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Abstract

We present a measurement of the time�dependent B�B� mixing using dilepton events in
pp collisions� which were collected with the CDF detector during ���	��
� We use the
��D�� combinations in dilepton events to obtain a pure B� sample� The B� meson is
reconstructed with its semileptonic decay B�� ���D��X� In order to reconstruct the
D�� meson� we use its decay to D���� A D� candidate is reconstructed with its decay
to K���� K������� or K������ Then the D� candidate is combined with a pion
candidate to form a D�� candidate� We have found ��� events in the signal region in
total� The B decay vertex is reconstructed from the lepton and D�� tracks and is used
to estimate the proper decay time� The decay 
avor of the B� is identi�ed by the sign
of the �nal state� Namely ��D�� for B� and ��D�� for B�� The 
avor at production is
inferred from the charge of the second lepton in the event� Therefore an opposite�sign
lepton pair tags an unmixed event and a same�sign lepton pair tags a mixed event� We
use an unbinned maximum likelihood �t to extract the oscillation frequency �md and
�t the opposite�sign events and the same�sign events simultaneously�

The oscillation frequency �md is measured to be �md � ��
�	 ������
������ �stat� ������

������

�syst� ps��� It is consistent with the current world average of ����� ps���



Acknowledgements

I would like to thank Prof� K� Kondo� Prof� K� Takikawa and Prof� S� Kim for their

helpful discussions and suggestions� I have learned much from their enthusiasm and

positive attitude toward physics research�

I would also like to thank Drs� F� DeJongh� C� Gay� J� Kroll� M� Paulini� M� P� Schmidt�

P� Sphicas� F� Ukegawa and all members of the CDF CP Violation and B mixing work�

ing group for valuable suggestions and encouragement� Especially I wish to express my

deepest appreciation to Dr� F� Ukegawa� It was a great fortune for me that I had a

chance to work with him�

I also wish to thank CDF members of the High Energy Physics group of the University

of Tsukuba�

Finally� I wish to thank my family for their assistance and kindness�

This work was supported by the U�S� Department of Energy and National Science

Foundation� the Italian Istituto Nazionale di Fisica Nucleare� the Ministry of Education�

Science and Culture of Japan� the Natural Sciences and Engineering Research Council

of Canada� the National Science Council of the Republic of China� and the A� P� Sloan

Foundation�

i



The CDF Collaboration

F� Abe��� H� Akimoto��	 A� Akopian�	
 M� G� Albrow�
 S� R� Amendolia�	�

D� Amidei��
 J� Antos�	� C� Anway�Wiese�� S� Aota��	 G� Apollinari�	
 T� Asakawa��	

W� Ashmanskas��� M� Atac�
 P� Auchincloss�	� F� Azfar�		 P� Azzi�Bacchetta�	�

N� Bacchetta�	� W� Badgett��
 S� Bagdasarov�	
 M� W� Bailey��� J� Bao��� P� de
Barbaro�	� A� Barbaro�Galtieri��� V� E� Barnes�	� B� A� Barnett��� E� Barzi��

G� Bauer��� T� Baumann�� F� Bedeschi�	� S� Behrends�� S� Belforte�	� G� Bellettini�	�

J� Bellinger��� D� Benjamin��� J� Benlloch��� J� Bensinger�� D� Benton�		 A� Beretvas�


J� P� Berge�
 J� Berryhill�� S� Bertolucci�� A� Bhatti�	
 K� Biery��	 M� Binkley�


D� Bisello�	� R� E� Blair�� C� Blocker�� A� Bodek�	� W� Bokhari��� V� Bolognesi�


D� Bortoletto�	� J� Boudreau�	� L� Breccia�	 C� Bromberg��� N� Bruner���

E� Buckley�Geer�
 H� S� Budd�	� K� Burkett��
 G� Busetto�	� A� Byon�Wagner�


K� L� Byrum�� J� Cammerata��� C� Campagnari�
 M� Campbell��
 A� Caner�


W� Carithers��� D� Carlsmith��� A� Castro�	� D� Cauz�	� Y� Cen�	� F� Cervelli�	�

H� Y� Chao�	� J� Chapman��
 M��T� Cheng�	� G� Chiarelli�	� T� Chikamatsu��	

C� N� Chiou�	� L� Christofek��� S� Cihangir�
 A� G� Clark�	� M� Cobal�	� M� Contreras��

J� Conway�	� J� Cooper�
 M� Cordelli�� C� Couyoumtzelis�	� D� Crane��

D� Cronin�Hennessy�� R� Culbertson�� J� D� Cunningham�� T� Daniels��� F� DeJongh�


S� Delchamps�
 S� Dell�Agnello�	� M� Dell�Orso�	� L� Demortier�	
 B� Denby�	�

M� Deninno�	 P� F� Derwent��
 T� Devlin�	� M� Dickson�	� J� R� Dittmann��

S� Donati�	� J� Done��� T� Dorigo�	� A� Dunn��
 N� Eddy��
 K� Einsweiler��� J� E� Elias�


R� Ely��� E� Engels� Jr��	� D� Errede��� S� Errede��� Q� Fan�	� I� Fiori�	 B� Flaugher�


G� W� Foster�
 M� Franklin�� M� Frautschi��� J� Freeman�
 J� Friedman��� H� Frisch��

T� A� Fuess�� Y� Fukui��� S� Funaki��	 G� Gagliardi�	� S� Galeotti�	� M� Gallinaro�	�

M� Garcia�Sciveres��� A� F� Gar�nkel�	� C� Gay�� S� Geer�
 D� W� Gerdes��


P� Giannetti�	� N� Giokaris�	
 P� Giromini�� L� Gladney�		 D� Glenzinski��� M� Gold���

J� Gonzalez�		 A� Gordon�� A� T� Goshaw�� K� Goulianos�	
 H� Grassmann�	�

L� Groer�	� C� Grosso�Pilcher�� G� Guillian��
 R� S� Guo�	� C� Haber��� E� Hafen���

S� R� Hahn�
 R� Hamilton�� R� Handler��� R� M� Hans��� K� Hara��	 A� D� Hardman�	�

B� Harral�		 R� M� Harris�
 S� A� Hauger�� J� Hauser�� C� Hawk�	� E� Hayashi��	

J� Heinrich�		 K� D� Ho�man�	� M� Hohlmann���� C� Holck�		 R� Hollebeek�		

L� Holloway��� A� H�olscher��	 S� Hong��
 G� Houk�		 P� Hu�	� B� T� Hu�man�	�

R� Hughes�	� J� Huston��� J� Huth�� J� Hylen�
 H� Ikeda��	 M� Incagli�	� J� Incandela�


G� Introzzi�	� J� Iwai��	 Y� Iwata��� H� Jensen�
 U� Joshi�
 R� W� Kadel��� E� Kajfasz�
a

T� Kamon��� T� Kaneko��	 K� Karr��� H� Kasha��� Y� Kato�	� T� A� Kea�aber�	�

ii



L� Keeble�� K� Kelley��� R� D� Kennedy�	� R� Kephart�
 P� Kesten��� D� Kestenbaum��

R� M� Keup��� H� Keutelian�
 F� Keyvan�� B� Kharadia��� B� J� Kim�	� D� H� Kim�
a

H� S� Kim��	 S� B� Kim��
 S� H� Kim��	 Y� K� Kim��� L� Kirsch�� P� Koehn�	�

K� Kondo��	 J� Konigsberg�� S� Kopp�� K� Kordas��	 W� Koska�
 E� Kovacs�
a

W� Kowald�� M� Krasberg��
 J� Kroll�
 M� Kruse�	� T� Kuwabara��	 S� E� Kuhlmann��

E� Kuns�	� A� T� Laasanen�	� N� Labanca�	� S� Lammel�
 J� I� Lamoureux��

T� LeCompte��� S� Leone�	� J� D� Lewis�
 P� Limon�
 M� Lindgren�� T� M� Liss���

N� Lockyer�		 O� Long�		 C� Loomis�	� M� Loreti�	� J� Lu��� D� Lucchesi�	� P� Lukens�


S� Lusin��� J� Lys��� K� Maeshima�
 A� Maghakian�	
 P� Maksimovic��� M� Mangano�	�

J� Mansour��� M� Mariotti�	� J� P� Marriner�
 A� Martin��� J� A� J� Matthews���

R� Mattingly��� P� McIntyre��� P� Melese�	
 A� Menzione�	� E� Meschi�	� S� Metzler�		

C� Miao��
 G� Michail�� R� Miller��� H� Minato��	 S� Miscetti�� M� Mishina���

H� Mitsushio��	 T� Miyamoto��	 S� Miyashita��	 Y� Morita��� J� Mueller�	�

A� Mukherjee�
 T� Muller�� P� Murat�	� H� Nakada��	 I� Nakano��	 C� Nelson�


D� Neuberger�� C� Newman�Holmes�
 M� Ninomiya��	 L� Nodulman�� S� H� Oh��

K� E� Ohl��� T� Ohmoto��� T� Ohsugi��� R� Oishi��	 M� Okabe��	 T� Okusawa�	�

R� Oliver�		 J� Olsen��� C� Pagliarone�	 R� Paoletti�	� V� Papadimitriou���

S� P� Pappas��� S� Park�
 A� Parri�� J� Patrick�
 G� Pauletta�	� M� Paulini���

A� Perazzo�	� L� Pescara�	� M� D� Peters��� T� J� Phillips�� G� Piacentino�	 M� Pillai�	�

K� T� Pitts�
 R� Plunkett�
 L� Pondrom��� J� Proudfoot�� F� Ptohos�� G� Punzi�	�

K� Ragan��	 A� Ribon�	� F� Rimondi�	 L� Ristori�	� W� J� Robertson�� T� Rodrigo�
a S�
Rolli�	� J� Romano�� L� Rosenson��� R� Roser��� W� K� Sakumoto�	� D� Saltzberg��

A� Sansoni�� L� Santi�	� H� Sato��	 V� Scarpine��� P� Schlabach�� E� E� Schmidt�


M� P� Schmidt��� A� Scribano�	� S� Segler�
 S� Seidel��� Y� Seiya��	 G� Sganos��	

A� Sgolacchia�	 M� D� Shapiro��� N� M� Shaw�	� Q� Shen�	� P� F� Shepard�	�

M� Shimojima��	 M� Shochet�� J� Siegrist��� A� Sill��� P� Sinervo��	 P� Singh�	�

J� Skarha��� K� Sliwa��� F� D� Snider��� T� Song��
 J� Spalding�
 P� Sphicas���

F� Spinella�	� M� Spiropulu�� L� Spiegel�
 L� Stanco�	� J� Steele��� A� Stefanini�	�

K� Strahl��	 J� Strait�
 R� Str�ohmer�� D� Stuart�
 G� Sullivan�� A� Soumarokov�	�

K� Sumorok��� J� Suzuki��	 T� Takada��	 T� Takahashi�	� T� Takano��	 K� Takikawa��	

N� Tamura��� F� Tartarelli�	� W� Taylor��	 P� K� Teng�	� Y� Teramoto�	� S� Tether���

D� Theriot�
 T� L� Thomas��� R� Thun��
 M� Timko��� P� Tipton�	� A� Titov�	


S� Tkaczyk�
 D� Toback�� K� Tollefson�	� A� Tollestrup�
 J� Tonnison�	�

J� F� de Troconiz�� S� Truitt��
 J� Tseng��� N� Turini�	� T� Uchida��	 N� Uemura��	

F� Ukegawa�		 G� Unal�		 S� C� van den Brink�	� S� Vejcik� III��
 G� Velev�	� R� Vidal�


M� Vondracek��� D� Vucinic��� R� G� Wagner�� R� L� Wagner�
 J� Wahl�� C� Wang��

C� H� Wang�	� G� Wang�	� J� Wang�� M� J� Wang�	� Q� F� Wang�	
 A� Warburton��	

G� Watts�	� T� Watts�	� R� Webb��� C� Wei�� C� Wendt��� H� Wenzel���

W� C� Wester� III�
 A� B� Wicklund�� E� Wicklund�
 R� Wilkinson�		 H� H� Williams�		

P� Wilson�� B� L� Winer�	� D� Wolinski��
 J� Wolinski��� X� Wu�	� J� Wyss�	� A� Yagil�


W� Yao��� K� Yasuoka��	 Y� Ye��	 G� P� Yeh�
 P� Yeh�	� M� Yin�� J� Yoh�
 C� Yosef���

T� Yoshida�	� D� Yovanovitch�
 I� Yu��� L� Yu��� J� C� Yun�
 A� Zanetti�	� F� Zetti�	�

iii



L� Zhang��� W� Zhang�		 and S� Zucchelli	

�CDF Collaboration�

�
Argonne National Laboratory� Argonne� Illinois �����

	
Istituto Nazionale di Fisica Nucleare� University of Bologna� I���	
� Bologna� Italy

�
Brandeis University� Waltham� Massachusetts �

��

�
University of California at Los Angeles� Los Angeles� California ���
�

�
University of Chicago� Chicago� Illinois �����

�
Duke University� Durham� North Carolina 
���




Fermi National Accelerator Laboratory� Batavia� Illinois ���	�

�
Laboratori Nazionali di Frascati� Istituto Nazionale di Fisica Nucleare� I������ Frascati� Italy

�
Harvard University� Cambridge� Massachusetts �
	�


��
Hiroshima University� Higashi�Hiroshima �
�� Japan
��

University of Illinois� Urbana� Illinois �	
�	
�	

Institute of Particle Physics� McGill University� Montreal H�A 
T
� and University of Toronto�

Toronto M�S 	A�� Canada

��
The Johns Hopkins University� Baltimore� Maryland 
	
	


��
National Laboratory for High Energy Physics �KEK�� Tsukuba� Ibaraki ���� Japan

��
Lawrence Berkeley Laboratory� Berkeley� California ���
�

��
Massachusetts Institute of Technology� Cambridge� Massachusetts �
	��

�

University of Michigan� Ann Arbor� Michigan �
	��

��
Michigan State University� East Lansing� Michigan �


�

��
University of New Mexico� Albuquerque� New Mexico 
�	�	

	�
Osaka City University� Osaka �

� Japan

	�
Universita di Padova� Istituto Nazionale di Fisica Nucleare� Sezione di Padova� I���	�	 Padova� Italy

		
University of Pennsylvania� Philadelphia� Pennsylvania 	�	��

	�
Istituto Nazionale di Fisica Nucleare� University and Scuola Normale Superiore of Pisa� I���	�� Pisa� Italy

	�
University of Pittsburgh� Pittsburgh� Pennsylvania 	�
��
	�

Purdue University� West Lafayette� Indiana �����
	�

University of Rochester� Rochester� New York 	��
�
	


Rockefeller University� New York� New York 	��
	
	�

Rutgers University� Piscataway� New Jersey �

��

	�
Academia Sinica� Taipei� Taiwan 		�
�� Republic of China
��

Texas A�M University� College Station� Texas ��
��
��

Texas Tech University� Lubbock� Texas �����
�	

University of Tsukuba� Tsukuba� Ibaraki ���� Japan
��

Tufts University� Medford� Massachusetts �
	��

��
University of Wisconsin� Madison� Wisconsin �����

��
Yale University� New Haven� Connecticut ���		

iv



Contents

Acknowledgements i

The CDF Collaboration ii

List of Tables ix

List of Figures xi

� Introduction �

��� The Standard Model � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��	 Physics motivations in B�B� mixing � � � � � � � � � � � � � � � � � � � � � �

��� B� meson production in pp collisions � � � � � � � � � � � � � � � � � � � � �

��� Experimental approaches to mixing at CDF � � � � � � � � � � � � � � � � ��

� Collider Detector at Fermilab ��

	�� The Fermilab Tevatron Collider � � � � � � � � � � � � � � � � � � � � � � � ��

	�	 Overview of the CDF detector � � � � � � � � � � � � � � � � � � � � � � � � ��

	�� Tracking system � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

	���� Solenoid magnet coil � � � � � � � � � � � � � � � � � � � � � � � � � ��

	���	 The silicon vertex detector �SVX and SVX�� � � � � � � � � � � � � ��

v



	���� The vertex time projection chamber �VTX� � � � � � � � � � � � � 	�

	���� The central tracking chamber �CTC� � � � � � � � � � � � � � � � � 	�

	�� Calorimetry � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�

	���� The central calorimeters � � � � � � � � � � � � � � � � � � � � � � � 	�

	���	 The plug and the forward calorimeter � � � � � � � � � � � � � � � � 	�

	�
 Muon systems � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

	�
�� The central muon system �CMU� � � � � � � � � � � � � � � � � � � �	

	�
�	 The central muon upgrade �CMP� � � � � � � � � � � � � � � � � � � ��

	�
�� The central muon extension �CMX� � � � � � � � � � � � � � � � � � ��

	�� Trigger system � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Analysis Outline ��

� Event Selection ��

��� Lepton identi�cation � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Electron identi�cation � � � � � � � � � � � � � � � � � � � � � � � � ��

����	 Muon identi�cation � � � � � � � � � � � � � � � � � � � � � � � � � � 
	

��	 D�� reconstruction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 
�

��	�� D���D� � K��� � � � � � � � � � � � � � � � � � � � � � � � � � � � 
�

��	�	 D���D� � K������� � � � � � � � � � � � � � � � � � � � � � � � � 
�

��	�� D���D� � K����� � � � � � � � � � � � � � � � � � � � � � � � � � 
�

� Sample Composition 		


�� D�� fraction in semileptonic B decays � � � � � � � � � � � � � � � � � � � � ��

vi




�	 D�� composition � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��


�� Lifetime ratio � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

	 Lifetimes from K���
 K������� and K����� Modes ��

��� Background shape � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �


��	 Lifetime �t � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Measurement of Oscillation Frequency �md ��

��� Simpli�ed case � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��	 Likelihood functions � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Toy Monte Carlo study of the �tting program � � � � � � � � � � � � � � � ��

��� Real data �t � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��
 Flavor mistag probability � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Systematic Uncertainties ���

��� Sample composition � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� D�� fraction in semileptonic B decays � � � � � � � � � � � � � � � � ���

����	 D�� composition � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Lifetime ratio � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Cross check � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

����
 B�
s fraction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��	

��	 Lifetime � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��	

��� Background shape � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Background fraction and the same�sign fraction of the background � � � � ���

vii



��
 Decay length resolution � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

� Conclusions ���

Bibliography ���

viii



List of Tables

��� Properties of the quarks and the leptons� � � � � � � � � � � � � � � � � � � 	

��	 Fractions of weakly decaying b�hadron species� � � � � � � � � � � � � � � � ��

	�� Comparison of SVX and SVX�� � � � � � � � � � � � � � � � � � � � � � � � 		

	�	 Mechanical parameters and performance speci�cation of the CTC� � � � � 	


	�� The physical properties for the central calorimeters� � � � � � � � � � � � � 	�

	�� A summary of physical properties for the gas calorimeters� � � � � � � � � ��

��� Cuts used for charm reconstruction� � � � � � � � � � � � � � � � � � � � � � 



��	 De�nitions of signal samples� � � � � � � � � � � � � � � � � � � � � � � � � � 
�

��� Estimated numbers of combinatorial background events and same sign

event fraction of the background fss� � � � � � � � � � � � � � � � � � � � � 
�


�� B� and B� mixture from the Monte Carlo with f������
�� � � � � � � � � ��


�	 Summary of four P �wave D meson properties� � � � � � � � � � � � � � � � ��

��� De�nition of background samples� � � � � � � � � � � � � � � � � � � � � � � ��

��	 Background shape �tting results from background samples� � � � � � � � � ��

ix



��� Lifetime �t results from each signal sample� � � � � � � � � � � � � � � � � ��

��� The parameters in the lifetime �t� their constraints and their �tted values� ��

��� Fit results of toy Monte Carlo events� � � � � � � � � � � � � � � � � � � � � ��

��	 Condition of the event generation for case �� � � � � � � � � � � � � � � � � ��

��� Results of the proper decay length �t for �md� � � � � � � � � � � � � � � � �	

��� �md and 
avor mistag probability W under various f�� values� � � � � � ���

��	 �md and 
avor mistag probability W under various PV values� � � � � � � ���

��� �md and 
avor mistag probability W under various lifetime ratios� � � � ���

��� �md and 
avor mistag probability W under various c�
B
� values� � � � � � ���

��
 Variation of the �tted �md and 
avor mistag probability W due to the

di�erent parameterization of the background� � � � � � � � � � � � � � � � ���

��� Oscillation frequency and 
avor mistag probability when the decay length

error scale is changed� � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Systematic uncertainties� � � � � � � � � � � � � � � � � � � � � � � � � � � � ��


x



List of Figures

��� The unitarity triangle� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��	 Mixing diagrams� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Feynman diagrams of the lowest order processes of b quark production� � �

	�� The accelerators and related devices used to deliver protons and antipro�

tons to the CDF Experiment� � � � � � � � � � � � � � � � � � � � � � � � � ��

	�	 A three dimensional perspective of CDF displaying the pertinent muon

subsystems� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

	�� A lateral perspective of CDF displaying the relevant muon systems and

calorimeter� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

	�� The SVX overall layout� � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�

	�
 The ladder� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�

	�� The wire layout at the endplate of the central tracking chamber� � � � � � 	�

xi



	�� Shown above is a �D perspective of a single wedge of the central electro�

magnetic calorimeter� Displayed are both the lead�scintillator sandwich

of the calorimeter itself� together with the photomutiplier readout� and

the position of the shower�max central strip chambers �CES�� � � � � � � 	�

	�� Here we display a map of the central electromagnetic calorimeter response�

The vertical axis is a �	 parameter �t to the calorimeter response for

minimum ionizing particles� while the horizontal axes are the longitudinal

and polar coordinates� � � � � � � � � � � � � � � � � � � � � � � � � � � � � 	�

	�� An � � 	 plot of the central muon coverage at CDF� Note the e�ect of

the CMP�s box geometry on its acceptance� and the gaps in the CMX

acceptance at the top and bottom of the detector� � � � � � � � � � � � � � ��

	��� Here we display the organization of drift chambers of the CMU� in both

� and 	 space� superimposed on the structure of the CEM� � � � � � � � � ��

	��� Above we display the geometry of the �� chambers of a single CMU tower� ��

	��	 Here we show the mechanical layout of a drift chamber for the CMP or

CMX� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �


	��� Above is displayed the geometry of the drift tube layout for a �
� CMX

wedge� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Schematic illustration of the decay length measurement� � � � � � � � � � ��

��	 Proper decay length ����� and charge asymmetry ��� distributions for �m

� ��
 ps�� and c� � ��� 
m� � � � � � � � � � � � � � � � � � � � � � � � � �


xii



��� Charge asymmetry distributions for various oscillation frequency values� � ��

��� Mass di�erence distributions for the B � ���D��X�D�� � D����D� �

K��� signal reconstructed in dilepton events� Solid histograms show the

right sign �D���� combinations� and dashed histograms show the wrong

sign �D���� combinations� � � � � � � � � � � � � � � � � � � � � � � � � � � 
�

��	 Mass di�erence distributions for the B � ���D��X�D�� � D����D� �

K������� signal reconstructed in dilepton events� Solid histograms

show the right sign �D���� combinations� and dashed histograms show

the wrong sign �D���� combinations� � � � � � � � � � � � � � � � � � � � � 
�

��� Mass di�erence distributions for the B � ���D��X�D�� � D����D� �

K����� signal reconstructed in dilepton events� Solid histograms show

the right sign �D���� combinations� and dashed histograms show the

wrong sign �D���� combinations� � � � � � � � � � � � � � � � � � � � � � � ��

��� Mass di�erence distributions for e
 samples� Solid histograms show the

right sign �D���� combinations� and dashed histograms show the wrong

sign �D���� combinations� � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��
 Mass di�erence distributions for 

 samples� Solid histograms show the

right sign �D���� combinations� and dashed histograms show the wrong

sign �D���� combinations� � � � � � � � � � � � � � � � � � � � � � � � � � � �	

��� Detector type of D�� and tag lepton for e
 sample� � � � � � � � � � � � � ��

��� Detector type of D�� and tag lepton for 

 sample� � � � � � � � � � � � � ��

xiii



��� Detector type of D�� and tag lepton� � � � � � � � � � � � � � � � � � � � � �



�� The mixture of lepton�D�� samples as a function of the D�� fraction f���

The D�� composition is �xed to PV � ���
�� � � � � � � � � � � � � � � � � �	


�	 The mixture of lepton�D�� samples as a function of a D�� composition

PV � The D�� fraction is �xed to f�� � ���
�� � � � � � � � � � � � � � � � � ��


�� The mixture of lepton�D�� samples as a function of the ratio of the B�

and B� meson lifetimes� The D�� fraction and D�� composition are �xed

to f�� � ���
� and PV � ���
� respectively� � � � � � � � � � � � � � � � � ��

��� Background proper decay length distributions for K���� K��������

and K����� samples� � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��	 K distributions for the B� meson decay from the Monte Carlo� Dotted

and dashed histograms show the contribution of D�� in direct B� decays

and via D��� Solid lines are the sum of the two� � � � � � � � � � � � � � � ��

��� K distributions for the B� meson from the Monte Carlo� � � � � � � � � � �	

��� Lifetime �t results of K���� K������� and K����� channels and

combined sample� Dotted lines show the background contributions and

dashed lines and dot�dashed lines show the contributions of the B� and

B� mesons� Solid line is the sum of the three� � � � � � � � � � � � � � � � ��

��� The proper decay length and charge asymmetry distributions for pure B�

signal MC events� Superimposed curves show the result of the �t� � � � � ��

xiv



��	 Same as Figure ��� but with a mixture of �
� B� and �
� B�� Dashed

lines and dot�dashed lines show the contributions of the B� and B�

mesons� Solid line is the sum of the two� � � � � � � � � � � � � � � � � � � �


��� Same as Figure ��	 but with a 	�� 
avor mistag probability� � � � � � � � ��

��� Same as Figure ��	 but with a ��� 
avor mistag probability� � � � � � � � ��

��
 Same as Figure ��	 but with a ��� 
avor mistag probability� � � � � � � � ��

��� Same as Figure ��� but the B� fraction and the 
avor mistag probability

are both 
oated� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Same as Figure ��� but with �
� background events� � � � � � � � � � � � � ���

��� Same as Figure ��� but with four times statistics� � � � � � � � � � � � � � ���

��� Results of Monte Carlo experiments� They are generated with the 
avor

mistag probability W � ��� and fB� � ���
� Each sample has the same

statistics as the real data� � � � � � � � � � � � � � � � � � � � � � � � � � � ��	

���� Same as Figure ���� but the B� fraction and the 
avor mistag probability

W are both 
oated� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

���� Real data decay length distributions� Dotted lines show the background

contributions and dashed lines and dot�dashed lines show the contribu�

tions of the B� and B� mesons� Solid line is the sum of the three� � � � � ���

���	 The charge asymmetry distribution for real data� The result of the �md

�t is superimposed �Solid curve�� � � � � � � � � � � � � � � � � � � � � � � ��


���� Fit results of tag muon detector type of CMU�CMP� � � � � � � � � � � � ���

xv



���� Fit results of tag muon detector type of CMU� � � � � � � � � � � � � � � � ���

���
 Fit results of tag muon detector type of CMP� CMX or CMU�CMX� � � � ���

��� K distributions with f�� of ��	� from the Monte Carlo� Dotted and dashed

histograms show the contribution of D�� in direct B� decays and through

D��� Solid lines are the sum of the two� � � � � � � � � � � � � � � � � � � � ���

��	 Same as Figure ��� but with f�� of ����� � � � � � � � � � � � � � � � � � � ���

��� Real data decay length and charge asymmetry distributions with f�� of

��	� and PV of ���
�� Dotted lines show the background contributions

and dashed lines and dot�dashed lines show the contributions of the B�

and B� mesons� Solid line is the sum of the three� � � � � � � � � � � � � � ���

��� Same as Figure ��� but with f�� of ����� � � � � � � � � � � � � � � � � � � ���

��
 K distributions with PV of ��	� from the Monte Carlo� Dotted and dashed

histograms show the contribution of D�� in direct B� decays and through

D��� Solid lines are the sum of the two� � � � � � � � � � � � � � � � � � � � �	�

��� Same as Figure ��
 but with PV of �� � � � � � � � � � � � � � � � � � � � � �	�

��� Real data decay length and charge asymmetry distributions with PV of

��	�� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �		

��� Same as Figure ��� but with PV of ���� � � � � � � � � � � � � � � � � � � � �	�

��� Real data decay length and charge asymmetry distributions with �B���B�

of ����� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	�

���� Same as Figure ��� but with �B���B� of ����� � � � � � � � � � � � � � � � � �	


xvi



���� Results of Monte Carlo experiments� They are generated with the 
avor

mistag probability W � ��� and fB� � ���
� Each sample has the same

statistics as the real data� They are �t with the B� fraction being �xed

to a wrong value ����� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	�

���	 Same as Figure ����� but the B� fraction is �xed to 	��� � � � � � � � � � �	�

���� Real data decay length and charge asymmetry distributions when �tted

with the B�
s fraction of 
�� The inner solid curve represents the B�

s

component with �ms � �� ps��� � � � � � � � � � � � � � � � � � � � � � � �	�

���� Real data decay length and charge asymmetry distributions with c�
B
� of

��� 
m� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �	�

���
 Same as Figure ���� but with �B���B� of ��� 
m� � � � � � � � � � � � � � ���

���� Real data decay length and charge asymmetry distributions� when the

background shape parameter �� value is decreased by one standard de�

viation� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

���� Real data decay length and charge asymmetry distributions� when the

background shape parameter �� value is increased by one standard devi�

ation� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��	

���� Real data decay length and charge asymmetry distributions� when the

background shape parameter �� value is decreased by one standard de�

viation� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

xvii



���� Real data decay length and charge asymmetry distributions� when the

background shape parameter �� value is increased by one standard devi�

ation� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��	� Real data decay length and charge asymmetry distributions with the de�

cay length resolution scale of ���� � � � � � � � � � � � � � � � � � � � � � � ��


��	� Same as Figure ��	� but with the decay length resolution scale of ���� � � ���

xviii



Chapter �

Introduction

��� The Standard Model

The Standard Model of particle physics describes the fundamental particles and the

interactions between them� The fundamental particles are fermions and force carrying

bosons with spin angular momentum of odd half integer and integer respectively� The

fermions include six quarks interacting through strong force transmitted by the exchange

of gluons� Quantum Chromodynamics �QCD� describes the strong interaction by using

the property of color SU��� group symmetry� Quarks and gluon carry the color property�

Quarks come in � colors �R� G� B� and gluons in � colors� The quarks are arranged in

three family doublets with a charge �	�� quark matched with a charge ���� quark�

Electroweak theory ��� involves the SU�	�L � U���Y group� Fermions can exist in a

state of being left�handed ��L � or right�handed ��R �� except for neutrinos which are

only left�handed in the Standard Model� The hypercharge Y of a fermion is related to

its electromagnetic charge Q and the third component of the weak force isospin T � T ��

�



f Qf �T �
f �L �T �

f �R
u� c� t 	�� ��	 �
d� s� b ���� ���	 �

�e� ��� �� � ��	 �
e� 
� � �� ���	 �

Table ���! Properties of the quarks and the leptons�

by Y � 	� �Q�T ��� Leptons do not interact through strong force� but do interact with

the electroweak force and hence are arranged in a similar doublet structure� Properties

of the quarks and the leptons are summarized in Table ����

There are three space�time symmetries of the strong interactions that are not con�

served in weak processes� These are the symmetries of charge conjugation C� parity

P and time�reversal invariance T � All weak decays violate P and C� and a very small

part of the weak decays also violate the product CP � In the Standard Model� the weak

eigenstates are not the same as the mass eigenstates and they are related by a complex

Cabbibo�Kobayashi�Maskawa �CKM� matrix V �	� ��!

�
BBBBBBBB�

d�

s�

b�

�
CCCCCCCCA
L

� V

�
BBBBBBBB�

d

s

b

�
CCCCCCCCA
L

� �����

where �d� s� b� is the mass eigenstates and �d�� s�� b�� is the weak eigenstates� This fact

	



introduces the CP violation� The matrix V must be unitary and written as

V �

�
BBBBBBBB�

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

�
CCCCCCCCA
� ���	�

�

�
BBBBBBBB�

�� �	�	 � A���
� i��

�� �� �	�	 A�	

A���� � 
� i�� �A�	 �

�
CCCCCCCCA
�O����� �����

The second expression here is a parameterization due to Wolfenstein ���� which is fre�

quently used in discussing CP �violating e�ect� The relation of each parameter in the

matrix is summarized in terms of the unitarity triangle shown in Figure ���� Parameters

�� A and
p

	 � �	 are real in Eq� ���� while the phase in question is arg�
� ��� This

situation allows for CP violation� if � is not zero� Hence it is of great interest to deter�

mine the values of individual CKM matrix elements in order to understand CP �violating

e�ects�

��� Physics motivations in B�B� mixing

The system of observable neutral B meson is a linear combination of the two mass

eigenstates� B�
H and B�

L� The probability that a B� meson at t � � decays as B�

�unmixed� or B� �mixed� at a proper time t is given by

Funmixed�mixed�t� �
�

	�
exp

�
� t

�

�
�� � cos�m t�� �����

�



Figure ���! The unitarity triangle�

�



where � is the lifetime� The oscillation frequency� �m� is the mass di�erence between

the two mass eigenstates� We have ignored the width di�erence �" here� We note that

we obtain �� � and � if we integrate the probability functions over time!

Z
�

�
Funmixed�t� dt � �� ��

Z
�

�
Fmixed�t� dt � �� ���
�

where � is a familiar time�integrated mixing parameter given by � � �
	

x�

��x� and x �

�m� � If both neutral B mesons� B� and Bs� are produced� the time integrated and


avor averaged mixing parameter � is given by

� � fd�d � fs�s� �����

where fd and fs are the fractions of b�
avored hadrons that are produced as B� and Bs

mesons� respectively�

There are two important motivations for making a time dependent measurement

instead of a time integrated measurement of B�B� mixing� First� a time dependent

measurement is the only way to extracting �md and �ms separately� We hope to use

the technique which is described in this article to determine �ms in the future� Second�

as we shall see later� the magnitude of jVtdj can be inferred from both of �md and �ms�

The mixing occurs through the second order box diagrams shown in Figure ��	 and

the dominant contribution is top quark exchange due to its high mass� The oscillation






frequency �mq can be related to the CKM matrix element Vtq by

xq � �mq�Bq
� �Bq

G	
F

��	
m	

WmBq
�f	Bq

BBq
��QCDF �mt�jVtqV �

tbj	� �
� �����

where q stands for either s or d quark� � and mB are the lifetime and mass of the B

meson� GF is the Fermi coupling constant� mW is the W boson mass� fB and BB are

the decay constant and bag parameter of the B meson� �QCD is a QCD correction factor

and F �mt� relates the top quark mass to the W mass!

F �mt� � m	
t

m	
W

� f
�
m	

t

m	
W

�
with �����

f�x� �
�

�
�

�

��� � x�
� �

	

�

�� � x�	
� �

	

x	 lnx

�� x
� �����

Equation� ��� indicates that the oscillation frequency �mq can be turned into informa�

tion on jVtqV �

tbj by using the measured value of �Bq � mBq and mt� f	Bq
BBq from lattice

QCD calculations ��� and next�to�leading�order QCD corrections ���� In the ratio of �ms

to �md� many of the factors cancel� and we have

�ms

�md

	 f	Bs
BBs

f	Bd
BBd

jVtsV �

tbj	
jVtdV �

tbj	
� ������

Since the CKM matrix element Vts is expected to be equal in magnitude to Vcb� Eq ����

results in a measurement of Vtd�
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Figure ��	! Mixing diagrams�
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��� B� meson production in pp collisions

The major advantages of the hadron based B physics environment are relatively large

cross section for b quark production and the broad band nature of the beam� This sharply

contrasts with the situation in e�e� machines that make use of the #��S� and #�
S�

resonances in which only the low lying b�u� d� combinations can be produced� Moreover�

in e�e� machines that operate in the continuum or on the Z peak the cross section for

b production is many orders of magnitude below that in the hadronic environment�

However hadrons have a complicated internal structure of quarks and gluons� hence

the hadronic collisions are more complex than leptonic one�

In pp colliders incoming u and d quarks and gluons from the proton and antiproton

interact producing a bb quark�antiquark pair� Since partons in the proton and antiproton

include not only the three valence quarks or antiquarks but also the sea of qq pairs and

gluons� single b quark production includes the following processes!

q � q � bX

q � g � bX

g � q � bX

g � g � bX�

The lowest order processes are the quark and gluon fusions� of which Feynman diagrams

are shown in Figure ����

�



Figure ���! Feynman diagrams of the lowest order processes of b quark production�
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b�hadron Fraction ���
B� �����	�	
B� �����	�	
Bs ���	��������

$b ���	����

Table ��	! Fractions of weakly decaying b�hadron species�

Once b quarks are produced� they fragment into b hadrons� Understanding of the

fragmentation process involves the theoretical prediction of the momentum which the

b hadron carries relative to that of the original b quark� The Peterson model ��� uses

arguments based on kinematics to derive equation!

DH
q �z� � N � �

z

�
�� �

z
� �q

�� z

��	
������

where DH
q �z� is the fragmentation function for the quark q to fragment into hadron H�

z is the fraction of the quark momentum carried by the hadron� N is a normalization

constant and �q is a Peterson parameter� The typical values are �c � ���� and �b � �����

for c and b quark� respectively� Smaller � implies the peak closer to ��

A second issue to be described for the fragmentation process is the expected species

of the b hadron� Depending on whether the b quark initially creates a uu� dd� ss� cc

or a diquark�antidiquark pair� the B�� B�� Bs and Bc mesons and b�
avored baryons

are produced� respectively� The expected values for the production fractions of the

b�hadrons ��� are listed in Table ��	� Values assume

B�b� B�� � B�b� B��� ����	�

��



B�b� B�� � B�b� B�� � B�b� B�
s � � B�b� $b� � ����� ������

where B is a branching fraction�

��� Experimental approaches to mixing at CDF

In general� a measurement of time dependent B�B� mixing requires the knowledge of

the 
avor of the B meson at its production� the 
avor of the B meson at its decay and

the proper decay time of the B meson� We here introduce three fascinating techniques

to measure the oscillation frequency �md �de�ned by the mass di�erence between two

mass eigenstates� in B�B� mixing at CDF besides our analysis�

The �rst measurement uses electron�muon events which have a secondary vertex

found in at least one of two jets associated with the leptons� In this analysis� leptons

are used to tag the presence of b�
avored hadron �hereafter referred to as the B hadron�

decays and to infer the 
avor at decay time� The charge correlation of the two leptons

gives information on mixing� The decay time is reconstructed using secondary vertices�

This technique gives �md of ���
� � ����
 �stat� � ���
� �syst� ps�� �����

The second uses the inclusive electron and muon samples� in which the lepton is

associated to a secondary vertex� These data are dominated by bb production� in which at

least one of the B hadrons decays semileptonically� The proper decay time is determined

by reconstructing the decay vertex of the B hadron that decays semileptonically� The

charge of the lepton determines the 
avor of this B at decay� The 
avor of this B at

production is determined using the second B hadron in the event� Both semileptonic

��



decays of the second B and the momentum weighted charge of the jet produced by the

second B are exploited to tag the production 
avor� This technique gives �md of �����

� ���
� �stat� ������
������ �syst� ps

�� �����

The third applies the Same Side Tagging technique ��	� to the B � �D��
 samples�

We ordinarily use the second B hadron in an event to infer the 
avor at production� In

contrast� this technique ignores the second B hadron and� instead� considers correlations

of charged particles produced along with the B meson of interest� If the b quark combine

with a u quark to form a B� meson� then the remaining u quark may combine with a d

quark to form a ��� Similarly� if b quark fragments to form a B� meson� the correlated

pion would be a ��� The 
avor of the B� at its decay is determined from the charge of

the lepton in the B � �D��
� The B vertex is reconstructed from the lepton and D��


tracks and used to estimate the proper decay time� This technique gives �md of ����

�����
����
 �stat� �����

����� �syst� ps�� �����

�	



Chapter �

Collider Detector at Fermilab

��� The Fermilab Tevatron Collider

Study of pp collisions at the center of mass energy of ��� TeV has started at Fermi

National Accelerator Laboratory in the United States from ���� using the Tevatron

collider� The Figure 	�� shows the paths taken by protons and antiprotons in Fermilab�s

�ve accelerators� The beam of particles begin in the Cockcroft�Walton accelerator�

It provides the �rst stage of acceleration� Inside this device� electrons are added to

hydrogen atoms� The resulting negative ions� each consisting of two electrons and one

proton� are attracted to a positive voltage and accelerated to an energy of �
� KeV�

After leaving the Cockcroft�Walton� the negative hydrogen ions are accelerated to ���

MeV by the linear accelerator called the Linac� The ions pass through a carbon foil

which removes their outer electrons thereby leaving only the protons before entering the

Booster� The protons travel around the Booster about 	����� times and their energy

is raised to � GeV� In the Booster� proton bunches are collected and injected into the

��
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Figure 	��! The accelerators and related devices used to deliver protons and antiprotons
to the CDF Experiment�
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the Main Ring� The Main Ring is another proton synchrotron which is four miles in

circumference� Under current operating modes� the Main Ring accelerates protons to

�
� GeV� Protons from the Main Ring also act as the source of antiprotons� To produce

the antiprotons� protons are �rst accelerated to an energy of �	�GeV in the Main Ring�

extracted� transported to a target area� and focused on the target� The collisions in the

target produce a wide range of secondary particles including many antiprotons� These

are selected and transported to the Debuncher ring where they are reduced in size by a

process known as stochastic cooling� They are the transferred to the Accumulator ring

for storage� When a su%cient number has been produced� the antiprotons are reinjected

into the Main Ring and passed down into the Tevatron where they are accelerated

simultaneously with a counterrotating beam of protons to an energy of ��� GeV� The

instantaneous luminosity of the Tevatron during pp collisions can be calculated using

the equation!

L �
NpNpf

���x�y
�	���

where Np and Np are the numbers of proton and antiproton per bunch� f is the bunch

collision frequency and �x and �y are the major and minor axes of the elliptical cross

section of the beam pro�le at the interaction point� The interaction region for our exper�

iment is at B� �see Figure 	���� Quadrupole magnets focus the beam so that its shape

at the center of the CDF detector is roughly circular in a cross section perpendicular

to the beams with a radius de�ned by one sigma of �� 
m� The longitudinal extent of

the interaction region is approximately Gaussian with a width of �� cm� In a typical

�




collider store in Run IA ����	������ there were six bunches of �	� ���� protons and six

bunches of � � ���� antiprotons every ��
 
s� That resulted in average instantaneous

luminosity of ��
����� cm	s��� An integrated luminosity of 	� pb�� of data was written

to tape� In Run IB ���������
� the Tevatron luminosity was raised by increasing the

number of protons per bunch to 		�
 � ���� and the number of antiprotons per bunch

to ��
 � ����� Average instantaneous luminosity has become ��� � ���� cm	s��� The

integrated luminosity of data is �� pb��� This analysis uses all the ��� pb�� of the data

accumulated during the Tevatron Collider Run IA and IB�

��� Overview of the CDF detector

The Collider Detector at Fermilab �CDF� is a general purpose detector built to explore

pp collisions at the highest energy currently available in the world ���� and is located

at B� interaction region of the Tevatron� The CDF detector is shown in Figures 	�	

and 	��� Surrounding the interaction region is a silicon vertex detector �SVX� used to

determine displaced vertices ����� Immediately outside the SVX is eight small vertex time

projection chambers �VTX� which provide the z coordinates of the event vertices ����� A

central tracking chamber �CTC� is a large cylindrical drift chamber with excellent spatial

and momentum resolution used to measure charged tracks in the central region �����

These tracking systems are inside of the magnetic �eld provided by a superconducting

solenoidal coil� Both electromagnetic and hadron calorimeters are surrounding the CTC�

Most outer parts of the CDF are the muon chambers located behind the steel yoke� A

��
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Figure 	��! A lateral perspective of CDF displaying the relevant muon systems and
calorimeter�

��� Tracking system

The tracking system is used to provide position information of charged particles along

their helical trajectories in the solenoidal magnetic �eld� This enables us to measure

the momenta of charged particles passing through the tracking system volume and re�

construct decay vertices� There are three separate tracking systems inside of the super�

conducting solenoidal coil ��
� in the CDF� a silicon vertex detector �SVX and SVX��

���� ���� a vertex time projection chamber �VTX�� and a central central tracking cham�

ber �CTC� ����� Due to the ����	 T magnetic �eld provided by the magnet� they achieve

excellent resolution of charged particle tracks� These systems are described below�

��



����� Solenoid magnet coil

Precise momentum determination for charged particle produced in the central region is

provided by the central tracking chamber �CTC�� It is in a uniform ����	 T magnetic �eld

oriented along the incident beam direction� The �eld is produced by a � m diameter ��


m long superconducting solenoidal coil� The coil is made of ���� turns of an aluminum�

stabilized NbTi�Cu superconductor� The magnetic �eld 
ux is returned through a steel

yoke which supports the calorimeters� The overall radial thickness of the solenoid is ���


radiation length ��
��

����� The silicon vertex detector �SVX and SVX��

The silicon vertex detector �SVX� is located with its center on the nominal CDF inter�

action point and consists of two cylindrical modules placed end to end with their axes

coincident with the beam axis ����� Cylindrical coordinates are used here with the z axis

parallel to the beam line� the 	 coordinate giving the azimuth� and the radial coordinate�

r� measured along a direction perpendicular to the beam line� The SVX provides track

measurements in the r � 	 plane only� The SVX modules �also referred to as barrel�

consist of four layers of silicon strip detectors segmented into twelve �� degree wedges�

Two such barrels are aligned along the beam direction with a gap between them of 	��


cm at z � �� The total longitudinal coverage is 
� cm� The acceptance is approximately

��� of the pp collision vertices� The SVX overall layout is shown in Figure 	��� The

basic detector element is called a ladder and is shown in Figure 	�
� There are �� such

��



Figure 	��! The SVX overall layout�

element in the complete detector� For Tevatron Collider Run IB a new silicon vertex

detector �SVX�� has been installed in th CDF detector to replace the SVX ����� The

new detector has the same overall con�guration as the SVX� however several di�erences

lead to signi�cant improvements over its ancestor� It is equipped with a radiation hard

readout chip with higher gain and it is AC coupled� so that radiation induced leakage

currents will not saturate the input� it has lower noise� complete 	 coverage and fewer

dead strips� The geometry of the inner layer has been signi�catively changed in order

to achieve complete 	 coverage� The ladder of inner layer are tilted by � degree around

their axes and they are overlapped at the edges� A ���� degrees overlap is obtained for

the SVX� corresponding to ��	� strips whereas SVX had a ��	� degrees gap� The inner

	�



Figure 	�
! The ladder�

	�



layer is also closer to the beam line by � ��
 mm at a radius of 	��� cm� It has a signal

to noise of �
� a hit e%ciency � ���� an average position resolution of ���� 
m� and an

asymptotic impact parameter resolution of �� 
m� Table 	�� shows the comparison of

SVX and SVX��

Feature SVX SVX�
channels �����
z coverage 
��� cm
gap at z�� 	��
 cm
radius L� ������ cm 	����	 cm
radius L� ��	
�� cm
radius L	 
����	 cm
radius L� ����
� cm
overlap L� ���	� deg �gap� ���� deg ���	� strip�
overlap L� ���	 deg �� strip�
overlap L	 ���� deg �� strip�
overlap L� ���� deg �� strip�
silicon one�sided

DC AC� FOXFET bias
passivation none polyimide
atmosphere Ar�Ethan�H	� dry nitrogen
readout chip SVX IC Rev�D SVX IC Rev�H�
sampling quadruple double
noise 		�� electrons ���� electrons
gain �
 mv�fc 	� mv�fc
beam collision period ��
 
s
readout time 	�� 
s 	�� 
s
rad limit �
�	� KRad � � MRad
bad channel 	���� �����

Table 	��! Comparison of SVX and SVX��

		



����� The vertex time projection chamber �VTX�

The vertex time projection chamber �VTX� ���� is mounted outside the SVX� This is

another tracking system which instead measures the event in the r� z plane� It is used

to locate the longitudinal position of the interaction vertex along the beam line� provides

seed of the CTC three dimensional reconstruction� and is also used to identify photons

which are converted to electron�positron pairs after exiting the VTX� The VTX system

has eight separate time projection chamber modules which are mounted end�to�end along

the beam direction� It has 	�� m total length and covers well the long interaction region

��z � �
 cm�� Each of the octagonal VTX modules has a central high voltage grid that

divides it into two �
�	
 cm long drift regions� It is eventually planned to operate the

Tevatron in six bunch mode with ��
 
s between crossings� The �
�	
 cm drift length is

chosen so that the maximum drift time is less than ��
 
s when the drift velocity in the

gas is �� 
m�ns �e�g� argon�ethane 
��
� at atmosphere pressure and E � �	� V�cm��

The electrons drift away from the center grid until they pass through a cathode grid

and enter one of the two proportional chamber endcaps� Each endcap is divided into

octants� with 	� sense wires and 	� cathode pads in each octant� The arrival times of

the electrons at the sense wires give a picture of the event in the r � z plane�

����� The central tracking chamber �CTC�

The central tracking chamber �CTC� is a ��� m in diameter and ��	 m long cylindrical

drift chamber and extends from outside the VTX to inside the solenoidal magnet covering

	�



out to pseudorapidity of ��� ����� The chamber is composed of �� layers of sense wires

grouped into � �superlayers � Five of the superlayers consists of �	 axial sense wires�

and four of them consists of � sense wires� They have angles of ��� relative to the beam

direction� Table 	�	 summarizes some of the mechanical properties and performance

speci�cation of the CTC� The structure of the CTC at its endplate is shown in Figure 	���

The CTC reconstructs tracks with pT � 	�� MeV�c� The e%ciency rises over the

range from 	�� MeV�c to ��� MeV�c and is uniform for tracks with pT � ��� MeV�c �	��

	���

Figure 	��! The wire layout at the endplate of the central tracking chamber�
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Number of layers ��
Number of superlayers �
Stereo angle �� ��� �� ��� �� ��� �� ��� ��

Number of super cells�layer ��� �	� ��� ��� �	� ��� ��� ���� �	�
Number of sense wire�cell �	� �� �	� �� �	� �� �	� �� �	
Radius at innermost sense wire ��� mm
Radius at outermost sense wire ��	� mm
Wire length �	���� mm
Total number of wires ��
��
Total wire tension 	
 ton
Gas argon�ethane�alcohol ������!�����!�����
Drift �eld �E�� � ��
� V�m
Drift �eld uniformity dE��E� � ��
� �rms�
Resolution � 	�� 
m per wire
E%ciency � ���� per point
Double track resolution � 
 mm or ��� ns
Maximum drift distance �� mm
Maximum hits per wire � �
z resolution � ��	�� mm�sin�� �� � mm
Momentum resolution �pT�pT � �����pT �in GeV�c at ����

�pT�pT � ����	pT

Table 	�	! Mechanical parameters and performance speci�cation of the CTC�

	




��� Calorimetry

The CDF calorimeters are arranged in towers which project back to the geometric cen�

ter because of the importance of hadronic jets in high energy proton�antiproton col�

lisions� Each tower has an electromagnetic shower counter in front of a corresponding

hadron calorimeter� The formermeasures the energy of photons and electrons �positrons�

through the process of electromagnetic interactions� and the latter located behind the

electromagnetic calorimeter measures the energy of hadron through the process of strong

interactions�

����� The central calorimeters

The central calorimeter has an electromagnetic section �CEM� and a hadronic sec�

tion �CHA� and covers the region j�j � ���� The physical characteristic of the central

calorimeters are summarized in Table 	��� The electromagnetic section is constructed

of alternating layers of iron and scintillator� The central calorimeter is segmented into

�
� wedges in 	 and ���� in �� Figure 	�� shows the anatomy of an individual central

calorimeter wedge� Wave length shifting material attached to the scintillator redirects

light to acrylic light guides which carry the light to photomultipliers found at the back

of the calorimeter� The photomultiplier signals feed into the ampli�ers in the front end

electronics� The physical properties for the calorimeters are given in Table 	���

The central electromagnetic calorimeter has proportional wire chambers �CES� at �

radiation lengths� approximately the position of maximum shower development for an
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Figure 	��! Shown above is a �D perspective of a single wedge of the central electromag�
netic calorimeter� Displayed are both the lead�scintillator sandwich of the calorimeter
itself� together with the photomutiplier readout� and the position of the shower�max
central strip chambers �CES��
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Central �EM� Central �HAD�
Coverage�j�j� � � ��� � � ���
Tower size ��� ��	� ��� � �
� ��� � �
�

Module length 	
� cm 	
� cm
Module width �
� �
�

Number of modules �� ��
Active medium polystyrene acrylic

scintillator scintillator
thickness 
 mm ��� cm
& layers 	���� �	

Absorber Pb Fe
thickness ���	 cm 	�
 cm
& layers 	���� �	

Energy resolution ���
��
p
E ��� �
� GeV ��

Table 	��! The physical properties for the central calorimeters�

electron shower� The anode wires provide x position information for electromagnetic

showers� The chambers also have cathode strips which provide z position information

for the shower�

The response of the electromagnetic calorimeter over the face of each tower has been

mapped using electrons from a test beam� The electromagnetic tower response as a

function of tower position is shown in Figure 	��� The higher response occurs near the

edge of the scintillator where the light is collected� This response map has been used to

correct the energy of electron�

����� The plug and the forward calorimeter

The plug region �PEM and PHA�� ��� � j�j � 	�	� and forward region �FEM and FHA��

	�	 � j�j � ��	� are covered by gas calorimeters� The segmentation in this region is �	
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Figure 	��! Here we display a map of the central electromagnetic calorimeter response�
The vertical axis is a �	 parameter �t to the calorimeter response for minimum ionizing
particles� while the horizontal axes are the longitudinal and polar coordinates�
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Plug �EM� Plug �HAD� Forward �HEM� Forward �FHA�
Coverage�j�j� ��� � 	�� ��� � 	�� 	�	 � ��	 	�� � ��	
Tower size ��� ��	� ��� � 
� ��� � 
� ��� � 
� ��� � 
�

Active medium proportional tube chambers
tube size �cm	� ��� � ��� ��� � ��� ��� � ��� ��� � ���

Absorber Pb Fe ���Pb� ��Fe Fe
thickness ��	� cm 
�� cm ���� cm 
�� cm

Energy resolution �� 	�� �� 	��

Table 	��! A summary of physical properties for the gas calorimeters�

� 
� and �� � ����� The calorimeters contain tubular proportional wire chambers with

a 
�� argon and 
�� ethane gas mixture as the active medium� The physical properties

of the gas calorimeters are summarized in Table 	���

��� Muon systems

The CDF central muon chambers consist of three subsystems � namely a central muon

system �CMU�� a central muon upgrade �CMP�� and a central muon extension �CMX��

The combined acceptance for these subsystems is complicated by the fact that each

subsystem has a di�erent geometry� The CMU has a cylindrical symmetry� the CMP

has a box geometry� and the CMX has a conical geometry� as shown in Figures 	�	

and 	��� The e�ect of these diverse geometries on the muon acceptance is shown in

Figure 	���

��
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Figure 	��! An � � 	 plot of the central muon coverage at CDF� Note the e�ect of the
CMP�s box geometry on its acceptance� and the gaps in the CMX acceptance at the top
and bottom of the detector�
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��	�� The central muon system �CMU�

The CMU chambers consist of four layers of drift chambers covering the region j�j � ����

as shown in Figure 	���� The drift chamber wires are parallel to the z axis and alternate

layers are radially aligned in order to allow a crude momentum measurement� The

chambers are subdivided into 	� wedges in 	 for each half of the detector ����� � � � �

and � � � � ����� Each wedge is further subdivided into three 
� towers� with each

tower having the geometry shown in Figure 	���� Wires in alternating layers are o�set

by 	 mm in order to resolve the left�right ambiguity�

Muon tracks in the CMU are reconstructed using time�to�distance relationships in

the drift direction �	�� and charge division in the longitudinal direction �z�� Cosmic

ray studies have determined the resolutions to be 	
� 
m in the drift direction and ��	

mm in the longitudinal direction� Clusters of hits in at least three layers are found

separately in the r � 	 and r � z planes� and these two sets of clusters are merged�

Then a linear �t is performed to generate a three dimensional track segment� These

measurements can be compared to the position obtained from the extrapolation of a

track using the parameters found in the CTC� This extrapolation can be used to de�ne

well measured and identi�ed muon candidate� Positioning the muon chambers behind

the central calorimeters introduces an e�ective cut�o� of ��� GeV�c on the minimum

muon pT�

The CMU� operating as an independent muon detector� su�ers from two serious

defects� The �rst is that the CMU has only an average of 
�� pion interaction lengths

�	
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Figure 	���! Here we display the organization of drift chambers of the CMU� in both �
and 	 space� superimposed on the structure of the CEM�
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Figure 	���! Above we display the geometry of the �� chambers of a single CMU tower�

between it and the event vertex� This results in very high backgrounds due to mesons

punching through the calorimetry and leaving a stub in the CMU� The CMP has been

constructed to address this 
aw� The second defect is that the CMU only covers a range

of ���� � � � ���� The CMX was constructed in order to expand the muon coverage to

���� � � � ����

��	�� The central muon upgrade �CMP�

The CMP also consists of four layers of drift cells� but in a staggered geometry� The

chambers are assembled in a box geometry outside the solenoid magnet� and behind ��

cm of additional steel in the region 

� � � � ���� The return yoke of the CDF solenoid

provides the necessary steel above and below the central detector� and as a result it is

added steel on the two sides of the detector in the form of non�magnetized retractable

��



walls� The CMP chambers are 	�
 cm � �
 cm in cross section� and are operated in

proportional mode with a maximum drift time of approximately ��� 
s� The design of

a CMP chamber is shown in Figure 	��	�

Gas Inlet/Outlet

Field Shaping Pads

Endplate Gas Inlet/OutletWire Feedthrough

Aluminum Chamber

Wire FeedthroughEndplate

Contact Pins

Gold Plated
Tungsten Wire

Grid HV
Gold-plated Cu/Be

Gold-plated Cu/Be
Grid HV

Contact Pins

PVC Wire Support

Figure 	��	! Here we show the mechanical layout of a drift chamber for the CMP or
CMX�

The � coverage of the CMP roughly corresponds to that of the CMU� except where

limited by the box geometry� as displayed in Figure 	��� The additional interaction

lengths in front of the CMP allow one to dramatically reduce the central muon back�

grounds by requiring a CMU�CMP coincidence� Only muons with pT above 	�
 GeV�c

are expected to reach the CMP�

�




��	�� The central muon extension �CMX�

The CMX consists of conical sections of four layers of drift tubes at each end of the CDF

detector covering a pseudorapidity range of ���
 � j�j � ���� The drift tube layout for

a �
� wedge of the CMX is shown in Figure 	���� There is a ��� gap in 	 at the top of

the detector for the Tevatron Main Ring� and there�s a ��� gap at the bottom where the

conical sections are interrupted by the 
oor of the collision hall� Both of these gaps are

visible in Figure 	��� The four layers of drift tubes are arranged into groups of twelve for

each �
� 	 sector� and successive layers are half�cell o�set to eliminate ambiguities� No

additional steel was added for this detector� since the large angle through the hadron

calorimeter and magnet yoke means that particles reaching the CMX traverse more

interaction lengths than those projecting to the CMU�

There is an additional background found in the CMX that is not found in the

CMU�CMP� which is due to secondary particles generated from far forward particles

scattering o� the beam pipe�

��� Trigger system

One of the greatest challenges in experimental pp collider physics is the enormous total

cross section for pp interactions� At CDF Run I the collision rate is ������� Hz while

the detector data can be recorded at a rate of 
 Hz� The online event selection process

at CDF is accomplished with a three stage trigger system� The multistage structure

minimizes deadtime by using fast� relatively simple triggers to �lter events for slower�

��



Figure 	���! Above is displayed the geometry of the drift tube layout for a �
� CMX
wedge�
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more complicated ones�

Detector elements are attached to front end electronics which send signals to digiti�

zation modules for assembly into a CDF event record� The front end electronics include

FASTBUS TDCs �Time to Digital Converter� to read out tracking and prompt muon

data� These fast signals are used in the trigger decision� Other front end modules� RAB�

BIT cards� are mounted on the detector and are used to read out calorimeter and the

muon drift chamber information� These front end systems are connected to digitization

modules which do some processing such as formatting and adding header information�

Data is then collected by an event builder which sorts it at a rate of � �� Hz� The

average size of event assembled by the event builder is about 	�� KB� After passing it

the data are submitted to a Level � trigger and events are logged onto � mm tape at a

rate of � 
 Hz�

The Level � decision is made in the ��
 
s between beam crossings� incurring no

dead time while reducing a raw event rate of ���kHz to � kHz� Only the most elementary

comparisons are possible at this time� It uses the informations of the calorimeters� the

tracking chambers and beam�beam counter existing�

The Level � trigger �lters events to a rage of �	 Hz by removing backgrouds which

pass Level � and making requirements for better de�ned thresholds� Unlike Level �� it

determines clustering of energy in the calorimeters� performs the track reconstruction

by using the central fast tracker �CFT� �		� and discriminates electron and �� with �rst

order�

��



The Level � trigger consists of a software processor farm� When Level 	 accepts

an event� the event data is packaged and sent to one of �� Silicon Graphics computers

which processes it in a manner similar to the o'ine reconstruction� reducing the events

rate to 
 Hz for data writing� At Level �� all of the quantities in the o'ine data are

available to make trigger decisions� At this point a wide variety of triggers and data

streams are de�ned in order to facilitate the analysis of the CDF data�

��



Chapter �

Analysis Outline

This article describes a measurement of the time�dependent B�B� mixing using B� �

���D��X decays reconstructed in dilepton events recorded with the CDF detector dur�

ing the ���	��� and ������
 proton�antiproton collider runs at
p
s � ��� TeV� The

data sample corresponds to an integrated luminosity of approximately 	� and �� pb���

respectively�

By selecting the ��D�� combination from the semileptonic decay of a B �B� and

B�� meson

B � ���D��X� �	�� �����

it is possible to obtain a very pure sample of B� meson decays� �In this article a reference

to a particular charge state also represents its charge conjugate state�� Though the B�

meson also contributes to the ��D�� signature� the e�ect of these B� decays can be

taken into account when we measure �md�

��



In order to reconstruct the D�� meson we use the decay modeD�� � D���� We �rst

reconstruct a D� candidate using its decays to K���� K������� or K������ Then

the D� candidate is combined with a pion candidate to form a D�� candidate� The B

decay vertex is reconstructed from the lepton and D�� tracks� and is used to estimate

the proper decay time�

The measurement of the oscillation frequency requires an identi�cation of the initial

and �nal 
avors of the B� in addition to the B� decay time� The decay 
avor of the

B� is identi�ed by the sign of the �nal state ���D�� for B� and ��D�� for B��� The


avor at production can be inferred from the charge of the second lepton in the event

�b � B � ���X�� under the assumption that b quarks are produced in pairs� An

opposite�sign �OS� lepton pair tags an unmixed event and a same�sign �SS� lepton pair

tags a mixed event� Since the lepton can come from a sequential decay b� c � �� or

from a mixed decay b� B�
d�s � B�

d�s � ��� there will be an event in which the second

lepton does not tag the correct production 
avor� Also the second lepton can be a fake�

and it will be an additional source of the 
avor mistag�

The proper decay time of the B meson is estimated as follows� The two�dimensional

decay length LxyB in the plane transverse to the beam �transverse plane� is de�ned as

the distance between the B decay vertex and the primary vertex in this plane� We use

the average beam position as the primary vertex� At �rst we determine the tertiary

vertex �D� vertex� and the momentum vector from the tertiary vertex is intersected

with the lepton track to form the secondary vertex �B vertex�� We then convert the

��



decay length to the proper decay length by a Lorentz boost factor ���

ct 
 L

��

� LxyB

mB

pBT
���	�

where L is the three�dimensional 
ight distance between the B production and decay

points� and mB and pBT are the mass and transverse momentum of the B meson� Since

we are not able to fully reconstruct the B momentum due to the undetectable neutrino�

we use the proper decay length de�ned by

x 
 LxyB

mB

p�
�D��

T

hKi� �����

where K � p�
�D��

T �pBT � the ratio of the observed to true momenta� As we shall see

later� a typical K distribution D�K� has a mean of ���
 and an RMS of ����� providing

a relatively good resolution� Figure ��� shows the schematic illustration of the decay

length measurement�

The decay length distribution F�ct� in an ideal case is described by

F�ct� �
�

	c�B
exp

�
� ct

c�B

�
f� � cos��mdct�c�g � �����

where �B is the lifetime of the B meson� We de�ne the charge asymmetry QQ by

QQ�t� 
 N�t�os �N�t�ss

N�t�os �N�t�ss
� cos�md t� ���
�

�	



Figure ���! Schematic illustration of the decay length measurement�
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Including the �� smearing� the probability function of the variable x �Eq� ���� is given

by

F�x� �
K

	c�BhKi exp
�
� Kx

c�BhKi

��
�� cos

�
�md

c

hKi
K

x

�	
�D�K�� �����

Including the resolution of the vertex determination� we have

F�x� �
K

	c�BhKi exp
�
� Kx

c�BhKi

��
�� cos

�
�md

c

hKi
K

x

�	
�G�D�K�� �����

where G is a Gaussian function representing the resolution� These functional behaviors

are shown in Figure ��	 for �md � ��
 ps�� and c�B � ��� 
m� Dotted lines show

unmixed events� dashed lines mixed events� and solid lines are the sum of the two�

After the inclusion of the �� smearing� the asymmetry distribution no longer reaches

�� at its minimum� We assume 
� 
m as the resolution �Figure ��	 ����� and �nd this

smearing does not give much e�ects to the decay length distributions� Figure ��� shows

the oscillation curves for a few �m values�

��



Figure ��	! Proper decay length ����� and charge asymmetry ��� distributions for �m
� ��
 ps�� and c� � ��� 
m�
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Figure ���! Charge asymmetry distributions for various oscillation frequency values�
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Chapter �

Event Selection

We trigger on e
 and 

 events in this analysis� Selection cuts for the lepton identi�ca�

tion and D�� reconstruction are described below�

��� Lepton identi	cation

Most of lepton identi�cation cuts come from trigger requirements�

����� Electron identi
cation

First we describe the de�nition of the several variables�

Energy fraction
 EHAD�EEM

A ratio of the hadronic energy to the electromagnetic energy in a calorimeter� called

EHAD�EEM� is used to reject the charged hadrons which have tendency to deposit a

larger energy in the hadronic calorimeter than electrons�

��



Lateral shower sharing
 Lshr

This variable is de�ned by following formula!

Lshr � ����
X
i

Emeas
i �Epred

iq
��E�	 � ��Epred

i �	
� �����

where Emeas is the energy deposit in tower i� Epred is the energy expected in the tower

i� �E is the uncertainty in the energy measurement with the CEM ��E � ����
p
E��

and �Epred
i is the error associated with Epred

i � It describes a lateral sharing of the

EM shower energy among the CEM towers� The sum runs over the two towers in �

direction adjacent to the seed tower� The expected tower energy Epred
i was determined

from test beam electron data as a function of the seed tower energy and the direction of

the CES shower center relative to the event vertex� The error �Epred
i was determined

by propagating an error of the shower center measurement in the CES to the predicted

energy Epred
i �

Lateral shower shape
 �	strip and �	wire

Comparing a shower shape measured in the CES with the one obtained from test beam

electrons� one can check the consistency of the measured shower shape with the expected

electron shower shape� The variable �	strip de�ned by Eq� ��	 uses a shower shape in

strip view �along the beam direction�� We minimize the following function varying two

��



parameters� the z position of the center of a shower and the electron energy E�

�	�z�E� �
i��X
i��

�Emeas
i �Eqpredi �z��	

�	i �z�
� ���	�

where Emeas
i is the measured energy on the strip channel i� qpredi is a normalized energy

distribution on channel i predicted from 
� GeV�c test beam electrons and �i is an energy


uctuation of a single�channel response� In the summation of i� neighboring eleven

channels are examined corresponding to about �
 cm which is su%cient to contain a full

electron shower� Based on �� GeV�c electron test beam data� the response 
uctuation

�i for each channel is parameterized as

�	i �z� � ���	�	 � �����	qpredi �z�� �����

Using the shower center position obtained above� �	strip is de�ned as

�	strip �
�

�

�
ECEM

��

���
�
 i��X
i��

�qmeasi � qpredi �zCES��	

�	i �zCES�
� �����

where ECEM is the energy measured by the central EM calorimeter� qmeasi is the mea�

sured value of the normalized energy distribution on channel i� The energy obtained by

minimizing function Eq� ��� is not used because the energy resolution is worse �	�� and

��� for 
� GeV�c and �� GeV�c electrons� respectively� than the one measured by the

CEM� An energy dependent factor of E��
�
 is introduced to compensate for the energy

dependence of the �	strip� which comes from the CES is located at a �xed depth in the

CEM and it therefore see a di�erent age of longitudinal shower development depending

��



on the electron energy� The parameter was determined from test beam electrons of var�

ious energies from �� GeV to 	�� GeV� In the same way� the shower shape parameter

in z direction �	wire is de�ned using a wire view of the EM shower� The �	strip and �	wire

are useful to discriminate an EM cluster of an electron against an EM cluster in which

more than one particle are contained� Photons from �� � �� decays have a minimum

opening distance d �cm� at a radius R �cm� from the beam line that is related to the ��

momentum as

d �
	RM�

pT���
� ���
�

where pT��� is the transverse momentum and M� is the mass of ��� At the CES radius�

R � ��� cm� we have d � 
��pT�GeV�c� cm� Since the number of strips for calculation

of �	strip is eleven �� �
 cm�� two photons with d � ��
 cm and two photons from ��

of above � GeV�c will be contained in a same window for calculation of �	strip� The

resulting �	strip will have a large value due to the existence of an additional shower peak

in the cluster� A typical CES shower has � ��� of the total CES energy in �	�
 cm

around the shower center� Therefore the presence of two photons will be removed by a

large value of �	strip up to pT���� � 	� GeV�c� Above this momentum� the two photons

get closer to make it di%cult to recognize two showers in the CES� This variable is also

used to discriminate against charged pions which interact and deposit the energy in the

CEM� Their shower shape is usually broader than that for electrons�


�



Position matching
 �x and �z

In r�	 plane� the di�erence between the position measured by the CES and that of a

CTC track extrapolated to the CES� �x� is de�ned by

�x � R�	 �R � ���cm�� �����

where �	 is the azimuthal di�erence between the 	 position which is optimized in a

similar way as in the �	strip estimation and that of the extrapolated CTC�track at the

CEC� and R is the radius of the CES from the beam line� The di�erence along the beam

direction �z is estimated from a position measurement in the CES and the extrapolated

CTC�track position at the CES� This position matching is useful to remove the overlap

of a photon with a charged hadron where an accidentally associated track of the charged

hadron is expected to have a worse position matching than an electron track�

Followings are the electron identi�cation cuts�


 �D track�


 Central EM�


 EHAD�EEM � ���� when the number of associated charged tracks is ��


 EHAD�EEM � ��� when the number of associated charged tracks is 	 or more�


 Lshr � ��	�


 �	strip � ���


�




 �	wire � �
�


 pT � ��� GeV�c�


 ET � ��� GeV�


 j�xj � ��� cm�


 j�zj � 
�� cm�

����� Muon identi
cation

For muons �


 �	CTC�CMU�TDC
 � ��


 �	CTC�CMU�ADC
 � �	�


 �	CTC�CMP�TDC
 � ��


 �	CTC�CMX�Z
 � ��


 �	CTC�CMX�TDC
 � ��


 pT � 	�� GeV�c for muons in 

 sample�


 pT � ��� GeV�c for muons in e
 sample�

The �	s are �t �	s for CTC and muon chamber tracks�

We remove J�� events if they have a dimuon pair �either OS or SS� satisfying ��� �

mass�
�
	� � ��	 GeV�c	�


	



We start from 	�� million dilepton pairs� and ��
 million pairs remain after these cuts

are applied�

��� D�� reconstruction

We look for the D�� meson near the leptons in an event� The lepton and D�� must

have opposite charges ���D��� not ��D���� For this analysis the decay D�� � D���

followed by D� � K���� D� � K������� or D� � K������ is used� The �� in the

D� � K����� channel is not reconstructed �	���

All tracks in the D�� reconstruction must have a �D �t in the CTC� At least two

axial layers must have �ve hits and at least two stereo layers must have two hits� Also

each track is required to have a CTC exit radius greater than ��� cm �	
��

����� D��� D�
� K���

The kaon and pion candidate tracks are required to be within a cone of ��� and ���

around the lepton in the ��	 space� We also apply the kinematic cuts pT�K
�� � ��	

GeV�c and pT���� � ��� GeV�c� The kaon candidate has to have the same charge as

the lepton� In order to reconstruct the B vertex properly� we use only those tracks which

have �	SVX � ��Nhit� where Nhit is the number of SVX hits� We call this a good SVX �t

track� Each of the lepton� kaon and pion must have a good SVX �t� Then we perform a

vertex �t using the CTVMFT which is the CDF multiple vertex and mass constrained

�t package from the o'ine code version ���	� We use only D� candidates with at least


�



	�� GeV�c in pT� Also the ��D� pair must satisfy m���D�� � 
�
 GeV�c	� The soft

pion has to have the same charge as the pion from the D� decay� and can be a CTC�only

track� A lepton isolation cut is used to reduce combinatorial background further� We

require Eiso
T �pT�D

�� � ��	 for the 
� associated with the D��� where Eiso
T is the excess

transverse energy inside a cone of ��� in the ��	 space around the muon candidate�

����� D��� D�
� K�������

For a kaon candidate� the cone of radius ��� is used� and we require pT�K�� � ��	

GeV�c� Each of three pion candidates has to have at least ��
 GeV�c in pT� and has to

be in a cone of radius ���� We also require at least three out of the four D� daughter

tracks to be reconstructed in the SVX with good �ts� If a track does not have a good

SVX �t or any SVX link at all� we use a CTC �t� Using the CTVMFT� the B and D

decay vertices and the D� and D�� masses are reconstructed� We require pT�D�� � 	

GeV�c and m���D�� � 
�
 GeV�c	� We reject those combinations which have an overall

�	 of the CTVMFT �t greater than ��� In addition� we apply Lxy � �� where Lxy is

the apparent D� decay length measured with respect to the primary vertex� For the 
�

associated with the D��� the isolation cut Eiso
T �pT�D�� � ��	 is required too�

����� D��� D�
� K�����

We can identify this decay chain using the K��� mass and the mass di�erence �Eq� ����

without detecting the ��� We apply the same pT cuts for the kaon� pion and D� can�

didates as in the D� � K��� channel� but smaller cone sizes ���� and ���� are used


�



Mode cone size momentum�GeV�c� Decay Isolation Vertex �	

kaon pion kaon pion length e 


D���D� � K��� ��� ��� � ��	 � ��� none none � ��	 none
D���D� � K������� ��� ��� � ��	 � ��
 � � none � ��	 � ��
D���D� � K����� ��� ��� � ��	 � ��� � � � ��	 � ��	 � �����

Table ���! Cuts used for charm reconstruction�

to suppress a higher combinatorial background� We require m���K���� � 
�
 GeV�c	�

An overall �	 of the CTVMFT vertex �t is required to be less than �� and �� for 



and e
 samples� respectively� We require Eiso
T �pT�K�� � ��	 for the 
� or e� associated

with the D���

Table ��� shows the summary of the cuts for the charm reconstruction� The cut

values were determined from a signal to background study using the data and a Monte

Carlo sample which includes only the signal events� We also apply the following decay

length cuts for all channels�

���� cm � x � ��� cm�

� � ���
 cm�

���� cm � xD � ��� cm�

where x is the proper decay length de�ned in Eq� ���� � is its estimated uncertainty� and

xD is the proper decay length of the D� meson measured using the distance between the

secondary �B� and tertiary �D�� vertices and the reconstructed D� momentum�

The second lepton is required to be outside a cone of 	�� in the ��	 space around the







lepton associated with the D�� candidate�

At this point we require the mass of a D� candidate to be in the signal region given

in Table ��	� We then look at the mass di�erence de�ned as

�M 
 m�D�����m�D��� �����

wherem�D�� is the reconstructed mass of theD� candidate� For the K����� mode� it is

the mass of aK��� pair� The mass di�erence distributions for the three modes above are

shown in Figures ���� ��	 and ��� for the combined 

 and e
 samples� In those Figures�

the distributions for the opposite�sign and same�sign events are shown separately in

addition to the total events� We show the same �M distributions separately for e


and 

 samples in Figures ��� and ��
� In the mass di�erence distributions� solid lines

give the right sign �D���� combination and dashed lines give the wrong sign �D����

combination� We �nd signi�cant peaks in the right sign combinations� There are more

opposite�sign events than same�sign events� It is a promising indication of the 
avor

tagging capability� Figures ��� and ��� show the detector types of the lepton associated

with D�� and the tagging lepton in the signal region for e
 and 

 samples� respectively�

Figure ��� gives the sum of the two� The second lepton tags the 
avor of the second B

hadron� As we expect� at least one muon has the detector type of CMU�CMP�

We introduce the de�nition of signal samples in Table ��	� We also estimate the

number of combinatorial background events� The same sign event fraction of the back�

ground fss � N ss
bkg�N

tot
bkg in the signal region is estimated by comparing the numbers of


�



Mode D� mass range D�� �M range Events Background fraction
�GeV�c	� �GeV�c	� e
� 

 e
� 



D���D� � K��� ��������� ����������� 	�� ��		� � �����
D���D� � K������� ��������� ����������� 	
� ���	� � �����
D���D� � K����� ��
���� � ���

 ��� ��
�� � ���
�

Table ��	! De�nitions of signal samples�

Mode Events Nos N ss N tot
bkg N ss

bkg fss
D���D� � K��� e
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� � ��	��
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 �	� ��� ��� ����� � ���� ���
 � ���
 ����� � ����

e
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 ��� 	�� ��
 		
�� � 	��� ���� � �	�� ����� � �����

Table ���! Estimated numbers of combinatorial background events and same sign event
fraction of the background fss�

the right sign and wrong sign combinations� They are listed in Table ����


�



Figure ���! Mass di�erence distributions for the B � ���D��X�D�� � D����D� �
K��� signal reconstructed in dilepton events� Solid histograms show the right sign
�D���� combinations� and dashed histograms show the wrong sign �D���� combinations�


�



Figure ��	! Mass di�erence distributions for the B � ���D��X�D�� � D����D� �
K������� signal reconstructed in dilepton events� Solid histograms show the right sign
�D���� combinations� and dashed histograms show the wrong sign �D���� combinations�
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Figure ���! Mass di�erence distributions for the B � ���D��X�D�� � D����D� �
K����� signal reconstructed in dilepton events� Solid histograms show the right sign
�D���� combinations� and dashed histograms show the wrong sign �D���� combinations�
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Figure ���! Mass di�erence distributions for e
 samples� Solid histograms show the
right sign �D���� combinations� and dashed histograms show the wrong sign �D����
combinations�
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Figure ��
! Mass di�erence distributions for 

 samples� Solid histograms show the
right sign �D���� combinations� and dashed histograms show the wrong sign �D����
combinations�
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Figure ���! Detector type of D�� and tag lepton for e
 sample�
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Figure ���! Detector type of D�� and tag lepton for 

 sample�
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Figure ���! Detector type of D�� and tag lepton�

�




Chapter �

Sample Composition

We describe the B� contamination in the ��D�� sample in this chapter� If the semilep�

tonic B decay produced only the pseudoscalar and the vector D mesons� the ��D��

combination would come only from the B� meson!

B� � ���D���

We know� however� from CLEO measurement that there is some room for higher mass

charm states and non�resonant D�� states� We call them D��s� Since the ��D�� com�

bination can come from both B� and B� decays as follows!

B� � ���D���� D��� � D�����

B� � ���D���

B� � ���D���� D��� � D�����

our ��D�� sample is not a completely pure sample of B� decays� As we shall see later� we

need to know the fraction of the B� mesons in order to measure the oscillation frequency�

��



The mixture of the B� and B� mesons depends on the D�� fraction in semileptonic B

decays� D�� composition and the ratio of the B� and B� lifetimes�

��� D�� fraction in semileptonic B decays

We de�ne the fraction �f��� of D�� in semileptonic B decays by

f�� 
 B�B� ���D���

B�B � ���X�
� �
���

where B is a branching fraction and B stands for a B� and B� meson� The CLEO

experiment measures f�� � ���� � ���	 �	���

To estimate the relative mixture of the B� and B� mesons for a certain f�� value� a

Monte Carlo sample is generated with the Bgenerator which is the CDF bb Monte Carlo

generator �	�� followed by the CLEO Monte Carlo program QQ �	�� ���� The following

semileptonic branching fractions are used!

B�B� ���D� � �����

B�B � ���D�� � �����

B�B � ���D��� � ����� �
�	�

The corresponding D�� fraction is

f�� � ���
�� �
���

��



The number of events passing the lepton identi�cation and D�� reconstruction cuts

are counted in this Monte Carlo sample� The results are given in Table 
��� From this

table� the B� purity is calculated to be ����� and ���	� for 
�D�� and e�D�� samples�

respectively� The di�erence comes from di�erent kinematic requirements on leptons�

The mixture for di�erent f�� value is calculated based on this table� It is shown in

Figure 
�� for various lepton pT thresholds�

��� D�� composition

We consider P �wave D meson as the D�� mesons which are produced in semileptonic B

decays� There are four kinds of states and their properties are summarized in Table 
�	�

The D�� meson can decay to both D� and D��� but their relative branching ratio is not

known well� We de�ne a parameter PV as follows !

PV 
 B�D�� � D���

B�D�� � D��� � B�D�� � D��
�

The PV dependence of the mixture is evaluated by using the same Monte Carlo sample

as in the previous section and shown in Figure 
�	� The Monte Carlo sample has PV of

���
��

A limit on PV can be estimated from branching ratio measurements� The branching

ratio of the total semileptonic B decay is given by

B�B � ���X� � ������ � ����	�� �
���

��



If f�� � ����� the branching fraction into D�� in semileptonic B decays is written as

B�B � ���D��� � B�B� ���X� f��

� ������� � ����	�� � ����

� �����
 � ������� �
�
�

An ALEPH ���� measurement reports

B�B � ���D����X� � ������ � ����	� � ����	�� �
���

We here assume X � � in Eq� 
��� Since the D��� meson decays to D���� and D����

pairs with a ratio of �!	� the branching ratio of D�� to D� is �at least�

B�B� � ���D���� B�D��� � D��� �
�

	
B�B � ���D�����

� ����
� � ����
�� �
���

Using these two numbers �Eqs� 
�
 and 
���� we �nd

PV � ����� � ������ �
���

or PV � ��	�� �
���

We use PV � ���
� as our standard choice� and consider ��	� and ���� as boundaries for

systematic uncertainty�

��



��� Lifetime ratio

The fraction of the B� meson relative to the sum of B� and B� is given by using the

number of observed ��D�� pairs�

fB� 
 B�

B� �B
� �

N���D�� from B��

N���D�� from B�� �N���D�� from B
�
�
� �
����

and these numbers are proportional to their semileptonic branching ratios!

N���D�� from B�� 	 B�B� � ���X��

N���D�� from B
�
� 	 B�B� � ���X�� �
����

If we assume the identical partial semileptonic widths for B� and B�� their branching

ratios are proportional to the lifetime ratio!

B�B� � ���X�

B�B� � ���X�
�

"�sl�"
�

tot

"�sl�"
�
tot

�
"�tot
"�tot

�assume "�sl � "�sl�

�
�B�

�
B
�

� �
��	�

Namely the B� and B� mixture depends on the lifetime ratio� Figure 
�� gives the

mixture as a function of the lifetime ratio� The current world average of the lifetime

ratio ����	 � ���
� gives only a small change in fB��

��



B decay type 
�D�� e�D��

B� B� B� B�

B � ���D� � ���� � ���	
B � ���D�� 	�	� ��	� 

� ���
Sum 	�	� ���� 

� �
��
fB� �(�B���B�����	� ����� �����

Table 
��! B� and B� mixture from the Monte Carlo with f������
��

	S��LJ
�P�

�P�
�P�

�P	
JP �� �� �� 	�

Allowed decay mode D� D�� D�� D�� D��

Table 
�	! Summary of four P �wave D meson properties�

��



Figure 
��! The mixture of lepton�D�� samples as a function of the D�� fraction f���
The D�� composition is �xed to PV � ���
��
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Figure 
�	! The mixture of lepton�D�� samples as a function of a D�� composition PV �
The D�� fraction is �xed to f�� � ���
��

��



Figure 
��! The mixture of lepton�D�� samples as a function of the ratio of the B� and
B� meson lifetimes� The D�� fraction and D�� composition are �xed to f�� � ���
� and
PV � ���
� respectively�
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Chapter �

Lifetimes from K
�

�
�� K�������

and K����� Modes

A maximum likelihood method �	�� is used to extract the B� meson lifetime from proper

decay length distributions observed in real data� There are two steps in the lifetime

�t� First the shape of the proper decay length distribution of combinatorial background

events is determined by using a background sample� Then the background shape is used

as �xed parameters to perform lifetime �ts of signal samples� The �tted lifetime is used

as an input for the subsequent measurement of the oscillation frequency�

��� Background shape

We use the background sample de�ned in Table ��� to model the decay length distri�

butions of combinatorial background events under signal mass peaks� Sideband regions

in the mass di�erence �M as well as wrong sign soft pion combinations are used� The

decay length distributions are shown in Figure ��� for the three modes�

�




Mode D� mass range D�� �m range �GeV�c	� Events
�GeV�c	� RS WS e
� 



D���D� � K��� ��������� ���
����� ����� 	���
D���D� � K������� ��������� ���
����� ����� 
���
D���D� � K����� ��
���� ��������� ����� ����

Table ���! De�nition of background samples�

The likelihoodL to �t the decay length distributions of the combinatorial background

events is written as

L �
backgroundY

j

Fbkg�xj� �����

where xj is the proper decay length measured for event j� We use a probability distri�

bution function Fbkg consisting of a central Gaussian distribution representing a zero

lifetime component� and of two exponential functions smeared with a Gaussian resolution

function!

Fbkg�x� s�� f�� ��� f�� ��� � �� � f� � f��G�x� s��

�


����
���


f�
��

exp��x�����G�x� s�� �x � ��

f�
��

exp��x�����G�x� s�� �x � ���

���	�

where � is the estimated resolution in the decay length x �� is di�erent for each event��

s is an overall scale factor for the resolution� G is a Gaussian with width s�� f�����f�

and �� are the parameters describing background shapes� The result of the �t is given

in Table ��	� and also shown as curves in Figure ����

��



Parameter Fitted value
D���D� � K��� D���D� � K������� D���D� � K�����

s ��	� � ���
 ���� � ���� ���� � ���

f� ����	 � ����
 ����� � ����	 ����
 � �����

���
m� ��� � 	� ��	 � �� ��
 � 	�
f� ���
� � ����� ����� � ����� ����� � �����

���
m� ��� � 
	 	�� � 	� 	�� � ��

Table ��	! Background shape �tting results from background samples�

��� Lifetime 	t

Now we turn to lifetime �ts of the signal samples� The likelihood function for the proper

decay length distribution of a signal sample is described by

L �
��Y
i

f��� fbkg�Fsig�xi� � fbkgFbkg�xi�g� �����

Fsig�x� � ��� fB��FB
��x� � fB�FB��x�� �����

where i is the event index of the signal sample and fbkg is the background fraction of

the signal sample� To account for the B� meson decays� there are two components in

the signal function Fsig� And fB� is the fraction of the B� meson relative to the sum of

B� and B� mesons�

Each B� and B� meson can have di�erent lifetimes� but here we �x the lifetime ratio

�B���B� � We use ���	 as the ratio from ��	�� The corresponding B� fractions fB� are

����� and ����� for the 
�D�� and e�D�� samples� respectively �Table 
���� The signal

functions F
B
� and FB� are an exponential decay distribution smeared with a Gaussian

��



resolution function and the distribution of pT�fraction K� D�K��

FB�x� �
K

	c�BhKiB exp

�
� Kx

c�BhKiB

�
�G �D�K�B� ���
�

whereB denotes eitherB� or B�� We estimateK distributions by using the Monte Carlo

events of Section 
� The K distributions for the B� mesons are shown in Figure ��	�

Figure ��� show corresponding distributions for the B� mesons� Because ��D�� combi�

nation in B� decays comes only through D��� theK distributions are softer in B� decays

than in B� decays� The di�erence in the K distributions between e�D�� and 
�D��

comes again from the di�erent kinematic requirement on leptons� The K distributions

for the K����� mode are softer because of the partially reconstructed D� meson�

The background fraction fbkg is also a �tting parameter� but we constrain it to the

value determined from the mass di�erence distributions� This is done by adding a �	

term to the negative log�likelihood!

�	�� �	�� � �	��

�
fbkg � hfbkgi

�fbkg

�	
� �����

where � is the log�likelihood � 
 lnL� and hfbkgi and its uncertainty �fbkg are estimated

from the mass di�erence distributions �Table ��	��

The distributions of the proper decay length of the signal samples forK����K��������

and K����� channels are shown in Figure ���� Fitted lifetime values are listed in Ta�

ble ���� We then perform a simultaneous �t of the three samples� and we �nd the lifetime

��



Parameter Fitted value for the mode
D���D� � K��� D���D� � K������� D���D� � K�����

c�B�
m� ��� � �� ��� � �� ��� � ��
Input fbkg ��		� � ����� ���	� � ����� ��
�� � ���
�
Output fbkg ��	�� � ����� ����� � ����� ����
 � �����

Table ���! Lifetime �t results from each signal sample�

Parameter Input Output from �t
c� ��� � 	� 
m
fbkg�K���� ��		� � ����� ��	�� � �����
fbkg�K�������� ���	� � ����� ���
	 � ����	
fbkg�K���pi�� ��
�� � ���
� ����� � �����

Table ���! The parameters in the lifetime �t� their constraints and their �tted values�

to be

c� � ��� � 	� 
m� �����

Table ��� shows the input and output values of the parameters in this combined �t�

The lifetime is consistent with the value ���� � �� 
m� in the particle data book ��	��

��



Figure ���! Background proper decay length distributions for K���� K�������� and
K����� samples�

��



Figure ��	! K distributions for the B� meson decay from the Monte Carlo� Dotted and
dashed histograms show the contribution of D�� in direct B� decays and via D��� Solid
lines are the sum of the two�

��



Figure ���! K distributions for the B� meson from the Monte Carlo�

�	



Figure ���! Lifetime �t results of K���� K������� and K����� channels and com�
bined sample� Dotted lines show the background contributions and dashed lines and
dot�dashed lines show the contributions of the B� and B� mesons� Solid line is the sum
of the three�

��



Chapter 	

Measurement of Oscillation

Frequency �md

We �t decay length distributions for opposite�sign and same�sign pairs simultaneously�


�� Simpli	ed case

Let us consider an ideal case� where one can tag the production 
avor of the B� meson

always correctly and there is no combinatorial or B� background� All we have to do is

to think about the contribution of the B� mesons� The likelihood is written as

L �
��Y
i

F�xi�� �����

��



where i is an event index and xi is the decay length of event i� If we simplify the situation

further by ignoring the time dependence� the function F�x� reduces to the form!

F�x� �


����
���

R
�

� Funmixed�x� dx � �� �d if OS�

R
�

� Fmixed�x� dx � �d if SS�

���	�

where Funmixed�mixed is the unmixed or mixed B� decay function given in Eq� ���� There�

fore the likelihood of Eq� ��� becomes

L �
NosY
i

�� � �d�
N ssY
j

�d � ��� �d�
Nos

�N
ss

d � �����

where Nos and N ss are the numbers of observed opposite�sign �unmixed� and same�sign

�mixed� events� We want to determine the parameter �d that maximizes the likelihood�

given that we have observed Nos opposite�sign events and N ss same�sign events� This

problem can be solved analytically as follows� The log�likelihood � is given by

���d� � Nos ln�� � �d� �N ss ln�d� �����

The value of �d that maximizes the log�likelihood � is obtained by solving the equation!

� �
d�

d�d
�
�Nos

� � �d
�
N ss

�d
� ���
�

The solution is

�maxd �
N ss

Nos �N ss
� �����

�




This is what one expects from a naive event counting� or it is the de�nition of �d�

Now we turn to the estimate of its uncertainty� The uncertainty � should satisfy

���maxd � �� � ���maxd �� �

	
� �����

Using the Taylor expansion� the log�likelihood � can be approximated around �d � �maxd

as

���d� � ���maxd � �
d�

d�d

�����
	d�	

max
d

��d � �maxd � �
d	�

d�	d

�����
	d�	

max
d

��d � �maxd �	

	)
� � � � � �����

where the �rst derivative is zero by de�nition� The second derivative is given by

d	�

d�	d
�

�Nos

�� � �d�	
� N ss

�	d
� �����

From Eqs� ��� and ���� we obtain the estimate of uncertainty in �maxd as

� �

�
�� d	�

d�	d

�����
	d�	

max
d

�
A�

�
�

�

s
�maxd ��� �maxd �

Nos �N ss

�

s
NosN ss

�Nos �N ss��
� ������

It is identical with the result which one can derive from Eq� ��� using error propagation�

��




�� Likelihood functions

Now we turn to the real case� We have to take account of the time dependence and the

contributions of B� decays and combinatorial background� The likelihood is expressed

as

L �
��Y
i

F�xi�� ������

where i is the event index of the signal sample and xi is the decay length of event i� The

likelihood function F�x� is given by

F�x� �


����
���


�� � fbkg�Fos
sig�x� � fbkg�� � fss�Fbkg�x� if OS�

�� � fbkg�F ss
sig�x� � fbkgfssFbkg�x� if SS�

����	�

where fbkg is the background fraction of the signal sample� and fss is the same sign

event fraction of the combinatorial background� The function Fbkg is the same as in the

lifetime �t �Eq� ��	� and is common to both opposite�sign and same�sign events� The

opposite�sign and same�sign signal functions are given respectively by

Fos
sig�x� � �� � fB�� f�� �W �Funmixed�x� �WFmixed�x�g

� fB����W �FB��x�� ������

F ss
sig�x� � �� � fB�� fWFunmixed�x� � ���W �Fmixed�x�g

� fB�WFB��x�� ������

��



where fB� is the fraction of the B� meson relative to the sum of B� and B�� and W

is the 
avor mistag probability of the second lepton� The opposite�sign signal function

Fos
sig has two terms� The �rst term is the B

�
component� which itself has two terms� the

correctly tagged unmixed decays and the incorrectly tagged mixed decays� The second

term is the B� component that is tagged correctly� Similarly� F ss
sig has two terms� one

is the B
�
component �incorrectly tagged unmixed decays and correctly tagged mixed

decays�� and the other is the incorrectly tagged B� decays� FB� is the smeared decay

function given by

FB��x� �
K

	c�B�hKi
exp

�
� Kx

c�B�hKi

�
�G �D�K�� ����
�

The B� function Funmixed�mixed is given by

Funmixed�mixed�x� �
K

	c�
B
�hKi exp

�
� Kx

c�
B
�hKi

��
�� cos

�
�md

c

hKi
K

x

�	
�G�D�K��

������

The K distributions for B� and B
�
mesons are di�erent� Fbkg and FB� are normalized

to unity� while the B
�
functions Funmixed and Fmixed are normalized to � � �d and �d�

where �d is a variable dependent on �md and �B�� Therefore the ratio of the numbers of

opposite�sign and same�sign B
�
events is constrained to ���d ! �d automatically� Since

the number of parameters is more than one and the likelihood functions are complicated

enough� the maximum likelihood �t is performed using the MINUIT program�

��




�� Toy Monte Carlo study of the 	tting program

In order to make sure that the �tting program works� we test it with toy Monte Carlo

samples with a sample statistics similar to that of the real data� We generate a Monte

Carlo sample consisting of 
�� events �for case �� ��� events� and �t for �md under

various conditions using the same �tting program used for real data� We have considered

the following conditions�

�� pure B� signal�

	� B� ! B� � ���
 ! ���
�

�� B� ! B� � ���
 ! ���
� mistag � ��	�

�� B� ! B� � ���
 ! ���
� mistag � ����


� B� ! B� � ���
 ! ���
� mistag � ����

�� B� ! B� � ���
 ! ���
� mistag � ���� but both the B� fraction and the 
avor

mistag probability are 
oated�

�� B� ! B� � ���
 ! ���
� mistag � ���� with background ���� events in total��

�� Same as �� but with four times more statistics�

In all cases� we generate decay lengths and the signs of the 
avor tag according to �md

� ��
 ps�� and c�B � ��� 
m� In the �ts� the lifetime c�B is �xed to ��� 
m� and �md

and the 
avor mistag probability W are the only free parameters �except for case ���

��



Input values Output values
case Nos� N ss �md �ps��� mistag W fB� �md �ps��� mistag W fB�

� ���� �� ��
 � � ����� � ���	� � �xed
	 ���� �� ��
 � ���
 ��
�� � ����� � �xed
� ���� ��� ��
 ��	 ���
 ����� � ����� ����� � ���	� �xed
� ���� ��� ��
 ��� ���
 ��
�� � ����� ����	 � ���	� �xed

 ���� 	�� ��
 ��� ���
 ��
�� � ��		� ����� � ���	� �xed
� �
�� ��� ��
 ��� ���
 ��
�
 � ����� ��	�� � ����� ����� � �����
� ���� ��� ��
 ��� ���
 ��
�� � ����� ��	�� � ����� �xed
� 	���� ���� ��
 ��� ���
 ����� � ����
 ��	�� � ����� �xed

Table ���! Fit results of toy Monte Carlo events�

The results are given in Figures ��� through ���� In each Figure� we show Monte Carlo

events and �t results� The input and output values of �md are given in Table ����

We repeat the exercise of case � �closest to real data condition� for ��� statistically

independent samples� In each sample� we generate ��� events with �md � ��
 ps���

c�B � ��� 
m and the 
avor mistag probability W � ���� The condition of the event

generation is given in Table ��	� The results are shown in Figure ���� The top row shows

the distributions of the output �md and the 
avor mistag probability W � The mean

value is consistent with the input value for each of them� Uncertainties in the �md and

the 
avor mistag probability W are given in the middle row� The bottom row shows the

distribution of the input�output di�erence divided by the estimated uncertainty� They

demonstrate that the �tting program works properly� and the estimate of statistical

uncertainty is reasonable�

We also �t the ��� samples with the condition similar to case �� namely 
oating

the 
avor mistag probability W and the B� fraction fB�� The results are shown in

��



Parameter Stream B
�md ��
 ps��

c�B ��� 
m

avor mistag probability W ���
N�K���� 	��
N�K�������� 	
�
N�K������ ���
fbkg�K���� ��		� � �����
fbkg�K

�������� ���	� � �����
fbkg�K������ ��
�� � ���
�
fss�K���� ����� � �����
fss�K�������� ���	� � ����	
fss�K������ ����� � �����

Table ��	! Condition of the event generation for case ��

Figure ����� We see that we cannot determine them very well at the same time� This is

because the mistag has a similar e�ect as the B� does� They both reduce the amplitude

of the oscillation�


�� Real data 	t

The oscillation frequency �md and the 
avor mistag probabilityW are the only param�

eters that are completely free� As in the lifetime �ts� the fraction of the combinatorial

background fbkg is also a �tting parameter� but is constrained to the value determined

from the mass peaks �Table ��	�� The same�sign fraction of the combinatorial background

fss is also a constrained �tting parameter� The weighted average of three samples is used�

��



Parameter Input Output from �t
�md �ps��� ��
�	 ������

������


avor mistag probability W ����	 � �����
fbkg�K���� ��		� � ����� ��	�� � �����
fbkg�K�������� ���	� � ����� ���

 � ����	
fbkg�K������ ��
�� � ���
� ����� � �����
fss ����� � ���
	 ��
�� � �����

Table ���! Results of the proper decay length �t for �md�

Therefore two �	 terms are added to the log�likelihood!

�	���	�� � �	� �

�
fbkg � hfbkgi

�fbkg

�	
�

�
fss � hfssi

�fss

�	
� ������

where � is the log�likelihood � 
 lnL� We use c� � ��� 
m �Eq� ���� as the B� meson

lifetime� which is determined from the real data �t assuming ���	 as the lifetime ratio�

We use f�� � ����
 and PV � ���
� as our standard choice of the sample composition

parameters� At this condition� the fraction of B� is ����� for 
�D�� and ����� for

e�D��� We �x the B� fraction in the �md �t�

Using these parameters� we �t the K���� K������� and K����� modes simulta�

neously� The result of the combined �t is

�md � ��
�	 ������
������ �stat� ps

��� ������

W � ����	 � ����� �stat�� ������

Figures ���� and ���	 show the decay length and the charge asymmetry distributions�

Fit results are superimposed� A summary of the �t is given in Table ����

�	




�� Flavor mistag probability

Leptons from �a� mixed decays b� B�
d�s � B�

d�s � ��� �b� sequential decays b� c� ��

and �c� fakes from hadronic punchthroughs and decays in 
ight of kaons and pions

prevent from detecting the production 
avor correctly� We call such an event as a

mistag�

Let us consider the cases �a� and �b�� We know the average mixing parameter is

� � ���	� ������� And a study using a Monte Carlo sample generated by Bgenerator

suggests that the fraction of leptons coming from the sequential decay b � c � �� is

about ��� at pT � 	 GeV� Therefore we expect a 
avor mistag probability of at least

about 	���

As for the fakes� the CMU�CMP muons should have a lower fake rate than the CMU

only muons because of a larger amount of iron� Selecting events with the tagging muon

detector type of CMU�CMP from the signal sample� we apply the �md �t� The results

are shown in Figure ����� We �nd the 
avor mistag probability W of 	��� � ��
�� It

suggests that the fake rate is very small for CMU�CMP muons� We also show the results

for the CMU muons in Figure ����� and for the CMP� CMX or CMU�CMX muon in

Figure ���
� These two cases have higher 
avor mistag probabilities as expected�

��



Figure ���! The proper decay length and charge asymmetry distributions for pure B�

signal MC events� Superimposed curves show the result of the �t�

��



Figure ��	! Same as Figure ��� but with a mixture of �
� B� and �
� B�� Dashed
lines and dot�dashed lines show the contributions of the B� and B� mesons� Solid line
is the sum of the two�

�




Figure ���! Same as Figure ��	 but with a 	�� 
avor mistag probability�

��



Figure ���! Same as Figure ��	 but with a ��� 
avor mistag probability�

��



Figure ��
! Same as Figure ��	 but with a ��� 
avor mistag probability�

��



Figure ���! Same as Figure ��� but the B� fraction and the 
avor mistag probability
are both 
oated�

��



Figure ���! Same as Figure ��� but with �
� background events�

���



Figure ���! Same as Figure ��� but with four times statistics�

���



Figure ���! Results of Monte Carlo experiments� They are generated with the 
avor
mistag probabilityW � ��� and fB� � ���
� Each sample has the same statistics as the
real data�

��	



Figure ����! Same as Figure ���� but the B� fraction and the 
avor mistag probability
W are both 
oated�

���



Figure ����! Real data decay length distributions� Dotted lines show the background
contributions and dashed lines and dot�dashed lines show the contributions of the B�

and B� mesons� Solid line is the sum of the three�

���



Figure ���	! The charge asymmetry distribution for real data� The result of the �md

�t is superimposed �Solid curve��

��




Figure ����! Fit results of tag muon detector type of CMU�CMP�

���



Figure ����! Fit results of tag muon detector type of CMU�

���



Figure ���
! Fit results of tag muon detector type of CMP� CMX or CMU�CMX�

���



Chapter 


Systematic Uncertainties

Various possible sources of systematic uncertainties are investigated�

��� Sample composition

We need to know the fraction of B� decays contributing to the ��D�� combination� The

estimate of the fraction is subject to some uncertainties�

����� D�� fraction in semileptonic B decays

Since a CLEO measurement reports �	��

f�� � ���� � ���	� �����

f�� is changed to ��	� and ����� We calculate the B� fraction fB� at a new f�� value and

repeat the same procedure to measure �md� A larger f�� value results in an increase in

the amount of D�� coming from D��� Therefore a variation in f�� a�ects not only the

���



f�� f�
B�

f eB� c�
B
� �
m� �md �ps��� 
avor mistag probability W

��	� ���	� ����� ��� ������ � ������ ������ � ������
���
� ����� ����� ��� ��
�	� � ����	
 ����	� � ������
���� ��	�� ��	�	 �	� ��
��� � ������ �����
 � �����	

Table ���! �md and 
avor mistag probability W under various f�� values�

PV f�
B�

f eB� c�
B
� �
m� �md �ps��� 
avor mistag probability W

��	� ����� ����� ��� ������ � ������ ����	� � ������
���
� ����� ����� ��� ��
�	� � ����	
 ����	� � ������
��� ��	
� ����� �	� ��
��� � �����	 ������ � ������

Table ��	! �md and 
avor mistag probability W under various PV values�

B� fraction fB� but also the K distributions for B� meson decays� Figures ��� and ��	

show theK distributions for the f�� values of ��	� and ����� respectively� to be compared

with Figure ��	 �f������
��� We �t for the lifetime using the new B� fraction and K

distributions� and then �t for �md with the new lifetime and B� fraction� We again

use the lifetime ratio �B���B� of ���	� The results are given in Table ���� The proper

decay length and charge asymmetry distributions are shown in Figures ��� and ����

This variation in f�� gives a shift of ����	�
����	� ps�� in �md and �����	

������ in the 
avor mistag

probability W �

����� D�� composition

From Eq� 
��� the parameter PV is changed to ��	� and ��� with the lifetime ratio �B���B�

�xed at ���	� Table ��	� Figures ��� and ��� give the results of the �md �ts� It indicates

a variation of ������
������ ps

�� on �md and �����	
������ on the 
avor mistag probability W �

���



�B���B� f�
B�

f eB� c�
B
� �
m� �md �ps��� 
avor mistag probability W

���� ����� ����	 ��� ��
��� � �����	 ����	� � ������
���	 ����� ����� ��� ��
�	� � ����	
 ����	� � ������
���� ����� ����� �	� ��
��� � ������ ����	
 � ������

Table ���! �md and 
avor mistag probability W under various lifetime ratios�

����� Lifetime ratio

Since the current world average value of the lifetime ratio �B���B� is ���	 � ���
� we

change the lifetime ratio to ���� and ����� and repeat both lifetime and �md �ts� The

fraction of B� meson fB� also changes slightly depending on the lifetime ratio� The

results of the �md �ts are shown in Figures ��� and ����� Table ��� shows the values of

the �md and 
avor mistag probabilityW under various lifetime ratios� The uncertainty

in the ratio of their lifetimes comes out at a variation in �md of �����
 ps�� and in the


avor mistag probability W of less than ������

����� Cross check

In order to check that our estimate of the sizes of the systematic uncertainties due to

the B� fraction is reasonable� we repeat the same exercise of Section ��� using the same

��� toy Monte Carlo samples� This time we �x the B� fraction to wrong values� to ��

and 	��� in the �md �t� The Monte Carlo samples were generated with fB� � ���
�

The results are shown in Figure ���� for �� and Figure ���	 for 	��� If we Compare

the mean value of the output �md distributions in Figure ��� with that of Figure ����

and Figure ���	� the di�erences are ����	 and ����� ps��� They are consistent with our

���



previous estimates given earlier in this section�

����	 B�
s
fraction

We have to consider the background process of B�
s � ���D���

s followed by D���
s �

D��K�� From a simple calculation of the branching ratios� the fraction of B�
s mesons

in the ��D�� sample is estimated to be about 
�� This provides an upper limit on the

B�
s fraction� since the ��D�� combination has to come through the B � ���D�� decay�

which has a lower e%ciency for the lepton kinematic cut� The contribution is evaluated

by adding the 
� B�
s term to the likelihood function where �ms of �� ps�� is used�

Figure ���� shows the �t results� The �rst few cycles of the oscillation can be seen�

It gives a systematic uncertainty of ������
������ ps�� in �md and ������

������ in the 
avor mistag

probability W �

��� Lifetime

Since the lifetime of the B� meson in the current particle data book is ��� � �� 
m�

and we have measured ��� � 	� 
m in our lifetime �t� the lifetime is varied between

��� 
m and ��� 
m� The results of the �md �ts are shown in Figures ���� and ���
� It

gives systematic uncertainties in �md of
������
������ ps

�� and the 
avor mistag probability of

�����

������� The results are shown in Table ����

��	



c�
B
��
m� f�

B�
f eB� �md �ps��� 
avor mistag probability W

��� ����� ����� ��
��� � ������ ����
� � ������
��� ����� ����� ��
�	� � ����	
 ����	� � ������
��� ����� ����� ��
��� � ������ ��	�
� � ������

Table ���! �md and 
avor mistag probability W under various c�
B
� values�

c�
B
��
m� �md �ps��� 
avor mistag probability W

�� � � ��� ��
��� � ������ ������ � ������
�� � � �	� ��
��� � �����	 ������ � �����

�� � � ��� ��
��� � ����	
 ����	
 � ������
�� � � ��	 ��
�	� � ����	� ����	� � ������

Table ��
! Variation of the �tted �md and 
avor mistag probability W due to the
di�erent parameterization of the background�

��� Background shape

The shape for the decay length distribution of combinatorial background events is uncer�

tain due to limited statistics of data used for its determination� We change the value of

one of the parameters which determine the background shape by one standard deviation

and �x it� Since there are correlations among the parameters� we re�t the background

sample and obtain a new set of background parameters� Then we perform the �md �t

again� The results of the �md �ts are shown in Figures ����� ����� ���� and ���� and

listed in Table ��
� The observed shift in �md and the 
avor mistag probability W are

� ����� ps�� and � ������ respectively�

���



scale c�
B
��
m� �md �ps��� 
avor mistag probability W

��� ��� ��
��� � ������ ������ � ������
��� �	� ��
��� � ����
� ������ � �����	

Table ���! Oscillation frequency and 
avor mistag probability when the decay length
error scale is changed�

��� Background fraction and the same�sign fraction

of the background

By treating background fractions and the same�sign fraction of the background as �tting

parameters� we have absorbed their uncertainties in the statistical uncertainty of the

�tted oscillation frequency and the 
avor mistag probability�

��� Decay length resolution

We have obtained decay length resolution scales of ����� � ���
	� ����� � ������ and

����� � ����� for K���� K������� and K����� samples from the background �ts�

These factors are changed to ��� and ��� to evaluate the uncertainty of the decay length

resolution� We re�t the background sample and obtain a new set of background pa�

rameters� Then we perform the �md �t again� They change �md and 
avor mistag

probability W by ������ ps�� and �����	
������� The �t results are shown in Figures ��	�

and ��	�� and also given in Table ����

All the above e�ects are summarized in Table ���� All contributions are added in

���



Uncertainty in
Source �md �ps��� 
avor mistag probability W
Sample composition

D�� fraction �f��� ����	�
����	�

�����	
������

D�� composition �PV �
������
������

�����	
������

Lifetime ratio �B���B� � ����
 � �����
B�

s fraction ������
������

������
������

B� lifetime ������
������

�����

������

Background shape � ����� � �����
Decay length resolution � ����� �����	

������

Total ������
������

������
�����	

Table ���! Systematic uncertainties�

quadrature to give the total systematic uncertainty in �md of ������
������ ps�� and in 
avor

mistag probability W of �����������	�

��




Figure ���! K distributions with f�� of ��	� from the Monte Carlo� Dotted and dashed
histograms show the contribution of D�� in direct B� decays and through D��� Solid
lines are the sum of the two�

���



Figure ��	! Same as Figure ��� but with f�� of �����

���



Figure ���! Real data decay length and charge asymmetry distributions with f�� of ��	�
and PV of ���
�� Dotted lines show the background contributions and dashed lines and
dot�dashed lines show the contributions of the B� and B� mesons� Solid line is the sum
of the three�

���



Figure ���! Same as Figure ��� but with f�� of �����

���



Figure ��
! K distributions with PV of ��	� from the Monte Carlo� Dotted and dashed
histograms show the contribution of D�� in direct B� decays and through D��� Solid
lines are the sum of the two�

�	�



Figure ���! Same as Figure ��
 but with PV of ��

�	�



Figure ���! Real data decay length and charge asymmetry distributions with PV of ��	��

�		



Figure ���! Same as Figure ��� but with PV of ����

�	�



Figure ���! Real data decay length and charge asymmetry distributions with �B���B� of
�����

�	�



Figure ����! Same as Figure ��� but with �B���B� of �����

�	




Figure ����! Results of Monte Carlo experiments� They are generated with the 
avor
mistag probabilityW � ��� and fB� � ���
� Each sample has the same statistics as the
real data� They are �t with the B� fraction being �xed to a wrong value �����

�	�



Figure ���	! Same as Figure ����� but the B� fraction is �xed to 	���

�	�



Figure ����! Real data decay length and charge asymmetry distributions when �tted
with the B�

s fraction of 
�� The inner solid curve represents the B�
s component with

�ms � �� ps���

�	�



Figure ����! Real data decay length and charge asymmetry distributions with c�
B
� of

��� 
m�

�	�



Figure ���
! Same as Figure ���� but with �B���B� of ��� 
m�

���



Figure ����! Real data decay length and charge asymmetry distributions� when the
background shape parameter �� value is decreased by one standard deviation�

���



Figure ����! Real data decay length and charge asymmetry distributions� when the
background shape parameter �� value is increased by one standard deviation�

��	



Figure ����! Real data decay length and charge asymmetry distributions� when the
background shape parameter �� value is decreased by one standard deviation�

���



Figure ����! Real data decay length and charge asymmetry distributions� when the
background shape parameter �� value is increased by one standard deviation�

���



Figure ��	�! Real data decay length and charge asymmetry distributions with the decay
length resolution scale of ����

��




Figure ��	�! Same as Figure ��	� but with the decay length resolution scale of ����

���



Chapter �

Conclusions

We have reconstructed the ��D�� combination in the dilepton events using the decay

modeD�� � D��� followed byD� � K����K������� and K������ It has provided

a relatively pure sample of B� semileptonic decays� The decay length is measured

and is used to estimate its proper decay time� By observing the ��D�� pair from the

semileptonic decay of the B� meson� the momentum estimate with a good resolution is

achieved� The second lepton in the event is used to infer the 
avor of the B� meson at

its production� We have measured the oscillation frequency �md of the B� meson to be

�md � ��
�	 ������
������ �stat� ������

������ �syst� ps
���

The 
avor mistag probability of the second lepton is measured to be

W � ����	 � ����� �stat� ������
�����	 �syst��

The result is consistent with the current world average of �md � ����� � ����� ps�� ��	��

as well as other CDF measurements ���� ��� ���� The method� with its good �� resolu�

tion� can be applied to the B�
sB

�
s mixing for a modest value of �ms �����

���
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