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ABSTRACT

The form factor ratios ry = V(0)/A,(0), r2 = A3(0)/A,(0) and r3 = A3(0)/A,(0) in
the decay D+ — Fol"’u,, K™ = K~7* have been measured from charm hadroproduction
experiment E791 at Fermilab. From 3034 signal events in the muon channel, we obtain
rv = 1.84 £ 0.11 £0.09, , = 0.75 £ 0.08 + 0.09 and, as a first measurement of r3, we
find 0.04 £ 0.33 + 0.29. The values of the form factor ratios v and r9 measured for
muon channel are combined with the slightly revised values of our previously published
measurement of ry and rp for the electron channel. The combined E791 results for the

muon and electron channels are ry = 1.87 + 0.08 + 0.07 and 9 = 0.73 £ 0.06 + 0.08.

—
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Chapter 1

Theoretical Motivation

Weak semileptonic decays of hadrons provide a valuable way for testing the structure of
weak currents, for probing the quark structure of hadrons, and for extracting fundamental
information on the quark mixing matrix. Charmed meson semileptonic decays are mainly
used for testing the structure of the weak currents. Strong interaction effects play a major
role in the weak decays of hadrons containing heavy quarks. Semileptonic charm decays
such as D* — 7‘08"‘1/1 are an especially clean way to study these effects, because all
information about the strong interactions is contained in a few form factors. The goal of
this work is to measure the values of the form factor ratios for a specific charm semileptonic

decay and to compare results with specific models.

According to Heavy Quark Effective Theory, the values of form factors for charm
semileptonic decays can be related to those in certain bottom decays. Combining ex-
perimental data obtainable from B — pf7, and the measured form factors for charm
semileptonic decays can lead to a model independent determination of | Vs | ([1]). The
decay rate I'(B — pfDy) is related to | Vi, [? and to a function S(B~9) of the B-meson
decay form factors: ['(B — pfD;) | Vyy |2 -S(B—0) (FF's). The form factors for B — plT,
can be related to those corresponding to the decay D — K*fy; using two approximate

symmetries:

—
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e heavy quark symmetry: FF's (D -+ K*) = FF's(B —» K*).

e SU(3) flavor symmetry: FF's (B -+ K*) = FF's(B = p).

Determination of the | V,,; | in this way is biased by theoretical uncertainties estimated at

about 20%.

1.1 Form Factors in the Standard Model

The Feynman diagram for the decay D+ — K €%y, is shown in Fig. 1.1. Assuming a
point-like interaction, the invariant amplitude is proportional to the product of the lepton

and hadron currents L, and H#:

A(D‘*—)?‘O):%.Vu-L“-H“ (1.1)

where G is the Fermi coupling constant for the weak interaction and V_, is the CKM

matrix element corresponding to the coupling of the charm quark to the strange.

l +
w vt
c s
k __’*
Ves
D* X
d d
—- ——
Figure 1.1: Semileptonic decay D* — K¢+,
The lepton current L* has a standard V — A structure:
L,= @y Yu(l — 75)u (1.2)

2
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where %, and v, are the standard Dirac spinors. The expression of the hadron current
is more complicated because both the initial and final quarks are not free. However, the

hadron current H* is still constrained by three requirements:

1. It must be a four-vector.

2. It must be built up from all independent four-vectors that are relevant for the decay

mode.

3. It must be linear in the polarization vector € of the final vector meson K*.

For this charm semileptonic decay there are three independent four-vectors: the four-
momentum of the parent particle pp, the four-momentum of the vector meson pr- and
the polarization of the vector meson e. The hadron current H, does not have a well-
determined parity. Its most general expression contains both vector (V*#) and axial-vector

(A*) components [2, 3].

(Pk-.€ | V* | pD) = 9(¢*)e*** €5(pp + PK+)p(PD — P~ o (1.3)
(px- €| A |pp) = f(¢*)e™ +a+(d®)(€* -pp)(pD + pr-)* +
a_(¢*)(¢* - pp)(pp — pi- )" (1.4)

where ¢? is the invariant mass squared of the virtual W.

The hadron current is parametrized by four Lorentz-invariant form factors 9(¢3). f(¢?),
a+(¢%) and a_(g?). The first of these is related to the vector component of the hadron
current and the other three to its axial part. In practice, dimensionless linear combinations
of 9(¢°), f(¢*) a+(¢%) and a_(q) denoted by V(q?), A:(g?), Az(q?), A3(q?), are more

often used. Relationships between the two sets of form factors are given by:

2y _ t 2
9(qg”) = mv(q ) (L.5)
f(¢%) = i(mp + mk-)A1(?) (1.6)
3
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1

a+(@") = e A2(?) (1.7)
a_(¢%) = q—z [2m k- A3(¢?) — (mp + mg-) A1(g?) + (mp — mi-)A2(q%)] (1.8)

Limited size of data samples has so far precluded precise measurement of the g2 depen-
dence of the form factors, and the ¢q2 dependence is assumed to be given by the nearest-pole

dominance model:

A123(8%) = __A1,2,3(20) (1.9)
1- MZ

2y - _V(0) 1.10

Vig®) -l (1.10)

with M4 = 2.5 GeV/c? and My = 2.1 GeV/c? given by the lowest lying c3 states with

appropriate quantum numbers [4].

1.2 The Differential Decay Rate

Form factor ratios were extracted from data by measuring the differential decay rate of
the process D* — K ¢tu,. This decay is described as a succession of 2-body decays; the
D+ first decays into a K and a virtual W+, then the K decays into a K~ and a =+,

and the W™ into £* and v. Including phase-space, the decay rate can be written as:
1
dl' = _2Mo| A(D — Krlv) |2d®4(27)*6* (pp — px — pr — pu) (1.11)

With four particles in the final state, the phase-space associated to this decay is 12-

dimensional:
__%px _dpr  dFp &P,
(2m)°2Ex  (2r)%2E, (2r)°2E, (27)%2E,

dd, (1.12)

However, using energy and momentum conservation, expressed by the delta function
in the formula of the decay rate (1.11), the number of degrees of freedom reduces from
12 to 8. There are also three irrelevant angles: two angles that define the axis of K*

and W in the D rest frame, and one angle corresponding to a rotation around this axis.
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Integrating over these angles reduces the number of degrees of freedom to 5. Finally,
integrating over the invariant mass of the 'K'*o, which is not related to the form factors,
the phase-space relevant for this analysis is 4-dimensional. The definitions of the four
independent kinematic variables, used in this analysis are very similar to those used in
Ref. [2]: the square of the momentum transfer (¢?), the polar angle 6y in the K™ rest
frame between the 7+ and D, the polar angle 6; in the W™ rest frame between the vy
and D%, and the azimuthal angle y in the D+ rest frame between the K and W+ decay
planes (Fig. 1.2). The definition we use for the polar angle 0 is related to the definition

used in Ref. [2] by 6; = 7 — 4.

Figure 1.2: Definition of the angles 6, , 8y and X in the decay D — K*lv.

In terms of these variables the differential decay rate is given by:

dr __3 px¢
dg?d(cos 6;)d(cos 8y )dy 4(4m)* M3

-B(K* — K~ n%)| A |? (1.13)

The expression for the decay amplitude | A]? has still to be determined. Its explicit

expression is much shorter in the limit of vanishing charged lepton mass.
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1.3 The Case of Zero Lepton Mass

In the limit of vanishing lepton mass, the time component of the lepton current (Eqn. 1.2)
is zero in the fv frame. Since the amplitude of the decay rate contains the scalar product
of the lepton and hadron currents, only the spatial part of the hadron current is relevant
for the differential decay rate. It is convenient to expand the spatial part of the hadron

current H), in terms of a helicity basis of the virtual W.
H=H,e, + H_e_+ Hyeg (1.14)

where ey = 7‘2-(:Fx —1y) , e = z. The helicity amplitudes H4 and Hy are related to the
form factors A, 2(¢?) and V(¢?):

4mpk-
2y _ 2 _ .2 2 . 2y _ D Ao(a?
Ho(q%) ———2mx'\/&7 [(mo M. —q°)(mp + mg-)A1(q°) ———— 2(q )J
(1.15)
9 2 .
Hi(q%) = (mp + my-) A1 (¢?) F —LLPK"_y(q2) (1.16)

mp+mg-

In the above expressions, pg- is the 3-momentum of the final state vector meson K*

in the D meson rest frame. It is given by !:
1
2 2
PK'(QQ) = [(m20 - m%(. —q2) —4m%(.q2] /2mp (1.17)

As a consequence of this approximation (vanishing lepton mass) the form factor Az is
not relevant for D¥ — K ¢*y, because the spatial part of (pp — pg-) vanishes when

evaluated in the fv frame (Eqns. 1.4 and 1.8).

Following KS[2] and GS(3] and ignoring the lepton mass terms, the expression for the
differential decay rate is:

dar
dq?dcos §d cos Oy dy

2
G} - | Ve PEEL . B(K* — K~ n*) x

8(4m)* MZ,

'Due to the measurement uncertainties, the expression under the square root in Eqn. 1.17 might be

negative. The way these "unphysical” events are treated is described in Appendix A.

6
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x{(1+ cos 8;)*sin? Gy | H, (¢?) |” +

+(1 - cos8;)2sin2 0y | H_(q?) |* +

+4sin® g, cos? By | Ho(q?) | +

+4sinf(1 + cos 6;) sin By cos Oy cos xH, (¢2)Ho(g?) —
—45in6;(1 — cos 6;) sin Oy cos Oy- cos xH_(q?)Ho(q?) —

~2sin6;%sin @y 2 cos 2x H,, (¢%)H_(q?)} (1.18)

The definition of the azimuthal angle ¥ depends on the choice of the local system of
coordinates. As in Ref. [2], the orientation of the plane defined by pk- and Pk is taken
along ¥ = IJI;KL:E(L:[' With this convention the x component of pk is always > 0. The
angle x is the azimuthal angle of the charged lepton momentum p, (evaluated in the rest
frame of the W) with respect to the local system of coordinates: z = Prs ¥ = T;%:_:ELL:T
and X = § x Z. In the particular case when the planes (pk; pk-) and (p¢; pw) are parallel,
the value of x is 0 if (p;); > 0, or is 7 otherwise.

1.4 The Effects of the Lepton Mass

In the case of nonzero lepton mass, the time component of the hadron current must be
taken into account. Using the notations of Ref. (2] helicity amplitudes and the form factors

are related by:

H: = f(q%) ¥ 2mppr-g(q?) (1.19)

2
Ho(q?) = 2m—"’7{( o —& — ) f(¢®) + wk.ay(g? )} (1.20)
Hy(q%) = {f(q ) +mb(1 -

2
mK \/- Tn’% Jai(g?) + m%ya—(qz)} (1.21)

where y = m—qw,z- and the connection between the sets of form factors g(q2), f(q2), a. (2.
D

a—(¢%) and V(g?), A1(g?), A2(q?), As(g?) is given by Eqns. 1.5 to 1.8.

Compared to the case of vanishing lepton mass, there is an additional helicity ampli-

tude H; which contains the form factor a_(g?) and implicitly A3(q?) (Eqn. 1.8). The

7
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Vi Vi

(@) “spin no-lip” (b) “spin flip”

Figure 1.3: Spin-1 component of the W boson (left); Spin-0 component of the W boson.

form factor A3(g?) is relevant only in the limit of non-vanishing lepton mass. The helicity
amplitude H; probes the spin-0 component of the W boson and is highly suppressed due
to the V' — A structure of the weak currents (Fig. 1.3). The extra amplitudes in the dif-
ferential decay rate generated by the additional helicity amplitude H, are usually called
“spin-flip” amplitudes because the relative orientation of the lepton spins in the W rest
frame is opposite to what one might expect if the charged lepton mass is ignored (Fig. 1.3).
In addition to the suppression of the “spin-flip” amplitudes due to the V — A structure
of the lepton current, there is another reason to believe that these extra amplitudes play
a minor role even if the charged lepton has a relatively large mass. As shown in Fig. 1.3,
“spin-flip” amplitudes are associated with the spin-0 (scalar) component of the W boson.
Since the parent particle (the D¥) is a pseudo-scalar and the K*° meson is a vector, the

scalar W+ and the vector X must have a relative angular momentum L = 1 in order to

-
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satisfy total angular momentum conservation. A P-wave decay of the D* meson should
be highly unfavored in comparison with the normal S-wave decay, simply because of the
small spatial extent of the D* meson. The helicity amplitude H, is proportional to the
form factor A3(g?), and is expected to be small.

In general, with non-zero lepton mass the differential decay rate is given by:

dr
dq?d cos 6;d cos Oy dx

3

o +§(1 + cos? 05 sin? Oy dT' i/ dq?
+g sin? a,g cos? Gy dl' /dg?

-g sin® ; cos 2xg sin? @y dl'7/dg®

+% sin 26 cos x sin 20y dT'; /dq?

+g cos 0,% sin? OVdI‘p/dq2
+§ sin 6y cos x sin 28y dT" 4 /dq?
+4% sin? 9[42 sin? 9vdfu/dq2

+£23- cos? 01-2- cos? 0vdf‘L/dq2

+% sin? 6; cos 2x% sin? 0y 2dl' /dg?

—g sin 26; cos x sin 20y dl'; /dq?
+£23- cos? Bv%dfs/dqz
—3cos O,g cos? 0vdf'sL/d‘12

+§ sin 6} cos x sin 20y dI"s1/dq? (1.22)

where

2
G2| Ves |2PK'Q2 m? 5
dl;/dg* = =E 1-—-L) A (1.23)
9673 m?,

2
=~ m
dl;/dq* = ﬁdl‘i/dqz (1.24)

Following KS[2] the notations i =I'; , and i = I'; stand for:

U « Hy= | Hy P+|H_? unpolarized transversal

—
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P « Hp= |H *-|H_J? parity odd
L « H,= | Hy |? longitudinal
x Hg= 3| H, | scalar
SL « Hg= Re(H, - Hf) scalar- longitudinal interference
T « Hr= Re(H, - H*) transverse interference
I x H= sRe(H, - H§ + H_ - HY) trans.-longi. interference
A « Hs= LRe(H,-H{-H_-H}) parity asymmetric
ST « Hsr= sRe(H, -H} + H_- HY) scalar-trans. interference

In the limit of vanishing lepton mass, the above equation reduces to Eqn. 1.18. The

“spin-flip” amplitudes are those containing the helicity amplitude H,: Hg, Hg; and H ST-

There are two main effects caused by the mass of the lepton m;: a) There is an overall
kinematic factor of (1 — m?/q2)® which suppresses the decay rate at low ¢2. In particular,
this suppression affects the longitudinal amplitude Hy, which would otherwise be large in

this region.

b) Additional amplitudes are introduced and a new form factor A3(q?) becomes rele-
vant. Some of the additional amplitudes are still associated with the spin-1 component of
the W boson (Hy, Hp, Hp, Hr, H;, E?A) and the others (Hg, Hgr, fIST) are the “spin-
flip” amplitudes associated with the spin-0 component of the W boson. All additional
amplitudes are suppressed by a factor mf /¢?, and according to Ref. [7] contribute approx-
imately 5% to the total integrated rate. The Monte Carlo simulation in Fig. 1.4 compares
the differential decay rates (integrated over the angular kinematic variables) when the
lepton mass is neglected (electronic mode) and when the lepton mass effects are included
(muonic mode). In the second case (muonic mode), the contribution of the “spin-flip”
amplitudes was ignored (the form factor A3(q?) was set to zero). The contribution of the
“spin no-flip” amplitudes include extra terms that have the typical overall factor m2 /24>

(Eqn. 1.22).

10
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[ - N

dr/dq® (arbitrary units)

od
o

muonic mode

0.4 electronic mode

0.2

Figure 1.4: Monte Carlo simulation of differential decay rates dI"/dq? for muon and electron

decay modes.

1.5 Theoretical Predictions for the Form Factor Ratios

The differential decay rate (Eqn. 1.22) is a quadratic and homogeneous function of the form
factors. Therefore, one form factor evaluated at g® =0 can be factored out and included
in the overall constant which contains the Fermi constant G F, the CKM matrix element
| V |cs and the branching fraction B(?"0 — K~7%) (Eqn. 1.18). Since A,(¢?) contributes
to all helicity amplitudes, it is customary to factor out this form factor evaluated at g’ =0.

The parameters measured in this analysis are the form factor ratios:

_ V(o)
V=40 (1.25)
_ 4»(0)
- £ (1.26)
11
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_ 43(0)
A1(0)

In principle, the values of the form factors V/(0), A1(0), A2(0), A3(0) can be determined

R3 (1.27)

from the values of the measured form factor ratios Ry, Ry, R3 and additional information
about the total decay decay rate, the D* lifetime, | V |.s and B(F0 — K~ n%). Ex-
perimental uncertainties associated with these quantities propagate into the errors on the
form factors V'(0), A;(0), A2(0), A3(0). Therefore, the comparison of the measured form

factor ratios Ry, Ry, R3 with theoretical predictions is more relevant.

Several theoretical models make predictions for the form factor ratios R; and Ry, as
summarized in Table 1.1. These theoretical predictions are affected by large uncertainties,
and none include the third ratio of form factors R; which is related to the lepton mass.
Experimental averages calculated from four previously published results [5, 6, 7, 8| are
also listed.

The calculations based on quark models estimate meson wave functions and use them
to compute the matrix elements of the hadronic currents. The integrals are performed
for zero-recoil momentum of the daughter meson (¢? = ¢2...) because the D — K wave
function overlap can be better estimated. The values of the form factors evaluated at
q* = g2, are extrapolated to lower q® assuming certain g2-dependences. The models
differ from each other in the assumptions made to evaluate the meson wave functions
and the g%-dependence of the form factors. Lattice QCD results are based on numerical
calculations using a discrete space-time lattice. These are nonperturbative methods and
are still plagued by large uncertainties. In general the central values obtained with lattice

QCD calculations agree better with the experimental results.

12
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Table 1.1: Theoretical predictions for the form factors R, and Ry, and the average of

previous experimental results.

Group R, Ry
Quark Model
ISGW([9] 1.0 14
WSBJ(10] L3 14
KS[2] 1.0 1.0
AW/GS|11, 3] 0.8 2.0
Stech[12] 1.06 1.55
Lattice Gauge
BKS[13] 0.7+0.16 £0.17 | 1.99 +£0.22 + 0.33
LMMSJ[14] 04+04 1.6 £0.2
ELC[15] 0.6 +0.3 1.3+0.2
APE[16] 0.7+04 1.6 £0.3
UKQCD(17] 0.9+0.2 14333
Sum Rules
BBD[18] 1.2+0.2 22+0.2
Experimental Average 0.74 £ 0.09 1.90 £0.12
13
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Chapter 2

E791 Experimental Setup

E791 is a fixed-target charm hadroproduction experiment. Charm particles were produced
in the collisions of a 500 GeV/c = beam with five thin targets, one platinum and four
diamond. The goal of this experiment was to explore charm physics with better sensi-
tivity than previous experiments by recording a large number (about 2 x 10!9) of charm
candidate events. To extract data corresponding to certain charm decay modes, the E791
spectrometer provides accurate information on:

¢ production and decay vertices (vertexing system).

e track trajectories (tracking system).

e track momenta (dipole magnets).

e particle identification (Cerenkov counters, calorimeters, muon walls).

The E791 spectrometer, including the target, is shown in Fig. 2.1. The spectrometer
componenets relevant for this analysis are briefly described in this chapter. More details

about the E791 spectrometer can be found in Ref. [19, 20, 21, 22].

14
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Figure 2.1: The E791 Spectrometer.
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2.1 Charm Production

2.1.1 Beamline

Figure 2.2: Layout of the Fermilab beam lines.

Protons of 800 GeV /c were extracted from the main ring of the Tevatron at Fermilab and
injected into one of the three beamlines used in three distinct fixed-target experimental
areas. Each extraction, called a spill, lasted 23 seconds out of every 57 seconds and
contained about 10'3 protons. Two teraprotons/spill were allocated to E791. Upstream
from the spectrometer, the proton beam hit a 30-cm long beryllium target and high energy
pions created during the collisions were charge- and momentum-selected, then collimated

into a beam of negatively-charged pions with momentum (500 + 20) GeV/c. The beam

16
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intensity typically was 2 million pions per second. The layout of the different beamlines

and the Tevatron is shown in Fig. 2.2.

2.1.2 Target

Figure 2.3: The schematic layout of the E791 target foils.

Charm particles were produced in the interactions of the 500 GeV/c negatively charged
pions with a fixed target. To obtain a large sample of charm events, the target should
be thick compared to the interaction length. On the other hand, a thick target increases
multiple scattering and secondary interactions which mimic decays. The target design
had to compromise between these conflicting requirements. The choice was to use five
thin targets (Fig. 2.3). The spacing between the target foils (1.5 cm) ensures that most
charm particles produced in any of the five targets decay outside the target foils. The
first of the five targets was made of platinum (0.5 mm thick) and the other four were
made of industrial-quality diamond (1.5 mm thick). The ideal target material should
have a) high density (to maximize the production rate) and b) low Z (to minimize the
multiple scattering). Platinum satisfies only the first condition. Therefore, the foil made
of platinum is thinner and it is located upstream of the other target foils. Diamond is
a fairly good compromise between the two conditions. The total thickness of the five

targets was 6.5 mm corresponding to about 2.2% of the interaction length. The geometry

17
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of the target allowed good discrimination between the production vertex (primary) and
the decay vertex (secondary). Typically, the momenta of the charm particles were about
200 GeV/c and the mean decay length was about 1 cm.

2.2 Tracking and Vertexing System

2.2.1 E791 Coordinate System

The z-axis of the E791 coordinate system was chosen to lie along the incident pion beam.
The x and y axes were in the plane perpendicular to the z-axis and define a right-hand

coordinate system (Fig. 2.4). The origin was just downstream of the targets.

In addition to the x, y and z axes, E791 used u, v, w and w’ directions to align
the detectors. The u view axis was rotated by 20.5 degrees with respect to the positive
direction of the x-axis toward the positive direction of the y-axis. Similarly, the w view
axis was rotated by 60.0 degrees in the same direction as the u-axis. The v and W' axes
were rotated by -20.5 degrees and -60.0 degrees respectively with respect to the positive

x-axis toward the negative direction of the y-axis (Fig. 2.4).

2.2.2 Silicon Microstrip Detectors

The silicon microstrip detector (SMD) consisted of 23 vertical planes used for precision
tracking and vertexing. Six of the SMD planes were upstream of the target for accurate
beam position determination, and 17 downstream for early tracking. The resolution of
the SMD’s is determined by the center-to-center separation (the pitch) of the conducting
aluminium strips deposited on the silicon. Spatial resolutions achieved by the SMD'’s

ranged from 7 to 15 um in the direction perpendicular to the strips.

18
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Figure 2.4: The E791 coordinate system showing z, y, u, v, w and w’ axes. The z-axis

points into the page.

2.2.3 Proportional Wire Chambers

Eight proportional wire chambers (PWC’s) were used for beam tracking and finding the
primary vertex. To increase the tracking capabilities two more PWC's were installed

downstream of the target.

High energy charged particles ionize the gas inside the PWC’s and resulting free elec-
trons are collected by the nearest wire connected to a positive high voltage. The position
of each charged particle is determined by the location of the wire which registered the
electric pulse. Each PWC plane is perpendicular to the beam axis and can measure the
position of the charged particle along the direction perpendicular to the wires. The reso-
lution of the position measurement is proportional to the wire spacing. Table 2.1 contains

the most important characteristics of the PWC’s. The X’ view was offset by half a cell
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from the X view to improve the resolution.

PWC Characteristics
Parameter Upstream Station | Downstream Station
Planes 8 2
Z Position (cm) -3117 and -1212 118.5 and 161.1
Size (cmxcm) 6.4 x 3.2 53.0 x 28.8
Wire Spacing (mm) 1.0 2.0
Views X, X'and YW X, Y

Table 2.1: Characteristics of the E791 PWC systems.

2.2.4 Drift Chambers

In addition to SMD and PWC's, the E791 tracking system was equipped with four mod-
ules of planar drift chambers containing a total of 35 vertical planes. Just as for the
PWC’s, the incident charged particle ionizes the gas inside the drift chamber. The freed
electrons migrate to the nearest anode wire with a drift velocity which depends on the
applied electric field and on the chemical and physical properties of the gas. The position
of incident charged particle was determined from the time-of-flight to the anode. The

resolution of the drift chambers ranged from 250 to 350 pm.

The first module of drift chamber planes (D1) was located upstream of the first analysis
magnet M1 and together with SMD and PWC's, provided information about the first
part of the track trajectory. The second module (D2) was located between the two bend
magnets. The third drift chamber module (D3) was positioned after the second magnet M2
and before the Cerenkov counters. The last module (D4) was located past the Cerenkov
counters and just before the calorimeters. The characteristics of the four drift chamber

modules are summarized in Table 2.2.
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DC Characteristics
Parameter D1 D2 D3 D4
Z Positions (cm) 142.5 to 183.7 | 381.4 to 500.8 | 928.1 to 1047.1 | 1738.0 to 1749.2
Planes 8 12 12 3
Assemblies 2 4 4 1
Views X, X', Uv Ux,v UX,V U,X.V
U,V Cell Size (cm) 0.476 0.892 1.487 297
X, X' Cell Size (cm) 0.446 0.953 1.588 3.18
Size (cmxcm) 126 x 71 285 x 143 323 x 143 511 x 259
Resolution (um) 400 300 300 450

Table 2.2: Characteristics of the E791 drift chambers.

2.3 Momentum and Charge Measurement

E791 was equipped with two large-aperture, copper-coil magnets for momentum and
charge measurement. The charged particles detected by E791 spectrometer have a large
boost along the beam axis. Therefore, to a good approximation, the change of the trans-
verse momentum produced by the magnetic field, referred to as pr kick, does not depend
on the total track momentum. The track trajectory is bent in the horizontal plane and
the trajectory’s curvature (measured by the tracking system) is inversely proportional to
the track momentum. The values of the pr kick for the two magnets were 212 MeV /c and

320 MeV/c respectively and were oriented in the same direction.
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2.4 Particle Identification

2.4.1 Cerenkov Counters

In this analysis the hadrons (kaons and pions) were identified with two Cerenkov threshold
counters (C1 and C2) filled with different gas mixtures. A charged particle passing through
a Cerenkov counter emits light (Cerenkov radiation) if it has a momentum greater than a

threshold value p;:

mce
Pth = nz_—l (2.1)

where m is the particle mass and n is the gas mixture index of refraction. For a given
particle, the threshold momenta are different in C1 and C2 because the refraction indices
are different. The discrimination power between different particle types is better in certain
momentum ranges. For example, in the momentum range 20 to 36 GeV/c a pion would
emit light in both C1 and C2, a kaon would emit light only in C1 and a proton would not
emit light in either C1 or C2. Some of the Cerenkov counters characteristics are shown
in Table 2.3. The particles best separated are shown in Table 2.4 for various momentum

ranges.

The light emitted by charged particles traversing a Cerenkov detector was collected
by spherical mirrors coupled to light collecting devices called Winston cones. Using many
mirrors allows the simultaneous detection of charged particles whose light cones do not
overlap at the position of the mirrors. The views of the two Cerenkov counters are shown in
Figures 2.5 and 2.6 and the arrangement of the mirrors is shown in Fig. 2.7. The Winston
cones funnel the light collected by the mirrors into a photomultiplier tube (PMT). For
each particle type the number of photons emitted as Cerenkov radiation can be predicted
in terms of particle momentum [23]. Based on this knowledge and on the observed number
of photons, a probability is assigned to each charged particle for being an electron, a muon,
a pion, a kaon or a proton. In this analysis, the information from Cerenkov detectors was

useful only for identifying the kaons and pions.
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Figure 2.5: Schematic of the first Cerenkov detector, CI1.

Cerenkov Detector Characteristics
Parameter C1 C2
Medium 100% N2 | 80% He, 20% N,
(n-1) 290 x 10-6 86 x 106
P, for ™ (GeV/c) 5.7 10.5
pw for K (GeV/c) 20.2 38.5
pen for p (GeV/c) 38.5 70.6
Number of Mirrors 28 32

Table 2.3: Some important characteristics of the two Cerenkov detectors C1 and C2. The
threshold momentum for each Cerenkov detector indicates the point at which a given

particle starts to emit Cerenkov radiation.
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Figure 2.6: Schematic of the second Cerenkov detector, C2.

Cerenkov Separation for m,K and p
Momentum Range (GeV/c) | Separation Achieved
0-5.7 No Separation

5.7-10.5 /K p

10.5 - 20.2 m /K p

20.2 - 37.1 /K /p

38.5 - 70.6 ™ K/p

70.6 - 200.0 No Separation

Table 2.4: The Cerenkov separation for w, K, and p achieved in different momentum
ranges.

24

—

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Cl MIRROR ARRAY

13 9 2 10 14
11 7 513 |1]14]6 8 12
25 21 190 17115118 20| 22 26
27 23 16 24 28

C2 MIRROR ARRAY

15 11 2 12 16
13 9 71513 ]1/4|6/( 8 10 14
29 25 23 (21] 19 {17]20]|22] 24 26 30
31 27 18 28 32

Figure 2.7: Schematic of the mirror segmentation in C1 and C2 Cerenkov detectors.
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2.4.2 Segmented Liquid Ionization Calorimeter (SLIC)

A segmented liquid ionization calorimeter (SLIC) was designed for identifying those par-
ticles that interact mainly electromagnetically with matter. The E791 SLIC was used for
electron and photon identification. High energy electrons passing through dense materi-
als (such as lead) lose energy mainly because of bremsstrahlung radiation. The energy
loss caused by electromagnetic radiation is proportional to 1/m? of the incident particle.
Therefore, this mechanism of energy loss is dominant only for electrons. The thickness
of the SLIC is equivalent to about 20 radiation lengths for electrons and photons, and to
only about 1.5 interaction lengths for hadrons. The absorbtion of muons in the SLIC was
negligible. So, energy deposition in the SLIC is dominated by electrons and photons. A

schematic view of the SLIC is shown in Fig. 2.8.

The SLIC consists of 60 layers of lead and liquid scintillator. The bremsstrahlung
radiation develops in the lead layers and then ete~ pairs are created. The light is gen-
erated in the liquid scintillator layers by the e*e~ pairs. Each liquid scintillator layer
was optically separated into parallel strips by teflon-coated corrugated aluminium sheets
which provided channels with total reflection surfaces. The design of the liquid scintilla-
tion layers is appropriate for both creating and guiding the scintillation light along certain
directions. The scintillation light was mostly in the ultraviolet region and it was converted
to the visible range by wavelength-shifter bars in order to improve the efficiency of the

photomultiplier tubes.

The overall spatial resolution for locating the electron shower centroid was about 7
mm. The energy deposited by a charged particle or a photon is proportional to the
photomultiplier tubes’ output, after correction for the attenuation in the scintillator and
wavelength-shifter bars. Precise location of the shower position (centroid) allowed the
identification of the track consistent with the centroid position. The comparison between
the energy (E) of the track determined by the SLIC and the track momentum (p) gave
information on whether the track was an electron (for electrons E must be consistent with

p within spectrometer resolution). The most important characteristics of the SLIC are
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summarized in Table 2.5.

SLIC Characteristics
Parameter Value
Z position (cm) 1866 to 1962
Number of Channels 334
Usable Area (cmxcm) 490 x 240
Radiation Length 20
Absorption Length 1.5
Energy Resolution (%)2 (11.5%)% + (%—4%)2
Position Resolution (cm) 0.7

Table 2.5: Important Characteristics of the SLIC.

2.4.3 Muon Identification

Electrons, photons and hadrons are almost completely absorbed in the electromagnetic
calorimeter (SLIC), hadron calorimeter and additional steel shielding (106 cm thick), while
muons leave only a small fraction of their energy in the calorimeters and steel shielding.

Therefore most of the particles that survive behind the steel shielding are muons.

E791 used two planes of scintillation counters (called X and Y muon walls), to identify
muons. Only muons with momentum above 4 GeV/c passed through material equivalent

to 239 cm of iron in order to reach the muon walls.

The X wall consisted of 15 plastic scintillation counters (paddles), aligned vertically, in
order to measure the x-position of the charged particles passing through it. Four additional
paddles were mounted behind the central X paddle. These four additional paddles were
used in coincidence with the X wall to reduce noise in the central region of the beam line.

The second plane of scintillation counters (the Y wall), located 176 cm downstream from
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Figure 2.8: Schematic view of the SLIC.

300cm

2.

62.2 cm

West

Figure 2.9: The geometry of the X muon wall. The shaded region shows the area of the

X wall that overlaps with the Y wall.
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Figure 2.10: Geometry of the Y muon wall.

the X wall, had 16 paddles oriented horizontally to measure the y-position of the charged

particles passing through them. The geometries of the two walls are shown in Fig. 2.9
and Fig. 2.10. The most important characteristics of the two muon walls are listed in

Table 2.6.
Muon Wall Characteristics
Parameter X Wall Y Wall
z-position (cm) 2243 2319
Area (cm?) 550 x 300 | 300 x 224
Number of paddles 15 16
Efficiency (%) 69+3 99 +1

Table 2.6: Characteristics of the X and Y muon walls.

The light created in a scintillation paddle by a charged particle passing through it
was collected by the photomultiplier tube attached to the paddle. The electrical signal

generated by the photomultiplier tube was sent to discriminators and also to time-to-
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digital converters (TDC’s). TDC information from Y wall provided information about
the x-position at Y wall with about 50 cm resolution, while the resolution of y-position
is determined by the paddle width (14.2 cm). TDC information from X wall was not
reliable and was not used in this analysis. Efficiency for X and Y walls were (69 £ 3)%
and (99 + 1)%, respectively [21, 24].

2.5 Trigger

E791 used loose irigger requirements, hence recorded events at a high rate with little
bias from the trigger itself. During the six months of run period, about 50 Terabytes of
raw data were recorded on 24,000 8mm video tapes. An event was saved if it passed the

following conditions:

Beam Halo
Counter
Interaction
Beam Spot Counter
Counter
----------- R GAR R
Target
§ 10cm

Figure 2.11: Schematic of scintillating paddles used in trigger decision.

* Only one beam particle was detected upstream of the targets. The number of beam
particles was determined with a scintillation paddle (beam spot counter) placed in

the beam path, as shown in Fig. 2.11.

¢ No signal was recorded by the beam halo counter. The beam halo counter was

a scintillation paddle with a 1 cm diameter hole at its center (Fig. 2.11). This
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requirement ensures that beam pions are not too far from the beam axis, and that

additional halo tracks were not present.

e At least four charged particles were detected by the interaction counter located

downstream the targets (Fig. 2.11).

e Er > 4 GeV/c, where Er is the energy deposited in the SLIC and hadrometer

transverse to the beam direction.

e Er < 700 GeV/c, in order to reject events with multiple beam particles.

Beam pions interacted with the targets at 40 kHz. About half of these interactions

passed the trigger requirements.
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Chapter 3

Data Selection

The decay channel studied was the sequential decay D+ — —I?*Op'*‘u# followed by 7 G
K~7* (charge conjugate decays are implied). Due to the loose trigger, most events do
not contain a charm decay. Out of 20 billion raw data events, only about 200,000 charm
decays were reconstructed. To eliminate the huge background, tight cuts were applied to
tracks, vertices and particle identification. The final data sample contained about 3000

decays after subtracting 600 background events.

Events were selected if they contained a decay vertex determined by the best estimate
of the intersection point of three tracks that have been identified as a muon, a kaon and a
pion. The longitudinal separation between this candidate decay vertex and the production
point was required to be at least 15 times the estimated error on the separation. The two
hadrons were required to have opposite charge. If the kaon and the muon had opposite
charge, the event was assigned to the “right-sign” sample; if they had the same charge,
the event was assigned to the “wrong-sign” sample used to model the background. Since
the lepton charge was always the same as the decay vertex charge, the background was
modeled by the wrong-sign sample with no extra weight. The event selection criteria used
for this analysis were the same as for the electronic-mode form factor analysis [4], except

for those related to lepton identification.
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The most important sources of background were:

e Random tracks identified as a kaon, a pion, and a muon which by chance originated

from the same vertex.

e Other charm decays.

The wrong-sign sample correctly accounts for background due to the random tracks and
for some of the other charm decays (like D} - K~ K *utv,). There are still charm decays
(like D¥ — K~n*n*70 with a charged pion misidentified as a muon) that contribute only
to the right-sign sample. This kind of background, as well as background associated with
random tracks, was substantially reduced mainly by the cut applied to vertex separation
(SDZ), and by the minimum kinematically allowed mass of the D*.

3.1 Strip, Substrip and Microstrip

This analysis is based on 100% of the E791 data sample. The events passed the standard
E791 filter and strip stages; these cuts are described in Ref. [20]. In the next two stages the
events passed the KSU semileptonic substrip and microstrip cuts. The selection criteria

for the combination of filter, strip substrip and microstrip are:

The muon candidate has a momentum larger than 7 GeV.

The muon candidate hits either X or Y wall within 3 o from the projected paddle.

The value of o is determined by the expected Coulomb multiple scattering of the

muon candidate.

The primary vertex lies upstream of the interaction counter: Zprim < —1.0 cm.

The vector sum of momentum components perpendicular to D+ direction of flight

of the three tracks is less than 1.5 GeV/c.
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e The probability for the tracks in the secondary vertex to have come from the primary
is low (IPMIN > 6).

3.2 Nanostrip

The nanostrip level produces an event reduction of about 5 to 1. At this level the cut most
effective for reducing the background was the one applied to the longitudinal separation
between production and decay vertices divided to its estimated error (SDZ variable). The
criterion used for cut optimization was to maximize the significance of the signal S/v/B,
where S is the signal and B is the background. The values of S and B were extracted
from right-sign (RS) and wrong-sign (WS) samples. By definition: S = RS — WS and
B =WS. The values of S/v/B were plotted in Fig. 3.1 for different cuts applied on SDZ.

All cuts implemented at nanostrip level were:

1. Secondary Vertex Cuts

» Well-separated (SDZ > 15) secondary vertex contained 3 tracks, and had charge
+1.
e Vertex x?/dof was less than 9.0.

e Vertex was outside of a target foil by at least one standard deviation.
2. Track Quality Cuts

e Each track was detected in all three regions of the spectrometer (upstream
of the first magnet, between the two magnets, and downstream of the second
magnet).

e Track x?/dof was less than 5.0.

3. Particle Identification Cuts

e One track had kaon probability, as determined from Cerenkov information,
greater than 0.13.
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4. Mass Cuts

e Invariant mass Mg, of the K*? candidate, was between 0.64 and 1.30 GeV.

e The minimum kinematically allowed mass of the D¥ candidate was between

1.1 and 2.3 GeV. It was defined as:

Mumin = pe + \/m2,, + p? (3.1)

where my;; and p, refer to the invariant mass and the sum of the transverse

momenta, respectively, of the three visible particles.
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Figure 3.1: Significance of the signal when SDZ cut changes from SDZ > 12to SDZ > 20.
The optimized cut is SDZ > 15.

The D* candidate mass cannot be fully reconstructed due to the undetected neutrino.
At best, the neutrino momentum (and the D mass) can be reconstructed up to a quadratic

ambiguity (Appendix A).
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3.3 Analysis Cuts

After the last set of cuts (nanostrip) the data sample had a manageable size (two tapes).
To further improve the quality of the signal tighter cuts were needed. The final set of
cuts produced a clean D+ — K*0u*y, sample (S/VB > 124). At this stage tighter cuts
were applied to muon and hadron identification, to secondary vertex position, and to Mg,
and Mmp;n, mass ranges. The final muon identification was based on tighter requirements
imposed on the information provided by the Y muon wall. The information provided by
Y wall was more reliable, and therefore it was mostly used for muon identification. More

details about muon identification are given in Appendix B.

1. Muon identification:

® p, > 8 GeV.

e Identification on Y direction: the projected y position of the muon candidate

track at Y wall was within 1 o from the hit paddle (ng, < 1.0).

o Identification on X direction: the projected x position of the muon candidate

track at Y wall was consistent with the TDC information (abs(dist) < 8.0 D).
2. Kaon probability as determined by Cerenkov counters : Kp . > 0.4.
3. Pion probability of the pion candidate: mpyop > 0.4.
4. 0.85 < Mg, < 0.94 GeV.
5. 1.6 < Mpin < 2.0 GeV.
6. Zsecondary < —0.4 cm.

7. The invariant mass of the three visible particles with the muon treated as pion, was

outside the region (1.82;1.92) GeV.

'The definitions of ne, and dist variables are given in Appendix B.
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The last cut removed the feedthrough from the hadronic decay due to particle misidenti-

fication D — Knrnm.

In addition to these cuts, there was also a cut established with the Binary Tree Al-
gorithm commercial software CART [26]. The CART cut is a linear combination of four
variables that have high discrimination power against the background. The four variables

used by CART are:

1. Sigma - Number of standard deviations the secondary vertex was outside the target

foil or interaction counter.

2. SDIP - The distance-of-closest-approach in the x-y plane of the reconstructed D+
candidate (allowing for the missing neutrino information) with respect to the primary

vertex, measured in standard deviations.

3. SDZ - The separation of primary and secondary vertices measured in standard de-

viations.

4. Sratio - The product of ratios of SSISO/SPISO for each of the three tracks. SSISO
(SPISO) was the distance of closest approach of a track to the secondary (primary)

vertex measured in standard deviations.

The coefficients of the linear combination are summarized in the Table 3.1. Without
the CART cut, and with all the other cuts applied, the data sample contained 4245
right-sign and 967 wrong-sign events, compared with 3629 right-sign and 595 wrong-sign
when the CART cut was also applied. The CART cut had little effect on improving the
significance of the signal but it had a big effect on increasing the signal to background ratio
(from 3.39 to 5.10). In conclusion, the CART cut increased the nominal sensitivity by a
small amount, and reduced the systematic uncertainties associated with the background
substantially. The effects of CART and M;, cuts on background reduction can be seen
in Fig. 3.2. All cuts applied, except those related to muon ID, were the same as those

used for the electron mode D+ — K™ ety,.
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Figure 3.2: Right-sign (clear histograms) and wrong-sign (shaded) distributions of the
linear combination chosen by CART (top) and minimum parent mass (bottom). Events
lying to the left of the vertical line (top plot) and between tke two vertical lines (bottom
plot) are kept, and the rest are discarded.
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Table 3.1: Summary of the cuts chosen by CART to produce the clean D+ — K pty,
sample. Each column gives the coefficients of the six parameters plus a constant which

represents the cut C| * Sigma + C, * SDIP + C3 * SDZ + C4 * Sratio + Constant > 0.

Parameter | CART Cut Coefficients
Sigma 2.79 x 10~
SDIP —2.39 x 10~4
SDZ 2.39 x 1075
Sratio —1.00

Constant -1.37 x 103

3.4 D*— K*u*y, Signal

After all cuts there were 3629 right-sign and 595 wrong-sign events in the final data
sample. The top left plot in Fig. 3.3 shows the M,,;, distribution for both the right- sign
and wrong-sign events, following all cuts except the My, cut. The My, distribution is
shown in the top right plot in Fig. 3.3 for those events lying in the 1.6 < M, < 2.0
GeV window. The bottom plot shows the distribution of the K invariant mass for the
background subtracted data (“right-sign” minus “wrong-sign”) fitted to a Breit-Wigner
function. The mean (Mk-) and width (Fo) values of the Breit-Wigner distribution are in
fairly good agreement with the PDG values (mg. =895.40 0.7 MeV and I" = 54.2+ 2.0
MeV compared to mg. = 896.10 + 0.28 MeV and ' = 50.5 + 0.6 MeV).

The distributions of kinematic variables are shown in Fig. 3.4. Kinematic variables can
be calculated using either the negative solution of the neutrino momentum or the positive

one. The set of cuts used to obtain this data sample will be referred to standard cuts.

39

-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



600 ¢ 700
o 500 £ o 600 E
> 3 > 500 b
F RS LIRS
S 400 Fomus S 00 EMmws
] l l 400 E
§ 300 F 2 3
[ %] [ -
220 £ 20F
@ 100 F @ 100 E
0 0
125 L5 175 2 225 07 08 09 1 1.1
M, (GeV/cd) K invariant mass (GeV/ c?)
300 E —
“o F _”rH"":-
> 250 F L
% F 4
=200 : +¥
“ 150 E # o
10 ¢ LE %
e 1 - ~ G
4 00 o +j'_q.+ ++:.p-_
m 50 F el +&,
'-."'++"' g SRS MR A TP S
Q Caz==o3” i : ] . ] R ] 2 s b e
0.75 0.8 0.85 09 0.95 1 1.05

Kn invariant mass (GeV/ cz)

Figure 3.3: Distributions of minimum parent mass M,,;, and K invariant mass for D+ —
?*O;ﬁu“ candidate events. Right-sign (RS) and wrong-sign (WS) samples are defined in
the text. Top left: M,,;, for events with K7 mass in the range 0.85 to 0.94 GeV/c%. Top
right: K invariant mass for events with M,,;, in the range 1.6 to 2.0 GeV/c?. Bottom:
background-subtracted (RS-WS) K7 mass distribution (crosses) compared to Monte Carlo
prediction (dashed histogram) for events with Mmin in the range 1.6 to 2.0 GeV/c2. All
candidates pass all the other final selection cuts. The arrows indicate the range of the

final sample.
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Figure 3.4: Distributions of the four kinematic variables for RS data events calculated
using the negative solution of neutrino momentum (left) and the positive solution (right).

The distributions of WS events are drawn with dash lines.
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3.5 Summary of the Cuts
The final values of all cuts are summarized below:
1. The vector sum of the momenta of the three tracks in the secondary vertex, perpen-

dicular to the flight direction of the D+ (Pt balance) was less than 1.5 GeV.

2. Low probability for the tracks in the secondary vertex to have come from the primary

vertex (x? of impact parameter > 6).

3. The primary vertex was upstream of the interaction counter

(Zprim < —1.0 cm).
4. Secondary Vertex Cuts

e Well separated (SDZ > 15) secondary vertex, contained 3 tracks, and had
charge +1.

o Vertex x2/dof was less than 9.0.

e Vertex was outside a target foil by at least one standard deviation.

e Vertex was upstream of the interaction counter (Zsec < —0.4 cm).
5. Track Quality Cuts

e Each track was detected in all three regions of the spectrometer.

e Track x?/dof was less than 5.0.
6. Particle Identification Cuts

® p, >8 GeV.

® ng, < 1.0 (ng, is defined in Appendix B).

abs(dist) < 8.0 (dist is defined in Appendix B).

The charge of the track identified as muon was the same as the charge of the

secondary vertex.
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® The kaon candidate had a kaon probability, as determined from Cerenkov in-

formation, greater than 0.4.

® The pion candidate had a pion probability, as determined from Cerenkov infor-

mation, greater than 0.4.
7. Mass Cuts

o The invariant mass of the K*° candidate was between 0.85 and 0.94 GeV.
¢ The minimum parent mass (My,;,) was between 1.6 and 2.0 GeV.

¢ The invariant mass of Kxm (the muon candidate interpreted as a pion) was not

between 1.82 and 1.92 GeV.

In addition to these cuts there was also a CART cut:

—2.79-107 - sigma + 2.39 - 104 - sdip — 2.39-107° . SDZ + sratio < 0.137 - 10~2.
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Chapter 4

Fitting Technique

In principle, the form factor ratios can be extracted by fitting the distribution of data
points in the four-dimensional kinematic variable space to the full expression for the dif-
ferential decay rate (Eqn. 1.22). In practice this easy procedure cannot succeed because

of “real world effects” like:

e Smearing of position in four-dimensional space.

1. Spectrometer resolution.

2. Neutrino momentum ambiguity.
¢ Non-uniform acceptance.

e Background.

A solution to these problems is to use the unbinned maximum likelihood method developed
by the E691 Collaboration [25]. This method was our primary fitting technique, and it has
been used in the past in similar analysis by other groups [5, 7, 8]. In this method all data
and Monte Carlo decays were reconstructed using the lower laboratory-frame neutrino

momentum solution.
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To check for any potential bias in the fit results due to this choice for the neutrino
momentum, a second fitting technique was developed by the author. This secondary fit-
ting technique, referred as the matrix method, is a binned maximum likelihood method
that includes in the fit decays reconstructed with both neutrino momentum solutions.
The systematic uncertainties are larger when the fits are performed with the second fit-
ting technique (Chapter 5), and this is the reason for choosing the results obtained with
the unbinned maximum likelihood method as our primary results. However, the matrix
method was not plagued by systematic shifts of the fit results (Appendix C) and it also

took into account both neutrino momentum solutions.

The general strategy of both fitting techniques was to compare data with Monte Carlo
simulated events. The large Monte Carlo sample includes all detector effects (smearing
and acceptance). In both fitting techniques background was simulated by the wrong-sign

sample.

4.1 Monte Carlo Sample

Approximately 25 million Monte Carlo events with at least one D+ — K *0u+y, (or charge
conjugate) in the event, were generated on the Kansas State University computer farm for
this analysis. The GEANT-based Monte Carlo simulation includes a physiscs generator
which simulates the D meson decays acording to the full expression of the differential
decay rate (Eqn. 1.22). The values of the form factor ratios used to generate Monte Carlo
events were: Ry = 0.82, Ry = 2.00 and R3 = 0.00. The Monte Carlo events were passed
through the same analysis cuts as data. The numbers of Monte Carlo events that passed

different stages of the analysis are summarized in the Table 4.1.

The distributions of kinematic variables (at reconstruction level) are plotted in Fig. 4.1.
A comparison between background subtracted data and Monte Carlo is shown in Fig. 4.2

for Mg, and M,,;, distributions.
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Figure 4.1: Distributions of the four kinematical variables for Monte Carlo events calcu-
lated using the negative solution of neutrino momentum (left) and the positive solution

(right).The plots were done using the whole MC sample (95,579 events).
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Figure 4.2: The distributions of My, (top) and M, (bottom) in background subtracted
data (cross hatches) overlaid with Monte Carlo (dashed line).
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Table 4.1: Monte Carlo events passing each set of cuts.

No. of events | % passing
Generated 25,000,000 100
Filter 11,734,215 46.94
Strip, substrip, microstrip 1,356,792 5.43
Nanostrip 532,599 2.14
Analysis cuts 95,579 0.38

4.2 Kinematic Variable Resolutions

Semileptonic decays cannot be fully reconstructed due to the undetected neutrino. With
the available information about the D+ direction of flight and the charged daughter parti-
cle momenta, the neutrino momentum (and also the kinematic variables q?, cos @, cos By,
and x) can be determined up to a two-fold ambiguity. Among the four kinematic vari-
ables, ¢%/q2,,, changes most when the decay is reconstructed with the wrong neutrino

momentum solution (Fig. 3.4 and Fig. 4.1).

The resolutions of the kinematic variables can be determined from the Monte Carlo
simulation for both neutrino momentum solutions. Table 4.2 compares the RMS values
for X:econstructed — Xtrue Where X stands for each of the four kinematic variables when

the decays were reconstructed with either lower or higher neutrino momentum solutions.

The resolutions of kinematic variables seem not to depend on the choice of neutrino
momentum solution. However, reconstructing decays with the lower neutrino momen-
tum solution depletes the region of low g2 (Fig. 4.1). This observation suggests that the
smearing of the kinematic variables might have a different effect on the observed differen-
tial decay rate. To test this assumption, the differential decay rate is evaluated for each

Monte Carlo event using the kinematic variables reconstructed with the lower neutrino mo-
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Table 4.2: Resolutions of the kinamatic variables reconstructed with the lower and higher

neutrino momentum solutions.

RMS (low) | RMS (high)
(9%/Gaz)rec. = (02 /02az)true | 0.139 0.146
(cos Ot)rec. — (cOS0})trye 0.142 0.140
(cos Ov)rec. — (cos By )erye 0.150 0.148
(rec. = (X)true 0.605 0.600

mentum (I"_), the kinematic variables reconstructed with the higher neutrino momentum
solution (I'+) and the kinematic variables reconstructed with the correct solution of the
neutrino momentum (I'¢rye). The distributions of the fractional errors (T= = Ctrue) /Tirue
and (I'y. — I'true)/Tirue are shown in Fig. 4.3. The RMS’s of these two distributions (0.470
and 0.574) show that the differential decay rate is better approximated by the decays re-
constructed with the lower neutrino momentum. This fact can be explained by the better
acceptance for the events containing high charged particle momenta and low neutrino mo-
mentum. This statement is also confirmed by the lower statistical errors when the fits were

performed with decays reconstructed lower neutrino momentum (Chapter 5 Table 5.12).

4.3 Maximum Likelihood

Each data event is associated with a point in the four-dimensional phase space defined by
the four kinematic variables ¢? , cos6; , cos 8y and X- If smearing and acceptance effects
are ignored, the probability distribution function of these points is related to the decay

rate formula:

.oy _ Lz p)
F(z;p) = Tdzl(z: ) (4.1)

where x is the position in four-dimensional phase-space, and u is the set of the unknown

form factor ratios R; , Ry and R;.
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Figure 4.3: Resolution of the decay rate when Monte Carlo events were reconstructed
using the lower neutrino momentum solution (top) and the higher neutrino momentum

solution (bottom).
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For a given data sample consisting of n events, the best estimate of the parameters 7

maximizes the likelihood function £ defined by:

L =[] F(zi;p) (4.2)
i=1

As n goes to infinity p is guaranteed to converge to the true value, provided the
normalization condition for F(z;u) is fulfilled.

4.4 Smearing and Acceptance Effects

4.4.1 Distorted Distribution Function

When generated, the events were distributed according to the differential decay rate I'(z, u)
(Eqn. 1.22). At the reconstruction level, the events were distributed according to a dis-
torted distribution function F(Z,z) because of smearing and acceptance effects. As in
Ref. [25] the symbol % is used for the reconstructed position in phase space and z for the

generated position. In general F is related to I by:

F(%, 1) / dzA(z)S(Z, )T (z; ) (4.3)

A(z) — acceptance function
S(Z,z) — smearing function

The effects of the unknown functions A(z) and S(z,z) are modeled by the Monte
Carlo simulation. At the reconstruction level, the Monte Carlo events were distributed
according to F(Z; o). The parameters uq, used to generate the Monte Carlo sample, were
chosen to be R; = 0.82 and Ry = 2.00 and R3; = 0.00 in agreement with the results from

a previous experiment (E653 [7]).
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4.4.2 Sources of Smearing Effects

Smearing effects are a serious problem for this analysis because they have the tendency
to flatten distribution functions. As a result, the final values of form factors might be

systematically biased. There are two major sources of smearing effects:

1. Limited resolution of the spectrometer.

2. The twofold ambiguity of the neutrino momentum (Appendix A).

The magnitude of smearing effects can be estimated from Monte Carlo studies by
comparing the generated to reconstructed values of the kinematic variables. For reasons
described in Section 4.2 the decays were reconstructed using the lower neutrino momentum
solutions. Roughly, about 50 % of events were reconstructed with the wrong solution of
the neutrino momentum. The smearing due to this uncertainty is not negligible. Table 4.3
compares the smearing caused only by limited resolution of the spectrometer with total

smearing.

Table 4.3: The widths of the differencies ¢ — Zgen When both sources of smearing are

present (RMS1) and when the decays are affected only by the detector smearing (RMS2).

RMS1 | RMS2
q?/q2.c | 0.138 | 0.079
cos 6, 0.141 0.098
cosfy | 0.149 | 0.097
X 0.603 | 0.361

If the smearing originating from the neutrino momentum ambiguity is excluded, the
resolution of the position in the four-dimensional kinematic variable space increases by a

factor 6.4; thus this ambiguity dominates the resolution of kinematic variables.
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4.5 Smearing and Acceptance Effects

To include smearing and acceptance effects, the Monte Carlo sample had to pass the same
analysis procedure as real data. The distorted distribution function was approximated by

the distribution function of reconstructed Monte Carlo events.
Nyc

Fye(z;mo) = N+wc ; §(z — %) (44)
where x is an arbitrary point in the four-dimensional kinematic variable space and the
Z;’s are the positions of Monte Carlo reconstructed events. The distribution function is
normalized and includes all smearing and acceptance, but without free parameters cannot
be used to fit the data. The most convenient solution to this problem is to weight each
Monte Carlo event with the ratio of decay weight I'(z; ) evaluated with a trial set of form
factors u, to decay weights I'(z; ug) evaluated with the generated weights uqg.

[(z; p)
o) = ——EL 4.
W (z; s, po) T'(z: o) (4.5)
The general expression for the distribution function becomes:
Nuc w iz, oz -
RMC(z; ”’) = Zl—-l ( [ ”0) ( ) (46)

T IME W (5 s, pro)
The weights are evaluated at the generated positions of Monte Carlo events, while the

arguments of the delta functions contain the reconstructed positions (Z;’s).

4.6 Unbinned Maximum Likelihood Method

4.6.1 General Description

This fitting technique was developed by E691 Collaboration (8] for a similar analysis. In
this method, the probability distribution function, evaluated at a data point, is approxi-
mated by the the average of the distribution function, Eqn 4.4, over a volume centered on

the data point.
_ 1
Fuye(zisp) = V/Vd‘leMc(x; B) (4.7)
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Ideally, the volume V surrounding a data point should be small to minimize the dif-
ference between Fpsc and Fpe and to maintain the normalization of Fre. On the other
hand, the expression for Fysc was determined by the distribution of a finite number of
Monte Carlo events, and therefore it is itself an approximation. This approximation works
better if the volume V contains many Monte Carlo events, and this requirement implies
that V should be large. The best compromise between the two conflicting conditions is
achieved when the values of form factors are stable against the variation of volume V. The

nominal volume was chosen at 1/625 from the total phase-space volume
V = A¢?A cos G, A cos OvAx. (4.8)

Each of the four projections of V is as large as one fifth of the phase-space available to

the corresponding kinematic variable.

If a data point is close to the edge of phase-space, then the volume V is shrunk such
that it is still centered on the data point. In those cases when the volume V does not
contain a minimum number of Monte Carlo points (we require at least 4) the data points

are rejected from the fit. This happens for about 3% of right-sign events.

The approximation implied by Eqn. 4.7 is the major source of systematic shifts of the
fitted form factors. The values of the systematic shifts can be determined precisely from
Monte Carlo studies. More details about the origin of the systematic shifts are given in

Appendix C.

4.6.2 Including Background

The right-sign sample contained a mixture of true D+ — K “m*tuty, events and back-
ground. The probability distribution function, Eqn. 4.7, is valid only for the true D decays.
It was assumed that background is correctly modeled by the sample of wrong-sign events

(the kaon has charge opposite that of the muon). The probability distribution function of
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background was determined by the distribution of wrong-sign events:

1 Nws 64
Fgg = — T — I;). 4.9
BG = ; ( i) (4.9)
The likelihood for a right-sign event to be background was approximated by the average

of Fpg over a volume Vg centered on the data point:

Fpe(z) = %G g d*zFpc(z). (4.10)
BG

The general expression for the probability distribution function is a linear combination
of Fyc and Fgg, weighted according to the estimated amount of background in the
right-sign sample:

Ngrs — Nws
Ngs

Performing the integrals in Eqns. 4.7 and 4.10, the likelihood function £ is given by:

_ Nwe -
F(z;p) = - Fayre(zs p) + NLR;FBG(I)- (4-11)

o lﬁs Nrs — Nws 2 zinv. Wzi; p) N; (4.12)
=l Nes  T¥eW(z;;p)V;  (VBG)iNas

where N; is the number of wrong-sign events within the volume (Vgg);.

The best estimate of form factors 4, minimized the function — log £. Numerical cal-

culations were done using the package MINUIT.

4.7 Matrix Method

4.7.1 Motivation

Checks for any potential bias due to neutrino momentum ambiguity were performed by
employing a second fitting technique, which treats both neutrino momentum solutions on
equal footing. As shown in Section 4.4, the neutrino momentum ambiguity is a major
source of smearing. Using this fitting procedure, an attempt was made to eliminate the
effects of event misreconstruction due to the two-fold ambiguity of longitudinal neutrino
momentum. As a binned method, there are also two additional advantages in comparison

to the unbinned loglikelihood:
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1. The normalization of the distribution function is exact and therefore no systematic

shifts are expected.

2. No data point is rejected from the fit.

The biggest disadvantage of the method is a lower sensitivity due to the limited number
of bins. Unfortunately, systematic errors caused by binning are significantly larger when

this second method is used.

4.7.2 General Description

Each Monte Carlo (or data) event can be associated with two points in the four-dimensional
kinematic variable space, corresponding to the two ways to reconstruct a decay. For N
Monte Carlo generated events there are 2N points in phase space. Half of these points
(N) correspond to the events reconstructed with the correct solution of the neutrino mo-

mentum.
Assuming that the four-dimensional phase-space is divided into o bins, the number of

points N; that fall in bin “i” is given by:

[4
Ni=p;,-N+ ijPijN (4.13)
Jj=1

® pi is the probability for a point determined with the correct solution of neutrino

momentum to fall in box “i”.

e B is the probability for a point determined with the wrong solution of neutrino
momentum to fall in box “i”, and the point determined with the correct solution to

fall in box “j”.
There are three observations about Eqn. 4.13 :

1. The N;’s do not include any information about the correct choice of neutrino mo-

mentum. They are calculated using all 2N points.
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2. P;;’s depend exclusively on the D meson momentum in the laboratory frame. They
do not depend on the decay mechanism and thus they are not related to the form

factors.

3. The probabilities p;’s are the interesting quantities. They are directly related to the

decay rate.

To calculate the p;’s it is useful to evaluate first the matrices:

Aij = (5,']' + B (4.14)
_N
B; = N (4.15)

These matrices were evaluated making use of the whole Monte Carlo sample. The kine-
matic variables are calculated at reconstruction level in the same way as for real data.
In order to calculate the matrix A (P;;) the information about the correct sign of neu-
trino momentum is also needed. This is available from the truth table which contains all

information about the decay particles momenta.

The matrices A and B can be used to solve the Eqns 4.13 for pi's:

p=A"1-B (4.16)

The probability p; corresponds to the smeared distribution function F(z; po) (inte-
grated over the bin “i”), evaluated with the generated form factors pq. Using the weighting
procedure described in 4.3, the distribution function for arbitrary form factors, F(z;p),

can be obtained from F(Z;ug).

For real data the matrix B had to be recalculated, but the same matrix A could be used
because it did not depend on form factors. The information about the decay mechanism

is entirely included in matrix B.

Equationn 4.16 can be used again to calculate the probabilities PData(%). This set of
probabilities corresponds to the distribution function F(Z; upata).- The binned loglikeli-
hood method can be applied to extract the best estimate for K Date- The likelihood for the
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number of events in box “i” is given by:

w L Wiz i,
P= Zpm i) (@.17)
3=1 7 Jvl‘sl‘())

where n; is the number of Monte Carlo events found at the reconstruction level within

box “i”. The numbers n; are evaluated using the correct sign of the neutrino momentum.
Npc is the total number of Monte Carlo events. The best estimate of HKData 1S given by
the values of the free parameters x that minimize
[+ ]
FCN = -3 N} log Pi(n). (4.18)
i=1
Py are given by (4.17) and N} is the number of data events with the correct sign of neutrino
momentum that fall in box “i”. N}’s are not directly available, because the correct choice
for the neutrino momentum is unknown. However, a good estimate of these numbers is

provided by the probabilities PData(?) multiplied by the number of reconstructed events.
N: = pData('i) x N (4~19)

where N is the total number of real data events after background subtraction.

4.7.3 Including Background

The values of ppg, (i) were calculated using Eqn. 4.16. The matrix A is completely
determined by the Monte Carlo sample, and the matrix B must be evaluated from real

data.

The real data sample contained in fact two subsamples: right-sign, which is a mixture
of signal and background; and wrong-sign, which is only background. The matrix B in
4.16 should be simply the difference between Bgs and Bws.

B = Bps — Bys (4.20)

It was assumed that the W S sample correctly models the background in the RS sample.
Typically the background is a small fraction of the signal (= 1/5). Therefore, even if the
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WS sample doesn’t model very well the background from RS, one wouldn’t expect big
changes in the final result unless the extra background in RS, which is not “seen” in WS,
is concentrated in a small subregion of the phase-space. As an example, this is the case
with the background coming from D¥ — K~ ntrt when the pion is misidentified as
an electron. This kind of background was present only in the RS sample. Although this
contamination accounts for less than 2% of the total number of RS events, it affects the

final results at the 10% level.

4.8 Particle Identification Efficiency

Reference [26] includes a study of the particle identification efficiency in real data versus
Monte Carlo. The reason for this study was an earlier observation that particle identifi-
cation efficiency is not perfectly modeled by the Monte Carlo simulation. The study was
done for electrons, kaons and pions. Clean data samples of kaons, pions and electrons
were obtained from the constrained decays D* — K~n*x* and from photo-conversion
(v = e*e™), without applying cuts on particle identification. In this analysis the results
given in Ref. [26] for hadrons were used. The relative efficiencies, which are momentum

dependent, are listed in Table 4.4.
Te take into account the differences in particle identification efficiency between data

and Monte Carlo, the weights W; from Eqn. 4.5 were replaced by:

Wi(z; b, po) — Wilz; p, o) - wi (Pr ) wr (Prr) (4.21)
where the w’s stand for relative particle identification efficiency of data relative to Monte
Carlo.

A similar study cannot be done for muons at the same level of accuracy, because there
is no constrained decay with muons in the final state to provide enough events for such a
study. The eventual mismatch between data and Monte Carlo with respect to muon ID

was treated as a distinct source of systematic errors.
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Table 4.4: Weights correcting the inaccuracies in the Monte Carlo K and 7 identification

efficiency for different ranges of track momentum.

Momentum Range (GeV) K Weight T Weight
0-3 - 0.999 + 0.022
3-6 - 1.003 + 0.009
6-9 0.843 £ 0.038 | 1.086 + 0.010
9-12 0.943 £ 0.030 | 1.153 +0.012
12 - 15 0.965 + 0.020 | 1.288 + 0.019
15-18 0.956 £+ 0.019 | 1.303 £+ 0.020
18 - 21 0.961 + 0.020 | 1.303 + 0.021
21-24 1.027 £ 0.029 | 1.236 + 0.020
24 - 27 1.086 £+ 0.038 | 1.255 + 0.023
27 - 30 1.116 £ 0.041 | 1.252 + 0.025
30 - 33 1.106 £ 0.044 | 1.269 + 0.028
33 - 36 1.150 £ 0.051 | 1.332 + 0.034
36 - 39 1.172 £ 0.059 | 1.274 +0.034
39 - 42 1.787 £ 0.148 | 1.315 +0.039
42 - 45 2.961 +0.389 | 1.240 +0.035
45 - 48 6.489 £+ 1.580 | 1.214 +0.039
48 - 51 3.403 £0.765 | 1.240 £+ 0.044
51 - 54 4.690 £ 1.524 | 1.210 + 0.040
54 - 57 3.912 +1.363 | 1.227 +0.048

> 57 3.173 £1.180 | 1.202 + 0.049
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Chapter 5

Systematic Checks

Systematic uncertainties were classified into three categories depending on which source

produced them:

1. Fitting technique.
2. Monte Carlo simulation of detector effects and production mechanism.

3. Background subtraction.

Bin size and systematic shifts are the main sources of systematic uncertainties associated
with the fitting technique. Inaccuracies of Monte Carlo simulation generated systematic
uncertainties included in the second category. The third category contains systematic
uncertainties associated with our lack of knowledge of the background. The amount and
shape of the background are sources of systematic uncertainties that contribute to this

category.

5.1 Introduction

The ratios of the form factors for the decay channel D* — K ~“ntuty, were calculated in

a similar way to those for the electronic mode. With the unbinned loglikelihood method,
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the standard Monte Carlo volume was 1/625 of the total phase-space volume. The volume
size of each kinematical variable was 1/5 of the total range. For background, the nominal
volume was lower, 1/81 of the total. In this case the bin size of each kinematic variable
was 1/3 of the full range. The distribution function of background was approximated by
the distribution of the wrong-sign events. If the volume centered on the data point did not
contain at least 4 Monte Carlo points, then the event was removed from the fit. Because
of this restriction, 96 events out of 3629 were removed from the fit. Including the third

ratio of form factors as a free parameter in the fit, the results are:
R, =0.67+£0.08 Ry =193+0.11 R3;= —0.07+0.33

where the errors are statistical only, and do not include corrections for the systematic

shifts discussed in.

The second fitting technique was intended to be be a check for the first one. In this
case the binning was 1/4 of the total range for ¢® and cos§; , 1/5 for cos@y and 1/3 for
X- The total number of bins was 240. In this method no events were excluded from the

fit. The values of the form factor ratios calculated with this fitting technique are:

Ry=0.72£0.08 Ry =190+011 R;= —0.26+0.34.

5.2 Checks of Fitting Techniques

5.2.1 Fit with Known Form Factors

As it was shown in the previous chapter, the unbinned loglikelihood method may be
affected by systematic shifts due to approximate normalization of the distribution function
and to non-linearity effects. The goal of this study is to evaluate the systematic shifts.
The form factors were calculated for subsamples of Monte Carlo events treated as real
data. How far away the fitted values are from the generated ones is an accurate estimate

of the systematic shifts.
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The full Monte Carlo sample was divided into 32 subsamples, each of them containing
about 3000 events. The size of Monte Carlo subsamples was chosen to be comparable
with the size of the real data set. The distribution of fit values of R,, Ry and R; for all
32 subsamples are plotted in Fig. 5.1.

10 F 8
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5 F 4 F
25 2 F
0 | P S ot
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Figure 5.1: Distributions of Ry, Ry and Rj for the 32 Monte Carlo subsamples. The form
factor ratios were calculated with the unbinned loglikelihood method (left side plots) and

with the matrix method (right side plots).

The average values of the form factors are

Ry =0.737 £0.014 Ry = 2.090 + 0.019 R; = —0.107 + 0.060.

Comparing these values with the generated values of form factors, the systematic shifts
are dR; = —0.08 + 0.01, 6Ry = +0.09 + 0.02, 6R3 = —0.11 + 0.06. These corrections
have to be applied to the fitted values of form factor ratios. With the second fitting
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technique, normalization of the probability distribution function is automatically fulfilled,
and therefore the systematic shifts are much lower: 0R2 = +0.004+0.014, SRy = 0.001 +
0.019, dR; = —0.012 + 0.060.

5.3 Monte Carlo Volume Size

When fits were performed with the unbinned method, the distribution function was esti-
mated from Monte Carlo points that fall within a volume centered on each data point. The
size of this volume was determined by the binning of each kinematical variable. The full
range of each kinematical variable is: ¢*/g2,,; = [0;1], cos§, = [~1;1] , cosOy = [—1;1]
and x = [0;27]. In the standard binning, the nominal volume corresponded to 1/5 of
the full range for each variable. If the data point is close to the edge of phase space, the
volume is shrunk such that the volume remains centered on the data point. In this way
the results are not affected if the distribution function varies linearly within the volume.
Ideally, the volume centered on a data point should be very small to avoid non-linearity
effects and to ensure the normalization condition. On the other hand, for small volumes
the estimated distribution function is affected by large uncertainties due to limited statis-
tics of the Monte Carlo sample. It is expected that results should be stable for a range of

volume sizes.

A check was done to determine the stability ranges of each variable and the systematic
errors related to the change of Monte Carlo volume size. The volume size was varied from
1 to 1/9 of the total range in one variable at a time, holding the size of the other three
constant. The systematic shifts, very sensitive to binning, were calculated in each case.
The corrected values of form factors are plotted in Fig. 5.2 and Fig. 5.3. The fifth point

from the left (open circle) represents the standard nominal volume size.

The fit was stable for the following ranges of volume size: 0.11 < 9%/q% . < 0.33;
0.22 < cosf; < 0.67; 0.22 < cosfy < 0.67; 0.70 < x < 6.28. In the stable region the

fluctuations of form factor ratios are OR, = 0.02, op, =0.02, op, = 0.12.
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Figure 5.2: Values of form factor ratios calculated with different Monte Carlo volume sizes.
The ranges of ¢%/q2,,, (left side) and cosé; (right side) were varied from 1 to 1 /9 of the
total range. The open circle corresponds to standard binning. Fits were performed with

the first fitting technique.

A similar study was done with the second fitting technique. The size of each bin
was varied by a factor up to 2 for each variable, holding the other three at the nominal
value. In this case the fit is approximately stable in the following ranges of volume size:
0.14 < ¢%/q2,; < 0.33; 0.22 < cosf < 0.67; 0.22 < cosby < 0.67 and 1.57 < x < 6.28.

The fluctuations of the form factor ratios are or, =0.06, op, =0.10, og, = 0.30.
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Figure 5.3: Values of form factor ratios calculated with different Monte Carlo volume
sizes. The ranges of cos 6y (left side) and x (right side) were varied from 1 to 1/9 of the
total range. The open circle corresponds to standard binning. Fits were performed with

the first fitting technique.
5.3.1 Number of Monte Carlo Points Associated with Each Data Point

As mentioned before, the Monte Carlo points that fall in the small volume centered on
a data point determine the likelihood function. With many such points found within a
small volume, the likelihood function is accurately determined. The minimum number of
Monte Carlo points required to fall within the volume surrounding a data point was 4. If
this condition was not met, the data point was removed from the fit. Raising the value
of the minimum number of Monte Carlo points (narcmin) the resolution of the likelihood

function increases, but there are more data points that are excluded from the fit. Values
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of form factor ratios were determined as NMCmin Was varied from 1 to 7. The results are

in Table 5.1.

Table 5.1: Values of form factor ratios calculated with various conditions on the minimum

number of Monte Carlo points ("MCmin)-

NMCmin R, Ry R; # rej.
1 0.76 £0.08 | 1.84 +£0.11 | —0.20 + 0.23 23
2 0.74 +£0.08 | 1.85 +0.11 | ~0.10 £+ 0.36 o3
3 0.74+0.08 { 1.84 £0.11 | —0.03 £0.35 77
4 0.75+0.08 { 1.84 +0.11 | 0.04 +0.34 96
5 0.75+0.08 | 1.84 +0.11 | 0.12+0.34 127
6 0.75+0.08 | 1.84 £0.11 | 0.06 + 0.33 142
7 0.75+0.08 | 1.85+0.11 | 0.07 +0.32 160

The variations of form factor ratios are or, = 0.01, op, =0.01, og, = 0.18.

With the second fitting technique there is no similar requirement. Bins in this case do
not intersect and they cover the whole phase space. Therefore no data point was removed
from the fit, whatever the size of the bins. However, a small value of the bin size would
lower the statistics of Monte Carlo points found within each bin and consequently the
resolution in determining the distribution function would be low. In the case of standard
binning (240 bins) there were on average about 400 Monte Carlo points per bin. The
fluctuations of the results when the bin size was modified, were studied in the previous

subsection.

5.4 Simulation of Detector Effects

The accuracy of the results depends heavily on how well the Monte Carlo sample incor-

porates detector effects. As already mentioned in Chapter 4, the efficiency of hadron
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identification was not the same in data and Monte Carlo. Some other inconsistencies were

studied, and their contributions to the systematic errors were evaluated.

5.4.1 Hadron Identification

In this analysis the hadron identification was based on Cerenkov information. The identi-
fication efficiency was not the same in data and Monte Carlo. As pointed out in Ref. [26],
the relative identication efficiencies, data vs. Monte Carlo, are momentum-dependent.
They are listed in Table 4.4 for both the kaon and the pion, and are plotted in Fig. 5.4 as
functions of hadron momentum. The effects of these corrections on the values of form fac-
tor ratios are shown in Table 5.2. The corrections to hadron identification were according

to either the step functions from Table 4.4, or the continuous functions plotted in Fig. 5.4.

Table 5.2: The values of form factor ratios calculated with different combinations of hadron

ID corrections.

R2 RV R3
K and = ID corr. applied | 0.75+0.08 | 1.84 +0.11 | 0.04 + 0.33
No hadron ID corr. applied | 0.71 +£0.08 { 1.93 +0.11 | 0.32 + 0.33

K ID corr. applied 0.74 £0.08 | 1.87 £0.11 | 0.03 £0.33
m ID corr. applied 0.72+£0.08 | 1.90 £ 0.11 | 0.25 +£0.33
Smooth corrections applied | 0.74 +0.08 | 1.85+0.11 | 0.02 + 0.33

The corrections on kaon identification efficiency have a larger effect on the values of
form factor ratios than the pion identification efficiency corrections. To determine the
systematic errors associated to these corrections, for each of the two hadrons 100 fits
were performed, where the weight associated with each momentum bin was modified by a
gaussian fluctvation with the resolution given by the error on the weight. The study was

done for both fitting techniques, and the results are summarized in Table 5.3.

Errors related to hadron efficiecy corrections are well below the statistical and other sys-
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Figure 5.4: Weights correcting the inaccuracies in the Monte Carlo K and identification
efficiency for different ranges of track momentum. Continuous curves represent a fit to

polynomial functions.

tematic errors.

5.4.2 Muon Identification

It is known that Monte Carlo simulation does not always describe properly all the effects
that might contribute to muon identification (muon wall efficiencies, multiple scattering,
TDC information, noise, choosing the muon candidate, etc.). Therefore an effort was made
to keep as many muon candidates as possible in order to make the analysis less dependent
on how well Monte Carlo models real data. The sources of systematic errors due to muon

identification were classified in two categories:

1. Detector effects related to muon identification (muon wall efficiencies, multiple scat-

tering, TDC, noise).
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Table 5.3: Systematic errors due to hadron identification efficiencies.

First Method Second Method

Particle ID | og, | ogr, | ors OR, | OR, | ORs
kaon 0.005 | 0.004 | 0.021 | 0.011 | 0.012 | 0.021
pion 0.001 | 0.001 | 0.001 | 0.003 | 0.002 | 0.005
total 0.01 | 0.01 | 0.02 { 0.01 | 0.01 | 0.02

2. Ambiguity in choosing the muon candidate when two tracks from the secondary

vertex passed all muon ID cuts.

Detector effects

The muon identification schema described in Appendix B keeps about 85% of the muons
that passed substrip cuts and had momentum larger than 8 GeV. Still, the data sample
may not contain the “same” muons as the Monte Carlo sample. All detector effects related
to muon identification depend on muon momentum. Therefore, the variations of the fit
values of form factors for different cuts applied to muon momentum are a good measure
of the systematic errors related to detector effects. Table 5.4 contains the values of the
form factor ratios for different cuts on the lower bound of muon momentum as well as the

numbers of events that passed all cuts.

Compared to p, > 8 GeV, which is the analysis cut on muon momentum, the largest
variation of Ry is dR2 = 0.074 and it occurs for Pu > 14 GeV. Part of this variation
is due to statistical fluctuations. To evaluate statistical contribution, form factor ratios
were first calculated for 32 Monte Carlo subsamples with the cut Py > 8 GeV and then
with a tighter cut on muon momentum (pu > 14 GeV). The RMS for the differences of

R; between the two sets of results was 0.050. The largest variation of R, due to muon

identification procedure was estimated at §R, = v/0.0742 — 0.0502 = 0.05. In a similar

manner the largest variations of Ry and R3 were determined: 0Ry = 0.06 and 6R; = 0.15.
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Table 5.4: Values of form factor ratios calculated with the unbinned method, for different

cuts on the lower bound of muon momentum. Fit values were not corrected for systematic

shifts.

p. | RS | WS | MC Ry Ry Ro
7 | 3795 | 635 | 98408 | 0.77 £0.08 | 1.88 £0.11 | —0.11 + 0.34
8 {3628 | 595 | 95579 | 0.75 +0.08 | 1.84 £0.11 | —0.27 +0.34
9 | 3445 | 561 | 92297 | 0.75+0.08 | 1.80 £0.11 | —0.33 +0.34
10 | 3287 | 530 | 88506 | 0.74 +0.09 | 1.77 +£0.11 | —0.29 + 0.35
11 | 3114 | 490 | 84393 | 0.74 +0.10 | 1.78 £0.12 | —0.34 +0.36
12 | 2942 | 461 | 80035 | 0.70 £0.10 | 1.78 £0.12 | —0.23 +0.37
13 | 2789 | 431 | 75405 | 0.70 £ 0.10 | 1.81 +£0.12 | —0.31 +0.38
14 | 2604 | 402 | 70700 { 0.68 +0.10 | 1.76 +0.13 | —0.21 + 0.44
15 | 2422 | 374 | 66138 | 0.71 +0.11 | 1.77 £ 0.13 | —0.01 + 0.47
16 | 2249 | 339 | 61708 | 0.74 +£0.11 | 1.74 +0.13 | -+0.10 + 0.49

Ambigiuty of the muon candidate

In addition to the hardware effects described in the previous subsection, there are also
systematic errors related to assignment of the muon candidate. This bhappens when two
tracks pass muon ID cuts. The data contains 8.4% such events while Monte Carlo only
4.7%; the Monte Carlo didn’t describe properly the complexity of a real event. In the
standard procedure, the track with the highest muon category was chosen as the muon
candidate. If the event didn’t pass the other cuts, then the second possibility was also
tested. To estimate the uncertainties due to this effect, the form factors were calculated

for two other reasonable ways to select the muon candidate:

1. The muon candidate always has the highest muon category.

2. Both combinations are kept in the data sample if they pass all selection criteria.
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The results of the fit are shown in Table 5.5.

Table 5.5: The values of form factor ratios, calculated with the unbinned method, for

different ways (described in the text) to solve the ambiguity of muon candidate.

RS | WS | MC R, Ry Ry
“Standard” | 3628 | 595 | 95579 | 0.75+0.08 | 1.84 £ 0.11 | 0.04 +0.33
1 3461 | 534 | 93910 { 0.79 +0.08 | 1.82+0.11 | —0.06 + 0.33
2 3686 | 597 | 96261 | 0.77 +£0.08 | 1.88 £0.11 | 0.03 +0.34

Similar calculations were performed with the second fitting technique. The results
for muon identification systematic errors are summarized in the Table 5.6. The contribu-
tion of this source to the systematic uncertainties associated with muon identification is

comparable with the hardware effects for R, and Ry, and is three times lower for R;.

Table 5.6: The systematic errors due to muon identification.

First Method Second Method

Source OR, | ORy | OR; || Or, | ORy | ORs
Detector effects 0.03 { 0.04 { 0.10 {{ 0.04 { 0.03 | 0.10
Ambiguity of muon cand. |{ 0.03 | 0.04 | 0.03 || 0.02 | 0.04 | 0.04
Total muon ID 0.04 | 0.06 | 0.10 || 0.05 | 0.04 | 0.11

5.4.3 Production Mechanism

Because D mesons are spinless, details of the production mechanism should not play an
important role in this analysis. However, it is important that the D momentum distribu-
tions be correctly modeled by Monte Carlo sample. Figure 5.5 shows the distributions of
D total momentum (in lab frame) and of the transverse component with respect to the

beam axis. For the total D momentum the agreement between data and Monte Carlo
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was fairly good, but this was not the case with the second distribution. The transverse D

momentum distribution is directly correlated with acceptance effects.
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Figure 5.5: D momentum distributions for background subtracted data (error bars) over-

laid with the similar Monte Carlo distributions.

To account for these differences, each Monte Carlo event was weighted with the ratio
of data to Monte Carlo efficiencies. The values of the weights are plotted in Fig. 5.6 as
a function of transverse momentum. Table 5.7 contains the values of form factor ratios
when weights were applied, and when weights were not applied. Overall, the effect of

these corrections is rather small.

Table 5.7: The values of form factor ratios calculated with different combinations of (pp) ;.

corrections.
Ry Ry R3
Correction applied 0.75+0.08 | 1.84 £ 0.11 | 0.04 +0.33
No correction applied 0.75+0.08 | 1.82 £0.11 | —0.04 +0.34
Smooth correction applied | 0.75 +£0.08 | 1.84 +£0.11 | —0.01 = 0.33
73
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Figure 5.6: Weights correcting the inaccuracies in the Monte Carlo (pp) L distribution.

Continuos curves represent a fit to a polynomial function.

To estimate the systematic errors due to this correction, 100 fits were performed where
the weight associated with each transverse momentum bin was modified by a gaussian
fluctuation with the resolution given by the error on the weight. The RMS spread of the
fit values gave the uncertainty due to this effect. The systematic errors are rather small

for all three form factor ratios:
first method: 6R; =0.01 6Ry =0.01 6R3 =0.02

second method: JdR> =001 6Ry = 0.01 dR3 =0.03
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Figure 5.7: Distribution of muon tracks intercepts, data (top) and Monte Carlo (bottom),
at the z-position of the 16®* drift chamber. The points were determined by their z and y

positions measured in cm.
5.4.4 Spectrometer acceptance

The flux of high energy particles is much more intense in the region close to the beam
axis of the spectrometer than in the outer regions. Therefore the detection efficiency
of the drift chambers decreased in time in a small region around the beam axis. The
Monte Carlo sample included this effect in an integrated manner. In the Monte Carlo
simulation the extent of the “DC hole” was assumed to be as big as one would expect at
the middle of the run. An illustration of the “DC hole” at the 16 drift chamber is shown
in Fig. 5.7. This model of the time-dependent “DC hole” is correct if Monte Carlo sample

simulates the entire data sample, and if the decrease of the drift chambers efficiency is
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linear in time. The inaccuracies of the Monte Carlo simulation related to modeling of
the spectrometer acceptance associated with the “DC hole” were addressed as a source of

systematic uncertainties.

To estimate the systematic errors associated with this effect, the form factor ratios
were determined with different assumptions about the size and the detection efficiency in
the “DC hole” region. Monte Carlo events that have at least one track passing through
the “DC hole” were weighted by a factor which was varied from 0 to 2. The fits were
performed for three different sizes of the “DC hole”, determined by their £ and y positions
evaluated at the z-position of the 16** drift chamber plane:

l. -50<z<50cm -55<y<4.5cm
2. -25<y<l5cm

3. 40<zr<40cm -30<y<20cm

The fit value results for different definitions of the “DC hole” are shown in Table 5.8.
Fits were performed with the first fitting technique. The first column in Table 5.8 contains
the index of the “DC hole” definition (shown above) and the second column contains the
weight applied to Monte Carlo events. No weighting was applied to data events. The
systematic uncertainties associated to acceptance effects are og, = 0.03, or, = 0.02
and or, = 0.08. When the fits were performed with the second fitting technique, the

systematic errors are og, = 0.02, ory, = 0.02 and og, = 0.09.

5.4.5 Final Cut Selection

The goal of these checks was to estimate how well Monte Carlo simulation models the
variables used in the final cut selection (CART cut). The final analysis cut was replaced
by 14 other CART cuts. Results obtained with the first fitting technique are summarized
in Table 5.9.
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Table 5.8: Study of the systematic uncertainties associated with spectrometer acceptance

effects.
DC hole def. MC weight Ry Ry R;3
1 54385 0.0 [0.82+0.08|183+0.11{ 0.21+0.32
1 74819 0.5 (0.78+0.08|1.82+0.11 | 0.13+0.33
1 116339 1.5 0.73+0.08 | 1.85+£0.11 { —0.02 + 0.33
1 136773 20 [0.71+£0.08 | 1.86 £0.11 | —0.03 + 0.33
2 59127 00 |0.78+0.08 | 1.80+0.11 | 0.16 +0.33
2 77353 0.5 |0.76+0.081.82+0.11 | 0.07+0.33
2 113805 1.5 0.74+£0.08 | 1.86 +0.11 | 0.02+0.33
2 132031 2.0 0.73+0.08 | 1.87 £0.11 | —0.01 +£0.33
3 79070 0.0 }0.77+0.08 | 1.84+0.11 | 0.16 +0.33
3 87324 0.5 0.75+0.08 | 1.84 £0.11 { 0.06 +£0.33
3 103834 1.5 0.74+0.08 | 1.84 £0.11 | 0.02+0.33
3 112088 2.0 0.74+0.08 | 1.84 £0.11 | 0.00 +£0.33

The spread of the results around the average values are: og, = 0.03, og, = 0.04 and
or; = 0.09 for the first fitting method and og, = 0.03, or, = 0.05 and og, = 0.13 when

the fits were performed with the second fitting method.

The final data sample was quite clean, but still contained background events. The ma-
jor source of backgound was fake vertices due to reconstruction errors. This background
component is modeled by the wrong-sign sample. In addition to this background, the final
data sample might also contain other charm decay modes. To account for any background
contribution one should know precisely the number of events corresponding to each decay
mode and also details about the decay mechanism in each case (decay rate expressions,
form factors, phases, etc.). This level of detail is impossible to obtain. Instead, we esti-

mated the systematic errors due to the lack of knowledge about the charmed background

7
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Table 5.9: The number of events and the values of form factors calculated with the un-

binned method for 14 sets of CART cuts.

RS | WS MC R, Ry R;
standard cuts | 3629 | 595 | 95579 | 0.75+0.08 | 1.84 £ 0.11 | 0.04 +0.33
CART1 3517 | 538 | 93384 | 0.75+0.08 | 1.92 +£0.11 | 0.17 + 0.33
CART2 3676 | 621 | 95214 | 0.75+0.08 | 1.87 +£0.11 | 0.24 +0.32
CART3 3416 | 585 | 87419 | 0.77+0.08 | 1.86 +£0.11 | 0.04 + 0.34
CART4 3767 | 688 | 93462 | 0.74 +£0.08 | 1.91 +0.11 | 0.02 +0.33
CART5 3198 | 420 | 85929 | 0.81 +0.08 | 1.87 +£0.11 | 0.17 + 0.32
CART6 3744 | 656 | 96146 | 0.70 £0.08 | 1.86 +£0.11 | 0.09 + 0.33
CART7 3133 | 424 | 84980 | 0.71+0.08 | 1.79 +£0.11 | 0.14 + 0.32
CARTS 3228 | 461 | 85587 | 0.74 +£0.08 | 1.93 +£0.11 | 0.25 +0.31
CART9 3960 | 739 | 100089 | 0.74 +£0.08 | 1.90 +0.11 | 0.16 + 0.33
CART10 3371 | 524 | 86298 | 0.71+0.08 [ 1.92 +£0.11 | 0.11 +0.33
CART11 3697 | 606 | 96864 | 0.74 +£0.08 | 1.86 +0.11 | ~0.02 + 0.31
CARTI12 3399 | 524 | 89696 | 0.72+0.08 | 1.84 +0.11 | 0.25+0.34
CART13 3523 | 549 | 91272 | 0.79+£0.08 | 1.85+0.11 | 0.02 + 0.33
CART14 3583 590 | 95142 | 0.71 £0.08 | 1.83 £0.11 | —0.02 + 0.33

by adding up (in quadrature) the variations of form factor ratios when:

1. the amount of non-charmed background was varied within a large range:

2. the shape of the non-charmed background was changed.

5.4.6 Number of Background Events

The number of background events in the right-sign sample was assumed to be the same as

in the wrong-sign sample. We may expect that this assumption was not totally correct.
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A check was done to estimate how much the results of the fit change when the expected
number of background events was varied. The amount of background was varied by 50%
around the expected value by weighting the wrong-sign events with a factor between 0.5
and 1.5. When the fits were performed with the unbinned method, the values of Ry and R;
are approximately stable; R; fluctuated with a bit more than half of the statistical error.
Results of the fits are shown in Fig. 5.8. Systematic errors associated with background

amount uncertainties are og, = 0.04, o, = 0.02, og, = 0.06.
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0.6 0.8 1 1.2 1.4
Background weight

Figure 5.8: The values of form factor ratios for different background weights.

When the fits were performed with the second fitting technique, the weights applied
to wrong-sign events were also in the range from 0.5 to 1.5. The results are shown in

Table 5.10.

With this method, the amount of background cannot be overestimated by too large a

factor because the number of wrong-sign events may then be larger than the number
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Table 5.10: Values of form factor ratios calculated with different background weights. Fits

were performed with the second fitting technique.

Weight R, Ry R3
0.7 0.74 £0.08 | 1.91 +0.11 | —0.01 +£0.33
0.8 0.73+£0.08 | 1.91 +0.11 | —0.13 +0.34
0.9 0.73+0.08 | 1.90 = 0.11 { —~0.24 + 0.34
1.0 0.72+0.08 | 1.90 +0.11 | ~0.25 + 0.34
1.1 0.72+0.08 | 1.89 = 0.11 | —0.35 + 0.34
1.2 0.71+0.08 | 1.88 £0.11 | —0.42 +0.34
1.3 0.70 +0.08 | 1.87 £ 0.11 | —0.47 +0.33
14 0.69 £0.09 | 1.87 = 0.11 | —0.49 + 0.32
1.5 0.67+:0.09 | 1.86 +=0.11 | —0.50 + 0.35

of right-sign ones in some bins, and background subtraction would be meaningless. The

systematic errors due to the amount of background estimation are oRr, =0.04, op, = 0.03,

oRr, = 0.25.

5.4.7 Background Shape

The systematic uncertainties associated with background shape were due to two sources:

1. The model used to describe the background.

2. The limited size of the estimated background.

Background model

In this analysis background is modeled by the wrong-sign decays reconstructed in the signal

region. To test the sensitivity of the form factor ratios to background shape, wrong-sign

—
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events were weighted by a linear-shaping function for each kinematic variable at a time:

weight = 1 + siope(z — T)

where z can be any of the four kinematic variables and Z is the mean value of z.

o Gl b, ol ity
0 02 04 06 08 1

@/ Qnm

Figure 5.9: Distributions of kinematic variables for WS events within the signal region
(crosses), overlaid with two extreme distributions of background (continuous and dotted

lines).

Values of the slope were varied in the ranges (—0.5;0.5) for q2/¢2,.z, (—0.25;0.25) for
cos 6y and cos @y and (—0.2;0.2) for x. Figure 5.9 shows how much the background shape
has changed when this weighting procedure was applied. Comparison of the background
estimated from wrong-sign events in the signal region, and from a sample of right-sign

events with a large background component (K mass outside the signal region), shows
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that background shape cannot change more than in Fig. 5.10.
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Figure 5.10: Distributions of kinematic variables outside the signal region (Mg, not in
(0.85:0.94) GeV). RS events are shown as black dots, overlaid with the corresponding
distributions of WS events in the signal region.

The systematic uncertainties due to the background model are or, = 0.03, op, = 0.04
and og, = 0.04 when the fits were performed with the first fitting technique, and OR, =
0.03, or, = 0.04 and or, = 0.08 when the fits were performed with the second fitting
technique.

Background volume size

In the unbinned method, the number of wrong-sign events within a volume centered on

a data point, divided by the total number of wrong sign events, is assumed to be an
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estimate of the background distribution function evaluated at the position of the data
point. Thus, the shape of the background (the distribution function) depends on the
background volume size. With a very large WS sample the background volume size can

be chosen very small and this source of systematic uncertainties wouldn’t exist.

In the same way as was done for Monte Carlo volume size, the range of each variable
was varied from 1 to !/5, holding the other three at the nominal value 1 /3. The variations

of the form factor ratios are ORr, = 0.02, og, =0.02, op, = 0.05.

The second fitting technique does not contain any binning for background. The number
of wrong-sign events is subtracted from the number of right-sign events that fall in each

bin, before performing the fit.

The two systematic uncertainties associated with background shape (background model
and background volume size) were added in quadrature. The final values of the systematic
uncertainties due to background shape are ORr, = 0.04, or, = 0.04 and o, = 0.06 when
the fits where performed with the first fitting technique, and og, = 0.04, op, = 0.04 and
oprs = 0.08 when the fits were performed with the second fitting technique.

5.5 Other Checks

The checks described in this section were not included as distinct sources of systematic
errors. Their goal was to check the consistency of the statistical errors returned by fitting
routines, and also to check the systematic errors determined in the previous three sections.

All fits were performed only with the first fitting technique.

5.5.1 Fitting Subsamples of the Data

The full data sample was divided into two and three independent subsamples. The results
are shown in Table 5.11. The fit results are consistent with one another and with the

results of the fit to the entire data sample. Also the statistical errors increase roughly by

83

-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



a factor v/2 in the first case and v/3 in the second case, as expected.

Table 5.11: Results of systematic checks of data selection. The fits were performed with

the unbinned loglikelihood method and corrections for systematic shifts were applied.

2 subsamples
No. RS | WS | MC R, Ry R;
1 1821 | 291 | 95579 | 0.72 +0.11 | 1.86 +£0.15 | 0.20 +0.49
2 1808 | 304 | 95579 | 0.76 = 0.11 | 1.82 +0.15 | 0.14 + 0.43
3 subsamples
1 1217 | 191 | 95579 | 0.80 +0.14 | 1.77 +£0.18 | 0.40 + 0.42
2 1199 | 209 | 95579 | 0.79 £ 0.15 | 2.02 +0.19 | —0.16 + 0.59
3 1213 | 195 | 95579 | 0.85 +0.19 | 1.78 +0.18 | —0.45 +0.78
D Charge
D* 1534 | 298 | 47069 | 0.79 +0.14 | 1.86 £0.17 | —0.21 + 0.44
D- 2095 | 297 | 48510 { 0.78 +0.10 | 1.86 +0.14 | 0.31 +0.36
Mg Mass
My~ € (0.84;0.896) | 1996 | 292 | 50785 | 0.74 £ 0.11 | 1.82 +£ 0.14 | —0.20 + 0.38
Mgx € (0.896;0.94) | 1663 | 303 | 44794 | 0.80 +£0.13 | 1.95+0.17 | 0.34 +0.43
Choice of Neutrino Momentum
negative 3629 | 595 | 95579 | 0.75+0.08 | 1.84 +£0.11 | 0.04 +0.33
positive 3629 | 595 | 95579 | 0.63 £ 0.11 | 1.77 £ 0.12 | —0.30 + 0.54
matrix method 3629 | 595 [ 95579 | 0.72+0.08 | 1.90 + 0.11 | —0.25 + 0.34

5.5.2 Charge Dependence

Fits were performed separately for the D* and D~ samples. Each subsample was fit with
a Monte Carlo sample having events with the same vertex charge as data. The results of

the fits are shown in Table 5.11. The differences between the two sets of results are within
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the statistical errors.

5.5.3 Mg, Dependence

The signal region corresponds to Mg, € (0.85; 0.94) GeV. Fits were performed for two
subsamples having Mg, lower and higher than the central value of M- (= 0.896 GeV).
The results are listed in Table 5.11. The values of form factor ratios are consistent with

each other and with the results of the fit to the entire data sample.

5.5.4 Choice of Neutrino Momentum

The events D* — K~w*u*v, cannot be fully reconstructed due to the undetected ney-
trino. Using the constraint of D mass there is still a two-fold ambiguity for the longitudinal
neutrino momentum (see Appendix A) caused by the missing information about the par-
ent particle momentum. When the fits were performed with the unbinned method, the
events were reconstructed with the negative solution of neutrino momentum. This choice
is motivated by the significantly higher systematic shifts when the events are reconstructed
with the positive solution (6Ry = —0.17, §Ry = 0.12, 6R3 = —0.03), and also by higher
anticorrelation between R, and R; (-0.568 comparred to -0.211). The results of the fit
when the events were reconstructed with the positive solution of the neutrino momentum
are shown in Table 5.11. The above corrections for the systematic shifts were applied after

the fit.

The second fitting technique is not affected by the choice of neutrino momentum.
Intuitively, one would expect the results obtained with this second method to be in between
the results when the fits were performed with the first method when the events were
reconstructed with either positive or negative solution. The results on the last line in

Table 5.11 confirm this expectation for R, and R;.
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5.5.5 Stability of the Fit

The extra terms and factors which account for non-vanishing lepton mass have the largest
contribution at low ¢2. Assuming that the effects of lepton mass were correctly taken into
account, the fit should be stable against a cut on ¢2/¢2,,.. The results varied within about
1 o if the lower bound of ¢2/¢2,,. cut was in the range from 0.0 to 0.5. The values of form

factor ratios are shown in Fig. 5.11.

Figure 5.11: Stability of R;, Ry and R3 against a cut on the minimum allowed value of

9%/qZ4z- Only statistical errors are shown.

The small variations of form factor ratios in the region of low ¢2 /q%qz Shows that the

effects of non-zero lepton mass were correctly included in the decay rate formula.
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5.5.6 Mmin Cut

The cut on My, substantially reduced charmed as well as non-charmed background.
Variation of the results when M,;, cut is changed should be consistent with statistical
and systematic errors due to background subtraction and detector effects. The fit values
of form factor ratios are plotted in Fig. 5.12 for a cut on the lower bound of M, ,;,, varying
from 1.50 GeV to 1.70 GeV, while the upper bound was kept constant at the standard
value of 2.0 GeV. A similar study was done for the upper bound of M,,;,, which was
varied from 1.90 GeV to 2.10 GeV, holding the lower bound constant at 1.60 GeV. The

values of the form factor ratios are plotted in Fig. 5.12.

The variations of the results were less than the 1 o statistical error, and are consistent

with the systematic errors determined in the previous sections.

5.6 Summary of the Systematic Errors

All systematic errors studied in the previous sections are listed in Table 5.12. The last

line of the table contains the systematic errors added in quadrature.

For the first fitting technique, the unbinned loglikelihood method, the largest contribu-
tions to systematic errors came from muon ID, background subtraction and cut selection.
In addition to these sources of systematic errors, the second fitting technique is relatively
more sensitive to the binning. Overall, the systematic errors of the first two form factor

ratios are close to statistical uncertainties.
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Figure 5.12: Values of R, , Ry and R; for varying cuts on My,i,. The lower bound of
M nin was varied from 1.5 to 1.7 GeV holding the upper bound constant at 2.0 GeV (left
side plots). The upper bound of M,,;, was varied from 1.9 to 2.1 GeV holding the lower

bound constant at 1.6 GeV (right side plots). Open circles correspond to standard cuts

on Mmin .
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Table 5.12: The main contributions to form-factor uncertainties.

—

First Method Second Method
Source OR, | ORy | ORy || Or, | OR, | OR4
Simulation of detector effects || 0.06 | 0.08 | 0.16 || 0.06 | 0.07 | 0.19
Hadron ID 0.01 [ 0.01 | 0.02 || 0.01 | 0.01 | 0.02
Muon ID 0.04 1 0.06 | 0.10 |{ 0.05 | 0.04 | 0.11
Production mechanism 0.01 | 0.01 | 0.02 {| 0.01 | 0.01 | 0.03
Acceptance 0.03 { 0.02 | 0.08 || 0.02 | 0.02 | 0.09
Cut Selection 0.03 | 0.04 | 0.09 || 0.03 | 0.05 | 0.13
Fitting technique 0.02 | 0.03 | 0.22 || 0.06 | 0.10 | 0.30
MC volume size 0.02 | 0.02 { 0.12 || 0.06 | 0.10 | 0.30
Number of MC points 0.01 | 0.01 | 0.18 - - -

Systematic shift 0.01 | 0.02 | 0.06 |{ 0.01 | 0.02 | 0.06
Background 0.06 | 0.04 { 0.08 || 0.06 | 0.05 | 0.26
Number of bgnd. events 0.04 { 0.02 | 0.06 || 0.04 | 0.03 | 0.25
Bgnd. shape 0.04 [ 0.04 | 0.06 || 0.04 | 0.04 | 0.08
Total 0.09 {1 0.09 | 0.29 || 0.10 | 0.13 | 0.44
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Chapter 6

Results and Conclusions

6.1 Final Results

The values of form factor ratios were calculated with both fitting techniques described
in Chapter 4. The fit values obtained with the unbinned loglikelihood method (the first

fitting technique) are our final results:

Ry =0.75+£0.08 £0.09, Ry =184+0.11+0.09, Rz =0.04+0.33 + 0.29.
The correlation coefficients between pairs of form factor ratios are:

CCryry = —0.090 CCpg,g, = —0.211 CCryr, = —0.087

The second fitting technique (matrix method) was developed as a check of the first method.
The values of the form factor ratios calculated with the second method are close to the

previous results:
Ry =0.72+0.08 £0.10, Ry =190+0.12 + 0.13, R3=-0.25+0.34 + 0.44.

This method for extracting the form factor ratios uses the same D+ — & sty can-
didates as the previous method, but used both neutrino-momentum solutions. This is
true both for the data and for the Monte Carlo sample used in the likelihood function

calculation, so the results of this fit could differ from those of the previous fit. The values
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of the form factor ratios obtained with the two methods agree well, providing further as-

surance that selecting the lower neutrino momentum solution in the primary method and

correcting for the systematic bias gives the correct result.
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Figure 6.1: Background subtracted data distributions (cross hatches) overlaid with Monte

Carlo (dashed line) with best fit values for the form factor ratios.

The distributions of the four kinematic variables overlaid with the similar distributions
of Monte Carlo events, weighted according to the fit results, are shown in Fig. 6.1. The
formalism predicts a partial suppression of transverse helicity amplitudes at low ¢2. As
a consequence of this fact, the decay distributions should exhibit stronger cos?#6y and
sin? 4, components as ¢® decreases. This behavior can be seen in Fig. 6.2, where the
angular variables were plotted in various slices of the four-dimensional kinematic variable

space.
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Figure 6.2: Comparison of single-variable distributions of background-subtracted data
(crosses) with Monte Carlo predictions (dashed histograms) using best-fit values for the
form factor ratios. In the plots of cos 8 and cos 8y data has been divided into two ranges

of ¢°/g2 ., while the distribution of X is shown for two ranges of cos 8y-.
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6.2 Conclusions
6.21 D* -5 K uty,

The fit was performed on 3034 candidate D+ — Fop*'u“ events (3629 right-sign and
595 wrong-sign). Systematic errors related to simulation of detector effects, fitting tech-
nique and background subtraction were estimated, and these contributions were added
in quadrature. Statistical and systematic errors have about the same magnitude. The
determination of the form factor ratios for D+ — 'I—(*op'*'u“ presented here and for the
similar decay channel D+ — Foe*'ue [5] follow the same analysis procedure except for
the charged lepton identification. Both results as well as other previously published ex-

perimental results are shown in Table 6.1.

Table 6.1: Comparison of E791 results with previous experimental results. The E791
electron result for 7y is 0.06 higher than the value reported in Ref. [5] because we have

corrected for inaccuracies in the earlier modeling of the D+ transverse momentum.

Exp. Events rv = V(0)/A,(0) | ro = A2(0)/A,(0)
E791 | 6000 (e + ) | 1.87 4 0.08 £0.07 | 0.73 % 0.06 + 0.08
E791 | 3000 (u) 1.84 + 0.11 £0.09 | 0.75 + 0.08 % 0.09
E791[5] | 3000 (e) 1.90 +0.11 +0.09 | 0.71 = 0.08 + 0.09
E687[6] | 900 (x) 1.74 +0.27 £ 0.28 | 0.78 + 0.18 + 0.10
E653(7] | 300 (1) 200793 +0.16 | 0.82792 1+ 0.11
E691(8] | 200 (e) 20+0.6+03 |0.0+05+0.2

The values of the form factors are in agreement with the previously published results
within the estimated errors. The E791 experimental errors are now significantly lower

than theoretical uncertainties quoted by most models (Table 1.1).

Using form factor ratios, one can calculate the values of the form factors A;, A;, A3 and

V evaluated at a particular value of ¢2. Using the world averages for B(D+ — K%+ V)
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D* lifetime and CKM matrix element Ves, one can extract the values of form factors
evaluated at g2 = 0. Table 6.2 compares the measured results for 4,(0), A2(0) and V(0)

with theoretical predictions.

Table 6.2: Comparison of the measured form factor values A;(0), A2(0) and V(0) with
theoretical predictions.

Group A;(0) A2(0) V(0)
E791 (this work) | 0.59 +0.01 | 0.44 + 0.06 | 1.08 + 0.09
APE[13] 0.67+0.11 | 0.49 +0.34 | 1.08 + 0.22
Wuppertal[24] | 0.61%35 | 0.83*$% | 1.347031
UKQCDJ14] 0.70%59% | 0.667012 | 1.01%8:30
ELC[12] 0.64 +0.16 | 0.41 +0.28 | 0.86 + 0.24

The errors quoted for the experimental values (the first line in Table 6.2) are related
only to the errors on the fit values of form factor ratios (statistical and systematic added in
quadrature). They do not include the experimental errors on branching fraction, lifetime
and V,,. The value of A3(0) is0.02+0.26. The central values of branching fraction, lifetime
and Vs used for the evaluation of the form factors are: BR = 0.045, 7 = 1.057 x 10~ 12,
and V., = 0.975.

This is the first measurement of R3, which is relevant only for non-vanishing lepton
mass, and probes the spin 0 component of the W+ boson (page 8). The precision of
R3 measurement is low, but still the measured value of this form factor ratio (R3 =
0.04 £ 0.33 £ 0.29) suggests that S-wave decay of the D¥ is highly favored over P-wave
decay.
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6.2.2 D* o K%+,

The analysis for muon mode followed the same steps as our previous analysis on form

factor ratios for electron mode. The similarities between the two analysis refer to:
1. Data selection (except for lepton identification).
2. Spectrometer effects.

3. Fitting technique.

4. Size of final data sample.

Assuming that the hadronic weak current (which contains the form factors) does not
depend on the leptonic W decay, the values of the form factor ratios measured in the
electron and muon modes can be combined. To evaluate the systematic errors of the
combined results, the general procedure described in Ref. [27] was followed. The systematic
uncertainties of the combined results were evaluated for each source, from the systematic

errors measured for each decay channel and the correlations between them:

o5 = 202 + (oF)? + 2020t (a*, ) (1)

where z = Ry or Ry and (z°,z#) is the correlation coefficient between the two measure-

ments.

The values of the combined systematic uncertainties and the correlations between
the two sets of measurements are shown in Table 6.3. When the correlation coefficients
were not determined, the systematic errors measured for the two decay channels were

(conservatively) assumed to be totally correlated.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 6.3: The main contributions to form factor uncertainties measured for D+ —

K+ y,.
Source 9%, | OR, | Ry | Ok, | (RS, RS) | (RY,RY) | of* oqH
Detector effects 0.03 | 0.05 | 0.06 | 0.07 - - 0.047 | 0.051
Hadron ID 0.01 | 0.01 | 0.01 | 0.01 =1 = 0.010 | 0.010
Lepton ID 0.01 | 0.04 [ 0.05 | 0.06 | 0.000 0.000 0.021 | 0.039
Production mech. - 0.01 - [ 0.01 = = 0.010 | 0.010
Acceptance - 0.03 - 002 = = 0.030 | 0.020
Cut sel. 0.03 | 0.03 | 0.03 | 0.04| 0.357 -0.213 0.025 | 0.022
Fitting Technique | 0.04 | 0.02 | 0.04 { 0.03 - - 0.020 | 0.030
MC vol. size 0.04 | 0.02 | 0.04 | 0.02 | -0.532 0.135 0.017 | 0.024
No. of MC pts. 0.01 1 0.01 { 0.01 [ 0.01 | -0.194 -0.258 0.006 | 0.006
Shift 0.01 | 0.01 { 0.01 | 0.02 | 0.000 0.000 0.007 | 0.015
Background 0.07 | 0.04 | 0.04 | 0.03 - - 0.064 | 0.044
No. of bgd. evts 0.050.04 | 0.02 002 0.974 -0.237 0.045 | 0.013
Bgnd. vol. size 0.05  0.02 | 0.04 | 0.02{ 0.966 -0.673 0.035 | 0.015
Bgnd. shape (model) - 0.03 - 10.04 =1 =1 0.030 | 0.040
Total 0.09 | 0.09 | 0.09 | 0.09 - - 0.081 | 0.073

The combined values of the form factor ratios are:

R2 = 0.73 £ 0.06 + 0.08 Ry = 1.87 + 0.08 + 0.07

Figure 6.3 compares E791 values of form factor ratios for D+ — K*¢+v, with previ-
ously published results (top) and with theoretical predictions (bottom). At this time the
spread of the theoretical results is significantly higher than E791 errors.
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Figure 6.3: Top: Comparison of experimental measurements of form factor ratios ry, and
r9 for Dt — ?°€+ug in the muon (u), electron (e) and combined (s + ) channels. The
smaller error bars indicate the statistical errors and the larger ones indicate the statistical
and sytematic errors added in quadrature. Bottom: Comparison of theoretical predictions

with the E791 (u + e) result.
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6.3 Future Improvements

Statistical and systematic uncertainties contribute about the same to the total errors of
the form factors. Significantly better results cannot be obtained only by increasing the
statistics. It is necessary to decrease the systematic errors at least as much as the statistical

errors. This can be done by improving:

¢ Lepton identification.
e Vertexing system.

o Monte Carlo simulation.

Better lepton identification can be achieved by increasing the segmentation of electromag-
netic calorimeter and by using at least three high-efficiency muon planes in addition to
extra tracking devices on muon side. These improvements would be helpful for loweriag
the systematic uncertainties related to lepton ID and also for reducing the component of

the background due to lepton misidentification.

A better vertexing system should attempt to lower the longitudinal vertex resolution
from about 320 um to about 200 ym and consequently to reduce by factor around 2 the
background due to fake vertices. The hardware component which is most effective for
improving the vertex resolution is the silicon microstrip detector. Spatial resolutions of

silicon planes are currently at around 10 um and can be improved to 3 um.

Many systematic uncertainties evaluated in this form factor measurement originated
from the inaccuracies of the Monte Carlo simulation. A more precise measurement can be
done with a better understanding of the detector, reflected in a more reliable Monte Carlo.
With only this software improvement the systematic uncertainties would be reduced by at
least 20%. With all previously suggested improvements, systematic uncertainties would

decrease by a factor of 1.5 to 2.
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Appendix A

Neutrino Momentum Ambiguity

With real data, no tracking information is available for the neutrino, but it is possible,
given the momenta of the three visible particles, to calculate the neutrino momentum up

to a quadratic ambiguity. From momentum and energy conservation laws, one can write:
. 2 .
mp = (p"* +p")" = m};, +2(" - p*) (A1)

As well as having information about the 4-momenta of the charged D decay products, the
direction of flight of the D meson is also known from the vertex positions measurements.
The transverse momentum of the neutrino with respect to the direction of the D meson
is constrained: pY = —p‘f’. If the system is boosted along the direction of the D meson
to the frame where the component along the D direction pﬁis is zero, then the previous

relation can be transformed into a relation for pf" in terms of measurable quantities:

mh = mi +2 B [02)° + (o) + (p7’] (42)

This equation can be solved for pﬁ only up to a two-fold ambiguity:

2 2 _ 9(pyi)? 2 L2
pﬁ=i,:(mo Myis — (P} )_(p,i,-s)z} (A.3)

2Fvis
All quantities in equation A3 are evaluated in the reference frame where the parallel visible

momentum ( pﬁi’ ) is zero. The neutrino momentum is usually needed in the rest frame of
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the D meson. Therefore the previous reference frame has to be boosted in either positive

or negative direction with:
v
_ b,
= Evis + v

Because the magnitude of 3 is the same in both directions, and the transverse momentum

(A.4)

is also the same, the magnitude of neutrino momentum in the D rest frame does not

depend on which solution A3 is chosen. So, in the rest frame of D:

| p% =l P2 | (A.5)

All visible momenta and relative angles evaluated in the rest frame of D depend on
which sign is chosen in A3, but the magnitude of neutrino momentum is invariant to this

choice.

Due to resolution, some events were reconstructed outside the physical region ((p)ﬁ <
0). These “unphysical” events were recovered by setting (p); = 0. The reconstructed D
invariant mass is larger than the PDG value for the “unphysical” events. It is straight-
forward to show that in these cases the D mass equals Mp;,. So, the “unphysical” events
have the value of My;;, (and reconstructed D mass) between 1.87 GeV and 2.00 GeV. The
data sample contained 25.60 % ”unphysical” events and Monte Carlo sample 23.43%. The
number of “unphysical” events can be varied by changing the upper bound of the M,,;,
cut. This study was done in Section 1.5.6. The upper limit of the M,,;, cut was varied
in the range from 1.9 GeV to 2.1 GeV. The values of form factor ratios fluctuated within

less than 0.50 statistical errors.
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Appendix B

Muon Identification

Muons were identified in two walls of scintillating counters behind shielding equivalent to
2.5 meters of steel. The two muon walls provided information about the x and ¥ positions
of the muon candidate track. Ideally, a true muon should be registered by the projected
paddles in both muon walls. This doesn’t always happen because the efficiency of the walls
is less than 1, and also because of the deflection caused by multiple Coulomb scattering.
The standard deviation of the multiple scattering is momentum dependent [23], and is

empirically given by:
55.62

_ %562 B.1

Or p—1.29 ( )
98.55

_ em 2

T o187 (B2)

where p is the track momentum, and o, and oy are the widths of multiple scattering

distributions at the X and Y walls.

At the substrip level, a particle was included on the muon candidate list if it had
momentum larger than 7 GeV and if there was a hit in either the X or Y wall within 3¢

of the projected position:
pu > 7T.and.(n,, < 3.0r.n,, < 3). (B.3)
These loose cuts kept about 99 % of muons having momentum larger than 7 GeV and
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having the track within the Y wall acceptance.

In this analysis a necessary condition for a particle to be identified as a muon is to
hit the Y muon wall, with the projected y position away from the hit position by at most
lo (ns, < 1). This condition was not enough to clean the data sample, and some extra

requirements for x position of the projected track were needed.

In addition to X wall, Y-wall TDC information is valuable for x position estimation.
The delay of the pulse registered by the phototubes attached to the paddles is correlated
with the x position of the track (see fig. B.1 (a)). The parameters of the centerline in
the TDC vs. x position plot were determined with “good” muons (the projected position
of the track falls within the hit paddles). A variable “dist” was defined as the distance
from a point to the centerline. By convention “dist” is positive if the point is above the
centerline and negative otherwise. The distribution of this variable is shown in fig. B.1 (b),
for right-sign and wrong-sign events. In order to reduce the number of hadron decays in
flight, the cut on muon momentum was also tighter, p, > 8 GeV, compared with substrip

cuts. To summarize, the muon identification was based on the following cuts:

L. py > 8 GeV;
2. ng, < 1;

3. abs(dist) < 8 cm.

If two tracks associated with the secondary vertex passed the muon identification cuts,
then the first choice for muon candidate was the track which had a higher muon category
(20]. If the event didn’t pass the rest of the cuts (with the first choice for the muon
candidate) then the second possibility for assigning the muon candidate was taken into
account. Overall the data sample contained 8.4% of events having two tracks that pass
muon ID requirements, compared with 4.7 % similar events in the Monte Carlo sample.
The systematic errors related to this kind of inaccuracy in the Monte Carlo simulation

were studied in chapter 4.
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This set of cuts kept about 85 % of muons that passed substrip cuts, had momentum
larger than 8 GeV and were within the acceptance of Y wall. The data sample obtained

with this muon identification scheme has a size similar to that for the decay channel

D* o5 K—ntety,.
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Figure B.1: (a) Centerline in the position and TDC correlation plot. The equation for the
line is 10x + y -9150 = 0, where y is the projected X-position on the Y wall and x is the
muon TDC from Y wall. (b) Distribution of the DIST variable for RS and WS events.
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Appendix C

The Origin of Systematic Shifts in
Fitting

When fits were performed with the unbinned maximum likelihood method, the fit values
of the form factor ratios were systematically shifted from the real values. The magnitudes

of the systematic shifts were precisely determined from Monte Carlo studies as described

in 5.2.1:
dR; = —0.09 + 0.01, 0Ry = +0.09 +£0.02, 0R3 = —0.11 + 0.06.

The systematic shifts R, and Ry are comparable to the statistical uncertainties asso-
ciated with the measurement of R, and Ry . dRj3 is one third of the statistical uncertainty

of the measured Rj.

The values of the form factor ratios measured for the data sample were corrected
by subtracting the systematic shifts previously determined from Monte Carlo studies.
This procedure might be wrong if, for example, the systematic shifts depend on the form
factors. Therefore, it is important to understand the origin of the systematic shifts. It is
interesting to note that a binned maximum likelihood fitting technique does not lead to

any systematic bias of the fit results.
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Many potential sources of systematic shifts were investigated. Some of these potential

sources which were proven not to be related to the systematic bias are:

e Neutrino momentum ambiguity.
¢ Smearing effects caused by limited spectrometer resolution.
e Size of the Monte Carlo sample.

Data selection criteria.

The minimum number of Monte Carlo events associated to a data point.

These studies suggested that the systematic shifts originate from the unbinned maximum
likelihood fitting technique itself, rather than from event reconstruction procedure or data
selection criteria. In the unbinned maximum likelihood method, the probability distribu-
tion function is well approximated by the whole Monte Carlo sample (Eqn. 4.4):
Fuc@iuo) = = 3% 64(z - 3, (C.1)
; Nuro i

i=1
where pg is the set of form factor ratios used to generate the Monte Carlo sample, Ns¢c
is the total number of Monte Carlo events that were retained after applying all selection
criteria, Z;’s are the positions in the four-dimensional kinematic variable space associated
with each Monte Carlo event and z is an arbitrary point in the phase-space. It is important
to note that Farc(z; po) is not continuous but it is normalized to one. Using the weighting
procedure described in 4.3 the probability distribution function Fye(z; ), evaluated for

an arbitrary set of form factor ratios, can be expressed in terms of Farc(z; po) (Eqn. 4.6).

When this fitting technique is employed, the probability distribution function (Eqn. C1)
cannot be directly used because of the presence of the & functions. Therefore the general
expression C1 is replaced by the average of Fysc over a small volume V centered on the

position z; associated with a data event:
- 1
Fuc(ein) = 5 [ d'aFuc(z;u) (€c2)
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The volume V in Eqn. C2 is a certain fraction of the total phase-space volume. If the
position z; of a data point is close to the phase-space edges, then the nominal volume V is
shrunk such that it is still centered on the data point. In this analysis the nominal volume
was 1/625 of the total phase-space volume. The projections of the nominal volume on
each one-dimensional kinematic variable subspaces were one fifth of the full range of that

variable.

The replacement of the true distribution function Fuye with Fye is responsible for

two major problems:

1. The “average” distribution function Fysc, defined by Eqn. C2, approaches Fysc only
in the limit V' — 0.

2. Fyc is not normalized to one. When fits are performed with a log-likelihood method
the normalization of the probability distribution function is crucial for the correct

convergence of the fit.

An example will illustrate how distortion of the distribution function (determined by the
transition from f(z) to f(z)) and its normalization depend on the nominal volume. A
simple one-dimensional distribution function f(z) is shown in Fig. C1 (top). The full
range of z is from 0 to 1. The “average” distribution function f(z) calculated according
the prescription given by Eqn. C2 and with the nominal volume the same as the full range
of z is shown in Fig. C1 (bottom). The graphs of f(z) when the nominal volume was one
fifth and one tenth of the full range of z are shown in Fig. C2 top and bottom respectively.
As expected, both the distortion of f (z) (in comparison with f(z)) and the departure from

the correct normalization decrease when the nominal volume decreases.

The distortion of the distribution function is not expected to lead to systematic shifts
of the fit results because it was shown before that smearing effects (which have the same
effect on the distribution function) do not generate systematic bias. Consequently, the
approximate normalization of the distribution funtion is mostly responsible for the system-

atic shifts. The log-likelihood fitting technique is extremely sensitive to the normalization
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Figure C.1: A correctly-normalized distribution function f(z) is shown in the top plot.
The “average” distribution function f(z) (defined in the text) is shown in the bottom

plot. The nominal volume equals to the full range of z.
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Figure C.2: The “average” distribution functions f(z)’s when the nominal volume is one

fifth (top) and one tenth (bottom) from the full range of .
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Table C.1: The values of the systematic shifts measured for different values of the nominal

volume. The first column shows the number of bins for each kinematic variable.

Ng2 [Ncos g, /Neos by [Ty 0R, dRy 0R;
3/3/3/3 —0.23 £0.01 | +0.30 +0.02 | —0.47 +0.06
4/4/4/4 —0.15+0.01 | +0.15+0.02 | —0.17 % 0.06
5/5/5/5 —0.09 +0.01 | +0.09 £0.02 | —0.11 % 0.06
6/6/6/6 —0.06 +0.01 | +0.07+0.02 | —0.01 + 0.06
7/7]7/7 —0.04 £0.01 | +0.06 +0.02 | +0.01 + 0.06
8/8/8/8 —0.03 £0.01 | +0.06 +0.02 | +0.01 + 0.06

condition. Even a 1% departure from the correct normalization may affect the fit results

subtantially.

To check the binning dependence of the fitted form factor ratios, the systematic shifts
were determined for different values of the nominal volume. The results are shown in
Table C1. The values of the systematic shifts are indeed strongly dependent on the size
of the nominal volume. In practice, the size of the nominal volume cannot be decreased
indefinitely because a significant number of data events would be excluded from the fit
(the reasons are explained in 4.4.1). For example, with the standard binning (“5/5/5/5")
there were 90 data events excluded from the fit. This number increased to 305 when the

binning is “8/8/8/8".

Since the systematic shifts depend strongly on binning, it is crucial to check the consis-
tency of the fit values of the form factor ratios (corrected for the systematic shifts) when
fits are performed with different binning conditions. The results are shown in Table C2
and plotted in Fig. C3. After applying the corrections for the systematic shifts, the values

of the form factors are consistent each other no matter what the binning is.

As shown before, the probability distribution function is not normalized to one when
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Figure C.3: Values of the form factor ratios, uncorrected (open circles) and corrected (black
bullets) for the systematic shifts. The horizontal axis represents the fraction nominal
volume to the total phase-space volume in log scale. The values of the nominal volume

are the same as those in Table C1 and Table C2.
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Table C.2: The values of the form factor ratios uncorrected and corrected for the system-

atic shifts. The corrections were done by subtracting the values of the systematic shifts

listed in Table C1.

Binning R, Ry R3 (R2)corr (Rv)corr (R3)corr
3/3/3/3 1 0.52£0.12 | 2.16 £ 0.13 | —0.77+0.39 { 0.75 + 0.12 1.86+0.13 | —0.30 £ 0.39
4/4/4/4 | 0.59+£0.10 | 1.98 +0.11 | —0.38 £0.35 | 0.74 + 0.10 1.83 +£0.11 | —0.30 + 0.39
5/5/5/5 | 0.67 £0.08 | 1.93 +£0.11 | —0.07 +£0.33 { 0.75 + 0.08 1.84+0.11 | 0.04 +0.33
6/6/6/6 | 0.68 +0.08 | 1.92+0.11 | 0.15+0.30 | 0.74 +0.08 1.85+0.11 | 0.16 +0.30
7/7/7/7 | 0.71£0.08 | 1.92+0.11 | 0.09+028 | 0.75 =+ 0.08 1.86 £0.11 | 0.08 +0.28
8/8/8/8 | 0.73 +£0.08 | 1.96 £ 0.11 | 0.04+0.25 | 0.76 +0.08 1.90£0.11 | 0.03+0.25

the fits are performed with the unbinned log-likelihood method. The distribution function
(Eqn. 4.6) can be normalized to one if divided by its integral over the whole phase-
space. The distribution function (Eqn. 4.6) was integrated numerically using 50,000 points
randomly distributed over the four-dimensional kinematic variable space. The values of
the systematic shifts were again measured for the standard binning. As expected they
significantly decresed; from —0.09 to —0.01 for R;, from 0.09 to 0.05 for Ry and from
—0.11 to —0.04 for R3. The numerical integration of the probability distribution function
(Eqn. 4.6) is extremely time-consuming and it can be performed for only a relatively
low number of points. This means that the normalization condition is still not perfectly
fulfiled. Although the correct normalization of the probability distribution function greatly
reduces the systematic shifts, it is reasonable to assume that there is at least one more
reason for the systematic bias. The most likely additional source of syatematic shifts is
the non-linearity of the distribution function over the small volume centered on each data
point. No measurements of the contribution to the systematic shifts associated with the

non-linearity effects were performed.
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In summary:

e The systematic shifts originate from:

1. Approximate normalization of the probability distribution function.

2. Non-linearity of the decay rate within the volume centered on the data point.

e The values of the systematic shifs can be precisely determined from Monte Carlo

studies.

e The fit values of the form factor ratios can be corrected (by subtracting the system-

atic shifts) in a consistent manner.
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