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Chapter 1

Introduction

Taking something apart is an excellent way to learn how it works. Of course, some-

times this merely reveals seemingly incomprehensible internal components, so it may

be necessary to further take apart some of these pieces. If we still don't understand

what is inside, we can continue to look at smaller and smaller parts, until we en-

counter components that are simple enough to be understood. In one sense, particle

physics is nothing more than this process, taken to the ultimate extreme. We \take

apart" matter and look at what is inside it, but at a scale of about 10�16 cm.

While this sounds like an extremely small distance, there is actually a large number

of probes which can be used. One powerful probe is charmonium, the bound state of

a charm (c) quark and an anti-charm(c) quark, which is the method employed in this

thesis. Interpretation of charmonium data and other experimental studies has led to

the development of the \Standard Model," the leading theory of particle interactions.

Many of the predictions of the Standard Model have been veri�ed, in some cases with

extremely high accuracy. Indeed, some physicists complain that the Standard Model

works too well. Great advances in science often occur when the current theoretical

model is unable to explain a new experimental result. The Standard Model has

provided few such opportunities, despite numerous experimental tests.

In this thesis, the �rst chapter provides a summary of the Standard Model, with

an emphasis on the production of charmonium. Chapter 2 describes the experimental

13



apparatus used for the analysis. The measurement of the cross section is described

in Chapter 3, while Chapter 4 explains how the cross section is broken down into

its various components. The resulting measurements are compared to the theoretical

predictions in Chapter 5, and the results are summarized in Chapter 6.

1.1 History

The �rst component of the Standard Model was developed by P.A.M. Dirac, when

he presented his relativistic quantum theory of electromagnetism, Quantum Electro-

dynamics (QED).[1, 2] QED forces are mediated by a single massless particle, the

photon(
). The strength of the electromagnetic force on a particle is proportional to

the particle's \electric charge." While exact calculations are generally not possible, a

perturbation series in the QED coupling constant, � � e2=4��hc � 1=137, converges

rapidly. When calculating a matrix element with perturbation theory, each photon

which is emitted or absorbed contributes one power of � to the square of the matrix

element, so processes requiring a larger number of photons are suppressed relative

to those with fewer photons. QED has been extended by Glashow, Weinberg and

Salam[3, 4, 5] to include the weak force, which is responsible for nuclear beta decays.

The weak force is mediated by three particles, the W+, W� and the Z0. One di�erence

between electromagnetism and the weak force is that all three particles are massive,

which has the e�ect of limiting the range of the force when the energy transfer is

smaller than the W� or Z0 mass. However, if the energy transfer is larger than the

mass, the weak force behaves similarly to the electromagnetic force. The two forces

are said to \unify" into a single force, the electroweak force, with a single coupling

constant related to �.

The �nal force in the Standard Model which is incorporated at the quantum level

is the strong force, which binds quarks into \hadrons:" \baryons" and \mesons."

A baryon consists of three quarks, while a meson is the bound state of a quark

and an anti-quark. The strong force is mediated by eight gluons, whose coupling is

14



proportional to the \color charge." This color is unrelated to the color that people see,

although there are similarities in behavior. The properties of gluons are described by

Quantum Chromodynamics (QCD). QCD and the electroweak force are not uni�ed

within the context of the Standard Model, so there is a second coupling constant,

�S, describing the strength of the QCD force, which is unrelated to �. As �S is

substantially larger than �, the QCD force is often called the \strong force," and �S

the \strong coupling constant."

One early objection to electroweak theory was the experimental absence of \
avor{

changing neutral currents." The electroweak quark eigenstates are linear combina-

tions of the QCD quark eigenstates, so the amplitude for a process such as �`d!�`d is

actually the weighted sum of the amplitudes for the processes �`d0!�`d
0 and �`s0!�`s

0

shown in Figure 1-1, where

d0 = d cos �C + s sin �C (1.1)

s0 = s cos �C � d sin �C (1.2)

At the time electroweak theory was �rst proposed, there were only three known

quarks, u, d and s. The u and d quarks formed a doublet, but the s quark could only

be put into a singlet. However, the Z0 couples with di�erent strengths to singlets

and doublets, so the d!s components do not cancel completely. Thus, the theory

predicts interactions where no charge is exchanged, but the quark 
avor is changed,

with a cross section similar to that of �`d!�`d. Experimentally, these reactions are

nearly absent,[6] which presented a serious problem for the theory.

Glashow, Iliopoulos and Maiani[7] noted that this can be resolved by adding a

fourth quark. The s quark and the fourth quark now form a doublet, and the cou-

plings in the two diagrams are the same. The d!s transitions cancel, and the 
avor{

changing neutral currents are no longer allowed.1 Thus, the fourth quark is the

1The cancelation is complete only when the up and charm quarks have the same mass. If the
masses are di�erent, the process is allowed, but greatly suppressed.
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Figure 1-1: Diagrams associated 
avor changing neutral currents. Since the d0 and
s0 are both mixtures of d and s quarks, both diagrams include d and s quarks in the
initial and �nal states.

\charm" that eliminates the unwanted prediction, yielding the quark's name. How-

ever, there was no experimental evidence for the charm quark. From a theoretical

perspective, it seemed to be an ad hoc addition, whose usefulness was limited to one

speci�c problem in a model which, at that time, was not generally accepted. As a

result, this possibility received little attention.

This changed with the \November Revolution" in 1974. Experiments using an

e+e� collider at SLAC [8] and a proton beam on a beryllium target at Brookhaven[9]

found evidence of a narrow resonance with a mass of about 3.1 GeV/c2 . The particle

was named the  by the SLAC group, and the J by the Brookhaven group. Noting

the simultaneous discovery, the particle is now called the J= . It was clear from the

beginning that a new type of quark was involved, for if the resonance was an excited

state formed from a combination of up, down and strange quarks, it should decay

strongly, with a much larger width. By scanning the cross section near the J= mass,

the SLAC group was able to observe J= -
 interference. This, combined with the fact

that it is produced directly in e+e� collisions, leads to the conclusion that the J= 

has the same quantum numbers as the photon. A few months later, the Brookhaven

group reported a second resonance at 3.7 GeV/c2 [10]. This was later determined to

be a radial excitation, now called the  0 or  (2S). These states and other cc bound

states are referred to using the generic name charmonium.

Charmonium production is an excellent probe of QCD at the lowest possible trans-

verse momentum in a high energy collider. Whereas jet analyses at CDF are typically
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limited to PT > 15 GeV=c, the decay of the  2 to two muons provides a clean, easily

triggered signal which allows us to look as low as 5 GeV/c. We will see later that

charmonium also provides insights into fragmentation processes.

Similarly,  production from B decays combined with the large B cross section

provides a valuable sample to study B production and other aspects of B physics.

Again, the B! X!�+��X decay chain allows us to study B production in mo-

mentum regions not experimentally accessible by other techniques. Furthermore,

next{to{leading order predictions for B production exist, allowing QCD to be tested

beyond leading order.

Understanding charmonium production in hadron{hadron collisions is also impor-

tant for the search for a \quark{gluon plasma." It is expected that, at large enough

densities, a phase transition occurs in quark matter.[11] Color con�nement3 will fail,

and quarks and gluons will exist as free particles within the plasma, a condition which

has not existed since the earliest moments of the universe. Experimental attempts

at creating this plasma consist of colliding nuclei with a large number of nucleons

at high energy. One signature of such a transition is the suppression of charmonium

production.[12] cc pairs formed deep within the plasma need to penetrate the plasma,

without being knocked apart by the constituent quarks and gluons, decreasing the

probability of charmonium formation. If charmonium production in the relatively

clean environment of a proton{anti-proton collider is not understood, this method

of searching for or con�rming the discovery of a quark{gluon plasma becomes much

more di�cult. Instead of comparing the observed rate with the predictions of an

established model, the expected rate must be extrapolated from other experimental

measurements. This extrapolation will depend in part on the same theory which is

unable to predict charmonium production in the �rst place.

2In this thesis,  denotes either the J= or the  (2S).
3Color con�nement is the observation that quarks (and other colored particles) do not exist as

free particles, but only in bound states with no net color. See Section 1.3 for a further discussion.
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1.2 Symmetries

Knowledge of the symmetries in a system can greatly simplify the study of that sys-

tem, either by removing extraneous variables, or by eliminating from consideration

processes which are forbidden by the symmetry. Symmetries are ubiquitous in quan-

tum mechanics. One of the �rst symmetries found in quantum mechanics is that the

phase of the wave function is arbitrary. Similarly, in classical electrodynamics, the

potentials are not fully determined by Maxwell's equations, so one can make gauge

transformations without a�ecting any observable quantities. This symmetry carries

over into QED. There are other symmetries in particle physics, some of which do

not have macroscopic analogues. Two important symmetries are parity and charge

conjugation. Parity inverts the coordinate system, so that ~r )�~r. Physical particles

are eigenstates of parity, so that

P̂ j�i = P j�i (1.3)

where P is the parity of the state. Since P̂ 2 = 1, this requires that P 2 = 1, or P = �1.

Particles with P = +1(�1) are said to have even (odd) parity. Charge conjugation is

the act of replacing every particle with its anti-particle. Particles that are their own

anti-particles are eigenstates of charge conjugation, with

Ĉj�i = �j�i (1.4)

The electromagnetic and strong forces are invariant under both parity and charge

conjugation operations, while the weak interaction is invariant under neither opera-

tion.

Since charge conjugation changes the sign of a particle's electric charge, e.g.,

Ĉj�+i / j��i, only neutral particles can be eigenstates of charge conjugation. This

symmetry can be extended to charged particles by including isospin symmetry. Iso-

spin symmetry re
ects that the strong interaction treats d and u quarks identically,
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Figure 1-2: Annihilation of cc into gluons. States with G = 1 can only produce an
even number of gluons, as in (a), while states with G = �1 yield an odd number of
gluons, as in (b).

neglecting small e�ects due to the di�erent masses of the two quarks. Combining

charge conjugation with a re
ection in isospin space (which replaces all d(u) quarks

with u(d) quarks) produces a new symmetry, called G-parity. Charged particles made

of u and d quarks are eigenstates of G-parity:

Ĝj�+i = �j�+i (1.5)

Mesons with heavier quarks are also eigenstates of G-parity if the quark and anti-

quark are the same 
avor, that is, if they consist of ss, cc, bb or tt. In this case,

the G-parity eigenvalue is the same as the charge conjugation eigenvalue. G-parity

is a symmetry of only the strong interaction. Table 1.1 lists the G-parity of several

particles relevant to this thesis.

Symmetries lead to conservation laws in interactions possessing the symmetry.

For instance, if the initial state of a process has odd G-parity, the �nal state will

also have odd G-parity if it is reached by a strong interaction. A cc meson with

G = +1 can decay into two gluons (each with G = �1) since the �nal state has

G = (�1)2 = +1, as in Figure 1-2a. Figure 1-2b is forbidden for a such a meson.

Likewise, the J= , when it decays into gluons, can only decay into an odd number

of gluons, so only Figure 1-2b is allowed. Similar statements can be made about the

production mechanisms: when producing a cc pair which forms a meson, the diagram

must contain an even number of gluons coupling to the charm quark loop if the meson
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Particle G-parity

��,�0 �1
gluon �1

J= , (2S) �1
�c +1

Table 1.1: G-parity of particles associated with charmonium production.

�e� e�

Figure 1-3: An electron propagating through the vacuum

has G = +1, or an odd number of gluons when the meson has G = �1. This will

have important e�ects on the relative rates of production for di�erent charmonium

states.

1.3 Running Coupling Constants

While symmetries can be used to simplify calculations and analyses, one prediction

of both electroweak theory and QCD complicates calculations: the strength of the

interaction, given by � or �S , is not constant, but varies with the energy of the

interaction. The reason is as follows. As a particle travels through spacetime, it can

emit and reabsorb particles, as in Figure 1-3, so that a \bare" particle is surrounded

by a cloud of virtual particles. In QED, this cloud of virtual particles surrounding

the bare particle shields the charge of the bare particle. A low energy probe will only

see a fraction of the actual charge, while a higher energy probe will penetrate further

into the cloud, and see a larger charge. Thus, the strength of the interaction depends

on the energy of the interaction, with �(me) �
1

137
and �(mZ0) �

1

128
. The phrase

\running coupling constant" is used to describe this, because the value runs with
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Figure 1-4: Feynman diagrams for proton{anti-proton collisions. (a) includes all the
quarks, while (b) is the simpli�ed version normally used in theoretical calculations.

the energy. As � � 1 at all energies, perturbation theory in powers of � is a very

powerful tool in QED and electroweak theory at all energies, providing extremely

accurate predictions, even at low order.

In QED, the photons in the cloud surrounding a particle are electrically neutral,

and the virtual fermion{anti-fermion pairs align themselves so as to shield the bare

charge. However, the gluons of QCD carry color and enhance the charge, while the

virtual quarks decrease the charge. The net e�ect is to enhance the charge of the

bare particle. At high energies, particles penetrate deeply into the cloud, ignoring

most of the charge, and the QCD coupling constant, �S, approaches zero. This is

called \asymptotic freedom," and greatly simpli�es the calculation of high energy

processes. In high{energy hadron collisions, typically only one parton from each

hadron is scattered at large angles by the \hard scattering" process, as is shown in

Figure 1-4a. The remaining partons form hadrons moving nearly parallel to the initial

direction, becoming part of the \underlying event." Because of asymptotic freedom,

when considering a high energy proton{anti-proton collision, the two partons involved

in the hard scattering can be treated as free particles, and the e�ects of the remaining

partons can be ignored. While a proton{anti-proton collision involves three quarks,

three anti-quarks, and all the associated virtual particles, the much simpler Feynman

diagram in Figure 1-4b is the type of process typically studied by theorists.
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Figure 1-5: When trying to separate two quarks, the quarks act as if they are held
together by a tube of color 
ux (a). If the tube is stretched too far (b), it breaks and
forms a new quark{anti-quark pair.

Moving toward the opposite end of the energy spectrum, as the energy decreases,

the cloud becomes increasingly important, and �S increases, until �S(1 GeV) � 1!

Perturbation theory, which is so successful in QED, can no longer be used, as the

importance of higher order terms is not decreased by a small coupling constant. At

even lower energies, �S > 1, and higher order terms become more important than the

leading order terms.

One result of the increase of �S at low energies is that the strong force does not

vanish at large distances. In the case of two electrically charged particles, � ap-

proaches a small constant as they are separated by an large distance, requiring only

a �nite amount of energy to separate the particles by an arbitrarily large distance.

As the separation increases, ever smaller amounts of energy are needed to separate

them further. In contrast, it appears that separating two colored particles requires

a �xed amount of energy per distance, even at very large separations. Eventually,

enough energy is added to the system to create a new particle{anti-particle pair, as in

Figure 1-5. So if one tries to isolate a colored particle, the result is not an isolated par-

ticle, but new particles. This leads to \color con�nement," which simply means that

all observable particles are colorless. This is in agreement with experimental results,

as every search for free quarks to date has failed to provide conclusive evidence.[13]
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1.4 Structure Functions

While asymptotic freedom makes it possible to calculate the amplitude for a process

using the simpler diagram in Figure 1-4b, rather than the more complicated diagram

in Figure 1-4a, the momentum of the incoming hadrons is not speci�ed in Figure 1-

4b. In order to relate the hadron momentum to the momentum of the parton, one

de�nes the \structure functions" of a hadron, FH
p (x). These give the probability of

the hadron H containing a parton p with momentum fraction x � Pp=PH . PH is the

momentum of the hadron H, and Pp is the momentum of the parton in the direction

of the hadron momentum. H and p can be any particle, although in this thesis, we

will only be concerned with the cases where H is a proton or an anti-proton, and p

is either a gluon or an up or down quark or anti-quark.

The cross section is calculated by

d2�

dP c
Tdyc

(pp!cX) =
X
a;b

Z
dxadxbF

p
a (xa)F

p
b (xb) �

d2�̂

dP c
T dyc

(ab!cX) (1.6)

where F p;p
a;b are the proton and anti-proton structure functions, and a and b are all

the partons which can form a c, and d2�̂

dP c
T
dyc

(ab!cX) is the parton level cross section

for the process ab!cX.

1.5 Fragmentation

Just as Figure 1-4b does not explicitly relate the incoming hadron momenta to the

incoming parton momenta, neither is the relationship between the outgoing partons

and hadrons included in the diagram. As the colored particles in the �nal state

begin to separate, additional quarks pop out of the vacuum. These combine to form

colorless hadrons in a process known as \fragmentation."

Fragmentation is a low energy process, and as such cannot be calculated using

perturbative QCD. One important aspect of fragmentation is that it takes place

on a much longer time scale than the hard scattering. This means that the two
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processes are \factorizable," i.e., one can calculate the two separately, using di�erent

methods, and then combine the two results. For instance, one often calculates the

hard scattering using perturbation theory, and then simulates the fragmentation using

a phenomenological model that has been tuned to agree with experimental results.

Di�erent problems require di�erent amounts of knowledge of the fragmentation

process. A common case, and the one needed in this thesis, is when only one particle

produced by the fragmentation is of interest. In this case, only the \fragmentation

function," DH
p (z;Q), is needed. This is the probability for a parton p to form a hadron

H with momentum fraction z � P
k
H=Pp. P

k
H is the momentum of H parallel to the

parton direction, Pp is the momentum of p and Q is the energy scale of the process.

Other de�nitions of z are possible, such as the energy fraction (EH=Ep) or the light{

cone variable
�
EH+PH
Ep+Pp

�
. Also, some momentummust be given to H perpendicular to

the parton momentum, which is often assumed to have a Gaussian distribution.

The full formula for calculating inclusive cross sections in proton{anti-proton col-

lisions is

d2�

dPTdy
(pp!HX) =

X
a;b

Z
dxadxbF

p
a (xa)F

p
b (xb) �

X
c;d

Z
dzcd

3Pd
d5�̂(ab!cd)

dPT cdycd3Pd
(Pc=zc)D

H
c (zc; Q) (1.7)

where a and b run over quarks, anti-quarks and gluons, F p;p
a;b are the various structure

functions, c is any particle that can form an H, and d is any particle that can be

produced in association with c.

1.5.1 Petersen Fragmentation

One important source of charmonium at a high{energy collider is the decay of B

hadrons. Thus, an understanding of the fragmentation of the b quark is important to

this thesis. Heavy quark fragmentation is assumed to follow the model of Petersen

et al.[14] Figure 1-6 shows the leading order diagram for b quark fragmentation. As
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Figure 1-6: Feynman diagram of b quark fragmentation. The b quark and the light
anti-quark form a hadron, and the other light quark fragments into other hadrons.

shown, this process violates conservation of energy, as mb < mB. In practice, this

is ignored, and it is assumed that soft gluons are exchanged with other fragmenting

particles, which restores energy conservation without a�ecting the dynamics of the

fragmentation.

Petersen fragmentation assumes that the kinematics of the fragmentation is com-

pletely dominated by the 1=Q2 dependence of the gluon propagator. The Q2 of the

gluon is

Q2 = (Eb � EB � Eq)2 � (~Pb � ~PB � ~Pq)
2 (1.8)

where Ei and ~Pi are the energy and momentum of the b quark (b), B hadron (B) and

the light quark (q), respectively.

The propagator is evaluated in a reference frame where Pi � mi for all the

particles, also known as the in�nite momentum frame. Conservation of momentum

dictates that the momentum term in Equation 1.8 will be zero. The energy can be

approximated by

E = P +
1

2

m2

P
+O

 
m4

P 3

!
(1.9)

The momentumof the B hadron and the light quark transverse to the b quark direction

are small, and are often neglected. Alternatively, m can be rede�ned to include the

e�ects of the transverse momentum. Using Equation 1.9 for the energy and noting

that Pb = PB + Pq yields

Q2 =
1

2

 
m2
b

Pb
� m2

B

PB
� m2

q

Pb � PB

!
(1.10)
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Figure 1-7: The Petersen fragmentation function, showing the central value and the
variations used in this thesis. The three curves are normalized to the same area.

Using the fragmentation parameter

z � PB
Pb

(1.11)

and assuming mb � mB leads to

Q2 / 1� 1

z
� �P

1� z (1.12)

where �P � m2
q=m

2
b. The fragmentation function is then the square of the matrix

element, taken to be 1=(Q2)2, multiplied by the phase space factor 1=z. The resulting

fragmentation function is

DB
b (z) =

N

z
�
1� 1

z
� �P

1�z

�2 (1.13)

where N is a normalization factor. �P for B mesons has been measured to be �P =

0:006 � 0:001 � 0:002. [15, 16, 17] The resulting function is shown in Figure 1-7.
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Figure 1-8: Charmonium mass spectrum. States with masses above the DD threshold
decay almost exclusively into charmed mesons.

1.6 Charmonium Masses And Decay Modes

Naively, one would expect that charmonium would decay quickly, with the cc pair

annihilating into gluons, producing a broad resonance. While this does happen, it

occurs at a lower rate than other strong decays. After the cc pair annihilate into

gluons, one or more of the resulting gluons must carry most of the energy, about

3 GeV. As we will see in the next section, at this energy �S is fairly small, which

reduces the rate. This is known as the Zweig rule.[18] Color conservation requires

that at least two gluons be emitted. For  production, G-parity prohibits the decay

into two gluons, so three gluons are required. As a result, the decay is a higher

order process than most other strong decays, where only one soft gluon is exchanged.

Electromagnetic decays, where either the pair annihilate into a virtual photon or a

real photon is emitted, form a signi�cant fraction of the decays of many charmonium

states. This is important, as the decay of the  into two muons through a virtual

photon is the decay mode which is reconstructed by this thesis and by many other

analyses. One exception is states with masses larger than twice the D mass, which
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decay almost exclusively into DD. Since such decays proceed by the exchange of one

soft gluon, the rate for these decays is much higher than the rate of radiative decays

to other charmonium states.

The internal dynamics of the charmonium system is similar to the hydrogen atom

or the positronium system. One di�erence is that, while positronium is bound to-

gether by exchanges of soft photons, charmonium is bound by exchanges of soft gluons.

So while accurate calculations are possible for the energy levels of positronium, similar

calculations of the masses of charmonium states are much more di�cult. However,

the quantum numbers that are used to describe positronium can also be applied to

charmonium. The rotational quantum numbers in positronium result from the rota-

tional invariance of the potential, while the radial quantum number is related to the

time{independence of the potential. All of these properties are also true4 for the QCD

quark{quark potential, so similar quantum numbers exist, although the dependence

of the energy levels is di�erent.

The �c is the lightest charmonium state. The cc pair is in an S-wave state5, with

the quark spins anti-parallel. The next higher state is the J= . This is the S-wave

state with parallel spins. The excited states are sometimes denoted by  (nS) or by

 0;  00, : : : The P-wave states with parallel spins are denoted as �cJ , where J = 0; 1; 2

is the total angular momentum of the state. �c is a generic term that refers to any of

the �cJ . Figure 1-8 shows the charmonium mass spectra and decay modes to other

charmonium states. The �c(2S) is not well determined experimentally, and the shown

decay modes, while expected, have not been observed. Other states, such as the P-

wave spin singlet, and D-wave states, are expected to exist but are not expected to

have signi�cant contributions to  production. The decay of a D-wave state to a  

4The spin{orbit coupling breaks the rotational symmetry, just as it does in positronium. While

the e�ect is larger than in positronium, it can still be treated as a small perturbation.
5S, P and D waves refer to the spatial portion of the wave function, e.g., an S wave state has

L = 0 and J = 0 or 1, depending on the con�guration of the spins. One deviation from standard

spectroscopic notation is that, for orbitally excited states, the radial quantum numbers start from

1 for each value of L. Thus, while the lowest lying L = 1 states are typically denoted by 2SPJ by

atomic physicists, the particle physics designation is 1SPJ
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Figure 1-9: Leading order diagram for (left) J= and  (2S) production and (right)
�c production with non-zero transverse momentum in the �S expansion.
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Figure 1-10: Leading order Feynman diagram for the decay  !`+`�

requires �L = 2, which is suppressed by an additional power of �. Feeddown from

the P-wave singlet is also suppressed because of the need to 
ip the spin of one of the

quarks.

1.7 Charmonium Production

There are two processes that dominate the production of charmonium in pp col-

lisions. The �rst of these is the production of a cc pair, which combine to produce a

colorless bound state. The other process is the production of a b or b quark, which

fragments into a B hadron. This hadron can subsequently decay into a  and other

hadrons, as in Figure 1-14.

1.7.1 Direct Production

The leading order diagrams for direct  and �c production with signi�cant trans-

verse momentum in pp collisions are shown in Figure 1-9. The cc quarks are produced

in a color{singlet state, and the entire diagram can be calculated, except for the \blob"

representing the hadronization of the quarks into a  or �c meson. The  diagram
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can be calculated up to a factor related to the value of the  wave function at the

origin,j (0)j2. This value can be determined from the  leptonic decay width. The

partial width for the decay  !`+`� is given by[19]

�`+`� =
16��2Q2

M2
 

j (0)j2 (1.14)

where ` = e; �; � and Q = 2

3
is the charm quark charge. This formula is derived from

the Figure 1-10. The photon propagator contributes a factor of 1=q2 = 1=M2
 . The

`+`�
 vertex contributes a factor of
p
4�� and the cc
 vertex contributes a factor of

Q
p
4��, yielding

jMj2 / �2Q2

M4
 

(1.15)

The integral over the lepton phase space is proportional to q2j (0)j2, leaving the 1=M2
 

dependence. All of the quantities on the right hand side of Equation 1.14 are known

except the wave function. Thus, a measurement of �`+`� provides a measurement of

the  wave function at the origin.

There is a similar production mechanism which only contributes to J= produc-

tion. The cc pair can form a �c state, which decays to a J= through an electromag-

netic transition (�c!J= 
). As all the known �c states are either below the  (2S)

mass, or above the threshold for decay to charmed mesons, this mechanism does not

contribute to  (2S) production.

�c production diagrams contain charm quark loops which are connected to two

gluons, while the charm quark loops in the  production diagrams are connected

to three, which is a result of G parity conservation. Since the gluon has negative

G parity, a state consisting on N gluons has G = (�1)N . Thus, the �c, with even

G-parity, can only couple to states with an even number of gluons, while the  , with

odd G-parity, only couples to states with an odd number of gluons.

Calculating the leading order diagram for  (2S) production in Figure 1-9,[20,

21, 22] one �nds that the cross section is expected to be negligible compared to

that resulting from B decays. However, in the analysis that is described in this
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Figure 1-11: Gluon (left) and charm (right) fragmentation production of  in the
color singlet model. The production of the initial charm quark has been suppressed
for clarity.

thesis, we �nd that direct production of  (2S) is larger than that from B production!

Direct  (2S) production exceeds the predicted rates by factors of 60-90. The \CDF

 (2S) anomaly," as this has come to be called, is the most striking disagreement

between particle physics theory and experimental results in recent years. After the �c

contribution to the J= cross section is removed, it also exhibits a similar discrepancy.

Since these results were initially seen, there have been several proposed mechanisms

to explain this excess.

The excess could be explained if there is a state with a mass above the  (2S)

mass that had a signi�cant branching ratio to the  (2S), and a large production

cross section. One possibility is the 3D2 state. The predicted mass is above the

threshold for decay in DD. However, that decay is not allowed by the quantum

numbers. The �rst allowed decay is into DD�, but the predicted mass is just below

the threshold for that decay. So this state may have a large branching ratio to  (2S).

1.7.2 Fragmentation Production

Two other e�ects can enhance the predicted cross section for directly producing a

 (2S). One is the fragmentation contribution.[57] Figure 1-11 shows a Feynman

diagram involved in  production which is O(�S5). Since the leading order diagram

is O(�S3), this diagram should have a small contribution to the total cross section.

However, if the  has a large transverse momentum PT � m , then the diagram

will be dominated by con�gurations where the gluon has Q2 � m2
 � E2

gluon. In this
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case the gluon is nearly real, and the diagram is enhanced by a factor of (PT=m )2.

When PT becomes large enough, this diagram dominates the leading order diagrams.

Because this process produces a (nearly) on-shell gluon which fragments into a  ,

it is referred to as gluon fragmentation production. This mechanism also produces

�c mesons; in fact, for the �c, one less gluon needs to be radiated, so the process is

of order �S4. A  can also be produced by similar diagrams where a charm quark

fragments, as shown in Figure 1-11, although this is not as important, because the

cross section to produce a charm quark is signi�cantly smaller than the cross section

to produce a gluon.

1.7.3 Color Octet Production

So far, all the perturbative processes have produced a color{singlet cc pair which

hadronizes into a  or �c, which is described as the Color Singlet Model (CSM).

The radiated gluons cannot be too soft, or perturbation theory will fail. A few years

ago, Bodwin, Braaten and Lepage devised a method for calculating the fragmen-

tation function for a color octet cc pair into charmonium. It uses non-relativistic

QCD (NRQCD)[23], which is an e�ective potential model, inspired by Heavy Quark

E�ective Theory (HQET).[24, 25, 26] It is based on the realization that, inside a

charmonium state, the two quarks will be moving fairly slowly, with v2c � 0:25. Thus,

a double expansion, in powers of �S and vc, is possible. The terms that are of lowest

order in �S may be of higher order in vc, while terms of higher order in �S may be of

lower order in vc, so that which terms dominate the cross section depends upon the

power of both �S and vc. Since the cc pair is often produced a color octet state in

this model, the model is named the Color Octet Model (COM).

As before, the entire process cannot be calculated using perturbation theory. How-

ever, a non-perturbative part can be factored out. This part is a well{de�ned matrix

element, which could be calculated using lattice QCD, or extracted from experimen-

tal measurements. It can be argued that the matrix element is independent of the

kinematics in the perturbative part, which results in an unknown normalization, but
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Figure 1-12: Gluon fragmentation production of  in the color octet model. In this
case, one gluon is radiated during the non-perturbative process.
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Figure 1-13: Feynman diagrams for b production from gluon fusion (left), gluon
splitting(center) and 
avor excitation (right).

does not a�ect the shape. Furthermore, the matrix elements are \universal," so a

matrix element measured at one experiment can be used to make predictions for an-

other experiment, or compared with the matrix elementmeasured at that experiment.

Lastly, naive power counting provides an order of magnitude estimate for the matrix

element.

In terms of Feynman graphs, what happens is that one or more of the gluons

radiated from the cc pair is removed from the perturbative portion, and added to the

non-perturbative portion, as shown in Figure 1-12. As the gluon is now being treated

in a non-perturbative manner, it can become extremely soft, greatly enhancing the

contribution of the diagram. In fact, a typical approximation is to assume that the

gluon carries no energy, only the excess color.

1.7.4 B Production

The other mechanism for  production is from B decays: QCD processes produce

a b quark, which fragments into a B hadron and subsequently decays into a  and

other particles. At next{to{leading order, the diagrams for b quark production can
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Figure 1-14: Typical B meson decay diagram for charmonium production.

be grouped into three classes, shown in Figure 1-13, each of which have distinct

characteristics. The two b quarks produced by gluon fusion are separated by � radians

in azimuthal angle, and produce two well separated jets. Gluon splitting tends to

produce b quarks which are closer together, as the mass of the virtual gluon tends to

be small. As a result, the decay products of the two quarks may appear to come from

a single parent, especially after fragmentation e�ects and experimental resolution are

included. Flavor excitation is often the result of the gluon scattering o� of one of

the virtual b quarks that form the cloud around the valence quarks. In this case, the

other b proceeds close to the initial proton or anti-proton direction.

After the b quark fragments into a B hadron, it can decay to a  or �c through

diagrams such as Figure 1-14. This decay is suppressed relative to the decay B!DXfor

several reasons. First, the W must decay into cs, whereas for the B!DX decay,

all of the possible W decay modes are allowed. This reduces the rate by about a

factor of three. Furthermore, the c must have the same color as the c quark, as

the fragmentation of the color octet cc state into charmonium is suppressed. This

introduces another factor of three. Lastly, the c and c quarks must have similar

momenta, so that they can form a bound state. This results in the relatively small

branching ratios of B(B!J= X) = 1:13 � 0:07%[27] and B(B! (2S)X) = 0:34 �

0:05%[27]. While these branching ratios are small, it is an experimental fact that

the two muons from the  decay provide an excellent signature for an experimental

trigger, so the process B! X is tremendously useful from a practical standpoint.
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1.7.5 Production Summary

Charmonium can be produced in proton{anti-proton collisions through three mecha-

nisms:

1. The hard scattering can create a cc pair, which form a bound state, directly

producing a  .

2. When the cc pair bind together, the resulting bound state can be a �c meson,

which may decay to J= 
.

3. A bb pair may be produced in the interaction. After fragmentation forms a B

hadron, the hadron can decay to  X or �cX, with the �c decaying to J= 
.

At high PT , fragmentation will be the dominant method of producing the cc pair

for the �rst two processes, even if it is a higher{order process. As all the �
c
states

have masses which are either less than the  (2S) mass or larger than the threshold

for the decay into open charm, the second mechanism does not contribute to  (2S)

production. Direct production of  mesons without an intermediate B or �c state is

expected to be small within the Color Singlet Model, so that nearly all  (2S) mesons

should be B daughters, while �c decays may be responsible for a signi�cant portion

of the J= production.
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Chapter 2

Experimental Apparatus

The data for this analysis comes from pp collisions in the Tevatron, at the Fermi

National Accelerator Laboratory (FNAL or Fermilab). The Tevatron is currently the

highest energy collider, colliding protons and anti-protons at a center-of-mass energy

of 1.8 TeV. The data was collected by the Collider Detector at Fermilab (CDF). CDF

is a general purpose detector, built to study the pp interactions with large transverse

momentum (PT ).

2.1 Coordinate System

The only preferred direction at a proton{anti-proton collider with unpolarized beams

is the beam axis, which is de�ned as the z axis. Physical processes are invariant under

rotations about this axis, so a cylindrical coordinate system is an obvious choice. R

indicates the radial distance from the beam line, and � denotes the azimuthal angle.

� is de�ned as the angle relative to the z axis.

Interactions at hadron colliders often have a large boost along the beam direction,

so a form of the cross section that is invariant under such boosts is useful. We start

from the invariant cross section, E d3�
(dp)3

. If the cross section is independent of �, this

can be written as

E
d3�

(dp)3
= E

d2�

�PTdPTdPz
(2.1)
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where PT denotes the momentum transverse to the beam direction. While this form

as a whole is invariant, it contains two variables which do change when boosted in

the z direction. These can be removed by a change of variable. The new variable, y,

must satisfy

E
dy

dPz
= 1 (2.2)

Solving this equation yields

y =
1

2
ln
�
E + PZ
E � PZ

�
(2.3)

which is called the rapidity of the particle. Substituting this into Equation 2.1 yields

E
d3�

(dp)3
=

d2�

�PTdPTdy
(2.4)

The rapidity is often approximated by the pseudo-rapidity

� � 1

2
ln
�
P + PZ
P � PZ

�
= � ln

 
tan

�

2

!
(2.5)

which has the experimental advantage of being independent of the mass of the particle.

The rapidity and the pseudo-rapidity are identical for massless particles, and nearly

the same for massive particles when PT

2 � m2.

2.2 The Accelerator

Figure 2-1 shows the steps involved in setting up the collider for a store. The

�rst step in creating the proton beam involves the Cockcroft-Walton hydrogen gas

bottles. In these bottles, electrons are added to hydrogen atoms, creating negatively

charged H� ions. These are extracted from the gas bottles using a voltage source

which accelerates the ions to an energy of about 750 keV. The ions are then inserted

into a linear accelerator called the Linac. The Linac accelerates the ions to an energy

of 400 MeV. As the ions leave the Linac, they pass through a carbon foil, which strips

the electrons away from the ions, leaving a beam of positively charged protons, which
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Figure 2-1: Elements in the generation and acceleration of protons and anti-protons
at Fermilab.
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enter the Booster. The Booster is a 500 foot diameter synchrotron. The protons circle

approximately 20,000 times inside the Booster while being accelerated to an energy

of 8 GeV, before being injected into the Main Ring. The Main Ring is another

synchrotron, with a radius of 1 mile. It contains about 1000 copper-coiled magnets,

and accelerates the proton beam to an energy of 150 GeV, after which it is injected

into the Tevatron. The Tevatron is yet another synchrotron, located just below the

Main Ring. It is similar to the Main Ring, except that it uses superconducting

magnets. Cooled by liquid helium, the Tevatron operates at a temperature of �450�

F (�268� C), a mere 5K above absolute zero. The Tevatron is capable of accelerating

protons to an energy of 1 TeV. The data used in this analysis was collected with

proton and anti-proton beams at 900 GeV.

The initial stages of the anti-proton beam creation are the same as for the proton

beam. Once the proton beam enters the Main Ring, it is only accelerated to 120

GeV. The beam is then extracted from the Main Ring and collided with a tungsten

target. This produces a large variety of particles, including anti-protons. The anti-

protons are selected and transported to the Debuncher. Stochastic cooling[28] is used

to collimate the anti-protons into a narrow beam of mono-energetic particles. They

are then inserted into the accumulator. While the proton beams can be generated

almost instantly, it takes several hours to build up a large store of anti-protons. Once

a su�cient number of anti-protons have been accumulated, they are inserted into the

Main Ring and the Tevatron, moving in the opposite direction as the proton beam.

Figure 2-2 shows the relations between the accelerators.

When operating as a proton{anti-proton collider, the Tevatron is �lled with six

bunches of protons, and six bunches of anti-protons. A pair of bunches pass through

an interaction region every 3:5 �s, which requires detectors that can detect signals, be

read out and reset for the next measurement at a very high rate. Other accelerator

parameters are shown in Table 2.1.
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Figure 2-2: Schematic diagram of the particle accelerators at Fermilab.

Beam Energy 900 GeV/c/ beam
Luminosity 1� 10�1030cm�2=s

Bunches/Beam 6
Bunch Spacing 3:5�s
Protons/Bunch 1�1011

Anti-protons/Bunch 3�1010
Collision Region (RMS) 30 cm

Beam Size � 40�m
Beam Pipe 1.5 in. diameter beryllium

Table 2.1: Tevatron Collider parameters for the 1992-1993 run.
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2.3 CDF

There are six interaction regions at the Tevatron where the proton and anti-proton

beams can collide, the second of which is surrounded by the Collider Detector at

Fermilab (CDF). The D0 detector is located at the fourth interaction point, and the

remaining four are vacant. An overview of the components of the detector used in

this analysis are described below. A full description of the detector can be found in

[29].

2.3.1 Solenoid

The tracking chambers used at CDF are surrounded by a NbTi/Cu superconducting

solenoid. This solenoid produces a 1.412 T magnetic �eld which permeates a cylin-

drical region 4.8 m in length and 3 m in diameter. A steel yoke returns the magnetic


ux, in addition to supporting the calorimeters described below. A precise map of

the �eld exists, and is used to perform o�ine corrections, including corrections for

non-uniformities in the magnetic �eld.

2.3.2 Central Tracking Chamber

The Central Tracking Chamber (CTC) is a cylindrical drift chamber surrounding

the beam line. As a charged particle passes through the chamber, it ionizes the

gas. The ionization electrons drift towards high voltage wires, where the charge is

collected. While the electron drift direction can be determined from the geometry

and the �eld strengths, a single wire cannot determine whether the \hit" originated

on the left or the right of the wire.

The chamber is logically divided into regions called cells. Since there is no physical

division between the cells, this is called an open cell geometry. Each wire is capable of

measuring the arrival time of multiple hits, so a particle passing near the wire and a

particle passing farther away are distinguished by two separate pulses arriving at the

wire at distinct times. Although chambers can be designed where each cell has only
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Figure 2-3: Cut-away view of one half of CDF. The detector is forward-backward
symmetric.

one wire, the CTC has multiple wires per cell. There are several reasons for having

multiple wires in each cell. If one of the wires fails, the other wires enable the cell to

still be used. Further, by looking at the correlations between the hits on nearby wires,

corrupted hits can be eliminated. The left-right ambiguity inherent in drift chambers

can be removed by reconstructed track stubs within a cell, and extrapolating back to

the beam line.

The CTC consists of 9 superlayers alternately providing R � � and R � z mea-

surements. Five superlayers provide 12 radial (R� �) measurements each, while the

other four superlayers each provide 6 stereo (R� z) measurements of the track for a

total of 84 wires. It covers a pseudorapidity range of j�j < 1:1.

Within the radial superlayers, the wires are positioned at a 45� angle relative

to the radial direction. There are several reasons for this. Neighboring cells in each

superlayer are close enough that they overlap in the azimuthal directions. This means

that every high momentum track will pass close to at least one wire in each superlayer.

This fact is exploited by the Central Track Processor (CFT), which �nds tracks for the
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trigger. Tilting drift cells also improves the electron drift characteristics. Electrons

drifting in a gas with crossed electric and magnetic �elds move at an angle � relative

the electric �eld, where � is approximately given by

tan � =
v(E;B = 0)B

kE
(2.6)

where v(E;B = 0) is the drift velocity without a magnetic �eld, B is the magnetic

�eld strength and k is a parameter which depends on the type of gas and E. k � 0:7

for the normal operating conditions in the CTC. The strong magnetic �eld at CDF

and the desire to operate the chamber at the lowest reasonable voltage indicate that

� will be large. By having a large tilt, the electron drift direction becomes almost

azimuthal. This decreases the amount of dead space near the edge of the cells, and

makes the distance-to-time relationship more linear. A third advantage comes in

resolving the left-right ambiguity. In each superlayer, two stubs can be reconstructed

from each real track. The real stub uses the correct assignment of all the hits, and the

\ghost" stub uses the incorrect assignment on every hit. The ghost stub is rotated

by � = tan�1(2 tan �) relative to the true track direction. This large rotation makes

it simple to reject the ghost stub.

Track reconstruction begins by searching for groups of hits within each superlayer

that are consistent with a track. In the radial superlayers, these hits are �t to a

circle, while the stereo hits are �t to a line. After �nding track \segments" in each

superlayer, two algorithms independently attempt to combine the radial segments into

a two dimensional track. In most cases, both algorithms will �nd the same track with

the same hits, or one algorithm will fail to �nd the track. In these cases, merging the

results of the two algorithms is trivial. Some of the time, the algorithms reconstruct

two similar tracks, which share a signi�cant fraction, but not all, of their hits. In

this case, the track that used the largest number of hits is chosen, and the other is

discarded. If both have the same number of hits, one is chosen at random. This track

is then merged with the stereo segments to form a three-dimensional track.
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Figure 2-4: End-view of the CTC. The boxes represent superlayers, each of which
contain 6 or 12 wires.
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Number of layers 84
Number of superlayers 9
Stereo angle of stereo superlayers 3�

Number of super cells per layer 30, 42, 48, 60, 72, 84, 96, 108, 120
Sense wire spacing 0.1 cm
Tilt angle 45�

Radius at innermost sense wire 30.9 cm
Radius at outermost sense wire 132 cm
Inner Diameter 0.55 m
Outer Diameter 2.76 m
Wire length 321.4 cm
Electric Field 1350 V/cm
Magnetic Field 1.412 T

Nominal R� � resolution 200 �m
Nominal R� z resolution 4 mm
Nominal �PT=PT 0:002 � PT (GeV=c)

Table 2.2: CTC mechanical characteristics and nominal resolutions

2.3.3 Silicon Micro-vertex Detector

A key component of this analysis is the separation of B events from other pro-

duction mechanisms. This requires that the  decay vertex be measured with an

accuracy better than the B lifetime of c�B � 450�m. This is accomplished using the

Silicon Micro-vertex Detector (SVX). The SVX is constructed from \ladders" of sin-

gle sided, DC-coupled silicon. Each ladder is 25.5 cm long and covers approximately

30� of azimuthal angle. A \wedge" is four ladders covering the same azimuthal region

at di�erent radii, numbered from 0 to 3. The innermost ladder is 3.0 cm from the

beam line, and the outermost is at 7.9 cm. The entire detector consists of 24 wedges,

which are divided into two \barrels." There is one barrel on the east side, and one

barrel on the west side of the detector, with a gap of 2.15 cm in the middle. The

ladders in each wedge are rotated by 3�, which allows ladders in neighboring wedges

to overlap slightly, although there is no overlap in layer 0. The strip pitch of the

�rst three layers is 60 �m, while the outermost layer has a pitch of 55 �m. Each

ladder is read out from electronics on one end of the ladder, and only provides R��
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Figure 2-5: One ladder of the SVX detector. The three crystals, the readout elec-
tronics and the mounting equipment are shown.
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information.

Figure 2-6: Cut-away isometric view of one SVX barrel.

Alignment

Charged particles passing through the SVX typically deposit charge in several strips.

Thus, although the strips are separated by 60 �m, by clustering several strips together,

and considering the amount of charge in each strip, an accuracy of about 15 �m can

be achieved. To make use of this accuracy, the location of the SVX must be known

to a similar accuracy. The SVX alignment is measured with two distinct methods.

As the detector was constructed and installed, measurementswere made to provide

an initial alignment. After the Tevatron began operating, reconstructed tracks were

used to increase the accuracy of the alignment. The location of the three inner layers
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Layer Face Radius Total Active Pitch Num. of Num. of
Width Width Strips Chips

(cm) (cm) (cm) (�m)

0 IN 2.99 1.60 1.54 60 256 2
1 OUT 4.27 2.37 2.30 60 384 3
2 OUT 5.70 3.14 3.07 60 512 4
3 IN 7.85 4.29 4.22 55 768 6

Table 2.3: SVX layer characteristics

relative to the outermost layer in each wedge was measured using the residuals of track

measurements. Misalignments in the outermost layer then became misalignments

between wedges. This was corrected using electrons from W decays, where the track

is nearly straight, and originates from the beam position.

The alignment of the SVX relative to the beam line was performed by using the

SVX to measure the beam position. For each run, an o�ine job would reconstruct

high momentum tracks, and use these tracks to measure the position of the beam.

This required that an accurate measure of the location of the SVX relative to the rest

of the CDF detector be made. Figure 2-7 shows the beam position, as measured by

the SVX.

O�ine Reconstruction

Track reconstruction begins by grouping strips with excess charge into clusters. After

subtracting pedestals, contiguous strips above a threshold are grouped into a cluster.

The threshold is based on the measured noise in each strip, and becomes less stringent

as more strips are added to the cluster. The charge-weighted centroid of the cluster is

used as the position of the cluster. For clusters with n � 4 strips which had su�cient

charge deposition, the error on the cluster position is np=
p
12, where p is the strip

pitch. For smaller clusters, a value derived from track residuals is assigned.

These clusters are then converted into tracks by extrapolating CTC tracks. The

CTC �t is extrapolated to the outermost SVX layer. A road is de�ned, using the
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Figure 2-7: Beam pro�les as measured by the SVX. (1) shows the distribution of
vertices in the x � y plane, after correcting for the z position. (2) shows the x
projection. (3) shows the movement of the beam in the x direction as z changes.
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extrapolated intersection, and the track parameter error matrix. For each cluster

that lies inside the road, a candidate track is created by re�tting the CTC track,

including the new cluster. This procedure is then iterated over the three remaining

layers. Track candidates with only one cluster are eliminated, and the �2 must be less

than a maximum value. The candidate with the largest number of hits is selected,

and all others are rejected. If more than one track has the same (maximum) number

of hits, the candidate with the smallest �2 is used.

When combined with a CTC track, the SVX provides an impact parameter reso-

lution of �b = (13 + 40=PT )�m and a transverse momentum resolution of �PT=PT =q
(0:9PT )2 + (6:6)2�10�3 where PT is measured in GeV/c. The impact parameter

resolution is excellent for transverse momenta above about 1 GeV/c. For smaller

values, multiple scattering quickly degrades the resolution. All the tracks used in

this analysis will have transverse momenta larger than 2 GeV/c, so this will not be

a problem. Primary vertices have a Gaussian distribution with a width of about 27

cm, while the SVX only reaches to �25cm, so only about 60% of the CTC tracks can

be augmented with SVX information.

2.3.4 Vertex Time Projection Chambers

Both the proton and anti-proton bunches have �nite lengths, which causes the location

of the vertices to be spread along the beam line. The vertices are approximately

Gaussianly distributed, with a width of about 27 cm. While the SVX and the CTC

provide excellent resolution in the transverse plane, the R � z reconstruction is not

as accurate. To improve the measurement of the location of vertices along the beam

line, the Vertex Time Projection Chambers (VTX) are used. The VTX is an upgrade

of a similar chamber (VTPC) used in previous runs.

The VTX consists of two projection chambers, covering the region of j�j < 3:25

out to a radius of 22 cm. Each chamber extends 1.5 m along the beam line beyond

the nominal interaction point, and contains 28 octagonal modules, with a 4 cm drift

distance between the wires. The 16 innermost modules, those surrounding the SVX,
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contain 16 sense wires in the R� � plane perpendicular to the radial direction. The

last ten modules have 24 wires, allowing measurements closer to the beam. The two

chambers are rotated by 11.3� about the beamline to improve attempts at � recon-

struction. A 50-50 mixture of argon and ethane is circulated through the chamber

to provide an ionization medium. Each sense wire provides an R � z measurement

for each particle passing through the octant. Combining the measurements from the

wires, the z position of the particle and its slope in the R � z plane can be recon-

structed.

The VTX is able to reconstruct many more tracks than the CTC for two reasons.

First, it has coverage out to very large values of �. It is able to reconstruct tracks that

exit through the side of the CTC before leaving enough hits to be reconstructed, or

which don't even enter the CTC. Also, since it is closer to the beam, low momentum

tracks which curve back upon themselves can be reconstructed with much higher

e�ciency in the VTX than in the CTC. These \extra" tracks allow the VTX to

locate vertices along the beam line much better than the CTC. Primary vertices are

identi�ed by �nding the intersection of the reconstructed tracks with an accuracy of

1-2 mm, depending on the multiplicity of the event.

2.3.5 Calorimeters

Most energetic particles, when passing through matter, induce particle showers. Elec-

trons will radiate a photon by bremsstrahlung, which then converts into an electron-

positron pair, creating a chain reaction which lasts until the initial electron's energy

has been spread amongst enough particles that new particles can no longer be made.

Photons create similar electromagnetic showers. Hadrons produce showers by inelas-

tic collisions with the protons and neutrons in the matter.

One exception is muons1. The length scale of an electromagnetic shower is propor-

1An even more impressive exception is neutrinos. A neutrino can penetrate over a light-year of
water without interacting. Fortunately, they interact just as rarely with the muon chambers, so they
can be safely ignored in this analysis.
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tional to the square of the particles mass. This means that, for a muon, approximately

40,000 radiation lengths (the distance over which an electron loses all but 1=e of its

energy) is needed for a muon electromagnetic shower. The CDF detector is not even

close to being this thick, not to mention the fact that other processes would drain

the muon of its energy before it traversed even a small fraction of this distance. The

muon does not undergo strong interactions, so the inelastic scattering that produces

hadronic showers does not a�ect it. A muon will normally lose energy only by ion-

izing the medium through which it is passing, which is a slower process than either

electromagnetic or hadronic showers.

The central region of CDF contains two calorimeters designed to measure the

energy deposited by these showers. The Central Electromagnetic Calorimeter (CEM)

covers the region j�j < 1:1. It consists of 31 layers of lead interleaved with 31 layers

of 5 mm SCSN-38 polystyrene, which functions as a scintillator. The light is wave-

shifted and fed into a photomultiplier tube. The CEM has an energy resolution of

�ET=ET =
q
(:135=

p
ET )2 + (:02)2 where ET is measured in GeV/c.

Hadrons deposit little energy in the CEM. To measure hadronic showers, the

Central Hadronic Calorimeter (CHA) is located behind the CEM, covering the region

j�j < 0:9. The CHA is divided into 528 towers, each of which cover 0.1 units of

pseudorapidity and 15� of azimuthal angle. Each tower contains 32 layers of steel and

PMMA-based scintillator. The light from the scintillator is wave-shifted and doped

with a laser dye, which is read out using a high-gain phototube. The resolution of

the CHA is �ET=ET =
q
(:75=

p
ET )2 + (:03)2 where ET is measured in GeV/c.

When discussing hadronic calorimeters, the typical length scale is the absorption

length. This is the average depth after which a hadron retains only 1=e of its original

energy. When looking for muons, it is good to have a large number of absorption

lengths of material before the muon chambers, so that the only particles which reach

the chambers are muons. The CEM and the CHA provide at least 5 absorption

lengths at 90� incidence. If the particle is traveling at an angle relative to the radial

direction, it will pass through even more material.
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Figure 2-8: One tower of the CMU

2.3.6 Muon Chambers

The Central Muon Chambers (CMU) consist of 48 separate chambers. Half sur-

round the east half of the detector, and half surround the west half. Each wedge covers

12:6� of azimuthal angle, with a gap of 2:4� between each chamber. Each wedge is

equally divided into three towers made of four layers, each containing four rectangular

drift cells, as shown in Figure 2-8. The cells are operated in limited streamer mode.

Each sense wire is connected to a sense wire in the same layer with one cell in

between the two wires at the � = 90� end of the chamber. This reduces the electronics

needed to read out the chamber, and allows the entire system to be read from one

end. Each end of a sense wire is connected to an ADC-TDC card through a 0:1�F

capacitor. The TDC measures the time at which the deposited charge arrives on the

wire. Charge deposited in the chambers moves with a constant drift velocity, so the

time can be converted into a measurement of the position of the charged particle.

The ADC measures the amount of charge deposited. The charge is actually divided

53



between the two ADC's on either end of the wire. Thus, charge division can be used

to measure the z location of the particle. The RMS resolution of the chamber is 250

�m in the azimuthal direction, and 1.2mm in the z direction.

Two of the sense wires in alternate layers are on a line which extrapolates to the

interaction region. The other two wires are o�set by 2mm. The left-right ambiguity

inherent in drift chambers is resolved by determining which wires are hit �rst. Ad-

ditionally, the chamber is able to provide a rough estimate of the momentum of the

particle. Figure 2-9 shows the path of a particle traveling through �rst a region with

a solenoidal �eld and then a region with no magnetic �eld. The angle of the particle

relative to the radial direction, �, is related to the magnetic de
ection angle � by

D sin(�) = L sin

 
�

2

!
(2.7)

where L is the radius at which the magnetic �eld ends, and D is the radius where the

muon chambers are located. � is related to the transverse momentum by

sin

 
�

2

!
=
eLB

2PT

(2.8)

where e is the charge of the muon, and B is the magnetic �eld strength. � can be

measured by using either pair of the wires. For small values of �, the di�erence in

drift times for the two wires, �s, will be

�s = H�=v (2.9)

where v is the drift velocity, and H = 55:0mm is the distance between sense wires.

Thus, the transverse momentum of the track is

PT ' eL2BH

2Dv�s
(2.10)

For the trigger, any chamber with �s less than a preset value generates a trigger
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Figure 2-9: Schematic of the path traversed by a muon through the CDF detector.

signal, which corresponds to PT greater than some minimum threshold.

This measurement is of limited accuracy for two reasons. First, the lever arm

used to measure � is fairly short, and � is determined from only two points, so the

measurement error will be fairly large. Also, the measurement is performed only after

the muon has passed through the central calorimeters, so multiple scattering causes

a signi�cant degradation in the accuracy of the measurement.

Reconstruction

Muon reconstruction begins by searching for \stubs" in the muon chambers with 3

or 4 hits, consistent with a straight line. After all the stubs are found, each track

in the CTC is extrapolated to the CMU chamber. The CTC track extrapolation

errors include the CTC resolution and the e�ects of multiple scattering. If a track is

su�ciently close to the CMU stub, a muon candidate is formed. Using the CMU hit

positions and the location of the extrapolated CTC tracks in the R � � and R � z
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planes, two �2 are formed for later use in rejecting background.

2.3.7 Beam Beam Counters

The beam beam counters (BBC) are scintillator planes, located 5.8m from the nominal

interaction point. They cover the angular region 0:32� < � < 4:5� (3:2 < � < 5:9)

and the corresponding region on the opposite side of the detector. They provide an

accurate measurement of the time of the interaction with a timing resolution which

is better than 200 ps. A coincidence in the BBC's is required by the trigger system.

In addition to measuring the time of the interaction, the beam beam counters

are also used to measure the luminosity. The rate (number) of coincidences in the

east and west BBC's, when divided by the e�ective BBC cross section, yields the

instantaneous (integrated) luminosity. The e�ective cross section is derived from

measurements made at E710[30].

As this is an e�ective cross section, di�erent experimental conditions between E710

and CDF can change the observed value. The di�erence in the acceptance between the

two experiments has been modeled using Monte Carlo. The e�ects of using di�erent

beam pipes, store to store variations and di�ering values of instantaneous luminosity

have been considered. One run which had only �ve proton bunches instead of the

usual six is used to study the e�ect of accidental coincidences. After applying all the

corrections, the integrated luminosity is known to 3.6%.

2.3.8 Trigger System

The total pp cross section at CDF is � 75 mb[31, 32], while the cross section for

interesting processes is orders of magnitude smaller. In the case of  production, the

cross section times branching ratio is more than six orders of magnitude smaller than

the total cross section. In order to obtain reasonable rates for the processes of interest,

an extremely large rate of interactions must be obtained. If every event were to be

saved, the resulting data set would be too large to be of practical use. Even worse,
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during the time that the approximately 100,000 channels are being read and saved, the

detector is unable to record subsequent, possibly more interesting, interactions. It is

necessary to implement a real-time system which reduces the data rate to manageable

levels by quickly rejecting events without interesting characteristics.

To perform this rejection, CDF implements a three tier trigger system. Each level

performs more complex but slower selection algorithms. By employing such a multi-

tier system, the amount of deadtime can be minimized while retaining a large fraction

of the interesting events. The �rst levelmust decide whether or not to accept the event

for every crossing, at a rate of about 300 kHz. To avoid large amounts of deadtime, the

decision must be completed in less than 3:5�s, when the next crossing occurs. Analog

electronics connected to the detector front-end electronics apply simple algorithms

to each detector component to determine if the event is accepted, which reduces the

rate to 1-2 kHz. Events passing the Level 1 trigger are digitized, and given to the

Level 2 trigger. These events incur deadtime, while more complicated algorithms are

run in the Level 2 trigger. Correlations between di�erent systems, such as the muon

chambers and the tracking system, are considered. The rate out of the Level 2 trigger

is 5-15 Hz. The Level 3 trigger is a dedicated farm of Silicon Graphics Power Server

computers running FORTRAN algorithms. Events passing Level 2 are consolidated

and given to one of the computers. A reduced version of the o�ine reconstruction is

run on the entire event. Level 3 reduces the rate by about a factor of three before the

data is written to tape. The reductions eliminate reconstruction of objects that are

not used in the trigger, such as very low momentum tracks and SVX information.

In the Level 1 trigger, both muons must be detected in the CMU. The Fastouts in

the CMU must register a muon with a slope smaller than a preset value, correspond-

ing to a minimum PT requirement. Multiple scattering in the calorimeters degrades

the resolution for this cut considerably, resulting in a soft turn on. Despite a nominal

� 3 GeV=c PT cut, muons with a PT as low as 1.5 GeV/c will often pass this trig-

ger. Softer muons do not reliably penetrate the calorimeters. The trigger hardware

combines neighboring towers with muon stubs into a single muon. Thus, to pass the
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dimuon trigger, there must be a tower between the two muons which does not contain

a muon stub, or the muons must be in opposite halves of the detector.

The Level 2 trigger requires a Level 1 trigger, and a track pointing to one of the

muons. The track is reconstructed using the Central Fast Tracker (CFT). Recall that

in the CTC, the wires within a superlayer are laid out at a 45� angle, relative to

the radial direction, with cells at di�erent azimuthal angles overlapping. Since high

momentum tracks travel almost straight out from the beam line, this means that

every high momentum track will pass close to at least one wire in each superlayer. A

simple and fast method for reconstructing high PT tracks is to look for hits in each

radial superlayer, which where recorded shortly after the interaction time. These are

called \prompt" hits. A high PT track will appear as a prompt hit in each superlayer,

measured at times which correspond to points on a circle. By placing a lower limit

on the radius of the circle, tracks with PT < PT (min) can be excluded for any desired

minimum. In order to resolve the left-right ambiguity and to reduce the background

from noise hits, hits are required to be recorded on the neighboring wires as well. As

these hits take longer to appear on the wires, they are called \delayed" hits. The

CFT allows one delayed hit to be missing, but all the prompt hits must be present.

Using this method, high momentum tracks can be e�ciently reconstructed with a

minimum of background and deadtime.

After the CFT �nds a track, the PT and � of the track are known. A lookup

table is then used to determine which regions of the CMU the particle could reach,

considering the resolution of the CFT and multiple scattering. This is approximately

a �ve degree matching requirement. If either of the muon chambers containing the

Level 1 muon candidate has a CFT track which projects to it, the Level 2 trigger

accepts the event. The CFT places a nominal cut at PT > 3 GeV=c, and rapidly

becomes ine�cient for softer tracks. The Level 2 trigger e�ciency plateaus at 94%

for PT > 3:5 GeV=c, but is only 50% e�cient by PT = 2:6 GeV=c.

For the third level of the trigger, the full CTC track reconstruction is done, in

addition to the standard muon reconstruction. Each CTC track is extrapolated to
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the muon chambers. If the extrapolation matches a muon stub, a muon candidate is

created. Uncertainties in the extrapolation are calculated, considering both the CTC

resolution, and multiple scattering through the calorimeters. The position and the

slope of the extrapolation is compared with that of the CMU stub in the R � � and

R�z views. All four quantities must individually agree by better than 4�, where � is

the uncertainty in CTC track extrapolation, considering both the detector resolution

and the multiple scattering e�ects. (For early runs, this requirement was 6�, but

it was reduced after seeing that the system was stable, and that a 4� cut is highly

e�cient.) All events with two muons whose invariant mass is close to the J= mass

are kept. During the run, several triggers where used to select  (2S) candidates,

some of which imposed PT cuts on the muons. Those triggers are not used in this

analysis.

2.3.9 Data Acquisition

Each detector component is connected to a FASTBUS network[33]. The calorime-

ter and muon drift chambers are connected to RABBIT cards[34] for readout by MX

scanners. The tracking system is read out by SLAC Scanner Processors (SSP)[35],

which reorganize the data into a rudimentary format. Each scanner is capable of

holding four events at a time. This level of the Data Acquisition (DAQ) pipeline is

managed by the Trigger Supervisor (TS). The TS combines FASTBUS messages with

dedicated control lines to e�ect e�cient use of the front end system.

When the entire event has been loaded from the detector, the TS sends a FAST-

BUS message to the Bu�er Manager (BFM) indicating that the event is ready. The

BFM manages the 
ow of data from the scanner modules to the CPU farm which

constitute the Level 3 trigger. After being noti�ed of a new event, the BFM instructs

a hardware Event Builder (EVB) to \pull" the event. The EVB is a set of FASTBUS

modules which read and format events. When the EVB �nishes pulling the event, it

noti�es the BFM which sends a message to the TS, which in turn noti�es the scan-

ners that the bu�er is now available to accept a new event. The BFM then instructs
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Figure 2-10: Schematic diagram of 
ow in the CDF data acquisition and trigger
systems in the 1992-1993 run.
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the EVB that the event should be sent to a speci�c Level 3 node. Those events

passing the Level 3 trigger are written to magnetic tape for further o�ine analysis.

The process is shown in Figure 2-10. A subset of the events would also be passed to

several \consumers." These are programs which performed online monitoring of the

experiment, and provided an early warning if some component had failed.

For the 1993-1995 run, the data acquisition system was upgraded in order to

handle the higher event rates and to increase the reliability of the system. FASTBUS

Readout Controllers (FRC's) were installed in every FASTBUS crate to read out

the front end electronics. Using a Scanner Bus developed at Fermilab, each FRC is

connected to a Scanner CPU (SCPU), a VME module with a 68030 microprocessor.

The six SCPU are coordinated by the Scanner Manager (SM). Each SCPU opens

a permanent connection with each of the Level 3 Receivers, which act as intelligent

bu�ers, receiving event fragments from the SCPU and forming them into one event

for the Level 3 trigger.

During data taking, once the Level 2 trigger accepts an event, the Trigger Super-

visor instructs the FRC's to load the event. When an FRC �nishes loading an event

it noti�es the Trigger Supervisor. After all the FRC's �nish, the Trigger Supervi-

sor noti�es the Trigger Supervisor Interface (TSI), which is an FRC in the Trigger

Supervisor crate. The TSI noti�es the SM of the event, and the SM broadcasts a

Load Event request to the SCPU over the SCRAMNet re
ective memory network.

After a SCPU has received data from all the FRC's connected to it, it sends a Load

Event acknowledgment to the SM. After all the SCPU are �nished loading the event,

the SM noti�es the TSI, which informs the Trigger Supervisor, causing the Trigger

Supervisor to free the front end bu�ers so that another event can be loaded. Ad-

ditionally, the SM �nds an available Receiver, and issues a Send Event command

the the SCPU. Each SCPU transmits its event fragment to the Receiver over the

ULTRANet network. After the transmission is �nished, the SCPU returns a Send

Event acknowledgment to the SM. The SM noti�es the Receiver when the event is

complete. After the Receiver has the data from all of the SCPU's, the event is given
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to the Event Builder(EB) running on that node. The EB formats the event, and

passes it to the Level 3 trigger software. Events passing the Level 3 trigger are passed

to the Consumer Server (CS) via ULTRANet. The CS then passed events to the

Consumers using either ULTRANet or Ethernet. In this run, one of the consumers

is the Data Logger, which writes accepted events to disk. Events are written to disk

because Level 3 accepted events faster than it is possible to write the events to tape.

To alleviate this problem, accepted events are written to staging disks. When enough

data to �ll a tape is on disk, a daemon copies the �les onto tape and delete them

from the disk.
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Chapter 3

Inclusive  Cross Section

3.1 Event Selection

The events used in this analysis are selected from a trigger which requires two muon

candidates in the CMU. Even with no other requirements, a clear J= peak is visible

in the dimuon mass distribution. However, additional requirements can improve the

signal in addition to simplifying the measurement. In considering selection criteria,

several factors must be considered. To measure the cross section, it must be possible

to measure the e�ciency on the signal. In fact, some of the requirements imposed

are necessary to measure the cross section. Additionally, it is desirable to avoid

introducing biases against a particular production mechanism, for, even if the bias can

be determined, it complicates the measurement and introduces additional systematic

uncertainties.

3.1.1 Basic Requirements

One requirement which must be imposed on the data for a reliable cross section

measurement is that the muons which form the  candidate pass the dimuon trigger.

While additional events could be added to the sample by removing this requirement,

without a direct trigger path, it is di�cult to understand the trigger e�ciency.
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Figure 3-1: E�ciencies of the Level 1 and Level 2 muon triggers, as a function of
muon PT . The solid line is the central values, and the dashed lines indicate the
uncertainties. The vertical dotted line shows minimum PT accepted in this analysis
for the soft (left) and hard (right) muons.

A low threshold for the muon PT will certainly increase the number of events. This,

however, must be balanced against the decreasing trigger e�ciency and the increasing

relative uncertainty in that e�ciency. The Level 1 trigger has a slow turn on below

its nominal 3.3 GeV/c requirement[36], as shown in Figure 3-1. The measurement

of these e�ciencies is described in Section 3.1.3. The plateau e�ciency is 94% for

PT > 4 GeV=c. The trigger is 68% e�cient for PT=2 GeV/c and is still 34% e�cient

at a PT of 1.5 GeV/c, below which the muons no longer penetrate the calorimeter.

However, the trigger e�ciency becomes more poorly measured as one moves to lower

momentum. In order to limit the systematic uncertainties, both muons are required

to have transverse momentum larger than 2.0 GeV/c.

The Level 2 trigger has a much faster turn-on. Only one muon is required to

match with a track found by the CFT, so only the high-PT muon is required to be

in the region where the CFT is e�cient. This is implemented by requiring one muon

to have PT > 2:8 GeV=c, where the Level 2 trigger is approximately 70% e�cient, as
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seen in Figure 3-1.

The detector has little acceptance for  with j�( )j > 0:6, so the dimuon is re-

quired to have j�(�+��)j < 0:6, where �(�+��) is the pseudo-rapidity of the dimuon.

The kinematic requirements reject events with a low PT of the  , so, in order to

remain in the region where the kinematic acceptance is understood, we impose the

requirement PT (�+��) > 5 GeV=c, where PT (�+��) is the dimuon transverse mo-

mentum. To reduce the systematic uncertainty on the J= cross section, which has

a small statistical uncertainty, about 4 pb�1 of data for which the CTC was not

correctly calibrated is not used. This data is included in the  (2S) analysis, as that

analysis has far fewer events, and an appropriate correction is applied to the e�ciency.

This correction is calculated from the data by measuring the decrease in the J= rate

during these runs.

While some of the previous requirements decrease the background level, that is

not their main purpose. They are necessary for the events to be in a region where the

e�ciency of the detector is well understood. Additional requirements are applied for

the purpose of reducing the background. Before describing these requirements, the

backgrounds that need to be suppressed are described.

3.1.2 Background Contributions

One major source of background is \punch-through," which is usually divided into two

types. \Non-interactive" (or \sail-through") punch-through occurs when a charged

hadron, typically a kaon or a pion, travels through the entire calorimeter without

initiating a hadronic shower. Averaged over the di�erent species, there is a 0.5%

probability of a hadron penetrating the calorimeters without initiating a shower.[37,

38] Since that is the speci�c property of muons which the muon system exploits to

identify muons, these particles are misidenti�ed as muons. Beyond increasing the

shielding in front of the muon chambers, there is little that can be done to reject this

type of background.

\Interactive" punch-through occurs when a particle enters the calorimeter and
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initiates a shower, but the shower is not fully contained by the hadronic calorimeter

and one or more charged particles exit the calorimeter. If one of these particles leaves

a stub in the muon chamber which is consistent with a track reconstructed in the

CTC, then a muon candidate is formed. Since these particles are generally traveling

at an angle relative to the particle that initiated the shower, the match of the muon

stub with the extrapolated CTC track is often much worse than for a real muon.

Another source of background is \decay-in-
ight" muons. These are muons pro-

duced by the decays �+;K+!�+��. The di�erences between decay-in-
ight and  

muons depend on where the decay occurred. If the parent particle has already exited

the CTC, the muon direction will be displaced from the direction of the CTC track.

This will result in a poorer match between the CMU stub and the CTC track extrap-

olation. If the parent particle decays inside the CTC, the outcome will be dependent

on the CTC reconstruction. It may reconstruct the pre-decay portion, the post-decay

portion of the track or a combination of the two. In the �rst case, again, the CMU-

CTC matching will su�er, and in the second case, the CMU-CTC matching will be

normal. However, there may be di�culties in attempting to extrapolate the track to

the production vertex. If the kink caused by the decay is not too dramatic, both the

parent and daughter track segments may be �t to a single track, giving rise to the

third case. Here the CMU-CTC matching may su�er a signi�cant distortion. When

the parent particle decays before reaching the CTC, the situation is similar to when

the post-decay track is reconstructed, although there is less di�culty in extrapolating

the track to the production vertex. Since the kink is closer to the production vertex,

the error incurred by extrapolating along the trajectory, assuming that there is no

kink, accumulates over a shorter distance than when the decay occurs in the CTC.

In all cases, the magnitude of any extrapolation discrepancies will depend upon the

parent PT ; higher PT decays will produce smaller kinks and smaller discrepancies.

The �nal background is heavy 
avor decays. Opposite sign muon pairs can be

produced by bb or cc production, when both heavy quarks decay semileptonically

by bb!cc�+��X or cc!ss���+X or by the sequential decay b!c�+�� followed by
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PT (��) > 2:0 GeV=c
max(PT (�+); PT (��)) > 2:8 GeV=c

PT (�+��) > 5 GeV=c
j�(�+��)j < 0:6

Muons passed trigger
�2FIT < 10

�2CMU;R�� < 9
�2CMU;R�z < 9
j�zj < 5 cm
jzj < 60 cm

Hadronic Energy in calorimeter
Muon ADC information

Table 3.1: Event selection criteria

c!s����. Whereas most of the other backgrounds do not contain muons, the muon

candidates produced by these decays are real muons. The only di�erences with  

events are that the mass does not peak sharply, and the muons do not originate from

a common vertex.

3.1.3 Background Suppression

Several of the backgrounds mentioned above create muon candidates for which

the matching between the CMU stub and the CTC track is not as good as in the case

of muons from  decays. To reduce these backgrounds, the matching requirement is

tightened to be less than 3� in both the R� � and R� z views, where � is the error

on the the CTC track extrapolation from the multiple scattering in the calorimeters.

If a muon track is associated with three or four hits in the SVX, then the SVX

information is used to improve the track measurement. Otherwise, only the CTC

information is used. It is possible to improve the quality of the sample by placing

tighter requirements on the SVX. However, these requirements reject a larger fraction

of non-isolated muons.  events that result from direct production, or radiative �c

decays, are expected to be accompanied by only a few particles from the fragmen-

tation process. For B events, in addition to the fragmentation particles, there will
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also be the other B daughters, which will make these events less isolated. This will

clearly introduce a bias. As this bias can only be measured by removing the biased

requirements, applying these requirements does not improve the measurement.

Since we are looking for muons that came from the decay of a single particle, the

tracks are required to be separated by less than 5 cm in the z-direction at their points

of closest approach to the center of the detector. The distribution of the z di�erences

has an RMS of 1.2 cm, so this requirement is highly e�cient. In order that the muons

remain in the central portion of the detector, the muons are also required to have

jzj < 60 cm.

Each muon chamber covers one calorimetry tower, and the muon will deposit

minimum ionizing energy in that tower, so we require energy deposition above the

pedestal level in the calorimeter. As other particles may also deposit energy in the

same tower, it is not required that the energy be consistent with a minimum ionizing

particle, as such a requirement would create a bias against events from B decays.

A bias could originate in events where the energy deposition 
uctuates below the

calorimeter threshold. From the e�ciency of this requirement, listed in Table 3.4,

this occurs 0:1% of the time or less, too infrequently to cause a signi�cant e�ect.

There is also a class of events in which the charge deposited in the muon chambers

is below the threshold for the ADC readout. Background rates are much higher in

these events, so they are removed from the sample.

If an event has more than two muon candidates surviving these requirements,

all oppositely charged pairs are considered. While this creates a combinatoric back-

ground, less than 3�10�4 of the events contain more than two candidates. At this

level, the additional background is too small to be of concern.

The tracks are �tted to a common vertex, and the �2 of this one degree-of-freedom

�t is required to be less than 10. There are several advantages in imposing this con-

straint. The mass calculated using the vertex constrained momenta is more accurate

than the unconstrained mass, so there is less background under the mass peak. Also,

some of the background sources yield tracks which don't extrapolate to a common
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Figure 3-2: Mass distribution of the J= (a) and  (2S)(b) candidates, after all re-
quirements have been applied.

vertex. Requiring the two tracks to be consistent with a common vertex reduces these

backgrounds.

The invariant mass distributions, calculated from the constrained momenta, are

shown in Figure 3-2. There are 22120 � 161 J= events above the background in

15:4 � 0:6 pb�1 and 808 � 46  (2S) events in 17:8� 0:6 pb�1.

Trigger E�ciency

While the trigger system is extremely useful in eliminating unwanted events, it also

rejects some of the signal. Thus, the e�ciency of the three triggers needs to be eval-

uated. The e�ciency of the Level 1 trigger is determined using events that passed

a Level 1 single muon trigger, and which contain a second muon. The second muon

represents an unbiased sample for measuring the Level 1 trigger e�ciency. The num-

ber of muons which passed or failed the trigger is determined by counting the number

of events in the J= peak, and subtracting the background using the sidebands. The
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e�ciency is then

� =
N(Pass)

N(Pass) +N(Fail)
(3.1)

and is measured as a function of PT (�). As the Level 2 dimuon trigger only required

one muon to be matched with a CFT track, the other leg could be used to study

the e�ciency of that trigger, which greatly increased the available statistics. The

e�ciency is calculated using the same method with the Level 1.

In order to smooth out the statistical 
uctuations in the various PT bins, the mea-

sured e�ciencies are �t to a functional model. For the Level 1 e�ciency, the function

is the di�erence of two error functions, multiplied by the asymptotic e�ciency. The

width is dependent on the PT of the muon, as this a�ects how much multiple scatter-

ing the muon undergoes. The second error function represents the loss in e�ciency

when the muon is de
ected so much that the slope in the muon chamber changes

sign, and exceeds the maximum valued allowed by the trigger. This is a 2% e�ect

for a 2 GeV/c muon, and becomes less important at higher momentum. The Level

2 shape is a step function convoluted with a Gaussian resolution function with a

constant width, plus a constant fake background rate. The background arises from

muons which should have failed the trigger, but which passed because of noise hits or

hits from nearby tracks formed a CFT track.[36] These parameterizations allow the

probability that any given event will pass the trigger to be calculated.

Systematic uncertainties on the trigger e�ciency are estimated by varying the

�tting procedure, and by dividing the data into subsamples which may have di�erent

characteristics, and �tting each sample separately. The uncertainty on the Level 1

trigger e�ciency is largest at small PT , and causes an uncertainty of 6.4%(6.1%)

in the integrated J= ( (2S)) cross sections. The uncertainty is in the Level 2

trigger e�ciency is also largest at small PT . There is a 1.1%(1.0%) uncertainty in the

integrated J= ( (2S)) cross section from the Level 2 trigger e�ciency. The trigger

e�ciencies are shown in Figure 3-1.

The e�ciency of the Level 3 trigger is measured in two ways. The �rst method

involves hand scanning data from two runs where the Level 3 trigger was run in
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Figure 3-3: Width of the J= mass peak as a function of  PT . The width varies by
a factor of two over the range of interest. These values are meant to be used only as
an estimate, since the �ts used to derive them are of low quality.

tagging mode. After selecting events which passed the Level 2 trigger, it is determined

whether or not the CFT track is a real track, or a fake track. Tracks with large impact

parameters are rejected, along with tracks from satellite-satellite interactions or tracks

which were not found by the o�ine reconstruction program. After this, the tracking

e�ciency is the ratio of the number of tracks found by the Level 3 trigger to the

number of real tracks found by the CFT.

Since hand scanning is somewhat subjective, the e�ciency is cross checked, using

data from near the beginning of the collider run. At this time, the Level 3 trigger was

run in tagging mode while it was being validated. From this sample, dimuon events

are selected, and divided into two samples, based on whether they passed or failed the

Level 3 trigger. The dimuon mass is reconstructed, and the mass distributions are �t

for the number of events in the J= peaks. This yields an e�ciency of 97 � 2%.[39]

3.2 Mass Fit
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Figure 3-4: Mass and pull (Data - Fit / Error) distribution of the J= candidates with
5 < PT (�+��) < 5:5 GeV=c. Overlaid is a �t to a Gaussian plus a linear background.
The �t is clearly too low in the center of the peak and the tails, while it is too high
in the sides of the peak.

The number of  events is determined by �tting the mass distribution. As the

muon PT resolution is a function of PT , �tting the full data sample to a single Gaussian

yields a poor �t. The width of the mass distribution is shown in Figure 3-3 as a

function of PT (J= ), obtained by �tting the mass distribution to a Gaussian plus

a linear background. Although the �ts are poor, it still shows that the width is

increasing with the  transverse momentum, demonstrating that the signal shape

must be a function of PT ( ). Restricting the  candidate to a smallPT range alleviates

this problem. However, even then the muons have a range of momenta, and the mass

peak is still not well described by a Gaussian, as can be seen from Figure 3-4. In

addition, the low-side tails are larger than the high-side tails, indicative of radiative

decays.

In order to account for the PT -dependence of the resolution, a mass template is

derived from Monte Carlo.  events are generated with a 
at distribution in PT ,

� and � using the  generator described in Section 5.1. The  is then decayed to
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either �+�� or �+��
, using a next-to-leading order QED calculation. In order to

simulate the trigger requirement, the muon trajectories are required to extrapolate

to the �ducial CMU volume. The event is rejected if either muon does not project

into the CMU chambers, or if there is not an empty chamber between the two muons

when they are on the same side of detector. The momentum of each muon is smeared

(as described below) to simulate the detector resolution. The smeared momenta

are required to pass the kinematic cuts of Section 3.1 and are used to calculate the

invariant mass and PT of the muon pair. For events passing these criteria, the smeared

mass is put into a histogram corresponding to that PT . Each Monte Carlo event is

assigned a weight proportional to a combination of the predicted cross sections from B

production and the Color Singlet Model, where the predictions have been rescaled so

that the integrated B production cross section is 20% of the integrated combined cross

section. This fraction is used because about 20% of both the J= and  (2S) samples

originate from B decays. The weight is multiplied by the probability of that event to

pass the trigger. This yields the mass templates used to �t the mass distributions.

The tracking resolution is better for tracks which have SVX information, so three

mass templates are generated for each PT region, corresponding to the three possible

permutations of tracks with and without SVX information. These three templates are

added together, �xing the ratio of the total area under each to the ratio of the number

of all the dimuon candidates in the data for each category. A binned likelihood �t

is used to �t the data to this template plus a linear background to determine the

number of events. Despite �tting the mass distribution in a region which covers

� 200 MeV=c2 on either side of the  mass, the radiative decays cause about 1% of

the  events to have a dimuon mass smaller than the lower boundary, as can be seen

in Figure 3-7. The �tted number of events is corrected for events which fall outside

the mass window used in the �t.

One possible systematic error is that the number of events returned by the �t

could depend on the relative fractions of the three templates used in the �t. To

investigate this dependence, several alternative approaches are employed to calculate
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Figure 3-5: Schematic diagram of the mass template creation process. The momen-
tum of each muon is smeared by the resolutions, and used to calculate the mass for
the template. This procedure is performed four times, with A and B being all possible
combinations of SVX and CTC. The SVX-CTC and CTC-SVX templates are added
to form one template.
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Figure 3-6: The de�nition of curvature is the change in direction per unit arc length,
C �

���d'
ds

���. For a circle, C = 1
R
.

these fractions. One procedure is to measure the number of events with each SVX

classi�cation in three separate �ts. In each PT bin, three �ts are performed using

only the events with a speci�c number of SVX tracks, and the corresponding mass

template. The number of events from each �t is converted into the fraction of the

signal for that template, and the full sample is re�t using that fraction. Additionally,

the mass distributions are re�t after raising or lowering each fraction by one statistical

sigma, yielding eight new estimates of the number of events. In all cases, the variations

are negligible when compared to the statistical uncertainty.

3.2.1 Resolution determination

The mass templates are not constructed using the standard CDF detector simu-

lation (\QFL"). While QFL reproduces many of the aspects of the data, it produces

a better mass resolution than is observed in the data. Since the mass resolution is

exactly the aspect of the simulation which needs to be done correctly, this is not a

satisfactory situation. Also, since we will need to tune the detector simulation so that
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it reproduces the data, a fast simulator is needed, in order that the large Monte Carlo

sample can be simulated many times. This eliminates the possibility of using a \�rst

principles" simulation which models the detector by generating hits within the de-

tector, followed by running the standard o�ine reconstruction on the resulting data,

which would be unacceptable slow. For these reasons, we use a simple model of the

detector, with a few parameters that allow us to tune the model until it reproduces

the data.

The detector measures the change in the track direction per arc length, known as

the curvature and shown in Figure 3-6. The curvature resolution, �C , is independent

of the particle momentum and is the �rst parameter in our model. The curvature

is proportional to 1=PT , and 1=PT of each muon is smeared by a Gaussian of width

�C. The resolution of � and cot �, which determine the track direction, are also

approximately constant. The second parameter is ��, which is the width of the

Gaussian used to smear cot �. � should also be smeared by ��, except that the �

resolution is dominated by multiple Coulomb scattering. The mean scattering angle

for a particle undergoing multiple scattering is approximately Gaussian distributed,

with the width having a 1=P dependence[40, 41, 42]. To simulate this, we take the

three track angles, #x;y;z, where cos #i � Pi
P
, 1 and smear each angle independently

by a Gaussian of width �MS=P . �MS is the third and �nal parameter in the detector

model.

There is one additional factor a�ecting the resolution| whether or not the track

has SVX information. Each of the three parameters are determined twice, once for

tracks with SVX �ts, and once for tracks that only use CTC information.

From previous studies, approximate values of these parameters are known.[43]

For each parameter, �ve equidistant values are chosen, centered around the expected

values. Mass templates are generated as explained earlier using all possible com-

binations of the parameters, yielding 125 di�erent resolution parameterizations for

both the SVX and CTC cases. In a PT range with high statistics, the data mass

1#z is identical to the � used in the rest of this thesis.
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Figure 3-7: The (a) generated dimuon mass distribution and the mass templates
for 6 < PT (�+��) < 6:5 GeV=c after being smeared by the fast detector simulator.
The templates are for (b) both muons in the CTC, (c) both muons in the SVX
and (d) exactly one muon in the SVX. The radiative tail is clearly visible in all the
distributions.
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distributions in 0.5 GeV/c PT bins are �t to each of the mass templates plus a linear

background. For a given parameterization, we de�ne the total �2 to be

�2tot =
X
i

�2i (3.2)

�2i is the chi square from the �t in the ith PT bin, and the sum runs over all the

PT bins. The parameterization that generates the smallest �2tot is chosen to describe

the resolution. However, if one of the parameters is at an extreme value, the range

of values for that parameter is recentered on that value. New mass templates are

generated, and the �ts are repeated. This process is iterated until the parameters

are stable. The number of events does not change appreciably if the parameters are

replaced with any of the six best sets of parameters. Figure 3-8, Figure 3-9 and

Figure 3-10 show the results of the mass �ts.

3.2.2 Quality of Mass Fits

While it is clear from Figure 3-11 that the radiative �t describes both the center of

the mass peak and the tails better than a single Gaussian, it is necessary the ascertain

that each �t yields an accurate description of the data, so the quality of the mass �ts is

checked in several ways. The data is plotted with the �t overlaid and visually checked

to be certain that the �t is reasonable. This is also done using (Data-Fit)/Error for

each �t. This has the advantage that these values should have a mean of zero with a

spread of one, regardless of the number of events in each bin. Each �t is also checked

to ascertain that the �2 is reasonable.

As these provide fairly subjective tests, a toy Monte Carlo was written to provide

additional checks.2 The result of each �t is used to generate 100 Monte Carlo samples.

The number of signal and background events in each sample is chosen from Poisson

distributions, where the means of these distributions are given by the number of signal

and background events extracted from the data mass �ts. Each event is assigned a

2See Appendix A for a more detailed description the toy Monte Carlo.
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Figure 3-8: J= mass distributions at low PT , with radiative �t results overlaid.
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Figure 3-9: J= mass distributions at high PT , with radiative �t results overlaid.
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Figure 3-10:  (2S) mass distributions, with radiative �t results overlaid.

82



Figure 3-11: Results of �tting the J= mass distribution to a Gaussian plus linear
background (left) and using the radiative �t (right).

mass. The signal event masses are generated according to the shape used to �t the

signal. The masses of the background events are generated according to a linear

distribution with the same slope obtained by the data �t.

With each Monte Carlo sample, the generated masses are used to �ll a histogram

with the same bin sizes as used for the data, and the histogram is �t using the

same code used to �t the data distributions. One can then choose various quantities,

\�gures of merit," related to the quality of the �t, and compare each �gure of merit

from the data �t to the distribution in the Monte Carlo �ts. The Monte Carlo

distribution is an indication of where the �gure of merit should lie if the underlying

model is accurate and the data is well described by the �t. Furthermore, one can use

the Monte Carlo distribution to de�ne a \con�dence level" for each �gure of merit.

The con�dence level should be uniformly distributed between 0 and 1 for data sets

which are well described.

One �gure of merit is the �2 of the �t. For the �2, the con�dence level is the

number of Monte Carlo �ts with a larger �2 divided by the total number of Monte
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Figure 3-12: Con�dence level of the mass �ts, based on the �2 distribution.

Carlo �ts. These are shown in Figure 3-12, and are evenly distributed over the entire

interval. While this creates con�dence that the �t describes the data, the number of

events may be mismeasured. This is because the number of events is driven by only

a few bins near the mass peak. Furthermore, the statistical error on the number of

events in these bins is larger than in the other bins, allowing larger absolute di�erences

between the data and the �t with only a small increase in the �2. If the model is

inaccurate in this region, the number of events could be mismeasured without giving

a large contribution to the �2. To test if this may be happening, a second �gure of

merit is de�ned, X
R �X

i

(Ni � Fi) (3.3)

where Ni is the number of events in the ith bin, Fi is the value of the �t in that bin,

and the sum runs over all bins from 3.02 to 3.15 GeV/c2 . In contrast to the �2, which

provides a measure of the probability that the �tted distribution would produce the

observed data,
P
R measures the di�erence between the expected and the observed

number of events in a signal{rich region. While this di�erence could result from
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Figure 3-13: Distribution of
P
R values for Monte Carlo (histogram) and data (arrow)

in the �rst two PT regions.

an excess/de�cit of either background events or signal events, unexpectedly large

values of
P
R would probably stem from an excess/de�cit of signal events, for a

combination of two reasons. First, most of the events are signal events, so they are

the most important part of calculating
P
R. Secondly, the background level is a slowly

varying function of the mass, and can be determined from the sideband regions, while

the shape of the signal varies rapidly with mass, and the sidebands do not place a

constraint on the number of signal events. For this �gure of merit, the con�dence level

is de�ned as the number of Monte Carlo samples where jPRj is larger than jPRj
in the data. Figure 3-13 shows the Monte Carlo distribution and the data value forP
R in the �rst two bins. While the con�dence levels for these two �gures of merit

vary from as low as 1% to as high as 94%, they are consistent with being uniformly

distributed over the region from 0 to 1. In addition to �2 and
P
R, one additional

set of �gures of merit is used, the number of bins in which the �t is more than N�

from the data, where N runs from 1 to 3.5 in steps of 0.5. There is no indication of

problems in these variables either.
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Figure 3-14: Average trigger e�ciency for the J= (left) and the  (2S)(right) candi-
dates as a function of PT ( ). The value is calculated by averaging over all events in
the data sample.

In addition to checking the quality of the �t, the toy Monte Carlo can also be

used to check for biases in the �t. Since the number of generated events is known,

the di�erence between the �tted and the actual values can be calculated. If the mean

of this distribution is signi�cantly di�erent from zero, it would indicate a bias in

determining the number of events. The mean di�erence is less than 1% in everyPT bin,

and is negligible compared to both the statistical and other systematic uncertainties.

3.2.3 Trigger E�ciency

The above �ts measure the number of events reconstructed by this analysis. To

extract the cross section, this number needs to be corrected for the fraction of events

which fail to pass the trigger. To perform this correction, the mass distribution of

the data events is weighted on an event by event basis by 1=�Trigger, where

�Trigger = �L1(PT (�
+)) � �L1(PT (��)) �

f1� [1� �L2(PT (�
+))] � [1� �L2(PT (�

�))]g (3.4)
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PT (J= ) (GeV/c) �(MC)=�(Data) NTC=(N=�) �N=N

5-5.5 1.001 1.005 0.018
5.5-6 1.006 1.0001 0.019
6-6.5 1.004 1.002 0.020
6.5-7 1.007 0.9999 0.022
7-8 1.011 0.996 0.018
8-9 1.012 0.994 0.023
9-10 1.004 0.999 0.028
10-12 1.005 0.996 0.028
12-14 1.008 0.993 0.047
14-17 1.004 0.993 0.058
17-20 1.011 0.972 0.110

Table 3.2: Variations in the J= trigger e�ciency correction from di�erent techniques
for performing the correction. The second column is the ratio of the average trigger
e�ciency calculated from the Monte Carlo, divided by the same number, calculated
in the data. The third column is the ratio of the number of events calculated by
�tting the trigger corrected mass distribution and the number of events from �tting
the uncorrected distribution, and dividing by the average trigger e�ciency from the
Monte Carlo. The last column shows the fractional statistical error on the number of
events.

PT ( (2S)) (GeV/c) �(MC)=�(Data) NTC=(N=�) �N=N

5-6 0.99 1.02 0.11
6-7 0.997 1.004 0.14
7-9 0.999 0.99 0.10
9-12 1.001 0.99 0.13
12-17 0.99 1.004 0.19

Table 3.3: Variations in the  (2S) from di�erent techniques for performing the trigger
correction. The columns are the same as in Table 3.2, except that the  (2S) sample
is used.
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�L1;L2(PT ) is the probability of a muon to pass the Level 1 or Level 2 trigger, as

described in Section 2.3.8. The expression involving the Level 2 e�ciencies expresses

the probability of at least one of the muons passing the Level 2 trigger. The resulting

mass distributions are �t for the number of events, using the samemethod as described

previously. New templates are generated, as the trigger e�ciency can a�ect the shape

of the template. These templates are created in the same manner as described earlier

in this section, except that the Monte Carlo events are not weighted by the trigger

e�ciency.

As a cross check, the trigger correction is performed using two other techniques.

First, the average trigger e�ciency of the Monte Carlo events (�(MC)) is calculated

in each PT bin by averaging the calculated trigger e�ciency for each event. The

number of reconstructed events divided by the average e�ciency gives the number of

events corrected for the trigger e�ciency. The average trigger e�ciency can also be

calculated using the data events (�(Data)), just as with the Monte Carlo events. This

e�ciency is shown in Figure 3-14. All three techniques are in excellent agreement

with each other, and are tabulated in Table 3.2 and Table 3.3.

3.3 Acceptance

Having determined the number of events, the next step in extracting the  cross

section is to determine the detector and kinematic acceptance to  events.

The kinematical and detector acceptance is determined from Monte Carlo studies.

The  Monte Carlo program described in Section 5.1 generates  events with a 
at

PT spectrum. Each event is assigned a weight based on the predicted cross section

as described in Section 3.2. The events are passed through the detector simulation

QFL, described in Section 5.1.3.

After the events have been simulated, they are analyzed with a minor variant

of the code used to analyze the data. As the Monte Carlo events contain only two

charged particles and possibly a photon, there is no possibility that a reconstructed
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Figure 3-15: Detector acceptance for the J= (left) and  (2S) (right) as a function
of PT .

event is not a  , so the number of events is determined by summing the weights of all

reconstructed events. Since we have not determined that the Monte Carlo correctly

reproduces the non-kinematic aspects, such as the muon stub matching �2, only the

kinematic cuts are applied. To calculate the acceptance in a particular PT region, the

total weight of all the events whose reconstructed PT lies in that region (Wr) is divided

by the total weight of all the events whose generated PT lies in that region(Wg), so

that

�(PT ) =
Wr

Wg
(3.5)

This is shown in Figure 3-15. In both cases, the generated PT is used to calculate the

weight of the event. Since the reconstructed PT is used to determine the PT region

for the numerator, while the generated PT is used for the denominator, after the

acceptance correction is applied, the data is also corrected for any smearing between

PT bins. This smearing has several sources. First, there are events whose true PT is

near the edge of a bin, and the reconstructed value lies on the other side of the edge

because of the detector resolution. Secondly, there are events where the true PT is
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above a bin edge, but the  decays radiatively into �+��
, and the momentum of

the muon pair is below the edge of the bin.

Since there will be events that cross both the high and low bin edges in both

directions, the amount of this correction will depend on the PT distribution. However,

this dependence is small. To measure this dependence, the cross section measured

later in this chapter is parameterized. The detector and kinematical acceptance is

recalculated using that parameterization as the input PT spectrum. This changes the

acceptance by 1%, independent of PT .

The acceptance also depends on the polarization of the  . Taking �� to be the

angle between the  direction in the lab frame and the positive muon direction in the

 rest frame, the angular distribution of the decay will have the form

d�

d cos ��
/ 1 + �pol cos

2 �� (3.6)

where �pol is the polarization of the  . At low momentum, the CDF detector can only

reconstruct  with large values of ��, as events with small �� produce asymmetric

decays, and the low-PT muon is too soft to be reconstructed. As the transverse

momentum of the  increases, the soft muon becomes sti�er, and larger values of

�� become accessible, reducing the uncertainty caused by the unknown polarization.

Promptly produced  could have any value of �pol in the range �1 � �pol � 1.

Charmonia which are formed from the decay of B hadrons can be fully polarized in

the B rest frame. However, boosting the  to the  rest frame tends to depolarize

the  , which have an e�ective polarization 0.143(�0:219) in the  rest frame when

the  polarization in the B rest frame is +1(�1). In both cases, half the maximum

variation is assigned as the systematic uncertainty due to the polarization.

3.4 E�ciencies

The acceptance calculated in the previous section includes neither the e�ciency of

the reconstruction algorithms, nor the e�ects of the non-kinematical event selection
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criteria. These must be calculated separately.

The e�ciency of the o�ine CTC track reconstruction is measured by adding hits

to events, and attempting to reconstruct the added track. This e�ciency is found to

depend on the density of tracks near the embedded track. Only a few percent of the

data is in the region where the tracking e�ciency is less than its plateau value. The

average e�ciency for reconstructing both tracks is 96:4 � 2:8%.

The e�ciency of CMU stub reconstruction and CMU-CTC linking is measured

using data from a single muon trigger.[44] One muon is required to pass the trigger,

and a second muon is reconstructed using the Central Muon Upgrade (CMP). These

muon chambers overlap the coverage of the CMU chambers, but have more absorber

before them. The tracks for these muons are required to project through an active

CMU chamber, and to not be near the edge of the CMU chamber. The mass of the

dimuons with and without a CMU stub is calculated, and the number of J= events

in each distribution is �t to determine the e�ciency of 97:2� 1:2%.

There is a range of runs for which the CTC was not properly calibrated. As a

result, the Level 3 trigger was less e�cient in those runs. Those runs are excluded

from the J= , but included in the  (2S) analysis. This drop in e�ciency is measured

by comparing the observed rate of J= production during the \good" runs and the

\bad" runs. This gives an e�ective Level 3 trigger e�ciency of 92:3 � 2% for the

 (2S) analysis. The Level 3 trigger e�ciency for the J= analysis is 97 � 2%,[39] as

is described in Section 3.1.3.

The e�ciency of the muon quality requirements are determined using the J= 

sample. The number of J= events before and after the requirements is determined

by performing a sideband subtraction, and the e�ciency is the ratio of these two

numbers. The e�ciency of each requirement listed above the double line in Table 3.4

is measured separately, but the e�ciencies cannot be combined in a simple manner,

since there are correlations. The total e�ciency is measured by determining the

number of J= events with no requirements and with all of the requirements. This

shows that the event selection requirements are 90:5 � 1% e�cient. The e�ciency is
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Source E�ciency (%)

�2FIT < 10 99:0 � 0:9
�2CMU;R�� < 9(High PT ) 99:5+0:5�0:9

�2CMU;R�� < 9(Low PT ) 99:6+0:4�0:9

�2CMU;R�z < 9(High PT ) 98:4 � 0:9
�2CMU;R�z < 9(Low PT ) 99:0 � 0:9

j�zj < 5 99:7+0:3�0:9

jzj < 60 cm (High PT ) 96:4 � 0:9
jzj < 60 cm (Low PT ) 96:4 � 0:9

Hadronic Energy (High PT ) 100:0+0:0�0:9

Hadronic Energy (Low PT ) 99:9+0:1�0:9

ADC hits (High PT ) 99:0 � 0:9
ADC hits (Low PT ) 99:1 � 0:9

All event selection requirements 90:5 � 1
Level 3 Trigger 97 � 2(92:3 � 2)

CTC Track Reconstruction 96:4 � 2:8
CMU Reconstruction and Linking 97:2 � 1:2

Table 3.4: E�ciencies for J= and  (2S) reconstruction. All e�ciencies are assumed
to be the same for the J= and the  (2S), except for the Level 3 Trigger e�ciency.
For that case, the  (2S) e�ciency is given in parentheses. The e�ciencies of some of
the requirements listed above the double line are correlated, especially the jzj < 60
cuts. The e�ciency given by \All event selection requirements" correctly takes the
correlations into account, by measuring the e�ciency of applying all the requirements
at once.
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also determined as a function of PT , but there is no statistically signi�cant deviation

from a constant e�ciency. The e�ciencies are summarized in Table 3.4.

3.5 Cross Section

Figure 3-16: J= (left) and  (2S)(right) di�erential cross sections. The error bars are
the statistical and the PT -dependent systematic uncertainties, added in quadrature.

The  di�erential cross section is de�ned by

d�

dPT
( ) � B( !�+��) = NT ( )

� � � � R Ldt ��PT (3.7)

where NT ( ) is number of  candidates in the bin after correcting for the trigger

e�ciency,� is the detector and kinematic acceptance, � is the combined event selection

and reconstruction e�ciencies,
R Ldt is the integrated luminosity, and �PT is the size

of the PT bin.

Figure 3-16 shows the di�erential cross sections for the two states, and Table 3.5

and Table 3.6 tabulate the results. Table 3.7 summarizes the systematic uncertainties.
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PT (J= )(GeV=c)
d�
dPT

� B (nb/GeV/c)

5-5.5 9:32+1:56�1:62

5.5-6 6:92+1:11�1:17

6-6.5 4:95+0:76�0:81

6.5-7 3:44+0:50�0:55

7-8 2:19+0:30�0:34

8-9 1:16+0:15�0:17

9-10 0:685+0:082�0:096

10-12 0:310+0:035�0:042

12-14 0:106+0:012�0:014

14-17 0:0413+0:0044�0:0053

17-20 0:0125+0:0017�0:0019

Table 3.5: The di�erential J= cross section as a function of PT , for j�( )j < 0:6.
The errors are the statistical and systematic errors added in quadrature.

PT ( (2S))(GeV=c)
d�
dPT

� B (nb/GeV/c)

5-6 0:26�0:05
6-7 0:11�0:02
7-9 0:064+0:011�0:012

9-12 0:017�0:003
12-17 0:0043+0:0009�0:0010

Table 3.6: The di�erential  (2S) cross sections as a function of PT , for j�( )j < 0:6.
The errors are the statistical and systematic errors added in quadrature.

94



Source J=  (2S) Ratio

*L1 Trigger 6.4% 6.1% 0.2%
*L2 Trigger 1.1% 1.0% 0.2%
L3 Trigger 2% 2% -
*B Polarization 5% 5% 2.5%
*Prompt Polar. 15% 15% 7.5%
Luminosity 3.6% 3.6% -
Event Selection 0.9% 0.9% -
Tracking e�ciency 2.9% 2.9% -
Reconstruction 1.2% 1.2% -
MC statistics 1% 2% 2%

Total 9.5%(17%) 9.7%(17%) 3.2%(7.8%)

Table 3.7: Fractional systematic uncertainties in the cross section measurements.
Items marked with * are PT -dependent, and the uncertainty on the integrated cross
section is given. The total uncertainty is the uncertainty on the B (prompt and
inclusive) cross sections.

The integrated cross sections are

�(J= ) � B(J= !�+��) = 17:4 � 0:1(stat)+2:6�2:8(sys) nb (3.8)

�( (2S)) � B( (2S)!�+��) = 0:57 � 0:04(stat)+0:08�0:09(sys) nb (3.9)

where

�( ) = �(pp! X; PT ( ) > 5 GeV=c; j�( )j < 0:6) (3.10)

Using the measured branching ratios of B(J= !�+��) = 5:9 � 0:25%,[45] and

B(J= !�+��) = 0:88 � 0:13%[46], this yields absolute cross sections of

�(J= ) = 295 � 2(stat)+44�47(sys)� 13(B) nb (3.11)

�( (2S)) = 64 � 5(stat)+9�10(sys)� 9(B) nb (3.12)

where the last error comes from the uncertainty in the branching ratios.

This is the cross section for  production from any source. In order to simplify
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the comparison with theoretical predictions, the cross section can be divided into the

cross section from each of the components. That is the topic of the next chapter.
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Chapter 4

Production Fractions

As discussed in Chapter 1, the cross section measured in the previous chapter is

the combination of several di�erent production mechanisms. In order to simplify

the comparison with theory, we now separate the measurement into the di�erent

components. The component from B decays has a distinctive feature, namely, the

displaced decay vertex of the  resulting from the B proper lifetime of c�B � 450�m.

The SVX is capable of resolving vertices with a resolution of � 40�m, so  events

that are B daughters can be tagged by the clearly displaced vertices. The fraction

of  events from B decays can thereby be measured by analyzing the decay length

distribution of the  . For the non-B production modes, the decay lengths are typically

nine orders of magnitude smaller than the B decay length and experimentally are

characterized by the SVX resolution. These modes are grouped together under the

name \prompt production." For the J= , this component can be further divided by

reconstructing �c!J= 
 decays. The fraction of J= produced from �c is separated

in this manner from the \direct production," where the J= is produced in the initial

interaction, instead of being produced from the decay of an intermediate state.
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4.1 B Fraction

The �rst step in disentangling the components which form the  cross section is to

separate the component coming from B decays from the prompt components. This

is done by �tting the apparent decay length distribution of the  .

4.1.1 Decay Length Measurement

In order to obtain an accurate measurement of the decay length, both muons are

required to be reconstructed in the SVX. To avoid introducing biases into the B

fraction, the only requirement placed on the muons is that there are at least three

hits in the SVX associated with the track. Many of the requirements typically imposed

on SVX tracks at CDF are de facto isolation requirements. These are inherently less

e�cient on  events resulting from the decay of B hadrons, as the other B daughters

will be nearby. For the events in which both of the muons are reconstructed in the

SVX, the tracks are re�t with the requirement that they extrapolate to a common

vertex in three dimensions. This vertex gives the  production vertex, also referred

to as the secondary vertex, for this is where the B decays when the  is produced as

the result of a B decay.

To measure the decay length, in addition to the secondary vertex, the pp inter-

action vertex or primary vertex must be known. One could attempt to measure this

vertex on an event by event basis, using the other tracks in the event. There are

potential problems with this technique. Each event will contain tracks from the pri-

mary vertex resulting from the fragmentation process and the underlying event. If the

event is a B event, however, there will also be tracks from the other decay products of

the B that produced the  , and the decay products of the second b-
avored hadron

in the event. It is di�cult to exclude the other B daughters from the determination

of the primary vertex, and including them can shift the location of the reconstructed

vertex. Furthermore,  events tend to have relatively low track multiplicities, so even

if only the correct tracks are used, it may not be possible to accurately reconstruct
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Figure 4-1: Possible decay con�gurations. PV indicates the primary vertex, and
SV the secondary vertex. The arrows show the direction of the two muons. (a)
is the normal (physical) con�guration. (b) is an unphysical scenario, and indicates
an incorrectly reconstructed vertex. (c) is also unphysical, and can cause problems
de�ning the error of a signed decay length.

the primary vertex.  candidate events in the data have an average of eight tracks

with PT > 1 GeV=c, and only one track with PT > 2 GeV=c. This includes any B

daughters that are present.

For these reasons, the run-averaged beam position described in Chapter 2 is used

to calculate the production vertex. The SVX provides an excellent measurement of

the beam position, as was already shown in Figure 2-7. The beam does not lie exactly

parallel to the central axis of the CDF detector, but moves radially by a few microns

for every centimeter moved in the z direction. This results in a change of � 100 �m

from z = 0 to the outer edge of the SVX. Given the � 40�m resolution on secondary

vertices, this will induce a signi�cant bias into the B fraction measurement if it is

not correctly taken into account. To correct for this e�ect, the VTX vertex nearest

in z to the  candidate is used to determine the z of the primary vertex. From

this, the location of the beam line in the transverse plane is determined, and the

primary vertex is assumed to lie at the center of the beam. Using this algorithm,

the uncertainty in the location of the primary vertex is dominated by the beam size,

which has a Gaussian distribution with a width of 40�m in both transverse directions.

The relation between the  momentum vector and the decay length direction
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provides information about the quality of the event reconstruction. Figure 4-1a shows

a physical decay con�guration where the parent traveled forward from the primary

vertex to the secondary vertex, and then decayed. Figure 4-1b shows an unphysical

decay con�guration, where the parent apparently moved oppositely to its momentum,

and then decayed. This can result either from a prompt particle, where the resolution

caused the decay vertex to be reconstructed behind the primary vertex, or from an

incorrectly reconstructed vertex.

This information is used by associating a sign with the decay length. One method

is to take the dot product of the momentum vector and the decay length vector, and

assign the sign of the product to the decay length. In this case, it is di�cult to de�ne a

useful error on the decay length. For example, consider the case in Figure 4-1c, where

the two vectors are nearly perpendicular. Moving the decay vertex a small distance

along the momentum direction will cause the decay length to change from large and

positive to large and negative, while the measured error can be much smaller.

A better solution is to use the projection of the decay length onto the  trans-

verse momentum. This value is called Lxy to emphasize that is is measured only in

the x � y plane, and is shown graphically in Figure 4-2. The error on Lxy is well-

de�ned, even for con�gurations such as Figure 4-1c. Also, in that case, if the event

is a real  , as opposed to a background event, this removes an incorrect component

from the measurement. However, whatever mechanism caused the secondary vertex

to be mismeasured perpendicular to the  momentum may have also a�ected the

measured location along the direction of the momentum. This (possible) error can-

not be corrected using the available information, and results in non-Gaussian tails in

the resolution function.

While the Lxy distribution could be analyzed directly, the analysis is simpli�ed

by using the Lorentz invariant proper lifetime of the B, � . If the B lived for a time t

before decaying in the CDF lab frame, then t = Lxy=vxy, where vxy is the B velocity

in the transverse plane. Then

� =
t



=

Lxy
vxy


(4.1)
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Figure 4-2: The variables used to de�ne Lxy, shown in the transverse plane. By using

Lxy � ~L � ~PT
 =PT

 , the error on Lxy is well de�ned, even for con�gurations such as
Figure 4-1c.

where 
 = 1=
p
1� �2. vxy can be determined by noting that

PT = m�T
c = m
�
vxy
c

�

c (4.2)

where m is the B rest mass and �T = vxy=c. We then have

c� = Lxy � mc
PT

(4.3)

There is only one problem with this { PT is the transverse momentum of the B

(which isn't measured), not the transverse momentum of the  (which is measured).

Fortunately, the  takes most of the energy and momentum of the B. Thus, the  

can be used as an initial estimator of the B momentum and direction.

Since the  momentum and the B momentum (or, more accurately, ~�T
) are not

identical, the c� calculated using the  quantities are not accurate. A decay length

of Lxy = LB
xy cos' is reconstructed for a B which travels a transverse distance LB

xy
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before decaying into a  which moves at an angle ' relative to the B direction in

the transverse plane. The �
 correction will be incorrect by a factor of PT (B)=mB

PT ( )=m 
.

To correct for these e�ects, the B Monte Carlo described in Section 5.1.1 is used to

determine a correction factor. The average correction factor is then

Fcorr(PT ( )) =

*
PT (B)=mB

PT ( )=m 
cos'

+
(4.4)

This is calculated by averaging over Monte Carlo events in a PT region passing the

kinematic cuts used in this analysis. With this correction factor, we can calculate the

\pseudo-c� ,"

c� =
Lxy

(PT ( )=m ) � Fcorr(PT ( )) (4.5)

Figure 4-3 shows the correction factor as a function of PT for the J= and the  (2S).

For both particles, there is only a slight PT dependence at low PT , which quickly

plateaus.

The requirement that both muons be reconstructed in the SVX in order to accu-

rately measure Lxy reduces both data samples by about a factor of two. To improve

the accuracy of the measurement, about 90 pb�1 of data from the 1993-1995 collider

run are added. This data is not used to measure the cross section, as the analysis of

the e�ciencies is not complete. The only di�erence in analyzing this data is that the

muon PT requirements are lowered to 2 GeV/c on both muons, as is implemented in

the trigger.

4.1.2 Lxy Distribution

Before the fraction of  from B can be measured, the c� distribution of the back-

ground must be understood. Whereas the background in the mass distribution is well

described by a straight line, the background in the c� distribution is more compli-

cated. To determine the background shape, the c� distribution of events that lie in

the sidebands of the mass distribution are used.

Because of the radiative tail in the mass distribution, the lower sideband will
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Figure 4-3: The Monte Carlo correction factor Fcorr for the J= (left) and the
 (2S)(right). Fcorr relates the c� calculated with the  parameters to the true c�
of the B. Both plots have suppressed zeroes.

contain a small number of real  events. This should be 1-2% of the total number of

 events, based on the fraction of the SVX-SVX template in this region, described in

Section 3.2. Since the  and background distributions have similar shapes, i.e., a large

prompt component with asymmetrical tails, this will be interpreted as an additional

background when the data is �t to extract the B fraction. As a result, a similar

(small) fraction of  events in the signal region will be interpreted as background,

slightly decreasing the statistical power of the �t. The exact fraction depends on the

ratio of the sizes of the signal region and the sideband region, but is about 1%.

The shape of the c� distribution of the background components described in Sec-

tion 3.1.2 is the sum of several distinct distributions. One obvious feature is a large

prompt component. This is attributed to punch-through and decay-in-
ight after

the hadron leaves the CTC. Since most of the particles created at CDF come from

the primary vertex, and these backgrounds produce well-measured tracks, the ver-

tices reconstructed from these background events will be consistent with the primary

vertex.
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There are also clear non-Gaussian tails in both the positive and negative c� regions

which have several sources. Displaced vertices can arise from muons produced by

decay-in-
ight. When a pion or a kaon decays, there will be a \kink" at the point

of decay. If the decay occurs before or inside the SVX, the resulting muon track will

not extrapolate back to the primary vertex. When combined with another track, the

resulting vertex will be displaced.

Sequential decays of B hadrons will also produce an opposite sign muon pair,

whose mass will sometime be near or at the  mass. bb and cc production can also

result in an opposite sign muon pair. While the muons are often separated by a large

angle, resulting in a large invariant mass, a low mass pair could result if the B(D) and

the B(D) are nearby, as is often the case in gluon splitting. As the SVX only provides

two-dimensional information, these decays are often reconstructed as coming from a

single vertex. Furthermore, this vertex will tend to be displaced with a positive Lxy.

In addition to these tails, which result from real physical processes, displaced

vertices can be generated by incorrect track reconstruction. If the track reconstruction

assigns incorrect SVX hit(s) to the muon candidates, an arti�cially displaced vertex

can be created. Even if the particle came from the primary vertex, the extrapolation

will be skewed by the incorrect hit(s).

Parameterization

The data is �t using an unbinned log-likelihood �t. This requires a probability density

function for the c� distribution of each event. Deriving this function for the back-

ground would require a study of each component of the background, plus a detailed

understanding of the possible failures of the tracking system. Fortunately, a practical

approach, whereby the background is described as the sum of several empirical terms,

can be justi�ed a posteriori.

The background distribution is constructed from the following components. The

prompt component is represented by a Gaussian. The width of the Gaussian is taken

to be the measured error on the c� of each event, multiplied by a global scale factor.
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This scale factor arises because the measured error may not correctly account for the

uncertainty in the measurement. The �ts indicate that the scale factor deviates from

unity by up to 10%. In addition, three exponentials are added, one describing the

c� > 0 region, one describing the c� < 0 region, and one which is symmetric about

c� = 0. An asymmetry is expected in the lifetime distribution, as the heavy 
avor

events will tend to have positive c� . This is also observed in the data. The lifetime

and normalization of the three exponentials is independent.

The  Lxy distribution is the sum of two components. The prompt component

of the signal is parameterized by the resolution function, which is a Gaussian with

symmetric exponential tails. The width of the Gaussian is the error measured for

that event, scaled by the same factor used for the background. The B component is

represented by an exponential with c� > 0 convoluted with the resolution function.

The full parameterization of the signal and background regions are

S(c� ) = (1 � fB) �R(c� ) + fB �
Z 1

0
dc�� E(c�� ; c�0) �R(c� � c�� ) (4.6)

B(c� ) =

8>>>>>>>><
>>>>>>>>:

(1� f+ � f� � fsym)G(c� ; ��) + f+ � E(c� ;�+)+
1
2
fsym � E(c� ;�sym) ; c� > 0

(1� f+ � f� � fsym)G(c� ; ��) + f� � E(c� ;��)+
1
2
fsym � E(c� ;�sym) ; c� � 0

(4.7)

where

S(c� ) the signal function

B(c� ) the background function

R(x) = (1 � ftail) �G(x; ��) + ftail � 1
2
E(x;�tail)

G(x;�) =
1p
2��

exp

 
� x2

2�2

!

E(x;�) =
1

�
exp

 
�jxj
�

!

fB B fraction
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Figure 4-4: J= c� distributions, with �t results overlaid. In the signal region (left
plots), the solid region is the background shape and the hashed region is the excess of
the B component over the background. The solid line represents the total function.
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Figure 4-5: The same as Figure 4-4 for higher PT bins.
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Figure 4-6: The same as Figure 4-4 for the  (2S).
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Figure 4-7: The same as Figure 4-4 for the  (2S) at high PT .
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c�0 average B lifetime

� measured error on c�

� error scale

f+ fraction of background in the positive exponential

�+ lifetime of the positive exponential

f� fraction of background in the negative exponential

�� lifetime of the negative exponential

fsym fraction of background in the symmetric exponential

�sym lifetime of the symmetric exponential

ftail fraction of non-Gaussian tails in resolution function

�tail lifetime of non-Gaussian tails in the resolution function

4.1.3 Fitting the Lifetime Distribution

The data is divided into signal and sideband samples based on the dimuon mass

in each PT region. The range of the dimuon mass window for the signal region is

chosen to maximize S2=(S + B), where S(B) are the number of signal (background)

events in the mass window. 100 MeV/c2 regions above and below the mass peak are

used as sidebands. The data are �t using an unbinned maximum log-likelihood �t[47]

with the following likelihood function:

L = Lsignal
shape � Lsideband

shape � P (Nsig;N
�t
sig) � P (Nbkg;N

�t
bkg) (4.8)

where

Lsignal
shape �

0
@NsigY
n=1

[�S(c� sign ) + (1� �)B(c� sign )]

1
A (4.9)
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Figure 4-8: The J= (left) and  (2S)(right) B fraction as a function of PT ( ) from
�tting the data. The vertical error bars indicate the statistical uncertainty; the
horizontal error bars denote the bin width.

is the shape of the signal region, and

Lsideband
shape �

0
@NbkgY
n=1

B(c�bkgn )

1
A (4.10)

is the shape of the sideband region.

There are several parameters used in the likelihood function beyond those de�ned

in c� parameterizations. Nsig is the number of events in the signal region, and Nbkg

is the number of events in the sideband region, which are determined by counting the

number of events in the data. N�t
sig(N

�t
bkg) is the �tted number of events in the signal

(sideband) regions. P (N ;�) is the Poisson probability to observe N events when, on

average, � events are expected. � is the purity of the signal region, de�ned by

� � N�t
sig �R �N�t

bkg

N�t
sig

(4.11)

where R is a scale factor which corrects for the di�erent widths of the signal and

sideband mass windows. c� sign (c�bkgn ) is the c� of the nth candidate in the signal
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PT (J= ) (GeV/c) fB(%)

5-5.5 14.8 � 0.5
5.5-6 16.5 � 0.5
6-6.5 17.8 � 0.6
6.5-7 19.1 � 0.6
7-8 20.7 � 0.5
8-9 23.2 � 0.7
9-10 23.6 � 1.0
10-12 30.0 � 1.0
12-14 31.7 � 1.7
14-17 38.7 � 2.4
17-20 37.9 � 4.6

Table 4.1: The B fraction in the J= sample as a function of PT . The uncertainty is
statistical only. There is also a systematic uncertainty of 1.1% of the value for each
point.

(sideband) region.

c�0 is �xed at 438 �m, the average B lifetime measured using the inclusive J= 

sample[48]. All other parameters are allowed to vary freely if the �t is able to converge.

At high-PT , there are fewer events, and the �t is unable to converge when all the

parameters are allowed to vary. Therefore, the negative tail in the background is

removed in the J= �t in the 14 < PT (�+��) < 17 GeV=c bin. This is justi�ed as

there are few events at negative c� , and these are well described by the remaining

terms. In the J= �t for 17 < PT (�+��) < 20 GeV=c, the non-Gaussian tails in the

resolution function are �xed to be 2% of the resolution function and the symmetric

exponential is removed from the background. The tails to the resolution function

normally constitute about 2% of the resolution function, and cannot be resolved with

the available statistics. For the  (2S), the fraction of the non-Gaussian tails in the

resolution function cannot be accurately determined, and are �xed to be 2% of the

resolution function in every �t.

Figure 4-4, Figure 4-5, Figure 4-6 and Figure 4-7 show the results of some of the

�ts. The background distributions are well described by the data, indicating that the
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PT ( (2S)) (GeV/c) fB(%)

5-6 16.7 � 2.7
6-7 26.5 � 3.2
7-9 26.1 � 3.3
9-12 36.1 � 4.5
12-17 43.0 � 8.7

Table 4.2: The B fraction in the  (2S) sample as a function of PT . The uncertainty
is statistical only. There is also a systematic uncertainty of 1.1% of the value for each
point.

background parameterization, while lacking a physical justi�cation, does provide an

adequate model. The B fractions as a function of PT are tabulated in Table 4.1 and

Table 4.2. They are shown in Figure 4-8. For both modes, the B fraction rises from

� 15% at low PT to � 40% at high PT .

4.1.4 Quality of the B fraction �ts

Several checks are applied to ensure that the �ts do indeed describe the data. For

each �t, the data is plotted and the �t result are overlaid. This is visually checked to

ensure that the �t is accurate, and the �2 of each �t is calculated. The �2 per degree

of freedom, shown in Figure 4-9, is reasonable for all the �ts. The pull distributions,

de�ned by (Data � Fit)/Error, are also checked for unusual deviations. Figure 4-10

shows the mean of the pull distribution for each �t. The mean should be zero, and

the result is consistent with zero for every �t. Figure 4-11 displays the RMS of the

pull distributions, which should be one. 12 of the 16 distribution have an RMS less

than 1.1, and the remainder are less than 1.2.

As a further check, a toy Monte Carlo is used to determine the con�dence level

of the �ts.1 The �t results are used to generate the number of signal and sideband

events in each Monte Carlo sample. An error on the c� measurement for each event

is generated according to the distribution of errors in the data. The error is then

1See Appendix A for a more detailed description of toy Monte Carlos.
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Figure 4-9: �2 per degree of freedom for the J= (left) and the  (2S) (right) B
fraction �ts.

Figure 4-10: Mean of the pull distribution of the J= (left) and the  (2S) (right) B
fraction �ts. The error bars indicate the RMS of the distribution, divided by

p
N � 1,

where N is the number of bins used to display the �t.
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Figure 4-11: RMS of the pull distribution of the J= (left) and the  (2S) (right) B
fraction �ts.

used to generate the value of c� for that event. (The error on the value is generated

before the value itself because the c� probability distribution depends on the error.)

100 Monte Carlo distributions are generated in this manner for each �t, and each

distribution is �t with the same code used to �t the data. Using the distribution of

the likelihoods obtained from the Monte Carlo �ts, a con�dence level on the data

�t is established. This is shown in Figure 4-12. The con�dence level on each �t is

acceptable, never falling below 5%. Combined with the other checks, these results

provide con�dence that the �t is accurately describing the data.

To test if the �ts are stable under variations in the �tting technique, the �ts are

redone with the following variations:

� The mass window is changed so that it is 95% e�cient on the signal, based on

the shape of the SVX-SVX mass template.

� The window is rede�ned to be �50 MeV=c2 around the  mass

� The average B lifetime is �tted as a free parameter
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Figure 4-12: Con�dence level of the J= (left) and  (2S) (right) B fraction �ts from
the toy Monte Carlo.

Variation Change in fB

95% e�cient mass window 0.7%
50 MeV/c2 mass window 3�10�4
Float B lifetime 0.5%
Fit Lxy distribution 0.3%
Vertex quality requirements 0.1%

Total 0.9%

Table 4.3: Change in B fraction as the �tting technique is changed
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Source J=  (2S) Ratio

B Fraction Fitting technique 0.9% 0.9% 0.9%
B lifetime 0.7% 0.7% -

Total 1.1% 1.1% 0.9%

Table 4.4: Systematic uncertainties in the B fraction measurements. All uncertainties
are independent of PT .

� The Lxy distribution is �t, instead of the c� distribution. Instead of attempting

to determine the correct lifetime of the Lxy distribution, the lifetime is again

allowed to 
oat during the �t.

� Quality requirements are imposed on the vertex. The �2 of the SVX �t is

required to be less than three per hit, and the error on Lxy is required to be

less than 30�m � (PT ( )=1 GeV=c).

Figure 4-13 shows the result of the �ts divided by the results of the standard �tting

method. In all cases, the variations are small compared to the statistical uncertainties.

In an e�ort to decrease the uncertainties in any variation, the ratio is �t to a constant,

which is tabulated in Table 4.3. Although the deviations are still not signi�cant, a

systematic uncertainty of 0.9%, the sum in quadrature, is assigned to the �tting

technique. These are summarized in Table 4.4.

The one external number used in determining the B fraction is the average B

lifetime, c� 0. Raising or lowering c�0 by 37 �m (the statistical and systematic uncer-

tainties, added in quadrature) changes the B fraction by 0.7%. This is taken as the

systematic uncertainty due to the B lifetime.

All of these checks have two common features. They use the SVX to measure the

decay length, and then they use the log-likelihood �t to determine the B fraction.

Either of these may introduce systematic e�ects into the B fraction determination,

although there is no known a priori reason why they should do so. Testing for possible

systematic e�ects in the SVX requires a method for determining the B content of the

sample without using the SVX. One method of doing this is to use the isolation of
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Figure 4-13: Variation in the J= B fraction as a function of PT for the di�erent
�tting methods.
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Figure 4-14: Average value of
P
PT for J= candidates in the SVX, and in B-enriched

and B-depleted samples. As expected, the B-enriched sample is less isolated.

the  .  that are B daughters will be accompanied by the other decay products of

the B, while prompt  are expected to only be accompanied by particles produced

from the fragmentation process or the underlying event. This is studied using the

quantity X
PT �

X
i

PT
i (4.12)

where the index i runs over all reconstructed tracks in a cone of �R � p
��2 +��2 <

0:4 around the  direction, excluding the two muons.
P
PT should be larger for B

decays than for prompt events. To verify that this is the case, Figure 4-14 shows theP
PT distribution for the inclusive J= sample, a B-enriched sample (c� > 250 �m)

and a B-depleted sample (jc� j < 100 �m).
P
PT is clearly larger in the B-enriched

sample and smaller in the B-depleted sample. While this does make use of the SVX, it

is insensitive to systematic e�ects in the SVX. It only requires that a highly displaced

vertex correspond to an increase in the B content. Figure 4-15 compares the
P
PT

distributions for events in the SVX with the same distribution for the entire data

set. There is no signi�cant di�erence between the two distribution. This lack of a
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di�erence, combined with the absence of any reason to believe that the SVX should

introduce a bias, leads to the conclusion the the B fraction in the full data set is the

fraction extracted by the �t.

Figure 4-15: Average value of
P
PT for J= candidates with both muons in the SVX,

and for the entire sample. There is no di�erence between the two distributions, which
would be the case if the SVX is introducing a bias.

4.2 �c!J= 
 Fraction

The �c component is removed in a statistical manner, by calculating the fraction

of J= resulting from �c decays as a function of PT (J= ), F J= 
�c (PT (J= )).[63] The

determination of this fraction begins with J= candidates, where the dimuon mass

lies in a window around the J= mass. These events are searched for isolated photon

candidates detected by the CEM with ET > 1 GeV. The photon and the J= 

candidate are combined to form the invariant mass di�erence

�M =M(�+��
)�M(�+��) (4.13)
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Figure 4-16: Mass di�erencem(�+��
)�m(�+��) for �c candidates. The points are
the data, and the solid line is the �t to the data of a Gaussian signal plus background.
The shaded region is the Monte Carlo background prediction.
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The �M distribution, shown in Figure 4-16, exhibits a clear peak near �M =

400 MeV=c2, where the �c is expected. The resolution is insu�cient to resolve the

di�erent �cJ states, but it is su�cient for this analysis to measure the inclusive �c

fraction.

The peak is near the threshold created by the kinematic cuts, so a simple poly-

nomial background model, such as the one used in �tting the J= mass distribution,

will clearly be inadequate. The background shape is derived from a Monte Carlo

which includes J= events taken from the data. Excluding the two muons, each

charged track in the event is replaced with a �0, �, or K0
S. The relative fractions are

determined from the measured K�/�� and �/�0 ratios and isospin symmetry. Each

particle is decayed, and any photons are simulated using QFL. Running the �c recon-

struction code on the resulting events produces a �M distribution which is used as

the background shape. As a cross check, the analysis is repeated using dimuons from

the J= sidebands, which contain only background. The shape in this region agrees

with the shape obtained from the background Monte Carlo.

The number of �c events can now be measured by �tting the data distribution.

F J= 
�c

is extracted by

F J= 
�c =

N�c

NJ= �A
 � � (4.14)

where N�c(NJ= ) is the number of �c(J= ) events, A
 is the acceptance for the pho-

ton, once the J= has been found and � is the e�ciency of the isolation criteria used in

selecting the photon. The photon acceptance is calculated from Monte Carlo, assum-

ing that both the �c and the J= decays are unpolarized and includes the e�ciency

of reconstructing isolated photons. The e�ciency of the photon reconstruction is

measured using �c candidates from a parallel analysis. In that analysis, the photon is

not reconstructed using the CEM, but by using the tracking to reconstruct photons

which have converted into electron-positron pairs. While the small probability of the

photon converting limits the available statistics, this produces a �c sample where the

photon has been selected using independent criteria. These events are studied to see

how often nearby particles in the event would have caused the photon to fail the
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Figure 4-17: F J= 
�c;no B as a function of PT . The solid line is the result of �tting the

data points to an exponential. The dashed lines represent the systematic uncertainty
in the �t value. The error bars indicate the statistical uncertainty.

isolation requirements. The systematic uncertainties on F J= 
�c are dominated by the

e�ciency for reconstructing the low-energy photon, the e�ects of the production and

decay models on the acceptance, and the background shape.

The F J= 
�c described thus far is the fraction from all production modes, including

B which decay to charmonium. To remove the B contribution, the �c fraction should

be calculated by

F
J= 
�c;no B =

N�c �N b
�c

(NJ= �N b
J= ) �A
 � � = F J= 

�c
� 1 � F �c

B

1� F
J= 
B

(4.15)

N b
�c

(N b
J= ) is the number of �c(J= ) events originating from B decays, and F �c

B (

F
J= 
B ) is the fraction of �c(J= ) events from B decays. There are not enough �c events

to determine F �c
B as a function of PT . However, Monte Carlo studies indicate that

the correction factor on the far right-hand side of Equation 4.15 is nearly independent

of PT . The correction is performed by measuring F
J= 
B and F �c

B in the full sample,

and applying the same correction in each bin. The resulting distribution is shown in
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Figure 4-17, with a �t to an exponential overlaid.

In the next chapter, these results will be used to extract the cross section from each

production mechanism, and to compare those results with the theoretical predictions.
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Chapter 5

Comparison with Theoretical

Predictions

In this chapter, the cross sections measured in Chapter 3 are combined with the B

and �c fractions measured in Chapter 4 to extract the cross sections for the di�erent

 production mechanisms.

The cross section for  production via an intermediate B state is given by

d�

dPT
� B( )

�����
B

=

 
d�

dPT
� B( )

!
� F  

B (5.1)

where d�
dPT

� B( ) is the inclusive cross section and F  
B is the fraction of  events

resulting from B decays. All quantities are functions of PT ( ). The statistical uncer-

tainties are calculated by adding the fractional statistical uncertainties on the separate

measurements in quadrature. The systematic uncertainties are added likewise. The

prompt cross sections are calculated similarly:

d�

dPT
� B( )

�����
Prompt

=

 
d�

dPT
� B( )

!
� (1� F  

B ) (5.2)

The direct  cross sections are extracted by removing the �c contribution from the

prompt cross section. Since there is no �c feeddown into the  (2S), the prompt and
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direct cross sections are the same for that state. With F J= 
�c;no B being the fraction of

the prompt  which are produced by �c decays, the direct cross sections are calculated

by

d�

dPT
� B(J= )

�����
Direct

=

 
d�

dPT
� B(J= )

!
� (1� F

J= 
B ) � (1� F

J= 
�c;no B) (5.3)

d�

dPT
� B( (2S))

�����
Direct

=
d�

dPT
� B( (2S))

�����
Prompt

(5.4)

After describing how theoretical predictions for these results are obtained, the pre-

dictions will be compared with the data.

5.1 Monte Carlo Simulation

Monte Carlo simulations form an important part of any analysis. This is especially

true in a cross section analysis, where the acceptance of the detector must be under-

stood in order to relate the observed number of events to the cross section.

5.1.1 Event Generation

This analysis makes use of two event generators. The �rst, BGENERATOR, is a b-quark

generator.[49] The second, JGENONLY, generates  events directly, without specifying

the production model.

BGENERATOR

BGENERATOR generates an event containing a single b quark, according to the PT and

rapidity distributions of [50]. The b quark is generated with PT (b) > PT (min) and

ymin < y(b) < ymax, where PT (min), ymin and ymax are parameters controlled by the

user. MRSD0 and MRSD- structure functions[51] are available, and the renormaliza-

tion scale and the b quark mass can be set. The b quark is fragmented in B+, B0,

Bs or �b using Petersen fragmentation[14], where the fragmentation parameter z is
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de�ned as

z � EB + P
k
B

Eb + Pb
(5.5)

EB is the energy of the B hadron, P
k
B is the momentum of the B hadron parallel

to the momentum of the b quark, Eb is the energy of the b quark and Pb is the

momentum of the b quark. This process can violate energy conservation, in the

sense that it is possible to obtain EB > Eb. If this occurs, a new value of z is

generated. This creates a region of phase space (PT (b) and y(b) both near zero)

where the fragmentation process cannot terminate, because Eb < mB � EB. If

this is detected by the fragmentation restarting a large number of times, the b quark

momentum is regenerated, e�ectively removing a portion of the available phase space,

as shown in Figure 5-1. Once this portion of the fragmentation succeeds, the B hadron

is given momentum perpendicular to the b quark direction. The direction is selected

uniformly, and the magnitude is given by

P? =
16

3�

q
r�1=3 � 1 (350 MeV=c) (5.6)

where r is a random number uniformly distributed between 0 and 1. The distribution

is has a mean value of 350 MeV/c and an RMS of 233 MeV/c (2
3
the mean value).

When BGENERATOR �nishes generating events, it reports the theoretical cross sec-

tion corresponding to the generation constraints. As noted above, the fragmentation

procedure removes a portion of the b quark phase space. The cross section calculation

does not take this into account, and will be inaccurate if the generation parameters

do not exclude this region. For that reason, all the BGENERATORMonte Carlo samples

used in this analysis are generated with PT (min) > 3 GeV=c and jy(b)j < 1, which

excludes the a�ected region. This does not a�ect the  PT spectrum, as  with

PT ( ) > 5 GeV=c are not produced by b quarks with PT (b) < 3 GeV=c.
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Figure 5-1: Transverse momentum versus rapidity of the b quark for BGENERATOR

events with successful fragmentation.

JGENONLY

Early in this analysis, it became obvious that the Color Singlet Model and the B

Production Model were insu�cient to explain the  (2S) cross section. Rather than

developing a  generator which implements a particular production model, a genera-

tor was developed which uses a 
at PT spectrum. As various models are introduced, it

is possible to apply that model by weighting each event in the already generated and

simulated Monte Carlo sample, rather than using the much slower process of generat-

ing a new Monte Carlo data set and running the detector simulation. JGENONLY is such

a generator, which generates events containing only a  . The transverse momentum

of the  is uniformly distributed between PT (min) and PT (max); the pseudorapidity

of the  is uniformly distributed with �min < �( ) < �max. The azimuthal angle of

the  is generated from a uniform distribution between 0 and 2�.

It should be noted that both of the generators produce only the particles being

studied. There are no additional particles produced from fragmentation, and the

underlying event is completely ignored. Any other particles produced by the hard
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Figure 5-2: The (a) J= and (b)  (2S) momentum distributions in the CLEO lab
frame.

scattering are also missing. At the very least, there will be another particle to recoil

against the produced b or  . While these generators will model the physics being

studied, they will not model the environment of the event, such as the isolation of

the  .

5.1.2 Particle Decay Simulation

There are three decays which need to be modeled for this analysis: B! X,  !�+��

and  (2S)!J= ��. For the B! X decay, rather than modeling each decaymode, an

inclusive decay model is developed, based on the  momentum spectrum in inclusive

B decays measured at CLEO.[27] The remaining decays are modeled using the QQ

Monte Carlo, developed at CLEO.

B! X

The B is forced to decay to a  with a momentumdistribution parameterized from

inclusive measurements by CLEO,[27] and corrected for the boost of the B meson in

the CLEO lab frame. The  momentum spectra in the CLEO lab frame are shown

in Figure 5-2. The  direction is assumed to be uniform in the B rest frame. The

branching ratios used are B(B!J= X) = 1:13 � 0:07%,[27] B(J= !�+��) = 5:9 �
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0:25%,[45] B(B! (2S)X) = 0:34�0:05%[27] and B( (2S)!�+��) = 0:77�0:17%[6].
The decays B�!J= K� and B0!J= K� are dealt with separately. In the B rest

frame, the momentum distribution for a given two body decay is a delta function.

When boosting to the CLEO lab frame, this distribution spreads out, depending

on the angle between the B and  momenta. The correction for the CLEO boost is

correct on average, but individual events are distributed about the correct value. The

momentumdistributions of the J= in the CLEO lab frame has been measured for the

decays B�!J= K� and B0!J= K�.[27] These distributions are subtracted from the

J= momentum distribution used to generate the J= momentum. For each mode,

the appropriate fraction (fK� ; fK�) of the events are decayed into the given two-body

modes, where

fK� =
B(B�!J= K�)

B(B!J= X)
(5.7)

fK� =
B(B0!J= K�)

B(B!J= X) (5.8)

While only Bu and Bd mesons are produced at CLEO interaction region, the CDF

data also contain Bs, Bc and �b events. This model ignores Bc production, as Bc

production is expected to be about 10�3 of the total B hadron production rate.[52]

The c quark in the initial state will enhance the branching ratio to charmonium, but

Bc production is expected to account for <
� 1% of all B to  events.[53] Currently,

there is no measurement of the  momentum distribution in Bs and �b decays. To

model the decay of these particles, it is assumed that the momentum spectrum in

the Bs or �b rest frame has the same shape as for the lighter B mesons but that

the momentum scale is di�erent. The  momentum is generated identically for all

the parents, assuming the parent is a B0. After moving to the B rest frame, the  

momentum is scaled by P ) P � Pmax(B)=Pmax(B0). Pmax is the momentum of the

 in the B rest frame for the two-body decay mode where the other particle, X, is

the lightest particle for which the decay is not suppressed, e.g., B�! K�, B0! K0,

130



Bs! �, and �b! �. Using conservation of energy, it is simple to show that

Pmax(B) =

q
m4

B + (m2
 �m2

X)
2 � 2m2

B(m
2
 +m2

X)

2mB
(5.9)

The  decay model presents a source of systematic error in the B to  cross section

prediction. However, this turns out to be very small compared with the uncertainties

in the B hadron cross section, discussed below. The reason is that the e�ect of

boosting the  from the B rest frame to the CDF lab frame washes out most of the

e�ects of the  momentum in the rest frame. When a J= is produced in the B

rest frame, it has less than 1.8 GeV/c of momentum, or �
 < 0:6. (For the  (2S),

�
 < 0:4.) Almost all the B parents for which the  is reconstructed at CDF have

PT > 8 GeV=c, or �
 > 1:5. When the  is boosted from the B center of mass

frame to the lab frame, the boost from the B is at least as important as the initial  

momentum. Furthermore, the  momentum distribution is constrained by the CLEO

measurement, so only small variations in the momentum spectrum are allowed. Still,

several di�erent checks are performed to quantify the size of this uncertainty.

One source of uncertainty is the  momentum spectrum measured by CLEO.

Since the spectrum is used as a probability distribution, changes in the normalization

do not a�ect the model; only the shape is important. To measure the e�ect of the

uncertainty on the shape, the value at each point (�n) is varied according to its error

(�n) by

�n ) �n � n �N=2

N=2
�n (5.10)

where N is the number of points measured and n = 1; 2; : : : ; N . The new distributions

are parameterized, and used to redecay the same Monte Carlo sample of B events used

to calculate the central value of the predicted cross section.

To be certain that performing the two-body decays separately is not biasing the

prediction, the calculation is performed in two di�erent manners. First, the J= K�

and J= K� decays are not removed from the inclusive distribution. As a second

check, the Bs and �b are decayed to J= � and J= � assuming the same branching
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ratios as B0 to J= K�. This is reasonable, as both decays are color suppressed, and

similar Feynman diagrams are involved. Furthermore, all are pseudo-scalar to vector{

vector decays. The e�ect of scaling the momentum spectrum for the heavier mesons

is tested by assuming the  is recoiling against a massless particle when calculating

Pmax. In all cases, the prediction changes by only a few percent, which is completely

insigni�cant compared to the uncertainties from variations in the renormalization

scale, the Petersen fragmentation parameter and the b quark mass.

QQ

The remainder of the decays are performed using the QQ Monte Carlo, version 9.0,

developed at CLEO and adapted for use within the CDF framework by Jonathan

Lewis. QQ will decay the input particles to the speci�ed �nal states. For the  !�+��

decays, leading order radiative corrections, including the emission of hard photons,

are included.

5.1.3 Detector Simulation

The CDF detector simulation used here, \QFL," is a high-level simulator, in that it

does not create raw data, but directly produces the data structures used by physics

analyses. There is also a detector simulation which performs a low-level simulation

(CDFSIM), but it is much slower, and is not used by this analysis.

QFL models the detector by propagating the generated particles through the

detector. The z of the event vertex is distributed according to a Gaussian distribution,

with a user-speci�ed mean and width. A particle experiences energy loss due to

ionization and is de
ected by multiple Coulomb scattering whenever it passes through

material. In the CTC, individual hits are not generated; rather, a reconstructed track

is generated using the resolution of the CTC. For particles which pass through the

SVX and/or the CMU, hits are generated, with their positions smeared by the detector

resolution and by multiple scattering e�ects. The standard o�ine reconstruction code

is then used to link the CTC tracks with the SVX and CMU hits.
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5.2 B Production

Figure 5-3: J= di�erential cross sections from B production, compared with expec-
tations. The data points are plotted at the location where the central theory curve
has its average value.

The cross sections for J= and  (2S) production from B decays are shown in

Figure 5-3 and Figure 5-4. The results are tabulated in Table 5.1 and Table 5.2.

Also shown in the �gures are the theoretical predictions for the  from B cross

sections; these are calculated by generating b quarks according to the NLO QCD

predictions[50], using the renormalization scale � = �0 �
q
m2
b + PT

2 and the b quark

mass mb = 4:75 GeV=c. The b quark is fragmented into Bu, Bd and Bs mesons and

�b baryons using Petersen fragmentation[14] in a 37:5 : 37:5 : 15 : 10 ratio with the

Petersen fragmentation parameter, �P , set to 0.006. The B is decayed to a  using

the model described in Section 5.1.

There are several sources of uncertainty in the predicted b! rates beyond those
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PT (J= )(GeV=c)
d�
dPT

� B (10�3nb/GeV/c)

5-5.5 1380�150
5.5-6 1140+110�120

6-6.5 881+85�90

6.5-7 658+60�65

7-8 452+39�42

8-9 269+23�25

9-10 162�15
10-12 92:9+7:8�8:1

12-14 33:6+3:5�3:4

14-17 16:0+1:8�1:7

17-20 4:74+0:85�0:84

Table 5.1: The di�erential J= cross section from B production, as a function of
PT , for j�( )j < 0:6. The errors are the statistical and systematic errors added in
quadrature.

PT ( (2S))(GeV=c)
d�
dPT

� B (10�3 nb/GeV/c)

5-6 43�9
6-7 29�6
7-9 17�3
9-12 6:2�1:2
12-17 1:8�0:5

Table 5.2: The di�erential  (2S) cross sections from B production, as a function of
PT , for j�( )j < 0:6. The errors are the statistical and systematic errors added in
quadrature.
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Figure 5-4:  (2S) di�erential cross sections from B production, compared with ex-
pectations. The data points are plotted at the location where the central theory curve
has its average value.

in the  decay model. The cross section for b quark production depends on the values

chosen for � and mb. To obtain an upper variation, � is lowered from �0 to �0=4 and

the b quark mass is lowered from 4.75 GeV/c to 4.5 GeV/c.[54] The  cross section

also depends on the fragmentation of the b quark, so �P is lowered from 0.006 to

0.004. A lower variation is produced by setting � to 2�0, the b quark mass to 5.0

GeV/c and �P to 0.008. As may be seen in Figure 5-3 andd Figure 5-4, the data falls

substantially above the nominal calculation. The J= upper variation is consistent

with the data at large PT , but is lower than the data at small values of PT . The  (2S)

upper variation is always below the data, although at large PT , the discrepancy is

only about 1�. The nominal J= predictions are a factor of 2-4 below the data, while

the  (2S) predictions are a factor of 3-4 low.
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The integrated  cross sections from B production, multiplied by the branching

ratios, are

�(J= ;B) � B(J= !�+��) = 3:23� 0:05(stat)+0:28�0:30(sys) nb (5.11)

�( (2S);B) � B( (2S)!�+��) = 0:13� 0:01(stat)�0:01(sys) nb (5.12)

where

�( ;B) = �(pp! X; PT ( ) > 5 GeV=c; j�( )j < 0:6) (5.13)

proceeding through an intermediate B state. This can be compared to the predicted

values of

�(J= ;B) � B(J= !�+��) = 0:82(1:76) nb (5.14)

�( (2S);B) � B( (2S)!�+��) = 0:04(0:09) nb (5.15)

where the value in parentheses is the upper variation. The integrated cross sections

are a factor of 3-4 higher than the predicted values. Given the disagreement in the

di�erential cross sections, this is not surprising, as the integrated cross sections are

dominated by the low PT di�erential cross sections.

While what is actually measured is the cross section multiplied by the branching

ratio, dividing by the branching ratios given earlier allows a comparison where the

normalization is expected to be similar. Doing so yields

�(J= ;B) = 4840 � 70(stat)+420�450(sys)� 360(B) nb (5.16)

�( (2S);B) = 5000 � 400(stat)�400(sys)� 1300(B) nb (5.17)

where the last error is due to the uncertainty in the branching ratios. The theoretical

predictions are

�(J= ;B) = 1230(2637) nb (5.18)

�( (2S);B) = 1559(3294) nb (5.19)

136



The larger  (2S) mass means that the  (2S) takes a larger fraction of the parent

momentum (on average) than the J= , resulting in a 27% larger predicted rate for

 (2S) production with PT ( ) > 5 GeV=c, compared to the J= . While the  (2S)

cross section is larger than the J= cross section, it is not 27% larger. However,

the statistical error and the uncertainty on the branching ratios, which are entirely

uncorrelated, are more than large enough to cover the di�erence.

5.3 Direct Production

Early predictions for direct  production were done at lowest order in �S, and only

considered diagrams where the cc pair is formed in a color singlet state.[20, 21] After

experimental results indicated possible disagreement with the shape at large trans-

verse momentum[55, 56], Braaten and Yuan[57] realized that fragmentation diagrams

would dominate the cross section at high PT , even though those diagrams are higher

order in �S. These two contributions, when taken together, constitute the Color

Singlet Model (CSM).

5.3.1 Color Singlet Model

The comparison of the data with the CSM is straightforward, as there are no

undetermined parameters beyond the usual scale parameters. Figure 5-5 shows the

direct J= and  (2S) cross sections along with the CSM predictions.[58] The calcu-

lation uses the MRSD0 structure function[51] and the renormalization, factorization

and fragmentation scales are set to PT/2. The CSM fails horribly, as the data exceeds

the predicted rates by factors of 50 to 100! This stark disagreement between the two

predictions is the \CDF  (2S) anomaly."1

1It is called the  (2S) anomaly and not the  anomaly for historical reasons. When this result was
�rst presented, the �c content in the J= sample was poorly known.[59] The J= cross section could
be explained by a large �c fraction, but there was no explanation for the excess  (2S) production.
So while the anomaly existed in both the J= and the  (2S), it was apparent only in the  (2S).

137



Figure 5-5: Direct J= (a) and  (2S) (b) cross sections, compared with the CSM.
The �c contribution to the J= cross section has been removed. The solid curves are
the CSM predictions. The vertical error bars are the statistical and PT -dependent
uncertainties, added in quadrature. The points are plotted at the position where the
prediction has its average value in the bin.

The integrated cross sections times branching ratio are

�(J= ;direct) � B(J= !�+��) = 9:95 � 0:08(stat)+1:8�1:9(sys) nb (5.20)

�( (2S);direct) � B( (2S)!�+��) = 0:43 � 0:03(stat)+0:06�0:07(sys) nb (5.21)

where

�( ;direct) = �(pp! X; PT ( ) > 5 GeV=c; j�( )j < 0:6) (5.22)

for direct production. These values dwarf the CSM predictions of

�(J= ;direct) � B(J= !�+��) = 0:113 nb (5.23)

�( (2S);direct) � B( (2S)!�+��) = 0:0068 nb (5.24)
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Dividing out the branching ratio, we have

�(J= ;direct) = 169 � 1(stat)+31�32(sys)� 7(B) nb (5.25)

�( (2S);direct) = 49 � 3(stat)+7�8(sys)� 7(B) nb (5.26)

which is a factor of 90 (60) above the CSM predictions for the J= ( (2S)) cross

sections:

�(J= ;direct) = 1:91 nb (5.27)

�( (2S);direct) = 0:77 nb (5.28)

The J= direct cross section is a factor of 3.5 larger than the direct  (2S) cross

section. The J= cross section does include feeddown from the  (2S). However, the

J= will be softer than the  (2S) because of the energy taken by the other decay

particles. This, combined with the rapidly falling PT spectrum and the branching

ratio, means that only about 20% of the  (2S) cross section feeds into the J= cross

section. Any theory which describes charmonium production must also predict that

J= production is about a factor of three larger than  (2S) production.

Clearly, the CSM fails to describe direct production of charmonium at the Teva-

tron. In an attempt to explain this discrepancy, new calculations were performed,

using the Color Octet Model (COM), where the cc pair is produced in a color octet

state, and sheds the unwanted color during the fragmentation process.

5.3.2 Color Octet Model

As described in Chapter 1, the Color Octet Model (COM) attempts to resolve this

anomaly. Unlike the CSM, the COM can only predict the shape of the cross section,

which is multiplied by a non-perturbative matrix element describing the fragmenta-

tion of the color octet cc state into the color singlet  or �c. The COM does provide

an order of magnitude estimate for the normalization, which limits the number of

additional diagrams which need to be considered. In the case of direct  produc-
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Figure 5-6: Results of �tting the color octet shapes to the J= cross section. The
B and �c contributions have been removed. The expectation is that the 3S1 and
(1S0;3P0) should be the same order of magnitude. The points are plotted at the PT
where the �tted function has its average value.

tion, there are three diagrams which need to be considered. Each of them introduces

an unknown matrix element, which is a free parameter of the theory. Two of these

components, associated with the matrix elements h0jO(8)
 (3PJ )j0i and h0jO(8)

 (1S0)j0i,
have similar shapes in the kinematic region of interest. These two matrix elements

are combined into one term, referred to by (1S0;3P0). The other contribution is asso-

ciated with the h0jO(8)
 (3S1)j0i matrix element, denoted by 3S1. The 3S1 is the result

of fragmentation production, and will dominate the cross section at high PT .

This leaves us with a prediction involving two free parameters for J= direct pro-

duction, and two parameters for  (2S) production. The direct J= cross section

as calculated above does not correspond directly to the predictions of the Color

Octet Model, but also includes feeddown contributions from  (2S)!J= X. The

 (2S)!J= X feeddown contribution is accounted for by using a Monte Carlo to
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Figure 5-7: Results of �tting the color octet shapes to the  (2S) cross section. The B
contribution has been removed. The expectation is that the 3S1 and (1S0;3 P0) should
be the same order of magnitude. The points are plotted at the PT where the �tted
function has its average value.
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determine the shape of the feeddown. Monte Carlo  (2S) events are generated with

a 
at PT distribution, and decayed to J= �+��. For each production mechanism,

we calculate the PT distribution of the events with j�(J= )j < 0:6, and weight these

events by the  (2S) cross section with the matrix element set to one. After normal-

izing for the number of events, the  (2S) feeddown contribution to the J= cross

section is given by multiplying these distributions by the  (2S) matrix element.

The simplest method to determine the matrix elements is to �t the J= and

 (2S) independently, normalizing the  (2S) feeddown into the J= by the result of

the  (2S) �t. The global systematic uncertainties will just a�ect the value of the

matrix elements. However, the PT -dependent uncertainties will also a�ect the shape

of the cross section, and change the ratio of the two components that best �ts the

data.

To allow for this, variations of at most one sigma are allowed on the trigger e�-

ciency, the normalization of the �c fraction parameterization and the decay constant

of the �c fraction parameterizations. The  polarization is allowed to take any value

between �1 and +1, although it is assumed to be the same at for all values of PT .

The normalization of the  (2S) feeddown into the J= is also allowed to vary by the

uncertainty on the branching ratios. In the J= �t, the ratio of the 3S1 to (1S0;3P0)

matrix elements is about 1:3, in agreement with the prediction that the two param-

eters are the same order of magnitude. There are � 20% deviations at high PT . For

the  (2S), the 3S1 contribution dominates the �t. While the (1S0;
3P0) matrix ele-

ment has a large error, it is the same order of magnitude as the 3S1 matrix element.

The �ts are shown in Figure 5-6 and Figure 5-7, and the results are summarized in

Table 5.3.

A more complex approach is to simultaneously �t the J= and  (2S) curves.

This exploits the fact that there are correlations between the two measurements,

which are lost if the two measurements are �tted separately. For instance, if the

measured trigger e�ciency is lower than the actual e�ciency, it will be lower for both

measurements by the same amount.

142



h0jO(8)
 (3S1)j0i (GeV3) h0jO(8)

 (1S0;3 P0)j0i (GeV3)

J= 9:2� 1:3�10�3 35:1 � 4:4�10�3
 (2S) 6:2� 1:4�10�3 5:5� 3:1�10�3
COM m3

cv
7
c � 10�10�3 m3

cv
7
c � 10�10�3

Table 5.3: Fitted color octet matrix elements, using separate �ts. The COM values
are order-of-magnitude estimates based on scaling laws.

PT (J= )(GeV=c)
d�
dPT

� B (nb/GeV/c)

5-5.5 7:94+1:34�1:39

5.5-6 5:86+0:95�1:00

6-6.5 4:07+0:63�0:67

6.5-7 2:79+0:41�0:45

7-8 1:73+0:24�0:27

8-9 0:890+0:12�0:13

9-10 0:523+0:064�0:074

10-12 0:217+0:025�0:030

12-14 0:0724+0:0083�0:0098

14-17 0:0253+0:0029�0:0034

17-20 0:0078+0:0012�0:0013

Table 5.4: The di�erential J= cross section from prompt production, as a function
of PT , for j�( )j < 0:6. The contribution from �c feeddown is included, unlike the
plots. The errors are the statistical and systematic errors added in quadrature.
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PT (J= )(GeV=c)
d�
dPT

� B (nb/GeV/c)

5-5.5 5:52 � +1:09
�1:12

5.5-6 4:04 � +0:77
�0:80

6-6.5 2:86 � +0:52
�0:55

6.5-7 1:97 � +0:35
�0:37

7-8 1:23 � +0:21
�0:22

8-9 0:640 � +0:10
�0:11

9-10 0:380 � +0:057
�0:064

10-12 0:159 � +0:023
�0:026

12-14 0:0542 � +0:0076
�0:0085

14-17 0:0193 � +0:0027
�0:0030

17-20 0:0061 � +0:0010
�0:0011

Table 5.5: The di�erential J= cross section from direct production, as a function
of PT , for �( )j < 0:6. The contribution from �c feeddown has been removed. The
errors are the statistical and systematic errors added in quadrature.

PT ( (2S))(GeV=c)
d�
dPT

� B (nb/GeV/c)

5-6 0:21�0:04
6-7 0:081+0:017�0:018

7-9 0:047+0:008�0:009

9-12 0:011�0:002
12-17 0:0024+0:0006�0:0007

Table 5.6: The di�erential  (2S) cross sections from prompt production as a function
of PT , for j�( )j < 0:6. The errors are the statistical and systematic errors added in
quadrature.
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Figure 5-8: The J= result from the simultaneous �t of the color octet to the J= 
and  (2S) cross sections. The B and �c contributions have been removed. The ratio
of the 3S1 and (1S0;3 P0) amplitude has been required to be the same in the J= and
the  (2S). PT dependent uncertainties in the cross section have been included in the
�t. The points are plotted at the PT where the �tted function has its average value.

Since the theory predicts that the 3S1 and (1S0;3 P0) amplitudes should be similar

for the J= and  (2S), we impose the additional constraint that the ratio of the two

amplitudes be the same for the J= and the  (2S). Again, the ratio of the amplitudes

is 1:3. The results are shown in Figure 5-8 and Figure 5-9 and are summarized in

Table 5.7.

The COM is able to resolve the order of magnitude discrepancy of the CDF  (2S)

anomaly. However, this is a trivial statement, as the theory is normalized by �tting

the data. A more stringent test is whether the COM describes the shape of the PT

spectrum. Here it does not do as well, predicting larger rates at both low and high

PT than are observed in the J= data. Furthermore, while the matrix elements are

supposed to be the same regardless of the experimental conditions which measure
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Figure 5-9: The  (2S) result from the simultaneous �t of the color octet to the J= 
and  (2S) cross sections. The B contribution has been removed. The ratio of the
3S1 and (1S0;3 P0) amplitude has been required to be the same in the J= and the
 (2S). PT dependent uncertainties in the cross section have been included in the �t.
The points are plotted at the PT where the �tted function has its average value.

them, when �xed target experiments measure the same matrix elements, the values

found are typically about a factor of three smaller. Additionally, when the matrix

elements measured using CDF data are used to predict J= photoproduction,[60],

measurements made at HERA[61] are better described by the CSM than the COM

at large z, the only regime where there are substantial di�erences between the COM

and the CSM model predictions.

However, the current calculation is only a leading order calculation. Not only

that, the uncertainties in the theory due to changing the renormalization scale, �, or

the charm quark mass, mc, are ignored. It is not unreasonable to hope that these

e�ects will allow the model to come into better agreement with the data. Failing

that, further re�nements to the theory, such as an improved fragmentation function
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h0jO(8)
 (3S1)j0i (GeV3) h0jO(8)

 (1S0;3 P0)j0i (GeV3)

J= 10:8 � 0:9�10�3 32:7 � 2:2�10�3
 (2S) 3:6� 0:1�10�3 10:8 � 1:0�10�3
COM m3

cv
7
c � 10�10�3 m3

cv
7
c � 10�10�3

Table 5.7: Fitted color octet matrix elements, �tting both distributions simultane-
ously. The ratio of the (1S0;3P0) and 3S1 matrix elements is required to be the same
for the J= and the  (2S). The COM values are order-of-magnitude estimates based
on scaling laws.

or consideration of the intrinsic transverse momentum of the partons[62], are also

possible.

5.4 Cross Section Ratios

The ratio of the J= and  (2S) cross sections is interesting for several reasons. First,

it provides an internal cross check on the analysis. Additionally, many of the sys-

tematic uncertainties cancel. Furthermore, while the theory does not describe the

data very well, large changes in the predicted shapes are correlated between the two

states, and result in small changes in the ratio. In fact, in the case of B production,

the theoretical uncertainty is dominated by the uncertainty in the branching ratios.

At the end of this section, we will be able to extract an improved measurement of

ratio of the product branching ratio

B(B! (2S)X) � B( (2S)!�+��)

B(B!J= X) � B(J= !�+��)
(5.29)

Each of the systematic uncertainties must be reconsidered, to determine to what

extent the systematic uncertainties are correlated between the two measurements.

The systematic uncertainty in the luminosity comes from the uncertainty in the total

pp cross section. In the ratio of cross sections, this cancels completely. The track

reconstruction e�ciency is the same for both the J= and the  (2S), so there is
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Source Uncertainty

Cross section 3.2%
B fraction 0.9%
B! model 2%
�; �P and mb 2%

Total 4%

Table 5.8: Theoretical systematic uncertainties in the B cross section ratio measure-
ments. All uncertainties are independent of PT .

no uncertainty in the ratio from this source. Likewise, the muon reconstruction,

event selection and the Level 3 trigger e�ciencies cancel. The Level 1 and Level

2 trigger e�ciencies depend on the PT of the muons. The spectrum of the muons

is slightly di�erent for the J= and the  (2S), due to the � 20% di�erence in the

masses. As a result, there is a slight uncertainty from the e�ciencies of these triggers,

0.2% for each trigger. The statistical uncertainties in the acceptance calculations are

completely uncorrelated, and yield a 2% uncertainty. The e�ect of the  polarization

is more di�cult to calculate. In the absence of �c production, the J= and the

 (2S) should have similar polarizations, as the same diagrams contribute to the

production of each. In that case, there should be a near total cancelation of the

uncertainties from the acceptances for the ratio. In reality, about one third of the J= 

are produced from �c decays[63]. The polarization of these J= could be markedly

di�erent from the polarization of the directly produced J= . Therefore, we assign

half the uncertainty on the absolute cross section to the ratio of the cross sections.

The systematic uncertainties are summarized in Table 5.8.

Figure 5-10 shows the ratio of the cross sections for B production, and for direct

production. The ratio from B production rises with PT , which is predicted by the

theory as a result of the kinematics of the B decay. The direct cross section ratio is

approximately 
at. The �c feeddown has been removed from the J= cross section

to make the ratio.

As the uncertainty in the branching ratios is the dominant uncertainty in the
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Figure 5-10: Ratio of cross sections, d�
dPT

� B( (2S))= d�
dPT

� B(J= ) for production from
B decays (left) and direct production(right). For B production, the solid line is the
central prediction and the dashed lines indicate the error on the branching ratios. For
direct production, the solid line is the ratio of the �t results. The �c feeddown has
been removed from the direct J= cross section.

B ratio, an improved measurement of the ratio of branching ratios is possible. In

Figure 5-11, the data has been divided by the theory, and �t to a constant. By

multiplying this number by the ratio of branching ratios which are input to the

theory, we are able to extract the ratio of branching ratios,

B(B! (2S)X) � B( (2S)!�+��)

B(B!J= X) � B(J= !�+��)
= 0:033 � 0:003 (stat) � 0:002 (sys) (5.30)

This is in agreement with the previous measurement (using the branching ratios listed

on page 129)

B(B! (2S)X) � B( (2S)!�+��)

B(B!J= X) � B(J= !�+��)
= 0:039 � 0:011 (5.31)

where all the errors have been combined in quadrature. The error on ratio the branch-

ing ratios is a factor of 3 smaller than the previous measurement.
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Figure 5-11: Ratio of cross sections from B production, divided by theory. The points
are data, and the errors are statistical only. The solid line is a �t to a constant. The
dashed lines are one � variations on the �t. The dotted lines are correspond to the
theoretical predictions, and the the one sigma limit based only on the branching
ratios.
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Using the measured J= branching ratios, the product  (2S) branching ratios can

be extracted:

B(B! (2S)X) � B( (2S)!�+��) =

(2:2 � 0:2(stat)� 0:1(sys)� 0:2(B))�10�5 (5.32)

where the third error is from the uncertainty in the J= branching ratios. This is in

agreement with the previous measurement

B(B! (2S)X) � B( (2S)!�+��) = (2:6� 0:7)�10�5 (5.33)

where all the errors have been added in quadrature.
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Chapter 6

Conclusions And Outlook

6.1 Summary of Results

We have measured the inclusive  cross section in pp collisions at
p
s = 1:8 TeV

using the decay mode  !�+��. The integrated cross sections are found to be

�(J= ) � B(J= !�+��) = 17:4 � 0:1(stat)+2:6�2:8(sys) nb (6.1)

�( (2S)) � B( (2S)!�+��) = 0:57 � 0:04(stat)+0:08�0:09(sys) nb (6.2)

where

�( ) = �(pp! X; PT ( ) > 5 GeV=c; j�( )j < 0:6) (6.3)

This is the �rst measurement of the  cross section at a hadron collider with the

ability to clearly distinguish  production through an intermediate B state from

prompt  production. This is done by accurately measuring the location of the  

decay vertex, instead of using model-dependent methods such as examining PT or

isolation distributions. The integrated  cross sections from B production are found

to be

�(J= ;B) � B(J= !�+��) = 3:23� 0:05(stat)+0:28�0:30(sys) nb (6.4)

�( (2S);B) � B( (2S)!�+��) = 0:13 � 0:01(stat)�0:01(sys) nb (6.5)
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h0jO(8)
 (3S1)j0i (GeV3) h0jO(8)

 (1S0;3 P0)j0i (GeV3)

J= 9:2� 1:3�10�3 35:1 � 4:4�10�3
 (2S) 6:2� 1:4�10�3 5:5� 3:1�10�3
COM m3

cv
7
c � 10�10�3 m3

cv
7
c � 10�10�3

Table 6.1: Fitted color octet matrix elements, using separate �ts. The COM values
are order-of-magnitude estimates based on scaling laws.

These are factors of 2-4 (3-4) higher than the central theoretical predictions for J= 

( (2S)) production.

The direct  cross sections are also extracted by removing the B and (for the

J= ) the �c components. The integrated  cross sections from prompt production

(including �c and  (2S) feeddown into the J= ) and direct production (excluding

the �c feeddown into the J= ) are found to be

�(J= ;prompt) � B(J= !�+��) = 14:1 � 0:1(stat)+2:2�2:3(sys) nb (6.6)

�(J= ;direct) � B(J= !�+��) = 9:95 � 0:08(stat)+1:8�1:9(sys) nb (6.7)

�( (2S);direct) � B( (2S)!�+��) = 0:43 � 0:03(stat)+0:06�0:07(sys) nb (6.8)

These exceed the predictions of the Color Singlet Model (CSM) by factors of 50-100,

positively ruling out the CSM as the dominant explanation of direct charmonium

production. The shape of the direct component can be described by the Color Octet

Model (COM), with a discrepancy of only about 20% between the data and the central

value of the theory at large transverse momentum. After the data is �t to determine

the COM matrix elements, the values, given in Table 6.1 and Table 6.2, agree with

the order-of-magnitude predictions of the COM.

Additionally, the ratio of the  (2S) and J= cross sections has been measured for

both B production and direct production. The ratio of the direct cross sections is 
at

within the uncertainties on the data, indicating that the shape of the cross section

does not have a large dependence on the mass of the charmonium state. The ratio of

153



h0jO(8)
 (3S1)j0i (GeV3) h0jO(8)

 (1S0;3 P0)j0i (GeV3)

J= 10:8 � 0:9�10�3 32:7 � 2:2�10�3
 (2S) 3:6� 0:1�10�3 10:8 � 1:0�10�3
COM m3

cv
7
c � 10�10�3 m3

cv
7
c � 10�10�3

Table 6.2: Fitted color octet matrix elements, �tting both distributions simultane-
ously. The ratio of the (1S0;3P0) and 3S1 matrix elements is required to be the same
for the J= and the  (2S). The COM values are order-of-magnitude estimates based
on scaling laws.

the  (2S) and J= cross sections from the decay of B hadrons is expected to rise with

PT , due to kinematical e�ects resulting from the mass di�erence. This is observed in

the data, and while the data rises faster than the theory predicts, the di�erence is

not statistically signi�cant. By �tting the data to the shape predicted by the theory,

an improved measurement of the ratio of branching ratios is obtained:

B(B! (2S)X) � B( (2S)!�+��)

B(B!J= X) � B(J= !�+��)
= 0:033 � 0:003 (stat) � 0:002 (sys) (6.9)

which has an error that is a factor of 3 smaller than the previous measurement. This

is a model dependent measurement, although the model dependence is slight, and it

is included in the systematic uncertainty.

6.2 Future Prospects

Charmonium production remains an interesting and exciting �eld. While this thesis

has provided insight into important questions, unresolved issues still exist. The B

production measured in this thesis is substantially larger than predictions, as is also

observed in other measurements at CDF[64]. This may indicate that there is still a

large \K factor" due to higher order terms. The large variation in the theory when

the renormalization scale is lowered also indicates that a higher-order calculation may

be necessary.
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There is also work to be done regarding prompt charmonium production. The

COM appears to resolve the CDF  (2S) anomaly, but this merely re
ects that the

COM only predicts the shape of the components, not an absolute rate. Although

the matrix elements measured with the Tevatron data, �xed target results[65] and in

photoproduction data[61] are currently in disagreement with each other and thus in

con
ict with the COM prediction that they are universal, there is concern that e�ects

which are neglected in the current calculations may be important.[66, 67] These issues

must be resolved before the COM can be accepted or excluded as an accurate model

of charmonium production. In addition to establishing the uncertainties in the theory,

a prediction about the hadronic activity near the charmonium would provide another

method for experimentalists to test the COM. It is straightforward to measure the

isolation of the charmonium, but the interpretation is di�cult in the absence of a

theoretical prediction. From an experimental perspective, measuring the charmonium

polarization at CDF would provide a direct test of one of the COM predictions.[68]

There is 110 pb�1 of additional data taken with the CDF detector which is currently

being analyzed to determine the charmonium polarization.

The CDF detector is currently being upgraded for Run II, scheduled to begin in

1999. The upgrades are intended to allow CDF to collect at least 2 fb�1 of data,

while triggering on dimuons at lower PT and larger �.[69] CDF also intends to record

events with two electrons using similar thresholds. The greatly increased statistics

will allow precise measurements in both the J= and the  (2S) modes. The simple

increase in statistics will help the  (2S) measurements. For the J= , the additional

events will increase the precision of the measurements at large transverse momentum,

as well as increasing the accessible PT region, probing the region where only fragmen-

tation production is important. A more precise measurement of the polarization will

also be possible, especially at high PT , where the COM prediction is driven by the

fragmentation component. The polarization measurement will reduce the systematic

uncertainty on the acceptance, which is currently one of the largest systematic un-

certainties. Other systematic e�ects will also be reduced as the improved statistics
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provide a better measurement of detector e�ects.

The D0 detector is also being upgraded. One upgrade is the installation of a

solenoid around the tracking system, which will signi�cantly improve the muon mo-

mentum resolution, allowing D0 to resolve the J= and  (2S) states. A silicon vertex

detector will also be installed, allowing D0 to separate the prompt component from

B production. These upgrades will enable D0 to provide important con�rmation of

results obtained at CDF.

The Large Hadron Collider (LHC) currently being built at CERN will have proton-

proton collisions with a center-of-mass energy of 14 TeV. This will allow the study of

charmonium production to be extended to even larger values of PT . Some theoretical

calculations will also be simpli�ed, as the accessible regions will have PT
2 � M2,

so that fragmentation contributions should dominate production cross sections. If

the COM does describe prompt charmonium production, then the matrix elements

measured at the Tevatron and �xed target experiments can be used to predict not

only the shape, but also the absolute rate of charmonium production at the LHC.

Additionally, the center-of-mass energy dependence of not only the COM, but of any

charmonium production model will also be tested.

Charmonium production will remain an exciting �eld for many years. Clearly

determining the source of prompt charmonium production will be a challenge for

both theorists and experimentalists. The charmonium decay channel will remain

important handle for studying B physics at low momentum in high energy colliders.
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Appendix A

Statistical Methods

A.1 Fitting Methods

The scienti�c method is based on determining whether a hypothesis, possibly with

undetermined parameters, is consistent with a set of data and the errors on that data.

In the case where the hypothesis is not completely speci�ed, the best values of the

parameters and the error on those parameters also need to be determined.

A common situation is where several independent measurements,X(~�), have been

made with errors �(~�). ~� denotes the di�erent conditions under which the measure-

ments are made. ~� may be an index, indicating a particular measurement in a series

of identical measurements. Alternatively, ~� may specify the conditions, such as the

mass and PT , which de�ne a set of orthogonal measurements. If the measurements

have a Gaussian distribution about the true value, the �2 test is useful, de�ned by

�2 =
X
f~�g

(X(~�)�H(~�; ~�))2

�(~�)2
(A.1)

~� represents the undetermined parameters , and H(~�; ~�) is the predicted result for

the conditions de�ned by ~�. By minimizing the �2, the best value for the parameters

can be found. This �2 can be converted into a probability, indicating the likelihood

that an experiment would produce the observed data, assuming the hypothesis is
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correct. The change in the �2 as the parameters are varied from their optimal values

yields the error on the parameters.

The �2 test is simple to use, but, like any method, it can give incorrect results

when applied inappropriately. In particular, the derivation of the �2 test assumes that

the results of repeated measurements form a Gaussian centered at the correct value.

One common situation where this fails is in Poisson distributions. While it is true

that when the number of expected events, N , is large, the errors are approximately

Gaussian with

�(N) =
p
N (A.2)

this formula is not accurate for small values of N , and using the �2 method will give

incorrect results if it is applied in these circumstances. This can be seen in Figure A-

1, where the �2 �t signi�cantly overestimates the number of events and the width of

the distribution.

An improved technique is the maximum log-likelihood method.[70] In this case,

the hypothesis is used to generate a probability density function for each data point,

P (X(~�); �(~�); ~�; ~�). The likelihood function is de�ned as

L � Y
f~�g

P (X(~�); �(~�); ~�; ~�) (A.3)

which is just the product of the probabilities of all the events. The con�guration

of the parameters which maximizes L is the \most likely" hypothesis. Returning to

Figure A-1, the log-likelihood �t yields a signi�cantly better estimate of both the

number of events and the width of the distribution. For technical reasons, one does

not maximize L, but instead minimizes �2 lnL. Note that in the case where the

errors are Gaussian,

P (X(~�); �(~�); ~�; ~�) / exp

0
B@�

h
X(~�)�H(~�; ~�)

i2
2�(~�)2

1
CA (A.4)

and �2 lnL reduces to the �2 plus a constant.
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Figure A-1: Di�erence between �2 (left) and log-likelihood (right) �ts. Twelve num-
bers are generated according to a normal distribution. The number of entries in each
bin will have a Poisson distribution. The �2 �t fails to correctly determine the num-
ber of events (N = 12) or the width(� = 1). The log-likelihood �t is much more
accurate.

Log-likelihood �ts have an further advantage over �2 �ts, in that it is simple to

incorporate additional information by adding additional terms to the likelihood func-

tion. For instance, in the B fraction �t in Chapter 4, the number of events in each

mass region is measured in the data, and a parameter in the �t. The likelihood func-

tion is multiplied by the Poisson probability for the �tted number to 
uctuate to the

observed number. This allows the level of the background in the signal region to vary,

while still being constrained by the observed background levels. One disadvantage of

log-likelihood �ts is that there is no simple way to translate the value of the likelihood

function into a con�dence level, as is easily done with a �2 �t.
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A.2 Toy Monte Carlos

To test the results of a log-likelihood �t, one typically constructs a \toy Monte Carlo."

Assuming the hypothesis to be correct, a large numberN of Monte Carlo data sets are

generated according to the hypothesis. Each of these Monte Carlo data sets can then

be �t in the same manner as the data. This produces a distribution of values for the

likelihood function, measured on samples in which it is known that the hypothesis is

correct. The con�dence level of the �t is determined by counting the number of Monte

Carlo data sets N< which have a likelihood smaller than the value obtained from the

data. The con�dence level of the �t is N<=N . If the hypothesis does describe the

data, the con�dence level should be a random number, uniformly distributed between

0 and 1.

These Monte Carlo samples can also be used to check the �tting method for

biases. For any parameter, the mean of the values obtained from �tting the Monte

Carlo samples should agree with the value used to generate the samples. If there

is a di�erence, a con�dence level can be constructed as above to determine if there

is a signi�cant possibility of a bias resulting from the �tting technique. Lastly, the

toy Monte Carlo can check the errors determined by the �t. The pulls of the �tted

values, de�ned by (Fitted - Generated)/Fitted Error, should have an RMS of one.

The error from �tting the data should lie within the range of errors found while �tting

the Monte Carlo samples.
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