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distribution of the top quark decay product momenta. I used this “homework” problem as
a starting point to explore in detail how the top quark decays. This exploration opened my
eyes to fascinating aspects of this process. I realized that the top quark decay was much
more than a simple, two-step sequential process t — b + W followed by W — £ + v or ¢ +
7’; quantum interference effects play an interesting and essential role in providing beautiful

simplicity to the decay process. Over the years, I extended my exploration to other aspects

iv



of top quark physics, as well as experimental issues about what measurements to make and
how they should be made. I made many fascinating discoveries, and, in spite of being a
little tired and depressed after seven, very trying years in graduate school, I feel glad that
I went on this exploration. The tangible result of my exploration is this thesis.

I am proud and gratified with my thesis. However, I do feel a need for an apologia
about its flaws. First, the thesis is very long — almost 400 pages. My defense for this is
that there really are a lot of interesting things to discuss, and it took that many pages to do
this. Also, I wanted my thesis to be useful to others, not just a ream of papers that show
that I did this measurement. So I included a lot of details, used a lot of illustrations, and
explained ideas from various points of view. I am hoping that a young graduate student
who reads this will be as excited about top quark physics as I am.

Another flaw of this thesis is that I ignored some important issues that would have
made the measurement process more correct, but also more complicated. For instance, the
non-W background to the ¢ sample has, in some respects, significantly different kinematic
distributions compared to the W + jets background. Thus, an adequate measurement
should treat these to processes separately. In my thesis, however, I simplified the analysis
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in various subsamples of the ¢ candidate events. A list of other oversimplifications and
inadequacies in my analysis is given in chapter 5. I defend these oversimplifications on the
following grounds. What I did, no doubt, causes errors to be underestimated. In spite
of this, I show in chapter 8 that the errors are so large that no meaningful limits can be
set with Run I statistics. Because of this, I felt that, at this stage, it made no sense to
split hairs trying to finesse the measurement process; that is something I leave to those
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Chapter 1

Introduction

1.1 About the Top Quark

According to the standard model, matter, at its most fundamental level, is formed
of two types of fermions: leptons and quarks. These fermions interact with each other by
exchanging fundamental spin-1 particles called gauge bosons. Also, it is believed that the
lepton, quark, and gauge boson masses are generated by the coupling of these particles to
fundamental scalar particles called the Higgs bosons. To date, no substantial disagreement
between the standard model and experimental data exist[23],[24]. See [1], [2], and [3] for
basics on the standard model.

The top quark is one of six quarks in the standard model. Tt is a 3"¢ generation
quark. In its left-handed helicity state, it is a weak isospin partner of the the left-handed
helicity state of b, the other 3"? generation quark. Table 1.1 summarizes the hierarchical
structure of quarks and leptons in the standard model.

As of this writing, strong evidence for the existence of the top quark has been
reported by the CDF and DO collaborations ([5] through [17]). If it is assumed that the top
quark candidate events observed by CDF and D0 indeed originate from processes involving
the production and decay of top quarks, then the mass of the top quark is measured to
be about 175 GeV; this would make it by far the most massive fundamental particle ever
observed.

As suggested above, there is, as yet, some possibility that the top quark candidate

events observed by CDF and D0 are not, or are not entirely, due to the production and
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Table 1.1: A summary of the hierarchical structure of quarks and leptons in the standard
model. The subscripts L and R indicate the left- and right-handed helicity state of a given
fermion. The grouping of the L-state fermions into a column vector indicates that they
form a weak SU(2) doublet; the R-state fermions are weak SU(2) singlets, so they are not
grouped.

decay of top quarks. For instance, the top quark is a spin-% particle; to date, however, no
measurements have been made to demonstrate that this is so. Likewise, the weak isospin
of the top quark is T5 = —I—%, but no measurements have been made to support this fact.
In spite of such missing pieces of information, however, there are compelling theoretical
and experimental reasons why the most plausible source of the candidate events is the top

quark.

1.2 Why the Top Quark Should Exist

References [19] and [3] have excellent discussions about why the top quark should
exist. In this section, the arguments in these references are summarized.

One reason for the existence of the top quark is based on the renormalizability of the
standard model. Before 1975 when the first 3"¢ generation particle — the 7 lepton — was
discovered [20], the standard model was a highly successful theory of fundamental particle
interactions. Its success hinged on the fact that: (1) it gave good quantitative predictions
for all observed processes; (2) it did not predict processes that were not observed; and (3)

the theory was renormalizable. (See [22] for an excellent account of the state of the standard
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Figure 1.1: An example of a triangle anomaly diagram. These diagrams cause the standard
model to be unrenormalizable unless the cancellation equation 1.1 is valid.

model before the discovery of 7). This final feature of the theory, however, depends crucially

on the following fact:

Within a given generation, the sum of the charge of all leptons and quarks
weighted by the color factor must be zero.

This statement in equation form is given as follows:

Q(€) + Q(ve) +3-[Q(gd) + Q(gu)] = 0 (1.1)

Qf), Q(ve), Q(g4), and Q(g,) are the charge of the charged lepton £, the neutrino partner
vy of £, the down-type quark ¢4, and the up-type quark ¢,. The factor 3 in front of the
quark terms accounts for the fact that quarks come in three color states. This equality is
necessary in order to cancel out infinite terms arising from Feynman diagrams of the form
shown in figure 1.1. Without this cancellation, the standard model is not renormalizable,
and thus the theory is incomplete. For the first two generations, Q(£) = —1, Q(v¢) = 0,
Q(g4) = —1/3, and Q(qu) = +2/3. These values satisfy the sum in equation 1.1, so the
standard model with two fermion generations is renormalizable.

This state of affairs, however, ended with the discovery of the 7 lepton. Detailed
studies of the production and decay of 7 showed that, except for its mass, it had exactly the

same properties as the electron and muon. In other words, it is a third generation lepton.
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Figure 1.2: The decay of a weak isosinglet b-quark via mixing with the strange (or down)
quark. (a) Charged current decay; (b) neutral current decay.

The renormalizability of the standard model, therefore, requires that third generation quarks
exist. One of these — the b-quark — was discovered in 1977 [102]. The other 3"¢ generation
quark is, by definition, the top quark, and it ought to exist.

Experiments on the properties of the b-quark provide further support for the exis-
tence of the top quark. If the top quark does not exist, then the b-quark must be in a weak
isosinglet state. This means that the b-quark cannot decay through the channels 6 — ¢ +
W~ and b —» u + W~ via CKM mixing because this can happen only if b is a member of
an isodoublet. Instead, it must decay by mixing with 1% and 2"¢ generation d-type quarks,
as shown in figure 1.2(a). But if the process in this figure is possible, then so must that

shown in figure 1.2(b). The relative rates for the processes b— £7£~ X and b— £~ v, X is:

—ite-
% ~0.11 (1.2)
Experimentally, the decay b— £7£~ X does not occur at a detectable level, while b— £~ v, X
occurs frequently, so the ratio is measured to be much smaller than 0.11. Also, the diagrams
in figure 1.2 imply a much greater degree of BS-B_S mixing than is observed experimentally.
For these reasons, the isosinglet hypothesis is incorrect.

More quantitative evidence for the existence of the top quark is obtained by ex-

amining Z — bb. An isosinglet b-quark gives I'(Z—bb) which is about thirteen times



smaller than that for an isodoublet b. Experimentally, LEP has measured Ry = I'y/T'haq =
0.2170 £ 0.0009; this is in excellent agreement with the standard model with isodoublet b,
giving the value 0.2158 [25]. Also, the forward-backward asymmetry of the b-quark in Z
— bb in the Z resonance region shows that the third component of the weak isospin of b
is T3 = —0.49070-015 [26]. These two results convincingly demonstrate the fact that the b-
quark is a member of a weak isodoublet having T5 = —1/2. Thus a partner with 75 = +1/2

must exist: this is the top quark.

1.3 Direct Evidence for the Existence of the Top Quark:

Run 1la

In 1994, the CDF collaboration reported direct evidence for the existence of the top
quark [17], [16]. The evidence was based on data collected during Tevatron Run la in 1992-
1993, with integrated luminosity of 19 pb~!. At the Tevatron, where p and p are collided
at a center-of-mass energy of /s = 1.8 TeV, the processes with the greatest production
cross section for top quarks are qg — tf and gg — tt. The produced ¢ and ¢ decay to the

following intermediate states:

t - b+ WT

t — E—I—W_

The decay of the f system is categorized according to how W+ and W~ decay. If both
decay to £ + vy, where £ = e or u, the decay channel is call dilepton; if one decays to £ +
vy while the other decays to a quark pair, the decay channel is called lepton + jets; if both
decay to quark pairs, then the decay channel is called all-hadronic. These are the three
main decay channels of the top quark. In addition to the above, there is a decay channel
where one or both W decay to 7 + v;; this decay channel is referred to as tau. The decay
channels are summarized in table 1.2.

The Run la CDF search for the top quark examined the dilepton and lepton + jets

channels. The details of the event selection criteria for these channels can be found in [17],



DECAY CHANNEL DESCRIPTION ‘ BRANCHING FRACTION ‘

Both W’s decay to £ + v, £

dilepton — eor p. 4/81 (5%)
One W decays to £ + vy, the
lepton + jets other decays to a quark pair. 24/81 (30%)

Both W’s decay to a quark

all-hadronic pair.

36/81 (44%)

One or both W’s decay to 7
tau . 17/81 (21%)

Table 1.2: The decay channels of the it system, and their branching fractions.

‘ DILEPTON ‘ SVX ‘ SLT ‘
BACKGROUND | 0.567075 [2.34+0.3 |3.1+0.3
OBSERVED 2 6 7
PROBABILITY 12% 3.2% 3.8%

Table 1.3: A summary of CDF’s Run la top search. The column under SVX (SLT) refer
to the lepton + jets events with one or more jets tagged by the the secondary-vertex (soft-
lepton) b-tagging algorithm. Row 1: Expected number of background events. Row 2:
Number of observed events. Row 3: Probability that background events alone can account
for the observed excess of events. The SVX and SLT channels have three events in common.
[16]; here, they will be sketched. For the dilepton channel, two high- Py e or u, large missing
transverse energy (E7), and two or more jets are required; for the lepton + jets channel,
one high-Pr e or p, large Br, and three or more jets are required. In order to increase the
signal-to-background ratio in the lepton + jets channel, at least one jet was also required to
have a b-tag. An excess of events was found in both decay channels (table 1.3). When the
statistics in both channels are combined, the probability that the number of background

events fluctuated to give the observed number of events is 0.26%, which corresponds to a

2.8 0 excess.



1.4 Direct Evidence for the Existence of the Top Quark:

Run 1b

The Run 1a result presented in the last section provides only circumstantial evidence
for the existence of the top quark: the analysis indicates an excess of events passing cuts that
are relatively efficient for ¢ and inefficient for background. It, however, provides no evidence
that the excess is due to, or due only to, ¢f production and decay. In order to establish
this, the experimental data must be examined for consistency with the ¢£ hypothesis. The

following is a list of consistency requirements:

tt Production Cross Section
If the events in data come from, and only from, the top quark, then: (1) the measured
values of the ¢t production cross section should agree with the theoretical calculation
evaluated at the experimentally measured top quark mass; and (2) the cross section

measurement in orthogonal decay channels should all agree with each other.

Top and W Mass Spectrum
The top quark mass spectrum should cluster around a fixed value. Also, the measured
mass in different decay channels should agree with each other. Finally, in decay

channels with at least one hadronically decaying intermediate W, the mass spectrum

of the hadronic W should cluster around My ~ 80 GeV.

Kinematic Features of i Events
The fact that the top quark decays by the sequential, 3-body process t — b + W
followed by W — £ + vy or ¢ + @ suggests that it might have kinematic features that
distinguish it from: (1) known background processes; and (2) possible new physics
processes that mimic the production and decay of #f. Assuming that signal and
background monte carlos adequately model the processes of interest, all kinematic
distributions in #¢ candidate events should be described by a fixed combination of

signal and background monte carlo distributions.

During Tevatron Run 1b (1994 to 1996), the CDF and DO collaborations collected

about four to five times as much data as they did in Run la. With this level of statistics,
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Figure 1.3: pp — it cross section measurements. This figure is reproduced from figure 33
in [19]. The CDF combined cross section excludes the tau-dilepton decay channel; the
D0 combined cross section excludes the all-hadronic decay channel. The hatched band
represents the theoretical ¢ cross section, taking m,,, = 175 GeV. The band spans the
region 4.7-5.5 pb.

they were able to check these consistency requirements. The following sections summarize

their findings.

1.4.1 tt Production Cross Section

Figure 1.3 shows the Run 1 (i.e. combined Run 1a and Run 1b) pp — tt production
cross section for various decay channels from the CDF and D0 collaborations. Within errors,
the measured values of the cross section agree with the theoretical values (evaluated at 1),
= 175 GeV'). Also, within errors, the cross section in the various decay channels agree with
one another. Thus, within the precision attainable in Run 1, the experimental data are

consistent with the #Z hypothesis.

1.4.2 Top and W Mass Spectrum

The cross section measurements make clear the fact that known background pro-
cesses are extremely unlikely to account for the excess of events passing the top candidate

selection cuts. They do not, however, take into account the possibility that some or all of



the excess may be originating from new physics processes that do not involve the top quark.
One way to check whether or not the source of the excess is due solely to the production
and decay of the top quark is to examine the reconstructed top mass distribution.

At CDF and DO, the excess top candidate events are presumed to originate from
the production and decay of a tf pair. If one were able to reconstruct the ¢ and ¢ mass
with perfect precision, the mass distribution should be narrowly peaked about a mean
value (assuming my,, is not too large). If, however, the excess top candidate events do
not originate from a pair of particles of equal mass with narrow width, and one were to
reconstruct such events as if they did, the resulting mass distribution would (even at parton-
level) most likely be of a smeared-out, continuum form. Therefore, one way to check if the
excess top candidate events originate from a tf pair is to see if the top mass distribution
clusters about some fixed value.

In an experimental setting, this is more easily said than done. In order to measure
the top quark mass on an event-by-event basis, it is necessary to deduce the quark and
neutrino momenta from the objects found in the detector. This process is referred to as event
reconstruction. Attempts have been made by CDF and D0 to perform event reconstruction
in the dilepton, lepton + jets, and the all-hadronic channels. Event reconstruction in the
dilepton and all-hadronic channels is quite unreliable, while it is fairly reliable in the lepton
+ jets channel.! Because of this, the resonance in the top mass distribution is smeared out
and difficult to detect in the dilepton and all-hadronic channels, while it is easier to detect
in the lepton + jets channel.

Figure 1.4 shows the reconstructed top mass distribution in the lepton + jets channel
from CDF.[8] There does appear to be a clustering around 170-190 GeV. However, there is
apparently not to enough statistics to rule out a continuum distribution that is harder than
that from the known background. For the sake of completeness, the top mass distribution
in the all-hadronic channel is shown in figure 1.5. The distribution does seem to agree well

with signal + background monte carlo (signal has m;,, = 175 GeV'). However, as expected,

!The unreliability in the former channels is due to high degree of information loss from: (1) the large
amount of energy carried away by the two neutrinos in the dilepton channel; and (2) the large combinatoric
background in assigning jets to the correct quarks in the all-hadronic channel. The lepton + jets channel,
an hybrid of the other two channels, suffer from both of these problems, but to lesser degrees.
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Figure 1.4: The reconstructed top mass distribution in the lepton + jets channel. From
Tevatron Run 1, CDF. See [8].

no clear resonance structure is seen (nor is it expected by the monte carlo). No mass plot
is available for the dilepton channel, mainly on account of the large degree of ambiguity in
defining a unique reconstructed mass on an event-by-event basis.

Another test of the consistency of the experimental data with the ¢ hypothesis is to
see if the top mass measured in different decay channels agree with each other. Figure 1.6
shows the results of top mass measurements from CDF and D0, in various decay channels.

It is seen that, within the precisions attainable in Run 1, all of the decay channels have

10
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compatible masses. The conclusion, therefore, is that the Run 1 data are consistent with
the tf hypothesis.

Yet another test of the consistency of the experimental data with the ¢ hypothesis
makes use of the fact that two on-shell W’s exist in ¢f events. In cases where W decays
hadronically, one can measure its mass. If the event reconstruction process is sufficiently
reliable, one ought to see a resonance around 80 GeV in the W mass distribution. A search
for this resonance in the lepton + jets channel has been carried out by CDF.[5] The results
are summarized in figures 1.7 to 1.9. These figures make a compelling case that hadronically
decaying W bosons do seem to be present in the top candidate events. This is yet another

piece of evidence supporting the ¢t hypothesis.

1.4.8 Kinematic Features of tt Events

One can imagine performing two types of tests on the kinematic features of ¢ can-
didate events to verify that the excess events are consistent with the ¢f hypothesis. In the
first type of test, no attempt is made to reconstruct the momenta of the decay products of
tt, while in the second type, this reconstruction is performed.

In the first type of test, the quantities to be examined are: (1) the charged lepton
and jet momentum, and missing transverse energy; and (2) various combinations of items
in the first category. An example of a variable in the second category is Hr, the scalar sum
of the transverse momentum of all objects in an event.

Let us denote any given kinematic quantity as z. Also, let < # > be the average
value of z over a given sample of events. Typically, < = > in background processes is
different from that in ¢¢ events. (For instance, taking ¢ = Hrp, < Hr > in t¢ events is
much larger than in background events.) Thus, if the t¢ candidate events really consist
of background + signal events with signal being only ¢, then < z# > evaluated over the
candidate events should, on average, lie part way between < = > for the background and
signal. More specifically, if the estimated background fraction in the candidate event sample

is 3, then the most likely value of < z > in this sample is:

<& Segp= P+ < & Spack (1 — B): < & >4, (1.3)

12
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where < z >y, < & >pack, and < z >, are the average of z evaluated over the exper-
imental data, background, and signal. An important point to note about this equation is
the fact that it is valid for all choices of =, assuming that the ¢ hypothesis is valid.

A check of this sort has been performed in the lepton + jets channel by the CDF
collaboration.[18] In this study, two samples of top candidate events were examined. The
first sample is the so-called “W + > 3 jets” sample, which consists of one high-Pr e or
u, large B, and three or more jets. The second sample is a subset of the first, where one
or more SVX b-tagged jet is required. The first sample contains N; = 322 events, with
estimated background fraction 8; = (80 4+ 4)%; in the second sample, the corresponding
numbers are N, = 34 and B, = (25 £ 5)%. Figures 1.10 and 1.11 show the result of
comparing < & >z With < & >pecr and < = >4, where, in the signal events, m;,, was
taken as 175 GeV. See [18] for details about all of the kinematic variables tested, and about
how to read this plot. These plots show that, for all choice of z, < = >, lie more or less
where they are expected. Thus, within the precision attainable in Run 1, the kinematic
features of the tf candidate events are consistent with the ¢ hypothesis.

The second type of test of the kinematic features of the ¢t candidate events requires
the use of the it reconstruction algorithm. An implementation of this algorithm for ¢t in
the lepton + jets decay channel is described in detail in chapter 6. The algorithm operates,
roughly, in the following manner. One first starts with a sample of ¢t candidate events.
These events consist of one high- Py isolated e or u, large B, and four or more jets. The
signal portion of these events are presumed to originate from the decay t; — £ + vy + by

and t, — Wy + W, + by; these symbols are described in the following chart:

ty Semileptonically decaying top quark

by b-quark from t; decay

4 et or pt

vy Neutrino

73 Hadronically decaying top quark

by, b-quark from t; decay
Wa Down-type quark from hadronic W decay
W Up-type quark from hadronic W decay

The reconstruction algorithm makes use of the fact that (1) the ¢ and ¢ masses are the same,

and (2) My ~ 80 GeV, in order to accomplish the following:
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Comparison of Means: 322 W + >3 Jet events

(50.,54.)  P.(electr) ; -— = |
(53.,65.) Missing E; ‘& —> |
(74.,92))  P(W leptonic) <t > :
(75.,98)  P(jetl) Go> |
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(46.,60.) Min Mass(jj) | < |
(168.,243.) TP (jet) —<>

(274.,366.) H (Sum All P,) <>
(81.,113) P(jet2) + P(jet3) <> |
(44.,71.)  P.(jet3) + P(jetd) — <> |
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Figure 1.10: The mean of various kinematic quantities in the W > 3 jets data sample relative
to the mean in the background (VECBOS) and signal (HERWIG tt, my,, = 175 GeV'). The
points indicate the mean in the experimental data, while the left (right) edge indicates the
mean in the background (signal). The arrow in each row indicates the error of the mean.
The shaded vertical strip indicates the most likely position of the mean, given the estimated
background fraction 8 = (80 + 4)%. See [18] for the definition of the kinematic variables
and more on how to read this chart.
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Comparison of Means: 34 SVX b-tags
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Figure 1.11: Same as figure 1.10, but taking the subsample of W + > 3 jets events with at
least on SVX b-tagged jet. The background fraction in this case is § = (25 £+ 5)%.
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e Match the correct jets to the quarks that gave rise to them
o Reconstruct the jet energy

o Reconstruct the neutrino momentum

If the signal portion of the ¢ candidate events originate from t¢ alone, then the
result of the application of this algorithm on the experimental data should be similar to
an appropriate combination of results from the signal and background monte carlo. On
the other hand, if the signal portion of the candidate events do not, or only partly, con-
tain ¢t events, then this fact may show up as disagreements between the results from the
experimental data and monte carlo.

Figures 1.12 to 1.16 show distributions of some variables from the output of the ¢t re-
construction algorithm. All except one variable appear consistent with signal + background
monte carlo, with signal being ¢f with m,, = 175 GeV. The one exception is the rapidity
of the tt system, y(tt) (figure 1.16). The rapidity distribution is somewhat depleted around
y = 0. This problem, in fact, is more clearly manifest in the distribution of the longitudinal
momentum of the ¢t system, P,(tt) (figure 1.17). A Kolmogorov-Smirnov test comparing
the distribution of | P,(¢t)| in the experimental data with that of signal + background monte
carlo shows that the probability that the distribution in the experimental data originates
from the signal + background monte carlo is 0.1%. As of this writing, this appears to be
the only aspect of ¢t candidate events that shows statistically significant discrepancy with

monte carlo. It is believed, therefore, that this anomaly is due to statistical fluctuation.

1.5 Confirming the Existence of the Top Quark

The Run 1 results make a strong case for the existence of the top quark. To be
sure, test-by-test, the statistics are too limited to rule out the possibility that all or part
of the signal portion of the tf candidate events originate from physics processes other than
the production and decay of top quarks. However, it was seen in the last section that, test

after test, the experimental data are consistent with the ¢£ hypothesis. Although it may be
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Figure 1.12: The ¢t invariant mass distribution in reconstructed ¢t candidate events in the
lepton + jets channel with > b-tagged jet.
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Figure 1.13: The distribution of the recoil transverse momentum of the ¢t system, Pr(tt),
in reconstructed ¢ candidate events in the lepton + jets channel with > b-tagged jet.
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Figure 1.14: The distribution of Pr of the semileptonically and hadronically decaying top
quark in reconstructed ¢t candidate events in the lepton + jets channel with > b-tagged jet.
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Figure 1.15: The azimuthal angular separation between ¢ and ¢ in reconstructed ¢t candidate
events in the lepton + jets channel with > b-tagged jet.
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Figure 1.17: Distribution of P,(#t) and |P,(¢¢)| in t¢ in the lepton + jets events with > 1
b-tag. The points show the distribution in the Run 1 experimental data; the histogram
shows the signal + background monte carlo, with the signal being ¢t with m,, = 175 GeV.

possible to think of new physics processes that could mimic the ¢ hypothesis at this level,
it would seem to require a high degree of coincidence.

In Tevatron Run 2 and beyond, the question as to the existence of the top quark
should be answered decisively. The following are some remaining tests that must be an-

swered before one can conclude that the top quark does indeed exist:

Single-Top Production
In addition to the pp — tt production channel, top quarks can be produced singly
at hadron colliders. Figure 1.18 shows the main diagrams responsible for single-top
production. Single-top production was not observable during Tevatron Run 1 because
of its small production cross section, small acceptance, and large background contam-
ination. It is believed, however, that the integrated luminosity in Tevatron Run 2 will
be large enough to overcome these difficulties. Observation of statistically significant
excess beyond the expected contributions from known background processes will pro-
vide further evidence of the existence of the top quark. See [27], [30], and [64] to [70]

for more on single top production.

The Spin of the Top Quark
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The top quark is a spin-% particle. Experimental confirmation of this fact is important
in firmly establishing the existence of the top quark. The most direct way of testing
the spin of the top quark is to measure the ¢£ production cross section as a function
of /s in ete™ collisions. Such a test, however, will not take place in the near future.
In the near-term, only indirect tests can be made. Two such tests probe: (1) the
property of the ¢-b-W decay vertex; and (2) spin-correlation in ¢t decay. The first
property can be probed by examining the distribution of the charged lepton energy;
the second by examining the distribution of the angle between the two charged leptons
in the dilepton decay channel. The details of both properties depend crucially on the
fact that the top quark is a spin-% particle. Negative results (z.e. the experimental
data being inconsistent with monte carlo predictions) will not necessarily rule out the
existence of the top quark, because they can also be produced by unexpected types of
couplings/production mechanisms; they, however, will cast some doubt as to whether
the particles presumed to be ¢ and ¢ really have spin-%, and, therefore, cast doubt as
to the very existence of the top quark. These two properties are discussed in detail

later in this thesis.

The Weak-isospin and Electric Charge of the Top Quark
The top quark has weak-isospin T35 = —1/2 and electric charge @ = +2/3. Direct
experimental confirmation of these facts will unequivocally establish the existence of
the top quark. These properties, however, cannot be directly studied in any straight-
forward way other than in eTe™ colliders. Thus these tests cannot be tested in the

near future.

1.6 About this Thesis

In the last several sections, evidence for the existence of the top quark, and the
remaining pieces of information needed to confirm its existence, have been shown. The work
presented in this thesis also addresses the issue of the existence of the top quark. Specifically,
it is addressed by examining the decay kinematics of the semileptonically decaying top quark

in the top rest frame.
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Figure 1.18: Main Feynman diagrams for single-top production.

It will be shown in chapter 7 that the standard model makes two non-trivial predic-
tions concerning the center-of-mass kinematics of the semileptonically decaying top quark.

They are the following:

Charged Lepton Energy Distribution

The distribution of the charged lepton energy in the top rest frame contains informa-
tion about the nature of the t-b-W decay vertex. In particular, the standard model
predicts that the decay vertex has V' — A coupling. One implication of this form of
coupling is that the top quark almost completely decouples from the right-handed
helicity state of the W boson, while its normalized coupling to the left-handed and
longitudinal helicity states of W is h_ = 0.30 and ho = 0.70, respectively (taking m,p
= 175 GeV).

Charged Lepton Angular Distribution
The angular distribution of the charged lepton in the top rest frame contains infor-
mation about top quark spin polarization. According to the standard model, the top
quarks produced in pp — ¢t at /s = 1.8 TeV should be almost completely unpolar-
ized. This means that the charged lepton angular distribution in the top rest frame

is isotropic.

The work presented in this thesis examines the experimental data in light of these

predictions. If the signal portion of the ¢ candidate events all originate from the production
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and decay of t¢ pairs with m,,, ~ 175 GeV, then, within statistical error, the experimental
data should be consistent with these predictions. If, on the other hand, part or all of the
signal portion of the tf events originate from something other than ¢t, then this fact could
show up as energy and/or angular distributions that are inconsistent with the standard
model predictions. (Of course, such inconsistencies can also indicate ¢ with anomalous
couplings and/or production mechanisms.)

The comparison of the experimental data with standard model predictions is the
ultimate goal of this thesis. Before this goal can be achieved, however, a lot of technical

issues must be dealt with. The following is a list of the most important such issues:

tt Event Reconstruction
In order to examine the charged lepton energy and angular distribution in the top rest
frame, the top quark momentum in the lab frame must be known. Obtaining this from
the experimental data are not straight-forward, and requires a complicated algorithm,
referred to as the tt Reconstruction Algorithm. Because the analysis depends crucially
on this algorithm, it is important to understand how it works in detail (chapter 6). It
is also important to understand what aspects of the algorithm are most responsible

for the degradation of the measurement resolution (chapter 9).

Choice of Observables
In the semileptonic decay channel, the top quark decays to £ + vy + b, where £ is a
charged lepton, vy is the neutrino partner of £, and b is the b-quark. At first thought,
it is not clear why one should examine only the energy and angular distribution of
£. A careful examination of the standard model prediction of this process makes
clear that: (1) the energy and angle of b and v; provide no information independent
of that provided by the energy and angle of ¢; and (2) the energy and angle of £
have properties that make them the most desirable quantities for examining the top
center-of-mass decay kinematics. This sort of question must be answered before the
experimental data can be compared to theoretical predictions in an efficient manner.

These issues are discussed in chapter 7.

Measurement Method and Resolution
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A measurement method must be chosen before one can quantify the degree of agree-
ment between the experimental data and standard model prediction. Once a method
is chosen, it is useful to know what factors affect the measurement resolution. These

issues are dealt with in chapter 8.

It is shown in chapter 8 that, with Run 1 statistics, the statistical errors are too
large to draw any meaningful conclusion from the comparison of the experimental data with
standard model predictions. Thus, in this thesis, the technical issues are emphasized. This
thesis is intended mainly as reference material for those who might perform related analyses

in Run 2.
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Chapter 2

Experimental Apparatus

The two main experimental apparatus in a collider experiment are: (1) a collider;
and (2) a detector. In this chapter, the Run 1 Tevatron Collider and the CDF detector are

described.

2.1 The Run I Tevatron Collider

The Tevatron collider is located at the Fermi National Accelerator Laboratory
(FNAL) in Batavia, Illinois (west of Chicago). It has a radius of 1 km, and uses su-
perconducting magnets to collide protons and antiprotons at a center-of-mass energy of /s
= 1.8 TeV. A schematic diagram of the Tevatron collider complex is shown in figure 2.1.
In this section, the operation of the collider is sketched, and the parts that make up the

collider complex is described.

2.1.1 A Sketch of the Collider Operation

The Tevatron collider has two main modes of operation: the collider mode and
fixed-target mode. The collider mode is of interest in this discussion. In the collider mode,

the Tevatron collider complex is comprised of six parts:
1. The Pre-acc
2. The Linac

3. The Booster
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Figure 2.1: A schematic diagram of the Tevatron collider complex. This figure is adopted
from [19].
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4. The Main Ring
5. The Antiproton Complex

6. The Tevatron

These parts will be described in detail in the next section. In this section, the roles played
by the parts are sketched.

The ultimate goal of the Tevatron collider operating in the collider mode is to get
protons and antiprotons to collide at /s = 1.8 TeV. This goal is achieved in three steps:
(1) create and accumulate p; (2) shot-setup (preparation for collisions); and (3) collisions.

The following happen in each of the steps:

Antiproton Creation and Accumulation
Antiprotons are created by smashing protons into a nickel target. The source of the
protons used for this purpose is ionized hydrogen gas, H~. The H~ are extracted
from the source and accelerated to 750 keV by the “Pre-acc”, which is a Cockroft-
Walton electrostatic accelerator. These H ~ ions are then fed to the “Linac”, which is a
collection of radio-frequency (RF) chambers that are strategically placed to accelerate
the incoming H~ ions to 400 MeV. The outgoing H~ ions are then forced through a
carbon foil, which removes the electrons from H~ and passes through only the proton
in the core. These protons are then fed into the Booster, which is a synchrotron of
diameter of about 150 m that accelerates the protons to 8 GeV. The protons are
then fed into the Main Ring, which is also a synchrotron, but a much larger one with
radius of 1 km. The Main Ring accelerates the protons to 120 GeV. They are then
extracted and brought into collision with a nickel target. In each collision, there are
about 10'2 protons impinging upon the target, and about 107 antiprotons coming out
of the target. The outgoing p are then cooled in the debuncher and stored in the

0'° p can be produced per hour. A viable

accumulator. Using this procedure, about 1
rate of collisions requires about 10'! p, so the accumulation process typically takes

about half a day to complete.
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Shot-setup
During collision, six bunches of protons and antiprotons are accelerated in opposite
directions in the Tevatron collider, each p and p carrying about 900 GeV of energy.
The process of getting the p and p into this state is referred to as shot-setup. The
first step in shot-setup is the transfer of 150 GeV protons from the Main Ring to the
Tevatron. The source of the protons is the same as for p creation described above. The
protons are injected into the Tevatron bunch-by-bunch. Once injected, each bunch
typically contain about 2 x 10'! protons.! Typically, it takes about 30 sec to inject a
proton bunch. Once six bunches are injected into the Tevatron, the process is repeated
with p bunches. The process for p proceeds in very much the same way as for p. One
important difference between p and p is the bunch size: p bunches typically contain
only about 6 x10'° antiprotons. Once the Tevatron is injected with six bunches each of
p and p, they are “ramped up” to 900 GeV . This process usually takes tens of seconds.
At this point, very few collisions are taking place because the transverse size of the
beam is relatively large. The beam is “squeezed” to a diameter of roughly 100 micron,
at which point there are typically about 2.5 interactions per beam crossing. The final
step in shot-setup is “scraping”, whereby p and p in the tail of the bunch distribution
are removed; this step is taken in order to protect sensitive equipment in the detector
from being damaged by excessive bombardment by particles. Typically, a trouble-free
shot-setup takes about an hour to complete; complications in any of the above steps

could delay collisions for many hours, or longer.

Collisions
Once the beam is scraped, the detectors are activated. This activation process takes
a minute or two, and principally involves turning on high-voltage power sources for
various detector components. Once the detector is up and running, the triggers in
the detector are activated, and data-taking proceeds. A collision session is referred to
as a store. A typical store lasts about 10 to 20 hours. During the course of a store,
the beam intensity steadily decreases because of emittance effects. Thus the rate at

which data are collected also steadily decreases. Normally, a store is ended when the

!See [105] for a table describing beam parameters. The numbers quoted here are for Run 1b.
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beam luminosity gets below a certain threshold. On occasion, however, malfunction
in some component in the accelerator could force an end to a store. It should be
noted that during a store, the Main Ring is often operating in parallel, creating and

accumulating p in preparation for the next store.

2.1.2 The Parts of the Collider

In the collider mode, the Tevatron collider complex consists of the Pre-acc, Linac,
Booster, Main Ring, Antiproton Complex, and the Tevatron. These components are de-
scribed in this section. (The sources for the material presented in this section are from [102],

[103], [104], [106], [107], [108], [109], [110].)

2.1.2.1 The Pre-acc

The Pre-acc system consists of an H ~ ion source and a Cockroft-Walton electrostatic
accelerator that accelerates H~ to 750 keV.

Gaseous hydrogen is first extracted from a small tank and injected into the ion
source, out of which emerges H~ ions (figure 2.2). These ions are extracted from the source
at 18 keV and transferred to a Cockroft-Walton electrostatic pre-accelerator (the Pre-acc),
which accelerates H~ to 750 keV (figure 2.3). The acceleration process can be thought of
roughly in the following terms: the dome containing H ~ ions is held at an electric potential
of —750 kV; a column connects the dome to a ground potential, and the ions rush toward
through the column to achieve the final energy of 750 keV'.

According to nominal specifications [103], the source-accelerator system gives rise
to pulses of H™ of current of ~ 50 mA and pulse length of 30 pus. These pulses can be

created at a rate of 15 Hz, or ~ 1.4 x 10'* H~ ions/sec.

2.1.2.2 The Linac

The Linac takes as input H ~ ions at 750 keV and accelerates them to 400 MeV. The
Linac consists of fourteen cylindrical radio-frequency (RF) accelerating cavities arranged
collinearly. The first five cavities are drift-tube linacs operating at 201 M H z; they accelerate

H~ to116 MeV. The last nine cavities are side-coupled cavity linacs operating at 805 M H z;
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Figure 2.2: The H~ ion source. The small tank in the upper-left contains hydrogen gas.
The machinery to the right of center is the ion source. The photograph is from the Fermilab
Accelerator Division/Proton Source Department World Wide Web page [107].

Figure 2.3: The Cockroft-Walton 750 £V dome. This is where the H~ ions are accelerated
to 750 keV. The photograph is from the Fermilab Accelerator Division/Proton Source
Department World Wide Web page [107].
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Figure 2.4: The inside of one of the Drift Tube Linac at Fermilab. The photograph is from
the Fermilab Accelerator Division/Proton Source Department World Wide Web site [107].

they accelerate H~ to about 400 MeV. The linac system can accelerate a beam at a rate
of about 15 Hz (the same rate as the H~ source).

Figure 2.4 shows a photograph of the inside of a drift-tube linac. The operation of
a drift-tube linac goes along the following lines. Amplified RF is applied to the drift-tubes
in the linac cavities. This sets up an alternating, high-gradient (~ 2 MV /m) electric field
between the drift tubes, while the interior of the drift-tubes are almost free of electric field.
The drift-tubes are strategically placed so that the H ™~ ions are outside of a drift-tube when
the electric field is along the desired direction of motion, and lies in the drift tube when the
electric field is in the wrong direction.

Figure 2.5 shows a photograph of the side-coupled linac. The operation of a side-
coupled linac goes along the following lines. Imagine a cylindrical pipe partitioned along its
length with walls (somewhat like a stack of cans) with a hole in the center, through which
H~ ions travel. A pipe is connected to amplified RF generated by klystrons (basically, a
very powerful microwave generator). The applied RF creates a standing electromagnetic
wave patterns in the cavities of the pipe. The geometry of the pipe and the cavities therein
are designed in such a way that H~ ions travelling along it are accelerated by the electric

field set up in the cavities.
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Figure 2.5: One of the Side-Coupled Linacs at Fermilab. The photograph is from the
Fermilab Accelerator Division/Proton Source Department World Wide Web site [107].

2.1.2.3 The Booster

The Booster (figure 2.6) is a circular accelerator of radius of about 75 m. It is
an alternate gradient synchrotron that accelerates protons from 400 MeV to 8 GeV. The
acceleration is performed by 17 RF cavities (similar to the drift-tube linacs described earlier)
placed in nine straight sections of the Booster (two per straight section, except for one of
the straight sections, which has room for only one). The protons reach their peak energy
after about 20,000 rotations. The Booster is capable of accomplishing this at a rate of
15 Hz (the same rate as the H~ source and the Linac).

An important auxiliary mechanism of the Booster is the carbon foil that strips off
the electrons from the incoming 400 MeV H~ ions. The following is a description of how
the stripper works. First, a bunch of H~ ions from the linac is injected parallel to the
Booster orbit; the ions are about 8 ¢m outside of this orbit. The H~ ions and the protons
travel in a parallel path, until their paths are bent by a dipole magnet. The paths of the
H~ ions are bent inward and that of the protons are bent outwards (relative to the center
of the Booster). Their paths are bent so that the H~ and proton bunch merge. The merged

beam is then sent through the carbon foil. About 98 to 99 % of the the H~ come out as
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Figure 2.6: A photograph of the Booster and other structures at the Fermilab pp collider.
The Booster is located under the small circular structure shown toward the left-center. The
building behind the Booster is the 15-story Hi-Rise. Underneath the triangular structure
in front of the Booster is where the antiproton Debuncher and Accumulator are. The
underneath the large circular structure to the right is where the Main Ring and the Tevatron
are. This photograph is from the Fermilab Accelerator Division/Proton Source Department

World Wide Web site [107].
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protons, while most of the incoming protons pass right through. The outgoing protons are

then bent back to the original Booster orbit.

2.1.2.4 The Main Ring

The Main Ring is a circular accelerator that accelerates protons from the Booster
and antiprotons from the Accumulator. It is an alternate gradient synchrotron of radius
1000 m, and is located in a tunnel, which has a diameter of about 3 m (10 ft) and is 6 m
(20 ft) underground. The initial particle energy is 8 GeV; the Main Ring is capable of
increasing that to 120 GeV or 150 GeV, depending on the beam’s destination. This can be
accomplished at a rate of once every 2.4 sec.

The Main Ring is made of 774 bending (dipole) magnets, 240 quadrupole (focusing)
magnets, and 18 RF cavities for particle acceleration. The RF cavities are all located in a
single straight section. All of the magnets are conventional, copper-coiled magnets.

The Main Ring is divided into six sectors, labeled A through F, each subtending an
angle of 60° (figure 2.1). Each sector is further divided into five parts, labeled 0 through 4.
Part 0 is a straight section; parts 1 through 4 contain bending and focusing magnets. The

six straight sections (A0 to F0) each serve special functions:

A0
This is the injection point for protons from the booster.
Bo
This is where the CDF detector is.
Co
This is where p and p are dumped when the beam is aborted.
Do
This is where the D0 detector is.
Eo

This is where p and p are injected from the Main Ring to the Tevatron.
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Fo
This is where the 18 RF cavities are. This is also where protons destined for the
antiproton targets are extracted, and where p from the Accumulator is injected into

the Main Ring.

The Main Ring operates in two modes: one for creating p, and one for injection into
the Tevatron. In the first mode, the Main Ring accepts 8 GeV protons from the Booster
and accelerates them to 120 GeV. The resulting beam is extracted at F'0 and sent to the
P target. In the latter mode, the Main Ring extracts 8 GeV protons from the Booster, or
8 GeV antiprotons from the Accumulator, and accelerates them to 150 GeV. The 150 GeV

p or p are then injected into the Tevatron at F0.

2.1.2.5 The Antiproton Complex

The antiproton complex consists of three main parts: the target, the debuncher, and
the accumulator. The basic operating principle of this complex is as follows. First, protons
accelerated to 120 GeV in the Main Ring are extracted and are brought into collision with
the target. Many different types of particles are created by this collision, among which are
antiprotons. The cone of produced particles go through a lithium lens, which renders the
particle trajectories nearly parallel. These trajectories are then bent by a dipole magnet in
order to select p with approximately 8 GeV of energy. The extracted 7 are then placed in the
Debuncher, in which the momentum spread of the 8 GeV beam is reduced. The debunching
process is continued until just before the next batch of protons is extracted from the Main
Ring. At that time, the P are transferred from the debuncher to the Accumulator, where
the p are stored at 8 GeV. This process is continued until sufficient p are collected for
shot-setup. During shot-setup, p in the accumulator are extracted and injected into the
Main Ring at 8 GeV.

The target in the antiproton complex is a nickel disk of diameter ~ 10 ¢m and
thickness ~ 2 ¢m. A typical target assembly is shown in figure 2.7. The beam hits the
target sidewise, as shown in figure 2.8.

The lithium lens is a cylinder of lithium 15 ¢m in length and 1 ¢m in diameter. It is

placed in a toroidal transformer that produced magnetic field inside of the lens. Lithium was
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Figure 2.2 Typical target assembly

Figure 2.7: Beam’s view of the p target assembly. This figure is from the “Antiproton
Rookie Book” at the Fermilab Accelerator Division/Antiproton Group World Wide Web
site [110].
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Figure 2.8: The proton beam hits the nickel target disk sidewise and off-center to create
antiprotons. Also shown is the lithium lens used to make the secondary particle trajectories
parallel to each other. This figure is from the “Antiproton Rookie Book” at the Fermilab
Accelerator Division/Antiproton Group World Wide Web site [110].

chosen for the lens because it is the least dense solid conductor; this minimizes scattering
and absorption of the traversing particles.

The dipole magnet downstream of the lithium lens selects p having momentum of
about 8 GeV. Various factors (both physics and engineering) are involved in the choice of
this momentum. One of the physics-based factors is the fact that the p momentum spectrum
peaks at about 8 GeV, so that this choice of momentum optimizes the collection rate of p.

The debuncher is rounded-triangular shaped synchrotron with a mean radius of
about 90 m (figure 2.6). The accumulator is somewhat smaller than the debuncher (mean
radius ~ 75 m), and is located within the perimeter of the debuncher (figure 2.9). The
debunching process, whereby the momentum spread of the p is reduced, is referred to as
“cooling”. Various cooling methods are used to reduce both the longitudinal and transverse
momentum spread; they are based on electronic feedback circuits set up in the ring. The p
beam in the Debuncher is cooled for two reasons: (1) to make cooling in the Accumulator
more efficient; and (2) to maximize the efficiency in transferring p from the Debuncher to
the Accumulator. The beam is cooled in the Accumulator in order to: (1) efficiently store
the beam for many hours; (2) efficiently transfer low-emittance (i.e. narrow and dense)

beam to the Main Ring; and (3) to achieve high pp luminostiy.
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Figure 2.9: Inside the tunnel containing the Debuncher (left) and the Accumulator (right).
This photograph is from the Official Fermilab World Wide Web site [106].

2.1.2.6 The Tevatron

The Tevatron is an alternate gradient synchrotron of radius 1 km. It is housed in the
same tunnel as the Main Ring (it lies just beneath the Main Ring, see figure 2.10). It has
eight RF cavities at F0 that are used to accelerate p and p from 150 GeV to 900 GeV. The
Tevatron has about 1000 superconducting magnets that generate strong enough magnetic
field to keep such high energy particles in a circular orbit. In figure 2.10, the Tevatron
magnets are contained in long, rectangular housing cases. Inside the housing are concentric
cylinders containing, from outside in: (1) a vacuum shell; (2) a liquid nitrogen pipe; (3)
another vacuum pipe; (4) a liquid helium pipe; (5) superconducting magnetic coils; and,

finally, (6) the beam pipe.
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Figure 2.10: The tunnel containing the Main Ring and the Tevatron. The tunnel is about
3 m wide and 2.4 m high. The Main Ring is on top of the Tevatron. This photograph is
from the Official Fermilab World Wide Web site [106].
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2.2 The Run I CDF Detector

2.2.1 General Description

The Collider Detector at Fermilab (CDF') is one of two general-purpose cylindrical
detectors used to detect particles produced in pp collisions at the Tevatron Collider (the
other detector is the D0). References [78] and [79] describes CDF in detail. Here, a brief
discussion about it will be given for reference.

The complete detector complex — the detector itself, the readout electronics, the
trigger, the data acquisition system, and computers for system monitoring — is contained
in a three story hangar-like structure with a basement that reaches about 30 ft underground
(figure 2.11). The detector proper is located in the underground portion of the complex, so
that the Tevatron beam line (which is located about 6 m (20 ft) underground) goes through
the detector’s axis.

In order to describe the detector components, it is useful to first define coordinate
axes. Figure 2.12 shows both cartesian and cylindrical coordinate systems defined relative
to the detector. In the cartesian system, the z direction points along the proton beam (to
the east through the detector axis, into the photo in figure 2.11), the # direction points
north (to the left of the photo in figure 2.11), and the y direction points upwards. In the
cylindrical system, the z axis is the same as before, the radial axis points outwards from
the detector axis, and the azimuthal angle is defined with 0° pointing along the z axis, and
azimuth increasing toward the +y axis.

The CDF detector is segmented into five parts along the z direction: east forward,
east plug, central, west plug, and west forward. The most critical portion of the detector for
top quark physics is the central detector, which is needed to identify energetic electrons and
muons. The central detector is segmented into different parts going along the radial direc-
tion. In increasing radius, one has the beam pipe, the tracking detectors, a superconducting
magnetic solenoid coil, the central calorimeters, and the muon detectors.

The tracking detectors, going from small to large radii, are the Silicon Vertex Detec-
tor (SVX), the Vertex Time Projection Chamber (VTX), and the Central Tracking Chamber

(CTC). These tracking elements are contained in a nearly constant axial magnetic field of
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Figure 2.11: A photograph of the CDF detector. A crane (upper portion of photo) holds the
central portion of the detector; in the foreground are the forward detectors. In the photo, the
detector components are pulled out from their normal positions. During normal operating
conditions, the central portion of the detector is carried by the crane into the basement,
and the forward detectors are placed close in front of the central detectors. Photo from the

CDF World Wide Web site [111].
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Figure 2.12: A one-quarter view of the CDF detector. In order to picture the complete
detector, one should imagine rotating the picture about the beam axis, and reflect it about
the vertical plane through the nominal interaction point (z = 0). This figure is adopted
from [16].
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about 1.4 T generated by a superconducting magnetic solenoid. The CTC is basically a
magnetic spectrometer that measures the momenta of charged particle tracks by measuring
their curvature in the magnetic field.

The central calorimeters are divided between the electromagnetic (CEM) and the
hadronic (CHA). The CHA is placed radially outside of the CEM. This separation between
electromagnetic and hadronic calorimeters allows one to distinguish electrons and photons
from hadronic jets.

The muon detectors consist of the Central Muon Detector (CMU), the Central Muon
Upgrade Detector (CMP), and the Central Muon Extension Detector (CMX). The CMU is
located immediately outside of the hadronic calorimeter, while the CMP is located beyond
CMU, with 0.6 m of steel in between. The steel layer absorbs most of the hadronic “punch-
through” particles from the CHA while allowing most muons through. The CMX is located
somewhat to the side of the central portion of the detector and detects muons that escape
CMU and CMP coverage.

In addition to the central detectors, there are the plug and forward detectors. Specif-
ically, there are the plug and forward calorimeters and the Forward Muon detector (FMU).
The FMU is not used in the analysis of top quark events. The plug and forward calorime-
ters are segmented, like the central calorimeters, into electromagnetic (PEM and FEM)
and hadronic portions (PHA and FHA). These calorimeters are used only to detect jets
and contribute to the calculation of the missing transverse energy (E7) and the unclustered
energy.

Finally, there are the trigger and data acquisition systems in the three story B0
detector building. The trigger has three levels and is used to select subsets of pp collision
events that are likely to have originated from physics processes of interest. The data acqui-
sition system, working in unison with the trigger, collects, organizes, and stores information

from all detector components.
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2.2.2 The Parts of CDF

In this section, the parts of the CDF detector that are most important in the detec-
tion of the top quark are described. The operating principle of the detector components is

beyond the scope of the present discussion; for that information, see [4].

2.2.2.1 Tracking Detectors

The SVX, VTX, and the CTC comprise the tracking system.

The CTC [80], the outermost tracking detector, is a wire drift chamber with 84
concentric cylindrical layers of sense wires. It is 3.2 m long, centered at z = 0, and extends
from a radius of 31.0 cm to 132.5 cm. The sense wires are organized into nine “superlayers”
(i.e. cluster of layers). There are five axial superlayers containing twelve wire layers each,
and whose wires are parallel to the z axis. Interleaved between the axial superlayers are the
four stereo superlayers containing six wire layers each, and whose wires are tilted by +3°
with respect to the beam axis. The axial superlayers play a key role in the reconstruction
of track momentum in the r-¢ plane, while the stereo layers allow one to reconstruct the
z component of track momentum. The CTC covers the detector pseudorapidity region
|ng| < 1.2 The CTC measures track Py with a resolution of § Py /Py = 0.0011 - Pr.

The VTX [81] is located between the CTC and SVX. Its main role is to provide r-z
tracking up to radius 22 cm and |n4| < 3.25. This information is used to determine the
z coordinate of the event vertex. The VTX is capable of finding the event vertex with a
precision of about 1 mm.

The SVX ([82], [83], [84], [85]) is the innermost tracking system, and consists of two
barrels, one each on the east (z > 0) and west (z < 0) side of the detector. Each barrel
is 25.5 cm long, and has four layers of single-sided silicon detectors located 3.0, 4.2, 6.8,
and 7.9 cm from the beam line. The axial strips on the three innermost layers have 60 um
pitch (i.e. width); the strips on the outermost layer has 55 pm pitch. The SVX single-hit
resolution is measured in data to be 13 pm. Track impact parameter relative to the beam

position can be measured to a precision of 17 ym. The position of secondary vertices of

?Pseudorapidity is defined as n = —log (tan g), where 6 is the angle relative to the proton beam line.
The detector pseudorapidity 74 is the pseudorapidity calculated taking the interaction vertex to be exactly
at the center of the detector, z = 0.
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the decay of long-lived particles is measured by matching SVX tracks with tracks found by
the CTC. The SVX is precise enough to efficiently identify the secondary vertices from the
decay of b-hadrons, which have typical decay lengths of about 400 ym. The momentum
resolution of a combined SVX/CTC track is § Pr/Pr = 0.0009 - Pr @ 0.0066 (& indicates

addition in quadrature).

2.2.2.2 Calorimeters

The calorimeters surround the tracking detectors and the solenoid. They cover 27
in azimuth and |9y < 4.2 in pseudorapidity. The calorimeter system is divided into three
separate regions in 74: central, end-plug, and forward. Each region has electromagnetic
calorimeters (CEM [86], [87], [88], [89], [90], PEM [92], FEM [95]) in front of hadronic
calorimeters (CHA/WHA [91], PHA [93], FHA [94]).® The calorimeters are segmented in
azimuth and pseudorapidity to form a projective tower geometry — i.e. they point back
to the nominal interaction point, z = 0. The central calorimeters have towers that are 15°
wide in azimuth and 0.1 units wide in 74, while the tower size in the plug and forward
calorimeters is 5° wide in ¢ and 0.1 units wide in 7g. The physical size of the inner face
of these towers varies from 24.1 cm (77) X 46.2 cm (¢) in the central region to 1.8 cm X
1.8 cm in the forward region. In all cases, the absorber in the electromagnetic calorimeter
is lead, and, in the hadronic calorimeter, it is iron. The active sampling medium in the
central calorimeters is scintillators, while it is gas proportional chambers in the plug and
forward calorimeters. See figure 2.12 for the position of the calorimeters. Their coverage,
thickness, and resolution are summarized in table 2.1.

The CEM has embedded in it proportional chambers with strip and wire readout
(CES) located at the approximate shower maximum depth (6 - X;). The CES provides
precise shower position measurements in both the z and r-¢ views. In addition, proportional
chambers (CPR) are located between the solenoid and the CEM; they sample the early

development of electromagnetic showers in the solenoid coil. The CPR measures only the

3WHA is the “wall” hadron calorimeter, which is located between CHA and PHA. It is constructed of the
same material as the CHA, but has significantly different shape because it covers the edge of the cylindrically
shaped central region. Throughout this report, the term “CHA” will be used to refer to both CHA and
WHA.
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System 14 Range Energy Resolution Thickness
CEM Inal < 1.1 13.7%/VEr & 2% 18 Xy
PEM  1.1< |ng <24 22%/VE7 @ 2%  18-21 X,
FEM  2.2< |qq| <42 26%/VEr @ 2% 25 Xo
CHA In4) < 0.9 50%/vVET @ 3% 4.5 Ao
wHA 0.7<|n4 <13 75%/vVEr @ 4% 4.5 Ao
PHA 1.3 < |4l <24 106%/Er © 6% 5.7 Ao
FHA 2.4 < |npq| < 4.2 137%/VEr ® 3% 7.7 Ao

Table 2.1: Summary CDF calorimetry properties. The symbol @ signifies addition in
quadrature. Energy resolutions for the electromagnetic calorimeters are for incident elec-
trons and photons; for the hadronic calorimeters, they are for incident isolated pions. Energy
is in GeV. Thicknesses are given in radiation lengths (Xy) for electromagnetic calorimeters,
and in interaction lengths (Ag) for hadronic calorimeters.

r-¢ position of showers. The CES and CPR aid in the precise reconstruction of electron

and photon momenta.

2.2.2.3 Muon Detectors

The CDF muon system consists of the CMU, CMP, and the CMX. The CMU consists
of four layers of drift chambers located directly outside (radially) of each 15° wedge of the
CHA. The CMU covers the region |74 < 0.6. The four drift tube layers are used to obtain
trigger-level muon Pr; a more accurate measurement of Pr is obtained by matching CTC
tracks to tracks in the CMU, and taking the CTC momentum as the muon Pr. The CHA
acts as a hadron absorber for the CMU. However, it is not thick enough to prevent some
degree of hadronic “punch-through”. In order to reject these muon fakes, 60 cm of steel
is placed radially outside of the CMU, and, beyond this, there is the CMP system, which
also consists four-layer drift chambers. By requiring a CTC track to extrapolate to both a
CMU and CMP track, one can significantly reduce fake muons. The CMU and CMP have
significant gaps in coverage due to design and geometric constraints. Approximately 84%
of the solid angle in the region |n4| < 0.6 is covered by the CMU, 63% is covered by the
CMP, and 53% is covered by both.

The CMX extends muon coverage to the region 0.6 < |n4] < 1.0. It consists of

drift tubes for muon detection sandwiched between scintillator counters used for triggering.
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TRIGGER LEVEL ACCEPT RATE DEAD TIME

LEVEL 1 1 kHz 0%
LEVEL 2 20 Hz 4%
LEVEL 3 5 Hz 10%

Table 2.2: Typical trigger accept rates and dead times at each trigger level at instantaneous
luminosity 10 x 10%° em™2 s~! (a typical value for Run 1b).

These detectors are placed on four, free-standing conical arches. The CMX covers about
71% of the solid angle of the region 0.6 < |74 < 1.0. A significant portion of the loss in
coverage is due to the fact that certain wedges cannot be covered due to obstacles in the
detector system. The CMX, like the CMU and CMP, uses the four drift tubes to obtain
trigger-level muon Pr, and relies on extrapolated CTC tracks to obtain accurate muon

momentum measurement.

2.2.2.4 Trigger and Data Acquisition

The CDF uses a 3-level trigger system. The Level 1 trigger relies on “fast output”
from detector preamplifiers to quickly determine whether to keep a given event for further
examination. This decision is made within 3.5us, which is the time between beam crossings.

1 The Level 1 triggers relevant for

The Level 1 trigger, therefore, incurs zero dead time.
the detection of the top quark are the central muon and calorimeter triggers. The three
Level 1 central muon triggers use fast outputs from the CMU, CMP, and the CMX. The
calorimeter triggers use fast outputs from all calorimeters. In these triggers, the energy in
the electromagnetic and hadronic calorimeter are separately summed into towers of (Ang =
0.2) X (A¢ = 15°). At a typical luminosity of 10 X 103° ¢em=2 s~!, the Level 1 trigger rate
is approximately 1 kHz (table 2.2).

The Level 2 trigger is activated shortly after the Level 1 trigger accepts an event.

The Level 2 trigger examines in greater detail trigger signals coming from the calorimeter,

tracking, and muon systems. For the calorimeter system, a hardware calorimeter cluster

*Dead time is defined as the fraction of beam crossings during which the detector is inactive. Dead time
can be due to equipment failure or to the trigger. While an event is being analyzed by the trigger, the
detector is inactive. Thus if the trigger takes more than the beam crossing time to analyze an event, dead
time is incurred.
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finder looks for clusters of calorimeter towers containing energy above certain threshold
values. These clusters are normally due to jets, electrons, and photons. These clusters are
listed in memory, and, for each cluster, the Er, mean ¢, and mean 7y are calculated by
dedicated hardware. Trigger information on tracks are provided by the Central Fast Tracker
(CFT) [96]. The CFT uses fast timing information from the CTC to obtain the charge, Pr,
and ¢ of track candidates. The CFT momentum resolution is § Py / Pr ~ 0.035- Pr, and has
an efficiency of 93.5 4 0.3% for tracks with Py above 10 GeV. Trigger information on muon
candidates are available for the CMU, CMP, and CMX. Fast signals from these detectors
are sent to dedicated hardware, which determine the azimuthal position and Pr. There is
also dedicated hardware that extrapolates CFT tracks to the muon candidates, and those
with matching tracks are treated as “golden” (i.e. good or likely) muon candidates.

The information on calorimeter clusters, CFT tracks, and muon candidates are sent
to the Level 2 “crate”, in which resides several hardware decision modules, one track mem-
ory module, and two processor boards. The hardware decision modules take the information
about the clusters and summarize them (e.g. counting the number of electromagnetic clus-
ters passing a certain Er threshold, finding the index to the most energetic cluster, eic.).
The track memory module stores information about CFT tracks and muon candidates. The
information in the decision and memory modules are accessed by the two processor boards,
which make more sophisticated decisions using microprocessors and code stored in on-board
memory. The connection between the processor boards and the various modules is supplied
by a custom-made back-plane bus (the “processor bus”). The core of the processor boards
is the DEC Alpha 21064 processor, which is one of the first commercial versions of the
Alpha processor. It has a clock speed of 300 MHz. On the board is 4 Mb of memory in
which to store software trigger code and trigger data accessed from the other modules.®

The time required by the Level 2 trigger to process an event depends greatly on the
complexity of an event. Most events are very simple, having few calorimeter clusters and

CFT tracks. Such simple events can be analyzed in about 20 to 30 us. Events with many

5The processor boards were upgraded to the Alpha processor-based ones early in Run I. Before the
upgrade, the processor boards were based on Motorola MC 10900 chips with a clock speed of 50 MHz. The
on-board memory was used only to store trigger code; the hardware decision and track memory modules
served as memory for data storage.
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calorimeter clusters and CFT tracks can take hundreds of microseconds to analyze. Most
of the time in these events is spent downloading tracking information (there can be > 100
tracks) from the track memory module to one of the processor boards, and the subsequent
execution of trigger code that use tracking information in complicated ways. For a typical

-2

instantaneous luminosity of 10 x 103° ¢m~2 s7!, the Level 2 trigger incurs a dead time

of about 4%, and outputs events to the Level 3 trigger at a rate of about 20 events/sec
(table 2.2).

The Level 3 trigger is a fully software-based trigger. The trigger hardware consists
of a “farm” of eight Silicon Graphics multi-cpu Challenges and PowerServers. This farm
of cpu’s has a combined processing power of about one billion instructions/sec. Unlike the
lower level triggers, the Level 3 trigger bases its decision on the complete detector signal.
The detector signal is collected and organized by the data acquisition system (DAQ). The
event data are then reconstructed and analyzed using standard algorithms. Most of the
reconstruction time is used for three-dimensional tracking in the CTC. At an instantaneous

030 em~2 571, the Level 3 trigger and the DAQ incurs a dead time of

luminosity of 10 x 1
about 10%. At this luminosity, the trigger outputs events at a rate of about 5 per second
(table 2.2). The accepted events are stored on data-quality 8 mm magnetic tapes (similar

to those used in video “cam-corders”).

55



Chapter 3

Physics Objects

3.1 Introduction

This thesis deals with pp — ¢t in the lepton + jets decay channel (see table 1.2). In
this decay channel, there are three basic types of physics objects: (1) a primary ! charged
lepton (electron or muon); (2) a neutrino; and (3) quarks. Primary leptons are identified
directly — i.e. electrons are identified reliably as electrons through a combination of infor-
mation from the tracking and calorimeter system, while muons are identified by combining
information from the tracking and muon systems. The presence of a neutrino is inferred
from the imbalance in the sum of the transverse component of the deposited calorimeter
energy. Finally, a quark is identified as a jet, which is defined as a cluster of calorimeter
towers with significant energy deposition.

The objectives of this chapter are: (1) to indicate how each physics object is iden-
tified; and (2) to indicate the method used to reconstruct the momentum of the physics
objects. A complete discussion of physics objects can be found in [16]. Here, the information

is summarized.

!The qualification primary is used to designate the charged lepton originating from the semileptonic
decay of one of the intermediate W’s in ¢t — W+ W™ b b. In the context of lepton + jets events, there is a
second class of charged leptons, referred to as the soft leptons. These originate from the semileptonic decay
of b- and c-quarks, and are used in the soft lepton tagging (SLT) algorithm. Soft leptons will be discussed
later in the description of the SLT algorithm.
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3.2 Primary Lepton

3.2.1 Electron
3.2.1.1 Identification

The signature of a primary electron is basically a high- Py CTC track pointing to a
high- E; CEM cluster (figures 3.1 and 3.2). More specifically, a primary electron candidate

has the following features:

e It must be in the central rapidity region |74 < 1.0.

e It must have a CTC track extrapolating to a CEM cluster, which consists of a seed
tower with Er > 3 GeV and two neighboring towers in 74. The size of the CEM

cluster, therefore, is 3 towers in 74 (Ang = 0.3) by 1 tower in azimuth (A¢ = 15°).

e The shower position, as measured by the CES, is required to be within the fiducial
region. This means that it should be sufficiently far from the calorimeter boundary.
This cut is applied so that the energy can be measured reliably. The fiducial region

covers 84% of the solid angle in the region |n4| < 1.0.

These selection requirements are rather loose, in that they accommodate a significant
fraction of fake primary electrons. There are two important types of fake primary electrons:
(1) photon conversion?; and (2) charged hadrons. An electron from photon conversion is

removed through the following requirements:

e The CTC track of the electron candidate must extrapolate to a good VIX track,

where good means that the VITX occupancy is > 0.2.

e There must not be a CTC track with charge opposite that of the primary electron

candidate, and such that the invariant mass of the two tracks is small.

Charged hadron fakes are removed through the following seven requirements:

2The term photon conversion denotes a photon produced in the primary event that, upon traversal
through the detector, hits some detector material and produces an e*e™ pair.
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Figure 3.1: Event display of the CTC from a top candidate event (Run 67824, Event 281883).
The primary electron is indicated by the stiff track pointing to the lower left of the figure
and extrapolating to significant energy deposition in the electromagnetic calorimeter (the
dark cell just outside of the tracking volume).
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Figure 3.2: Event display of the calorimeter system from a top candidate event (Run 67824,
Event 281883). The blocks in the figure indicate energy deposition in the calorimeter.
The height of the blocks is proportional to the amount of energy deposited. The dark
(light) blocks indicate energy deposition in the electromagnetic (hadronic) calorimeter. The
primary electron is indicated by the tallest dark tower at 74 = —0.14 and ¢ = 210°. Also
shown are jets, which are indicated by clusters of calorimeter towers contained in ellipses
with size AR = 0.4 (the ellipses are difficult to see, but visible, in the figure).
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e The ratio of the hadronic energy to the electromagnetic energy in the cluster (HAD/EM)

must be less than 5%.

e The ratio of the calorimeter energy to the track momentum, E/P, must be less than

1.5.

e The lateral shower profile in the calorimeter cluster, L, must be consistent with that
produced by a comparable test-beam electron. Quantitatively, Lys, < 0.2. See [37]
for details about Lgp,.. Basically, L, is a measure of how much energy is deposited
in towers neighboring the seed tower, given the amount of energy, the shower position,

and angle of incidence of the electron in the seed tower.

e The CTC track of the electron candidate must match the CES shower position in both
the r-¢ view (Az) and the z view (Az), where Az is the r-¢ difference between the
extrapolated track position and the shower position, while Az is the corresponding

difference in the z direction. The cuts are Az < 1.5 cm and Az < 3.0 cm.

e The CES shower profile must be consistent with that produced by a comparable test-

beam electron. Quantitatively, Xgm-p < 10.

e The CTC track of the electron candidate must match the interaction vertex in the z

direction to within 5.0 cm.

e The calorimeter cluster for the electron candidate must be isolated. Calorimeter iso-
lation, I, is defined as the total transverse energy deposited within a cone of radius
R = /(A¢)? + (An)? = 0.4 centered about the electron cluster, but ezcluding the

electron cluster’s transverse energy, Er(ele). Quantitatively, I.q;/ Er(ele) < 0.10.

In order to benchmark the primary electron selection efficiency, these cuts were
applied to a sample of Z—ete™ events. The efficiency is found to be 84%, excluding
efficiency loss from photon conversion removal and from isolation cuts. See chapter 4 for a

discussion on #t event selection efficiency and data sample purity.
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3.2.1.2 Momentum Reconstruction

The momentum of an electron is obtained from the calorimeter energy and the event
vertex (the CTC track of the electron is not used). The event vertex is used with position
of the electron calorimeter cluster to determine the direction of the momentum, while the
energy measurement gives its magnitude.

The event vertex is measured using a standard algorithm with the VTX. During the
relatively high-luminosity conditions of Run 1b, there was an average of 2.5 interactions per
beam crossing. Thus it was not uncommon for there to be several good interaction vertices
in an event. In this analysis, the vertex that best matches the CTC track of the primary
lepton was chosen.?

The energy of an electron is measured from the sum of the tower energies in the
electron calorimeter cluster. The energy in a tower is, in turn, obtained from the geometric
mean of the charge in the two phototubes, one on each side of the tower (in azimuth). This

energy is then corrected for the following effects (see [97], [98], [99], [100], [37], [38] for

details):

CEM Mapping Correction
The response of a CEM tower to an electron/photon of a given energy depends on
where the electron/photon impacts the tower. This position-dependent response is
corrected for using a “response map” obtained in the test-beam in 1984-1985 [86],

[87], [88], [89], [90].

CEM Map Trimming
The response of CEM towers in the detector is somewhat different from that in the
test-beam. These differences are accounted for by applying further mapping correc-
tions. The corrections are obtained from the distribution of E/p, where E is the CEM

tower energy, and p is the electron track momentum.

8This is in contrast to the top mass analysis [8], which uses the vertex with the greatest number of
associated VTX hits. In the 163-event top mass sample, 13% of events use the wrong event vertex.[39] The
authors of the top mass analysis have determined that the effect of using the wrong vertex has negligible
effect on the top mass measurement, and have, therefore, decided to stick with the original (i.e. partly
wrong) vertices.
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CEM Tower-by-tower Correction
The average gain of each tower is slightly different from each other. This is corrected

for by applying relative normalization.

Time-dependent Energy-response Correction
The energy response of the CEM decreases over time because of decreasing light
attenuation length in the scintillator, decreasing photomultiplier tube (PMT) gain,
and other effects whose origins are not well-understood. These effects are corrected
for by normalizing with a factor that decreases linearly with run number. Different
slopes are used for several different periods in Run I, each period being demarked by

prolonged detector shutdown and/or detector access®.

Absolute Energy Scale Correction
After all of the above corrections, the Z mass measured from Z—eTe™ is found to be
slightly different from the world-average value. A global correction factor is applied

in order to account for this residual inconsistency.

The primary electron E7 resolution is obtained from studies of the Z— eTe~ width.

It is found to be §E/E = 13.5%/+/E1 ® 1%.[38]

3.2.2 Muon
3.2.2.1 Identification

The signature of a primary muon is basically a high-Py CTC track pointing to a
track segment in CMU, CMP, or CMX (figure 3.3). Because of the muon detector geometry,
a primary muon is necessarily in the central rapidity region |54 < 1.0.

Two of the important sources of fake muons are: (1) hadronic “punch-throughs”
(i.e. particles that escape the outer radius of the hadronic calorimeter and enter the muon
detector system); and (2) cosmic ray muons. The first source is removed by the following

set of cuts:

*The behavior of the detector is observed to be somewhat different before and after prolonged shut-
down and detector access. Thus the time-dependent corrections are also different, and must be determined
separately before and after shutdown/access.
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Figure 3.3: Event display of the CTC from a top candidate event (Run 64721, Event
229200). The large circular region indicates the CTC. Just outside of this is a view of the
energy deposition in the calorimeter system (the dark (light) cells inidcate electromagnetic
(hadronic) energy deposition). Outside of the calorimeters is the CMU (the ‘+’s indicate
hits in the detector). Outside of this is the CMX detector (the ‘+’s and ‘X’s indicate hits).
Finally, the ractangular region surrounding everything is the CMUP detector (with ‘+’s
indicating hits). The primary muon is indicated by the stiff track pointing to the lower left
of the figure and extrapolating to hits in the CMU and CMUP system.



e The energy deposition in the electromagnetic and hadronic calorimeter towers must be
consistent with that for a minimum ionizing particle — i.e. a muon. More specifically,
one extrapolates the CTC track of the muon candidate to an electromagnetic and
hadronic calorimeter tower, and determine how much energy is contained in those
towers. The cuts are £ < 2GeV and E < 6GeV for the electromagnetic and hadronic

towers, respectively.

o The r-¢ distance Az = r X A¢ of the extrapolated CTC track to the track segment in

the muon detector must be Az < 2 cm for CMU and Az < 5 ¢cm for CMP and CMX.

e The muon candidate must satisfy the calorimeter isolation I..;/Pr(u) < 0.10, where
I.4; is the calorimeter energy within AR < 0.4 of the muon track, subtracting the

“typical” amount of energy deposited by a minimum ionizing particle.

The cuts used to remove cosmic ray muons are the following:

e The impact parameter (the closest approach in r-¢ of the CTC track to the beam

line) must not be too large. Specifically, it must be less than 3 mm.

e The CTC track of the muon candidate must be within 5 cm of a good interaction

vertex.

As a benchmark for primary muon selection efficiency, these cuts were applied to
Z— ptu~ events. The efficiency was found to be 90.6%, excluding losses due to isolation
cuts. See chapter 4 for a complete discussion of ¢f event selection efficiency and data sample

purity.

3.2.2.2 Momentum Reconstruction

The momentum of a muon is determined from its CTC track. In a uniform axial
(i.e. constant along the beam line) magnetic field, a charged particle track follows a helical
path — it travels with constant speed along the beam line, and its motion projected in a

plane transverse to the beam has constant curvature. This helix is parametrized by:
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Curvature, C
This is the inverse-diameter of the circle segment described by the track in the r-¢

plane.

Impact Parameter, Dg

Distance of closest approach to r = 0.

Azimuthal Angle, ¢

The azimuthal angle at the point of closest approach to r = 0.

The Axial Position, z

The axial position at the point of closest approach to r = 0.

Track-beam Opening Angle, cot f

6 is the opening angle between the CTC track and the beam line.

A CTC track is reconstructed by fitting hits in the CTC wires to a helical path, as
parametrized by the above variables. In the fit, small variations (~ 1%) in the magnetic
field are taken into account. The track is then re-fit by constraining it to have originated
from the event vertex. The z position of the event vertex is determined by the VTX, while
the r-¢ position is measured by the SVX. This re-fitting improves the track momentum
resolution by a factor of 2.[38] There are other smaller effects, such as ionization energy
loss (dE /dz), bremsstrahlung, and false curvature (i.e. the misalignment of the CTC wires
relative to each other, and of the CTC as a whole in relation to the beam and the SVX);
these are negligible in high- Pr muons, and, therefore, are ignored.

The high-Pr CTC track resolution is determined from studies of the width of

Z— ptp~ tobe §Pr/P} = 8.10 x 107*.[38]

3.3 Quarks

3.8.1 Identification

Quarks are identified as jets through what is known as the “fixed-cone” jet clustering

algorithm. Details of this algorithm can be found in [40]. Here, the algorithm is sketched.
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In the first step of the jet clustering algorithm, a list of calorimeter towers (electro-
magnetic and hadronic) containing more than 1.0 GeV of transverse energy Fr is made.
From this list, “pre-clusters” are made by grouping together contiguous towers with continu-
ally decreasing E7, going out from the tower with maximum FEr. These pre-clusters are then
used to initiate jet clustering. For each pre-cluster, an Ep-weighted centroid is calculated.

Then all towers with E7 > 0.1 GeVwithin an 7-¢ cone of AR = /(An)? + (A¢)? = 0.4

about the pre-cluster centroid are grouped into a cluster.’

An Ep-weighted centroid of
this set of towers is then calculated; this centroid is usually somewhat different from the
pre-cluster centroid. Then towers in a cone about this new centroid are grouped together,
and the centroid for this new cluster is recalculated. This process is repeated until the list
of towers in a cluster remains unchanged.

The energy deposited in a jet cluster is primarily due to the quark or gluon that gave
rise to it. The energy and momentum of a jet give a fairly reliable estimate of the energy
and momentum of parent quark/gluon; the reconstruction of the energy and momentum of
jets is discussed in the next section.

The difference between quark and gluon jets is quite miniscule, so it is difficult (if
not impossible) to tell whether a given jet originates from a quark or a gluon. In t¢ candidate
events, one simply assumes that the four leading jets (in Er) are due to the four quarks
in the lepton + jets decay channel. Exceptions to the indistinguishability of quark and
gluon jets are found in jets due to the b-quark (and, to a lesser extent, the c-quark). Since
the b-quark has a relatively long lifetime, a b-flavored hadron often travels a measurable
distance before decaying. The decay of such hadron shows up as a displaced vertex of
charged tracks, which can be reliably measured with the SVX. A b-flavored hadron can
also be identified through the identification of the charged lepton (electron or muon) from
the semileptonic decay of the b-quark. Such a lepton can be identified fairly reliably by
the soft-lepton tagging (SLT) algorithm. The identification of b-quark jets is discussed in

section 3.4.

5The choice of AR is somewhat arbitrary. Studies have shown that AR = 0.4 to 1.0 are reasonable
choices for reliably detecting jets and reconstructing their momenta.[41] For reconstructing tf events in the
lepton + jets channel, studies have found that the choice AR = 0.4 gives the best jet-counting efficiency.[16]
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3.8.2 Momentum Reconstruction

The energy and momentum of a jet are obtained in three steps. First, one obtains
the raw energy and momentum. Then, generic corrections are applied to the raw quantities.
Finally, corrections specific to tf events are applied. This final class of corrections is dis-
cussed in chapter 6. In this section, the measurement of jet energy and momentum before
and after the application of generic corrections is discussed.

The raw jet energy is simply the scalar sum of all the tower energies in the cluster.
The jet momentum is the vector sum of the tower momenta, where tower momentum is
defined such that its magnitude is the tower energy and its direction is defined by the line
that connects the event vertex to the nominal shower-maximum position of the tower.

The generic jet energy corrections® correct for systematic shifts in the jet energy
measurement due to: (1) imperfect behaviors of the calorimeters; and (2) limitations of the
jet identification algorithm. Five categories of corrections are applied (see [42] and [44] for

details about the generic corrections):

Relative Energy Scale
The relative energy scale correction accounts for the difference in the response to jets
of various calorimeter subsystems. This correction is obtained by examining dijet data
in which one of the jets is in the central region (where the jet energy resolution is good)
and the other jet can be in any other region. The first jet is referred to as the “trigger
jet”, and the latter is called the “probe jet”. In principal, the dijet system should have
nearly zero net transverse momentum; in practice, the difference in relative response
of different calorimeter systems often results in significant net transverse momentum.
To correct for this difference, one assumes that all the jet energy mismeasurement
is in the probe jet, and one obtains the scale factor for the probe jet energy needed
to remove the transverse momentum of the dijet system. The relative energy scale
correction, for a given 74, is the average correction factor for a large number of jets in

a bin around 74 (the correction is, to a good approximation, independent of jet Er).

6The generic corrections are applied by the CDF FORTRAN jet library routine JTC96S.CDF.
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Figure 3.4(a) shows the correction factor as a function of 74. The largest corrections

occur in the boundary regions between different calorimeter subsystems.

Absolute Energy Scale
The absolute energy correction accounts for nonlinearity in hadron calorimeter re-
sponse to low-energy hadrons. Correction factors are determined by monte carlo
studies in which the total energy of all monte carlo particles within a jet cone is com-
pared to the the jet energy obtained from detector simulation. A correction factor as

a function of raw jet E7 is obtained from such studies (see figure 3.4(b)).

Out-of-cone Correction
Some particles that ought to be counted as being part of a jet are lost because of
the arbitrary size of the cone used to reconstruct jets. This loss is due to: (1) low-
Py charged particles curling outside of the cone; or (2) fragmentation effects causing
occasional particles with large transverse momentum relative to the jet momentum.
Monte carlo studies have been performed to estimate average energy loss as a function

of raw jet E (figure 3.4(d)).

Underlying Event Subtraction
Underlying event energy is that part of the jet energy that is due to particles emanating
from the debris of pp collision. The energy of these particles should be subtracted from
the jet energy. The amount of energy to subtract is estimated from minimum-bias
data (i.e. data in which the trigger requires only that an inelastic collision of pp has
occurred). The basic idea is to assume that the amount of energy in a random cone in
minimum bias data is similar to the underlying event energy. For Run la, 0.72 GeV
was subtracted from the raw energy of each jet; in Run 1b, the corresponding figure

is 0.65 GeV.

Secondary Interaction Subtraction
Typical instantaneous luminosities in Run 1b were significantly larger than that in
Run la (the average instantaneous luminosity at the beginning of a store in Run 1b

was 16 X 103%cm 2571, compared to 5.4 x 102°cm 257! in Run 1a[105]). This resulted
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Figure 3.4: Generic jet corrections plotted as fractional change in raw jet Er vs. jet ng or

raw jet Er. This figure is from [44].

in larger number of interactions per beam crossing in Run 1b (2.5 in Run 1b vs. 0.85
in Run la). Thus, for Run 1b data, it is important to account for underlying events

originating from extra inelastic pp collisions in the event. The raw jet energy of each
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jet was reduced by 0.297 GeV for each extra interaction in the event.

The nominal jet momentum resolution after the application of the generic corrections

is given by the following:”

"See the CDF top physics library routine JET_ERROR.CDF and [101] for details about these errors.
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§Er = k- (0.1 Er 4 1.0 GeV) (3.1)

The factor & is about 1.0 to 1.1 for |n4] < 2.4, and 1.6 otherwise. This nominal form,
however, does not directly apply to jets in tf events. See chapter 6 for a discussion of this

issue.

3.4 b-Quark

A b-quark jet is often distinguishable from a jet from a lighter quark for the following

reasons:

Long b-quark Lifetime
The b-quark lifetime is rather long in spite of the fact that it is the second heaviest
known quark. This long lifetime is due mainly to the fact that the b-quark mixes
rather weakly with lower-generation quarks (|Ve| =~ 0.043, |V,4| ~ 0). Because of their
relatively long lifetimes, b-flavored hadrons often travel 102 ~ 10% um before decaying.
The decay vertex of such particles, when measured with the SVX, is displaced from
the primary event vertex. Such displaced vertices are not very likely in jets from
lighter quarks. Thus one can use a displaced vertex associated with a jet as a means
of identifying b-quark jets. The identification of b-quark jets by this means is referred

to as secondary vertex tagging (SVX tagging).

b-quark Semileptonic Decay
In tt events, the charged lepton £ = u,e from the decay b — £ + vy + X has two
important properties: (1) it has relatively large Pr (see figure 3.5); and (2) it is
inside a relatively energetic jet. These conditions are not very likely to be met in jets
from lighter quarks. Thus one can use these conditions to identify b-quark jets. The
identification of b-quark jets by this means is referred to as soft lepton tagging, or

SLT.

In this section, the identification of b-quark jets by the SVX and SLT methods is discussed.
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Figure 3.5: The lepton Pr spectrum from the semileptonic decay of b- and c-quarks that
originate from the decay of tf in the lepton + jets channel. The distribution is obtained from
the HERWIG monte carlo with my,, = 160 GeV. The distributions are not too different
from those at my,, = 175 GeV. The figure is from [16].
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3.4.1 SVX b-tagging

A displaced vertex associated with high- Er jets can be found by various algorithms.
Three types have been developed in CDF: (1) the “d-¢” algorithm; (2) the “jet-probability”
algorithm; and (3) the “secondary vertex” algorithm. Reference [16] describes the basic
principles involved in these algorithms. In the study of ¢t physics at CDF, the third type is
most often used.

The basic operating principle of the third type of algorithm is as follows. One makes
a list of jets with raw Er > 15 GeV. One also makes a list of “good” SVX-CTC tracks,
where an SVX-CTC track is one where an extrapolated SVX track segment matches (in the
r-¢ plane) a CTC track well. The qualifier “good” indicates, among other things, that the
track must be sufficiently energetic (Pr > 2 GeV'), and its SVX segment must be formed of
a sufficient number of good SVX clusters (e.g. the clusters are not shared with other tracks,
the charge profile is signal-like, etc.). Then, given these lists, one associates tracks to jets
using the rule that if a track lies within 35° of a jet’s momentum, that track is presumed to
be part of the jet. Then, from among tracks associated with each jet, one looks for tracks
that form a displaced vertex. A jet which has tracks that form a displaced vertex is labeled
as being very likely to be a b-quark jet.

The details of this algorithm differed somewhat between Run la and Run 1b. In
Run 1a, displaced vertices were formed from two or more SVX-CTC tracks satisfying track-
quality cuts. In Run 1b, displaced vertices were sought in two passes. In the first pass, one
looks for displaced vertices formed from three or more SVX-CTC tracks satisfying loose
track-quality cuts. Then, if no displaced vertex is found, one looks for displaced vertices
formed from two tracks satisfying tighter track-quality cuts.

The Run 1b algorithm is much improved compared to that of Run la. The 1b
algorithm tags b-quarks from ¢t events with an efficiency of about 40%; the corresponding
figure for la is about 20%. Also, in Run 1b, the fractional contribution of mistags in b-
tagged W+ > 3 jet events is expected to be 2.3/34 ~ 7% [7], compared to 0.76/6 ~ 13% [16]

in Run 1la.
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3.4.2 SLT b-tagging

The SLT algorithm looks for a “soft” lepton (electron or muon with Pr > 2 GeV)
associated with a jet with E;r > 8 GeV. The lepton is required to be within a cone of
AR < 0.4 of the jet’s momentum. Soft leptons are required to pass a large array of cuts
intended to maximize b-tagging efficiency while minimizing background contamination; the
details of the soft lepton selection criteria can be found in [16].

The SLT b-tagging efficiency in ¢t events is about 17%.[44] This is to be compared to
40% for the SVX tagger. Also, SLT is inferior to SVX in that it has greater background. In
spite of these weaknesses, the SLT algorithm uses information that is only weakly correlated

with that in the SVX algorithm, so it adds significant acceptance for tagging b-quark jets.

3.5 Neutrino

The presence of a high- Pr neutrino in an event is inferred from a large imbalance
in the total transverse energy deposited in the calorimeters. This imbalance is quantified
by the missing transverse energy, H7, which is defined as the negative of the vector sum of
transverse component of the “tower momentum” (see 3.3.2 for definition) of all calorimeter
towers with |ng4] < 3.6. The range of 7y is restricted because the focusing magnets in
the Tevatron obscure parts of the forward hadron calorimeter. Also, there are minimum
threshold energies that towers in the various calorimeter systems must satisfy in order
to be included in this sum. See [16] for details. The nominal 7 resolution is given by
§Br = 0.7-\/S E1, where 3 Er is the scalar sum of the transverse tower energies measured
in GeV.

In events with a high- Pr muon, B'r must be corrected for the muon momentum. This
is because the muon is a minimum-ionizing particle, so that it only deposits a fraction of its
original energy as it traverses the calorimeters. To correct for the muon, its Pr as measured
by the CTC is added to the original vector sum of calorimeter tower momenta. From
this resultant vector, the expected amount of calorimeter energy deposited by the muon is
subtracted. The negative of the final vector is the corrected 7. Similarly, in events with

a high- Pr electron, Fr must be adjusted for the electron energy corrections described in
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section 3.2.1. To do this, the calorimeter towers associated with the uncorrected electron
is first clustered together. The contribution by these towers to E7 is then subtracted from
Er. Finally, the corrected electron transverse momentum is added back in to obtain the
corrected Br.

The B described in this section is used in this analysis as the first estimate of the
neutrino’s transverse momentum. The neutrino momentum obtained from the kinematic
reconstruction of ¢t events is somewhat different from this. Chapter 6 discusses this issue

in detail.
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Chapter 4

Event Selection

4.1 Introduction

This chapter presents a discussion of the criteria used to obtain a sample of tt
candidate events from the experimental data. Section 4.2 discusses why this analysis deals
only with it events in the lepton + jets decay channel. Section 4.3 discusses the cuts on
physics objects used to obtain a sample of ¢ candidate events. Section 4.4 discusses the
fact that the ¢ candidate events are subdivided into eight mutually exclusive sets, and
explains why this is done. Finally, section 4.5 discusses the backgrounds in each of the eight

subsamples of the data.

4.2 Choice of Decay Channel

According to the standard model, the top quark decay is a two-step, sequential,

3-body process:
1.t—=0+W
2. W L+ viorqq + qu

Here, £ is either an electron, muon, or a tau-lepton, v, is the neutrino associated with £,
and ¢4 and g, are the up- and down-type quarks, respectively, of the first two generations

of quarks. Experimentally, it is useful to classify the decay of the ¢t system according to
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how the intermediate W's from ¢t and ¢ decay. This classification is summarized in table 1.2
of chapter 1. They are the: (1) dilepton; (2) lepton + jets; (3) all-hadronic; and (4) tau.
In this thesis, only the lepton + jets decay channel is examined. The decision to not

include the other decay channels from this analysis is based on the following considerations:

e According to the standard model, the charged lepton from the decay of the top quark
is the most sensitive probe of: (1) the top quark’s spin polarization; and (2) the

property of the ¢t-b-W decay vertex. This issue is discussed in chapter 7.

e In order to independently probe the top quark spin polarization and the property
of the t-b-W decay vertex, one must examine the top quark decay in the top quark
rest frame. Experimentally, this means that one must reconstruct the top quark

momentum in the lab frame. This issue is discussed in chapters 6 and 7.

These considerations impose the following constraints on the decay channels of t&: (1) it
should contain at least one primary charged lepton that is easily identifiable; and (2) it
should be such that the momentum of ¢ and ¢ are reliably reconstructable. The all-hadronic
decay channel fails both tests. The tau-decay channel fails the first test because the tau-
lepton cannot be identified very reliably. The dilepton channel fails the second test: because
two high- Pr neutrinos carry away undetected a significant fraction of the total energy in
the event, the equations for the lab-frame ¢ and ¢ momenta are under-constrained, and,
therefore, one cannot reliably reconstruct their momenta. This leaves only the lepton +

jets channel, which easily passes the first test, and adequately passes the second.

4.3 Event Selection Cuts

1”1 signature of the lepton + jets decay channel of #f in this analysis

The “nomina
(and in the CDF lepton + jets top mass analysis [44]) is: (1) a high- Pr, isolated electron or
muon; (2) four or more jets; and (3) large E7. The electron/muon is presumed to originate

from the semileptonic decay of t or , Bt is presumed to be due primarily to the neutrino

!The qualification “nominal” is discussed later in this section. It indicates the fact that, although the
event selection cut is designed to select only events from tt in the lepton + jets channel, the actual data

sample passing the cuts is contaminated by other decay channels of ¢t faking lepton -+ jets.
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from the semileptonic decay of ¢ or £, and the four leading- E jets are presumed to originate
from the two b-quarks and two light quarks in the decay of ¢ and %.2
The event selection cuts designed to select ¢t in the lepton + jets decay channel are

the following:

1. A candidate event must pass the high-Pr electron or muon trigger (lepton Pr >

20 GeV and |n4| < 1.0).
2. A candidate event must have raw E7 > 20 GeV (see section 3.5).

3. The trigger (i.e. primary) lepton in a candidate event must satisfy the primary lepton

identification requirements given in section 3.2.

4. A veto is placed on candidate events passing the event selection cuts for the dilepton

channel of t (see [6] for the dilepton cuts).

5. A veto is placed on candidate events having a Z-boson-like object. Such an object is
defined as an et-e~ or uT-p~ pair with invariant mass in the window 75-105 GeV.
Also, candidate events containing an object consistent with a radiative Z-boson decay
is removed. This object is defined as an et-e~ or pt-p~ with an associated high-Er

photon, the combined invariant mass of which lies in the window 75-105 GeV.

6. A candidate event’s primary vertex must be within 60 cm of the nominal interaction
point (z = 0). In events with several primary vertex candidates, the vertex chosen is

that which has the greatest number of VTX hits.3
7. A candidate event must have > 3 jets with E; > 15 GeV and |54 < 2.0.

8. A candidate event must have, in addition to the three jets described above, > 1 jet

with Er > 8 GeV and |n4| < 2.4.

2The presumption that the four leading Er jets originate from the two b-quarks and two light quarks
from the decay of ¢ and t does not always correspond to reality: in a fraction of events, one or more jets
from hard gluon radiation are among the four leading Er jets.

3Incidentally, this choice of primary vertex is incorrect (i.e. disagrees with the primary lepton vertex) in

about 13% of candidate events. This issue is discussed further later this section.
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The first seven criteria are exactly the same as those used in the CDF lepton + jets
tt cross section analysis.[7] The complete set (1-8) is almost identical to that used in the

CDF top mass analysis. There are, however, a couple of differences:

e In this analysis, no cut is placed on the event reconstruction x?, which is discussed in
chapter 6. This is because the cut does not improve the resolutions of the quantities

measured in this analysis. See appendix A for details.

e In this analysis, the event vertex used to reconstruct the jet momenta is that of the
primary lepton. The CDF top mass analysis, on the other hand, uses the vertex with
the greatest number of VI'X hits. The former choice is the correct event vertex. The
latter choice disagrees with the former in 13% of the candidate events. A study by one
of the authors of the CDF top mass analysis has shown that the effect of the wrong
choice of vertex on the top mass measurement is small.[39] In this study, however,
the correct vertex is used since the observables (the energy and angle of the charged
lepton in the rest frame of the semileptonically decaying top quark) are probably more
sensitive to the effect of choosing the wrong vertex than is the case with top quark

mass.

The number of t¢ candidate events satisfying the cuts 1-8 is 159 (it is 163 in the CDF
top mass analysis). The efficiency of this set of cuts is about 10%. The signal content of
the 159 events is estimated to be 35%. See 4.5 for more on signal and background fractions.

One final point is in order before leaving this section. The set of cuts 1-8 described
above is designed to select ¢t decaying in the lepton + jets channel. However, other decay
channels of ¢ can fake the lepton + jets signal, so the signal portion of the final event
sample is not purely lepton + jets. The break-down of the various decay channels in the
lepton + jets candidate sample is shown in table 4.1. This contamination from the wrong tt
decay channels is not treated as a background. Instead, during the ¢f event reconstruction
process (chapter 6), such fake lepton + jets are treated as true lepton + jets. This causes
the energy and angular distributions examined in this analysis to be smeared somewhat
compared to those one would obtain from a pure sample lepton + jets; in effect, fake lepton

+ jets are treated as badly-measured true lepton + jets.
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CHANNEL ‘ FRACTION ‘

lepton + jets 85%
tau 11%
dilepton 4%
all-hadronic 0%

Table 4.1: Estimated composition of the “lepton + jets” sample in the signal portion of the
lepton + jets ¢t candidate events. The estimate is obtained with the HERWIG monte carlo
generating ¢t with my,, = 175 GeV. The generated it events were allowed to decay to all
possible decay channels.

4.4 Subdivision of the Data Sample

The event selection cuts shown in the last section result in an experimental data
sample of 159 lepton + jets tf candidate events. Of these events, an estimated 35% are
believed to originate from the production and decay of ¢, while the rest are believed to be
fake tt events from various sources of background. The nature of the background sources
and the estimated contributions they make to the ¢t sample are discussed in the next section.
Before discussing background issues, however, a discussion on the fact that the data sample
is divided into eight mutually exclusive subsamples is in order.

The 159 tt candidate events are subdivided according to two sets of criteria:

e The sample is first divided according to the number of tight jets — i.e. jets that
pass the cuts Er > 15 GeV and |ngq| < 2.0. Events with > 4 tight jets belongs to
the set labeled N14; events with exactly three such jets (with > 1 additional “loose
jet”) belongs to the complementary set labeled N135. The label N34 is short-hand for
“number of jets = 4”; similarly, N335 is short for “number of jets = 3.5” — 1i.e. not

quite 4-jets.

e These two mutually exclusive samples are then further subdivided according to the
type of b-tags. The four mutually exclusive b-tag categories are: (1) svx-only (x0);

(2) slt-only (T0); (3) svx and slt (XT); and (4) no-tag (NT).

In total, there are eight, mutually exclusive subsamples labeled (N335, x0), (N14, X0),

(N335, TO), etc. Table 4.2 shows the number of events in each subsample.
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‘ ‘ N135 ‘ N14 ‘

X0 4 11
TO b 9
XT 4 4
NT 77 45

Table 4.2: The number of events in each subsample.

The tt candidate sample is subdivided in this manner because this improves the
measurement resolution. A complete discussion of how this improvement comes about is
given in section 8.2.4. Here, the reason will be sketched. Imagine that one has a sample
of tt events with N events. Imagine subdividing the samples into two, mutually exclusive
subsets with Ny and N, events. Also, let us assume that the background fraction of the two
subsamples are #; and §. It is shown in section 8.2.4 that if 8; # B2, then the combined
statistical error of the subdivided sample is smaller than that in which the whole data
sample is treated as a single unit with background fraction being the statistics-weighted
average of 8, and ;. In fact, the greater the difference between £; and 3,, the greater
the degree of improvement in measurement resolution. This logic applies inductively to
subdivision of the original sample into any number of mutually exclusive sets.

Given the above observations, the choice of categories is easily understood. Since
background events tend to have softer and fewer jets than ¢t events at my,, = 175 GeV,
the subdivision of the data into the sets N4 and N335 results in subsamples of data with a
rather large differential in background fractions. Similarly, the background fraction changes
significantly from svx-slt events (smallest) to no-tag events (largest). Thus the background
fractions in the eight subsamples of data vary considerably; this large range of variation is

the key to improved measurement resolution.

4.5 Backgrounds to the ¢t Candidate Events

Earlier, it was stated that 159 ¢ candidate events pass the event selection criteria

described in section 4.3. Of those events, it is estimated that only 35% originate from
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‘ ‘ N135 NI4

xo | 0.281545 | 0.0715-03
To | 0.65%513 | 0.2570:08
XT | 0.1475:02 | 0.0370-07

NT | 0.907002 | 0.577012

Table 4.3: Estimated background fraction in the subsamples. These numbers are the ones
used in the top mass analysis[46]; they are slightly different from the ones used in this
analysis. The errors are statistical; the systematic errors are small in comparison, so they
are ignored.

the production and decay of tf; the remaining 65% of the events originate from background
processes that fake the lepton + jets tf signature. There are about a dozen physics processes

that contribute to the background. Details can be found in [44], [7], and [16]. Essentially,

they can be classified into three categories:
o W + jets (67%)
¢ QCD multijets (20%)
e Z + jets, Z — 77, diboson, and single-top (13%)

The percentage in parenthesis is the estimated fractional contribution to the total back-
ground. QCD multijets include bb production in association with hard gluon jets, while the
term diboson refers to the production and decay of WW, WZ, and ZZ in association with
hard gluon jets.

An estimate of the background fraction in each of the eight subsets of data is nec-
essary in order to compare the distribution of observables in the experimental data with
those in monte carlo predictions of ¢¢ and background processes. This estimate has been
made in [46] and [44], and the reader is referred there for details on the method used to
obtain the results. Table 4.3 gives the background fractions in each subset.

The background fractions used in this analysis are slightly different from the ones
given in table 4.3 because no x? cut is applied in this analysis, while x? < 10 is applied in
the CDF top mass analysis. To correct for this, the numbers in table 4.3 are extrapolated

to x? < oo using the following formula:
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‘ ‘ Ni3b5 NI14

xo | 0.29155 | 0.0715-03
To | 0.66%513 | 0.2570:08
xT | 0.187005 | 0.047007
NT | 0.907002 | 0.587012

Table 4.4: Estimated background fraction in the subsamples for this analysis. These num-
bers are extrapolations from the numbers in table 4.3. The errors are assumed to be the
same as in 4.3.

€s(10) - B(10)
&(10) 1 (e.(10) — &(10))- B(10)

The quantity B(oco) is the background fraction without a x? cut (i.e. x* < 00), while 8(10)

B(o0) = (4.1)

is the background fraction when the cut x? < 10 is applied. The quantities €,(10) and ,(10)
are the fraction of signal and background events surviving the cut x? < 10 (see figure A.1
in appendix A for plots of ¢,(x?) and €,(x?)). Table 4.4 shows B(oo0) for the eight subsets.
The quantity (oco) is almost unchanged from 3(10) in all subsets because €,(x?) and e(x?)

are not too different from each other (see appendix A). One can see from equation 4.1 that

B(o0) = B(x?) when €,(x?) = e (x?)-
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Chapter 5

Simulation Tools

5.1 Introduction

Simulation tools are essential for meaningfully comparing the top quark decay kine-
matics in the experimental data with those predicted by the standard model. In this
analysis, two types of simulations tools are used: (1) monte carlo event generators for simu-
lating the production and decay of the signal and background processes; and (2) a detector
simulator that takes the output particle information from the monte carlos and simulates
the CDF detector response. These simulation tools are described in this chapter. Also,

several of the more important limitations concerning the use of these tools are noted.

5.2 Monte Carlo Generator for #t

The production and decay of ¢t is simulated with the HERWIG V5.6 monte carlo[47],
[48]. HERWIG uses leading-order QCD matrix elements to calculate the phase-space weight-
ing for the hard process. The hadronic decay products from the hard process are hadronized
using color-coherent parton shower evolution and cluster hadronization. The underlying
event is generated using phenomenological models from experimental data. The decay of
b-mesons is performed by the QQ monte carlo from the CLEO experiment [50], [51]. The
QQ monte carlo is used instead of HERWIG because QQ’s treatment of b-meson decay

agrees with data better than that of HERWIG.
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5.3 Monte Carlo Generator for Background Processes

The VECBOS [52] monte carlo is used to simulate all of the background processes
(the issue of the whether or not it is appropriate to use VECBOS alone for modeling all
of the dozen or so background processes is discussed in the next section). VECBOS is a
parton-level monte carlo that uses tree-level matrix elements for W plus a fixed number of
quarks and/or hard gluons. In this analysis, the matrix element for W + 3 quarks/gluons
is used. The output partons from VECBOS are fed into the program HERPRT [53], which
hadronizes the quarks and gluons (HERPRT uses the hadronization machinery in HER-
WIG). Because HERPRT causes some fraction of the generated W + 3 quarks/gluons
events to radiate extra hard gluons, some of these events end up having four or more jets,

which is one of the prerequisites for ¢f event selection.

5.4 Parton Distribution Function

The parton distribution function MRSDO0’ is used in the generation of both the

signal and background events.

5.5 Detector Simulation

In order to compare monte carlo events with events from experimental data, the
output from the monte carlos (a list of the 4-momentum of several hundred particles) must
be converted into simulated detector signals. This conversion is performed by QFL’, which
is one of CDF’s detector simulation code. The output of QFL’ is a collection of “data
banks”, which are basically formatted arrays containing simulated response of the tracking
and calorimeter systems to the input particles. This is then analyzed in very much the
same way the experimental data are in order to identify physics objects, such as electrons,

muons, jets, and F7. See [71] to [77] for more details on QFL'.
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5.6 Caveats on the Monte Carlo Tools

There are several caveats concerning the monte carlo tools that should be pointed

out. They are the following:

e The VECBOS monte carlo is used in this analysis to model all of the background
processes, including those that do not originate from W + quarks/gluons. This choice
is justified if the distribution of the observable of interest in true W + jets background
is similar to those in non-W backgrounds. This choice seems to be adequate in the
CDF top mass analysis [54]. In this analysis, however, this may not be adequate, as
indicated by [55], in which the helicity fraction of the intermediate W's in tf decay is
measured using the primary lepton Pr spectrum. It is shown there that the lepton
Py spectrum in bb + jets events (which accounts for about 20% of the background)

is considerably softer than that predicted by VECBOS.

e Multiple interactions are not dealt with in the simulation of both signal and back-
ground events. CDF studies on W + n-jets cross section [56], [57] show that these
extra interactions can have rather large effects on: (1) the observed number of W
+ n-jets events; (2) the electron identification efficiency; and (3) the Er spectrum.
Since [56] and [57] deal with W in the electron decay channel, it says nothing about
muon events; similar problems, however, are expected in the muon decay channel too.
It is not clear to what extent multiple interactions affect the shape of the observable
distributions in both signal and background; nor is it clear how this would change the
background fraction and the relative composition of the background (i.e. true-W ws.

non-W).

e No trigger simulation is applied to the simulated signal and background events. This
could affect the shape of the observable distributions in signal and background (it does
not affect the background fraction and the relative background composition because
trigger efficiencies are included in determining these [44], [46]). It is believed, however,

that there will not be a dramatic change in the shape.
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e The monte carlo statistics of the VECBOS sample is rather small. The generation of
VECBOS events is a very laborious process; increasing monte carlo statistics is not
a trivial matter. This analysis uses about 3000 VECBOS events. These events are
divided into eight subsamples, as described in section 4.4. These subsets are populated
unevenly; subsamples with large background fraction have lots of (~ 10%) VECBOS
events, while those with small fraction have few (~ 10?) events. The background shape
in sparsely populated subsets is expected to have large uncertainty. This uncertainty,
however, is offset by the fact that the background fraction is small, so its effect on the

measurement is also small.

In this analysis, these issues are not dealt with. The modeling of both the signal and
background events is, therefore, not as accurate as it could be. The author has decided not
to deal with these issues in this analysis because it would add a degree of detail that is not
warranted given the predicted Run I measurement resolution (chapter 8). In other words,
there are not enough events in Run I to meaningfully compare the experimental data with
standard model predictions; given this, there is no point trying to refine the measurement by
improving the signal and background model. Rather, this analysis focuses on the technical
aspects involved in the use of a tf reconstruction algorithm to examine the kinematics of
the semileptonic decay of the top quark. It is the author’s hope that the technical details
discussed in this thesis will be used as a starting point in similar analyses conducted in

Run II. These Run II analyses can then focus on refining the monte carlo models.
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Chapter 6

The tt Reconstruction Algorithm

6.1 Introduction

One of the chief aims of this thesis is to examine the kinematics of the semileptoni-
cally decaying top quark, t;, in the top quark rest frame. To do this, the {; momentum in
the lab frame must be known. Obtaining this from the raw data sample, however, is not
straightforward. The {; momentum is the sum of the decay product momenta: ¢, — £ + v,
+ b (L= e* or u*, vy = neutrino partner of £, and by = b-quark). Although the momentum
of £ is usually well measured, that of v is incompletely known (the transverse component is
given only poorly by the missing transverse momentum ﬁT, and the longitudinal component
is not known), and the momentum of by is unknown because one does not know which of the
four or more jets in the event originates from b;. Thus the momentum of ¢; is incompletely
known. It can, however, be estimated fairly well using the ¢ reconstruction algorithm. The

implementation and performance of this algorithm is described in this chapter.

6.2 The Algorithm

The tt reconstruction algorithm described here is that used by the CDF collaboration
in the measurement of the top quark mass in the lepton + jets channel [44]. The idea

underlying the algorithm is this:

1. Assume that the physics objects (e* or u*, Er, jets) originate from pp — ¢ in the

lepton + jets channel.
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2. Note the following mass constraints on the event subsystems: (1) the mass of the
semileptonically decaying top quark t; and the hadronically decaying top quark ¢
are approximately equal; (2) the invariant mass of the charged lepton and neutrino
is approximately equal to the W mass; (3) the invariant mass of the light quark pair

that originates from the hadronic decay of W is approximately equal to the W mass.

3. Make use of the assumption in step 1 and the mass constraint relations in step 2 to

obtain estimates of the momenta of the decay products of ¢ and .

In order to explain how the algorithm works, it will be useful to trace how the decay product

momenta change from the parton-level to the final estimate output by the algorithm.

6.2.1 From the Parton to the Raw Data

At the parton-level, the ¢ decay in the lepton + jets channel is denoted as follows:

tr—by+L+ vy
th—bp + W+ W,

The symbols are defined as follows:

ty Semileptonically decaying top quark

by b-quark from t; decay

4 et or pt

vy Neutrino

73 Hadronically decaying top quark

by, b-quark from t; decay
Wa Down-type quark from hadronic W decay
W Up-type quark from hadronic W decay

These decay products are found in the detector as raw physics objects (see chapter 3). The

association between the parton-level objects and the raw physics objects is given below:
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Parton-Level Raw Physics Objects

{ — {
Ve — Er
by jl
by, j2
—

Wy j3
W, j4

jn

The charged lepton £ is found in the detector as is — ¢.e. electrons and muons are identified
reliably by the detector. The neutrino escapes detection; its presence is inferred from the
imbalance in the transverse energy deposited in the calorimeters. The quarks give rise
to jets. The symbols 51, 72, etc. denote the jets, numbered in descending order of raw
transverse energy. Since there are four quarks at the parton-level, one may expect exactly
four jets. However, because of gluon radiation, fluctuation in the fragmentation of the
quarks, multiple interactions, and various other factors, more than four jets can sometimes
be found in the raw data sample. Also, the four quarks can give rise to events with less than
four jets because the jet from one of the quarks fails the jet acceptance cut; such events are

rejected in this analysis.

6.2.2 Jet-quark Combinatorics

When the quarks b, by, Wy, and W, hadronize to form jets, their identity become
obscured. That is, if there are no b-tagged jets in the event, then one cannot tell which jet
originates from which quark. If there are b-tagged jets, then one can with confidence rule
out the light quarks Wy and W,, as likely candidates for these jets; however, one cannot
tell whether a given tagged jet originates from b; or b;,. One of the most important tasks
performed by the ¢t reconstruction algorithm is the matching of the jets to the quarks.

The first step in implementing this matching is to consider all possible combination
of jets to quarks. In order to simplify the algorithm, it is assumed that the four quarks

give rise to the four leading jets (51,352,353, 74).! The jets (j1,52,73,;4) are to be assigned

!Not infrequently, gluon jets can be among the four leading jets. In such cases, jets originating from the
tt decay could be among the fifth or lower jets. Whether or not to include these extra jets as candidates is
a matter of balancing cost and benefit — the cost of increased combinatorics versus the benefit of finding

89



the quark labels by, by, W, W. Note that the labels for the light quark jets are identical —
i.e. the distinction between the up-type quark W, and down-type quark Wy is not made.
This is because there is no reliable way to tell whether a jet originates from a light up-type
or down-type quark. The combinatorics problem is to find all possible ways of assigning
the labels by, by, and W to the four jets (j1,372,753,j4). The total number of possible

combinations depends on the number of b-tagged jets:

0 Tags
All jets can be assigned all quark labels. There are 4 ways to assign b; to the four
jets, 3 ways to assign b, to the remaining three jets, and one way to assign the two

identical labels W to the remaining two jets. This gives a total of 12 combinations.

1 Tag
The three untagged jets can be assigned any quark label; the tagged jet can be assigned
only by or by. If by is assigned to the tagged jet, there are three ways of assigning b,
to the untagged jets, and one way to assign W to the remaining jets, giving a total
of 3 combinations. The same argument holds for b;, assigned to the tagged jet. The

total number of combinations is, therefore, 6.

2 Tags
by can be assigned to one of the tagged jets, and by, to the other, and vice versa. There

are, therefore, only 2 combinations.

The possibility of more than two tagged jets is not considered because such events are not
observed in the data.

Let us see where this discussion is leading. It will be shown later that, for each jet-
quark combination, there are two solutions for the longitudinal component of the neutrino’s
momentum. Thus, there are 24, 12, and 4 possible candidate solutions for events with 0, 1,
and 2 b-tags, respectively. Each candidate solution is assigned the quantity x*, which is an

indicator of how likely a given configuration is the correct one. The x? of each configuration

jets from ¢ that would otherwise be lost. An internal study in the CDF collaboration [58] has shown that
the costs outweigh the benefits.
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is minimized, and the configuration with the smallest minimized x? is chosen as the output

of the ¢t reconstruction algorithm.

6.2.3 Standard Raw Data Corrections

The raw data are used to trigger on events during data acquisition. Since triggering
is a time-critical operation, only minimal processing takes place in the conversion of detector
signals to raw data. After the data are written to tape, further processing of the raw data
is necessary in order to more accurately reconstruct the 4-momenta of the particles that
give rise to events. The standard set of corrections applied to the physics objects in lepton

+ jets events is given in chapter 3.

6.2.4 Special Jet Correction

The standard jet correction was developed and optimized primarily for the study
of events with 2 ~ 4 light quark- and gluon-jets [40], [42]. There is, therefore, no reason
to believe that they provide adequate corrections for #f events in the lepton + jets decay
channel, which usually have 3 ~ 6 jets, two of which are b-quark jets. A study done by
CDF [43] shows, indeed, that the standard correction is insufficient. The following factors

are believed to be (in varying degrees) responsible:

e The standard correction does not account for the energy carried away by the neutrino
in the semileptonic b-quark decay b — e v X. In the decay b — p v X, the standard
correction fails to account for the energy of the neutrino and the muon (the muon

deposits only a fraction of its energy in the calorimeter).

e The standard out-of-cone correction and underlying event correction are obtained for
QCD events that have, on average, smaller number of jets and weak jet Pr spec-
trum compared to what is found in lepton + jets ¢t events. One would expect these

corrections to depend on the number and hardness of jets.

e The monte carlo-dependent part of the standard correction is based on studies using

ISAJET [49]; it events, on the other hand, are simulated using HERWIG [47], [48].
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These two event generators use very different schemes for simulating the hadronization

process.

e The standard absolute jet energy scale correction was obtained using a monte carlo
sample with flat parton-level Pr spectrum[42]. Lepton + jets ¢ events, however, have
parton-level Pr spectrum with significant structure. The authors of the reference [43]
claim that amount of absolute energy scale correction depends on the parton-level Pr

distribution.

e The standard relative jet energy scale correction is obtained by balancing dijet events[42].

Lepton + jets ¢t events, however, typically have 3 ~ 6 jets.

The relative importance of each factor in causing the standard correction to be
insufficient is not clearly known. In spite of this, the insufficiency is a clearly established
fact — the standard-corrected jet Er in simulated ¢t events are systematically off from the
true quark E7[43]. The standard corrections can be improved by adding this systematic
shift to the standard-corrected jet E7. This new jet E7 is (on average) a better estimate
of the true Er. This new correction that is applied on top of the standard one is referred
to in CDF as the “AA” correction?.

The amount of systematic shift depends a lot on the nature of the jet. Thus the AA

correction distinguishes between the following four types of jets:

e Generic b-quark jets. This includes b-quarks decaying hadronically and b-quarks de-
caying in the electron/muon channel, but whose electron/muon is not identified by

the soft lepton tagging algorithm.
e b — ¢ + v + X identified by the soft electron tagging algorithm.
e b — pu + v+ X identified by the soft muon tagging algorithm.

o Light quark jets.

2« A A” is in honor of the authors of the study: Allessandra Caner and Avi Yagil. They are both members
of the CDF collaboration.
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Figure 6.1: AA corrections as a function of E7(jet) after standard correction.

Figure 6.1 shows the correction factors for each jet category as a function of jet E7 after

standard correction. These corrections are applied in the following manner.

o If a jet is assigned to by, or by, and it does not have a soft lepton tag, the generic

b-quark correction factor is applied.

o If a jet is assigned to by or by and it has a soft electron tag, the correction factor for

b — e v X is applied. If it has a soft muon tag, the factor for b — p v X is applied.

o If a jet is assigned to W, then the correction factor for light quarks is applied.

It should be emphasized that the generic b-quark correction can be applied to jets without
a b-tag; the correction applied to a jet depends on the quark label assigned to it, not on the
presence or absence of a b-tag. Also, in events with one or no b-tag, the correction applied
to an untagged-tagged jet is not unique because it could be assigned to a b-quark or to a

light quark.
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6.2.5 The Neutrino Momentum

The neutrino momentum is obtained in two steps: (1) calculate the transverse com-
ponents; (2) choose the longitudinal component. The distinction between calculate and
choose is significant, as will be discussed presently. Step (1) is the same throughout the ¢t
reconstruction algorithm. Step (2), on the other hand, involves two separate procedures,
one for the initial estimate of the neutrino momentum, and the other used during the x?
minimization process.

Let us first discuss the definition of the neutrino transverse momentum, ﬁT(V). It

is defined to balance all of the other objects in the event:

Pr(v) = - (Pr(%)
+ﬁT(4 leading jets)
-|_13T(extra, jets) (61)
-|_13T(very forward jets)
+ ﬁT(unclustered energy))

The terms corresponding to the “extra jets” and “very forward jets” account for the jets
against which the ¢t system recoils. The “unclustered energy” term is described in detail in
the next section; roughly speaking, it accounts for the ¢f transverse recoil momentum from
all factors other than jets.

Now let us describe how the longitudinal neutrino momentum P, () is chosen. First,
let us consider the initial estimate — i.e. the values assigned to P,(v) at the beginning of
the x? minimization process. The longitudinal momentum P,(v) is chosen to be such that
the invariant mass of the £-v system is equal to the W mass: (p¢ + p,)? = My % Solving

this equation for P,(v), one obtains:

VD

PZ(V) = A+ o4 (6.2)
sin” 0,
cos Gy
A=R 6.3
sin” 6, (6-3)
D? = B? —sin® 6; | Py (v)| (6.4)
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My?

R =
2E,

+ cos A¢y-, sin by ‘ﬁT(V)‘ (6.5)

The angle 6; is the polar angle of the charged lepton, E, is the charged lepton energy, and
Ad¢y.,, is the azimuthal angular separation between £ and v, (i.e. the angle between ﬁT(Z)
and ﬁT(V)) All of these quantities are defined in the lab frame. It is seen from equation 6.2
that, in general, P,(») has two solutions. Also, in general, different jet-quark combinations
give rise to somewhat different values of P,(v) because the AA correction applied to each jet
depends on the jet-quark assignment. In other words, the vector sum of the jet transverse
momenta depends somewhat on the type of AA correction applied to each jet; differences
in the jet transverse momenta propagates to differences in P,(v).

Not infrequently (in about 36% of events), the quantity D? in equation 6.4 is neg-
ative, in which case P,(v) is complex. These complex solutions are primarily the result
of either ‘ﬁT(V)‘ or A¢y-, being overestimated. Under these circumstances, the two P,(v)

solutions are taken as follows:

P,(v) = A£20GeV (6.6)

This prescription is only a technical work-around to get the x? minimization process started.
Exactly what real numbers are assigned in place of the complex solutions is unimportant so
long as they are chosen such that when x? has two minima, the minimization process finds
them both. Monte carlo studies have shown that the choice of P,(v) given in equation 6.6
satisfies these requirements. See appendix B for more details.

Now let us consider how P,(v) is chosen during the x? minimization process. In this
process, P,(v) is one of the parameters involved in minimizing x?. The quantity x? consists

of two parts:

2 2 2
X = Xmass + Xkinematics (67)

X2, is the term that favors configurations that have event topology consistent with the ¢Z
hypothesis. X%.,.....::., on the other hand, is the “penalty term” — i.e. the energies of the

physics objects are allowed to stretch or shrink in order to decrease x2,,,,, but at the cost
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of increased x2, . .. . See section 6.2.7 for details. The important point to note in this

context is the details of X2 ,.,:

Xonass = X (80) + X*(tn) + x> (W) + x*(Wh) (6.8)

The first two terms favor configurations where the mass of ¢, and ¢, are close together.
The third term favor configurations where the f-v; invariant mass is close to My,. The
final term favors configuration where the two-jet system presumed to originate from the
hadronically decaying W has invariant mass close to My,. The choice of the neutrino
longitudinal momentum P,(v) influences the first three terms of equation 6.8. The choice
is essential in determining the size of x*(W}), while it is moderately important in setting
the size of x?(t¢) + x*(tn)->

One of the most essential tasks performed by the ¢t reconstruction algorithm is the
minimization of x?. At the start of the minimization process, x?2,,,, is large — typically on
the order of 10> — while x3, .. .. is exactly zero. x2,,,, is decreased by: (1) stretching
or shrinking the physics object energies; and (2) choosing P,(v) appropriately. In order to
keep x?2,,., as small as possible, P,(v) must almost always be chosen such that the invariant

mass of the £-vy system is very close to My, since this keeps x?(W;) very close to zero.

6.2.6 Unclustered Energy

The unclustered energy ﬁT(uce) is a two-component vector that estimates the total
transverse momentum deposited in the calorimeter from all sources except leptons and jets.
The beam line component of the unclustered energy is defined to be zero.? See appendix C
for a discussion of how ﬁT(uce) is estimated from the physics object momenta.

Before leaving this section, let us consider what role the unclustered energy plays
in the tf reconstruction algorithm. In appendix C, it is stated that ﬁT(uce) is com-

posed of two parts: (1) the physical part; and (2) the resolution part. The physical part

31t may seem counterintuitive that v, which is a t; decay product, should influence the size of xz(th).
x*(t¢) and x*(tr), however, are related to each other through a common parameter, and, therefore, P,(v)
influences size of both terms. See section 6.2.7 for details.

“No attempt is made to estimate the longitudinal component of the system comprising the unclustered
energy because there is no reliable way to do so.
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ﬁT (physical) is due to actual particles depositing energy in the calorimeters. The resolution
part ﬁT(resolution), on the other hand, is due to the finite resolution of the physics object
transverse momenta. In order to illustrate the role of the unclustered energy, let us consider

two mutually exclusive scenarios:

The Physical Part is More Important than the Resolution Part
In this case, ﬁT(uce) is a more-or-less accurate estimate of the true physical unclus-
tered energy. If this term is left out of equation 6.1 for ﬁT(V), then the estimated
value of Pr(v) would, on average, be less accurate than if Pr(uce) were included.
Thus, in this situation, ﬁT(uce) plays the role of directly improving the estimate of

the neutrino transverse momentum.

The Resolution Part is Comparable to, or More Important than, the Physical Part
In this case, ﬁT(uce) is a lousy estimate of the true physical unclustered energy. Thus
the addition of the term ﬁT(uce) to equation 6.1 would not significantly improve the
initial estimate of Pr(v). However, because Pr(uce) has a large measurement er-
ror, this term can be altered significantly during the x? minimization process (see
section 6.2.7). This, in turn, allows greater freedom in choosing the transverse and
longitudinal components of the neutrino’s momentum. This freedom is a reflection
of the uncertainty in the neutrino’s momentum, and is important in order not to

overconstrain it.

Of these two scenarios, the latter accurately describes the situation in this analysis. Thus,
in this analysis, the unclustered energy serves as an error term in estimating the neutrino

momentum.

6.2.7 X2

At the starting point of the tf reconstruction algorithm, there are 24, 12, and 4
candidate solutions in events with 0, 1, and 2 b-tagged jets. From all of these candidates,
a unique output is to be chosen. Preferably, the chosen output is the configuration in

which the decay product momenta most closely resemble the parton-level momenta. The
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simplest way to choose a unique output is to select, event-by-event, a random configuration.
Then, in a fraction of events, the “best” solution (7.e. the solution whose decay product
momenta most closely resemble those at the parton-level) is guaranteed to be chosen by
pure luck. One should, however, be able to do better by making use of the event topology
that is characteristic of ¢ events in the lepton + jets channel — i.e. that (1) the mass of
ty, and t; must be approximately equal; (2) that the invariant mass of the £-v, system is
approximately equal to the W mass Myy; and (3) the invariant mass of the light quark pair
presumed to originate from the hadronically decaying W is approximately equal to Myy.
By quantifying these mass conditions, one should be able to use them to select the correct
configuration more often than by random selection.

In the ¢t reconstruction algorithm, the mass condition is quantified by a number

25

referred to, suggestively, as x2.° The quantity x? consists of many terms, which can be

placed in two categories: the mass terms and the kinematic terms:

X2 = X?nass + X]%inematic (69)

The mass terms are defined such that x?2,,, is small when the mass conditions are well-
satisfied, and large when they are not. The kinematic terms are defined so that x%, . ..
is zero when the magnitude of the physics object momenta have their initial value, and
increases as they are varied. The amount of increase in X7, .. is determined by the
expected errors of the momenta. A detailed quantitative definition of x? is given in ap-
pendix D.

The strategy used by the it reconstruction algorithm to choose a unique output
configuration is the following. At the starting point of the algorithm, x7, .. is zero
because the energy scale of the physics objects have not been changed. The term x2,,..,
however, is defined so that, typically, the starting value is on the order of 102. By stretching
or shrinking the energy scale of the objects in the event, x?2,,,, can usually be made close

to zero; the cost of doing this is the increase in x7, .. which is typically on the order

5This quantity “x2?” is not x? in the strict, statistical sense. Its definition involves ideas that are analogous

to those employed in x?. However, the statistical properties of the “x?” defined in the text is not as simple
as that of x? in the usual sense of the word.
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of 10° ~ 10! by the time the total x? is minimized. The configuration with the smallest
minimized x? is chosen as the unique output.

Intuitively, one can expect this choice of output to correspond to the correct con-
figuration more often than when the output is chosen randomly. This is because, at the
parton-level, the correct configuration always satisfies the mass conditions exactly, whereas
the incorrect configurations almost always do not satisfy them. After the parton-level mo-
menta are smeared by the measurement process, the correct configuration does not always
satisfy the mass conditions well. Also, incorrect configurations that do not satisfy the mass
conditions at the parton-level may end up satisfying them well after the parton-level mo-
menta are smeared. Even so, it seems reasonable to expect that the correct configuration
will more often match the mass conditions than incorrect configurations will. In order to
prove that this is actually the case, one would have to demonstrate that the algorithm
chooses the correct configuration more often than in random selection. That this is so,
and the extent to which it is, is shown in the next section, which discusses the algorithm’s

performance.

6.3 The Algorithm’s Performance

One way to measure the degree of success of the ¢t reconstruction algorithm is by
examining how much more often it outputs the “best configuration” compared to the case
where the output is chosen at random. In this situation, “best configuration” refers to the

following:

e The configuration in which the greatest number of quarks are assigned to the correct

jets.

e If x? has two minima, the configuration which corresponds to the minimum whose

P,(v) is closest to the true value.

Although these criteria for “correctness” of output solution may be appropriate in the
top mass measurement, in which the properties of both the ¢, and ¢; decay products play

essential roles, they are not very useful in this study, where only the ¢; decay products are of
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central importance. The problem with the criteria, from the point of view of this analysis, is
the following: too many factors that are not essential in determining measurement resolution
of the t; decay product kinematics are involved. In other words, the criteria given above are
unnecessarily complicated, and they obscure the aspects of the ¢t reconstruction algorithm
that are important in determining the measurement resolutions.

The first step in finding a more suitable measure of the ¢t reconstruction algorithm’s
performance is to focus on the aspects of the algorithm that deal with #;. They are the

following:

Charged lepton energy scale

o Neutrino momentum

by energy scale

e Whether or not b, is matched to the correct jet

In chapter 9, it is shown that the last item is by far the most important source of mea-
surement degradation. Therefore it will be used as the sole measure of the performance of
the ¢t reconstruction algorithm. Specifically, the fraction of events with b; matched to the
correct jet, fye, will be used.

Figure 6.2 shows fys in events with 0, 1, and 2 b-tagged jets. The points show fi,
from the algorithm; the hatched histogram shows fi; when the output is chosen at random;
the open histogram shows the maximum possible fi;.° Table 6.1 shows the numerical values
of fyy corresponding to those shown in figure 6.2. Clearly, the algorithm does much better
than randomly selecting the output configuration.

The following are some technical comments on figure 6.2:

¢ The maximum possible f,; is less than 100% because in a fraction of events, the jet

from by either fails the jet acceptance cut or is not among the four leading jets.

$The maximum foe is somewhat less than 100% because in some events the jet from b, is not among the
four leading jets; in such events, the fitter cannot possibly assign the correct jet to b;.
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Figure 6.2: fy; vs. # b-tagged jets. Points = expected from algorithm; hatched histogram
= random; open histogram = maximum. See text for the reason why the maximum f; <

100%.

# B-TAGGED JETS
=0[=1] >2
ALGORITHM | 40.4 | 46.4 | 66.2
MAXIMUM | 84.2 | 86.3 | 9b.1
RANDOM 21.1 | 29.4 | 47.6

Table 6.1: The predicted value of fp; (in %) from the ¢ reconstruction algorithm. Also
shown are the maximum possible fy¢, and f;; when the output is chosen randomly.
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e In events with 2 or more b-tagged jets, one might imagine that fi;, by definition,
must have a maximum value of 100%. It is, however, less than 100% because of the
following possibility: the jet from by is missed for the reasons stated above; a charm or
light quark (from the hadronic W decay or from a gluon) can be tagged, although with
much smaller efficiency compared to b jets; this “tagged” jet is treated as a b-quark

jet by the algorithm.
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Chapter 7

Observables

7.1 Introduction

The objective of this thesis is to examine, in the semileptonic decay of the top
quark, the energy and angular distribution of the charged lepton in the top rest frame.

This statement of the objective raises the following questions:

e Why examine the decay product kinematics in just the semileptonic decay channel of

the top quark, and not in the hadronic channel?

e Why examine just the charged lepton energy and angular distributions, and not those

of the neutrino or the b-quark?

e Why examine the top quark decay product kinematics in the top rest frame rather

than in the lab frame?

These questions, essentially, are about the choice of observables. This chapter is devoted
to answering these questions, and to defining observables that allow one to compare the
experimental data with the standard model prediction of the top quark decay.

Before these questions can be answered and observables can be defined, however,
a theoretical framework for describing the top quark decay is necessary. To do this, the
first step is to find the number of parameters (i.e. energy and angles) that are necessary
and sufficient to completely describe the top quark decay in the top rest frame. Once a set

of parameters is chosen, it is necessary to examine the standard model prediction of the
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distribution of these parameters. With these theoretical framework in place, one can define
observables that can be used to compare the experimental data with the standard model
prediction.

The first several sections of this chapter are devoted to building up this theoretical
framework. After this, the observables are defined, and the distribution of these observables
as predicted by monte carlo models are shown. At the end of the chapter, the questions

raised above concerning the choice of observables are answered.

7.2 Parameters Describing the Top Quark Decay in the Top

Rest Frame

The top quark decay is a sequential 3-body process, where first £ — b + W, and

then W — a lepton or quark pair:

tob+ W t 4+ v
L’ or
Wd + Wu

The symbol £ denotes e, y, or 7; vy is the neutrino partner of £; W; and W, are down- and
up-type quarks, respectively, from the W decay. The goal of this section is to determine
how many parameters (energies and angles) are necessary and sufficient to describe this
process in the rest frame of ¢.

The upper limit for the number of parameters is nine: there are three particles in
the decay, and the momentum of each particle is described by two angles and one energy.

However, the energy and angles of the particles are correlated because:

1. b and W originate from the decay of ¢, and £ and v; (or Wy and W,,) originate from
the decay of W.

2. The top and W masses are fixed (their widths can be ignored for the purpose of this

study).
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Figure 7.1: The four angles 6y, ¢y, ¢p-,,, and 1o, that completely describe the top quark
decay. The angles 6y, ¢4, and ¢y-,, are needed to span all possible orientation of the decay
plane, while 1, fixes the magnitude and relative orientation of the momenta in the plane.
The angle ¢y can be replaced with the opening angle between £ and vy, since there is a
one-to-one relationship between the two angles.

3. They are to be described in the top rest frame.

Therefore the number of parameters is less than nine. In the following, it will be shown
that four parameters are necessary and sufficient. For the sake of concreteness, the decay ¢
— £ + vy + b will be used. To translate the result to hadronic decay, £ and v, are replaced
with W, and W, respectively.

The fact that the top quark decay is to be described in the top rest frame implies
that the sum of the momentum of £, vy, and b is zero. Thus the three momentum vectors py,
Py, and p, are coplanar. Three angles are necessary to span all possible orientation of the
plane containing these vectors. For reasons that will become clear in the next section, the
angles will be chosen as 8;, ¢y, and ¢3-,,. Figure 7.1 illustrates these angles. The angles 6,
and ¢ are the polar and azimuthal angle of p; defined relative to some coordinate system
(the exact specification of which is not important in the context of this discussion), while
¢p-,, describes the orientation of the plane when it is rotated about the axis containing py.!

At this point, the following quantities have not yet been fixed:

! This angle is called ¢;-, for the following reason. Imagine the vectors §, 5., and § forming a fork, with
pr as the handle and 7, and P as the prongs. Then ¢p-, is the angle that describes the rotation of the b-v
prongs around the axis containing p;.
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Figure 7.2: W decay kinematics in the W and top rest frames.
o The orientation of py, and p relative to p

¢ The magnitude of py, py,, and pj,

As it turns out, by specifying the orientation of py, relative to py, everything else is fixed.
To see that this is so, it is useful to examine the decay kinematics of £ and vy in the W rest
frame (see figure 7.2). The energy of £ and v, in the W rest frame, E; and E}, are simply
equal to My /2 (lepton masses are neglected). Their momenta are equal and opposite. The
angle 1; is that between the charged lepton momentum and the boost direction from the
top to the W rest frame.

The energy of £ and vy in the top rest frame, F; and E,, are related to E; and E

by a Lorentz transformation. After some rearrangements, one obtains the following:

1
E, = E(EW + Py cos 1/12‘) (7.1)

1
E, = §(EW — Py cos ;) (7.2)
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The quantities Ey and Py are the W energy and momentum in the top rest frame. They
are constant: Ey = (m; + Mw? — m2)/(2m;), Pw = \/E% — M2, Because they are
constant, E is related to cos; by a simple linear transformation. In the equation for E,,
the fact that the neutrino momentum is equal and opposite that of £ in the W rest frame is
used. The angle ¢, between the momentum of £ and that of W in the top rest frame, and
the corresponding angle v; in the W rest frame, are also related to one another through a

Lorentz transformation. After rearrangements, it looks like the following:

cos ¥; + Bw
1+ Bwecos Yy

The quantity By is the relativistic speed of W in the top rest frame; it is a constant equal

cos Py = (7.3)

to Py /Ew. Similarly, the angle between the momentum of v, and that of W in the top

rest frame is related to cos t; according to the following:

—cos P} + Bw
1 — Bwecosyy

The relations in equations 7.1 through 7.4 show that: (1) the magnitude of py and

(7.4)

cos, =

Py,; and (2) the angle between £ and vy; are fixed by the single parameter cos ;. Since the
angle between py and py, is just 1¢ +1,, one can also say that the magnitude of p; and py,
and the angle cos )} is fixed by specifying the angle between p; and py,. Finally, once the
direction and magnitude of py and py, are fixed, the direction and magnitude of pj, is fixed
by momentum conservation.

Let us summarize the results of this section. Four parameters are necessary and
sufficient to completely specify the decay of the top quark in the top rest frame. Three
are needed to obtain all possible orientation of the plane containing p, py,, and pp; one is
needed to fix the orientation of the three vectors relative to one another, and to fix their
magnitude. The three parameters for specifying the orientation of the plane can be chosen
as cos 0y, ¢y, and ¢-,,. The one remaining parameter can be chosen as the opening angle
between p; and py,; other possible choices are cos )y, cos,, cosy, cosi), E,, and E;
— all of these parameters are related to one another by a one-to-one correspondence. A
specific choice of parameters will be made on the basis of the form of the standard model

prediction.

107



Before leaving this section, it should be noted that the standard model top quark
decay is similar in many ways to the 3-body (V — A) x (V — A) decay of other fermions, such
as the muon and tau lepton, and the ¢, and b quarks.? One critical difference, however, is
the fact that the W from the top quark decay is on mass shell, whereas that from the other
fermions is off mass shell. One consequence of this difference is the fact that the 3-body
(V — A) x (V — A) decay of all other fermions are described by five parameters, the extra
parameter being the virtual W mass. Appendix E discusses the similarities and differences

between the V — A decay of the top quark and all other fermions.

7.3 Standard Model Prediction of the Distribution of the
Four Parameters

The tree-level standard model prediction of the distribution of the four parameters
is obtained by summing the matrix elements for all possible Feynman diagrams for pp —
tt for a given production and decay channel, and then squaring that sum. Which matrix
element to use, however, depends on an assumption regarding the top quark lifetime and the
typical timescale involved in the hadronization of quarks. Therefore, before any prediction

regarding the four parameters can be made, this issue must be settled.

7.3.1 The Full Matriz Element Calculation Versus the Independent Decay Procedure

Let us take 7;,, to be the top quark lifetime, and 75,44 the typical timescale required
for the hadronization of a quark. The top quark lifetime is 735, = 1/T'sop, Where:
Gr

My? My?
Tiop = ——— |Vip|2m3(1 — 2142 7.5
ton = 5y Vil me(L = T (14 2 ) (7.5)

For m; = 175 GeV /c* and |Vip| = 1, Typ = 1.6 GV, and 7y,p = 4.2 X 1072° sec. Radiative

corrections are expected to decrease I'y,, by about 10%[62]. Thus I';,, is expected to be

about 1.4 GeV. The hadronization timescale, in contrast, is not a precisely defined quantity.

2The s- and d-quarks are not included in this list of fermions because they are too light for the spectator

approximation to be valid.
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It is a timescale on the same order of magnitude as the time required for light to travel the

diameter of a proton [29]:

Thad =~ (1fm)/ec

(0.2-GeV)™!

4

~ 3x107%s

Therefore 7., ~ % X Thad- This suggests that, usually, the top quark probably decays well
before it hadronizes.

The length of 74, relative to Tpeq is critical since hadronization randomizes (1)
the relative orientation of the ¢ and ¢ spin and (2) any phase coherence between matrix
elements corresponding to various spin states of ¢t and £. Therefore if 735, < Theq, then the
t and ¢ spin dependence must be taken account of in order to correctly model the pp —
tt production and decay process. On the other hand, if 75, > Thqd, this spin dependence
should be ignored. If 7y,, & Thed, then perhaps information regarding ¢ and ¢ spin may be
only partially lost, and some special hybrid treatment may be necessary to deal with this
situation.

Equation 7.6 suggests that the top quark decays well before it hadronizes. If this is
the case, then the correct way to model the tree-level production and decay of ¢t and £ in qg,
gg — tt is to: (1) evaluate the matrix elements for all spin configurations for all diagrams
in figure 7.3; (2) sum them; and (3) square the sum. If, on the other hand, the top quark
decays well after it hadronizes (in spite of equation 7.6), then a procedure, which will here
be called the independent decay procedure, is appropriate for generating the production and

decay of t and #. The independent decay procedure is described below:

1. In the tt rest frame, the top quark momentum is generated according to the tree-level
differential cross section do%@/di or do99 /di, depending on whether the # is produced
by a ¢q or gg pair (f is one of the Mandelstam variables). The differential cross section
is obtained using the Feynman diagrams in the bottom of figure 7.3. See appendix G

for details on the cross section formulas. The ¢ momentum is equal and opposite that
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Figure 7.3: The Feynman diagrams for qg or gg — tt — £ + vy + by + by, + Wy + W,,. The
circular hatched region in the top figure is to be replaced with the diagrams in the bottom
figures.
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of t. The lab frame momentum of ¢ and ¢ are obtained from the generated momentum

by boosting along the beam line by negative the momentum of the incoming ¢¢ system.

2. In the top quark rest frame, the top quark is decayed using the Feynman diagram ob-
tained by chopping off the portion starting from the top quark in the top of figure 7.3.
The  decay in the t rest frame is performed in the same way. The t and ¢ spin are

assumed to be randomly oriented, and the ¢ and ¢ decay are performed independently.

3. The lab frame momenta of the top quark decay products are obtained by boosting the
momenta in step 2 back to the lab frame using the lab frame top quark momentum
generated in step 1. The same procedure is used to obtain the lab frame momenta of

the decay products of £.

As far as the author is aware at the time of this writing, all standard monte carlos
available for modeling pp — tf use the independent decay procedure.® As of this writing, all
studies of the top quark (that do not specifically deal with ¢ spin correlation effects) carried
out by the CDF and DO collaboration use standard monte carlos, and, therefore, they all
assume the independent decay procedure. This study, too, will assume the independent
decay procedure. This choice may seem irrational given that 7y, < Theq. Yet, this choice

is adopted for the following reasons:

e The decay product kinematics obtained from the independent decay procedure is
very similar to that obtained from the full matrix element calculation (see [29] and
appendix F). In fact, the choice of procedure does not make any detectable difference

in the final results of this study.

o Whether or not hadronization takes place before or after the top quark decays is an
issue that should be settled experimentally. Therefore, until the expectation that
the top quark decays well before it hadronizes is demonstrated experimentally, it
seems natural to choose the default hypothesis adopted so far by the CDF and D0

collaborations.

3Monte carlos that incorporate the full tree-level spin-dependent calculations have been developed by
various people, including one by the author[61]. However, as of this writing, the author is not aware of any
that have been accepted as a standard tool that is publicly available in the HEP community.
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Figure 7.4: The Feynman diagram for the semileptonic decay of the top quark.

See appendix F for further discussion of this issue.

7.3.2 The Distribution of the Four Parameters Assumang the Independent Decay

Model

Having settled on the assumption of independent decay, one can obtain the distri-
bution of the four parameters using the Feynman diagram in figure 7.4 and the assumptions
that: (1) the ¢ and ¢ spin are randomly oriented (i.e. they are unpolarized); and (2) the ¢
decay is not influenced by, and does not influence, the ¢ decay. In what follows, the first
assumption will be relaxed to allow the possibility of top quark spin polarization — i.e. the
possibility for the ¢ and ¢ spin to point preferentially along some fixed direction. Allowing
the possibility of spin polarization enables one to quantify the degree to which distributions
in the experimental data agree with the standard model prediction.

The details of the matrix element calculations are shown in appendix H. The result

is the following:

F(cos 8y, cosyp;) = f(cosby) - g(cos ;) (7.6)

In this context, cos §; is the angle that p; makes with the top quark spin polarization vector,
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Figure 7.5: The distribution of cos 8y for unpolarized (a = 0) and 100% polarized (a = 1.0)
top quark.

and cos9; was described earlier in section 7.2. Let us examine the functions f(cos#f;) and

g(cos ;) in detail.

7.3.2.1 The Distribution of cos &,

The formula for f(cos8) is:

f(cosby) = %(1 + gra - cosby) (7.7)

The symbol g, is the sign of the charge of £, and « is the degree of spin polarization (0 < a <
1). According to the standard model and the independent decay assumption, a = 0 — 7.e.
there is no dependence on cos 6y, and, therefore, py is randomly oriented. If a # 0, then the
distribution of gy is asymmetric: £T tends to decay toward the spin polarization vector, and
£~ tends to decay away from it. Figure 7.5 shows a plot of f(cosf;). In chapter 10 where
the experimental data are compared with the standard model prediction, the parameter

is used to measure the degree of consistency of the data with the standard model.

7.3.2.2 The Distribution of cos);

The formula for g(cos ;) is:
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g(cosy;) = (h—, ho, hy) - (gb; gn, 97)

h_ - gy(cosvp;) + ho - gn(cos ;) + hy - gs(cosy}) (7.8)

The first line in the above equation is a short-hand notation indicating that g(cosy;) is
obtained by taking the dot product of a triplet of scalars (h_, hg, hy) with a triplet of
functions (gs, gn, g7)*. The three components are for the three helicity states of W: left-
handed, longitudinal, and right-handed. For the decay t — b + W™, the first, second, and
third component of the triplet correspond to the left-handed, longitudinal, and right-handed
helicity state; for the charge conjugate process ¢ — b + W, the components correspond
to the right-handed, longitudinal, and left-handed helicity state. The assignment of the

helicity states to each component of the triplet is summarized below:

t—>b+ Wt (left, long, right)

t—>b+W- (right, long, left)

The components of (h_, hg, hy) are scalar quantities that depend on m;, My, and
my, and they are called the helicity fractions. Since my < m; and My, the b-quark mass
can, to a good approximation, be set to zero — doing so introduces to h; an error on the
order of m}/M?, ~ 0.004. In this approximation, the standard model prediction for the

helicity fractions are:

1
h = —— .
1+ 22/2 (7.9)
z?2/2
h 1
T 14 22/2 (7.10)
hy =0 (7.11)

*These 3-component objects are obviously not vectors. They are written in vector-like notation as a

suggestive, short-hand notation
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my

= MW
For m; = 175 GeV, h_ = 0.30, hg = 0.70, and hy = 0. The fact that hy ~ 0 — i.e. t (t)

z (7.12)

almost decouples from the right-handed (left-handed) helicity state — is a consequence of
the V — A coupling in the ¢-W-b vertex. The fact that A, is not exactly zero is due to the
small helicity-flip amplitude resulting from the non-zero mass of the b-quark.

In the decay t — b + W™, h_, ho, and h, can be thought of as coupling strengths
of t to the left-handed, longitudinal, and right-handed helicity states of W. In the charge-
conjugate case f — b+ W, h_, hy, and h, are coupling strengths of  to the right-handed,
longitudinal, and left-handed states. The helicity fractions, by definition, are normalized,
so the following relation holds: A_ + hy + A4 = 1. In addition, h; are non-negative. These
properties of h; suggest a probabilistic interpretation — z.e. that h; gives the probability
(branching fraction) that a top quark decay produces W in the helicity state ¢. This, how-
ever, is incorrect because the transverse helicity states of W interfere with the longitudinal
state, and, therefore, a top quark decay does not produce W in a definite helicity state.
Appendix J discusses this issue in detail.

The functions gp(cos 9} ), gn(cosv;), and g¢(cos ;) have the following form:

g(cos ¥y) = 2(1 — cosy;)? (7.13)
gn(cos¥}) = 2(1 — cos” ;) (7.14)
gr(costtj) = S(1+ costy)? (7.15)

These functions give the cos 9; distribution for the three helicity states of W. The subscripts
b, n, and f stand for backward, normal, and forward, and they indicate the direction in
which g; peaks (see figure 7.6). In the decay t — b + W™, the left-handed, longitudinal,
and right-handed helicity state of W give rise to cos%; distribution given by g4, g,, and gy,
respectively. In the charge-conjugate process f — b + W™, the left-handed, longitudinal, and

right-handed helicity state of W have the cos; distributions gy, g,, and gs, respectively.
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Figure 7.6: (a) The functions g;(cos;), ¢ = b,n, f. (b) Standard model distribution of
cos 1, assuming m; = 175 GeV. The curve is obtained by the combination 0.30*(backward)
+ 0.70*(normal).

h; gi(cos ;)
LEFT \ LONG \ RIGHT || LEFT \ LONG \ RIGHT
t—b+ Wt rr | 1—rp 0 gb gn gy
t—>b+ W~ 0 1—rr rT gf gn gb

Table 7.1: The helicity fractions h; and the cost; distributions g;(cos ;) for the three
helicity states of W. The role of left and right are reversed for ¢ and ¢. The quantity rr is
equal to 1/(1 + 2%/2), where z = m;/Myy.

A summary of the results on the distribution of cos; is given in table 7.1. An
interesting feature about these results is the fact that the roles of left and right are reversed
for t and £. This role-reversal occurs at the t-b-W vertex (described by h;) and at the W-£-y,
vertex (described by g;). Because of this double-reversal, the final distribution of cos 1 is
identical for ¢t and t. The physical basis for this behavior is discussed in detail in section E.7

of appendix E.
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7.3.2.3 Summarizing the Discussion on f(cosf;) and g(cos ;)

Let us summarize the results obtained so far. According to the standard model, the
four parameters that describe the top quark decay in the top rest frame are distributed ac-
cording to F(cos 8y, cos 1;). If the top quark spin is unpolarized, then the cos §; dependence
is absent. Therefore, the standard model together with the independent decay assumption

implies the following about the distribution of the four parameters:

Of the four parameters describing the top quark decay in the top rest frame,
the three required to orient the plane containing py, py,, and p, are randomly
distributed. The one parameter that fixes the magnitude and direction of py,
Pyy, and pp in the decay plane is distributed according to equation 7.8.

7.3.2.4 A Change of Variable: cosvy; — E;

Before leaving this section, a change of variable will be introduced for aesthetic
reasons. Equation 7.1 shows that cos; is related to Ey, the energy of £ in the top rest
frame, by a linear transformation. Therefore the function F(cos 8, cosv;) could equally
well have been written as F(cosy, E/); no information is gained or lost by making this
change in variable. By making this change, the standard model prediction regarding the
top quark decay in the top rest frame can be expressed solely in terms of the direction and

magnitude of pj:

F(cos 8y, E¢) = f(cosby) - g(Ey) (7.16)

The function f(cos &) is the same as before, while g(E/) is:

g(E[) = (h—a h07 h-l-) : (gsa gm gh)

= h_-gy(E¢)+ ho-gm(Ee)+ hy - gn(Ey) (7.17)

The helicity fractions A_, hy, and hy have the same values as before, while the functions
9s(Ee); gm(Er), and gp(E¢) are obtained from gy(cos ;), gn(cos9;), and g¢(cos ¢;), respec-
tively, by the change of variable cos ¢; — Ey. Figure 7.7 shows plots of the E, distributions.

The E, distributions are related to their cos1; counterparts by a translation and a change
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of scale. The subscripts s, m, and h stand for soft, medium, and hard, and refer to the
hardness of the F, distributions. The hardness of the E, distributions are due to the nature

of Lorentz transformations (see equation 7.1). The functional form of g;(E;) is given below:

2
3 ( Eper—E,
J(Ep) = — | =t—— 7.18
g ( [) PW (E?mw _ Elrnm) ( )

6 (Ef® - Ei)(E — E"™)

m(Ee) = — X - 7.19
g ( l) PW (Elrnax_Ezmn)Z ( )
3 ( E,—Epm

t— Ly
E))=—|—"—t—— 7.20
gh( [) Py (E?mw _ Elrnm) ( )

1
Ezna.’r = Emt (721)
ppin = L (M (7.22)
l - 2 mt .

Py = Epor — Epin (7.23)

The quantities E}"** and E?”'” are the upper and lower bounds of F; — outside of these
bounds, g;(E¢) = 0. The quantity Py is the W momentum in the top rest frame (this is a

constant fixed by m;, My, and ms).

7.4 The Observables

The results of sections 7.2 and 7.3 lay the theoretical foundation for the study of
the top quark decay kinematics in the top rest frame. In this section, observables that will
allow one to compare distributions in the experimental data with the theoretical prediction
will be defined. In the first part of this section, the observables will be introduced. In the
second part, the distribution of the observables from monte carlo models will be shown.
The effect of: (1) event selection cuts; and (2) smearing introduced by event reconstruction;

on the observable distributions will be examined.
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Figure 7.7: (a) ¢;(E¢), i = s,m, h. (b) Standard model distribution of E; assuming m; =
175 GeV. The distributions have the same shape as those shown in figure 7.6; they are
related to each other by a translation and a scale change.

7.4.1 The Definition of the Observables

It was shown in section 7.3 that the four parameters describing the top quark decay
in the top rest frame are distributed according to the F(cos 8, E;) given in equation 7.16.
This equation treats the general situation where the top quark is allowed to have non-zero
spin polarization. In the independent decay model of the top quark, however, the top quark
is assumed to have zero spin polarization, and, therefore, the cos 8; dependence drops out
of F(cos 0y, Ey). In other words, of the four parameters that describe top quark decay, three
are randomly distributed, while one parameter — E;, — is distributed according to g(Ey)
in equation 7.17. The three randomly distributed parameters are those required to orient
the plane containing py, py,, and p (the decay plane); the one parameter distributed in a
non-random way is that which fixes the direction and magnitude of p¢, py,, and pp in the

decay plane. The following is a summary of these observations:

e The direction of py is randomly distributed. In other words, cos 8; and ¢, are randomly
distributed, where 6, and ¢, are the polar and azimuthal angle of p; defined in some

coordinate system.

e The magnitude of p; is distributed according to g(E/) in equation 7.17.
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e The angle ¢, is randomly distributed (see figure 7.1).

Of these four observables, cos 0y, ¢4, and E,; will be studied in this thesis. The choice
not to study ¢, is due to time constraints.
In what follows, prescriptions for obtaining the observables from the experimental

data are given.

7.4.1.1 Obtaining F; from the Experimental Data

The primary lepton energy in the top rest frame, Ey, is obtained by boosting the
lab frame charged lepton 4-momentum to the top rest frame. In order to do this, one must
first obtain the lab frame 4-momentum of the semileptonically decaying top quark, £,. This

is obtained using the ¢t reconstruction algorithm, which is described in chapter 6.

7.4.1.2 Obtaining the Top Rest Frame Angular Distribution of p; from the

Experimental Data

Obtaining the top rest frame angular distribution of gy from the experimental data
is more involved than was the case for E,. The first step is the same as for E;: one uses the
lab frame momentum of ¢; to boost the momentum of £ to the t; rest frame. In the ¢, rest

frame, however, a coordinate system must be defined. In this thesis, it is defined as follows:

1. Using the lab frame momentum of the semileptonically and hadronically decaying top
quark, t; and t;, form the momentum of the ¢f system. This momentum is almost

completely along the beam line.
2. Using the ¢ momentum, boost decay product momenta to the ¢ rest frame.

3. In the tt rest frame, define three unit vectors 1y, s, and 43, where i, is along the
ty momentum vector, i, is along the cross product of 4; and the beam line, and

U3 = @1 X Ug. See figure 7.8.

4. Using the coordinate system defined by 44, 19, and i3, boost decay product momenta

to the t; rest frame.
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Figure 7.8: The unit vectors that define a coordinate system in the top rest frame. The
vectors are defined in the #f rest frame, and are used to boost the decay product momenta
to the top rest frame. In the top rest frame, the same unit vectors are used to define the
coordinate system.

5. In the t; rest frame, use the same set of unit vectors to define a coordinate system.

The coordinate system is defined in this manner because if anomalous spin polariza-
tion were present, the 1- and 2-direction are good candidate directions for the polarization
vector. For instance, polarization along or against the 1-direction may imply chiral anomaly
in the production mechanism of ¢, and polarization along or against the 2-direction may im-
ply anomalous loop contribution to the top quark decay amplitude. Reference [30] and [31]
discuss these possibilities. The 3-direction is not a candidate direction for any anomalous
polarization, but is included for completeness.

Once the coordinate system is defined, one can define the angle 8, and ¢, as the
polar and azimuthal angle of gy in the top rest frame, taking the 1-direction as the polar
direction and the 2-3 plane as the azimuthal plane. These angles, however, will not be used
as the observables. Instead, the direction cosines of p; will be chosen. They are defined as

follows:

||

cosU; = i=1,2,3 (7.24)

This equation defines three observables where only two exist, so cos U; are not independent
of one another. However, this choice is convenient because, if anomalous polarization were

present, the signature will show up as an asymmetry in the distribution of cos U;.
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7.4.2 The Distribution of the Observables

In the monte carlo simulation of pp — tf, one can view the simulation process as

going through the following stages:

Analytic — Parton-level — Reconstructed

The stages are defined as follows:

Analytic
In this stage, no cuts are applied to the generated events. The observable distributions

in this stage are shown in figures 7.5 and 7.7 — they are either linear or parabolic.

Parton-level
The events in this stage are a subset of those in the analytic stage. The subset is
defined as follows. First, one takes all events in the analytic stage and perform a full
simulation — z.e. take account of gluon radiation, convert outgoing quarks and gluons
to jets, perform detector simulation, efc. Second, event selection cuts are applied to
the physics objects in the fully simulated events. The events that pass this cut belong
to this stage. The 4-vectors of the physics objects in this stage, however, are not those
of the fully reconstructed physics objects, but of the analytic-level. The observable
distributions in this stage have similar shapes as those in the analytic level, but they

are modified by the event selection cuts.

Reconstructed
The events in this stage are exactly the same as those in the parton-level. However, the
4-vectors of the physics objects in this stage are those obtained after full simulation.
These 4-vectors are, in general, different from those in the parton-level because of
uncertainties introduced by the ¢ reconstruction process. This change in 4-vectors

introduces smearing in the observable distributions.

The change in shape of the observables in going from the analytic — parton-level
stage will be referred to as being due to the acceptance effect. Similarly, the change in shape

of the observable distributions in going from the parton-level — reconstructed stage will
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be referred to as being due to the smearing effect. To convert observable distributions in
the analytic stage to those in the parton-level stage, one takes the analytic distributions
and multiply them by acceptance curves. To convert the distributions in the parton-level
to those in the reconstructed stage, one takes the parton-level distributions and applies the
smearing matrices. These conversion methods are discussed below. The validity of these
methods hinge on an important property of the observable distributions in the standard
model. What this property is, and why it is necessary for the methods to be valid, are

discussed in appendix K.

7.4.2.1 The Acceptance Effect

The overall acceptance of pp — tt in the lepton + jets decay channel is approximately
10%. In this context, “acceptance” is the ratio of the number of monte carlo-generated
events passing the event selection cuts to the total number of events generated (z.e. the
number of events in the parton-level stage divided by the number in the analytic stage).
Figure 7.9 shows the acceptance as a function of the true observable value.

The shape of each distribution is determined mostly by the primary charged lepton
identification cuts (see chapter 3). The following is a detailed discussion of the shape of

each distribution:

cos U
Two noteworthy features of this distribution are: (1) the dip near cos U; = —1; and
(2) the asymmetry about cos U; = 0. The dip is primarily due to the Pr cut. When
£ has cosU; ~ —1, its momentum in the top rest frame points against the boost
direction from the tf rest frame to the top rest frame. Since the momentum of £
opposes the boost, the energy of £ (and, hence, Pr of £) in the ¢ rest frame is smaller
than it would be for larger values of cos U;. The Py of £ in the tf rest frame is usually
about the same as it is in the lab frame. Thus cos U; &~ —1 implies small Py in the

lab frame, and hence these events are likely to fail the Pr cut.

The asymmetry in the distribution is due to the fact that the ‘1’ direction is along the

boost direction from the tt rest frame to the top rest frame. As illustrated above, Pr
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Figure 7.9: Acceptance versus true observable value for the observables cos Uy, cos Us,
cos Uz, and Ey. The dashed line in each graph shows the average acceptance. The cos U,
and cos Us distributions have been symmetrized.
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of £ in the lab frame tends to be larger when £ travels along the ‘1’ direction than when

it travels against it. Thus the acceptance curve is forward-backward asymmetric.

cos Us

The noteworthy features of this distribution are: (1) the dip around cos Uy = 0; and
(2) the symmetry about cos Uz = 0. The dip is caused primarily by the 5 cut. By
definition, the 2-direction is perpendicular to the beam line. Therefore the direction
along or against 4y — i.e. |cos U] ® 1 — tends to point into the detector, where the
acceptance is greatest. Thus the peaks of the distribution occur at cos Uy = +1. The
symmetry of the distribution reflects the azimuthal symmetry of both the detector

and the ¢ production process.

cosUs

Ey

The noteworthy features of this distribution are: (1) the peak around cosUs = 0;
and (2) the symmetry about cos Us = 0. The first feature is due to the fact that the
3-direction tends to point toward the beam line. Thus when cos U3 ~ +1, u3 tends
to point out of the detector, so the acceptance curve in those regions has minimum
value. The symmetry of the distribution is due to the symmetry along the beam line

both of the detector and the ¢t production process.

The single noteworthy feature of this distribution is the dip at small E,. This dip is
primarily due to the Pr cut. Events with little energy in the top rest frame tends to
have little energy in the lab frame; such events are more likely to fail the Pr cut than

events with larger F,.

The parton-level distribution of the observables is obtained by modulating the an-

alytic distributions in figures 7.5 and 7.7 by the acceptance curves. This procedure is

illustrated in figure 7.10 for the distribution of cos Uy for a top quark that is 100% polar-

ized against the 1-direction. The contents of the histogram for the analytic distribution is

multiplied bin-by-bin by the efficiency curve to obtain the parton-level distribution.

Figures 7.11 and 7.12 show the parton-level distribution of the observables cos U;,

¢t = 1,2,3 for unpolarized and 100% polarized top quark spin. For cos U;, the situation
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Figure 7.10: Obtaining the parton-level distribution from the analytic distribution and the
efficiency curve. The parton-level distribution (right) is obtained by multiplying bin-by-bin
the histogram for the analytic distribution (left) by the efficiency (center). The dashed line
in the figure on the right is the parton-level distribution if the efficiency were flat. The
dashed line in the middle figure is the average acceptance.

where the polarization vector is along and against the 1-direction are both shown because
the acceptance curve is asymmetric about cos U; = 0. For cos U; and cos U3, the accep-
tance curves are symmetric, so only polarization along the respective coordinates is shown.
Figure 7.13 shows, for t — b + £T + v, the parton-level distribution of E; for W+ 100%
in the left-handed, longitudinal, and right-handed helicity state, respectively. Also shown
is the standard model prediction.

Before leaving this section, a comment on the total number of accepted events is
in order. First, let us consider the parton-level E, distribution. To make the argument
concrete, let us specify the charge state of the top quark as follows: ¢ — b + £T + ;. Note
in figure 7.9 the acceptance curve for E;: it has small acceptance at small E;, and as Fy
gets larger, the acceptance quickly increases and levels off. The analytic distribution for
the left-handed helicity state peaks where the acceptance dips to very small values, whereas
those for the longitudinal and right-handed helicity states peak where the acceptance is
level (see figure 7.7). These observations explain the following fact:

Before event selection cuts, the standard model distribution of E; is obtained by
combining the left-handed, longitudinal, and right-handed distributions in the
proportion 30% : 70% : 0% (taking m; = 175 GeV'). After event selection cuts,
the proportion becomes 25% : 75% : 0%.

The exact amount of the shift in the value of the helicity fractions is determined by the ratio

126



Parton-level Distributions, cos U,

ﬂ L B L B B B |
é 1500 [ unpolarized .
w - ]
g 1000 [ -
g 500 ; —
<C C ]
H 0 oo v bvv i by 09
-1 -0.5 0 0.5 1
Cosu,

ﬂ L B O B B \:
§ 1500 [ 100% pol. along .
T ]
g 1000 -
g 500 ; —f
< C ]
H 0 =i I B R
-1 -0.5 0 0.5 1
CosU,

ﬂ Crr T ‘ L ‘ L ‘ \- L
& 1500 [~ 100% pol. against —|
T :
g 1000 | —
g&) 500 —f
< C ]
H* 0 oo v by by ™
-1 -0.5 0 0.5 1
Cosu,

Figure 7.11: Parton-level distribution of cos U; for unpolarized (top), 100% polarized along
@y (center), and 100% polarized against @; (bottom). The dashed line in each plot shows
what the distributions would look like if the acceptance curve were flat.
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Figure 7.12: Parton-level distribution of cos U, and cos Us for unpolarized (left column),
and 100% polarized along 4, or @3 (right column). The dashed line in each plot shows what
the distributions would look like if the acceptance curve were flat.
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Figure 7.13: Parton-level distribution, in ¢ — b + £T + v, of E; for 100% left-handed
(upper left), 100% longitudinal (upper right), 100% right-handed (lower left), and standard
model prediction (lower right). The dashed line in each plot shows what the distributions
would look like if the acceptance curve were flat.
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of the acceptances of the left-handed and longitudinal W. This ratio is approximately 0.80.
This change in composition of the W helicity states is an effect that must be accounted for
when the helicity fractions are measured in the experimental data.

For the angular observables cosU;, the issue at hand is whether 100% polarized
events are more or less likely to be accepted than unpolarized events. It can be shown that
there is no difference in acceptance for polarized and unpolarized events if and only if the
acceptance curve is symmetric about cos U; = 0. Thus the 2- and 3-directions are bias-free.
On the other hand, the acceptance curve for the 1-direction is asymmetric, so a bias exists.
Events originating from top quark 100% spin polarized along the 1-direction are 2.4% more
likely to be accepted compared to events originating from unpolarized top quark. For 100%

spin polarization against the 1-direction, the percentage is —2.4%.

7.4.2.2 The Smearing Effect

The parton-level distribution of the observables shown in the last section correspond
to what one would observe if the tf event reconstruction process introduced no error in the
measurement of the decay product momenta. In reality, significant amount of error is
introduced for a variety of reasons. It will be shown in chapter 9 that the most important
source of error is the matching of the wrong jet to the b-quark. This, in turn, is mostly due
to the imprecise measurement of the quark momenta, as deduced from the jet energy.

The smeared observable distribution can be obtained from the parton-level distri-
butions by using the smearing or input-output matrix. An illustration of this method is

shown below:

Input-Output
= Matrix (7.25)
nxn

output parton

In this equation, the column vectors represent histograms with n bins. The input-output
matrix is n X n, and can be thought of as a 2-dimensional histogram. The columns of the

matrix represent narrow bands of true (input) observable values, while the rows represent
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Figure 7.14: Schematic representation of the input-output matrices. The points show the
median output value for each band of input (true) observable values. The vertical error
bars represent the spread of events containing 34% of the population above and below the
median value. The horizontal error bar is the bin size. The bin sizes were chosen so that
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narrow bands of the smeared (output) observable values. Each column can be thought of
as a histogram of the output values for a given narrow range of input values. Figure 7.14
shows a schematic representation of the input-output matrix for all of the observables.
Figures 7.15 through 7.17 show the smeared distributions for all of the observables.
The smearing makes the polarized and unpolarized cos U; distributions less distinguishable
from each other than they are at the parton-level. Similarly, the left-handed, longitudinal,
and right handed distributions become less distinguishable from each other after smear-
ing. This loss in distinction between the distributions results in degraded measurement

resolution. This degradation can be quantified using the method described in chapter 8.
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cos U,, Output and Parton-level
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Figure 7.15: The distribution of cos U; before and after smearing.
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cos U, and cos U,, Output and Parton-level
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Figure 7.16: The distribution of cos Us and cos U3 before and after smearing.
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E,, Output and Parton-level
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7.5 Answers to Questions Raised Earlier

At the beginning of this chapter, three questions regarding the choice of observables

were raised:

e Why examine the decay product kinematics in just the semileptonic decay channel of

the top quark, and not in the hadronic channel?

e Why examine just the charged lepton energy and angular distributions, and not those

of the neutrino or the b-quark?

e Why examine the top quark decay product kinematics in the top rest frame rather

than in the lab frame?

Equipped with the information presented in the last several section, these questions can

now be answered.

7.5.1 Why Ezamine Onlyt — £ + v, + b?

It was mentioned in chapter 4 that it is useful, from an experimental point of view,
to classify the possible decay channels of t¢ events into the following categories: the dilepton,
lepton + jets, and the all-hadronic. It was argued there that the study of the decay kine-
matics of the top quark in the top rest frame can be carried out reliably only in the lepton
+ jets channel. It is for this reason that, in this thesis, one examines events in which one
of t or t decays semileptonically, and the other decays hadronically. The semileptonically
decaying top quark is referred to as t;, and the hadronically decaying one is called .

Since there are two top quarks in each event, it may seem strange that, in this thesis,
only the decay kinematics of ¢; is examined. Could one not double the available statistics
by examining the hadronic decay channel?

The answer to this question is: no. In order to explain this answer, let us recall that
four parameters are necessary and sufficient to describe the top quark decay in the top rest
frame. In the semileptonic decay of the top quark, these parameters are: cos 8, ¢y, ¢p-,,

and Ey. The following equation gives the distribution of these parameters:
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F(cos by, E¢) = f(cosb)g(Ey) (7.26)

The function f, and only the function f, provides information about the top quark spin.
Similarly, the function g, and only the function g, provides information about the helicity
structure of the ¢-W-b interaction vertex. In other words, the spin property of the top quark
and the helicity structure of the ¢-W-b interaction vertex decouple from one another.

Now let us see how one would go about parameterizing the decay of ¢;. The decay
of ¢ is denoted thus: ¢, — b, + Wy + W,. The decay kinematics of b, is the same as
that of by, that of Wy is the same as that of £, and that of W, is the same as that of v,.
Thus, if one chooses to describe the decay of ¢;, the same way as in the decay of 4, the four
parameters become the following: cos 8y, ¢4, ¢p-u, and E4. The angles 83 and ¢4 specify
the direction of the momentum of the Wy, ¢-,, is the analog of ¢-,, where v, is changed to
Wy, and Ey is the energy of the Wj.

This parameterization is fine if the down-type quark Wy can be identified as reliably
as its analog £ in the decay of t;. In reality, this is not the case because Wy is detected as
a jet. Since Wy is a light quark, one cannot distinguish between a Wy-jet from a W,-jet,
a b jet without b-tag, or a gluon jet. Worse yet is the fact that even when the correct jet
is found, its momentum is usually quite different from the true W; momentum. Because of
these difficulties, the distribution of any observables based on the W; momentum is badly
smeared. The use of such observables is, therefore, highly unsuitable in the study of the
top quark decay kinematics.

In order to salvage some information, one may try using b, to probe the decay
properties of ;. The quark by is, in a sense, superior to Wy in probing the decay of ¢
because b-quarks can be tagged, and, therefore, the combinatoric background for assigning
the correct jet to by is smaller. The problem with this method, however, is the fact that,
at the parton-level, b, is a poor probe of the decay properties of the top quark.

To demonstrate this point, let us parameterize the momentum of b;, by the following:
Oy, ¢p, and Ey. The energy FEy of by, gives no information about the top quark spin and the
t-W-b vertex because it is constant: E, = (m;2 — My ? + m?)/(2m;). Thus only 6 and

¢p Temain as candidate observables. Let us assume that ¢ is spin polarized, the degree of
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polarization being a. Let us take 8 as the angle between the momentum of b;, and the spin

polarization vector. Then cos 8 is distributed according to the following formula:

f(cosby) = % [1+ Ka(l—2rr) - cosb) (7.27)

The factor K = —1 if t; is a particle, and +1 if it is an anti-particle, and rp = 1/(1 +2%/2),

where ¢ = m;/Myy. This formula indicates the following:

o If & = 0, then the cos 8 distribution is flat; if a # 0, it is asymmetric. In this respect,

by, behaves like £.

e The degree of asymmetry of the cos, distribution depends on both a and rpy —
i.e. equation 7.27 contains information on both the top quark spin and the ¢-W-b
vertex. This is unlike the case of £, where the information on these two aspects of
the top quark decay are contained in two independent functions. This is problematic
for two reasons. First, a measurement of the asymmetry of cos 6 yields a mixture of
information about the top quark decay properties. In other words, a measurement
provides incomplete information about both the top quark spin and the ¢-W-b vertex.
Second, because equation 7.27 contains a mixture of information about top decay
properties, the acceptance curve and smearing matrix for the observable cos 6, depend
on the degree of asymmetry in the cos 8, distribution. As discussed in appendix K,
this implies that a simple 2-component log-likelihood technique cannot be used to

extract the asymmetry parameter from the experimental data.

e For m; = 175 GeV, and assuming that ¢; is 100% spin polarized, the cos 8, distribution

is given by the following:
1
f(cosby) = 5 [14+0.4-cos 6] (7.28)

This shows that the degree of asymmetry in the cos 8, distribution is only 0.4 times
that of the cos 6, distribution from a 100% spin polarized ,. This implies that, even
without any smearing, the statistical error on the asymmetry parameter for cos 6,
is 1/0.4 = 2.5 times larger than that for £. In order for the statistical error on the

cos 8y, distribution to be equal to that of cos 6y, one would need 2.5? = 6.25 times as
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many events. Considering the fact that cos 8, has much worse smearing than cos §,,
it is clear that the statistical error on the asymmetry parameter of cos 8, after event

reconstruction is prohibitively large.

The above observations show that very little information can be salvaged by using
by, instead of W, as a probe of the decay of t;,. It is for this reason that, in this thesis,
the decay kinematics of only #; is analyzed. The kinematics of ¢, is used only in the &£
reconstruction process and in the boosting of physics object momenta from the lab frame

to the tt rest frame. After these tasks are done, the decay products of ;, are ignored.

7.5.2 Why Ezamine Only the Charged Lepton Energy and Angular Distributions?

One of the more important results of this chapter is the fact that, in the semileptonic
decay of the top quark, the charged lepton energy and angular distribution can be used to
probe the top quark spin structure and the nature of the ¢-W-b interaction vertex. The
decay of t;, however, gives rise to two other objects: by and vy. A natural question to ask
is why these objects are ignored in the analysis presented in this thesis.

One way to answer this question is to note the fact that four parameters are necessary
and sufficient to describe the top quark decay in the top rest frame. Three of the parameters
can be chosen as the direction and magnitude of the charged lepton momentum vector
(cos by, ¢, E¢). This leaves one parameter ¢-,, which is an angle that describes the
orientation of the decay plane when the direction of £ is fixed. This shows that, once £ is
chosen as the probe of top quark decay, there is hardly any room left for the other objects —
the only independent information b; and v, provide is in the definition of ¢-,,. Asides from
this, the information provided by the direction and magnitude of the b, and vy momentum
is redundant.

The answer given above leads to another question: why should one choose the
charged lepton as the probe of the top quark decay? Why not used b; or »,? The answer to
this question is this: the charged lepton is an optimal object to use to probe the property of
the top quark spin and the ¢-W-b interaction vertex. It is optimal because the distribution

of cos 0y and Ey, F(cos by, Ey), is separable — i.e. the function F' can be written as a product
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of a function of cos 6y and a function of E,;: F(cos 8y, E¢) = f(cos ) g(E;). Furthermore,
information regarding the top quark spin is, and only is, in the function f. Similarly,
information regarding the ¢-W-b interaction vertex is, and only is, in the function g. This
separation allows one to make independent measurements of the property of the top quark
spin and the ¢-W-b vertex. Moreover, as discussed in appendix K, without this separation,
measurements of the property of the top quark spin and the ¢-W-b vertex become very
complicated. This separation does not occur in the energy and angular distribution of b,

and vy. Therefore by and vy are inferior objects to use in studying the top quark decay.

7.5.8 Why Ezamine the Top Quark Decay Kinematics in the Top Rest Frame?

The observables that are examined in this thesis (cos U; and Ey) are all measured
in the rest frame of the semileptonically decaying top quark. In order to boost the 4-vector
of £ from the lab frame to the t; rest frame, one needs to know the lab frame 4-vector
of ty. Determining this from the experimental data is a complicated process requiring an
elaborate algorithm described in chapter 6. Considering the great effort needed to obtain
observables in the t; rest frame, one may wonder if the effort is worthwhile. Could not the
properties of the top quark spin and the t-W-b decay vertex be studied using lab frame
observables? If such observables exist, why examine the top quark decay in the top rest
frame rather than in the lab frame?

First let us consider the necessary and sufficient condition for the existence of lab
frame observables that can be used to probe the property of the top quark spin and the

t-W-b vertex:

Let z;,, be a lab frame observable, and z; be an observable in the top rest
frame. Suppose z( probes one of the properties of top quark decay (spin or
t-W-b vertex). The observable x4, can be used to study this property if and
only if #;4, and zg are correlated.

Lab frame observables that satisfy the above condition exist for the observables cos Uy,
cos Uz, and Ey. For cos Uy and Ey, this observable can be taken as Pr(£); for cos Us, it can

be taken as 7;. See figure 7.18.°> Lab frame observables correlated with cos U, do exist,

50Other choices for the lab frame observables obviously exist, e.g. the lab frame energy of £ instead of
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Figure 7.18: The correlation between the parton-level observable distributions in the top
rest frame (horizontal axis) and the reconstructed observable distributions in the lab frame
(vertical axis). The points are the median of the reconstructed distribution for each parton-
level bin. The vertical bars show the spread of 34% of the reconstructed distribution above
and below the median. The horizontal bars show the bin size (the bin sizes were chosen so

that each bin has equal population).

but the correlation in each case is very weak as to render them practically unusable in
measurement.

Figure 7.18 demonstrates the existence of lab frame counterpart of cos Uy, cos Us,
and E; that can be used to probe the properties of the top quark spin or ¢-W-b vertex.
The next question that naturally arises is this: which observable is “better”, lab frame or
top rest frame? This question, it turns out, has no simple answer; in some ways the lab
frame observables are better, and in others, the top rest frame observables are better. The

advantages of using the top rest frame observables are the following:

Simultaneous Measurement of Polarization in the ‘1’-Direction and t-W-b Vertex

In the lab frame, top spin polarization in the ‘1’-direction and the ¢-W-b vertex prop-
erty are both probed by Pr({). Polarization along (against) the ‘1’-direction shows up
as a harder-than-expected (softer-than-expected) Pr({) distribution (figure 7.19(a)).
Similarly, the hardness of the Pr({) distribution is determined by the size of rr, the

left-handed helicity fraction: the larger rr is, the softer the Pr({) distribution (fig-

Pr(£), and P,(£) instead of n¢. No careful study has been done as to which lab frame observable has the
greatest amount of correlation with a given top rest frame observable. The author believes, however, that

one cannot do a whole lot better than those given in the text.
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ure 7.19(b)). Because of this, the hardness/softness of the Pr({) distribution in a
given data sample can be due to polarization in the ‘1’-direction or to the size of ry.
Performing a simultaneous measurement of polarization and r7 from a single Pr(¢)
distribution, however, would require one to examine not only the hardness of the
distribution, but its degree of hardness. This sort of measurement would require an
enormous top quark data sample that is not expected in the foreseeable future. Thus,
in practice, a lab frame measurement of ‘1’-polarization requires one to assume that
the r1 has expected standard model values. Similarly, in making a lab frame r7 mea-
surement, one must assume that the top quark is unpolarized in the ‘1’-direction. In
contrast to this, separate observables for ‘1’-polarization and r7 measurements exist
in the top rest frame (cosU; and E;). One can, therefore, measure both properties

simultaneously.

Possibility of Improving the Measurement Resolution
Let us imagine an hypothetical situation where the ¢t; decay product momenta can be
measured precisely. In this ideal condition, the observable distributions are sharply
defined (figures 7.5 and 7.7). In reality, these distributions are smeared out. For
the top rest frame observables, the smearing is due to limitations of the tf recon-
struction process; smearing of the lab frame observables is due to the spread in the
top quark momentum distribution. The effect of smearing on measurement resolu-
tion can be quantified by the K-factor, which is discussed in detail in section 8.2.2.
The size of this factor depends on how distinguishable the component functions are
in a 2-component fit: the more distinguishable they are, the smaller the K-factor.
Since the measurement error scales as K, the greater the distinguishability between
two component functions, the better the measurement resolution. Smearing causes
the component functions to be less distinguishable from each other, and, therefore,
worsens the measurement resolution. Table 7.2 compares the K-factor of various ob-
servables in the top rest frame and in the lab frame. Remarkably, the K-factors in
both frames have very similar values. This similarity, however, is coincidental. In the

future, with improved ¢t reconstruction algorithms, the K-factors for top rest frame
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observables should get smaller. Those of the lab frame observables, however, cannot

be changed because their sizes are determined by the underlying physics.

Possibility of Measuring Top Spin Polarization in the ‘2’-Direction

A lab-frame measurement of polarization in the ‘2’-direction is impractical because
no observable with any significant degree of correlation with cos U, exist. In the top

rest frame, however, this measurement is trivial.

Arguments in favor of lab frame observables are the following:

Simple Methodology

The shape of lab frame observable distributions depends on just two factors: (1) the
energy and angular distribution of £ in the ; rest frame; and (2) the lab frame %,
momentum distribution. In contrast, the shape of top rest frame observables depends
on many details of the {f event structure. Therefore, lab frame observables rely much
less on the details of monte carlo modeling than do the top rest frame observables.

Low reliance on monte carlo translates to smaller systematic uncertainty.

Greater Data Sample Size

The data sample for an analysis using top rest frame observables is restricted to
reconstructable tt candidate events — i.e. events with e or p, large E7, and four
or more jets. In contrast, analyses using lab frame observables do not require full
event reconstruction, so events satisfying looser cuts can be examined. In addition,
candidate events in the dilepton channel can be examined. This translates to increased
sample size, which, in turn, translates to smaller measurement error. It is estimated
in appendix L that the inclusion of these extra events decreases the measurement
error by 16%; this is equivalent to a 40% gain in statistics for the top rest frame-based

analysis.

It is seen that there are benefits and liabilities in both methods. The choice in

this thesis — to examine only the top rest frame observables — was made because of

time constraints. Ideally, both methods should be used, and the result of each should be

compared to check for consistency.
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Figure 7.19: The distribution of the lab frame observables for probing: (a) Polarization
along/against the ‘1’-direction; (b) the W helicity fractions; (c¢) Polarization along/against
the ‘3’ direction.

K-factor
Torp QUARK PROPERTY BEING MEASURED Las Top c.M.S.
Polarization Along the ‘1’-direction 3.76 3.78
Polarization Against the ‘1’-direction 3.51 3.48
Polarization Along/Against the ‘3’-direction 5.10 4.91
Transverse W Helicity Fraction 1.85 1.72

Table 7.2: The K-factors for various measurements of properties of the top quark. The

column under “Lab” are the K-factors for lab frame observables, while that under “Top

?

c.m.s.” are the K-factors for top rest frame observables.
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Chapter 8

Measurement Method and Resolution

8.1 Introduction

In chapter 7, the observables cosU; (i = 1, 2, 3) and E,; were introduced. It was
shown there that the shape of the cos U; distribution depends on the degree of polarization

”_

along or against the “¢”-direction. Similarly, the shape of the E, distribution depends
on the W helicity fractions h_, hg, and hy. In other words, the degree of polarization
and the helicity fractions parameterize the possible shape of the observable distributions.
Using this parameter dependence of the shape of the distributions, one can extract from
the experimental data an estimate of the true parameter value. The extracted value can
then be compared with the standard model parameter value to determine the degree of
consistency between the experimental data and the standard model.

This chapter deals with the method used to extract from the experimental data
the estimated true parameter value. The first section of this chapter is a discussion of the
method — the 2-component minimum log-likelihood method. In this section, the method
is defined, and an expression for the estimated statistical error of the parameter is derived.

Following this is an application of the method, in which the estimated statistical error in

the experimental data is calculated.
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8.2 The Measurement Method

8.2.1 Introduction

The method used in this thesis to extract from the experimental data the parameters
describing the top quark spin and helicity properties is the 2-component minimum log-
likelthood method. The full expression of the log-likelihood function is rather complicated.
Therefore, in order to facilitate the description of the method, a layered approach is used.
In other words, the description starts with simplified assumptions, and these assumptions
are modified at the next level of description to take account of details that were left out of

the previous level.

8.2.2 The Method, Part I

Suppose that there are N, events in the experimental data. As a first step, let us

make the following simplifying assumptions:

e There are no background contributions to the N, events.

e The data are analyzed as a single, monolithic sample — i.e. no attempt is made to
classify the data according to certain attributes, e.g. the number and type of b-tagged

jets, the number of jets passing tight cuts, etc.

In later sections, these assumptions are relaxed, and the effect of relaxing them is examined.

Let z be the observable being studied, a a parameter that determines the shape of
the distribution of z, and fo(z) and fi(z) the component distributions (z.e. the distribution
of # when a = 0 and 1, respectively). Both fy and f; are normalized to 1. Given these,
the probability density that a measurement results in a value #, given that the parameter

value is a, is given by the following:

fa(z) = a- fi(z) + (1 — @) - fo() (8.1)

Table 8.1 gives the correspondence between the general symbols in the above equation with

quantities in specific a measurement.
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MEASUREMENT
SPIN POLARIZATION W HELICITY FRACTION
> cosU;,1=1,2,3 Ey
a Degree of polarization. The “soft” transverse helicity
fraction.

fo(=) The distribution of cos U; from | The medium E; distribution.
0 an unpolarized top quark.
fi(=) The distribution of cos U; from | The soft E, distribution.

! a 100% polarized top quark.

Table 8.1: The meaning of the symbols in equation 8.1 for the top spin polarization mea-
surement and the W helicity measurement.

An important point to note about the above equation is this: the shape of the z
distribution when the parameter value is a is obtained by taking a “linear interpolation”
between the shape of the distribution when o = 1 and that when @ = 0. This is not
generally true of all observables. It is, however, true of the observables cos U; and E; that
are examined in this thesis. That these distributions have the simple property expressed in
equation 8.1 is due to the “separation” of the top quark spin property from the property
of the ¢-b-W interaction vertex. This separation is discussed in section 7.3.2, and it is one
of the important predictions about the top quark decay made by the standard model. See
appendix K for more on this topic.

A special note is in order about the W helicity fraction measurement. It was shown
in section 7.3.2 that, according to the standard model, E, is distributed according to the

following relation:

9(Ep) = rr - gs(Ee) + v - gn(Ee) + (1 — 77 — 77) - gm(Er) (8.2)
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The functions g, ¢,,, and g; are the “soft”, “medium”, and “hard” E, distribution, respec-
tively (see figure 7.7), while 7 and 77, are the “soft” and “hard” transverse helicity fraction.
According to the standard model, assuming m,,, = 175 GeV, r; = 0.30 while r/; = 0.00. In
this thesis, the W helicity measurement will take /. to be fixed at zero. When this choice
is adopted, the shape of the E; distribution is determined by a single parameter. This
decision was made because a 1-parameter measurement has considerably smaller statistical
error compared to a 2-parameter measurement. Since the amount of experimental data
available from Tevatron Run I is quite limited, it is necessary to make such an assumption
in order to obtain results that begin to be meaningful. See appendix N for a discussion on
generalizing the W helicity measurement, where both r1 and 7/, are allowed to vary.

Let us denote by {z;} (i =1 ~ N.,) the set of measured value of the observable z
in an experiment with V., events. The probability density that this set of measurement
originate from a parent distribution with parameter value « is given by the product of the

probability density in equation 8.1:

Ney Ney
1:[ fa(=:) = 1:[ [ fi(z:) + (1 — ) - fo(=:)] (8.3)

The parameter value a that maximizes this probability density is referred to as the most
probable (likely) value of the parameter. The most probable value of a also minimizes the

following quantity:

Nev

L(a) =) ~log[a- fi(z:) + (1~ a)- fo()] (8.4)

=1

This equation is simply the negative of the logarithm of equation 8.3. The quantity £(«)
is referred to as the negative log-likelihood function, or simply the log-likelihood function.
From a practical viewpoint, this quantity is more easily minimized than the product in
equation 8.3 is maximized. For this reason, the log-likelihood function will henceforth be
the primary object of interest in this discussion.

In order to understand the statistical properties of £(a), it is useful to introduce

the concept of pseudo-experiment. The following is a description of this concept:
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e Assume that the true, theoretical value of the parameter is ag. Then the theoretically

expected distribution of the observable z is the following:

foo(2) = a0~ fi(z) + (1 — ao) - fo(z) (8.5)

e Using monte carlo techniques, generate N., values of the observable z distributed

according to f,, ().
e Repeat the last step N,y times. Each repetition is referred to as an “experiment”.
e In each experiment, obtain the value of o that minimizes the log-likelihood function.

The result of a pseudo-experiment is a set of N,, values of a that minimize the log-
likelihood function in each experiment. This set of values is referred to as {e;}. In ideal
situations, {a;} is distributed as a gaussian centered at ag. The measurements in this thesis
correspond, to a good approximation, to this ideal situation. See appendix M for situations
where the ideal distribution is not valid. The width of the gaussian, o, is approximated by
the following relation:
2
= % (8.6)
a=ag
A useful approximation of & can be obtained by making a continuous approximation
of the log-likelihood function. To obtain the continuous version of equation 8.4, assume that
N, is very large. Let 2,,;, and &,,,, be the minimum and maximum value of the observable
z.! Imagine dividing the range [Zmins Tmaz| iINto Np;, equal-sized bins, so that all bins have
width Az = (Zmazr — Tmin)/Npin. Then, if one assumes that the parent distribution has
parameter value o = ap, bin number 7 has approximately N., - fo,(;) - Az events in it,
where z; is the average value of z in bin number . Given this, the log-likelihood function
L(a) can be approximated as follows:

Nyin

L{a) = ~Ney Y Az - fo () - log[a- fi(z:) + (1 - a) - fo(z:)] (8.7)

=1

!For the observable E;, which is unbounded above, one takes z,,q, to be a reasonably chosen cut-off
value — i.e. a value beyond which the probability density is negligibly small.
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Note that, unlike in equation 8.4, the summation is not over all events, but over all bins.
Also, since the sum is over bins, the normalization factor N, is necessary. In the limit Az

— 0, this expression becomes the following integral:

£(2) = ~Ney [ da fay(2)-logla- fi(2) + (1 - @) fo()] (88)
The second derivative of this expression, evaluated at a = ag, gives 1/0%. The first

derivative is the following:

fa Nev/d fao (®) fol(z)

When this expression is evaluated at a = ag, fo, () in the numerator cancels out the f,(z)

(8.9)

in the denominator, giving the following:

oL

0a | y—aq

- _N, / dz [f1(2) - fo(@)] (8.10)

—Nep-(1-1)

= 0

This shows that the continuous approximation of £(«) has an extremum at a = ay. This is
consistent with the expectation that, in the limit N, — oo, the value of a that minimizes
L should be the true value «g.

The second derivative of £ is the following:

8L [f1(z) — fo(=))”

W - Nev/dm fozo(m) fa(m)g (811)
This expression, evaluated at a = ayg, is the following:

oc| [f1(2) — fo(2)]’

W - = Nev/diﬂ fao(m) (812)

Using equation 8.6, it is seen that this expression is equal to 1/0?. In order to make

the expression more compact, let us re-express the integral in equation 8.12 as follows:

1 N [fl(m)_ 0(11”)]2
= e (813)
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Then one obtains the following for o

K
VNev

An important point to note about this equation is the fact that o factorizes into

o =

(8.14)

a part that depends on the size of the experimental data (1/4/N,) and a part that is
independent of it (K'). The factor K is characteristic of an observable, and it is determined
by the shape of the component functions fy and f; and the true parameter value ag. It can
be thought of as the purely geometric factor in determining the size of the parameter error. A
particularly interesting point about the K factor is the fact that the size of K is determined,
in large part, by the degree to which the component functions are distinguishable. This
is clearly evident in equation 8.13, where the numerator in the integrand is the square of
the difference between the component functions. The more distinguishable the component
functions, the larger the difference between them, and hence the larger 1/K? is, or the
smaller K is. This property of K is exploited in chapter 9 to determine what factor in
the tf reconstruction is most responsible for degrading the measurement resolution of the
observables.

Before leaving this section, it should be noted that the expression for ¢ in equa-
tion 8.14 is only valid in the limit N., — oo. For finite N,,, the K factor actually has a
weak dependence on N,,. K is largest for small N,,, and decreases monotonically to the
limiting value as N, increases. The difference between K at finite N, and K at N,, = oo

is not large. See appendix O for a discussion of the N,, dependence of the K-factor.

8.2.3 The Method, Part 11

In this section, let us relax the assumption about the background: instead of fixing
the background to zero, let us allow an arbitrary value for the it. Specifically, let us say that
a fraction 8 of the N, events is estimated to originate from background processes. Then,
if fy(z) is the distribution of the observable z in the background events, the probability

density for observing the value z, given the parameter value «, is the following:

fa(z) =B - fo(e) + (1 = B) - [a- fi(z) + (1 — a) - fo(e)] (8.15)
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The log-likelihood function in this case is:

Ney
L{a) =~ log{B- fo(e:) + (L - B)-la- fi(zi) + (1 — @) - fol=:)]} (8.16)

i=1
In this expression, G is fixed — i.e. # is obtained from a separate measurement. Also, in
this thesis, the uncertainty on 8 is ignored. This decision was made in order to focus on
the most important issues surrounding the measurement; the measurement of 8 is not one

of them.

The statistical properties of the log-likelihood function in this case is almost identical
to those described in the last section. One important change, however, is in the size of the
parameter error o. Since the background fraction is 3, the number of expected signal events

is § = (1 — B)N.,. Then, naively, one might expect the statistical error to be the following:

(8.17)

Onaive

@l =

- (=) v

The K-factor here has nearly the same value as in the last section. This expression, however,
is incorrect. The true expression for ¢ is obtained by evaluating the second derivative of £

at a = ag, where ag is the true parameter value:

Lo

o? da?

(8.18)

A=

If the continuum approximation of £(a) is employed, then this expression evaluates to the

following:

1w, -(l—ﬂ)Z-/dm[fl(m}_

o2

io(‘”)]Z (8.19)

(z)

If K is defined so that the integral in the above equation equals 1/K?, then the formula for

o is given by the following expression:

> (L) K (8.20)




It is seen that the true error is larger than the naive error by a factor of 1/4/1 — 3.
The origin of this extra factor of 1/4/1 — 8 can be understood by examining the form of the

continuum approximation of L:

£(2) = ~Ney [ do fou(2)-10g 8- fo(2) + (1= 8)-{a- fi(e) + (1 - @) fu(@)}]  (8:21)

The a-dependent part of this expression is multiplied by the factor 1 — 8. Thus, every
derivative of £ with respect to a introduces an overall factor of 1 — 3. Since 1/0? is equal to
the second derivative of £, one sees that o must be proportional to 1/+/(1 — )2 = 1/(1—8).
The fact that the true error is larger than the naive error by a factor of 1/4/1 — 3 implies
that the presence of background events degrades the measurement resolution in more ways
than simply reducing the number of signal events.

The expression for o in equation 8.20 can be re-expressed as follows:

S (8.22)

oo K (LHB )
The quantity B is the expected number of background events. The fact that o has this form
is significant in two ways. First, it is known that the quantity H7 — the scalar sum of Erp
of all ¢t decay products — is useful in distinguishing signal events from background events.
By applying the cut Hy > U, one can improve the purity of the event sample, at the cost
of losing some signal events. The quantities S and B are functions of U: § = S(U) and
B = B(U). Given equation 8.22, it is clear that the value of the cut U that optimizes the
statistical error is that which maximizes the ratio §/v/S + B. This property of o is used to
decrease the statistical error in section 8.3.3.
The second way in which the form of equation 8.22 is significant is this: under certain

conditions, the statistical error can be made smaller by subdividing the event sample {z;}

into subsamples. This is described in detail in the next section.

8.2.4 The Method, Part II1

So far, the experimental data {z;} has been treated as a unit, with a single back-

ground estimate 3, single component functions fo(z) and fi(z), and a single background
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function fy(z). However, because the statistical error has the form given in equation 8.22, it
is, under certain conditions, advantageous to subdivide the event sample into subsamples.
In order to see that this is so, let us first, as an example, subdivide the event sample
into two parts: {z;}, and {;},. For the sake of concreteness, let us take subsample 1 to be
the subset of events with at least one b-tagged jet, while subsample 2 is the complement of

subsample 1, z.e. events with no b-tagged jets. The log-likelihood expression in this case is:

L(a) = Li(a) + Lo(a) (8.23)

N
Lr(a) = =Y log {Br- (@) + (1= Bx)- [a- f(=) + (L-a)- R(@)]}  (8:24)

The index A in equation 8.24 refers to subsamples 1 and 2. Ny is the number of events and
B, is the background fraction, both in subsample A. Similarly, the functions f3(z), f\(z),
and f(z) are the various distributions of z in subsample A.

The statistical error on the parameter a for the subsample A taken alone is:

KZ
2 A
oy = ——o— 8.2H
A (1 _ /6)\)2 N)‘ ( )
K3

= T Ren . (8.26)

The quantity ry = Ny/ N, is the fraction of events belonging to subsample A. When the

subsamples are combined, the total statistical error is:

1 1 1
— ==+ — 8.27
o2 o? + o3 ( )

This rule for combining the subsample errors is obtained by noting: (1) the fact that the
1/0? is equal to the second derivative of £; and (2) the log-likelihood function is additive
(equation 8.23). Substituting equation 8.25 into equation 8.27, and after some rearrange-

ments, one obtains the following:

(Nl) % =r [%l +(1-7) [%l (8.28)




Typically, the K-factor has similar values across all subsamples. Thus one can use the
following approximation: K; ~ Ky, ~ K, where K is an “average” value of K; and K>.

Using this approximation, equation 8.28 can be rewritten as follows:

K2 1 2 2
(N—ev)ﬁ:r-(l—ﬂl) +(1-7)-(1-52) (8:29)

Let us compare this to the original situation where the experimental data is grouped

into a single sample. The background fraction in this situation is the average of 8, and (3,:

B=r-B1+(1—-7)-B (8.30)

The expression corresponding to equation 8.29 is:

(K) 1 _a-py (8.31)

N, | 62
It can be shown from equations 8.29 and 8.31 that ¢ < & — i.e. that the statistical
error is improved, or, at worst, stays the same, when the event sample is divided into

subsamples. To see that this is so, let us examine the ratio of the two errors:

i_z _ 7"'(1—51)2(‘;(_15)27")'(1—52)2 (8.32)
- (%)% (8.33)
R = 1;’° (8.34)
_ igi (8.35)

An analysis of equation 8.33 show the following:

o 52/a% > 1 for all values of 7, 81, and fs.

e The smallest possible value of the ratio is 1, and this occurs only when ¢ = 1. In
other words, the statistical error always improves unless the subsamples have the

same background fraction, in which case the error stays the same.
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e As ¢ is decreased from 1 to 0, the ratio increases monotonically from 1 to 1/r. Sim-
ilarly, as ¢ is increased from 1 to oo, the ratio increases monotonically from 1 to
1/(1—r). The points e = 0 and € = oo correspond to the situations where one of the

subsamples contains 100% background events.

It is seen that the statistical error can always be decreased so long as one can divide the
original data sample into subsamples with different background fractions. The improvement
in error is larger the greater the difference in the background fractions.

The example above involved two subsamples. However, the result generalizes to an
arbitrary number of subsamples. One can, in principle, continue the process of subdivision
ad infinitum. In practice, a point of diminishing return is reached pretty quickly because the
estimated background fractions do have errors, so that every time a new subsample is cre-
ated, a new source of systematic uncertainty is introduced. In this thesis, the experimental
data are divided into eight parts. First, the data are categorized according to the number
of jets passing tight cuts (see chapter 4 for the definition of the cuts). If an event has four
or more tight jets, it belongs to the “4-jets” sample, denoted as NJ4. If an event has only
three such jets, it belongs to the “3.5-jets” sample, denoted NJ3.5.2 These subsamples are
further subdivided into four subsamples, categorized according to the nature of the b-tags

in the event. They are the following:

SVX only
The event has only SVX tagged jets. This category is denoted by the symbol x0, for
SVX Only.

SLT only
The event has only SLT tagged jets. This category is denoted by the symbol ToO, for
SLT Only.

SVX and SLT
The event has both an SVX and SLT tagged jets. The tags are allowed to be on a

single jet. This category is denoted by the symbol xT, for SVX and SLT.

2The notation “3.5-jets” is just a suggestive way of saying that there are only three jets passing the tight
cuts and one or more jets passing the looser cuts.
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No Tags

No b-tagged jets exist. This category is denoted by the symbol NT, for No Tags.

These subsamples are mutually exclusive. The log-likelihood expression for this case is the

following:

L(a) =Y Lx(a) (8.36)
A
The summation index A is over the eight subsamples. Each subsample has a log-likelihood

function L) given by equation 8.24.

8.3 An Estimate of the Statistical Error in the Experimen-

tal Data

8.3.1 Introduction

In this section, the results of the last section are used to obtain an estimate of
the statistical error in the top quark spin polarization and W helicity measurement in the
experimental data. In the first section, the estimated statistical error, before the analysis is
optimized, is given. Following this, a couple of optimizations in the analysis are described,
and the error after the optimizations is presented. In the final section, the results from the

previous sections are corrected to take account the fact that N., < oo.

8.3.2 Estimated Statistical Error before Optimization

Given the log-likelihood expression in equation 8.36, and given the fact that 1/0? is
equal to the 8L /8a? evaluated at a = ay, the statistical error of the parameter a is given

by the following equations:

1 5.1
— = AZ = (8.37)
=1

= : (8.38)



UNOPTIMIZED ‘

SUBSAMPLE || Ny ‘ 3% ‘ Ba Ul+ ‘ Ul- ‘ U2 ‘ U3 ‘ Ey
N33.5 | X0 4 |0.0252 | 0.29 || 3.48 | 3.22 | 3.33 | 4.87 | 1.76
TO 5 |0.0314 | 0.66 || 3.69 | 3.14 | 3.19 | 4.73 | 1.81
XT 4 |0.0252 | 0.18 || 3.78 | 3.63 | 3.32 | 3.90 | 1.84
NT || 77 | 0.4843 | 0.90 | 4.00 | 3.52 | 3.20 | 5.25 | 1.68

N34 | xo || 11 | 0.0692 | 0.07 || 3.31 | 3.17 | 2.89 | 3.98 | 1.73
TO 9 | 0.0566 | 0.25 || 3.62 | 3.61 | 3.48 | 5.08 | 1.78
XT 4 10.0252 | 0.04 || 3.41 | 3.30 | 2.96 | 4.13 | 1.72
NT || 45 | 0.2830 | 0.58 || 3.75 | 3.57 | 3.16 | 4.92 | 1.77

Table 8.2: The numbers necessary for calculating the combined estimated statistical error
of the parameters. These numbers are those obtained before the analysis is optimized.

The summation index A is over the eight subsamples of the experimental data. The quan-
tity oy is the statistical error of the parameter when subsample A alone is used in the
measurement, ry is the fraction of events belonging to subsample A, and 8, and K are
the background fraction and K-factor, respectively, for subsample A. Table 8.2 gives, for
each observable, the numbers necessary to calculate the combined statistical error. In the
table, the symbols U1, U2, and U3 stand for cos U;, i = 1,2,3. The ‘1’-direction is forward-
backward asymmetric, so the situation where the cos U; distribution is asymmetric along
and against the axis must be treated separately. U1+ stands for the situation where the
polarized distribution favors positive values of cos Uy, while U1— stands for the situation
where negative cos Uy is favored.

Table 8.3 shows 1/0% for all of the observables. The final row is the sum of 1/0%.
In the right-hand part of the table is the fractional contribution of 1/0% to the total. The
larger this fraction is, the more statistically important the subsample is. From this point
of view, the subsample (N34, X0) is the most important subsample in the experimental
data. It should be noted that the statistical importance of a subsample is only very loosely
correlated with the number of events in the subsample. For example, the subsample (N13.5,

NT) accounts for 48.4% of all events, but its statistical importance is only about 2%. Simi-

157



UNOPTIMIZED ‘
1/03 fr(1/o3) (%)
SUBSAMPLE || Ul+ ‘ Ul- ‘ U2 ‘ U3 ‘ E, Ul+ ‘ Ul- ‘ U2 ‘ U3 ‘ E,
NI3.5 | xo || 0.167 | 0.194 | 0.181 | 0.084 | 0.655 6.5 6.8 5.5 | 5.1 | 6.3
TO || 0.043 | 0.059 | 0.057 | 0.025 | 0.176 1.7 2.1 1.7 | 1.6 | 1.7
xT || 0.189 | 0.205 | 0.243 | 0.178 | 0.798 7.3 7.2 7.3 | 10.7| 7.6
NT || 0.049 | 0.062 | 0.075 | 0.027 | 0.272 1.9 2.2 23 | 1.7 | 2.6
N4 xo || 0.867 | 0.943 | 1.132 | 0.599 | 3.169 33.6 | 33.2 | 34.1 | 36.2 | 30.4
To | 0.385 | 0.410 | 0.415 | 0.197 | 1.595 14.9 | 14.4 | 12.5 | 11.9 | 15.3
XT || 0.318 | 0.340 | 0.421 | 0.218 | 1.248 12.3 | 12.0 | 12.7 | 13.2 | 12.0
NT || 0.563 | 0.626 | 0.793 | 0.326 | 2.523 21.8 | 22.1 | 23.9 | 19.6 | 24.2

Total: [| 2.581 | 2.839 [ 3.317 [ 1.654 | 10.436 || |

Table 8.3: 1/03 for all observables, before optimization. The sum of all the terms in each
column is shown in the last row. The right-hand side of the table, under fr(1/c}), is the
ratio of 1/0% to the total, in %. This fraction is a measure of the statistical importance of
a subsample.

UNOPTIMIZED

Ul+ |Ul- | U2 | U3 | E
o | 0.62 | 0.59 | 0.55 | 0.78 | 0.31

Table 8.4: The statistical error for each observable, before optimization.

larly, although the subsample (N34, X0) accounts for only 6.9% of all events, its statistical
importance is about 33%.

The statistical error of the parameter is obtained by taking the square root of the
inverse of the numbers in the last row of table 8.3. This is shown for each observable in

table 8.4. The following are some remarks concerning the values in this table:

e The statistical errors for cos U; are about twice as large as that for ;. This is mostly
due to the fact that, at the analytic level, the component functions for FE,; are more
distinct from each other than they are for cos U;. See chapter 7 for a discussion about

this.

e Among the observables cos U;, cosU; has the smallest error, while cos U3 has the
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largest error. This trend can be understood on the basis of the relationship between
the ‘1’-‘2’-‘3’ coordinate system (figure 7.8) and the detector. See chapter 7 for more

on this.

e For each observable, the physically meaningful range of parameter values is a € [0, 1].
This shows that, for the observables cos Uj;, the errors cover most of this range. There-
fore, one cannot expect a very meaningful measurement from the amount of data avail-
able from Tevatron Run I. Compared to cos U;, the error for E, covers a considerably
smaller region; nevertheless, the error is too large to conclude anything definitive from

the experimental data.

e The errors in table 8.4 can be made smaller by optimizing the analysis. This opti-

mization is discussed in the next section.

e The error in table 8.4 is, in fact, a lower-bound on the true error. This is because
the analytic formulas used to obtain them are valid only in the limit N, — oco. In
section 8.3.4, this issue is discussed, and a correction factor is obtained in order to

obtain the true error.

8.83.8 FEstimated Statistical Error after Optimization

The statistical error discussed in the last section can be made smaller by a couple
of optimizations in the analysis. These optimizations involve: (1) cutting on the quantity
Hrp; and (2) applying a top mass constraint to the tf reconstruction algorithm.

Let us first consider the Hr cut. The quantity H7 is defined as the sum of the
transverse energy of all of the decay products of the ¢t system. It is known that background
processes have considerably smaller H;y compared to that from #t decay, assuming that
Myop = 175 GeV. Because of this, Hy is very effective at separating the signal from the
background. By choosing Hr judiciously, one can decrease the statistical error of the
parameters describing the top quark spin and helicity properties.

In order to decide what value of Hr to cut on, it is useful to express the statistical

error for the subsample A as follows:
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ox = Ky (LHB*) (8.39)

S
The quantities Sy and B) are the number of signal and background events, and K the
K -factor, all for the subsample A. All of these quantities vary with the Hr cut. However,
the variation of K with the cut value is small, so it can be taken as a constant. Then, the
value of the Hy cut to choose is that which minimizes /S, + B)/S8x. Alternatively, one

can choose to maximize §3/(Sx + By). This can be re-expressed as follows:

S3 _ N, [(1-8)-e(U)]
Sx + Ba (1-8)-e(U)+8-e(U)

The quantity 8 is the background fraction before the Hy cut is applied, €,(U) and €,(U)

(8.40)

are the fraction of signal and background events surviving the cut Hy > U, and N is the
number of events in subsample A. The quantity inside of the square brackets is referred to as
the significance. The optimal value of the Hp cut is that which maximizes the significance.
Figure 8.1 shows the significance as a function of the Hr cut for each subsample. It is seen
that a clear maximum exists only for the subsamples (N33.5, X0), (N13.5, NT), and (N14,
NT). In the optimized analysis, the cuts Hy > 237.5 GeV, 266.9 GeV, and 286.3 GeV are
applied to the subsamples (N33.5, X0), (N33.5, NT), and (NJ4, NT), respectively.

The second optimization in the analysis that can improve the statistical error is
the application of a mass constraint in the ¢t reconstruction algorithm (see chapter 6 for
details on the algorithm). In the default setting of the algorithm, the terms in x? for the
semileptonically and hadronically decaying top quark (¢, and tj, respectively) have the

following form:

2 2
Mab — MTOP) N (mj,-b - MTOP) (8.41)

Ftop

X (te) + x*(tn) = (

Liop
The quantity my, is the invariant mass of the £-v;-jet system presumed to originate from the
decay of t;, while m;;;, is the invariant mass of the 3-jet system presumed to originate from
the decay of ¢;,. The quantity I';,, is equal to the width of the top quark mass obtained from
tree-level calculations, and is equal to 2.5 GeV (assuming my,, = 175 GeV'), and MTOP

is one of the parameters used to minimize the total x? (see appendix D for more on x?).
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Figure 8.1: The significance as a function on U, where U is the cut on Ht given by the
relation Hy > U.
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foe (%)

SUBSAMPLE || BEFORE ‘ AFTER
NJ3.5 | XO 48.6 53.3
TO 42.0 42.7
XT 50.6 b4.7
NT 37.3 41.4

N4 X0 b3.b 58.5
TO 44.5 48.4
XT b3.4 56.9
NT 41.0 44.9

Table 8.5: The fraction of events fi; with the label by applied to the correct jet, before and
after applying the top mass constraint.

These terms in x? favor configurations with the mass of ¢, and ¢;, with similar values. What
those values are, however, is not constrained by these terms. In other words, as long as the
masses are similar, it does not matter whether the masses are about 140 GeV, 200 GeV,
or whatever value.

In the optimized setting of the ¢ reconstruction algorithm, one makes use of the
fact that the top quark mass m;,, has been measured to be 175 GeV. Since the top mass
has already been measured, the parameter MTO P no longer needs to be free, so MTOP
is fixed at 175 GeV. When this is done, the x? terms in equation 8.41 favor configurations
with the mass of t; and ¢, that are not only close to each other, but close to 175 GeV.

The direct benefit of applying the top quark mass constraint is the improvement in
the fraction of events where the output of the ¢f reconstruction algorithm has the quark label
by applied to the correct jet. This fraction is referred to as fy;. Table 8.5 compares fi; before
and after the top mass constraint is applied to the algorithm. An indirect consequence of
applying the top mass constraint is this. In chapter 9, it is demonstrated that the single
greatest source of smearing in the measurement is the matching of the quark label b, to
the wrong jet. Thus, an improvement in f;; results in decreased smearing. This decreased
smearing is reflected in the decreased value of the K-factors, which, in turn, result in
decreased statistical error.

Tables 8.6 through 8.8 show the numbers necessary to calculate the statistical errors,
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Hp CUT, NO TOP MASS CONSTRAINT ‘
K

SUBSAMPLE || Ny ‘ 3% ‘ Ba Ul+ ‘ Ul- ‘ U2 ‘ U3 ‘ Ey
NJ3.5 | X0 4 | 0.0351 | 0.19 || 3.48 | 3.19 | 3.21 | 4.80 | 1.76
TO 5 |0.0439 | 0.66 || 3.69 | 3.14 | 3.19 | 4.73 | 1.81

XT 4 | 0.0351 | 0.18 || 3.78 | 3.63 | 3.32 | 3.90 | 1.84
NT || 45 | 0.3947 | 0.81 || 3.86 | 3.22 | 3.01 | 5.03 | 1.74

N34 | xo || 11 | 0.0965 | 0.07 || 3.31 | 3.17 | 2.89 | 3.98 | 1.73
TO 9 | 0.0789 | 0.25 || 3.62 | 3.61 | 3.48 | 5.08 | 1.78
XT 4 | 0.0351 | 0.04 || 3.41 | 3.30 | 2.96 | 4.13 | 1.72
NT || 32 | 0.2807 | 0.46 | 3.77 | 3.51 | 3.12 | 4.84 | 1.78

Table 8.6: The numbers necessary for calculating the combined estimated statistical error
of the parameters. Hy cuts are applied, top mass unconstrained.

1/03 for each subsample, and the statistical error when the Hp cut is applied, but before
applying the top mass constraint. Tables 8.9 through 8.11 show the corresponding numbers
for the case where the top mass constraint is applied, but the Hy cut is not applied. Finally,
tables 8.12 through 8.14 show the numbers when both optimization techniques are applied.

Table 8.15 summarizes statistical errors.

8.8.4 Correcting the Errors for the Fact that N., < oo

The statistical errors obtained so far (table 8.15) underestimate the true value be-
cause the formulas used to obtain them (equations 8.37 and 8.38) are valid only in the
limit N¢, — oo. In order to obtain the true value of the errors, one must use the pseudo-
experiment method discussed in page 147. The true value of the errors is shown in ta-
ble 8.16. Table 8.17 shows the percent difference between the true and approximate errors.
As claimed earlier, the approximate error underestimates the true error, but only by a
few percent. In a small number of cases, the true error is smaller than the approximate
error; this is most likely due to statistical fluctuation in determining the true error. See

appendix O for further discussion on true versus approximate statistical error.
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Hy CUT, NO TOP MASS CONSTRAINT

1o} fr(1/3) (%)
SUBSAMPLE || Ul+ ‘ Ul- ‘ U2 ‘ U3 ‘ E, Ul+ ‘ Ul- ‘ U2 ‘ U3 ‘ E,
N33.6 | xo || 0.218 | 0.258 | 0.254 | 0.113 | 0.848 7.8 8.2 7.0 | 6.3 | 7.5
TO || 0.043 | 0.059 | 0.057 | 0.025 | 0.176 1.7 2.1 1.7 | 1.6 | 1.7
XT || 0.189 | 0.205 | 0.243 | 0.178 | 0.798 7.3 7.2 7.3 | 10.7 | 7.6
NT || 0.108 | 0.156 | 0.180 | 0.065 | 0.538 3.9 5.0 4.9 | 3.6 | 4.7
N34 | xo || 0.867 | 0.943 | 1.132 | 0.599 | 3.169 || 33.6 | 33.2 | 34.1 | 36.2 | 30.4
TO || 0.385 | 0.410 | 0.415 | 0.197 | 1.595 || 14.9 | 14.4 | 12.5 | 11.9 | 15.3
xT || 0.318 | 0.340 | 0.421 | 0.218 | 1.248 || 12.3 | 12.0 | 12.7 | 13.2 | 12.0
NT | 0.653 | 0.756 | 0.961 | 0.401 | 2.958 || 23.5 | 24.2 | 26.2 | 22.3 | 26.1

Total: || 2.781 | 3.127 | 3.663 | 1.796 | 11.330 ||

Table 8.7: 1/0} for all observables. The sum of all the terms in each column is shown in
the last row. The right-hand side of the table, under fr(1/c3), is the ratio of 1/03 to the
total, in %. The Hp cuts are applied, top mass unconstrained.

Hy CUT, NO TOP MASS CONSTRAINT

Ul+ | U1l-

U2

U3

Ey

0.60

0.57

0.52

0.75

0.30

Table 8.8: The statistical error for each observable. Hp cuts are applied, top mass uncon-

strained.

NO Hy CUT, TOP MASS CONSTRAINED

K
SUBSAMPLE || Ny ‘ T ‘ Bxr || Ul+ ‘ Ul- ‘ U2 ‘ U3 ‘ E,
NJ3.5 | X0 || 4 | 0.0252 | 0.29 || 3.30 | 3.05 | 2.99 | 4.25 | 1.56
TO || 5 | 0.0314 | 0.66 || 3.56 | 2.93 | 3.44 | 5.35 | 1.12
XT || 4 | 0.0252 | 0.18 || 3.15 | 3.00 | 3.01 | 4.13 | 1.68
NT || 77 | 0.4843 | 0.90 || 3.65 | 3.23 | 3.24 | 5.01 | 1.67
NJ4 | xo || 11 | 0.0692 | 0.07 || 3.20 | 3.06 | 2.63 | 3.79 | 1.63
TO || 9 | 0.0566 | 0.25 || 3.51 | 3.43 | 3.12 | 4.47 | 1.69
XT || 4 | 0.0252 | 0.04 | 3.25 | 3.14 | 2.86 | 6.48 | 1.57
NT || 45 | 0.2830 | 0.58 || 3.51 | 3.35 | 3.12 | 4.54 | 1.75

Table 8.9: The numbers necessary for calculating the combined estimated statistical error

of the parameters. No Hr cuts applied, top mass constrained.
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No Hp cUT, TOP MASS CONSTRAINED ‘
1/a% fr(1/a3) (%)
SUBSAMPLE || Ul+ ‘ Ul- ‘ U2 ‘ U3 ‘ E, Ul+ ‘ Ul- ‘ U2 ‘ U3 ‘ E,
N33.6 | xo || 0.186 | 0.218 | 0.226 | 0.111 | 0.828 6.4 6.8 5.9 | 6.5 | 6.9
TO || 0.046 | 0.067 | 0.048 | 0.021 | 0.458 1.6 2.1 1.3 | 1.2 | 3.8
xT || 0.272 | 0.299 | 0.296 | 0.159 | 0.959 9.4 9.4 7.8 | 9.3 | 8.0
NT || 0.057 | 0.073 | 0.073 | 0.030 | 0.277 2.0 2.3 1.9 | 1.8 | 2.3

N34 | xo || 0.933 | 1.018 | 1.380 | 0.666 | 3.568 | 32.2 | 31.9 | 36.2 | 39.0 | 29.8
TO || 0.410 | 0.431 | 0.522 | 0.263 | 1.778 | 14.2 | 13.5 | 13.7 | 14.8 | 14.9
xT || 0.351 | 0.377 | 0.450 | 0.089 | 1.503 || 12.1 | 11.8 | 11.8 | 5.2 | 12.6
NT || 0.642 | 0.706 | 0.817 | 0.382 | 2.687 || 22.2 | 22.1 | 21.4 | 22.3 | 21.6

Total: || 2.897 | 3.189 | 3.812 | 1.711 | 11.958 || |

Table 8.10: 1/} for all observables. The sum of all the terms in each column is shown in
the last row. The right-hand side of the table, under fr(1/c3), is the ratio of 1/03 to the
total, in %. No Hp cuts applied, top mass constrained.

NO Hy CUT, TOP MASS CONSTRAINED

Ui+ |Ul- | U2 | U3 E,
o | 0.59 | 0.56 | 0.51 | 0.76 0.29

Table 8.11: The statistical error for each observable. No Hy cuts applied, top mass con-
strained.

Hp CcUT, TOP MASS CONSTRAINED ‘
K,

SUBSAMPLE || Ny ‘ 3% ‘ Ba Ul+ ‘ Ul- ‘ U2 ‘ U3 ‘ Ey
N33.5 | X0 4 |0.0351 | 0.19 || 3.37 | 3.10 | 2.86 | 4.22 | 1.57
TO 5 | 0.0439 | 0.66 || 3.56 | 2.93 | 3.44 | 5.35 | 1.12
XT 4 |0.0351 | 0.18 || 3.15 | 3.00 | 3.01 | 4.13 | 1.68
NT || 45 | 0.3947 | 0.81 || 3.67 | 3.10 | 2.95 | 4.74 | 1.58

N34 | xo || 11 | 0.0965 | 0.07 || 3.20 | 3.06 | 2.63 | 3.79 | 1.63
TO 9 | 0.0789 | 0.25 || 3.51 | 3.43 | 3.12 | 4.47 | 1.69
XT 4 | 0.0351 | 0.04 || 3.25 | 3.14 | 2.86 | 6.48 | 1.57
NT || 32 | 0.2807 | 0.46 | 3.52 | 3.31 | 3.00 | 4.34 | 1.66

Table 8.12: The numbers necessary for calculating the combined estimated statistical error
of the parameters. Hy cuts applied and top mass constrained.
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Hy CUT, TOP MASS CONSTRAINED

1/a% fr(1/a3) (%)
SUBSAMPLE || Ul+ ‘ Ul- ‘ U2 ‘ U3 ‘ E, Ul+ ‘ Ul- ‘ U2 ‘ U3 ‘ E,
N33.6 | xo || 0.231 | 0.274 | 0.320 | 0.147 | 1.068 7.4 7.8 7.6 | 7.7 | 8.0
TO || 0.046 | 0.067 | 0.049 | 0.021 | 0.458 1.5 1.9 1.1 | 1.1 | 3.4
xT || 0.271 | 0.299 | 0.296 | 0.158 | 0.958 8.7 8.6 7.0 | 8.4 | 7.2
NT | 0.120 | 0.169 | 0.187 | 0.072 | 0.649 3.9 4.9 44 | 3.8 | 4.8
NJ4 | X0 || 0.933 | 1.018 | 1.379 | 0.666 | 3.568 || 29.9 | 29.2 | 32.6 | 35.1 | 26.7
TO || 0.409 | 0.430 | 0.521 | 0.253 | 1.776 || 13.1 | 12.4 | 12.3 | 13.3 | 13.3
xT || 0.350 | 0.376 | 0.450 | 0.089 | 1.501 11.2 | 10.8 | 10.6 | 4.7 | 11.2
NT || 0.756 | 0.849 | 1.036 | 0.495 | 3.387 || 24.2 | 24.4 | 24.4 | 26.0 | 25.3

Total: || 3.116 | 3.482 | 4.238 | 1.901 | 13.365 ||

Table 8.13: 1/0% for all observables, before optimization. The sum of all the terms in each
column is shown in the last row. The right-hand side of the table, under fr(1/0}), is the
ratio of 1/} to the total, in %. Hy cuts applied and top mass constrained.

Hy CUT, TOP MASS CONSTRAINED

Ul+

Ul-

U2

U3

E,

0.57

0.54

0.49

0.73

0.27

Table 8.14: The statistical error for each observable. Hp cuts applied and top mass con-

strained.

Hp cUT | TOP MASS CONSTRAINT ‘ Ul+ ‘ Ul- ‘ U2 ‘ U3 ‘ E, ‘
NO NO 0.62 | 0.59 | 0.55 | 0.78 | 0.31
YES NO 0.60 | 0.57 | 0.52 | 0.75 | 0.30
NO YES 0.59 | 0.56 | 0.51 | 0.76 | 0.29
YES YES 0.57 | 0.54 | 0.49 | 0.73 | 0.27

Table 8.15: Summary of the statistical errors, before the analysis is optimized, and with

various combinations of optimizing techniques.
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Hy7p cuT | TOP MASS CONSTRAINT ‘ Ul+ ‘ Ul- ‘ U2 ‘ U3 ‘ Ey ‘

NO NO 0.636 | 0.609 | 0.558 | 0.798 | 0.319
YES NO 0.611 | 0.b73 | 0.522 | 0.764 | 0.299
NO YES 0.595 | 0.578 | 0.520 | 0.790 | 0.299
YES YES 0.581 | 0.b41 | 0.489 | 0.737 | 0.280

Table 8.16: The true statistical error for each observable. In each case, the values are

accurate to the third decimal place.

Hyp cUT | TOP MASS CONSTRAINT ‘ Ul+ ‘ Ul- ‘ U2 ‘ U3 ‘ Ey ‘
NO NO +2.5% | +3.1% | +1.4% | +2.3% | +2.8%
YES NO +1.8% | +0.5% | +0.4% | +1.8% | —0.3%
NO YES +0.8% | +3.1% | +2.0% | +3.8% | +3.0%
YES YES +1.9% | +0.2% | —0.2% | +0.9% | +3.6%

Table 8.17: The percent difference between the true errors (table 8.16) and the approximate
errors (table 8.15).

167



Chapter 9

Sources of Degradation of the Measurement Resolution

9.1 Introduction

In chapter 7, it is shown that the distribution of the observables cosU; (i = 1, 2, 3)

and E; is a linear combination of two component functions:

fa(z) = a- fi(z) + (1 — @) - fo() (9-1)

The symbol z stands for cos U; or E;. When z = cos U;, fo(z) and fi(z) are the distribution
of z from a 0% and 100% polarized top quark, and « is the degree of polarization. When =
= FEy, fo(z) and fi(z) are the soft and medium E, distribution, and « is the soft transverse
helicity fraction r7. In chapter 8, the two-component log-likelihood method is introduced.
This method allows one to obtain an estimate of the true value of the parameter a, given
a set of observable values {z;}. The statistical error o of the estimated parameter value is

related to the log-likelihood function according to the following relation:

Lo

o2  da?

(9.2)

Using a continuum approximation of the log-likelihood function, o can be approximated as

follows:

(9.3)
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N, is the number of events in an experiment, 8 is the estimated background fraction in
the event sample, and K is a geometric factor that depends mostly on the shape of the

component functions fo(z) and fi(z):

1 [fi(z) - fo(ﬁ”)]2
= [ &4

fao(@) =B+ folz) + (1 = B) - [eo - fu(2) + (1 — a0) - fo(z)] (9.5)

The function f,,(z) is the theoretically expected distribution of z, and fi(z) is the distri-
bution of z in the background.

The use of the continuum approximation of £ allows one to express the statistical
error in a modular form — <.e. the statistical error can be factorized into a statistical term
1/+/N¢y, a background term 1/(1 — 83), and a geometric term K. The focus of this chapter
is on the geometric term. By examining the size of K under various conditions, one can
deduce what aspect of the it reconstruction process is most responsible for degrading the
measurement resolution. The main objective of this chapter is the demonstration of the fact
that the matching of the wrong jet to b, (b-quark originating from ¢, the semileptonically
decaying top quark) is by far the most important source of degradation the measurement
resolution. In addition to this, sundry observations on the factors that affect the size of the

statistical error for all of the observables are made.

9.2 Analyzing the Degradation of Measurement Resolution

The analysis of the degradation of measurement resolution is based on a monte carlo
simulation of #f events in the lepton + jets channel. In this analysis, the ¢ system out-
put by the tf reconstruction algorithm is compared with the parton-level system. Changes
in the it system in going form the parton-level to the output results in the the smearing
of the observable distributions. This smearing, in turn, causes degradation in the mea-
surement resolution. The objective of this analysis is to determine what aspects of the #¢

reconstruction algorithm are most responsible for the degradation.
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The ultimate source of degradation is the mismeasurement of the momentum and
energy of the physics objects. In the lepton + jets decay channel of it events, the possible
physics objects are: (1) charged lepton; (2) jets; and (3) unclustered energy. Of these,
the mismeasurement of the jet momentum accounts for most of the degradation in the
measurement resolution. The mismeasurement of the jet momentum affects the following

aspects of the # reconstruction process:

e The measurement of the neutrino momentum

e The matching of jets to quarks

The second item can be further subdivided into the following:

e The matching of a jet to b,

e The matching of jets to the other quarks

These three aspects of the ¢ reconstruction process are correlated with each other, so one
cannot meaningfully say which one is most important in degrading the measurement res-
olution. One can, however, gauge the importance of one of the factors by comparing the
statistical error when that aspect is successfully accomplished to that when it is unsuccess-

fully accomplished. In what follows, the following is demonstrated:

The assignment of a wrong jet to by is the most important source of degradation
of the measurement resolution in the following sense: when the assignment is
correct, the K-factor (and, therefore, the statistical error) is not much larger
than that at the parton-level, while when the assignment is incorrect, it is much
larger.

The first step in demonstrating this is to take the monte carlo sample of ¢f events
passing the lepton + jets event selection cuts and divide it into two mutually exclusive sets,
where one set has AR(bs) < 0.4, while the other has AR(bs) > 0.4, where AR(by) is the
77-¢ separation between the true by momentum and the momentum of the jet assigned to b,
by the reconstruction algorithm. In other words, the first set has the correct jet associated

with by, and the second set has an incorrect jet associated with it.
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The next step is to obtain the component functions fy(z) and fi(z) in the two
subsets. See figure 9.1. The figure shows that when the jet-b; matching is done correctly, the
component functions are very much distinct from one another, whereas when the matching is
incorrect, the distinction is, to varying degrees, lost because of smearing. Equation 9.4 shows
that the greater the degree of distinction between the component functions, the smaller K
is, and, therefore, the smaller the statistical error is. The figure, therefore, illustrates
qualitatively that jet-b;, mismatch is a large source of degradation of the measurement

resolution. In order to demonstrate this quantitatively, the following strategy is used:
1. Calculate the K-factor at the parton-level.! This will be denoted K (parton).

2. Calculate the K-factor for the set of events satisfying AR(b;) < 0.4. This value of
the K -factor corresponds to the situation where the fraction fi; of events with correct
jet-by matching is 100% — i.e. fyr = 1. The K-factor in this situation is denoted

K(1).

3. Obtain the component functions in the general case where a fraction fys of events has
AR(b¢) < 0.4, and a fraction (1 — fp¢) has AR(b;) > 0.4. This is done by simply taking

a linear combination of the functions in the sets AR(b;) < 0.4 and AR(b;) > 0.4:
I
£i"(@) = for- £5(2) + (L= for) - 7 (2) (9.6)

The index ¢ = 0 and 1. The function f<(z) is the component function for events

satisfying AR(b;) < 0.4, and fZ(z) is defined similarly.
4. Using fl-fb’"'(m), obtain the K-factor as a function of fi;. This is denoted as K ( fir).

5. Compare K (1) with K (parton). Show that K (1) is not much larger than K (parton).
This demonstrates that the mismeasurement of the neutrino momentum and the mis-

matching of the other quarks to jets is not an important source of measurement

degradation when AR(b,) < 0.4.

'In the calculation of the K-factor for this and all other cases in this section, the background fraction
B is set to zero in equation 9.4. The B-dependence of K is through f.,(z) in the denominator. For the
observables considered in this thesis, K depends only weakly on 8, so the exact choice of 8 is immaterial.
Also, the monte carlo sample is not divided into eight subsets as described in section 8.2.4. Instead, the
shape of the component functions fo(z) and fi(z) are approximated as being the same across all the eight
subsets. This approximation does not affect the conclusions reached in this section.
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H |vit [vi-] v2 | v3 | B |
ANALYTIC 1.73 | 1.73 | 1.73 | 1.73 | 0.90
PARTON 1.90 | 1.78 | 1.b4 | 1.87 | 1.02

OUT, fpr =1 2.20 | 2.13 | 1.69 | 2.73 | 1.19

ouT, fre = 0.5 || 3.41 | 3.23 | 3.08 | 4.36 | 1.76

Table 9.1: The K-factor at various stages.

H [vi+ [ui-[v2 | u8 | B |
PARTON — OUT, fyr = 1 15.8 | 20.0 | 9.7 | 46.0 | 16.7
PARTON — OUT, fpy = 0.5 || 79.5 | 81.5 | 100 | 133 | 72.5

Table 9.2: The % change in the K-factor going from the parton-level to the output with

for = 1, and to the output with fp, = 0.5.
6. Compare K (1) to K(fir) with fir at typical values — anywhere between fi; = 0.45
to 0.65. Show that K(fy¢) is much larger than K (1). This demonstrates that the loss

of measurement resolution is mostly due to the b,-jet mismatch.

Figure 9.2 shows K(fi¢) and K(parton) for all of the observables. Figure 9.3(a)
shows K ( fi¢) for each observable superposed in the same plot, while figure 9.3(b) shows the
ratio K (fur)/ K (parton). Table 9.1 shows the K-factor at the analytic stage, parton-level
stage, at the output stage with fpy = 1, and the output stage with fy;, = 0.5. Table 9.2
shows the percent change in going from the parton-level to the output with f5; = 1, and to

the output with fy; = 0.5. The following are some observations on these plots and table:

Change in K from PARTON — OUT
Table 9.2 shows that, for all observables except cos Us, the change in the K-factor in
going from the parton-level to the output stage with fy; = 1 is not very large — 10
to 20%. The corresponding change in K when fp; has a typical value of 0.5 is very
large — between 70 to 100%. This proves the assertion that jet-b; mismatch is the
primary source of degradation in the measurement resolution. The observable cos Us
is somewhat exceptional because the worsening of K in going from PARTON — OUT,

foe = 1 is rather large. However, compared to the change in K going from PARTON
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Figure 9.2: K(fir) vs. for for the observables cos U; and Ey. The dashed line in each frame
shows K (parton). For cos Uy, the solid curve is K(f¢) for ul+, and the dot-dashed curve
is for vl—, where U1+ represents a top quark 100% spin polarized such that the cos U
distribution is asymmetric along the ‘1’-direction, and U1— is that for which the distribution
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Figure 9.3: (a) K(fi) for each observable superposed in the same plot. (b)
K(fuor)/ K (parton) for each observable.

— OUT, fyy = 0.5, this change is relatively small, so that the conclusion regarding the

role of jet-b; mismatch in the degradation of the measurement resolution is still valid.

The Value of K at the Analytic Stage
At the analytic stage, the K-factor for cos U; are all the same. The difference between
the K-factor at the parton and output stages are due to differences between the
efficiency curve and smearing matrix for each observable (see chapter 7 on efficiency
curves and smearing matrices). The fact that the analytic K-factor for cos U; is about
twice as large as that for E; implies the following: the W helicity measurement has
an intrinsically better measurement resolution compared to the top spin polarization
measurement. The intrinsic superiority of the W helicity resolution is due to the fact
that the component functions for F, at the analytic level are more distinguishable
from each other compared to those for cos U;. It should be noted that this intrinsic
superiority of the W helicity resolution survives the acceptance and smearing effects,
as is seen in table 9.1, where the K-factor for E; is roughly a factor of two smaller

compared to those of cos U; at all stages.

Why is K for cos Us Large?
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Earlier, it was noted that cos Us is exceptional among the observables because the
change in the K-factor in going from the PARTON — ouUT, fiy = 1 is rather large
compared to that in other observables. The reason for this is that the ‘3’-direction is
strongly dependent on the longitudinal motion of the ¢ system, whereas the ‘1’- and
‘2’-directions and E; are only weakly dependent on it (see figure 7.8 on the definition
of the ‘1’-, ‘2>-, and ‘3’-directions). Since the longitudinal momentum of the ¢t system
has poor resolution, the fact that the ‘3’-direction depends on it results in relatively

poor resolution for cos Us, even when the jet-b; matching is correct.

Why does K for cosU; Increase Rapidly as fi; — 07
One striking feature of the observable cos U, is the fact that its K-factor is excellent
at fye = 1, but it rapidly worsens as fyz — 0. In figure 9.2, K(1) is under 2, while
K(0) is almost 12. This is in contrast to the other observables, where K (fy,) does
not worsen nearly as rapidly. This behavior is explainable by the following fact: no
lab-frame observable has significant correlation with cosU;. This is in contrast to
the other observables, for which such lab-frame observables exist (see section 7.5.3).
To illustrate how the existence of such a lab-frame observable keeps K(0) from being
very large, let us take E;. Figure 7.18 shows that E; is strongly correlated with the
lab-frame observable Pr(f). Thus, for example, if the true value of E; were large,
this implies that Pr(£) will tend to be large. On the other hand, if Pr({) is large,
then the value of E; output by the tf reconstruction algorithm will tend to be large,
even if the jet-by matching is incorrect. This last observation is due to the fact that if
the lab frame energy of an object is large, then its energy after boosting in a random
direction tends to be large. Thus an observable such as Fy is not smeared completely

when the jet-b;, matching is unsuccessful.

Change in K from ANALYTIC — PARTON
Table 9.1 shows that the K-factor changes by just a little in going from ANALYTIC
— PARTON. K can either increase or decrease. The change in K is due to the
modification of the analytic distribution by the acceptance effect. The fact that K

for cos U, decreases (i.e. the statistical error improves) is due to the fact that the
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acceptance curve for cos U, is largest where the difference between the component
functions is largest, and smallest where the difference is smallest. This means that
the difference between the two component functions is enhanced by the acceptance
effect. In contrast, the other observables have acceptance curves that have small values
where the difference between the component functions is large. Thus the K-factors

worsen somewhat going from ANALYTIC — PARTON. See figures 7.11 through 7.13.
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Chapter 10

Analysis of the Experimental Data

10.1 Introduction

In this chapter, the measurement of the degree of spin polarization of the top quark
and of the soft transverse W helicity fraction are described. The measurements are made

using the minimum log-likelihood technique described in chapter 8.

10.2 The Data Sample

Details about the event selection for ¢ in the lepton + jets channel are given in
chapter 4. That information is summarized here.

Before any Hr cut is made, there are 159 candidate events. Table 10.1(a) shows
a breakdown of these events into eight subsets (see 8.2.4 for a definition of the subsets).
Also shown is the expected background fraction for each subset. From these numbers, one
obtains 55 as the expected number of signal events contributing to the 159 candidate events,
giving a signal fraction of 35%.

In section 8.2.4, it is shown that a cut of Hy > 237.5b GeV, Hy > 266.9 GeV, and
Hyp > 286.3 GeV on the subsets (N33.5, x0), (N33.5, NT), and (N34, NT), respectively,
optimizes the statistical error on the top polarization and W helicity measurements. After
these cuts are made, 114 candidate events survive. Table 10.1(b) shows a breakdown of
these events into the eight subsets. The expected number of signal events in this case is,

again, 55, giving a signal fraction of 48%.
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Table 10.1: The breakdown of the number of candidate events in each subsample (N} ), and
the estimated background fraction in each subsample (5,).

(a) No HT cuT || (b) HT cUT

SUBSAMPLE || N, ‘ Bx Ny ‘ B
NJ3.5 | X0 4 0.29 4 0.19
TO || 5 0.66 5 0.66

XT || 4 0.18 4 0.18

NT || 77 0.90 45 | 0.81

N4 | xo || 11 0.07 11 | 0.07
TO 9 0.25 9 0.25

XT || 4 0.04 4 0.04

NT || 45 0.58 32 | 0.46

(a) NO HT cUT (b) HT cuT
SUBSAMPLE || Ney (26 = =) | New (@2 = +) || New (¢t = =) | New (2 = +)
N33.5 | X0 2 2 2 2
TO 4 1 4 1
XT 2 2 2 2
NT 35 42 20 25
N4 X0 5 6 5 6
TO 4 5 4 5
XT 2 2 2 2
NT 18 27 13 19
TOTAL: H 72 87 H 52 62

Table 10.2: The breakdown of the event sample according to the sign of the charge of £.

Table 10.2 shows the breakdown of the candidate events according to the sign of the

charge of £.

10.3 The Observable Distributions

Figures 10.1 to 10.3 show the distribution of the observables cosU; (¢ = 1, 2, 3)
before optimization — i.e. no Hr cut and no top mass constraint, or (HTCUT, MTCON) =

(No, N0O). Separate plots are shown for ¢y = —, +, — & +, and charge-weighted. The
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charge-weighted plot shows the distribution of g¢ - cos U; — in other words, it combines
the histogram for ¢, = + with the parity-inversion of the histogram for ¢ = —. This plot
ought to be examined because of the possibility of the following situation. Suppose that
some physical process causes both ¢ and ¢ to be 100% spin polarized along the direction .
In events where ¢ decays semileptonically, {7 has a strong tendency to travel along the i
direction, whereas in events where ¢ decays semileptonically, £~ has a strong tendency to
travel against the ¢ direction. Thus, in the combined plot — & +, the asymmetries in the
two distributions cancel each other out, resulting in the obscuring of the presence of spin
polarization. The presence of spin polarization in this sort of situation can be detected by
examining the charge-weighted distribution.

In figures 10.1 to 10.3 , the points show the experimental data. The solid line shows
the monte carlo distribution of the signal + background, with the signal events having 0%
spin polarization — this is the theoretically expected distribution. The dashed curve shows
the monte carlo distribution of the signal + background with the signal 100% polarized
such that the distribution favors positive values of cosU;. The dotted curve shows the
corresponding distribution when the signal is 100% polarized such that the distribution
favors negative values of cosU;.! It should be noted that the monte carlo distributions
are obtained by combining the signal and background distributions in each of the eight
categories in the proportions shown in tables 10.1 and 10.2.

Figure 10.4 shows the distribution of E,. Separate plots are shown for ¢y = —, +,
and — & +. A charge-weighted distribution is not applicable in this case. The points show
the distribution in the experimental data. The solid line shows the signal 4+ background
distribution, with the signal distributed according to the standard model — i.e. r7 = 25%.2
The dashed line shows the distribution distribution of signal + background where the signal
has r7 = 100% (s.e. 100% soft E, distribution). The dotted line shows the corresponding

distribution with r; = 0% (i.e. 100% medium E; distribution).

'For g¢ = —, the dashed curve shows the distribution where ¢ has 100% spin polarization against the
1 direction, while the dotted curve shows the distribution where the spin polarization is 100% along the
1 direction. The sense of the spin is opposite for g; = +. For ¢, = — & +, the dashed curve shows the
distribution where t has spin polarization along the i direction and % has spin polarization against this
direction. Arguing in this manner, one can obtain the spin configurations for the rest of the curves.

2This is after taking account of the acceptance effect. Before acceptance, rr7 = 30%, assuming miop =
175 GeV. See section 7.4.2.
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Figures 10.5 to 10.8 show the background-subtracted distributions for cos U; and
E;.

All of the plots described above show the distributions before optimizations are
applied — 7.e. (HTCUT, MTCON) = (NO, No). Figures 10.9 to 10.32 show corresponding

plots for the optimizations (ATCUT, MTCON) = (YES, NO), (NO, YES), and (YES, YES).
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cos Ul --- Data vs. Monte Carlo / (htcut,mtcon) = (no,no)
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Figure 10.1: The distribution of cos U;. Points = experimental data; solid curve = monte
carlo background + 0% polarized signal; dashed curve = background + 100% polarized
signal, polarization favoring positive cos Uy; dotted curve = background + 100% polarized
signal, polarization favoring negative cos U;. The upper-left plot is for primary lepton charge
—, the upper-right for charge +. The lower-left plot is a combination of the upper plots.
The lower-right plot is a combination of the plot for ¢ = + with the parity-inversion of
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cos U2 --- Data vs. Monte Carlo / (htcut,mtcon) = (no,no)
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Figure 10.2: Same as figure 10.1, for the observable cos Us.
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cos U3 --- Data vs. Monte Carlo / (htcut,mtcon) = (no,no)
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E, --- Data vs. Monte Carlo / (htcut,mtcon) = (no,no)

20 T T 1 ‘ T T TTentiks r
15 T

10

\\H‘\\\\‘\\\\‘\\\F

# Events / 3.4 GeV

50 100

I

™
r

15

10

# Events / 3.4 GeV

Q(lep) = + 5

T TEntribs 159

30

20

10

# Events / 3.4 CeV

50 100
Q(lep) = + & — Ey

Figure 10.4: The distribution of E,. Points = experimental data; solid curve = monte carlo
background + signal with r; = 25%; dashed curve = background + signal with r7 = 100%;
dotted curve = background + signal with »7 = 0%. The two upper plots are for primary
lepton charge — and +; the bottom plot is a combination of the first two.
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cos Ul --- Data vs. Monte Carlo / (htcut,mtcon) = (no,no)
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Figure 10.5: The background-subtracted distribution of cos U;.
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cos U2 --- Data vs. Monte Carlo / (htcut,mtcon) = (no,no)
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cos U3 --- Data vs. Monte Carlo / (htcut,mtcon) = (no,no)
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E, --- Data vs. Monte Carlo / (htcut,mtcon) = (no,no)
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cos Ul --- Data vs. Monte Carlo / (htcut,mtcon) = (yes,no)
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Figure 10.9: Same as figure 10.1, but with optimization (ATCUT, MTCON) = (YES, NO).

190



cos U2 --- Data vs. Monte Carlo / (htcut,mtcon) = (yes,no)
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Figure 10.10: Same as figure 10.2, but with optimization (ATCUT, MTCON) = (YES, NO).
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cos U3 --- Data vs. Monte Carlo / (htcut,mtcon) = (yes,no)
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E, --- Data vs. Monte Carlo / (htcut,mtcon) = (yes,no)
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Figure 10.12: Same as figure 10.4, but with optimization (ATCUT, MTCON) = (YES, NO).
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cos Ul --- Data vs. Monte Carlo / (htcut,mtcon) = (yes,no)
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Figure 10.13: Same as figure 10.5, but with optimization (ATCUT, MTCON) = (YES, NO).
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cos U2 --- Data vs. Monte Carlo / (htcut,mtcon) = (yes,no)
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Figure 10.14: Same as figure 10.6, but with optimization (ATCUT, MTCON) = (YES, NO).
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cos U3 --- Data vs. Monte Carlo / (htcut,mtcon) = (yes,no)
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Figure 10.15: Same as figure 10.7, but with optimization (ATCUT, MTCON) = (YES, NO).

196
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Figure 10.16: Same as figure 10.8, but with optimization (ATCUT, MTCON) = (YES, NO).
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cos Ul --- Data vs. Monte Carlo / (htcut,mtcon) = (no,yes)
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cos U2 --- Data vs. Monte Carlo / (htcut,mtcon) = (no,yes)
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Figure 10.18: Same as figure 10.2, but with optimization (ATCUT, MTCON) = (NO, YES).
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Figure 10.19: Same as figure 10.3, but with optimization (HTCUT, MTCON) = (NO, YES).
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Figure 10.20: Same as figure 10.4, but with optimization (HTCUT, MTCON) = (NO, YES).
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Figure 10.21: Same as figure 10.5, but with optimization (HTCUT, MTCON) = (NO, YES).
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Figure 10.22: Same as figure 10.6, but with optimization (HTCUT, MTCON) = (NO, YES).
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Figure 10.23: Same as figure 10.7, but with optimization (HTCUT, MTCON) = (NO, YES).
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Figure 10.24: Same as figure 10.8, but with optimization (HTCUT, MTCON) = (NO, YES).
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Figure 10.26: Same as figure 10.2, but with optimization (ATCUT, MTCON) = (YES, YES).
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Figure 10.27: Same as figure 10.3, but with optimization (ATCUT, MTCON) = (YES, YES).
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Figure 10.28: Same as figure 10.4, but with optimization (ATCUT, MTCON) = (YES, YES).
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Figure 10.29: Same as figure 10.5, but with optimization (ATCUT, MTCON) = (YES, YES).
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cos U3 --- Data vs. Monte Carlo / (htcut,mtcon) = (yes,yes)
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Figure 10.31: Same as figure 10.7, but with optimization (ATCUT, MTCON) = (YES, YES).

212



10.4 The Measurements

The result of the measurement of the degree of top spin polarization and of the soft

transverse W helicity fraction is presented in this section.

10.4.1 The Top Spin Polarization Measurement

Table 10.3 shows the degree of top spin polarization extracted from the experimental
data before any optimizations — i.e. (HTCUT, MTCON) = (NO, No). Figure 10.33 is a
graphical representation of the numbers in the table. The following are some explanatory

remarks about the table and figure:

e The numbers labeled “POL(—)” are obtained using, for the 100% polarized distribu-
tions, that which favors negative values of cos U;; the numbers labeled “PoL(+)”, on
the other hand, are obtained using distributions favoring positive values of cos U;. The
two sets of numbers are related to each other in the following manner: a measured
value of top spin polarization for POL(—) is approximately equal in magnitude, but
opposite in sign, compared to the corresponding measurement for PoL(+). Similarly,
the positive (negative) error for a given measurement in POL(—) is approximately

equal to the negative (positive) error for the corresponding error in POL(+).

e The labels Q(—) and Q(+) represent the subset of data with the charge of the primary
lepton ¢ = — and +, respectively. The label Q(— & +) represents the combination
of Q(—) and Q(+), while Q(wgt) represents the charge-weighted combination of the

two sets.

e The measured value of the top spin polarization is, by definition, the parameter value
that minimize the log-likelihood function. The positive error is defined as the positive
displacement from the minimum value that changes the value of the log-likelihood

function by 0.5 from the minimum value, and the negative error is defined similarly.

Tables 10.4 to 10.6 show the results of the measurement of the top spin polarization

for the optimization configuration (HTCUT, MTCON) = (YES, NO), (NO, YES), and (YES,
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Figure 10.32: Same as figure 10.8, but with optimization (ATCUT, MTCON) = (YES, YES).
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Q(-)

Q(+)

[ Q- & +) |

Q(wgt)

porL(—) | ul || —1.00170852 | —1.37670-238 | —1.20970237 | —0.26979-5L2
U2 || —0.0667057 | 0.105705:2 | 0.0457032% | 0.1457503
U3 || -1.14870250 | 09697759 | —0.22770 770 | 1.13270 5%

poL(+) | ul || 112270330 | 1.252%59:8%%¢ | 1.198152%% | 0.17270-5%3
u2 || 0.22970930 1 —0.04170555 | 0.047702%5 | —0.0507 5557
u3 || 1.242707% | —0.7367 057 | 0.368707F | —0.9497050%

Table 10.3: The result of the top polarization measurement in the ‘1°’-, ‘2’-, and ‘3’-directions
before optimization. The section labeled “PoL(—)” show results obtained using 100% polar-
ized distributions favoring negative values of cos U;, while those for “POL(+)” show results
obtained using distributions favoring positive values of cos U;. The numbers in POL(—) are
approximately equal in magnitude but opposite in sign to the corresponding numbers in
POL(+). The numbers under Q(—) and Q(+) are from events with primary lepton charge g,
= — and +, respectively. The numbers under Q(— & +) are obtained from the combination
of Q(—) and Q(+), while those under Q(wgt) are from the charge-weighted combination of
the two sets.

| | Q=) | Q) [ a-&+) | Q(wst) |
PoL(—) | Ul || —0.804708%3 | —1.159758%% | _0.99470-38% [ _0.22770-503
u2 || 0.2127555 | 0.04270-833 [ 0.10070503 | —0.01475:338
U3 || —1.14370755 | 0.806795% | —0.29170-700 | 1.06075°5,
poL(+) | ul || 0.869%93%¢ | 1.05570-721 | 0.97370-3%9 | 0.12470:378
U2 || —0.13870955 | 0.0237055° | —0.02870-72 | 0.0877525%
U3 || 1.23575220 | —0.612F. 020 [ 0.4187079% | —0.89070-553

Table 10.4: The result of the top polarization measurement in the ‘1’-, ‘2’-, and ‘3’-
directions, with optimization (ETCUT, MTCON) = (YES, NO).

YES). Figures 10.34 to 10.36 show graphical representations of the measurements for each

configuration.

10.4.2 The Soft Transverse W Helicity Measurement

Table 10.7 shows the results of the measurement of the soft transverse W helicity
fraction from the experimental data. Figure 10.37 is a graphical representation of the

numbers in the table.
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Figure 10.33

o
H‘HH‘HH HH‘HH‘H

o
H‘HH‘HH HH‘HH‘H

u2
N

o
H‘HH‘HH HH‘HH‘H

o
H‘HH‘HH HH‘HH‘H

U3
[\S]

o
H‘HH‘HH HH‘HH‘H

o
H‘HH‘HH HH‘HH‘H

: Graphical representation of the numbers

shown in table 10.3.

Q(-)

Q(+)

[ Q- & +) |

Q(wgt)

por(—) [ ul || —0.383F37%3 | —0.75070780 | —0.56370-316 | —0.16370:271
u2 || 0.15270722 | —0.46770%2¢ | —0.22970127 | —0.33610537
U3 || —0.55571 050 | 0.50071555 | 0.001707%8 | 0.68575732

poL(4) | Ul || 0.44175:778 | 0.814705%5 | 0.6377033L | 0.18710333
U2 || —0.10570 28 | 0.52670250 | 0.2037047% | 0.38875%%
U3 || 0.893799%% | —0.54671 050 [ 0.1387050° | —0.55170-7%

Table 10.5: The result of the top polarization measurement in the ‘1’-, ‘2’-, and ‘3’-
directions, with optimization (HTCUT, MTCON) = (NO, YES).
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Q(-)

Q(+)

[ Q- & +) |

Q(wgt)

poL(—) | vl || —0.46379727 T —0.810F3752 [ —0.633733% [ —0.16670:35°
u2 || 0.0557575% | —0.29375282 [ —0.16270-757 | —0.19070-35%
U3 || —0.84970 0% | 0.6037955% | —0.08970-732 | 0.74975:5%
poL(4) | ul || 0.527F9757 | 0.9137055% | 0.72670228 | 0.1537033%
U2 || —0.00470 723 | 0.333702%7 | 0.21170928 | 0.23075%)
u3 || 0.9057705 | —0.5527 045 | 0.1477072% | —0.6967070;

Table 10.6: The result of the top polarization measurement in the ‘1’-, ‘2’-, and ‘3’-

directions, with optimization (HTCUT, MTCON) = (YES, YES).
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Figure 10.34: Graphical representation

of the numbers shown in table 10.4.
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H OBSERVABLE H HTCUT | MTCON H Q(— & +) ‘ Q(wgt) H

Ul NO NO 1.19810358 | 0.172%0-20
YES NO 0.973%057) | 0.1247000
No | vEs || 0.6377031 [ 01877055
YES YES 0.72670525 | 0.15370333
U2 NO NO 0.047732%8 | —0.05015:55%
YES NO —0.028703%2 | 0.0871 0208
NO vEs || 0.203%0473 | 0.3887017°
YES YES 0.21170-32° | 0.23070325
U3 NO NO 0.36875:73% | —0.949755°8
YES NO 0.41870-79% [ —0.89070-552
NO YES 0.138%0500 | —0.551707%
YES YES 0.147F5°758 | —0.69670 752

Table 10.8: Summary of the top polarization measurement.
10.5 Summary of the Results

In this section, the results presented in the last section is summarized. For the
top polarization measurement, the measurements under the configurations PoL(—) and
POL(+) are redundant. Both were shown for the sake of completeness, but so many redun-
dant numbers tend to obscure the results. Thus, in this summary, the numbers obtained in
the configuration PoL(+) will be chosen to represent the measured value of top polariza-
tion. Also, within this configuration, the charge configurations Q(— & +) and Q(wgt) are
taken to represent the measurement. It should be noted that a positive value of top spin
polarization in the configuration PoL(+) indicates that the experimental distribution favors
positive values of cos U; (i = 1, 2, 3), while a negative value indicates that the experimental
distribution favors negative values of cos U;. For the soft transverse W helicity measure-
ment, the result for the charge configuration Q(— & +) is presented. Table 10.8 shows a
summary of the top polarization measurement; figure 10.38 is a graphical representation of

the results. Table 10.9 and figure 10.39 show the same for the W helicity measurement.
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Figure 10.39: Graphical representation of the numbers shown in table 10.9. The dashed
line indicates the standard model prediction.

10.6 Comparing the Measurements with the Standard Model
Prediction

According to the standard model, the top quarks in ¢t production have negligible
spin polarization. Thus, if the signal events in the experimental data originate from standard
model ¢t, the most likely measured value of spin polarization along the i-direction (¢ = 1,
2, 3) is zero, with errors given in table 8.16. Table 10.10 shows the number of standard
deviations the measured values of the polarization are from the expected value — 1i.e. each

entry in the table shows the following:

a(meas) — aezpect)

(10.1)

o
where a(meas) is the measured top polarization, a(ezpect) is the expected polarization, and
o is the error shown in table 8.16. Note that for the ‘1’-direction, the configuration POL(+)
was chosen, so the errors for U1+ are used. Figure 10.40 is a graphical representation of
the numbers in table 10.10.

According to the standard model, the soft transverse W helicity fraction is r7 = 0.30,
assuming m;o, = 175 GeV. After taking account of acceptance effects, the standard model
prediction for r7 is 0.25. Thus, assuming that the signal events in the experimental data

originate from standard model ¢¢, the most likely measured value of r; is 0.25, with errors
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H OBSERVABLE H HTCUT | MTCON H Q(— & +) ‘ Q(wgt) H

Ul NO NO 1.88 0.27
YES NO 1.86 0.20
NO YES 1.07 0.31
YES YES 1.25 0.26
U2 NO NO 0.08 —0.09
YES NO —0.05 0.17
NO YES 0.56 0.75
YES YES 0.43 0.47
U3 NO NO 0.46 -1.19
YES NO 0.5b —1.16
NO YES 0.17 —0.70
YES YES 0.20 —0.94

Table 10.10: The difference between the measured polarization and the standard model
value, in number of standard deviations.

H HTCUT | MTCON H Q(— & +) H

NO NO 1.33
YES NO 1.92
NO YES 1.61
YES YES 2.91

Table 10.11: The difference between the measured r7 and the standard model value, in
number of standard deviations.

given in table 8.16. Table 10.11 and figure 10.41 show the number of standard deviations

the measured value of r is from the expected value.

10.7 Interpreting the Results

10.7.1 Interpreting the Result of the Top Polarization Measurement

Let us first consider, in the abstract, the relationship between the sign of the degree
of polarization in table 10.8 and the spin configuration for ¢ or ¢. Let us denote the degree

of polarization by «, the spin polarization vector of ¢ by 4, , and that of £ by §_. Then,
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Figure 10.41: Graphical representation of the numbers shown in table 10.11.

for the charge configuration Q(— & +), a > 0 implies §; points along the i-direction (i =
1, 2, 3), while §_ points against the i-direction; a < 0 implies §; points against, and §_
points along, the i-direction. For Q(wgt), a > 0 implies that both §; and §_ point along
the ¢-direction, while a < 0 implies that both §, and §_ point against the i-direction. The
possible spin configurations are illustrated in figure 10.42.

For the direction ¢ = 1, the above spin configurations take on special significance
because the reference axis is along the ¢ or ¢ direction. In this situation, Q(— & +) with
a > 0 implies that, ¢ has, on average, a net right-handed helicity (spin pointing along
momentum) while ¢ has a net left-handed helicity (spin pointing against momentum). This
situation will be denoted, suggestively, as (tg, tr). For Q(— & +), a < 0 implies (t1, tRr).
For Q(wgt), @ > 0 implies (tg, tr), while a < 0 implies (¢7,, ¢1). Figure 10.43 describes
the possible spin configurations.

Now let us examine the degree of top spin polarization extracted from the exper-
imental data (see table 10.8). According to table 10.10, all of the measured values are
within two standard deviations of the unpolarized hypothesis. Therefore, within the preci-
sions attainable in this analysis, one can conclude that the observable distributions in the
experimental data are consistent with the standard model prediction.

The measurement with the largest deviation from the standard model is cos U; with
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Figure 10.43: The same as figure 10.42, but for the specific case for the ‘1’-direction. In
this case, the ¢ and ¢ unit vectors are suggestively made to point in opposite directions —
this is done to indicate the fact that the ¢ and f momenta are equal-and-opposite in the ¢
rest frame. The subscript under ¢ and ¢ indicate the net helicity of these quarks.



the optimization configuration (HTCUT, MTCON) = (NO, NO) and charge configuration Q(—
& +). In this case, the top polarization is measured to be 1.198; this is 1.88 standard
deviations from the unpolarized hypothesis. If this mildly large deviation were due to top
spin polarization, then figure 10.43 indicates that the ¢ and ¢ have helicity configuration
(tr, tr.). This would indicate a CP-conserving chiral anomaly in the production mechanism
of tt.

Another measurement with mildly large deviation from the standard model is cos Us
with optimization configuration (HTCUT, MTCON) = (NO, NO) and charge configuration
Q(wgt). In this case, the top polarization is measured to be —0.949, which is —1.19 stan-
dard deviations from the unpolarized hypothesis. If this deviation were due to top spin
polarization, then figure 10.42 indicates that the spin polarization vectors for ¢ and ¢ both
point against the 3-direction. There is no plausible scenario for a ¢ production mechanism

that produces this spin configuration. Any such mechanism violates cp.

10.7.2 Interpreting the Result of the W Helicity Measurement

Let us first consider, in the abstract, the physical implications of different values of
rr. For a given value of rr, the E; distribution from the semileptonic decay of ¢ or ¢ is

given as follows:

g(Eg) =r7-9s(Ee) + (1 —r1) - gm(Er) (10.2)
The function g, is the soft F, distribution, while g,, is the medium distribution. The
extreme case 77 — 0 corresponds to ¢ and ¢ that couple only to the longitudinal helicity
state of W. In the other extreme r; = 1, ¢t and ¢ couple only to the transverse helicity
states of W (the ¢ () quark couples to the left- (right-) handed helicity state of W).

Now, let us examine r7 extracted from the experimental data (see table 10.9).
Whereas the expected value is r7 = 0.25, the measured values vary between rr = 0.675
to 1.064, depending on the optimization configuration. The fact that the measured value
of rr is larger than the theoretically expected value implies that the E; distributions in
the experimental data are softer than predicted by the monte carlo distributions — this is

well-demonstrated by the E; distributions shown in section 10.3. Table 10.11 shows that, in
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all configurations except (HTCUT,MTCON) = (YES,YES), the softness of the E, distributions
in the experimental data are not unlikely to be a statistical fluctuation. The configuration
(HTCUT,MTCON) = (YES,YES), however, has r; = 1.064, which is 2.91 standard deviations
from the standard model prediction. Thus, if it is assumed that the modeling of the signal
and background is correct, this measurement would indicate strong experimental evidence
for non-standard model physics. There are indications, however, that the modeling is, in

fact, inadequate. This issue is discussed in appendix P.
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Chapter 11

Prospects for Run II

11.1 Introduction

This chapter presents an overview of the expected top polarization and W helicity

measurement resolution in Tevatron Run II.

11.2 Run IT Experimental Parameters

Details of the Run II experimental parameters for the CDF detector can be found
in [36]. Here, pieces of information relevant to ¢t events in the lepton + jets decay channel

are summarized:

Integrated Luminosity
The target integrated luminosity for Run II is 2 fb~!, compared to 0.109 fb~! in

Run I.

pp Center-of-mass Energy
The center-of-mass energy of the pp system will be 2.0 TeV, up from 1.8 TeV in

Run I.

Acceptance for Lepton + Jets ¢t Events
One of the most important factors determining the acceptance of ¢ events in the lepton
+ jets decay channel is the acceptance for isolated high- Pr electrons and muons. The

new plug calorimeter and the Intermediate/Forward Tracker will extend the coverage
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of electrons to the region 1 < |p| < 2, which is expected to increase the electron
acceptance by 33%. The improvement in the 1 and ¢ coverage of the muon system is

expected to increase the muon acceptance by 12%.

b-tag Efficiency
The SVX II improves upon the Run I silicon tracker by, among other things, (1)
increasing the length of coverage from 52 cm to 96 cm; and (2) having five double-
sided layers compared to four single-sided ones. With SVX II, the efficiency for tagging
> 1 b jet in tt events is expected to increase from 40% to 65%; the corresponding figure
for > 2 b jets is 20%, up from 7% in Run I. Furthermore, although no firm numbers

are available, the mistag rate is expected to decrease significantly.

11.3 Implications of the Run II Experimental Parameters

The implication of increased luminosity is clear: all things being equal, an increase
from 0.109 f5=! to 2 fb~! should increase the number of tf events by a factor of 2/0.109
= 18.3. As noted above, however, all things are not equal between Run I and Run II.
Because of the increase in pp +/s, o(tt) should increase by 40%. Thus, the number of ¢t
events produced in Run II should be 18.3 x 1.4 = 25.6 times that produced in Run I. If one
assumes a theoretical cross section of o(tt) = 4.9 pb for my,, = 175 GeV at /s = 1.8 TeV,
then the number of tf events produced in Run I is expected to be about 523. Thus, the
number of ¢t events produced in Run II should be about 523 x 25.6 = 13, 400.

Increased electron and muon acceptance and improved b-tagging imply that a greater
fraction of the produced tf events is accepted. According to [36], 5.8% of the 13,400 ¢t events
is expected to have > 1 SVX b-tag and pass the event selection cuts of this analysis. The
corresponding figure for > 2 SVX b-tags is 1.8%. The corresponding acceptances in Run I
are 3.0% and 0.52%, respectively. Thus, in Run II, one expects 777 and 241 > 1- and > 2-
SVX b-tagged events originating from ¢t.

So far, no mention has been made about the background contributions. The greatest
source of background is the QCD W + jets events. The following are some observations on

this process[36]:
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e The W cross section increases by about 12% going from +/s = 1.8 TeV to 2.0 TeV.

e The W + > n jets cross section scales as the W cross section.

These two observations imply that the number of W + jets events that fake tf events should
increase by 18.3 x 1.12 = 20.5. This rate of increase is smaller than that for ¢ (25.6). Thus,
one can expect a significant reduction in the signal to background ratio. There are, however,

complicating issues which have not yet been examined closely:

e In Run II, typical instantaneous luminosities are expected to be considerably larger
than those in Run I. An increase in instantaneous luminosity results in increased
multiple interactions. This, in turn, will cause W + 0, 1, 2, and 3 jets events to be

promoted to W + 4 jets events. This can cause the background fraction to increase.

e Because of improvements in the silicon tracker, the mistag rate is expected to decrease

significantly. This will tend to decrease the background fraction.

o Non-W backgrounds (primarily bb events) are important secondary sources of back-

ground. No estimate has yet been made as to how this will change in Run II.

11.4 Measurement Resolution in Run II

The measurement resolution (i.e. statistical error) for the top polarization and W
helicity measurements is given by the following formula:
1 K

=T h) U (11.1)

B is the background fraction, N,, is the number of signal + background events, and K
is a factor that depends mostly on the shape of the component functions describing the
signal distribution, and is given by equation 9.4. For the purpose of estimating the Run II

measurement resolution, it will be more useful to express o as follows:

(11.2)
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# SVX tags | § B | for (%)
Run I =1 13.1 | 0.13 46.4
> 2 2.7 | 0.0b 66.2
Run II =1 536 | 0.11 46.4
> 2 241 | 0.04 66.2

Table 11.1: Observable-independent factors that determine the top polarization and W
helicity measurement resolution. S = the number of expected signal events, 8 = background
fraction, and fy; = the fraction of events with the correct jet matched to b,.

S = (1 —B)- Ng, is the number of signal events.

According to equation 11.2, ¢ is determined by observable-independent factors 8
and 5, and an observable-dependent factor K. Table 11.1 shows the observable-independent
factors for number of SVX tagged jets = 1 and > 2. Also shown is fys, the fraction of events
with the correct jet matched to by (see chapters 6 and 9 for details on fir). foe is used later
to estimate the K-factor for each observable.

A few comments on the numbers in table 11.1 are in order:

The Number of Signal Events
The number signal events in Run I is obtained taking: (1) o(tt) = 4.9pb; (2) the
integrated luminosity = 0.109 f6~!; and (3) the acceptance for > 1 and > 2 SVX tags
is 3.0% and 0.52%, respectively. For Run II, the corresponding figures are as follows:
(1) o(tt) is 1.4 times that of Run I; (2) integrated luminosity = 2 fb~!; and (3) the

acceptance for > 1 and > 2 SVX tags is 5.8% and 1.8%, respectively.

The Background Fraction
The background fractions for Run II is obtained from the Run I values using the fol-
lowing facts and simplifying assumptions. Let us assume that all of the background
events come from QCD W + jets events. It was stated earlier that the rate of in-
crease in such events from Run I to Run II is 20.5. Let us assume that the increase in
acceptance in Run II for background events is the same as for the signal events — in
making this assumption, one ignores, among other things: (1) the improvement in the

silicon tracker (which would tend to decrease this factor); (2) the increase in instanta-
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# SVX tags

OBSERVABLE | =1 ‘ > 2
ul4 3.55 | 291
ul- 3.35 | 2.78

U2 3.27 | 2.46

U3 4.54 | 3.67

E, 1.82 | 1.54

Table 11.2: K-factor for all observables.

fot

neous luminosity with consequent increase in underlying event (which would tend to
increase this factor); and (3) the 7-dependence of signal/background (which could be
significant for events with electrons detected by the new plug calorimeter). With this
assumption, if the rate of increase in accepted signal and background events is denoted
by A, and A, respectively, then their ratio should simply be A,/A4; = 25.6/20.5 —
i.e. the acceptance factor cancels. Given Ay and A,, the Run II background fraction

B’ is given in terms of the Run I fraction 8 by the following relation:

g = (11.3)

e

)

&

foe for Run IT is assumed to be the same as for Run I. Factors in favor of improved fi,
in Run II are: (1) improved jet resolution with the new plug calorimeter; (2) better
jet energy reconstruction algorithm. At least one factor favors the worsening of f,:

the increased instantaneous luminosity.

The observable-dependent factor K in equation 11.2 is obtained from the plots in

figure 9.3(a). For each observable, one evaluates the value of K at the values of f5; given

in table 11.1. The results are shown in table 11.2.

Tables 11.1 and 11.2 contain the numbers necessary to calculate the measurement

resolutions. The results are given in table 11.3 Note that the combined error is given by

the following formula:
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# SVX tags
OBSERVABLE | = 1 ‘ > 2 | COMBINED
Run I Ul+ 1.05 | 1.82 0.91
Ul— 0.99 | 1.74 0.86
U2 0.97 | 1.b4 0.82
U3 1.34 | 2.29 1.16
Ey 0.54 | 0.96 0.47
Run II Ul+ 0.16 | 0.19 0.12
Ul— 0.15 | 0.18 0.12
U2 0.15 | 0.16 0.11
U3 0.21 | 0.24 0.16
Ey 0.08 | 0.10 0.06

Table 11.3: Measurement resolutions for Run I and Run II.

111
P i R (11.4)
o oy 0

The resolutions oy and oy are for # SVX tagged jets = 1 and > 2, respectively.
The numbers in table 11.3 can be taken as base-line estimates of Run II resolutions.
Let us now try to estimate how much the resolutions can be improved when the following

optimizations are performed:

e Inclusion of SLT-only and no-tag events.
e Division of events into the eight subsamples, as per chapter 8.
e Application of Hy cuts.

e Applying a top mass constraint in the ¢ reconstruction process.

The method used to estimate the improvement in resolution is the following. Let
us take, for example, the combined Run I measurement resolution for the observable U1+
in table 11.3, 0 = 0.91. Table 8.14, on the other hand, gives the measurement resolution
when the above optimizations are taken into account: o/ = 0.57. The error decreases by a
factor of 0.57/0.91 = 0.63. It will be assumed that the same factor applies in Run II. This

procedure is only intended to give a very rough, but not unrealistic, estimate. Using this
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OBSERVABLE ‘ S.F. ‘ o ‘

ul+ 0.63 | 0.08
ul— 0.63 | 0.08
U2 0.60 | 0.07
U3 0.63 | 0.10
E, 0.57 | 0.03

Table 11.4: A rough estimate of the optimized Run II measurement resolution. The column
under S.F. gives the scale factors giving the decrease in measurement resolution after
optimization.

method, the optimized resolution for t1+ in Run IT is ¢/ = 0.63 x 0.12 = 0.08. Table 11.4

shows the scale factor and optimized error for all of the observables.

11.5 Implications for Run II

Let us first consider the implications of the Run II resolutions on the top spin
polarization measurement. The statistical error o is estimated to be about 0.07 to 0.10.
These numbers are to be compared to the physical range of the degree of polarization «,
which is 0 to 1. Thus, in Run II, it should be possible to rule out a large portion of the
parameter space. On the other hand, the resolution for U2, o = 0.07, is not good enough
to measure the ~ 1% transverse polarization expected from one-loop QCD diagrams in ¢t
production [30].

Next, let us consider the W helicity measurement. The standard model prediction
for the soft transverse W helicity fraction is rr = 0.30; after acceptance corrections, it is
0.25. Thus, in Run II, the r7 measurement would be rr = 0.25 4+ 0.03. With this level
of precision, a 3-component, 2-parameter fit of the sort discussed in appendix N would
be practical. If one denotes the soft-transverse, hard-transverse, and longitudinal helicity

fraction by 77, 7/, and ry, respectively, then one can expect the following in Run II:

o(rr) = 0.25+0.04 (11.5)

o(r7) = 0.00+0.03 (11.6)

236



o(r) = 0.7540.06 (11.7)

These numbers show that, in Run II, it should be possible to place a rather stringent limit

on the V + A contributiontot — W + b.
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Chapter 12

Conclusion

Top quark physics is a subject in its infancy. Although there are many pieces of
direct experimental evidence in support of the top quark’s existence, there are many of
its properties that have yet to be demonstrated. Until they are, there is some degree of
doubt as to whether the signal portion of the ¢f candidate events all originate from the pair
production of the top quark. Moreover, even if it is supposed that they are all due to t,
there is not yet any direct experimental evidence that their production and decay properties
are described correctly by the standard model.

This thesis presented a study of the use of the kinematics of fully-reconstructed
tt events in the testing of the standard model ¢f hypothesis. The ultimate objective of
this study is to compare the kinematics in the experimental data with the standard model
prediction and quantify the degree of similarity/difference between the two. The result of
such comparison would shed light on the validity of the ¢ hypothesis. Before this ultimate
objective can be met, however, there are many theoretical and technical issues that must

be clarified. Among the more important of these issues are:

e How reliable is the ¢ reconstruction algorithm? How does one quantify its reliability?
Is the reconstruction algorithm reliable enough to be used to study the properties of

the top quark?

e Should lab frame observables be used? Or should one use top rest frame observables?

What are the advantages and disadvantages of each?

e In the top rest frame, how many independent variables are needed to completely
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specify the top quark decay? Which variables provide important information about

properties of the top quark?

e How can one quantify the degree of similarity/difference between the kinematical

distributions in the experimental data and those predicted by the standard model?
e What factors determine the size of the measurement resolution?

e What is the expected measurement resolution? Given this, what can one expect to

conclude in Run I? in Run II?

All of these questions have been examined and answered in this thesis. It is the author’s
hope that the issues dealt with here are used as a starting point in related analyses in
Run II.

Due to the limited number of ¢ candidate events available in Run I, one cannot
conclude very much from the result of the comparison between the kinematic distributions
in the experimental data and those predicted by the standard model. To give a sense of the
limitation, it is noted that the measured properties — degree of polarization and transverse
helicity fraction — both have a physical range that span 0 ~ 1. The expected measurement
resolution on the degree of polarization, however, is 0.5 ~ 0.7; for the helicity fraction, it is
about 0.3. With this sort of resolution, one cannot place significant limits on the parameter
space. In Run II, however, the resolutions are expected to go down to 0.11 ~ 0.16 for the
polarization measurement and 0.06 for the helicity measurement. Thus it should be possible
to set meaningful limits then.

Although the measurement resolution is too poor to make any meaningful conclu-
sions about the properties of top quark spin and weak coupling, the resolution for the
helicity fraction measurement is good enough to expose an inconsistency in the modeling
of the charged lepton energy (E;) distribution. Specifically, it was found that the change in
the measured helicity fraction before and after optimizing the analysis is large; this degree
of change is unlikely to be due to a statistical fluctuation. This inconsistency could be
due to: (1) incorrect shape of the signal/and or background E; distribution; (2) incorrect

background fraction estimate; or (3) the experimental data are not described correctly by
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the standard model ¢ hypothesis. This observation suggests that the comparison of mea-
surements before and after optimization could be a useful technique in Run II for testing

the consistency of the signal and background models.
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Appendix A

Why No x? Cut Is Made in this Analysis

A.1 Introduction

The event selection criteria used in this analysis to select lepton + jets ¢t candidate
events is very similar to those used in the CDF top mass analysis [44]. However, there are
a couple of points in which the criteria differ; one of them is the fact that, in this analysis,
no cut is made on the £ reconstruction x? (see chapter 6 for a definition of x?). This choice
was made because such a cut does not noticeably improve the measurement resolution of
the observables considered in this analysis. The purpose of this appendix is to demonstrate

this fact.

A.2 Factors that Determine the Measurement Resolution

In this analysis, a two-component minimum log-likelihood method is used to measure
the degree of polarization and the transverse helicity fraction in the experimental data (see
chapter 7 for a definition of observables used in this analysis, and see chapter 8 for a
discussion of the measurement method and resolution). The measurement resolution of a

given observable is given by the following expression:

VS + B

=K.
7 S

(A1)
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The quantities S and B are the estimated number of signal and background events in the
data sample, respectively, and K is a geometric factor whose size is determined by the shape

of the component functions:

I [fi(z) — fo(ﬁ”)]2
= [ (4-2)

The functions f; and f; are the two component functions the data are being fit to, and f.,,
is the theoretically expected distribution of the observable z (all functions are normalized
to 1). It should be noted that the factor K is small when f; and fy have small amount of

overlap, and vice versa when they overlap a lot.

A.3 The Properties x> Must Have

If x? is to be useable as a means of improving the measurement resolution, it must

have one or both of the following two properties:

1. The distribution of x? in the signal must differ significantly from that in the back-

ground.

2. In signal events, the distribution of x? in events with correct b-quark matching must
be significantly different from that in events where the b-quark is mismatched (see

section 6.3 and chapter 9 for a definition of “correct” b-quark matching).

Without the first property, the term /S 4+ B/S in equation A.1 would not vary much with
x%. Without the second, the term K, which is a function of fi; (the fraction of signal
events with correct b-quark matching), would not vary much. If neither of these terms vary
significantly with x?, there would be no point in applying a x? cut.

There are reasons to believe that x? possesses these two properties. In chapter 6, it
is shown that x? is a measure of how well a given event satisfies the “tZ hypothesis” — i.e.
how tt-like an event is. Thus it is natural to suppose that #f events will fit the ¢f hypothesis

better than background events, so that x? in ¢f events should be smaller, on average, than

in background events. It is also shown in chapter 6 that, for a given event, there are a
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range of possible jet-quark combinations, one of which has correct b-quark matching. By
choosing the combination with the smallest x?, one has a significantly better chance at
finding the correct combination than if one were to choose a combination at random. Given
this property of x?, it is natural to suppose that the fraction of events with correct b-quark
matching increases as one eliminates events with large x?.

In the following sections, it will be shown that x? does indeed have these two prop-
erties. It will also be shown, however, that it does not satisfy the properties to a great

enough extent, so that it cannot be used to improve the measurement resolution.

A.4 The Ability of x? to Discriminate between Signal and

Background

Figure A.1 shows the efficiency of the cut x* < x?2,, in signal and background events.
It is seen that, in all eight subsets of data (see sections 4.4 and 8.2.4 for the reason why the
data sample is divided into eight parts), as x2,; is decreased from oo, the efficiency for the
background decreases more quickly than for the signal. This demonstrates that fact that a
x? cut can be used to purify the event samples.

The effectiveness of a cut in improving the measurement resolution is, however, not
determined by the purity (§/(S + B)), but by the “significance”, defined as §/+/S + B (this
is the reciprocal of the term appearing in equation A.1). If one assumes for the moment that
the geometric factor K is constant as a function of x?%,, (it is not, and this is discussed in
the next section), then the value of x2,, that minimizes the measurement error is that which

1 as a function of

maximizes the significance. Figure A.2 shows the normalized significance
x2,; in all eight subsamples. In none of the subsamples is there a noticeable maximum for
X2yt < 00. This demonstrates the fact that, from the point of view of signal and background

differentiation alone, x? cannot be used to improve the measurement resolution.

'The normalized significance is defined as significance divided by 1/4/No, where N is the number of
events in the data sample before applying a x? cut (i.e. x? < 00).
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Efficiency vs. log,o(x*)

> E > =
e 1 E e 1 -
5075 S 0.75 =
5 05 — 05 -
025 £ 0.25 -
0 E 0 3
o)
> E > E E
c 1 = c 1 = =
5 075 5075 F —
T 05 T 05 ¢ =
025 £ 025 £ —
= = 3

2
)
o E > E E
- 1 E - 1 E B
5075 £ T 075 £ =
T 05 E 5 05 & E
025 = 025 = =
0 E 0 E 3
o)
o E 3 E E
c 1 = c 1 = =
5 075 & 075 = =
% 05 E % 05 E =
025 E 025 £ =
O E O E |

2 0 2

(nj35,nt) ‘ngo(chu() (nj4,nt) ‘OQWD(XZCM)

Figure A.1: The efficiency of the signal and background as a function of log;(x?,;)- The
signal sample is simulated with the HERWIG monte carlo with m,, = 175 GeV. The
background sample is simulated with the VECBOS monte carlo. See sections 4.4 and 8.2.4
for a description of the labels used to describe the eight subsamples (i.e. (N335, X0), etc.).
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Normalized Significance vs. log,o(x°)
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Figure A.2: The normalized significance as a function of log;(x?%,;)- The signal sample is
simulated with the HERWIG monte carlo with m;,, = 175 GeV. The background sample
is simulated with the VECBOS monte carlo. See sections 4.4 and 8.2.4 for a description of
the labels used to describe the eight subsamples (i.e. (N335, X0), etc.).
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A.5 The Ability of x? to Discriminate between Events with

Correct and Incorrect b-quark Matching

Figure A.3 shows the efficiency of signal events with correct (AR(b;) < 0.4) and
incorrect (AR(b;) > 0.4) b-quark matching surviving the cut x* < x%,. It is seen that,
in all eight subsamples, the efficiency for the incorrect events decreases more rapidly than
for the correct events. This implies that fi; increases with tighter x? cut (figure A.4).2
Since the geometric factor K for all observables is a monotonically decreasing function of
foe (figure 9.2 of chapter 9), this means that K achieves a minimum value for some finite
value of x2,,. Figure A.5 shows an example of this for the observable Ey; the situation with
the other observables is almost identical.

If one were to take the K-factor in isolation, then a smaller K-factor means better
measurement resolution, since the error o is proportional to K. However, in order to obtain
a measure of the efficacy of the x? cut in improving the measurement resolution, one must

take into account the cost in statistics that is needed to allow K to decrease. A useful

quantification of this efficacy is the following normalized significance:?

The quantity S« is the number of signal events with AR(b;) < 0.4 passing the cut x? < x%.:»
S> is the corresponding number for events with AR(bs) > 0.4, and N is the total number
of signal events before any cut is applied. Figure A.6 shows the x2,,-dependence of the
normalized significance for the observable E; for all eight subdivisions of data. A local
maximum in the curve would indicate improved measurement resolution. None is seen, so
a x? cut is not efficacious. Almost identical results also hold for the other observables in

this analysis.

2Tt increases up to a point. When the cut gets so tight that few events remain, statistical fluctuations
make the true value of fp; unclear.

3This expression is the normalized significance taking the background fraction to be zero. The background
fraction is set to zero here in order to isolate the effect of b-quark matching on the measurement resolution, as
opposed to the effect of signal-to-background ratio, which was discussed in the last section. The significance
that takes account both effects is discussed in the next section.
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Efficiency vs. X
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Figure A.3: The efliciency of signal events with correct and incorrect b-quark matching for
the cut x? < x%,;- See sections 4.4 and 8.2.4 for a description of the labels used to describe
the eight subsamples (i.e. (N335, X0), etc.).
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Figure A.4: The change in f; with x2,,. See sections 4.4 and 8.2.4 for a description of the
labels used to describe the eight subsamples (i.e. (N335, X0), etc.).
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K—factor for E(lep) vs. X’
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Figure A.5: The change in K-factor for the observable E; with x?2,;. See sections 4.4 and
8.2.4 for a description of the labels used to describe the eight subsamples (z.e. (N335, X0),
etc.).
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Norm. Signi. for E(lep) vs. X
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Figure A.6: The normalized significance for E; as a function of x2,,. See sections 4.4 and
8.2.4 for a description of the labels used to describe the eight subsamples (z.e. (N335, X0),
etc.).
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A.6 Demonstrating the Fact that x> Cannot Be Used to

Improve the Measurement Resolution

In the last two sections, it was shown that a x? cut does not improve the measure-
ment resolution when viewing the problem from: (1) a purely signal-to-background issue
alone; and (2) a purely geometric issue alone. It is possible, however, that if the two factors
are combined, a net improvement in resolution might be seen. Figure A.7 shows that this
is not the case for the observable E,. The figure is a plot of the normalized significance
(1/(0-+v/Nx)) as a function of x?,,, where o is given in equation A.1 and N, is the number
of events in the data sample before any x? cut. A local maximum in any of the plots would
indicate improved measurement resolution: none is seen. Almost identical results also hold

for the other observables in this analysis.

A.7 Conclusion

Let us summarize the results obtained in this appendix. First, it was shown that
x? has properties that tend to improve the measurement resolution. Specifically, x? can
be used to separate the signal from the background to a certain extent. Also, x? can be
used to improve, to a certain extent, the fraction of signal events with correct b-quark
matching. Both of these properties tend to improve the measurement resolution. However,
these tendencies must be weighed against the cost in lost statistics when applying x? cuts.
Cost-benefit analyses show that the cost in statistics outweigh the benefits in improved
signal purity and b-quark matching fraction. This is the reason why no x? cut is applied in

this analysis.
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Figure A.7: The complete normalized significance (i.e. the significance taking into account
both the signal-to-background and the geometric issues) for E; as a function of x2,,. See
sections 4.4 and 8.2.4 for a description of the labels used to describe the eight subsamples
(i.e. (N335, X0), etc.).
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Appendix B

Complex Solutions of P,(v)

B.1 Introduction

In section 6.2.5, it was stated that the initial estimate of the neutrino’s longitudinal
momentum P,(v) can, under certain circumstances, be complex. These situations are dealt

with by taking the real part of P,(v) and adding £20 GeV to it:

P,(v) = A£20GeV (B.1)

A is the real part of the complex P,(v), and is defined in equation 6.3. This prescription
for dealing with complex solutions of P,(v) may seem ad hoc. In fact, however, the details
of how real numbers are assigned in place of complex solutions are unimportant. The only
requirement that any such procedure must satisfy is this: the two real replacement values
must be chosen so that when x? has two minima, the x? minimization process will find
them both. In this appendix, complex solutions of P,(v) and how to deal with them is

discussed.

B.2 A Graphical Description of Real and Complex P,(v)

The prescription for obtaining the initial estimate of P,(v) — i.e. choose P,(v) such

that the invariant mass of the {-v; system my, = My — can be described graphically as
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follows. First, consider the set of all pairs (P,(v), Pr(v)) such that my = My . These
points describe a tilted ellipse in the P,(v)-Pr(v) plane. The size and tilt of the ellipse are

fixed by the following parameters:

1. Ey, the charged lepton energy.
2. 6y, the charged lepton polar angle (i.e. angle relative to the beam).

3. A¢y,, the azimuthal angular separation between £ and vy.

All of the above are defined in the lab frame. The following equation describes the ellipse:

Y-y = (TCOS 02‘) (o — =) (B.2)
+

1
( ) ( -7 ) €2 — sin? A¢y., sin? 0(z — z.)?
1-1T? sin? Agy-, sin? 6, v ¢

T = cos A¢y-,, sin 0, (B.3)
T, = (m) mg e (B.4)
€= J;J—EVZZ (B.6)

my = ;‘1’152‘2‘; (B.7)

m, = Sii . (B.8)

In the above equations, y and z stand for Pr(v) and P,(v), respectively. The ordered
pair (z.,y.) gives the coordinate of the center of the ellipse in the P,(v)-Pr(v) plane.

The parameters m, and m, determine the #ilt of the ellipse’s major and minor axes. The
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Figure B.1: The P,(v)-Pr(v) ellipse from: (a) Run/Event = 40758/044414; and (b)
Run/Event = 43096/047223. In both figures, the dashed horizontal line corresponds to
the initial estimate of ‘ﬁT(V)‘ In (a), the values of P,(v) at the intersection points of the
line with the ellipse, labeled “1” and “2”, are the initial estimates of the neutrino longi-
tudinal momentum. In (b), the horizontal line does not intersect the ellipse, so the P,(v)
solutions are complex. The value of P,(v) at points labeled “1” and “2” are obtained by
adding +20 GeV to the real part of the complex solution (dashed vertical line). These
values are chosen as the initial estimate of the neutrino longitudinal momentum.

parameter ¢ has the unit of energy, and it determines the size of the ellipse; when ¢ is
large, so is the ellipse, and vice versa when ¢ is small. It should be noted that ¢ is inversely
proportional to E;. Thus, for example, when Ey is large, ¢ is small, and therefore Pr(v) and
P,(v) tend to be small. This inverse relation between the energy of £ and v, is necessary in
order for the invariant mass of the £-v; system to be fixed at Myy.

Figure B.1 shows ellipses from two events collected at CDF during Tevatron Collider

Run I. The horizontal dashed line in each diagram represents the initial estimate of ‘ﬁT(V)
In figure B.1(a), the horizontal line intersects the ellipse at two values of P,(v), labeled “1”
and “2”. These values are chosen as the initial estimates of P,(v) by the t¢ reconstruction
algorithm. In figure B.1(b), the horizontal line does not intersect the ellipse. In such cases,
the solutions of P,(v) are complex. The P,(v) at points labeled “1” and “2” in figure B.1(b)
are obtained by adding 420 GeV to the real part of the complex solution, indicated by the

vertical dashed line.
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B.3 The P,(v)-Pr(v) Ellipse during and after the x?

Minimization Procedure

In order to determine whether the seemingly ad hoc rule in equation B.1 for dealing
with complex P,(v) solutions is sufficient or not, one needs to understand what happens
to the P,(v)-Pr(v) ellipse during and after the x? minimization procedure. The ¢ recon-
struction algorithm stretches/shrinks the energy of jets, charged lepton, and unclustered
energy in order to minimize x2. Since the charged lepton momentum is usually well mea-
sured, its estimated error is small, and thus its energy is not allowed to stretch/shrink very
much. Thus, to a good approximation, one can take the charged lepton 4-momentum to
be constant during the x? minimization procedure. The jet and unclustered energy errors,
however, are sizable. Their energies, therefore, can be stretched/shrunk to a considerable
degree. This stretching/shrinking propagates directly to the direction and magnitude of

ﬁT(V). Therefore, during the x? minimization procedure, the following take place:

e The horizontal line corresponding to ‘ﬁT(V)‘ can be adjusted up and down.

e Of the three parameters that describe the P,(v)-Pr(v) ellipse, only A¢y, can be
changed significantly; E, and 6, essentially stay fixed. The change in Ag¢,.,, changes
the size, position, and tilt of the ellipse. See section B.4 for details on how the ellipse

changes with Ag¢y,,..

After the x? minimization process is complete, the location of the horizontal line
representing ‘ﬁT(V)‘ and the location, size, and tilt of the P,(v)-Pr(v) ellipse are, to varying
degrees, different from those at the beginning of the process. See figure B.2.

The final result of the x? minimization process can be classified as follows:

Non-degenerate — x?> has Two Minima
An example of this is shown in figure B.2(a). The pair (P,(v), Pr(v)) for the two

minima are usually close to the initial positions in the P,(v)-Pr(v) plane.

Degenerate — x? has One Minimum
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Figure B.2: (a) and (b) are from the same events as in figure B.1. In (a), the ellipse
labeled “in” is that at the beginning of the x? minimization process, while those labeled
“out1” and “out2” correspond to the two minima of x2. In (b), the ellipse labeled “in”
that at the beginning of the x* minimization, and the one labeled “out” correspond to the
single, degenerate minimum of x?. The open circles labeled “1” and “2” in both diagrams
indicate the two pairs (P,(v), P,(v)) at the beginning of x* minimization. The filled circles
correspond to (P,(v), P,(v)) at the end of minimization.
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An example of this is shown in figure B.2(b). Both of the initial estimates of (P,(v), Pr(v))

converge to a single solution.

The relevance of the existence of these two categories of solutions on the issue of complex
P,(v) is the following: the prescription for assigning real numbers in place of complex P,(v)
solutions matters only in events with non-degenerate y%. This is because, in degenerate
events, no matter what real numbers one assigns in place of the complex solutions of P,(v),
the final output of the ¢f reconstruction algorithm converges to a single configuration cor-
responding to the unique minimum x%. Of the events with complex P,(v), 80% of events
have degenerate x?. Thus the problem of complex P,(v) matters in 20% of such events.

When x? has non-degenerate solutions, the method for dealing with complex P,(v)
must be chosen with some care. Figure B.3 is helpful in making this point. This figure
shows the P,(v)-Pr(v) ellipses before and after minimizing x?: the lower one is before, and
the upper ones are after (there are two closely spaced ellipses, one for each minimum). The
dashed horizontal line corresponds to the input ‘ﬁT(V)‘ Since this line does not intersect
the lower ellipse, the initial estimate of P,(v) is complex. The open circles labeled “1” and
“2” are the real replacement values for the complex solutions, while the vertical dashed line
indicates the real part of the complex P,(v) solutions. The closed circles labeled “outl”
and “out2” are the location of (P,(v), Pr(v)) at the minima of x?.

Figure B.3 gives an intuitive feel for why the rule for dealing with complex P,(v)
solutions must be chosen with some care. For instance, if the points “1” and “2” were
placed too close together, it is possible that the two initial configurations will converge to
only one of the two minima. Also, keeping the P,(v) of “1” and “2” separated does not
guarantee that the two initial configurations will converge to the two minima. For instance,
if P,(v) for “1” and “2” are assigned —120 GeV and —80 GeV, these initial configurations
will probably both converge to “outl”, even though the two P,(v) are separated by 40 GeV,
which is the same as for the rule P,(v) = A + 20 GeV.

The author is not aware of any method of dealing with complex P,(v) solutions that
will guarantee that both minima in non-degenerate x? will be found. The method P,(v) =
A £ 20 GeV, however, has been shown in monte carlo studies to always find both minima.

Thus, if this method does fail at all, its rate of failure must be very small.
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Figure B.3: From Run/Event = 43351/266423. The lower ellipse is for the initial configu-
ration. Two closely spaced ellipses lie above the lower one, one ellipse for each minimum
in x%. The horizontal dashed line indicates the initial ‘ﬁT(V)‘ The vertical dashed line
indicates the real part of the complex P,(v) solutions. The open circles indicate the initial
estimates of (P,(v), Pr(v)), while the solid circles indicate (P,(v), Pr(v)) at the x? minima.

Let us summarize what has been learned: (1) the choice of real replacement values
for complex P,(v) matters in only 20% of events with complex P,(»); (2) monte carlo studies
show that the prescription P,(v) = A+20 GeV allows the tf reconstruction algorithm to find
both x? minima with an efficiency very close to 100%; (3) this prescription is, admittedly,

ad hoc, but it works.

B.4 The Change in the P,(v)-Pr(v) Ellipse with A¢y.,

This section is an addendum to this appendix. It describes how the P,(v)-Pr(v)
ellipse changes with Ag¢y.,,.

In section B.2, it was shown that, during the x? minimization process, the jet
and unclustered energies have considerable freedom to stretch/shrink, while the charged
lepton remains essentially fixed. Because of this, even though many physics objects can
be stretched/shrunk in many different ways, the effect of such stretching/shrinking on the

P,(v)-Pr(v) ellipse is described by the single parameter A¢y.,,. In other words, even though
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the stretching/shrinking of physics object energies takes place in a space of many dimensions,
the resulting change in location, size, and tilt of the ellipse is described by a variable in a
1-dimensional space.

Equation B.2 describes an ellipse whose major and minor axes are, in general, tilted
relative to the P,(v)-Pr(v) axes. Although these axes can be used to describe the ellipse,
it is more useful in this context to describe it by the coordinates where the value of Pr(v)
is maximum and minimum — i.e. where the slope of the ellipse is zero. The point where
Pr(v) is maximum will be referred to by (Zmaz, Ymaz ), While (#4min, Ymin) refers to the point

where Pr(v) is minimum. The equations for these points are given as follows:

Tmazr = (1 + cos Agyp, )z, (B.9)
1+ cos Agbg-,,)
maxr — ¢ B.10
Y ( cos A, )P (8.10)
Tmin = (1 — cos Adp, )z, (B.11)
1 — cos Ay,
min — — — c B.12
v (Feenen ) (B.12)

These equations are useful in deducing how the ellipse moves in the P,(v)-Pr(v)

plane as A¢y, changes. The following are some observations:

e Assume that cosf; > 0. Then, as A¢y, changes, the center of the ellipse (z.,y.)
moves along an hyperbola defined by the following equation:

Yo = + ™ e, [2. — My €] (B.13)
m

xT

The positive branch of the hyperbola is chosen when A¢y.,, < 90°, while the negative
one is chosen when Agy., > 90°. See figure B.4(a).

e Assume that cosf;, > 0. Then the maximum point (Zmaz, Ymaz) Mmoves along the

following line:

Ymax = (ﬂ) Lmax (B14)
m

xT
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Similarly, the minimum point (Zmin, Ymsn ) moves along the following line:

my

See figure B.4(a).

When cos 8y < 0, the lines and curves described above are reflected about the vertical

line P,(v) = 0. See figure B.4(a).

The curves described above give the motion of (2., y.), (Zmazs Ymaz ), 304 (Zmin, Ymin)
as A¢y.,, changes, but it does not give any information about how the points move

relative to each other. The following equations fills in this gap:

Zmaz _ 1 4 cos Ay, (B.16)
Tc
max 1 A 4
Ymaz _ 1+ cos Agy (B.A7)
Ye cos Ady-,
Tmin 1 _ cos Ay, (B.18)
mC
min 1- Ady-y
Ymin _ 1= cos Ay (B.19)
Ye cos Ady-,

In the limit A¢pr, — 0, (Zmaz) Ymaz) — (22¢, 29.).

In the limit A¢y.,, — 0, the minimum point converges to (Zmin, Ymin) = (%mx €, — %my €).

In the limit A¢p, — 180°, (Tmazs Ymaz) — (22¢, —29c).

In the limit A¢,-,, — 180°, the minimum point converges to (Zmin, Ymin) = (%mx €, %my €).

Figure B.4(b) shows the P,(v)-Pr(v) ellipse for A¢,,, = 170°, 135°, 90°, 45°, and
10°. E; and 0, are fixed at 120.2 GeV and 65.5°, respectively (these values are taken
from Run/Event = 40758/044414 — see figure B.1(a)). As A¢y., changes from 180°
— 90°, the ellipse moves toward the upper left, while as A¢y-,, goes from 90° — 0°,
the ellipse moves toward the upper right. At A¢y.,, = 90°, the ellipse is circular and

is divided into equal parts by the line Pr(v) = 0.
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Figure B.4: (a) The dashed curve shows the location of the center of the ellipse (z.,y.) as
A¢y.,, is varied. The straight lines in the upper half-plane (y > 0) shows the location of
the maximum point (Zmaz, Ymaz) Of the ellipse as A¢y, is varied. The straight lines in the
lower half-plane is for the minimum point (Zmin, Ymin). (b) The ellipse with A¢,.,, = 170°,
135°, 90°, 45°, and 10°. For both (a) and (b), E; = 120.2 GeV and 6; = 65.5° (from Run
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Appendix C

The Unclustered Energy

C.1 Introduction

In section 6.2.6, the unclustered energy was described as being that part of the
transverse energy deposited in the calorimeter that cannot be accounted for by jets and the
charged lepton. This appendix describes how the unclustered energy is estimated using the

physics object momenta.

C.2 The Unclustered Energy at Three Stages in the ¢t

Reconstruction Algorithm

The definition of unclustered energy depends on the different stages of the ¢t recon-

struction algorithm. These stages are:

Raw
This is the stage where the physics object momenta have minimal corrections applied.
The unclustered energy in this stage is defined mostly in terms of the raw physics

object momenta.

Input

This is the stage at the beginning of the x* minimization process (see appendix D for
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information on x?). All of the physics object momenta have full corrections applied.
The momenta at this stage can be thought of as the initial guess of the parton-
level momenta. The unclustered energy in this stage is defined in terms of the raw
unclustered energy, with some modifications from the underlying event and out-of-

cone corrections for each jet.

Output
This is the final stage of the tf reconstruction algorithm, where the x? for all pos-
sible configurations have been minimized by stretching/shrinking physics object mo-
menta. The two transverse components of the unclustered energy are independently
stretched /shrunk during the y? minimization process. The amount of stretching/shrinking

depends on the estimated error on the unclustered energy.

In this appendix, the definition of the unclustered energy at the raw and input stages is
discussed. There is no need to define the unclustered energy at the output level because it

is simply a stretched/shrunk version of that at the input level.

C.3 The Definition of the Raw Unclustered Energy

At the raw stage, the unclustered energy is defined to be a two-component vector
that balances the sum of the transverse momentum vectors of all raw-level physics objects:
N jets
Pr(uce,raw) = — |Pr(£) + Er + Z Pr(3) (C.1)
i=1
The momentum vectors for the jets have no corrections applied!, while that for £ is fully
corrected.? The missing transverse energy vector ﬁT is given by the raw value® with primary

lepton corrections applied. See chapter 3 for details on the the identification and momentum

reconstruction of the physics objects.

'In CDF jargon, the momentum of these uncorrected jet momenta are obtained from the JETS bank.

2There is no significance in the fact that the fully corrected charged lepton momentum is used here instead
of the raw one. The definition of the unclustered energy does not change by much if the raw momentum
were used instead. The particular choice given here is just one of many somewhat arbitrary choices involved
in defining the unclustered energy.

3In CDF jargon, the raw missing transverse energy vector is obtained from the DETS bank.

265



Physically, what does the raw unclustered energy represent? One way to answer
this is to consider an hypothetical situation where the raw-level momentum of each object
has no measurement error, and all parton-level objects are identified with 100% efficiency.

Then the raw ﬁT(uce,raw) would be equal to the small transverse kick in the # system

due to non-perturbative processes. In practice, ﬁT(uce, raw)‘ is considerably larger than
the predicted transverse kick because of the finite resolution of physics object momenta the
possible presence of soft jets that fail jet acceptance cuts or are not identified by the jet

reconstruction algorithm.

To summarize, the sources of the unclustered energy are:

1. Particles responsible for the non-perturbative kick in the tf system
2. Soft jets

3. Finite resolution of physics object momenta

The first two sources are referred to as physical because the energy deposited in the calorime-
ters by actual particles gives rise to ﬁT(uce). The last source is referred to as resolution
because it contributes to ﬁT(uce) by virtue of mismeasurement of the physics object mo-

menta.

C.4 The Definition of the Input Unclustered Energy

The definition of the unclustered energy at the beginning of the x? minimization

process is this:

—

Pr(uce,in) = 1.6- Pr(uce,raw) (C.2)

—

+ Pr(underlying event)

—

— Pr(out-of-cone)

The factor 1.6 in front of the raw unclustered energy is the average correction factor ap-

plied to low-energy jets (Er ~ 8 GeV)[44]. The assumption underlying the choice of this
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factor is that the unclustered energy is vaguely similar to a low-energy jet. The quantities

Pr(underlying event) and Pr(out-of-cone) are defined as follows:

Pr(underlying event)
The underlying event can be thought of, basically, as the debris from the spectator
particles in p and p. Some of the particles that form this debris fly into the cones that
define jets, and thus make spurious contributions to the jet energies. The standard
jet correction routine described in chapter 3 estimates the average underlying event
contribution to each jet Er, and subtracts this from each jet. The E7 subtracted
from each jet is then added to the unclustered energy because the underlying event
is a part of the physical sources that comprise the unclustered energy. The quantity
ﬁT(underlying event) is the vector sum of the underlying event E7 contribution to

each jet.

Pr(out-of-cone)
It was mentioned in section 3.3.1 that jets are identified with the fixed-cone jet clus-
tering algorithm, with AR = 0.4 in this analysis. The use of a fixed cone size entails
the loss of some of the original parton-level energy outside of the cone. The escaped
energy ends up being counted as part of the unclustered energy. The standard jet
correction routine estimates an average amount of escaped energy as a function of the
jet Er, and adds this to the raw jet energy. To conserve energy, the amount added
to each jet is subtracted from the unclustered energy. The quantity ﬁT(out-of-cone)

is the vector sum of the out-of-cone Er contribution to each jet.
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Appendix D

The Definition of 2

The quantity x? consists of many terms which can be placed into two categories:

the mass terms and the kinematic terms:

X* = Xinass + Xkinematics (D.1)
The mass terms are defined so that configurations with event topology consistent with that
of tf events in the lepton 4 jets decay channel have small x?, and vice versa for configurations
whose event topology is inconsistent with that of t{. The kinematic terms are defined so
that they are all zero when the physics object energies are all at their initial estimated
value, while they increase as the energies are changed from the initial value.

The quantity x2,,,, is composed of four terms:

Xonass = X (80) + X*(tn) + x> (W) + x*(Wh) (D.2)
X2(t) = (m‘”b _PMTOP) (D.3)
(i) = (mﬂb}—MTOP) (D.4)
9 _(my — M 2
X (Wl) = (lriww) (D.5)
¢y = (M) (D.6)
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The symbols appearing in the above equations are described below:

The invariant mass of the £-v;-by system — i.e. the three par-
Miwb ticle system presumed to originate from the decay of ¢,.

The invariant mass of the 3-jet system presumed to originate
Mg from the decay of .
my, The invariant mass of the £-v; system.

The invariant mass of the 2-jet system presumed to originate
My from the hadronically decaying W.

One of the fit parameters. The value of MTOP at the x?

MTOP absolute minimum is taken as the output top mass.

A constant equal 80.41 GeV, the world-average W mass [60].
Mw

A constant equal to 2.5 GeV. This is comparable to the phys-

ical top quark width, which is 1.4 GeV (see section 7.3). The

I specific value is based on monte carlo studies of #f reconstruc-

tion.

A constant equal to 2.12 GeV. This is the world-average W
Ty width [60].

The following are some comments on x2,,.,:

e The top mass terms x?(¢;) and x*(t;) are related to each other through the fit param-
eter MTOP. Because of this, these terms favor configurations where my,;, and m;;
are close together. Thus the combination x%(¢;) + x%(t1) could have been replaced by

the following:

2
1 (mlub - mjjb) (D.7)

2\ Tip
This equation is obtained from x2(t/) + x?*(¢s) by replacing MTO P with 0.5 (myp +
mj;p). The use of this alternative top mass condition does not alter the result of
the algorithm by very much. The top mass condition that uses MTOP is chosen
for historical reasons — if MTOP is a fit parameter, then a minimization routine

such as CERN’s MINUIT [59] can give properties (e.g. the error matrix) of the region
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surrounding the absolute minimum of x?. This information was useful in the early

stages of the development of the ¢ reconstruction algorithm.

The term x?(W;) is determined by the 4-momenta of £ and v;. The 4-momentum of
£ is usually well measured, so it can be considered as being fixed throughout the y?
minimization procedure. Thus the value of x*(W;) is almost completely determined
by the 4-momentum of v,. The transverse component of the momentum of v, is
defined to balance the sum of the transverse momentum of all of the other physics
objects in an event, while the longitudinal component is allowed to take on any value
(see appendix B). In practice, because of x*(W;), P,(v) will be chosen by the tf
reconstruction algorithm to be such as to make my, ~ My . In some cases, however,
this is not possible because the values of P,(v) that satisfy the equation my, = My
are complex. In these situations, the algorithm stretches the physics object energies

in a way such that P,(v) has real solutions. See appendix B for further details.

The choice of the denominators in the mass terms — i.e. I';,, and I'yy — is somewhat
arbitrary. In particular, there is no special significance in the fact that I';,, is chosen
as a value comparable to the physical top width or that I'yy is chosen as the world-
average W width. In order to see what issues are involved in choosing specific values
for I'yop and I'yy, it is useful to consider what happens in extreme cases. For instance,
if the I'’s are made very large, then x2, .. is very small before the x? minimization
process starts. Since x2,,,, is small, x7, .. becomes comparable to x2,,,, before
the physics object energies are stretched an appreciable amount. As a consequence,
the total x?> would reach a minimum before the physics object momenta are changed
appreciably. This situation, therefore, is almost equivalent to not performing the
x? minimization procedure at all. This, clearly, is not desirable, so the I'’s must
be made sufficiently small. Making the I'’s very small, however, poses no special
problems since minor adjustments in the physics object energies can almost always
make x2,,., to be arbitrarily close to zero. Finally, one has to consider the relative
size of I'yy and I'y,,. This choice determines the relative importance of the top and

W mass conditions. It is claimed in [44] that the exact values chosen for the I'’s do
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not significantly change the performance of the tf reconstruction algorithm. This is
probably an oversimplification; the reconstruction algorithm’s performance probably
does improve or worsen depending on the relative size of I'yy and I'y,,. This issue,
however, is beyond the scope of this study; in this analysis, the choice in [44] is

adopted.

The quantity x2, .. is composed of the following terms:

2
E; — E?
X%inematics = Z (7) (DS)

P,(uce) — P2(uce) 2 P,(uce) — P)(uce) ?
+ ( 1+ o(uce) ) + ( 1+ o(uce) )

The following are some comments on this equation:

e The index ¢ in the first line spans all jets and the primary lepton.
e The last two terms correspond to the z and y components of the unclustered energy.

e The jet and charged lepton momenta are allowed to stretch/shrink, but they are not
allowed to change direction. On the other hand, the unclustered energy momentum

is allowed to change both its magnitude and direction.

e The superscript “0” indicates that a quantity’s value is that of the original estimate.

Variables without the superscript are the altered values.

e The error o; of the jets and the charged lepton are obtained from monte carlo studies
that compare the parton-level energies with those reconstructed from the detector.
The size of the error for a given object (electron, muon, generic jets, SVX b-tagged
jets, SLT b-tagged jets) depends, in general, on the transverse energy and the detector

position.

e The “error” of the unclustered energy, o(uce), is not an error in the strict, statistical
sense of the word. It is a quantity that is chosen by tuning the tf reconstruction

algorithm. The CDF lepton + jets top mass measurement in [44] chose o(uce) to be
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100% of ‘ﬁT(uce)‘ based on the fact that: (1) the unclustered energy is poorly mea-
sured; and (2) this choice gives adequate results for the performance of the algorithm.
This particular choice, however, is not crucial in the performance of the algorithm —
a considerable degree of arbitrariness exists. Also, the fact that 1 GeV is added to
o(uce) is a technicality that deals with rare situations where o(uce) is very close to

Zero.
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Appendix E

The Standard Model 3-body (V' — A) x (V — A) Decay of the

Top Quark and Other Fermions

E.1 Introduction

According to the standard model, the top quark decays via the following charged
weak process: t — b + W followed by W — lepton or quark pair. The decay is illustrated

schematically below:

t—>b‘|—W Z _I_ vy
L’ or
Wd + Wu

Wy and W, stand for the down- and up-type quark from the hadronic decay of W. The
decay vertices t-W-b and W-£-vy (or W-Wy-W,,) each have V — A coupling. For this reason,
the top quark decay can be characterized as a 3-body (V — 4) x (V — A) decay. For the
experimentally measured top quark mass of m; ~ 175 GeV, the intermediate W is on mass
shell because the following inequality holds: m; — my > Myy.

The top quark is just one fermion that decays via a 3-body (V — 4) x (V — 4)
process. Others are the leptons p and 7 and the quarks ¢ and b.! The decay of these other
fermions are, in many ways, similar to the decay of the top quark. In one respect, however,

the top quark decay is unique: whereas the intermediate W in the decay of p, 7, ¢, and b is

!The s- and d-quark decays are not included in this list of fermions because they are too light for their
decays to be usefully described by the spectator approximation.
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off mass shell, that in the decay of ¢ is on mass shell. Because of this, the intermediate W
from the decay of ¢ has invariant mass in a narrow region centered about Myy, whereas that
from the decay of the other fermions is spread out over the kinematically allowed region.
One consequence of this difference is the following: for top quark decay, four parameters
are necessary and sufficient to describe the decay product kinematics in the top rest frame?;
for all other fermions, an extra parameter is necessary, this parameter being the virtual W
mass.

The objective of this appendix is to compare and contrast the standard model 3-

body (V — A) x (V — A) decay of the top quark on the one hand, and that of the p and

leptons and the ¢ and b-quarks on the other.

E.2 General Treatment of the 3-body (V- A4)x(V —A) Decay

Let A be a fermion that decays to B, X, and Y via the 3-body (V — A) x (V — A)
process. In this discussion, it is important to note that A is assumed to be a particle. Thus
B and Y are also particles, while X is an anti-particle. Discussions on the charge-conjugate

process will be given later on. The decay process is illustrated below:

A—- B+ W

L»YJFY

For the sake of concreteness, the decay products of W will be taken as leptons: X, Y = £,

vy. The following chart shows B, X, and Y for A = u, 7, ¢, b, and t:

7’ v, | Ve | e
T | v | Ty | 4T
s | Y] vy

b c Uy £~
t b A vy

2This statement is true in the limit that the top and W widths are negligible. The zero-width approxi-

mation is adequate for the purposes of this study.
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Whether the lepton under X is charged or neutral depends on the weak isospin of the parent
particle. If A has weak isospin T3 = —1/2 (=, 77, b), then X is a neutral lepton; if A has
T3 = +1/2 (¢, t), then X is a charged lepton. Another way of looking at the nature of X
is this: if A has T3 = F1/2, then X has T3 = £1/2.

The matrix element for the process A — B + W followed by W — X +Yis given

by the following:

(g — WNW,,/M%,)
w2 — M%V + iy Mw

., —ig
Msa.sB,SX,5v = Z(—g)U(B,SB)‘Y“(l—‘75)U(Aa5A)

2v2
X (—Lya(Y, sy )7 (1 — v°)0(X, sx) (E.1)

22

In the formula above, A, B, X, Y, and W stand for the 4-momentum of the respective

particles, and s4, sg, sx, and sy are the spin 4-vectors for each of the fermions. The spin
of W has been summed over already in the above expression. The symbol g stands for the

weak coupling constant, and is given by g% = 8 My 2Gr//2.

i(g,w—W”W,,/M‘%V)
WZ—M‘%V-H'FWMW :

The part of Mg4 sB,5x, 5y corresponding to the W propagator is
It consists of two terms: one proportional to g,,,, and the other proportional to W,W,, /M3, .
The second term is comparable to the first term only if the mass of the decay products is
comparable to Myy. This is clearly not the case for the particles dealt with here. Therefore

the matrix element can be approximated as follows:

— Mw? + iTw My

2
g 1
MsasBsx,sy = ?(WZ )><
WB, sp )" (1 — 1)u(4, 5.4) WY, sy )7u(1 - 77 Wo(X, 8x) (E-2)

After summing over the decay product spins and squaring the matrix elements, the result

is the following:

1

Msal? = 64 G2
Msal F AWMy ) + (T /M )?

(A-muss)-X][B-Y]  (E3)

The matrix element was not summed over the parent particle spin in order to allow for the

possibility of spin polarization. This equation can also be written as follows:
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|IMsa|® = 64G% [(A—mys4)-X][B-Y] (E.4)

1
(1- 222+ ¢,

A= E.
My (E-5)
T'w

_ W E.6

U 7 (E-6)

The factor ((1 — A?)? +¢,)~! in the above equation will be referred to as the W
resonance term. The behavior of this term is crucial in determining the nature of the decay

product kinematics. The factor that determines this behavior is the range of the W boson

invariant mass v W?2:

mx +my <VW2<my— mp (E7)

If mq — mp € My, then the W propagator term is, to a good approximation, constant.
If, on the other hand, m4 — mp > My, then the W propagator term can be approximated
as a delta function centered at vVW2 = Myy. For A = i, T, ¢, and b, the W resonance
term can be taken as constant; for A = ¢, it can be taken as a delta function. With these
approximations for the W resonance terms, the matrix element squared for both cases is

given as follows:

Case 1: my — mp € My

IMsal? =64G% [(A—mysy)-X] [B-Y] (E.8)

Case 2: my — mp > Mw

|Magal? = 64G%ﬁ5(1— A) [(A—mysq)- X] [B-Y] (E.9)
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E.3 Decay Product Kinematics for Case 2

The decay product kinematics for case 2 will be described first. An example of
case 2 is A = top quark. The decay product kinematics for this situation was discussed in

detail in chapter 7. Here the results will be summarized:

e Four parameters are necessary and sufficient to describe the decay product kinematics

in the parent particle rest frame.

e Three are needed to orient the plane containing the decay product momenta pg, px,
and py. These three parameters can be chosen as fx, ¢x, and ¢p-y. See figure 7.1,

taking B =0, X = £, and Y = vy.

e One is needed to fix the direction and magnitude of pp, px, and py in the decay

plane. This parameter can be chosen as Ex, the energy of X in the rest frame of A.

The parameters (6x, ¢x, ¢B-v, Ex) are distributed according to the following:

F(cosfx,Ex) = f(cosOx)g(Ex) (E.10)

The function f probes possible spin polarization of the parent A, while the function ¢ probes
the nature of the A-B-W and W-X-Y vertices. The fact that the function F depends on
only two parameters cos §x and Ey implies that the other two parameters, ¢x and ¢p-y,
are randomly distributed.

The function f has the following form:

(1+ Ksa-cosfy) (E.11)

N | =

f(cosbx) =

The quantity K 4 is +1 if A is a particle and —1 if it is an anti-particle, while a is the degree
of polarization.

The function g has the following form:

g(EX) = (h—a hO h-l—) . (gsa 9m, gh)

= h_(&) - 9s(Ex) + ho(€0) - gm(Ex) + h+(€0) - gn(Ex) (E.12)
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This equation is a generalization of those given in section 7.3.2 for g(cos ;) and g(Ey).
Most of what was stated there concerning g(cosv;) and g(E,) is applicable to g(Ex), so
that information will not be repeated here. Instead, aspects of equation E.12 that generalize
those in section 7.3.2 will be commented on. The quantities h_, hy, and h, are the helicity
fractions. Assuming mp < m4 (which is applicable to the only case of interest, 4 = ),

these quantities can be described as a function of the scaled, on-shell W mass £o = My /m 4:

2
h-(&) = T 9p i%gg (E.13)
1
ho(&o) = 14222 (E.14)
hi(€) =0 (E.15)

The functions g, ¢.., and g; are the soft, medium, and hard Ex distributions:

2
3 EP** — Ex
J(Ex)= — | =X ——=_ E.16
g ( X) PW (Eg(na.r _ Eg(nln) ( )
6  (ER* - Ex)(Ex — E}™)
m(Ex) = — X . E.17
g ( X) Py (Eg(naa:_ES(nm)Z ( )
3 E Emm 2
X — &X
Ex)=—| ——— E.18
gh( X) Py (ES(MM _ ES{nm) ( )
max 1
ER = g™ (E.19)
gy = L (Mu (E.20)
X T2 m4 ’
Py = Ee® — g (E.21)

The functions g,, ¢gm, and g are assumed to be zero outside of the range (EB('””,EB("‘””)

See figure E.1.
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Figure E.1: Left: The energy distribution of X from the decay of the intermediate W in
different helicity states. The labels ¢s’, ‘m’, and ‘R’ stand for soft, medium, and hard. Right:

The scaled energy distributions, with # = Ex/E¥*" and §, = Mw /my4. These plots use
parameter values for the case A = top quark with m; = 175 GeV.

The function g can be described more usefully using the scaled energy z, defined as

¢ = Ex/E%*. Substituting z for Ex, one obtains the following:

9(2,60) = h_(€0) - 94(2,€0) + Bo(0) - (3, £0) + hs (€0) - gn(er60)  (E-22)
g9s(z, &) = ﬁ(l —z)? (E.23)

on(@:60) = g1 = (e~ &) (E.24)

(e, 80) = —gyale ~ €)° (E.25)

The functions g, gm, and gvanish outside the range (£2,1). See figure E.1.
Using this new parameterization, the function F' describing the decay kinematics of

A in the A rest frame can be expressed as follows:

F(cosOx,z,&) = f(cosbx)g(z, &) 6(€ — &o) (E.26)
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Although F is described as being a function of three parameters, the dependence on £ drops

out because the delta function §(§ — &) fixes £ to the constant value &o.

E.4 Decay Product Kinematics for Case 1

It was stated earlier that the difference between cases 1 and 2 is that, whereas in
case 2 the invariant mass of the intermediate W is approximately constant, in case 1, it is
spread out over the kinematically allowed region myx + my < VW2 < my4 — mpg. In other
words, in case 2, the parameter £ is constant, whereas in case 1, it is distributed according
to some function, which will be derived presently.

Although the distribution of ¢ differ between the two cases, the distribution of cos 8x
and = for a fized value of ¢ is exactly the same between cases 1 and 2.2 In other words,

F(cosfx,z,£) can be expressed as follows:

F(cosOx,z,&) = f(cosbOx)g(z,&) Q&) (E.27)

The functional form of f and ¢ is exactly the same as it is in case 2. The only difference is
the distribution of £ — the scaled virtual W mass — given by Q(§).

The virtual W mass distribution Q({) can be obtained in the following manner. Let
us assume that a particle A decays to particles 1, 2, and 3, and that case 1 is applicable
(i.e. that the intermediate W is far below the mass shell). Let us define the invariant
distribution of decay product i to be E; - dI'/d®p;. Then, the following is true:

The invariant distribution of decay product 7 is a function of the invariant mass
of the other two decay products.
See chapter 3 of reference [1] for a proof. Thus, by evaluating the invariant distribution of

the decay product B, one can obtain a function of the invariant mass distribution of the

X-Y system — i.e. the off-shell W:

Bp df;B = 2,3 fﬁ / (4-X) (Y- B)dy(PS) = G(€) (E.28)

3This statement needs some qualification for A = ¢ and b. The functional form for hi(¢),i=—,0,+
given in the text assumes mp < m4. For the c- and b-quarks, mp/m 4 is about 0.2 to 0.3. Thus hz(ﬁ) must
be modified significantly. Besides this, however, everything else in this discussion remains valid.
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The symbol dy(PS) indicates integration over the 2-body phase space of the X-Y system.

The result of this integral is the following: (it will be assumed that mp < my4):

_ GEm
G(o) = 9674

[1+62 - 2¢"]

(E.29)

The function G(§) does not directly give the virtual W mass distribution Q(£). The two

functions, however, are related. Rearrangement of equation E.28 gives the following (this

equation assumes Ep ~ pp, which is valid for mp < my):

dr

On the other hand, Q (&), by definition, is the following:

_1dr

Q&) = T df

The derivatives dI'/dE; and dI'/d€ are related by a Jacobian transformation:

dar _ ‘dEB dr
d¢ | d¢ |dEp
Using this relation, one obtains the following:
1dT
Q) = T dE
47 dEp
= —FEp|——|G
T |22 6o

(E.30)

(E.31)

(E.32)

(E.33)

The Jacobian can be determined using the formula for the energy of B in the rest frame of

A:

2 2

2m 4
m4

- Ba-ey

Substituting this into the expression for (¢), one obtains the following:

Q&) =4£(1 - 6)*(1 +£)*(1 + 2¢%)

The distribution of ¢ is shown in figure E.2.
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Figure E.2: The scaled virtual W invariant mass distribution @Q(£). This distribution
assumes that m 4 is much larger than mp, mx, and my.

E.5 Verifying the Result of Case 1

The main result of the last section was the derivation of the virtual W invariant
mass distribution, Q({). The derivation was, however, quite lengthy, and it involved rather
abstract ideas such as Jacobian transformations and phase-space integrals. In the end of
all of the steps leading to Q(£) is a peculiar-looking 7** degree polynomial. Does this really
describe the virtual W mass distribution? Is there an intuitive way to appreciate this fact?

One way to do this may be to derive, using Q(&), the energy distribution of e~ in
the rest frame of y~ in the decay p~ — v, + 7. + e~ . This process is a famous one, and
is discussed in detail in most introductory textbooks on high energy physics. The scaled
energy distribution for e~ is derived from a direct matrix element calculation in chapter 3

of [1]:

G.(z) = 22%(3 — 2z) (E.36)

The quantity z is defined as # = 2E/m,. The range of z is 0 < z < 1 (ignoring the
electron mass in comparison to m,). Let us see if this equation can be reproduced using

the following facts about case 1 obtained in the last section:
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1. The virtual W invariant mass distribution Q(£) (equation E.35).

2. The W helicity-dependent scaled energy distributions g;(z,£), ¢ = s, m, and h (equa-
tions E.16 to E.18).

3. The helicity fractions h;(£), j = —, 0, + (equations E.13 to E.15).

The energy distribution of e~ for @ fized value of £ is given by the following formula:

g(mag) = (h—a ho h-l-) : (gh7 gm> gs)

= h_(£)- gn(2,€) + ho(€) - gm(2,€) + hy(£) - 9s(2,€) (E-37)

This is the same as equation E.22 for X in case 2 except for the fact that: (1) in general,

€ # &o; and (2) g, and gp, are swapped.® The distribution G.(z) is obtained by convoluting
g(=, €) with Q(¢):

Nz

| dQ(Og(=,¢)

Nz

Ge(z)

I
o
~
O

(&) [h—(€) - gn(2, €) + ho(€) - gm(2,€) + hy(€) - 9s(2, €)] (E-38)

The range of integration is taken as 0 < £ < /2 because g(z,£) = 0 for \/z < £ < 1 (see
equations E.23 to E.25). Substituting equations E.13 to E.15 and E.23 to E.25 for the terms

in square brackets, one obtains the following:

_ [ 2¢ 3 2o
Ge(ac)—/0 déQ(€) | (1+2€2) ((1—52)3) (z - &) (E.39)

* (1 —|—12£2) ((1 _652)3) (1-=z)(z - &)

An important point to note about this equation is this: the denominator of the inte-

grand is an 8t degree polynomial in the variable ¢. This implies that unless the numerator

*Ttem (2) is due to the fact that e™ is a Y-type particle in the decay 4 — B + X + Y. See section E.7
for a discussion of this issue.
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cancels out the £-dependence in the denominator, the result of the integral cannot be a
polynomial in z, which contradicts equation E.36. The above equation can be rearranged

as follows:

_ \/E 6Q(€) 2 2 2
G@) = " a1 e) 2] (Ba0)

From equation E.35, it is seen that Q(£) cancels out all but a factor of 1 — £? from the
denominator. There is, however, an extra factor of 1 — ¢? coming from the other terms.
Thus all the £-dependence in the denominator is, indeed, canceled out by the numerator.

The resulting expression for G¢(z) is:

Ge) = [ dgraee e [+ o] (B.41)

= 2z%(3 - 22) (E.42)

This agrees with equation E.36.

This result shows that the peculiar form of the virtual W mass distribution Q(&) is
a reflection of the (V — A4) x (V — A) nature of the process A — B + X + Y. In other
words, G.(z) is, by definition, a convolution of (&) and g(z,&). The function g(z, ) has
&-dependence in the denominator because of the £-dependence in the helicity fractions h;(§)
(which characterizes the A-B-W vertex) and the normalization of the helicity-dependent
energy distributions g;(z,¢) (which characterizes the W-X-Y vertex). The fact that Q(¢)
cancels out most of the £-dependence in the denominator indicates that the form of Q (&) is

fixed by the nature of these two vertices.

E.6 Average W Helicity Fraction for Case 1

In case 2, where the W invariant mass is basically fixed at vVW? = My, the parent
particle A can be thought of as decaying to the left-handed, longitudinal, and right-handed
helicity state of W with probability h_(o), ho(é0), and hy (&), respectively, where h;(&o)
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is defined in equations E.13 to E.15, and £, = My /m 4.5 For example, if A = top quark
with my; = 175 GeV, then £, = 0.459, so that h_ = 0.30, hy = 0.70, and h, = 0.00. Thus,
in some sense, the top quark can be thought of as decaying to a left-handed W 30% of the
time, to a longitudinal W 70% of the time, and almost never to a right-handed W. This
decoupling of the top quark from the right-handed W is one of the chief features of the
V — A coupling in the ¢-W-b vertex.

In case 1, the situation is not so simple because the virtual W invariant mass is
spread out over a range of values. However, for a fixed value of £, the parent particle A
can be thought of as decaying to the left-handed, longitudinal, and right-handed W with
probability h_(&), ho(§), and hi(§), respectively. This implies that, even in case 1, the
parent particle A decouples from the right-handed W. The average helicity fraction < h; >
is defined as the convolution of h;({) with Q(§):

<hi>= [ deQem(e) (B.43)

For the case m4 > mp, my,my, the integral evaluates to the following: < h_ >=1/3,

< hg>=2/3,and < hy >=0.

E.7 The Helicity Structure of the Decay Vertices and the
W Decay Product Kinematics

In all of the discussions on (V — A) x (V — A) decays so far, the focus has been on
one of the two decay products of W. For instance, in sections E.2 to E.4, the kinematics
of X in W — X 4+ Y was examined, while in section E.5, that of e~ (a Y-type particle)
inpu~ — v, + 7. + e~ was derived. In this section, the kinematics of both XandY in A
— B + W followed by W — X + Y (and the charge-conjugate process) are compared. In

particular, the following points are discussed:

e Determine which of the two W decay products has the softer energy distribution.

5The view that A decays to W of a definite helicity state on an event-by-event basis is, strictly speaking,
incorrect because the intermediate W is, in fact, a superposition of helicity states. Yet, in an effective sense,
A can be thought of as decaying to W of a definite helicity state. See appendix J for more details.
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o Show that the W decay product energy distributionsin A — B + X + Y are exactly

the same as those in the charge-conjugate process A-B+X+Y.

o Use the nature of the A-B-W and W-X-Y decay vertices to explain the relative hard-
ness of the W decay product energy distributions, and to explain why the distributions

are exactly the same in the charge-conjugate process.

e Explore what happens when one or both of the decay vertices is changed from (V — 4)
to (V + A).

E.7.1 Determining the Relative Hardness of the W Decay Product Energy Distribu-

tions

In equation E.4, |[M|? for the process A — B + W followed by W — X + Y is

given by the following (after summing over the parent particle spin):

M~ (A-X)(B-Y) (E.44)

This relation holds for both case 1 and case 2. In case 1, there is a constant factor multiplying
this expression, while in case 2, there is a constant times a delta-function peaking at My .
A notable point about this expression is that the 4-vectors of the parent and decay products
are paired by dot product. The parent A is paired with X, and the decay products B and
Y are paired. This pairing is due to the (V — A) x (V — A) nature of the decay A — B
+ X + Y. This pairing can be used to determine which of the W decay products has the

softer energy distribution in the A rest frame:

The W decay product whose 4-vector is dotted with the parent 4-vector has the
softer energy distribution.

Why this is so will be discussed in section E.7.3. For the time being, let us take this
statement as a given and explore its implications.

As an illustration, let us first see what this statement implies about two specific
processes: (a)t = b+ 4" + vy, (£ =e, por7);and (b) u= > v, + e + V.. In (a), X

={t and Y = v;in (b), X = 7. and Y = e~. This implies that in (a), £7 has the softer
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Figure E.3: The scaled energy distribution of the W decay products in: (a) t — b + £+ +
vy and (b) p~ — v, + 7. + €.

energy distribution, while in (b), 7, has the softer distribution. Figure E.3 demonstrates
this point. This illustration demonstrates the fact that the lepton charge cannot be used to
predict which W decay product has the softer energy distribution. In case (a), the charged
lepton distribution is softer; in (b), it is the neutrino. The relative hardness of the energy
distributions can be predicted using a number of different methods. One was given at the
beginning of this section: the W decay product whose 4-momentum is dotted with the

parent 4-momentum has the softer distribution. The following are other methods:

Weak Isospin
If the parent has weak isospin T35 = +1/2, then the W decay product with opposite

isospin (F1/2) has the softer energy distribution.

Particle/ Anti-particle
If the parent is a particle (anti-particle), then the anti-particle (particle) decay product

of W has the softer energy distribution.

Feynman Diagram
In this method, one has to keep track of the momentum flow in Feynman diagrams.

In particular, the momentum flow of anti-particles are time-reversed compared to that
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Figure E.4: Feynman diagram for A — B + X 4 Y, and the charge-conjugate process.

of a particle. With this in mind, if the parent particle momentum is flowing into (out
of) the diagram, then the W decay product whose momentum flows into (out of) the

diagram has the softer energy distribution (see figure E.4).

E.7.2 The Charge-conjugate Process A - B + X +Y

The charge-conjugate process A — B + X + Y has exactly the same |./\/l|2 as for
A — B + X + Y (assuming all spins are summed over). As a consequence, the energy
distribution of X is exactly the same as for X, and the same for Y and Y. There are several
ways to demonstrate why this should be so. The clearest way is to examine the nature
of the A-B-W and W-X-Y decay vertices. This will be done in the next section. Here,
an alternative method will be introduced. This method involves the examination of the
complex matrix element.

Equation E.1 shows the complex matrix element for the process 4 - B+ X + Y.

In simplified terms, it can be written as follows:

M ~ [@(B)y"(1 = 7°)u(4)] Dpu(W) [a(¥ )y"(1 = 7)o (X)] (E.45)

288



The quantity D, (W) is the W propagator. Information on constant factors and the spin of
all the particles has been suppressed because it is irrelevant in this context. The Feynman
rule for constructing this matrix element from figure E.4 can be found in introductory
particle physics text books [1], [2], [3]. The important point to note about M is the order
in which the 4-vectors appear, from left to right: (B, 4,Y, X). When M is squared, the 1%
and 37 4-vectors are dotted together, and the 2"¢ and 4'* ones are dotted.

Using Feynman rules to obtain M for the charge conjugate process A — B + X +

Y, one obtains the following:

M~ [5(A7" (1 = 7°)o(B)] Dy (W) [E(X)7*(1 = 7°)0(Y)] (E.46)

This has the same form as equation E.45 except for the fact that: (1) the spinors u and v are
swapped; and (2) the 4-vectors A and B are swapped, and so are X and Y. For the moment,
it will simply be stated that the swap u < v is unimportant in determining the form of
|M|?. Thus the only essential difference between the two equations is the ordering of the
4-vectors. In the charge-conjugate case, this is: (4, B, X,Y). Because M in the two cases
have the same form, the rule for pairing the 4-vectors in |./\/l|2 must be exactly the same:
match the 1% with the 3"¢, and the 2"¢ with the 4'*. In other words, (4 - X)(B-Y). This
is exactly the same as before. This equality is due to the fact that the swapping takes place
at both the A-B-W and the W-X-Y vertices. This double-swapping behavior is something
that will also be seen in the next section, where the equivalence of the charge-conjugate
processes will be demonstrated using an alternative technique.

Before leaving this section, let us see what differences exist between the charge
conjugate processes. It has already been stated that charge conjugation results in the
swaps: (1) u < v; (2) A & B; and (3) X < Y. The effects of (2) and (3) are obvious. The
first swap affects the spin configuration of a particle. For example, suppose particle A were
produced with 100% spin polarization. Then one must take account its spin in order to
obtain the correct kinematics. The spin 4-vector of 4, s4, shows up in M inside A’s spinor:
u(A, s4). Earlier, when the spin information was ignored, the squaring of M resulted in the
dotting of A with X. When the spin of A4 is taken account of, A is replaced with A —m 54,

where m 4 is A’s mass. This is summarized below:
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| | M |
UNPOLARIZED [A-X][B-Y]
100% POLARIZED || [(A—mys4)- X][B-Y]

The effect of swapping v with v is to change the sign of the spin term — i.e. A — mgs4
— A+ mys4. This change in sign has no effect on the decay product energy distributions.
It does, however, greatly affect the angular distributions. In particular, whereas X has a
strong tendency to travel along A’s spin, X has a strong tendency to travel away from A’s

spin.®

E.7.3 Ezamining the W Decay Product Kinematics in Light of the Nature of the

Decay Vertices

In the last two sections, the following observations have been made concerning the

W decay product energy distributions:

eInA—> B+ X+ Y, the energy distribution of X is softer than that of Y.

e The energy distribution of X (Y) in the charge conjugate process A — B + X + Y

is exactly the same as that of X (Y)in A —> B + X +Y.

These observations will be confirmed in this section by examining the nature of the A-B-W
and the W-X-Y decay vertices. In the discussion that follows, m4 > mp, mx, and my is
assumed.

In both cases 1 and 2, the scaled energy distribution of XinAdA—- B+ X+Yis

given by the following equation:

g(mag) (h—a hOa h-l—) : (gsa Im, gh)

= h(£)- gs(2,8) + ho(£) - gm(2, €) + hy () - gn(2,€) (E.47)

In this discussion, no mention was made of the spin-dependence of the decay products. This is because
the behavior of the decay product spin is fixed by the decay vertices A-B-W and W-X-Y. The behavior
of the spin of A, however, is determined by the physics of the process that created A. Since this is not

specified, one is free to choose A’s spin behavior.
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In case 1, the scaled W mass £ is spread out between 0 and 1 (equation E.35); in case 2,
it is fixed at &, = My /M4. In the first line of the above equation, g(z,&) is described
in suggestive notation as a dot product of a triplet of scalars (h_, ho, hy) with a triplet
of functions (gs, gm, gn). The three components of both triplets correspond to the three
helicity states of the intermediate W boson. The correspondence between the components
and the helicity states depends on the charge state of the parent. For A - B + X + Y,
the 1%, 2" and 3"¢ components correspond to the left-handed, longitudinal, and right-
handed states of W. In the charge conjugate process A — B + X + Y, the 1%, 2" and
37? components correspond to the right-handed, longitudinal, and left-handed states. This

assignment is summarized below:

A-B+X+Y (left, long, right)

A-B+X+7 (right, long, left)

The triplet of scalars (h_, ho, hy) is determined by the nature of the A-B-W decay
vertex. Because this vertex has V' — A coupling, the parent A decouples from the right-

handed helicity state of W — ¢.e. h, = 0. The triplet, therefore, can be written as follows:

(h—, ho, hy) = (r7, 1 — r1, 0) (E.48)
9¢2
rT = ﬁ (E.49)

For A, V — A coupling causes it to decouple from the lefi-handed helicity state. By definition,
h, is the coupling strength of A to the left-handed state, so A, = 0. It can also be shown that
A’s coupling to the right-handed state is given by A_ = r7. Thus the triplet (h_, Ao, hy)
for A is the same as that of A.

The triplet (gs, gm, gn) is determined by the nature of the W-X-Y vertex. This
notation indicates that the energy distribution of X from the decay of a left-handed, lon-
gitudinal, and right-handed W is soft, medium, and hard (see figure E.1). The origin of
this behavior is in the V' — A nature of the W-X-Y vertex. The following chain of logic

describes how the V' — A nature explains this behavior:
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. In the V — A decay of W, the particle (anti-particle) decay product is produced in
the left-handed (right-handed) helicity state.

. To conserve spin angular momentum, the particle (anti-particle) decay product tends

to travel against (along) the W spin direction.

. A left-handed W produced in the decay A has spin pointing against the boost direction
from A’s rest frame to W's rest frame. Thus, in the rest frame of a left-handed W,
the particle (anti-particle) decay product tends to travel along (against) the boost
direction (see figure E.5). For a right-handed W, the particle (anti-particle) tends to
travel against (along) this direction. For a longitudinal W, both particle and anti-

particle tend to travel perpendicular to this direction.

. An object that tends to travel against the boost direction in the W rest frame has soft
energy distribution in A’s rest frame, while an object that tends to travel along this
direction has a hard energy distribution. An object that tends to travel perpendicular
to the boost direction has medium energy distribution. This relationship between
direction of travel in W’s rest frame and hardness of energy in A’s rest frame is due

to the nature of the Lorentz transformation (see equation 7.1 in section 7.2).

. In the decay of a left-handed, longitudinal, and right-handed W, X tends to travel
against, normal to, and along the boost direction. Thus X originating from the decay
of a left-handed, longitudinal, and right-handed W has soft, medium, and hard energy
distribution — i.e. the triplet of functions is (gs, gm, gn). For Y, the trend is opposite

that of X, so the triplet of functions is (gn, gm, gs)-

The chain of reasoning used above for A — B + X + Y is valid for the charge-

conjugate process A — B + X + Y. According to the reasoning, the energy distribution

of X from the decay of a left-handed, longitudinal, and right-handed W is hard, medium,

and soft, while for Y, it is soft, medium, and hard. In the charge-conjugate process, the

assignment of helicity states to each component of a triplet is reversed, so the triplet of

functions for X is (gs, gm, gn) — this is the same as that of X. Similarly, ¥ has triplets

(ghs gm, 9s), which is the same as that of Y.
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Figure E.5: Demonstrating the W rest frame angular distribution of W decay products
The direction z is the boost

direction from the parent rest frame to the W rest frame. The decay process is W — X +

originating from W in the three possible helicity states.

Y. The double-arrows represent spin, and ordinary arrows represent momentum (X, Y) or
boost direction (z).
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The chain of reasoning given above allows one to confirm the observations about
the W decay product kinematics made in sections E.7.1 and E.7.2. First, it was stated that
imA— B+ X + Y, the energy distribution of X is softer than that of Y. This can be
understood by examining the triplets for both objects. For both X and Y, the triplet of
scalars is: (h_, ho, hy) = (r1r, 1 — r1, 0). Both objects have the same triplet because W
originates from the same decay vertex, A-B-W. The triplet of functions for X is (gs, gm, gn)s
while that of Y is (gn, gm,gs). When the dot product is performed to obtain the energy

distributions, one obtains the following:

‘ W DECAY PRODUCT | ENERGY DISTRIBUTION ‘

Y rT'gs‘|’(]—_rT)'gm

Y rrgh+ (L —77)" gm

This shows that, of the W decay products, X has the softer energy distribution.

Another observation that was made was the fact that the energy distribution of X
(Y) is exactly the same as that of the corresponding particle X (Y) in the charge-conjugate
process. This equality has already been established formally — in the above discussions, it
has been shown that the triplets for the scalars and the functions remain unchanged for the
charge-conjugate process. This formal equality, however, obscures the physical basis, so let
us examine it more closely. As an example, let us take the X and X energy distributions
in the processes A — B + X +Yand A —- B+ X +7Y. Table E.1 shows that, at
the A-B-W decay vertex, the V — A nature of the vertex causes A to decouple from the
right-handed state of W, while it causes A to decouple from the left-handed state. At the
W-X-Y vertex, the V — A nature of the vertex causes X from a left-handed, longitudinal,
and right-handed W to have soft, medium, and hard energy distributions, while for X, they
are hard, medium, and soft. The effect of charge conjugation, therefore, is to swap left with

right at both vertices. The swapping at the A-B-W vertex, however, is undone by the swap

in the W-X-Y vertex. The result is that the energy distributions of X and X are identical.

294



A-B-W W-X-Y
LEFT | LONG | RIGHT || LEFT | LONG | RIGHT

A-B+X+Y rr | 1—rp 0 gs Im gh

A-B+X+Y 0 |1—7r| rr gh Im gs

Table E.1: The coupling of A and A to the three helicity states of W, and the X and X
energy distributions from the decay of W in the three helicity states.

E.7.4 What Happens When One or Both Decay Vertices is Changed from V — A to

V+A

The 3-component notation developed for describing the W decay product energy
distributions can be used to understand in a simple way what happens when one or both
of the decay verticesin A — B + X +Yis changed from V — A to V + A. For the sake
of concreteness, let us examine the X energy distribution.

The effect of the swap V — A — V + A at the A-B-W decay vertex is to change
the role of left and right. In other words, with V — A, A decouples from the right-handed
helicity state of W; with V + A, it decouples from the left-handed state. The triplet of

helicities, therefore, changes as follows:

V-A V+A
(h—a ho, h-l—) (rTa 1—rr, 0) (07 1-—rr, TT)

The effect of this swap at the W-X-Y vertex is, again, to change left with right. In other
words, with V — A, an X originating from a left-handed, longitudinal, and right-handed W
has soft, medium, and hard energy distributions; with V' + A, the corresponding distributions

are hard, medium and soft. The triplet of functions, therefore, changes as follows:

V-A V+A4
(g—a go, g-I-) (gsa Im, gh) (gh7 Im, gs)

The effect of changing one or both of the vertex from ¥V — A to V 4 A is summarized

in table E.2. This table demonstrates the following:
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W-X-Y
(V — 4) | (V + A)
A-B-W | (V- A) || (r7,1—7r7,0) (g5, gm>9n) | (r751 —77,0) - (ghs Im> gs)
(V+A4) | (0,1—rr,77)(gsy gm> 9n) | (0,1 = r1,77) - (gh Im» gs)

Table E.2: The X energy distribution for (V 4+ A) x (V + A) in the decay A — B + W
followed by W — X +Y.

o If just one of the decay vertex is changed (A4-B-W or W-X-Y), then the X energy

distribution is exactly the same as that of Y in a (V' — A) x (V — A) interaction.

o Changing just the A-B-W vertex results in the same X energy distribution as that

obtained by changing just the W-X-Y vertex.

¢ Changing both vertices results in the same X energy distribution as that in (V — 4) x
(V —A). In other words, the W decay product energy distributions in (V+A4)x(V +A4)
and in (V — A) x (V — A) are the same. This equality is due to the fact that the role
change of right and left at the A-B-W vertex is canceled out by a similar role change
at the W-X-Y vertex.
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Appendix F

The Full Matrix Element Calculation of ¢ Production and

Decay and ¢t Spin Correlation

F.1 Introduction

In section 7.3, it was stated that if 7,, < Thed, then ¢ and ¢ spin-alignment and
spin-coherence in ¢t production must be taken account of in order to correctly simulate the
t and t decay kinematics. It was decided, however, that these spin-alignment and spin-
coherence effects will be ignored in the ¢ and ¢ decay simulations in this thesis. One reason
why this decision was made is because the ¢ and ¢ decay kinematics with the spin effects
ignored is almost identical to that which incorporates it. In this appendix, the ¢ and ¢ decay
product kinematics in which the spin effects are taken account of (:.e. the full matrix element
calculation) is described. This is compared to that of the independent-decay procedure, and
the effect of any difference between the kinematics on the observables analyzed in this thesis

is examined.

F.2 The Full Matrix Element Calculation

In order to obtain the ¢ and ¢ decay kinematics for pp — ¢ in which the ¢ and ¢ spin-
alignment and spin-coherence effect are taken account of, the matrix element corresponding

to the diagrams shown in figure 7.3 must be obtained. Note that the diagrams are quite
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complicated because it involves all of the incoming, intermediate, and outgoing particles:
ggor gg — tt — £ + vy + by + by, + Wy + W,. One way to obtain the matrix element
is to use the helicity projection technique, which is given in general terms in appendix C
of [1], and specifically for pp — tt in [29]. In this appendix, however, a quaint but intuitive
method described in [32] and [33] will be used. This alternative method will be referred to
as the phase space weighting technigue because it gives the correct kinematics by weighting
the angular phase space of decay products of ¢ and ¢ in the ¢ and ¢ rest frames.

The first step is to obtain, in the ¢ rest frame, the tree-level differential cross section
for ¢, gg — tt (averaged over incoming parton spin, but not summed over the ¢ and ¢ spins).

They are the following:

_ .2
el 200 1[4 dam? 4 (1QY)
—Ls s _[—s% +4sm? + (1Q)?
bovo | + 1)) -
+IQ[Ps_ -ls; — Psy - ls_]
—8[Psy - Ps_ —lsy -ls_] }
de?9  _ a2f 9( lQ/
% T 2565 3[(IQ/s) 2{

—(1Q/s)' — 2(1Q/s)X(1 — B7) — 28" + 267 + 1
55 [(1Q/s)! — 2(1Q/s)28 + 28" — 267 + 1]

12(82 — (1Q/sY][(Isy - s— — Psy - Ps_) — (1Q/s)(Psy -ls_ — Ps_-1s;)]  }
(F.2)

The quantities appearing in the above expressions are defined as follows:

s = (p1+p2)? (p1, p2 = incoming parton 4-momentum)
P = pi+p

! = P1— P2

Q = t—t, (t, t = t and t 4-momenta)

st = (s%,31), (t & t spin 4-vectors)

8 = |8 =i/E, (t & % relativistic speed)

These cross sections can be converted into differential cross sections that describe

the t and ¢ decay kinematics using a special technique described in [33] and [32]. For the sake
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of notational convenience, let us assume that ¢ and ¢ decay in the dilepton decay channel —
ie.t > b+ 4t + v, andt — b+ L+ 7y (to convert to the lepton + jets decay channel,
replace £ with Wy and vy with W, for whichever of ¢ or ¢ that decays hadronically).

The t and ¢ spin-dependent cross section will be denoted as follows:

do99:99

Tm(5+, 5-) (F.3)

The s, and s_ in parenthesis are a reminder that the cross section depends on the ¢ and

t spin. This can be converted to the differential cross section do?799/d):d€),dS); that

describe the angular distribution of the decay product z = £t and ' = £~ as follows:

dod9:99 dod9:99

ads,Q, © d,

(ny,n-) (F.4)

The solid angles 2 and Q, are in the ¢ and £ rest frame, respectively. What equation F.4
shows is this: in order to obtain daqavgg/dﬂzdﬂz,dﬂt, one takes equation F.3 and replaces

s4 and s_ with n, and n_. The 4-vectors ny are defined in two steps:

Step 1
Express the ¢ spin 4-vector s, in terms of the spin 3-vector 87 in the ¢ rest frame by
boosting 3% to the tf rest frame (i.e. by —E) Follow the same procedure with the ¢

spin 4-vector s_ (boost §* by +0):

se.= (%, 80) = (083, 81 + (5 41)9) (F.5)
s_=(s2,5)=(—f-5, & + 77:1(5- §°)8). (F.6)

Step 2
To obtain n, , replace the ¢ rest frame spin 3-vector 5} by a;¢*. For n_, replace the

t rest frame spin 3-vector §* by a;é’*:

ny = (nY,i4) = at(')'ﬁ' q, ¢+ 7‘:_ 1(5- q) 4) (F.7)
~ % ~ % 2 = Ak =,
n_=(n,0i)=ox(—vF-¢", ¢+ 71 (B-47)B). (F.8)
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In the equations, ¢* is the unit vector pointing along z’s 3-momentum in the ¢ rest frame,
and ¢’ is defined similarly. The parameter a; equals +1, and o7 equals —1. The fact that
8% is replaced with the unit vector along the 3-momentum of LT in the t rest frame, while
§* is replaced with the negative of the unit vector along the 3-momentum of £~ in the ¢
rest frame, is intuitively reasonable because the charged lepton in the semileptonic decay of
the top quark is known to travel preferentially along the top quark spin, while that in the
semileptonic decay of anti-top is known to travel against the ¢ spin.

When this substitution is performed, the differential cross section comes out to be

as follows:

ngm ~ {87[(v* + 1)+ (v° — 1) cos® ;)]
—87%(7? — 1)ayog sin? 0;[cos 075 _ + 27282 cos 1 cos ¢p_]

—16758%a;a5]cos 0;(cos 07 cos 1_ + cos 8, cos 1)

+2(y — 1) cos? 6; cos ¢ cosp_]

+16v%aaz{((7? — 1) + (v — 1)? cos? 6;) cos 1. cos Y_ + cos 67 cos 67,
+(y — 1) cos b;(cos 0} cosip_ + cos 07, cos )]
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2COS2
mdeam ~ 0o agr (14 28" — 26%) — 26°(1 — 5%) cos® 6, — B cos' 0,
+2a;a78% sin? 6,[((v2 — 1) + (v — 1)?cos? 6;) cos ¢4 cos 9
+ cos 0} cos 07,
— % cos f;(cos 07 cos p_ 4 cos 0%, cos 1)

—28%y(y — 1) cos® §; cos 1, cos _]

—agaglcos 07 _ + 27?B% cos P cos p_]
x[(1 — 282 + 28%) — 28* cos? 6, + B* cos™ 4]
}

(F.10)
The symbols appearing in the above expressions are described below:
0; The angle between the momentum of ¢ and the beam in the
tt rest frame.
0, 0 @ is the angle between the momentum of z in the t rest frame

and the beam direction in the tt rest frame. 67, is defined
similarly. See below about the validity of angles between
vectors in different reference frames.

0y _ The angle between the momentum of = in the ¢ rest frame
and of ¢’ in the ¢ rest frame. See below about the validity of
angles between vectors in different reference frames.

B The relativistic speed of ¢ and ¢ in the tf rest frame.

~y The relativistic dilation factor of ¢ and ¢ in the ¢t rest frame.
y=1/V1-p2
The angles 67, 07, and " _ are peculiar because they represent angles between vectors in
different reference frames. In general, such angles may suffer from ambiguities because of
arbitrary rotations introduced by the freedom to choose coordinate systems. However, if
angles in the ¢ and ¢ rest frame are defined in terms of the coordinate system used to boost
from the t¢ to the ¢t and ¢ rest frame (see figure 7.8), then such ambiguities can be avoided,

and angles between vectors in different rest frames can be defined meaningfully. See [33]

for a justification of using mixed-reference frame angles.
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The following are some observations on equations F.9 and F.10:

e The angular distribution of z in the ¢ rest frame and of z’ in the ¢ rest frame are
correlated — 1i.e. the direction of #’s momentum in the ¢ rest frame influences that of

z’ in the t rest frame, and vice versa.

e Both equations have the form A + a;a; - B. The first term A is independent of the
z and z’ kinematics; it gives the ¢ and { momentum distribution in the tf rest frame.
The second term B depends on the kinematics of z and z’; it gives the correlation

between the direction of z in the ¢ rest frame and of z’ in the  rest frame.

o The independent decay procedure sets a; and a; to zero. It uses the remaining
expression to obtain the ¢ and ¢ momentum distribution in the ¢ rest frame. The
decay of ¢ and z’ in the ¢ and ¢ rest frame are carried out using the matrix element
for the process ¢ — b + £ + vy or b + Wy + W, and assuming: (1) the ¢ and t spin

are randomly oriented; and (2) the ¢ and ¢ decay are independent.

e If one were to focus on the angular distribution of = alone (not the orientation of z
relative to z’), then it is isotropic. In other words, the full matrix element calculation
does not introduce spin polarization. However, if the differential cross sections are
weighted by acceptance effects, it is possible, in principle, that spin-polarization effects
will show up. Monte carlo studies show, however, that such polarization effects are

negligible.

F.3 tt Spin Correlation at Production Threshold

In the last section, the differential cross sections do9%:99 /dQ);d():,d(); were obtained
in their most general form. As equations F.9 and F.10 show, the resulting expressions
are very complicated, and it is rather difficult to make sense of what kind of spin-related
effects give rise to the correlation between the angular distributions of z and z’. In order

to gain some insight in this regard, it is useful to examine the differential cross sections at
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tt production threshold — i.e. in situations where the incoming partons have just enough
energy to create a it pair.

At tt production threshold, the relativistic speed 3 of ¢t and ¢ in the tf rest frame
is zero. In the limit as 8 — 0, the differential cross sections in equations F.9 and F.10 are

(after integrating out the top quark solid angle £;):

dodd

1

E . m ~ 1 — cos 0; COS 0;/ (F]_]_)
1 do99 N
E‘mf\“l-l—cose_l__ (F.12)

The differential cross section in equation F.11 can alternatively be expressed as a function of
the angle cos 87 _. When this is done, and normalizing both distributions to 1, one obtains

the following:

1 do?? 1 1
. _ _—n-= o* F.1
099 dcos 0_*|__ 2[ 3 cos +_] (F.13)
1 do99 1
— . - n o F.14
099 dcos 0_*|__ 2[ - cos +_] ( )

These equations indicate that, in the gg production channel, £T and £~ tend to avoid
each other, while in the gg channel, they tend to attract each other. Moreover, the tendency
of {7 and £~ to attract one another in the gg production channel is much more pronounced
than the tendency for them to avoid each other in the ¢g channel — this can be seen by

the fact that the coefficient multiplying cos 6% _ in the ¢g channel is 1/3 of that in the gg
channel. These tendencies can be understood on the basis of the behavior of + and ¢ spin
at tf production threshold.

In the case of ¢q production channel, the matrix elements strongly favor the config-

uration in which the spin of ¢ and § are aligned along the beam direction. See figure F.1.

The angular distribution of £* originating from a top quark with fixed spin direction is:

f(cos byt ) = %(1 + cos 6,4+ ) (F.15)
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qa—>tf _
gg — tt

Figure F.1: The ¢ and ¢ spin orientation for ¢q, gg — tt at threshold. For the ¢gq production
channel, the spins s; and s_ are aligned along the beam. The direction of alignment is
equally likely to be along p or p. For the gg production channel, the spins are anti-aligned.
Because of interference effects, the spins are anti-aligned no matter what axis they are
projected onto.

The angle 6,+ is that between the momentum of /T and the top quark spin. The corre-

sponding distribution for £~ originating from the decay of ¢ is:

f(cosb,-) = %(1 — cos,-) (F.16)

These equations show that £t has a strong tendency to move along the t spin, and £~ has
a strong tendency to move against the ¢ spin. Since the ¢ and ¢ spins are aligned, these
equations confirm the prediction in equation F.13 that £T and £~ avoid each other.

The factor 1/3 in front of cos 0_*|__ in equation F.13 is characteristic of situations in
which the ¢t and ¢ spin are aligned in a definite direction — in the case of ¢gg production, along
the beam line. The fact that such a factor is missing in the gg channel indicates that one
cannot understand the attraction of £t and £~ simply on the basis of spin alignment /anti-
alignment. In fact, interference between matrix elements with different spin configurations
are crucial in explaining equation F.14.

At the production threshold of ¢ via the gg channel, the ¢t is in the spin singlet state
1Sy (by Yang’s theorem — see [1] and [34]). The spin singlet state is an anti-symmetric
combination of anti-aligned spin states of ¢ and : % [ITl> — |lT>]. This is a spatially

isotropic wave function, the isotropy of which is attained by interference effects. The fact
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that wave function is a combination of anti-aligned ¢ and t spin states partly explains the
fact that £7 and £~ attract one another. But the great enhancement in attraction seen in
equation F.14 is a result of the fact that the spins are not simply anti-aligned in a fixed
direction, but are anti-aligned in such a way that, no matter what direction is chosen as
the spin projection axis, the spins come out anti-aligned.

These illustrations of the behavior of the £t and £~ angular distributions at tf

production threshold demonstrate the following:

e The attraction/repulsion between £+ and £~ from the ¢ and ¢ decay is explainable

partly from the alignment or anti-alignment of the ¢ and ¢ spin.

e Spin alignment alone, however, does not explain everything. Interference effects be-
tween matrix elements with different spin configuration can have a very pronounced

effect on how £ and £~ attract/repel one another.

The behavior of the £T and £~ angular distributions away from ¢ production threshold can
be understood using the same sort of arguments as given above. The only difference is that,

away from threshold, the behavior of the ¢ and £ spin are more complicated.

F.4 tt Spin Correlation Away from Threshold

In the last section, the distribution of cos 67 _ in the ¢g and gg production channels
gave a succinct description of the effect of ¢ spin correlation on the angular distribution
of £T and £~ at the threshold of tf production. It turns out that the effect of ¢f spin

correlation can be expressed in terms of cos 8% _ even away from the threshold. The cos 8% _

distributions as a function of the top quark relativistic speed 8 have the following form:

L e %[1 —Q(B) cost_] (F.17)

099 dcos 0_*|__

1 do99 1
Il = o F.1
099 dCOS 01_ 2[ G(IB) Cos -|——] ( 8)

The 3-dependent coefficients Q(8) and G(f8) are defined as follows:
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Figure F.2: The functions Q(8) and G(8). These functions determine the degree of asym-
metry in the cos 8% _ distribution. Positive values of the function indicate repulsion between
£T and £~, and negative values indicate attraction.

QB = ; (F.19)
(g = ~UT+ 387 =581 + 5(35 - 208 + BY)(1n 5 — )
(T—582+28") + (33 — 1882 + 8*) (5 In {15 — 2)

Equations F.17 and F.18 are generalizations of those appearing in equations F.13 and F.14

(F.20)

— the reader can verify that, in the threshold limit, Q(8) = %, and G(B8) = —1. Figure F.2
shows () and G plotted against 8.

There are a couple of remarkable features about Q(8) and G(8). First is the fact
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that Q(B8) is 1/3 for all values of 3. This suggests that, even away from the threshold, the
t and ¢ spin in the ¢g production channel are always aligned along some fixed axis (though
not necessarily along the beam line). Second is the fact that G(1) = 1/3 (this may not be
apparent from the graph in figure F.2 because the approach of G(8) to 1/3 as  — 1 is
very abrupt). In other words, in the limit 8 — 1, G(8) — Q(8). Although the author is
not aware of the details, this may indicate the convergence of spin properties in the gg and

gq production channels in the limit of ultra-relativistic top quark.

F.5 The Top Quark Decay Product Kinematics in the Full
Matrix Element Calculation Versus that in the

Independent Decay Procedure

The goal of this section is to see what differences exist between the ¢ and ¢ decay
kinematics in the full matrix element calculation on the one hand, and in the independent
decay procedure on the other. Before this can be done, however, the decay kinematics
must be parametrized. It was shown in section 7.2 that four parameters are necessary and
sufficient to describe the top quark decay in the top rest frame. The same parameters as
those described there will be used to describe the ¢ and ¢ decay in their respective rest
frames. See figure F.3. Note that another set of parameters is needed to describe the t and
t momentum distributions. However, these distributions are the same in both procedures,
so this can be ignored in comparing the decay kinematics.

One thing to note in figure F.3 is the fact that the ¢ and ¢ decay are described in the
lepton + jets channel — i.e. one of the top quarks decays semileptonically (£,—b; + £ + v¢)
and the other decays hadronically (¢;,—bp + Wy + W,). This may seem inconsistent with
the description of ¢t spin correlation effects given so far, where the decay was assumed to
be in the dilepton channel: t — b + £T + vy and t — b + £~ + 7y The use of the dilepton
channel was motivated by the fact that it is the most natural channel to use in describing
the spin correlation effect. However, since this thesis deals with the lepton + jets decay

channel, the discussion in this section will be made in terms of this channel. The results
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Figure F.3: The parameters used to describe the decay kinematics of #; and t; in their
respective rest frames. The t; decay product momentum vectors lie in a plane, and the same
for ty. The decay plane for ¢;, and t; are called the H-plane and the L-plane, respectively.

on spin correlation obtained so far for the dilepton decay channel can be translated to the
lepton + jets channel by swapping one of the charged leptons in the dilepton channels with
W,. This is appropriate because both £ and Wy have weak isospin —1/2.

The t; decay product momenta lie in a plane. This plane will be referred to as the
L-plane (because it contains the decay product momenta of the semi-Leptonically decaying
top quark). It takes three parameters to span all possible orientation of this plane. The three
parameters will be chosen to be 8;, ¢¢, and ¢-,,. The angles §; and ¢, are the two angles
required to define the direction of £ in the t; rest frame, while ¢-,, is the angle of rotation
of the L-plane about the line containing the £ momentum vector. This f-centeredness of
defining the decay plane orientation has good reasons, as will become apparent soon. A
single parameter is necessary to fix the magnitude and direction of the vectors in the decay
plane. This parameter will be taken as the energy of £, E,.!

The parameters used to describe the decay of t; is analogous to that for £,. The
parameters 8y, ¢¢, Pp-,,, and E; are changed to 04, ¢4, dp-u, and E4. Also, the decay plane
for tj is referred to as the H-plane because it contains the decay product momenta of the
Hadronically decay top quark.

Having defined the parameters to describe the decay of #; and ¢;, one can now

!See chapter 7.2 for details on the parameters that describe the top quark decay in the top rest frame.
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compare and contrast the decay product kinematics in the two procedures. First of all, let

us note the aspects of the kinematics that both procedures have in common.

e The distribution of E; is independent of the other parameters. That is, no matter
what 6y, ¢y, and ¢, are, the distribution of E; is the same. The same goes for
the distribution of E4. The E; and E,; distributions are given in equation 7.17 in

section 7.3.

e The distribution of ¢-, is also independent of the other parameters. The same goes

for the distribution of ¢-,,. These angles are distributed randomly.

This leaves the distribution of the angles 8, and ¢, in the decay of t;, and 84 and ¢4 in
the decay of t,. The distribution of these angles are different between the full matrix element
calculation and the independent decay procedure. In the independent decay procedure, all
four of these angles are randomly distributed. In the full matrix element calculation, they
are distributed according to equations F.9 and F.10. In other words, in the independent
decay procedure, the momentum vector of £ and Wy point in random direction in the ¢, and
t;, rest frame, respectively, whereas in the full matrix element calculation, the direction of
£ in the t; rest frame affects the direction of Wy in the ¢, rest frame, and vice versa. Also,
the direction and magnitude of the top quark momentum in the tf rest frame affects the
correlation between the direction of £ and W3 momenta.

Let us describe the kinematics of the two procedure from yet another point of view.
When the direction of the £ and Wy momentum vectors are fixed, the decay kinematics of
t; and t;, in the two procedures are identical. That is, the distribution of the direction and
magnitude of the #, and ¢;, decay product momenta in their respective decay planes and the
orientation of the decay planes about the £ and W; axes are exactly the same in the two
procedures. The distribution of the £ and W; momentum vectors, however, are different in

the two procedures.

F.6 Quantifying the Difference between the Kinematics in
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Figure F.4: The distribution of cos#} _ from monte carlo events generated using the full
matrix element calculation (points). The solid line is the analytic distribution obtained
from the full matrix element calculation. The dashed line shows the distribution for the
independent decay procedure.

the Full-matrix Element Calculation and Independent

Decay Method

The difference between the ¢t and # decay kinematics in the full matrix element
calculation on the one hand, and in the independent decay procedure on the other, can
be summarized by the distribution of the angle cos 8’ , which, in this context, is the
angle between the £ momentum in the ¢; rest frame and the W3 momentum in the ¢, rest
frame. Figure F.4 shows this distribution for the two procedures. The points in the figure
show the distribution of cos#7 _ obtained from a monte carlo generator that incorporates
the full matrix element calculation. The solid line shows the analytic cos 8% _ distribution
obtained from the matrix element. The dashed line is the distribution for the independent
decay procedure. The formula for the cos 6}  distribution from the full matrix element
calculation is the following:

flcos@) )= - (1—0.256-cosf_) (F.21)

N | =
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The coefficient —0.256 multiplying cos 6% _ assumes that 90% of the tf events originate from

gq collisions, and the rest from gg collisions.
Figure F.4 shows qualitatively that the difference between the top quark decay
kinematics in the full matrix element calculation and the independent decay procedure is

not very large. In order to quantify this observation, let us imagine performing the following

monte carlo exercise:

1. Generate N tt events using a monte carlo that incorporates the full matrix element

calculation.
2. Obtain the distribution of cos #7 _ from this monte carlo sample.

3. Perform a 2-component log-likelihood fit to the distribution. The two components are

the following distributions:

1
fo(cosbi_) = 5 (F.22)
1
fi(cos@y_) = ) (1 —-0.256-cos 6’ _) (F.23)
The combined function is:
f(cos@y _)=h- fi(cosb)_)+ (1 —h)- fo(cosb}_) (F.24)

The function f; is the distribution from the full matrix element calculation, and fy
is that from the independent decay procedure. The fit parameter is h, which can be

interpreted as the fraction of events originating from the distribution f;.

4. Repeat the above procedures N, times. Each trial is referred to as a pseudo-

experiment.

When this procedure is carried out, one obtains N.,, number of fit parameters
ho that minimize the log-likelihood function. These values are distributed as a gaussian?®
centered at hy = 1.0 with width ¢ = K/+/ N, where K is given approximately by the

following:

2This statement is only approximately correct. In most instances, the approximation is excellent. See

appendix M for a discussion on conditions under which the approximation fails.
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L (fi(=) - fo(ﬁ”))2
= [ (:25)

The variable z is equal to cos 87 . The result of the integral is:

K =6.63 (F.26)

In other words, the statistical error in a 2-component fit is ¢ = 6.63/+/N.

In order to get a feel for the size of K, consider the error on a binomial distribution,
which is ¢ = 0.5/+/N. A binomial distribution would correspond to an hypothetical situa-
tion where the cos 0_*|__ distribution from the full matrix element calculation has no overlap
with that from the independent decay procedure. In this case, one can distinguish events
originating from the two methods on an event-by-event basis. In reality, however, figure F.4
shows that the cos 8% _ distributions overlap a great deal. This large overlap makes it dif-
ficult for one to distinguish between the two event generation models. This difficulty is
quantified by the size of the K-factor: K = 6.63. This is 6.63/0.5 = 13.26 times greater
than in a binomial distribution. One consequence of the size of the K-factor is this: for
the 2-component fit to have equal statistical significance as the binomial distribution, one
needs 13.262 = 175.8 times as many events. This, in some measure, indicates how difficult
it is to distinguish — ¢.e. how similar are — the decay kinematics in the two procedures.

Another way to get a feel of how similar the two decay kinematics are is to consider

this question:

Assume that a sample of N tt events originate from the full matrix element
calculation. What is the minimum number of events required in order to have
at least a 97.5% chance that the fit value kg in a given experiment lies outside
of 2-¢ region of the h distribution from the independent decay procedure?

This question can be restated as follows. Suppose one is given two gaussians of approxi-
mately equal width o = K/\/Jv One peaks at h = 0, the other at o = 1. The two gaussians
intersect each other at the midpoint A = 1/2 for all values of N. How large does N have
to be in order for the distance from the peaks to the intersection point is equal to 2-07 See

figure F.5. The equation corresponding to this question is:
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Figure F.5: The distribution of the fit parameter Ay when the parent distribution is the
full matrix element calculation (solid curve) and the independent decay procedure (dashed
curve). The distributions are gaussians with approximately the same width, o = K/ V/'N.
The distributions intersect at the midpoint between the two peaks — i.e. hg = 0.5. The
number of events N is chosen so that the distance from the peak to the intersection point
is 2-0.

1
20 = 3 (F.27)

Substituting ¢ = K/+/N and solving for N, one obtains the following:

N = 16K? (F.28)
= 16 x (6.63)?

= 703

Thus about 700 events are needed before the two kinematics can be distinguished from one
another at the 2-¢ level.

What has been shown up to this point gives a good indication that the kinematics
from the two procedures are similar enough so that the choice of which procedure to use
to model t and t decay is unimportant. Since the conclusions reached above concerned

the parton-level distributions, one would expect that after performing the full simulation
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— t.e. taking account of gluon radiation, converting outgoing quarks and gluons to jets,
performing detector simulation, etc. — the difference in the kinematics between the two

procedures would be even more difficult to detect.

F.7 The Effect of the Difference in Kinematics on the

Observables Analyzed in this Thesis

The ultimate test of whether the difference in the kinematics from the two procedures
can be ignored or not is to examine the difference in the distributions of the observables
examined in this thesis (cosU; (¢ = 1,2, 3) and E/). Another quantity that should be com-
pared between the two procedures is fis, the fraction of events where the ¢ reconstruction
algorithm assigns correctly assigns the correct jet to the b-quark from the decay of ;.

Figure F.6 shows the observable distributions. The solid histogram is from the
independent decay procedure, and the points are from the full matrix element calculation.
The distributions are statistically indistinguishable. The b-quark matching fraction f;, for

the two procedures are:

Jot
independent decay | (47.0 4+ 0.8) %

full matrix element | (44.94+ 0.8) %

The difference between them is 2.1%. The statistical error of the difference between two
quantities with independent statistical errors is o = 1/0? + o2. In this case, the statistical
error of the difference is v/2 x 0.8% = 1.1%. Thus the two values of fi; are 1.9 standard
deviations away from each other. This may indicate a slight difference between the two

values, though it is not unlikely to be a fluctuation.

F.8 Conclusion

The t and ¢ decay kinematics in the full matrix element calculation was examined,

and it was compared to that in the independent decay procedure. The full matrix element
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Figure F.6: The distribution of the observables cosU; (i = 1,2,,3) and E; from the inde-
pendent decay procedure (solid histogram) and the full matrix element calculation (points).
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calculation takes account of ¢ and ¢ spin-alignment and coherence between matrix elements
of different spin configurations, whereas the independent decay procedure does not. The
difference in the ¢ and ¢ decay kinematics for the two procedure is this: in the independent
decay procedure, the momentum of £ in the ¢ rest frame and that of £~ in the f rest frame
are randomly distributed; in the full matrix element calculation, they are correlated. In all
other respects, however, the ¢ and ¢ decay kinematics is the same for the two procedures.
In other words, if one focused on the decay kinematics keeping the direction of £+ and £~
fized, it is the same in both procedures.

When one plots the cosine of the angle between the momentum of £* in the ¢ rest
frame and that of £~ in the f rest frame (cos 85 _), one finds that the distribution is flat in
the independent decay procedure, whereas it is skewed toward negative values in the full
matrix element calculation — i.e. the £T and £~ momenta have some tendency to avoid one
another.

The statements made above about the kinematics in the two procedures applies to
the lepton + jets decay channel too. To translate from the dilepton channel to the lepton +
jets channel, one replaces one of the charged leptons with Wy in the hadronically decaying
top quark ;.

The difference in the ¢ and ¢ decay kinematics in the two procedures is small: even
at the parton-level, 700 events are necessary to distinguish the cos 8% _ distribution from
the two procedures at the 2-o level. After taking account of gluon radiation, conversion of
quarks and gluons to jets, detector simulation, etc., the difference between the kinematics in
the two procedures become smaller yet. As far as the observables considered in this thesis
are concerned, the difference between the two procedures is undetectable. Thus it is safe to
conclude that the choice of which procedure to use to simulate the ¢ and ¢ decay kinematics

is unimportant.
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Appendix G

The Formulas for do%/dt and do%9/dt

In this appendix, the differential cross section formulas for obtaining the ¢ and &
momentum distribution are presented.
The Feynman diagrams used to obtain do%/dt and do99/dt are shown in figure G.1.

The differential cross sections formulas follow:

qq R
%%ﬁzzﬁswmz—nkumﬂ—ay+mm%] (G.1)

do99 7ol m2— ) (m? —ii

il Sl 0) (G.2)

m%(§—4mt)

3(m}—t)(m}—a)

2

+4 (M?—f)(Tn(?T;;Z;Tn?(M?Jrf)
+4 (m%—f)(m?r;%]z;;m%(m%-l—ﬂ)
_3 (m: —t)(T:(:T;;_):Smi (Ij_f)
_gm; —t)(grzin—%u—);r)mt (i-a)

]

The symbols §, £, and @ represent the Mandelstam variables:

5= (p1 +p2)° (G.3)

i=(p —t)? (G.4)
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Figure G.1: The tree-level Feynman diagrams for ¢q, gg — tt.

i = (p1 —1)° (G.5)

In the formulas above, p; and p, are the 4-momenta of ¢ and g for qg — tt; for gg — tt,
they are the 4-momentum of g; and g,. The symbols ¢ and ¢ denote the 4-momentum of

the top and anti-top quark.
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Appendix H

Obtaining the Standard Model Distribution of the Four

Parameters from the Matrix Elements

The standard model distribution of the four parameters that describe the top quark
decay in the top rest frame can be obtained from the matrix element for the process t — £
+ vy + b. For the sake of brevity, the calculation will be performed only for the charge state
t — €T + vy + b; the results for the charge conjugate process can be obtained by invoking
known C' and P asymmetry and C'P symmetry. Since the independent decay assumption
is used, the top quark is predicted to have no spin polarization. This assumption will be
relaxed in the calculations that follow — i.e. the possibility that the top quark spin points
in a preferred direction will be allowed.

The spin-dependent matrix element for this process is as follows:

(g — WNW,,/M%V)
w2 — M%V + Ty My

o _
Mst,sb,sl,su - Z(—g)Wb u(ba -S‘b)‘)’“(l - 75)u(t7 st) (H]')

X (—Zya(v, s,)7" (1 — ¥°)v(£, 5¢)

In this formula, the 4-momentum of each particle is specified, in obvious notation, as b, ¢,
£, v, and W, and the spin 4-vectors are denoted by s with subscripts for each particle. The

numerator of the W propagator can be written as follows:

Z f; /éoz = _(guu - WNW,,/M%V), (H2)

where ¢, are the polarization vectors of W, and the index a spans the three helicity states
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of W. When the summation over helicity states is placed in the numerator of the W

propagator, the matrix element becomes:

1
w2 — M%V + ierW

Mst,sb,sl,su - _(g)vvtb
x Y a(b, se)y*(1 — v7)ult, ) foo £aT(Vy 507" (1= 7" )u(L, 5¢) (H.3)

The spin 4-vector for the top quark has been replaced by 1/2 to indicate the fact that
it is mot being summed over, but fixed in the 4 direction along some arbitrarily chosen
z-direction. When the matrix element is squared, summed over the spins of b, v, and £, and

the resulting expression simplified, it looks like the following:

PN T ((f - b)) b b AT T [ T b A1) (HA)

a,B
The summation indices over the W helicity states, a and 3, take on the values +, —, and 0
for right-handed, left-handed, and longitudinal helicity states, respectively. The first trace
describes the decay t — b + W, and the second trace describes W — £ + v. Term-by-term,

|M|? is given as follows (my is set to 0):

a B t—>b+WT Wt st 4o
Ly <0 M (1 + cos 97)°
2
- - 2my Ep(1 — cos by ) —W(l — cos 9;)?
mi M
0 0 mtEb(MW )2(1 + cos HW) ) M TW(]_ — Cos2 1/)l) |
0 + ~0 2 ( W) sin; (1 4 cos ) )e '™
i . Lis a2 :
0 - 23;( e )2m, Ey sin Gy \/_6 (— M ) sint; (1 — cos 9 )e’™e
+ 0 ~ 0 _M( W) sin 4 (1 4 cos ¢} e
0 —iej; (]\’/I"‘fv )2m, Ey sin Gy \/5( 5 ) sin (1 — cos i} )e "
. 2 .
+ - 0 —216(]\/[2 )sin2 ’1/1* 2100y
- 4+ 0 216(MZ )Sln2 ’1/1* —2i0

The symbols that appear in the terms are described below:

Ey b-quark energy in the top rest frame

0w Angle between W’s momentum and top spin, top rest frame.
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U Angle between the £ and W boost vector, W rest frame.
oy Azimuthal angle of £ in the plane perpendicular to the W boost direction.
) Arbitrary phase factor from the freedom to choose the azimuthal coordinates

in the W rest frame

See appendix I for a description of the coordinate systems used to define the angles. It
should be noted that the terms above for t — b + W are approximations because my
was set to zero. This introduces fractional errors on the order of O(m]/MZ/) ~ 0.004
— 1.e. the approximate value is on the order of 0.4% off from the correct value. For the
same reason, the terms (a,3) = (+,+), (0,+), and (+,0) for ¢t — b + W™ vanish only
approximately — i.e. they are on the order m?/M§, ~ 0.004 times the magnitude of the
other terms. The fact that they are approximately zero is due to the V — A coupling of ¢
to W and b — i.e. t couples to a left-handed W, but is almost decoupled from the right-
handed W*. On the other hand, the terms (a,3) = (4, —) and (—, +) vanish exactly: the
left-handed and right-handed states don’t interfere. The terms (a,8) = (0,—) and (—,0)
represent the longitudinal-transverse interference; they are comparable in magnitude to the
non-interference terms.

The terms in |./\/l|2 are described by three independent parameters: 8y, ¥;, and
ay (Ep is constant, and § is an arbitrary phase factor). These parameters are related the
four introduced in chapter 7 in some complicated manner; by appropriately manipulating
terms, the results can be expressed in terms of those parameters. The fact that only
three parameters are needed implies that at least one of the four parameters is randomly
distributed.

When the terms in |M|? are added, the resulting expression is:

M
F(cosOw,cosyp;,ar) = 2mtEb(TW)2{

(1 — cos By )(1 — cos;)?

(921 4 cos By )(1 — cos? 4})
My,
g sin Gy sin 97 (1 — cos ;) sin oy

} (H.5)
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The first two terms inside the curly braces in this equation are non-interference terms, while
the third is from interference. In order to express the parameter distribution in terms of
those introduced in chapter 7, it is useful to convert the angle 9; to 1, using equation 7.3.

When the converted angle is substituted in equation H.5, one obtains the following:

8z 1 — cos 1y .
(224 1)? (1 — Bw cos 1/;[)2(1 +£-3), (H.6)

My 2
G(cos by, cos Py, o) = 5 (z° - 1)

where z = m; /My, Bw is W’s relativistic velocity in the top rest frame, and { and 5 are
unit vectors along £’s momentum and the top spin, both in the top rest frame. In arriving

at this formula, the following relations were used:

5§ = (0, —sinfy, cos ) (H.7)
i= (sin 7y cos ay, sin 9y sin ay, cos ;) (H.8)
$-£= —sinfy sin ¥ sin ay + cos By cos ¥y (H.9)

Defining 6, as the angle between { and 3, it is seen that:

8z? 1 — cosy
(22 4+ 1)? (1 — Bw cos¢y)?

(14 cosby) (H.10)

4
G(cos by, costpy) = szw (z? — 1)

For aesthetic reasons, the variable cos 1), will be changed back to cos ;. The result

after the substitution is the following:

F(cos b, costp;) = ng}V(mZ - 1)(1+ %Z)g(cos ;) f(cos by) (H.11)
f(cos ;) = %(1 + cos by) (H.12)
g(cosyp;) = h_ - gp(cos ;) + ho - gn(cos9;) + hy - gs(cos ;) (H.13)
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h.o = ——— H.14
1+ 22/2 ( )
z?2/2
hg = ——— H.1
T (H.15)
hy =0 (H.16)
my
= H.1
T My (H.17)

The quantities h_, hy, and h( are referred to as the helicity fractions. The formulas for the
helicity fractions are approximations obtained by setting mj; = 0. This introduces errors
on the order of O(m?/M?,) ~ 0.004. The functions g;(cosv}), i = b,n, f are the angular
distributions (in the W rest frame) of the charged lepton from the decay of W in the

left-handed, longitudinal, and right-handed helicity states:

acos 97) = (1~ coseh})’ (H.18)
gu(cos 97) = (1 cos” ;) (H.19)
gs(cos ;) = 2(1 + cos 97)? (H.20)

The subscript b, n, and f stand for backward, normal, and forward. They indicate where
each function reaches a maximum. See figure 7.6 in section 7.3.

Before leaving this appendix, a couple of points on f(cosf;) and g(cos;) are in
order. First, the form of f(cos8;) given in equation H.12 is valid for a 100% spin-polarized
top quark. If the degree of spin polarization is a (0 < a < 1), then equation H.12 must be

generalized as follows:

f(cos ;) = %(1 + a - cos by) (H.21)
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When a = 0, the top quark spin is unpolarized; when o = 1, it is 100% polarized. To
further generalize the result to accommodate the charge conjugate process t — £~ + 7y +

b, the following modification is made:

f(cos ;) = %(1 + gra - cosby) (H.22)

The quantity g is the sign of the charge of £. From this formula, it is seen that £T tends to
decay toward the t spin vector, whereas £~ tends to decay away from the ¢ spin vector.
The second point is about the cos); distribution in the charge-conjugate process
t — £~ + 7y + b. In section E.7 of appendix E, it is shown that g(cos ;) in the charge-
conjugate process is exactly the same as it is in the original process. See appendix E.7 for

more details.
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Appendix I

The Coordinate System in the Top and the W Rest Frames

The coordinate systems used to describe the angles that appear in formulas in
chapter 7 and appendixes H and J will be described here.

Since the decays t — WT + band W — £ 4 vy are being examined, it is useful to
set up coordinate systems in the £ and the W rest frames. The coordinate system in the ¢ rest
frame is illustrated in figure I.1. Note that it is defined in terms of the W momentum and
the top spin. This is a natural choice for two reasons. First, since the angular distribution
of the charged lepton is of interest in both the W and the top rest frames, defining one
of the coordinate axes as the boost direction from the top to the W rest frame simplifies
the conversion of angles between the two frames. Second, the use of the top spin vector

[4

to define the azimuthal coordinates ‘1’ and ‘2’ allows one to use the azimuthal angle as a

convenient means of locating the £ momentum relative to the top quark spin.

Top Rest Frame

W (3) W = W momentum vector
1=2plane ,/‘: 5 lep s = Top spin vector
/ ‘f T Ow = angle between W and s
M
| VY, = le bet W and |
e‘,ﬁ G ] w = angle between W and lep
S ! o, = azimuthal angle of lep in 1-2 plane
| Viep
L 1—direction = (W X s) /IW X sl
/\ W—s plane 2—direction =W X 1

Figure I.1: The coordinate system used in the top rest frame.
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W Rest Frame

w(3)
1-2 plane
2 lep W = boost direction top — W rest frame
! Proj(s) = projection of s on 1-2 plane
g V', = angle between W and lep
M e, = azimuthal angle of lep in 1-2 plane
"Proj(s)

Figure 1.2: The coordinate system used in the W rest frame. The azimuthal angle oy
remains unchanged from the top rest frame, but the polar angle v; is different from the
value vy in the top rest frame. The projection of the top spin vector § onto the 1-2 plane
is in the negative ‘2’ direction, or a = 270°.

The coordinate system in the W rest frame is shown in figure 1.2. Since one boosts
along the direction ‘W’ to go from the top to the W rest frame, the components of mo-
mentum in the 1-2 plane remain unchanged. In particular, the azimuthal angle a, stays the

same between the top and the W rest frames. On the other hand, the angle between W

and ¢, ¢y, changes between the two frames according to the following relation:

cos ¢y — Pw
1 — Bw cos ¢y’

where By is the relativistic velocity of W in the top rest frame (note: Gy is constant in the

(L.1)

cos )y, =

zero-width approximation for the top and W masses). The asterisk is intended to denote
quantities in the W rest frame. Finally, it should be noted that the projection of the top

spin vector onto the 1-2 plane is at 270° in azimuth, or opposite the ‘2’ direction.
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Appendix J

The VW Interference Effect

The angle cos); was defined in chapter 7 as that between the charged lepton mo-
mentum vector in the W rest frame and the boost direction from the top to the W rest

frame. This angle is distributed according to the following formula:

g(cosvp;) = h_ - gp(cos ;) + ho - gn(cos ;) + hy - gs(cos y}) (J.1)

The functions gy(cosv;), gn(cosy;), and gs(cosp;) are the cosp; distributions from the
intermediate W in the left-handed, longitudinal, and right-handed helicity state in { —
W* + b; h_, hg, and h, are the helicity fractions for the left-handed, longitudinal, and
right-handed states. These are all defined in equations 7.13 through 7.15 and 7.9 through
7.11.

The quantities A_, k4, and hg have these properties: (1) they are non-negative; and
(2) h— + hy + hg = 1. These, together with equation J.1, suggest the following model for

the decay of the top quark:

1. First, t — WT + b. The resulting W is in the left-handed helicity state a fraction
h_ of the time, in the longitudinal state hg of the time, and in the right-handed state
h, of the time. For m; = 175 GeV, W is in the left-handed, longitudinal, and the

right-handed helicity states 30%, 70%, and 0% of the time.

2. The intermediate W™ with helicity —, 0, and + decays to £ and v, with cos;
distributed according to the distribution gy(cos ), gn(cos;), and gs(cos;), re-

spectively.
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According to this model, the parameters h_, hg, and h, are the branching fraction of ¢ to
decay into a b and a W in the left-handed, longitudinal, and right-handed helicity states.

This model for the top quark decay, however, is incorrect. If it were correct, then
the intermediate W must always be in a helicity eigenstate. The matrix element for ¢ —

£ + vy + b, however, is a coherent sum over the W helicity states:

1
W2 M%V + erMW

Z b Sb ) (t _) t /éoé (Va 51/) (]- _75)1)([, 5[) (J2)

«

g
Mst,sb,sl,su - _(_)Wb

The details of this formula can be found in appendix H. What is important here is the fact
that the matrix element, before squaring, is a sum over the three helicity states (represented
by the summation index a). Upon squaring, and summing over the spin of b, v, and £T,

one obtains the following:

PN (- b)) Ao b A=) T [ kT A1) (33)

a7/6

The summation index a and 3 is over the W helicity states —, 0, and +. The terms a = 3
are the non-interference terms, while o # 3 are the interference terms. The first trace in the
sum describes ¢ — W1 + b, and the second trace describes W1 — £T + y,. Term-by-term,

the matrix element squared is as follows:

a B t—>b+WT Wt st 4o

Ly <0 e

- - 2my Ep(1 — cos by ) —W(l — cos ¢;)?

0 0| mEy(375 )2(1 + cos ) MTW(l — cos®})

0 + ~0 e (M )sintp; (1 + costp;)e "¢

0 - z\’;;(ﬁé )2m, Ey sin Gy _M(MZ ) sinep; (1 — cos 9y )e o

+ 0 ~0 _M( W) sin 4 (1 4 cos ¢} e
0 —iej; (]\’/I"‘fv )2m, Ey sin Gy ( ) sin e} (1 — cos ) )e '

+ - 0 _2“5(M2 )sin® ¢e Zioy

- ¥ 0 216(]\/[2 )sz pre — i,

See appendix H for details. The important point to note here is the fact that the interference

terms have magnitudes that are comparable to the non-interference terms.
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If the view that h_, hg, and h, are branching fraction were correct, then only the
first three terms would be needed to describe the top quark decay kinematics in the top
rest frame. The fact that extra terms make large contributions to the sum imply that the
interference terms must be influencing the top quark decay in important ways. Just how
are these terms influencing the top quark decay? To understand this, it will be useful to
examine closely the angular distribution of £* in the W™ rest frame.

The first thing that should be done is to define a coordinate system. The system
defined in appendix I is well suited for this purpose. The coordinate system in the top rest
frame is defined by the three unit vectors 4, 12, and @3, where 43 is the unit vector along
the momentum of W, 4, is along the cross product @3 X §, where 5 is the top quark spin
vector, and 15 is along t3 X ;. See figure 1.1. This coordinate system is used to boost the
momentum vector of £ and vy to the W rest frame. In the W rest frame, the same set of
unit vectors are used to define a coordinate system. See figure I1.2.

In figure 1.1, Oy is the angle between § and 3, v, is the angle between py and s,
and ay is the azimuthal angle of py in the 1-2 plane. In the W rest frame, 1; is the angle
between the £ momentum vector and 43, and ay is the azimuthal angle. It should be noted
that since the boost is defined to be along the 3-direction, the 1, # v, but the azimuthal
angle ay is the same between the two frame.

One final point about figures 1.1 and 1.2: by comparing the two coordinate systems,
it is clear that the projection of the top quark spin onto the 1-2 plane (denoted proj(s)) is
in the negative 2-direction. In other words, the proj(s) is at 270° in the 1-2 plane.

Having defined the coordinate system, let us examine how W decays. First, let us
assume that the naive model of the top quark decay is correct — i.e. that t — WT +
b, where W is in a definite helicity state, and W™ subsequently decays to £T + v,. If
this model were correct, then cos; would be distributed according to equation J.1. The
azimuthal angle a; would be distributed randomly.

Next, let us examine the distribution of cos; and oy when the interference effect

is taken account of. When the terms in |[M|® are added, the following is the result:

M
F(cosOw,cosyp;,ar) = 2mtEb(TW)2{
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(1 — cos Oy )(1 — cos})?

H(—2)2(1 4 cos By )(1 — cos? 45})
My

g sin Gy sin 97 (1 — cos ;) sin oy
My

} (3.4)

It was stated in appendix H that the first two terms in the curly braces come from the
non-interference terms (the terms that one would get from the naive model), and the third
term comes from W interference. It is seen that only the interference term depends on
ay. Therefore it is clear that the interference effect is somehow influencing the azimuthal
distribution. To understand clearly how the azimuthal distribution is being influenced,
let us integrate out the cos 0y and cos1; dependence in equation J.4. The result is the

following:

1 3 ( Tho) .
Alag) ~ —1— — | — 5 | sinag
2 16 \ 1+ 3(575)?
1
= ﬂ(l —0.598 - sinay) (J.5)

The numerical coefficient multiplying sin a; in the second line of the equation assumes m;
= 175 GeV. It is seen that the azimuthal angular distribution peaks at ay = 270° — i.e.
toward proj(s).

Let us summarize the effect of W interference:

o The distribution of cos); is the same, whether or not the interference effect is taken

account of.

e The distribution of a4 is random without the interference effect. With interference,
ay is pulled toward the projection of the top quark spin in the 1-2 plane.
These observations lead to the following conclusion:
If the top quark spin is unpolarized, then the top quark decay kinematics ob-

tained using the naive model is indistinguishable from that obtained using the
full calculation that takes account of the W interference effect.
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This conclusion follows because if the top quark spin is unpolarized, then, event-by-event,
the top quark spin orientation is random. Thus even though ay is pulled toward proj(s),
since proj(s) is randomly oriented, the distribution of a; is statistically indistinguishable
from a random distribution.

On the other hand, if the top quark spin is polarized, then the top quark decay
kinematics obtained using the naive model is different from that obtained using the full
calculation. If the naive model is used, the charged lepton angular distribution in the top
rest frame is isotropic. If the full calculation is used, the angular distribution of £T is
pulled toward (£~ is pushed away from) the ¢ (t) spin polarization vector, which points in
a fixed direction in space. Therefore, using the full calculation, the angular distribution is

asymmetric relative to the spin polarization vector.
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Appendix K

An Important Assumption Underlying the Log-likelihood

Fit

K.1 Introduction

In this thesis, the observable distributions from the experimental data are compared
to those predicted by monte carlo simulations using the 2-component log-likelihood tech-
nique introduced in chapter 8. If the observable is denoted by z, the component functions
denoted by fo(z) and fi(z), and the fit parameter is a, then the argument of the logarithm

to be minimized has the following form:

fa(z) = a- fi(z) + (1 — @) - fo() (K.1)

For instance, if z is one of the angular observables cos U;, then f;(z) is chosen in this thesis
as the distribution of z from a 100% polarized top quark, fo(z) is that from an unpolarized
top quark, and « is the degree of polarization. Or, if ¢ = Ey, then fi(z) is the soft energy
distribution g,(Ey), fo(z) is the medium energy distribution g,,(E¢), and a is the transverse
helicity fraction (i.e. left-handed for ¢ decay, right-handed for ¢ decay).

At first glance, the validity of equation K.1 may seem obvious. For example, if
the degree of polarization is 50%, then it may seem obvious that the distribution of z is
obtained by combining 0.5 times the 100% polarized distribution f;(z) and 0.5 times the

unpolarized distribution fy(z):
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fos(z) =0.5- fi(z) + 0.5 fo(z) (K.2)

This is certainly true at the analytic stage, since fi(z) = (1/2)(1+ ¢;- ), and fo(z) = 1/2.
But at the parton-level and reconstructed stage, this simple rule of combination is not
necessarily valid. At these stages, equation K.1 is valid if and only the acceptance curve
and the smearing matrices are independent of a. The objectives of this appendix are the

following:

e Demonstrate the fact that the simple combination rule in equation K.1 is valid if
and only if the acceptance curve and smearing matrices are independent of the fit

parameter a.

e Demonstrate that, in the standard model top quark decay, the acceptance curve and

smearing matrices for the observables cos U; and E; are independent of a.

e Explain what it is about the standard model top quark decay that makes the accep-

tance curves and smearing matrices independent of a.

K.2 Notation

In chapter 7, the notions of acceptance curves and smearing matrices were intro-
duced. In that context, they were treated as discrete objects — i.e. the acceptance curves
were viewed of as histograms with n bins each, and the smearing matrices were viewed of
as n X n matrices. In the present context, it will be more useful to treat them as continuous
objects. Thus an acceptance curve will be denoted as A(z), and the smearing matrix will
be written as M(z,2’). In order to express the possibility that the acceptance curves and
smearing matrices can depend on a, A and M will be given a subscript a: A,(z) and
M, (z,2'). In situations where A and M are independent of a, the subscript will not be
written.

The observable distributions at each stage of analysis — analytic, parton-level, and

reconstructed — will be denoted by the superscripts ana, part, and recn, respectively. For
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example, the analytic stage distribution of # from a 100% polarized top quark will be
denoted f?"*(z). Using this notation, the relation between the analytic, parton-level, and

reconstructed distributions are given as follows:

fri(z) = Aa(z) [afi™(z) + (1 — ) f5"(2)] (K.-3)

freen(z) = / dz' My (z,2) F27(2) (K.4)

K.3 The Acceptance Curves

Equation K.3 shows the most general relationship between the observables at the
parton-level and analytic stages. Note that, in general, the simple rule of combination given

in equation K.1 is not valid:

() # o f{ (2) + (1 - a) - f5*" (=) (K.5)

The expression for fP%"!(z) that is generally valid is the following:

(e) = o (@) + (1 a) - (@) (K.6)
+a(2) - Ai(2)]- - i (a)
+a(2) = Ao(2)]- (1 - @) - fi"(a)

The first line is the simple combination rule; the second and third lines are correction terms
that take account for the a-dependence of the acceptance curves. It is clear from this
equation that the simple combination rule is valid if and only if A,(z) = A;(z) = Ao(z)
for all @ — i.e. that A,(z) is independent of a.

Now it will be shown that, in the standard model decay of the top quark, the
acceptance curves for cos U; and E; satisfy this property. Let us first consider the angular
observables cos U;. In chapter 7.2, it was shown that the top quark decay can be described

by four parameters. These four parameters can be taken as cos8;, ¢¢, ¢p-.,, and E;. In

334



this context, cos §; will be taken as the angle between the charged lepton momentum vector
pr and the direction along the top quark spin polarization vector, both in the top quark
rest frame (in other words, cos 6y = cosU;). According to the standard model, these four

parameters are distributed according to the following equation:

F(cos by, E¢) = f(cosb)g(Ey) (K.7)

The dependence of F on the two other parameters ¢, and ¢;-,, is implied but suppressed
because they are randomly distributed. The functions f and ¢ are given in equations 7.7
and 7.17. The special feature of equation K.7 is this: only the function f depends on the
degree of spin polarization a.

Let us see what this implies about the acceptance curve for cos 4. Imagine a monte
carlo generator generating top quark decay using equation K.7. Suppose N events are
generated, and cos 8y from each event is placed in a histogram. Equation K.7 implies that
the top quark spin polarization affects how many events populate each bin. However, for
cos 8y in a fixed bin, the kinematics of the top quark is independent of a. This is because in
a fixed bin, cos 8, is approximately constant; equation K.7 shows that when cos §; is fixed,
the distribution of the other parameters is independent of the degree of polarization. By
definition, the acceptance for events with cos§; in a given bin is the ratio of the number
of events in the bin passing event selection cuts to the total number of events in the bin.
This ratio can depend only on the kinematics of the top quark decay when cos 8, is fixed.
But this kinematics was shown above to be independent of a. Therefore the acceptance is
independent of a.

Let us now show that the acceptance curve for the observable E; is independent
of the fit parameter a, which, in this case, is the transverse helicity fraction r7. Before
proceeding with the proof, let us modify equation K.7 so that g(E,) is changed to the

following:

G(E¢) =r7-gs(Ee) + (1 — r7)gm(Ey) (K.8)

In other words, g(E/) in K.7 has ry fixed to 1/(1+2%/2), with ¢ = m;/Mw. In §g(E), rrisa

fit parameter which is allowed to vary. With this change, let us imagine generating N monte
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carlo events. Let us imagine placing E; from each event into a histogram. Equation K.7
implies that the parameter 7 affects how many events populate each F; bin. However, for
Ey in a fixed bin, the kinematics of the top quark decay is independent of r7. The rest of
the argument leading to the final result — that the acceptance curve for E; independent of
r7 — proceeds in exactly the same manner as for cos U;.

The results above on the independence of the acceptance curves on the respective

fit parameters can be expressed succinctly as follows:!

If the top quark decay is described by the parameters cos 8y, ¢y, ¢p-,,, and Ey,
then the presence or absence of top quark spin polarization can be determined
only by examination of cos 8,. If cos 6, is fixed, there is no way to determine the
existence or absence of top quark spin polarization. Similarly, the transverse
helicity fraction r7 can be determined only by examining the distribution of E,.
If E; is fixed, one cannot tell what value r7 has.

K.4 The Smearing Matrices

The proof that the simple combination rule applies to the reconstructed observable
distributions follows the same line of argument as that for the parton-level distributions.
In fact, the simple combination rule applies to the reconstructed observable distributions if
and only if it applies to the parton-level distributions. The analog of equation K.6 for the

reconstructed distributions is the following:

fEn@) = a- F@)+ (1- a) - fn(a) (K.9)
+ [ 2 [Ma(e,2) - Mifa,2)] - ()
+ [ da’ [Ma(a, o)~ Mofe,2)] - (1= @) - F5" (=)

This is the most general relationship between the reconstructed and parton-level distribu-

tions. The first line in this equation is the simple combination rule; the second and third

lines are modifications that result from the a dependence of the smearing matrices. It is

! This statement assumes that the « and 7 are to be determined by the shape of distributions; a counting
experiment would allow one to determine o and 71 even if the respective observables are fixed.
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clear that the simple combination rule is valid if and only if the smearing matrices are
independent of a.

The proof that, according to the standard model, the smearing matrices for the
observables cos U; and FE; are independent of the fit parameters a and rr, again, follows
the same line of argument as that for the acceptance curves. The only difference between
the two situations is that an acceptance curve assigns to each input observable value z a
single number A(z), whereas a smearing matrix assigns to each input observable value z’
a distribution of output values z given by the function M(z,z’). Since the wording of the

proof is almost exactly the same in both cases, the statement of the proof will be omitted.

K.5 Counterexamples

So far, it has been shown that, in the standard model, the simple combination rule of
equation K.1 is valid at every stage of analysis — analytic, parton-level, and reconstructed.
The very intuitive nature of the simple combination rule may give the impression that the
rule must be true in most practical cases, and that deviations from the rule are exceptions,
or, in other words, pathologies. But this is not the case. Simple and plausible changes to
the standard model distribution of the parameters cos 8y, ¢y, ¢-,,, and E; can destroy the
conditions required for the simple combination rule to be valid.

For example, let us take the angular observables cos U;. The validity of the simple
combination rule for this observable hinges on the fact that, in equation K.7, the spin
polarization dependence was contained only in the function f(cos;). In other words, the

function g(Ey) is independent of a. This function has the following form:

9(Ee) =1 95(Ee) + (1 — 71)gm(Ee) (K.10)

The parameter r7 in this equation is constant — it depends only on the masses of ¢, b, and
W (the b-quark mass in this equation is approximated as being zero). In a more complicated
world, however, it is not hard to imagine that r7 might be influenced by the top quark spin.
If this were the case, r7 would depend on «, and therefore the E; distribution would depend

on o:
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9(Ee) = rr(a) - gs(Er) + (1 — rr(a))gm(Er) (K.11)

In a world where this is the case, the simple combination rule will be invalid, and the
measurement of top quark spin polarization would be much more complicated.

Similarly, for the observable E,, the simple combination rule hinges on the fact that
the distribution cos 6, and E; are separable — i.e. that the function F(cos,, E;) can be
expressed as a product of functions of cos 8y and E;. In effect, this rule says that no matter
what helicity state the intermediate W is in, the distribution of parameters other than E,
have the same form. Specifically, in the standard model, the function F(cos &, E;) can be

written as follows:

F(cos by, Eg) = f(cosby) [rr-gs(Ee) + (1 — 71)gm(Er)] (K.12)

This shows that, regardless of whether W is in the transverse or longitudinal helicity state,
the distribution of cos 8, is given by the function f(cosé;). In a more complicated world,
however, the transverse and longitudinal states of W may have different distributions of

cos G;:

F(cos 8, E¢) = [r7 - g5(Ey) fs(cos0p) + (1 — r1)gm(Ee) fin(cos b)] (K.13)

In this world, again, the conditions necessary to validate the simple combination rule for
Ey fail, and the measurement of the transverse helicity fraction 7 would be much more

complicated.
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Appendix L

Measurement Resolution: Top Rest Frame Versus Lab

Frame Observables

L.1 Introduction

In section 7.5.3, the benefits and liabilities of using observables defined in the lab
frame on the one hand, and in the top rest frame on the other, were given. One of the
liabilities of top rest frame observables is the fact that the ¢f candidate sample is restricted
to reconstructable events — i.e. events with e or u, large B, and four or more jets. Lab
frame observables, in contrast, do not require full event reconstruction, so the candidate
events satisfying looser cuts and events in the dilepton decay channel can be included. In
other words, the candidate data sample for the lab frame observables is a superset of that
for the top rest frame. This translates to increased sample size, which, in turn, implies
smaller statistical error. In this appendix, the measurement resolutions of lab frame and
top rest frame observables are estimated, and they are compared with each other. The
goal of this appendix is to estimate the degree of improvement in measurement resolution

obtained by using the lab frame observables instead of those based in the top rest frame.

L.2 The tt Candidate Event Sample

The tt candidate event sample for top rest frame observables consist, basically, of e
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or u, large B, and four or more jets. For the purpose of optimizing the measurement resolu-
tion, this event sample is subdivided into eight mutually exclusive subsets (see section 8.2.4).
The event sample is first categorized according to the number of stiff jets. Events with only
three stiff jets and one or more loose jets are referred to as “3.5-jet events”, and are given
the label N33.5. Events with four or more stiff jets are called “4-jet events”, and are labeled
NJ4. These two subsets are further subdivided according to the type of b-tagged jets in the
event: (1) SVX only; (2) SLT only; (3) SVX and SLT; and (4) No Tags. These categories
are labeled X0, TO, XT, and NT, respectively. The number of events and the estimated
background fraction in each subsample is given in table L.1.

In analyses using lab frame observables, one can, in addition to the above, include ¢t
candidate events satisfying looser cuts and those decaying in the dilepton channel. Exactly
which events to add is arguable; for the sake of concreteness, those given in [63] will be
used!. In that report, there are two additional classes of events: (1) those with e or p, large
Fr, and exactly three stiff jets, no loose jets, and at least one SVX b-tag; and (2) those in
the dilepton decay channel. The number of events and the estimated background fraction in
these non-reconstructable t£ candidate sample is shown at the bottom of table L.1. A couple
of words of caution about the dilepton channel is in order. First, only dilepton events in the
e-p decay channel is included because the modeling of the background shapes in the e-e and
the p-p channel was found by the principal authors of [63] to be questionable. Second, there
are 7 e-u events, but table L.1 gives 14. This is because each dilepton event contributes
two charged leptons, so one has two measurements of charged lepton observables for each

event.

L.3 The Measurement Resolution

The following material on measurement resolution is based on the results of chap-
ter 8. In that chapter, the combined error of a data sample subdivided into subsamples is

given by the following formula:

!Reference [63] presents a measurement of the longitudinal helicity fraction in semileptonic top quark
decay using the Pr(#) distribution.
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tt CANDIDATE EVENT SAMPLE N; B; (1 - B;)%N;
FULLY NJ3.5 X0 4 0.29 2.02
RECONSTRUCTABLE TO b 0.66 0.58
XT 4 0.18 2.69
NT 77 0.90 0.77
NI4 X0 11 0.07 9.51
TO 9 0.25 5.06
XT 4 0.04 3.69
NT 45 0.58 7.94
TOTAL: 32.26
NOT FULLY W + 3 jets + SVX | 11 0.58 1.94
RECONSTRUCTABLE DILEPTON 14 0.11 11.1
TOTAL: 13.04

Table L.1: The number of events N; and the estimated background fraction 8; in each
subset of the fully and not-fully reconstructable ¢ candidate event samples. The quantity
(1 — B3;)?N; is a measure of the statistical importance of given subsample — the larger this
quantity is, the smaller the measurement error, and, therefore, the more important this
subsample is.

— = > (L.1)

) 2

The index ¢ spans all of the subsamples, o; is the measurement error for subsample ¢, and
o is the combined error. The subsample error o, is given approximately by the following

formula:

K;
(1-8)-VN;

The quantities V; and 8; are the number of events and estimated background fraction for

(L.2)

o; =

subsample i. The quantity K, depends on the shape of the component functions in a 2-
component fit; the more distinguishable the component functions are, the smaller the K,
and, therefore, the smaller the error. Since K,; depends on the shape of the component

functions, it is observable-dependent.
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L.4 The Measurement Resolution for Top Rest Frame and

Lab Frame Observables

Since the lab frame observables are based on a data sample that is a superset of
that for top rest frame observables, the measurement error of the former is, by necessity,
smaller than that of the latter. In this section, this fact is examined quantitatively.

The results of the last section show that the measurement error o is given by the
following:

v (1=B)-N;
— = > Tk (L.3)

)
If the observable in question is of the top rest frame, the sum is over the reconstructable
subsamples; if it is of the lab frame, then the sum is over both reconstructable and non-
reconstructable events.

Before proceeding, let us make the following approximations/assumptions about the

K -factors:

e For a given observable, the K-factors of all the subsamples are approximately equal.

Table 8.2 shows that this is a fairly reasonable assumption.

e The K-factor of a top rest frame observable is approximately the same as that of the
corresponding lab-frame observable. This fact is born out in table 7.2 of chapter 7.
For example, the K-factor for the rr measurement using F; is about the same as that

of the same measurement using Pr(¢).

e The K-factor of a lab frame observable in non-reconstructable events is approximately
the same as that in reconstructable events. No attempt will be made to justify this
quantitatively. However, since lab frame observables are smeared by the top quark
momentum, and the underlying top quark momentum should be about the same
regardless of reconstructability, this assumption is believed to be a fairly reasonable

one.
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These approximations/assumptions allow one to factor out K; from equation L.3.

Thus one obtains for o the following:

% _ % - BN (L.4)

2

Let us denote the error for a top rest frame observable as o7rp, and that for the corre-

sponding lab frame observable as o . Let us express the errors as follows:

Lol sa-pye-m (L.5)

2
orpr K R

% = % S (1-B)-Ni+> (1-8;)°-N; (L.6)
NR

OLr R

The summation ), is over reconstructable events, and 5 p is over non-reconstructable

events. The ratio of these two errors is the following:

2
oir 1
e — L.7
otrr 1+ R (1)
_A)N2. .
R— 2nr(l—B)° - N; (L.8)

>r(1-Bi)* N,
Table L.1 shows that Y (1 — 8;)* - N; = 32.26, while Y yr(1 — 8;)* - N; = 13.04. Thus
R =10.40, 50 07 ;. /0%p = 1/1.40 = 0.71. The ratio of the error of the lab frame observable
to that of the corresponding top rest frame observable is, therefore, o7 /orrF = 0.84 — the
use of lab frame observables allows one to decrease the measurement error by 16%. This is
equivalent to an increase in statistics of non-reconstructable events by a factor of 1/0.84% =
1.40, or a 40% increase. It should be noted that, because of the assumptions/approximations

about the K-factors made above, this result is applicable to all observables.
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Appendix M

Non-ideal Behaviors in the Statistical Properties of the

Minimum Log-likelihood Method

M.1 Introduction

It was stated in section 8.2.2 that, for the observables considered in this thesis,
the two-component log-likelihood method has, to a good approximation, “ideal” statistical
behaviors. In this context, “ideal” is defined as follows:

In a set of pseudo-experiments, the distribution of parameter values {a;} that

minimize the log-likelihood function in each experiment is a gaussian centered
at the true parameter value ap with width o given by:

1 oL
2 (M.1)

Deviations from this ideal can take place in the following ways:

o A significant fraction of experiments have log-likelihood functions with no minimum.
e The parameter distribution has long, non-gaussian tails.

e The distribution is biased — i.e. the mean of the parameter distribution is not equal

to ag.

e The width of the parameter distribution is not given by equation M.1.
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In most situations, these non-ideal behaviors decrease with increased statistics. Under
certain conditions, however, the deviations from the ideal behaviors persist no matter how
large the statistics.

In this appendix, the first three non-ideal behaviors are examined. In appendix O,
the deviation of o from the prediction in equation M.1 is examined. The following is an

overview of this appendix:

e The non-ideal behaviors are illustrated with examples.

e The log-likelihood function is analyzed to determine factors responsible for the non-

ideal behaviors.
e The necessary condition for the existence of pathologic behavior is shown.

e The fact that the observables in this thesis satisfy ideal conditions is shown.

M.2 Illustrating the Non-ideal Behaviors

For the purpose of illustration, let us take the top polarization measurement at the
analytic level. Then the component functions fo(z) and fi(z) for unpolarized and 100%

polarized top quark are:

1
fo(z) = 2 (M.2)

1
f(z) = 5(1 +z) (M.3)

If the true parameter value is ag, then the parent distribution is:
fao(®) = ao- fi(z) + (1 - ao)- fo() (M.4)
1
= 5(1 +ag-z)

Figure M.1 shows the distribution of a,,;, in one thousand pseudo-experiments

with five events per experiment (N, = 1000, N, = 5), where a,;, is the value of «
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Pseudo—Experiment Result, N,,, = 1000, N,, = 5, o, = 0
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Figure M.1: The distribution of a from a set of 1000 pseudo-experiments with 5 events
per experiment. The true parameter value ag is zero. Left plot: the full range of the
distribution. Right plot: restricting attention to the region —10 < a < 10. The curve in
the right-hand plot is a best-fit gaussian for the distribution.

that minimizes the log-likelihood function in each experiment. The true parameter value
o is zero — i.e. the top quark is unpolarized. The following are some observations on the

distribution of a:

o The distribution has very long tails, extending to a ~ 102.

e Even when attention is restricted to —10 < a < 10, a significant non-gaussian tail is

seemn.

e In the left-hand plot in figure M.1, the number of histogram entries is 935. This is
65 short of the 1000 pseudo-experiments performed. These missing experiments have

log-likelihood functions with no minimum.

e The mean of the distribution is, within statistical error, consistent with zero. The

distribution, therefore, is unbiased.

It is seen that, at N., = 5, all but one of the non-ideal behaviors described earlier are
present. The fact that the distribution is not biased is due to the fact that ag = 0. This is

discussed further in a later example.
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Pseudo—Experiment Result, N,,, = 1000, N, = 25, 0, = O
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Figure M.2: The distribution of a for N.,, = 1000, N, = 25, ag = 0.0.

Figure M.2 shows the distribution of a when N, is increased to 25. It is seen that
the non-gaussian tail is no longer present, a gaussian fit to the distribution gives a good x?
value, and all experiments have log-likelihood functions with minimum value.

Figure M.3 shows the distribution of a,,;, when N, = b and ag = 0.5. This
situation has all of the non-ideal behaviors in the earlier example with N, = 5, ag = 0.

This case, however, is different from the previous one in the following ways:

e The distribution is biased. Specifically, the mean of the distribution is larger by many

standard deviations compared to the true parameter value.

e The number of experiments with no minimum is 103. This is significantly larger than
65 for agp = 0. The expected fraction of events with no minimum, can, in fact, be

predicted using a simple formula, which is described in section M.3.2.

Figure M.4 shows the distribution of a,,;, when N, is increased to 40. With this level of
statistics, none of the non-ideal behaviors exist.

As a final illustration, figure M.5 shows the a distribution when ap = 1 and N,
= 1000. ag = 1 corresponds to the largest possible physical value of top quark spin polar-
ization. Even though the number of events per experiment is very large, the distribution

has moderate, but statistically significant deviations from ideal behaviors. Specifically, the
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Pseudo—Experiment Result, N, = 1000, N, = 5, o, = 0.5
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Figure M.3: The distribution of a from a set of 1000 pseudo-experiments with 5 events per
experiment. The true parameter value ag is 0.5. Left plot: the full range of the distribution.
Right plot: restricting attention to the region —10 < a < 10. The curve in the right-hand
plot is a best-fit gaussian for the distribution.

distribution has a non-gaussian tail in the region a > 1, and the distribution is biased. It
turns out that, when ay = 1, the non-ideal behaviors persist, no matter how large N, is
made. This sort of situation is exceptional, and occurs only when the component functions

fo(z) and fy(z) satisfy a certain condition. This is discussed further in section M.3.2.

M.3 Origin of the Non-ideal Behaviors

In this section, the log-likelihood function is analyzed, and the essential elements in
explaining the non-ideal behaviors in the a distribution are presented. In the first part of
this section, a plausible but incorrect explanation for the origin of the non-ideal behavior is
given. This is followed by a correct version of the explanation. The reason why an incorrect
explanation is described is that certain features of the ideal  distribution suggest that the
non-ideal behavior can be explained by the n‘® derivative of the log-likelihood function.
The chain of reasoning leading to this incorrect inference is suggestive and plausible, and

it can lead one to a dead-end in trying to explain the origin of the non-ideal behavior of
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the a,,;, distribution. The section on the incorrect explanation is intended as a “sign post”

warning of the dead end.

M.3.1 Incorrect Ezplanation

Let us start this section by noting the functional form of the ideal o distribution:

1 9°L
F(a) =C -exp l—§ Pal

(a-— ao)Zl (M.5)

A=

The factor C' is a normalization constant. By re-defining C, this equation can be re-written

as follows:

1 98°C

F(a)=C -exp [—E(ao) ~ 5 Pal

(a - ao)Zl (M.6)

A=

If the continuum approximation of the log-likelihood function is used, the argument of the

exponential can be taken as the first three terms in the Taylor expansion of L(a):

1 8°L
(a—ao) +

a=ao 2 Oa?

—L(a) = — lE(QO) + oc

da

(a-— ao)Zl (M.7)

a=aq
The linear term does not appear in equation M.6 because the first derivative of L evaluated
at a = ag is zero (this must be true if the most likely value of « is ay).

Given that the a distribution in the ideal limit is given by the exponential of the
first three terms in the Taylor series of —L(a), it seems reasonable to think that, in general,
the a distribution is given by F(a) = C - exp [-L(a)]. Then it would be natural to assume
that the non-ideal behavior originates from the higher-order derivatives of £L(a). This would

explain the non-ideal behaviors shown in section M.2:

e As the number of events increases, the range of (a — ap) gets smaller. Thus the
higher-order terms become less and less important with increasing N.,. This would

explain the observation that the non-ideal behavior decreases with increasing N,.

e The bias in the distribution seems explainable by the odd-order derivatives of L.

This is consistent with the situation in section M.2, where no bias is observed when
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ap = 0, but it is observed when ay = 0.5 and ag = 1. It turns out that all odd-order

derivatives of £(a) vanish when ay = 0, but increase as ay moves away from zero.

e In the pathological situation @y = 1 where the non-ideal behavior persists for all
N.p, 2" and higher order derivatives of £ are all infinite. Infinite derivatives seem
pathological, so it appears that they should somehow cause the pathology in statistical

behavior.

Given the suggestive line of reasoning leading to the inference that F(a) = C -
exp [—L(a)], and given the observations listed above, it may come as a surprise that, in
fact, the derivatives of £ do not explain the non-ideal properties of the a distribution.
When F(a) = C - exp [-L(a)] is compared to the actual a distribution, the details do not
match. For instance, the function F(a) = C-exp [—L(a)] does not explain the non-gaussian
tails seen in the actual distribution. Moreover, the odd-order derivatives of £ do induce
bias, but in the wrong sense. In the next section, the correct explanation of the origin of

the non-ideal behavior is discussed.

M.3.2 Correct Explanation
M.3.2.1 The Basic Concepts

As a first step in elucidating the origin of the non-ideal behavior, basic concepts
relating to the log-likelihood function will be introduced. First, let us make the following

assumptions about the component functions fo(z) and fi(z):

Let z,,;n and ,,4, be the minimum and maximum possible value of the observ-
able z.! Then, excluding these endpoints, the functions fy(z) and fi(z) cross
over at exactly one point, z..

Figure M.6 illustrates this assumption in a number of typical situations. Given this as-
sumption, the range of observable values 2,51, Zmaz| can be divided into two regions, A
and A_. The region A, represents the portion of [Z,n, Zmaz] Where fi(z) > fo(z), while

A_ represents the portion where fi(z) < fo(z). See figure M.6.

IFor the observable E¢, which is unbounded above, Z .4, is taken to be a cut-off value beyond which the
probability density functions are negligibly small.
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The log-likelihood function is a sum over log[f,(z)], where f,(z) = afi(z) + (1 —

a)fo(z). For a fixed observable value z, the function f,() is a linear function of a:

fa(2) = fo(2) + - [fi(2) — fo(e)] (M.8)

The logarithm of f,(z) is defined only for f,(z) > 0. This implies the following:

Case 1: z € A,
—log fo is defined in the region a > a_, where a_ = fy(z)/ [fo(z) — fi(z)]. At a_,
—log f., diverges to 400, and as a increases from a_, —log f, decreases to —co. No

matter what shape fy and f; have, a_ < 0. See figure M.7.

Case 2: z € A_
—log fo is defined in the region a < ay, where ar = fo(z)/ [fo(z) — fi(z)]. At ay,
— log f,, diverges to +o00, and as a decreases from o, — log f,, decreases to —oo. No

matter what shape fy and f; have, a; > 1. See figure M.T7.

In any experiment, the set of measurements {z;} can be divided into two parts,
{z:}4, and {2}, , where the set {z,}, has all measurements z; belonging to region 4.,
and similarly for {z;}, . The measurements {z;},, contribute terms in the log-likelihood
function that: (1) diverge to 400 in the region a < 0; and (2) decrease logarithmically to
—o00 as a — +o0o. The measurements {z,}, , on the other hand, contribute terms that:
(1) diverge to 400 in the region a > 1; and (2) decrease logarithmically to —oco as a —
—00. When these two classes of terms are combined, one obtains the total log-likelihood

function with the following properties:

e If neither {mi}A+ nor {z;}, are empty, then £(a) diverges to +00 at ajoy, and aypp,
where oy, is the largest value of fo(z)/ [fo(z) — fi(z)] evaluated over z € {mi}AJ,v
and aypp is the smallest value of fy(z)/ [fo(z) — fi(z)] evaluated over z € {z;}, . It
should be noted that, no matter what shape fy and f; have, ooy, < 0 and ayyp, > 1.

L(a) has exactly one minimum between aj,,, and a,py,. See figure M.8.

o If either {z;}, or {z;}, is an empty set, then the log-likelihood function has no

minimum. See figure M.8. If p, is the probability that a given measurement from a
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parent distribution f,,(z) is in region A, and p_ defined similarly for A_, then the
probability that an experiment with N, events has a log-likelihood function with no
minimum is:

Ne'l/ ev
Pro min = P+~ + - (M.9)

This completes the survey of basic concepts regarding the log-likelihood function.
Now, these concepts will be used to explain the origins of the non-ideal behavior in the a

distribution.

M.3.2.2 Explaining Experiments with No Minimum

This has already been explained in the last section: experiments with no minimum
occur when the measurements {z;} all belong to only one of the regions A, or A_. The
probability that an experiment with N, events has no minimum is given by P, ,in =

p]_f” + pVev. Thus, this non-ideal behavior decreases exponentially with N,,. This behavior

decreases quickest when the probability for z to be in A, is equal to that for A_ — d.e.
p+ = p— = 0.5. The more unequal the probabilities, the slower the decrease in this non-ideal
behavior.

M.3.2.3 Explaining the Non-gaussian Tails

Experiments with a populating the non-gaussian tails can be thought of as gener-
alizations of experiments with no minimum. In experiments with no minimum, all events
occupy only one region, A, or A_. In experiments with a in the non-gaussian tails, most
events occupy one of the regions, with few events occupying the complementary region. Fur-
thermore, the few events occupying the complementary region are all close the the cross-over
point z.. In other words, these few events in the complementary region are almost, but not
quite, in the same region as the majority of events.

As an illustration, let us say that most events occupy the region A, . The few events
occupying A_ are close to the z.. Events belonging to A_ determine the upper cut-off a,,,

of the log-likelihood function. The upper cut-off a,y, is defined as the smallest value of
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fo(z)/ [fo(z) — fi(x)] evaluated over events in A_. Since most of the events are close to .,
the denominator in fy(z)/ [fo(z) — fi(z)] is close to zero for all events in A_. Thus ayp, is
very large. Because of this, the minimum of the log-likelihood function is also very large.
This is why « in such experiments populate the non-gaussian tails.

Like the experiments with no minimum, experiments with o in the non-gaussian

tails become less likely as N, increases.

M.3.2.4 Explaining Bias

The bias in the distribution is explained by the non-gaussian tails. Bias occurs when
p+ # p—. When p, # p_, the probability that a given experiment gives a non-gaussian
tail in the region a < 0 is not equal to that for « > 1. For instance, if p; > p_, then the
probability of getting a non-gaussian tail in the region a > 1 is greater than that for a < 0.
Thus the a distribution in this situation tends to be skewed towards large values of «, and
the distribution has mean larger than the true value ag. Since bias is a by-product of the

non-gaussian tail, it decreases quickly as N, increases.

M.3.2.5 Explaining the Pathological Situations

The pathological situation where non-ideal properties persist no matter how large
N, is made occurs when the true parameter value ag is equal to the largest possible value
of ajo, or the smallest possible value of ayp,. Since aye, < 0 and ayp, > 1, and since
0 < ap <1, it is seen that pathological situations occur only when the following conditions

are both true:

1. When ag = 0 or 1 — i.e. at the boundary of its allowed value.

2. When the smallest possible value of a,,, = 1 and/or the largest possible value of

ajowy = 0. Whether either or both are possible depends on the shape of fo(z) and
fl(:ﬂ)

For example, in the analytic top polarization measurement, fo(z) = 1/2 and fi(z) =

(1/2)- (1 + 2). Then fo(z)/[fo(z) — fi(z)] = —1/z. Since the range of = is [—1,1], the
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largest possible value of aj,,, = —1, and the smallest possible value of a,,, = 1. Therefore,
the pathology shows up only when ag = 1.

In the case of the analytic W helicity measurement, fo(z) = 6 - (€mas — 2) - (z —
Zmin )/ (Bmaz—Tmin)>, and f1(z) = 3(Tmas—2)?/(maz—2min ). Thus fo(z)/ [fo(z) — fi(z)]
2-(x—2Zmin)/ [2- ( — Zmin) — (Lmaz — #)]- Since the range of z in this case is [Zmin, Tmaz),
the largest possible value of aj,,, = 0 and the smallest possible value of ay,, = 1. Thus, in
this case, the pathology exists at both ag = 0 and 1.

As a final example, consider the case of the top polarization measurement at the
output level — i.e. after t¢ event reconstruction. The component functions fy(z) and fi(z)
are shown in figure M.6(c). In this case, the largest possible value of ay,,, and the smallest

possible value of a,,,, must be obtained numerically; they are:

max [Qew] = —2.00 (M.10)

min [a,p,| = 1.90 (M.11)

This shows that no pathologies exist in this case. This is typical of observables that are
smeared by processes such as event reconstruction. In fact, the only way that pathologies
can occur is if either or both component functions become zero at some values of . Smeared
observable distributions often do not have any zeros.

So far, the necessary conditions for the existence of the pathology has been shown.
Now, let us examine why the pathology exists when the conditions are met. For the sake
of concreteness, let us assume that ap = 1 and min[a,,y,] = 1. The following is a chain of

reasoning explaining why the pathology exists:

1. Since ay = min [ayy), in any given experiment, a,,,, can be arbitrarily close to ap. In

contrast, since max [ajy,] < 0, there is always a comfortable margin between ay and

Aow-

2. In any given experiment, the log-likelihood function diverges to +00 at ;o and aypp.
The point ay,;, where the log-likelihood function is minimum lies somewhere between

Qow and aypp.
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3. The closer a;,;, is to the boundary points oy, Or @ypp, the more influence the bound-

ary points have on the location of a,,;,.

4. The value of ay,,), in a particular experiment is determined by a single measured value

in {z;}, .

5. Since a,p, can get arbitrarily close to ag in any experiment, the location of the
minimum in an experiment is heavily influenced by a single data point in region A_. In
other words, a single data point has an inordinate amount of influence in determining
the location of a,,;,. This results in the partial loss of information available from all

other events in the experiment. This is the source of the pathology.

6. Since ap = min [a,pp|, aypp can get arbitrarily close to ap, no matter how large N, is
made. Thus the pathology persists for all N.,,. This is in contrast to situations where
some margin exists between ag and a,p, and aju,; in these situations, by increasing
N,, sufficiently, the probability that a;, is close to a,p, and o, can be made

arbitrarily small.

M.4 The Ideality of the Observables in the Experimental

Data

In this section, the fact that the observables in the experimental data satisfy ideal
statistical behavior is demonstrated. The pseudo-experiment method is used for the demon-
stration. Before going into the demonstration, let us review the following facts about the

observables and the experimental data:

The Observables
The observables consist of cosU; (¢ = 1, 2, 3) and Ey. For cos U;, the standard model
predicts that the top quark is unpolarized. This means that the true parameter value
is ag = 0. For E;, the standard model predicts that the soft transverse helicity fraction
rr is 0.30. After acceptance correction, this is 77 = 0.25. This is taken as the true

parameter value ay for Ej,.
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The Polarization Observables
The polarization observables cos U; are directional, so some care must be taken to deal
with this fact. The ‘1’ direction is forward-backward asymmetric, so that polarization
that produces asymmetry along the ‘1’ direction must be treated separately from that
which produces asymmetry against this direction. The former case is denoted as U1+,
the latter case as Ul—. The ‘2’ and ‘3’ directions, on the other hand, are forward-
backward symmetric, so that the statistical behavior for polarization in the forward
direction is identical to that in the backward direction. In these directions, therefore,
the forward direction alone is examined in the pseudo-experiments. These observables

are referred to as U2 and U3.

The Data Sample
The data sample is divided into eight parts. First, the events are categorized as 3.5-
jet (N33.5) and 4-jet (N14) events. Second, both categories are divided according to
the type of b-tags: SVX only (x0), SLT only (T0), SVX and SLT (XT), and no tag
(NT). Each subsample has its own component functions fy(z) and fi(z). Also, each
subsample has different background fraction 8 and background observable distribution
fo(z). The total log-likelihood function is taken as the sum over the log-likelihood

function in each subsample. See section 8.3 for more details.

Analysis Optimization
The analysis is optimized by: (1) applying an Hy cut to certain subsamples to improve
5%/(8 + B); and (2) applying a top-mass constraint to the tf reconstruction process in
order to reduce smearing in the observable distributions. The first optimization will
be referred to as HT cUT, and the second one will be referred to as MTCON. Before
HT CUT, the total number of events is 159; afterwards, it is 114. See section 8.3.3 for

details.

Figure M.9 shows the distribution of a,,;, from 1000 pseudo-experiments for each of
the observables in the unoptimized analysis — i.e. no Hr cut and no top mass constraint.
Figures M.10 through M.12 are the corresponding plots for (ET cuT, MTCON) = (YES, NO),

(No, YEs), and (YES, YES), respectively. It is seen that, in each case, a x? fit to a gaussian
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(HT CUT, MTCON)
OBSERVABLE || NO, NO | YES, No | No, YEs | YEs, YES
Ul+ —2.36 0.94 0.05 —1.45
Ul- —2.41 0.83 1.28 1.55
U2 —0.10 0.18 0.60 1.00
U3 —0.84 —1.10 —0.69 0.30
E, 0.46 —0.96 0.51 —-1.39

Table M.1: The bias in the a,,;, distribution for each observable, in the analysis configura-
tions (HT cuT, MTCON) = (NO, NO), (YES, NO), (NO, YES), and (YES, YEs). Each entry is
obtained from the a,,;, distribution obtained from a pseudo-experiment with N,, = 1000.

gives a good result. Table M.1 shows the bias for each observable in four different analysis

configurations, where the bias b is defined as:

mean — o

Umean

rms

vV Nea:p

Omean =

There is no indication of bias beyond that explainable by statistical fluctuation.
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Figure M.4: The distribution of a for N.,, = 1000, N, = 40, ap = 0.5.
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Figure M.6: The component functions fy(z) and fi(z) for: (a) top polarization measure-
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surement, output level (i.e. after ¢t event reconstruction); (d) W helicity measurement,
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vertical line indicates the cross-over point, z.. The region where fi(z) > fo(z) is labeled

A, and the region where fi(z) < fo(z) is labeled A_.
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Figure M.9: The distribution of a,,;, from 1000 pseudo-experiments for the observables
Ul+, Ul—, U2, U3, and Ey. The analysis is unoptimized — i.e. no Hy cut and no top
mass constraint.
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Figure M.10: The distribution of a,,;, from 1000 pseudo-experiments for the observables
Ul+,U1—-,U2,U3, and E;. Hr cut is applied, but no top mass constraint is applied.
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Figure M.11: The distribution of a,,;, from 1000 pseudo-experiments for the observables
Ul+,U1—-,U2,U3, and E;. Hr cut is not applied, but top mass constraint is applied.
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Figure M.12: The distribution of a,,;, from 1000 pseudo-experiments for the observables
Ul+,U1—-,U2,U3, and E;. Both Hy cut and top mass constraint are applied.
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Appendix N

Generalization of the W Helicity Measurement

N.1 Introduction

The W helicity measurement described in chapter 8 fixes the hard transverse helicity
fraction 7/ to zero, and uses the soft helicity fraction 77 as a fit parameter to compare the
E; distribution in the experimental data with that from monte carlo. This restriction
on 7/, allows one to obtain an experimental measurement of r; with considerably smaller
statistical error than is obtainable when both r7 and 7/ are used as fit parameters. In this
appendix, the W helicity measurement is generalized so that both r7 and /. are used as fit

parameters. The objectives of this appendix are:

e Examine the log-likelihood function in a 3-component, 2-parameter fit and elucidate

some of its statistical properties.

e Obtain an estimate of the statistical error on rr, 77, and the longitudinal helicity

H !
fraction ry, =1 — rp — 7.

N.2 The Log-likelihood Function

N.2.1 The Definition of the Log-likelihood Function

Since the full definition of the log-likelihood function is complicated, it will be defined
in three steps, as was done in section 8.2 in the discussion of 2-component fits. In the first

step, let us assume that: (1) no background events contribute to the data sample; and (2)
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the data sample is not divided into subsamples. Then the log-likelihood function is given

by:

Nev

L(ef) =Y ~log[a- fi(e) + 8- File) + (1—a—B) - fo(e)] (V1)

=1

The fit parameters o and § stand for 77 and 77, respectively, the component functions fi,
fi, and f, stand for g,, gn, and g,,, respectively, and « stands for E;. The sum is taken
over the events in the data, where N, is the number of events.

For the second step, let us relax the assumption about the background by allowing

a non-zero background fraction B. The log-likelihood function in this case is:

Nev

L(a,B) =Y —log B fu(z:) + (1 B) - {a- fi(wi) + 8- fi(e:) + (1 — a = B) - fo(ai) }]
= (N.2)
The function f;(z) is the distribution of z in background processes.
For the final step, let us relax the assumption about subdividing the data. Instead
of one, monolithic data sample, the data are subdivided according to features such as
the number of tight jets and the number and type of b-tags. Then the generalization of

equation N.2 to this situation is the following:

E(aw@) = ZEA(QMB) (N'3)
A
Ny _
Lr(e,8) =Y ~log [Br- fi}(@i) + (1= Br)- {a- (=) + 8- F(e:) + (1 - a = B) - (=) }]
= (N.4)

Each subsample of the data is represented by the index A. The A in subscripts and super-
scripts indicate a given quantity or function for the subsample A. In this thesis, the data
are subdivided into eight categories labeled (C4, C2), where C; = N33.5, N4 and C; = X0,

TO, XT, and NT. See section 8.2.4 for details.
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N.2.2  The Statistical Properties of the Log-likelihood Function

The statistical properties of L(a, ) can be described by the pseudo-experiment
method described in section 8.2.2. Let us imagine performing N.,, pseudo experiments
with N, events in each experiment. Let (a;, 8;) be the parameter values that minimize the
log-likelihood function in experiment ¢. Then, in ideal situations, the distribution of a; and

B; have the following properties:

e ¢, is distributed as a gaussian centered at the true parameter value ag. 8; is a gaussian

centered at the true parameter value (.

e The width of the gaussian for a; and for §; are determined by: (1) Ne,; and (2) the

second derivatives of £. This is discussed further in the next section.

e The longitudinal helicity fraction r;, = 1 — a — 8 is distributed as a gaussian centered

at the true parameter value 1 — ag — Gg.

e The distributions a; and 8; are correlated. Thus the error on 7, is not given simply
by the quadrature of the width of a; and §;, but by a formula that takes account of
the correlation. This is discussed in detail in the next section. The correlated width

is > the uncorrelated width.

Just as in the 1-parameter case discussed in section 8.2, these ideal properties are
valid only when: (1) N., is sufficiently large; and (2) no pathologies exist. For this appendix,

it will simply be assumed that the ideal properties are valid.

N.2.3 The Statistical Error of the Parameters

The statistical error of the parameters a and 8, and the derived quantity r; =
1 — a— B, can be estimated by analyzing the error contour of £L(a, ). The error contour is
simply the Taylor expansion of L(a, 3) — L(ao,Bo) up to the quadratic term, and is given

as follows:

T(a716) = E(a716)_£(a07160)
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= S A(a— o) + SB(8 o)’ + Oler— ao)(8 — o) (N.5)

2
4= L (N.6)
da?
a=ag,8=08
oL
a=ag,8=08
oL
= 9008 (N.8)

a=aq,B=0

The width o, of the distribution of o alone is obtained by the following rule:

1. Draw the contour T'(a,8) = 1/2. This is a tilted ellipse in the a-f3 plain, and corre-
sponds to the set of all points where £ is larger than the minimum value by 1/2. See

figure N.1(a).

2. The distance from ag to the largest possible value of o on this ellipse is equal to the
corresponding distance to the smallest possible value of a on the ellipse. This distance

is equal to o,,. This is shown graphically in figure N.1(b).

The width o4 for the distribution of 8 alone is obtained in a similar manner (figure N.1(c)).
For the distribution of r7, one evaluates r;, = 1 — a — 8 over the ellipse. There is one point
r’L"i” at which r;, is minimum, and one point 77*** at which 7, is maximum. The width of
the r, distribution is given by oy, = rQ — 77 = pmaz _ 0 Gee figure N.1(d).

The widths o,, 03, and oy, can be expressed in terms of the second derivatives of £

evaluated at (a, 8) = (ao, o). They are:

O = \/g (N.9)

og = \/g (N.10)

or = ,/‘“1227_20 (N.11)
Q=A4-B-C? (N.12)
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Figure N.1: (a) 1-0 contour for the 2-parameter log-likelihood function for the observable
Ey. This is obtained from the experimental data, before any optimization is performed.
There are 159 events in data, with expected signal contribution of 55 events. (b) Obtaining
the 1-o value for the a distribution. (c¢) Obtaining the 1-o value for the 8 distribution. (d)
Obtaining the 1-o value for the r, distribution. The dashed lines are lines of constant ry..
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N.2.4 Continuum Approzimation of the Statistical Errors

The continuum approximation of the log-likelihood function for the case of 1-parameter

fits is discussed in section 8.2. The generalization to 2-parameter fits is the following:

Li(e,B) = —Nevr)\/dm log[ By - fb)‘(:t:)

+(1-By)-{a =)+ 8- A=)+ (1-a—8) (=)} ]
(N.13)

This expression is for the subsample A; the total log-likelihood function is obtained by
summing over all the subsamples.
In terms of the continuum approximation of Ly, the second derivatives for the

subsample A are:

0Ly
Ay = 55
' 00 | oo 5250
= Nra(l- BA)Z/dm [fl(mf) _(f)(m)] (N.14)
0Ly
B, = 5
' 0B azan =0
= Nera(l— B,\)Z/dm [fl(mf) _(f)(m)] (N.15)
9%,
“ = L
= Nevr)\(]- - B)‘)Z / de [fl(m) - fO(;I:)] I:(];l)(m) - fO(m)] (N16)

feap(2) = B+ o) + (1= Bx) [ao - fi(2) + Bo- fi(z) + (1 — a0 — Bo) - fol)]  (N.17)

Let us denote the integrals appearing in the above equations as follows:
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(I4)x = /dm Lf1(2) = Jo(z)]" (N.18)

feap()
(IB); = /dm [fl(m) - fo(ﬁ”)]2 (N.19)
feap() '
1A - £o@)] [Ai(2) - fo(e)]
(IC)y = / do @) (N.20)
Then Ay, By, and C) can be written as follows:
Ay = N,7a(1 — By)*(IA) (N.21)
By = N.,7rx(1 — By)*(IB)x (N.22)
Cx = N.,ra(1 — By)*(IC), (N.23)

Let ay, by, and ¢y be the A-dependent part of Ay, By, and Cy. Then the above expressions

can be written as:

Ay = N_.,a, (N.24)
By = N.,by (N.25)
Cy = N_,c)y (N.26)

Let us denote the sum of Ay, By, and C) over A as A, B, and C, respectively. Similarly,
let us denote the sum of ay, by, and ¢y as a, b, and ¢, respectively. Then the continuum

approximation of the statistical errors o, 03, and o, is given as follows:
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Qo

A
op = % - %\/le_ (N.27)
Q=A-B-C? (N.28)
g=a-b-c? (N.29)

The errors, as expressed in equation N.27, underestimate the true errors, but not
by much. The advantage of using the continuum approximation is that the errors can be
factored into a statistical part (1/4/Ne,) and non-statistical part (e.g. \/b/q for o). The

non-statistical part depends on the background fractions B) and the shape of the functions

fo(z), fi(=), fl(m)a and fi(z).

N.3 Estimating the Statistical Error of the Parameters in
the Experimental Data

In this section, the continuum approximation of the log-likelihood function is used
to obtain an estimate of the statistical error of the soft and hard transverse helicity fraction
(a and B), and the longitudinal helicity fraction (r, = 1 — a — ). Following that is a

discussion of the results.

N.3.1 FEstimated Statistical Error

Table N.1 shows the numbers needed to obtain o,,, 0g, and o,. From those numbers,

one obtains the following for the statistical errors:

4.65
Vv Nev

On =

= 0.37 (N.30)
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L2 I om [B JUANJUBL[ O] o [ 8 | o |
( ) ][0.0252 ] 0.29 || 0.326 | 0.467 | —0.255 | 4.14 | 5.93 | —3.24
( ) |[0.0314 | 0.66 || 0.452 | 0.824 | —0.306 | 1.64 | =2.99 | —1.11
(N33.5, x1) || 0.0252 | 0.18 || 0.312 | 1.020 | —0.263 | 5.29 | 17.28 | —4.46
( ) |[0.4843 [ 0.90 || 0.343 | 0.599 | —0.302 | 1.66 | 2.90 | —1.6

( ) 0.0692 | 0.07 || 0.267 | 0.726 | —0.264 || 15.98 | 43.45 | —15.80
( ) 0.0566 | 0.25 || 0.422 | 0.462 | —0.283 || 13.44 | 14.71 | -9.01
(N34, XT) 0.0252 | 0.04 || 0.330 | 0.843 | —0.312 7.66 | 19.58 | —-7.25
( ) 0.2830 | 0.58 || 0.431 | 0.464 | —0.295 || 21.52 | 23.16 | —14.73

[ ToTaL: || 71.33 | 130.00 | —57.06 ||

Table N.1: The ingredients for calculating o, 03, and o;,. The numbers under ay, by, and
¢y are in units of 1073,

3.44
- —0.27 N.31
o3 i (N.31)
7.24
- —0.57 N.32
oL i (N.32)

The total number of events N,, is 1569. To put these numbers in perspective, let us assume
that a measurement is performed, and the result is the true parameter values (ag, 8o, 7%) =

(0.25,0.00,0.75). Then, the result of the measurement can be expressed as follows:

a = 0.2540.37
B = 0.00+0.27 (N.33)
r, = 0.7540.57

N.3.2 Discussion of the Results
The following are some observations on the results obtained in the last section:

Comparison with 1-parameter Fit
In the 1-parameter fit described in chapter 8, the statistical error for the soft transverse
helicity fraction is equal to that for the longitudinal fraction: ¢y, = 0.31. Thus, in
going from a 1-parameter fit to a 2-parameter fit, the statistical error of the soft
transverse helicity fraction increases by 19%, while that for the longitudinal fraction

increases by 84%.
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Why o, ~ 2 X 0, and og
The results of the last section shows that o /0, = 1.54 and o7/03 = 2.11 — in
other words, longitudinal error is roughly twice as large as the transverse errors.
This is due to the fact that, throughout most of the range of #, the longitudinal
distribution fy(z) lies in between the transverse distributions fi(z) and f(z). See
figure N.2. In order to see how this explains o7, ~ 2 X 0, and o4, consider the function
f(z) = a-fl(m)—l—ﬂ-fl(m)—l—'y-fo(m), where ¥ = 71, and the parameters a, 3, and v are
constrained by a+ 8+~ = 1. Suppose the parameters are changed by éc, 63, and &7,
consistent with constraint on the parameters. The constraint imposes the condition
§a+8B+8y = 0. The change in f(z) is then §f(z) = 6a- fi(2) + 88 fi(z) + &7 fo(z).
Suppose, for argument’s sake, that, for all , fo(z) lies approximately half way between
fi(z) and fl(:t:). Then, if §a and 683 are both increased or decreased by the same
amount A, and é7 is changed in the opposite sense by 2 X A, the net change in f(z) is
approximately zero. In other words, the log-likelihood function does not change much
when the correlated change in parameter described above is made. In particular,
near the minimum of the log-likelihood function, the error contour has the smallest
curvature along the line (a — ag) = (8 — Bo), and largest curvature along the line
perpendicular to it — i.e. the ellipse has major axis along the line (e — ag) = (8 —Bo),
and minor axis along the line perpendicular to it. In the limit minor axis < major
axis, 0, = 03, and o7, = 2 X 0, and og. The fact that o, = 2 X 0, and o3 is a result
of the major axis of the ellipse coinciding with the line along which v changes most
rapidly (y = 1 — a — ). In reality, fo(z) is only roughly half way between the two
other functions, and there is even a small region in  where fy(z) is not sandwiched by
the other functions. Because of this, and other complicating factors, the scale factors

relating the longitudinal error to the transverse errors is only roughly 2.

Data Optimization
The results were obtained using the unoptimized analysis — 7.e. no Hy cut and no
top mass constraint. With full optimization, the estimated errors should improve

moderately, just as was the case in the 1-parameter fit discussed in chapter 8.
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Figure N.2: The longitudinal (fo(z)) and transverse (fi(z) and f(z)) E, distributions.
fo(z) is sandwiched between the two other functions throughout most of the range of z.

Non-ideal Behaviors
The types of non-ideal statistical behavior in the 2-parameter log-likelihood method
is the same as in the 1-parameter case — bias, non-gaussian tail, likelihood functions
without minimum, and pathologies. These non-idealities in 2-parameters is usually
considerably worse than in 1-parameter. For example, in both 1-parameter and 2-
parameter fits, non-ideal behaviors generally decrease with increasing statistics; in
2-parameter fits, however, the threshold between non-ideal and ideal behavior is gen-
erally larger than in 1-parameter fits. As another example, the bias in 2-parameter
fits tends to be considerably larger than in 1-parameter fits. A detailed examination
of the non-ideal behaviors in 2-parameter fits is beyond the scope of this appendix.
In the present context, it will simply be noted that the results may be somewhat

inaccurate because of possible non-idealities.
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Appendix O

The Dependence of the K-factor on IV,

0.1 Introduction

The continuum approximation of the log-likelihood function is used throughout this
thesis in order to express the statistical error in modular form — i.e. o is factorizable into
a statistical term 1/4/N,,, a background term 1/(1 — 8)?, and a geometric term K:

1 1

A ) ERV. (0-1)

The geometric term is given by the following integral:

I [fi(z) — fo(ﬁ”)]2
=] Fean(®) (02)

The functions f;(z) and fy(z) are the component functions, while f.,,(z) is the theoretically
expected distribution of the observable z. According to equation 0.2, K is independent
of N,,. In reality, however, K does depend somewhat on N.,: K starts out large, and
decreases monotonically to an asymptotic value given by the integral in equation O.2. The
objective of this appendix is to show the degree to which K depends on N,,, and establish
that the integral approximation of K is close to the true value for N,, = 159, which is the

number of events in the experimental data.

0.2 The K-factor as a Function of N,
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Before going into the dependence of K on N, a discussion on some technical
matters is in order. The expression for the statistical error shown in equation O.1 is valid
only when the data sample is treated as a single unit. It is shown in section 8.2.4 that the
measurement resolution can be improved by dividing the data into subsamples. When the
data are subdivided in this manner, the continuum approximation of & must be generalized

as follows:

A |
=1

1 _ (1 - /3)\)27')\ : Nev
7= e (0.4)

The summation is over the eight subsamples. The quantities ) and K are the background
fraction and K-factor for subsample A, while r) is the fraction of events belonging to
subsample A. Equation 0.3 makes it clear that the total error o cannot be factored into
a statistical part, background part, and geometric part, as is possible when the data are
not subdivided. However, o can still be factored into a statistical part and a non-statistical
part, as follows:

K

Ney

o =

28: 1—ﬂA T (0.6)

Henceforth, the term “K-factor” will refer to K given by this equation.

Figure O.1 shows the K-factor as a function of N, for all of the observables. The
true value of K (the points in the figure) is estimated using the pseudo-experiment technique
described in page 147. These plots confirm the form of the N., dependence of K described
earlier. Also, given that N., = 159, it is clear that the continuum value of K approximates

the true value very well.
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Figure O.1: K-factor versus N,, for the observables U1+, ul—, U2, U3, and E;. The
horizontal line in each plot shows the value of K from the continuum approximation.
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Appendix P

Analyzing the Apparent Anomaly in the Measurement of rr

P.1 Introduction

In chapter 10, the results of the measurement of the soft transverse W helicity frac-
tion (r7) were presented. In the optimization configuration (ETCUT,MTCON) = (YES,YES),
r7 was measured to be 1.064, which is off by 2.91 standard deviations from the standard
model prediction r7 = 0.25. If the modeling of the signal and background were correct,
this would be strong evidence for non-standard model physics. There are indications, how-
ever, that the modeling is, in fact, inadequate. The main purpose of this appendix is to
demonstrate that the modeling is inadequate. A secondary objective is to speculate on the

source(s) of this inadequacy.

P.2 Demonstrating the Inadequacy in Modeling the Signal

and Background

Evidence for the inadequacy in the modeling of the signal and background comes
from the change in the r7 measurement going from the unoptimized to fully optimized
analysis configuration. Before optimization, rr = 0.675, which is 1.33 standard deviations
from the standard model prediction rr = 0.250. After optimization, ry = 1.064, which is

2.91 standard deviations from prediction. The optimization process involves: (1) application
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of Hr cut on certain subsamples of data; (2) application of top mass constraint in the ¢t
reconstruction process. These optimizations alter the E, distribution, so a certain degree
of change in the measured value of r7 is expected. An important question in this context

is the following:

Suppose, before the application of Hr cuts, that the experimental data originate
from signal and background events in the proportions given in table 10.1. Sup-
pose that the signal events originate from the standard model top quark, so that
rp = 0.25. Then, given that rr is measured to be 0.675 before optimization,
how likely is it that r7 is measured to be 1.064 after optimization? In other
words, how likely is it that 7 changes by 1.064 — 0.675 = 0.389?

In order to answer this question, the following pseudo-experiments have been per-

formed:

1. In a given pseudo-experiment, randomly select 159 values of E; from background and
standard model signal events in the proportions given in table 10.1. Note that 159 is

the number of events in the experimental data before the application of Hy cuts.
2. Using the log-likelihood method, extract 7 from this set of events.

3. For each of the 159 values of E; chosen above, there corresponds a different value
of E; obtained by applying a top mass constraint in the ¢f reconstruction process.
Switch the original values of F; to the mass-constrained ones. Also, from among the
159 events, remove those that fail the Hy cuts. This new set of values of E, gives a

fully-optimized version of the E, distribution.
4. Extract rr from this set of events.

5. Repeat the above pseudo-experiment N,,, = 10,000 times.

Figure P.1(a) through (d) show the result of the pseudo-experiments. Figure P.1(a) is a
contour plot of r7(y,y) vs. rr(n,n), where (y,y) and (n,n) stand for the optimization
configurations (YES,YEs) and (No,N0O). The dashed diagonal line represents r7(y,y) =
r7(n,n). The two dashed vertical lines correspond to r7(n,n) = 0.575 and r7(n,n) = 0.775

— the region between these lines indicates a window of £ 0.10 within the experimentally
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measured value of r7(n, n) of 0.675. Figure P.1(b) shows a profile plot of r7(y, y) vs. r1(n,n)
— the points show the mean of r7(y,y) in each r7(n,n) bin, while the vertical bars show
the dispersion of r7(y,y) about the mean in each bin. Figure P.1(c) shows the distribution
of rr(y,y) — rr(n,n) for all events, while Figure P.1(d) shows the same distribution for
experiments in the window 0.575 < r7(n,n) < 0.775.

Figure P.1(c) indicates that, on average, r7(y,y) = rr(n,n). Furthermore, a typical
value of the difference between r7(y, y) and r7(n,n) is 0.236 (the r.m.s. of the distribution).
This, however, is the situation when averaged over all values of r7(n, n). In the experimental
data, r7(n,n) is measured to be 0.675. If this is taken into account, then figure P.1(d)
shows that, on average, r7(y,y) = rr(n,n) — 0.159. The spread in the value of r7(y,y) is
0.206. The fact that r7(y,y) < rr(n,n) in the window 0.575 < r7(n,n) < 0.775 is expected
because the optimization decreases the statistical error in the measurement. In other words,
if rr(n, n) is measured to be > the theoretical value 0.250, then, on average, r1(y, y) should
be closer to the theoretical value because the optimizations decrease the uncertainty in the
measurement. Thus, on average, r7(y,y) should be < rr(n,n).

Let us examine, in light of the above observations, the change in the r; measurement
going from (NO,NO) to (YES,YES) in the experimental data. Figure P.1(d) shows that,
given that rr(n,n) = 0.675, r7(y,y) — rr(n,n) is distributed as a gaussian centered at
—0.159, with a width of 0.206. In the experimental data, one has rr(y,y) — rr(n,n) =
0.389. This corresponds to a standard deviation of (0.389 + 0.159)/0.206 = 2.66. This
shows that the change in r7 observed in the experimental data is rather unlikely to be
a statistical fluctuation. In other words, the observed change in r7 is more likely to be
due to inadequacies in the modeling of the signal and background than due to statistical

fluctuation.

P.3 Speculating on the Source(s) of the Inadequacy in the

Modeling of the Signal and Background

The fact that the measured value of r7 increases significantly from (NO,NO) —
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Figure P.1: The correlation between r7(n,n) and r7(y,y), as obtained from 10,000 pseudo-
experiments. (a) Contour plot showing r7(y,y) vs. rr(n,n). (b) Dispersion plot of r7(y,y)
vs. rr(n,n). (c) Distribution of r7(y,y) — rr(n,n), all experiments. (d) Distribution of
r7(y,y) — r7(n, n) for experiments in the window 0.575 < r7(n,n) < 0.775. In (a) and (b),
the dashed diagonal line represents r7(y,y) = rr(n,n), while the two dashed vertical lines
indicate a window of + 0.10 about the experimentally measured value of r7(n,n) of 0.675.
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< Ep >
SAMPLE (No,NO) ‘ (YES,YEs) | A< E; >
SIG(SOFT) 43.6 42.9 -0.7
siG(MED) 52.3 52.7 +0.4
BACK 49.7 55.4 +5.7
s+b(rr = 0.00) [ 50.6 54.1 +3.5
s+b(rr=025)| 49.8 52.9 +3.1
s+b(rr=1.00) | 47.6 49.4 +1.8
| DATA | 472 | 415 | 403 |

Table P.1: Average E; for the soft component of the signal (siG(sort)), the medium
component of the signal (sic(MED)), the background (BACK), signal + background with
rr =0, rr =0.25,and r7 =1 (s+b(r7 = - --)), and experimental data (DATA). All entries
in GeV.

(YES,YEs) implies that the experimental F; distribution is becoming softer relative to the
monte carlo signal and background distributions. This relative softening can happen by:
(1) the experimental F; distribution getting softer, while the monte carlo distribution stays
fixed; (2) the monte carlo distribution gets harder, while the experimental distribution stays
fixed; or (3) both of the above. Table P.1 indicates that (2) describes the situation best.
According to the numbers in the table, the hardness/softness of the two components of
the signal distribution change little under optimization, whereas the background distribu-
tion hardens significantly. Since more than half of the events in the experimental data
are expected to originate from background, one would expect significant hardening of the
experimental E, distribution. Instead, it is seen that the experimental distribution stays
nearly fixed.

Three plausible scenarios exist that can explain the observed behavior of the ex-
perimental E, distribution. They are: (1) some, or all, of the background fractions are
overestimated; (2) the background E, distribution after optimization does not harden as
much as predicted; (3) the signal E, distribution softens after optimizations. These items

are described more fully below:

Background Fractions Overestimated

Table P.1 shows that the two components of the signal E, distribution stays approxi-
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mately fixed under optimizations, while the background distribution hardens signifi-
cantly. This implies that, the smaller the background content, the smaller the change
in the E, distribution. This suggests that some or all of the background fractions
are overestimated. Lowering the background fractions would cause a decrease in the
measured value of ry. Since the measured values of rp are higher than expected,
the lowering of the background fractions would have the side-effect of causing the rr

measurement to be more consistent with the background + standard model signal.

Background Distribution Does Not Harden as Much as Predicted
As was mentioned in chapter 5, the background monte carlo sample was generated
using W + 3 jets QCD matrix elements. Although this process is expected to account
for the bulk of the background events in data, other processes also make significant
contributions (see chapter 4). In the top mass measurement by the CDF collaboration,
it was found that the top mass distribution in the W + 3 jets monte carlo is similar
to the mass distribution in other background processes. Thus the W + 3 jets monte
carlo was used to represent all of the background processes [44]. This similarity in the
observable distribution between W + 3 jets and other background processes, however,
does not carry over to other observables. For instance, in the W helicity measurement
using the lab frame transverse momentum of £ [63], there are indications that the Pr(£)
distribution from the W + 3 jets monte carlo is considerably harder than that from
the “non-W?” background. Since the “non-W?” background accounts for about 10%
and 25% of the total background in 3.5-jet and 4-jet events, respectively, the neglect of
“non-W?” events causes the measured value of »7 to be larger than expected. Although
the results in [63] do not propagate directly to the present analysis, the neglect of
the “non-W?” background in this analysis may well account for the significant shift
in 77 going from (NO,NO) — (YES,YEs). More specifically, the inclusion of non-W
background may cause the total background distribution to not harden as much as
predicted when W + 3 jets background alone is taken into account. A study on the
non-W background has not been performed in this thesis because of time constraints.

A future study of the r measurement using E; ought to take this into account.
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Signal Distribution Softens
Table P.1 shows that the two components of the signal E; distribution do not harden/soften
by much after optimization. This, however, assumes that the top quark mass is 175
GeV. Currently, the top quark mass, as reported by the CDF collaboration, is mea-
sured to be 176.0 GeV + 6.5 GeV [35]. Thus it is not unlikely that the true top
quark mass is actually 165 GeV or 185 GeV. If the true top quark mass were off from
175 GeV by a rather large margin, then it is not clear that the signal F; distribution
would not change significantly after optimization is applied. In other words, one of
the optimizations involves constraining the top quark mass to m;,, = 175 GeV in the
tt reconstruction process. Application of this mass cut on a parent sample where my,,
= 165 GeV or 185 GeV may cause the E; distribution to harden or soften. Because
of time constraints, this issue is not explored in this thesis. A future study ought to
take this into account, since it does not seem implausible that the signal E, distribu-
tion might soften because of such an effect, and this softening could account for the

observed shift in the 77 measurement from (No,NO) — (YES,YES).
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