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Andrew Scott Gordon

Thesis Advisor: Melissa Franklin

Abstract

We measure the W boson mass using the W ! e� decay channel. We use data

collected at the Collider Detector at Fermilab from pp collisions at
p
s = 1800 TeV.

The data were taken from January 1994 through July 1995 and represent an integrated

luminosity of 90:1 pb�1. We determine the W mass to be 80:473 � 0:067(stat) �
0:097(sys) GeV. The dominant contribution to the systematic uncertainty is the

uncertainty on the calorimeter energy scale. The energy scale contributes 0:080 GeV

to the systematic uncertainty.
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Chapter 1

Introduction to the W Mass

Measurement

1.1 W Events at Fermilab

At Fermilab, 900 GeV� beams of protons and anti-protons are collided at a center of

mass energy of 1800 GeV. W bosons are produced by hard scatters between the quarks

which are inside the protons and anti-protons. Protons and anti-protons are bound

states of constituent partons, which are quarks and gluons. A schematic diagram

of the W production process is shown in Figure 1.1. The partons are shown as the

horizontal lines which are surrounded by ovals, and the ovals represent the protons

and anti-protons. In the diagram, the W is produced by the hard scatter of a u quark

from the proton with a d quark from the anti-proton. The proton and anti-proton

remnants consist of the partons which do not participate in the hard scatter. These

are spectator particles, and their contribution to the W event is referred to as the

�In this paper, we use units where �h = c = 1. Energy, momentum, and mass all have the same
units.
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W Boson

d

u

neutrino

electron

spectators

Anti-Proton

Proton

Figure 1.1: Schematic diagram of W production at pp collisions. The constituent
partons of the protons and anti-protons are shown as the horizontal lines, and the ovals
that surround the lines represent protons and anti-protons. A hard scatter between
a u quark from the proton and a d quark from the anti-proton is shown. These two
quarks form a W, and the W is shown subsequently decaying into an electron and
a neutrino. The other partons in the proton and anti-proton are spectators to the
event, and they form the \underlying event." The protons and anti-protons travel in
opposite directions, although this is not indicated in the diagram.

underlying event.

The W is one of the fundamental particles of the current theory of elementary

particles, and it is also one of the heaviest. It weighs approximately 80 times the

mass of the proton, and roughly 15 times the mass of the next lightest fundamental

particle, the b quark. It exists on average for less than 10�24 s, before decaying into

one of several decay channels.

Because of the short lifetime, there is a natural uncertainty on the mass of the
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created W. There is an uncertainty relation of the form

� � �W = �h

where �h is Planck's constant divided by 2�, � is the average lifetime of the W, and

�W is a measure of the mass spread of created W events. We refer to �W as the W

width. The masses are produced with a random spread according to a Breit-Wigner

distribution. The mean of this distribution is referred to as the W mass, MW . The

width of the distribution is determined by �W and is roughly 2:5% of MW .

In approximately 10% of the W events, the W decays into an electron� and a

neutrino. We refer to these events as W ! e� decays. These are the events which we

use in this paper to measure the W mass. The neutrino is not detected, and passes

through the detector without interacting. The electron, on the other hand, leaves a

track in the tracking chamber, and also deposits its energy in the calorimeters that

surround the interaction region. We use the electron energy, as well as information

from other particles associated with the W production, to deduce the W mass.

We use CDF Run 1B data to measure the W mass. The Run 1B data represent a

� 4 fold increase in statistics over the previous run at Fermilab, Run 1A. We expect

the 1B measurement uncertainty to be roughly half the previous CDF measurement.

1.2 Theoretical Motivation and Historical Overview

The current uni�ed theory of electroweak interactions (the \Standard Model") was

�rst developed in the sixties [1, 2, 3, 4]. The theory predicts the existence of three

�We will use the word electron to refer to both the electron and its anti-particle, the positron.
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heavy gauge bosons: two charged bosons (W�) and one neutral (Z), which couple to

both leptons and quarks. If we write the coupling strength of the W boson to fermions

as g, then the theory connects the electromagnetic coupling to the weak coupling as

g =
e

sin �W
(1.1)

where e is the electric charge of the charged leptons, and sin �W is an undetermined

parameter of the theory. The theory further makes the remarkable prediction that

MW =MZ = cos �W (1.2)

which relates the masses of the bosons to the strength of the weak coupling. That the

masses are related to the coupling strength is a consequence of the boson couplings

to the Higgs �eld. The Higgs �eld has a non-zero vacuum expectation value, and the

masses of the bosons are proportional to their couplings to the Higgs �eld. The Higgs

�eld is introduced into the theory to allow the bosons to have mass while retaining

the renormalizability of the theory.

The theory replaced Fermi's four-point interaction model of muon decay. In the

Standard Model, muon decay occurs through the production of an o�-shell W and

a neutrino, with the W further decaying to an electron and a second neutrino. In

Fermi's theory, the muon decay rate is proportional to the Fermi constant, GF .� At

tree-level in the Standard Model, the weak coupling g is related to the Fermi constant

through the relation

GF =

p
2g2

8M2
W

=
��p

2M2
W sin2 �W

(1.3)

�The muon decay rate is well measured, and the Fermi constant is currently known to a part in
one hundred thousand [5].
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where � = e2=4� is the �ne structure constant. This equation puts limits on the

allowed size of the W mass. Since j sin �W j is always less than 1, we have M2
W >

��=
p
2GF . Reference [2] predicted MW > 40 GeV, MZ > MW and MZ > 80 GeV.

The last two predictions use Equation 1.2 and the inequality j sin � cos �j < 0:5.

Higher order corrections change the tree-level relations of Equations 1.2 and 1.3.

The calculation of the muon decay rate in the Standard Model includes loop correc-

tions to the W propagator, evaluated at low momentum transfer. The loop corrections

include tb loops, as well as loops which include the Higgs particle. In the on-shell

renormalization scheme, Equation 1.2 is correct at all orders in the coupling constants,

while Equation 1.3 is altered to

GF =
��p

2M2
W sin2 �W

1

1 ��r
(1.4)

where �r accounts for the radiative corrections [6, 7, 8]. This equation relates MW

to the quantities GF , �, and MZ. MZ is included through Equation 1.2. �r depends

on all the masses and couplings in the theory, and also on the masses of the top quark

and the Higgs particle.

Figure 1.2 shows the predicted value for MW as a function of the top quark mass

MTOP . The plot is shown for di�erent values of the Higgs mass, MHIGGS . The

measurement of the W mass from the current paper is shown at the location of the

top quark mass. The world average value for MW is also shown. Figure 1.3 shows

the predicted value for MW as a function of the Higgs mass. For both plots we use

the world average value for the top quark mass.

Figures 1.2 and 1.3 do not rule out any value for the Higgs mass, although a

lower value is preferred. Precision measurements of the W mass, in conjunction with

5



Figure 1.2: Predicted value for MW as a function of the top quark mass MTOP . The
four curves are for a Higgs mass of 100 GeV, 250 GeV, 500 GeV, and 1000 GeV.
Two points are shown. The solid circle is the measurement for the W mass from this
paper and the open circle is the world average value. Both points are shown at the
world average for MTOP , and the open circle is o�set slightly to the right to make
the error bars easier to see. The world average values are from [5]. The calculation
of the curves is from [8].
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Figure 1.3: Predicted value for MW as a function of the Higgs mass, MHIGGS . The
dashed curve is the predicted value forMW as a function ofMHIGGS for the top quark
mass at the world average value of 173:8 � 5:2 GeV. The solid curves represent the
1 � � bounds from the uncertainty on the top quark mass. The area �lled in with
slanted lines represents the 1�� uncertainties of theMW measurement of this paper.
The world average values are from [5]. The calculation of the curves is from [8].
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precision measurements of the top quark mass, allow tests of the Standard Model at

the level of its radiative corrections.

The W and Z bosons were �rst discovered by UA1 at the CERN pp collider in

1983 [9, 10]. Six W ! e� events were observed with the expected signature of a high

ET electron in conjunction with high missing ET . The W mass was measured to be

81�5 GeV, and the Z mass to be 95�3 GeV. The CERN LEP ring has since produced

several million Z events at several center of mass energies around the Z mass. The Z

mass is currently known with a precision of roughly one part in ten thousand. The

current world average Z mass is 91:187 � 0:007 GeV [5].

A number of experiments have measured the W mass since 1983, with the goal of

improving the precision on the measured mass. The current precision on the W mass

is approximately one part in one thousand, roughly ten times worse than the Z mass.

Several recent, published measurements are listed in Table 1.1.

Table 1.1 lists measurements from pp colliders as well as results from e+e� colli-

sions at CERN. At pp colliders, the quarks inside the protons produce the W. Since the

proton remnants are mostly undetected, the longitudinal momentum of the W is un-

measured; and the longitudinal momentum of the neutrino cannot be reconstructed.

The pp measurements use transverse quantities to infer the W mass.

At e+e� colliders, W's are produced in W+W� pairs since charge must be con-

served. One can infer the W mass from the measured cross section for W+W� pair

production. This is the technique used by the CERN experiments with the center

of mass energy at 161 GeV, just above the pair production threshold. One can also

measure the W mass with its decay products. In e+e� collisions, the longitudinal

momentum is known, and the full three vector of the neutrino can be reconstructed.

The bottom four measurements in the table calculate an invariant mass of each W
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W Mass (GeV) Events Decay Channel Experiment-Year Reference

79:91 � 0:39 1; 722 pp: W ! e�; �� CDF-1990 [11]
80:36 � 0:37 2; 065 pp: W ! e� UA2-1992 [12]
80:49 � 0:23 5; 718 pp: W ! e� CDF-1995 [13]
80:31 � 0:24 3; 268 pp: W ! �� CDF-1995 [13]
80:35 � 0:27 5; 982 pp: W ! e� D0-1996 [14]
80:44 � 0:12 28; 323 pp: W ! e� D0-1997 [15]

80:40 � 0:44 23 e+e�: �(W+W�) OPAL-1996 [16]
80:14 � 0:35 32 e+e�: �(W+W�) ALEPH-1997 [17]
80:80+0:48�0:42 20 e+e�: �(W+W�) L3-1997 [18]
80:40 � 0:45 29 e+e�: �(W+W�) DELPHI-1997 [19]

80:71 � 0:35 101 e+e�: WW ! l�jj; jjjj L3-1997 [20]
80:80 � 0:34 95 e+e�: WW ! l�jj; jjjj ALEPH-1998 [21]
80:32 � 0:31 96 e+e�: WW ! l�jj; jjjj OPAL-1998 [22]
80:22 � 0:42 72 e+e�: WW ! l�jj; jjjj DELPHI-1998 [23]

Table 1.1: Some previous measurements of the W Mass. The table is divided into
three sections. The top measurements are from pp colliders, and the W mass is
inferred from the transverse mass distribution. The next four measurements are from
e+e� collisions at CERN, at a center of mass energy of 161 GeV, which is just above
the threshold energy for W+W� pair production. The W mass is inferred from the
measured pair production cross section. The bottom measurements are from e+e�

collisions at CERN at a center of mass energy of 172 GeV; and theWmass is measured
from the reconstructed mass of the decay products. Only W mass measurements from
recent years are shown. Not all the measurements shown are independent.

event with the W decay products.

The results of Table 1.1 are plotted in Figure 1.4, along with the measurement

of this paper, and the world average value. As mentioned above, precision measure-

ments of the W mass can be used to test the Standard Model at the level of its

radiative corrections. With precision measurements, the Standard Model can make

predictions about the Higgs sector of the model. It is hoped that these predictions

can be con�rmed or proven wrong by experimental searches for the Higgs particle.
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Figure 1.4: Some previous measurements of the W mass, this measurement, and the
world average. The top measurements (open triangles) are results from pp colliders.
The next four (open circles) are results from e+e� collisions at CERN, at a center of
mass energy of 161 GeV, just above the W+W� pair production threshold. These
measurements infer the W mass from the pair production cross section. The next
four results (open squares) are from CERN with the center of mass energy at 172
GeV. For these results, the W mass is measured by direct reconstruction. All these
measurements are summarized in Table 1.1. The bottom result (�lled triangle) is the
result of this paper. The vertical dashed and solid lines indicate the world average
and its 1� � uncertainties. This average does not include the D0� 1997 result. The
world average is from [5]. Not all the results shown are independent.
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1.3 The Jacobian Edge and the Transverse Mass

In pp collisions, quarks inside the protons and anti-protons collide to produce W

events. As mentioned above, we cannot measure the longitudinal momentum of the

quarks, and therefore we cannot reconstruct the longitudinal momentum of the neu-

trino. Instead, we rely on transverse quantities to measure the W mass.

In this section we discuss the Jacobian edge of the electron ET distribution. This

edge occurs in the W rest frame but is broadened by theW transverse motion. We also

de�ne the transverse mass and show that it provides a correction for the broadening

of the Jacobian edge. For this section, we consider the two-body decay W ! e�.

Radiative decays, and the Monte Carlo generator that we use to measure the W

mass, are discussed in Chapter 5.

We �rst consider the case that the W is produced at rest. The di�erential cross

section is

d�

d(cos �̂)
= �0(ŝ)(1 + cos2 �̂) (1.5)

where
p
ŝ is the center of mass energy of the colliding quarks, and where �̂ is the

polar angle of the electron with respect to the proton beamline. The function �0(ŝ) is

proportional to a Breit-Wigner distribution. This distribution and the cross section

are further discussed in Chapter 5.

We de�ne the quantity ET � E sin �. This quantity is useful because it is invariant

under longitudinal boosts. In the W rest frame, E =
p
ŝ=2 and ET = (

p
ŝ=2) sin �̂.

In the rest frame, we can write the cross section which is di�erential in ET as
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d�

dET
=

2p
ŝ

d�

d(sin �̂)
(1.6)

=
2p
ŝ

d�

d(cos �̂)

�����d(cos �̂)d(sin �̂)

����� (1.7)

=
2p
ŝ
�0(ŝ)(1 + cos2 �̂)j tan �̂j (1.8)

= �0(ŝ)
4ET

ŝ
(2� 4E2

T=ŝ)
1q

1� 4E2
T=ŝ

(1.9)

For the transition from Equation 1.7 to 1.8 we use the above formula for d�=d(cos �̂),

and we also use the formula jd(cos �̂)=d(sin �̂)j = j tan �̂j. For Equation 1.9 we use the

formula sin �̂ = ET=E = 2ET=
p
ŝ. Equation 1.9 is independent of the longitudinal

momentum of the W since ET and ŝ are invariant under longitudinal boosts.

Equation 1.9 has a singularity at ET =
p
ŝ=2. This is also the maximum value for

ET for a given value of
p
ŝ. Thus, for a �xed value of

p
ŝ, the ET distribution has

an in�nitely sharp edge at
p
ŝ=2. This edge is referred to as the Jacobian edge, since

it derives from the Jacobian factor d(cos �̂)=d(sin �̂). If we distribute ŝ according to

the Breit-Wigner shape, instead of using a �xed value, then the singularity in the

ET distribution is made �nite. There is still, however, a sharply falling edge in the

distribution, which occurs at half the W mass. The sharpness of the falling edge is

determined by the W width. Figure 1.5 shows the rest frame ET distribution for a

�xed value of
p
ŝ. It also shows the ET distribution where

p
ŝ is distributed according

to a Breit-Wigner shape.

The transverse motion of the W further reduces the sharpness of the Jacobian

edge. In the lab frame, the W is not produced at rest, and the electron ET is

~ET � ~Erest
T +

1

2
~PW
T (1.10)
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Figure 1.5: The Jacobian edge of the electron ET distribution, for W ! e� decays.
The solid curve is for a W with no transverse momentum, and with

p
ŝ �xed at

MW = 80:35 GeV. The dashed curve is the same distribution but with
p
ŝ distributed

according to a Breit-Wigner shape with mass 80:35 GeV and width 2:09 GeV. The
triangles are the electron ET shape in the lab frame. This shape includes the e�ect
of the W transverse motion, and

p
ŝ is distributed according to the Breit-Wigner

distribution.
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where ~Erest
T is the electron transverse momentum in the W rest frame, and ~PW

T is the

boson transverse momentum. This equation is accurate to �rst order in the ratio of

the W PT to the W energy. The magnitude of ~ET is given by

ET � Erest
T +

1

2
PW
k (1.11)

where PW
k is ~PW

T projected along the electron direction. This equation is accurate to

�rst order in j~PW
T j=Erest

T .

The W PT can be large, and the W PT signi�cantly washes out the Jacobian edge.

This is shown in Figure 1.5, which shows the lab frame ET distribution compared to

the rest frame distribution. The falling edge in the lab frame is signi�cantly wider.

From Equation 1.11 we see that the lab frame ET has a �rst order dependence on

the W PT . If we use the edge of the ET distribution to determine the W mass, then we

will have a strong dependence on the W PT distribution. To reduce this dependence

we use the transverse mass instead. The transverse mass is de�ned as [24, 25]

MT �
q
(ET + E�

T )
2 � j ~ET + ~E�

T j2 (1.12)

where ~ET is the electron transverse momentum and ~E�
T is the neutrino transverse

momentum. ET and E�
T are the magnitudes of the respective vector quantities. The

transverse mass has the form of an invariant mass without any longitudinal informa-

tion. For the case that the longitudinal momentum of the electron and neutrino are

both zero, MT is identical to the invariant mass.

The variable MT is useful because it has a second order dependence on the W PT .
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To see this, we use the relation

~PW
T = ~ET + ~E�

T (1.13)

We can replace ~E�
T by ~PW

T � ~ET everywhere in the de�nition of MT . Expanding

Equation 1.12 to �rst order in j~PW
T j=ET , we get the approximation

1

2
MT � ET � 1

2
PW
k (1.14)

We compare this to Equation 1.11, which is also accurate to �rst order in j~PW
T j=ET .

We get the relation

1

2
MT � Erest

T (1.15)

where Erest
T is the electron ET in the W rest frame. The corrections to this equation

are second order in j~PW
T j=ET . Thus, to �rst order in the W PT , we expect the

transverse mass to have the sharp Jacobian edge that is characteristic of the electron

ET distribution in the boson rest frame.

In practice, however, our measurement of the W PT is biased low. On average

the measured W PT is � 50% of the correct W PT . We do not scale our measured

W PT since this measurement has a large resolution which we do not want to scale.

When we construct the transverse mass distribution with measured quantities, we do

not fully recover the Jacobian edge. The de�nition of MT using measured quantities

is presented in Chapter 3.

In this paper, we use the MT distribution to measure the W mass. Since the MT

distribution using measured quantities does not fully reconstruct the Jacobian edge,

our W mass �t has a residual dependence on the boson PT shape. This dependence
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is weaker than �rst order but stronger than second.

1.4 Measurement Overview

An outline of the paper is shown in Table 1.2. The paper is divided into �ve main

parts, which are summarized in the table. The �ve parts are

Introduction Chapter 1.

Data Chapters 2 to 4. In Chapter 2 we discuss the Fermilab accelerator and the

CDF detector. We emphasize those parts of the detector which relate to the

measurement of the W mass in the electron channel. We also describe the

triggers that contribute to the W ! e� sample. In Chapter 3 we de�ne the

variables that we use to describe the W event, and we present a number of

corrections that are applied to the data. We also discuss the various cuts that

are used to extractW ! e� and Z ! ee samples from the data. In Chapter 4 we

measure the fraction of background that remains in the W ! e� data sample.

Simulation Chapters 5 to 9. We use theMT distribution to measure the W mass. A

signi�cant part of the paper is the simulation of the measuredMT distribution.

There are several inputs to this simulation.

1. Chapter 5: Event generation. The generation of W and Z events is dis-

cussed. The generation includes both the production of the bosons at 1:8

TeV pp collisions and the radiative decay of the bosons, W ! e� and

Z ! ee.

2. Chapter 6: Electron measurement. We simulate the electron energy and

momentum measurements. This includes the e�ects of measurement res-

16



olution, photon bremsstrahlung, underlying event energy, and cut biases.

We leave the determination of the energy scale to a later chapter.

3. Chapter 7: Z PT determination. The Z PT distribution is an input to the

Monte Carlo. We use the electron simulation to match the Monte Carlo Z

PT shape to the data Z PT shape.

4. Chapter 8: Underlying event and recoil energy. We simulate the energy

from multiple interactions and the proton remnants, and we also simulate

the measurement of the energy which recoils against the boson PT . The

measurement of the recoil energy is our only direct measurement of the W

PT .

5. Chapter 9: Comparison of data and Monte Carlo. We use the simulation

of the preceding chapters to compare various distributions of the Monte

Carlo with the W ! e� data.

Energy Scale Chapters 10 to 12. We have not yet determined an absolute energy

scale for the electron measurement. We determine the energy scale with the

invariant mass of Z ! ee events. We also determine the energy scale with the

E/p distribution. The E/p distribution compares the calorimeter measurement

of the electron energy with the tracking chamber measurement. We use E/p to

tie the calorimeter energy scale to the CTC energy scale. The E/p result for

the energy scale di�ers signi�cantly from the Z mass result. This discrepancy

is not understood, and it is discussed in Appendix B. We use the Z mass to

set the energy scale for the �nal W mass measurement. In this way, our energy

scale determination is separated from potential complications in the tracking

measurement. The E/p distribution is also used to measure a non-linearity in

17



Introduction
Chapter 1: Introduction

Data
Chapter 2: The accelerator and the CDF detector
Chapter 3: W and Z data samples
Chapter 4: Background rates

Simulation
Chapter 5: Event generation
Chapter 6: Simulation of electron measurement
Chapter 7: Boson PT distribution, �t to the Z data
Chapter 8: Underlying event and recoil energy
Chapter 9: Comparison of data and Monte Carlo

Energy Scale
Chapter 10: Energy scale with MZ

Chapter 11: Energy scale with E/p
Chapter 12: Non-linearity in Energy Scale

W Mass Fit
Chapter 13: Fits for MW

Chapter 14: Conclusion

Table 1.2: Outline of the paper.

the CEM energy scale, which is the subject of Chapter 12.

W Mass Fit Chapters 13 and 14. We use the MT distribution to �t for the W

mass. We also determine the magnitude of various systematic uncertainties and

perform a number of checks on the �t. We summarize the paper in Chapter 14.
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Chapter 2

Fermilab Accelerator and CDF

Detector

The Collider Detector at Fermilab (CDF) surrounds an interaction region where 900

GeV beams of protons and anti-protons collide head-on, with a resulting center of

mass energy of
p
s = 1800 GeV. In Section 2.1 we briey describe the accelerator; and

in Sections 2.2, 2.3, and 2.4 we describe the detector, with emphasis on the compo-

nents which are used in the W mass measurement with electrons. The trigger system

and the triggers which contribute to the signal sample are discussed in Section 2.5.

2.1 The Accelerator

The accelerator complex is shown schematically in Figure 2.1. We can use this di-

agram to follow the protons and anti-protons from their production to their �nal

collision in the center of the CDF detector.

The protons begin as H� ions, produced from a bottle of hydrogen gas. The ions

are accelerated through a 145 m linear accelerator (the Linac) to an energy of 400

19



D0 Interaction Region

(CDF detector)
B0 Interaction Region

Pbar Inject

(D0 dectector)
P  Inject

P  Extract

Accumulator
Debuncher
Anti-proton Source

Booster

Linac

Figure 2.1: Schematic Diagram of Fermilab Accelerator Complex. The largest two
circles represent the Tevatron and the Main Ring. The Main Ring lies directly above
the Tevatron, and both have a radius of 1 km.
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MeV. At the end of the Linac, the electrons from the H� ions are stripped o� by

copper foil, and the resulting protons are passed into the Booster ring. The Booster

ring is a synchrotron with a 23 m radius, and it takes the protons up to an energy

of 8 GeV and also forms them into bunches. The 8 GeV proton bunches are then

injected into the 1 km radius Main Ring synchrotron.

The Main Ring is represented schematically in Figure 2.1 by the large circle which

lies tangential to the Booster ring. The protons are accelerated by the Main Ring to

an energy of 150 GeV, stepping up in energy by 0:5 MeV per turn. To keep the 150

GeV protons travelling in a circle, the Main Ring magnets must generate �elds up to

0:7 Tesla.

The 150 GeV proton bunches are formed into one bunch and injected into the

evacuated beam pipe of the Tevatron ring. The Tevatron is represented schematically

in Figure 2.1 by the circle just inside the Main Ring. In reality, the Tevatron has

the same radius as the Main Ring and is located physically just below it. Before

the Tevatron further accelerates the protons, six equally spaced proton bunches and

also six equally spaced anti-proton bunches are injected. The anti-protons travel in

a direction opposite to the protons.

The production of the anti-protons begins with 120 GeV protons which are stripped

o� the Main Ring and smashed into a tungsten target. Anti-protons are selected from

the resulting particles, and they are then passed into the Debuncher. The anti-protons

are produced with a spread of momenta, and the Debuncher tightens up the spread

of energies through a process known as \stochastic cooling." They are then stored in

the Accumulator ring to form a \stack" of anti-protons. Under typical conditions the

stack of anti-protons can be built at a rate of � 4� 1010 anti-protons per hour.

When the stack is large enough, six bunches of anti-protons are transferred into
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the Tevatron ring. Typical bunch sizes in the Tevatron are 5:5�1010 anti-protons per

bunch. By comparison, the proton bunches are typically around 2� 1011 per bunch.

The counter-rotating bunches of protons and anti-protons in the Tevatron are then

accelerated to 900 GeV.

There are two instrumented collision points along the ring. One is labelled D0

and the other B0. The CDF detector is located at B0. Before the bunches of protons

and anti-protons enter the collision points, they are focused by quadrupole magnets.

Typical starting luminosities for Run 1B were 1:6 � 1031cm�2s�1.

The bunches are spaced so that collisions occur every 3:5 �s, and the dimensions of

each bunch are � 30 cm along the direction of motion, and � 40 �m in the transverse

direction.

The bunches continue to cycle around the ring until the luminosity gets too small

due to beam spreading, collisions, and beam losses. The bunches typically remain in

the ring for � 12 hours.

The production of more anti-protons continues even while the bunches cycle

around the Tevatron and collide at the interaction point. The goal is to build the

Accumulator stack so that when the proton and anti-proton beams are dumped, the

stack is large enough to create more anti-proton bunches. The result of this is that

even while data is being recorded at CDF and D0, the Main Ring continues to run.

The Main Ring lies directly above the Tevatron ring, and at the CDF interaction

point would pass straight through the upper half of the detector, if it were not bent

upwards and then downwards to pass over the detector. Even though the Main Ring

beam does not pass directly through the detector, Main Ring activity can create a

spray of undesired energy in the upper parts of the CDF detector, and the trigger

includes a veto to avoid part of the Main Ring cycle.
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2.2 Detector Overview

The CDF detector is a multi-purpose device designed to detect many of the particles

produced in pp collisions.

The detector is designed with an overall cylindrical symmetry. The axis of sym-

metry is labelled the z-axis and points along the direction of the incoming proton

beams. The physical location of CDF is such that the z-axis points east. We then

de�ne a right handed coordinate system such that the x- and y-axes point north and

up, respectively. We de�ne the polar angle � with respect to the z-axis, and we de�ne

\detector pseudorapidity" according to

�detector = � log[tan(�=2)] (2.1)

We will often use �detector to label the physical location of a particular part of the

detector. The origin of coordinates is the physical center of the detector, which is the

nominal interaction point.

Figure 2.2 shows a schematic of the rz-view of the detector, for x = 0. In the

diagram the nominal interaction point is along the beamline in the bottom right

hand corner. The detector has an overall forward-backward symmetry, and only the

forward part of the detector is shown.

A particle which is produced at the origin and which has high enough transverse

momentum will pass through three separate central tracking devices, which are la-

belled in the diagram as the Silicon Vertex Detector, the Vertex TPC, and the Central

Tracking Chamber. These are discussed in Section 2.3. The trackers are immersed in

a 1:4 Tesla magnetic �eld which is produced by a superconducting solenoidal magnet.

Outside the solenoid is the Central Electromagnetic Calorimeter. This is the
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device that is used to measure the energy of the primary electrons produced in the

W ! e� decay. Other calorimeters also surround the interaction region, and all the

calorimeters are used in the /ET measurement. The calorimeters are discussed in

Section 2.4.

The detector also contains muon chambers. These devices allow CDF to identify

muons out to � � 1:0, and the forward muon toroids can be used to do measurements

with non-central muons. The beam-beam counters, also shown in the diagram, are

scintillators located close to the beam line, and they are used to measure the lumi-

nosity at the interaction point. For the W mass measurement with W ! e� decays,

we will not make use of the muon chambers.

2.3 Tracking

There are 3 primary tracking detectors, and they are used for various purposes at

CDF. The SVX, for example, can be used to search for displaced vertices near the

beamline. For the W mass measurement, however, we do not need the SVX for

that purpose. We use the outermost tracker (the CTC) for the measurement of the

primary electron track, and the VTX and SVX are used to provide vertex information.

The CTC track is \beam constrained" to point at this vertex, and this produces

a signi�cant improvement in the CTC resolution. All three of these trackers are

discussed immediately below.

2.3.1 Central Tracking Chamber (CTC)

The Central Tracking Chamber (CTC) is a cylindrically symmetric, open-wire drift

chamber that lies just inside the solenoidal magnet, and provides tracking out to
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Figure 2.2: Schematic Diagram of CDF. The nominal interaction point is located
along the beamline in the bottom right hand corner. There is an overall forward-
backward symmetry, and only the forward part of the detector is shown. The coor-
dinate system which CDF uses is shown inset in the diagram.
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�detector � 1. It extends 3:2 m in the z-direction, and in the radial direction it covers

the region between r = 28 and r = 138 cm. Wires are stretched along the z-direction

between endplates at z = �1:6 m.

The chamber consists of 84 layers of sense wires, formed into 9 \superlayers."

These are shown schematically in Figure 2.3. The superlayers are numbered from 0

to 8 going from inner to outer radius. The superlayers are sub-divided into cells which

contain series of sense wires, �eld wires, and �eld-shaping wires. The sense wires in

each cell are aligned along a 45� angle with the radial direction. The drift �eld in

each cell is � 1350 V/cm, and the �eld also makes a � 45� angle with respect to the

radial direction. This angle is chosen so that the crossed electric and magnetic �elds

produce an azimuthal drift direction. The cells in each superlayer are evenly spaced

in azimuth, and going from superlayer 0 to 8, the superlayers contain 30, 42, 48, 60,

72, 84, 96, 108, and 120 cells, respectively.

The 4 odd numbered superlayers are \stereo" superlayers. Each cell in these

superlayers contains 6 sense wires, for a total of 24 stereo sense wires, and the wires

form an angle with respect to the z-axis of �3�. The sign of this angle alternates

among the 4 stereo superlayers. The 3� stereo angle provides information about the

motion of charged particles in the z-direction, which information would otherwise not

be available.

The 5 even numbered superlayers are \axial" superlayers, and each wire in these

superlayers is aligned with the z-axis. There are 12 sense wires per cell, for a total of

60 axial wires.

Charged particles pass through the 1:4 Tesla magnetic �eld along a helical trajec-

tory, making a circle in the xy-plane. The helix is described by 5 \helix parameters,"
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Figure 2.3: xy-view of the CTC. Starting at 0 radius and moving outwards, one
crosses the 9 superlayers, starting with superlayer 0. Superlayers 0, 2, 4, 6, and 8 are
the \axial" superlayers, and the superlayers 1, 3, 5, and 7 are the \stereo" superlayers.
In the azimuthal direction, the wires are grouped into cells of 12 sense wires each for
the axial superlayers, and 6 for the stereo. The cells are shown in the diagram and
lie at an angle of 45� with respect to the radial direction. The inner diameter (I.D.)
and outer diameter (O.D.) are shown on the plot.
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namely

fcrv;D0; �0; cot �; Z0g

The �rst three parameters describe the circle that the charged particles make in the

xy-plane. jcrvj is the inverse of the diameter of the circle; jD0j is the shortest distance
from the origin to the circle; and �0 is the angle of the line tangent to the circle at its

point of closest approach to the origin. These three parameters uniquely determine

a circle. The de�nitions of �0 and D0 are shown schematically in Figure 2.4

Positive and negative tracks will curve in opposite directions, and crv is signed

so that positive tracks have crv positive, and negative tracks have crv negative. The

sign convention for D0 is such that qD0 is positive if the origin lies outside the circle,

and negative otherwise, where q is the charge of the track.

The PT of the track is proportional to the product of crv�1 and the magnetic �eld.

Speci�cally, for the magnetic �eld at CDF, it is calculated according to the equation

PT =
2:998 � 10�4Bz

2jcrvj =
:002116

jcrvj (2.2)

where Bz is the z-component of the solenoidal �eld measured in kGauss; and PT is

in GeV and crv is in cm�1. The magnetic �eld is Bz = 14:116 kGauss.

The measured PT resolution is �(PT )=PT � :002 � PT , where PT is in GeV. This

resolution is improved to �(PT )=PT � :001 � PT after the beam constraint, which is

discussed in Section 3.1.2 below.

cot � and Z0 determine the motion of the track in the rz-view. Z0 is the z-

coordinate at the point of closest approach to the z-axis, and � is the polar angle of

the track at that point.

There are 6; 156 sense wires in the CTC, and each is read out by a multi-hit TDC.
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Figure 2.4: Schematic of track parameters. An extrapolation of two sample tracks in
the region near the origin are shown. The actual CTC hits occur farther out along the
track paths. The tracks trace out an arc of a circle. The diameter of the arc is crv�1.
The smallest distance between the origin and the circle is the impact parameter D0.
The sign convention for the impact parameter is such that q � D0 is positive if the
origin lies outside the circle and negative otherwise, where q is the charge of the track.
�0 is the angle of the line tangent to the circle at the distance of closest approach and
is shown schematically in the diagram by �.
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The TDC data is searched for line segments in each of the 9 superlayers, and these

line segments are subsequently combined into tracks. It is not required that all 84

layers be used for a track �t, and the �tting program removes hits with residuals

which are too large.

Z ! ee data has been used to measure the e�ciency for �nding a CTC track for

electrons that pass through all 9 superlayers. This e�ciency has been measured to

be above 99:5%. Charged particles which are produced in the forward or backward

directions may not pass through all 9 superlayers, and the probability of �nding these

tracks is signi�cantly lower. For example, the probability to �nd tracks which exit

the CTC in the middle of superlayer 4 is � 50%. We only use central electrons for

the W mass measurement, and we require that the electron tracks geometrically pass

through all 9 superlayers. We also use the CTC to search for Z ! ee background in

the W ! e� sample, and for this purpose we consider tracking out to �detector � 1:2.

2.3.2 Vertex Time Projection Chamber (VTX)

The Vertex Time Projection chamber (VTX), which is labelled in Figure 2.2 as \Ver-

tex TPC," is used primarily to reconstruct the z position of primary interactions. The

VTX lies just inside the CTC and covers the region in z between z = �1:4 m. The
active volume of the detector extends approximately from a radius of 7 to a radius of

21 cm.

The VTX is divided in the z direction into 8 separate chambers, each of which

forms an octagon centered on the beamline. Each chamber has a central high voltage

grid that divides the chamber into two oppositely directed drift regions. The drift

direction is along the z-axis, and the 50=50 argon-ethane gas used in the chambers,

in conjunction with the 320 V/cm longitudinal electric �eld produced by the high

30



voltage grid, produces a drift velocity of 46 �m/ns. The maximum drift distance in

the chambers is 15:25 cm, and this is such that the maximum drift time is always less

than the 3:5 �s timing between pp bunch crossings.

The ionization electrons drift to the endcaps of each chamber, where they en-

counter rows of sense wires. The endcaps are divided into octants, and each octant

contains 24 sense wires which lie in the xy-plane and run parallel to the lines which

de�ne the outer boundaries of the octagon. The sense wires cover the region from

r � 7 to r � 21 cm. The drift is in the �z direction, and the timing of the hits and

the radial position of the wires give information on the location of the hits in the

rz-view.

The rz-view of many reconstructed tracks are combined to determine an event

vertex with a resolution of � 1 mm. Multiple vertices are often found, and these

correspond to multiple interactions occurring during a given bunch crossing. The

number of vertices correlates well with luminosity, and for the Run 1B W ! e�

sample, the average number of vertices found is 1:8.

For the W mass analysis, we use the VTX only to determine the z location of the

event vertex. If the VTX identi�es a vertex within �5 cm of the Z0 of the primary

electron track, then we use the VTX vertex for the event vertex, and otherwise the

event vertex is identi�ed with the Z0 of the track. If no track is associated with the

electron cluster, then the vertex position is taken to be z = 0.

The vertex position associated with the primary electron track is referred to by

the variable Zvertex. Figure 2.5 shows the z distribution of the event vertices for

the W ! e� sample. The longitudinal extent of the proton and anti-proton bunches

creates the spread in the vertex positions.
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Figure 2.5: z distribution of event vertices for W ! e� sample, without the event
vertex cut applied. The W ! e� sample is described in Chapter 3. The mean and
rms of the distribution are shown on the plot. The arrows indicate the cut which is
applied in Chapter 3.
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2.3.3 Silicon Vertex Detector (SVX)

The Silicon Vertex Detector� (SVX) provides tracking in the r� view in the region

outside the beampipe. The beampipe has a radius of � 1:5 cm, and the SVX covers a

region in radius from 2:86 to 7:87 cm. It is divided into two identical \barrels" which

surround the beampipe on opposite sides of the z = 0 plane. There is a 2:15 cm gap

between the barrels at z = 0, which space is needed for read-out cables, and each

barrel has an active length in the z direction of 25:5 cm.

The barrels consist of four radial layers of silicon strip detectors, and each layer

is divided in azimuth into 30� wedges. The radii of the four layers are 2:86, 4:26,

5:69, and 7:87 cm. The strips extend along the z direction, providing r� information

only. For each of the 30� wedges, and going from the inner radial layer to the outer,

there are 256, 384, 512, and 768 strips, respectively. This results in an intrinsic hit

resolution in the r� direction of � 15 �m.

The proton and anti-proton bunches have longitudinal extents of � 30 cm, and

the event vertex is roughly distributed as a gaussian distribution of width � 30

cm. The SVX extends to � 26 cm, and approximately one third of the data will

be produced outside the physical volume of the SVX. For this reason, we do not

require SVX information for the reconstructed primary electron tracks in the W mass

measurement. We still use the SVX information, but we use it on a run-averaged

basis, to determine the position of the beamline.

The nominal beamline is aligned with the z-axis, but in practice the beamline

may be o�set in radius by � 0:2 cm, and the beamline may have a slope such that

�The SVX used in Run 1B is sometimes referred to as SVX0 since it has replaced the silicon
vertex detector that was used in Run 1A. The con�guration of the detector was largely unchanged,
and the major di�erences are that the 1B SVX has a radiation-hard read-out chip and that the
innermost radial layer has been extended to complete azimuthal coverage. We are only using the
1B data, and we only consider the Run 1B implementation of the silicon vertex detector.
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the o�set radius changes by several microns per cm in the z direction. The SVX is

used to calculate these o�sets and slopes on a run by run basis. Since many tracks

and many events are used for these calculations, the beamlines can be determined

with negligible statistical uncertainties.

The run by run SVX determination of the beamline, in conjunction with event by

event vertex information from the VTX, is used to calculate a three dimensional origin

for eachW ! e� event. This information is used to perform a beam constraint on the

CTC track associated with the primary electron. While the run-averaged beamlines

can be determined with negligible statistical uncertainty, the r� determination of the

origin for any given event has an intrinsic uncertainty from the � 40 �m transverse

spread of the proton and anti-proton bunches.

2.4 Calorimetry

There are four di�erent calorimeter systems at CDF, and these provide nearly con-

tiguous coverage out to j�detectorj = 4:2. They are labelled in Figure 2.2 as \central,"

\wall," \plug," and \forward" calorimeters. Three of the four systems have both

electromagnetic and hadronic calorimetry, and all the calorimeters are segmented

into towers which point back to the nominal interaction point. We discuss all the

calorimeters immediately below. All are used in the /ET measurement, and the cen-

tral electromagnetic calorimeter provides the energy measurement for the primary

electrons in our W ! e� events.
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Figure 2.6: Central calorimeter wedges. Both CEM and CHA are shown, as well as
the location of the central muon chambers. The left diagram shows the structure
of the wave shifters and light guides that collect the scintillator light for the CEM,
as well as the phototubes that convert the light to electric signals. The y-axis in
the diagrams corresponds to the radial direction, and the x-axis to the azimuthal
direction.

2.4.1 Central Electromagnetic Calorimeter (CEM)

The Central Electromagnetic Calorimeter (CEM) is physically separated into two

halves, one covering positive �detector (east) and one covering negative �detector (west).

Both halves are divided in azimuth into 24 wedges, subtending 15� each. Each wedge

extends along the z-axis for 246 cm and is divided into 10 projective towers of � :1

units in �detector. The active volume of both the east and west halves begins at jzj � 4

cm. The two halves are pushed against each other at z = 0, but a dead region remains

between them of approximately �z = 8 cm. This is known as the 90� crack.

The CEM begins outside the solenoidal magnet, at a radius of 173 cm. It has a
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radial thickness of 32 cm and consists of 31 layers of 5 mm thick plastic scintillator

interleaved with 30 layers of 1
8
inch lead sheets. The scintillators are cut into projective

towers which are viewed on both sides in azimuth by wave shifter sheets. The light is

then collected by light guides and converted to electrical signals by photomultiplier

tubes. There are two phototubes per tower, one on either side in azimuth, and the

energy deposited by an electromagnetic shower is proportional to the pulse heights.

The default calibration is determined from the test beam.

Figure 2.6 shows several views of a 15� wedge. Each wedge also contains hadronic

calorimetry and muon chambers. The location of the muon chambers are shown in

the �gure, but we will not make use of these devices for the W mass measurement

with electrons.

The CEM is located lowest in radius in each wedge and is the shaded region in

the right and middle drawings of Figure 2.6. The right and left drawings show the

tower structure along the z direction. The towers are labelled 0 through 9, and each

covers ��detector � 0:1. The diagram shows that tower 9 does not contain as many

scintillators as the other towers, and the lead sheets present � 60% of the number

of radiation lengths that the other towers present to incoming particles. The light

guides and phototubes which read out the towers are pictured in the left diagram,

and the location of strip chambers is also visible.

In each wedge, a proportional strip chamber is inserted between the eighth lead

layer and the ninth scintillator layer, at a radius of 184 cm. The proportional chamber

is composed of a 95%=5% mixture of argon and carbon dioxide. Cathode strips

and wires provide information about the electromagnetic shower location and its

transverse development. The strips and wires are arranged perpendicular to each

other so that one measures the position and development in the z direction, and the
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other in the � direction.

Acrylic sheets are substituted for lead sheets at some locations so that the strip

chamber always occurs at the shower maximum position of 5:9 radiation lengths,

including the solenoid, independent of polar angle. The solenoid presents 1 radiation

length to particles travelling in the radial direction. The lead sheets are also adjusted

so that each tower presents a total of 18 radiation lengths to electromagnetic particles,

independent of the polar angle. The 18 radiation lengths do not include the solenoid,

and the number of radiation lengths before the CEM increases as � 1= sin(�).

One of the wedges is constructed to allow cryogenic access to the solenoid. This

is referred to as the \chimney" module, and we only have towers 0 through 6 of

Figure 2.6 for this wedge.

The CEM response was initially measured in the test beam. It was found that

the energy resolution is well described by �(E)=E = 13:5%=
p
E sin �, where E is

measured in GeV. We account for tower to tower variations and the uneven e�ects of

aging by introducing a constant term, �, to the resolution. The energy resolution is

then given by

(
�

E
)2 = (

13:5%p
E sin �

)2 + �2 (2.3)

We determine � from the Z data in Chapter 10, and the best �t is � = (1:6� 0:3)%.

2.4.2 Central and Wall Hadronic Calorimeters (CHA and

WHA)

The Central Hadronic Calorimeter (CHA) is located directly behind the CEM and is

contained in the same physical wedges as the CEM. It has the same tower structure,

and it is also shown in the diagrams of Figure 2.6. The right diagram shows that
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towers 5 through 9 do not pass entirely through the CHA and that tower 9 misses

it altogether. The Wall Hadronic Calorimeter (WHA) makes up for some of this

coverage, and the location of the WHA is shown in Figure 2.2. Towers 6 through

9 are continued in the WHA, and two further towers, 10 and 11, have hadronic

coverage in the WHA only. Together, the CHA and WHA provide hadronic coverage

to j�detectorj � 1:3.

The signi�cant di�erence with the CEM is that instead of lead-scintillator sand-

wiches, the CHA and WHA are composed of steel-scintillator sandwiches. The CHA

is composed of a stack of 32 layers of alternating 2:5 cm steel absorber and 1:0 cm

plastic scintillator. The WHA is similarly constructed, but with 15 layers of 5 cm

steel and 1 cm scintillator. The CHA layers are stacked in the radial direction, but

the WHA layers are stacked in the z direction. As with the CEM, the scintillation

light is collected by wave shifters and light guides and is converted to electric pulses

by phototubes.

The CHA and WHA stacks contain 4:7 and 4:5 absorption lengths of material

respectively. There is a signi�cant amount of material before the CHA. The solenoid

and the CEM present � 1:2 absorption lengths.

The resolution for central isolated pions is

(
�

E
)2 � (

50%p
E sin �

)2 + (3%)2 (2.4)

where E is measured in GeV.

38



2.4.3 Plug Calorimeters (PEM and PHA)

The Plug Electromagnetic Calorimeter (PEM) covers the region in j�detectorj between
approximately 1:1 and 2:4, and the Plug Hadronic Calorimeter (PHA) covers the

region between 1:3 and 2:4. In polar angle, the plug covers the region from roughly

30� down to 10� relative to the beamline. The electromagnetic calorimeter coverage

is continuous between the central and plug regions. The towers near the boundaries,

however, are not complete towers, and a region of reduced response results. The

boundary occurs at a polar angle of � 30�, and we refer to this region as the 30�

crack.

The PEM is composed of two identical modules, one on the east and one on

the west, and each module is composed of four quadrants, each of which subtends

an azimuthal angle of �� = 90�. Each quadrant contains 34 layers of proportional

tube arrays interleaved with 2:7 mm thick sheets of lead. The sandwiching of the

proportional tube arrays and the lead sheets occurs along the z direction, and the

arrays and the lead sheets lie in planes of constant z. The lead sheets form � 18

radiation lengths.

The proportional tubes are constructed from conductive plastic and use a 50=50

mixture of argon-ethane gas. Each array of tubes is sandwiched by 1:6 mm thick

G� 10 panels. Pads are etched out of copper plating which is attached to one of the

G� 10 panels on one side of every array, and the pads are etched to form projective

towers which have dimensions ��detector ��� = 0:1 � 15�.

The pads provide the primary read-out of the energy of the shower. When a

shower develops in the calorimeter, charged particles ionize the gas in the proportional

tubes. The electrons from the ionization drift towards the wire in the center of the

tube, while the positive ions induce a charge on the copper pads. The charge is
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ampli�ed and integrated. The magnitude of the collected charge is a measure of the

deposited energy from the electromagnetic shower. The pads are ganged together to

form three depth measurements, and for the total energy of a shower, all three depth

measurements are summed.

Z ! ee events are used to maintain the PEM calibration, and its resolution has

been determined from test beam electrons to be

(
�

E
)2 � (

22%p
E sin �

)2 + (2%)2 (2.5)

where E is measured in GeV.

The PHA contains 20 layers of proportional tube arrays interleaved with 5 cm

thick steel plates. The PHA also uses a pad read-out, and the pads have the same

dimensions as for the PEM. The PHA resolution has been determined from test beam

pions to be

(
�

E
)2 � (

90%p
E sin �

)2 + (4%)2 (2.6)

where E is measured in GeV.

2.4.4 Forward Calorimeters (FEM and FHA)

The Forward Electromagnetic Calorimeter (FEM) and Forward Hadronic Calorimeter

(FHA) are physically separated from the rest of the detector, with the FEM beginning

at a location of jzj = 6:4 m. They both cover the region in j�detectorj between 2:4 and
4:2. In polar angle, they cover the region between 10� and 2� relative to the beamline.

The construction of the two detectors is similar to the construction of the plug

detectors. Both the FEM and FHA are split into two identical modules, one for the

east and one for the west, and the modules are divided into four quadrants of 90�
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each. 30 layers of phototube arrays are interleaved with 4:5 mm thick lead sheets for

the PEM; and for the PHA, 27 layers are interleaved with 5 cm steel plates. Pads

provide the primary read-out, and the pads have been etched to form a projective

tower structure with the same dimensions as in the PEM and PHA.

The pads are ganged together to provide two measurements in depth. The energy

deposited in a projective tower is the sum of the two depth measurements.

The energy resolutions have been measured with test beam electrons and pions

and have been found to be

(
�

E
)2 � (

26%p
E sin �

)2 + (2%)2 (2.7)

for the FEM, and approximately

(
�

E
)2 � (

137%p
E sin �

)2 + (4%)2 (2.8)

for the FHA, where E is measured in GeV.

2.5 Trigger

The CDF trigger system consists of three levels. Each level is successively more

sophisticated and takes a longer time to reach a decision. If all three trigger levels are

passed, the event is written out to tape. Each of the levels consists of a logical OR

of a number of triggers which are designed to �nd many types of events, but we will

only discuss the triggers which are most likely to �nd W ! e� and Z ! ee events.
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2.5.1 Level 1

The general requirement of Level 1 is that it make a decision before the next bunch

crossing. The bunch crossings occur every 3:5 �s, and a decision of pass or fail should

be made within that time period. There are several Level 1 triggers, and the trigger

which our central W ! e� events are likely to pass is a requirement placed on the

energy of central calorimeter clusters. It is required that a single \trigger tower" have

ET above 8 GeV for the CEM. A trigger tower is the combination of two adjacent

towers, where only neighboring towers in the z direction are combined. In Level 1 ET

is de�ned as E sin � where sin � is a hardware-encoded value for each trigger tower,

and the energy measurement is based on \fast-outs." The fast-outs are analog signals

from the detector which are only used for making trigger decisions. The values for

sin � are calculated using the center of the detector as the origin of coordinates.

If Level 1 is failed, then the electronics which read out the detector are reset in

preparation for the next beam crossing. If passed, the read-out electronics hold their

current values, and any activity inside the detector is ignored until Level 2 makes a

decision.

2.5.2 Level 2

Level 2 takes � 20 �s to make a decision, and the next � 6 bunch crossings are

ignored by the detector. At Level 2, the calorimeter fast-outs are combined by a

hardware cluster-�nder to form clusters. There are two clustering algorithms. In

the �rst algorithm, a trigger tower which has ET > 5 GeV initiates the formation of

a cluster, and this tower is the \seed" tower. Neighboring towers are added to the

cluster if they have ET > 4 GeV. In the second algorithm, the seed tower has ET > 8
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GeV, and the shoulder towers must have ET > 7 GeV. A list is made of ET , �detector,

and � of all the clusters.

Level 2 also searches for tracks using fast timing signals from the CTC and a

hardware track processor called the Central Fast Tracker (CFT). The CFT has no

stereo information available, and it uses hit pattern masks to search for tracks of

di�erent momenta. The CFT resolution is � �(PT )=PT � :035 � PT .

The W ! e� sample relies on two Level 2 triggers, which are labelled �

CEM 16 CFT 12

and

CEM 16 MET 20 XCES

Both require a CEM cluster with ET above 16 GeV. The �rst additionally requires

that a CFT track with PT > 12 GeV be found at the same � as the cluster, and the

second requires /ET > 20 GeV. /ET is de�ned in Level 2 as the vector sum in the xy-

plane of all the calorimeter trigger-towers. The \XCES" label on the second trigger is

to indicate the additional requirement that hits be found in the strip chamber which

is associated with the cluster seed tower.

We can examine the subset of the W ! e� sample which passes one of these

triggers, and then measure the probability of passing the other trigger. This al-

lows us to measure the e�ciency of the \CFT 12" part of the �rst trigger, and the

\MET 20 XCES" part of the second. For example, an event that passes the sec-

ond trigger but fails the �rst, could only have failed because it failed the CFT 12

requirement.

�The ET for the CEM 16 CFT 12 trigger comes from the second clustering algorithm discussed
above, and for CEM 16 MET 20 XCES, the ET comes from the �rst.
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The e�ciencies for the events in our W ! e� sample to pass the CFT 12 and the

MET 20 XCES parts of the triggers are shown in Figure 2.7. The top plot shows

the MET 20 XCES e�ciency as a function of /ET , and the bottom plot shows the

CFT 12 e�ciency as a function of PT , where /ET and PT are the \o�ine" values.

The de�nitions of these variables, and the cuts which de�ne the W ! e� sample are

discussed in Chapter 3.

The average e�ciency of the CFT 12 part of the trigger is (92:8 � 0:2)%, and

the average e�ciency for the MET 20 XCES part is (96:2 � 0:1)%. If either of these

triggers is passed, Level 2 will be passed, and our combined e�ciency to pass Level

2 is 1� (1� :928)(1 � :962) = 99:7%. This is high enough that we do not expect to

see any signi�cant e�ects on the W mass.

The CFT 12 e�ciency is higher at the beginning of Run 1B and drops o� to

� 85% near the end. This drop in e�ciency is attributed to CTC aging. The

\MET 20 XCES" e�ciency is largely unchanged over the course of Run 1B.

There may also be an ine�ciency in the \CEM 16" part of the trigger, but we

are placing ET cuts of 25 GeV on the �nal sample, and such events are expected

always to pass the Level 2 ET cut of 16 GeV. For both triggers above there is also

a requirement that the Level 2 hadronic energy lying behind the seed tower be less

than 12:5% of the cluster ET . The e�ciency of these two requirements is checked

with Z ! ee data where one of the legs is in the plug and a Level 2 plug trigger is

passed. No signi�cant ine�ciency is found.

The Z ! ee sample described in Chapter 3 is fed primarily by the CEM 16 CFT -

12 trigger. The ine�ciency of the CFT 12 part of the trigger, however, is reduced

since the sample consists of two central electrons, and either electron can cause the

trigger to pass. For the W ! e� sample, the second trigger above provides a backup
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Figure 2.7: Level 2 E�ciencies. Top: MET 20 XCES e�ciency as a function of o�ine
/ET . Bottom: CFT 12 e�ciency as a function of o�ine PT . For the top plot we use
the subset of the W ! e� sample that passes the CEM 16 CFT 12 trigger, and we
plot the fraction that also pass the CEM 16 MET 20 XCES trigger. For the bottom,
we use the subset that pass the CEM 16 MET 20 XCES trigger and plot the fraction
that also pass the CEM 16 CFT 12 trigger. The horizontal lines are the average
e�ciencies.
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to the CEM 16 CFT 12 trigger; but no backup is needed for the Z ! ee sample since

both electrons are examined by the trigger.

If Level 2 is failed, then the electronics which read out the detector are reset in

preparation for the next beam crossing. If passed, all the calorimeter signals are read

out, and this includes digitizing and reading out the calorimeter signals. This process

takes � 3; 000 �s, during which time all bunch crossings are ignored. Level 2 passes

events at a rate of � 20� 35 Hz.

2.5.3 Level 3

The information from the event which has been read out is passed on to a farm of

Silicon Graphics processors which run a scaled down version of the full reconstruction

code. Events can be written to tape at a rate of � 10 Hz, and Level 3 must reject

enough events to achieve this rate.

There is signi�cantly more information available at Level 3 than at Level 2. For

the calorimeters, the fast-out information is dropped in favor of digitization of all

calorimeter channels, and the trigger towers are replaced by the actual physical tower

segmentation. Moreover, the CFT information is dropped, and a Level 3 version of

the full CTC tracking code is run. The main di�erence between Level 3 tracking and

the \o�ine" tracking are di�erences in calibration constants for the CTC chamber.

An electromagnetic cluster is de�ned in Level 3 in the same way that it is de�ned

in the o�ine code. The clustering is discussed in Chapter 3 below. ET is de�ned as

E sin � where E is the energy of the cluster, and � is the polar angle of a line pointing

from the nominal event vertex to the cluster location. The vertexing is discussed in

Section 2.3.2 above.

All the tracks are searched, and a list is made of tracks that extrapolate to any
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of the towers in the electromagnetic cluster. No beam constraint is applied, and the

highest PT track is considered to be associated with the cluster. The PT of this track

is used in the triggers discussed below.

At Level 3, /~ET is the vector sum of all calorimeter towers, both electromagnetic

and hadronic, and is de�ned as

/~ET =
X

towers

(Ei sin �i)n̂i (2.9)

where Ei is the energy of the ith tower, and n̂i is a transverse unit vector pointing

to the center of each tower. �i is the polar angle of the line pointing from z = 0 to

the ith tower. The sum extends only to j�detectorj < 3:6, and this avoids the region of

the forward calorimeters that have been designed to make room for the quadrupole

focusing magnets.

Tower energy thresholds are applied to each tower in the sum. The thresholds

are set to be signi�cantly higher than uctuations in the pedestals. The thresholds

are 0:1 GeV for the central electromagnetic and hadronic towers, 0:3 and 0:5 GeV

for the PEM and PHA, respectively, and 0:5 and 0:8 GeV for the FEM and FHA

respectively.

There are two Level 3 triggers that contribute to the W ! e� sample, one which

requires a track and one which does not. They are labelled

CEM 22 W

and

CEM 22 W NO TRACK

We require that one of these Level 3 triggers be passed. Above, we did not require

that any particular Level 2 trigger be passed, but we do make a trigger requirement
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at Level 3. These Level 3 triggers de�ne our initial event sample.

The CEM 22 W trigger requires

PT > 13 GeV

ET > 22 GeV

/ET > 22 GeV

It also requires Ehad
EEM

< :125, where Ehad
EEM

is ratio of hadronic to electromagnetic energy

for the towers in the cluster.

The CEM 22 W NO TRACK trigger requires ET > 25 GeV and /ET > 25 GeV,

but it does not make a track requirement of any kind. This trigger also makes a

series of \quality" requirements on the electron cluster, including the requirement

that Ehad
EEM

< :05. It serves as a backup trigger to the CEM 22 W, and it is used to

measure the e�ciency of the PT > 13 GeV cut.

We examine the subset of our �nal W ! e� sample that passes CEM 22 W NO -

TRACK. All the requirements of this trigger are more stringent than for CEM 22 W,

with the exception of the PT cut. Therefore, events from this subset can only fail

CEM 22 W if they fail the PT cut, and the fraction of events that fail is a measure of

the e�ciency of the PT cut. We �nd that the e�ciency for events in our �nal sample

to pass the PT > 13 GeV trigger requirement is (99:28 � 0:05)%. The CEM 22 W -

NO TRACK trigger should make up most of this tiny ine�ciency, but the ine�ciency

is small enough that we can ignore the e�ect of the backup trigger.

There is also an \inclusive electron" trigger that just looks for CEM clusters with

ET > 18 GeV and PT > 13 GeV, and that also makes a series of quality cuts on the

cluster. We use this trigger to check the e�ciency of the /ET > 22 GeV part of CEM -

22 W. We make a sample of events that pass the inclusive electron trigger and that

also pass all our �nal selection cuts, with the exception of the trigger requirements.

48



These can only fail CEM 22 W if they fail the /ET requirement. We �nd that the

e�ciency of the /ET > 22 GeV trigger requirement is higher than 99:9%, and this is

high enough that we do not need to consider systematic uncertainties associated with

the Level 3 e�ciency.

The Level 3 trigger that de�nes the initial Z ! ee sample is labelled

CEM 22 Z

This trigger searches for events with one cluster in the CEM and with a second cluster

in the CEM, PEM, or FEM. The trigger requires that there be one CEM cluster with

ET > 22 GeV and PT > 13 GeV, and the second cluster is required to have ET > 20

(CEM), 15 (PEM), or 10 (FEM) GeV. Our �nal Z ! ee sample has both legs in the

CEM, and the PEM and FEM requirements do not e�ect it.
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Chapter 3

Data Reduction and Signal

Extraction

There are several types of requirements that we put on the data to extract W and

Z samples. The �rst are the requirements that occur in the trigger, which de�ne the

initial samples. The trigger is discussed in Chapter 2.

After the initial selection, we require that the electrons be in a region of the

detector that allows a good measurement of their energy and momentum. We refer

to these as \�ducial" cuts. There are also a series of kinematic requirements, whose

primary purpose is to isolate a clean signal. And for the W events, we also apply a

few cuts whose purpose is to reduce backgrounds. It is important that we are able to

simulate all the cuts we apply since cuts can alter various distributions and possibly

bias the measured W mass. There are a number of \quality" cuts which we could

place on the electron that reduce the QCD backgrounds, but our simulation does not

simulate these cuts well.

In Section 3.1, we de�ne the variables that are used in the event selection and data
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analysis. In Sections 3.2 and 3.3 we discuss corrections when are made to the track

PT and to the electron energy. In Sections 3.6 and 3.7, we present the requirements

that we use to de�ne both the W ! e� sample and the Z ! ee sample.

3.1 Event Variables

In this section we de�ne the kinematic variables used in the W mass analysis.

3.1.1 ET : Electron Transverse Energy

The electron ET is de�ned as E � sin � where E is the energy of the electromagnetic

cluster, and sin � = 1=
q
1 + cot �2. cot � is calculated for the beam constrained track,

which is discussed immediately below. The cluster energy is the sum of the electro-

magnetic energies of a CEM seed tower, which is any tower with energy above 5 GeV,

and its two neighboring towers in the z direction. If the seed tower borders the 90�

crack, then only one neighboring tower is used, so that the cluster is not allowed to

cross the 90� crack. The cluster is always 1 tower wide in azimuth.

3.1.2 PT : Track Momentum and Beam Constraint

The highest PT track which extrapolates to any of the towers in the cluster is con-

sidered to be associated with the cluster. The �ve track parameters are discussed in

Chapter 2. The �ve parameters are determined from a �t to the CTC hit data where

the �nal CTC calibration is used. The CTC alignment is done with an iterative pro-

cedure that uses the E/p distribution of the W data [26]. The track parameters are

then adjusted according to a beam constraint, which improves the track resolution

by including the beam spot as additional information.
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One way to do the beam constraint would be to re-�t the track with the beam spot

added as an additional point. In practice, however, we use the wire hit pattern of the

track to calculate a covariance matrix, eC, for the �ve track parameters. The beam

spot is then included in the �t by minimizing the following function with respect to

a new set of track parameters:

�2 = (�~� � eC�1 ��~�) + (Z0 � Zvertex)2

�2VERTEX
+
D2
0

�2xy
(3.1)

where �~� is the change in the track parameters from the original �t, Z0 is the z-

position at closest approach to the origin, and D0 is the impact parameter measured

relative to the beam spot. The beam spot is determined from the VTX determination

of Zvertex and from the SVX beam lines, as discussed in Chapter 2. �VERTEX and

�xy are the uncertainties in the z direction and transverse directions, respectively, of

the determination of the beam spot. These values are �xed at 0:1 cm and 60 �m

respectively. The uncertainty on D0 in the original �t (� 370 �m) is so much larger

than �xy that the result is insensitive to the exact value of �xy.

The �rst term in Equation 3.1 keeps the track parameters near the original track,

while the second and third terms move the Z0 and D0 parameters towards the position

of the beam spot. The relative weights of the three terms determine to what extent

the beam constrained track di�ers from the original track. The weights are given by

the inverse of the covariance matrix and by the inverses of �VERTEX and �xy.

The beam constraint improves the track PT resolution since the beam spot is

determined with better resolution than the impact parameter of a given track. The

beam constraint forces the impact parameter relative to the beam spot to be very close

to zero. If D0 = 0 is the correct value, then we will improve the PT resolution since
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the curvature and D0 are highly correlated measurements. To a good approximation,

the beam constraint can be thought of as altering the curvature according to

crv ! crv � w �D0 (3.2)

where w is determined by the covariance matrix. For the data, the average value of

w is observed to be 0:000127 cm�2.

The top plots of Figure 3.1 show the distribution of impact parameters relative to

the event vertex. The spread in the distribution is dominated by the CTC resolution.

A Gaussian �t to the peak shows that the D0 resolution is � 380 �m. Using Equa-

tion 3.2, we calculate that a 380 �m spread in D0 should cause the beam constraint

to produce a fractional change in PT of order 9%. Moreover, the large tails in the D0

distribution will lead to fractional changes � 50%.

The di�erence between the z position of the vertex and the track Z0 is shown in

the bottom plot of Figure 3.1. The spread in this distribution is dominated by the

CTC resolution, and a Gaussian �t to the peak shows that the Z0 resolution is � 1

cm.

Occasionally, we beam constrain to the wrong vertex z position. In � 1% of the

W events, there is no VTX vertex within �5 cm of the track Z0. In these cases, Z0

is used for Zvertex. There is also the possibility that there is another VTX vertex in

the event that has its z position closer to the track Z0 than the correct vertex. A

simple Monte Carlo study shows that this happens � 1:3% of the time. For both

these cases, the z position used by the beam constraint is wrong by � 1 cm. To see

the e�ect this has on PT , we generate 40 GeV tracks and vary the position we beam

constrain to. We �nd that if Zvertex is wrong by �1 cm, the beam constrained PT will
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Figure 3.1: Top: qD0 relative to the event vertex on a linear scale (top left) and a log
scale (top right), where q is the charge of the track. The data are the triangles, and
the histogram is the Monte Carlo. The Monte Carlo is described in later chapters.
Gaussian �t means (�) and widths (�) are shown on the top left plot. The �ts are
only done to the peak position, between �750�m. Bottom: Z0 relative to the event
vertex. The spike at zero in the bottom plot corresponds to events where no VTX
vertex is found, and the z position of the vertex is identi�ed with the track Z0. A
Gaussian �t to the peak position is shown on the plots. The top plot uses tracks
with the �nal CTC alignment and calibration while the bottom plot uses the default
alignment and calibration. The default calibration is used when we search for a VTX
vertex close the track Z0, and we maintain the default calibration for the bottom plot
so that the spike at zero remains prominent. All plots are for the W ! e� sample.
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be altered by �0:3% of itself. This is negligible compared to the beam constrained

fractional PT resolution of � 4%. Moreover, for a 1 cm change in Zvertex, the value

for the beam constrained cot � is altered by � 0:01. This value is roughly the same

as the resolution on cot �, but it is negligible since only a few percent of the events

use the wrong Zvertex position.

Electrons which undergo bremsstrahlung have a non-zero impact parameter. For

example, the impact parameter after the �rst brem is

D0 = crv � r2 � y (3.3)

where crv is the curvature after the brem, r is the radius at which the brem occurred,

and y is the photon energy fraction. Since this D0 is proportional to curvature,

Equation 3.2 will produce a bias that will look like a curvature scaling, which is a

bias on PT . This bias is included in the event simulation, as discussed in Chapter 6.

Since crv is signed according to the charge of the track, the bias on D0 from

Equation 3.3 is opposite for oppositely charged tracks. Equation 3.3 should create a

positive bias in the quantity qD0. qD0 is plotted in the top plots of Figure 3.1 for

the data and Monte Carlo. The Monte Carlo is described in later chapters. Gaussian

�ts to the peak are shown. The mean of the Monte Carlo peak agrees with the data,

although the Monte Carlo has a slightly larger width. The peak of the distribution

contains the bulk of the data. The agreement of the means of the peaks indicates

that we are correctly simulating the bias in qD0, at least for the bulk of the data.

We will be concerned with the bulk of the distribution when we compare the E/p

distribution of the data and Monte Carlo in Chapter 11.

The resolution on the Monte Carlo is �xed so that the E=p distribution has the
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correct width. This is discussed in Chapter 11.

The data have signi�cantly larger tails than the Monte Carlo. These tails cor-

respond to non-Gaussian resolutions on the data, which are not reproduced in the

Monte Carlo. The tails do not correspond to an excess of bremsstrahlung in the data,

since bremsstrahlung only contributes to the right hand side of the plot. If qD0 is

measured signi�cantly wrong, then crv will be also, and the beam constraint uses the

correlation between these two quantities to correct crv. We do not necessarily expect

the beam constrained PT to have large tails, but we will see in Chapter 11 that the

E/p distribution also has signi�cant non-Gaussian tails which are not predicted by

the Monte Carlo.

The e�ect of the beam constraint is shown in Figure 3.2. The top plot shows the

fractional change in 1=PT before and after the beam constraint. The spread in this

distribution is expected from the spread in qD0 shown in Figure 3.1, and Equation 3.2.

The negative mean reects the bias introduced by bremsstrahlung, which is discussed

above. The bottom plot shows E/p for tracks before and after the beam constraint.

The resolution is signi�cantly improved from �(1=PT ) � 0:0024 to �(1=PT ) � 0:001

GeV�1.

By default, we will always assume that the track has been beam constrained, and

we will refer to the beam constrained transverse momentum as PT .

3.1.3 ~U : Boson Transverse Momentum

The total transverse momentum in the event is conserved, and the transverse momen-

tum of the boson can be measured from the energy that recoils against it. Our measure

of the recoil energy is the variable ~U . ~U is the vector sum over all the calorimeter

towers, both electromagnetic and hadronic, except for the towers associated with the
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Figure 3.2: Top: 1=PT (after)-1=PT (before) divided by 1=PT (after), where PT (before)
is value of PT before the beam constraint, and PT (after) is the value after the beam
constraint. The mean and rms of the distribution is shown on the plot. Bottom:
E/p using PT after the beam constraint (solid) and PT before the beam constraint
(dashed). The widths of Gaussian �ts to the peak regions are shown on the plot.
The �ts used the data between 0:9 < E=p < 1:06 for the solid histogram, and
0:8 < E=p < 1:2 for the dashed. All plots are for W events which pass the W cuts
listed in Table 3.1.
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electromagnetic cluster. We de�ne

~U � X
not e�

(Ei sin �i)n̂i (3.4)

where Ei is the energy of the ith tower, and n̂i is a transverse unit vector pointing to

the center of each tower. �i is the polar angle of the line pointing from Zvertex to the

ith tower. As in Equation 2.9, the sum only extends to j�detectorj < 3:6.

Only towers with energy above a threshold are included in the sum. The thresholds

are di�erent than the Level 3 thresholds of Equation 2.9. The thresholds are set to

be 5 � � above the uctuations in the pedestal energies. The thresholds are 0:1,

0:15, and 0:2 GeV for the central, plug, and forward electromagnetic calorimeters,

respectively; and the thresholds are 0:185, 0:445, and 0:730 for the central, plug, and

forward hadronic calorimeters, respectively.

The sum excludes the electromagnetic towers which are included in the primary

electron cluster and also the hadronic towers behind them. The towers associated with

the primary cluster are removed since we want ~U to be a measure of the recoil energy,

and we do not want it to be contaminated with energy from the decay electron.

We always remove the three towers associated with the primary cluster, and for

some events, depending on the position of the track, the three towers which neighbor

the primary cluster in azimuth are also removed. We extrapolate the track to the

strip chambers which are inside the CEM. We de�ne Xstrips to be the extrapolated

location in the azimuthal direction, relative to the center of the intercepted tower. If

Xstrips > 6 cm, we remove the neighboring three towers which are higher in azimuth,

and if Xstrips < �6, we remove the three towers which are lower in azimuth. We use

Figure 3.3 to justify this criterion.
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Figure 3.3: Average electromagnetic plus hadronic ET in the tower which neighbors
the seed tower and is one tower higher in azimuth, as a function of Xstrips. Xstrips

is the extrapolated track position for the primary electron cluster. In this plot, as
Xstrips becomes more and more positive, it corresponds to tracks that extrapolate to
positions closer and closer to the neighboring tower. The y-values are � 55 MeV on
the left side of the plot.
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Figure 3.3 shows the average transverse energy in the tower which neighbors the

seed tower and is one tower higher in azimuth. The average is plotted as a function of

Xstrips. When Xstrips is more and more positive, the extrapolated track is closer and

closer to the neighboring tower. When Xstrips is higher than � 6 cm, a clear increase

in the neighboring energy is visible. We attribute this to leakage from the electron

shower, and large angle bremsstrahlung. We can also plot the average transverse

energy of the tower which is one tower lower in azimuth. The plot looks the same,

except the peak appears on the left side.

We de�ne the two projections of ~U , Uk and U?. Uk is ~U projected along the electron

track direction, and U? is the perpendicular projection. These are calculated as

Uk =
~U � ~ET

ET
(3.5)

and

U? =
~U � ~ET

ET
(3.6)

Since the removed towers lie largely along the track direction, the tower removal

procedure produces a bias in the variable Uk. This translates into a bias on MT since

MT � 2ET + Uk (3.7)

where the approximation is accurate to �rst order in the quantity j~U j=ET , and MT

is de�ned below. Since we use MT to �t for the W mass, it is important to simulate

this bias. The simulation of the bias is discussed in Chapter 6.
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3.1.4
P
ET : Scalar Energy in the Event

We de�ne the variable
P
ET as the scalar sum of the energy in the event. The

same towers are summed, and the same thresholds applied, as in Equation 3.4. The

de�nition of
P
ET is identical to the de�nition of ~U in this equation, except that we

exclude the vector part of the sum, n̂i.

P
ET is a measure of the total energy in the event from all sources, including

multiple interactions.

3.1.5 /ET : Missing Transverse Energy

We de�ne /~ET to be

/~ET � �(~U + ~ET ) (3.8)

where ~U is de�ned above. The magnitude of ~ET is the ET of the primary electron,

and its direction is determined by the beam constrained track. The ET of the primary

electron is de�ned above, and the ET includes all the corrections which are discussed

below. We will write /ET for the magnitude of /~ET .

3.1.6 MT : Transverse Mass

Our measured value for the transverse mass is de�ned as

MT =
q
(/ET + ET )2 � (/~ET + ~ET )2 (3.9)

=

r
(/ET + ET )2 � j~U j2

where /ET , ET , and ~U are de�ned above.
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3.2 PT Corrections

The �nal CTC calibration uses the E/p distribution of positive and negative W de-

cay electrons. Since the E measurement is independent of charge, any signi�cant

di�erence between positive and negative tracks is attributed to errors in the CTC

calibration. The calibration forces the positive and negative tracks to have the same

mean, and it also forces them to have the same mean as a function of cot �.

The CTC calibration, however, does not produce an overall alignment with the

position of the SVX. If the center of the SVX is o�set with respect to the CTC, then

the assumed beamspot will be systematically o�set relative to the correct position.

Such an o�set will show up as a splitting in PT between positive and negative tracks

as a function of azimuth, after we do the beam constraint.

Figure 3.4 shows the di�erence in <E/p> for positive and negative tracks as

a function of azimuth. A sinusoidal �t is also shown on the plot. We determine

a correction to 1=PT by dividing the sinusoidal �t by the average value of ET . We

further divide by two since we will correct the positive and negative tracks separately,

and each should correct for half the sinusoidal variation. The correction is

q=PT ! q=PT � 0:00020 � sin(�� 2:95) (3.10)

where q is the charge of the track, PT is the beam constrained PT , measured in

GeV, and the argument of the sine function is in radians. The di�erence between

positive and negative tracks after this correction is also shown on the plot. The plot

is signi�cantly atter after the correction.

This correction does not alter the position of the mean of E/p, but only the

splitting in the mean between positive and negative tracks.

62



Figure 3.4: Top: The di�erence in mean E/p for positive and negative tracks, as a
function of the azimuth of the track. The mean is between :9 and 1:1. The left plot
is before the correction of Equation 3.10, and the right plot is after. A sinusoidal �t
is shown on the left plot. The �t is (0:01551 � 0:0008) � sin(�� 2:95� 0:05) for � in
radians. The straight line through zero is shown to guide the eye.
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Figure 3.5: The invariant mass distribution of � 250; 000 J= ! �� events. The
points are the data and the line is the simulation. The variable shown is �M which
is the di�erence between the measured invariant mass and the world average for the
J= . The simulation includes both radiative corrections and backgrounds. This plot
is taken from Reference [27].

We also correct PT for variations in the magnetic �eld over the course of Run 1B.

NMR probes were used to track the magnetic �eld, and the correction that is applied

varies between 0 and 0:1%.

The PT scale is determined from J= ! �� events. Figure 3.5 shows the invariant

mass of � 250; 000 J= ! �� events, with a simulation superimposed.

From the J events it is determined that the measured beam constrained PT

should be increased by a factor of 1:00023 � 0:00048 [27]. The statistical uncertainty

from the J= mass peak is negligible, and the uncertainty on this PT scale is domi-

nated by an unexpected variation in the measured mass as a function of the amount

of material the muons pass through, and also by our ability to extrapolate a scale

from the relatively low PT muons of J= events (� 3:5 GeV) to the high PT tracks

of W and Z events (� 40 GeV).
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The PT scale correction is applied to the data.

3.3 Initial CEM Corrections

In this section we describe various corrections which are applied to the energy mea-

surement.

3.3.1 Time Dependent Corrections

Figure 3.6 shows the mean E/p for W events as a function of run number.� The left

side of the plot corresponds to the beginning of Run 1B in January 1994, and the

right side is the end of the Run, July 1995. Over the � 18 months of the run, the

energy scale is observed to drop by � 4%.

The aging of the detector may account for this decline in gain. Both the east and

west halves of the CEM are further divided into two physical masses, the north halves

and the south. This forms four \arches." The decline in gain is observed to occur at

di�erent rates over the four arches [28].

Data is used that passes a low PT inclusive electron trigger, which produces elec-

tron candidates with PT down to 8 GeV. This data is used to provide a high statistics

sample. The data is divided according to the four arches, and it is also divided ac-

cording to di�erent run ranges. Linear �ts are made to the E/p distribution for each

division of data, as a function of run number [28]. These �ts are then used to correct

the CEM response.

Figure 3.6 shows mean E/p vs run number after these corrections, for the W data.

�The Run 1B data is divided into many smaller \runs," where each run consists of data taken
over a time period typically lasting several hours.
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Figure 3.6: <E/p> as a function of run number for W data, for the runs which make
up Run 1B. The mean is between :9 and 1:1. The triangles are before any energy
corrections, and the dashes are after the corrections of Sections 3.3.1 and 3.3.2. The
left side of the plot corresponds to January 1994 and the right side to July 1995.
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The curve is signi�cantly atter after the corrections, although the data still decline

by � 0:7% over the course of Run 1B. An explanation for the residual decline in

gain is that as Run 1B progressed the luminosity delivered by the accelerator steadily

increased. At higher luminosity the average number of multiple interactions increases.

This overlapping energy is included in E/p, and is a larger percentage e�ect for the

lower ET inclusive sample than for the W events.

The energy from multiple interactions is discussed in Section 3.4 below.

3.3.2 Mapping Corrections

A \mapping" correction, which depends on the position of the electron in the tower,

was determined using test beam data [29]. This correction is applied to the data, and

the W data is used to make small adjustments to this correction [28]. Figure 3.7 shows

the mean E/p as a function of extrapolated track position at the strip chambers.

The clear reduction in response near the center of the towers is the result of the

attenuation of the scintillator light. Light produced near the center of the towers

travels over a longer path to the wavelength shifters on either side of the tower. After

the correction, the mean is signi�cantly atter. There appear to be dips in the mean

around Xstrips = �10 cm after the correction. This may indicate a small modulation

in the PT measurement with azimuth.

Two corrections are made as a function of Zstrips where Zstrips is the z coordinate

of extrapolated track position. The �rst is to correct for variations in response near

the z-boundaries of the towers. The second is to correct for variations among the

towers along the z-direction.

Figure 3.8 shows the mean E/p as a function of Zstrips before and after the cor-

rections are applied. The left plot is before the corrections are applied and shows
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Figure 3.7: <E/p> as a function of Xstrips for W data. The mean is between :9 and
1:1. The triangles are before any energy corrections, and the dashes are after the
corrections of Sections 3.3.1 and 3.3.2.
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Figure 3.8: <E/p> as a function of Zstrips for W data. The mean is between :9 and
1:1. The left plot is before any corrections, and the right plot is after the corrections
of Sections 3.3.1 and 3.3.2.

large variations in the mean of E/p. The right plot is after the corrections and is

signi�cantly smoother. The right plot shows a slight rise at higher values of jZstripsj.
This rise is put into the corrections explicitly. Electrons with higher values for jZstripsj
pass through more material on average than electrons at lower jZstripsj, and the mean
E/p increases slightly with jZstripsj. The data is corrected to include the expected

increase.

There is also a small correction applied which is based on the angle of incidence
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into the towers [30].

3.3.3 Summary

The magnitude of the above corrections for the W ! e� data are shown in the top

plot of Figure 3.9. The solid curve shows the time dependent corrections and the

mapping corrections combined, while the dashed and dotted curves show the two

corrections separately. The mean and rms of the di�erent distributions are shown

on the plot. The time dependent corrections adjust E by 4:6% upwards on average,

while the mapping corrections adjust E by 2:5% downwards on average. An overall

adjustment is included with the time dependent corrections so that a preliminary

measurement of the Z ! ee mass agrees with the world average. The distribution of

the combined corrections has a 4% spread.

The bottom plot of Figure 3.9 shows the E/p distribution with the di�erent cor-

rections applied. The results of Gaussian �ts to the peak of E/p are also shown. The

E corrections improve the width of the E/p peak by � 14%.

The time dependent corrections and the mapping corrections are applied as a

default to all electromagnetic clusters at CDF. In addition, for the W mass analysis,

we apply the small corrections of the next section.

3.4 Underlying Energy CEM Corrections

Energy from sources other than the primary electron is included in the CEM cluster.

Multiple pp interactions, which are unassociated with the W event, as well as the

recoil energy from the W PT , can add energy to the electron cluster.

The energy of the multiple interactions is uncorrelated to the W event. This
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Figure 3.9: Top: Distribution of CEM corrections for W ! e� data. The time de-
pendent corrections (dashed) and the mapping corrections (dotted) are shown indi-
vidually, and the product of the two corrections is shown in the solid curve. The
means and rms of the distributions are also shown on the plot. The CEM energy is
multiplied by the corrections. Bottom: The E/p distribution with and without the
corrections for W ! e� data. We have applied both corrections (solid), time depen-
dent corrections only (dashed), and mapping corrections only (dotted). The squares
are the distribution with no E corrections. The rms of Gaussian �ts to the peaks of
the distributions are shown. The rms of the case with no corrections is larger than the
distributions with the corrections, and the combined corrections produce the smallest
rms.

71



energy creates an e�ective CEM non-linearity since it does not scale with ET : the

percentage e�ect of the extra energy is reduced as ET increases.

The recoil energy, however, is correlated with the electron ET . If the W PT is

directed along the electron direction, then the recoil energy will tend to be directed

opposite the electron. Such events have higher electron ET since the W motion adds

to the electron ET . If the W is directed opposite the electron direction, then the

recoil energy will tend to lie along the electron. Such events have lower electron ET

since the W motion will subtract from the electron ET .

The recoil energy and the multiple interaction energy which lies on top of the

CEM cluster is included in the Monte Carlo simulation. Real W events are used for

this simulation, and it is discussed in Chapter 6. This is shown in Figure 3.10, which

shows the mean of E/p as a function of
P
ET . The Monte Carlo shows a rise with

P
ET , as expected. The slope of the rise in mean E/p is 2:2� 10�5 GeV�1 �PET .

The data in Figure 3.10 are at, although we expect a rise with
P
ET . Events at

higher
P
ET tend to occur later Run 1B, since the average instantaneous luminosity,

and hence the average
P
ET , increased as Run 1B progressed. The corrections of

Section 3.3 tried to atten the average of E/p as a function of run number, when

we really expect <E/p> to rise slightly with run number because of the increased

average
P
ET .

We apply a
P
ET dependent correction to the data to account for the expect rise

in
P
ET . We apply the correction

E ! E � [1:0 + 3:14 � 10�5(
P
ET � 68:17)] (3.11)

where
P
ET is measured in GeV. With this correction, the rise in <E/p> as a function
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of
P
ET for the data agrees with the Monte Carlo. The quantity 68:17 GeV, which

is subtracted from
P
ET in Equation 3.11, is the average

P
ET for W ! e� events.

We subtract this value so that the average correction is 1:0.

3.5 Default Energy Scale

In addition to the corrections discussed above, there is an overall CEM energy scale

which is applied to the data. A preliminary scale was determined so that a preliminary

measurement of the Z mass with Z ! ee events produces the world average value [5]

of 91:187 GeV. When this scale was determined, the underlying event energy was not

included in the simulation. Our simulation adds � 90 MeV on average to the electron

ET from the underlying event. This is discussed in Chapter 6. 90 MeV is roughly

0:2% of the average electron ET of Z ! ee events. To account for this change, we

correct the preliminary CEM energy according to

E ! E � (1:002) (3.12)

This is the default scale that we apply to the CEM energy for both W ! e� and

Z ! ee events. We use this energy scale as a default, and in Chapters 10 and 11, we

discuss the �nal determination of the CEM energy scale.

3.6 W Selection Requirements

The W cuts are listed in Table 3.1, as well as the number of events remaining after

each cut. A line-by-line description of this table follows.
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Figure 3.10: <E/p> as a function of
P
ET for W data and Monte Carlo. The mean

is between :9 and 1:1. The triangles are the data, and the squares are the Monte
Carlo. The data includes the corrections of Sections 3.3.1 and 3.3.2. A linear �t to
the Monte Carlo is shown. The slope of the �t is 2:2 � 10�5 GeV�1. The data have
the default energy scale applied. This energy scale produces a value for <E/p> which
is signi�cantly higher than the Monte Carlo.
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Cut Events Remaining After Cut

Initial W Selection 108; 455
jZvertexj < 60 cm 101; 103

Fiducial Requirements 74; 475
Track Passes Through all CTC Superlayers 71; 877

ET> 25 GeV 67; 007
/ET> 25 GeV 55; 960

j~U j< 20 GeV 46; 910
PT> 15 GeV 45; 962
Ntracks� 1 43; 219
Mep> 1 GeV 43; 198

Not a Z Candidate 42; 558
MT Fit Region: 65 < MT < 100 GeV 30; 115
(E/p Fit Region: :9 < E=p < 1:1) 21; 843

Table 3.1: Cuts used to extract W decays from the data. Cuts are described in more
detail in the text.

Initial W Selection. We require that the event pass one of the two level 3 W trig-

gers described in Section 2.5. We also require that there be an electromagnetic

cluster that has uncorrected ET > 20 GeV and also has an associated track

with PT > 13 GeV. The track is �t with the �nal CTC alignment and cali-

bration constants, but it is not yet beam constrained. A cluster is considered

electromagnetic if it has Ehad
EEM

< :125.

jZvertexj <60 cm. The nominal vertex must be within �60 cm of the center of the

detector. This requirement ensures a good measurement of the electron by the

calorimeter.

Fiducial Requirements. We require that the cluster be in a region of the detector

that has good energy response. This requirement primarily removes clusters

near cracks. First we require that the cluster be in the CEM, excluding the

outer-eta towers, which have reduced response. We then extrapolate the elec-

tron track to the strip chambers located inside the calorimeter. We de�neXstrips
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to be the extrapolated position in the azimuthal direction, starting from the cen-

ter of the tower the electron hits; and Zstrips is the extrapolated longitudinal

position from the center of the detector. To avoid the azimuthal boundaries be-

tween the towers, we require jXstripsj < 18 cm, and to avoid the crack between

the east and west halves of the detector we require jZstripsj > 12 cm. We also

require that the track does not point at the \chimney module," which is a tower

that has been removed to allow cryogenic access to the solenoid.

Track Passes Through all CTC Superlayers. We require that the reconstructed

track describe a path which passes through all 8 superlayers of the CTC. This

cut helps remove badly measured tracks.

ET >25 GeV. This cut is made after all o�ine corrections.

/ET >25 GeV. This cut and the ET cut are the primary selection cuts for isolating

a W ! e� signal.

j~U j <20 GeV. j~U j is our measure of the W PT , and this cut limits us to the low

PT region. It also helps to remove backgrounds since non-W backgrounds are

concentrated at high j~U j.

PT >15 GeV. The track which is associated with the electron cluster is beam con-

strained and then corrected according Section 3.2. It is then required to have

PT above 15 GeV. Requiring a high PT track will remove some backgrounds. It

also has the e�ect of limiting the maximum size of photon bremsstrahlung.

Ntracks �1. We make a list of all the tracks in an event that originate within �5
cm of the nominal event vertex and have PT > 1 GeV. We require that only

one of these tracks (the electron track) point to any of the towers contained
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in the electron calorimeter cluster. This helps to reduce the QCD dijet back-

ground, since jets are more likely than the W decay electrons to have several

tracks associated with them. W electrons can also have several tracks associated

with them, either through an overlap with unassociated tracks in the event, or

through the conversion  ! ee of a bremsstrahlung photon. The simulation of

both these e�ects is discussed below.

Mep >1. We remove the event if the invariant mass of the electron cluster with the

next highest track in the event is less than 1 GeV. In such events, the second

track is nearly parallel to the primary electron track, and this can happen in

the case of the conversion of hard photon brems. The Z0 of the second track

may be mismeasured enough that we fail to remove the event with the Ntracks

cut.

Not a Z Candidate. Z ! ee events can fake W ! e� events if one of the Z decay

electrons passes through a crack in the calorimeter. The requirements for an

event to be called a Z candidate are motivated and de�ned in Section 4.1. We

also refer to this cut as the \lost Z" cut.

MT Fit Region: 65<MT <100 GeV. This region contains the most information

on the W mass, and we will ignore the lowerMT region for the �nal �t. Remov-

ing the low MT region also has the e�ect of reducing the backgrounds, since the

backgrounds tend to occur at low MT .

E/p Fit Region: 0.9< E=p <1.1. Below we will use the peak of the E/p distri-

bution to compare the calorimeter energy scale to the tracking chamber energy

scale. We will use the peak region for this �t. Unless otherwise stated, however,

this cut is not applied.
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Figure 3.11 shows the ET , /ET , and MT distributions of the �nal sample. ET and

/ET are shown both with and without the requirement that MT be in the MT �tting

region. This requirement has a strong e�ect on the low end of the ET and /ET shapes.

Below, when we refer to the W sample, we are referring to the sample before the

requirement that the event fall in the MT or E/p �tting regions, unless otherwise

stated.

3.7 Z Selection Requirements

The Z sample is used to model the calorimeter response to the boson PT , and it is

also used to set the calorimeter energy scale.

The Z cuts are listed in Table 3.2, as well as the number of events remaining after

each cut. The cuts labelled as \both" are applied to both electrons. Most of the cuts

are identical to the description in Section 3.6. Those which are di�erent we describe

below.

Cut Events Remaining After Cut

Initial Z Selection 19; 527
Same Zvertex 18; 461

Both jZvertexj < 60 cm 16; 724
Both Fiducial Requirements 9; 493

Both Tracks Pass Through all CTC Superlayers 8; 613
Both ET> 25 GeV 6; 687
Both PT> 15 GeV 5; 257
Both Ntracks� 1 1; 670

70 < MZ < 110 GeV 1; 559
Opposite Sign Tracks 1; 541

Table 3.2: Cuts used to extract Z decays from the data. Cuts are described in more
detail in the text.

Initial Z Selection. We require that the event pass one of the two level 3 Z triggers

78



Figure 3.11: Top left: ET , and top right: /ET for the �nal sample. The solid histogram
is for all cuts up to the requirement that MT be in the �tting region, and dashed is
for the MT �tting region. Bottom: MT distribution. The arrows indicate the MT

�tting region. The number of entries printed on the bottom plot includes events that
fall outside the plot boundaries.
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described in Section 2.5. We also require that there be two electromagnetic

clusters, both with uncorrected ET > 20 GeV and both with an associated

track with PT > 13 GeV. For this cut, PT is not yet beam constrained. In

addition, for the Z events, part of the initial selection is that both clusters be

central and that they be more than one tower away from each other.

Same Zvertex. Each of the two tracks has an event vertex associated with it. We

require that these vertices be within 5 cm of each other.

70<MZ <110 GeV. This is a loose region around the known Z mass. MZ is cal-

culated using the corrected calorimeter measurement for the electron energies,

and using the beam constrained tracks for the directions.

Opposite Sign Tracks. We require that the two electrons have opposite charges.

To measure how much QCD background remains in the Z sample, we require that

the two tracks have the same sign instead of opposite sign. There are 18 such events

that pass all other cuts. We assume that the number of opposite sign QCD events is

the same as the number of like sign, and we predict that 18 QCD events remain in

the Z sample. This amounts to 1:2� 0:3% background. We will use the distributions

of these 18 events for various background shapes.

The top plot of Figure 3.12 shows the MZ shape for the signal events, and the

bottom plot for the QCD background.
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Figure 3.12: MZ shape for signal (top) and like sign events (bottom). The like sign
events pass all other Z selection cuts except the two tracks have the same sign instead
of the opposite sign. We have also removed the Z mass cut for the like sign events.
The arrows in the bottom plot indicate the MZ cut region 70 < MZ < 110 GeV.
There are 30 like sign events for all values ofMZ , and 18 like sign events in the region
70 < MZ < 110.
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Chapter 4

Background Determination

There are three major sources of background events that remain in the W sample after

the requirements of Section 3.6. A Z ! ee event will pass our W selection cuts if

one of the electrons is lost or badly measured by the detector, and this background is

discussed in Section 4.1. Dijet events can pass the cuts if one jet looks like an electron

and the other is mismeasured, and we discuss this in Section 4.2. And Section 4.3

discusses the case of W ! �� decays where the � subsequently decays to an electron

and neutrinos.

4.1 Lost Z Background

A Z ! ee decay can mimic a W ! e� decay if one of the electrons is badly measured

and is mistaken for a neutrino. This can happen if the electron lands in or near

cracks between towers, or passes through regions between detectors. There are three

main regions where electrons are likely to be mismeasured. The �rst is the crack

between the east and west halves of the central calorimeter (\90� crack"); the second

comprises the cracks at the azimuthal boundaries between central towers (\� cracks");
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and the third is the region between the central and plug calorimeter (\30� crack").

We still have tracking coverage in all three of these regions, and we can use the track

information to reduce the background.

We start by �nding the highest PT track in the event other than the primary

electron track, and we only consider tracks with PT > 10 GeV. The top plot of

Figure 4.1 shows the extrapolated Zstrips position of this track, for both same sign

and opposite sign events, where the sign is the charge of the track relative to the

primary electron. All the W selection cuts are applied in this �gure except of course

the lost Z removal cuts. The opposite sign events show peaks at Zstrips < 9 cm and

Zstrips � 250 cm, which is what we expect for lost Z events with the second track

pointing at the 90� or 30� cracks. We consider the 90� crack to be Zstrips < 9 cm, and

the 30� crack is de�ned to include all tracks which have Zstrips higher than the middle

of the last central EM tower (231:7 cm), and which extrapolate to a detector position

more central than the �rst �ducial annulus of the PEM. The �rst �ducial annulus of

the PEM occurs at j�detectorj < 1:2, and for extrapolating the track we assume the

PEM has a Z position of 190 cm.

Between the 90� and 30� crack regions, the � cracks are signi�cant. The bottom

plot of Figure 4.1 shows the Xstrips position of events between the two regions, and

spikes corresponding to the edge of the towers are prominent for the opposite sign

events.

Following Figure 4.1, we consider an event a lost Z if there is a second track in

the event with PT > 10 GeV, which has opposite sign to the primary electron track,

and which points at either the 90� crack, the 30� crack, or is before the 30� crack but

has jXstripsj > 21 cm. The crack regions are de�ned above. In addition, if the track

points at the chimney module, we also consider it a lost Z event. This de�nes the
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Figure 4.1: Lost Z events in the W ! e� sample. The plots are the locations of
second tracks in W ! e� events. Solid histograms are for tracks with opposite sign
to the primary electron, and dashed are for the same sign. Top: jZstripsj position
of the track. (This variable is de�ned to be simply the Z position of the track at
a radius of 185 cm, which is why it extends beyond the physical Z boundary of the
strip chambers.) The arrows shown are at 9 cm and 231:7 cm. Bottom: The Xstrips

position for the tracks with jZstripsj between 9 and 231:7 cm. The arrows are at �21
cm and de�ne the � cracks of the central calorimeter. All the W cuts of Table 3.1 up
to but not including the lost Z cuts are applied.
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\Not a Z Candidate" cut of Section 3.6.

Figure 4.2 shows the invariant mass of the events we are removing as lost Z events.

The invariant mass is formed with the primary electron and the second track. The

primary electron is taken to point along its track direction, and its energy is taken

to be the calorimeter energy. We do the same with the second track, except we use

the magnitude of the track momentum for its energy. The top plot shows the lost

Z events with the track pointing at the 30� crack, and the bottom plot shows the

remaining, central, lost Z events. Both plots show clear Z mass peaks. Also shown

are the same sign events, and these show us the size and shape of non-Z events which

are being removed as lost Z events. The bottom plot also shows the invariant mass

for the second track pointing at a �ducial part of the calorimeter. No mass peak is

seen, as expected, since good Z events should fail the /ET cuts.

There are 106 events that would fail the cuts if we replaced the opposite sign

requirement with a same sign requirement. This is a measure of the number of events

which are mistakenly removed as lost Z events. The azimuthal angle between the

second track and the primary electron track for the same sign events has an enhance-

ment around �, indicating that some amount of these events are QCD background.

The lost Z cut removes some QCD background. This is expected since the QCD back-

ground has a large contribution from jets that point at cracks. When we measure the

QCD background below, we only consider the QCD background that remains after

the lost Z cut.

The QCD background has a large contribution from jets which point at cracks,

and that background is discussed below.

Lost Z events will remain in the sample if the second track is below 10 GeV

or is not found by the tracking chamber. Taking the energy distribution of central
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Figure 4.2: Invariant mass of second track and primary electron cluster. The solid
histogram are for opposite sign events, and dashed are same sign. Top: events with
second track pointing at 30� degree crack, and bottom: events with second track
pointing at 90� crack, � cracks, or chimney module. The tracks in the top plot show
a worse resolution than the bottom plot since the tracks in the top plot are less likely
to pass through all 9 superlayers of the CTC. The number of entries shown are for
the solid histograms and include events that fall outside the plot boundaries.
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Z ! ee decays, and assuming that the tracks go through 8:5% of a radiation length,

we calculate that each track has a 2:5% probability of emitting a hard enough photon

that the track fails the 10 GeV PT cut above. In addition, the tracking e�ciency

drops o� from 100% in the central region to � 93% at �detector = 1:2, which de�nes

the outer part of our 30� degree crack region. This ine�ciency arises from tracks that

fail to pass through all the CTC layers. We take the worst case of 7% ine�ciency

in the 30� crack region. The top plot of Figure 4.2 has 198 opposite sign entries,

and the bottom plot 442 opposite sign entries. The number not removed because of

hard brems is 2:5% of the total number of entries in both plots; and the number not

removed because of the tracking ine�ciency is 7% of the top plot. Thus we expect 30

lost Z events to remain in the W sample because of the PT cut on the second track or

the tracking ine�ciency. This is a small background, and, therefore, the worst case

tracking ine�ciency is an adequate approximation.

We only look for lost Z events in the regions where we have good tracking. Above

�detector = 1:2, we do not make any attempt to remove lost Z events. There are,

however, very few low response regions above �detector = 1:2. The plug calorimeter is

expected to have some small azimuthal cracks every 90�, but looking at second tracks

in this region, we see no evidence of azimuthal cracks. A toy simulation of all the

calorimeters and cracks predicts that 8 Z ! ee events, in addition to the 30 above,

will not be removed by our lost Z cuts. The total number of lost Z events in our

sample is therefore predicted to be 38� 6 events, where we only consider a statistical

uncertainty. There are 42; 558 W events which pass our cuts. The lost Z background

thus accounts for (0:090 � 0:014)% of the W sample.

We use the events in Figure 4.2 to calculate kinematic shapes for the background.

To get the shapes, we combine the results from the di�erent crack regions according
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to the expected rate from each region, ignoring the 8 events in the plug and forward

regions. Figure 4.3 shows the expected shape for both Uk and U? as well as MT for

the lost Z background. The Uk plot shows a signi�cant negative bias from events

where the second electron leaves energy in the calorimeters. The MT shape of the

full W ! e� sample is overlaid on the bottom plot for comparison. The MT shape

of the lost Z background is as high as real W events, and 81% of the lost Z events

have MT in the �tting region. Combining with the above number for the total lost Z

background, we measure that the �tting region contains

(0:073 � 0:011)% (4.1)

lost Z background.

4.2 QCD Background

Dijet events can pass the W selection cuts if one of the jets looks like an electron,

and one of them is mismeasured, creating /ET . We refer to such events as \QCD"

background. A jet looks like an electron if it has Ehad
EEM

< 0:125 and passes the other

requirements of Section 3.6 These are relatively loose quality requirements, and as

mentioned above, we do not wish to apply any quality cuts which may bias our mass

measurement and be di�cult to simulate. On the other hand, the j~U j < 20 GeV cut

is an implicit anti-QCD cut since it is calculated with the electron cluster removed.

The high /ET cut also works to reduce the background. The lost Z removal cuts also

remove some QCD background, as mentioned above.

A method to measure the QCD background is to release some of the kinematic

cuts and to �nd a region of some variable which is 100% QCD background. We can
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Figure 4.3: Predicted kinematic shapes for the lost Z background events which remain
in the W sample. Top: Uk (solid) and U? (dashed). The mean of the Uk shape is
�7:5 GeV, and the RMS of Uk and U? are 7:2 and 5:6 GeV respectively. Bottom: MT

shape for the lost Z background (solid), and for the full W ! e� sample (dashed).
The arrows in the bottom plot indicate the MT �tting region. The normalization in
all the plots is the number of events used to calculate the lost Z shapes and does not
indicate the total number of events expected in the W sample.
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then normalize a QCD shape to this region and extrapolate into the signal region.

The /ET cut is a straightforward choice of a kinematic variable to examine, but there

is a /ET cut in the trigger, which means we cannot release the cut. Instead we look at

the data with no j~U j cut.

The top plot of Figure 4.4 shows the MT distribution after removing the j~U j < 20

GeV cut. Note the pileup of events in the MT region below 20 GeV. To explain these

events, we note that the transverse mass can be calculated as

MT = 2
q
ET/ET sin(��=2) (4.2)

where �� is the azimuthal angle between the electron and the direction of the /ET .

Since we are retaining the ET > 25 and /ET > 25 GeV cuts, the only way MT can

be small is if �� is small. For example, the events with MT < 20 GeV have ��

peaked near 0, although the distribution extends out to � 45�. For QCD events

the /ET should point either along the electron direction or opposite to it, depending

on which leg is mismeasured and which is called an electron. Thus for the QCD

background, we expect both high and low values of ��. However, for real W ! e�

decays we do not expect small ��, and so we predict that the low MT events are a

pure background sample. The bottom plot of Figure 4.4 shows the azimuthal angle

between the electron and the highest ET jet in the event, for all events and for the

low MT events. The peak around � for the low MT events is consistent with dijet

events. We can also verify that the low MT events are QCD events by looking at the

E/p and Ehad
EEM

shapes of the electron cluster. These are shown in Figure 4.5. Neither

of the distributions shows the peaks characteristic of real electrons.

The top plot of Figure 4.6 shows MT vs j~U j for the W data with the j~U j cut
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Figure 4.4: Top: MT distribution of W data without the j~U j < 20 GeV requirement.
Bottom: Azimuthal angle between the electron and the highest ET jet in the event.
The solid histogram is the MT < 20 GeV events from the top plot, and the dashed
is the full W sample, with the j~U j cut and with the requirement that MT be in the
�tting region. The dashed plot is normalized to the same area as the solid plot. The
dashed plot is at since most W events do not have signi�cant jet activity. We are
considering any jet cluster with ET > 1 GeV to be a jet.
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Figure 4.5: Distributions for events with MT < 20 GeV after releasing the j~U j cut
(solid), and for MT in �tting region with j~U j cut applied (dashed). Top plot is E/p,
and the bottom plot is Ehad

EEM
. The cuto� in the Ehad

EEM
plot at 0:125 is from the implicit

Ehad
EEM

requirement to consider a cluster electromagnetic.
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released. We refer to the region with j~U j < 20 and MT > 20 GeV as \Region A."

This region is marked o� by the vertical line shown in the plot. \Region B" is de�ned

by MT < 20, and this is marked o� by the horizontal line. Only QCD events fall

in Region B, and if we know the ratio of A to B for QCD events, we can determine

how many QCD events are in Region A. The bottom plot shows MT vs j~U j for the
QCD events, where the method to extract the QCD shape from the data is described

immediately below.

To �nd a QCD background shape, we use a series of quality cuts on the electron

cluster to reject real electrons. We use the following four quality variables:

� Ehad
EEM

. This is de�ned above and is the hadronic energy associated with the

cluster divided by the cluster energy.

� Iso. This is the \isolation" of the electron, and is de�ned as the energy, ex-

cluding the electron cluster, located in calorimeter towers within a cone of

�R �
q
(��)2 + (��)2 < 0:4 around the electron cluster, divided by the

energy of the electron cluster.

� q�x. �x is de�ned as the di�erence between the actual measured strip chamber

x-position and the extrapolated position of the associated track. Real electrons

may have a non-zero �x from resolutions, and also from photon bremsstrahlung.

The photon will show up in the strip cluster, and the extrapolated track position

will be o�-center relative to the cluster. It will be on one side for positive tracks

and the other side for negative, and for this reason we use the signed quantity

q�x, where q is the sign of the electron track.

� �2strips. This variable compares the longitudinal pro�le of the energy in the strip

chambers with a shape measured with test beam data.
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Figure 4.6: MT vs j~U j with the j~U j cut released. Top: All W data, and bottom: the
subset of the W data that passes any combination of three of the anti-selection cuts.
These cuts are described in the text and are used to �nd a pure QCD subset of the
W data. The horizontal and vertical lines de�ne Regions A and B. In the plots the
area of the boxes is proportional to the log of the number of events at each point. If
we did not use a log scale, the low MT region of the top plot would not be visible.
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All four variables are shown in Figure 4.7 for the MT �tting region of the full W

sample.

We use the Z sample to determine cuts that will reject electrons and retain QCD

events with good e�ciency. These cuts are Ehad
EEM

> 0:08, Iso> 0:25, q�x < �1:5, and
�2strips > 20. The Z sample shows that none of these cuts is 100% e�cient to reject

electrons, but that combinations of them should be very close to 100%.

To illustrate the background calculation method, we look at the subset of the W

sample that passes the Ehad
EEM

> 0:08 and Iso> 0:25 \anti-selection" cuts. We �nd

67 events in Region B, and 62 events in Region A. For the full W sample, without

the anti-selection cuts, we �nd 278 events in Region B. The number of QCD events

predicted to be in the signal region (Region A) is then

62

67
� 278 = 257 � 48:

Dividing by the 42; 558 W events of the signal region, we �nd

(0:60� 0:11)% (4.3)

QCD background. The uncertainty on this result is calculated assuming all the num-

bers are independent. This is not actually the case since the 67 events are a subset of

the 278, and the 62 are a subset of the 42; 558. However, a more careful determination

of the uncertainty gives a similar answer.

Figure 4.8 shows the calculated percent background for di�erent combinations of

anti-selection cuts. The �rst six points anti-select on two of the quality variables, and

the next four on three of the variables. Note that the point that uses q�x and �2strips

to de�ne the QCD shape is anomalously high, and this perhaps indicates that some
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Figure 4.7: Some electron quality variables for the full W sample, in the MT �tting
region. Top left: Ehad

EEM
, top right: Iso, bottom left: q�x, and bottom right: �2strips. The

enhancement on the right side of the q�x plot is a result of photon bremsstrahlung.
The arrows shown indicate the location of the \anti-selection" cuts. To select QCD
events we require that the variables be to the right of the arrows, except for q�x
which is required to be to the left.
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real W electrons remain in Region B for those cuts. The last point de�nes Region B

with events that pass any combination of three of the anti-selection cuts. This point

is labeled \OR" on the axis and is the number we will use for the assumed QCD

background rate. Since the points are not statistically independent, we include the

error-weighted RMS of the �rst ten points as a systematic uncertainty on the �nal

value. This value is 0:0029, and the �nal value for the QCD background fraction in

the W sample is

(0:76 � 0:15(stat)� 0:29(sys))% = (0:76 � 0:33)%: (4.4)

To determine the Uk, U?, and MT shapes, we use the events that pass any com-

bination of three of the four anti-selection cuts. There are 167 such events before

we apply the j~U j cut, and 62 after. To increase the statistics, we remove the Ntracks

cut and we end up with 249 events after the j~U j cut. The distributions of these 249
events are shown in Figure 4.9. The negative bias on the Uk shape is from residual

energy left in the detector from the lost jet. The MT shape is lower than for the real

W electrons, and we count that 119 of the 249 events have MT in the �tting region.

Combining this with the above number for the fraction QCD background before the

MT cut, we calculate that the QCD events comprise

(0:36� 0:17)% (4.5)

of the W events in the MT �tting region.
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Figure 4.8: The background fraction as a function of the combination of anti-selection
cuts used to de�ne Region B. \Had" refers to the Ehad

EEM
cut and �2 to the �2strips cut.

The last point labelled \OR" uses all combinations of three of the cuts. The text has
more details.
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Figure 4.9: Kinematic shapes for the QCD background events. Top: Uk (solid) and
U? (dashed). Bottom: MT for the QCD background events (solid), and for the
full W ! e� sample (dashed), which is shown for comparison. The mean of the Uk
histogram is �4:5 GeV, and the RMS of Uk and U? are 8:1 and 6:6 GeV respectively.
The arrows in the bottom plot indicate the MT �tting region.
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4.3 W ! �� Background

The decay W ! �� ! e��� results in a relatively high ET electron and /ET , and so

can fake a W ! e� decay. Since there are four decay products, the electron will have

substantially lower energy then in a W ! e� decay, and this background is reduced

by the ET cut. It is further reduced by the requirement that MT appear in the

�tting region. Besides the kinematic cuts, we make no other attempt to reduce this

background, and instead we include it in the simulation.

We simulate the decay by starting with a W ! e� decay, and then calling the

electron a � . We then decay the � into an electron and two neutrinos, and add

the new neutrino 4-vectors to the original neutrino 4-vector. The simulation then

proceeds as if a W ! e� decay had been generated to start with. We randomly

choose 15:132% of the Monte Carlo events to change into � decays in this way. The

number 15:132% is derived by assuming that the W decays with equal rates into e�

and ��. With 15:132%, the number of W ! �� ! e��� events we will generate

divided by the number of W ! e� events is then 0:15132=(1 � 0:15132) = 0:1783.

This is the value of the branching ratio �(� ! e��)=�(� ), as desired.

Figure 4.10 shows the distributions of Uk, U?, and MT for the simulated � ! e��

background. The events shown pass all the W selection cuts. For the Uk and U?

plots, MT is required to be in the �tting region, but this requirement is released for

the MT plot. The MT plot is clearly peaked at lower transverse mass than the full

W ! e� data sample. This reduces the e�ect of this background on the �tted W

mass.

We count the total number of generated events that pass all the cuts. We �nd that

the simulation predicts the � ! e�� background to be 2:8% of the events without
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Figure 4.10: Kinematic shapes for the � background events. Top: Uk (solid) and
U? (dashed). Bottom: MT for the � background events (solid), and also for the full
W ! e� data sample (dashed). The full data sample is shown for comparison. For
the Uk and U? plots, MT is required to be in the �tting region. The mean of the Uk
histogram is 0:1 GeV, and the RMS of Uk and U? are 5:9 and 5:8 GeV respectively.
The arrows in the bottom plot indicate the MT �tting region.
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the MT requirement, and 0:8% if MT is required to be in the �tting region.

We have also studied the W ! �� background where the � decays hadronically.

We generate 1; 000; 000 PYTHIA events. We �nd that 586 of these events will form an

electromagnetic cluster and will pass all our W ! e� selection requirements. Using

a production cross section times branching ratio of �(pp ! WX)Br(W ! ��) =

2:2 � 0:2 nb, we expect � 200; 000 � 20; 000 W ! �� events in the 90 pb�1 Run 1B

data sample. � 80% of the � 's decay hadronically, and the total number of hadronic

� decays in our W ! e� sample is predicted to be (586=1; 000; 000) � (200; 000 �
20; 000) � 0:8 = 94 � 9 events. Of the 586 Monte Carlo events, only 101 have 65 <

MT < 100 GeV, and we expect 16 � 2 events in the �tting region. This is a 0:05%

background in the �tting region.

4.4 Summary

We have discussed the three main sources of background: Z events where one leg is

lost, QCD events where the jets are mismeasured and one is identi�ed as an electron,

and W ! �� events. For the lost Z and QCD backgrounds, we used the data to

calculate the background rates and distributions. The electron decays of the � are

included directly in the simulation, while the hadronic � decays, the lost Z, and the

QCD background are included after the simulation. Histograms of the shapes of these

last three backgrounds are added to the Monte Carlo when we do �ts of the data to

the Monte Carlo. This is true when we compare the ~U distributions of data and

Monte Carlo and also when we compare the E/p and MT distributions of data and

Monte Carlo.

Table 4.1 summarizes the rates for the three di�erent backgrounds.
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MT in Fitting Region No MT Requirement

QCD (0:36 � 0:17)% (0:76 � 0:33)%
Lost Z (0:073 � 0:011)% (0:090 � 0:014)%

W ! �� ! e��� 0:8% 2:8%
W ! �� !hadrons � (0:054 � 0:005)% (0:31 � 0:03)%

Table 4.1: Background rates for the four largest sources of background in the W
sample. The four backgrounds considered are lost Z events, QCD events, andW ! ��
events where � decays to electrons and hadrons are considered separately. The rates
are for the W sample after all cuts, and we also show the rates without the requirement
that MT is in the �tting region.

103



Chapter 5

Event Generation

The simulation of the scattering process

pp! W +X ! e� +X

proceeds in two steps. The 4-momenta of the decay products e, �, and  are written

out to disk, along with associated weights and other event information, and later a de-

tector simulation is applied to these events. In this chapter we discuss the production

of the event, and in later chapters we discuss the detector simulation.

In Section 5.1 we discuss the cross section for W production, and in Section 5.2

we discuss the details of the generation of the Monte Carlo variables. In Section 5.3

we discuss the decay of the boson, and in Section 5.4 we discuss di�erences in the

Monte Carlo between W production and Z production. We summarize in Section 5.5.
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5.1 W Production Cross Section

We consider a parton model in which the quarks involved in the hard scatter are

treated as free particles, and their momentum distributions are determined by the

parton distribution functions. The distribution functions account for initial state

radiation in the longitudinal direction only, and we will need to consider the possibility

of transverse radiation.

A Feynman diagram of the production process is shown in Figure 5.1. The initial

state consists of two quarks with momenta q1 and q2. The momentum fractions x1

and x2 are de�ned as q1 = x1P1 and q2 = x2P2, where P1 and P2 are the momenta of

the colliding proton and anti-proton, respectively.

The center of mass energy of the two-quark system is
p
ŝ where

ŝ = (q1 + q2)
2 = x1x2s (5.1)

and
p
s = 1800 GeV is the center of mass energy of the proton collision. We have

neglected the mass of the quarks and protons relative to the center of mass of the

system.

In Section 5.1.1 we present the lowest order cross section for W production, which

corresponds to the top diagram of Figure 5.1. At higher orders, the W acquires

transverse momentum. In previous W mass analyses at CDF, the lowest order cross

section was used to generate the event, and afterwards the center of mass was boosted

according to a W PT distribution. There was an ambiguity, however, in whether to

perform the transverse boost in the W rest frame, or in the lab frame. The two frames

are potentially di�erent if x1 6= x2. Our method of producing an event with W PT is

discussed in Sections 5.1.2 and 5.1.3.
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Figure 5.1: Feynman diagrams of the event production. The initial state consists of
two quarks with 4-vectors q1 and q2 which have momentum fractions x1 and x2. The
boson 4-vector, Q, has associated mass squared, transverse momentum, and rapidity
Q2, QT , and yW respectively. The top plot is the lowest order diagram, where only
longitudinal gluon radiation is considered. The longitudinal radiation is subsumed
in the x1 and x2 distributions. The bottom plot represents higher order diagrams,
where one or more gluons with non-zero PT may be radiated from the initial quarks.
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In general, any 4-momentum can be written as

0
BBBBBBBBBB@

Q0

Q1

Q2

Q3

1
CCCCCCCCCCA
=

0
BBBBBBBBBB@

q
Q2
T +Q2 cosh yW

QT cos �

QT sin �q
Q2
T +Q2 sinh yW

1
CCCCCCCCCCA

(5.2)

where Q0 is the energy, and Q1, Q2, and Q3 are the x-, y-, and z-components of the

3-momentum respectively; and where QT and � are the transverse component and

azimuthal angle of the 3-momentum respectively, and Q2 is the invariant square of

the 4-vector. The rapidity of the 4-vector, yW , is given by

yW =
1

2
log(

Q0 +Q3

Q0 �Q3

) (5.3)

We use these variables below to describe the W boson.

5.1.1 Lowest Order Cross Section

The boson is determined by its mass
q
Q2, transverse momentum QT , and rapidity

yW . At lowest order in the strong coupling constant, �s, there is no transverse

radiation, and the W kinematics are completely determined by x1 and x2. Energy

and momentum conservation require

Q2 = ŝ; QT = 0; yW = y0 � 1

2
log x1x2

(5.4)

We are ignoring the intrinsic KT of the quarks in the protons.
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The total cross section �total is calculated by an integral over x1 and x2

�total =
Z Z

dx1dx2p(x1; x2; Q2)�0(Q2) (5.5)

where

�0(Q2) =
1

Q2
� 1

(1 �MW
2=Q2)2 + (�W =MW )2

(5.6)

This is a relativistic Breit-Wigner distribution with an \s-dependent width," scaled

by 1=Q2. The parameter �W is the total width of the W, andMW is the W mass. This

cross section is correct only up to overall constants, but since we are not concerned

with the absolute rate of W production, there is no need to include these constants.

The function p(x1; x2; Q2) in Equation 5.5 represents the contribution to the inte-

gral from quarks with momentum fractions x1 in the proton and x2 in the anti-proton.

In terms of the parton distribution functions we have

p(x1; x2; Q2) =
X
ij

jVijj2fi(x1; Q2) �fj(x2; Q2) (5.7)

were fi(x1; Q2) is the di�erential probability that a quark in the proton of type i

with momentum fraction x1 will contribute to an interaction at an energy scale of

Q2. �fj(x2; Q2) is the analogous function for the anti-proton. Our default choice for

the parton distribution functions are the MRS-R2 distribution functions, and in a

later chapter we will consider the systematic uncertainty on the �tted W mass due

to the choice of distribution functions. The sum is over all quark types, and Vij are

the corresponding CKM matrix elements. We only consider contributions from the

�rst two quark generations, ignoring top and bottom quarks. Both sea quark and

valence quark contributions are considered. For the CKM matrix elements, we use
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jVudj2 = :95, jVusj2 = jVcdj2 = :0484, and jVcsj2 = :903.

5.1.2 Higher Order Cross Section

At higher orders in �s, the initial quarks can radiate gluons, and the W can acquire

transverse momentum. The rapidity of the W, yW , is in general di�erent from y0 =

1
2
log x1x2 .

The initial state radiation is dominated by strong processes and should factor from

the electroweak part of the diagrams. We consider the production of a real, stable

W with a �xed mass M . Below we will integrate the cross section with respect to a

Breit-Wigner distribution.

First we consider the cross section for the emission of a single gluon. Since we are

treating the W as a real, stable particle, we have a two-body �nal state. The parton

level cross section is

�̂ =
Z
j ~M j2d

3g

g0

d3Q

Q0

�4(q1 + q2 �Q� g) (5.8)

where we are ignoring overall constants. ~M is the matrix element for the �rst order

diagram, and the term d3g=g0 is the phase space for the gluon, where g0 is the gluon

energy. The phase space for the W is d3Q=Q0. The overall �4-function enforces energy

and momentum conservation, where we have written the gluon and W 4-momenta as

g and Q respectively.

The �nite W lifetime is included below by integrating this cross section with

respect to the generated mass M , weighted by the Breit-Wigner function �0(M2).

To simplify that calculation, we rewrite the W phase space term according to the

identity d3Q=Q0 = d4Q�(Q2 �M2). We further use the identity d4Q = d3QdQ0 =
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(Q0�dQ2
TdyW )dQ0 where yW is the rapidity of the W and Q0 is its energy. Integrating

the �4-function of Equation 5.8 over d3g and dQ0 gives

�̂ =
Z Z

R(QT ;�y)dQ2
Td(�y)�(Q

2 �M2) (5.9)

where R(QT ;�y) � j ~M j2Q0=g0. Here we have written �y � yW � y0, where yW is

the rapidity of the W, and d(�y) = dyW . We will use the Monte Carlo to integrate

this equation by generating random points in QT and �y space. This is discussed in

Section 5.2.

The function R(QT ;�y) describes the distribution of the initial state radiation,

and we will discuss the form of R in the next section.

Energy and momentum conservation requires g = q1 + q2 � Q. Evaluating g2 in

the lab frame, and requiring that the gluon be massless, we get the following relation

between ŝ, QT , Q
2, and �y

g2 = ŝ� 2 cosh(�y)
q
ŝ(Q2 +Q2

T ) +Q2 = 0 (5.10)

This relation is only correct to �rst order. At higher orders in �s, g is replaced by

the 4-vector sum of all emitted gluons, and in that case g2 is potentially non-zero.

Nevertheless, we will use this relation below to connect Q2 to ŝ, QT , and �y.

5.1.3 Functional Form for Initial State Radiation

The function R(QT ;�y), which describes the distribution of the initial state radiation,

is a function of ŝ, QT , and �y. It also depends on Q2, but Q2 is determined by ŝ, QT ,

and �y through Equation 5.10. We separate R(QT ;�y) into a function that depends
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only on QT and a function that describes the rapidity distribution of the initial state

radiation. We write the identity

R(QT ;�y) = �R(QT )�(QT ;�y) (5.11)

where �R � R
R(QT ;�y)d(�y), and � � R= �R.

�R has dimensions of E�2, and therefore the quantity ŝ �R is dimensionless. The

argument of a dimensionless function must also be dimensionless, and we can express

ŝ �R as some function of the quantity QT=
p
ŝ. We de�ne the function

p
ŝ

QT

	(QT=
p
ŝ) � ŝ �R(QT ) (5.12)

We have de�ned 	 with the extra factor of
p
ŝ=QT in front because in the Monte

Carlo we will integrate Equation 5.9 with respect to dQT instead of dQ2
T . We will �t

for 	 using the data, and this �t is the subject of Chapter 7. We have divided QT

by the
p
ŝ to produce the dimensionless quantity QT=

p
ŝ. However, there is another

signi�cant energy in the event which we could have used to produce a dimensionless

quantity. This energy is �QCD. We could also consider it to be the energy below which

the non-perturbative e�ects in the boson PT calculation become signi�cant. Thus, for

QT below or around this cut-o� energy, we do not expect the QT distribution to scale

with the boson mass. We make a correction for this e�ect in Section 5.4.2 below.

For the distribution �, we start with the relation that R(QT ;�y) = j ~M j2Q0=g0.

The parton distribution functions are evolved to an energy scale of Q2, as opposed

to ŝ, and therefore the forward part of the gluon radiation is already accounted for.

We approximate this e�ect by adjusting R such that the forward part is subtracted

out. We de�ne the forward part as the region where Q0 � jQ3j, where Q3 is the
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longitudinal part of the W momentum. We get

� =
j ~M j2(Q0 � jQ3j)=g0R

(� � �)d(�y) (5.13)

=
f1 + (Q2=ŝ)2 � 2Q2

T=ŝg(Q0 � jQ3j)=g0R
(� � �)d(�y) (5.14)

where the symbol \
R
(� � �)d(�y)" corresponds to the integral of the numerator with

respect to d(�y). The term in squiggly brackets is calculated from the �rst order

matrix element [31].

Since we will determine the function 	(QT=
p
ŝ) from the data, we are e�ectively

including all Feynman diagrams at all orders in �s. However, for the �y distribution,

we are only calculating � at �rst order in �s. Moreover, Equation 5.10 is only correct

when g2 is zero, which is not necessarily true when multiple gluons are emitted. g2

will not always be zero, but we can still use Equation 5.10 as long as we perturb

the distribution of �y appropriately. Therefore, our assumed distribution � is only

approximate. We expect it to be an adequate approximation however. The �rst order

calculation begins to fail at low values of QT . At low QT , the �y distribution we are

using is strongly peaked at small values of �y, and has a pole at QT = 0;�y = 0.

We can assume that purely longitudinal gluon radiation is already accounted for by

the parton distribution functions, and we expect the correct distribution also to be

strongly peaked at low values of �y for small QT . Since �y is mostly small, we are

not sensitive to the exact shape of its distribution. At higher values of QT , the �y

distribution has a larger tail, but there we expect the �rst order calculation to be a

good approximation.
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5.1.4 Summary

Equation 5.9 is the parton level cross section to produce a real, stable W with a mass

M . The total parton level cross section will be an integral over all masses, weighted

by the W propagator squared. The W propagator squared is exactly the function

�0(M2) which we have de�ned in Equation 5.6. The �(Q2 �M2) term makes the

integral with respect to M2 trivial, and embedding �̂ in an integral over the parton

distribution functions, we get

�total =
Z 1p

ŝ
	(QT=

p
ŝ)�(QT ;�y)�0(Q

2)p(x1; x2; Q
2)� dx1dx2dQTd(�y) (5.15)

where 	 and � are discussed in Section 5.1.3, and Q2 is a function of QT and �y

through Equation 5.10.

5.2 Generation of Event Variables

We use the Monte Carlo to perform a numerical integral over the 4 integration vari-

ables of Equation 5.15, dx1, dx2, dQT , and d(�y). The integral is calculated by

generating non-uniform distributions and then adjusting an event weight so that the

weighted density of points is uniform. Before the generation the event weight starts

with a value of one.

5.2.1 x1 and x2 Generation

We generate x1 and x2 independently according to the exponential distribution exp(�9x),
and we divide the event weight by exp(�9x1 � 9x2) so that the weighted distribu-

tions are uniform. The exponential is an approximation to the parton distribution
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functions, and this will improve the generation e�ciency.

The center of mass energy squared is ŝ = sx1x2, and y0 =
1

2
log x1x2 .

5.2.2 QT and �y Generation

The lower bound on QT is zero, and the upper bound is the kinematic limit
p
ŝ=2.

The upper limit corresponds to the case of the Q2 = 0.

We generate the variable QT=
p
ŝ according to a histogram between 0 and 0:5

which peaks a low values, and we divide the weight by the value of the histogram at

the generated point. In this way the weighted density of points is at in the variable

QT=
p
ŝ, and we also attain a higher e�ciency of generation since most of the cross

section is at low QT . We then multiply the event weight by
p
ŝ to make the weighted

density of points at in QT .

We can include the function �(QT ;�y) in the numerical integral of Equation 5.15

by generating �y according to a at distribution and multiplying the weights by

�(QT ;�y). To calculate �(QT ;�y), we need to integrate the numerator of Equa-

tion 5.14 with respect to �y, but this is not a simple function to integrate. However,

the e�ect of this normalizing integral is that the QT distribution is identical be-

fore and after the choice of �y. Thus, we account for the normalizing integral by

generating values for �y according to the numerator of Equation 5.14, between the

allowed boundaries for �y. We do not need to calculate the normalizing integral of

Equation 5.14.

For the given value of QT , the upper bound on �y is determined from Equa-

tion 5.10 with Q2 evaluated at 0. The upper bound is the solution to

cosh(�y) =
p
ŝ=(2QT ) (upper bound) (5.16)
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and the lower bound is 0. We are assuming that �y is positive, since all our equations

are symmetric in �y, and later we will choose its sign randomly. As QT ! 0, the

upper bound on �y becomes arbitrarily large. At the same time, the �y distribution

becomes more and more peaked at 0, becoming a pole for QT = 0. To account for

this, we adjust the �y distribution to be �(�y) for QT=(
p
ŝ) < 0:1%. The integral of

this distribution is 1, and for those values of QT , we simply choose �y = 0.

5.2.3 Breit-Wigner Rejection

When we multiply the event weight by the Breit-Wigner function of Equation 5.6,

many of our generated events will be given small weights. To reduce the number

of small weight events that we will run a detector simulation on, we reject events

at this point according to a Breit-Wigner shape. We calculate a Breit-Wigner with

MW = 80:35 GeV and a width which is twice the expected W width. We double the

width because we will vary the mass in our �nal �ts, and we want to generate events

over a wide enough range in Q2.

Normalizing the function so that the maximum is 1, we choose a random number

and reject the event according to the size of the function. If the event is not rejected,

we divide the event weight by the value of the Breit-Wigner. In this way, we produce

fewer events in the Breit-Wigner tails, but we increase their weights so the weighted

distributions remain uniform.

For Z production we apply the same rejection technique, except that the Breit-

Wigner is evaluated at the expected values for the Z mass and width of 91:187 and

2:49 GeV respectively.

115



5.2.4 Flavor Generation

The relative probabilities of the di�erent quark avors are determined by the distri-

bution functions through Equation 5.7. Rather than choose a quark type uniformly

among the di�erent possibilities, it is more e�cient to choose according to the ex-

pected distribution, and then to adjust the event weight. We evaluate the product of

the parton distribution functions at values of x1 and x2 which will give
p
ŝ near the

W mass. We choose x1 = x2 = 80:35=1800, and we then multiply by the appropriate

CKM matrix elements.

These numbers give us a measure of the relative probabilities for the di�erent

avor combinations, and they are shown to three signi�cant digits in Table 5.1. The

table shows that � 75% of W+ events are produced by a u quark from the proton

and a d from the anti-proton.

u c d s

u 0 0 :756 :124
c 0 0 :00678 :0461
d :125 :00359 0 0
s :00388 :0461 0 0

Table 5.1: Relative probabilities for the generation of di�erent quark avors for W+

production. The rows label the quark type in the proton, and the columns in the anti-
proton. We generate the event according to these probabilities to make the generation
e�cient, but subsequent weighting will alter the actual contributions to the �nal event.
The numbers are normalized so that they sum to 1. MRS-R2 distribution functions
were used for the calculation.

After choosing a avor type, we divide the event weight by the probability of

choosing that type. The weighted distribution of quark types will then be uniform.

We generate W+ events according to the probabilities in Table 5.1, and a similar

procedure is followed for W� and Z production.
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5.3 Boson Decay

5.3.1 Angular Distribution

In the lab frame, the 4-momentum of the boson is

(
q
Q2
T +Q2 cosh yW ; QT cos �;QT sin �;

q
Q2
T +Q2 sinh yW )

where � is chosen randomly and the generation of QT , yW = �y + y0, and Q2

is described above. The �rst component is the energy, and the last three are the

x�, y�, and z�components of the 3-momentum. This 4-vector de�nes a Lorentz

transformation which we use to boost into the rest frame.

We consider the two-body decay W ! e� in the boson rest frame. The electron

and neutrino are back to back, and the energy of each is half the generated W mass.

The electron angular distribution is (1 � � cos �)2, where � = �1 and is determined

from the charge of the W and which of the two quarks involved in the hard scatter

comes from the proton. If the quark that comes from the proton is a quark, as

opposed to an anti-quark, then � is equal to the W charge, and otherwise it is the

opposite of the W charge.

The polar angle � is de�ned with respect to the \Collins-Soper" z-axis. This axis

is given by [32]

ẑ / P̂+ � P̂� (5.17)

where ẑ is normalized to be a unit vector, and P̂+ and P̂� are unit vectors pointing

along the proton and anti-proton directions, respectively, in the boson rest frame. A

schematic drawing of the de�nition of this axis is shown in Figure 5.2. In the case

that the W has no transverse momentum, this z-axis will coincide with the proton
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Z

P P

Figure 5.2: Schematic of Collins-Soper axis. The W rest frame is shown. The direc-
tions of proton and anti-proton are labelled p and �p respectively. The dashed line
is the negative of the anti-proton direction. The Collins-Soper z-axis is the dotted
line labelled z, and it bisects the proton direction and the negative of the anti-proton
direction.

direction. To calculate ẑ, we boost the proton and anti-proton from the lab frame

into the W rest frame. In the lab frame, their 4-momenta are
p
s=2(1; 0; 0;�1).

To generate the (1 � � cos �)2 distribution, we produce the electron isotropically.

We then calculate cos � as the dot product of ẑ and the unit vector parallel to the

electron, and the event weight is then scaled by (1� � cos �)2.

The electron and neutrino are then boosted into the lab frame.

The top plots of Figure 5.3 show the generated PT distributions for the W boson

and the decay leptons in simulated W ! e� events. The bottom left plot show the

generated rapidity distribution of the W boson. The bottom right plots shows the

pseudorapidity distribution of the decay leptons after all the cuts have been applied.

All the plots are for the generated quantities before any cuts, except for the bottom

right plot, which has all the cuts applied. The electron PT distribution is softer
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than the neutrino as a result of internal bremsstrahlung. Internal bremsstrahlung

is discussed in the next section. The e�ect of the �ducial cuts can be seen in the

bottom right plot. Electrons with pseudorapidity of � 1:2 can still land in the CEM

if jZvertexj is large enough. Zvertex is generated according to a Gaussian distribution

of width 30 cm. The �ducial cuts deplete the region around zero rapidity because

they remove events that point at the 90� crack.

5.3.2 Radiative Decay

We allow the electron to produce up to two \internal" photons, using the PHOTOS

generator. For Z decays both electrons are allowed to radiate. We only produce

photons above 0:1% of the electron energy. We refer to these photons as \internal"

photons. \External" photons are those which are produced by bremsstrahlung emis-

sion in the material of the detector. The internal photons are signi�cant since they

are often produced at wide enough angles to the electrons that they are not clustered

with the electron. Failure to simulate any internal photons at all would shift the mea-

sured boson masses by � 150 MeV. We have checked that the PHOTOS generator

and the 1985 single photon calculation by Berends and Kleiss give the same result for

the energy which is not clustered with the electron, and also the same result for the

mean of E/p.

The top plot of Figure 5.4 shows the angular di�erence between the electron and

the vector sum of all generated photons. The di�erence in azimuth (��), as well as

the di�erence in pseudorapidity (��) are shown. The bottom plot shows the fraction

of the electron energy taken up by the internal photons. This plot shows the quantity

y � E
E+Ee

where E is the sum of the energies of all the internal photons, and Ee is

the generated electron energy, after the internal photons are produced. The bottom
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Figure 5.3: Generated quantities for Monte Carlo W ! e� events. Top left: Boson
PT . Top right: Electron PT (solid) and neutrino PT (dashed). Bottom left: Boson
rapidity. Bottom right: Electron (solid) and neutrino (dashed) pseudorapidities after
all cuts. All the plots are generated quantities with no cuts applied, except for the
bottom right dashed plot which has all cuts applied. All the plots are normalized to
unit area.

120



plot also shows the distribution of y for events with �� > 15� or �� > 0:2. The

internal photons for these events are less likely to be clustered with the electron. 19%

of events with internal photons have �� > 15� or �� > 0:2, but these events have a

harder y distribution. Internal photons are generated for 26% of the events.

5.4 Di�erences Between Production of W and Z

Events

One signi�cant di�erence between W and Z events is that di�erent quark types are

involved in Z decays. To choose the quark types for Z events, we follow a procedure

analogous to one presented in Section 5.2.4. The di�erence in cross section is discussed

in Sections 5.4.1 below, and the boson PT distributions in Section 5.4.2 below.

5.4.1 Di�erence In Cross Sections

The Z boson has both axial and vector couplings, and so the angular distribution of

electrons from Z decays is di�erent than in W decays. Moreover, we must consider

the contribution and interference from diagrams where the Z propagator is replaced

by a photon propagator. The zeroth order cross section for q�q ! e+e�, up to overall

constants, is

�(q�q! e+e�) =
e2q
Q2

(1 + cos2 �) + �0(Q2)� (5.18)

h
(geV

2 + geA
2)(gqV

2 + gqA
2)(1 + cos2 �) + 8geV g

e
Ag

q
V g

q
A cos �

�2eq(1�MZ
2=Q2)(geV g

q
V (1 + cos2 �) + 2geAg

q
A cos �)

i
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Figure 5.4: Generated quantities for internal bremsstrahlung in Monte Carlo W ! e�
events, before all cuts. Top: Di�erence in azimuth (��) (solid) and di�erence in pseu-
dorapidity (��) (dashed) between the electron and the vector sum of all generated
internal photons. Bottom: y for all internal photons (solid) and for events with
�� > 15� or �� > 0:2 (dashed); where y is the fraction of the electron energy in
the photons. For this plot y is de�ned as the internal photon energy divided by the
sum of the electron energy and the internal photon energy. For the dashed curve,
the internal photons are less likely to be clustered with the electron. 19% of the
events with internal photons fall in the dashed curve of the bottom plot. All plots
are normalized to unit area.
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where gV and gA are the vector and axial couplings of the fermion-Z vertex, cos � is

the polar angle of the electron in the boson rest frame as de�ned in Section 5.3.1,

and eq is the charge of the quark. Here we have written Q2 for the 4-momentum

squared of the propagator, and �0 is de�ned above in Equation 5.6. The �rst term

represents the contribution from the photon propagator, while the �rst term in the

square brackets is the contribution from the Z propagator. The second term in the

square brackets is the photon-Z interference term.

For Z decays we use this equation in place of �0 in Equation 5.15. To generate

the angular distribution of the decay electrons, we simply generate a at distribution

in cos �, and the weighted distribution will be correct since we are now including the

cos � term in the cross section.

5.4.2 Di�erence In Boson PT Distributions

The function �R(QT ) describes the boson PT distribution, as discussed in Section 5.1.3.

In that section, we argued that a dimensionless function can only depend on dimen-

sionless arguments. We divided QT by
p
ŝ, and we de�ned the function 	(QT=

p
ŝ)

in Equation 5.12. There are only two kinematic variables with units of energy other

than QT :
q
Q2 and

p
ŝ. Q2 and ŝ are related through Equation 5.10, and it does not

matter which we choose to divide QT by in the argument.

In theQT region where the calculation of Section 5.1.2 is valid, we expect the boson

PT distribution to depend only on the ratio QT=
p
ŝ [33, 34]. The Z PT distribution will

be higher than the W PT distribution, and the average is higher by �MZ=MW . This

di�erence is included in the Monte Carlo because we generate the events according

to the function 	(QT=
p
ŝ), which only depends on the ratio. By �tting to the Z

PT distribution of the data, we should be able to determine a functional form for
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	(QT=
p
ŝ) which also describes the W data. The top plot of Figure 5.5 shows the

generated W and Z PT distributions. The average of the Z distribution is higher by

� 10%, as expected from the ratio of the boson masses.

The low QT region corresponds to the \non-perturbative" region where we cannot

do an expansion in �s. For the Monte Carlo Z events, since we �t 	(QT=
p
ŝ) with Z

data and do not rely on a perturbative calculation, we are generating events in the

non-perturbative region correctly.

However, above we stated that
p
ŝ and

q
Q2 are the only available quantities to

divide QT by in the argument of 	(QT=
p
ŝ). This is not correct in the low QT region

since there is another energy scale: the \QCD con�nement" scale. For low QT , the

function 	 may depend on QT only, as opposed to the ratio QT=
p
ŝ. Therefore, we do

not necessarily expect the boson PT distribution for the low QT events to scale with

the boson masses. By �tting 	(QT=
p
ŝ) with Z data, we get the correct distribution

for Z events; but since we assume that 	 only depends on the ratio QT=
p
ŝ, the

distribution for low QT W events may be generated incorrectly.

To correct the W PT distribution, we use a calculation by Ladinsky and Yuan [35].

The Ladinsky and Yuan calculation includes a rough cut-o� energy in the region of

QT � 2:0 GeV, below which non-perturbative e�ects become signi�cant. The cut-o�

energy thus de�nes a rough threshold region, above which we expect the W and Z PT

distributions to scale with the boson mass, and below which we expect them to have

roughly the same PT distribution. We use the ratio of W to Z PT distributions from

the Ladinsky and Yuan calculation to correct our generated W PT shape. Without

this correction, the ET shape of theW ! e� data does not agree well with the Monte

Carlo. The ET shape of the data and Monte Carlo are shown in Chapter 9.

For the non-perturbative region, Ladinsky and Yuan use a parameterization which
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Figure 5.5: Top: Generated boson PT distributions for W events (solid) and Z events
(dashed). For the W distribution, the mean and rms are 9:42 and 9:03 GeV respec-
tively. For the Z events, they are 10:36 and 9:56 GeV respectively. Bottom plots:
Left plot is the ratio of the W PT distribution to the Z PT distribution. The triangles
are for our Monte Carlo, and the squares are the Ladinsky-Yuan calculation. The
normalization is arbitrary. The right plot is the ratio of points in the left plot: the
squares of the left plot divided by the triangles of the left plot. The �t curve is
1:0� 0:233 exp(�x=12:0) where x is the boson PT in GeV.
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they �t to di�erent data sets. We expect that uncertainties in the W and Z PT

distributions will largely cancel in the ratio of the two distributions [36].

We generate W and Z events using the Ladinsky and Yuan calculation, and we

also generate W and Z events with our Monte Carlo, where we use a Z PT distribu-

tion which is close to the �tted function of Chapter 7. For the Ladinsky and Yuan

calculation we use the MRS-R2 parton distribution functions. The bottom left plot of

Figure 5.5 shows the ratio of the generated W and Z PT distributions for our Monte

Carlo and for the Ladinsky-Yuan calculation. The Ladinsky-Yuan calculation is sig-

ni�cantly atter in the low PT region, where the above scaling arguments may fail.

The two curves are signi�cantly di�erent for PT below � 15 GeV. The bottom right

plots shows the ratio of the ratios. The points are the Ladinsky-Yuan calculation

of the W and Z PT ratio, divided by our calculation. We correct the Monte Carlo

according to this plot. A �t curve is shown on the bottom right plot, and we adjust

the event weight by this function.

5.5 Summary

We have discussed the generation of the variables which determine W and Z pro-

duction. The events are weighted in such a way that the weighted distribution of

the variables is uniform. The 4-vectors of the decay products and associated weight

and other information are then written out to disk. A detector simulation will later

be applied to the quantities written out to disk. We will multiply the event weight

by the value of the integrand of Equation 5.15, and in this way each event will be

weighted according to its contribution to the total cross section. When we weight

by the integrand, we do not include the contribution from � since that function was
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accounted for in the generation of the �y.

We evaluate the distribution functions before we write out the event, but for the

W simulation, we do not evaluate either the zeroth order cross section, �0, or the

boson PT function, 	, until after the detector simulation. We do this so that we can

vary the parameters of those functions while �tting the output of the Monte Carlo

to the data. For the Z events, 	 is the only part of the integrand that we leave

unevaluated until after the detector simulation.
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Chapter 6

Electron Simulation

We have two independent measurements of the electron energy: the CTC measure-

ment of p and the calorimeter measurement of E. The CTC simulation is presented in

Section 6.1, and the calorimeter simulation in Section 6.2. In Sections 6.3 and 6.4, we

describe a method for simulating the removal of the electron towers for the calculation

of ~U , and for the simulation of the extra energy included in the electron cluster. In

Section 6.5, we discuss how the Ntracks cut is simulated.

6.1 CTC Simulation

It is necessary to simulate the CTC measurement of the electron track, ~P , for several

reasons. We cut on PT , requiring PT > 15 GeV. Moreover, we use the simulation in

Chapter 11, where we attempt to tie the calorimeter scale to the CTC scale by using

the E/p distribution. Finally, the track parameter cot � is used in the data to de�ne

ET since we use ET � E � sin �, and so it is desirable to have a simulation of the

cot � measurement.

In Section 6.1.1, we discuss the material before and in the CTC; and in Sec-
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tion 6.1.2, we discuss photon bremsstrahlung before and in the CTC. Section 6.1.3

discusses the simulation of the CTC measurement, and in Section 6.1.4 we discuss

the altering of the track parameters through the beam constraint.

6.1.1 Material Distribution

For the simulation of bremsstrahlung, discussed below, we need to know the location

and quantity of the material in the detector, in radiation lengths. We use a sample

of photon conversion events  ! ee [37] to determine these quantities. The photon

conversion sample is de�ned in [37], and the results of this section are derived from

the results and methods of [37].

The conversion events are selected from a sample of low ET inclusive electrons.

The conversions are identi�ed by searching for two oppositely signed electron tracks

whose helices pass near each other and which are roughly parallel at their point of

closest approach. The requirements on the helices are

jSepj < 0:3 cm (6.1)

� cot � < 0:03

where Sep is the separation of the two helices in the xy-plane, and �cot � is the

di�erence between the cot � parameters of the two tracks. In the xy-plane the tracks

trace out arcs of circles, and Sep is the distance between the two circles along a line

connecting the centers of the circles.

The position at which the tracks overlap marks the location of the photon conver-

sion. The resolution of the radial position of the conversion is improved by adjusting

the helix parameters so that Sep is forced to be zero, and so that the photon momen-
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tum vector is forced to point back to the beam spot. The momentum of the photon is

reconstructed from the two decay electron tracks. After this improvement, the radial

position of the conversions is determined with a resolution of 4:14 mm.

More than 200; 000 photon conversion events are identi�ed [37]. The conversion

events are from Run 1A data. The only di�erences between the 1A and 1B detectors

are changes in the SVX. The 1B SVX has slightly more material than the 1A, but

the di�erence is small. To account for this di�erence, the total number of observed

conversions should be increased by � 0:5%.

We partition the detector into volumes which correspond to the di�erent compo-

nents of the detector, and we determine how many conversions, N , are found in each

volume. For a photon passing through a given volume, the probability of conversion

is

7

9
�x � �=x0 (6.2)

where �x is the distance travelled by the photon in the volume, � is the mass density

of the material, and x0 is the radiation length of the material in units of mass per

area. The total number of conversions in a given volume is then

N =
7

9

�

x0

X
photons

�xi (6.3)

where the sum is over all incident photons. To calculate the sum, we use the con-

versions which occur in the inner wall of the CTC. For each of these conversions, we

form a line from the event vertex to the conversion point. For every volume that

the line passes through, we calculate the length of the line segment that occurs in

that volume. We weight each line segment by sin �, where � is the polar angle of the

photon. This weight corrects for the bias in the CTC inner wall sin� distribution
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which occurs because particles incident at smaller angles pass through more material.

We repeat this calculation for all the conversions found in the CTC inner wall.

For each volume, we sum the length of all the line segments in that volume. We

write the sum of the segments as L. For each volume, L is proportional to the sum

in Equation 6.3. Equation 6.3 then gives

�

x0
/ N=L (6.4)

The variable L allows us to correct the conversion data for the uneven ux of initial

photons through the di�erent volumes. The uneven ux results from the event vertex

distribution, as well as the angular distribution of the photons.

The quantity �=x0 is the number of radiation lengths per distance of material. If

a particle makes a step �X through material with a given value for �=x0, it will pass

through (�X)� (�=x0) radiation lengths.

We make a correction for a selection bias in the conversion pairs. The selection bias

occurs because the initial conversion sample has a minimum CEM ET cut, and this

cut is more likely to be passed if both tracks land in the same tower. For conversions

at high radius, the resulting tracks will have separated less when they reach the CEM

than conversions at lower radius. The e�ciency to �nd conversion pairs is found to

increase with radius at a rate of 0:0077 per cm in radius. We correct for this e�ciency

by decreasing the value for �=x0 for each volume, depending on the radial position of

the volume.

We also make a small correction for the attenuation of the initial photon ux as

the photons pass through the material.

Equation 6.4 only determines the distribution of �=x0 to an overall constant of
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proportionality. The material of the inner wall of the CTC is used for the normal-

ization. This material has been determined to present (1:26 � 0:06)% of a radiation

length to particles traveling at � = 90� [38]. To determine a constant of proportion-

ality in Equation 6.4, we �rst calculate the number of conversion events that occur in

the CTC inner wall and also the number of conversion events before the CTC. Each

event is weighted by the e�ciency correction and a photon attenuation correction.

We write the weighted number of events in the CTC inner wall as NINNER, and

the number before the inner wall as NBEFORE. On average the photons pass through

NINNER +NBEFORE

NINNER
� < 1= sin � > �1:26 = 7:34 � 0:05(stat)� 0:39(sys) (6.5)

percent of a radiation length before the CTC active volume. The quantity< 1= sin � >

is the average value of sin � for events in the CTC inner wall. This number is necessary

since 0:0126 is the number of radiation lengths in the CTC inner wall for particles

incident at 90�. Away from 90�, the particles pass through 1= sin �� 0:0126 radiation

lengths. The statistical uncertainty on Equation 6.5 is negligible compared to the

calibration uncertainty. The calibration uncertainty is dominated by the uncertainty

on the material of the CTC inner wall.

To determine the constant of proportionality of Equation 6.4, we use all the con-

version photons found in the CTC. We step the photons through our simulation,

counting the total number of radiation lengths they pass through. As in the calcula-

tion of L, we include a weight factor of 1= sin � to account for the biased � distribution
of the CTC inner wall. We adjust our constant of proportionality so that the average

number of radiation lengths that the photons pass through in our simulation is the

same as Equation 6.5.

132



When we step simulated W ! e� electrons through the simulation, after all the

W ! e� cuts are applied, we calculate the electrons pass through 7:20% of a radiation

length on average. The similarity between this number and Equation 6.5 indicates

that the W decay electrons have a similar angular distribution to the photons of the

 ! ee sample.

The photon conversions only determine the amount of material before the CTC

active volume. For the material inside the CTC active volume, the simulation averages

the CTC gas and wires to form a homogeneous substance with �=x0 = 0:0001865=cm.

Averaging the gas and wires together to form a homogenous material in the Monte

Carlo does not e�ect the total rate of bremsstrahlung. Also, it will not signi�cantly

alter the radial distribution of bremsstrahlung because the wire planes in the CTC

are relatively close together, with a radial separation � 1 cm.

Figure 6.1 shows the radial position of bremsstrahlung events in simulatedW ! e�

events. The bremsstrahlung simulation is discussed in the next section. The events

below � 14 cm correspond to the SVX material, and the peak at � 27 cm is the CTC

inner wall. The material of the VTX is also visible between the CTC inner wall and

the SVX. The at region above the CTC inner wall corresponds to the material of

the active volume of the CTC.

The bottom plots of Figure 6.2 show the amount of material used in the simulation.

The plots show the distribution of the number of radiation lengths traversed by the

primary electrons in Monte Carlo W ! e� events. The left plot only includes the

material before the CTC active volume, and the right plot only includes the CTC

active volume. The average amount of material traversed by the electrons before the

CTC active volume for these plots is 7:2% of a radiation length.
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Figure 6.1: The radial distribution of bremsstrahlung in Monte Carlo W ! e� events.
The distribution is only shown to the middle of the CTC, but bremsstrahlung is
allowed to occur in the Monte Carlo in the entire CTC. The average radius of
bremsstrahlung for the Monte Carlo is 22:9 cm, where only the inner half of the
CTC is included in the average. The normalization of the plot is arbitrary.
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Figure 6.2: Top: E/p distribution of data for events in theMT �tting region. Bottom:
Number of radiation lengths traversed by primary electrons in simulated W ! e�
events, before the CTC active volume (left), and in the CTC active volume (right).
The bottom distributions are normalized to unit area.
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6.1.2 Bremsstrahlung Simulation

We start the simulation of the CTC measurement with the generated electron 4-

vector, which was written out to disk, and we convert the 4-vector to track parameters

~�, which have no measurement error. The electron undergoes photon bremsstrahlung

in the material before the CTC and also inside the CTC. These photons will be

included in the calorimeter measurement but never in the CTC measurement. This

is a signi�cant bias in the CTC track measurement which we simulate. The top plot

of Figure 6.2 shows the E/p distribution for the data. The high-end tail is a result

of hard bremsstrahlung events where the photon is included in the ET measurement,

but not the PT measurement.

We step the simulated track through the material and decide at each step whether

a brem occurred or not. The distribution of material is described in the previous

section. If we step through dt radiation lengths, then the probability of creating a

bremsstrahlung photon is [39]

dt �
Z 1

ymin=:001
p(y)dy (6.6)

where y is the fraction of the electron energy given up to the photon, and ymin is the

minimum value of y we choose to simulate. p(y) is the distribution of y and is given

by [39]

p(y) =
1

y
[(1� y)(

4

3
+ k) + y2] (6.7)

The constant k is a small correction, on the order of 3%, which depends on the

assumed material type in the detector. If we decide that a photon brem occurred,

then we generate a photon which takes away a fraction of the electron energy given

by y, where y is generated according to Equation 6.7. We then adjust the electron
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track parameters and continue stepping through the material.

At every step, we allow any photon which has been generated to convert to e+e�

pairs, and conversion occurs with a probability given by 7
9
dt. This includes the internal

photons produced at the initial generation. These pairs are used to check if the event

fails the Ntracks = 1 cut.

6.1.3 CTC Measurement

If there are no bremsstrahlung photons created in the CTC, then we assume that

the �nal track parameters describe the track which enters the CTC. We calculate a

covariance matrix eC for the 5 track parameters. The calculated covariance matrix

depends on which CTC layers are used in the track reconstruction, and we randomly

choose a layer pattern from real electrons in W ! e� events.

It is a well known problem at CDF that the calculated covariance matrix needs

to be scaled by a factor � 2 to correctly describe the data. The need for this scale

factor is not well understood. We use the E/p distribution to calculate a covariance

scale factor, and this is one of the subjects of Chapter 11. We vary the scale factor

until the E/p distribution of data and Monte Carlo agree.

The E/p distribution is useful for determining the PT resolution since the E/p

width is dominated by the PT resolution. The fractional E resolution for W decay

electrons is � 2:7%, while the fractional PT resolution is � 4%. Since ET = E sin �

and E/p=ET =PT , it is possible that the sin � resolution also contributes signi�cantly.

We calculate the sin � resolution by varying cot � according to the �2cot � term of the

scaled covariance matrix. We �nd the resolution varies from �(sin �) = 0:001 for

� � 80� to �(sin �) = 0:002 for � � 30�. These values are negligible compared to the

E and PT resolutions.
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After we scale the covariance matrix, we \smear" the track parameters according

to

~�! ~� + �(~�) (6.8)

where �(~�) is a random variable drawn according to eC.
If there are brems in the CTC, then we have several di�erent track segments which

connect inside the CTC, but which have di�erent track parameters. We assume that

the CTC measurement produces a linear combination of the di�erent track segments.

For example, if there is exactly one brem in the CTC, then we have a track segment

before the brem described by the track parameters ~�before, and we also have a track

segment after the brem described by ~�after. To combine these two segments, we

calculate two covariance matrices, eCbefore which only uses CTC layers before the

brem, and eCafter which only uses layers located after the brem. We take the combined

track to be

~� = eC( eC�1

before~�before +
eC�1

after~�after) (6.9)

where eC = ( eC�1

before +
eC�1

after)
�1 is the assumed covariance matrix for the measured

track. An analogous procedure is performed for the case of more than one brem inside

the CTC. As above, we scale eC and smear the track parameters.

This procedure of combining the di�erent track segments to form ~� gives shorter

segments a smaller weight than longer segments. The shorter segments go through

fewer CTC layers and have a worse resolution, and this is reected in their covariance

matrix. They then contribute to Equation 6.9 with a smaller weight.

Track segments which begin near the outer radius of the CTC will be shorter on

average than segments which begin near the inner radius; and for this reason, brems

which occur near the outer radius have a smaller e�ect on ~� than brems which occur
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near the inner radius. As a rule of thumb, one can consider that the CTC presents

an e�ective number of radiation lengths to electrons that is � 1
2
of what is shown in

Figure 6.2.

6.1.4 Beam Constraint

In Chapter 3 in Section 3.1.2 we discussed the beam constraint and the bias introduced

by beam constraining tracks which have undergone signi�cant bremsstrahlung.

To account for this bias, we apply the beam constraint to the Monte Carlo as

well as to the data. Any bias introduced by the beam constraint in the data should

be reproduced in the simulation. The simulated beam spot is distributed in the xy-

plane around the origin according to a Gaussian distribution of width 60� in each

direction. This number is the assumed resolution for the beam spot in the data. By

beam constraining to the origin, we are placing the Monte Carlo beam spot at the

origin. This is in contrast to the data where the beam spots are o�set from the origin

by several millimeters. For the beam constraint calculation, we use the covariance

matrices calculated above, and we use the same beam constraint code as is used for

the data.

In Chapter 3 we plot qD0 for the data and the Monte Carlo, in Figure 3.1. The

peak position of the Monte Carlo in this plot agrees well with the data, which indicates

that we are correctly simulating the bias in qD0 from bremsstrahlung. The bias on

qD0 will result in a bias on the beam constrained PT . We can use the average of the

peak of qD0 and Equation 3.2 to calculate the average bias from the beam constraint.

The average fractional change in PT is � 0:55% for a 40 GeV track. This is not

a negligible shift; but the average o�set for qD0 in the data agrees with the Monte

Carlo, and since we calculate the track covariance matrices in the Monte Carlo using
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W ! e� data, the bias will be the same for the data and Monte Carlo.

6.2 Calorimeter Simulation

The calorimeter simulation begins with the electron after it has undergone the photon

bremsstrahlung of Section 6.1.2. We extrapolate this track to the position of the

calorimeter, and we apply the same �ducial cuts as we applied to the data.

We determine which calorimeter tower the electron extrapolates to, and we de�ne

a cluster region around this tower. As in the data, this region is de�ned as �1 towers
in the z direction except that we do not allow clusters to extend across the 90� crack.

We examine all electrons and photons which have been produced by the simulation,

and we sum the energies of all those which extrapolate to the cluster towers. The

particles we examine include the primary electron, as well as internal and external

bremsstrahlung photons, and also electrons from photon conversions.

By adding the energies of all the electrons and photons which land in the cluster,

we are assuming that the calorimeter response is linear over a wide range of energies,

from � 40MeV to � 40 GeV. The lower number, � 40 MeV, is determined from the

minimum allowed photon bremsstrahlung, which is 0:1% of the electron energy. In

Chapter 11, we will examine the extent to which this assumption e�ects the measured

W mass.

When we determine which towers are part of the electron cluster, we also determine

which towers are removed for the ~U calculation. The towers of the electron cluster

are removed; and if Xstrips < �6 cm, then the towers which border the cluster and

are lower in azimuth are removed; and if Xstrips > 6 cm, then the border towers which

are higher in azimuth are removed. These are the same criteria that are applied to
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the data in Section 3.1.3. Any simulated electrons or photons which do not land in

the removed towers are added to ~U .

We simulate the calorimeter resolution with a simple Gaussian smearing function.

If the summed cluster energy is E, then we adjust the energy to its \measured" value

as E ! E + �E, where �E is a Gaussian distributed random variable with zero mean

and width �E. The width �E is given by

�E
E

=

r
(13:5%=

q
ET )2 + �2 (6.10)

The 13:5% stochastic term is determined from test beam data, and for that term ET

is assumed to be measured in GeV. The constant term � is included to account for

additional sources of resolution such as tower-to-tower variations and variations with

time. We �t for � with the Z data, and this is the subject of Chapter 10. The default

value is � = 1:6%:

6.3 Tower Removal Simulation

When we calculate ~U in the data, we remove towers which are in the electron cluster or

near it. The towers that make up the electron cluster are removed; if Xstrips < �6 cm,
then the towers which border the cluster and are lower in azimuth are removed; and

if Xstrips > 6 cm, then the border towers which are higher in azimuth are removed.

Depending on the position of the electron, up to 6 towers may be removed. This

procedure creates a hole in the calorimeter at the position of the primary electron.

The hole biases Uk since Uk is ~U projected along the electron direction. A bias in Uk

can bias MT , and it is important to simulate the removed energy.

To model the removed energy, we use real W ! e� events and examine the
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calorimeter in regions which are not near the primary electron. For each event in

the W ! e� sample, we make fake electron clusters whose seed towers have the same

value for �detector as the primary electron. The fake clusters contain the same number

of towers as the primary electron cluster (�1 towers in the z direction except not

crossing the 90� crack). For each tower in the cluster, we apply a 100 MeV energy

threshold for the electromagnetic and hadronic energies separately, since this is what

we do for the ~U calculation in the data; and for each cluster, both the electromagnetic

and hadronic ET are recorded.

For each fake cluster, we also record how many tracks extrapolate to the cluster,

where only tracks which originate within �5 cm of the event vertex and which have

PT > 1 GeV are considered. We refer to the number of tracks as Nother. This variable

is used to simulate the Ntracks � 1 cut, which is applied to the data. The simulation

of this cut is further discussed in Section 6.5. Only fake clusters with Nother = 0 are

used to make corrections in the Monte Carlo.

We do not want the fake clusters to be contaminated with energy associated with

the primary electron, and so we do not use the 3 fake clusters that are within �1
towers of the primary electron, in the azimuthal direction. The CEM is divided in

azimuth into 24 wedges, and 3 of the wedges are not used. This leaves 21 fake clusters

for each real W ! e� event.

The ET of the fake clusters is shown in Figure 6.3. Both electromagnetic ET as

well as the sum of electromagnetic and hadronic ET are shown. Only fake clusters

with Nother = 0 are included in the plots, and the plots otherwise include all 21

fake clusters for all real W ! e� events. The average electromagnetic ET of the fake

clusters is 82 MeV, which is � 0:2% of the primary electron ET . The average of the

sum of the electromagnetic and hadronic ET is 110 MeV. Since we sometimes remove
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the neighboring clusters in the calculation of ~U , removing 1:67 clusters on average,

the average energy removed is predicted to be � 180 MeV.

We expect the energy in the fake clusters to be correlated not only to j~U j and
P
ET , but also to the azimuthal position relative to the direction of ~U . Figure 6.4

shows the average ET of the fake clusters as a function of the three variables ��,

j~U j, and PET , where �� is the di�erence in azimuth between the fake cluster and

the direction of ~U . ~U is a measure of the jet energy that balances the W PT , and a

correlation is expected with �� since if ~U is directed at a given tower, that tower will

have more energy; and if it is directed away from a tower, that tower will have less

energy. Similarly, if j~U j or PET is higher, there will be more energy in the event,

and we expect the average fake cluster energy to be higher. The plots show clear

correlations with all three variables.

It is important to include these correlations in the simulation. For example, ��

is directly correlated to the ET of the primary electron. The boson PT can add to or

subtract from the ET of the electron in the W rest frame. If it adds, the recoil energy

will tend to be directed opposite the electron direction; and if it subtracts, the recoil

energy will tend to be along the electron direction. Thus, larger ET events will tend

to have �� around 180�, and the towers associated with the electron will include less

recoil energy.

The correlations with all three of the variables are included in the simulation by

partitioning the list of fake clusters according to
P
ET , j~U j, and the angle each cluster

makes with respect to ~U .

For a given Monte Carlo event, we decide how much energy to associate with

the removed towers as follows. We divide up the W events according to j~U j and
P
ET . We then take our simulated values for j~U j and PET and choose a real event
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Figure 6.3: Average ET of fake cluster for real W ! e� events. The top plot is the
electromagnetic ET only, and the bottom plot is the electromagnetic plus hadronic
ET . The means and rms of the distributions are shown on the plot. 1:67 clusters are
removed on average in the calculation of ~U , and the bottom plot predicts that the
average energy of these clusters should be � 1:67 � 110 MeV = 180 MeV. All fake
clusters which have Nother = 0 are included in the plots.
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Figure 6.4: Average ET of fake clusters as a function of event model variables, for
real W ! e� events. The triangles are electromagnetic plus hadronic ET , and the
squares are electromagnetic only. The top plot is the average vs �� between the fake
cluster position and the direction of ~U . The middle plot is vs j~U j, and the bottom
plot is vs

P
ET . Only fake clusters with Nother = 0 are used in the averages.
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at random that has similar values. The simulation of j~U j and PET are the subjects

of later chapters. We then calculate ��, where �� is the azimuthal angle between

the simulated electron position and the simulated value for ~U . We choose the fake

cluster which occurs at the same angle ��, except that �� for the fake cluster is

calculated relative to the real value of ~U in the real chosen W event. In this way,

we include the dependencies on ��, j~U j, and PET . If the fake cluster we want is

unusable because it is too close to the real electron in the W event, then we choose

another event.

For Monte Carlo events where the simulated Xstrips position is outside of �6 cm,
we also remove a cluster which neighbors the electron cluster. For these events, we

repeat the above procedure, but with �� o�set by one tower in azimuth. The same

real W event that was used to choose the �rst fake cluster is used again if possible.

We correct ~U for the removal of the towers as

~U ! ~U � �U ê (6.11)

where �U is the ET of the fake clusters that we found, and ê is the direction of the

electron track in the xy-plane. The average for �U is 190 MeV. Thus, the Monte Carlo

makes a 190 MeV correction on average to Uk to simulate the bias that occurs from

removing towers in the calculation of ~U . This average is slightly di�erent than the

prediction from the bottom plot of Figure 6.3, which is discussed above. Figure 6.3

includes all clusters of every real W event, while the calculation of �U uses the W

events and fake clusters based on the simulated values of j~U j, PET , and ��.
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6.4 Underlying Energy Simulation

As discussed in Section 3.4, energy unassociated with the W decay electron can

sometimes fall on top of the CEM cluster. This is included in the simulation using

the same method of Section 6.3. Up to two fake clusters were chosen in Section 6.3

to account for the energy removed in the calculation of ~U : one which is associated

with the simulated primary electron, and one which is associated with a neighboring

cluster if jXstripsj > 6 cm. We use the same fake clusters, but only consider the cluster

associated with the simulated primary electron.

The electromagnetic energy in this fake cluster is added to the electron ET in the

simulation. We make the correction

ET ! ET + �E (6.12)

where �E is the electromagnetic ET of the chosen fake cluster. The average value for �E

is 90 MeV. This is an average correction of � 0:23% on the electron ET . This average

correction is slightly di�erent than the prediction from the top plot of Figure 6.3.

Some di�erence is expected as mentioned at the end of the previous section.

In Section 6.3 we apply 100 MeV threshold for electromagnetic and hadronic

energy in each tower. For the electromagnetic energy added to ET , we do not apply

any thresholds.

6.5 Ntracks Simulation

The data includes the cut that Ntracks � 1. This cut produces a small bias on the

P
ET and ~U distributions, since it prefers events that have fewer unassociated tracks.

147



If we look at fake clusters without requiring that Nother = 0 we �nd that the

average electromagnetic plus hadronic ET per cluster is 130 MeV. The variable Nother

is de�ned in the previous section, and it is the number of tracks that point at a cluster

which have Z0 within �5 cm of the event vertex and which have PT > 1 GeV. 1:6%

of the fake clusters have Nother � 1. If the primary electron had pointed at one of

those clusters, the event would have failed the Ntracks cut. This small subset of the

fake clusters, however, has an average ET of 1360 MeV, which is signi�cantly higher

than the clusters without the tracks. Because of the Ntracks cut, the data does not

include a contribution from this subset, and removing these towers reduces the overall

average from 130 to 110 MeV. This corresponds to a shift in Uk of 20 MeV.

This e�ect is easily accounted for however, and we do so by recording the value

of Nother for each fake cluster. When we choose a fake cluster to associate with the

simulated electron, we check how many tracks point at that cluster. If the number is

not zero, then we consider the simulated event to have failed the Ntracks cut, and we

throw the simulated event away.

Figure 6.5 shows the probability of failing the Ntracks cut as a function of the same

variables as in Figure 6.4. Explicitly, we are plotting the fraction of the fake clusters

which have 1 or more tracks pointing at them, as a function of the di�erent variables.

We consider all the fake clusters in all W ! e� events, except for the clusters within

�1 tower in azimuth of the primary electron.

The top plot of Figure 6.5 shows that the failure probability is lower for �� � 180�

than for �� � 0� and 360�. The fake clusters with �� � 180� have the recoil energy

directed opposite the clusters, and there are fewer tracks pointing at these clusters.

Similarly, the bottom two plots show that the probability of having a track associated

with a fake cluster is proportional to the amount of energy in the event. The amount
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Figure 6.5: Probability of failing Ntracks cut for the fake clusters. The probability is
the fraction of fake clusters which have 1 or more tracks pointing at them. The top
plot is the probability vs �� between the fake cluster position and the direction of
~U . The middle plot is vs j~U j, and the bottom plot is vs

P
ET .
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of energy increases with the recoil energy j~U j (middle plot), and also
P
ET (bottom

plot).

Our simulation of the Ntracks � 1 cut also includes electrons from the conversion,

 ! ee, of both external and internal photons. The photon conversions are discussed

in Section 6.1.2 above. Electrons from photon conversions can cause the event to

fail the Ntracks � 1 cut. We examine the conversion electrons that extrapolate to

the simulated cluster. If any of those electrons were produced in the �rst half of the

CTC (at a radius of less than 81:45 cm), then we assume that the real CTC would

reconstruct the track. If the PT of such a track is above 1 GeV then we consider the

event to fail the Ntracks � 1 cut, and we throw the event away. Figure 6.6 shows the

PT of the conversion electron for Monte Carlo events that fail the Ntracks cut because

of the conversion electron. 0:4% of the simulated W ! e� events fail for this reason,

and Figure 6.6 is normalized to 0:4% of the real W data. The plot drops o� around

1 GeV because the conversion electron must have PT high enough to extrapolate to

the electron cluster.

6.6 Summary

We have presented the basics of the PT simulation, which includes photon bremsstrahlung

as well as a simulation of the CTC resolution and the beam constraint. This is most

signi�cant for trying to tie the calorimeter energy scale to the CTC scale, and we

will do this in a later chapter. We have also discussed the calorimeter simulation.

The simulation sums the energies of the primary electron and associated particles

and applies a gaussian resolution. By excluding energy which does not point at the

cluster, we allow the possibility of some of the radiated energy being lost. In this way
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Figure 6.6: PT of the photon conversion electron that lands in the primary electron
cluster, for Monte Carlo events that fail the Ntracks cut because of the conversion
track. 0:4% of the Monte Carlo events fail because of the conversion track, and the
plot is normalized to the predicted distribution for real W ! e� events.
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a radiative correction is included in the simulation.

We have also presented a technique to embed the simulated events in real W

events in such a way as to account for the bias introduced by our lepton removal

procedure. This technique also allows us to simulate the Ntracks cut by looking for

secondary tracks in the real event. An event can also fail the Ntracks cut because of

photon conversions, and this possibility is considered in the simulation.

Another potential bias on Uk arises if the photons or their conversion electrons do

not get included with the electron cluster. If they point at the neighboring towers and

those towers are removed in the ~U calculation, then there is no bias, but otherwise they

will end up in the calculation of ~U and can bias Uk. We consider these possibilities,

and such particles are added to our simulated value of ~U .
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Chapter 7

Boson PT Determination

In this chapter we �t the Z data to �nd a P boson
T distribution to use in the event

generator. The Monte Carlo input P boson
T distribution is determined by the weighting

function 	, as discussed in Chapter 5. We vary the Monte Carlo event weights by

varying the function 	, and in this way, we alter the input P boson
T distribution. To �t

to the Z data, we use the output of the Monte Carlo. We form the Z PT distribution

using the simulated, measured values for the two decay electrons, and we compare

this distribution to the Z PT distribution of the data. The weighting function, 	, is

varied until the two distributions agree.

The function 	 is a function of the variable XPt, as discussed in Chapter 5, where

XPt is de�ned as the ratio QT=
p
ŝ. The quantity XPt is written out to disk in the

event generation, along with the event weights and decay particle 4-momenta. The

functional form for 	 is chosen to be

	(x) = xp[(1� f ) exp(�ax)ap+1 + f exp(�bx)bp+1] 1

�(p + 1)
(7.1)

where a, b, f and p are parameters that we will �t for by comparing the Monte Carlo Z
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PT distribution to the data. The factor xp forces the function to go to zero as x! 0,

as long as p > 0. The terms in the square brackets are the sum of two exponentials.

The terms ap+1, bp+1, and 1=�(p+1) are normalization terms that force the function

to integrate to 1.

For the Z data and Monte Carlo, we do not cut on j~U j or on variables which are

derived from ~U . Thus, our P boson
T �t is mostly independent of the model parameters

for ~U , which are discussed in the next chapter. There is a small dependence on

the ~U model, however, since we run the Monte Carlo Z events through the electron

simulation described in Chapter 6, and that simulation has a dependence on
P
ET and

~U because of the Ntracks cut. This does not present a problem since we have iterated

the �tting procedure several times, and the Z PT �t has only a small dependence on

the details of the
P
ET and ~U shapes.

We do a binned likelihood �t to the data. We histogram the Z PT distribution

of the data in 45 bins from 0 to 45 GeV, and we do the same for the Monte Carlo

except that the Monte Carlo histogram is weighted. For each Monte Carlo event, the

event weight is multiplied by 	, and the resulting weight is used in the histogram.

We vary the three input parameters to �nd a minimum of the function

L = �2�X
bins

[��iT + ni log(�iT )] (7.2)

where ni is the number of data points in bin i, and �i is the sum of the weights of the

Monte Carlo events in bin i. The quantity T normalizes the Monte Carlo to the data

and is the number of data points divided by the sum of all the Monte Carlo weights.

We will refer to the �nal �t parameters as ~�x. After �tting with slightly more
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than 975; 000 Monte Carlo events, the �t gives

~�x �

0
BBBBBBBBBB@

a

b

f

p

1
CCCCCCCCCCA
=

0
BBBBBBBBBB@

54:8

18:2

0:642

1:40

1
CCCCCCCCCCA

(7.3)

The covariance matrix returned by the �t is

eCx =

0
BBBBBBBBBB@

�2(aa) �2(ab) �2(af) �2(ap)

�2(bb) �2(bf ) �2(bp)

�2(ff) �2(fp)

�2(pp)

1
CCCCCCCCCCA
=

0
BBBBBBBBBB@

279 56:9 0:324 6:26

12:5 7:63 � 10�2 1:29

4:65 � 10�3 �2:15 � 10�3

0:166

1
CCCCCCCCCCA

(7.4)

where we have only listed the upper triangular part of the matrix and have rounded

o� the numbers to three signi�cant digits.

The top plot of Figure 7.1 shows the Z PT distribution for data with the best

Monte Carlo �t superimposed. The mean and rms of the data agree well with the

mean and rms of the Monte Carlo. We sum the squares of the di�erence between

data and Monte Carlo, bin by bin, divided by the squares of the uncertainties on each

point. This quantity should be a �2-distribution for 41 degrees of freedom (45 bins less

the 4 parameters of the �t). We get the value �2=dof = 0:90. This indicates good

agreement between data and Monte Carlo, and indicates that we have introduced

enough degrees of freedom into the form of 	 to get a good �t. The bottom plot of

Figure 7.1 shows 	 for the �nal �t parameters ~�x.

To determine the uncertainty associated with the 975; 000 Monte Carlo events,
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Figure 7.1: Top: Z PT distribution of Z data (points) and Z Monte Carlo (histogram).

The Monte Carlo uses the �nal �tted values for ~�x. The mean and rms of the data
and Monte Carlo are shown on the plot. Bottom: The function 	 for the �nal �tted
values for ~�x. The error bars at each point in the bottom plot indicate the range of
values consistent with the statistical uncertainty of the �t. The y-axis scale on the
bottom plot is arbitrary.
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we split the Monte Carlo into 10 independent subsamples of 97; 000 events each.

We re�t with each subsample, and we label the set of �t parameters from the ith

subsample as ~�x
i
. To measure of the variation of the �ts, we calculate the quantity

� � (~�x

i � ~�x) � eC�1

x � (~�x

i � ~�x), where eCx is the covariance matrix that is derived

from the full Monte Carlo �t. eCx represents the statistical uncertainty associated

with the real data, and � is a measure of how the �ts are varying relative to the

statistical error on the data.

If the covariance matrix eCx correctly describes the statistics of the 10 subsamples,

then the 10 values for � should be distributed as a �2-distribution for 4 degrees of

freedom. The distribution should have a mean of 4. The distribution of the 10 values

has a smaller mean. The 10 values for � are distributed with a mean of 0:2 and an rms

of 0:12. Therefore, for eCx to correctly describe the statistics of the 10 subsamples, we

need to scale it by the measured mean of 0:2 divided by the expected mean of 4. Since

the full Monte Carlo has ten times the statistics of each of the subsamples, we need

an additional factor of 1=10 to describe the full Monte Carlo. Thus, the contribution

to the covariance matrix from the Monte Carlo is a factor of (0:2=4)� (1=10) = 1=200

smaller than the contribution from the data. We conclude that the Monte Carlo

sample is adequately large, and that we can neglect its contribution to the statistical

uncertainty.

The measured Z PT depends on the ET of the two electrons, but we have not yet

determined an energy scale. As a check that the �t is not sensitive to the assumed

energy scale, we scale the energy in the data by �1%, which is a large variation. We

scale the ET in the data of both electrons before applying the cuts, and we recalculate

Z PT . We check how the �t results vary relative to the statistical error on the �ts.

We form the quantity � � (~�x

�1%� ~�x) � eC�1

x � (~�x

�1%� ~�x), where ~�x

�1%
are the �t
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results after scaling the energy by �1%, and ~�x are the original �t values. As above,

eCx is the covariance matrix that describes the statistical uncertainty of the original

�t.

We get the values � = 0:2 for the �t which had the energy increased by 1%, and

� = 0:3 for the decrease of 1%. These are small values for a 4�parameter �t, and
they indicate that the changes in the �t parameters from varying the energy scale are

small compared to the statistical uncertainty on the parameters. We conclude that

the systematic uncertainty in ~�x from the energy scale is negligible compared to the

statistical uncertainty.
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Chapter 8

Calorimeter Response Model

The neutrino from W ! e� decays leaves no energy in the detector, and we infer its

transverse energy from the /ET . Since /ET = j ~ET + ~U j, the /ET simulation depends

strongly on the ~U simulation. There are two contributions to ~U . The �rst is the

energy related to the hard scatter. This energy is composed mostly of the initial

state radiation from the quarks involved in the qq collision that creates the W or Z

boson. This energy balances the PT of the boson, and we refer to it as the recoil

energy. The second contribution is the energy associated with multiple interactions

and also with the remnants of the protons and anti-protons that are involved in

the hard scatter. The remnants are related to the \spectator" quarks that did not

take part in the hard scatter. We refer to the multiple interactions and the proton

remnants as the underlying event.

The contributions of the underlying event and recoil energy to the ~U resolution

are included in the Monte Carlo by assuming that the resolution depend on
P
ET . In

Section 8.1 we �t the data for a
P
ET shape, and in Section 8.2 we discuss how the

resolutions depend on
P
ET . We also allow the mean of ~U along the boson direction
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to vary with P boson
T , and the full ~U model is discussed in Section 8.3. In Section 8.4,

we correct for biases associated with the �ts.

We use the Z data to �t for the various parameters of the model. None of the

cuts that de�ne our Z sample depend directly on the variable ~U , and this simpli�es

our �ts.

8.1
P
ET Fit

Figure 8.1 shows the
P
ET distribution for the W and Z data. Also shown are the

results of two-parameter �ts to a �-distribution. The �-distribution is

(x) =
b

�(a)
(bx)a�1exp(�bx) (8.1)

where a and b are the �t parameters, � is the gamma-function, and the variable x

is
P
ET for this case. The term b=�(a) normalizes the distribution. For the �ts in

Figure 8.1, we normalized the �-distribution to match the total amount of W or Z

data. The �ts are good, with a �2/dof of 1:0 for the Z case and 1:1 for the W case.

We will use a �-distribution for the
P
ET shape of the Monte Carlo.

The �ts in Figure 8.1 are di�erent for W and Z data. The reason for this is that in

the W data, we cut on j~U j, /ET , and MT , all of which depend on ~U ; and the resolution

on ~U depends on
P
ET . In the W Monte Carlo, we �nd that the

P
ET distribution

which is used as an input to the Monte Carlo has an average that is � 3 GeV higher

than the
P
ET distribution of Monte Carlo events that pass all the W cuts. Since

this e�ect is included in the Monte Carlo, we want the Monte Carlo to use an input

P
ET shape that has been corrected for the e�ect. Rather than correct the W data,

we use the Z data to determine a
P
ET shape.
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Figure 8.1:
P
ET distribution of W data (top) and Z data (bottom). The curves

shown are �ts to gamma-distributions, as discussed in the text. The �t parameters,
a and b, are printed on the plots.
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The
P
ET shape has a dependence on the boson PT since

P
ET includes the recoil

energy. To include this in the simulation, we allow the parameter a of Equation 8.1

to have a linear dependence on the boson PT . We de�ne three parameters ~�� �
(�0; �1; �0) as

a = �0 + �1 � P boson
T

b = �0

(8.2)

and we will �t the Z data for these parameters.

Since the W data has a j~U j < 20 GeV cut, we are not interested in events with

large values for the boson PT . When we �t for the above
P
ET parameters, we only

use Z ! ee data with P boson
T < 45 GeV.

We use the two electrons from the Z decay to calculate a value for the measured

Z PT . For a given set of the three parameters ~��, we then calculate a and b based on

the measured Z PT and Equation 8.2. The probability for a given event is (
P
ET ),

where  is de�ned in Equation 8.1. We do an unbinned likelihood �t and minimize

the function

L = �2 � X
Z data

log (
P
ET ) (8.3)

where the sum is over all the Z data.

The best �t results are

~�data
� �

0
BBBBBB@
�0

�1

�0

1
CCCCCCA =

0
BBBBBB@

2:74

0:0447

0:0462

1
CCCCCCA (8.4)

where we write ~�� with the superscript \data" to indicate that the �t was done to

the data without any corrections. We correct these results below in Section 8.4.
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The covariance matrix returned by the �tter represents the uncertainty on the �ts

associated with the Z statistics. The covariance matrix is

eC� =

0
BBBBBB@
�2(�0�0) �2(�0�1) �2(�0�0)

�2(�1�1) �2(�1�0)

�2(�0�0)

1
CCCCCCA =

0
BBBBBB@

1:16 � 10�2 �1:14 � 10�4 1:50 � 10�4

3:12 � 10�5 2:94 � 10�6

3:05 � 10�6

1
CCCCCCA

(8.5)

where we have only listed the upper triangular part of the matrix and have rounded

o� the numbers to three signi�cant digits. We have not labelled any numbers with

units, but for all these �ts we are measuring
P
ET and P boson

T in units of GeV.

8.2 Dependence of ~U Resolution on
P
ET

In this section, we discuss our parameterization of the ~U resolution in terms of the

quantity
P
ET . First we discuss why we expect the resolution to depend on

P
ET ,

and then we discuss the functional form for the dependence, as �t from minimum

bias data.

The explicit form for our calculation of ~U is

~U =
X

calorimeter

Ei sin �i

0
BB@ cos�i

sin �i

1
CCA �

0
BB@ < cos� >

< sin � >

1
CCAPET (8.6)

where Ei is the energy of the ith calorimeter tower, �i is the polar angle of a line

pointing from the event vertex to the ith tower, and �i is the azimuthal position of

the center of calorimeter tower i. The sum includes both electromagnetic and hadronic

towers. The brackets, <>, denote the ET weighted average, which is de�ned by this

equation.
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There are two contributions to the resolution on ~U . The �rst is the variation in

the energy that misses the calorimeters and lands in cracks, and the second is the

energy resolution of each calorimeter tower. In general, the energy resolution on a

calorimeter tower is proportional to the square root of the energy in the tower so

that �2(Ei) / Ei. However, for the central calorimeters, particles that enter towers

which have higher values for �detector pass through the absorber layers at more oblique

angles. The e�ective absorber thickness increases as 1= sin �. We expect the energy

resolution in these towers to be �2(Ei) / Ei= sin �i. In the plug and forward regions,

the absorber is vertical, and the e�ective absorber thickness increases as 1= cos �. For

these regions, we expect �2(Ei) / Ei= cos �i.

From Equation 8.6, the contribution to the resolution on ~U from the calorimeter

resolution is (�2Ux; �
2
Uy), where

0
BB@ �2Ux

�2Uy

1
CCA =

X
calorimeter

�2(Ei) sin
2 �i

0
BB@ cos2 �i

sin2 �i

1
CCA (8.7)

The contribution to this quantity from the central calorimeters is

/X
ET i

0
BB@ cos2 �i

sin2 �i

1
CCA (8.8)

and the contribution from the plug and forward calorimeters is

/X
ET i

0
BB@ cos2 �i

sin2 �i

1
CCA tan �i (8.9)

where we assume that �2(Ei) / Ei= sin �i for the central calorimeters and �2(Ei) /
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Ei= cos �i for the plug and forward. The proportionality constant of Equation 8.8

is smaller than Equation 8.9 since the plug and forward calorimeters have worse

resolutions than the central. The tan �i term in Equation 8.9, however, reduces the

contribution of the plug and forward calorimeters, compared to the central. As a

rough approximation, we drop the tan �i term and assume that the proportionality

constants of Equations 8.8 and 8.9 are the same.

Our rough approximation for the ~U resolution is then

0
BB@ �2Ux

�2Uy

1
CCA /X

ET i

0
BB@ cos2 �i

sin2 �i

1
CCA =

0
BB@ < cos2 �i >

< sin2 �i >

1
CCAPET (8.10)

where the sum is over all calorimeters. If the energy has an azimuthally at distribu-

tion, as we expect from minimum bias events, then the expected value for < cos2 � >

and < sin2 � > is 1

2
.

Equation 8.10 is a rough approximation for the reasons stated above, and also be-

cause we are assuming that the hadronic and electromagnetic calorimeters contribute

equally to the resolution. Moreover the equation does not consider the contribution

to the variance in ~U from lost energy in cracks. The equation is not exact, but it

indicates that we should expect the resolutions to be approximately proportional to

pP
ET .

We use the minimum bias data to determine a functional form for the dependence

of the ~U resolution on
P
ET . The expected value for ~U in minimum bias data is zero,

and any non-zero value is a result of measurement resolutions. The widths of the Ux

and Uy distributions will then give us the resolutions (�Ux; �Uy) for this data. We can

also calculate
P
ET in the minimum bias data, and we make plots of �Ux and �Uy as

a function of
P
ET . The widths of the Gaussian �ts to Ux and Uy in bins of

P
ET for
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Figure 8.2: Widths of Gaussian �ts to Ux and Uy as a function of
P
ET , for minimum

bias data. The curve shown is 0:324 � (
P
ET )0:577. This �gure is taken from [40].

the minimum bias data are shown in Figure 8.2. A good �t to the data is [40]

�Ux = �Uy = 0:324 � (
P
ET )

:577 (8.11)

where ~U and
P
ET are calculated in GeV. Some deviation from the

pP
ET form is

expected since Equation 8.10 is only approximate.

The minimum bias data was taken during all of Run 1B, and the distribution in

luminosity is roughly the same for the minimum bias data as for the W and Z data.

The luminosity, however, does not appear explicitly in the ~U model below, but it
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is included through the
P
ET variable. Changes in luminosity cause changes in the

P
ET distribution, and the

P
ET distribution is used to determine the ~U resolutions.

The use of Equation 8.11 in the ~U model, and the details of the model, are the

subjects of the next section

8.3 ~U Model

We begin by de�ning the parameters of the model, and then we discuss how these

parameters are �t from the Z data. In Section 8.4 we discuss biases on the �t and

how we correct for those biases.

8.3.1 Parameter De�nitions

Since ~U is a measure of the boson PT , a natural axis to use for the ~U simulation is the

boson PT direction. Knowledge of this axis is not available in the W data, but it is

available in the Z data since the Z PT can be measured with the two decay electrons;

and it is also available in the simulation. We de�ne U1 to be ~U projected parallel to

the boson direction and U2 to be the perpendicular projection. These variables should

not be confused with Uk and U? which are ~U projected parallel and perpendicular to

the primary electron in the W data.

For the simulation of the variables U1 and U2, we use the formula

0
BB@ U1

U2

1
CCA =

0
BB@ �(P boson

T )

0

1
CCA+

0
BB@ g1(�1)

g2(�2)

1
CCA (8.12)

where g1(�1) and g2(�2) are Gaussian distributed random variables of mean zero and

widths �1 and �2 respectively, and the function � will be determined from the data.
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The strongest justi�cation for using Gaussian distributions is that they �t the Z data

well. This will be shown below. The widths have the form

0
BB@ �1

�2

1
CCA = �mb(

P
ET )�

0
BB@ 1 + s1 � (P boson

T )2

1 + s2 � (P boson
T )2

1
CCA (8.13)

where �mb is the resolution which is predicted from the value of
P
ET . This resolution

is given by the minimum bias �t of Equation 8.11, �mb = 0:324 � (
P
ET ):577. In the

Monte Carlo,
P
ET is drawn randomly from the gamma-distributions of Section 8.1.

P boson
T is the value that the simulation generates for the boson PT , and s1 and s2

are parameters which we will �t for. The underlying event energy is expected to

have the same dependence on
P
ET as the minimum bias data, but the recoil energy

contains low energy jets that balance the boson PT . This energy may contribute

to the resolution di�erently than the underlying event energy. The parameters s1

and s2 allow us to account for this di�erence. Even if s1 and s2 were zero, however,

the resolutions still have some dependence on P boson
T , since

P
ET varies with P boson

T

through Equation 8.2.

The average of U2 is zero since neither side of the boson direction is preferred. On

the other hand, the average of U1 is the response to the boson PT , and the function

�(P boson
T ) determines how the mean varies in the simulation. We �nd that a good �t

to the Z data is given by a \quadratic spline." The explicit equation is

�(x) =

8>>>>>>>>>><
>>>>>>>>>>:

a0 + b0x + c0x
2; 0 < x < 2:5

a1 + b1x + c1x
2; 2:5 < x < 5

a2 + b2x + c2x
2; 5 < x < 15

a3 + b3x + c3x
2; 15 < x

(8.14)
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where the given quadratic is used for the indicated region, and the numbers shown are

in GeV. We reduce the number of free parameters by requiring that � be smooth and

continuous at the boundaries between the regions. There are three boundary points

and two conditions at each point, and this reduces the number of free parameters by

six. We also require that � is 0 at 0, and so we set a0 � 0. Five free parameters

remain, and we choose them to be fb0; c0; c1; c2; c3g.

8.3.2 Fits to the Z Data

We �t for the model parameters with the Z data. We use an unbinned likelihood func-

tion. There are seven parameters, two from the P boson
T dependence of the resolutions

from Equation 8.13, and �ve from the functional form for � of Equation 8.14. For

every event in the Z data we use U1, U2, and
P
ET ; and for P boson

T we use the Z PT as

measured from the two decay electrons. For each event we calculate the probability

Pi =
1p
2��1

exp(�(U1 � �)2

2�12
)� 1p

2��2
exp(� U2

2

2�22
) (8.15)

where �1, �2, and � are determined from Equations 8.13 and 8.14. We use MINUIT

to minimize the function

L = �2� X
Z data

log Pi (8.16)

As for the
P
ET �ts above, we only use Z events with P boson

T < 45 GeV. We do this

since the W data has a j~U j < 20 GeV cut, and so we are not interested in the �t

results for large values of the boson PT .

We label the results of the �t as ~�data
U . As in the

P
ET �ts, we append the

superscript \data" to indicate that we have not yet corrected these results for biases

169



associated with �tting directly to the data. The results are

~�data
U �

0
BBBBBBBBBBBBBBBBBBBBBB@

s1

s2

b0

c0

c1

c2

c3

1
CCCCCCCCCCCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBBBBBBBBBBB@

(5:02� 0:77) � 10�4

(1:77� 0:60) � 10�4

(�2:94� 26:0) � 10�2

(�1:07 � :87)� 10�1

(�9:13� 46:1) � 10�3

(�5:47 � 5:4)� 10�3

(�1:44 � 3:2)� 10�3

1
CCCCCCCCCCCCCCCCCCCCCCA

(8.17)

where the data quantities are measured in GeV. The errors shown are the square

roots of the diagonal parts of the covariance matrix. Since the � terms are highly

correlated, the full covariance matrix is more meaningful than the errors shown here.

Whenever we consider the statistical error on this �t, we always use the full covariance

matrix.

The solid line in Figure 8.3 is � vs Z PT using the parameters of Equation 8.17.

Also shown are the results of Gaussian �ts to the U1 distribution in bins of Z PT . The

Gaussian �ts agree well with the �tted result for �. The dashed line in Figure 8.3 is

the function � after the corrections of the next section.

The top plot of Figure 8.4 shows the distribution of (U1 � �)=�1 for all the Z

data, where the �t parameters ~�data
U are used to calculate � and �1 according to

Equations 8.14 and 8.13. For this �gure, we require that ZPT < 45 GeV, as was done

for the �t. The bottom plot shows the distribution of U2=�2. If the model accurately

describes the data, then these plots should look like Gaussian distributions with mean

0 and width 1. Gaussian �ts are shown on both plots. The �tted means are consistent

with 0, and both widths are consistent with 1. The goodness of the Gaussian �ts and
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Figure 8.3: Triangles: Results of Gaussian �ts to the U1 distribution in regions of Z
PT . The x-axis de�nes the Z PT regions, with the points placed in the middle, and
the x-error bars indicate the extent of the regions. Solid line: � vs P boson

T , where � is
de�ned by Equation 8.14. The �t parameters from the Z data �t are used. Dashed
line: � vs P boson

T , using the �nal, corrected values for the parameters.
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the lack of large tails in the data indicate that the resolutions are understood and

that it is reasonable to use Gaussian distributions in the simulation.

We also check that Gaussian distributions give good descriptions of the Z data

in di�erent regions of Z PT . Figure 8.5 shows plots of U1=�mb for di�erent regions

of Z PT , where Z PT is measured with the two decay electrons. The variable �mb

is 0:324 � (
P
ET )

:577, following Equation 8.11. Similarly, Figure 8.6 shows plots of

U2=�mb for the same regions. Gaussian �ts to the histograms are overlaid on both

sets of plots. The �ts are good, and there are no non-Gaussian tails in the plots.

Only four Z PT regions are shown in Figures 8.5 and 8.6. In addition we partition

all the Z data into Z PT regions, and all the regions show good Gaussian �ts. Figure 8.7

shows the means and widths of the Gaussian �ts in all the regions. The mean of

U1=�mb has a clear dependence on the Z PT , as we expect since U1 is a measure of the

recoil response to the boson PT . The mean of U2=�mb is at and distributed around

zero.

Equation 8.11 describes the dependence of the ~U resolutions on
P
ET . This de-

pendence was �t with minimum bias data. To check that Equation 8.11 is also

appropriate for Z ! ee data, we use the bottom plots of Figure 8.7. These plots

show the widths of the Gaussian �ts to the distributions of U1=�mb and U2=�mb. As

Z PT ! 0, the recoil energy becomes small, and only the underlying event energy

contributes to ~U . For low Z PT , the widths of both U1=�mb and U2=�mb approach 1,

as expected if correctly describes the resolutions.

The widths of U1=�mb show some increase with Z PT , but no clear increase is

evident in the U2=�mb �ts. The recoil energy changes the resolution of U1 more than

the resolution of U2. The model is able to account for increases in the resolution

through the parameters s1 and s2, which are de�ned in Equation 8.13. The curves
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Figure 8.4: The distribution of (U1��)=�1 (top) and U2=�2 (bottom) for Z data with
ZPT < 45 GeV, where the Z data �t parameters are used to calculate �, �1, and �2.
Gaussian �ts to the histograms are overlaid, and the means and widths of the �ts are
printed on the plots. �2=dof = 0:92 for the �t in the top plot and 0:72 for the �t in
the bottom plot.
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Figure 8.5: Distributions of U1=�mb for Z ! ee data, where �mb = 0:324� (
P
ET ):577,

in four regions of Z PT . The upper left plot is for 0 < ZPT < 2, the upper right is for
6 to 8, the bottom left for 12 to 14, and the bottom right for 26 to 30 GeV. Gaussian
�ts to each plot are overlaid. The means (�) and widths (�) of the �ts are shown on
each plot. The means and widths and their uncertainties are plotted in Figure 8.7
below. The y-axes are the number of events. The bottom two plots have di�erent
x-axis scales than the top two plots.
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Figure 8.6: Distributions of U2=�mb for Z ! ee data, where �mb = 0:324� (
P
ET ):577,

in four regions of Z PT . The Z PT regions are labelled on the plots and are the same
Z PT regions as in Figure 8.5. Gaussian �ts to each plot are overlaid. The widths (�)
of the �ts are shown on each plot. The means and widths and their uncertainties are
plotted in Figure 8.7 below. The y-axes are the number of events.
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Figure 8.7: Results of Gaussian �ts to the histograms of U1=�mb and U2=�mb in
di�erent regions of Z PT . The x-axes de�ne the Z PT regions, with the points placed
in the middle, and the x-error bars indicate the extent of the regions. The plots show
the �tted mean of U1=�mb (upper left), the �tted mean of U2=�mb (upper right), and
the �tted widths of U1=�mb (bottom left) and U2=�mb (bottom right) as functions of
the Z PT regions. A straight line at zero is shown in the upper right plot to indicate
the expected value for the mean of U2=�mb. The curves shown on the bottom two
plots are 1 + s1 � (ZPT )2 and 1 + s2 � (ZPT )2, where s1 and s2 are the �tted values
of Equation 8.17.
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1+ s1� (P boson
T )2 and 1+ s2� (P boson

T )2 are shown on the bottom plots of Figure 8.7,

where s1 and s2 are the �tted values of Equation 8.17. The plot of the width of

U1=�mb vs Z PT is not perfectly described by the function 1 + s1 � (P boson
T )2. s1 was

determined using an unbinned �t, and it is possible that the binned Gaussian �ts of

Figure 8.17 give slightly di�erent results for the widths.

The Z data and Monte Carlo only include \central-central" Z ! ee events, where

both decay electrons land in the central electromagnetic calorimeter. Our W ! e�

Monte Carlo predicts that in � 1

3
of the �nal W ! e� sample, the neutrino passes

through the plug or forward calorimeters. If the \central-plug" events are signi�cantly

di�erent than the central-central, we may be introducing a bias into the model by

only using central-central Z ! ee events. We �nd, however, that the \central-plug"

Z ! ee events are not signi�cantly di�erent than the central-central. For example

the mean of U1 as a function of Z PT is less negative for the central-plug events, but

this is accounted for by the worse resolution of the central-plug events. In the next

section we discuss how resolution e�ects can bias the results. We do not use the

central-plug events because of the increased di�culty of correcting the results.

8.4 Correcting the Z Fits

We want to use the model to generate values for U1 and U2 as a function of P boson
T .

The above �t parameters ~�data
� and ~�data

U , which determine the
P
ET shape and ~U

model respectively, are not the correct parameters to use. For example, some of the

parameters describe the mean of U1 as a function of the measured P boson
T , and not the

actual P boson
T . In a given region of measured Z PT , there will be events whose true Z

PT was higher than the measured Z PT and also events whose true Z PT was lower.
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Where the Z PT is a falling distribution, we will have more events from lower true Z

PT . In that region < U1 > will be systematically less negative. Where the Z PT is a

rising distribution, we will get the opposite e�ect.

The direction of the Z PT also has a measurement error, and this will cause the

measured U1 and U2 to be rotated into each other. Since U2 has zero mean, this

will cause < U1 > to be less negative. Other e�ects include the Ntracks cut sculpting

the
P
ET and ~U distributions; and to lesser extents, the bremsstrahlung photons

potentially being included in ~U , and the removal of the electron towers potentially

biasing ~U . These last two are not expected to be signi�cant since the two electrons

in Z events are largely back to back in azimuth. The additional or removed energy

associated with one electron should cancel with the other on average since they are

back to back.

The simulation includes the measurement error on the Z PT , as well as the other

e�ects mentioned above, and we can use the simulation to correct for any biases in

the �ts. In the next sections we discuss how we correct both sets of parameters ~�data
�

and ~�data
U .

8.4.1 Correction to
P
ET Fits

In this Section we correct the
P
ET �ts of Section 8.1. The

P
ET �ts de�ne the

parameters of the �-distribution which we use to generate
P
ET in the Monte Carlo.

The three parameters of the �ts are de�ned in Equation 8.4, and we label them as

~��.

We want to �nd parameters ~�in
� which we can use as the input to the Monte Carlo,

and which are such that the Monte Carlo output looks like the data. To see how close

the output is to the data, we �t the output as if it were real data. This gives us a set
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of �t parameters which we label ~�out
� . The Monte Carlo input parameters are correct

when ~�out
� is close to the original �ts, ~�data

� .

We de�ne the variable ~� � ~�data
� � ~�out

� . The output of the Monte Carlo looks like

the data when ~� is small. To measure the size of ~�, we form the quantity

� � ~� � eC�1

� � ~� (8.18)

where eC� is the covariance matrix from the original �t to the data and is printed in

Equation 8.5. The quantity � is a measure of how large ~� is relative to the statistical

uncertainty on the original �t. When � is small, the di�erence between ~�out
� and

~�data
� is small compared to the statistical uncertainty on ~�data

� .

In the
P
ET �ts of Section 8.1, we did an unbinned likelihood �t using the two

variables
P
ET and Z PT . We run the Z ! ee Monte Carlo with a �rst guess at ~�in

� ,

and we write out the two variables
P
ET and Z PT , where the Z PT is formed from

the simulated values of the two decay electrons. The output of the Monte Carlo has

all the Z ! ee cuts applied. We �t the Monte Carlo output using the same method

as Section 8.1.

The only di�erence between this �t and the original �t of Section 8.1 is that instead

of minimizing Equation 8.3, we minimize a weighted unbinned likelihood function

L = �2�Xwi log (
P
ET ) (8.19)

where the sum is over all the Monte Carlo data, wi is the event weight, and  is the

�-distribution of Equation 8.1. The weighted likelihood function is necessary since

the Monte Carlo produces weighted events. The output of the �tting procedure is

the set of parameters ~�out
� .
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We calculate the quantities ~� and � described above. If � is greater than 0:0001,

then we iterate ~�in
� as

~�in
� ! ~�in

� + ~� (8.20)

We then repeat the �tting procedure, using the new ~�in
� in the Monte Carlo. When we

iterate the procedure, we do not regenerate the Monte Carlo. Instead, we adjust the

event weights. For every Monte Carlo event, we use the generated value of
P
ET , and

we re-weight the event according to the
P
ET parameters ~�in

� and the �-distribution

of Equation 8.1.

If � < 0:0001, then ~�in
� are the �nal, corrected �t parameters. We will refer to

these parameters as ~��.

The �nal value of � < :0001 is very small, but in general the procedure converges

after only a few iterations, and so there is no reason to allow a larger �nal value. We

use the same � 970; 000 Monte Carlo events as in Chapter 7, and the �nal results are

~�� =

0
BBBBBB@

2:76

0:0459

0:0462

1
CCCCCCA (8.21)

These values are close to the original, uncorrected values of Equation 8.4. If we

evaluate � of Equation 8.18, using � = ~�� � ~�data
� , we get � = 0:49. This is a small

change for a 3-parameter �t, and it indicates that the corrections are small relative

to the statistical uncertainty on the parameters.
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8.4.2 Correction to ~U Fits

We correct ~�U using the same procedure that was used in the previous section to

correct ~��. The seven parameters of ~�U are used to generate ~U in the Monte Carlo.

The ~U model is described above in Section 8.3.1.

We want to �nd parameters ~�in
U which we can use as the input to the Monte Carlo,

and which are such that the Monte Carlo output looks like the data. To see how close

the output is to the data, we �t the output as if it were real data. This gives us a

set of �t parameters which we label ~�out
U . The Monte Carlo input parameters are

correct when ~�out
U is close to the original �ts, ~�data

U . The original �ts are listed in

Equation 8.17.

In the ~U �ts of Section 8.3.2, we determined a set of seven ~U model parameters,

~�data
U . We �t the data using the unbinned likelihood function of Equation 8.16. The

function depends on the data quantities U1, U2, Z PT , and
P
ET . We run the Z ! ee

Monte Carlo with a �rst guess at ~�in
U , which determine the Monte Carlo generated

values for U1 and U2. We form the simulated values for U1 and U2, as well as Z

PT and
P
ET . The simulated values of U1 and U2 include a rotation of U1 into U2

caused by measurement error on the direction of the Z boson. The simulated values

also include corrections for the removal of the towers around the electron cluster and

allow a contribution from bremsstrahlung photons that do not land in the electron

cluster. We write out the simulated quantities, where the output of the Monte Carlo

has all the Z ! ee cuts applied. We �t the output of the Monte Carlo using the same

procedure as was used to �t the data in Section 8.3.2.

The only di�erence between this �t and the original �t of Section 8.3.2 is that

instead of minimizing Equation 8.16, we minimize a weighted unbinned likelihood
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function

L = �2�Xwi log Pi(U1; U2; ZPT ;
P
ET ) (8.22)

where the sum is over all the Monte Carlo data, wi is the event weight, and Pi is the

Gaussian probability of Equation 8.15. The weighted likelihood function is necessary

since the Monte Carlo produces weighted events. The output of the �tting procedure

is the set of parameters ~�out
U .

To determine how close the output parameters, ~�out
U , are to the original data �t

parameters, ~�data
U , we de�ne the variable ~� � ~�out

U � ~�data
U . We calculate the quantity

� � ~� � eC�1

U � ~�, where eCU is the covariance matrix associated with the original �ts

to the data. � is a measure of how close ~�out
U is to ~�data

U relative to the statistical

uncertainty on ~�data
U .

If � is greater than 0:0001, then we iterate ~�in
U as

~�in
U ! ~�in

U + ~� (8.23)

We then repeat the �tting procedure, using the new ~�in
U in the Monte Carlo. When

we iterate the procedure, we do not regenerate the Monte Carlo. Instead, we adjust

the event weights. For every Monte Carlo event, we use the generated values for U1,

U2, Z PT , and
P
ET , and we re-weight the event according to the Gaussian probability

function Pi(U1; U2; ZPT ;
P
ET ) of Equation 8.15.

If � < 0:0001, then ~�in
U are the �nal, corrected �t parameters. We will refer to

these parameters as ~�U .

We use the same � 970; 000 Monte Carlo events as in Chapter 7, and the �nal
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results are

~�U =

0
BBBBBBBBBBBBBBBBBBBBBB@

3:07 � 10�4

0:933 � 10�4

1:20 � 10�1

�1:77� 10�1

2:97 � 10�2

�5:42� 10�3

�6:62� 10�4

1
CCCCCCCCCCCCCCCCCCCCCCA

(8.24)

With ~� = ~�U � ~�data
U , we calculate � = 22:3. This is a large number for a

7�parameter �t, and this indicates that the corrections are signi�cantly larger than

the statistical uncertainty on the �ts. The largest e�ect of the corrections is to

make �(ZPT ) less negative, where �(ZPT ) is the mean of U1 as a function of Z PT .

As discussed above, the electron resolution and the falling Z PT spectrum have the

e�ect of making this quantity less negative. The dashed curve of Figure 8.3 shows

� vs P boson
T for the corrected parameters. The uncorrected �t from the data is less

negative, as expected.

8.5 Summary

We have presented a model for the calorimeter response to the low energy particles

that recoil against the boson PT , and also to those which arise from the underlying

event. The model is necessary to simulate the variable ~U and therefore /~ET .

The model is empirical in the sense that its form is justi�ed by the data and its

parameters determined from the data. The
P
ET shape determines the resolutions

according to a form �t from minimum bias data, and we �t for ~U as a function of
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P boson
T using Z data. We have also discussed biases on the �ts caused by resolution

errors on the measured Z PT , as well as other, smaller e�ects. We corrected for such

a bias in Section 8.4, and the �nal �t parameters, ~�� and ~�U , which we will use for

the model, are de�ned by Equations 8.21 and 8.24.
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Chapter 9

Comparison of W Data and Monte

Carlo

In this chapter, we compare various distributions of theW ! e� data with the Monte

Carlo.

There are 14 Monte Carlo input parameters. They were determined from the Z

data in previous chapters. The calorimeter response model depends on the 3 param-

eters of ~�� which determine the
P
ET shape, and also on the 7 parameters of ~�U ,

which determine the ~U shape. These parameters were �t to the Z data in Chapter 8.

In addition, there are 4 parameters in ~�x which determine the P boson
T shape, and these

were �t to the Z data in Chapter 7.

The s1 and s2 parameters of ~�U allow the resolution on ~U to vary with Z PT .

These parameters are correlated to the
P
ET parameters, since the

P
ET shape in the

Monte Carlo also determines the ~U resolutions. In Chapter 13 we perturb the input

parameters to better �t the W data, but we only vary the ~�U and ~�x parameters,

and we keep the
P
ET parameters �xed.
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We combine the 11 input parameters of ~�U and ~�x into the variable ~!, de�ning

~! � (~�x; ~�U) (9.1)

We refer to the results from the Z �ts as ~!Z.

In Chapter 13 we �nd a set of parameters that are consistent with the Z �ts, but

that better �t the W data. We refer to this set of parameters as ~!W . We include the

j~U j, Uk, ET and MT distributions in the �t for ~!W . Thus, the Monte Carlo for these

distributions should agree better with the data when we use the ~!W input parameters,

than when we use the ~!Z parameters. In this chapter we compare the W data with

the W Monte Carlo using both ~!Z and ~!W .

In Section 9.1, we compare the ~U distributions; in Section 9.2, we compare the

ET , /ET , and MT distributions; and in Section 9.3 we compare the Uk distributions in

bins of MT and j~U j. We conclude in Section 9.4.

9.1 ~U Distributions

The top plots of Figures 9.1, 9.2, and 9.3 show the distributions of j~U j, Uk, and jU?j,
respectively, of data and Monte Carlo. For each plot, two Monte Carlo distributions

are shown: one with the input parameters ~!Z and one with ~!W . For all the Monte

Carlo plots the W mass is �xed at 80:443 GeV, and the W width is �xed at the

Standard Model prediction. The ~U distributions are not sensitive to variations in the

W mass or width.

The Monte Carlo includes the background distributions which were presented in

Chapter 4. The � ! e�� background is included as a subset of the Monte Carlo

events. For the QCD, the lost Z, and the � ! hadrons backgrounds, we make
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Figure 9.1: Top: j~U j for W ! e� data (triangles) and Monte Carlo (histograms).
The solid histogram is for the case of using input parameters ~!Z , and the dashed is
for ~!W . Bottom: di�erence between data and Monte Carlo distributions of the top
plot. The bottom left plot is for the ~!Z Monte Carlo, and the bottom right plot is
for ~!W . The Monte Carlo is normalized to the data. The mean and rms for the data
and Monte Carlo are shown on the top plot. The errors on the mean and rms for
the data are taken to be rms/

p
N and rms/

p
2N respectively. The values shown for

�2=dof are the sum of the squares of the residuals over their uncertainties, divided
by the number of bins in the plot. The input parameters ~!Z and ~!W are discussed in
the text.
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Figure 9.2: Top: Uk forW ! e� data (triangles) and Monte Carlo (histograms). Both
a solid and dashed histogram are plotted although they are not easily distinguished.
The solid histogram is for the case of using input parameters ~!Z, and the dashed is
for ~!W . Bottom: di�erence between data and Monte Carlo distributions of the top
plot. The bottom left plot is for the ~!Z Monte Carlo, and the bottom right plot is
for ~!W . The Monte Carlo is normalized to the data. The mean and rms for the data
and Monte Carlo are shown on the top plot. The errors on the mean and rms for
the data are taken to be rms/

p
N and rms/

p
2N respectively. The values shown for

�2=dof are the sum of the squares of the residuals over their uncertainties, divided
by the number of bins in the plot. The input parameters ~!Z and ~!W are discussed in
the text.
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Figure 9.3: Top: jU?j for W ! e� data (triangles) and Monte Carlo (histograms).
The solid histogram is for the case of using input parameters ~!Z , and the dashed is
for ~!W . The two histograms are not easily distinguished. Bottom: di�erence between
data and Monte Carlo distributions of the top plot. The bottom left plot is for the
~!Z Monte Carlo, and the bottom right plot is for ~!W . The Monte Carlo is normalized
to the data. The rms of the data and Monte Carlo are shown on the top plot. The
errors on the rms for the data are taken to be rms/

p
N . The values shown for �2=dof

are the sum of the squares of the residuals over their uncertainties, divided by the
number of bins in the plot. The input parameters ~!Z and ~!W are discussed in the
text.
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histograms of the U?, Uk, j~U j, and ET distributions. These histograms are added to

the Monte Carlo histograms according to the fractions determined in Chapter 4. For

the Uk histogram, adding the background histograms makes the mean of Uk lower by

� 15 MeV.

The bottom plots of Figures 9.1, 9.2, and 9.3 show the di�erences between the

data and Monte Carlo, after normalizing the Monte Carlo to the data. The residuals

for both the ~!Z and ~!W cases are shown.

When we run the Monte Carlo with the input parameters that were from the Z

data, ~!Z , we produce distributions for j~U j and Uk which do not agree perfectly with

the data. The value for �2=dof are 1:96 and 1:80 respectively, where the number of

degrees of freedom is taken to be the number of bins in the plots. For the j~U j shape,
the data show a small excess in the tails, which is consistent with the data having a

higher value for the rms than the Monte Carlo. Similarly, for the Uk shape, the data

has an excess in the positive and negative tails of Uk. This is also consistent with the

data having a signi�cantly larger rms.

The input parameters ~!W produce better agreement between the data and Monte

Carlo. For this case, the values for �2=dof for j~U j and Uk are 1:07 and 1:27, respec-

tively. The tails for both shapes are better modelled, and the rms of the Monte Carlo

agrees better with the data. Nevertheless, for Uk shape, the rms of the Monte Carlo

is still signi�cantly lower than the data, and the mean is signi�cantly too negative.

However, the mean and rms are sensitive to the uctuations in the tails. For example,

the residuals show an excess in the data between Uk = 12 and 15 GeV. If the Monte

Carlo reproduced this bump, then the Monte Carlo mean would be less negative by

30 MeV, and the rms would be larger by 30 MeV.

The U? distributions for the data and Monte Carlo are both symmetric around
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zero. This is expected since U? is ~U projected along an axis perpendicular to the

electron. Along that axis, neither the positive nor the negative direction is preferred.

We fold the distributions around zero, making plots of the absolute value of U?. For

this variable, the Monte Carlo agrees well with the data for the ~!Z and ~!W case.

The rms of the Monte Carlo for the ~!W case is signi�cantly higher than the rms of

the data. The rms is sensitive to the tails of the distribution, and the high rms is

consistent with uctuations in the tails, which are visible in the residuals.

9.2 ET , /ET , and MT

The ET , /ET , and MT distributions are sensitive to the W mass and the energy scale.

For these distributions we have applied the non-linearity corrections of Section 12,

as well as the �nal scale factor. The ET , /ET , and MT distributions are shown in

Figures 9.4, 9.5, and 9.6. The Monte Carlo is run with both sets of input parameters,

~!Z and ~!W ; and the Monte Carlo is run exactly as in the previous section, including

all backgrounds.

The ET shape of the data agrees well with the Monte Carlo. The variable ET

has a �rst order dependence on the W PT . The goodness of the �ts indicates that

our boson PT model works well. The data and Monte Carlo agree well for the input

parameters which were �t to the Z data, ~!Z, as well as the input parameters which

include constraints from the W data, ~!W .

The /ET shape of the data also agrees with the Monte Carlo. This distribution is

sensitive to modelling of ~U as a function of the boson PT . A comparison of the data

to the Monte Carlo gives values for �2=dof of 1:91 and 1:56 for the ~!Z and ~!W cases

respectively. The bulk of the data distribution is reproduced well by the Monte Carlo,
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Figure 9.4: Top: ET for W ! e� data (triangles) and Monte Carlo (histograms).
The solid histogram is for the case of using input parameters ~!Z, and the dashed is
for ~!W . Bottom: di�erence between data and Monte Carlo distributions of the top
plot. The bottom left plot is for the ~!Z Monte Carlo, and the bottom right plot is
for ~!W . The Monte Carlo is normalized to the data. The mean and rms for the data
and Monte Carlo are shown on the top plot. The errors on the mean and rms for
the data are taken to be rms/

p
N and rms/

p
2N respectively. The values shown for

�2=dof are the sum of the squares of the residuals over their uncertainties, divided
by the number of bins in the plot. The input parameters ~!Z and ~!W are discussed in
the text.
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Figure 9.5: Top: /ET for W ! e� data (triangles) and Monte Carlo (histograms). The
solid histogram is for the case of using input parameters ~!Z , and the dashed is for
~!W . Bottom: di�erence between data and Monte Carlo distributions of the top plot.
The bottom left plot is for the ~!Z Monte Carlo, and the bottom right plot is for ~!W .
The Monte Carlo is normalized to the data. The mean and rms for the data and
Monte Carlo are shown on the top plot. The errors on the mean and rms for the data
are taken to be rms/

p
N and rms/

p
2N respectively. The values shown for �2=dof

are the sum of the squares of the residuals over their uncertainties, divided by the
number of bins in the plot. The input parameters ~!Z and ~!W are discussed in the
text.
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Figure 9.6: Top: MT for W ! e� data (triangles) and Monte Carlo (histograms).
The solid histogram is for the case of using input parameters ~!Z, and the dashed is
for ~!W . Bottom: di�erence between data and Monte Carlo distributions of the top
plot. The bottom left plot is for the ~!Z Monte Carlo, and the bottom right plot is
for ~!W . The Monte Carlo is normalized to the data. The mean and rms for the data
and Monte Carlo are shown on the top plot. The errors on the mean and rms for
the data are taken to be rms/

p
N and rms/

p
2N respectively. The values shown for

�2=dof are the sum of the squares of the residuals over their uncertainties, divided
by the number of bins in the plot. The input parameters ~!Z and ~!W are discussed in
the text.
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but the tails show a few points which have large deviations relative to the statistical

uncertainty on the points. For example, the �rst point in the distribution, at 25 GeV,

shows a large disagreement between data and Monte Carlo relative to the statistical

uncertainty on the data. If we drop this point in the calculation of �2=dof , we get

values of �2=dof = 1:54 and 1:32 for the ~!Z and ~!W cases, respectively.

For the transverse mass shape, the data agree reasonably well with the Monte

Carlo. This distribution is sensitive to the W mass, as well as our model for the ~U

response. There is also some dependence on the boson PT distribution, as discussed

in Chapter 1. The residuals show some structure, although this may be from random

uctuations. The MT distribution is further discussed in Chapter 13.

9.3 Uk as a Function of MT , j~U j, and ET

Figures 9.7, 9.8, and 9.9, show the Uk distribution in bins of MT . The Monte Carlo

is shown only with the input parameters ~!W . All backgrounds are included in the

Monte Carlo distributions.

As discussed in Chapter 1, the variable MT partially corrects the electron ET for

the e�ect of the boson transverse momentum. If ~U were a perfect measurement of

the boson PT , then the MT distribution would be twice the electron ET distribution

in the boson rest frame. Since the rest frame ET is independent of the boson PT ,

we would expect the Uk distributions to look roughly the same for all bins in MT .

However, ~U is not a perfect measure of the boson PT , and we expect some variation

in the shape of Uk when we bin the data in MT .

Figures 9.7, 9.8, and 9.9, show Uk distributions for 65 < MT < 70, 70 < MT < 75,

75 < MT < 80, 80 < MT < 85, 85 < MT < 90, and 90 < MT < 100 GeV. The data
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Figure 9.7: Top: Uk in bins of MT for data (triangles) and Monte Carlo (histograms).
The top left distribution is for 65 < MT < 70 GeV, and the top right distribution is for
70 < MT < 75 GeV. Bottom: di�erence between data and Monte Carlo distributions
for the top plots. The bottom left is for 65 < MT < 70 GeV, and the bottom right is
for 70 < MT < 75 GeV. The Monte Carlo is normalized to the data. The values shown
for �2=dof are the sum of the squares of the residuals over their uncertainties, divided
by the number of bins in the plot. The Monte Carlo is run with input parameters
~!W , which are discussed in the text.
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Figure 9.8: Top: Uk in bins ofMT for data (triangles) and Monte Carlo (histograms).
The top left distribution is for 75 < MT < 80 GeV, and the top right distribution is for
80 < MT < 85 GeV. Bottom: di�erence between data and Monte Carlo distributions
for the top plots. The bottom left is for 75 < MT < 80 GeV, and the bottom right is
for 80 < MT < 85 GeV. The Monte Carlo is normalized to the data. The values shown
for �2=dof are the sum of the squares of the residuals over their uncertainties, divided
by the number of bins in the plot. The Monte Carlo is run with input parameters
~!W , which are discussed in the text.
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Figure 9.9: Top: Uk in bins of MT for data (triangles) and Monte Carlo (histograms).
The top left distribution is for 85 < MT < 90 GeV, and the top right distribution
is for 90 < MT < 100 GeV. Bottom: di�erence between data and Monte Carlo
distributions for the top plots. The bottom left is for 85 < MT < 90 GeV, and the
bottom right is for 90 < MT < 100 GeV. The Monte Carlo is normalized to the data.
The values shown for �2=dof are the sum of the squares of the residuals over their
uncertainties, divided by the number of bins in the plot. The Monte Carlo is run with
input parameters ~!W , which are discussed in the text.
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distributions show good agreement with the Monte Carlo for all the plots. The worst

agreement is for 80 < MT < 85 GeV, which is shown in Figure 9.8. A small bump is

visible in the data around Uk = 12 GeV which is not reproduced by the Monte Carlo.

The mean of Uk as a function of MT is shown in Figure 9.10. For this plot, the

Monte Carlo follows the data, although the residuals show a possible slope with MT .

In Figure 9.10, we average Uk between �20 GeV. The average is sensitive to the tails
of the distribution. If we calculate the average of Uk between �10 GeV, the Monte

Carlo and data agree better. Figure 9.11 shows the mean of Uk as a function of MT

where the mean is calculated between �10 GeV.

Figures 9.12 and 9.13 show the Uk distribution in bins of j~U j. The plots show Uk

for 0 < j~U j < 5, 5 < j~U j < 10, 10 < j~U j < 15, and 15 < j~U j < 20 GeV.

The Uk plots for 5 < j~U j < 10, 10 < j~U j < 15, and 15 < j~U j < 20 GeV show

a double peak structure. This structure is the result of the approximate azimuthal

symmetry of the ~U distribution. We can write the vector ~U in cylindrical coordinates

as (j~U j;��), where �� is the angle between ~U and the electron ~ET . The \x"� and

\y"�axes are then Uk = j~U j cos�� and U? = j~U j sin ��. Figures 9.12 and 9.13

are thus projections onto the x�axis, for di�erent regions of the radial variable j~U j.
A double peak structure is expected for any such projection where the azimuthal

variable has an approximately at distribution.

In Figures 9.12 and 9.13, the peaks at negative Uk are larger than the peaks at

positive Uk. This is the result of the ET andMT cut biases, which prefer larger values

for ET . Events with larger values for ET tend to have been boosted by the W PT and

have more negative values for Uk. The bias on the data is reproduced in each plot by

the Monte Carlo.

The mean of Uk as a function of ET is shown in Figure 9.14. The e�ect of the W
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Figure 9.10: Left: Mean of Uk in bins of MT for data (triangles) and Monte Carlo
(histograms). The mean of Uk is calculated between �20 GeV. The solid histogram
is for the case of using input parameters ~!Z , and the dashed is for ~!W . Right: the
di�erences between the data and Monte Carlo of the left plot. The top right plot is
for the Monte Carlo run with input parameters ~!Z, and the bottom right is for ~!W .
The uncertainties on the means are rms/

p
N . The values shown for �2=dof are the

sum of the squares of the residuals over their uncertainties, divided by the number of
bins in the plot. The input parameters ~!Z and ~!W are discussed in the text.
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Figure 9.11: Left: Mean of Uk in bins of MT for data (triangles) and Monte Carlo
(histograms). The mean of Uk is calculated between �10 GeV. The solid histogram
is for the case of using input parameters ~!Z , and the dashed is for ~!W . Right: the
di�erences between the data and Monte Carlo of the left plot. The top right plot is
for the Monte Carlo run with input parameters ~!Z, and the bottom right is for ~!W .
The uncertainties on the means are rms/

p
N . The values shown for �2=dof are the

sum of the squares of the residuals over their uncertainties, divided by the number of
bins in the plot. The input parameters ~!Z and ~!W are discussed in the text.
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Figure 9.12: Top: Uk in bins of j~U j for data (triangles) and Monte Carlo (histograms).

The top left distribution is for 0 < j~U j < 5 GeV, and the top right distribution is for

5 < j~U j < 10 GeV. Bottom: di�erence between data and Monte Carlo distributions

for the top plots. The bottom left is for 0 < j~U j < 5 GeV, and the bottom right is for

5 < j~U j < 10 GeV. The Monte Carlo is normalized to the data. The values shown for
�2=dof are the sum of the squares of the residuals over their uncertainties, divided
by the number of bins in the plot. The Monte Carlo is run with input parameters
~!W , which are discussed in the text.
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Figure 9.13: Top: Uk in bins of j~U j for data (triangles) and Monte Carlo (histograms).

The top left distribution is for 10 < j~U j < 15 GeV, and the top right distribution is for

15 < j~U j < 20 GeV. Bottom: di�erence between data and Monte Carlo distributions

for the top plots. The bottom left is for 10 < j~U j < 15 GeV, and the bottom right is

for 15 < j~U j < 20 GeV. The Monte Carlo is normalized to the data. The values shown
for �2=dof are the sum of the squares of the residuals over their uncertainties, divided
by the number of bins in the plot. The Monte Carlo is run with input parameters
~!W , which are discussed in the text.
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PT on the electron ET is visible in the plot. Events with negative Uk tend to have

the electron ET increased by the W PT , while the opposite is true for the positive Uk

events. There is roughly a 30 GeV variation in the mean of Uk for ET between 25

and 55 GeV. The Monte Carlo reproduces the data well for this distribution.

9.4 Conclusion

We have compared the W data and Monte Carlo, and we have seen good agreement

between data and Monte Carlo. We have examined the Monte Carlo with the input

parameters �t from the Z data, which we have called ~!Z, as well as with input

parameters constrained with the W data, which we have called ~!W . The method

we use to constrain the parameters with the W data is discussed in Chapter 13. In

general, the ~!W Monte Carlo agrees better with the data than the ~!Z Monte Carlo.

This is expected since the parameters ~!Z were �t from the Z data, and the Z sample

is signi�cantly smaller than the W sample.

In Chapter 13 we �t for the W mass using di�erent regions of Uk and j~U j. This
allows us to test the e�ect of di�erences in the ~U distributions between the data and

the Monte Carlo.
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Figure 9.14: Left: Mean of Uk in bins of ET for data (triangles) and Monte Carlo
(histograms). The mean of Uk is calculated between �20 GeV. The solid histogram
is for the case of using input parameters ~!Z , and the dashed is for ~!W . Right: the
di�erences between the data and Monte Carlo of the left plot. The top right plot is
for the Monte Carlo run with input parameters ~!Z, and the bottom right is for ~!W .
The uncertainties on the means are rms/

p
N . The values shown for �2=dof are the

sum of the squares of the residuals over their uncertainties, divided by the number of
bins in the plot. The input parameters ~!Z and ~!W are discussed in the text.
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Chapter 10

Energy Scale Determination with

MZ

We refer to the absolute calibration of the CEM as the energy scale determination.

The scale is a factor which multiplies the energy measurement of the calorimeter, and

we refer to the scale as SE. In this chapter we determine SE with the invariant mass

of Z ! ee events.

We run the Z Monte Carlo with the Z mass and width �xed at the world average

values [5] of 91:187 and 2:490 GeV, respectively. We smear the simulated electron

ET measurement according to the ET resolution of Equation 6.10. We allow the

resolution constant term, �, to vary. We also scale the Monte Carlo ET . We compare

MZ of the data to the Monte Carlo and determine a best value for the Monte Carlo

energy scale.

We try three �tting methods. In Section 10.1 we do a binned likelihood �t; in

Section 10.2 we determine SE using the mean ofMZ ; and in Section 10.3 we compare

the data and Monte Carlo with a Kolmogorov-Smirnov statistic. In Section 10.1 we
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also �t for �; and in Section 10.3 we also verify that our Monte Carlo sample is large

enough.

10.1 Likelihood Fit

We binMZ for the Monte Carlo and data in 40 bins from 70 to 110 GeV. We minimize

a binned likelihood function, L, de�ned as

L = �2� X
MZ bins

[��iT + ni log(�iT )] (10.1)

where ni is the number of data points in bin i, and �i is the sum of the weights of

the Monte Carlo events in bin i. The quantity T normalizes the Monte Carlo to the

data. The Monte Carlo includes 1% QCD background. The magnitude of the QCD

background and the background MZ shape are determined from same sign events, as

discussed in Chapter 4.

We vary � in 7 steps from 1:0% to 2:2%, and we vary the Monte Carlo electron

energy scale in 21 steps from 0:995 to 1:005. For each value of � and the Monte

Carlo energy scale, we evaluate L. To determine a minimum, we then �t L to a cubic

polynomial in �, where each of the coe�cients is a cubic polynomial in the Monte

Carlo energy scale.

This procedure determines a scale factor which should be applied to the Monte

Carlo. The scale factor to apply to the data, SE, is simply the inverse of this number.

The results for the scale factor on the data and for � are

SE

�

=

=

1:0000 � 0:0009

(1:53 � 0:27)%
(10.2)
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� is the constant term in the CEM resolution. The constant term in the resolution

accounts for variations in the leakage energy, which does not get included in the

electron cluster, and it also accounts for tower to tower variations as well as variations

in the CEM response with time. The stochastic part of the fractional energy resolution

is 13:5%=
p
ET . For Z ! ee events, the stochastic term contributes � 2:0%. The

constant term is thus comparable in size to the stochastic term, and the combined

resolution is � 2:6%.

The stochastic term, 13:5%=
p
ET , is determined from test beam data. We do

not consider any uncertainty on this term. The ET distribution of Z events occurs

over a relatively narrow range, and errors in the stochastic term can be absorbed

into the �tted constant �. However, the functional form for the CEM resolution,

Equation 6.10, allows us to carry the �tted resolution from the Z events to the W

events, and the W events have an average ET which is roughly 5 GeV lower than Z

events. It is possible that errors in the stochastic term will cause us to use the wrong

resolution for the W events. We �nd that changes in the resolution at the W ET scale

which are caused by errors on the stochastic term are signi�cantly smaller than the

uncertainty on the resolution which comes from the statistical uncertainty on �. We

only consider the uncertainty on the resolution caused by the uncertainty on �.

The value for SE comes out to be 1:0 because the default scale, which has already

been applied to the data, was �xed to get the correct Z mass.

We did a simultaneous �t for the two parameters � and the Monte Carlo energy

scale, but the �t results are mostly independent. Figure 10.1 shows the 1�� contour of
the �t results. The axes of the ellipsoid are nearly horizontal and vertical, indicating

that the �t results for SE and � are not strongly correlated, and we neglect any

possible correlation.
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Figure 10.1: 1� and 2 � � contours for likelihood �t to the Z mass. On the x�axis
is the �tted value for the constant term in the electron resolution, �. The y�axis is
the energy scale that should multiply the data. The likelihood function is actually a
function of the energy scale that multiplies the Monte Carlo, and the y�axis is one
over that value. The solid circle is the best �t value.
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The top plot of Figure 10.2 shows the data with the best �t Monte Carlo overlaid,

and the bottom plot shows the residuals of the top plot. The value for �2=dof is 1:3,

where we take the number of degrees of freedom to be 40, which is the number of

histogram bins.

As mentioned above, the Monte Carlo includes 1% QCD background. If we do

not include the background, the �tted energy scale changes by less than 0:003%, and

the �tted value for � changes by 0:0005. Both these changes are negligible relative

to the statistical uncertainties, and we conclude that uncertainties in the background

have a negligible contribution to the uncertainties on the �t results.

We also check that the likelihood �tting procedure is unbiased. We draw randomly

from a smoothed Monte Carlo histogram of MZ and make 1000 subsamples of the

same size as the data. The histogram which is smoothed has an energy scale of 1:0

and � = 1:6%. We �t the 1000 samples for an energy scale, and we hold � �xed at

1:6% in the �t. The 1000 results have a Gaussian distribution with a mean of 0:99993

and a width of 0:0009. The mean is marginally below the expected value of 1:0, and

this may indicate a aw in the procedure we use to smooth the histogram we draw

from. The width is the same as the uncertainty reported above, which was de�ned

by a change in L of �0:5.

10.2 Fitting with the Mean of MZ

As a check, we �t for the energy scale by comparing the mean of the Monte Carlo

MZ distribution with the mean of the data. To avoid uctuations in the tails, we

calculate the mean using events close to the peak. We bin the data and Monte Carlo

in 1 GeV bins between 86 and 96 GeV, and we consider the mean of this histogram.
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Figure 10.2: Top: Best �t Monte Carlo (histogram) overlaid with data (crosses). The
Monte Carlo histogram is the weighted combination of two di�erent Monte Carlo his-
tograms, one with � = 1:4%, and one with � = 1:6%. The Monte Carlo is normalized
to the data. Bottom: The residuals of the top plot, data minus Monte Carlo with the
Monte Carlo normalized to the data.
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We refer to this mean as < MZ >.

Figure 10.3 shows < MZ > for the Monte Carlo as a function of the Monte Carlo

energy scale SE
mc. The mean of the data is also shown on the plot. The Monte Carlo

was run with � = 1:6% for this plot. The data mean and the Monte Carlo mean

agree for SE
mc = 1:0004� 0:0010. The energy scale for the data is the inverse of this,

or SE = 0:9996 � 0:0010, which agrees with Equation 10.2.

The Monte Carlo points in Figure 10.3 use � = 1:6%. If we run the Monte Carlo

with � = 1:4%, we get a �t value SE = 0:9997 � 0:0010. To use the best �t value

of � = 1:53%, we should average this result with the � = 1:6% result, even though

the two results agree within one tenth of the statistical uncertainty. We also vary �

within its uncertainties. This produces a variation in the �tted value for SE of order

�0:0001, which is a negligible variation.

As in Section 10.1, the Monte Carlo includes the e�ect of 1% QCD background.

We vary the background between 0% and 2%, and the �tted value for SE shows a

variation of �0:00002. This is a negligible variation.

10.3 Kolmogorov-Smirnov Comparison

In this section, we use a Kolmogorov-Smirnov statistic (KS) to evaluate how well the

Monte Carlo reproduces the data. We also check the �ts of Sections 10.1 and 10.2

by minimizing KS with respect to variations in the energy scale. The KS statistic

is calculated without binning the data or the Monte Carlo, and this allows us to

check that binning the data in Sections 10.1 and 10.2 does not signi�cantly increase

the statistical uncertainties. Above we saw that the background has a negligible

contribution to the �t results, and for this section it is not included in the Monte
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Figure 10.3: Mean of the Monte Carlo MZ histogram as a function of the Monte
Carlo energy scale (triangles). A �t line through the triangles is shown. The �t is
< MZ >= SE

mc � 62:910 + 28:230, where < MZ > is in GeV. The horizontal lines
indicate the mean of the data and its 1 � � uncertainties. The mean of the data
histogram is 91:166 � 0:064 GeV where the error is rms=

p
N . The vertical lines

indicate the predicted region for the Monte Carlo energy scale.
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Carlo.

To calculate KS, we form the integrated distributions of MZ for data and Monte

Carlo. The integrated distribution is I(x), where I(x) is the fraction of the data

which has MZ < x. For the Monte Carlo, I(x) is the fraction of the total Monte

Carlo weight that is associated with events with MZ < x. For both data and Monte

Carlo, we only consider events with 70 < MZ < 110 GeV. Figure 10.4 shows the

integrated distribution of data and Monte Carlo. The data is shown with the default

scale of SE = 1:0, and for comparison it is also shown with a CEM scale factor

SE = 0:996. We use 0:996 as a comparison, since in the next Chapter we determine

the energy scale with the E/p distribution, and we get a result near SE = 0:996. The

Monte Carlo in this section uses � = 1:6%.

KS is de�ned to be the maximum vertical distance between the Monte Carlo in-

tegrated distribution and the data integrated distribution. A KS value of 0 would

correspond to perfect agreement between the two distributions. The maximum verti-

cal distance between data and Monte Carlo in Figure 10.4 is 0:0162 for the data with

SE = 1:0, and 0:0646 for the data with SE = 0:996.

We can use the value for KS to calculate the probability that the parent distri-

bution of the data is well described by the Monte Carlo. If we have N data points,

then the probability, Pr, of observing a value worse than a given KS value is [41]

Pr = 2
1X
j=1

(�1)j�1 exp(�2j2�2) (10.3)

where � =
p
N �KS. For the data with SE = 1:0, we get the values � = 0:64 and

Pr = 81%. This value for Pr indicates excellent agreement between data and Monte

Carlo. If we were to make many Monte Carlo samples of the same size as the data,

214



Figure 10.4: Integrated distribution of MZ for Z ! ee events between 70 and 110
GeV. Three curves are shown. The solid curve is the Monte Carlo; the dashed curve
is the data with the default energy scale of 1:0; and the dotted curve is the data with
E scaled by SE = 0:996. The top plot shows the full range 70 to 110 GeV, and the
bottom plot shows the region around the MZ peak.
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only 19% of them would have smaller values for KS. By comparison, when we scale

the data by 0:996, we get � = 2:53, and Pr = 5:5 � 10�6.

We check the �ts of Sections 10.1 and 10.2 by minimizing KS with respect to

variations in the energy scale. We change the energy scale on the data, and for each

value of SE, we recalculate the Kolmogorov-Smirnov statistic KS. The location of

the minimum KS is the predicted scale. The energy scale is applied before the cuts

on the data, and we choose � in the Monte Carlo to be �xed at 1:6%.

Figure 10.5 shows KS as a function of SE. The minimum occurs at SE = 1:0007.

The minimum value for KS is 0:0133, and Equation 10.3 gives a corresponding value

for Pr of 95%.

The statistical uncertainty associated with this �t is determined by drawing ran-

domly from a smoothed version of a Monte Carlo histogram, as was done above for

the likelihood scale determination. We make 100 samples the same size as the data,

and we �t each of them for an energy scale. The location of the minimum is dis-

tributed with a mean of 1:0, and an rms of 0:0010. The rms of the distribution is the

statistical uncertainty.

We also use these Monte Carlo samples to check Equation 10.3. Equation 10.3

predicts that only 19% of the Monte Carlo samples which are the same size as the

data will have KS smaller than 0:0162. 0:0162 is the KS value we found for the data

with SE = 1:0. We calculate KS for the Monte Carlo samples where we do not vary

an energy scale on the samples, but keep the scale �xed at 1:0. We �nd that 26 of the

100 samples have KS < 0:0162. This agrees with the prediction from Equation 10.3.

The �tted scale is SE = 1:0007 � 0:0010. This result agrees with the result

in Equation 10.2, even though it is not identical. Some variation is expected from

di�erent �tting procedures, and these variations are accounted for in the statistical
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Figure 10.5: Kolmogorov-Smirnov statistic, KS, as a function of the CEM scale SE
for the comparisons of the data and Monte Carlo MZ distributions. The Monte Carlo
uses � = 1:6%. The minimum location is indicated by the arrow, and it occurs at
SE = 1:0007. The value of the minimum is KS = 0:0133.
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uncertainty.

We also use the Kolmogorov-Smirnov �tting procedure to check that we have

generated enough Monte Carlo. Our Monte Carlo includes slightly more than 980; 000

weighted events. We split this into independent subsamples of 48; 000 events each, and

re�t the data with each. The rms spread of the results is 0:0003. The full Monte Carlo

is � 20 times larger than each of the subsamples. The statistical error should scale as

1=
p
N , and dividing 0:0003 by

p
20 gives a total Monte Carlo statistical uncertainty

of less than 0:0001. This is negligible relative to the statistical uncertainty from the

data.

10.4 Conclusion

We have �t for the energy scale on the data, SE, using three di�erent �tting methods:

a likelihood �t, a mean �t, and a Kolmogorov-Smirnov �t. For the likelihood �t we

also determined the constant term in the CEM resolution, �. The best �t value is

� = 1:6%. The Kolmogorov-Smirnov calculations of Section 10.3 indicate that there

is good agreement in the MZ shape between the data and Monte Carlo.

The three methods give consistent values for SE, and some variation in �t results

is expected from statistical uctuations. The statistical uncertainties associated with

the three methods are the same.

We use the result from the likelihood �t, which is Equation 10.2, for the CEM

scale.
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Chapter 11

Energy Scale Determination with

E/p

In this chapter we determine the energy scale using the E/p distribution. The quantity

E/p is the ratio of the electron energy as measured in the calorimeter to the track

momentum, as determined by the CTC. The CTC scale is determined with J= data,

as discussed in Section 3.2 and also in Appendix B. The E/p result and the energy

scale determined from MZ in Chapter 10 di�er by � 3:5 standard deviations. We

choose to use the MZ result since it sets the scale on the CEM directly, using CEM

data. This separates our measurement from complications which may arise from

tracking.

The di�erence in the E/p and MZ results can be stated as follows. If we set the

energy scale with E/p, then the Z mass comes out low by roughly 350 � 100 MeV.

Alternatively, when we set the energy scale with the Z mass, the E/p distribution of

the data is visibly shifted to the right relative to the Monte Carlo. In Appendix B,

we discuss checks which have been done on the E/p simulation, as well as the Z mass
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simulation. We also discuss possible reasons for the discrepancy. This discrepancy is

not understood and is interesting in its own right.

The CTC measures the track curvature and thus PT . In practice E/p is de�ned as

E sin �=PT . E/p can be di�erent than 1 as a result of measurement resolution, and also

as a result of bremsstrahlung in the material before and in the CTC. The fraction of

the electron energy radiated by bremsstrahlung is independent of the electron energy.

Uncertainties on the electron ET distribution will produce negligible uncertainties on

the E/p shape. E/p thus allows us to tie the CEM scale to the CTC scale in a way

that is independent of the assumed W mass and other inputs which e�ect the ET

shape.

The amount of material in the simulation will e�ect the rate of bremsstrahlung

and thus the E/p distribution. The tail of the E/p distribution is sensitive to the

amount of material, and in Section 11.1 we verify that the tail of the E/p distribution

in the data agrees with the Monte Carlo.

In Section 11.2, we use the E/p distribution to determine a resolution on 1=PT ,

�(1=PT ). We vary the resolution in the Monte Carlo by varying a scale factor on the

CTC covariance matrix. Rather than report the result as a covariance matrix scale

factor, we report the result as a resolution on 1=PT .

In Sections 11.3 and 11.4 we determine an energy scale on the CEM relative to the

momentum scale of the CTC, using both W and Z events. We conclude in Section 11.5

When we �t for an electron energy scale, we vary the Monte Carlo scale factor,

SMC
E , between 0:9975 and 1:0025. We use SMC

E to predict a value for the energy scale

on the data, SE = 1=SMC
E . The E/p �ts prefer an energy scale around SE = 0:996.

In this chapter, when we do the energy scale �ts, we will already have applied a 0:996

scale factor to the data. Thus, in this chapter, since the data are already scaled by
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0:996, we have the relationship, SE = 0:996=SMC
E .

11.1 Check on Amount of Material with E/p Tail

The amount of material in the detector is determined from a sample of photon conver-

sions, as discussed in Section 6.1.2. With this amount of material, the Monte Carlo

W decay electrons pass through 7:20� 0:38 percent of a radiation length on average.

We check this number with the W data. The top plot of Figure 6.2 shows the E/p

distribution of the data. The extended high-end tail is the result of bremsstrahlung,

both internal and external. External bremsstrahlung occurs in the material that the

electrons pass through, while internal bremsstrahlung corresponds to the photons

produced with the primary electron in radiative W ! e� events.

We assume the internal bremsstrahlung rate is known, and we use the fraction

of material in the tail to check the rate of external bremsstrahlung. The internal

photons account for roughly � 40% of the shift in the E/p peak and similarly for the

fraction of events in the tail.

We de�ne the quantity fTAIL to be the fraction of events with E/p between 1:4

and 1:8. We start at 1:4 so that we are away from the peak position and are not

sensitive to the E or p resolutions.

In the next section we will discuss a non-Gaussian tail to the 1=PT resolution. The

contribution of this tail to low E/p does not extend signi�cantly past 0:8. If we assume

that there is an equivalent high end tail, then we do not expect any contribution from

this tail beyond E/p of � 1:2. Nevertheless, to reduce the contribution from tracking

problems, we require that more than half of the 24 stereo layers be used in the track

reconstruction. This requirement is only used for the calculation of fTAIL.
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The value for fTAIL in the data is 0:0520�0:0014. This number must be corrected

for the contribution of the QCD background. The QCD background is signi�cant at

high E/p. As an approximation to the E/p shape of the QCD background, we look

at the E/p shape of electrons from W ! e� events that fail cuts on electron identity

variables. This shape is only approximate, since E/p for the QCD background is

correlated to the identity variables. The shape predicts that � 35% of QCD events in

the W ! e� sample will have E/p between 1:4 and 1:8. Using the background rates

of Chapter 4, this predicts a correction on fTAIL of � 4%. This number is only an

approximation, and it is not the number we use to account for the QCD background.

Instead, we apply a series of cuts to the data which should reduce the background

but which should not bias the E/p shape of the signal.

Internal photons may be produced at a di�erent polar angle than the primary

electron, but external photons are produced at essentially the same polar angle. Since

the magnetic �eld causes bremsstrahlung photons and electrons to be separated in

the azimuthal direction, but not in the z direction, the external photons hit the

calorimeter at the same z position as the primary electron. There are several electron

identity variables which are independent of the rate of external bremsstrahlung since

they only depend on the size of the electron shower in the z direction. We use two

of them, �2strips and Lshare. �
2
strips compares the strip chamber shower pro�le in the

z-direction with the expectation from the test beam. This variable is discussed in

Chapter 4. Lshare compares the sharing of the electron energy among the calorimeter

towers with the expectations from the test beam, where the comparison only includes

the \seed" tower and the two neighboring towers in the z direction.

These two variables are shown in Figure 11.1 for Z data. Both plots show the Z

data for E/p between 0:9 and 1:1 and also for E/p between 1:4 and 1:8. We use Z data
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Figure 11.1: Top: �2strips and bottom: Lshare for Z data. The histograms are for E/p
between 0:9 and 1:1 and the triangles are for E/p between 1:4 and 1:8. The histogram
and the triangles for both plots are normalized to the total number of events between
1:4 and 1:8.

since the QCD background can be simply calculated from the number of same sign

events. There is no visible di�erence between the two E/p regions for either variable.

We might have expected to see some di�erence from internal photons, which are

potentially produced at wide angles from the electron. If the internal photons were

to signi�cantly alter the Lshare or �2strips distributions, then cutting on those variables

would bias the E/p shape of the signal.

We de�ne fBACK to be the fraction of events with MT below 20 GeV when we
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remove the j~U j cut. As discussed in Chapter 4, we expect the QCD background to

be proportional to fBACK . To see how fTAIL depends on fBACK, we plot fTAIL and

fBACK for di�erent regions of �2strips and Lshare. These plots are shown in Figure 11.2.

We do not expect the Lshare and �2strips cuts to bias the signal, and variations in

fTAIL can be ascribed to variations in the total background. The y�axis intercept is
our prediction of fTAIL for 0% background. The three �ts of Figure 11.2 (from left

to right and top to bottom) have intercepts of 0:0494 � 0:0014, 0:0487 � 0:0014, and

0:0484�0:0014, respectively. The intercepts change negligibly if we �t to a quadratic

instead of a line, or if we include the x�axis errors in the �t. The intercepts are

robust to the extrapolation method because the point with the smallest error bar is

closest to fBACK = 0. We average the three �ts and conclude that

fTAIL = 0:0488 � 0:0014(stat) � 0:0004(sys) (11.1)

where the second error is simply the rms of the three extrapolations.

The top plot of Figure 11.3 shows fTAIL as a function of < X0 >, for the Monte

Carlo. The error bars for both plots are the statistical uncertainty from the data and

are included on the plots for reference only. From the linear �t shown, we conclude

that the value for fTAIL above corresponds to < X0 > = (7:55�0:37)% of a radiation

length. This is consistent with the result from the photon conversions above. To

avoid questions related to the extrapolation procedure, and to be conservative, we

do not combine the two numbers, but simply use the photon conversion result of

Equation 6.5.

The bottom plot of Figure 11.3 shows the mean of E/p between 0:9 and 1:1, as

a function of the amount of material < X0 >. From the slope of the �tted line, we
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Figure 11.2: fTAIL vs fBACK for di�erent regions of Lshare and �
2
strips. Top left: the

5 points from left to right are for Lshare below 0, between 0 and 0:1, between 0:1 and
0:2, between 0:2 and 0:4, and above 0:4. Top right: the 5 points from left to right are
for �2strips below 10, between 10 and 20, between 20 and 30, between 30 and 50, and
above 50. Bottom: same as top right plot, but with Lshare < 0:2 cut applied. The
x�axes are shown on a log-scale, and the curves shown are linear �ts.
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Figure 11.3: Top: fTAIL as a function of < X0 > for Monte Carlo W ! e� events.
fTAIL is de�ned as the fraction of events with E/p between 1:4 and 1:8. Bottom: Mean
of E/p between 0:9 and 1:1 vs < X0 >. The mean is calculated as in Figure 11.11
below. The �tted line for the top plot is fTAIL = 0:018965 + 0:39529 �< X0 >, and
for the bottom plot is < E=p >= 1:0066 + 0:067867 �< X0 >.
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determine that an uncertainty on < X0 > of 0:0037 will produce an uncertainty on

the mean of the E/p peak of 0:00025. Figure 11.11 below shows that a shift in the

mean of 0:00025 corresponds to a shift in the energy scale of 0:00036. Thus, the

uncertainty on the energy scale associated with the amount of material is 0:00035.

11.2 Momentum Resolution

The resolution on E/p is a convolution of a resolution on ET and a resolution on

1=PT . Electrons from W decays have transverse energies around 40 GeV, and the

fractional error on PT is �(PT )=PT � :001 � PT = 4%. The fractional error on ET is

smaller, �E=E � �(ET )=ET = 2:7%, where we have used � = 1:6%. Both the ET and

PT resolutions will contribute to the E/p width, but the PT resolution will dominate.

11.2.1 Very Low E/p Tail

The E/p distribution is shown in the top plot of Figure 11.4 with a Gaussian �t

superimposed. Bremsstrahlung radiation contributes to the distribution above 1:0,

but events fall below 1:0 only because of resolution. If ET and PT have Gaussian res-

olutions, then the low-end tail should have a Gaussian distribution. A non-Gaussian

tail, however, is clearly evident in the plot.

The bottom plot of Figure 11.4 shows the MT distribution for events with E=p <

0:85 superimposed on events with E/p in the peak. The similarity of the two his-

tograms indicates that events in the low-end E/p tail are not backgrounds events.

The similarity also indicates that the low-end E/p tail is not a result of ET mismea-

surement. Events below 0:85 would have ET mismeasured low by at least � 15%.

This would shift the MT distribution by � 12 GeV or more. Such a shift is clearly
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Figure 11.4: Top: E/p distribution of W events, on a log scale, with a Gaussian �t
superimposed. The Gaussian �t is for 0:8 < E=p < 1:06. Bottom: MT distribution for
W data without MT cuts. The points with error bars are for events with E=p < 0:85,
and the histogram is for events with 0:9 < E=p < 1:1. The histogram is normalized
to the number of events with E=p < 0:85.

228



inconsistent with the plot. The mean of the MT distribution for the peak E/p region

is 71:30 � 0:06 GeV. This is consistent with 72:17 � 1:0 GeV, which is the mean MT

for the low-end E/p tail.

We can also calculate MT using PT instead of ET . We refer to this quantity

as MT (track). The transverse mass depends on the calculation of /ET , and when

calculating MT (track) we also use PT for the /ET calculation instead of ET . SinceMT

for the low E/p events is not shifted, we expect that MT (track) is. A comparison of

MT (track) for events with E/p below 0:85 and for events with 0:9 < E=p < 1:1 is

shown in the top plot of Figure 11.5. The low-end events are clearly shifted towards

higher MT (track). The mean of MT (track) for those events is higher than the peak

E/p events by 21 � 1 GeV. This indicates that the low E/p events are the result of

PT being mismeasured high.

The bottom plot of Figure 11.5 provides further evidence that the very low E/p

events are not background. The plot shows the angle between the electron and the

highest ET jet in the event. The very low E/p events appear reasonably at.

The distributions of Nstereo and Naxial are shown in Figure 11.6, for the low E/p

events, and also for events with E/p in the peak. Nstereo is the number of CTC

wires with stereo information that are used to reconstruct the track, and Naxial is the

number of axial wires that are used. If all the stereo wires are used for a given track,

then Nstereo = 24, and if all the axial wires are used then Naxial = 60. The plots show

that the low E/p data use fewer stereo wires and also fewer axial wires than events

with E/p in the peak. The majority of the low E/p data use less than half the stereo

wires. These plots are consistent with the explanation that the low E/p events are

the result of badly measured tracks.

We conclude that the low E/p tail consists of events with badly measured tracks
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Figure 11.5: Top: MT (track) distribution for events with E=p < 0:85 (crosses) and
events with 0:9 < E=p < 1:1 (histogram). No MT cut is applied to the top plot.
Bottom: Angle between the electron and the highest jet in the event for E=p < 0:85
(dashed histogram), and for 0:9 < E=p < 1:1 (solid histogram). All histograms are
normalized to the number of events with E/p below 0.85.
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Figure 11.6: Top: Nstereo distribution for events with E=p < 0:85 (dashed histogram)
and events with 0:9 < E=p < 1:1 (solid histogram). Bottom: Naxial for E=p < 0:85
(dashed histogram), and for 0:9 < E=p < 1:1 (solid histogram). Nstereo is the number
of stereo wires used in the reconstruction of a given track, and Naxial is the number of
axial wires. All histograms are normalized to the number of events with E/p below
0.85.
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but which are otherwise good W events. We simulate these events by describing the

1=PT resolution with two Gaussians. We �nd that simulating 8% of the events with

�(1=PT ) = 0:0026 GeV�1 allows us to adequately simulate the low E/p tail. We will

use the peak region 0:9 < E=p < 1:1 to determine the energy scale. The low E/p

events will not signi�cantly e�ect the scale.

11.2.2 Peak of E/p Distribution

We �t the E/p distribution of the data to the Monte Carlo and vary the three variables

�, �(1=PT ), and the Monte Carlo energy scale SMC
E . We do not directly vary �(1=PT ),

but instead we vary a scale factor on the calculated covariance matrix. There is a

direct relationship between �(1=PT ) and the square root of the covariance scale, and

below we will report a result for �(1=PT ), rather than the covariance scale.

To include the second Gaussian distribution discussed in Section 11.2.1, we run a

mock-up Monte Carlo where ET is chosen randomly from a Monte Carlo histogram,

and PT is chosen based on the distribution of radiated energy, also chosen from a

Monte Carlo histogram. ET is then smeared and scaled according to the di�erent

values for � and SMC
E , and 1=PT is smeared according to the resolution discussed in

Section 11.2.1. This mock-up Monte Carlo di�ers from the full Monte Carlo only

slightly and is adequate for our purposes. We add this shape to the full Monte Carlo

shape so that the �nal Monte Carlo shape contains an 8% contribution from the larger

1=PT resolution.

We do a binned likelihood �t, minimizing the function

L = �2 � X
E=p bins

[��iT + ni log(�iT )] (11.2)
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where ni is the number of data points in bin i, and �i is the sum of the weights

of the Monte Carlo events in bin i. The quantity T normalizes the Monte Carlo to

the data. We include the QCD background at its predicted rate by adding an E/p

histogram for the QCD background to the Monte Carlo histogram. We do not change

the background shape as a function of the energy scale. The QCD background mostly

occurs at high E/p, and it has a negligible e�ect on the peak �t. The E/p shape is

binned in 50 bins from 0:8 to 1:2, and the likelihood calculation is a sum over the

middle 25 bins, approximately from 0:9 to 1:1. There are 22; 112 events in this region.

We hold � �xed at each of its input values, and we minimize L with respect to

SMC
E and �(1=PT ) simultaneously. The best �t values for �(1=PT ) as a function of

the assumed value for � are shown in Figure 11.7. The plot shows that if we assume a

better ET resolution in the Monte Carlo, then we have to increase the 1=PT resolution

to match the data.

The error bars shown in Figure 11.7 include a simple correction for correlations

with SMC
E . To calculate the errors, we hold � �xed at 1:6% and �t for �(1=PT ) as a

function of the Monte Carlo input values for SMC
E . The results of these 1�dimensional

�ts are described by �(1=PT )(GeV�1) = �0:00922 + 0:0101 � SMC
E . The statistical

uncertainty on SE is � 0:0004, and 0:0004 � 0:0101 = 4:0 � 10�6. This is approxi-

mately 1=3 of the statistical uncertainty of the 1-dimensional �(1=PT ) �ts, which are

done with SMC
E and � held �xed. The uncertainties plotted in Figure 11.7 are the

uncertainties from these 1-dimensional �ts added in quadrature to 4:0 � 10�6.

The values for �(1=PT ) shown in Figure 11.7 were calculated assuming that 8%

of the events had the larger resolution of Section 11.2.1. To see the e�ect of the

second resolution, we try �tting without it and set the 8% value to 0%. We get

values for �(1=PT ) which are � 0:000 09 GeV�1 higher than the values calculated
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Figure 11.7: Fitted values for �(1=PT ) as a function of the assumed value for � in
the Monte Carlo. The points shown are the result of 2 -dimensional �ts with � held
at the value shown and �(1=PT ) and both SMC

E varied. The errors shown include a
correction for correlations with the SMC

E . The lines indicate the 1 � � bounds on �
as calculated from MZ .
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above, for all input values of �. For example, in Figure 11.7, with � = 1:6%, we

have �(1=PT ) = 0:000 837 � 0:000 013 GeV�1. If we do not include the second,

larger resolution, we get �(1=PT ) = 0:000 925 GeV�1. This last value agrees better

with values for �(1=PT ) which are calculated from Z ! �� events, where for those

calculations the second resolution is not included.

11.3 Scale Determination With W Events

Figure 11.8 shows the results for the �tted value of the energy scale, SE, as a function

of the Monte Carlo input value for �. The �t procedure is the same as in Section 11.2.2,

where we have allowed both the Monte Carlo energy scale as well as �(1=PT ) to vary

in the �t. The y-axis of the plot is the energy scale which should multiply the data.

These values are related to the Monte Carlo energy scale SMC
E by SE = 0:996=SMC

E .

The factor of 0:996 is needed since we have already scaled the data for the �t, as

discussed above.

A quadratic �t is shown on the plot. In Chapter 10, we calculated that the

� = (1:53 � 0:27)%. With this value and the quadratic �t, we get SE = 0:99613 �
0:00040(stat) � 0:00026(�). Including the uncertainty from the amount of material,

we get the result

SE = 0:99613 � 0:00040(stat) � 0:00024(�) � 0:00035(X0) (11.3)

where the X0 uncertainty is from Section 11.1. This �t was done with the second

Gaussian resolution of Section 11.2.1 contributing 8% of the time. If we ignore this

contribution, the �tted energy scale changes by less than 0:00002 for � = 1:6%. This

is a negligible shift for an extreme change in the contribution of the second resolution,
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Figure 11.8: Fitted values for the energy scale on the data, SE, as a function of the
assumed value for � in the Monte Carlo. The points shown are the result of 2 -
dimensional �ts with � held at the value shown and both �(1=PT ) and SMC

E varied.
The errors shown are the statistical errors for a 1-dimensional �t with �(1=PT ) �xed
near its �nal value and � held at 1:6%. The contribution to the uncertainty from
correlations with �(1=PT ) are found to be negligible. The curve shown is a quadratic
�t and is SE = 0:99610 � 0:08468 � � + 5:6723 � �2. The vertical lines indicate the
1� � bounds on � as calculated from MZ .
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and we neglect any uncertainty associated with the second resolution.

Figure 11.9 shows the best �t Monte Carlo E/p distribution overlaid with the

data. The Monte Carlo was run at discrete values for �(1=PT ), and to make this

histogram we interpolated between two Monte Carlo histograms.

The top plot of Figure 11.10 is the same as Figure 11.9 but on a log scale. The

bottom plot of Figure 11.10 shows the residuals of the top plot. Between 0:9 and

1:1, where the �t was performed, the residuals look at, although there is a slight

rise in the residuals around 0:9. This may indicates that we still have not perfectly

modelled the resolution. Summing the squares of the residuals over their errors gives

�2=dof = 0:86, where the number of bins in the histogram is taken to be the number

of degrees of freedom. There are 50 bins in the E/p histograms.

As a check on our �tting procedure, we �t for the energy scale using just the

mean of the E/p distribution. Figure 11.11 shows the histogram average of the E/p

distribution as a function of the input Monte Carlo energy scale. For this plot, the

Monte Carlo has �(1=PT ) = 0:00085 GeV�1, which is close to the �tted value above,

and � = 1:6%. The second resolution is included as above.

The average is calculated by assuming that the contents of each histogram bin

occur at the center of the bin, and we only use the middle 25 bins of the histogram

exactly as in Equation 11.2. A linear �t is also shown on the plot. The slope is less

than 1 because we are calculating a truncated mean, and this slope increases the error

on the �tted scale.

After scaling the data by 0:996, we calculate < E=p >= 1:01254 � 0:00030, and

so the plot predicts SMC
E = 0:99989 � 0:00040. If we repeat the procedure with

�(1PT ) = 0:00079 GeV�1 in the Monte Carlo, we get the result SMC
E = 0:99952.

The predicted value for �(1PT ) from the previous section, for � = 1:6%, is 0:000837
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Figure 11.9: Best �t E/p distribution for W ! e� Monte Carlo (histogram), with W
data overlaid (crosses). The best �t plot was formed by interpolating between two
Monte Carlo plots which were run with �(1=PT ) slightly higher and slightly lower
than the best �t value. � is taken to be 1:6%, and the energy scale is within 0:00002
of the best �t value for the energy scale. The Monte Carlo is normalized to the data.
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Figure 11.10: Best �t E/p distribution for W events. Top: Best �t E/p distribution
for Monte Carlo (histogram) with data overlaid (crosses), on a log scale. Bottom: the
residuals of the top plot, data minus Monte Carlo. The errors on the bottom points
are the statistical errors associated with the data. Summing the squares over the
points divided by their errors gives �2=dof = 0:86. The best �t plot was formed by
interpolating between two Monte Carlo plots which were run with �(1=PT ) slightly
higher and slightly lower than the best �t value. � is taken to be 1:6%, and the energy
scale is within 0:00002 of the best �t value for the energy scale. The Monte Carlo is
normalized to the data.
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Figure 11.11: Mean of Monte Carlo E/p as a function of the input Monte Carlo
energy scale. The linear �t shown is < E=p >= 0:2807778 + 0:7318406 � SMC

E . The
slope of the line is less than 1 because we are calculating a truncated mean. The
dashed horizontal line indicates the corresponding mean of the data, after scaling
the data by 0:996. The solid horizontal lines indicate the 1 � � uncertainties on the
mean. The solid vertical lines indicate the 1�� region for predicted the Monte Carlo
energy scale. The �t value for SMC

E is the point where the dashed line intercepts the
diagonal. The �t value is indicated by the dashed vertical line.

240



GeV�1. Averaging the two values for SMC
E , weighted by how close they are to the

correct value for �(1PT ), we get SMC
E = 0:99981. As discussed above the value for the

energy scale on the data is SE = 0:996=SMC
E , where the 0:996 factor is needed since

we have already scaled the data for this calculation. The �tted value for the scale is

then

SE = 0:99619 � 0:00040(stat) (mean fit) (11.4)

This result agrees well with Equation 11.3. The statistical errors of the two �ts also

agree, and this indicates that for purposes of setting the energy scale, the mean of

E/p is as good a statistic as the likelihood.

11.4 Scale Determination With Z Events

We repeat the likelihood �tting procedure of Section 11.3 using the E/p distribution

of Z events. The second resolution is included, as is the QCD background. As

above, we �nd the background to have a negligible e�ect on the results. For both the

Z simulation and the data, we include both decay electrons in the E/p histogram.

There are 2; 300 entries in the histogram bins used in the �t. This is approximately

one tenth of the W statistics, and we expect the statistical uncertainties to be � 3

times as large. As above, we initially scale the Z data by 0:996 so that the �t value

for the Monte Carlo energy scale will be near 1.

Holding � �xed at 1:6% we minimize Equation 11.2 with respect to the Monte

Carlo energy scale and �(1=PT ) simultaneously, as in Section 11.3. The best �t value

for the resolution is �(1=PT ) = 0:000 82 � 0:000 04. This agrees with the results

above for the �t to the W data. The best �t value for the Monte Carlo energy scale

is 0:9990 � 0:0013. We invert this to get an energy scale on the data, and then we
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scale by the factor of 0:996 which has already been applied to the data. We get

SE = 0:9970 � 0:0013(stat)� 0:00035(X0) (Z E=p data) (11.5)

This agrees well with the W result of Section 11.3. The uncertainty on the amount

of material is the same as for the W result.

We �nd that there is no dependence on the �tted energy scale as a function of

the assumed values for �. In the W data, the ET resolution introduces a cut bias on

the E/p shape since we cut on ET and MT . The MT cut creates a \running" ET cut

that depends on other event variables. Events that have ET smeared high tend to

get kept and events with ET smeared low tend to be thrown out. This can create a

bias on E/p since the ET cuts in the W data occur along a rising distribution. For

the Z data, however, the ET cut occurs lower on the ET distribution.

The best histogram for the Monte Carlo is shown with the data overlaid in Fig-

ure 11.12. The residuals of the comparison are also shown. Summing the residuals

over the errors squared gives �2=dof = 1:1.

We also �t for an energy scale using the geometric mean of E/p of the two decay

electrons. The geometric mean is
q
(E=p)1(E=p)2, where (E=p)1 and (E=p)2 are the

values of E/p for the two electrons. We repeat the likelihood �tting procedure of the

above sections, except comparing the geometric mean of the data to the Monte Carlo.

We �t using the same E/p bins as above.

We keep � �xed at 1:6% and minimize Equation 11.2 with respect to the Monte

Carlo energy scale and �(1=PT ) simultaneously, as above. The best �t value for the

resolution is �(1=PT ) = 0:000 96 � 0:000 06. This is � 2� higher than the �t value

above. It may be that there is a correlation between the resolutions of the two tracks
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Figure 11.12: Best �t E/p distribution for Z events. Top left and right: Best �t E/p
distribution for Monte Carlo (histogram) with data overlaid (crosses), on a linear and
log scale. Bottom: the residuals of the top plot, data minus Monte Carlo. The errors
on the bottom points are the statistical errors associated with the data. Summing the
squares of the points divided by their errors gives �2=dof = 1:1. For the Monte Carlo
we interpolate between two histograms which have �(1=PT ) near the �tted value. �
is taken to be 1:6%. The data include a scale factor of 0:996, and the Monte Carlo
energy scale is 0:9990. The Monte Carlo plots are normalized to the data.
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that we are not accounting for in the Monte Carlo. For this �t, we are including

the second PT resolution at a rate of 8%. When we calculate the second resolution,

we smear both tracks that are used in the geometric mean. If we only smear one of

the tracks, the �t resolution becomes �(1=PT ) = 0:000 97 � 0:000 06, which is only

slightly higher.

The best �t value for the Monte Carlo energy scale is 0:9997�0:0017, which agrees
with the E/p �ts above. This number does not change if we smear only one of the

tracks with the second resolution. We invert this to get an energy scale on the data,

and then we scale by the factor of 0:996 which has already been applied to the data.

We get

SE = 0:9963 � 0:0017(stat)� 0:00035(X0) (Z data) (11.6)

The best histogram for the Monte Carlo is shown with the data overlaid in Fig-

ure 11.13. The residuals of the comparison are also shown. Summing the residuals

over the errors squared gives �2=dof = 0:82.

11.5 Conclusion

We have determined a CEM energy scale relative to the CTC scale. The W result is

reported in Equation 11.3, and the Z result in Equation 11.5. The results for both

the W data and Z data agree. The most signi�cant sources of uncertainty arise from

the �nite statistics, the amount of material, and the ET resolution term �.

The best �t from the W data is Equation 11.3. The result is

SE = 0:99613 � 0:00040(stat) � 0:00024(�) � 0:00035(X0) (W data)
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Figure 11.13: Best �t
q
(E=p)1(E=p)2 distribution for Z events. Top left and right:

Best �t distribution for Monte Carlo (histogram) with data overlaid (crosses), on a
linear and log scale. Bottom: the residuals of the top plot, data minus Monte Carlo.
The errors on the bottom points are the statistical errors associated with the data.
Summing the squares of the points divided by their errors gives �2=dof = 0:82. The
data include a scale factor of 0:996. The Monte Carlo plots are normalized to the
data.
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For the Z data we used both the E/p distribution of both legs and the geometric

mean of the two values for E/p. The two results are listed in Equation 11.5 and

Equation 11.6. The two results are

SE = 0:9970 � 0:0013(stat)� 0:00035(X0) (all Z data)

and

SE = 0:9963 � 0:0017(stat)� 0:00035(X0) (geometric mean of Z data)

respectively.
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Chapter 12

Non-Linearity Between W and Z

Energy Scales

Figure 12.1 shows the ET distributions of electrons fromW and Z decays. The average

of the Z events is � 4:5 GeV higher than the W events. To extrapolate the energy

scale from the Z events to W events, we need to account for potential non-linearities

in the CEM scale. We write the nonlinearity as

�SE
SE

= � �ET (12.1)

where �SE=SE is the fractional change in the energy scale, and � is the slope as a

function of ET . If the CEM is perfectly linear, then � will be identically zero.

The calorimeter has several potential sources of non-linearities. For example, the

CEM integrates the electron shower energy over 18 radiation lengths. This contains

most of the energy from the electron shower, but a small percentage of the energy

\leaks" out the back of the calorimeter. The leakage fraction varies with the energy

of the electron, since higher ET electrons deposit more of their energy farther back
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Figure 12.1: ET distributions for electrons forW ! e� and Z ! ee data. The squares
are for Z events, and the triangles are for W events. For Z decays both electrons are
included in the plot. The distributions are normalized to unit area. The average ET

is 38:34 � 0:03 and 42:7 � 0:1 GeV for the W and Z data respectively.
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in the calorimeter. An EGS study of the CEM predicts that the leakage fraction

varies between roughly 2:5% and 3:5% as the electron ET varies between 25 and 50

GeV [42]. This would produce values for � of � 0:000 8 GeV�1.

This source of non-linearity is potentially o�set by energy deposited in the solenoid.

The solenoid presents� 1 radiation length to the electrons before they enter the CEM.

The solenoid can reduce the measured CEM energy by several percent [43]. The en-

ergy loss before the solenoid will decrease as the electron ET increases because the

shower deposition pro�le changes with ET .

Reference [42] further suggests that there is a higher e�ciency to measure energy

deposited in the back of the CEM since on average the light pulses from the scintil-

lators in the back of the CEM travel a smaller distance to the phototubes. This also

would produce a non-linearity which might o�set the leakage energy non-linearity.

Another potential source of non-linearity arises from the decline in the CEM

response. The CEM response has declined by roughly 10% over the course of Runs

1A and 1B. This decline is not well understood. It may introduce a non-linearity if

the decline is not uniform in depth. For example, we have done a simple calculation

where we assume that the total CEM decline is 10%, but that the decline occurs at

di�erent rates in the di�erent CEM layers. If we assume that the longitudinal decline

pro�le is proportional to the longitudinal energy deposition pro�le of electrons, then

we calculate a change in CEM response of � 0:15% over the 4:5 GeV di�erence

between the average ET of W and Z decay electrons.

There is a potential non-linearity between the ET ranges of W and Z events on

the order of tenths of a percent. This corresponds to � � 0:000 2 GeV�1. We do not

rely on a calculation of the non-linearity. Instead we use the E/p distribution of W

and Z events, implicitly assuming that the CTC PT measurement is linear over the
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ET range of W and Z events.

In Section 12.1 we measure � by comparing the W and Z CEM scales as determined

from the E/p distributions. In Sections 12.2 and 12.3 we use the ET spread of the

data to measure �. We conclude in Section 12.4.

12.1 Comparison of W and Z E/p Fits

In Chapter 11 we determined an energy scale using the E/p distribution of both W

and Z events. The largest systematic uncertainty on both numbers is the amount

of material, but this is in common with both measurements and does not e�ect the

di�erence of the results. For the Z result, we use the �t to the geometric mean of

E/p of the two electrons. We use this result, rather than the �t result to E/p of both

electrons combined, because the Z mass is proportional to the geometric mean of ET

of the two decay electrons.

The di�erence between the Z result of Equation 11.6 and the W result of Equa-

tion 11.3, relative to the W result, is

�SE
SE

= 0:00017 � 0:00177 (12.2)

where the uncertainty includes the statistical uncertainties on both �ts and the un-

certainty on the W result associated with �. The average value for the geometric

mean of ET for the two legs of Z ! ee decays is 4:5 GeV higher than the average ET

of electrons in W ! e� events. Dividing Equation 12.2 by 4:5 GeV, we get

� = 0:000 04 � 0:000 39 GeV �1 (12.3)
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This number is consistent with zero.

12.2 E/p vs ET for W Events

The ET distributions of both W and Z events occur over a broad enough range that

they overlap. In the sections below we consider di�erent ways of using the ET spreads

to measure �.

The top plots of Figure 12.2 show the average of E/p between 0:9 and 1:1 in bins

of ET , for both W and Z events. The structure of the plots is mostly a result of the

ET resolution. Each ET bin contains events which have ET mismeasured high and ET

mismeasured low. Where the ET shape is falling, there will be more events with ET

mismeasured high than low, and E/p will be biased high. The opposite e�ect occurs

where the ET shape is rising.

The structure of the plots is also e�ected by the boson recoil energy. The contri-

bution to ET from the boson recoil energy is not at in ET . Higher ET events tend to

be boosted and have the recoil energy directed opposite the electron, while the lower

ET events tend to have the recoil energy directed at the electron cluster. Not only

do the higher ET events have less recoil energy, but the recoil energy is smaller as

a fraction of the electron energy. We calculate that the recoil energy decreases from

� 0:25% of the electron energy to � 0:15% as the electron ET varies between 25 and

50 GeV. These e�ects are included in the Monte Carlo.

The residuals, data minus Monte Carlo, of the top plots of Figure 12.2 are shown

in the bottom plots. The slope of the residuals for the W �t is (2:66 � 0:65) � 10�4

GeV�1, and the slope for the Z events is (�1:8 � 1:6) � 10�4 GeV�1 The �ts to the

residuals include all the points on the plots. If we only use the points with ET between
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Figure 12.2: Top left and right: Mean E/p between 0:9 and 1:1 for W and Z events
respectively. The triangles are data and squares Monte Carlo. The Monte Carlo
was run � = 1:6%. The squares are o�set slightly to the right to make the points
easier to see. Bottom: Residuals of the top two plots, data minus Monte Carlo. The
�tted slope for the W events is (2:66 � 0:65) � 10�4 GeV�1. For the Z events it is
(�1:8� 1:6)� 10�4 GeV�1.
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30 and 50 GeV, the slope becomes smaller by 0:3 � 10�4 for the W events. This is

not a large change compared to the statistical uncertainty. For the Z events, however,

there is a larger change, and the slope becomes (1:8� 2:0)� 10�4 GeV�1.

We combine the W and Z residuals by calculating a weighted average at each

point in ET , weighting according to the statistical uncertainties on each point. This

is shown in Figure 12.3. The plot is dominated by the W events, and the slope is

(1:91� 0:58)� 10�4 GeV�1. If we just use the points between 30 and 50 GeV, we get

a slope of (2:24 � 0:66) � 10�4 GeV�1.

In addition to the statistical uncertainty on the slope, we must also consider the

uncertainty associated with the electron resolution. We re�t the slope using � = 1:2%

and � = 2:0%. We get the slopes 2:53�10�4 GeV�1 and 1:18�10�4 GeV�1 for these

two values of �, respectively. We average the magnitude of the di�erence between

these results and the result above for � = 1:6%; and we scale by 0:0027=0:004 since

we have varied � by �0:004 but the uncertainty on � from the Z �t is �0:0027. The
uncertainty on the slope from the uncertainty on � is then 0:46 � 10�4 GeV�1.

We use the variations with � to adjust the �tted slope. Figure 12.3 used the Monte

Carlo with � = 1:6%, but the best �t value is � = 1:53%. This is a small correction,

and the adjusted slope is (2:03 � 0:58)� 10�4 GeV�1.

In Chapter 11, we saw that to convert from a change in the mean of E/p to a

change in the �tted energy scale, we should divide by 0:7. We use the adjusted �t to

Figure 12.3, and dividing by 0:7, we determine that the CEM response varies with

ET with a slope of

� = �0:000 29 � 0:000 08(stat)� 0:000 07(�) GeV �1 (12.4)
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Figure 12.3: Weighted average of W and Z residuals plots of Figure 12.2. The �tted
line has a slope of (1:91� 0:58)� 10�4 GeV�1 The goodness of �t of the �tted line is
�2=dof = 1:4. If we �t to a line with no slope, we get �2=dof = 2:2.
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The minus sign indicates that E/p is growing with ET and so the �tted energy scale

becomes smaller. We multiply by 4:5 GeV to calculate the change in the CEM

response between Z and W events. This value for � predicts that the response for

energies associated with Z events is higher by (0:13� 0:05)%.

12.3 <E/p> vs Uk for W Events

In the previous Section we plotted the average of E/p as a function of ET . These plots

are shown in Figure 12.2. One reason the plots are not at is that we are binning in

ET , and the ET resolution, in combination with a non-at ET distribution, will bias

the E/p shape. This is discussed above. If we partition the data as a function of Uk

instead, we can reduce this e�ect.

The top plot of Figure 12.4 shows the average of the electron ET as a function of

Uk. Events with Uk negative tend to have higher ET because the W PT adds to the

electron ET for those events; and events with Uk positive tend to have lower ET . For

Uk between �20 GeV, the average ET varies between 30 and 50 GeV. By plotting

the mean of E/p as a function of Uk, we are e�ectively plotting E/p over a range of

values for ET .

The bottom plot of Figure 12.4 shows the mean of E/p as a function of Uk. Both

data and Monte Carlo are shown. The Monte Carlo shows a slight rise as a function

of Uk. This is the e�ect of the recoil energy, as discussed in the previous section.

The top plot of Figure 12.5 shows the average E/p for each of the Uk bins, as a

function of the average ET in each bin. The y-axis points are the same as the bottom

plot of Figure 12.4, but we have plotted them as a function of the average ET in

each Uk bin. Both the data and Monte Carlo are shown. The bottom plot shows the

255



Figure 12.4: Top: Mean ET vs Uk for W ! e� data. The ET average is calculated
between 25 and 60 GeV. Bottom: Mean of E/p between 0:9 and 1:1 vs Uk forW ! e�
data (triangles) and Monte Carlo (squares).
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residuals of the top plot, data minus Monte Carlo. Two linear �ts are shown, one

which allows a slope and one which has no slope. The value for �2=dof is marginally

better for the �t with a slope. The value for the slope is (2:0 � 1:1) � 10�4 GeV�1.

We divide this by 0:7 to convert from a change in the mean of E/p to a change in the

energy scale. We get the result

� = �0:000 29 � 0:000 15(stat) GeV �1 (12.5)

As above, the minus sign indicates that E/p is growing with ET and so the �tted

energy scale becomes smaller.

This value agrees with the result of Equation 12.4. The two numbers are correlated

although they have di�erent systematic uncertainties.

To avoid �tting a line through the data of Figure 12.5, we compare the E/p

distributions for events with positive Uk and events with negative Uk. We calculate

the mean of E/p between 0:9 and 1:1. For the Monte Carlo, events with positive Uk

have the mean of E/p higher by 0:00054. This is primarily the e�ect of the recoil

energy having a larger percentage contribution for the positive Uk events. For the

data, the positive Uk events have the mean of E/p lower by 0:00097 � 0:00058. The

shift of the data is lower than the shift of the Monte Carlo by 0:00097 + 0:00054 =

0:00151 � 0:00058.

The average ET for the positive Uk events is lower by 4:3 GeV than the negative

Uk events. If we attribute the di�erence between the data and the Monte Carlo to a

non-linearity, then we calculate � by dividing 0:00151 by 4:3 GeV, and also scaling

by 1=0:7 to convert from a shift in the mean of E/p to a shift in energy scale. We get
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Figure 12.5: Top: <E/p> vs < ET > for bins of Uk, forW ! e� events. The triangles
are the data and the squares the Monte Carlo. Bottom: The residuals of the top plot.
The solid is the result of a linear �t using the points with ET between 30 and 48 GeV.
The slope of the line is (2:0 � 1:1) � 10�4 GeV�1. The dotted line is a �t to a line
with no slope. The value for �2=dof is 0:68 for the �t with a slope, and 0:87 for the
�t with no slope.
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the result

� = �0:000 50 � 0:000 19(stat) GeV �1 (12.6)

This slope is larger than the results listed in Equations 12.4 and 12.5.

12.4 Conclusion

We have three results which use only the W data to calculate �. These are listed

in Equations 12.4, 12.5, and 12.6. To combine these numbers, we do a weighted

average of the three results. The numbers are highly correlated, and combining the

numbers does not improve the statistical uncertainty. They have di�erent systematic

uncertainties, but for all three numbers the statistical uncertainties are larger than

the systematic uncertainties. We use the smallest uncertainty of the three for the

combined uncertainty, and we add the rms of the three numbers as an additional

systematic uncertainty. The combined result is

� = �0:000 33 � 0:000 14 GeV �1 (W Data) (12.7)

Equation 12.3 is the result for � which is calculated by comparing the E/p distri-

butions of W and Z data. This number is independent of the result of Equation 12.7,

and two numbers are consistent with each other. We do a weighted average of these

two numbers to get the �nal result

� = �0:000 29 � 0:000 13 GeV �1 (All Data) (12.8)

For the W mass �ts of the next section we apply a correction for the non-linearity.
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We correct the electron energy according to

E ! E � [1� 0:00029 � (ET � 42:73)] (12.9)

where ET is measured in GeV. The average ET for Z events is 42:73 GeV, and the

correction is such that this average is not changed. We have veri�ed that the energy

scale as determined from the Z mass remains 1:0000�0:0010 after the correction. The
best �t for � becomes slightly smaller after the correction. We get � = (1:50�0:027)%.
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Chapter 13

W Mass Fit

In this chapter we �t for the W mass using the transverse mass distribution of the

W ! e� data.

The Monte Carlo MT distribution depends on the W mass, MW , and the W

width, �W , through the Breit-Wigner function of Equation 5.6. Each Monte Carlo

event weight is scaled by this function. The Monte Carlo weight also depends on

the 14 parameters that determine the
P
ET shape, the ~U model, and the boson PT

distribution. These parameters e�ect the event weight through the three probability

distributions of Equation 8.1, 8.15, and 7.1. These distributions determine the
P
ET

shape, the ~U distribution, and the boson PT distribution, respectively.

In Section 13.1 we �t simultaneously for the W mass and width. In Section 13.2

we search for a perturbed set of input parameters, ~!W , which are consistent with

the input parameters from the Z �ts, ~!Z, but which better describe the W data. In

Section 13.3, we use the parameters ~!W to determine the Wmass. We use these �ts for

the �nal W mass determination. We discuss systematic uncertainties in Section 13.4;

and in Section 13.5 we perform several checks on the �ts.
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In Chapter 9 we compared the W data to the Monte Carlo using the input pa-

rameters ~!Z, as well as the perturbed parameters ~!W .

13.1 WMass and Width Fits Using Inputs Param-

eters from Z Data, ~!Z

In this section, we determine the W mass using the simulation input parameters which

were derived from the Z data. There are 14 Monte Carlo input parameters which have

been determined from the Z data. The calorimeter response model depends on the

3 parameters of ~�� which determine the
P
ET shape, and also on the 7 parameters

of ~�U , which determine the ~U shape. These parameters were �t to the Z data in

Chapter 8. In addition, there are 4 parameters in ~�x which determine the P boson
T

shape, and these were �t to the Z data in Chapter 7.

The input parameters are �xed at the values which were �t to the Z data, and we

oat the W mass and width. We �nd a minimum of the binned likelihood function

L = �2� X
MT bins

[��iT + ni log(�iT )] (13.1)

where MT is binned in 35 bins from 65 to 100 GeV, ni is the number of data points

in bin i, and �i is the sum of the weights of the Monte Carlo events in bin i. The

quantity T normalizes the Monte Carlo to the data and is the number of data points

divided by the sum of all the Monte Carlo weights.

The �t results are MW = 80:438 � 0:073(stat) GeV, and �W = 2:41 � 0:16(stat)

GeV. The uncertainties are the square roots of the diagonal part of the covariance

matrix, and the o�-diagonal element is �4:5 � 10�3 GeV2. The 2 � 2 covariance
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matrix represents the statistical uncertainty associated with the W statistics of the

transverse mass �t.

The Standard Model predicts a value for �W that is proportional to M3
W [44]. We

de�ne the quantity R�, where

R� � �W=M
3
W (13.2)

The Standard Model prediction for R� is [44]

R�(s:m:) = (4:022 � 0:008) � 10�6 GeV �2 (13.3)

QCD and QED radiative corrections are included in this number. The uncertainty is

dominated by the uncertainty on �s.

The �tted value for R� is R� � �W =M3
W = (4:63 � 0:31) � 10�6 GeV�2. This is

higher than the Standard Model value by (4:63�4:02)=0:31 = 2:0 statistical standard

deviations. Figure 13.1 shows the 1� and 2 � � contours of the �tted width vs the

�tted W mass, as determined by the �t covariance matrix.

The parameter �W determines how quickly the MT distribution drops o� at its

falling edge. The input Monte Carlo parameters, which determine the ~U model and

the boson PT distribution, also e�ect the sharpness of the falling edge. Thus we

expect the �tted width and the input parameters to have a strong correlation. To

plot the correlation we vary the input parameters according to their uncertainties,

and we recalculate �t values for MW and �W .

We vary the 7 parameters of ~�U according to the covariance matrix eCU , which is

discussed in Chapter 8. These parameters determine the ~U model. We then re�t for

the W mass and width using these new values for ~�U . We do this 100 times. The

100 results are shown as the �lled triangles in Figure 13.1. The 100 results form a
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Figure 13.1: The �tted width as a function of the �tted mass, using the Monte Carlo
inputs �xed at the �ts to the Z data, ~!Z. The ovals are the 1� and 2�� contours of the
�t. The line represents the Standard Model prediction for the width, �W = R�M

3
W

where R� = (4:022�0:008)�10�6 GeV�2. There are also 200 points shown. The 100
open circles are the results for the �tted mass and width after varying the Monte Carlo
boson PT input parameters, ~�x, randomly according to their covariance matrix. The
100 �lled triangles are the results after varying the ~U model parameters, ~�U according
to their covariance matrix.
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narrow vertical band, showing a strong correlation with the �tted width. Errors on

the ~U model input parameters are compensated for by errors on the �tted width.

We also vary the 4 parameters of ~�x, and keep the ~U model parameters �xed.

We vary these 4 parameters according to their covariance matrix, which is discussed

in Chapter 7. The 100 results for the �tted mass and width are shown as the open

circles in Figure 13.1. The e�ect of errors on the boson PT has a stronger e�ect on

the �tted mass than the ~U model parameters.

Our �tted width may be high because of imperfections in the input parameters.

The parameters were determined from the Z data, and may not perfectly describe

the higher statistics of the W data. The spread of the points in Figure 13.1 indicates

that there are regions of the input parameter space which are consistent with the Z

�ts and which give a �tted W width which is within one standard deviation of the

expected value.

13.2 Perturbing the Input Parameters

In the previous section, we saw that the ~U model input parameters, ~�U , were strongly

correlated with the �tted width. The boson PT parameters, ~�x, were also correlated,

although not as strongly. These parameters were determined from the Z data, and

we do not necessarily expect them to perfectly describe the higher statistics W data.

We wish to �nd a set of input parameters which are consistent with the Z data, and

which better describe the W data.

We allow all 11 parameters of ~! � (~�x; ~�U) to vary. These 11 parameters deter-

mine the boson PT distribution and the ~U model. We also allow the W mass to vary

since the MT and ET distributions depend on the W mass, and we include both of
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those variables in the minimization function below.

We keep the width �xed at the Standard Model prediction. Instead of �tting the

MT distribution, we include several other functions which provide constraints on the

parameters. The function we minimize with respect to these 12 parameters is

L = L(MT ) + L(ET ) + L(j~U j) + L(Uk) + �(~�U) + �(~�x) (13.4)

where L(MT ) is exactly the binned log likelihood function of Equation 13.1; and

L(ET ), L(j~U j), and L(Uk) are the corresponding binned log likelihood functions for

the ET , j~U j, and Uk shapes, respectively. They are de�ned as in Equation 13.1

except that L(ET ) uses the ET distribution, binned in 30 bins between 25 and 55

GeV; L(j~U j) uses the j~U j distribution binned in 20 bins from 0 to 20 GeV, and

L(Uk) uses the Uk distribution, binned in 40 bins from �20 to 20 GeV. The functions
�(~�U) and �(~�x) constrain the oated input parameters to remain near the original

Z �ts. They are de�ned as �(~�U) � (~�U � ~�Z
U) � eC�1

U � (~�U � ~�Z
U), and �(~�x) �

(~�x�~�Z
x )� eC�1

x �(~�x�~�Z
x ), where ~�

Z
U and ~�Z

x are the original values for the parameters

as determined from the Z data, and where eCU and eCx are the corresponding covariance

matrices from the Z �ts.

Figure 13.1 shows that there is a set of parameters which is consistent with the

Z �ts, and which produces a value for the W width which is consistent with the

Standard Model prediction. However, these parameters may not produce good �ts

to all the W distributions, and may even produce worse �ts. The four likelihood

functions of Equation 13.4 include information from the W data and force the chosen

set of parameters to produce reasonable �ts for these distributions. The four functions

are all correlated since Uk depends on j~U j, and MT depends on ~U and ET . This will
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not invalidate the �t results, but it will make the �tted uncertainty on the parameters

di�cult to interpret. We will not use the uncertainties from this �t.

We refer to the resulting parameters ~�x and ~�U as ~!W � (~�x; ~�U). These pa-

rameters are listed in Table A.1 of Appendix A. The parameters ~!W are consistent

with the Z �t parameters ~!Z . Using the �nal �t results we get �(~�x) = 1:4 and

�(~�U) = 4:9, which are small numbers for the 4�dimensional and 7�dimensional
�ts for ~�x and ~�U respectively. The �tted values for the mass is MW = 80:443 GeV,

which is close to the result of Section 13.1.

The W Monte Carlo using the �t results ~!W are plotted in Chapter 9.

13.3 W Mass Fit Using Perturbed Input Parame-

ters, ~!W

We �t for the W mass using just the MT distribution. We keep the input parameters

�xed at the new, perturbed values ~!W , and we let the W mass and width oat. The

W mass may be di�erent from the previous section because we are only including the

MT distribution.

When we minimize Equation 13.1 with respect to the W mass and width, and we

get the �t results MW = 80:426� 0:073(stat) GeV, and �W = 2:33� 0:16(stat) GeV.

We compare this result to the Standard Model prediction of Equation 13.3. Our value

for the width is higher than the Standard Model prediction by (4:48�4:02)=0:31 = 1:5

statistical standard deviations.

We �t for the W mass with the width �xed at the Standard Model prediction,
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and MW allowed to oat. The �t result is

MW = 80:473 � 0:65(stat) GeV (13.5)

A plot of the binned likelihood function of Equation 13.1 is shown in Figure 13.2.

In this plot, the input parameters are held �xed, and we calculate Equation 13.1 as

a function of MW .

For the �tted W mass we use the result with the width �xed and the parameters

�xed at the oated values ~!W . This is the result of Equation 13.5 above.

13.4 Systematic Uncertainties on the W Mass

In this section we measure various contributions to the systematic uncertainty on

MW . For all the MW �ts which we do in this section we �x �W at the Standard

Model prediction, and we �x the Monte Carlo input parameters at ~!W . Only the W

mass is oated in the �ts.

13.4.1 Energy Scale

We vary the energy scale on the data, SE, between 0:995 and 1:005, before we apply

any cuts, and we re-�t for the W mass. For each value of SE, we calculate the ratio

MW=MW (SE = 1), where MW (SE = 1) is the result for SE = 1. MW (SE = 1) is the

best �t result of Equation 13.5 above. Figure 13.3 shows this ratio as a function of

SE. The plot shows that a fractional change in the energy scale leads to the same

fractional change in MW .

We set the energy scale using Z ! ee events. This is discussed in Chapter 10.
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Figure 13.2: Binned likelihood for the MT distribution as a function of MW . The
y�axis is L of Equation 13.1 with the value of the function at the minimum subtracted
o�. L is �2 times a binned likelihood function. The location of the minimum is
indicated by the arrow. The horizontal line is a line at 1 and indicates the change in
L that corresponds to a 1�� variation on MW . The two small vertical lines indicate
the 1� � bounds on the �tted value for MW .
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Figure 13.3: The �tted value for MW relative to MW (SE = 1) as a function of the
energy scale on the data, SE. MW (SE = 1) is the W mass result for an energy scale
of 1:0. A line with a slope of 1 is also shown.
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The uncertainty on the energy scale is 0:1%, and, therefore, the fractional uncertainty

on the W mass from the energy scale is 0:1%. The contribution to the uncertainty

on MW is

� = 0:080 GeV (scale) (13.6)

13.4.2 Energy Scale Non-linearity

The energy scale is determined from the invariant mass of Z ! ee events. To apply

this scale to W events, we considered the possibility that there is a non-linearity in the

CEM energy response. The non-linearity is measured in Chapter 12. The data has

the non-linearity correction of Equation 12.9 applied. This correction increases the

ET of electrons which have ET < 42:73 GeV, and decreases ET for ET > 42:73 GeV.

The number 42:73 GeV is near the average ET of electrons from Z ! ee events, and

it is such that the measured energy scale from Z events is unchanged. The average

ET from W ! e� events is 38:34 GeV, and the ET of these events is increased on

average by 0:13%. This is an increase of � 50 MeV.

However, even though the ET of each W decay electron is increased by � 50 MeV

on average, the average of the ET distribution is observed to increase by less than 5

MeV. The reason for this is that by increasing the ET of the events, we increase the

number of events that pass the ET and MT cuts. These new events appear at lower

ET , and they lower the average of the ET distribution. For the average of the ET

distribution, this e�ect compensates for the non-linearity correction.

Similarly, the percentage change in the average of the MT distribution is smaller

than 0:13%. We �nd that the non-linearity correction causes the mean of MT to

increase by 17 MeV, where the mean is calculated between 65 and 100 GeV.

To measure the e�ect of the non-linearity correction on the W mass, we �t for
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MW without applying it the data. Without the correction, there 253 fewer events

that pass all the cuts. We �t for the W mass with the width �xed at the Standard

Model value, and we hold the Monte Carlo input parameters �xed at ~!W . We get

a result that is 34 MeV lower than the best �t result of Equation 13.5 above, which

has the non-linearity correction applied. 34 MeV is 0:04% of the W mass, roughly a

third the size of the average non-linearity correction that is applied to the W ! e�

events.

The uncertainty on the non-linearity correction, from Equation 12.8, is slightly

less than 50% of the correction itself. The entire correction changes the measured

mass by 34 MeV. We take the uncertainty on MW from the non-linearity to be 50%

of this change. The contribution to the uncertainty on MW is therefore

� = 0:017 GeV (CEM non � linearity) (13.7)

The non-linearity correction also has an e�ect on the measured W width. Since

lower ET electrons get more of an increase on average than higher ET electrons, the

correction tends to make the ET shape narrower. The rms of the ET shape is reduced

by � 0:5% by the correction. The change in the MT shape is more noticeable. The

non-linearity correction makes the falling edge of the MT distribution sharper. If we

oat the W width in the MW �t, we �nd that the �tted value for �W is increased by

0:14 GeV if we do not apply non-linearity correction. The uncertainty on �W from

the uncertainty on the non-linearity is � 50% of this shift, or 0:070 GeV. This large

change in the �tted width may indicate that our �tted width comes out high because

we have not applied a large enough non-linearity correction.
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13.4.3 Monte Carlo Input Parameters

The Monte Carlo input parameters determine the boson PT shape and the ~U model.

To determine the e�ect of the input parameters on the W mass, we allow all 11

parameters to oat, as well as the W mass, and we minimize the function

L = L(MT ) + �(~�U) + �(~�x) (13.8)

where L(MT ), �(~�U), and �(~�x) are as de�ned in Equation 13.4 above. The func-

tions �(~�U) and �(~�x) constrain the parameters to be near the original Z �t values,

relative to the statistical uncertainties on those �ts.

The uncertainty onMW from this �t includes the e�ect of allowing the parameters

to vary within their uncertainties. The resulting value for MW is MW = 80:476 �
0:075(stat+ inputs) GeV. When we �x the parameters in the �t and only allow MW

to vary, the uncertainty on MW is 0:065 GeV. The uncertainty with the parameters

allowed to oat is 0:075 GeV. Therefore Monte Carlo input parameters contribute

� =
p
0:0752 � 0:0652 = 0:037GeV (13.9)

to the total uncertainty on MW .

When we determined ~!W , we used the W data to constrain the allowed parameters,

and not just the Z data. The uncertainty calculated above assumes that we are only

using the Z data to constrain the input parameters, and therefore is an overestimate

of the uncertainty. To be conservative, we quote this overestimate for the systematic

uncertainty from the input parameters.
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13.4.4 Backgrounds

The Monte Carlo includes backgrounds from QCD events, Z ! ee events, andW ! ��

events. These backgrounds are discussed in Chapter 4. The W ! �� ! e��� back-

ground is well known, and we do not consider a contribution to the uncertainty from

this background. To measure the e�ect of the other backgrounds, we �t for the W

mass without them. These backgrounds are the QCD background, the lost Z back-

ground, and the W ! �� !hadrons+� background.

The �tted W mass comes out 12 MeV lower than the W mass which includes

these backgrounds in the Monte Carlo. This is a small change for a large change in

the background rate. We therefore do not attribute any uncertainty on MW to the

backgrounds.

13.4.5 Electron Resolution

The ET resolution consists of a stochastic term added in quadrature with a constant

term. The constant term, �, was determined in Chapter 10. The best �t is � =

0:0153 � 0:0027, as listed in Equation 10.2. To determine the uncertainty on the

�tted W mass from the uncertainty on �, we use a Monte Carlo histogram that has

� = 1:6%. We �t this histogram as if it were real data.

The Monte Carlo that we use to �t this histogram is run with several di�erent

values of �. We �nd that if we change � by ��, the �tted value for MW changes by

10��� GeV. The uncertainty on � is 0:0027, and therefore the uncertainty on MW

is 10 GeV times 0:0027. This number is

� = 0:027 GeV (�) (13.10)
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13.4.6 Parton Distribution Functions

The measured W mass is e�ected by the parton distribution functions (PDFs) in two

ways. The distribution functions determine the parton luminosities. Since the parton

luminosities are falling distributions, they will create a bias towards the production

of W events at lower
p
ŝ. The PDFs also determine the longitudinal momentum

distribution of the W.

Since ET and MT are transverse quantities, they are not changed by the longitu-

dinal boost of the event. However, by requiring that the electrons land in the central

calorimeter, we introduce a dependence on the longitudinal boost. A longitudinal

boost will cause some central electrons to land in the plug region, and some plug elec-

trons to land in the central; and the plug electrons have lower ET than the central

on average.

Figure 13.4 shows the variation onMW for 12 recent parton distribution functions[45].

The �t values for MW for each of the distributions was determined by comparing the

mean of the MT distributions. For this comparison the Monte Carlo only uses gen-

erated quantities, rather than measured quantities. It requires only that the electron

is central, and that the electron and neutrino both have ET above 25 GeV. It is also

required that MT fall between 65 and 100 GeV. This simpler Monte Carlo should be

adequate since we are only interested in the variation in the �t results among the

PDFs, and not the absolute value of MW .

The results are plotted relative to the MRSD-0 result. We compare to MRSD-0

since that was the PDF used for the Run 1A W mass measurement. We are using the

MRS-R2 PDFs. If we were to use MRSD-0 our result on MW would come out � 30

MeV higher. The 12 PDFs in Figure 13.4 have an rms on MW of 6 MeV.

In the Run 1A analysis, the CDF W asymmetry data was used to constrain
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Figure 13.4: Shift in the �tted massMW for 12 di�erent parton distribution functions,
relative to the 1A default distribution function, MRSD-0. The 12 functions are listed
on the right side of the plot. For this plot, the Monte Carlo only used generated
quantities. The solid circles are generator with a leading order matrix element, and
the open circles are for the DYRAD generator, which uses a next to leading order
calculation. The rms of the 12 results is 6 MeV. This �gure is taken from [45].

acceptable PDFs. The asymmetry is the di�erence in the number of positive and

negative electrons as a function of pseudorapidity. This quantity is sensitive to the

ratio of the u and d quark momentum distributions. The 1A asymmetry analysis

only used electrons in the central regions. Recent PDFs include the results of the 1A

data, and these distributions produce the same asymmetry as the CDF data, in the

central region.

We calculate the quantity �A to be the di�erence between the average asymmetry

of the data and the average of the Monte Carlo, relative to the uncertainty on the

data. If we only use the central region in the average, the values for �A from the

PDFs in Figure 13.4 are all between 0 and 1.

The 1B asymmetry measurement has been extended to pseudorapidities of nearly

2. In the region above � 1:2 the asymmetry of the data is signi�cantly closer to 0
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than the value predicted by any of the PDFs we examine. If we include all rapidity in

the calculation of �A, then the PDFs in Figure 13.4 all produce values around �2.

In the 1A analysis a correlation was observed between �A and the �tted value for

MW for the di�erent PDFs. A similar correlation is observed for the recent PDFs,

although the variation in �A among the recent PDFs is signi�cantly smaller. This

correlation is used to estimate that a change in �A of 2 would produce a 25 MeV

change in the mass.

This is likely an overestimate because we do not expect that changes in the asym-

metry at high values of pseudorapidity will have as strong an e�ect on the mass as

changes as lower values of pseudorapidity. On the other hand, the rms of the points

shown in Figure 13.4 is an underestimate of the uncertainty from the PDFs because

the PDFs were determined from mostly the same data. To be conservative we assign

an uncertainty on MW of

� = 0:025 GeV (PDF ) (13.11)

from the parton distribution functions.

13.4.7 Monte Carlo Statistical Uncertainty

The �ts are done with slightly more than 1:8 million weighted Monte Carlo events. To

determine the statistical uncertainty associated with this number of weighted events,

we divide the Monte Carlo into 10 independent samples of 180; 000 events each. We

�t for the W mass with each of the 10 samples. The 10 results have an rms of 0:055

GeV. The statistical uncertainty on the full sample is 0:055=
p
10 = 0:017 GeV.

If we add this in quadrature to the statistical uncertainty from the data, we

can calculate a combined statistical uncertainty of the data and the Monte Carlo.
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This value is
p
0:0652 + 0:0172 = 0:067 GeV. This is a small increase relative to the

statistical uncertainty on the data. We conclude that the uncertainty associated with

the Monte Carlo statistics is small relative to the statistical uncertainty on the data.

We include a statistical uncertainty of

� = 0:017 GeV (Monte Carlo) (13.12)

to account for the �nite Monte Carlo statistics.

13.5 Checks on the W Mass Fits

In this section we look for systematic biases on the W mass �t by making various

cuts on the data and Monte Carlo and re�tting for the W mass. For all the �ts below

we �x �W at the Standard Model prediction, and the we �x the Monte Carlo input

parameters at ~!W . Only the W mass is oated in the �ts.

13.5.1 MW in Bins of j~U j and Uk

~U is our measure of the boson PT . We partition the data and Monte Carlo into four

bins of j~U j, and also four bins of Uk. We then �t for MW using the transverse mass

shape for each of the j~U j and Uk bins. This is a check that our model reproduces the
MT shape of the data as a function of the boson PT . It is also a check that errors

in the ~U modelling are not signi�cantly biasing the �tted value for MW . Moreover,

sinceMT � 2ET +Uk, partitioning the data in Uk allows a check that we are correctly

simulating the correlation between ET and Uk. ET and Uk are correlated because

both variables are strongly e�ected by the W PT .
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First we divide the data and Monte Carlo into four bins in j~U j: 0 < j~U j < 5,

5 < j~U j < 10, 10 < j~U j < 15, and 15 < j~U j < 20 GeV. We �t for MW in each bin. We

de�ne �MW to be the di�erence between the �t results in each of the four bins, and

the �t result of Equation 13.5 above. We get �MW = �1� 86, �MW = �36� 110,

�MW = 161 � 204, and �MW = �348 � 385 MeV, respectively, for each of the four

bins. The uncertainties are the statistical uncertainties on the �ts in each of the j~U j
regions. The results are plotted in Figure 13.7 below.

Figure 13.5 shows the MT distributions for data and Monte Carlo for each of the

four j~U j regions. The Monte Carlo distributions use the best �t value for MW in each

region. The MT shape changes signi�cantly among the four di�erent j~U j bins, and
the changes in the data are tracked by changes in the Monte Carlo.

Instead of binning according to j~U j, we also try dividing the data and Monte Carlo

into four bins of Uk. The bins are �20 < Uk < �10, �10 < Uk < 0, 0 < Uk < 10, and

10 < Uk < 20 GeV. We �t for MW in each bin, and we get the results �MW = 152�
370, �MW = 16 � 90, �MW = �3 � 92, and �MW = 443 � 394 MeV, respectively,

for each of the four bins. The uncertainties are the statistical uncertainties on the

�ts in each of the Uk regions. The results are plotted in Figure 13.7 below.

Figure 13.6 shows the MT distributions for data and Monte Carlo for each of the

four Uk regions. The Monte Carlo distributions use the best �t value for MW in each

region. As for j~U j bins above, the MT shape changes signi�cantly among the four

di�erent Uk bins, and the changes in the data are tracked by changes in the Monte

Carlo.

The results of the four MW �ts in j~U j bins and the four in Uk bins are plotted in

Figure 13.7. The numbers are consistent with each other and with the best �t value

for MW from Equation 13.5 above. This indicates that our Monte Carlo reproduces
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Figure 13.5: MT distributions in bins of j~U j, for W ! e� data and Monte Carlo. The

four j~U j bins are 0 < j~U j < 5 (upper left), 5 < j~U j < 10 (upper right), 10 < j~U j < 15

(lower left), and 15 < j~U j < 20 (lower right) GeV. The data are the triangles and the
Monte Carlo are the histograms. The four Monte Carlo plots use slightly di�erent
values for MW : they each use the best �t value for MW in each of the regions. The
comparison of data to Monte Carlo in each of the four regions gives �2=dof = 1:4
(upper left), 0:92 (upper right), 1:1 (lower left), and 1:1 (lower right), where we simply
take the number of MT bins to be the number of degrees of freedom.
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Figure 13.6: MT distributions in bins of Uk, for W ! e� data and Monte Carlo.
The four Uk bins are �20 < Uk < �10 (upper left), �10 < Uk < 0 (upper right),
0 < Uk < 10 (lower left), and 10 < Uk < 20 (lower right) GeV. The data are the
triangles and the Monte Carlo are the histograms. The four Monte Carlo plots use
slightly di�erent values for MW , since they each use the best �t value for MW in each
of the regions. The comparison of data to Monte Carlo in each of the four regions
gives �2=dof = 1:0 (upper left), �2=dof = 0:71 (upper right), �2=dof = 1:6 (lower
left), and �2=dof = 0:70 (lower right), where we simply take the number of MT bins
to be the number of degrees of freedom.
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well theMT shape of the data as a function of the boson PT . As mentioned above, the

consistency of the MW results in Uk bins indicates that the Monte Carlo is correctly

simulating the correlations between ET and Uk, since MT � 2ET + Uk. ET and Uk

are correlated because both variables are strongly e�ected by the W PT .

13.5.2 MW Fit Using ET and /ET Distributions

Instead of �tting for MW with the transverse mass distribution, we �t with the ET

and /ET distribution.

We �t for the W mass with the Monte Carlo input parameters �xed at ~!W , and

with the W width �xed at the Standard Model prediction. Only MW is allowed to

oat in the �t. We minimize a binned likelihood function which is de�ned exactly as in

Equation 13.1 above, except we use ET histograms for the ET �t, and /ET histograms

for the /ET �t. The ET and /ET histograms are divided into 30 bins between 25 and

55 GeV.

The �t results are

�MW = �81� 60(stat) (MeV ) (ET fit)

�MW = 76 � 60(stat) (MeV ) (/ET fit)
(13.13)

where �MW is the di�erence between these �ts and theMT �t of Equation 13.5 above.

The statistical uncertainties on the ET and /ET �ts are 82 MeV, and the uncertainties

quoted in Equation 13.13 are the uncertainties on �MW . The two values for �MW

di�er from zero by slightly more than one standard deviation. The uncertainties on

�MW are calculated using many fake data samples of the same size as the real data.

The splitting between the ET �t and theMT �t is correlated to the Uk distribution

since MT � 2ET + Uk. The /ET �t has the opposite correlation since MT � 2/ET � Uk.
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Figure 13.7: Fit results for MW in bins of j~U j and Uk. The triangles are the �t

results for the data and Monte Carlo partitioned in j~U j bins, and the squares are

for the Uk bins. The four j~U j bins are 0 < j~U j < 5, 5 < j~U j < 10, 10 < j~U j < 15,

and 15 < j~U j < 20 GeV. The four Uk bins are �20 < Uk < �10, �10 < Uk < 0,
0 < Uk < 10, and 10 < Uk < 20 GeV. The dashed horizontal line is the �t result
for MW using the full data sample, and the solid horizontal lines represent its 1 � �
statistical uncertainty.
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We expect the two values for �MW from the ET and /ET �ts to have roughly equal

magnitudes and opposite signs.

13.5.3 MW Fit with Higher ET and /ET Cuts

We raise the ET and /ET cuts to 30 GeV on both the data and the Monte Carlo, and

we re�t for the W mass, using the MT distribution. The di�erence between this �t

and the �t result of Equation 13.5 is

�MW = 17� 18(stat)MeV (ET > 30;/ET > 30) (13.14)

The only di�erence between this result and Equation 13.5 is the change in the ET

and /ET cuts from 25 to 30 GeV. The uncertainty on �MW is calculated using fake

data samples.

The change in the �tted W mass is consistent with zero, indicating that small

discrepancies between the data and Monte Carlo for the low ET and /ET bins do not

strongly bias the W mass �t.

13.5.4 MW Fit for Di�erent MT Boundaries

We vary the upper and lower bounds of the MT �t region and recalculate the W

mass. We write the di�erence between the recalculated W mass and the �t result of

Equation 13.5 as �MW . We use the three regions 65 < MT < 95, 65 < MT < 90,
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and 70 < MT < 100. We get the results

�MW = �7� 20(stat)MeV (65 < MT < 95)

�MW = 22 � 32(stat)MeV (65 < MT < 90)

�MW = 27 � 50(stat)MeV (70 < MT < 100)

(13.15)

The uncertainties are the statistical uncertainties on the di�erence between these

�ts and the result of Equation 13.5. We calculate the uncertainties using fake data

samples. The �t results are all consistent with the result of Equation 13.5.

We also use the fake data to calculate the uncertainties on the di�erences among

the three �ts. The three �t results are all consistent with each other although the

di�erence between the result for 65 < MT < 95 and the result for 65 < MT < 90

is slightly high. These two numbers di�er by approximately 1:1 statistical standard

deviations.

The consistency in the W mass �t for the di�erentMT regions indicates that small

discrepancies between data and Monte Carlo in the tails of the MT distribution are

not strongly e�ecting the W mass �t.

13.5.5 Check of Bias from the Fitting Procedure

We check that the �tter is not producing a biased result for MW . We make a Monte

Carlo MT distribution with MW = 80:35 GeV and �W �xed at the Standard Model

prediction. We use all the Monte Carlo data, and we smooth the resulting histogram.

We then �t this distribution as if it were the real data. We do not include the

backgrounds in the distribution, or in the �t to the distribution. We get the result

MW = 80:350 GeV, as expected. This does not test that the Monte Carlo distribution

is unbiased, but it does verify that the �tting procedure does not produce a biased
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value MW .

13.5.6 Check of Monte Carlo Calculation of Statistical Un-

certainty

The �tting program calculates a 1 � � uncertainty by varying the �t parameters

until the function it is minimizing changes by 1, relative to the minimum. Since we

are minimizing a likelihood function scaled by �2, this corresponds to a change in

likelihood of 0:5. To verify that this produces the correct statistical uncertainty, we

use a Monte Carlo MT histogram that is run with MW = 80:35 GeV. We smooth this

histogram with a spline function, and we then choose random values forMT according

to the smoothed function. We make many fake data distributions of the same size of

the real data, and we �t them for MW .

We �t 100 fake data samples. For each sample we calculate an uncertainty based

on a change in likelihood of 0:5. The 100 values for this quantity have a mean of

0:063 GeV and an rms of 0:0003 GeV. The mean of this distribution agrees with the

uncertainty calculated for the real data in Section 13.3 above, which is 0:065 GeV.

The rms of �tted value for MW for the 100 samples is 0:057 GeV. This value is a

better measure of the statistical uncertainty than the value calculated by a change in

likelihood of 0:5. The two results are reasonably close, however. To be conservative

we use 0:065 GeV for the statistical uncertainty of the data.
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Chapter 14

Conclusion

We have determined the W mass to be

80:473 � 0:067(stat)� 0:097(sys) GeV (14.1)

The measurement uncertainties are summarized in Table 14.1.

Source of Uncertainty Size of Uncertainty (MeV)

Statistical 67
Data Statistics 65
Monte Carlo Statistics 17

Systematic 97
Energy Scale 80
Non-Linearity 17
~U and P boson

T 37
Backgrounds < 10
Electron ET Resolution 27
Parton Distribution Functions 25

Total Uncertainty 120

Table 14.1: Measurement Uncertainties on the W mass.

A comparison of this measurement to previously published measurements is shown
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in Chapter 1 in Table 1.1. We have plotted the predicted value for MW as a function

of the Higgs mass in Figure 1.3. Our measurement does not exclude any value for the

Higgs mass, but it prefers lower values to higher.

We have set the calorimeter energy scale for this measurement using the invariant

mass of Z ! ee events. Ideally, the E/p distribution also can be used to set the energy

scale. The E/p distribution ties the calorimeter energy scale to the tracking chamber

scale. It has a smaller statistical uncertainty than the method of using the Z ! ee

mass because it makes use of the higher statistics of the W sample. The E/p method,

however, gives a signi�cantly di�erent result than the Z ! ee mass method. We use

the Z ! ee mass to set the energy scale to avoid any questions associated with the

tracking chamber measurement. The discrepancy between E/p and the Z ! ee mass

is discussed further in Appendix B.

The uncertainty on the measured W mass is slightly higher than the current world

average. All the systematic uncertainties in Table 14.1 are constrained by CDF data.

For example, the largest uncertainty is the uncertainty on the calorimeter energy

scale, which is set with the MZ distribution. The uncertainty should scale as one

over the square root of the number of Z ! ee events. Run 2 at Fermilab is expected

to produce 2 fb�1 of data. This would represent a 20-fold increase in statistics over

Run 1. If all the uncertainties scale with the statistics, then the Run 2 W mass

measurement with electons should be able to achieve an uncertainty � 25 MeV.

On the other hand, a number of systematic e�ects will need to be calculated more

carefully. For example, the ET dependence of the CEM resolution may need to be

accounted for more carefully. In this paper, we did not include any uncertainty on the

stochastic term, since the e�ect of variations were small compared to the uncertainty

on the constant term �. This will probably not be the case for Run 2. It is also
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possible that the calorimeter measurement will have to be simulated more carefully.

For example, with the higher statistics, the absorption of soft photons in the solenoid

may have a noticeable e�ect on the MZ and E/p shapes.

Finally, it will be interesting to see if the discrepancy between E/p andMZ persists

in the next run. This discrepancy is not understood and is interesting in its own right.
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Appendix A

Summary of Monte Carlo Input

Parameter Results

Description Parameter Value from Z Data Value from W and Z Data

~�x: Boson PT Shape

a
b
f
p

54:8
18:2
0:642
1:40

43:9
15:2
0:594
1:22

~��:
P
ET Shape

�0
�1
�0

2:76
0:0459 GeV �1

0:0462 GeV �1
(Not Changed)

~�U : ~U Distribution

s1
s2
b0
c0
c1
c2
c3

3:07� 10�4 GeV �2

0:933 � 10�4 GeV �2

1:20 � 10�1

�1:77 � 10�1 GeV �1

2:97� 10�2 GeV �1

�5:42 � 10�3 GeV �1

�6:62 � 10�4 GeV �1

3:30 � 10�4 GeV �2

1:41 � 10�4 GeV �2

1:68 � 10�1

�1:83 � 10�1 GeV �1

3:24 � 10�2 GeV �1

�10:9 � 10�3 GeV �1

38:9 � 10�4 GeV �1

Table A.1: Summary of Monte Carlo input parameters. The three sets of parameters
shown describe the boson PT shape, the

P
ET shape, and the ~U distribution. The

parameters are de�ned in Chapters 7 and 8. The parameters are initially determined
from the Z data. In Chapter 9 we describe a procedure to include the W data in the
parameter determination. These �ts are listed in the fourth column of the table.
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eCx: Boson PT Fit Covariance Matrix
a b f p

a 279 56:9 0:324 6:26
b 12:5 7:63�10�2 1:29
f 4:65�10�3 �2:15�10�3
p 0:166

eC�:
P
ET Fit Covariance Matrix
�0 �1 �0

�0 1:16�10�2 �1:14�10�4 1:50�10�4
�1 3:12�10�5 2:94�10�6
�0 3:05�10�6

eCU : ~U Fit Covariance Matrix
s1 s2 b0 c0 c1 c2 c3

s1 5:98�10�9 2:60�10�17 6:63�10�8 �2:90�10�8 2:97�10�8 �7:98�10�9 7:14�10�9
s2 3:57�10�9 2:48�10�13 �8:17�10�14 3:70�10�14 �1:65�10�15 3:67�10�16
b0 6:74�10�2 �2:22�10�2 1:00�10�2 �4:44�10�4 1:04�10�4
c0 7:52�10�3 �3:65�10�3 1:93�10�4 �4:57�10�5
c1 2:13�10�3 �1:72�10�4 4:67�10�5
c2 2:89�10�5 �1:22�10�5
c3 1:02�10�5

Table A.2: Covariance matrices from the determination of the input parameters with
the Z data. Only the upper triangular part of the matrices are shown, and all numbers
are rounded o� to three digits. For these numbers, the parameters are measured in
the same units as in Table A.1. The �ts are described in Chapter 7 and 8.
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MW a b f p
MW 3:13�10�3 7:90�10�2 1:49�10�2 3:08�10�5 1:66�10�3
a 69:7 15:4 4:28�10�2 1:95
b 3:83 1:80�10�2 0:434
f 2:75�10�3 �4:99�10�3
p 7:05�10�2

s1 s2 b0 c0 c1 c2 c3
MW �3:65�10�7 �4:16�10�8 �2:44�10�4 9:81�10�6 9:72�10�7 1:45�10�5 �3:59�10�6
a �7:60�10�6 5:54�10�7 �4:84�10�2 �2:57�10�3 1:12�10�2 2:52�10�3 �1:28�10�3
b �3:07�10�6 �1:02�10�6 �1:07�10�2 7:55�10�4 1:41�10�3 4:12�10�5 5:87�10�4
f 3:98�10�8 �5:04�10�8 �6:48�10�5 �1:63�10�4 3:58�10�4 �6:98�10�5 2:52�10�5
p �2:57�10�7 6:91�10�8 �1:27�10�3 4:34�10�4 �6:08�10�4 2:05�10�4 �6:74�10�5
s1 5:013�10�9 �3:89�10�11 �3:19�10�8 1:16�10�9 �8:16�10�9 �3:63�10�9 �3:43�10�9
s2 3:20�10�9 �4:97�10�8 1:27�10�8 1:12�10�8 �1:80�10�9 1:33�10�9
b0 1:62�10�2 �5:06�10�3 1:95�10�3 �4:04�10�5 8:44�10�6
c0 1:69�10�3 �7:89�10�4 3:59�10�5 �7:64�10�6
c1 5:55�10�4 �5:50�10�5 1:40�10�5
c2 1:15�10�5 �4:69�10�6
c3 4:80�10�6

Table A.3: Covariance matrix from the W and Z combined �t. The matrix is a
12 � 12 matrix. This includes MW , the 4 parameters of ~�x, and the 7 parameters of
~�U . The matrix is shown physically in two parts to �t it on the page. Only the upper
triangular part of the matrix is shown. All numbers are rounded o� to three digits.
For these numbers, the parameters are measured in the same units as in Table A.1,
and MW is measured in GeV.
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Appendix B

Discussion of Discrepancy Between

E/p and MZ

In Chapter 10 we used the invariant mass of Z ! ee events to determine an energy

scale of

SE(MZ) = 1:0000 � 0:0009

In Chapter 11 we used the E/p distribution to tie the calorimeter energy scale to

the CTC scale. We determined SE(E=p) = 0:99613. If we include the non-linearity

correction of Chapter 12, then the energy scale becomes

SE(E=p) = 0:9946 � 0:00040(stat)

� 0:00024(�)

� 0:00035(X0)

� 0:00048(PT scale)

� 0:00075(CEM Non � linearity)
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where we have included the uncertainty on the PT scale as determined from the J= 

mass [27]. We have also included an uncertainty on the CEM non-linearity correction.

The energy scale as determined from E/p is 0:9946� 0:0011. The di�erence between

the MZ result and the E/p result is

1:0000 � 0:9946p
0:00092 + 0:00112

= 3:8 (B.1)

standard deviations. This is unlikely to be a statistical uctuation. The integrated

MZ distributions of Figure 10.4 show the extent to which a scale factor of 0:996

disagrees with the Z data. 0:996 is the E/p result without the non-linearity correction.

We calculate a Kolmogorov-Smirnov statistic for the comparison of the data to the

Monte Carlo, where we scale the data by 0:996. The probability that a statistical

uctuation would produce a worse agreement in the integrated distributions is 5:5�
10�6.

Figure B.1 shows the value forMZ that we would obtain if we set the energy scale

according to the E/p distribution. Also shown are the results from the Z ! �� data,

as well as the Run 1A data. For the Run 1A electron result, the energy scale is set

with the E/p distribution. The Run 1B Z mass with electrons is consistent with the

Run 1A result, although the 1B result is signi�cantly lower than the world average

value.

In this Appendix we discuss possible explanations of the discrepancy between E/p

andMZ. We divide the explanations into three sections. In Section B.1 we discuss the

hypothesis that there is a tracking problem, either because the PT scale is incorrect,

or other reasons. In Section B.2 we discuss the possibility that there is a aw in our

method of setting the energy scale with E/p. In Section B.3, we discuss the possibility
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Figure B.1: The results for MZ with CDF data. The left two points are calculated
with Z ! �� data. Both the Run 1A and 1B data are shown. The next two points
are the results from the Z ! ee data for the Run 1A and Run 1B data. For these
two points, we apply the measured non-linearity correction, and the Run 1A result
also has a non-linearity correction applied. The last two points are the Z ! ee data
also, but no non-linearity correction is applied. The 1A results are from [5], and the
1B Z ! �� result is from [46]. The horizontal line represents the world average value
for MZ.
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that some theoretical inputs into our simulation are not correct. We have labelled

that section \New Physics." Most of the possibilities we discuss have been checked,

or can otherwise be excluded, but it is worthwhile to present them here.

B.1 Is the Discrepancy Caused by Tracking?

In this section we consider possible explanations that are related to tracking problems.

The Momentum Scale is Incorrect. If the PT scale is too low, we will measure

E/p too high.

� From J= ! �� decays it is determined that PT needs to be scaled upwards

by 1:00023� 0:00048 [27]. For all the data in this paper, we have included

this scaling factor. For the PT scale to be o� by 0:4%, this scale factor

would have to be signi�cantly wrong compared to its quoted uncertainty.

The statistical uncertainty on the PT scale is negligible, and the total

uncertainty is dominated by systematic e�ects. The two largest e�ects are

an unexpected variation in the �tted J= mass as a function of the amount

of material traversed by the decay muons, and a variation in the PT scale

as a function of muon momentum. The second e�ect is discussed below.

� The J= mass calculation of reference [27] was done before the �nal CTC

calibration and alignment. However, for this paper, we are using the �nal

CTC calibration and alignment for our W decay electron tracks. Refer-

ence [47] has repeated the analysis of the J= data of Reference [27], using

the �nal CTC calibration and alignment. The PT scale changes to 1:00035

from 1:00023. This change is small compared to the systematic uncertainty

on the PT scale.
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� There may be a non-linearity in the PT measurement, so that the extrap-

olation to the high PT of W and Z events introduces an error of � 0:4%.

The average PT of J= decay muons is � 3:5 GeV, while the average PT

of W and Z decay electrons is � 40 GeV. Figure B.2 shows the di�erence

between the measured J= mass and the expected mass as a function of

the sum of 1=PT of the two decay muons. To extrapolate to the high PT

range of W and Z events, we want to calculate the J= mass for the sum

of 1=PT of the muons around 0:05 GeV�1, which occurs on the far left of

the plot. Before the �nal CTC calibration and alignment, the plot shows

a clear slope, approaching lower values of the J= mass near the left side

of the plot. After the �nal CTC calibration and alignment, the plot is sig-

ni�cantly atter. This change is not understood. The measured Z ! ��

mass did not change after the �nal alignment and calibration.

� An argument against the momentum scale being wrong is that the Z mass

measured with muons comes out correct, although slightly low. The mea-

sured value for the Z ! ��mass is shown in the bottom plot of Figure B.2.

The Z mass with muons has been measured to be 0:9987� 0:0013 relative

to the expected value of 91:187 GeV [46]. If we apply the energy scale from

E/p, then our Z mass with electrons will come out low by 0:9946� 0:0013,

where we have not included the uncertainty from the J= mass determi-

nation of the PT scale. The splitting between our measurement and the Z

mass with muons is then

0:9987 � 0:9946p
:00132 + :00132

= 2:2
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Figure B.2: The results of Gaussian �ts to the J= ! �� mass peak with a linear
background, as a function of the sum of 1=PT of the two decay muons. The label
\C�+ + C��" is the sum of 1=PT of the two muons. Top: The di�erence between
data and Monte Carlo. The open circles are before the �nal CTC calibration and
alignment, and the �lled circles are after. Bottom: The fractional di�erence between
data and Monte Carlo after the �nal CTC calibration and alignment. The closed
circles are for the J= (1S) data; and the open circles are for the J= (2S) mass peak,
as well as the � ! �� and Z ! �� mass peaks. The J= (2S), �, and Z data are
shown at the location of the average value of C�+ + C��. This plot is taken from
Reference [47].
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standard deviations. The splitting is reduced because the invariant mass

from Z ! �� decays is slightly low, and also because it produces a signi�-

cantly larger uncertainty on the PT scale than the uncertainties calculated

with the J= data. If we do not include the non-linearity on the CEM

energy scale, the splitting becomes 1:5 standard deviations.

� We can also check the momentum scale by calculating the invariant mass

of Z ! ee events using the PT of the electron tracks, rather than their

calorimeter energy, ET . We refer to this quantity as the \track-track"

mass, MZ(pp). We compare the MZ(pp) distribution of the data to the

Monte Carlo to determine that we need a PT scale factor on the data of

1:0015 � 0:0024. Our �t value is consistent with a scale factor of 1:0, but

because it has a large uncertainty, it is also consistent with PT in the data

being low by up to � 0:4%.

The Invariant Mass Measurement is Incorrect. Calculating the invariant mass

of Z ! ee events makes use of a di�erent set of track parameters than calcu-

lating E/p, and one could hypothesize errors in the angular variables causing

errors in the invariant mass. We would not necessarily expect the electron and

muon invariant masses to look the same since one uses ET and the other PT .

One could also imagine measurement correlations between the di�erent tracking

parameters which have the net e�ect of shifting the measured mass. The two

tracks themselves could also be correlated since for Z events they are largely

back-to-back. For example, if one track enters a superlayer on the right side

of a cell, the other track will be biased to do the same. However, we have not

been able to see any such e�ect in the data.
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The Inner Superlayers are Causing Problems. To check this we re�t the Z elec-

tron tracks with superlayers 0 and 1 removed. While the resolution got worse,

we did not see any signi�cant change in the means of E/p of the electrons or

MZ or MZ(pp). We also tried re�tting the same tracks but removing superlayer

5 instead of 0 and 1. Again no signi�cant change was observed in the means of

E/p, MZ , or MZ(pp). We have also checked that the mean of the E/p distribu-

tion of W data is insensitive to the number of stereo or axial wires used in the

track reconstruction.

B.2 Is the Problem the E/p Fitting Procedure?

In this section we will discuss possible explanations that are in some way related to

the E/p measurement which we have performed in this paper.

Coding Errors. The E/p code from the Run 1A W mass analysis [48] was used as

a starting point for our E/p simulation. However, this code was signi�cantly

modi�ed, and it is possible that a bug has been introduced. We have run our

code on the 1A data and reproduced the 1A result, implying that if there is a

bug, it was also in the 1A code. Moreover, other people have run Monte Carlos

with independent code and have obtained similar answers.

CEM Non-Linearity. When we applied the non-linearity correction of Chapter 12,

the CEM energy scale factor as determined from E/p moved from 0:9961 to

0:9946, which makes the discrepancy between E/p and MZ worse. The uncer-

tainty on the energy scale was also signi�cantly increased by the uncertainty

on the non-linearity. If we do not consider a non-linearity correction, then the

discrepancy between the Z mass energy scale and the E/p energy scale is closer
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to 3:3 standard deviations. The data, however, support a CEM non-linearity.

Moreover, they do not support a non-linearity which has the opposite sign of

the value derived in Chapter 12, which would be needed to account for the

discrepancy.

Amount of Material is Incorrect. From the slope of the bottom plot of Fig-

ure 11.3, we can determine that to increase the �tted energy scale by 0:4%, we

would have to increase the amount of material in the Monte Carlo by � 4:5%

of a radiation length. However, the tail of the E/p distribution of the W data

is not consistent with such an increase. Moreover, the tail of the invariant mass

distribution of J= ! ee decays has been examined, and such an increase in

the amount of material would signi�cantly contradict the data [49].

Backgrounds are Biasing the Result. It is possible that our estimate of the E/p

shape of the background is awed, and that there is a signi�cant source of non-

electron background in the E/p peak region that is biasing our energy scale �t.

We consider the worst case possibility that all the background is located at one

of the edges of the E/p �t region. To increase the mean by 0:002, we would need

to have 2% background piled up at E/p= 1:1. This is more QCD background

than we have measured above, and since we expect the QCD background to be

largely at in E/p, we do not expect that backgrounds are signi�cantly biasing

our result. The agreement of the Z E/p �t with the W �t also indicates that the

backgrounds are not a signi�cant e�ect in the W �t. An E/p plot of the electrons

from the same sign Z events shows that the QCD background is largely at in

E/p and is spread out from E/p� 0:8 to � 3:0, indicating that this background

is also not a signi�cant source of error in the Z E/p �t.
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Beam Constraint is Biasing E/p. In Section 3.1.2 we discussed how the beam

constraint can bias tracks that have undergone bremsstrahlung before the CTC

active volume. Bremmsstrahlung causes the tracks to have a non-zero impact

parameter, as described by Equation 3.3; and this non-zero impact parameter

creates a bias on the beam constrained momentum, as described by Equa-

tion 3.2. We consider two possibilities:

� The Radial Distribution of Material May Be Wrong. The average radius of

brems (including half the CTC gas) occurs at 22:21 cm in the simulation.

Equation 3.3 shows that the bias depends on r2, and so we might be

sensitive to the location of the material. As a check we rerun the simulation

but with all the material before the CTC gas placed in the beampipe,

and then again but with all placed in the CTC inner can. We scale the

material so < X0 > is the same for both cases. We �nd that fTAIL for

the beampipe case is higher than the CTC case by about 1% of itself. We

also �nd that the average E/p from 0:9 to 1:1 is higher in the beampipe

case than the CTC case by 0:0003. Both of these changes are small, and

they are negligibly small when we consider that these are extreme cases

for variations in the possible distributions of the material.

� In the Simulation, the Correlation Between Curvature and Impact Param-

eter Mismeasurements May Not Be Correct. This would cause the Monte

Carlo to produce the wrong bias from the beam constraint. However, in

the Monte Carlo, we use CTC wire hit patterns from the real W data to

determine a covariance matrix to use in the beam constraint. We use the

identical procedure that is used to beam constraint the real data.
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We also try setting the energy scale with the E/p distribution before the beam

constraint. We compare the Monte Carlo distribution to the data distribution.

We get a result for the energy scale which is consistent with the beam con-

strained E/p result. This is more evidence that we are accounting for the beam

constraint bias correctly.

Tracking Resolutions are Not Being Simulated Correctly. For theMonte Carlo,

we smear the track parameters according to the calculated covariance matrix,

and we then beam constraint according to this same covariance matrix. Thus,

in the Monte Carlo, the covariance matrix used in the beam constraint de-

scribes the correlations and resolutions of the track parameters exactly. On the

other hand, it is not necessarily the case for the data that the correlations and

resolutions are described correctly by the covariance matrix.

We can measure the correlation between impact parameter and curvature by

plotting the average of qD0 as a function of E/p. The slope of this plot for

the data is slightly di�erent than for the Monte Carlo. Since the Monte Carlo

covariance matrix is the same matrix that is used to beam constrain the data, we

conclude that the beam constraint covariance matrix does not perfectly describe

the underlying measurement correlations of the data.

To see how much of an e�ect this has on E/p we run the Monte Carlo as follows:

We smear the Monte Carlo according to an adjusted covariance matrix, where

all the o�-diagonal terms are set to 0 except for �2(crv;D0), and where we �x

�2(crv;D0) according to the W data. When we apply the beam constraint,

however, we use the same covariance matrices that are used by the data to do

the beam constraint. In this way, we simulate the data more closely: smearing
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according to one matrix, and beam constraining according to a slightly di�erent

matrix. We �nd no e�ect on the average E/p between 0:9 and 1:1.

Low Energy Bremsstrahlung Cuto� Is Not Low Enough. Since the number

of external photons diverges as 1/E, we only consider external photons above a

certain energy. In particular, we only simulate photons above y = 0:1%, where

y is the fraction of the electron energy taken up by the photon. However, we

can integrate the total fraction of the electron energy that is carried by photons

below the cuto�. The total fraction is y = 0:1%� 0:085, where 0:085 is an ap-

proximation of the e�ective number of radiation lengths seen by the electrons,

including the CTC gas and wires. We expect this to e�ect the energy scale

by less than 0:0001, which is a negligible amount. As a simple check we have

increased the cuto� and we do not see any signi�cant change in the �tted energy

scale. A similar argument should hold for the internal photons.

Solenoid May Cause Non-Linearity in Photon Response. The solenoid presents

� 1 radiation length for electrons in W and Z events, and also for any associated

soft photons. Electron energy losses in the solenoid are not expected to e�ect

our results since they are part of the CEM scale, which we are �tting for. How-

ever, it is possible that the soft photons are not making it through the solenoid

and that this is distorting the E/p shape. As a simple check, we use a formula

from the PDG Full Listings [5] which describes the energy loss pro�le of a par-

ticle as a function of its depth in radiation lengths. We apply this formula to

all the photons created in the Monte Carlo and reduce their energy accordingly.

This is not a rigorous check since we are applying the formula to low energy

photons, which are in an energy region where the formula is not necessarily
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accurate. We rerun the Z Monte Carlo with this e�ect put in, and we treat

this new Monte Carlo as \data" and �t it with the default Monte Carlo. Fit-

ting E/p gives a Monte Carlo energy scale of 0:99960 (the \solenoid-corrected"

Monte Carlo is lower by 0:99960), and �tting MZ gives a scale of 0:99935. We

are interested in MZ relative to E/p, and 0:99960 � 0:99935 = 0:00025. This

is a small di�erence although not totally insigni�cant. The two Monte Carlo

samples were not entirely correlated, and we have not necessarily run enough

Monte Carlo statistics. The estimated Monte Carlo statistical error on this

calculation is 0:00015.

Landau-Pomeranchuk-Migdal E�ect. Multiple scattering of the electron can sup-

press the production of bremsstrahlung at low photon energies [50]. Qualita-

tively, if the electron is disturbed while in the \formation zone" of the photon,

the bremsstrahlung will be suppressed. The \formation zone" is appreciable for

the low energy brems. (Similarly, the electron bending in a magnetic �eld can

also suppress low energy photons, but the CDF magnet isn't strong enough for

this to be signi�cant.) SLAC has measured this e�ect for 25 GeV electrons.

The suppression of bremsstrahlung depends on the density of the material and

occurs below around y = 0:01 for gold and y = 0:001 for carbon, where y is the

fraction of the electron energy taken up by the photon. The average density of

material in the CDF detector before the CTC is closer to carbon than gold, and

since we have a cuto� at y = 0:001, we are in e�ect simulating 100% suppression

for the carbon case. Above we argued that this had a negligible e�ect on E/p.

We note that the SLAC experiment provides a signi�cant check of the formula

we are using for the external brems, since their experiment agrees with that

formula above the energies that are suppressed.
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Synchrotron Radiation. The electron is being accelerated in a circle by the mag-

netic �eld, and we are not simulating the resulting synchrotron radiation. The

standard calculation predicts the e�ect to be a few MeV, and this can be safely

neglected.

Signi�cant Energy Loss in Silicon Crystals. An electron moving through the

material before the CTC will pass through � 400� of aligned silicon crystals.

If it travels through the crystal along a major axis of symmetry, it can poten-

tially lose signi�cantly more energy than is lost through bremsstrahlung [51, 52].

However, in the data we do not see any signi�cant di�erence between electrons

that pass through the SVX and those that do not, relative to the Monte Carlo.

This indicates that this is not a signi�cant e�ect.

B.3 New Physics?

It is possible that some of our theoretical assumptions about the observed events are

incorrect. The 1A result does not preclude this possibility since the 1A Z mass is not

inconsistent with the current measurement. Here are some possibilities.

The External Bremsstrahlung Distribution is Incorrect. The formula we are

using for the photon energy distribution was calculated in 1974 [39]. This

formula is still referenced in papers written today, but it is possible that the

formula is unexpectedly breaking down at high energies. Evidence that it is

not is given by the SLAC measurement of the Landau-Pomeranchuk-Migdal

e�ect described above [50]. They measured the rate and energy distribution

of bremsstrahlung of 25 GeV electrons incident on di�erent targets. For all

the targets, they measured some level of bremsstrahlung suppression at low
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photon energies, as expected, but at higher photon energies, their measured

distributions agreed well with the expectation from [39]. CERN data perhaps

could also be used to check this formula, and it would be interesting to see if

LEP experiments measure E/p to be consistent with their MZ measurements.

Internal Bremsstrahlung Distribution is Incorrect. \Internal" photons are pho-

tons which are produced at the vertex in a radiativeW ! e� event (or Z ! ee

event). For Monte Carlo events with no external photons, we �nd that the av-

erage E/p between 0:9 and 1:1 is 1:00386. Part of this shift above 1 is from cut

biases (� 0:0014), and so the internal brems shift the peak by � 0:0025. If the

distribution we are using is signi�cantly (� 100%) wrong, then our �tted energy

scale might come out wrong enough to account for the discrepancy between the

energy scale from MZ and E/p.

� The generator that is used in this paper (PHOTOS in two-photon mode)

has been compared to the calculation by Berends and Kleiss of Refer-

ence [53], and the two generators give similar energy-angle distributions [54].

Moreover, since [53] was used in the 1A W mass measurement [13], and

our Monte Carlo reproduces the 1A result, we conclude that the PHOTOS

generator is reproducing the Berends and Kleiss formula.

� Laporta and Odorico [55] argue that inclusion of multiple photon radiation

from the �nal state electron may change the energy loss distribution of the

electron relative to a single photon calculation, such as Berends and Kleiss.

Reference [55] contains an algorithm to calculate the e�ect of a cascade

of �nal state photons. By construction, this algorithm reduces to Berends

and Kleiss for the case of single photon emission. We implemented their
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algorithm for W decays and interfaced it to Bob Wagner's generator [53].

These events were generated with no W PT but that should not signi�-

cantly alter the E/p shape. We �nd that the Laporta and Odorico case has

the mean E/p between 0:9 and 1:1 lower by 0:00033. This is not insigni�-

cant, but it is not large enough to signi�cantly account for the discrepancy

between MZ and E/p. The statistical error on the Monte Carlo for this

calculation was � 0:00015.

� Baur, Keller, and Wackeroth [56] have done a calculation of the W ! e�

process which includes radiation from the W propagator. We have received

their calculation in the form of a Monte Carlo [57]. The Monte Carlo

can implement their calculation, and it can also implement Berends and

Kleiss. We run separately in each mode and implement some simple CEM

clustering of the photons and measurement resolutions. We �nd that [56]

produces a value for the mean of E/p between 0:9 and 1:1 that is 0:00023

lower than the Berends and Kleiss result. While we generated more than

12 million events, it is hard to determine a statistical error since the events

are weighted; nevertheless, it is doubtful that this is the size of e�ect we

are looking for.

� If there were a new physics process that would signi�cantly increase the

rate of internal bremsstrahlung (for both W ! e� and Z ! ee events)

and not be inconsistent with other measurements, this would explain the

deviation we are seeing.

Any other new physics. This remains an open forum.
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B.4 Conclusion

We have measured the energy scale using the peak of the E/p distribution of W data.

The E/p distribution of Z events gives consistent results for the E/p distribution of

W events. However, if we set the energy scale with E/p, then the invariant mass

distribution of the Z events comes out signi�cantly low. As a check we have re�t the

1A data with the 1B Monte Carlo, and have gotten excellent agreement. It is possible

that whatever problem we are seeing was also in the 1A data since the 1A Z mass

measurement is not inconsistent with ours.

We have discussed several possible reasons that the Z mass comes out wrong. The

problem could be a momentum scale problem or otherwise a tracking problem; it

could be related to our simulation of E/p as presented in this paper; or it could be

something theoretically unexpected. In any case, there is no clear solution, and it

remains an open question.

For the �nal W mass measurement reported in this paper, we have used the

invariant mass of the Z ! ee events. In this way, we have separated our energy scale

measurement from almost all questions associated with tracking.
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