learn that our anomalous cos �v asymmetry is an even greater e�ect than is observed

with the baseline cuts, since it is partly canceled out by backgrounds!

In the reduced-proper-time plots, we see some variation in the background that

suggests two contributions. One background source must be short-lived and have
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a large positive cos �v asymmetry, while another background contribution is longer-

lived and has little asymmetry. We also see a variation of this background in the

minimum D mass distribution.

Figure 7.17 shows distributions of event properties that are apparently not well-

simulated. The `=�` (detachment) distribution does not match the predicted distri-

bution below 20, which is probably due to a more severe mismatch in the expected

detachment uncertainty, �`. The poor �` modeling is likely to be the result of a se-

vere mismatch in the primary vertex multiplicity distribution. The primary vertex

multiplicity is diÆcult to simulate accurately, because it is controlled by production

dynamics which are not entirely understood. The present distribution is about the

best that can be achieved by adjusting free parameters in the Pythia production

model, while maintaining a reasonable match to the D momentum spectra. Looking

at the hcos �vi plots, we see that for �` and the primary vertex multiplicity, the signal
Monte Carlo and data track each other well (with a constant o�set). This implies that

while the failures in these aspects of the FOCUS Monte Carlo may contribute slightly

to the systematics of the form factor measurement, they have nothing to do with the

cos �v anomaly. By examining the plot of hcos �vi versus `=�, we can better under-

stand where some of this background is coming from. Apparently the anti-D� cut did

not completely eliminate backgrounds from the decay D�+ ! D0�+ ! (K��+��) �
+,

as this short-lived background with high hcos �vi is plainly evident in the background
Monte Carlo and in the data. This also explains the behavior in Figure 7.8, starting

with the baseline �t and increasing `=� to 12, 16, and 20 in ls1, ls2, and ls3.

The DCL distribution shows that, although the distribution is not perfectly sim-

ulated, the simulated backgrounds follow the signal distribution well when DCL >

5% or so. One should expect the backgrounds from D�+ ! D0�+ ! (K��+��)�
+

to tend toward low DCL, since in these events the pion originates in the production

vertex, not the D+ decay vertex.

The poor match to the muon CL distribution is unfortunate, but this does not

create a bias in the analysis, because the CL distribution is quite uniform across the
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Figure 7.17: Distributions of some problematic event properties. \Decay vtx
OOM" is the distance between the decay vertex and the nearest upstream face
of material. If this is negative, the decay occured inside the material. hcos �vi
versus these properties is also shown.
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Figure 7.18: K� mass distributions and cos �v asymmetry as a function of
K� mass. The \no D� cut" plots have no cut on the M(D�+)�M(D0) mass
di�erence and only a 1% DCL cut as opposed to the 5% cut of the baseline.
This allows backgrounds from D�+ ! D0�+ ! (K��+��)�

+ to come in at
low K� mass. The black points are data, blue lines are signal Monte Carlo,
and the red is a background Monte Carlo.

entire aperture in both data and Monte Carlo. We see some fully-hadronic back-

grounds at low CL�, below about 5%.

Figure 7.18 is one of the best tools with which to understand the anomalous

cos �v asymmetry. The data shows the rapid development of a negative asymmetry

beginning at the K�0 pole. The prediction in blue seems to exhibit this same trend

except it starts at a much lower K� mass. This turns out to be misleading, since at

this point the prediction is only showing the e�ects of the M(D�+) �M(D0) mass

di�erence cut. Without this cut, the data still dips down, yet the prediction becomes


at at nearly zero asymmetry. With no anti-D� cut, both data and background

Monte Carlo show a signi�cant bump to the left of the K�0 resonance, where hcos �vi
approaches +1. Section 7.5.1 explained this background in detail.
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With these studies, combined with the cut variant and split sample �ts, it is clear

that the asymmetric anomaly is not an artifact of the spectrometer acceptance or un-

matched sculpting due to a mis-modeled cut. We also see that no known background

processes are responsible.

The remaining possible explanations for our cos �v asymmetry are either a failure

with the decay rate model, or a new (and not rare) background. Since the anomaly is

stable against tightening particle ID cuts and lifetime, this mystery background must

be a new D+ decay with a kaon, pion, muon, and neutral daughters.

7.7 D+
! K

0
1(1270)�

+��

The decayD+ ! K
0
1(1270)�

+�� can reach the �nal statesK
��+�0�+�� andK

�K0�+�+��.

A signi�cant fraction of these �nal states will contain the K�0 resonance. The neutral

meson will not be detected, and so these events would pass all of the usual vertexing

and particle ID cuts. We should expect the visible mass distribution of these events

to be lower than the signal events because of the missing momentum.

There are no experimental observations of D+ ! K
0
1(1270)�

+��, but two limits

have been measured. One is �((K��+)�0�+��)
�(K��+�+��)

< 0:052 at 95% CL assuming a phase-

space D+ ! K
�0
�0�+�� decay [8][3]. The other is �(K

0

1(1270)�
+��)

�(K
�0
�+��)

< 0:78 at 95%

CL [6]. The �rst of these roughly implies a limit of �(K
0

1(1270)�
+��)

�(K
�0
�+��)

< 0:873 because

BR(K0
1(1270) ! (K+��)�0) = :045 � :011 [2].1 One theoretical prediction from

quark wave-function models is that �(K
0

1(1270)�
+��)

�(K
�0
�+��)

� 0:06 [9].

We consider this as a background because it appears to have the potential to

create a bias in the form factor measurement. In fact, our simplistic models of the

decay show that it would contribute a small negative bias in cos �v, so it has the

potential to account for the observed anomaly. We present here a search for the

decay mode D0 ! K�
1 (1270)�

+�� ! (K��+��)�+�� and infer from this an upper

1The E687 measurement at 1� is 0� :026. A Baysian 95% con�dence interval contains branching

ratios less than 0.873.
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Figure 7.19: Some properties of simulated D+ ! K
0
1(1270)�

+�� background.
The black crosses represent the data, red diamonds a full c; �cMonte Carlo, and

blue squares represent the D+ ! K
0
1(1270)�

+�� Monte Carlo. Both Monte
Carlos are normalized to equal yield in the K�0 resonance region.

limit on the branching ratio for D+ ! K
0
1(1270)�

+��. This limit excludes it from

further consideration as a background.

7.7.1 Simulated Signal

We simulate the inclusive decays D+ ! K
0
1(1270)�

+��, and apply our analysis cuts

for D+ ! K
�0
�+��. This produces the signature of D+ ! K

0
1(1270)�

+�� as a

background. Because we do not have a proper model for this axial-meson semilep-

tonic decay, we simply draw a K0
1 (1270) mass according to a (spinless) Breit-Wigner,

draw the 3-body decay in uniform phase space, and subsequently decay the K0
1 (1270)

according to its measured sub-structure and branching ratios.

Figure 7.19 shows some distinguishing properties of this simulated background

compared with the observed data and a Monte Carlo (without any K0
1(1270)). The
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K� mass distribution shows a small K�0 resonant component, but is predominantly

a more broad distribution. If a small amount of this background were present in the

data, the resulting distortion to the line shape may go unnoticed. The more alarming

distribution is hcos �vi as a function of K� mass. Here we see a behavior that closely

mimics the data, although the asymmetry is not much stronger than the observed one.

At this point the K0
1(1270) decay modes become candidates to explain the anomaly,

and must be studied further.

The visible mass distribution is essentially the only other property that distin-

guishes the K0
1 (1270) background from the actual signal. (The minimum D mass

response is similar, since the two are highly correlated.) Here we see a background

distribution that quite dissimilar from what is seen in the data, and this creates initial

doubts about the existence of a signi�cant contamination from this background.

We can go one step further and use the predicted hcos �vi as a function of K�

mass, in conjunction with the observed hcos �vi discrepancy, to predict how much

D+ ! K
0
1(1270)�

+�� must be present to fully explain the anomaly. We do this in

bins of K� mass, and re-create what the mass distribution for the background would

be, then compare it with the distribution in Figure 7.19 A.

Alternately, we can rely instead on the simulated K� mass distribution of the

K0
1 (1270) background. For various trial values of the D

+ ! K
0
1(1270)�

+�� branching

ratio we can use this to reconstruct what the hcos �vi as a function of K� mass ought

to be. Next, this can be compared to Figure 7.19 B.

The mathematics behind this is straight forward. Let A be hcos �vi, and Y be the

yield in each bin of K� mass. We will use the subscripts O, S, and B to refer to the

observation (data), K�0 pure signal, and background (from K0
1(1270)), respectively.

Then:

AO =
ASYS + ABYB

YB + YS
= AB

YB
YO

No asymmetry in cos �v is predicted for pure signal, so AS = 0. This relation can be

solved for either YB or AB.

Figures 7.20 and 7.21 show the �rst cross-check (using YB = YO
AO
AB

), which is
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K

0
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Branching ratios

�
�(D+!K

0

1(1270)�
+��)

�(D+!K
�0
�+��)

�
are assumed for the various curves of

0.25, 0.5, 1, 2, and 4. The black curve is for reference, the results from the
simulation (also shown in Figure 7.19).

again predicated on the validity of hcos �vi as a function of mass for this background.
Because the D+ ! K

0
1(1270)�

+�� decay has been simulated without taking into

account any form factors or angular momentum correlations, we have some reason to

suspect inaccuracies in the hcos �vi. But if there is any credibility to our simulated

hcos �vi versus K� mass at all, then it is obvious that this decay mode alone cannot

hope to account for the anomaly. Not only does the inferred k� mass distribution look

entirely di�erent from the simulated one, but the amount of D+ ! K
0
1(1270)�

+��

needed to entirely explain the anomaly is outrageous. As mentioned earlier, previous

searches for this decay mode rule out the possibility of branching ratios in excess of

� 1.

Because ourD+ ! K
0
1(1270)�

+�� simulation does not include any of the dynamics

of angular momentum conservation or form factors, it is easier to believe that the K�

mass distribution is accurately simulated, while cos �v distributions are not. We
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Figure 7.23: Normalizing �ts for D0 ! K�
1 (1270)�

+�� ! (K��+��)�+��
search. These are measurements of the yield of D+ ! K

�0
�+�� for data

and for Monte Carlo. Their ratio determines the proper normalization of the

D+ ! K
0
1(1270)�

+�� Monte Carlo.

can use this mass distribution to predict hcos �vi for our mystery background by the

relationAB = AO
YO
YB
. Regardless of the internal dynamics of theD+ ! K

0
1(1270)�

+��

decay, hcos �vi cannot be larger than 1. According to the �gure, we require that

�(K
0

1(1270)�
+��)

�(K
�0
�+��)

> 0:5.

7.7.2 Search for D0
! K�

1 (1270)�
+�� ! (K��+��)�+��

Our most conservative branching ratio requirement of �(K
0

1(1270)�
+��)

�(K
�0
�+��)

> 0:5 is not

favored by quark model predictions, but is not quite ruled out by previous measure-

ments. Here we present a somewhat informal search for the related decay D0 !
K�

1 (1270)�
+�� in FOCUS data. This decay mode will be easier to search for, and

is related to D+ ! K
0
1(1270)�

+�� by isospin. The K�
1 (1270) can decay into the

all-charged �nal state K��+��.

The technique used here is to search for both D+ ! K
�0
�+�� ! (K��+)�+��

and D0 ! K�
1 (1270)�

+�� ! (K��+��)�+�� in FOCUS data and a Monte Carlo.

In the Monte Carlo, we simulate both inclusive decay modes D+ ! K
�0
�+�� and

D0 ! K�
1 (1270)�

+�� with equal absolute branching fractions. By isospin symmetry,
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DCL > .01

`=�` > 8

ISO2ex < .001

jP�j > 10 GeV=c2

CL�(new) > .05

missing muon planes � 1

Kaonicity > 2

Pionicity (both pions) > 1

Table 7.5: Cuts used in the search for D0 ! K�
1 (1270)�

+�� !
(K��+��)�+��

Figure 7.24: D0 ! K�
1 (1270)�

+�� ! (K��+��)�+�� �tted signals in data
and Monte Carlo. The solid red lines in both plots are �ts to the signal.
The broken line underneath the signal in the Monte Carlo �t represents the
background determined by the �t, which appears reasonable. The blue curve
in the data represents a best-�t linear background plus a Breit-Wigner with a
�xed yield of 192 events.
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we expect the widths of these decay modes to be equal, but the absolute branching

fractions will di�er by the ratio of the D+ and D0 widths. Present measurements of

the lifetimes give us the ratio �(D0)=�(D+) ' 1051 fs=413 fs ' 2:54.

Figure 7.23 shows the �ts to the normalizingK�0 signal. The Monte Carlo sample

happens to be slightly larger than the FOCUS data set, by a factor of 1.056.

Figure 7.24 shows the D0 ! K�
1 (1270)�

+�� ! (K��+��)�+�� signal, which we

do not see in the data. The cuts we use are shown in Table 7.5. Our sensitivity at

2� (about 95% CL) is 192 events. If the absolute branching fractions were the same�
�(D0!K�

1
(1270)�+��)

�(D0)
= �(D+!K

�0
�+��)

�(D+)

�
, we would expect to see 7796=1:056 = 7383

events. Instead we can set a limit:

�(K�
1 (1270)�

+��)

�(D0)
' �(K

0
1(1270)�

+��)

�(D+)

�(D+)

�(D0)
< :026

�(K
�0
�+��)

�(D+)

�(K
0
1(1270)�

+��)

�(K
�0
�+��)

< 0:066 (95% CL)

We call this an informal limit because we have not performed any analysis of

systematics. The �t technique for the signal could be easily improved. For example,

one could �rst �t a background shape only, ignoring the signal region. Then one

would freeze the background shape and �t exclusively for the yield. Other statistical

techniques could also be used with less bias and more reliable con�dence intervals.

These re�nements could perhaps change the limit by as much as �50%, but for the
limited application of the analysis here, the conclusion would remain the same.

This limit of 0.066 is far below the required level of 0.5 at which backgrounds

from K0
1 (1270) could conceivably produce the cos �v anomaly. Our informal limit is

an order of magnitude better than the present limit, and we were tantalizingly close

to an observation if this branching ratio prediction of 0.06 is true. But our single-

minded conclusion is that the K
�0
�+�� decay is not a relevant background in the

form factor ratio �ts.
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Figure 7.25: We plot the cos �v projection expected for the world average form
factor ratios displayed in the �gure. This is overlayed with a parabolic �t.

7.8 Deconvolution of the cos �v distribution

As a way of exploring our problems with the form factor �ts, we developed a method

to correct the observed D+ ! �K��+� decay distributions for both acceptance and

resolution smearing. In particular, we are interested in whether or not a corrected

cos �v would be an even function as theoretically expected for any set of input form

factors. Figure 7.25 illustrates the expected cos �v for the World Average form factors.

The distribution is well represented by a parabola with no term that is linear in cos �v.

We will show that the corrected cos �v distributions obtained in our background-

subtracted data have a statistically strong linear term in cos �v that contradicts the

expected decay distributions. We have spent a great deal of time making sure that

this e�ect is not due to Monte Carlo or background problems. Perhaps our most

incisive demonstration is the stability of the D+ ! �K��+�=K��+ branching ratio

discussed in Chapter 5.

The nature of this linear term will be further explored in Chapter 8, where possible
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explanations in terms of interesting new physics will be o�ered.

7.8.1 Deconvolution Method

In this section, we describe a method for using a Monte Carlo simulation to \unfold"

the measured distribution and obtain the underlying distribution that one would

see in the absence of acceptance or resolution smearing. We consider the example

of deconvolving the projection describing d�=d cos �v, where one integrates over the

other kinematic variables such as Q2, cos �`, and the coplanarity angle �. We would

begin by running a Monte Carlo simulation based on a default set of form factor

ratios. With this we construct the correlation matrix, illustrated by Equation 7.1,

that correlates the number of events NGj
Mi generated in the jth cos �v bin to the events

that appear in the ith measured cos �v bin.0
BBB@
NG1
M1 NG2

M1 NG3
M1

NG1
M2 NG2

M2 NG3
M2

NG1
M3 NG2

M3 NG3
M3

1
CCCA (7.1)

For notational simplicity, we illustrated this matrix with a 3 � 3 form but will use

more bins when confronting actual data.

�j =
d�

d(cos �v)j
�cos �v (7.2)

Let us assume that the matrix given by Equation 7.1 was predicated on a Monte

Carlo based on the underlying partial width cos �v distribution that we write using

the notation of Equation 7.2. The �j factors are valid for a given set of assumed

form factor ratios. If the true integrated partial widths were ~�j rather than the �j

values assumed in the Monte Carlo, we would expect via a simple scaling argument

the measured bin populations ~Mj given by Equation 7.3.0
BBB@

~M1

~M2

~M3

1
CCCA =

0
BBB@
NG1
M1=�1 NG2

M1=�2 NG3
M1=�3

NG1
M2=�1 NG2

M2=�2 NG3
M2=�3

NG1
M3=�1 NG2

M3=�2 NG3
M3=�3

1
CCCA

0
BBB@
~�1

~�2

~�3

1
CCCA (7.3)

There is also an implicit assumption that the resolution and eÆciency essentially

\factorizes", in the sense that the matrix given by Equation 7.3 is independent of
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the assumed form factor. Presumably a necessary condition for this is that we are

in the limit of suÆciently small � cos �v such that the eÆciency and resolution do

not appreciably change over the bin width. But perhaps additional assumptions are

required to insure the validity of Equation 7.3, and so we will want to test the method

using pseudo-\data" and \MC" samples generated with disparate form factors.

If the matrix of Equation 7.3 is indeed independent of form factor assumptions to

a precision comparable to our statistical error, we can simply invert it as shown in

Equation 7.4 to reconstruct the underlying cos �v distribution from the measured bin

populations.

0
BBB@
~�1

~�2

~�3

1
CCCA =

0
BBB@
NG1
M1=�1 NG2

M1=�2 NG3
M1=�3

NG1
M2=�1 NG2

M2=�2 NG3
M2=�3

NG1
M3=�1 NG2

M3=�2 NG3
M3=�3

1
CCCA
�1 0

BBB@
~M1

~M2

~M3

1
CCCA (7.4)

Figure 7.26 illustrates four of the distributions used to obtain the matrix given in

Equation 7.1. It shows the population in ten measured bins in cos �v, for events in

the four indicated slices of generated cos �v. The smearing in the distribution is quite

evident. This correlation matrix is then converted to the 10 � 10 matrix (illustrated

by Equation 7.3) by dividing the elements by the integral of d�=d cos �v over each of

the ten cos �v bins. The inverse of this matrix forms the deconvolution matrix that

can be used to deconvolve experimental data.

Figure 7.27 provides a Monte Carlo test of the deconvolution method by showing

a deconvolution of simulated cos �v and cos �` distributions. In this test, the decon-

volution matrix was performed using a substantially di�erent set of form factors than

those used for the simulated \data". The two overlayed points represent deconvolu-

tions of the distributions for a \loose" set and \tight" set of analysis cuts. The tighter

cuts eliminate roughly two-thirds of the event sample passing the looser cuts. The

cut sets are compared in Figure 7.28.

Figure 7.27 con�rms the method in several important ways. Both the simulated

tight and loose cut sets unfold to the consistent distributions for both cos �v 7.27

(Figure 7.27 (a)) and cos �` (Figure 7.27 (b)), even though there is a large di�erence
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Figure 7.26: Here are four distributions that show the number of MC events
that reconstruct in a given 0.2 width bin of cos �v. (a) shows the recon-
structed cos �v distribution for events that were generated with cos �v <
�0:8. (b) shows the reconstructed distribution for events generated with
�0:6 < cos �v < �0:4. (c) shows the distribution for events generated with
+0:4 < cos �v < +0:6. (d) shows the reconstructed distribution for events
generated with +0:8 < cos �v.
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Figure 7.27: Monte Carlo tests of the deconvolution method for both (a)
cos �v and (b) cos �`. The black points with error bars are unfolds using
simulated data subjected to loose cuts. The red points with error bars are
unfolds using simulated data subjected to much tighter cuts. The red curves
are the generation level distributions with the same form factors used in the
simulated data. The blue curves are the generation level distributions used
to generate the (deliberately mismatched) MC simulation used to unfold the
data. The form factor ratio used for the \data" and the unfold MC are given
in the table in Figure (b).
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Figure 7.28: This table gives a summary of the cuts used for the tight and
loose cut sets. The bottom of this table gives the eÆciency of the two cuts
relative to data passing the FSAA subskim.

in the underlying acceptances. In both cases, the unfolded data is consistent with the

d�=d cos �v and d�=d cos �` projections appropriate to the form factors consistent with

the form factors used for the simulated \data" rather than the signi�cantly di�erent

set used for the correction MC.

7.8.2 Deconvolution Results

For the data, we perform the deconvolution given by Equation 7.4 using measured

yields ~Mi, determined by subtracting the WS event yield with 0:8 < M(K��+) <

1 GeV from the RS yield over this mass range. 2

Figure 7.29 shows the results of the cos �v deconvolution applied to data for the

loose cut (a) and tight cut (b) described in Figure 7.28 along with a parabolic �2

�t of the result. The data is wrong-sign subtracted and deconvoluted using a Monte

Carlo with world average form factor ratios. The table gives the coeÆcient and error

of the term linear in cos �v along with the con�dence level of the �t. The �t �nds a

2There is also a nifty way cast Equation 7.4 as a weighting factor and perform the deconvolution

by �tting deconvolution weighted histograms. We did feel it was necessary to use this extention for

this analysis.
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Figure 7.29: We show the result of the deconvolution applied to (a) loosely
cut and (b) tightly cut data along with a parabolic �t. In both cases there is
a term linear in cos �v at roughly the 5 � level. As shown in Figure 7.25, the
cos �v distribution should be an even function irrespective of the form factor
ratio. The tables give the linear term, its error, and the con�dence level of the
parabolic �t.

linear term (not expected in the theory) at the � 5� level in both cut selections. We

also note that the two cut sets do not unfold to exactly the same level. We believe

this is due to the problems with the HC simulation that are discussed in Chapter 5.

The deconvolution was done with the default HC simulation at the time (the so-

called SHW simulation). We now believe that the CRD HC model is a much better �t

to the data. The tight sample that includes a cut on visible momentum will respond

incorrectly relative to the loose sample in this MC run with this rather poor HC

model. But the HC simulation model is expected to have very little in
uence in the

cos �v shape which is consistent between Figure 7.29(a) and (b).

7.8.3 Summary

We have presented a method for unfolding the observed angular distributions in data

for eÆciency and the poor resolution in the variables due to neutrino closure. This

method worked well according to several MC tests. When applied to data, we obtained

strong evidence for a term linear in cos �v at about the 5� level. No such linear term
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is expected theoretically for the decay D+ ! �K��+�. This anomoly will be further

explored in Chapter 8.
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Chapter 8

A model for the cos �v asymmetry

In this chapter we present a possible explanation for our inability to get a satisfactory

�t for the D+ ! K
�0
�+�� decay intensity and our observation for an unexpected

linear term in the cos �v distribution and its strong dependence on the K��+ mass.

We believe that our observations can be explained by including an s-wave K��+

amplitude that interferes coherently with the K
�0
in the D+ ! K��+�+� �nal state.

Presumably this amplitude must be fairly small since the K��+ mass distribution as

discussed in Chapter 5 is nearly a perfect �t to a single K
�0
Breit-Wigner.

8.1 The toy model

We have not done a complete explicit calculation of the full �ve fold di�erential decay

rate including such an interfering amplitude, but rather simply extended the heuristic

treatment presented in equation 2.1. We will refer to this as a \toy" model since our

treatment is far from complete. For example, it ignores any dependence of the decay

rate on the acoplanarity angle and neglects the mass terms.

d2�

d cos �v d cos ��
/ j BW j2 X

m=�1;+1

�m j d11m (cos ��) j2 jd10m (cos �v) j2

+�0 j d110 (cos ��) j2 j d100 (cos �v) BW + AeiÆj2
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Where BW =

p
Mo�

(M2 �M2
o ) + i � Mo

(8.1)

What we have done in Equation 8.1 is to add an s-wave constant amplitude contri-

bution to the (�0) piece describing the decay of the virtual W+ when in its j1; 0 >
state. Such an s-wave contribution cannot conserve angular momentum with a W+

in any other helicity state. The magnitude A and phase Æ of this constant amplitude

are left as unknown parameters.

To be speci�c, we will assume (�+ ; �0 ; ��) / (jH+j2 ; jH0j2 ; jH�j2) where the
helicity based form factors will be the same forms assumed in Chapter 2.

H�(t) = (MD +MK�)A1(t)� 2
MDK

MD +MK�

V (t)

H0(t) =
1

2MK�

p
t

"
(M2

D �M2
K� � t)(MD +MK�)A1(t)� 4

M2
DK

2

MD +MK�

A2(t)

#

Where Ai(t) =
Ai(0)

1� t=M2
A

V (t) =
V (0)

1� t=M2
V

and MA = 2:5 GeV and MV = 2:1 GeV (8.2)

We will do our toy model calculations assuming rv � V (0)=A1(0) and r2 �
A2(0)=A1(0) are at their world average measured values. After evaluating the Wigner

D-matrices, we have the fully explicit expression given by Equation 8.3.

d2�

d cos �v d cos ��
/ sin2 �v f(1 + cos ��)

2 �+ + (1� cos ��)
2 ��gjBW j2

+4 j cos �v BW + AeiÆj2 sin2 �� �0

Where BW =

p
Mo�

(M2 �M2
o ) + i � Mo

(8.3)

8.2 Mass dependence of the cos �v asymmetry in

the toy model

We see from Equation 8.3 the linear cos �v dependence of the decay rate | presumably

responsible for the forward-backward cos �v asymmetry we observed | comes from

the \interference" cross term piece of the j cos �v BW + AeiÆj2. Explicitly the linear
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Figure 8.1: The interference term in the toy model. We plot the mass depen-
dence of the linear cos �v term as a function of mass for three di�erent phase
choices.

cos �v piece is given by:

8 sin2 �� �0
A
p
Mo�

(M2 �M2
o )

2 + (� Mo)2
f(M2 �M2

o ) cos Æ � � Mo sin Æg � cos �v (8.4)

We see from Equation 8.4 that the linear cos �v term has a t-dependence through

�0 = jHo(t)j2 as a well as dependence on a sin2 ��. The mass dependence is very

sensitive to the unknown phase Æ because of the characteristic mass dependence of

the real and imaginary parts of a Breit-Wigner. This behavior is graphed in Figure

8.1.

For a relatively real phase Æ = 0 we expect that the asymmetry will reverse sign

as one passes through the K
�0

pole. For a relatively imaginary phase Æ = �=2, the

cos �v asymmetry will have the same sign on either side of the pole. For Æ = �=4, we

come very close to the observed behavior of the cos �v asymmetry as a function of

MK� | both showing a strong negative asymmetry below the pole mass, and a small

asymmetry above the pole mass.
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8.3 Comparing the asymmetries in the toy model

to the data

To further check the model, we wrote a simple program to numerically integrate

Equation 8.3 in order to produce \conditional" projections. These projections are

designed to crudely test the mass, Q2, and cos �` dependence of the cos �v distribu-

tion. The model and observed projections are compared in Figure 8.2 for events with

sin2 �� > 0:75.

The model in the upper frame of Figure 8.2 is computed using an amplitude of A =

0:3 and a phase of Æ = �=4, as de�ned in Equation 8.3. This amplitude was chosen to

roughly match the observed size of the asymmetry and its K��+ mass dependence

displayed for data in the lower frame. We show the predicted cos �v projections for

events with K��+ masses both below and above the K
�0

pole and with Q2 values

both below and above 1.3 of its kinematic maximum of Q2
max = (MD �MK��+)

2.1

The red points show the predictions for the case of zero amplitude. For the upper

frame, the curves show the projection integrals where the amplitude is set to A = 0.

For the data, the red points show the result of a MC run with no s-wave interference

and world average form factor ratios.

Figure 8.2 shows that the asymmetry pattern in the data is remarkably repro-

duced by the toy model with the interfering s-wave 0:3 exp(i�=4) amplitude. There

is essentially no asymmetry of the data relative to the MC above the pole mass | all

of the asymmetry lies below the pole mass. The observed degree of the asymmetry

is roughly the same for the high Q2 and low Q2 split and is in rough agreement with

the amount in the toy model.

Figure 8.3 repeats the comparison between the toy model and observed asymmetry

for events with sin2 �� < 0:75. Again, the toy model with the interfering s-wave

0:3 exp(i�=4) amplitude does a reasonably good job at reproducing the asymmetry

pattern observed in the data.

1The Q2 and sin2 �� cuts were roughly chosen to produce equal yield on either side of the splits.
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Figure 8.2: Toy model and observed cos �v projections for sin2 �� > 0:75.
The upper frame shows the toy model projections for an s-wave amplitude of
0:3 exp(i�=4). The symmetric red curves are for zero s-wave amplitude. The
various projections are (a) Q2 < Q2

max and MK��+ < MK�, (b) Q
2 < Q2

max

and MK��+ > MK�, (c) Q
2 > Q2

max and MK��+ < MK�, (d) Q
2 > Q2

max and
MK��+ > MK�. The lower frame shows the background subtracted cos �v
distributions observed in the data compared to a MC run (red points) with
standard form factors and no interfering s-wave amplitude. The di�erences
between the upper and lower frame represent the e�ects of smearing and ac-
ceptance.
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Figure 8.3: Toy model and observed cos �v projections for sin2 �� < 0:75. See
Figure 8.2 for description.
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Figure 8.4: Toy model predictions for the K��+ invariant mass. The blue
curve has the interfering amplitude with 0:3 exp(i�=4) and the red curve has
no s-wave interfering amplitude.

8.4 Distortions to the line shape

Although the toy model did a good job at reproducing the observed pattern of cos �v,

it may have created an unacceptably large distortion to the K��+ mass distribution.

Figure 8.4 addresses this important issue by comparing the line shape with no ad-

ditional s-wave amplitude and with 0:3 exp(i�=4). The interfering amplitude causes

a very small distortion to the K��+ mass distribution with this value. There is a

noticeable shape asymmetry present in the mass distribution, which is possibly due

to the matrix element and/or phase space factors.

The distortions due to the matrix element are very small for accepted events when

the events are generated with our standard (no interference) Monte Carlo as shown

in Figure 8.5. This Monte Carlo generated the events using a non-relativistic s-wave

Monte Carlo with a constant width but with all of the distortions due to phase space

and the matrix element. Although the �2 for the �t is good, there is a region where

a hint of line shape distortion due to matrix element and phase space is evident.
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Figure 8.5: The K��+ invariant mass for s-wave MC events passing analysis
cuts. The Monte Carlo events have full phase space and matrix element dis-
tortions present in Figure 8.4. The shape is consistent (with a 27% con�dence
level) with a constant width Breit-Wigner width. This �t, described in Chap-

ter 5, allows the width to vary as � = �o
�
P
Po

�N
. For this �t, N = �0:09�0:09.

The �t to the MC produces essentially the same shape parameters as the �t
to the data. The arrow points to the region where one expects matrix element
and phase space distortions.
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8.5 Could the s-wave amplitude be resonant?

We have shown that a constant amplitude with a phase of Æ = 45o relative to the K
�0

can explain the pattern of the cos �v asymmetries that we observe in the data. Our

previous experience in �tting the Dalitz plots describing three-body charm decays

shows that one rarely requires non-resonant (constant) amplitudes to �t the data.

Even in those cases (such as D+ ! K��+�+) where a substantial non-resonant

contribution is included [23], the non-resonant contribution may well be mimicked by

several broad, poorly understood resonances.

The presence of a constant amplitude with a phase of 45o is a somewhat un-

satisfactory explanation for the cos �v asymmetry from the standpoint of Watson's

Theorem. Watson's Theorem contends that in the absence of �nal state interac-

tions, all amplitudes involved in the decay of a particle should be relatively real.

Our (limited) understanding of this very powerful result is that generally the tree

level Feynman graphs describing a decay all have the same phase. Additional phase

factors require loop contributions. In the context of a weak decay, the only substan-

tial loops are the gluon loops that can be thought of as a rescattering of the �nal

state hadrons. An example might be rescattering of the K
�0

and �+ in the decay

D+ ! K
�0
�+ ! K��+�+. Large phase shifts (often around 90o) are often observed

between the amplitudes in three-body hadronic charm decays.[24]

In the semileptonic decay D+ ! K
�0
�+��, one cannot get the same sort of �nal

state interaction observed in D+ ! K��+�+ since the K
�0

is produced against

leptons and thus has no hadron partner to rescatter from. In principle, an s-wave

D+ ! K��+�+� could acquire a phase relative to D+ ! K
�0
�+�� by having the K

�

rescatter from the s-wave �+. An alternative way of getting a phase shift would be a

resonant s-wave D+ ! K��+�+� contribution with a real phase (0o or 180o) relative

to D+ ! K
�0
�+��. Figure 8.6 explores this possibility by comparing the linear cos �v

coeÆcient expected from the interference of a D+ ! K
�0
�+�� contribution with a

resonant s-wave D+ ! K��+�+� contribution for two hypothetical resonances to
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Figure 8.6: The interference term in the toy model. We plot the mass depen-
dence of the linear cos �v term as a function of mass for a constant amplitude
and two hypothetical resonances that interfere with a 1800 phase with respect

to the K
�0
. We indicate the mass and width in the legend.
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that expected from a constant amplitude with a 45o phase relative to D+ ! K
�0
�+��.

Equation 8.5 gives the linear cos �v term expected from interference of the D+ !
K
�0
�+�� with an s-wave resonance in a form reminiscent of Equation 8.4. Here, Mo

and � are the mass and width of the K
�0
, while Mr and �r are the mass and width

of the hypothetical s-wave K��+ resonance.

8 sin2 �� �0
A
p
Mo�

(M2 �M2
o )

2 + (� Mo)2
f(M2 �M2

o ) cos Æ � � Mo sin Æg � cos �v

cos Æ =
(M2 �M2

r )

(M2 �M2
r )

2 + (�r Mr)2
; sin Æ = � (�r Mr)

(M2 �M2
r )

2 + (�r Mr)2
(8.5)

Figure 8.6 plots the cos �v coeÆcient as a function of K� mass for three di�erent

models: our uniform amplitude, a Breit-Wigner resonance above the K�0 pole, and a

resonance below the K�0. While the hypothetical high-mass resonance appears to be

a successful match to our observed trend, the low-mass resonance does not.

This conclusion is particularly interesting to some members of the FOCUS col-

laboration in light of previous evidence for a hypothetical K��+ resonance called the

�(900) with a width of about �r � 400 MeV. This resonance has been proposed in part

since its presence signi�cantly improves the �ts to the D+ ! K��+�+ according to

the analysis of the E791 collaboration.[25]. According to Figure 8.6, interference with

the �(900) would create a cos �v asymmetry primarily above the K�0 pole, whereas

we observe the dominant asymmetry below the K�0 pole.

8.6 Summary and Conclusions

We believe we have presented a plausible explanation for the the asymmetry in cos �v

that we observed in data for D+ ! K
�0
�+�� decay that had frustrated our attempts

to get reasonable quality form factor �ts. We observed an asymmetry favoring nega-

tive cos �v for events with K��+ masses below the K�0pole and essentially no asym-

metry for events above the K�0pole. As a result, we saw a slight shift in form factors

when we split the sample relative to the K�0mass. Although this shift was small, the

observed asymmetry could have been an indicator of other, undiscovered e�ects that
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bias the result.

We did an extensive search for possible non-physics explanations for the cos �v

asymmetry such as backgrounds, or problems in correcting for the acceptance or

resolution smearing. We found that the form factor �t was very stable over a wide

range of cut sets with both signi�cantly di�erent acceptances and vastly di�erent RS

to WS ratios. We showed using the golden mode data with a deliberately blanked

track to represent the neutrino, that the neutrino closure technique was very well

modeled by our Monte Carlo. Also, we were able to get consistent branching fractions

of D+ ! K
�0
�+� relative to D+ ! K��+�+ over an exhaustive set of cut sets with

vastly di�erent eÆciencies and background rejections. Finally, we eliminated speci�c

(incoherent) potential semileptonic decays involving decays into higher mass K�.

The dramatic dependence of the cos �v asymmetry above and below the pole

strongly suggested to us an interference e�ect was at work since it is well known

that the real part of a Breit-Wigner amplitude reverses sign when one passes through

the pole. By having the K
�0
contribution that carries a cos �v factor in its amplitude

interfere with an s-wave amplitude, one can get a linear cos �v piece in the interference

term creating a noticeable cos �v. We don't believe this possibility has been considered

in the literature, since the observed K��+ spectrum in previous experiments (and

ours) is such a perfect match to a K
�0
Breit-Wigner.

To progress further, we extended the heuristic treatment of Chapter 2 to include

a constant or resonant s-wave amplitude contribution that couples to the virtual W+

in its zero helicity state. This allowed us to form a fully explicit model (except for

acoplanarity averaging and lepton mass terms). In this model, the size of the cos �v

is proportional to the s-wave amplitude, and its mass dependence depends on the

phase. The explicit model was used to compare various cos �v projections that could

be compared to the pattern observed in the data. The observed asymmetry pattern

was well reproduced by our s-wave interference model with parameters that created

a negligible distortion to the K��+ line shape.

If our interpretation is correct, it seriously calls into question previous attempts
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to test quark models and lattice gauge calculations using charm semileptonic decay,

since the data has an asymmetry that cannot be accommodated in the decay form

used to �t for the form factors. We believe that our experiment is the �rst experiment

to accumulate enough statistics and signal cleanliness to observe this asymmetry.

8.7 Comparison with Other Experiments

FOCUS is not the �rst experiment to measure the form factor ratios for the decay

D+ ! K
�0
`+�`. Is there evidence in these other experiments of an asymmetry in

cos �v, or are we the only ones with enough data to observe this e�ect clearly? This

is important to establish. We claim that our asymmetry is not an artifact of some

improperly-modeled aspect of the FOCUS spectrometer, but rather is a physical

process that should a�ect every analysis of this decay.

We will only look at the three most recent measurements, since earlier ones will

certainly not have enough data to probe the asymmetry.

8.7.1 E687

E687 was the predecessor experiment to FOCUS, and in a sense this thesis is a logical

extension of the earlier work done by the E687 group. They obtained aD+ ! K
�0
`+�`

signal of about 875 events [7], with a higher signal-to-noise ratio than our FOCUS

sample (with our baseline cuts). This number is the total yield of the best-�t Breit-

Wigner. When we use the same �tting function to measure the yield in FOCUS data

passing our baseline cuts, we obtain a yield of 32159 events.

The most natural question to address is whether or not the FOCUS result is

consistent with E687. They measured rv = 1:74� :27� :28 and r2 = 0:78� :18� :10.
Our results for the baseline cuts are consistent with these values. Since E687 and

FOCUS are alike in so many respects, we can go further by duplicating all of E687's

cuts and bin the data into the same 18 bins they use. We do not use the same �Cerenkov

identi�cation algorithm, but we can mimic the general 
avor of the �Cerenkov cuts
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used.

Doing this, we measure rv = 1:734 � :071, r2 = 1:171 � :047, and our best-�t

�2=DOF = 17:9 for 15 degrees of freedom. Here we match the E687 result for rv, but

our r2 is 1:8� too high. Looking at the K�0 yield �ts in each bin, it is obvious that

egregious errors are made in certain bins that are overwhelmed with contamination

from D�+ ! D0�+ ! (K��+��) �
+. E687 did not use any cuts which would be

e�ective at reducing this re
ection, and the contamination is obvious in their mass

plots. The behavior of the mass �ts will depend on a lot of factors which cannot be

duplicated by FOCUS, including event statistics and the range inK� mass over which

the �t is performed. If we apply an additional cut on theD�+�D0 mass di�erence, our

result changes dramatically, and we measure rv = 2:113� :083 and r2 = 0:780� :051,
with �2=DOF = 9:8. Now we are duplicating E687's measurement of r2, and are only

0:94� higher with rv. It is likely that E687 paid more attention to their �ts than

we have here, and managed to avoid most, but not all, of the damage caused by the

rampant D� re
ection. They did not apparently understand the mechanism of this

contamination, or realize the way it falls o� so quickly in K� mass (see Figure 7.12).

This error would most likely have caused them to overestimate the background under

the K�0 peak, and so underestimate the yield. Since the D� contamination occurs at

large cos �v, this e�ect would serve to exaggerate the asymmetry.

In Figure 8.7, we show the di�erence between the E687 data and expectation, as a

function of cos �v. The values are taken from the best-�t and observed bin populations

in their 18-bin form factor �t. By dividing the slope of the best-�t line by the total

signal, we obtain a kind of fractional asymmetric contribution of :053 � :017. This

degree of asymmetry is greater than what we see in FOCUS, which is about .01. The

increase in the asymmetry found by E687 is most likely due to the mis-handled D�

re
ections.
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Figure 8.7: E687 cos �vresidual asymmetry. The line is a best-�t straight line,
having a slope of �46� 15. The signi�cance of this asymmetry is most likely
due to contamination from D�+ ! D0�+ ! (K��+��)�

+.

8.7.2 E791

E791 is a �xed-target experiment that collected data during the 1990-1991 �xed target

run at Fermilab. E791 was a charm hadroproduction experiment, using a 500 GeV/c

�� beam. They used a tighter K� mass cut than we do, counting (with wrong-sign

subtraction) those events where 0:85 < MK� < 0:94GeV=c2. They observed 3034 RS-

WS events with a RS/WS ratio of 6.1 [10]. This is a combined yield of semielectronic

and semimuonic decays. To compare this to the FOCUS muon sample, our baseline

cuts gives us 22075 events within this band and a RS/WS ratio of 6.8.

E791 chose to use an unbinned maximum-likelihood technique for their analysis,

but as a means of con�rmation they also performed a binned �t. This �t gave them

a reasonable �2.

Since their article includes �gures showing the predicted and anticipated cos �v

distribution (Figure 2 in [10]), we can search for an asymmetry and directly compare

this to FOCUS data. Figure 8.8 shows the E791 data and Monte Carlo results,

carefully reconstructed from the original �gure. The two plots, split in Q2, are �rst
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Figure 8.8: E791 cos �v distributions. Red points are data, and the blue lines
are the prediction. The upper plots are reconstructed by visual inspection of
the original �gure in reference [10]. A straight line is �t to the residual. The
slope of this line, divided by the total yield, gives a fractional asymmetric
contribution of 0:0055� :0041. This is a 1:3� e�ect, in the same direction as
the FOCUS data.
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Figure 8.9: FOCUS cos �v distributions. These distributions are most suitable
for comparison with the E791 result (Figure 8.8), since they include the same
0:85 < MK� < 0:94GeV=c2 mass cut that E791 uses. A straight line is �t to
the residual. The slope of this line, divided by the total yield, gives a fractional
asymmetric contribution of 0:012� :002.
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added together. Then their Monte Carlo prediction is subtracted from the data,

and a straight line is �t to the di�erence. By dividing the slope of this line by

the total signal, we obtain a fractional asymmetric contribution. Figure 8.9 shows

the equivalent analysis in FOCUS data. The FOCUS result shows the asymmetric

component in the same direction as E791, but it is about 1:4� larger. Curiously, in

both data sets the central region of cos �v shows the greatest amount of slope. This

may be an artifact of backgrounds and/or the narrow mass cut, and the e�ect is not

necessarily signi�cant in E791.

8.7.3 Beatrice

Prior to now, the most recently published measurement of the form factor ratios of

the decay D+ ! K
�0
�+�� was performed by the BEATRICE collaboration in 1998

[13]. They use an unbinned maximum likelihood technique, but to asses the goodness

of the �t, they report on the con�dence levels of the projections in the four kinematic

variables. They use a sample of 763 events in the analysis. Their mass window,

0:846 < MK� < 0:946GeV=c2, is close to the one used by E791.

Figure 8.10 is a reproduction of the cos �v distribution measured by BEATRICE.

There is little evidence for an asymmetry here, and their prediction is well-matched

by the data. FOCUS observes about 29 times more events, and this K� mass window

is small. In the FOCUS data within that mass window, we see the asymmetry at

about the 6� level. If this scales with
p
N , BEATRICE should observe it at about

1�.
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Figure 8.10: BEATRICE cos �v distribution. The solid points are data, the
lines are from Monte Carlo, and the open points are a background estimate.
This distribution shows some faint signs of an asymmetry in the outer bins.
Their data matches the prediction to con�dence level of not less than 33%.
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Chapter 9

Summary and Conclusions

This thesis is concerned the charm semileptonic decay process D+ ! K��+�+�. We

study this decay using the copious charm sample collected by the FOCUS �xed-target

photoproduction experiment at Fermilab in 1996-1997. This is probably the most

experimentally accessible charm semileptonic decay for ours and other experiments

owing to its relatively large branching ratio and highly favorable decay topology.

Studies of the D+ ! K��+�+� decay are of considerable phenomenological interest

and have a rich experimental history. Charm semileptonic decays provide incisive

tests of non-perturbative QCD.

Previous experiments revealed a rather remarkable simpli�cation in the four body

process D+ ! K��+�+�. In reality, to very good approximation, this four body

process is actually a quasi-three body process: D+ ! K
�0
�+��, with the K

�0
very

rapidly decaying via K
�0 ! K��+. Prior to this work, there was essentially no

experimental evidence for anything other than D+ ! K
�0
�+�� contributing to D

+ !
K��+�+�. For example, our previous experiment, E687, put a 90% upper limit on a

non-resonant contribution to D+ ! K��+�+� of less than 12%.[7]

The observation that D+ ! K��+�+� is actually D+ ! K
�0
�+�� leads to con-

siderable theoretical simpli�cation. The decay can be visualized as D+ !W+K
�0 !

K
�0
�+�, where the W+ is a highly virtual version of the � 100 GeV mass parti-

cle responsible for mediating the charged current weak interaction. The underlying
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weak interactions that describe the quark couplings to the �nal state leptons are well

understood, and can be reliably computed using well-tested and straightforward per-

turbation theory. However, non-perturbative techniques must be used to compute

how the �nal state quarks, created from the decay of the charm quark, rearrange

themselves to form a K
�0
, for each of the three polarization states of the virtual (spin

1) W+, by exchanging gluons. The coupling of the �nal state to each of the three

polarization states of the W+ are described by three (helicity basis) form factors that

are functions of t or the squared mass of virtual W+. The helicity basis form factors

are linear combinations of a vector and two axial form factors. In particular, the

ratios of the three form factors describe the t-dependence of the three decay angles.

These deecay angles describe the 4 body �nal state: the angle of the kaon in the K
�0

reference frame (cos �v), the angle of the � in the virtual W+ frame (cos �`), and the

acoplanarity angle between the K
�0
and W+ decay planes (�).

Our original intention was to �t the kinematic dependence of the D+ ! K
�0
�+��

decay intensity to measure the axial and vector form factors controlling this decay.

Our measurement could then be compared to the predictions of Lattice Gauge, QCD

Sum Rules, or Relativistic Quark Models. In particular, the Lattice Gauge calcula-

tions, although computationally intensive, use a relatively minimal number of simpli-

fying assumptions and should thus be reliable. Similar Lattice Gauge calculations are

used to unravel the QCD corrections used in understanding some very topical issues

such as direct CP violation in the B and kaon system.

We then intended to compare the D+ ! K
�0
�+�� form factor ratios to those

measured for our sample of the related (but much rarer) decay D+
s ! � �+��. A

principle motivation for this work would have been to con�rm or refute the claim

of several standard deviation di�erences between the two form factor sets made by

some previous experiments. A large di�erence between the D+
s ! � �+�� and D

+ !
K
�0
�+�� form factor is unexpected from the perspective of Lattice Gauge and quark

model theory. Since we have reconstructed about 1500D+
s ! � �+�� events | nearly

a factor of 500 more than any previously published sample | our data would have
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easily settled this interesting issue.

Although the D+ ! K
�0
�+�� is one of the most accessible and easily studied

charm semileptonic decays, the presence of a �nal state neutrino makes it considerably

more diÆcult to study in our experiment than the fully reconstructable hadronic

decays such as D+ ! K��+�+. Here are two reasons:

1. Because we do not reconstruct the complete D+ ! K
�0
�+�� �nal state as a

single narrow mass peak, we may be contaminated by backgrounds from both

known and previously unobserved charm decays as well as non-charm, photo-

hadronic backgrounds.

2. Because we don't measure the �nal state neutrino, we must infer its momentum

vector using P? balance about the D+ line-of-
ight (or the displacement of the

secondary vertex to the primary vertex). Even with perfect measurement of

this direction, we can still only determine the neutrino momentum to within a

two-fold ambiguity. In photoproduction, the primary vertex consists of at most

a few tracks, and it can be easily pulled by mistakenly including tracks from

the recoil charm particle. As a result, the momentum transfer (or virtual W+

mass) and all three decay angles are very poorly measured. For this reason,

complicated techniques must be used to �t the decay intensity, and accurate

�ts require correct knowledge of both our acceptance and kinematic resolution.

The properties of the photoproduced primary vertex cannot be computed from

�rst principles. Rather our resolution is predicted by a Pythia-based Monte

Carlo that depends on an speci�c string fragmentation model.

In addition to these experimental challenges, the expression for the complete decay

rate is complicated. Each of the three angular variables is de�ned in its unique

rest frame. The sign conventions between charm and beauty are di�erent, and the

conventions in going from the D+ to D� were unclear in the early literature, and

these have confounded many of the workers in the past.

In spite of these challenges, we set out to measure the D+ ! K
�0
�+�� form factor
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ratios using a binned version of the Los Vegas reweighting technique described in

Chapter 6. The use of this new �tting technique allowed us to obtain both high

precision measurements of the form factors and provided a �2 statistic used to test

the goodness of the overall �t. As is traditional, we measured the ratios of axial and

vector form factors taken at t = 0: rv � V (0)=A1(0) and r2 � A2(0)=A1(0).

As detailed in Chapter 7, we tried many �ts with signi�cantly di�erent analysis

cuts, di�erent binning, and di�erent sample splits. In all of our initial work, we

obtained reasonably consistent form factor ratios with typical �ts and �t ranges of:

Baseline �t rv = 1:694� 0:051 rv range : 1:60! 1:75

Baseline �t r2 = 0:754� 0:034 r2 range : 0:72! 0:85

Figure 9.1 compares our values to the rv and r2 values measured in previous

experiments. Using the spread of �t results using di�erent cut sets and binning, we

conservatively estimate systematic errors on our form factors of �sys(rv) = 0:075 and

�sys(r2) = 0:065. These systematic errors are about a factor of two larger than our

statistical errors. In Figure 9.1, the statistical and systematic errors are added in

quadrature.

The overall consistency of all D+ form factor data was excellent. The largest

discrepancy is the 1.66 � discrepancy between our rv measurements and that of the

E791 collaboration. The most disturbing feature of our data is that essentially all

of our binned form factor �ts have very poor �2 | often with con�dence levels

below 1 � 10�25. For this reason, we are not sure how seriously one should take the

form factor comparison. After an extensive investigation, we believe that the poor

con�dence level of our �t re
ects new physics rather that problems understanding

backgrounds, resolutions, or acceptance. We will try to review our case for new

physics in the rest of this summary.
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Figure 9.1: Experimental data on rv and r2. Horizontal lines indicate the
average values of the form factor ratios including this measurement along with
their errors. The weighted average values are rv = 1:754 � 0:064 and r2 =
0:773�0:052. The con�dence level that all six rv measurements are consistent
is 58%. The con�dence level that all six r2 measurements are consistent is
48%.

183



9.1 The Usual Suspects

The overall complexity of this problem along with all of the problems associated with

the missing neutrino enumerated above could, in principle, be responsible for our

inability to get a high quality �t. Since our D+ ! K
�0
�+�� data set is nearly an

order of magnitude larger than that of our closest competitor (E791), we should be

much more sensitive to any systematic problems in the �t, since their e�ect on the

�t-�2 would be multiplied by a factor of 10 as well.

We checked the validity of our �tting technique by applying it to Monte Carlo

samples generated with known form factors. In this study, discussed in Chapter 6,

an independent Monte Carlo sample was used to correct the simulated \data". We

observed essentially no bias in rv or r2.

We made a number of checks to con�rm our understanding of the decay width

expression and conventions. Our large D+ ! K
�0
�+�� sample allowed us to make

detailed comparisons with the model through the use of the \conditional" projections

shown in Figure 7.5 of Chapter 7. For example, our data tracked the expected sign

change in the concavity of the cos �v projection for low versus high t events. The

change in the relative frequency components of the acoplanarity distribution in the

three di�erent regions of cos �v was also well tracked by our data. Finally, the form

factors measured separately for the D+ were consistent with those found for the D�.

In Chapter 4, Section 4.7, we tested our kinematic resolution by \blanking" one of

the pions in the fully reconstructible �nal state D0 ! K��+�+�� and reconstructing

the \missing" pion using the same P? balance technique used to reconstruct the

missing neutrino in D+ ! K
�0
�+�� decay. We obtained resolution functions for the

mimic decays that were an excellent match to those predicted by our Monte Carlo.

As a way of assessing the reliability of our acceptance, cut eÆciency, and non-

charm or misidenti�cation backgrounds, we measured the branching ratio of D+ !
K
�0
�+�� relative to D

+ ! K��+�+ as discussed in Chapter 5. We were able to get
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Figure 9.2: Our measurements of �(D+ ! �K��+�)=�(D+ ! K��+�+) com-
pared to previously published data from the six indicated experiments. Our
value including our systematic uncertainty is given by the solid and dashed
horizontal lines. Our (fractional) uncertainty including systematic errors is
about three times smaller than that obtained in previous experiments.

a very stable value of:

BR =
�(D+ ! �K��+� ! (K��+)�+�)

�(D+ ! K��+�+)
= 0:406� 0:006 (stat)� 0:016 (sys)

using a wide range of analysis cuts that sampled a large range of signal-to-noise. We

would expect considerable variation in the branching ratio if our simulation did not

properly predict the eÆciency of our analysis cuts, or if more stringent analysis cuts

eliminated non-charm or particle misidenti�cation re
ection backgrounds present in

our baseline sample. Figure 9.2 compares our relative branching fraction measurement

to previously published numbers. Our results are consistent with but more precise

than previous measurements.

Other backgrounds to D+ ! K��+�+� include charm decay into the same visible

K��+�+ �nal state. These include D�+ ! D0�+ ! (K��+��)�
+ and D+ !

K
0
1(1270)�

+�� with the K
0
1(1270) decaying via K��+�0. We found that without

special cuts, the D�+ ! D0�+ ! (K��+��)�
+ background is very serious and can

signi�cantly distort the expected decay distribution for D+ ! K
�0
�+��. Fortunately,
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it is easy to eliminate this background through a cut on the D�+�D0 mass di�erence

using our neutrino closure technique.

The D+ ! K
0

1(1270)�
+�� decay could also signi�cantly a�ect the decay dis-

tribution. This is a particularly interesting background since it could mimic the

cos �v anomaly. In Section 7.7, we show that this background is essentially ignor-

able by making an explicit search for the related decay D0 ! K�
1 (1270)�

+�� !
(K��+��)�+�� and using an isospin argument to severely limit backgrounds due to

D+ ! K
0
1(1270)�

+��. We thus eliminate it as a possible explanation for the cos �v

anomaly.

9.2 New Physics (?)

In the process of investigating the cause of our poor quality form factor �ts, we

made a large number of two-fold \split-sample" studies where we would compare the

form factors obtained in one piece of the data to those obtained in the compliment.

These included splits of particle versus anti-particle, low run numbers versus high run

numbers, low momentum transfer versus high momentum transfer, etc. We monitored

the consistency of the form factors between the two samples, as well as the �2 of the

�t in either sample. The most interesting split-sample test involved a split of events

with K��+ masses below and above the K�0pole mass. The �2 of the �t of events

with M(K��+) > M(K�0) was dramatically smaller than the �t of events with

M(K��+) > M(K�0). Comparisons of the distributions of kinematic quantities of

events above and below the K�0 pole showed that the events below the pole had a

very pronounced asymmetry in cos �v that was not matched by our Monte Carlo;

while the observed cos �v asymmetry was nearly a perfect match to the Monte Carlo

in the M(K��+) > M(K�0) events. The expected D+ ! K
�0
�+�� intensity is even

in cos �v, so any asymmetry would only come through eÆciency variation.

In Chapter 8, we propose a model that explains the cos �v asymmetry pattern in

the data. We are proposing the existence of a previously unobserved s-wave K��+
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contribution that coherently interferes with a dominant p-wave K
�0
contribution to

D+ ! K��+�+�. Simplifying a bit, the cos �v asymmetry comes about through the

cross term between the K
�0
Breit-Wigner (that carries a cos �v factor since the K

�0
is

spin 1) interfering with a slowly varying, zero spin amplitude (that carries no cos �v

factor).

j cos �v
p
Mo�

(M2 �M2
o ) + i � Mo

+ AeiÆj2 =

:::+ 2
A
p
Mo�

(M2 �M2
o )

2 + (� Mo)2
f(M2 �M2

o ) cos Æ � � Mo sin Æg � cos �v + :::

(9.1)

We found that a phase of Æ � �=4 produces an < cos �v > versus M(K��+)

curve that is in excellent agreement with the dependence that we observed in the

data. Furthermore, the modulus of the s-wave amplitude that best matched the level

of the asymmetry (jAj � 0:3) created a very minor distortion to the K��+ line shape

when integrated over all cos �v, since its asymmetry contributions are �rst order in

jAj while line shape modulation would be second order. We believe this is the reason

that the additional s-wave amplitude has eluded previous investigators.

In Chapter 8, we work out an explicit cos �` and t- dependence for the cos �v

term that also appear to match the pattern observed in the data. Our model is not

unique. A crucial ingredient is that there is a � 45o phase shift between the s-wave

amplitude and the Breit-Wigner at the K�0 mass. This can be done either through

a constant amplitude or alternatively through a possible broad s-wave Breit-Wigner

resonance with a pole and width chosen to produce an � 45o phase shift at the K�0

pole. For example, we show that an s-wave resonance with a mass of 1.1 GeV=c2

and a width of � = 0:4 GeV=c2 inserted with a 180o phase relative to the K
�0

will

produce the same pattern that is observed in the data. Interestingly enough, the

�(800) with a width of � = 0:4 GeV=c2 that has been proposed to explain problems

in �tting the D+ ! K��+�+, produces a phase of 630 at the K�0 pole but evolves

in mass in a way inconsistent with our observed asymmetry pattern. Reference [9]
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discusses calculations of the partial widths of possible additional resonances that

might contribute to the D+ ! K��+�+� �nal state.

It might be of interest to redo our form factor �t including the e�ects of the

new s-wave amplitude. Unfortunately, we don't have a complete model of the decay

intensity, since we worked out the expression using a simple symmetry technique that

averaged over the acoplanarity angle between the two decay planes and neglected the

\mass" terms proportional to the squared charged lepton mass.

We have reviewed previous D+ ! K
�0
`+�` measurements with an eye to looking

for hints of the cos �v anomaly. The E687 data is consistent with a linear cos �v

term with the same sign as ours at about the 3 � level. Their overall �t quality

was also rather poor with a �2 per degree of freedom of about 2.48 for 16 degrees of

freedom. A cos �v asymmetry with the same sign as ours of about 1.3 � signi�cance

appears in the published cos �v projections by the E791 Collaboration. Their overall

�t quality, however, is good. Finally, there is a slight hint of our asymmetry e�ect in

the BEATRICE data.

If our anomaly and interpretation is borne out by future high statistics charm

experiments, it may prove interesting to revisit the comparison of experimental form

factors with those predicted by Lattice Gauge Theories. Another important ingredient

to a truly incisive comparison will be additional experimental and theoretical work

to unravel the t dependence of the vector and axial form factors. Thus far, we

and all other groups have basically assumed a plausible but untested form for this

dependence.
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Appendix A

Weighted Histograms and

Averages

Throughout this thesis, we made signi�cant use of weighted averages and histograms.

We discuss the method used to compute errors on weighted histograms and averages

since the method (applied to averages) is generally not widely known. In our data

reduction program, the errors are obtained by accumulating various moments of the

weights as one increments the weighted histogram or averaging plot.

A.1 Weighted Histogram

This is the simplest example which illustrates the general principle. A given bin

of weighted histogram has a sum (or weighted yield) given by S =
P

W . We are

looking for a way of computing �2(S) due to counting statistic 
uctuations of the data.

Usually the weight for a given entry will depend on some well-measured property of

the event such as a kinematic property. Often the weight is a continuous variable,

but in order to make the problem tractable, we \cheat" and consider a discrete set

of possible weights, W 2 fW�g, where � is an integer which we will call the \weight

class". Let n� be the entries in the weight class �. The weighted yield is then:

S =
X
�

n� W� (1)

189



The advantage of using a discrete weight set fW�g is that we can attribute 
uctuations
in the sum S to Poisson 
uctuations of the number of events in each weight class n�.

We assume that these Poisson 
uctuations obey:

< Æn� Æn� >= Æ�� n� (2)

which means that di�erent bins are uncorrelated and the usual counting statistics

applies: � =
p
n. To calculate the variance on S we autocorrelate the 
uctuations on

ÆS due to 
uctuations on the number of weight class entries Æn�

ÆS =
X
�

W� Æn� ; �2(S) =
X
�

X
�

W� < Æn� Æn� > W�

�2S =
X
�

W 2
�n� =

X
W 2 (3)

The last equality says that sum of squared of each weight when multiplied by the

number of events in each weight class is equivalent to just accumulating squared

weights for each entry one at a time. We thus have the well known result:

�S =

rX
W 2 (4)

If all the weights are one (such as in an unweighted histogram), Equation (4) says

that error is just
p
N . In weighted histogrammers, one simply increments S ! S+W

and �2S ! �2S +W 2 as each entry is added to each bin.

A.2 Howmuch does weight variation in
ate errors?

Let us de�ne the average weight, < W >, and weight variance �2W through the

equations:

< W >=

P
W

N
=

P
� n� W�

N
=
S

N

�2W =

P
(W� < W >)2

N
=

P
� n� (W�� < W >)2

N
(5)

where N =
P

� n�. It is straighforward to show and well known that �2W =< W 2 >

� < W >2 where

< W 2 >=

P
� n� W

2

N
=

P
W 2

N
=
�2S
N

(6)
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We can manipulate Equations (5) and (6) to obtain:

�S
S

=

s
N�2W

N2 < W >2
+
N < W >2

N2 < W >2
=

1p
N

s
1 +

�
�W

< W >

�2
(7)

Equation (7) says that there will be an in
ation in the relative error of a weighted

histogram beyond the 1/
p
N errors due to counting statistics on number of events

in a given bin which is related to the rms spread of the contributing weights. Our

experience is that often this in
ation factor is fairly small unless one has negative

weights. When a histogram has nearly canceling positive and negative weights due to

eg severe background subtraction, or severely smeared deconvolution, one can have

�W � < W >. The fractional error on such weighted averages can greatly exceed

the fractional error on an unweighted histogram.

A.3 Errors on a Weighted Average

Consider the weighted average X of a quantity X subject to a weight W :

X =

P
W XP
W

=

P
�

P
i n�i W� XiP

�

P
i n�i W�

=
A

B
(8)

A few notational comments are in order. We have introduced both a weight class �

and X class i and are again thinking of discrete outcomes W 2 fW�g and X 2 fXig.
The variables A � P

W X and B � P
W are shorthand for the numerator and

denominator of Equation (8). In this picture, the source of 
uctuations on X are the

Poisson 
uctuations on n�i | the number of events in both the weight class � and

the X class i.

Unlike the case of the weighted histogram, we must Taylor expand the 
uctuation

ÆX to �rst order in 
uctuation Æn�i:

ÆX =

 
1

B

@A

@ni�
� A

B2

@B

@ni�

!
Æ ni� =

�
W� Xi

B
� A W�

B2

�
Æ ni� (9)

Autocorrelating and averaging, we have:

< ÆXÆX >=
X
�i�j

�
W� Xi

B
� A W�

B2

�
< Æni�Ænj� >

�
W� Xj

B
� A

W�

B2

�
(10)
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Invoking independent Poisson 
uctuations

< Æni�Ænj� > = ni� Æ�� Æij (11)

we have:

�2
X
=

1

B2

X
(WX)2 +

A2

B4

X
W 2 � 2A

B3

X
W 2X

�2
X
=

P
W 2X2

(
P

W )2
+
(
P

WX)2
P

W 2

(
P

W )4
� 2

(
P

WX)
P

W 2X

(
P

W )3
(12)

In practice, Equation (12) is quite easy to implement. One merely must accumu-

late �ve moments for each desired weighted average. We have tested this formalism

extensively using Monte Carlo techniques, and weighted averages are used extensively

in FOCUS software.
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