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ABSTRACT

The Triple Differential Di-Jet Cross Section at /s = 1.8 TeV

By

Gian Giuseppe Di Loreto

The Measurement of the Triple Differential di-jet cross section at D@ is described.
The cross section is corrected for all known detector effects and compared to cur-
rently available theoretical predictions from the CTEQ and MRST groups. Of the
theories considered, the preliminary measurement favors the CTEQ4M and MRSTgt
parton distribution functions. The measurement combined with a detailed error

analysis shows considerable discriminatory power among the current theories.
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Chapter 1

Introduction

This thesis is a study of data taken at the Fermilab Tevatron, a high energy particle
accelerator located in Batavia, Illinois, a suburb of Chicago. The measurement is
specific to a process common during the type of collisions that occur at Fermilab.
Before getting into the details of the measurement, we present a very broad intro-
duction to particle physics, and then to the specifics of high energy physics. The

introduction is not meant for the scientist, it is for family and friends.

1.1 A Brief History of Particle Physics

How do we define intelligent life? One place to start is the notion of self awareness.
If something begins to wonder about the notion of itself, it’s surroundings, even it’s

own structure, one could argue that the criteria for intelligence have been satisfied.

One aspect of understanding ourselves and our surroundings involves asking
questions about from what are we and everything around us made. This first his-

torical instance of this question is usually associated with the Greek civilization.



Two philosophies regarding the nature of matter were put forth: the first can be
called early atomic theory and the second continuity theory. The assumption in
atomic theory is that all matter can be divided in half a finite number of times,
after which, the matter will be small enough that it can not be divided again. The
word atom, in fact, is derived from the Greek word for a body which cannot be cut
in two. Conversely, continuity theory asserts that matter can be divided in two,
over and over again, without limit. As mentioned, the introduction of the idea of
the atom is usually ascribed to the Greek civilization, however the concept of the
granular or atomic nature of matter can be attributed to Indian philosophers as

early as 1200 B.C.

The notion of the atom is, by now, universally accepted. It was put forth ~ 2000
years ago by a Greek named Leucippus and his pupil Democritus, and put to verse
in Latin by a Roman, Lucretius, in the first century B.C. in his work, De Rerum
Natura, On the Nature of Things. It is in this proud tradition that elementary

particle physics still tries to come to terms with the nature of matter today.

De Rerum Natura represented the status of knowledge of atomic theory until the
1800’s which saw the advent of the notion of atomic weight and the periodic table
of the elements. An English scientist, John Dalton, studied several experiments,
performed by other contemporary scientists, involving the combination of known
elements to create other known elements. He was able to explain the mass of the
initial elements and their relationship to the mass of the resultant elements with,
what he called, the law of single and multiple proportions. One facet of this theory

involves assigning an atomic weight to each of the elements. The atomic weight was



empirically determined by measuring the mass of a system before and after elements
were combined; it appeared to be consistent for each known element. Towards the
end of the eighteenth century Dmitri Mendeleev tabulated the known elements, their
atomic weights, and their chemical and physical properties in the periodic table of
the elements. This table implies that atoms of different elements have some similar

characteristics; that perhaps different elements are made up of the same thing.

After the advent of the periodic table and the tabulation of all the different known
elements, it was thought that the question posed years ago had been answered. The
question now was, what is the nature of the atom? One model, usually called
the plum pudding model, put forth by J.J. Thomson, asserted that the atom was
homogeneous blob of positive charge, with negatively charged electrons embedded
in it. The road to debunking this model began when an English scientist named
Ernest Rutherford, who was scattering alpha particles’ from various thin films of
heavy metals, discovered the nuclear structure of the atom. Scattering a charged
object off of a target and observing the angular distribution of the projectile after
the collision, is a way to learn about the distribution of charges within the target.
While looking at small angle scattering of positively charged alpha particles from a
gold target, Rutherford’s colleague, Hans Geiger, asked his student, Ernest Marsden
to look for large angle scattering, which he did not expect to see, but hoped it would
keep his student busy. They were very surprised to see there that were some particles
which scattered at very large angles. This gave rise to the current nuclear model of
the atom in which the positive charge is concentrated in the middle of the atom, or

the nucleus.

tAn alpha particle is another name for a helium nucleus.



The electron was discovered in the late 1800’s by J.J. Thomson who was studying
radiation emitted by heated filaments. He discovered that these cathode rays could
be bent by a magnetic field. He calculated the charge to mass ratio for the particles
that made up the rays, and discovered that this ratio was not consistent with any
known particles. He further asserted that the electron was a fundamental constituent

of the atom.

The nuclear model of the atom has been refined within the last 100 years. The
nucleus of an atom is now believed to be made up of smaller particles, called pro-
tons and neutrons. In particular, the element hydrogen has been the subject of some
scrutiny. Hydrogen is the lightest and simplest of all elements, consisting of only one
proton and one orbiting electron. By studying the hydrogen atom, specifically the
energy levels of the orbiting electron, it became clear that these energy levels were
quantized, which eventually lead to the study of quantum mechanics. Quantum me-
chanics is a completely different, non-classical theory which describes particles and
their interactions and represented a new way of thinking for physicists in the early
twentieth century. The dramatic difference in philosophy between classical thinking
in physics and quantum theory involves a concept we’ll define as the superposition
of states. In pre-quantum mechanics times, a physical observable with thought to
be in either one state, or in another. For example, light was either a particle or
a wave, a cat in a box that you couldn’t see was either alive or dead. Quantum
physics supposes that an observable can exist simultaneously in any of its available

states; light, in quantum mechanics, is both a particle and a wave.

If one strips away the electron from a hydrogen atom, only a proton is left. The



proton is a fundamental unit of matter; we will see that it contains the answer to

many of the modern physicist’s questions.

1.2 Modern Particle Physics

It could be argued that the beginning of modern particle physics was contemporary
with the introduction of the photon and the advent of quantum mechanics. The
discovery of the photon came in the beginning of the nineteenth century while
physicists were studying electro-magnetic radiation from hot objects. The photon,
as described by quantum mechanics, behaves as both a particle and a wave. This
duality presents a conceptual challenge to the student, but provides scientists with

a better understanding of matter and the forces acting on it.

In an attempt to explain how the nucleus of an atom stays together when only
positive charge exists there, Yukawa proposed that there is a force that holds the
nucleus together?. This field which defines this force was proposed to be quantized,
just as it was (and is) believed that the electromagnetic and gravitational fields are
quantized. Yukawa called the mediator of this field the meson. Particles which
looked liked mesons were discovered in cosmic rays in 1937, but there were some
problems with the model. The particles discovered in the cosmic rays didn’t interact
with the nucleus strongly enough to be the mediator Yukawa predicted, and the

measurements indicated that there were many mesons.

After a watershed of particle discoveries in the middle of twentieth century,

modern particle physics was in an uncertain state. There were simply too many

#This force has come to be called the strong force.



particles on record for any theory to describe them as the fundamental building

blocks of matter. Particle physics needed a modern periodic table.

In 1961, Murray Gell-Mann proposed the eightfold way of arranging known parti-
cles into geometric tables. This method of cataloging seemed again to indicate some
underlying structure. Murray Gell-Mann and G. Zweig proposed that all modern
particles are made up of elementary constituents which Gell-Mann called quarks. It
now appears that the quark model is consistent with all experimental observables,

and that the proton is indeed made up of quarks.

1.2.1 Forces

The notion of a force follows from a thought experiment involving touch. If, as you
read this, you press your finger down on the table, you’'ll feel the table pressing
back against your finger. If you begin to think about this interaction at the particle
level, you may wonder, “what is happening to the atoms that make up your finger
as your finger approaches the table?”. “What does it mean for the particles that
make up your hand to touch the particles that make up the table?” The answer is
that when particles get close enough together, depending on the distance between
and the nature of the particles, a force keeps them apart or pulls them together.
We are all pulled towards the earth by gravity which acts on all particles. Magnets
stick to your refrigerator due to the electromagnetic force. There are at least two
other forces that have been measured: the strong and the weak force. In one theory,
these forces are all thought to be different manifestations of the same thing. This

theory is usually referred to as the Grand Unified Theory of Particle Physics.



The strong force describes, among other things, how quarks interact within the
proton. The strong force has one distinctive difference from the more familiar gravi-
tational and electromagnetic forces. The force due to gravity acting on two objects is
inversely proportional to the square of the distance between them; it gets smaller the
further apart the objects are. The strong force between objects actually increases
as they get further apart. A consequence of this is that as the objects get very
close together, the strong force gets quite weak; the ramifications of this asymptotic

behavior will be discussed in Chapter 2.

All forces are mediated by a particle; in the more familiar electromagnetic case
the mediator is a photon, a quantized particle of light. In the case of the strong
force, the mediator is called the gluon, which like the photon, is massless. These
different forces and their mediators along with some other interesting quantities are

presented in Table 1.1.

Mediator | Charge (e™) | Mass (MeV/c?) | Lifetime Force
gluon 0 0 00 strong
photon 0 0 o0 electromagnetic

W +1 81,800 unknown weak
Z° 0 92, 600 unknown weak

Table 1.1: Known forces and their mediators.

1.2.2 Modern Experimental Particle Physics

In the tradition of Rutherford’s gold foil experiment, modern particle physics usually
involves colliding particles together, either with both particles moving or one moving

and one fixed, in order to determine what makes up one, or both. These interactions
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can be studied by examining what is produced, and how often. The number of times
a certain outcome occurs, divided by the number of interactions, is referred to as
a cross section. This term refers to classical physics in which a cross section is the
surface area of an object subject to collision. Following this analogy, cross sections
in particle physics have units of area. Cross sections are usually presented in units

of barns, where 1 barn = 1072 em?.

This thesis concerns data taken at an experiment in which two protons are col-
lided at very high energies. One outcome of these collisions occurs when a component
of each proton is released and detected. These components are referred to as quarks
and gluons and will be discussed in detail in the following chapters. The triple dif-
ferential di-jet cross section refers to the measurement of cross sections associated
with this type of event’. The Triple Differential will be shown to be sensitive to
different theoretical predictions regarding the structure of the proton. The goal of

this analysis is a better understand of proton structure.

1.2.3 Quantum Chromodynamics

In electrodynamics, the property that a particle has in order to interact via the
electromagnetic force has the familiar name of electric charge. In an interaction
involving the strong force, hereafter referred to as quantum chromodynamics or
QCD, the analog of electric charge is called color. While there are only two charges
in electrodynamics, positive and negative, there are 3 colors in QCD, referred to

as red, blue, and green. This nomenclature is essentially arbitrary, however, one

§From this point forward, the triple differential di-jet cross section will be referred to as the
Triple Differential.



feature of QCD is that all naturally occurring particles are colorless, that is there
are equal distributions of red, green, and blue color within. For a more thorough

treatment, the reader is directed to Chapter 2.

Modern particle physics requires large experimental apparati and complicated
theories to produce and describe experimental results. The next three chapters

introduce quantum chromodynamics, collider physics, and the DO detector.
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Chapter 2

Quantum Chromodynamics

We present here an introduction; a pedestrian overview of quantum chromodynam-

1cs.

Quantum chromodynamics, or QCD, is a very complicated subject; we will
present here an experimentalist’s overview of the theory. The information presented
here is available in much more detail in any of many references[1, 2, 3] however, we

will endeavor to present QCD in a slightly distilled form.

QCD is a theory that describes how elementary particles interact. QCD doesn’t
describe how all particles interact, only particles that interact strongly such as
quarks and gluons. Other particles, such as electrons, don’t interact strongly, but
electromagnetically and are described by quantum electrodynamics or QED. Many
aspects of these two theories are very similar; QED has the advantage that it is
more simple and familiar. The student can enlist his understanding of classical

electrodynamics and QED to help him understand QCD.

In this chapter, we introduce some techniques in QCD, currently available Monte
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Carlo event generators, and motivate the measurement of the Triple Differential.

2.1 The Golden Rule

If two particles come in some proximity to each other, their differential cross section,

that is their differential interaction area can be described by
27 9
do = E|M| X (phase space). (2.1)

In Equation 2.1, A is a constant, and M is the amplitude, or matrix element for
the interaction. The amplitude contains all the dynamical information. It tells us,
for instance, what happens when a quark of type 7 interacts with a quark of type
j. Phase space refers to all of the kinematic information. For example, the relative
masses and momenta of the initial and final state particles and how likely is it for one
kind of initial state particle to produce some final state particle. A useful example
of this follows from mass considerations: it is more likely for a heavy particle to
produce two light ones, than the other way around; the phase space term accounts
for this. The cross section is differential in that in order to obtain the total cross
section, one must integrate over all phase space and sum over all initial and final
state particles. QCD manifests itself in the amplitude; the rest of the golden rule
is relatively easy to calculate. The amplitude tells us what to expect when two
strongly interacting particles hit each other; theorists need to flex all their muscles

to calculate M.
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2.1.1 Calculating Matrix Elements

The first thing we need in order to proceed with the calculation of the amplitude of
two (or more) quarks or gluons' interacting is a cast of characters; the list of quarks

is presented in Table 2.1.

| Name | Electric Charge (¢ ") | Mass (MeV/c?) ||

down —1/2 7.5
up +1/2 4.2
strange -1/3 150
charm 2/3 1100
bottom -1/3 4200
top +2/3 180, 000

Table 2.1: Quarks: masses and charges.

All of the quarks have been observed experimentally. The top quark was the

most elusive, it was discovered in 1995 at the Fermilab Tevatron[5].

Now that we have a list of partons to consider we need to think about where
these partons come from. We can see from Table 2.1 that the quarks have fractional
charge which is something we haven’t seen before, this is indicative of a feature
of partons that is unique to them: partons do not exist alone. They only exist,
held together by the strong force, inside other particles. For example, a proton is a
bound state of two up quarks and a down quark in the same sense as the hydrogen
atom is a bound state of a proton and an electron. However, while in the case of
the hydrogen atom, the electron and proton can be liberated and exist alone, the

quarks cannot exist outside the proton. However, at high enough energies and at

fQuarks and gluons are collectively called partons.
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very small distance scales, the partons can interact as if they are independent. This
concept is called asymptotic freedom, that is, the interacting partons act free if they

are asymptotically close together.

2.1.2 Parton Distribution Functions

Another aspect of QCD theory involves the probability of finding a specific quark
inside the proton. While we have said that a proton is made up of up and down
quarks, it is true that there are also smaller amounts of other quarks within the
proton. This is because in the proton, there are also gluons, which with some
probability will split into pairs of quarks for a small amount of time. These quarks
are called sea quarks and need to be considered in our calculations. Meanwhile, the
quarks that make up the proton, the ups and downs, are called valance quarks and
carry approximately half the momentum of a proton, while gluons and sea quarks

carry the other half.

In addition to the type of quarks (up, down etc.}), another quantity used to
identify a particular parton in the proton is the fraction of the momentum of the
proton that the parton carries. This parton momentum fraction is usually denoted
simply by . The number of each type of parton that exists in the proton is called
a parton distribution function and is usually represented by f,(x), where a is the
parton type and z is the momentum fraction. Parton distribution functions are
not predictable by QCD theory but are essential ingredients to understanding the

structure of the proton. They are, in fact, one of the unknowns in QCD theory

tThis description of a quark is usually referred to as flavor.
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that one can measure by looking at proton-antiproton? collisions. In Figure 2.1, we
include a current set of parton distribution functions from the CTEQ group. CTEQ
(Combined Theoretical and Experimental QCD) is a group of theorists and exper-
imentalists which provides parton distribution functions by fitting data from many
different experiments around the world. In Figure 2.1, f(z) is the parton distribu-
tion function; we plot x * f(x) as this more closely corresponds to the momentum

fraction of the partons at each x value.

§An antiproton is the anti-matter counterpart of the proton; it has the same mass and opposite
charge. Every particle has a corresponding anti-particle, it is customary to refer to a proton as p
and an anti-proton as p .
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To be slightly more rigorous, a parton distribution function (pdf), f.(x), is
actually better represented as f,(x,Q?), where Q* has units of energy and is the
momentum exchanged during the partonic collision. The essence of this formalism
is that the structure of the hadron depends on how closely you look at it. More
energetic collisions allow better resolution such that what appears to be a single
quark at Q = Q° may be a pair of gluons at QQ = Q'Y. Fortunately if one measures
fa(z, (Q°)?), a set of equations allows the calculation of f,(z, @?) for any Q*. This

is referred to as Alterelli-Parisi (DGLAP) evolution.

We can see that the matrix element A is becoming very complicated. It involves
what will happen when two partons interact, but it must also reflect how many of
each type of parton is present. M can be broken into these two components thanks

to a feature of QCD called factorization.

Mi,jﬁk,l = fz(xa QQ: ,U/F)f] (517, Q27 MF)6(Zij — ka l) (22)

In Equation 2.2, f is the parton distribution function described above and ¢ is
called the hard scatter matriz element. It is the matrix element, or amplitude for
the parton-parton interaction assuming the partons are free. That we can factor M
this way reflects the fact that QCD is a factorizable theory. There is a price to pay for
this advantage, however, in order to separate the components of M as in Equation
2.2, one must introduce a parameter, usually referred to as the factorization scale,
ur. This is an arbitrary parameter, it represents no physical quantity; furthermore,

no physical obersevable can depend on it. It is usually assumed that pup ~ Q2. One

9This assumes Q° < Q'.
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Figure 2.2: A simple diagram for parton-parton scattering

can think of ur as a cutoff beyond which partons act as free particles, in that it
separates the pdf’s from the hard scatter matrix element. We will see this is not

the only scale necessary in QCD.

A graphical illustration of & is in order. In Figure 2.2, we present a diagram for

parton of type ¢ interacting with a parton of type j and producing partons k£ and /.

The diagram represents the matrix element described above (). It is one of the
simplest diagrams for quark-quark scattering, there are many other diagrams that
contribute to the total hard scatter matrix element for quark-quark scattering. In
the picture, the straight lines correspond to quarks and the curly line to a gluon.
The rules of QCD dictate that two quarks can only couple to a gluon. At each vertex
in the diagram, where there is one parton incoming and two outgoing, or vice versa,
QCD can calculate the corresponding rate. This rate turns out to be proportional
to a parameter called the strong coupling constant, denoted by ag. Each vertex
introduces another factor of ag. The contributions from each of the two vertices in

Figure 2.2 are added together according to

|MJ* = [Vi]* + [Va/*

where V7| and | V5| are the amplitudes for each of the two vertices. There are rules for
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which partons can couple (interact) with which, these rules are derived from gauge
theories. For example, |V;| could be the amplitude for two quarks annihilating
to produce a gluon; QCD can predict the rate for such an interaction. In fact,
the diagram in Figure 2.2 is much more than a picture, it represents a complete
calculation. There also are rules that govern the complete calculation pictured in
Figure 2.2; these are called Feynman rules. The reader is again directed to the

references|1, 2, 3] for more detail.

The diagram in Figure 2.2 is called a leading order diagram; it represents only
one contribution to the total cross section from quark-antiquark scattering. There

are actually an infinite number of diagrams for any given QCD process.

In calculus, a function can be represented by a Taylor series which is a series
of smaller and smaller terms. A good approximation to the function can usually
be obtained by only considering the first few terms. In QCD jet production, the
calculation of all but the first one or two terms (diagrams) is prohibitively difficult.
We hope, therefore, that the series is well behaved enough that this would provide a
good approximation of the total matrix element. We will see that this in not always
the case, and we’ll discuss some of the tricks used to deal with this. In QCD jet
production, the expansion is actually in terms of the strong coupling constant ag;
leading order calculations are of order a%, and next-to-leading order (NLO) are of

order o
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2.1.3 Radiative, Loop Corrections and Next to Leading Or-
der

The total matrix element for two quark to two quark scattering is a sum of many
contributions of which only one is illustrated in Figure 2.2. Just as in QED, where
an accelerating electron can radiate a photon, a quark in QCD can radiate a gluon.
This radiation gives rise to an additional diagram called a radiative correction. The
diagram in Figure 2.2 is a leading order diagram; if we were to include one of the
possible radiated gluons, we would introduce another factor of a,;. The result is
a next to leading order calculation. Currently, theorists are only able to calculate
matrix elements to next to leading order. One of the next to leading order diagrams
for quark-antiquark annihilation is pictured below in Figure 2.3.

B C

Figure 2.3: An example of a radiative correction.

Another type of correction to a leading order diagram is called a loop correction.
This correction accounts for radiated gluons which are quickly re-absorbed. Two

diagrams for loop corrections appear in Figures 2.4.

It appears that each of the loop corrections contributes two additional factors of
as, so that the loop diagrams are actually next-to-next-to leading order. This is in

fact the case, but we will see that these diagrams, when combined with the leading
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A D

Figure 2.4: Two examples of loop corrections.

order diagrams to produce a full matrix element contribute to the next to leading

order prediction.

2.1.4 Total Next to Leading Order Predictions

Each of the diagrams in Figures 2.2-2.4 represents a contribution to the amplitude
for quark-antiquark annihilation. We have seen that at NLO there are either two
or three final state partons. In order to calculate the total NLO amplitude for this
process we need to sum up all the possible diagrams and drop all terms of order
a? or higher. The sum proceeds as follows: assume we have only two diagrams
that contribute to the NLO amplitude, the leading order diagram, D, and the loop

correction discussed above, D,. The total amplitude squared is defined by:

|M|? = (|Dy| + | D2|)? = |Dy|? + |D2|?> + 2D, X D, (2.3)

In Equation 2.3, D; is proportional to o2, D, is proportional to o, therefore
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\/(D1 x Dy) is proportional to . This cross term is important to consider. Indeed,
in this special case, the loop diagram contributes to the cross term to the order a?,

while by itself it does not make it into the NLO calculation.

All diagrams, to leading order, corresponding to two initial state partons are
included in Figure 2.5. Some next-to-leading order diagrams are included in Figure

2.6.

2.1.5 Loop Corrections and Renormalization

The loop correction introduces one of the more difficult aspects of QCD to digest.
Unlike the photon, the gluon can interact with itself. This self correction introduces
divergences into the calculations. Although the specific nature of these divergences
are beyond the scope of this discussion, we can agree that if QCD is to describe an
interaction in nature, it should predict only physically allowable results. To deal with
this, the theory is renormalized. This involves introducing a scale which cancels the
divergences introduced by the gluon self-correction. It essentially involves cutting off
the integrations in the calculations at some distance, defined by the renormalization
scale, pr. Like pp, pg is expected to be proportional to the momentum exchange.
In the scheme used in this analysis and corresponding theories, urp = ug. Also, like
lbF, IR, 1S an arbitrary parameter; any observable quantity cannot depend on the

renormalization scale.
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2.2 NLO QCD and the Triple Differential

The previous examples are some of the contributions to two and three final state
parton production from proton-antiproton collisions. We have not gone into detail
regarding the actual calculations of the individual matrix elements; the reader is
again directed to the references. However, even without a rigorous derivation we
can see some of the considerations necessary to predict at NLO how often we can
expect multi-parton final states in proton-antiproton collisions. We will now discuss
how final state partons evolve after the interaction to produce final state objects.
These final state object are referred to as jets and are what are actually measured
during the experimental cross section calculation described in this thesis. The Triple
Differential is a measurement of a two jet final state cross section. The measurement
is sensitive to the partonic cross section; it is a test of our understanding of proton

structure.

2.2.1 Hadronization and Jets

As aforementioned, one cannot observe free partons. Within a very short time after
they are produced, the final state partons join up with other asymptotically free
particles to form stable hadrons. This process is called hadronization. There are
only empirical models for hadronization, it cannot currently be calculated explicitly.
In a detector, one can observe a collection of highly collimated particles coming from
a proton-antiproton collision. One assumes that all these stable particles came from
a single parton. This collection of stable final state particles is called a jet, and is

what is actually measured while studying QCD in a pp experiment. Some different
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methods for defining jets is the subject of a later discussion.

In Figure 2.5, we include all diagrams for two or more jet production at leading
order and in Figure 2.6, we include some diagrams at NLO. Additionally, a summary

of pp interactions involving jet production appears in Figure 2.7.

2

Figure 2.5: Leading order diagrams for di-jet production.
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Figure 2.6: Higher order diagrams for di-jet production.
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In Figure 2.7, hy and hy are the proton and the antiproton which contain par-
tons a and b with momentum fractions x; and x, respectively. Additionally, the
probabilities of finding partons a and b in the proton are described by f(z;) and
f(z3), the parton distribution functions. The center of the diagram represents the
partonic interaction, ¢, which depends on the strong coupling constant, a,, and
the momentum exchanged during the interaction, Q?. Finally, the final state par-
tons ¢ and d form a hadron hs and a jet respectively. In this example, parton c
hadronizes immediately, while parton d showers into many partons, each of which
will eventually hadronize as well. Dy, x(z) is a hadronization model for parton ¢
to form hadron hs. Like hadronization, the development of parton showers is not
a process one can measure. Different models for parton showering currently exist,
among them string fragmentation, which assumes a color connection between two
partons. When the distance between the partons becomes large enough, two more
partons are created from the vacuum. In another model, independent fragmentation,
single quarks fragments into a ¢¢; pair and a remainder quark ¢;. These new quarks
fragment as well until they no longer have enough energy to create quarks from the

vacuum.
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Figure 2.7: Summary of contributions to QCD jet production.
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The Triple Differential measures how often different configurations of two or
more jet final states are observed from pp collisions. The assumption is that this
corresponds to two or more final state partons. Armed with the previous consider-
ations of NLO QCD and parton distribution functions, one can expect the Triple
Differential to be sensitive to parton distribution functions as well the accuracy of

the NLO matrix element calculations.

2.3 The Triple Differential Di-Jet Cross Section

Before introducing the explicit form of the theoretical cross section, it is necessary

to introduce some of the variables used in jet physics. The jet rapidity, defined as

E—-P,
E+ P,

)

1
Y= 5109(

is used to describe the position of the jet. The rapidity is used because it is invariant,
except for an additive factor, under Lorentz transformations along the z-axis. The
energy of the jet is defined as E, however the transverse energy, Er = Esin(f),
where 6 is the polar angle between the particle’s trajectory and the direction of the

beam, is usually used as it is also Lorentz invariant.

Explicitly, the lowest order Triple Differential takes the form:

o (pr) | Mi; (y")
E2  coshiy*

3
o0 = ilefi(xlaﬂF)foi(x%MF) (2.4)
ij

aETaylayg N 8w

In Equation 2.4, y is the jet rapidity and y* = #5#. We can see from Equation 2.4

that the Triple Differential is sensitive to both the matrix elements (M;;) and the
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H y bin ‘ Topology ‘ Slice H
0.0—-10.5 SS 1
0.0-0.5 OS
0.5—-1.0 SS
0.5—-1.0 OS
1.0—-1.5 SS
1.0—-1.5 OS
1.5-2.0 SS
1.5-2.0 OS

=~ W W NN

Table 2.2: Binning of the Triple Differential.

parton distribution functions?.

2.3.1 Choice of Variables

The Triple Differential cross section as represented in Equation 2.4 is a four dimen-
sional object. In order to measure it, it is necessary to decide which variables to fix
and which to plot. This analysis defines the Triple Differential by fixing the angles
of the two jets and casting their Ep distributions. Both jets are restricted to be
within the same rapidity bin; we define 4 bins between y = 0 and |y| = 2.0. We also
distinguish separately events in which both jets are on the same side of the detector
(SS) and both jets are on opposite sides of the detector (OS). To elaborate, in the
same side topology, |yi| = |y2| while for the opposite side case |y;| &~ —|ys|. In this

scheme there are eight cross sections?, they are listed in Table 2.2.

"In Equation 2.4, fi(z1, ur),i = (g,q,q), is the parton distribution function evaluated at fac-
torization scale pup.
HIn the proceeding chapters, an individual rapidity bin is referred to as a slice.
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2.3.2 1, r9 and the Triple Differential

The Triple Differential measurement described here depends on variables specific to
jets. A more illuminating measurement might be the number of events involving a
parton of momentum fraction z; interacting with a parton of momentum fraction
Zo as a function of the momentum exchanged between them. This differential cross

section would be expressed as
Po

where Q? is the partonic momentum exchange. This representation has the advan-
tage that it is in the variables of partons distribution functions. Once the mea-
surement is made, the corresponding PDF could essentially be read from the plot.
However, the DO detector doesn’t measure parton momentum fractions; it is much
easier to cast the cross section in variables we measure. Fortunately, the mapping
from one space to the other is relatively straightforward, it takes the form

Tia= ) %(eiy1 + e*42), (2.6)

njets

For our choice of cross sections, |y;| = |ys|, so we can easily transform our mea-
surement of the Triple Differential to the more theoretical variables. For example,
the SS cross section in the bin 1.5 < |y| < 2.0, pictured schematically in Figure
2.9, involves a large x and a small x partonic interaction. In the case of opposite
side cross sections, calculated at leading order, z; = x5. This means each point
on the z axis of the OS Triple Differential, maps to a point on the xy, x5 plane.

A representative opposite side cross section is also pictured schematically in Figure
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2.9. By solving® Equation 2.6 for all the slices considered in this analysis, one can
calculate the region of x space covered by the Triple Differential. The results of

these calculations appear in Table 2.3.

For further illustration of the x range covered by this analysis, we include Figure
2.8; the area in the x; — x5 plane covered our definition of the Triple Differential.
We have calculated, for each of the 8 cross sections, x; and x5 assuming two jets of
equal E7. We plot x; and x5 for each of the cross sections, labeled accordingly in

the figure.

When we discuss results in Chapter 6, we will be able to see which z regions
we are probing and where in x space we agree or disagree with the theoretical

predictions.

H y bin ‘ Topology ‘ Tomin ‘ Tmaz H
0.0—-0.5 SS 0.05 | 0.57
0.0—-0.5 OS 0.06 | 0.45
0.5—-1.0 SS 0.03 | 0.70
0.5—-1.0 OS 0.08 | 0.43
1.0—-1.5 SS 0.02 | 0.29
1.0—-1.5 OS 0.13 | 0.54
1.5 - 2.0 SS 0.01 | 0.80
1.5—-2.0 OS 0.19 | 0.52

Table 2.3: x space covered by the Triple Differential via Equation 2.6 assuming two
jets of equal Er.

$The calculations covered in this section are performed to leading order.
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Triple Differential X Coverage
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Figure 2.8: Graphical representation of x coverage of all slices and topologies of the
Triple Differential.
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1.5<In1<2.0 0.5<In1<1.0

Same Side Opposite Side

50 100 150 200 ety 50 150 250 350
28 .55 .83 .10 Xy .06 .19 32 46

.01 .02 .03 04 X, .06 .19 .32 46

* not allowed

Figure 2.9: Representative slices of the Triple Differential and their x coverage.
Notice the kinematic limit in the SS forward cross section at large Er.
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2.4 Implementation of QCD, Monte Carlo Pre-

dictions

The calculations discussed in this chapter are used with various Monte Carlo pack-
ages to produce predictions for the Triple Differential. Specifically, the packages

used are named Jetrad[7] and Herwig[6] and are described below.

2.4.1 Jetrad

Jetrad is a full next-to-leading order parton level Monte Carlo which produces a
cross section including loop and radiative corrections. The user can input a parton
distribution function as well as renormalization and factorization scales. Jetrad
doesn’t model any detector effects, additionally it assumes that each final state
parton contributes all of its energy to a jet. In the event of a three parton final
state, Jetrad uses a cone algorithm¥ to decide whether or not to cluster partons

together.

2.4.2 Herwig

Herwig is an event generator rather than a NLO cross section calculation. It gener-
ates a leading order partonic interaction, but it contains initial state radiation and
final state parton showers. It employs string fragmentation to model parton shower-
ing. Particles from Herwig output can be matched with test beam data to simulate

their behavior in the DO detector. Like Jetrad, Herwig can be adjusted based on

9See Chapter 3 for discussions regarding jet definitions.
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the user’s desire for a particular parton distribution function and factorization and

renormalization scale.

We will see the need for both of the Monte Carlos during the measurement of

the Triple Differential.

Having discussed the theoretical motivation for the measurement, we move on

to the experimental setup necessary to perform it.
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Chapter 3

The Tevatron, the D@ Detector

and Jets

Now that there exists a motivation for observing jets, we’ll describe how a jet is
defined and produced. Before one can observe jets, one needs a mechanism for
creating them, that is a device which produces energetic beams of particles directed
to collide with each other. In this chapter, we introduce such a device as well as the

D@ detector along with some general principles of jet physics.

3.1 The Fermilab Tevatron

What is desired is a narrow beam of protons and antiprotons which collide in a well
defined way. The Fermilab Tevatron is the largest and most energetic collider in
the world today. It produces proton-antiproton collisions of center of mass energy
/s = 1.8TeV. These collisions are achieved by coordinating several different large

and complicated accelerators together with many magnets, computers and people.
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In order to achieve such energetic collisions, several separate accelerators are needed,
each capable of taking particles from one energy to another. These machines, de-

scribed below, work together like gears in a car to take the particles from E =0 to

E =900 GeV'.

The layout of the Fermilab Tevatron is pictured in Figure 3.1. The components

are listed in Table 3.1.

PBar Linac
Debuncher

PreAcc

Booster

Tevatron Extraction
for Fixed Target Experiments

PBar Injection

MR P Injecti
1 njection Tevatron
PBar

Target

Main Ring
CDF

Main Ring RF

P and PBar

DO detector

Figure 3.1: Overview or the Fermilab Tevatron.

The process starts in the Pre-Accelerator where hydrogen ions are produced from

a surface-plasma magnetron. The ions are then accelerated to 750 KeV and injected

into the linear accelerator called the Linac.

The Linac is constructed from five steel drift tubes of increasing length, with a
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| Name | Type | Beginning Energy (GeV) | Final Energy (GeV) |

Pre-Accelerator | Linear 0 .00075
Linac Linear .00075 4
Booster Circular 4 8
Main Ring Circular 8 150
Tevatron Circular 150 900

Table 3.1: Major components of the Fermilab Tevatron.

gap between them. An electric potential is applied carefully such that while the ions
are in the gaps between the tubes, they are exposed to a negative potential so that
they speed up. While they are in the steel tubes, they are protected from the field
and they simply drift. A collection of focusing and de-focusing magnets keep the

ions on a linear trajectory. The ions leave the Linac with an energy of 400 MeV .

After the Linac, the hydrogen ions have their electrons stripped as they pass
through a carbon foil; what remains is a proton. These protons then pass into the
Booster Synchrotron. The Booster is the first circular accelerator in the chain. The
protons are bent into a roughly circular orbit and cavity resonators are used to
increase the energy of the beam. The magnetic fields are increased as the energy
increases to keep the proton beam, by now a beam of proton bunches, in the same
circular path. The bunches leave the Booster as “kicker” magnets bend them out

of their circular orbits and direct them into the next accelerator, the Main Ring.

The Main Ring lies directly over the Fermilab Tevatron, the final stage of the
acceleration process. The Main Ring, like the Booster, is a synchrotron; it takes the
proton bunches from 8 GeV to 150 GeV. With careful timing, the bunches are then

injected into the Tevatron below.
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The Tevatron is the world’s highest energy superconducting accelerator. Like
the Main Ring, the Tevatron is a synchrotron. The difference is in the strength
of the magnetic fields the two machines need to produce. In order to bend and
contain the high energy proton beams, the magnets must be very powerful, capable
of producing very large magnetic fields. To accommodate this need, the wires which
are wound to make up the magnets are cooled to ~ —450° F by liquid helium. The
Tevatron accelerates the proton bunches to their final energy of 900 Gel" at which

point they are traveling ~ .9999x the speed of light.

We have described thus far the acceleration of protons in the Fermilab Tevatron,
however we recall that the Tevatron is a proton-antiproton collider so we’ll need

someplace to get them from.

Antiprotons are produced by skimming some of the protons from the Main Ring
and directing them towards a nickel’ target. A shower of particles results, some
of which are antiprotons. These antiprotons are directed into the p Debuncher, a
circular accelerator with three straight legs. During their time in the Debuncher,
the antiprotons are collected into bunches with like momenta by a process known
as stochastic cooling. They are then transferred to the Accumulator before being
injected into the main ring, now moving in the opposite direction as the protons.
Along with the protons, the antiprotons are transferred into the Tevatron and ac-

celerated to 900 GeV. Additional information regarding the Fermilab Tevatron can

be found in [4].

During collider operation, six p and six p bunches occupy the Tevatron. Their

fOther metals are sometimes used, but nickel is the most common.
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orbits are slightly perturbed such that they collide at six distinct points in the ring.
The DO detector exists around one of these points. During the data taking for
the data used in this analysis, collisions occurred with a frequency of 3.5usec and
ran for approximately 15 monthst. Most collisions involved only soft$, uninteresting
collisions. The system for distinguishing these uninteresting interactions from the
interesting ones is called a trigger. The trigger, the rest of the data taking software

and hardware along with the D@ detector itself is described in the next section.

3.2 The DO Detector

D@ is an all-purpose detector which is used for many different kinds of physics.
It has excellent calorimetry, or measurement of hadronic particles, however, it has
no central magnetic field and the Main Ring accelerator runs through the detector.
These properties will present special challenges while interpreting data from the
detector. The detector is large, even by particle physics standards; it weighs 5500
tons and stands over 40 feet high. The DO detector is comprised of several different
sub-detectors, each used for measuring a certain type of particle. We will introduce
the device, concentrating on those detector sub-systems relevant to the Triple Dif-
ferential. For detailed descriptions of any of the sub-systems, or the detector as a

whole, the reader is directed to [12].

Before introducing the detector however, it is necessary to introduce the coordi-

nate system is used to define the physical space covered by the detector, shown in

¥This period of data taking is referred to as Run 1B.
§Soft describes an interaction in which little momentum was transferred.
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Figure 3.2. The three quantities most commonly used to define an object in the DO
detector are the particle’s Er, pseudo-rapidity, or n, and azimuth, ¢. n is defined
by

n= —log(tan(g)).

7 is used because in the high energy limit, n ~ y, where y is the rapidity, introduced

in Chapter 2,

1 E—-P,
v= gl )
z
y
A
L N
l' \\ l' \\
[ il 7 r
’l ‘\ / " “‘
b ' / event vertex, ~|
:' || / (Xevenr’ Y, event’ zeléem) ‘.
! ! ; 4 ! !
1 1
p = z ! / \ | ' 4= P
—_————— e — e = = — — — —_——

Figure 3.2: Coordinates used in the D@ detector, the event vertex is at the
pp interaction point, which can be different from Z=0.
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3.2.1 Tracking

Charged particle tracking is accomplished at DO through the use of three detectors, a
central tracking chamber and two forward tracking chambers. A track, the trajectory
of a charged particle, is made up of many individual hits in one of the tracking
detectors. A hit occurs when a charged particle ionizes the gas in a tracking chamber

and produces a shower of charge.

3.2.2 The DO Muon System

It is necessary to distinguish particles from the interaction point from particles that
enter the detector from elsewhere. The largest component of this sort of contam-
ination is particles from cosmic showers which are primarily made up of muons.
Additionally, good measurement of muons that result from pp interactions is also
useful. The DO muon system provides information about muon position and mo-
mentum. The muon systems employs a toroidal magnet to deflect muons; the muon

position is measured before and after the bend, to determine the particle momenta.

3.2.3 Level Zero

The least complicated detector at D@ is the Level Zero detector. This detector is
used to provide crude information about the vertex position of a pp interaction.

Furthermore, it is used to determine if an interaction occurred at all.

The beams are focused at D@ in an effort to have them collide at the center

of the detector. However, it is probable that the interactions occur away from
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Z = 0, sometimes as far as Z = +100cm. In fact, the events in this analysis
have a vertex distribution of width oz =~ 30cm. The Level Zero detector employs
two scintillating hodoscopes surrounding the beampipe, on either side (north and
south) of the interaction point. If the remnant from the pp interaction, that is the
proton (or p) fragment, hits both the north and south Level Zero concurrently, it
indicates that an inelasticY interaction took place. Additionally, by looking at the
timing information from the north and south detectors, it can be roughly determined
where the interaction took place. A Level Zero hit is a condition required on many
types of event selection at DO as will be discussed later. Level Zero can is also used
to estimate the intensity of the beam, called the Luminosity, the number of particles

in the beam, per unit area, per unit time.

3.2.4 Luminosity Calculation

Luminosity (£) at DO is measured in two incarnations, instantaneous and integrated.
Instantaneous refers to the number of pp crossings per second. Integrated is, as the
name suggests, integrated over time. The luminosity calculation hinges on a quan-
tity which represents the probability of a pp interaction and the probability of the
D@ detector to observe the interaction. The quantity is referred to as the luminosity
monitor constant. Expressed as oy, g, it is calculated by combining measurements of
the world average pp cross section with measurements of the acceptance of the D@
Level Zero detector. The total pp cross section is determined by combining informa-

tion from many different experiments. This number is combined with a Monte Carlo

9An inelastic collision is one where the proton and/or p breaks up.
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study which determines the acceptance of the DO detector; that is, what fraction
of the total pp cross section is visible to the D@ detector. The luminosity monitor

constant for the data in this analysis was determined as o,y = 44.53 + 2.37 mb[13].

Once oy, p is known, the luminosity(£) is calculated via:

L=—"" (3.1)

where R is the number of events seen per second by the Level ) detector. The total

integrated luminosity seen by D@ during run 1B data taking was ~ 92 pb1.

3.2.5 The DO Calorimeter

The events in this analysis are measured primarily in the calorimeter, therefore it
will be given special attention. The calorimeter provides measurement of hadron

position and energy, as far forward as |n| = 4.1.

Recall that a jet is primarily made up hadrons which deposit their energy primar-
ily in the calorimeter. The D calorimeter is divided into three separate calorime-
ters, one central (CC) and two forward, the endcap calorimeters (EC). The calorime-
ter is pictured in Figure 3.3. The calorimeters are composed of uranium, used as
an absorber, and liquid argon, the ionization medium. They are composed of thou-
sands of cells, one of which is pictured in Figure 3.4. As a particle passes through
a calorimeter cell, a shower of particles is created as the uncharged particle inter-
acts with the absorber plate. The shower then ionizes the liquid argon; an electric
potential draws these ions toward the pad. The resulting current is proportional to

the energy of the incident particle. To calibrate the cells, a test beam measurement
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was performed where hadrons of known energy were directed into a calorimeter cell.
In this way, the sampling calorimeter cells could be calibrated to measure hadron
energy.

Dﬁ LIQUID ARGON CALORIMETER

END CALORIMETER

Outer Hadronic
(Coarse)

Middle Hadronic
(Fine & Coarse)

CENTRAL
CALORIMETER

Electromagnetic

Inner Hadronic Fine Hadronic

(Fine & Coarse) Coarse Hadronic
Electromagnetic

Figure 3.3: The DO liquid argon calorimeter.

The central calorimeter subtends a rapidity interval of || < 1.1. Tt has different
modules to measure different kinds of particles as one moves outward radially from
the interaction region. Closest to the center of the detector is the electromagnetic
(EM) calorimeter, used for measuring electromagnetic showers, which uses thinner
uranium plates. After the EM calorimeter, is the fine hadronic (FH) calorimeter
which uses thicker uranium plates and finally the coarse hadronic (CH) calorimeter
which uses copper or stainless steel as absorbing material. The EM calorimeter is
closer to the center of the detector because electromagnetic objects tend to develop

showers earlier than hadronic objects. Each cell in the CC has an area of 0.1 x 0.1
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Figure 3.4: A DO calorimeter cell.

in n — ¢ space. The cells are stacked into towers which point back to the interaction
region. The forward calorimeters extend the coverage to |n| = 4.1 and with a few
exceptions are very similar to the CC. The calorimeters towers are seventeen cells
deep and number approximately 50, 000. A cross section of the calorimeter is shown

in Figure 3.5.

Calibrating the calorimeter to exactly measure the energy of a particle, or even-
tually a jet; determining the energy scale of the calorimeter, is a difficult challenge

which will be discussed in detail in later chapters.

In Figure 3.6, we present an event as seen by the D@ detector. The various sub-
detectors are represented; energy is visible in the calorimeter. Two distinct regions
of energy deposition are in fact visible; this event finds it’s way into the same side

cross section in the bin 1.5 < |5| < 2.0, as two forward jets were found.
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Figure 3.5: A cross section of the D@ calorimeter, the numbers have units of pseu-

dorapidity.
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D0 Side View 1- SEP-1998 17:45 Run 86859 Event 629 13- DEC- 1994 11:01
Max ET=  83.0 GeV
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Figure 3.6: An event as seen by the D@ detector. This event is part of the same
side forward cross section. The z axis is the left right plane, the information has
been averaged in ¢.
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3.3 Data Filtering and Reconstruction

The crossing time for pp bunches at the Fermilab Tevatron during the run in which
the data used in this analysis was taken was 3.5 usec. Relatively few of these bunch
crossings result in an interaction with considerable momentum exchange. A trigger
system was designed to reduce the event rate recorded by discarding uninteresting
events during data taking. Events are further streamed offline after data taking

during event reconstruction.

3.3.1 The DO Trigger System

The DO trigger system, pictured symbolically in Figure 3.7f, consists of three dis-
tinct levels, level @, level 1 and level 2. Level () uses the previously described Level
Zero detector to determine only if an interaction took place. If level () determines
that there was an interaction, the event is passed on to level 1. Calorimeter towers
are 0.2 x 0.2 areas in 1) — ¢ space, directly linked to the level 1 system. Level 1 looks
at the energy detected in these towers to decide if a jet of appreciable energy may
exist. In this way, level 1 determines if any of the interactions detected by level O
produced anything interesting. What is interesting is determined by a trigger list. A
trigger list for jet events, for example, might require only that one jet was detected
with energy above some threshold. Level 1 has very little time to reconstruct the
jet, so it doesn’t do a complete job. Level 1 simply determines a rough estimate

of the jet energy to see if it should be passed to level 2. For example, assume,

tin Figure 3.7, level 1.5 is an intermediate trigger used to reduce the rate of electron events, it
is not used in jet triggers.
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in constructing a trigger list, it is desired to measure 100 GeV jets. The trigger
list should be designed with a level 1 threshold lower than 100 GeV so that events
which fluctuate below the cut are not lost. After full reconstruction, the jet energy
can be more accurately determined and the decision to keep the event can be made
again. If an event passes level 1, it is passed to level 2. Level 2 is a collection of
48 DIGITAL processors running identical executables. Level 2 takes in information
from all detectors in an attempt to fully reconstruct the event. If, after study by
level 2, the event is still interesting, it is written to a disk buffer and eventually

backed off to tape. The information on the tape is usually referred to as raw data.

Processing Time  132ns 900 ns 10-20 ps 100 - 200 ms
From the Level Level 200 Hz Level Tape
—> > —» 3P
Detector 0 1 2
Level
Rate 300 kHz 50 kHz 10 kHz 15 100 Hz 1-2Hz

Figure 3.7: Block diagram of the DO trigger system.

3.3.2 Offline Reconstruction

Raw data is taken, in tape form, to another physical location at Fermilab for offline
processing. A large and complicated reconstruction package runs though the raw
data and produces the final event lists. This package has access to test beam infor-
mation in addition to data taken during surveys of the DO detector. Additionally,
the reconstruction package allows each physics group to access the data it is inter-
ested in without sorting through all the collider data taken during the run. Usually,

as in the case of this analysis, the data is compressed even further, so that only the
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events of interest to a particular analysis are kept.

3.3.3 Triggers

The combination of level @, level 1, and level 2 restrictions collectively define a
trigger list. One trigger list can have many different triggers, designed for different
physics analyses. The events in this analysis were taken using four QCD jet triggers,
named Jet_ 30, Jet_50, Jet 85, and Jet_max. Jet_ 30, for example, is designed to
take events with at least one jet roughly at or above 30 Gev. Due to imperfect level 1
and level 2 energy resolution, jets are taken well below this cutoff. Additionally, due
to a preponderance of jet final states in the data relative to other sorts of physics, jet
triggers were subject to various levels of prescaling to reduce their rates. Prescaling
involves writing out a fraction of events which pass the triggers; jet events were
prescaled at level 2 depending on the luminosity at the time. See Table 3.2 for more

details on the triggers used in this analysis.

| Name | L1 Threshold (GeV) | L2 Threshold (GeV) ||

Jet 30 15 30
Jet 50 35 50
Jet 30 60 85
Jet max 60 115

Table 3.2: Jet triggers used in the Triple Differential.

After reconstruction, when the jet energy is better understood, one can consider
the efficiency of the filters, that is the fraction of events which were read out by
the trigger system compared to the total number of events which occurred. In this

analysis, the triggers were used only where they were 100% efficient]8].
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Two additional triggers which should be introduced are the zero bias and the
minimum bias triggers. These triggers are used during the derivation of the energy
scale correction described in Chapter 4. The minimum bias trigger only requires
an interaction in order to read out the detector. It therefore does not usually
contain a hard partonic interaction, just a soft proton-antiproton collision. The
zero bias trigger essentially requires nothing except a bunch crossing. It reads out
the detector during running regardless of what else is going on at the time. As long
as timing information from the accelerator indicates that there is a beam crossing,
the detector is read out; it is not necessary for there to be a pp interaction to fire the
zero bias trigger. The zero bias trigger is useful to study electronic noise and other
effects which introduce energy into the detector not associated with the partonic

interaction.

3.4 Jet Definitions

As described above, a jet is a collection of highly collimated particles resulting from
a hard parton-parton scatter. In this analysis, as in particle physics in general, a jet
in not uniquely defined. During data taking, the position that a jet occupies in space
was determined using one jet definition, after the jet’s position was determined, it’s
quantities were re-calculated using a different jet definition. These definitions are

presented below.

There are two different algorithms for defining a jet that are relevant to this
analysis. The first is called the Snowmass Accord, as it was named during the

Summer Study on High Energy Physics, in Snowmass Colorado, in 1990. The
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second, is referred to as the D@ algorithm. Each is defined below.

In both cases, one starts with a list of particles or calorimeter cells. Both algo-
rithms are referred to cone algorithms in that they draw a cone around some central
point to determine which particles in the list belong in the jet. In the Snowmass
Accord, a reasonably high energy particle is chosen as a beginning, usually called a
seed. A cone of radius! R is drawn around the seed and the energy of each particle

or cell in this circle is considered in the following calculations:

ncells
ET = Z ETi (32)
i=1
ncells
i1 ik
= =1 Nt 3.3
n B (3.3)
n_cells zE ;
¢ = —Ez—lEd) L (3.4)
T

A new jet axis is drawn and the procedure is repeated until a stable jet axis is
found. This E; weighting scheme is alleged to be the desired method for cone jet

definition[14].

The D@ definition then takes the cells in the physical space defined by the

Snowmass Accord and recalculates Er, n, and ¢ according to

ncells

Ep= Y (P} +P})
i=1

. Er
0= asm(f)

n = —log(tan(6/2))

IR is in i — ¢ space; the jets in this analysis have R = 0.7. That is, R = \/(A¢? + An?) < 0.7.
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o= atan(];—);).

To state the problem, there is a claim that this definition is not the best one to
use when comparing to theoretical predictions; this claim is the subject of a recent

theory paper[14].

The effect of this ambiguity on the Triple Differential will be discussed in Chap-
ter 4. The D@ definition was the result of early Monte Carlo studies in which the
D@ algorithm was seen to more closely reproduce the angles of the Monte Carlo jets

before detector simulation.

Now that the detector has been introduced and we have a good understanding

of the theory, we move onto the measurement of the Triple Differential itself.
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Chapter 4

The Data

In this chapter we introduce the experimental form of the measurement and the
methods necessary to calculate the raw cross section. The raw cross section has
been energy scale corrected and subject to different cuts and variable corrections.

It has not been completely corrected, the final steps are presented in Chapter 5.

4.1 The Measurement

As discussed in Chapter 2, a cross section defines the space for a specific type
of initial and final state process. The Triple Differential is a measurement of the
Er and n distributions of 2 or more jet final states. The experimental differential

cross section is expressed as:

Do B AN
Omon0Er L CV AnAngAEreéq;

f Another useful representation is: pp — 2 jets + anything.

o7



In Equation 4.1, N is the number of events that pass our cuts, An is the width of
pseudorapidity bin considered, AFEr is the width of the E7 bin, C is the unsmearing
correction, £ is the luminosity, V is the vertex resolution correction, and €.,; is the
efficiency of all of our cuts. These cuts are defined below, the corrections are defined
in Chapter 5. We require each event to have at least two jets. The binning of the
cross sections is as defined in Chapter 2, each cross section is represented as a
one dimensional plot; the Triple Differential for a specific n bin vs Ep. Cartoon
representations of two jet topologies for two slices of the Triple Differential appear

in Figure 4.1.

n n
7z same side, forward
same side central
n
n
z
z
opposite side, forward
opposite side central

Figure 4.1: Cartoon representation of jets for two slices of the Triple Differential.
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This analysis uses the four jet triggers introduced in chapter 3; Jet_30, Jet_50,
Jet 85 and Jet_max, with a total integrated luminosity of 0.339,4.61,54.7,91.9
pb~! respectively. The triggers are used only where fully efficient in Er as defined

in [8] and discussed in Chapter 3.

The theoretical prediction to which we will eventually compare the cross sections
is pure in the sense that it doesn’t reflect any detector effects. We will correct the
measured cross sections for all known detector effects for eventual comparisons to

theory.

A jet, once defined, is by no means uniquely defined. In a complicated detector
many effects can falsely be reconstructed as a jet. Jet quality cuts are applied to the
data set to remove ill-defined jets from the sample. Additionally, bad events can
fool the trigger system; careful consideration of select variables can remove these

events from the sample as well.

4.2 Quality Cuts

Two separate event quality cuts are considered in this analysis. Events must satisfy

a cut involving missing Er( F;) and vertex position.

4.2.1 Missing Er cut

Due to conservation of momentum, the total vector Er of an event equals zero in
an ideal case. In the event of a cosmic shower or other energy in the calorimeter

that is not a result of an interaction, the sum of vector Ep can differ from zero.
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The missing Er (B7) is defined as the total unbalanced E7 in the event and is
calculated from the vector sum FEr of all calorimeter cells. Additionally, muon
energy is added to the total vector Er in the event. The quantity to which we apply
a cut is Erjeqq/ Br ! which approaches one in the case of a cosmic shower. The cut
is chosen to require that missing Ep is not greater than 70% of the leading jet Er.
In Figure 4.2, the E7eqq/ By distribution for the SS slice 1 is presented. Note the
bump at Erjeq/ Br = 1.0. Events must satisfy E7jeqq/ B > 1.43 in order to be

considered in the analysis. ®

200

150 |~

100

50 —

o Lelh o b b b b b b b b
0 1 2 3 4 5 6 7 8 9 10

Same Side, Slice 1 - ratio of leading Jet ET to missing Et

Figure 4.2: Ereqq/ Hr for Same Side central jets.

The K1 cut was designed for previous analyses of jet data, these analyses did not
necessarily require two jets in every event. With regard to the Triple Differential
therefore, the I/ cut should be slightly rethought. Events in this analysis are defined

such that there are always at least two jets present. For this reason, it is unlikely

tET lead is the Ep of the most energetic jet in the event.
§1/1.43 = %170.
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that an event would be included in the sample which contained only one energetic
jet. It is worth considering within the context of this argument whether a Fr cut is
needed at all. By looking at the Er..q/ Hr distributions for each slice, (Figure 4.3)
it was decided to make a K cut on only the SS slice 1 and 2 and the OS slice 1. All

other distributions are not subject to a [ cut.

opposite side — slice 3 opposite side — slice 4

Figure 4.3: E7jeqq/ By for all slices.

When making a cut that removes events from the data sample, care must be
taken to account for events that were cut out that did in fact belong in the data
set. That is, events which fluctuate below the cut, but are otherwise perfectly good.
A correction of this nature is called an efficiency and is calculated, along with a

corresponding error, for all the cuts described here.

In the case of the K7 cut, the efficiency is calculated by finding a function that

fits the K distribution above the cut and extrapolating this function past the cut.
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The integral of this function over the entire F space is compared to the integral
above the cut. The ratio of these two integrals is equal to the ratio of the events
included in the cross section measurement above the cut, to the total number of
events that belong in the sample; this is the efficiency of the K cut. In practice, a
fit is performed not to the Fr distribution, but to E7jeqq/ Hr , as this highlights the
region of interest and is the variable we actually cut on. Furthermore, due to the
shape of the distribution, the function is fit to a subset of the entire distribution. The
integral over the entire E7..q/ Hr space is determined by integrating the function
over the region of the fit, and adding to the integral the number of events contained
in the rest of the distribution. This formalism is presented schematically in Figure
4.4. Two fits are performed and integrated, one which extrapolates below the cut,
represented in Figure 4.4 by a solid line, and one which stops at the cut. We define
the integrals of this function I; and I, respectively. Beyond the dashed line, the

integrals are determined numerically. The efficiency of the cut is defined as I /.

The error on the FEr cut is conservatively estimated at +0.5%. The FEr cut

efficiency results are presented in Table 4.1.

H rapidity range ‘ same side ‘ opposite side H

0.0-0.5 0.99 0.99
0.5-1.0 0.99 1.0
1.0-1.5 1.0 1.0
1.5-2.0 1.0 1.0

Table 4.1: Fr efficiency for the 8 slices considered in the Triple Differential. The
entries 1.0 correspond to the slices where no Zr cut is made.
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ETlead / ET

Figure 4.4: Schematic of the calculation of the efficiency associated with the I cut.

4.2.2 Vertex Position

The vertex distribution along the z axis in the data set used for this analysis is
approximately Gaussian; for the events considered in this analysis the width is
approximately 30.0cm. Events with a vertex far from the center of the detector are
in principle completely usable. However, due to the projective nature of the DO
calorimeter, good jet reconstruction is difficult if the vertex is too far from Z = 0.
Therefore, events in this analysis are subject to the restriction |Z] < 50.0cm. As
stated above, all the events contained in the vertex distribution are usable events.

For this reason, the efficiency can be calculated without differentiation of events that
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failed the cut because they were ‘bad’ and events that failed due to some fluctuation.
All events in the vertex distribution are assumed to be ‘good’ events. They have, in
fact, passed all other good jet and event cuts. Therefore the vertex cut efficiency is
defined as the ratio of the total number of events with |Z| = £50.0cm to the total
number of events in each slice before the cut. Figure 4.5 is the vertex distribution
for two representative slices. No systematic differences in vertex distributions were
observed between same side and opposite side events. The error associated with the

vertex cut efficiency is assumed to be binomial and is defined as

(1 = Npass/N) % Npass/N
5Zeff = (N — 1)

where Z,.sf is the vertex cut efficiency, Np,ss is the number of events that satisfied
the vertex cut and N is the total number of events in the slice. The vertex efficiency

is determined separately for all 8 slices, the results are tabulated in Table 4.2.
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Figure 4.5: Vertex Distribution (before cuts) for two slices of the Triple Differential.

H rapidity range | same side ‘ opposite side H
0.0-0.5 0.89 + 0.001 | 0.89 + 0.001
0.5-1.0 0.90 + 0.002 | 0.90 + 0.001
1.0-1.5 0.90 + 0.003 | 0.89 + 0.002
1.5-2.0 0.90 + 0.006 | 0.92 +£ 0.004

Table 4.2: Vertex cut efficiency and errors for 8 slices of the Triple Differential.

An additional concern exists regarding vertexing at D(). The reconstruction
package applied to the raw data determines the longitudinal position of the inter-
action, usually referred to as Z. During high luminosity running, when the number
of protons and anti-protons in the bunches is large, there is likely to be additional
interactions, which could results in additional vertecies detected. The energy de-

posited by these additional interactions is small and corrected for by the energy
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scale correction described later in this chapter. However, the jet quantities, Fr and
7, are calculated with respect to the vertex position. These quantities are referred
to as physics quantities as opposed to detector quantities as they are referred to
when they are calculated with respect to Z = 0; physics Er and 7 are used in mea-
suring the Triple Differential. A mis-measurement of the vertex position can effect
the physics quantities. The reconstruction package usually chooses the right vertex,
however, a different algorithm for vertex selection in jet events is seen to do better.
The quantity }fT is defined as the vector sum of the energy? of each calorimeter cell.
This quantity is expected to be at a minimum when calculated with respect to the
correct vertex. This vertex selection method chooses the correct vertex more often
than the reconstruction package,!l therefore, in the event that more than one vertex

is found during reconstruction, the vertex is chosen with this method.

4.2.3 Jet Quality Cuts

In addition to the event quality cuts, cuts are applied to the two leading jets in the
event, designed to remove spurious jets. These “unreal” jets, which due to some
fluctuations are included in our sample, are removed with these jet quality cuts
which have been studied exhaustively[9]. We include a brief description of the cuts

together with their efficiencies and errors below.

9In high energy jet physics masses are usually neglected; the assumption is made that E ~ P.
IThis conclusion is supported by event scanning.
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Electromagnetic Fraction Cut

Three separate quality cuts are applied to the jets in the data set used in this
analysis, the first is primarily designed to remove electromagnetic objects falsely
reconstructed as jets. As described in Chapter 3, the D@ calorimeter contains an
electromagnetic and then a hadronic calorimeter; jets are expected to deposit their
energy in both. The EM fraction (EMF) is the fraction of the total jet energy
deposited in the electromagnetic calorimeter. A cut on the jet EMF is applied as

defined in Table 4.3.

Coarse Hadronic Fraction Cut

The coarse hadronic calorimeter surrounds the main ring accelerator above the Teva-
tron. The main ring houses low energy proton and anti-proton bunches. These
bunches can interact and create a shower of energy in the coarse hadronic calorime-
ter which could be mis-interpreted as a jet. To protect against this, a cut is placed
on the fraction of the jet energy deposited in the coarse hadronic calorimeter (CHF).

This cut is also defined in Table 4.3.

Hot Cell Fraction Cut

The calorimeter is made up of many cells connected by complicated electronics. It
is possible that a single cell may light up’ due to an electronic fluctuation or other
noise. If a jet is found to contain one cell with much more energy than its immediate

neighbors, it is suspected to be a bad jet. A cut is place on the hot cell fraction

Tappear to detect energy
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(HCF), the ratio of the next to most energetic (hottest) cell energy to the hottest

cell energy. This HCF cut is defined below in Table 4.3.

We include sample distributions in Figure 4.6 which contains the EM fraction
and CH fraction distributions (on a log scale) for the central same side cross section.
The complete set of distributions is presented in the reference[9]. As can be seen
in Figure 4.6, the EM fraction and CH fraction cuts are very efficient; they do not

remove many jets from the data set.

800 F T T T T T T
700 F
600 -
500 -

300 |
200 -
100 |

oo b b b b b e 1

£ e b b b b e b T
0 01 02 03 04 05 06 07 08 09 1
E-M fraction

L TN

0 01 02 03 04 05 06 07 08 09
C-H fraction

Hﬁ':\ TN AT BN AT IR

Figure 4.6: Representative electromagnetic and coarse hadronic fraction distribu-
tions.

The net efficiency of all the jet quality cuts is > 98% for all slices considered.
The errors on the efficiency corrections are corresponding small. In Figures 4.7-4.10,

we include the jet quality cut efficiencies for all slices along with the corresponding
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H Cut name ‘ Cut value ‘ Region applied H

E-M fraction | 0.00 < EMF < 0.95 ICR
E-M fraction | 0.05 < EMF < 0.95 elsewhere
C-H fraction CHF < 0.6 ICR
C-H fraction CHF <04 elsewhere
hot cell fraction HCF < 0.05 everywhere

Table 4.3: Jet quality cuts applied in the Triple Differential. ICR refers to the
inter-cryostat region of the calorimeter defined by 1.0 < |n| < 1.4.

errors on the efficiency corrections. Additionally, we include the total jet + event

efficiency errors for completeness, as well.
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Differential.
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Figure 4.9: Jet and event quality cuts efficiencies and errors for slice 3 of the Triple

Differential.
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Figure 4.10: Jet and event quality cuts efficiencies and errors for slice 4 of the Triple

Differential.
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4.3 Corrections to the Data

The goal of this analysis is to report a cross section with all detector effects removed.
The detector effects we account for are: jet energy scale, jet energy resolution, vertex
position resolution, and the 7 bias. The n bias refers to the difference in position
of the fully reconstructed jet compared to the same jet at the particle level. The
jet energy scale corrects the measured jet energy back to the particle jet energy.
The jet energy resolution refers to the effect of imperfect energy measurement of
the DO calorimeter: if many particles jets all of energy E, are sampled by the D@
calorimeter, and all other effects are accounted for, a Gaussian distribution centered
on E will result. The mean of this distribution is equal to £ so one might expect the
net effect of the imperfect energy resolution, on average, not to present a problem.
However due to the steeply falling nature of the energy distribution of jets from
pp collisions, the cross section is “smeared” as a result. We present, in Chapter 5, a
method of correcting for this effect, or unsmearing the cross section. Vertex position
resolution arises from the study of energy resolution, we will discuss the effect and

the corresponding correction in detail in Chapter 5 as well.

4.3.1 Jet n Definition

The position of a jet measured by the D@ detector is defined by two quantities:
n and ¢. In this analysis the cross sections are averaged in ¢ so jet 1 uniquely
determines the position of the jet. We consider two disparate effects with regard to

jet n definition.

In a Monte Carlo study it can be observed that the reconstructed jet is pref-

74



erentially more central® than the corresponding particle jet. This 7 bias has been
studied previously[18, 19]. An additional complication arises because the jets in
this analysis have been reconstructed with the DO jet algorithm. A claim has been
made that this algorithm is not completely desirable for comparison with QCD the-
oretical predictions|[14], instead the Snowmass Accord[15] is preferred®. These two
algorithms produce nearly identical values for jet energy and also for jet 7. Any
difference in jet ¢ is not considered. The energy difference will be shown to be
small enough that it doesn’t warrant consideration. However, the difference in jet
1, though small, could produce reasonable differences in the final measured cross
sections. We use the Snowmass Accord while reconstructing jets in the NLO QCD

theory.

To study these two effects, we look at the difference between Herwig jets re-
constructed at the particle level with the Snowmass Accord and the same jets re-
constructed with the DO algorithm at the fully simulated calorimeter level. If the
difference between particle jets constructed with the Snowmass Accord and calorime-
ter jets constructed with the D@ algorithm is well behaved, a correction to apply

to the jets in our cross section can be derived.

snow

The quantity of interest is n"? — Mpart » Where n2? is the jet n as defined at the

calorimeter level by the DO algorithm and n®"o"

bart 1S the jet 7 at the particle jet level

as defined by the Snowmass Accord. This quantity will henceforth be referred to as
the total n bias. We study this quantity as a function of uncorrected jet energy and

DO calorimeter jet 1. Figure 4.11 is the total n bias as a function of DO jet n for

j""7particlejet < 7calorimeter jet-
These jet clustering algorithms are described in Chapter 2.
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Herwig jets subject to a cut requiring E7> 60.0 GeV as in the data. The Er and n
distributions in Herwig are known be in good agreement with D) data. From this
plot we can see that the effect of the total 7 bias for || < 1.5 is negligible. Therefore,
no n bias corrections are applied in this region. However, we can see a larger effect
in the most forward bin, and indeed it is here we apply a correction. The data
within |n| > 1.5 are fit to a straight line to derive the total n bias correction. This
procedure is followed for several different Ep bins to derive a correction as a function
of Er and 7. However, no significant Er dependence is observed (Figure 4.12). For
this reason the correction is applied only as a function of DO calorimeter jet 7. The

total n bias, before and after the correction is applied, is shown in Figure 4.13.

To estimate an uncertainty on the total n bias correction, the deviation of the
total corrected 7 bias from zero is used. An uncertainty on jet n of 40.005%Y is
assumed and the cross sections are re-derived with this uncertainty applied to jet 7.
This results in an error on the forward cross sections as demonstrated in Figure 4.14.
For completeness, an error due to the total eta bias is applied to all slices, however
the effect becomes very small in the central region as observed also in Figure 4.14.
The total n bias correction error is on the order of 2 — 4% in the most forward
bins and becomes smaller in the central region. The errors are tabulated in Table
4.4. The effect of the total n bias correction can be observed in Figure 4.15 which
contains the forward cross sections before and after the corrections are applied and
a linear comparison of the cross sections. These figures show a total effect of the

correction which depends on the specific Er bin considered, but is on the order of

5%.

9See Figure 4.13.
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Figure 4.11: Total n bias as measured in Herwig as a function of jet 7.

H Slice ‘ Topology ‘ 71 bias error H

1 SS < 1%

1 0S < 1%

2 SS 0—-2%
2 OS 0.5—-1%
3 SS 0—-3.5%
3 OS 0—-2%
4 SS 2 — 6%
4 SS 0.5 — 2%

Table 4.4: Errors on the cross sections due to the total eta bias.
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4.4 Jet Energy Scale Corrections

As described in Chapter 3, the energy of an object in the D@ calorimeter is not
necessarily exactly defined. As hadronic objects deposit energy in the calorimeter,
small currents are detected in the individual calorimeter cells. The conversion of this
current to particle energy is determined by enlisting test beam data. However, this is
not enough to accurately define the energy of a jet. Other effects not modeled during
test beam running can effect the measured jet energy. For example, the test beam
did not model the high luminosity environment which exists during data taking.
The calorimeter modules used during test beam data taking may not exactly mimic
the actual calorimeter. There are different levels of instrumentation in different
regions of rapidity not modeled during test beam running. Additionally, during the
test beam, single particle response was measured; there is no reason to expect the

exact same response for a jet as for a single particle.

The energy scale is a prescription for determining the energy of a jet given its
measured energy from the reconstruction package. It depends upon, among other
things, the type of jet algorithm applied. D@ has undertaken a significant effort to
understand the jet energy scale for cone jets; we will summarize the procedure and

the results below.

The jet energy scale correction applied in this analysis is referred to as CAFIX
5.1 and is described in extensive detail elsewhere[10]. The goal of the energy scale
correction is to provide a prescription to go from measured jet energy to the corre-
sponding particle jet energy. As described in Chapter 2, a particle jet is a collection

of particles in a jet cone, with all detector effects removed.
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The jet energy scale correction takes the form

B¢t — O(AR, 1, L)

Ej@t _ meas

— 4.2
Pl R(AR,n, L, E)S(AR, 0, L, E) (42)

In Equation 4.2, ng;l is the particle jet energy, EJ¢ s the measured jet energy,
O is the offset correction, R is the calorimeter energy response, and S is the show-

ering correction, £ and E are luminosity and energy, respectively. AR is the cone

size, 0.7 for the jets in this analysis. Each component is defined below.

4.4.1 The Offset Correction

The offset[11] corrects the measured jet energy for additional energy (energy off-
set) due to additional interactions, electronic noise and energy introduced by zero
suppression which does not belong to the jet. Additionally, a correction is applied
to correct the measured jet energy for energy due to additional partonic interac-
tions that occur during the proton break-up; the so-called underlying event. These

corrections are explained below.

Zero Suppression

During data taking it is not efficient to read out all calorimeter cells. Cells that do
not contain any energy other than background electronic noise are not read out. In
order to determine a baseline for comparison, a calibration run is taken during which
the average energy, and the width of the energy distribution, for each calorimeter

cell is recorded. During the calibration run, no protons are in the Tevatron. During
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data taking, the energy in each cell is compared to the data from the calibration run
and if the energy is within 20 of its average value during the calibration run, the
cell is not read out. Unfortunately, the distribution of energy in a cell during the
calibration run is not symmetric. Consequently, a 20 cut introduces some energy,
on average, into the jet (see Figure 4.16). In order to correct for this, special runs
which were not zero suppressed were studied. These runs were taken only with min
and zero bias triggers active; in order to determine how zero suppression affects jets,
more information is necessary. There is a small probability that a jet will exist in
an event that fired the min bias trigger, but clearly there are not very many jets of
this type present, and they are likely to be at low energy. Therefore, a correction for
zero suppression was derived by studying zero bias data, and a method for scaling
this correction to apply to jet events was derived. This scaling is necessary because
the amount of energy present in a jet due to zero suppression is a function of how
many cells in that jet were suppressed. In the extreme case, a jet with all cells
read out would have no zero suppression correction. We define the fraction of cells
read out in a jet as the occupancy. We additionally define the fraction of cells read
out in a eta slice of the calorimeter over the total number of cells in that slice as
the occupancy of a zero or min bias data set. These occupancies for zero bias, min
bias, and jet data are presented in Figure 4.17. We can see that jet events have
almost twice as many cells read out as the other data sets which implies that the
suppression correction for jet events is likely to be smaller than is measured in zero

or min bias data.

IThe energy in a quiet calorimeter cell is caused by (among other things) uranium decay.
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Figure 4.16: Mock plot of energy in a calorimeter cell due to uranium decay and the
20 cut, represented by the dashed lines. Notice the net effect of the cut is positive.
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To study the energy introduced due to zero suppression during zero bias data
taking, the quantity Ep density is introduced. This is the energy measured in a
calorimeter tower divided by the area of the tower in n — ¢ space. We represent
Er density as D in this discussion. This quantity is studied for zero bias data which
as been zero suppressed and zero bias data which has not been zero suppressed. The
difference between these two quantities, is the energy introduced into a zero bias
data set due to zero suppression. This quantity is presented in Figure 4.18. Notice
that the effect of suppression is luminosity dependent, this is because more cells, on

average, are read out at higher luminosity.
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Figure 4.18: Energy introduced into zero bias data due to zero suppression.

The offset correction, however, is applied to jets, so it is necessary to understand
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effect of zero suppression on jet data. We define the following:

_ ysupp non—supp
5j€t - Djet - Djet

and,

_ supp non—supp
6267"0 - Dze'ro Dze'ro :

So d is the effect of zero suppression on jet data and likewise for d,.,,. We have

observed that the following relationship holds for these data sets:

OCCZBY‘O

6jet - 5281"0 (

OCCjet

where 0¢Cjey(zero) is the measured occupancy for jet (zero bias) data, as pictured
in Figure 4.17. We can use this observation to predict the suppression correction to
apply to jet data, measured from zero bias data. Recall that we cannot directly mea-
sure d,¢; except for a small sub-set of data where jets are present in non-suppressed
form. This prediction, together with d;.; measured from the small set of data where

it exists,(for comparison) is presented in Figure 4.19.

The zero suppression correction is derived and applied as a function of jet n and

luminosity.
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Now that the effect of zero suppression is understood and a mechanism exists for
deriving a correction from zero bias data and applying it to jet data, the properties
of zero bias data can be further exploited. During a zero bias run, the calorimeter
electronics are all active and beam exists; the energy due to additional interactions
is present in zero bias data as well. The average number of additional interactions,
other than the one that produced the jet in an event that fires a jet trigger, at
a given luminosity, is equal to the average number of events in a zero bias data
set at the same luminosity. The energy, therefore, in a jet event due to additional
interactions is equal to the energy in the calorimeter, appropriately corrected for
zero suppression, taken at the same luminosity. This concept is at the core of the

offset correction.

The total offset is measured by recording the Er density in the calorimeter, as
a function of n and luminosity during zero bias triggers. This density is corrected
by the suppression correction and then applied to jet data. The area of the jet is

determined and the correction takes the form:

Of fset = (D3P 4 supp_corr + D,,.) X area. (4.3)

zero

In Equation 4.3, supp_corr is the suppression correction defined above and D,

is the physics underlying event correction defined below.
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4.4.2 Physics Underlying Event Correction

To study physics underlying event, min bias data is studied. The assumption is
made that at sufficiently low luminosity, a min bias event is a soft pp scatter which
roughly corresponds to the type of interaction associated with underlying event. The
energy density measured in this type of data also reflects electronic noise, although
low luminosity assures that most other types of noise are not present. In order that
the noise is not counted twice, it is subtracted from the underlying event data. The
noise is modeled in this case by low luminosity zero bias data. The E7 density due
to physics underlying event in this model is presented in Figure 4.20. The measured
physics underlying event is not smooth with respect to jet n as one might expect.
This is due to the non-continuous nature of the D) calorimeter, not the physics
process itself. However, this is effect of the physics underlying event as seen by the

D@ calorimeter, therefore it is the correction we wish to apply.

Figure 4.21 shows the total offset correction for the different luminosity bins
considered in its derivation. During actual data correction, the correction applied
to a jet is taken from the luminosity bin closest to the jet event. The fits shown are

used to facilitate implementation.
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Figure 4.21: The total offset correction for different luminosity bins.
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4.4.3 Out of Cone Showering Correction

When a collimated stream of particles interacts with the calorimeter, some fraction
of them, near the boundary which defines the jet cone, can shower outside (or in-
side) the jet. In order to understand this effect, actual jet data was studied. The
energy between the 0.7 cone boundary and R = R’ (for R’ > R) is associated with,
among other things, out of cone showering. R’ is chosen carefully depending on the
7 bin considered. The energy measured in this annulus is due to jet out of cone
showering and from particles from the jet that weren’t in the jet cone to begin with.
To determine the magnitude of the latter component, which has been called physics
out of cone, Herwig Monte Carlo data is studied. The energy in the same annulus
in Herwig is entirely due to physics out of cone because at the particle level, there
has been no interaction with the calorimeter. Once these measurements are made,
the out of cone showering is parameterized as a function of jet energy for different
rapidity regions. A generous error is associated with the showering correction, espe-
cially in the forward region where the physical space spanned by a R = 0.7 cone is
smaller than in the central region. More details regarding the showering correction
can be found in [10]. We present the results of the showering correction in Figure
4.22 in which we plot the out-of-cone showering energy correction factor (S) applied
to a cone jet with radius R = 0.7. The error band is the total error associated with
the correction. The correction has a larger effect in the forward region, with a larger
error. We present results for jets of pseudo-rapidity between n = 0 and |n| = 3.0,

though the jets in this analysis are all within |n| = 2.0, for completeness.
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Figure 4.22: The out-of-cone showering energy correction factors (S) and errors for
different 7 bins.

4.4.4 The Response Correction

The largest component of the energy scale correction is the response correction.
Test beam data was studied in order to provide a mapping between single particle
energies of known energy and the energy measured in the DO calorimeter. The
single particle response therefore, is expected to be close to one. The response for
jets however, can deviate from one due to many effects. The average response for the
actual calorimeter is not necessarily the same as the cells used during the test beam,
or the jet could deposit its energy in a poorly instrumented region of the calorimeter.
In any event, one cannot assume jet response of unity. In order to measure the jet
response of the D calorimeter, photon + jet events were studied. The photon
response of the DO detector is quite good**; we make use of Pr conservation in

photon-jet events to study jet response. However, in an actual photon-+jet event,

**The photon energy scale is set by the Z mass.
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imperfect jet response is responsible for introducing missing Er into the event. To
properly account for this, the missing Pr fraction (MPF) method, defined below, is

employed.

In an ideal detector, during a photon + one jet event, the vector sum of the

photon and the jet energy would be zero.
Er, + Ef =0 (4.4)

However if imperfect response and the resulting K is considered, Equation 4.4 takes
the form

RemEryy + Rje B3 = —Ef. (4.5)
Where Rj.; is the jet response and R.,, is the electromagnetic response. Solving
Equation 4.5 for the jet response yields'

ET ) ﬁTv

Ry =1
jet + ET'y

(4.6)

The response error is correlated between Ep points because the response is measured
at several different Ep values, and is then fit with a function; the errors associated
with this fit are correlated among Er points. This correlation matrix is presented
in the Cafix 5.1 documentation[10]. The response was fit with a variety of functions
and the fits were studied to determine the error and the Er correlations of the
response correction. The response together with the nominal fit and error band is

presented in Figure 4.23. Response data is included from the central calorimeter

f After photon energy scale correction, Rey, = 1.0
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(CC) the end-cap calorimeters (EC) and inter-cryostat region (IC).

The different corrections and errors associated with the energy scale are applied
to the jets in this analysis; the net effect of the energy scale correction is to increase

the measured jet energy by 15 — 20%.
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Figure 4.23: The jet response for jets in the D@ calorimeters, the fits and error
bands are discussed in the text. The plots are identical, the top plot has a log(z)
axis to highlight the low Er region.

4.4.5 Energy Scale Closure Tests

To test the effectiveness of the energy scale correction, Herwig jet events are again

studied. The ratio of calorimeter jet energy, Ej., to particle jet energy, Ep,., is
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studied as a function of particle jet 7. The entire energy scale correction is derived
from and re-applied to, the same Monte Carlo sample. The results, Figure 4.24,

show good closure and enforce the energy scale results to |n| = 2.5.
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Figure 4.24: Energy scale Monte Carlo closure test.

4.4.6 Energy Scale Error

A full treatment of the energy scale errors is left until Chapter 6, however, we
introduce the various sources of error associated with the energy scale correction
and present one method of estimating the magnitude of the total energy scale error
on the measured cross sections. FEach component of the energy scale correction
introduces some error. The offset correction incorporates an error associated with

underlying event measurement and the effect of zero suppression on the data. The
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showering correction has slightly larger error associated with it. Jets at DO are
required to have a minimum of 8 Gev E7p, this requirement introduces a bias in
the measurement of the MPF (described earlier in this chapter) at low Er, this
introduces an error as well. Additionally, the MPF introduces other errors, an
error associated with the photon energy scale, an error associated with the photon
background subtraction, and additional systematic biases associated measurement
of the response. These errors are tabulated in Chapter 6 and described in detail in
the CAFIX 5.1 documentation[10]. We present a summary of the sources of error

associated with the energy scale correction in Tables 4.5 through 4.7.

H source ‘ magnitude ‘ comment ‘
offset correction b5 — 0% decreases with Er
showering correction 1.0% essentially flat in Ep
low E7 bias 10 — 0% zero above 20 Gev
photon selection+background 5% flat in Ep
response correction 2 — 3% largest at low and high Er

Table 4.5: Sources of energy scale correction errors for central ( ~ 0.0) jets. The
fractional errors are with respect to jet Er .

H source ‘ magnitude ‘ comment ‘
offset correction 5 — 0% decreases with Er
showering correction 2.0% essentially flat in Ep
low E7 bias 10 — 0% zero above 20 Gev
photon selection+background 5% flat in Ep
response correction ~ 2% largest at low and high Erp

Table 4.6: Sources of energy scale correction errors for central (n ~ 1.2) jets. The
fractional errors are with respect to jet Er .
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H source ‘ magnitude ‘ comment ‘

offset correction 5= 0% decreases with Er
showering correction 4.0% essentially flat in Ep
low E7 bias 10 — 0% zero above 20 Gev
photon selection+background 5% flat in Ep
response correction 0—3% largest at high Ep

Table 4.7: Sources of energy scale correction errors for forward (n ~ 2.0) jets. The
fractional errors are with respect to jet Er .
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We include the total energy scale jet energy correction factors and errors for
central (n ~ 0.0), inter-cryostat, (n ~ 1.2) and forward (n ~ 2.0), jets in Figure
4.25. These errors are with respect to jet Er, the errors this introduces into the

cross section is discussed next.
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Figure 4.25: Energy scale energy correction factors for jets of different rapidity.
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4.4.7 Cross Section Energy Scale Error Estimation from

Data

We have presented the error associated with the energy scale correction on the energy
of a jet. For purposes of this analysis, the error on the cross section associated with
the energy scale is needed. One estimation of the error associated with the energy
scale corrections is defined by allowing each correction to deviate 1o up and down
from its nominal value. The cross sections are re-derived with these components
to define the total energy scale error on the cross section. We recast the Triple
Differential with these high and low energy scale corrections to determine the error
on the analysis associated with the energy scale. We fit the data points with a
second degree polynomial in order to smooth the statistical fluctuations and ease
implementation. This approach assumes the components of the energy scale error
due to each individual correction are not correlated. We present the error on the
measurement of the Triple Differential associated with the energy scale derived in

this manner, along with the energy scale correction factors in Figures 4.26 and 4.27.

This result will be compared with the full treatment of the errors discussed in

Chapter 6.
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Figure 4.27: Energy scale factors to the cross sections and errors for slices 3 and 4.
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Now that we have an energy scale corrected collection of good jet events, we
proceed with measuring the cross sections. The next obstacle involves the imperfect
energy resolution of the DO calorimeter and its effect on the measurement of the
cross sections. The jet energy scale correction assures that the average value for a
measured jet is equal to the energy of the particle jet. However, due to statistical
fluctuations, the measured jet energy is sometimes higher or lower than the actual
value. If one were to look at the difference between the particle and calorimeter
jet energy after energy scale corrections, a Gaussian distribution, centered on zero,
would result. We refer to the fact that there are many more low energy jets than
high energy jets as a steeply falling characteristic of the jet cross section. Because
of this steeply falling nature, it is not enough that the average measurement of the
energy produces the right result, the width of the Er distributions, the jet energy
resolutions, affects the measured cross sections. We present a method to correct the
measurement for this effect, based on a measurement of these resolutions, in the next
chapter. We will also see another detector effect while measuring the resolutions and

present a method to correct for that as well.

At this stage, we present the raw cross sections, Figure 4.28, which have been en-

ergy scale corrected, additionally the corrections derived thus far have been applied.
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Figure 4.28: The eight slices that make up the raw Triple Differential cross section,
the units of the cross sections are picobarns.
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Chapter 5

Resolutions and Unsmearing

As described in Chapter 4, imperfect jet energy resolution changes the shape of, or
smears, the measured cross section. In the cross sections measured here, there are
many more jets at low Ep than at higher Er. Let us consider one bin of a cross
section at B, called bin a, and the bin immediately to it’s right at ELT, bin b. The
fact that the jet energy resolution of the D@ calorimeter is not perfect means that
some fraction of events in bin a will fall into bin b and vice-versa. However, because
of the steeply falling nature of jet cross sections, there are many more events in bin
a than in bin b. Therefore, though the fraction of each bin that falls into the other
is the same for both, many more events will migrate from bin a to b than the other
way around. The net effect is to increase, or smear up, the cross section in bin b.
Since every bin in a cross section has a bin to the left of it!, every bin as affected

by Ep smearing.

THere we assume EL > EJ.
!This assumes that the bin at E; = 0 is not counted as part of the cross section, a valid
assumption for the Triple Differential which begins counting events at Er = 60.0 GeV'.
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In this chapter, we describe the process of correcting for this effect, referred to

as unsmearing.

5.1 Jet Energy Resolutions

The main experimental ingredient needed during the unsmearing procedure is the
jet energy resolutions. That is, the width of the distribution defined by
(actual jet Ep- measured jet Er),

which we define as op,., vs. measured jet Ep. Historically, what is usually measured

o(Er)
Er -

are the fractional energy resolutions, defined as
This number is determined using the di-jet asymmetry method outlined in [16].

The asymmetry is measured from actual di-jet data and is defined as

Er, — Ep,

= - 5.1
Fr t Bn, (5.1)

The jets in the sample used to define the asymmetry have been corrected using

Cafix 5.1.

A little algebra convinces us that we can use the asymmetry to get the jet energy

resolutions, that is that[16]

%P1 = \/354. (5.2)
Er

Where 04 is the width of the asymmetry distribution and o, is the width of the jet

energy resolution and we have assumed Ep, = Ep,. These asymmetries are studied
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as a function of Ep separately for all the pseudo-rapidity bins considered in this
analysis. We include one actual asymmetry distribution in Figure 5.1, overlaid with

a Gaussian fit, for illustration.

10

Number of Events

|

-05 0 05
Asymmetry

Figure 5.1: An example of an asymmetry distribution, together with a Gaussian fit.

5.1.1 Soft Third Jet and Particle Out of Cone Corrections

The data from which the di-jet asymmetry is measured contain many events with
more than two jets. To deal with this, the asymmetry variable is calculated for a
variety of data sets with increasingly restrictive cuts on the Er of the third jet in
the event. The result is extrapolated to the ideal case in which the E of the third
jet is equal to zero to measure the resolution of an ideal two jet system. Examples
of this extrapolation for four different E7r bins are presented in Figure 5.2 in which

the measured resolutions for the bin 1.0 < |n| < 1.5 are presented for 4 soft third
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jet cuts together with the point extrapolated to Ep, = 0.

Because of particles not contained in the jet cone, 04 may be non-zero even at
the particle level. To remove this effect, the asymmetry variable is calculated for
particle level Monte Carlo jets as well; this number is then subtracted from the
calorimeter level asymmetry measured from jet data. In this manner, the method

is sensitive only to the detector energy resolution of the two jet system.

| x*/ndf 0.6512 / 3 | x*/ndf 1.030 / 3
= 02 F =
025 k- ET—37.1356 E[=54.2844
02 - 0.15 | M
W 0.15 . 1 0.1 1 . 1
— 0 20 0 20
LIJ 2 2
o | X*/ndf 0.1888 / 3 015 | X°/ndf  0.7985E-01/ 3
E;=67.6414 ' E;=102.667
0.15
Y B e
Jeore 0.1 |
0.1
1 " 1 1 " 1
0 20 0 20

Third Jet ET Cut(GeV)

Figure 5.2: Example of the third jet cut extrapolation.

The resolutions before the particle corrections together with the measured parti-
cle jet resolutions are presented in Figures 5.3 and 5.4, for central and forward jets,
same and opposite side. The data are fit to a second order polynomial; the results
of these fits appear in the figures. The three fit parameters are historically called

C,S and N.
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Figure 5.3: Fractional jet energy resolutions for two central slices, same and opposite
side, before the particle correction, together with the particle level resolutions. The
outer error bands define the systematic error due to closure, the inner bands are due
to fitting errors. These errors are discussed in detail later in this chapter.

111



0.2

| X’/ ndf 1840 / 4

B
)
El

015 b 2 (0/E;)* = 0.074 + 0.00UE, + 5.621/E2
same side 1.02|n|=1.5

005 )
g
"""" L
0 50 100 150 200 250
Average (E; ;+E; ,)/2 (GeV)
02 5
| X’/ ndf 2647 | 2
015 L (0/E,)’ = 0.036 + 0.695/E, + 0.215/E2
same side 1.5|n[=2.0

1 1 1
0 50

50 100 1
Average (E; ;+E; ,)/2 (GeV)

0.2

0.05

0.05

L /E;)” = 0.084 + 0.002/E, + 6.085/E2

| x°/ndf 4531 | 4

opposite side 1.02|n|>1.5

i

50 100 150 200 250
Average (E; +E; ,)/2 (GeV)

| x°/ndf 3201 / 2

(0/E;)* = 0.089 + 0.000/E; + 3.968/E2
opposite side 1.52|n|>2.0

50 100 150
Average (E; +E; ,)/2 (GeV)

Figure 5.4: Fractional jet energy resolutions for two forward slices, same and oppo-
site side, before the particle correction, together with the particle level resolutions.
The outer error bands define the systematic error due to closure, the inner bands
are due to fitting errors. These errors are discussed in detail later in this chapter.
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These resolutions, shown in Figures 5.3 and 5.4, are studied as a function of
Er separately for all the pseudorapidity bins considered in this analysis. It should
be noted that the di-jet events used in the resolution study, like the events in the
triple differential cross section, can be divided into two classes: events with two jets
on the same side of the detector and events with two jets on opposite sides of the
detector. While measuring the asymmetry from di-jet events it was observed that the
asymmetry from the opposite side distributions was wider than the corresponding
same side resolutions. The asymmetry is sensitive to the jet energy resolution, but
it can, in principle be sensitive to other effects as well. The conclusion is that there

is another effect present.

5.1.2 Vertex Position Resolution and Di-Jet Asymmetry

It has been shown[20] that while measuring the resolution with the asymmetry from
a same side sample produces the correct relation between asymmetry and jet energy
resolution, the opposite side configuration is sensitive to the effect of vertex position
resolution as well. The D detector has vertex position resolution on the order
of 1em which is not large enough to account for the differences seen between the
same and opposite side asymmetries. However, for some events in the sample, the
reconstruction software finds more than one vertex. From the distributions of the
distance between the two vertices for the case when more than one is found (Figure
5.5) it can be observed that the difference is very rarely less than 10cm. The
conclusion is that the DO detector together with the D@ reconstruction software

cannot distinguish vertices if they are too close together. This leads to the idea of
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effective vertex position resolution; the effect observed in the measurement of the
di-jet asymmetries. In Table 5.1, we present the fraction of events with 1 vertex
found to all events in each slice. We can see as one moves forward, it is less likely
to find more than one vertex, however, there is no physics reason to expect more
events with only one vertex which produce jets in the forward region. This being
the case, it is expected that the effective vertex position resolution is worse in the

forward region as it is more likely that two different vertices are not resolved there.
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Figure 5.5: The difference between vertices in events where more than one is found,
for all slices of the Triple Differential.

Fortunately, the effect manifests itself in the measurement of the asymmetries in

a predictable way. We begin with the asymmetry:

meas Emeas

(5.3)

= meas meas
E

In Equation 5.3, E7*** is the measured jet energy which we can express as the true
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H 7 bin ‘ SS or OS ‘ fraction of single vertex events H

0.0-0.5 5SS 0.57
0.0-0.5 OS 0.57
0.5—-1.0 5SS 0.57
0.5—-1.0 OS 0.57
1.0-1.5 SS 0.62
1.0-1.5 OS 0.59
1.5-2.0 5SS 0.70
1.5-2.0 OS 0.66

Table 5.1: Fraction of single vertex events for all slices.
jet energy Ef“e affected by imperfect resolution. That is:

Epess = Birve(14 2, (5.4)
Er

We now recall Ep = Esin(f) so that

E(1+7r)sin(6;) — E(1+ r3)sin(6s)

AT B+ ) sin(8,) + B+ ra)sin(0)

(5.5)

In Equation 5.5, 6; and 6, are the two jet angles and we have defined r = ?—g, the
jet energy resolution. If the vertex is now displaced by some small amount, 0z, 6;

and 6, will be affected. We start with:
tanbr = R/Z (5.6)

where 07 is the true angle, Z is the position of the jet along the 2z axis, and R is the

distance between the jet and Z axis.

For central jets, R is considered a constant; R, ~ 91 cm$. For forward jets, the

These variables are pictured in Figure 5.6.
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Figure 5.6: Variables used in the calculation of the effect of vertex resolution.

hypotenuse in the figure is a constant, equal to

depends on the jet angle.

~
~

178 em, however, R,. is not, it

Now if we modify Z by +£§(7), Equation 5.6 takes the form:

for jets in the CC and:

tanby =

tanfy; —

1

cotOr —

cotfp —
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for jets in the EC. If we solve for sinfl and expand in %Z, we obtain?:
: . , A
sinfy ~ sinfr(1 + cosHTsmﬁT(R ) (5.9)
and
: : 9, 07
sinfy = sinfr(1 + cos GT(R ). (5.10)

For the same side case, where ; ~ 6, the asymmetry now reduces to[20]

(11 —12)
(1+7r)+ (1+7r9)

from which one can extract[16]

ot
< Agg >= 5 (5.11)

In the case of opposite side jets, the algebra is much more complicated. If we

use Equation 5.10 and 5.9 for sinf, we obtain,

2 o

< ALy >= % + (R:C)200549 (5.12)
for the jets in the EC and
< A2 >—7ﬂ—2+1(az)2 n220 (5.13)
0s >= 5 + () sin :

CcC

for jets in the CC.

IDifferent results are obtained in the central region and the forward region because R.. is a
constant with respect to the expansion variable while R, is not.

117



In Equations 5.12 and 5.13, o, is the width of the effective vertex position res-
olution, it is not the vertex position resolution of the D@ calorimeter. It is the
net effect of the inability of the DO reconstruction software to distinguish between
two vertices if they are sufficiently close together. It is essentially the effect of the
reconstruction package choosing the wrong vertex some fraction of the time, as seen

in Figure 5.5.

Fortunately, we will not need to take these results (Equations 5.11 - 5.13) at face
value, we can use this prediction together with a Monte Carlo study to introduce a
vertex position resolution into the Monte Carlo, where the vertex is known perfectly,
and attempt to extract the vertex position resolution via Equations 5.11 - 5.13. If
the input and output vertex position resolutions are in good agreement, it will check

the calculations and assumptions presented above.

Figures 5.7 - 5.8 show the fractional jet energy resolution measured, using the
asymmetry formalism, from SS and OS events for the four 7 bins defined in this
analysis. Figure 5.9 contains the SS and OS resolutions overlaid together with their
fit and systematic error bands. The systematic error band was obtained from another
Monte Carlo study using Herwig with D@ zero bias data overlaid as discussed in
appendix A. o is extracted by considering the difference between the two sets of
resolutions, and consideration of the relation

&)200540 (5.14)

<AL > — < ALy >=(
anl
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for the CC case and

1 o
<Al > — < A% >= (=2
oS SS 4(Rcal

)2s5in20 (5.15)

for the EC case.

For the case of the central (0.0 < || < 0.5) region, the measured asymmetries are
not distinguishable. This does not imply that the effective vertex position resolution
is zero there, only that the asymmetry variable is not sensitive to it. In order to
estimate the effective vertex position resolution in the central bin, the results for
the effective vertex position resolution were studied as a function of 7 and the
measurement was extrapolated into the central bin. To estimate an error on this
central measurement, the error on the measurement of the effective vertex position
resolution from slice 2 is used. This result for the effective vertex position resolution
together with its error analysis is included for the four slices in Figure 5.10. The
effective vertex position is between 2 — 7.5 c¢m, increasing with pseudo-rapidity, with

errors of 2 — 4 cm.
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Figure 5.7: Fractional jet energy resolutions for the first two slices same and opposite
side with their total fit + systematic errors.
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Figure 5.10: Effective vertex position resolution for all slices. The inner error is due
to fitting and the outer errors are fit 4+ systematic. The fits shown here are used
to implement the vertex position resolution and its error during derivation of the
Monte Carlo correction, described next.
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5.1.3 Monte Carlo Closure of the Vertex Position Resolu-

tion Measurement

The measurement of the effective vertex position resolution can be tested with a
Monte Carlo study. A Herwig sample of jet data overlaid with D@ zero bias data
was studied. These data exist only in the central (|| < 0.4) and forward (|n| > 1.6)
regions. To test closure, the measured forward vertex position resolution was input
into the most forward n bin defined by 1.5 < |n| < 2.0. After the vertex position
resolution was inserted into the Monte Carlo, the extraction described above was
performed to measure the effective vertex position resolution. The input and output
vertex resolutions are shown in Figure 5.11. These plots show excellent agreement
within the errors and lead us to believe we have a good handle on vertex position
resolution. In Figure 5.11, the forward closure plot is used as one source of error
on the measurement of the effective vertex resolution; an error band is defined to

accommodate the small disagreement in the closure, this error is applied to all slices.

The fact that the Herwig data with zero bias overlay only exist in the most
forward and central region has presented us with a small dilemma. We have decided
to apply the same closure error to all slices although this is probably an overestimate.
However, we will see that this closure error is not a significant source of error in the

Triple Differential so this small over-estimate is not problematic.
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5.1.4 The Plan

Now that the effective vertex position and its effect on the di-jet asymmetry is un-
derstood, we proceed as follows. The effect of energy resolution on the cross section
(cross section smearing) is treated through use of only the resolutions measured from
a sample of data with both jets on the same side of the calorimeter because this
has been shown to be sensitive to only the energy resolution of the detector. The
measured effective vertex position resolution together with its error is inserted into
a Monte Carlo to derive a correction (and error) to apply to the data to account
for effective vertex position resolution. In the next section, we outline a procedure
for unsmearing the cross sections to correct them for the effect of the energy resolu-
tion of the DO calorimeter after which we will describe the derivation of the vertex

position resolution correction derived from Monte Carlo.
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5.2 Jet Energy Resolution Results

The measured jet energy resolutions for all 7 bins appear in Figures 5.7 and 5.8.
These are fully corrected for soft third jets and particle level resolutions as described
in [9] and above. We will proceed by using the same side resolutions to unsmear all
of the data as follows. The right hand side of Equation 5.16 is fit to the measured
resolutions in order to parameterize the resolution data. The errors on C, S, and N
together with the covariance matrix for these three parameters is recorded for later

use in defining the unsmearing error.

==+ = +C? (5.16)

5.3 Unsmearing the Data

The procedure for unsmearing follows the method outlined in a previous D@ analysis
of jet data[21]. This method assumes that the unsmeared cross section can be
parameterized via a functional form, or ansatz function. We further assume in this
analysis that this function is flexible enough to fit all eight of the Ep distributions
that make up the Triple Differential. These assumptions are critical to this approach;
the validity of these assumptions will be quantified. For this analysis the ansatz used

is of the form

F(a, B8,7,0,Br) = e*Br’(1 + 7(%)ET)5. (5.17)

The ansatz function is convoluted with the measured resolution functions to
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determine the functional form of the smeared cross sections. This convolution takes

the form:

f(a/a /87 v, 5, ETI) — /G(ET’ - ET)F(O*/’ /87 7, 5a ET)dET (518)

Here, G(Er' — Er) is a Gaussian distribution with width equal to the width of
the measured jet energy resolutions for jets of transverse energy E;’. Finally, the
function f(a, 8,7,0, E7') is fit to the measured cross sections. After a satisfactory

fit is obtained!/, the smearing correction is defined as

f(aa ﬁ: Vs 67 ETI)

R = . 5.19
F(Oé;ﬂa% 5: ET) ( )
The cross section is corrected, bin by bin, by this factor.
An error on the unsmearing method is derived using the relation
OROR
0R)* = ———0i6j M;;. 5.20
(0R)* = G G 0i0iM, (520)

In Equation 5.20, M;; is the correlation matrix for parameters 7 and j, R is the
unsmearing correction factor. The quantity 6707 M;; is referred to as the covariance
matrix. The sum is over the four parameters that define the ansatz, o, 3, v and
0, and the three parameters that are used in the resolutions fits, C, S, and N. The

correlations between each set of parameters «, 3, 7, d and C,S, and N are assumed

IThe fitting is done with a CERN library routine, Minuit, sufficient precision is required such
that fits have allowable x2. Minuit supplies the fits, errors, and correlations between the fit
parameters.
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to be zero. The correlations among «, 3, v and 0 and among C, S, and N are

determined by Minuit during fitting. The derivative of the correction factor with

respect to each of the parameters (3—};) is determined numerically by varying each

parameter, after fitting, by a sufficiently small number (¢) and recalling:

@) o St =)

5.21
dx € ( )

Additionally, the error on the unsmearing correction factors due the systematic
errors on the resolution measurement is also included. The resolution closure plots
discussed in Appendix A provide an error band on the resolution measurement. This
error can be propagated through the unsmearing correction factors by parameter-
izing the resolutions in the following way. Let the parameterization of o(FEr ) be

amended to include is systematic error:

O’(ET) S N d2
—Jo+ 24 o id =2 5.22
Er \/ +ET+ET2+1+E% (5-22)

where d; and d, are the parameters which define the resolution closure. These
parameters can then be treated™ exactly as C', S, and N except that they are

nominally zero, with errors equal to the values defined in Appendix A.'f

The unsmearing errors are presented in Table 5.2, notice the error due to the
resolution closure is the dominant error. This closure error is fully correlated among
Er points and is usually as large or larger than the other sources of error, which

may have varying degrees of correlation. Therefore the assumption is made that the

**i.e. the sum in Equation 5.20 includes d; and d>.
td, =.0024, dy = 0.143.
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total unfolding error is correlated among E7 points.

The unsmearing factors and their total systematic errors are included in Figure
5.12. The unsmearing correction factors are on the order of 15% and show a slight
Er and 7 dependence. The errors are quite small for most of the slices considered
with the possible exception of the opposite side bin between |n| = 1.0 and |n| = 1.5.
In this bin there is a large statistical fluctuation in the data which makes fitting a

smooth curve difficult. The larger fitting error accounts for this.

H 7 bin ‘ SS or OS ‘ errors - res. fit ‘ errors - ansatz fit ‘ errors - res. closure H
0.0—-0.5 5SS 0.1 —0.05% 0.2 —0.7% 1.4 - 1.7%
0.0—-0.5 OS 0.11 — .03% 0.6 —0.2% 1.3 —0.7%
0.5-1.0 SS 0.17 — 0.15% 0.3—0.7% 1.1 - 1.4%
0.5-1.0 OS 0.05 — 0.08% 0.2 —0.6% 1.5 - 1.1%
1.0—-1.5 SS 0.4 —0.5% 1.6 — 3.4% 1.8 — 4.0%
1.0—-1.5 OS 0.4 —0.3% 6.0 — 5.0% 2.0 — 3.0%

1.5 = 2.0 SS 0.9 —-0.6% 0.9 —3.0% 1.6 — 3.0%
1.5—-2.0 OS 0.8 —0.9% 0.7—1.6% 0.9 —1.4%

Table 5.2: Sources and magnitudes of unfolding error.
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Figure 5.12: Unsmearing correction factors (R) and errors for all slices of the Triple
Differential.
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5.4 Derivation of Vertex Position Resolution Cor-

rection

5.4.1 Outline of Assumptions

To derive a method to correct the measured cross sections for the effective vertex
position resolution introduced above, a Monte Carlo study was performed. It is
not obvious when attempting to correct the measured cross sections for the effects
of vertex position resolution, at what stage to apply the correction. An argument
can be made for unsmearing the cross sections as described above, but with resolu-
tions which have been contaminated with the vertex position resolution, and in this
way correcting for the energy resolution of the calorimeter, and the vertex position
resolution simultaneously. It is not clear if this would work, however, it will be
shown that this approach is flawed for an other reason. The energy resolution of the
calorimeter affects only the measured jet energy. Vertex position resolution affects
the jet pseudo-rapidity as well. In fact, if the vertex position is mis-measured such
that the jet Ep increases, the angle will always get smaller, and vice-versa. This is
equivalent to the statement that as a jet moves further forward, its Fr decreases.
In this way, these variables are highly, in fact completely anti-correlated, therefore

a correction for 7 and E7 smearing must be derived simultaneously.

In order to investigate this effect, a cross section was generated from NLO jetrad
with no smearing effects. Additional cross sections were generated in which only the
jet Ep was recalculated with respect to a vertex distribution of width o, = 10cm,

and again with only the jet n recalculated. Finally, cross sections were recast with
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both 1 and Ep recalculated together. The results of this study are presented in
Figures 5.13 and 5.14. In Figure 5.13 we present the ratio of the Jetrad cross sections
in which E7 and n were recalculated separately. This study was performed only for
the same side and opposite side forward (1.5 < |n| < 2.0) bins. Observe that the
effect of £ smearing seems to dominate. If we were to try to de-couple these effects
and add them together, ignoring any correlations that may exist, we would grossly
over-estimate the effect. This is apparent in Figure 5.14 which contains the net
effect of vertex position resolution smearing assuming no and complete correlations.
Clearly, the effect is small, when the correlations are properly accounted for. We
now proceed with the description of the Monte Carlo based derivation of the vertex

position resolution correction
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5.4.2 Correction Derivation and Implementation

Events in next-to-leading order Jetrad were subjected to vertex smearing based on
the vertex position resolutions presented in Figure 5.10. The energies and angles
of the jets in the events were recalculated with respect to the generated vertex and
the cross sections were calculated before and after the smearing. The ratio of the
unsmeared to the smeared cross section is then defined as the correction factor.
The smearing was done with the high, nominal, and low vertex position resolutions,
defined by the three curves in Figure 5.10. The ratio is fit to a second degree
polynomial and a full error analysis is performed on the fit in order to understand
any error introduced by fitting the correction factors in this way. The parameters,
their errors and correlations are combined with the derivative of the polynomial to
determine the error introduced by the fit. The error associated with the correction
is defined as the fit error added in quadrature with the difference between the high
and low corrections. In the end, the effect of the vertex position resolution appears
to be very small. The correction is of the order of 1% for all slices considered. The
correction introduces some small shape dependence as well. It may seem odd that
the effective vertex position resolution has such a small effect on the measurement
of the cross sections described here. It is believed that while E7 smearing due to
effective vertex position resolution results in events smearing into the cross section,
n smearing results in events smearing out. These two effects are very correlated, for
example if the Er of a jet increases due to vertex position resolution, the jet’s angle

will decreaset. It is believed that the relative effects of both smearings, together

HThis can be verified by a simple two jet calculation in which the jet quantities are calculated
with respect to a vertex, and to Z = 0.
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with their correlations, are responsible for the relatively small correction needed to

account for effective vertex position resolution.

To assuage the fear that the correction could depend on the theory used to derive
it, the correction is derived from three different theories. A sample of leading order
jetrad with scale u = Er/2, an NLO sample with the same scale and a NLO sample
with © = E/2. The results of this study for the three theories together with the
errors are presented in Figures 5.15 and 5.16. The correction factors applied are
derived from the NLO sample with ;1 = E/2 as it best represents the data®. All
Monte Carlo samples used to derive the vertex position resolution correction use the

CTEQ3M parton distribution function.

tSee Chapter 6.
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Chapter 6

Results, Error Analyses, and

Conclusions

In this chapter, the Triple Differential results and comparisons to theory are pre-
sented. The data and theory are presented on the same plot additionally, the frac-

tional differences between the data and theory are presented.

A x? test, which provides a quantified comparison to theory is also performed.
In order perform this test, the covariant error matrix for the Triple Differential must
be understood. We describe the mechanism for producing this matrix and finally,

quote a value for x2 for each of the theoretical predictions studied.

6.1 Graphical Comparisons to Theory

The error contributions for each of the eight slices are presented in Figures 6.1 and

6.2.

The fully corrected cross sections are presented in Figures 6.3 and 6.5. Addi-
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tionally, the fractional differences with regard to one theory are presented in Figures
6.4 and 6.6. The results are compared to NLO Jetrad with the CTEQ3M parton
distribution function with g = F/2 in Figures 6.4 and 6.6. Figures 6.7 and 6.8 con-
tain the data-theory comparisons using the CTEQ4M parton distribution function.
Figures 6.9 and 6.10 compare the data to the CTEQ4HJ parton distribution func-
tion which predicts more jet production at high Er than CTEQ4M. Figures 6.11
through 6.16 compare the data to a recent analysis of global data by the MRST
group(22] called the MRST partons distribution functions. Figures 6.11 and 6.12
contain their nominal fit, Figures 6.13 and 6.14 contain a high fit! to the MRST
gluon distribution and Figures 6.15 and Figures 6.16 contain a low fit to the MRST
gluon distribution. All the predictions shown use factorization and renormalization

scales of u = E/2.

The components of the systematic error for each slice are presented in Figures 6.1
and 6.2 and numerically in Tables 6.1 and 6.2 . The energy scale error is the largest
component for all slices; the components of the energy scale error are itemized in

Chapter 4.

The data appear to be in very good agreement with the CTEQ3M family with
scale p = E/2. CTEQ4M appears to have a slightly different normalization, but
the data still agree for all slices considered. CTEQ3M and CTEQ4M differ in
that CTEQ4M contains collider jet data while CTEQ3M does not. CTEQ4HJ
brings down the slight excess in the OS central cross section, but produces some

disagreement in the rest of the slices.

tHere, high and low are ambiguous terms used to describe perturbations to the fit performed
to the MRST gluon distribution.
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MRST appears too high in the central region, but agrees well elsewhere. The
high gluon fit from the MRS group MRSTg? appears consistent with DO data, while

the low gluon fit, MRSTg|, shows considerable disagreement everywhere.
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Table 6.1: Fractional (%) error components for slices 1 and 2 of the Triple Differen-

tial.

Table 6.2: Fractional (%) error components for slices 3 and 4 of the Triple Differen-

tial.

Slice 1 Slice 2
E scale 8 —20 E scale 8 —20
cut efficiency < 1.0 cut efficiency < 1.0
luminosity | 6.8 — 5.4 luminosity | 6.8 —5.4
unfolding 2-—-4 unfolding 6—-7
vertex corr. < 1.0 vertex corr. < 1.0
eta bias corr. ~1 eta bias corr. ~1

Slice 3 Slice 4
E scale 10 — 40 E scale 19— 35
cut efficiency < 1.0 cut efficiency < 1.0
luminosity | 6.8 — 5.4 luminosity | 6.8 — 5.4
unfolding 2-5 unfolding 2-12
vertex corr. < 1.0 vertex corr. < 1.0
eta bias corr. 1-3 eta bias corr. 1-5
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Figure 6.1: Components of the error for slices 1 and 2.
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Figure 6.5: The fully corrected triple differential compared to NLO Jetrad,
CTEQ3M, u = %E for slices 3 and 4. The cross sections have units of picobarns.
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(Data-Theory)/Theory, Theory = CTEQ3M
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Figure 6.6: The fully corrected triple differential compared to NLO Jetrad,
CTEQ3M, p = 3FE for slices 3 and 4, (data - theory)/theory. The inner error
bars are statistical only, the outer are the sum of all errors, statistical + systematic.
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(Data-Theory)/Theory, Theory = CTEQ4M
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Figure 6.7:

same side 0.5=In1=1.0

opposite side 0.5=In1=1.0

The fully corrected triple differential compared to NLO Jetrad,

CTEQ4M, p = 3FE for slices 1 and 2, (data - theory)/theory. The inner error
bars are statistical only, the outer are the sum of all errors, statistical + systematic.
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Figure 6.8:

(Data-Theory)/Theory, Theory = CTEQ4M
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opposite side 1.5=In1=2.0

The fully corrected triple differential compared to NLO Jetrad,

CTEQ4M, p = 3F for slices 3 and 4, (data - theory)/theory. The inner error
bars are statistical only, the outer are the sum of all errors, statistical + systematic.
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(Data-Theory)/Theory, Theory = CTEQ4HJ
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Figure 6.9:

same side 0.5=In1=1.0

opposite side 0.5=In1=1.0

The fully corrected triple differential compared to NLO Jetrad,

CTEQ4HJ, p = 3E for slices 1 and 2, (data - theory)/theory. The inner error
bars are statistical only, the outer are the sum of all errors, statistical + systematic.
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(Data-Theory)/Theory, Theory = CTEQ4HJ
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Figure 6.10: The fully corrected triple differential compared to NLO Jetrad,
CTEQ4HJ, p = 3E for slices 3 and 4, (data - theory)/theory. The inner error
bars are statistical only, the outer are the sum of all errors, statistical + systematic.
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(Data-Theory)/Theory, Theory = MRST
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Figure 6.11: The fully corrected triple differential compared to NLO Jetrad, MRST,
1= 1 E for slices 1 and 2, (data - theory)/theory. The inner error bars are statistical

only, the outer are the sum of all errors, statistical 4+ systematic.
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Figure 6.12: The fully corrected triple differential compared to NLO Jetrad, MRST,
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(Data-Theory)/Theory, Theory = MRSTg1t
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Figure 6.13: The fully corrected triple differential compared to NLO Jetrad,
MRSTg?t, pn = 3E for slices 1 and 2, (data - theory)/theory. The inner error bars
are statistical only, the outer are the sum of all errors, statistical + systematic.
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(Data-Theory)/Theory, Theory = MRSTgT
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Figure 6.14: The fully corrected triple differential compared to NLO Jetrad,
MRSTg?t, pn = 3E for slices 3 and 4, (data - theory)/theory. The inner error bars
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(Data-Theory)/Theory, Theory = MRSTg!
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Figure 6.15:

same side 0.5=In1=1.0

opposite side 0.5=In1=1.0

The fully corrected triple differential compared to NLO Jetrad,

MRSTgl, = 3E for slices 1 and 2, (data - theory)/theory. The inner error bars
are statistical only, the outer are the sum of all errors, statistical + systematic.
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Figure 6.16: The fully corrected triple differential compared to NLO Jetrad,
MRSTgl, n = 3E for slices 3 and 4, (data - theory)/theory. The inner error bars
are statistical only, the outer are the sum of all errors, statistical + systematic.
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6.2 Quantitative Theory Comparisons

In order to quantify a comparison to a theoretical prediction, a more sophisticated
error analysis can be performed. The goal is to understand the correlations between
each data point’s error bar and the error associated with the other data points. This
is equivalent to the construction of the correlation matriz. If the elements of the
correlation matrix are multiplied be the errors of the corresponding data points, the
covariance matriz results. We will discuss the elements necessary to construct this

matrix for the Triple Differential.

The sources of error in the Measurement of the Triple Differential are presented
in Table 6.3, which describes each error contribution and its correlations to the other
data points in the cross section. Each error can be classified as either uncorrelated,
totally correlated, or partially correlated. Additionally, totally and partially cor-
related errors can be correlated across each slice (in Er), and not correlated with

other slices, or correlated across the entire Triple Differential.

H error H Ercorrelation ‘ cross section correlation H
data statistical || uncorrelated uncorrelated
cut efficiency uncorrelated uncorrelated
luminosity correlated correlated
unsmearing correlated uncorrelated
vertex res. Corr. correlated uncorrelated
eta bias corr. correlated uncorrelated
energy scale partially partially

Table 6.3: Sources of error in the Triple Differential and their correlations

We first treat the errors not associated with the energy scale correction as they

are either totally correlated or completely uncorrelated. We then discuss the energy
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scale errors which have varying degrees of correlation.

6.2.1 Construction of the Covariance Matrix for Errors not

Associated with the Energy Scale Correction

We begin by defining the error associated with data point ¢ as §;; the index 7 runs
across each Er bin in each cross section. The cross section are ordered (arbitrarily)
such that 7 = 1,21 defines the same side central slice, i« = 22,42 covers the opposite
side central slice, i = 43,63 spans the same side cross section in the bin 0.5 < || <
1.0 and so forth; 7 runs from 1 to 123 as there are 123 total bins in our measurement

of the Triple Differential.

We construct a matrix defined by M;; = 6;0; for each of the errors described
in Table 6.3. Next M;; is multiplied by one of three matrices depending on the
degree of correlation, 0;; = M, ; X p; ;. 0;; is the covariance matrix for errors not
associated with the energy scale. p;; is either a unit matrix for totally correlated
errors across the entire Triple Differential, a matrix defined by p; ; = 5f§ where 6%
is the Kronecker delta symbol*, in the case of totally uncorrelated errors, or a block
diagonal matrix in the case of errors which are correlated between each Er bin in a

cross section, but uncorrelated between cross sections.

This formalism can be visualized by studying the correlation matriz, p;; for
these errors, presented in Figure 6.17. The figure contains the correlation matrix
for all errors except errors associated with the energy scale. Although the inputs to

each component’s correlation are either 1.0 or 0.0, the net effect introduces partial

tokr =1,if i = j, 0 otherwise.
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correlations, this explains the fractional correlations visible in the figure.

p;; for Non-Energy Scal Errors

Figure 6.17: The correlation matrix for errors not associated with the energy scale
correction.
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6.2.2 Construction of the Covariance Matrix for Errors As-

sociated with the Energy Scale Correction

The energy scale correction has different sources of error with different degrees of
correlation between Er bins, these errors are summarized in Table 6.4. Correlated

energy scale errors are considered to be correlated across all cross sections.

H errors ‘ correlation H
statistical uncorrelated
offset correlated
showering correlated

background correlated

systematic biases correlated

low Ep bias correlated
response partially correlated

Table 6.4: Sources of energy scale error and their correlations.

The response correction is treated differently as its error is partially correlated
between Ep bins. The response is a fit to many data points, this fit introduces
the partial correlation in the response error. This fit was studied, by varying each
data point and studying the change of the response correction for each of the other
data points. The correlation matrix for the response error is presented in[10]. Since
there isn’t enough data in the cross sections to adequately populate the energy scale
covariance matrix, a simple Monte Carlo was developed. In this toy Monte Carlo,
an event is generated and weighted by the measured cross section. This event is
then studied to determine the energy scale correction and error associated with
each component. This is repeated for many events and appropriately averaged to

populate the energy scale covariance matrix.
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We can test this formalism by exploiting the fact that the energy scale error
associated with each point is identical to the square root of the diagonal of the

energy scale covariance matrix:

escale

Ui,j = (S’L(S‘]pZJ

however, across the diagonal 7 = 7 which implies

escale
.0

and

6¢scale escale
i .

- Uz,z

This can be compared to the error obtained from the energy scale package during
execution to test the accuracy of the toy Monte Carlo. The results of this test are

presented in Figure 6.18.

165



EH‘HH‘HH‘HHE60.75“HHHHHHHE
E # error fromtoy MC § ©0.6 © E
;* error from data égO.S; é
; 1g0a; |
| 4 Tos m
2 ﬂ 1 o2- { E
£ X b £ b
SO - o éﬁwﬁﬁfydﬁf*$‘ E
?Hm‘uwuu\uu? (ST I] I R
100 200 300 400 100 200 300 400

jet E; (GeV) jet E; (GeV)
same side 0.0=In1£0.5 opposite side 0.0=In/=0.5
Ty 50.7;‘_”“””‘”;
- 1506 :
2 - Bos - :
- 1 E0 :
- l < Tosr e
f— E 0'2;L % E
L. | L. * |
Gl [ 0¥Wﬁﬁ*ﬁ 5
S TR DR N N Y B B
100 200 300 100 200 300

jet E; (GeV) jet E; (GeV)

same side 0.55In1=1.0

opposite side 0.5=5In1=1.0

same side 1.5=I71=2.0

§07
- 1506 3
- | o Boar ]
Sy gyt e f?
£ | 7 £ 7
E \;}$ = 02 F ¥ =
% 02ttt T
0 1ooa WMETTTD

I P B S I I e
50 100 150 200 250 050 100 150 200 250
jet E; (GeV) jet E; (GeV)

same side 1.0=In1£1.5 opposite side 1.0=InI=£1.5
E“H“H_H‘HE50.75‘””‘””‘””mwE
2 1806 l :
: 1Zos: ]
3 - * 3
C *‘:§0'4: 3
: ELEER b
: +¢*l ] : R
TE T o2 byeddl o
3 4 010 | \ E
N IR I AR B 0B i o 1
60 80 100 120 50 75 100 125 150
jet E; (GeV) jet E; (GeV)

opposite side 1.55In1=2.0

Figure 6.18: Comparison of energy scale errors from data and from the toy Monte
Carlo used to study the energy scale error correlations.
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Finally, the energy scale correlation matrix can be studied to assure reasonable

(within +1) correlations. This matrix is presented in Figure 6.19.

© o o o o o o o O
o B N W d U1 O N 0 © B

120

gnéO 100

Figure 6.19: The correlation matrix for errors associated with the energy scale
correction.

6.2.3 12 Tests

Now that we have the covariance matrix for the energy scale errors and for all other

errors we can add them together to create the covariance matrix for the Triple
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Differential. Once this matrix exists, a x? test can be performed. This provides a
means to quantify the measured data’s agreement with theory. The variable takes

the form:
123 123

2= 2—:1 ;(Di —T;)o;} (D; = Tj). (6.1)

In Equation 6.1, D;(T;) is the data(theory) point in bin ¢, o, ; is the covariance

matrix for the Triple Differential.

We present the results of the x? test for the different theories in Table 6.5, the

probability presented in the table defines the likelihood that each theory describes

the data.
Theory % probability
CTEQ3M p=FE/2 | 138.2 16.5%
CTEQ3M = E | 153.1 3.4%
CTEQ3M p=2F 180.3 0.06%
CTEQ3M = E/4 | 160.4 1.3%

CTEQ3M p = Ep/2 | 140.8 13.1%

CTEQ4M p = E/2 | 119.8 56.4%
CTEQ4HJ = E/2 | 142.1 12.8%
MRST p=E/2 | 147.02 6.9%
MRSTgt u= E/2 | 115.95 66.1%
MRSTg| u= E/2 | 221.56 | 1.3 x 107°%

Table 6.5: x? test results for the Triple Differential, there are 123 degrees of freedom
in the measurement.

6.2.4 Conclusion

The Triple Differential has been measured in the region |n| < 2.0. We have argued

that the measurement should be sensitive to variations in the theoretical predictions;
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observe, in Table 6.5, that the result appears to have considerable discriminatory
capability. We present the x? test as an example of the power of the result. This
measurement would be better utilized as in input to a global parton distribution
function fit. This would represent a more accurate input than currently available
from any previous study of hadron-hadron jet data. As it stands alone, the Triple
Differential prefers the CTEQ4M and the MRSTg 1 parton distributions evaluated

at renormalization and factorization scales jiy, j1, = E/2.
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Appendix A

Resolution Monte Carlo Closure

This appendix describes the Monte Carlo closure test of the resolution measurement.

A.1 Zero Bias Overlay

Data is overlaid by a package which fills an imaginary calorimeter first with particles
from the Herwig Monte Carlo event generator and then with the average energy
detected by the DO detector during a zero bias event. This is useful to more closely
model real data during taken running. This procedure is expected to provide a
good approximation to actual DO data but has the advantage that the energy of

the particle jets is known.

A.2 Closure Tests

To check the Di-jet asymmetry method of resolution measurement, the straight

resolutions are calculated. The straight resolutions are the actual transverse energy
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resolution of the DO detector modeled by Monte Carlo. A particle jet of known
energy is created and sent into the DO calorimeter. All detector effects are accounted
for and the jet energy is again measured at the calorimeter level. The fraction
Er cat — Bt pere 1s measured and defined as the straight or true resolution. Erp .4
refers to the transverse energy of the calorimeter jet and Er 4, to the corresponding
particle jet. The straight resolutions are compared to the resolutions obtained via
the di-jet asymmetry method from the same Monte Carlo data. Figure A.1 contains
the difference between the straight resolutions and the resolutions obtained from
the di-jet asymmetry method for the central and forward 7 regions. The upper and
lower curves define the closure error applied to the measured energy resolutions.
This curve is parameterized by di/EZ% + dy where d; = 14.3 and dy = 0.24. This
parameterization represents the 68% confidence interval for closure; if many data

points existed, 68% of them would be contained within this curve.

The data necessary to perform this study were only generated for the most

forward (|n| > 1.6) and the central (|n| < 0.4) pseudo-rapidity bins.
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Figure A.1: Monte Carlo closure of the di-jet asymmetry method for central (left)
and forward (right) jets.
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A.2.1 Vertex Position Resolution and Energy Resolution

Closure

As discussed in Chapter 5, in the presence of imperfect vertex position resolution,
the same side asymmetries are expected to represent the jet energy resolutions only
and the opposite side resolutions are expected to be sensitive to the effective vertex
resolution. In order to investigate this effect, the Monte Carlo was amended to model
the vertex resolution measured in the data. During this test, for the calorimeter jets
used in the asymmetry measurement, the jet quantities were calculated assuming
imperfect vertex position resolution. The energy resolutions were calculated for the
same and opposite side samples as well as for the combined sample. The results are
presented in Figure A.2 for the forward slice. One can observe good agreement in the
same side case, but not in the opposite side or the combined sample. This supports
the claim that the same side resolutions are the ones to use to correct for the finite
energy resolution of the DO calorimeter. The same side energy resolutions only are

used in this analysis to represent the energy resolution of the D@ calorimeter.
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Figure A.2: Monte Carlo closure measurement with an input vertex resolution for
the combined sample (top left), the opposite side sample (top right) and the same
side sample (bottom left).
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Appendix B

Numerical Cross Sections

This appendix contains the numerical Triple Differential results.
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Er Cross Section | error (stat) | error(sys)
0.646E4-02 | 0.947TE+03 0.169E4-02 | 0.980E+02
0.746E4-02 | 0.422E+03 0.113E4-02 | 0.425E402
0.847E402 | 0.209E+03 0.217E401 | 0.196E402
0.947E+402 | 0.114E+03 0.161E+01 | 0.110E4-02
0.105E403 | 0.655E+402 0.122E4-01 | 0.628E+4-01
0.115E403 | 0.407TE+02 0.965E400 | 0.408E+401
0.125E4-03 | 0.222E+402 0.714E4-00 | 0.205E4-01
0.135E403 | 0.142E+02 0.166E4-00 | 0.122E4-01
0.145E4-03 | 0.933E+01 0.135E4-00 | 0.837E4-00
0.155E403 | 0.625E+01 0.110E4-00 | 0.558E4-00
0.165E403 | 0.405E+01 0.888E-01 | 0.363E4-00
0.175E403 | 0.296E+01 0.760E-01 | 0.291E4-00
0.189E403 | 0.173E+01 0.317E-01 | 0.172E4-00
0.209E4-03 | 0.924E+00 0.231E-01 | 0.106E4-00
0.229E4-03 | 0.482E+00 0.167E-01 | 0.594E-01
0.249E4-03 | 0.243E+00 0.118E-01 | 0.298E-01
0.270E4-03 | 0.149E+00 0.926E-02 | 0.225E-01
0.290E403 | 0.931E-01 0.729E-02 | 0.172E-01
0.310E4-03 | 0.427E-01 0.491E-02 | 0.707E-02
0.330E4-03 | 0.153E-01 0.292E-02 | 0.191E-02
0.371E403 | 0.418E-02 0.719E-03 | 0.628E-03

Table B.1: The DO Triple Differential for same side events, |n| < 0.5. Units on the
cross section and errors are picobarns, Er is in GeV.
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Er Cross Section | error (stat) | error(sys)
0.646E4-02 | 0.865E+03 0.151E4-02 | 0.101E4-03
0.746E4-02 | 0.375E+03 0.996E4-01 | 0.425E402
0.847E402 | 0.183E+03 0.698E+01 | 0.199E4-02
0.947E402 | 0.968E+02 0.138E+01 | 0.109E402
0.105E403 | 0.540E+02 0.103E+401 | 0.626E+4-01
0.115E4-03 | 0.298E+02 0.764E4-00 | 0.338E4-01
0.125E4-03 | 0.16TE+02 0.572E4-00 | 0.185E401
0.135E4-03 | 0.108E+02 0.134E4-00 | 0.126E4-01
0.145E4-03 | 0.658E+01 0.104E4-00 | 0.781E4-00
0.155E4-03 | 0.403E+01 0.812E-01 | 0.468E4-00
0.165E403 | 0.262E+01 0.652E-01 | 0.317E400
0.175E403 | 0.170E+01 0.404E-01 | 0.222E4-00
0.185E403 | 0.104E+01 0.315E-01 | 0.133E4-00
0.195E4-03 | 0.766E+00 0.269E-01 | 0.110E4-00
0.205E4-03 | 0.485E+00 0.212E-01 | 0.754E-01
0.215E4-03 | 0.309E+00 0.169E-01 | 0.446E-01
0.225E4-03 | 0.193E+00 0.132E-01 | 0.285E-01
0.235E403 | 0.174E+00 0.124E-01 | 0.361E-01
0.261E403 | 0.464E-01 0.279E-02 | 0.856E-02
0.310E4-03 | 0.558E-02 0.870E-03 | 0.146E-02

Table B.2: The DO Triple Differential for same side events, 0.5 < |n| < 1.0 Units
on the cross section and errors are picobarns, Er is in GeV.
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Er Cross Section | error (stat) | error(sys)
0.646E+02 | 0.566E+03 0.120E+02 | 0.631E+402
0.746E402 | 0.255E+03 0.813E+01 | 0.330E+402
0.847E+02 | 0.998E+02 0.138E+01 | 0.114E+402
0.947E+02 | 0.515E+02 0.992E+00 | 0.629E+01
0.105E+03 | 0.241E+02 0.677E+00 | 0.305E+01
0.115E+03 | 0.131E+02 0.498E+00 | 0.181E+01
0.125E+403 | 0.627E+01 0.342E+00 | 0.945E+00
0.135E+403 | 0.322E+01 0.706E-01 | 0.493E+00
0.145E+403 | 0.185E+01 0.529E-01 | 0.316E+00
0.155E+03 | 0.939E+00 0.372E-01 | 0.165E+00
0.165E+03 | 0.510E+00 0.270E-01 | 0.931E-01
0.183E+03 | 0.132E+00 0.589E-02 | 0.262E-01
0.215E+03 | 0.145E-01 0.152E-02 | 0.484E-02
0.301E+403 | 0.366E-03 0.948E-04 | 0.735E-03

Table B.3: The D@ Triple Differential for same side events 1.0 < |n| < 1.5. Units
on the cross section and errors are picobarns, Er is in GeV.

Er Cross Section | error (stat) | error(sys)
0.645E402 | 0.261E+03 0.828E401 | 0.522E+402
0.745E402 | 0.892E+02 0.482E+01 | 0.167E+402
0.845E4-02 | 0.291E+402 0.739E4-00 | 0.537E+401
0.946E4-02 | 0.106E+02 0.440E4-00 | 0.197E+401
0.105E4-03 | 0.348E+01 0.246E4-00 | 0.662E4-00
0.115E4-03 | 0.104E+01 0.378E-01 | 0.215E4-00
0.124E4-03 | 0.359E+00 0.211E-01 | 0.903E-01
0.138E403 | 0.592E-01 0.541E-02 | 0.135E-01

Table B.4: The DO Triple Differential for same side events, 1.5 < |n| < 2.0. Units
on the cross section and errors are picobarns, Er is in GeV.
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Er Cross Section | error (stat) | error(sys)
0.646E+02 | 0.960E+03 0.171E+02 | 0.982E+02
0.746E+02 | 0.453E+03 0.118E+02 | 0.450E+02
0.847E402 | 0.227E+03 0.838E+01 | 0.237E+02
0.947E402 | 0.119E+03 0.165E+01 | 0.111E+402
0.105E+403 | 0.659E+02 0.123E+01 | 0.624E+01
0.115E+03 | 0.388E+02 0.943E+00 | 0.357E+01
0.125E+403 | 0.234E+02 0.213E+00 | 0.198E+01
0.135E+03 | 0.153E+02 0.173E+00 | 0.136E+01
0.145E+03 | 0.101E+02 0.140E+00 | 0.908E+00
0.155E+403 | 0.624E+01 0.110E+00 | 0.554E+00
0.169E+403 | 0.379E+01 0.469E-01 | 0.362E+00
0.189E+03 | 0.182E+01 0.326E-01 | 0.179E+00
0.209E+03 | 0.903E+00 0.229E-01 | 0.940E-01
0.229E+03 | 0.499E+00 0.170E-01 | 0.572E-01
0.249E+03 | 0.244E+00 0.119E-01 | 0.276E-01
0.270E+03 | 0.144E+00 0.912E-02 | 0.184E-01
0.290E+03 | 0.877E-01 0.711E-02 | 0.129E-01
0.310E+03 | 0.552E-01 0.564E-02 | 0.988E-02
0.330E+03 | 0.334E-01 0.438E-02 | 0.587E-02
0.350E+03 | 0.140E-01 0.283E-02 | 0.244E-02
0.390E+403 | 0.745E-02 0.110E-02 | 0.220E-02

Table B.5: The DO Triple Differential for opposite side events, || < 0.5. Units on
the cross section and errors are picobarns, Er is in GeV.
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Er Cross Section | error (stat) | error(sys)
0.646E4-02 | 0.885E+03 0.154E4-02 | 0.100E4-03
0.746E4-02 | 0.427E+03 0.107E+402 | 0.513E+402
0.847E402 | 0.205E+03 0.743E+01 | 0.235E402
0.947E402 | 0.108E+03 0.538E+401 | 0.122E+402
0.105E403 | 0.591E+02 0.108E+401 | 0.663E+401
0.115E403 | 0.348E+02 0.830E4-00 | 0.408E+-01
0.125E4-03 | 0.199E+02 0.627E4-00 | 0.221E4-01
0.135E403 | 0.116E+02 0.480E4-00 | 0.128E4-01
0.145E4-03 | 0.759E+01 0.387E400 | 0.860E4-00
0.155E403 | 0.487E+01 0.899E-01 | 0.557E400
0.165E403 | 0.334E+01 0.743E-01 | 0.397E4-00
0.179E403 | 0.189E+01 0.304E-01 | 0.235E4-00
0.199E4-03 | 0.917E+00 0.211E-01 | 0.128E4-00
0.219E4-03 | 0.427E+00 0.143E-01 | 0.610E-01
0.239E4-03 | 0.227E+00 0.104E-01 | 0.373E-01
0.259E403 | 0.112E+00 0.723E-02 | 0.191E-01
0.279E403 | 0.383E-01 0.421E-02 | 0.473E-02
0.308E4-03 | 0.198E-01 0.211E-02 | 0.367E-02
0.358E403 | 0.615E-02 0.860E-03 | 0.235E-02

Table B.6: The DO Triple Differential for opposite side events, 0.5 < |n| < 1.0.
Units on the cross section and errors are picobarns, Er is in GeV.
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Er Cross Section | error (stat) | error(sys)
0.646E402 | 0.470E+03 0.111E402 | 0.640E+402
0.746E402 | 0.205E+03 0.734E+01 | 0.275E402
0.847E+402 | 0.106E+03 0.530E+401 | 0.164E+402
0.947E402 | 0.443E+02 0.932E4-00 | 0.569E4-01
0.105E4-03 | 0.250E+02 0.700E4-00 | 0.356E4-01
0.115E4-03 | 0.138E+02 0.521E4-00 | 0.207E+401
0.125E4-03 | 0.771E+01 0.389E4-00 | 0.124E4-01
0.135E403 | 0.437E+01 0.849E-01 | 0.686E4-00
0.145E4-03 | 0.263E+01 0.656E-01 | 0.424E4-00
0.155E403 | 0.153E+01 0.500E-01 | 0.278E4-00
0.165E4-03 | 0.908E+00 0.383E-01 | 0.167E400
0.183E403 | 0.372E+00 0.108E-01 | 0.740E-01
0.213E4-03 | 0.813E-01 0.495E-02 | 0.186E-01
0.255E403 | 0.912E-02 0.103E-02 | 0.252E-02

Table B.7: The DO Triple Differential for opposite side events, 1.0 < |n| < 1.5.
Units on the cross section and errors are picobarns, Er is in GeV.

Er Cross Section | error (stat) | error(sys)
0.645E4-02 | 0.159E4-03 0.652E401 | 0.224E402
0.746E402 | 0.584E4-02 0.397E+401 | 0.784E+401
0.846E402 | 0.266E4-02 0.730E4-00 | 0.488E+01
0.947E402 | 0.105E4-02 0.459E400 | 0.192E+4-01
0.105E403 | 0.485E+01 0.312E4-00 | 0.890E4-00
0.115E4-03 | 0.238E+-01 0.218E4-00 | 0.533E4-00
0.125E4-03 | 0.112E4-01 0.149E4-00 | 0.277E400
0.135E4-03 | 0.549E4-00 0.298E-01 | 0.157E400
0.145E4-03 | 0.252E4-00 0.196E-01 | 0.733E-01
0.163E403 | 0.581E-01 0.490E-02 | 0.207E-01

Table B.8: The DO Triple Differential for opposite side events, 1.5 < |n| < 2.0.
Units on the cross section and errors are picobarns, Er is in GeV.
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Theory X probability
CTEQ3M p = E/2 | 138.2 16.5%
CTEQ3M p=FE | 153.1 3.4%
CTEQ3M p=2E | 180.3 0.06%
CTEQ3M p = E/4 | 160.4 1.3%
CTEQ3M p = Ep/2 | 140.7 13.1%
CTEQ4M p = E/2 | 119.8 56.4%
CTEQ4HJ = E/2 | 142.1 12.8%
MRST p=E/2 | 147.02 6.9%
MRSTgt u= E/2 | 115.95 66.1%

MRSTg| = E/2 | 221.56 | 1.3 x 107°%




