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Abstract

The partial wave analysis of the K0
sK

0
s system at 800GeV=c is presented. We make

emphasis on the region of the f0(1520) and the fJ(1710), which are the two candidates

for the lowest lying glueball. Our analysis shows a clear peak in S{wave in the region

of the f0(1520), and S{wave dominance in the region of the fJ(1710).
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1 INTRODUCTION

The present knowledge of strong interactions is that they are described by Quantum Chro-

modynamics (QCD). This non-Abelian �eld theory not only describes how quarks and an-

tiquarks interact, but also predicts that the gluons (which are the quanta of the �eld) will

themselves interact to form mesons. If the object formed is composed entirely of valence

gluons (gg or ggg) the meson is called a glueball. However, if it is composed of a mixture of

valence quarks, antiquarks and gluons (i.e. q�qg) it is called a hybrid. In addition, q�qq�q states

are also predicted. An unambiguous con�rmation of these states would be an important test

of QCD.

1.1 The q�q Spectrum

The study of the q�q system is by itself an important and interesting task. In order to locate

and identify glueballs and hybrids states it is necessary to understand the \ordinary" mesons

in detail. This means that each state in the q�q nonets must be identi�ed unambiguously and

that all its properties have to be well measured. Of special importance is the light meson

region (below 2.5 GeV=c2), which is not yet completely understood, and where the lightest

glueballs and hybrids may appear. Since the perturbative approach cannot, in fact, be easily

extended to the low energy regime, the light hadron spectrum cannot be reliably calculated,

and it is even more diÆcult to predict dynamical properties, such as decay widths. The

spectroscopy of low mass states can however be accounted for, to a large degree, by QCD-

inspired models. The most complete of these, built by S. Godfrey and N. Isgur in 1985

[1], is able to describe with suÆcient accuracy the q�q meson spectrum from the pion to

the upsilon. This model is therefore often used in order to test whether a new discovered

resonance belongs or not to one of the q�q multiplets.
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N 2S+1LJ JPC
u �d; u�u; d �d
I = 1

u�u; d �d; s�s
I = 0

c�c
I = 0

b�b
I = 0

�su; �sd
I = 1=2

1 1S0 0�+ � �; �0 �c K
1 3S1 1�� � !; � J= (1S) �(1S) K�(892)
1 1P1 1+� b1(1235) h1(1170); h

0
1(1380) hc(1P ) K1B

1 3P0 0++ � � �c0(1P ) �b0(1P ) K�
0 (1430)

1 3P1 1++ a1(1260) f1(1285); f1(1510) �c1(1P ) �b1(1P ) K1A

1 3P2 2++ a2(1320) f2(1270); f
0
2(1525) �c2(1P ) �b2(1P ) K�

2 (1430)
1 1D2 2�+ �2(1670) K2(1770)
1 3D1 1�� �(1700) !(1600)  (3770) K�(1680)
1 3D2 2�� K2(1820)
1 3D3 3�� �3(1690) !3(1670); �3(1850) K�

3 (1780)
1 3F4 4++ a4(2040) f4(2050); f4(2220) K�

4 (2045)
2 1S0 0�+ �(1300) �(1295) �c(2S) K(1460)
2 3S1 1�� �(1450) !(1420); �(1680)  (2S) �(2S) K�(1410)
2 3P2 2++ f2(1810); f2(2010) �b2(2P ) K�

2 (1980)
3 1S0 0�+ �(1770) �(1760) K(1830)

Table 1: Suggested q�q quark-model assignments for most of the known light quark, c�c,
and b�b mesons. Some assignments, especially for the 0++ multiplet and for some of the
higher multiplets are controversial. Within the q�q model, it is hard to �nd a place for the
f1(1420); f0(1520) and fJ(1710), and for one of the two peaks in the �(1440). The candidates
for the I = 1 states are a0(980) and a0(1450), while for I = 0 they are: f0(400�1200); f0(980)
and f0(1370). The light scalars are problematic, since there may be two poles for one q�q
state, and a0(980), f0(980) may be K �K bound states.

After decades of study, the q�q system is still not perfectly understood. Table 1 summarizes

the current status of the q�q quark-model assignments1. The individual boxes represent

the I = 1, the four I = 0 (u�u + d �d, s�s, c�c and b�b) and the I = 1=2 members of each

multiplet. They correspond to the established mesons, as reported by the Particle Data

Group [3]. When considering only light quarks (u; d and s), we can see that only four

nonets (of the ground states, N=1), are unambiguously �lled: the 0�+; 1��; 2++ and 3��

nonets. Four other nonets have all positions �lled with possible candidates. If the h01(1380)

is con�rmed, the 1+� nonet will also be complete. In the 0++, questions remain about

a0(980), f0(400� 1200), f0(980), f0(1370), f0(1520) and the fJ(1710). In the 1
++ nonet, the

1We omit in this table mesons corresponding to the fc�u; c �dg, fc�sg, f�bu;�bdg and f�bsg assignments, cor-
repsonding to D and B mesons.
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interpretation of the f1(1420) is unclear. In the 4++ nonet, the a4(2040) and f
0
4(2300) have

to be con�rmed, too. In the �rst radial excitations of the 0�+ nonet the K(1830) and the

radially excited �0 need to be established. The remaining nonets are in worse shape, since

many candidates are missing and most of those shown need con�rmation.

1.2 Glueballs and Hybrids

One of the most important expectations of QCD is the existence of particles having gluon

constituents, like glueballs or hybrid states. Glueballs are bound states of two or three gluons

in a color singlet. The gg states have even C{parity, while for ggg states both even and odd

C parities are allowed [2]. In the gg sector, the lowest states are 0++ and 2++, where the

scalar glueball is the ground state. In the ggg sector, the lowest allowed states are 0�+; 1��

and 3��. However, the gg states are expected to be at lower masses than the ggg states. In

the gg sector, the �rst oddball, a 1�+ state, occurs with L = 1. Oddballs are glueballs with

quantum numbers that do not exist in the q�q sector, like 0��; 1�+; 3�+; : : : ; 0+�; 2+�; : : :.

However, if gluons inside glueballs are in fact massless, J=odd states are forbidden in the gg

sector by Yang's theorem[4], although they may exist in the ggg sector.

The mesonic decay of glueballs is determined by their avor SU(3) singlet nature; ignoring

phase space factors, glueballs are naively expected to couple equally to all avors, while

arguments from perturbation theory [5] favor a stronger coupling to strange, rather than u-

or d-quarks. As yet the de�nite identi�cation of such states has not been achieved, one of

the biggest diÆculties being the complexity of the q�q meson spectrum in the 1{2 GeV=c2

region, where q�q, gg, q�qg, four quark states and radial excitations may overlap in mass and

mix. The search for gluonic states has been carried out using several production mechanisms

which are thought to have a high gluonic content, e.g. J= radiative and hadronic decays,

p�p anihilations, high pT direct production, OZI violating processes and central production.

Since the J= decays dominantly through gluons into hadrons, one expects to be able to

learn about the quark{gluon coupling and other gluon properties by studying its decays. It is

3



an excellent laboratory to perform these studies for various reasons: it is a narrow resonance

with huge production cross section in e+e�, the non{resonant background is very small, it

is produced at rest, the initial state is devoid of light quarks, etc. However, the big problem

here is that in order to produce a K �K system, for example, J= must decay to this system

plus something else, a  or �, and these decays have very poor statistics.

OZI violating processes could shed light on glueball states, since it is likely that the

produced mesons are not excited by quark exchange, and are therefore assumed to be gluon

rich. The way to proceed is to analyze OZI allowed and OZI forbidden processes, and to

compare the branching ratios obtained. Working in this direction, Lindenbaum et al.[6] have

identi�ed three 2++ states which are high enough in energy to decay into ��, by measuring

the reaction ��p! ��n. Since this is an OZI suppressed channel, these states are glueball

candidates.

The central system is assumed to be produced by double exchange processes. At high

center{of{mass energies these double exchange processes are believed to be dominated by

Double Pomeron Exchange (DPE), where the Pomeron is thought to have a large gluonic

component, leading to the conclusion that Pomeron-Pomeron scattering could be a rich

source for the production of gluonic states.

Several candidates have been reported for glueballs and exotic mesons in previous experi-

ments[7, 8, 9, 10, 11]. Most of these states lie in the 1.0{2.5 GeV=c2 mass region, where

they can be easily confused with conventional q�q states. To help settle the nature of these

candidates, it is very important to make a full map of q�q mesonic states, exploring the

spectrum of excitations, as well as to search for exotic states which are directly produced in

the hadronic processes. Since light quark spectroscopy has been studied for a long time, an

experiment is required to have both good sensitivity and high acceptance in a wide variety

of physics channels to make signi�cant progress.

With respect to the theoretical point of view, it can be proven[12] that the lowest ly-
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ing glueball must be scalar, with quantum numbers 0++. Two groups working on lattice

calculations favor two di�erent mesons to be the lowest mass scalar glueball. The UKQCD

lattice group favors the f0(1520) [13], and the IBM group favors the fJ(1710) [14], in which

case the spin should be J = 0. Recently[15], the IBM group has been working on probing

the possibility that the f0(1520) and fJ(1710) are mixed states of a scalar meson and a

scalar glueball. They conclude that fJ(1710) is mostly glueball, and f0(1520) is a mostly

quarkonium state, corresponding to the s�s member of the scalar nonet.

The mesons f0(1520) and fJ(1710) have been observed by various experiments. The

Crystal Barrel Collaboration has observed an isoscalar JPC = 0++ resonance decaying to

�� in the process p�p ! ���0, compatible with the spin{0 resonance found by the GAMS

Collaboration[10]. Initially, they assigned a mass of 1560 � 25 MeV=c2 and a width of

245 � 50 MeV=c2 to this resonance[16], but in a recent publication[17] they performed a

simultaneous �t to the �0�0�0 and ���0 channels, and changed their mass assignment to

1520� 25 MeV=c2. There is still the possibility that the f0(1520) and f0(1590) seen by the

GAMS Collaboration, be mixed states of a glueball and the ninth member of the q�q nonet.

1.3 The K0
sK

0
s System

The K0
sK

0
s system has been studied in many previous experiments, due to the several ad-

vantages this system has over other channels, such as K+K�, because: 1) the requirement

that both neutral particles in the secondary vertices have de�nite masses, and decay visibly,

makes the events readily distinguishable, 2) �ts making use of kinematic constraints at the

primary and secondary vertices result in a data sample which has little contamination and

good resolution, and 3) no further particle identi�cation information is required, so no holes

in the acceptance of the spectrometer are created. In addition, due to Bose statistics, the

K0
sK

0
s system has even C{parity and, consequently, even angular momentum and parity.

Therefore, only meson states with JPC in the series 0++, 2++, 4++,..., are produced. A sum-

mary of the results obtained in previous experiments in the K0
sK

0
s system is given below.
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Evidence for fJ(1710) and X(2220) in reactions like K�p ! K0
sK

0
s� would be of great

signi�cance, since their production via hypercharge exchange in this kind of reactions would

cast doubt on their status as candidate glueball states. Using the MSS ITEP spectrometer at

Serpukhov the reaction K�p! K0
sK

0
sY

� was studied[18]. This experiment found dominant

production of f 02(1525), without a statistically signi�cant peak in the �(1690) region. In a

later work[19], they performed a partial wave analysis on the reaction ��p ! K0
sK

0
sn, and

reported the observation of three D++ resonances, additional to the f(1270) and f 0(1525)

states: �(1700); f 00(1980) and �(2230). They also reported the observation of a G0 wave, the

h(2030), an s�s partner of the h0(2160) meson, and S{wave resonances �0(1440) and S�(1720).

No signature of gs(1240) was found.

The LASS Collaboration at SLAC[20, 21], using a 11 GeV=c K� beam, reported a single

strong peak in the f 02(1525) region, and no apparent fJ(1710) signal, suggesting that it is

unlikely to be a conventional s�s state. This observations are compatible with the results

of Barreiro et al.[22]. They also report some excess events clustered right above the K0
sK

0
s

threshold, the a0(980); f0(980) region, and some structure in the X(2220) region, with

angular distributions indicating J = 2 in this region. In addition, this experiment reports the

observation of a 0++ state, the f 00, approximately degenerate in mass and width with f
0
2(1525).

Later, a partial wave analysis of the reaction k�p ! K0
sK

���� in the same experiment,

con�rmed the existence of the 1++ f 01(1525) claimed in earlier analysis[23], suggesting that the

0++ state they observed, together with f 01; f
0
2, would form the mainly s�s triplet of isoscalar

states expected in the quark model. If this is truth, then the S�=f0(980) and a0(980) would

have to be removed from the 0++ nonet and might be explained as K �K molecules, as in the

model of Weinstein and Isgur[24].

Radiative decays of the J= are of great interest because these decays are expected to

be a copious source of glueball states. The Mark III Collaboration[11] performed studies on

K+K� and K0
sK

0
s �nal states. They reported the observation of a narrow signal, named

�(2230), and a J = 2 state, f2(1720). However, in 1991 [25] they performed further studies,
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and found a large spin-0 component for fJ(1720). The DM2 Collaboration[26], studying the

processes J= ! K+K� and K0
sK

0
s , observed clean and well-separated signals of f

0
2(1525)

and fJ(1710) in both channels, but no signal of the narrow �(2230) in either channel. Instead,

they observed a very broad structure in the region between 2 and 2.5 GeV=c2 with a width

8 times larger than the quoted for �(2230).

The �rst measurements of the K �K system in  collisions were done by the Tasso

Collaboration[27]. This experiment found exclusive f 02(1525) production, and f2(1270) �
a2(1320) � f 02(1525) constructive(destructive) interference for the K+K�(K0

sK
0
s ) system.

This con�rms the QCD prediction[28] that f2 and a2 are expected to interfere constructively

in the reaction  ! K+K�, and destructively in the reaction  ! K0
sK

0
s . Later, PLUTO

[29] and Cello [30] Collaborations corroborated these results.

At CERN, experiment WA76[31, 32] studied the reaction pp ! ps(K �K)pf , at 85 and

300 GeV=c beam momentum, where subindices s and f denote the slow and fast protons of

the interaction. These processes are identical to the ones we want to study at experiment

E690, except for the beam momenta. The corresponding center{of{mass energies for WA76

are of
p
s = 12:7 and 23.8 GeV , respectively. It is interesting then to compare their results

with the ones we obtain (we leave that comparison for Section 4.1). The main interest of

experiment WA76 in the study of K+K� and K0
sK

0
s channels[31, 32] is to identify the spin J

of the �=fJ(1720), by the observation of the angular distributions in the f
0
2(1525) (1.45{1.59

GeV=c2) and �=fJ(1720) (1.59{1.83 GeV=c
2) regions. Owing to the angular distributions in

these regions (see �g.1), for the process pp! ps(K
+K�)pf , they conclude that the f 02(1525)

and the �=fJ(1720) are both compatible with having J
PC = 2++. The angular distributions

in the K0
sK

0
s channel were not studied due to lack of statistics.
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Figure 1: K+K� invariant mass distributions from experiment WA76, at
p
s = 12:7 and 23.8

GeV , respectively (two upper plots). The six central plots show the angular distributions in
the f 02(1525) (left) and fJ(1710) (right) regions, respectively, for data at both CMS energies
summed. Also shown, the K0

sK
0
s invariant mass spectrum (lower plot).

8



Recently, the BES Collaboration[33] reported their studies on J= radiative decays. The

channels J= ! �, with � subsequently decaying into a �+��, K+K�, K0
sK

0
s or p�p pairs,

show a resonance of mass around 2232 MeV=c2, with the following characteristics: (1)

avor{symmetric decays to �� and K �K, (2) narrow width and (3) large production rate in

J= decays. These properties make diÆcult to interpret the �(2230) as a q�q meson, or a

multiquark state.

1.4 Light Meson Spectroscopy at Experiment E690

Because of its di�ractive type trigger, very good track reconstruction, and very high statistics

in light quark meson events, experiment E690 at Fermilab is an excellent place to look for

non-q�q mesons.

In this experiment, two samples of exclusive events have been selected in software for the

light meson spectroscopy studies: 1) events in which all particles are reconstructed in the

spectrometer, and 2) events in which there is a missing particle, which has to be reconstructed

using energy-momentum conservation. The �rst group correspond to events of the type

pp! pslow(X)pfast. The E690 spectrometer acceptance for this kind of events is better in the

region xF < �0:2. The second group corresponds to events of the form pp! pmissing(X)pfast.

There is better acceptance for these events in the region �0:2 < xF < 0.

Two excellent works on light meson spectroscopy have already been done in the exper-

iment. One is the study of the process pp ! pmissing(K
0
sK

���)pfast, related to the E=�

puzzle. The K0
sK� invariant mass is plot in �g.2, and the work can be found in ref.[34]. The

other study was done on the process pp ! pmissing(�
+��)pfast, where the experiment has

very high statistics[35]. The �+�� invariant mass is shown in �g.3. Among others, processes

of interest that can also be studied in the experiment are: pp ! p(��)p, pp ! p(K� �K�)p,

pp ! p(K+K�)p, and pp ! p(����)p, The process of interest in the present thesis is

pp! pmissing(K
0
sK

0
s )pfast.
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Figure 2: K0
sK

��� mass spectrum in experiment E690. The upper plot shows the missing
mass squared in the region of more interest (the two peaks in the lower plots), and the lower
plots show the invariant mass for the two charge assignments, for 10% of the total data
sample.
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Figure 3: �+�� mass spectrum in experiment E690. The upper plot shows the missing mass
squared for these events, and the two lower plots show the mass spectrum for all events, and
in the region of the f0(1520), respectively, using 2% of the total data sample. Notice the
drops in the intensity distributions in the f0(980) and f0(1520) regions.
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2 APPARATUS

Experiment E690 at Fermilab is an experiment designed to study di�raction dissociation

processes with high accuracy. The E690 spectrometer (�gs.4,5,6) was designed to measure

high multiplicity charged �nal states from proton{proton interactions at high rates, and to

isolate a large sample of fully reconstructed reactions, being able to operate at a rate of

over 106 interactions per second. It is the continuation of experiment E766 at Brookhaven

National Laboratory[36, 37, 38, 39, 40, 41]. The apparatus had two main components: (a)

the open geometry Main spectrometer (the Jolly Green Giant Spectrometer, JGGS, �g.5),

and (b) the Beam spectrometer (see �g.4). The Main spectrometer was designed to mea-

sure particles produced in the target system. For events containing light mesons, the Main

spectrometer measures particles produced in the backward hemisphere in the interaction's

center{of{mass frame. The Beam spectrometer was used to make a high precision measure-

ment of the di�erence between the incoming 800 GeV=c beam proton and the scattered beam

proton, measuring the latter in the xF range from �0.8 to 1.0.

The principal characteristics of the Main spectrometer are: 1) a 2% interaction length

hydrogen target, 2) horizontal and vertical geometric acceptances of �580 and �410 mrad,
respectively, 3) very good momentum resolution from 0.2 GeV=c up to about 15 GeV=c,

4) a Freon 114 �Cerenkov counter counter with a pion threshold of 2.6 GeV=c, and 5) a

time{of{ight system with a � � p separation up to 1.6 GeV=c.

The principal characteristics of the Beam spectrometer are: 1) a transverse momentum

acceptance up to 0.8 GeV=c, 2) a longitudinal momentum acceptance from 800 GeV=c down

to 600 GeV=c, 3) a transverse momentum resolution of � �7 MeV=c, and 4) a longitudinal

momentum resolution of � �400 MeV=c.

During the 1991 Fermilab �xed target run, experiment E690 wrote �ve billion events to

tape. In the following Sections, we shall describe the various components of the apparatus.

A more detailed description can be found in Ref.[42, 34].
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Figure 4: The E690 spectrometer (not to scale)
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Figure 5: The JGG spectrometer.
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Figure 6: Schematic view of the main spectrometer. The top view (xz plane) is represented
above the center line; the side view (yz plane) is represented below the center line. The
dotted line is a pro�le of the main (vertical) component of the magnetic �eld along the beam
axis of the spectrometer.
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2.1 Beam Spectrometer.

The E690 apparatus was located in the Neutrino East (NE) beam line of Fermilab. Protons

were accelerated by the Tevatron and delivered to the liquid hydrogen target with a mo-

mentum of 800 GeV=c and dispersion Æp/p< 1:5� 10�4, for approximately twenty seconds

every sixty seconds. The beam line was con�gured to provide a 20 mm by 2 mm horizontal

ribbon beam pro�le at the target, with a beam intensity of 108 protons per spill, on the

average, corresponding to an average rate of 5 MHz. Figure 7 depicts the locations of the

key elements forming the beam line.

The beam spectrometer was designed to have high position and momentum resolution,

and very high rate capability. This required the use of very long lever arms, large bends,

and a system of small cell and pressurized drift chambers. The beam spectrometer consisted

of six 15�10cm and two 38�20 cm pressurized drift chambers spaced over 265 meters (see

�g.5). Three chambers were used to measure the incoming proton trajectory into the target,

with error of �10�6 rad. Five chambers, together with �ve beam line magnets, were used

to measure the scattered proton trajectory. The magnets provided a momentum kick of

12 GeV=c, with a momentum resolution better than 400 MeV=c. The acceptance of the

outgoing spectrometer was from 600 to 800 GeV=c in longitudinal momentum, and of �1
GeV=c for transverse momentum.

The beam chambers consisted of a stack of four anode planes, �ve shared cathode planes,

and two ground planes, with no �eld shaping wires in them. The anode planes were wound

with Tungsten{Rhenium alloy wire (3% Rh), gold plated to 3-5% by weight. Fine (12 �m or

15 �m) anode wires were used with a spacing of 1 mm. or 1.5 mm. During the data taking,

the chambers were operated with a gas mixture consisting of 82% argon, 15% isobutane, and

3% methylal, with a gain of approximately 105.
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Figure 7: Fermilab Neutrino East beam line. The numbers on the left are distances from
the Tevatron.
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The four anode planes in a chamber were oriented at angles -21.6Æ, -7.93Æ, +7.93Æ and

+21.6Æ with respect to the vertical. The cathode and ground planes were made of aluminum

foil. The �ve cathodes were connected to a common high voltage connector through current

limiting resistors.

Preampli�ers mounted on the chambers drove small di�erential signals to leading edge

discriminators, and these drove di�erential signals to TDC's for drift time measurements.

The TDC's encoded drift time using 2.5 nsec bins, which, for an average electron drift ve-

locity of 40 �m/nsec in the gas mixture, corresponded to 100 �m in a chamber. Detailed

speci�cations for the beam chambers are listed in Table 2. Construction details and perfor-

mance results on these beam chambers have been presented elsewhere[43].

Downstream from the last beam spectrometer chamber was a scintillator array, called

the Forward Hodoscope (FH), used to detect beam protons deected from the 800 GeV=c

proton beam trajectory due to scattering in the target. Figure 8 shows FH con�guration and

the two types of counters of which it was made. The 3.2 cm by 1.3 cm rectangular aperture

along the beam line allowed beam protons through, without triggering any of the counters.

To avoid accidental triggers, two layers of counters and their coincidence signal were used

for the fast trigger logic (see Sect.2.6)

2.2 The Target System.

The target counter, located in front of the target, was a 51 mm � 51 mm � 2 mm piece of

scintillator attached to a photomultiplier. It detected and signaled the arrival of an incoming

beam proton, starting various processes that read out the information coming from other

parts of the detector, and determining the starting time T0 for time{of{ight measurements

(see Section 2.6). T0 was the nominal time relative to which all other times in the detector

were measured. Incident particles from the beam halo were rejected using an array of four

scintillator counters (The Veto Thing, TVT), forming a square with a 3.2 cm by 1.3 cm

rectangular aperture to allow the beam protons through.
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Beam Chamber
Number

1,2,3,4,5,6 7,8

Horizontal
Aperture (m)

0.152 0.381

Vertical
Aperture (m)

0.102 0.203

Average Z
Coordinate (m)

-188,-62,-5,21,35,56 71,78

Anode Wire
Diameter (�m)

12 15

Cathode Plane
13 �m hard temper

aluminum foil
13 �m hard temper

aluminum foil

Ground Plane
13 �m hard temper

aluminum foil
25 �m hard temper

aluminum foil
Anode to Anode
Wire Spacing (mm)

1.0 1.5

Plane{Plane
Spacing (mm)

1.4 1.4

Anode Wire
Tension (gram)

20 35

Anode Wires
per Plane

160 256

Instrumented Wires
per Plane

64,64,64,160,160,160 192,256

Cathode
Voltage (kV)

-2.1,-1.8,-2.2,-2.1,-2.1,-2.1 -1.4,-1.4

Average
EÆciency (%)

>99 >99

Material in
Radiation Lengths

0.24% 0.39%

Material in
Interaction Lengths

0.06% 0.12%

Gas mixture Argon 82%, Isobutane 15%, Methylal 3%

Table 2: Beam chamber parameters and operating characteristics.
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Figure 8: The forward hodoscope (top), and the two types of counters used in it (bottom).
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The liquid hydrogen target was contained inside a mylar ask of cylindrical shape with

semi{spherical end caps (�g.9). The target was 3.8 cm in diameter and 14.3 cm long, which

corresponded to a 2% interaction length for the beam proton. The target, a cover of Rohacell

and �ber glass, and the veto counters, were enclosed by an aluminum box kept under helium

to minimize multiple scattering and ionization losses of the particles passing through. There

were two Kapton windows at the downstream end of the veto box and the upstream end

of the helium volume. All of the surrounding material in the direct path of the beam was

equivalent to 0.6 cm of liquid hydrogen.

Twelve scintillator{lead sandwiches of trapezoidal shape, forming a truncated pyramid,

were used to detect both charged and neutral particles that were produced at very wide

angles with respect to the beam direction and that would miss the detector aperture. Each

one of these Veto Counters consisted of four pieces of 3 mm thick lead and �ve pieces of 3 mm

thick scintillators interleaved with each other. Another set of four veto counters with similar

structure, between the target box and the �rst chamber of the JGGS, forming a picture

frame outside of the chamber aperture, served the same purpose. In some stages of the run,

the fast trigger system used the signals from the veto counters to reject events[44, 41].

2.3 The JGG Spectrometer.

The JGG spectrometer consisted of six large drift chambers imbedded in the non-uniform

�eld of a large dipole magnet. A schematic view of the system is shown in �gs.5-6. The

dual constraints of large geometric acceptance and high position segmentation required that

the detector be as close to the interaction target as possible, allowing the total area of the

detector systems to be relatively small. The volume of the system was further reduced by

placing the drift chambers inside the spectrometer magnet aperture, and the small number of

chambers also lowered the amount of material in the spectrometer, reducing the probability

of multiple Coulomb scattering and particle reinteraction.
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Figure 9: The liquid hydrogen target (not to scale).
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The spectrometer magnet was 1.2 m high, 2.5 m wide and 2.2 m deep, with the main

component of the �eld pointing in the vertical direction, and providing an average transverse

momentum kick of 350 MeV=c. The three components of the magnetic �eld were measured

using the Fermilab ZIPTRACK system[45]. The center of the spectrometer magnet served

as the origin (0,0,0) for the coordinate system, with respect to which all the components of

the detector were referred to.

Each drift chamber consisted of eleven wire planes: four anode planes (at -21.6Æ, -7.93Æ,

7.93Æ, and 21.6Æ), �ve cathode planes and two ground planes. The wires in the cathode and

ground planes were positioned vertically, and there were no �eld shaping wires in the system.

The anode-to-anode wire spacing ranged from 2 mm for the chamber closest to the target,

to 3.5 mm for the chamber at the rear of the spectrometer magnet. The small anode-to-

cathode spacing (3 mm) minimized the chamber memory time, and permitted the chambers

to operate eÆciently at megacycle rates in conjunction with fast electronics. There was a

total of 11,264 instrumented wires. Each channel of the drift chamber electronics consisted

of a preampli�er, a discriminator, and a time-to-digital converter (TDC). The inner-chamber

volumes were �lled with helium gas to reduce the amount of material. Each chamber con-

stituted only 0.15% of radiation length of material. The drift chamber parameters and

operating characteristics are listed in Table 3.

The narrow wire spacing provided high detection eÆciency, allowing the reconstruction

of trajectories without use of the measured drift times. The drift times were used later

to improve the measurement of the previously found and �tted tracks. These trajectory

measurements, and a precise knowledge of the magnetic �eld, made it possible to obtain

with high accuracy the charge and momenta of each particle.

The JGG spectrometer achieved single plane eÆciencies of greater than 99%. The spa-

tial resolution of each plane, when fully optimized, was in the range of 150-200 �m. The

horizontal and vertical geometric acceptances in the lab were �580 mrad and �410 mrad,

respectively.
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Drift Chamber
Number

1 2 3 4 5 6

Horizontal
Aperture (m)

0.762 0.914 1.524 1.524 1.524 1.829

Vertical
Aperture (m)

0.457 0.610 1.016 1.016 1.016 1.219

Average Z
Coordinate (m)

-1.017 -0.839 -0.513 -0.138 0.456 1.229

Anode Wire
Diameter (�m)

20 20 25 25 25 25

Cathode Wire
Diameter (�m)

102 102 102 102 102 102

Gound Wire
Diameter (�m)

102 102 102 102 102 102

Anode to Anode
Wire Spacing (mm)

2.0 2.0 3.2 3.2 3.2 3.5

Cathode to Cathode
Wire Spacing (mm)

1.1 1.1 1.1 1.1 1.1 1.1

Ground to Ground
Wire Spacing (mm)

2.0 2.0 3.2 3.2 3.2 3.5

Anode to Cathode
Plane Spacing (mm)

3.2 3.2 3.2 3.2 3.2 3.2

Anode to Wire
Tension (gram)

65 65 90 90 90 90

Number of
Instrumented Wires

1536 1920 1920 1920 1920 2048

Cathode
Voltage (kV)

-2.60 -2.60 -2.15 -2.10 -2.10 -2.05

Average
EÆciency (%)

>99 >99 >99 >99 >99 >99

Gas mixture Argon 71%, Isobutane 25%, Methylal 4%

Table 3: JGG drift chamber parameters and operating characteristics.
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The system was capable of measuring charged particles with momenta in the range of

150 MeV=c to 20 GeV=c, with momentum resolution �P/P=0.002 P (FWHM). The mass

resolution of the reconstructed �Æ and K0
s are 1.75 and 4.5 MeV=c2 (FWHM), respectively.

Further details of the drift chamber construction, performance, and electronics have been

presented elsewhere[36, 37].

2.4 Time-of-Flight System.

The Time{of{Flight (TOF) system provided direct particle identi�cation for non-relativistic

charged particles having momentum less than 1 GeV=c for �-K separation, and less than

1.6 GeV=c for �-p separation. The identi�cation is bassed on the fact that lighter particles

travel faster than heavier particles of the same momentum. Thus, it is possible to distinguish

between pions, kaons, and protons by comparing the time the particle used to travel a given

distance to the predicted time for a pion, kaon or proton, relative to the nominal \event T0"

determined by the target counter.

The TOF system consisted of 102 plastic scintillator counters arranged in two hodoscopes.

The middle hodoscope, located between chambers 4 and 5, consisted of 30 counters arranged

in a picture frame to cover only the outer region of the detector aperture, and was used to

detect particles that passed through the �rst four chamber, but would most likely not reach

the rear hodoscope. The rear hodoscope consisted of 72 counters covering the full downstream

aperture of the spectrometer magnet (see �g.10). Twelve of the middle hodoscope counters

consisted of 762 mm � 51 mm � 13 mm pieces of scintillator, and eighteen (positioned

at a 45Æ angle) consisted of 298 mm � 79 mm � 13 mm pieces of scintillator. Each rear

hodoscope counter consisted of a 610 mm � 51 mm � 3 mm pieces of scintillator, except

for the middle four counters, which were 5 cm shorter to leave a 10 cm � 10 cm rectangular

aperture in the middle of the hodoscope, to allow beam protons to pass without triggering

any of these counters.
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Figure 10: Layouts of scintillators for the Middle (top) and Rear (bottom) Hodoscopes.
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The light collected in the counter was guided to a photomultiplier tube by a Lucite

light guide glued at one end, and was �rst ampli�ed by the photomultiplier base. Each

photomultiplier base generated one analog and two digital signals: an analog signal for the

pulse area measurement, proportional to the ionization produced by the particle, one digital

signal for fast event triggering, and the other one for measuring the arrival time. Details of

the electronics for ampli�cation, discrimination and digitization of these signals have been

described elsewhere[44, 37]. This system achieved greater than 95% detection eÆciency and

a � =600 psec arrival time measurement, providing a �-K separation up to 1 GeV=c, and a

�-p separation up to 1.6 GeV=c for the rear hodoscope.

2.5 The �Cerenkov Counter.

The �Cerenkov counter provided direct identi�cation of charged particles having momenta

above the range where the TOF could be used. This measurement is based on the �Cerenkov

e�ect: a charged particle radiates light in a medium if the speed of that particle exceeds the

speed of light in that medium.

The �Cerenkov counter was located immediately downstream of chamber 6 and had the

same aperture as this chamber (see �g.6). It was used to distinguish pions, kaons and

protons, and in some cases electrons. The medium was Freon 114 (C2Cl2F4) at atmospheric

pressure, with a refraction index of 1.0015. This means that a charged particle with a speed

exceeding 0.9985c radiated light inside the counter. The momentum thresholds for pions,

kaons and protons were 2.5, 9.0 and 17.1 GeV=c, respectively. The threshold momentum

for electrons was 0.0093 GeV=c, and thus, any electron that reached the �Cerenkov detector

would radiate light. The �Cerenkov counter consisted of 96 mirrors arranged in two planes

forming an angle of 120Æ between them, and 30Æ with respect to the vertical (see �g.11).

Toroidal mirrors were used to reect and focus the �Cerenkov light from the counter mirrors

onto photomultiplier tubes, which measured the arrival time and intensity of the light. Each

photomultiplier was surrounded by a reective cone to increase the amount of light collected.
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Figure 11: Side view of the �Cerenkov counter. The radiator is Freon 114.
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Small mirrors covered the central part of the counter, where most of the particles passed

through (rapid pions and kaons produced in the pp interaction).

The alignment of mirrors, photomultipliers, and reecting cones maximized light collec-

tion for an in�nite momentum particle (a straight line trajectory) that projected upstream

to the target. Because the quantum eÆciency of the photocathodes is highest at an opti-

cal wavelength of � 4200 �A, all photomultiplier faces were coated with P-terphenyl that

converted ultraviolet light to 4600 �A so that more �Cerenkov light could be detected. Each

photomultiplier generated three signals: two digital signals which gave the arrival time of

the light, and an analog signal which gave the area of the output pulse, proportional to

the amount of �Cerenkov light radiated. The area measurement of the analog signal was

converted to number of photoelectrons, and then compared to the number of photoelectrons

predicted for a particular hypothesis: e; �; K; or p. Details of the design and construction

of the �Cerenkov counter have been presented elsewhere[36, 46].

2.6 Trigger and Data Acquisition System.

E690 trigger and data acquisition system was designed to trigger and read out events at

rates higher than 10 MHz of beam, with a rate of about 1 MHz interactions in the liquid

hydrogen target. It made use of low cost, easily implemented and maintained electronics. The

architecture of this system provided zero suppression (only channels containing measurement

information would be read), maximum \wire hit" limits (a drift chamber might have a cluster

of wires turned on with actually only one track), and high level digital signal processing.

The trigger and data acquisition system is shown in �g.12.

The trigger system was designed to detect an incoming beam proton, determine whether

the proton interacted with a target proton (by looking at the signals in the spectrometer

counters), determine that the interaction was not due to the beam halo, and determine

whether the beam proton had lost enough energy to produce an interesting high missing

mass event.
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The data acquisition system contained four levels of triggering:

1. trigger gate initial (TGI),

2. trigger gate 2 (TG2),

3. trigger gate 3 (TG3), and

4. the multiplicity logic (MLOG).

A typical TGI required the presence of a signal from the target counter (TC) and from at

least one counter from either the middle or the rear hodoscopes (this signal is called \FOR",

Fast OR). It also required the absence of a TGI signal in the previous 30 ns, and the presence

of the Master Gate signal. The Master Gate signal had a true value when the beam was

present, the high voltage in the drift chamber systems was on, the beam line magnets were

on, and the manual gate switch was on.

A typical TG2 required the presence of the TGI, the absence of halo counter (TVT) and

veto counter (VETO) signals, a signal from the Majority Logic that at least one counter

from either the middle or rear hodoscopes was on (GT0), and that the readout sequence for

a previous event was not in progress. A detailed description of the TGI and TG2 electronics

can be found in ref.[37]

Many of the events that triggered the TGI could not be processed, because a previous

event was being read out. The TG2 electronics recorded the number of TGI triggers that

were processed, and these triggers were referred to as live TGI triggers. After a preset

number of live TGI triggers (typically 256 or 4096), an event was accepted without any

requirements. These events were called prescale events, and were tagged so that they could

be identi�ed and used in the data calibration and analysis.
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Figure 12: E690 data acquisition system.
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The signal from each set of the forward hodoscope counters (FH1 and FH2) was used

to select preferentially di�raction dissociation events. In order to reduce random triggers

from photomultipliers noise, TG3 was made of the coincidence of FH1 and FH2. A positive

decision at TG3 level would initiate the digitization of the detector signal information, which

had been `stored' by cable delay.

The time required to read out the measurement data for an event was greatly reduced by

limiting the amount of data that could be read out of the drift chambers to 31 wires per drift

chamber plane. The process of triggering, digitizing, and reading out an event took from a

few hundred nanoseconds to a few microseconds (average 4�s) depending on the number of

tracks in the event. Once read out, the detector information was stored in a set of bu�ers

and then transferred through the Nevis Transport System (NTS [47, 37]) to the MLOG,

where the last trigger decision was made, based on the number of clusters of hit wires in

the drift chamber system, to estimate the multiplicity of �nal state charged particles. The

MLOG trigger requirement ensured that the beam track of an event had an excellent chance

to be reconstructed o�-line. Thus, rather stringent conditions were imposed on the beam

chamber multiplicity. Only loose conditions were applied to the JGG chamber system.

Table 4 lists both the beam chamber and JGG chamber requirements for the MLOG

trigger. The four columns of numbers shown in the table indicate the lower and upper limits

(inclusive) imposed on the number of clusters found in the drift chambers. Two basic types

of MLOG triggers were used. The �rst required numbers of wire clusters consistent with a

single beam proton. The second also allowed a second beam proton.

Finally, events that passed all triggers were written to tape. They were transferred from

the MLOG through a set of bu�ers to the memory of a VMEbus computer (FORCE CPU-

29). The computer then sent the data to a Honeywell VLDS tape drive. The data acquisition

system of this spectrometer system was capable of a digitization and readout rate of 12�106

bytes/sec, corresponding to roughly 12 � 103 events/sec. It took about 6 � 106 events and

40 minutes, depending on the trigger, to �ll a VLDS tape. The various trigger conditions
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and number of events written with each trigger are listed in Table 5. The table lists the two

TGI trigger conditions, two TG2 trigger conditions, two TG3 trigger conditions, one MLOG

trigger condition, and corresponding number of events in each category. Approximately

5:5� 109 events were recorded in a 100-day period.

TRG 12
TRIGGER 1 2 3 4
JGG{2{2 [2,31] | [3,31] |
JGG{3{2 | [2,31] | [3,31]
IBC{123{2 [3,4] [3,4] [3,8] [3,8]
IBC{123{3 [4,5] [4,5] [4,9] [4,9]
OBC{12{1 [1,31] [1,31] [2,31] [2,31]
OBC{12{3 [2,31] [2,31] [3,31] [3,31]
OBC{3{3 [1,8] [1,8] [3,10] [3,10]
OBC{45{1 [1,8] [1,8] [3,10] [3,10]
OBC{45{3 [1,8] [1,8] [3,10] [3,10]

Table 4: Processor multiplicity trigger (MLOG).

Group TGI TG2 TG3 MLOG Events (�109)
4{5 TC GT1�TVT | TRG 12 0.72
6 TC GT0�TVT FH1�FH2 TRG 12 0.06

7{12 TC�FOR GT0�TVT FH1�FH2 TRG 12 2.96
13 TC�FOR GT0�TVT FH1�FH2 TRG 12 0.54
13 TC�FOR GT0�TVT � VETO FH1�FH2 TRG 12 0.36

Table 5: E690 run summary.

2.7 The Hardware Processor

The hardware processor [48, 37, 40] consisted of over 700 modules, each assembled on a

separate printed circuit board. It was used to perform o�-line event reconstruction to process

the entire data sample of 5:5�109 events. It can be described as the hardware implementation
of a computer program, but with boards functioning independently, simultaneously, and with
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no external intervention. Each board performed its speci�c arithmetic or logical operation

whenever a valid data was present at its input.

Figure 13 shows a block diagram of the processor. The hardware was arranged in nine

di�erent subroutines. It could deliver 40 Giga operations per second, and had a band width

on the order of Gigabytes per second. The processor track reconstruction performed four

functions for each track: track �nding, matching, �tting, and cleaning-up. The number of

tracks, the charge of each particle and the vector momenta of the particles were available to

determine if this event should be discarded or saved for further analysis.

Events satisfying the following criteria were selected:

1. at most one of the veto counters on,

2. at least two JGG tracks,

3. at least one beam track,

4. (longitudinal momentum balance) � (3 + �P beam
z )GeV=c,

5. about 10% of the prescale events,

where �P beam
z is the longitudinal momentum loss by the incoming beam proton. These

criteria reduced the number of events written to the output tape by a factor of 20. Studies

show that only about 50% of the exclusive candidates were lost in this process, with an

increase of signal to background ratio by a factor of 10.
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Figure 13: The block diagram of the E690 processor.
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3 EVENT RECONSTRUCTION AND SELECTION

The data selection is performed in four analysis steps. At the �rst step, the raw drift cham-

ber data is used to reconstruct charged particle trajectories through the magnetic �eld. This

step was executed by a special purpose computer[48], the \hardware processor", with pro-

grammable selection criteria. This step is referred to as PASS1. The second reconstruction

step �nds any remaining trajectories and the vertices formed by the intersection of the tracks.

This step of the analysis is referred to as PASS2. The third step corresponds to the selection

of events with a particular topology, in this case, those which correspond to the process

p p ! pmissing K
0
sK

0
s pfast

and the fourth step corresponds to the physics analysis.

3.1 PASS1: Track Reconstruction.

Drift chambers were used to measure the positions of charged particles produced in proton-

proton interactions. A pattern recognition algorithm used these trajectories to �nd straight

tracks in the the beam spectrometer, and curved tracks consistent with the motion of charged

particles in the non-uniform magnetic �eld of the JGG spectrometer.

PASS1 reconstructed four types of tracks: 3-chamber beam tracks, and 6-chamber, front

4-chamber and back 4-chamber JGG tracks. Particles passing through the three incoming

beam chambers, or the last three of the �ve outgoing beam chambers, were reconstructed

as 3-chamber straight beam tracks, since there was no magnetic �eld in these regions. The

JGG tracks were �t to trajectories through the non-uniform magnetic �eld of the JGGS.

The �tted track parameters provided the charge and momenta of the trajectories, which

were later used to reconstruct the interaction and decay vertices.

The track reconstruction consisted of four stages: track �nding, matching, �tting and

cleaning-up. PASS1 reconstructed particle trajectories from the list of wire addresses, the

corresponding drift times, and a set of constants generated from measurements of the mag-
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netic �eld and chamber geometry. In the beam chambers, PASS1 looked for 3-chamber

tracks �rst, by looking for all combinations of �rst chamber and last chamber wire hits, and

predicting the hits at the middle one. If the hit existed within a 5-wire wide road, the pair

was tagged as a track candidate. The track candidates were then paired and the other two

views were predicted. An iterative least-square �t was performed using the wire hits from

the three chambers (twelve planes in all). At the end, the clean-up routine removed duplicate

tracks.

In the JGGS, PASS1 looked for the most constrained tracks �rst, the 6-chamber tracks,

which had 19 constraints (4-chamber tracks had 11 constraints) if all wire hits were present.

In each view of the drift chambers, PASS1 obtained three wire numbers and the deviation

from a straight line to represent the track, called sagitta (see �g.14). Combinations of hits

in the chambers were used to de�ne track candidates. In the ideal case, each particle would

generate four track candidates, one for each of the four views. By checking for similar sagittas,

the PASS1 matcher subroutine matched the tracks found in one view with the corresponding

tracks found in a second view to obtain 3-dimensional particle trajectories. It then used those

trajectories to generate wire predictions in the other two views. If predicted wires were found,

the pair of trajectories was considered a track candidate. The same procedure was repeated

to obtain a second 3-dimensional trajectory using the track candidates in the other two

views, to avoid reconstruction ineÆciencies. Figure 13 shows the logic ow of the PASS1

algorithm.

The pattern recognition described above used only wire addresses and ignored drift times.

The �tter calculated the initial parameterization from the set of wire addresses received from

the matcher. It then performed an iterative least-square �t to �nd the parameters that best

�t the particle trajectory. After three iterations the drift times were included for another

three iterations to utilize the increased precision of the measurements in the drift chambers.
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Figure 14: PASS1 and PASS2 track types and parameter de�nition.
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Finally, the clean-up subroutine eliminated duplicate tracks, and tagged the wire ad-

dresses utilized for 6-chamber, front 4-chamber, and back 4-chamber tracks. The average

event had one beam proton in and out, and four charged tracks from the break-up of the

target system, though events with more than twelve tracks were not rare.

3.2 PASS2: Vertex Reconstruction.

The next step in the analysis was to locate the vertices where the particles interacted or

decayed. PASS2 found the vertices formed by the track trajectories, improved PASS1 track

reconstruction, and found any remaining tracks.

This process began by matching the incoming 3-chamber beam tracks, to the outgoing

3-chamber beam tracks, to generate the JGGS beam track(s). Any wire hits on the beam

track were tagged, so that they would not be used in the subsequent reconstruction. The

excellent reconstruction of the beam trajectory was used to locate the interaction vertex.

PASS2 removed duplicate tracks that survived the clean-up stage of the PASS1 track

reconstruction, and re�t the PASS1 tracks. Those wire hits that remained unassigned were

used to form candidate tracks and trajectories not found by PASS1. This class of trajectories

included low momentum trajectories that were diÆcult to reconstruct in the non-uniform

magnetic �eld of the spectrometer magnet, and trajectories that PASS1 was not designed

to �nd, like 3-chamber tracks and 4-chamber tracks starting in chamber-2 and ending in

chamber-5, etc. (see �g.14).

The search for a primary vertex, the initial point of collision between a beam and a

target proton, used the well de�ned beam track as a constraint. This constraint limited

the primary vertex's x- and y-coordinates to those of the beam track, and only allowed the

z-coordinate to vary. The JGG tracks were assigned to groups of closest approach to the

beam track. Assuming there was only a primary vertex, it was de�ned as the most upstream

multiparticle vertex inside the target, or the one with higher number of crossing tracks, in

the case of more than one primary vertex candidates.
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If a primary vertex was not found, PASS2 would combine two tracks at a time to see if

they intersected. If they did, PASS2 generated a composite track and asked if the composite

track intercepted the beam track. This algorithm would �nd events with only two tracks in

the JGGS forming a V 0 (such as �Æ or K0
s ) which intersected the beam trajectory in the

liquid hydrogen target. Then, all assigned tracks were re�t to a primary vertex. Not all

tracks would pass close enough to the vertices found in this procedure, to be considered part

of a vertex. These tracks were referred to as unassigned tracks.

PASS2 then looked for other vertices using the unassigned tracks �rst, and the list of

assigned tracks. If an assigned track was found to form a secondary vertex, it was removed

from the assigned list and the event was re�t.

Reconstructed vertices could provide particle identi�cation by using track momenta to

measure the invariant mass of long-lived particles. Children particles were constrained kine-

matically to have an invariant mass equal to the parent mass. The tracks forming a sepa-

rated vertex were assigned all possible particle identities (e�; ��; K�; p; �p, compatible with

�Cerenkov information). If the mass of the decayed particle was within broad limits of the

accepted value for a known particle, the separated vertex was labeled as the decay point of

that particle, and particle identities were permanently assigned to the child particles. Nine

di�erent particles were identi�ed this way: ; K0
s ; �

Æ; ��Æ; ��; ��+;
�; �
+; K� (see �g.15).

PASS2 used another kinematic constraint which involved only the measured three-momenta

of the child particles. Figure 16 shows a scatter plot of P �T versus the asymmetry parameter,

de�ned as (P+
L �P�L )=(P+

L +P�L ), for pairs of oppositely charged particles that form distinct

vertices. P �T and PL are the transverse and longitudinal components of the children mo-

menta with respect to the parent. The largest of the three elliptical distributions is formed

by �+-�� pairs from K0
s decay. p-�� pairs from �Æ decay form the ellipse on the right side

of the plot, and �p-�+ pairs from ��Æ decay form the mirror image on the left.
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Figure 15: PASS2 vertex reconstruction (upper plot), and PASS2 vertex types and their
reconstructed decay modes (six lower plots).
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Figure 16: P �T versus (P+
L � P�L )=(P

+
L + P�L ) for vertices formed by a pair of oppositely

charged particles reconstructed in the JGGS. P �T is the transverse momentum, and P+
L ; P

�
L

are the longitudinal momenta of the positive and negative particles, respectively, de�ned with
respect to the momentum sum of the pair. The large ellipse corresponds to K0

s ! �+ + ��

decays. The smaller ellipses on the right and left correspond to �0 ! p+�� and ��0 ! �p+�+

decays, respectively. Photon conversions to e+e� pairs in material contribute the band at
small P �T .
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The locations of the maximum in these distributions depend only on the rest masses of the

parent and children particles. Their intercepts with the horizontal axis depend on the velocity

of the children particles in the parent's rest frame. Non-relativistic parent particles cause

horizontal smearing of the distribution outer edges. The band at the bottom contains e+-e�

pairs from  conversion. Note that while the density of the K0
s ; �

Æ and ��Æ distributions

decrease with decreasing P �T (due mainly to phase space), on the scale shown, the e+-e�

distributions increases slightly with decreasing P �T . In the rest frame of a decaying particle

there is a maximum available momentum for the child particles. Background can be reduced

by not considering pairs of tracks as candidates for a determined vertex, if either track has

a transverse momentum greater than the maximum allowed value, P �T � Pmax. Figure 16

also shows regions of kinematic overlap, were we are not able to determine uniquely the

identity of the secondary vertex by kinematics only. In these cases, the use of the �Cerenkov

counter and Time-of-Flight for direct particle identi�cation could be used. The �Cerenkov

and Time-of-Flight were not use for the K0
sK

0
s analysis.

In summary, there were three cuts imposed by PASS2 in searching for secondary vertices:

1) the distance of closest approach; 2) the maximum momentum, P �T � Pmax, and 3) the

invariant mass, M �� � MX �M +�.

3.3 Data Selection for K0
sK

0
s Analysis.

The sample we used for this analysis consisted of � 546� 106 events, that is, around 10% of

the total number of events recorded by this experiment. The Select sample obtained after

PASS22 consisted of � 89 � 106 events. From this, we selected 28309 events of the type

pp! pK0
sK

0
sp using the following criteria:

a) one primary vertex (see �g.17), with two secondary vertices (with two charged tracks

each) and a fast forward proton assigned to it,

b) zero good unassigned tracks in the event,

c) each secondary vertex should be K0
s compatible.

2For the K0

s
K0

s
analysis, we used events processed with version 13 of PASS2 (PASS2V13).
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Figure 17: z; x and y coordinates (a,b,c, respectively) of the primary vertex (in inches)
for the selected events. Arrows denote the cuts imposed on the primary vertex position to
ensure that the vertex lies inside the LH2 target. The peak at the right in the z{coordinate
corresponds to the Rohacell cover of the target.
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3.4 Background Analysis.

In the analysis we present here, for the reaction pp ! ps(X)pf , the slow proton is re-

constructed using energy{momentum conservation relations, that is, we do not use fully

reconstructed events, and this makes it very likely that X not only consists of two K0
s , but

also of neutral particles that would not be detected by the spectrometer, like �0's, or charged

particles which do not enter the geometrical acceptance of the spectrometer. What one does

is to use the di�erent parts of the spectrometer, and kinematical constraints, to cut the

background events. After that, one has to make an estimate of the number of remaining

background events, in order to subtract this number from the sample to obtain the number

of real events.

In the next two Sections we present the methods we used to take into account background

events. First, we describe the way we used the veto counters and the veto collar to cut

events in which, beside the missing proton, there is a signature of other unwanted particles.

Secondly, we describe the method used to \count" the number of background events under

the missing mass squared peak, that could not be removed using the di�erent parts of the

spectrometer, nor using kinematical requirements.

3.4.1 Using the Vetoes to Cut Background Events.

Figure 18 shows upper and side views of the veto counter and veto collar arrays, together

with the �rst two drift chambers in the magnet aperture, and the LH2 target. One can see

in this �gure that the spectrometer has a limited acceptance for tracks with high pT . The

vertical acceptance (y{axis in the laboratory frame) was �410 mrad, while the horizontal

acceptance was �580 mrad. The particles that do not enter the spectrometer are very likely
to hit one of the vetoes (or two, in the case of overlapped vetoes). Then, if the missing

proton had enough energy to leave the LH2 target, it is feasible to know if it actually hit

the veto that is on, or if it was something else that hit it.
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a) b)

Figure 18: (a) Top and (b) side view of the veto box and veto collar. The �rst two chambers
downstream are also visible.

In order to know if the missing proton hit a veto that is on, we used the missing transverse

momentum, pT , which our spectrometer measures with high accuracy, and a very simple

idea: look at the angle traced by the missing proton in the x{y plane in the laboratory,

� = arctan(py=px), and compare it with the geometrical acceptance of each veto in this

angle. If the veto is o�, keep the event. Then look at the TDC and ADC signal coming from

each veto, if that veto is on. If the veto is on, and the missing proton is pointing to it, keep

the event. If the veto is on, but the missing proton is not pointing to it, and the ADC signal

is high, meaning that a real particle hit this veto, throw away the event.

A few plots will help to clarify this matter. In �g.19 we plot the mentioned variables

for veto counter number 1. In �g.19a we see the distribution of angle � = arctan(py=px),

representing the direction of the missing proton, for events when this veto is on. We can

see a clear peak around 250Æ (shaded area), meaning that these are the events in which the

missing proton hit the veto. We keep these events. The other entries in this plot could be

due to electrical noise in the veto, knock on electrons (which we do not consider part of the

event), or particles coming from the interaction of the beam with the target, that is, particles
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that are part of the event, additional to the two K0
s and the protons. This last possibility

is part of the background, and one should cut these events. Therefore, we look for more

information coming from the veto. Figure 19b shows the ADC vsTDC for all events when

the veto is on. We can see a at band in 0<ADC<20 units, and another distribution around

70 units in TDC. The at band we assume are knock on electrons, or electrical noise, in the

veto. The other structure we consider it as coming from particles belonging to the event.

In �g.19c, we have the same plot as in �g.19b, but for the events with the missing proton

pointing to the veto (shaded area in �g.19a). We can see a clear distribution for high ADC,

and the same band as in (a) but with fewer events. All events in this plot are kept. In �g.19d

we see the cases when the missing proton is not pointing to the veto. From this events, we

keep those in the at band (noise in the veto), and cut the events above this band, which

are events with extra particles from the pp interaction hitting the veto.

Our original sample consisted of 28309 events. In 20379 events (�72%) there was at least
one veto on, where veto means one of the veto counters or one of the counters in the veto

collar. Of these, 6436 (�23%) had the missing proton pointing to the veto (each veto covering
a di�erent � region), and 10580 had a ADC{TDC signal in the \noise" region (at band in

�g.19). The remaining 3363 events (�12%) had at least one veto on, the missing proton not
pointing to any of these vetoes, and a high ADC signal. These events were cut, and we ended

up having 24946 events. In �g.20a we plot the missing mass squared for all the events that

survived the veto{cut (solid line). The shaded area represents the events cut. Figure 20b is

the same as �g.20a but in the region of interest for us, 1:4 � M(K0
sK

0
s ) � 1:9 GeV=c2. We

can see again that most of the background under the missing mass squared peak is in the

low mass region. We also plot the K0
sK

0
s invariant mass for events that passed the veto{cut,

�g.20c, and cut events, �g.20d. One can see that there is no evident structure in the region

of interest, the cut events having an exponentially decaying distribution.
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Figure 19: (a) � distribution and (b) TDC vs.ADC when veto #1 in the veto box is on. (c)
ps pointing to cell, (d) not pointing.
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Figure 20: Missing mass squared peak for (a) all events that passed the veto{cut, and (b)
those in the region 1:4 �MK0

sK
0
s
� 1:9 GeV=c2. K0

sK
0
s invariant mass for (c) the events that

passed the cut, and (d) for those cut. The shaded areas in all plots represent the distribution
of the events cut using the vetoes.
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3.4.2 Counting the Number of Remaining Background Events.

We only used the veto counters and the veto collar for removing background events, but the

remaining ones had to be counted for background subtraction in the amplitudes or moments

analysis. In order to do this, we made an estimation of the number of background events

in the region 1:0 � M(K0
sK

0
s ) � 2:0 GeV=c2 only. However, since we ended up �tting

a function to the distribution curve of background events, the results can be extended to

higher K0
sK

0
s mass regions. For this purpose we selected events with a K0

s mass between

0.477 and 0.517GeV=c2, and we imposed a cut on �0:22 � xF � �0:02, which is the region

of good acceptance in our spectrometer for central production. 11979 events survived these

cuts (see �g.21). The �t in �g.21b was made on the central bins only, because various types

of tracks enter this plot. These types are related to the number of chambers that the charged

pions hit, and the number of iterations PASS2 does for each one of these types. For example,

events with three{chamber{tracks have a di�erent distribution to that of 6{chamber{tracks,

giving a non{gaussian form to the combined distribution. We can also see that there is very

little background under the �+�� peak.

Figure 21: (a) xF for events that passed the veto{cut, the arrows show the region used for
the analysis. (b) �+�� invariant mass; the cut here was used to remove the tails in mass
from PASS2 reconstruction.
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To count background events under the missing mass squared peak, we assumed that

the real signal had a gaussian{like distribution, and the background had a polynomial{like

distribution. Thus we divided in bins of 100MeV=c2 in the K0
sK

0
s invariant mass, and chose

the polynomial such that it vanished, and had zero slope, atM2
m�m2

p = �3 GeV 2=c4, where

M2
m is the squared of the missing mass in the event, and mp is the mass of the proton. The

reasoning to choose a function that vanishes and has zero slope at -3 GeV 2=c4, is based on

the topology of the process. We are looking for events of the form pp! (X)K0
sK

0
sp, where

X should be a proton. Therefore, X consists of a mass greater or equal to the mass of the

proton. On the other hand, to measure a mass of the order of 1 GeV=c2 with a system that

calibrates 800 GeV=c protons is a tough thing to do, and the missing mass peak shows up

to be a broad peak, as can be seen in �g.20a. Now, for X consisting only of a proton and

a small mass, say a �0, the background can at most have the same form that the missing

mass squared when X consists only of a proton (left{hand side in �g.20a), and it must have

a di�erent shape for X consisting of more particles, as in the right-hand side in �g.20a.

Thus, the function used to �t the background must have the same shape as the missing mass

squared peak, on the left hand side of the later.

In �g.22 we plot the �ts in the ten bins described. The function used for the �t is

f(M2
m) =

n
p1e

�p2(M2
m�p3)2

o
+

n
(M2

m �m2
p + 3)2p4 + (M2

m �m2
p + 3)3p5 + (M2

m �m2
p + 3)4p6

o
(1)

where the �rst term in brackets represents the gaussian used for the signal, and the second

term represents the polynomial used for the background. From these plots it is obvious that

there is a lot of background at threshold, and that it decreases when going to higher masses,

such that in the region of more interest for us, there is little background.
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Figure 22: Fit to the missing mass squared peak, in 100MeV=c2 bins of the K0
sK

0
s invariant

mass. As we can see, the number of background events decreases for higher masses.
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As can be seen in �g.20a, and �g.22, the shape of the curve of events cut using the

vetoes, and that of the �t to background events, do not peak at the same position in the

missing mass squared. The reason for this is that the background particles from events that

were cut using the vetoes, have di�erent momentum distributions than those from events in

which the vetoes were not used. The particles that hit the vetoes are, for the most part, low

momentum wide angle particles that give a lower missing mass than, for example, higher

momentum missing neutrals that go into the spectrometer.

The parameters of the �ts are shown in the plots. We used them to integrate the function

f(M2
m) to make an estimation of the number of background and signal events, in a given

region of the missing mass squared peak, in 100 MeV=c2 bins of the K0
sK

0
s invariant mass.

We chose to integrate in the region where we perform the physics analysis, �2:5<M2
m �

m2
p<1:0 GeV 2=c4, since after 1:0GeV 2=c4 the signal to background ratio is very small (see

�g.ref�g:bkg�t3a).

The number of background events obtained for each bin were in turn �tted with a function

b(mKK) =
e p1+p2mKK

mKK � p3
(2)

where a pole in p3 was used since the exponential term was not enough to account for the

steep rise of the number of background events at low masses.

In �g.23a we plot the �t to the number of background events as a function of the K0
sK

0
s

invariant mass, and in �g.23b we plot the mean value of the missing mass squared peak,

obtained from the gaussian �t (p3 in �g.22). We can see in that this mean value is around

0.45 GeV 2=c4, for all bins, and therefore, it is not equal to the squared of the proton mass.

This shift is completely due to the forward spectrometer calibration, but it is not relevant

for the physics analysis. This small miscalibration only a�ects the calculation of the missing

mass, and has no e�ect in our measurement other than shifting the missing mass peak. For

our analysis we only use well measured quantities, like the pion's momentum and the pT of

the beam proton, plus energy and momentum conservation.
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Figure 23: (a) Fit to the number of background events. (b) Mean value of the missing mass
squared peak, obtained from the �t in �g.22.

Figure 24a is a plot of the K0
sK

0
s invariant mass for events used in this analysis, in 20

MeV=c2 bins, and the lower curve is the function b(mKK) in the same bins. In �g.24b we

plot the number of events after background subtraction.

Two things are important here. First, we can get the fraction of background from the �ts

to the missing mass squared, as a function of the K0
sK

0
s invariant mass. Second, one would

like to know how good these �ts to the background are. One way to do this is to compare

the form of the background �t in terms of the K0
sK

0
s invariant mass, with events that one

can be sure that are background. One can not just take the events which have a missing

mass squared far from the peak, to compare with the background �t, since this �t was done

in terms of those events. What we do, then is to compare the events estimated by �tting the

missing mass squared with the events cut by the vetoes. Of the events cut by the vetoes,

only those with m2
missing �m2

p > 1:5 GeV=c2 were used. This was done to avoid including

any real events that may have been cut out by, for example, veto noise.
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Figure 24: (a) Upper curve: K0
sK

0
s invariant mass for all events; lower curve: number of

background events. (b) Number of events after background subtraction.

Figure 25: (a) Percentage of background events. (b) Ratio of background events from the
veto{cut, to number of events from the background �t.
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In �g.25a we plot the background percentage as a function of the K0
sK

0
s invariant mass,

with respect to the total number of events, that is (background)/(signal+background). We

can see that, at threshold there is about 20% of background, and that it decreases for higher

masses, being less than 5% in the region 1:5 �MK0
sK

0
s
� 1:8, which is the region of interest

in this study. In �g.25b we plot the ratio of the number of events that were cut using the

vetoes, for M2
m �m2

p> 1:5 GeV 2=c4, to the number of events from the background �t. We

can see that a �t to this plot using a constant function gives a �2 of less than 0.6, which tells

us that the background �t has essentially the same form as real background events.

3.5 Features of the Data.

The only cuts we used in the data for the partial wave analysis are

1. a primary vertex in the LH2 target,

2. Feynman xF in �0:22 � xF � �0:02, and

3. missing mass squared in �2:5 � m2
m �m2

p � 1GeV 2=c4

In �g.26 we show the p2t distribution of the slow (missing) and fast proton, for all events that

passed these cuts, and for those in the region 1:4 � M(K0
sK

0
s ) � 1:9 GeV=c2. In �g.26a we

can see the uncorrected p2t distribution for the slow proton for all events. In �g.26b we see

the p2t distribution for the slow proton, but in the region 1:4 �M(K0
sK

0
s ) � 1:9 GeV=c2. In

�gs.26c{d we plot the p2t distributions for the fast proton, for all events and in the region

1:4 � M(K0
sK

0
s ) � 1:9 GeV=c2. Note the change in horizontal axis. In these cases, there

seems to be only one slope. Note also the drop in the �rst two bins in the p2t of the fast

proton. This drop is due to the geometric acceptance of the spectrometer.
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Figure 26: p2t distributions for the slow and fast protons, for all events a) and c), and in the
region 1:4 �M(K0

sK
0
s ) � 1:9 GeV=c2 b) and d), respectively.
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The secondary vertices were chosen as K0
s compatible. This means that the invariant

mass of the two charged tracks can also be compatible with other neutral particles. The K0
s

vertices used in this analysis, can be compatible with a photon, a lambda or an antilambda

vertex. In table 6 we give the number of events for the di�erent categories of vertex type.

When it is compatible with only one kind of vertex we call it unambiguously identi�ed.

Vtx. #1 type Vtx. #2 type # of events
K0

s K0
s 11132

K0
s , K0

s 17
K0

s ,� K0
s 160

K0
s ,� K0

s 170
K0

s K0
s , 23

K0
s , K0

s , 0
K0

s ,� K0
s , 0

K0
s ,� K0

s , 0
K0

s K0
s ,� 277

K0
s , K0

s ,� 0
K0

s ,� K0
s ,� 2

K0
s ,� K0

s ,� 2
K0

s K0
s ,� 188

K0
s , K0

s ,� 0
K0

s ,� K0
s ,� 4

K0
s ,� K0

s ,� 4

Table 6: K0
s vertex compatibility.

We see that the number of events when one of the two vertices has been unambiguously

identi�ed as a K0
s is 11967, and only 12 events do not have at least one vertex unambiguously

identi�ed as a K0
s . When we ask that both vertices be K0

s , we get 11132 events. In �g.27a

we plot the K0
sK

0
s invariant mass for the events with at least one vertex unambiguously

identi�ed as a K0
s . In �g.27b, one of the vertices is allowed to be compatible with another

neutral vertex, and in �g.27c, we plot the events with both vertices compatible with other

neutral type vertex. Even in this last plot, the K0
sK

0
s invariant mass has the same structure

as in the two previous plots.
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Figure 27: K0
sK

0
s invariant mass for (a) events with either secondary vertex unambiguously

identi�ed as K0
s , (b) both vertices unambiguously identi�ed as K0

s , (c) neither vertex unam-
biguously identi�ed as K0

s .
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We did not throw away these events because, as can be seen in �g.28 the cos �� distribution

for one of the pions from the �rst K0
s in these events shows that cutting these events would

produce a hole in the angular distribution close to cos �� = �1, and, since we are trying to
measure angular distributions, we do not want to create holes in these angular distributions

with our selection cuts.

Figure 28: cos �� distribution for the positive pion from the �rst K0
s . The upper histogram

is for all events, and the lower histogram is for the events where the K0
s is compatible with

a �. We can see that cutting these events would produce a hole in the angular distribution
close to cos � = �1.

We mentioned in Sect.3.2 that the secondary vertices leave a di�erentiable signature in

the plot of the asymmetry versus the P �T , where this quantities were de�ned in the laboratory

system. A scatter plot of the asymmetry versus P �T for the K0
s 's of our selected sample can be

seen in �g.29. The upper plots are for both K0
s 's before the cuts on the primary vertex, xF

and missing-mass-squared, and the lower plots are for the events that survive these cuts. We

can see that the plots after the cuts are essentially clean, and there is a little � contamination.
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Figure 29: Asymmetry versus P �T for the two K0
s 's in the selected events, (a-b) before kine-

matical cuts, and (c-d) after the kinematical cuts. We can see how much the sample cleans
after these cuts.
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In �g.30a we plot the rapidities for all events that are going to be used in the analysis. The

peak close to zero units is the rapidity of the slow proton, the central distribution corresponds

to the K0
sK

0
s system, and the sharpest peak, around seven rapidity units, corresponds to the

fast proton. The rapidities are measured in the lab frame, and the boost to the CMS system

of the two protons shifts the rapidities in -3.721 rapidity units. We can see that the rapidities

for the protons and the K0
sK

0
s are very well separated, as is the case of central production,

an important quality for exotics production, since it favors gluon{rich production. The fast

proton is separated by at least three units of rapidity from the X system (see �g.30c), and

the slow proton is separated by at least a unit from it (see �g.30b).
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Figure 30: a) Rapidities for the slow proton (left), fast proton (right), and X system. We
can see the typical central production distributions, which favors gluon{rich production. b)
and c) show the di�erence in rapidities between the X system and the slow proton, and
between the fast proton and the X system, respectively.
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4 PARTIAL WAVE ANALYSIS

4.1 Angular Distributions in the X Decay.

After getting a sample of events, we proceed to perform the physics analysis. The reaction

under study is

p p ! pmissing (X) pfast (3)

X ! K0
sK

0
s (4)

K0
s ! �+��

This reaction is studied in two steps: the production of the X system (eq.(3)), with mass

MX , and, the decay of MX (eq.(4)). We need six variables to characterize the production

process, 3 � 3 � 4 + 1 = 6, since we have the momenta of the two protons and of the X

system, there are four constraints due to energy{momentum conservation, and we considered

that we do not know the mass of X. The variables we chose are:

1:2) p2tm ; �m transverse momentum of missing proton

3:4) p2tf ; �f transverse momentum of fast proton

5) xF Feynman x of the X system

6) MX mass of the X system

The generic name x will be used for the production variables, x �
n
p2tm ; �m; p

2
tf
; �f ; xF ;MX

o
.

We could also have used the four momentum transfer (t) from the beam to fast proton, and

from the target to the slow (missing) proton. However, these variables depend directly on

the longitudinal momentum of the particles, and our spectrometer was designed to do a

much better measurement on transverse momentum, relative to the beam momentum, than

on longitudinal momentum. Due to the rotation symmetry around the beam axis, the cross

section will only depend on the di�erence �m � �f , but the acceptance can depend on both

�m and �f .

For the X decay, two more variables are needed: 3� 2� 4 = 2. They are chosen as the

Gottfried{Jackson angles of one of the K0
s 's in the X rest frame, with the generic name 
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given to them: 
 � f�; �g. The K0
s used to de�ne the angles was randomly chosen. We

selected the decay axis in the following way:

i) The z{axis was chosen in the direction of the momentum transfer from the beam to the

fast proton in the CMS of the K0
sK

0
s system, that is, in the direction of the beam pomeron,

ẑ / ~Pbeam.

ii) The y{axis was chosen as the cross product of the vectors de�ned by the momentum

transfer of the beam to fast proton, and the target to slow proton. This cross product is

calculated in the CMS of the protons, and boosted to the X rest frame, ŷ / ~Pbeam � ~Ptgt.

iii) The x{axis is the cross product of ŷ � ẑ.

The p2t distributions for the slow and fast protons, as well as the M(X), and xF distri-

butions, have already been shown in Section 3.5. The uncorrected angular distributions can

be seen in �gs.31{33. In �g.31 we plot the cos � distributions, and in �g.32 we plot the �

distributions. In �g.33 we made scatter plots of cos � vs �.
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Figure 31: Uncorrected cos� distributions in bins of 60MeV=c2 of the K0
sK

0
s invariant mass,

for 1:00 �M(K0
sK

0
s ) � 2:02 GeV=c2.

66



Figure 31 Continued.
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Figure 32: Uncorrected � distributions in bins of 60 MeV=c2 of the K0
sK

0
s invariant mass,

for 1:00 �M(K0
sK

0
s ) � 2:02 GeV=c2.
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Figure 32 Continued.
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Figure 33: Uncorrected (cos �, �) scatter plot for 1:00 � M(K0
sK

0
s ) � 2:02 GeV=c2.
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Figure 33 Continued.
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4.2 Acceptance Corrections for the Angular Distributions.

The kinematics of the process can be described completely by the set of independent kine-

matical variables fx;
g (see Sect.4.1). The di�erential cross section may be de�ned as an

intensity distribution in these variables: Iprod(x;
). Only part of the distribution Iprod(x;
)

is accepted by the geometry of the detector, and the relation between the accepted and

produced intensities is given by

Iacc(x;
) = A(x;
) Iprod(x;
) (5)

where the acceptance probability A(x;
) takes the values 0 or 1 depending on whether the

event (x;
) lies inside the geometry of the apparatus or not.

The raw angular distributions shown in the previous Section most surely do not show

the real angular distributions produced in the physical process of eqs.(3,4), but these distri-

butions modi�ed by the geometrical acceptance of the spectrometer, or the ineÆciencies in

the reconstruction process. The whole set of factors that modify the real distributions of the

process, and are due to the apparatus or hardware performance, is called the \spectrometer

acceptance". One has to calculate the acceptance corrections that need to be done to per-

form the physics analysis, and the straight forward way to do this is to generate Monte Carlo

events, process them through the whole chain of reconstruction programs, and calculate the

corrections by comparing the distributions of the generated and accepted events.

To calculate the acceptance corrections for the angular distributions we generated Monte

Carlo events with the following characteristics:

1) MX at in the region 1.00 to 2.02 GeV=c2,

2) cos � at in [-1,1],

3) � at in [0,2�],

4) p2t of the fast and slow protons distributed according to e�8 p
2
t , and

5) Feynman xF of the X system at in [-0.22,-0.02].

As a check of the reliability of the reconstruction of the angles, we generated Monte Carlo
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events with de�nite values for some variables of interest, to see how good this reconstruction

was. We plot in �g.34 the results for these events after processing them through the whole

reconstruction chain. The standard deviations for the angular variables are �(cos �)=2 � 1%,

and �(�)=2� � 1%. The reconstruction of the masses gives a sigma of 2 MeV=c2 for the K0
s

mass, which is what we found in the data distribution, as can be seen in �g.21b, and of 5

MeV=c2 for a K0
sK

0
s mass of 1.6 GeV=c

2. Fig.35 is a scatter plot of cos � versus � for another

set of �xed values for these variables. So, our resolution is about a factor of 5 smaller than

our bin size, since there are only twenty bins for cos � and �, which gives 5% of the angular

range, compared to a sigma of 1%.

To see how does the acceptance a�ect the angular distributions, we selected two regions

of the K0
sK

0
s mass. In �g.36 we plot the angular distributions in the f 02(1525) region, 1:45 �

M(K0
sK

0
s ) � 1:59GeV=c2, and the fJ(1710) region, 1:59 � M(K0

sK
0
s ) � 1:83 GeV=c2, before

and after acceptance corrections. We selected these two regions in order to compare with

the results of experiment WA76 [31], which is a very similar experiment to ours. They used

300 GeV=c protons inciding on liquid hydrogen, to study the reaction

p p ! p (K+K�) p

From the angular distributions shown in �g.1, they favored spin J = 2 for the fJ(1710).

We can see that the angular distributions we found in this region are essentially at (see

�g.36), in disagreement with WA76 results. However, it is important to consider that this

experiment studied K+K� events, where it is possible to have odd waves, in addition to

even waves, which is not the case in K0
sK

0
s events, where only even waves can be found.
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Figure 34: MC events generated with de�nite values for m(��) = m(K0
s ) (upper left),

m(K0
sK

0
s ) = 1:6 GeV=c2 (upper right), cos � = 0:4 (lower left), and � = 0:7854 (lower right).
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Figure 35: Scatter plot of MC events generated with de�nite values for cos � and �.
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Figure 36: (a-c) (cos �; �) scatter plot with cos � and � projections in the Gottfried{Jackson
frame for the f 02(1525) region; (d-e) show the acceptance corrected distributions in the same
region. (f-h) (cos �; �) scatter plot with cos � and � projections in the Gottfried{Jackson
frame for the fJ(1710) region; (i-j) show the acceptance corrected distributions in the same
region. The regions are de�ned as 1:45 � M(K0

sK
0
s ) � 1:57GeV=c2, and 1:57 �M(K0

sK
0
s ) �

1:85 GeV=c2, respectively.

76



4.3 Amplitudes in the K0
sK

0
s System.

The process (3{4) can be viewed as the protons interchanging two particles, which we shall

call Pomerons3, P. These particles interact to produce the X system, which subsequently

decays into two K0
s 's. Since the decay of the X system is into two particles, and only two

(angular) variables are needed to describe this process, we will use the spherical harmonics

Y J
m(�; �) as the basis for the expansion of the probability distribution. In this thesis we

study two di�erent expansions for the probability distribution, one linear and a second one

quadratic in terms of the spherical harmonics. We shall describe the linear expansion in a

later Section. Here we shall introduce the quadratic expansion, which is directly related to

the amplitudes of the waves that are present in the process, this being the main objective of

the thesis.

The intensity distribution can be written as

Iacc(x;
) =
X
�

(const) (phase space)A(x;
) jM�j2

= (const) (phase space)A(x;
) jMj2 (6)

where M is the Lorentz invariant matrix element, or Lorentz invariant amplitude (see

Sect.B.2 for the values of the constant and phase{space factors), and the sum in the �rst

part of eq.(6) is over the possible helicities � of the protons, while in the second part of

this equation we dropped the sum over helicities assuming that the matrix element does not

depend on the helicities of the protons. The matrix element M can be expressed as a series

in terms of the spherical harmonics Y J
m. However, since the Pomerons and the K0

s 's are all

in the same plane, it is better to use a combination of the spherical harmonics that makes

use of the symmetry of the system. Such a basis is called the naturality basis (or reectivity

basis), and the functions in that basis are related to the spherical harmonics in the following

3We are not studying the production process, so we do not attempt to know what particles are really being
interchanged, and the name Pomeron is only used as a reminder of the statement that central production
processes are supposed to have a big contribution from Double Pomeron Exchange processes
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way

Y J �
m = cm

�
Y J
m � �(�1)J�mY J

m

�
(7)

where �=+1 for positive naturality states and �=�1 for negative naturality states, and

cm =

(
1
2

if m = 0
1p
2

if m 6= 0

The principal characteristics of this basis are: 1) the reection operator �n̂, de�ned as a

product of the parity operator followed by a rotation around the normal n̂ to the pane of the

particles, leaves all relevant momenta invariant; 2) it was shown by Chung and Trueman[49]

that the the spin-density matrix in the reectivity basis breaks up into block-diagonal form,

owing to parity conservation in the production process, and 3) as a consequence of this last

statement, the angular distributions in the decay of the X system do not contain interference

terms of opposite reectivity.

For example, the spin{0 and spin{2 states in the reectivity basis are, for naturality

� = �1

S�0 = Y 0
0

D�0 = Y 2
0

D�1 =
1p
2

�
Y 2
1 � Y 2

�1
�

D�2 =
1p
2

�
Y 2
2 + Y 2

�2
�

(8)

and for naturality � = +1

D+
1 =

1p
2

�
Y 2
1 + Y 2

�1
�

D+
2 =

1p
2

�
Y 2
2 � Y 2

�2
�

(9)

In this case, the waves D+
1 and D+

2 do not interfere with the waves S�0 ; D�0 ; D�1 and D�2 .
As one can see, a at angular distribution can be described using only a S�0 wave (Y 0

0 = 1),

but it is also possible to produce a at distribution by adding equal amounts of waves with
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the same spin, with all possible projections, but without interference, for example:

���D�0 ���2 + ���D�1 ���2 + ���D�2 ���2 + ���D+
1

���2 + ���D+
2

���2 = 5

4�

Considering spin J = 0 and J = 2, if the angular distributions do not show dependence

on the azimuthal angle � then only the projection m = 0 would be present, and there would

only be two interfering waves, S�0 and D�0 . We considered this simple case as a �rst approach

to the partial wave analysis. With only these two waves, and normalizing the cross section

to the number of events, one can write

d�

d

=

���S�0 S�0 +D�
0 D�0

���2
=

1

2

�
P1 +

5

4

�
3 cos2 � � 1

�2
P2 +

q
5P1P2 cosP3

�
3 cos2 � � 1

��
(10)

where S�0 and D�
0 are the (complex) amplitudes of the waves, P1 =

���S�0 ���2, P2 =
���D�

0

���2 and P3

is the relative phase between the amplitudes. The results of �tting the angular distributions

with eq.(10) can be seen in �gs.37{38. The �ts were done in 60 MeV=c2 bins of the K0
sK

0
s

invariant mass. In �g.37 we plot the �ts to the angular distributions, and in �g.38 we plot the

amplitude squared of the waves and their relative phase. One can see that the �t gives little

D wave, but looking at the angular distributions in �g.37 one would expect more D wave.

This is due to the fact that it is only necessary to have little D wave to modify drastically

a at distribution4, and one has to remember that it is assumed that the � distribution is

also at, which does not allow for other projections m for D waves.

These �ts were done on the raw angular distributions, but one can also correct these

distributions for the acceptance of the spectrometer, as was mentioned above, and perform

the same �ts. In order to do this, we generated Monte Carlo events with the characteristics

described in Sect.4.2, and corrected bin by bin the angular distributions, by multiplying the

bin size by the ratio of the generated to accepted Monte Carlo events for that bin (see the

Appendix). The results can be seen in �gs.39-40. The acceptance corrections do not change

the relative amount of S and D waves, and only put a little more D wave at high mass.

4the reader can perform this simple exercise to convince himself of this statement
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Figure 37: Fits to the cos � distributions using only two waves.
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Figure 37 Continued.
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Figure 38: Number of events in the S�0 and D�0 waves, from �ts to the cos � distributions,
as a function of the K0

sK
0
s invariant mass (x-axis). The upper left plot is the squared of the

S0 amplitude, and the upper right is the squared of the D0 amplitude. The lower plot is the
relative phase between the amplitudes. We see that the �ts give very little D�0 wave.
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Figure 39: Fits to the cos � distributions using only two waves, after acceptance corrections.
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Figure 39 Continued.
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Figure 40: Number of events in the S�0 and D�0 waves, from �ts to the cos � distributions,
after acceptance corrections, as a function of the K0

sK
0
s invariant mass (x-axis). Comparing

to �g.38, we see that there is still little D�0 wave, and the acceptance corrections just put
few more events into this wave.
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4.4 Maximum Likelihood Method.

Doing a �t on the angular distributions has some disadvantages. For example, the histograms

must contain very many events for the �t to converge, since a �t to a plot with few events

gives a large �2; the �ts can only use a few parameters, since putting several parameters

makes it diÆcult for the �t to converge, and it is also very diÆcult to add more parameters.

Therefore, one should look for other ways to estimate the amplitudes of the partial waves

that reproduce the observed angular distributions.

From a theoretical point of view, the most important general method of estimation so far

known is the method of maximum likelihood. In particular cases, this method was already

used by Gauss[50]; as a general method of estimation it was �rst introduced by R. A. Fisher

in a short paper of 1912[51].

If the probability density function of variable (or set of variables) X is P (X), then the

joint density of the sample X1; X2; X3; : : : ; Xn is given by

g(X1; X2; X3; : : : ; Xn) = P (X1)P (X2)P (X3) � � �P (Xn) =
nY
i=1

P (Xi) (11)

If the density function P (X) contains the parameters �1; �2; �3; : : : ; �k, then this joint

probability depends upon these parameters. Considered as a function of the parameters of

the probability distribution, the joint probability is called the likelihood of the parameters,

given the sample, and is denoted by

L(�1; �2; �3; : : : ; �k) = g(X1; X2; X3; : : : ; Xn) = P (X1)P (X2)P (X3) � � �P (Xn) (12)

Consider the probability distribution I(
) of the angular variables 
 = fcos �; �g con-

sisting of N events. Assume that it can be described by a Poisson distribution and that

we are using suÆciently small intervals �
 so that at most one can �nd one event in each

interval. The Poison distribution says that the probability of �nding n events in a sample

with �n mean number of events, is given by

P�n(n) = e��n
�nn

n
(13)
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so that

P�n(0) = e��n and P�n(1) = �ne��n

Suppose that there are no events in the �rst interval, one event in the second, zero in the

third, one in the fourth,... Since the average number of events in the i{th interval is given

by

�ni =
Z
�
i

I(
)d


the probability is given by

P = e
�
R
�
1

I(
)d

I(
2)d
2e

�
R
�
2

I(
)d

e
�
R
�
3

I(
)d

I(
4)d
4e

�
R
�
4

I(
)d
 � � � �
= e�

R
4�

I(
)d
I(
2)I(
4) � � � I(
n)| {z } d
2d
4 � � �d
n (14)

In the case of the data analysis, the probability distribution I is a function of the angular

variables 
, but any expansion of this distribution in terms of functions of the angular

variables introduces parameters particular to that expansion. This is the case when we

expand the probability in terms of spherical harmonics, where the parameters are the so

called moments, and when we expand it in terms of wave functions in the naturality basis,

where the parameters are the wave amplitudes. When considered as a function of these

parameters, the term underbraced in eq.(14) is called the likelihood of the distribution,

L = e�
R
4�

I(
)d
I(
2)I(
4) � � � I(
n) (15)

and the sample of events is used to estimate the most likely value of the parameters that

is necessary to specify the angular distribution. Since the maximum of the logarithm of L
gives the maximum of L, what one does is to minimize the function

� lnL = �
NX
i=1

ln I(
i) +
Z
4�
I(
)d
 (16)

For the data analysis we used the CERN program MINUIT to �nd the minimum of eq.(16).
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Maximum likelihood is a particularly important method because if the distribution as-

sumed for the population is correct, then parameters estimated this way are consistent,

eÆcient and suÆcient, in the analytical sense.

We used the maximum likelihood method to calculate the amplitudes (and moments, see

next Section) in the K0
sK

0
s system. The results for more than two waves will be shown in

Section 4.7, here we present the results when using only two waves, to compare with what

was obtained with the �ts to the cos � distributions. In �gs.41-42 we show the results from

maximum likelihood, before and after acceptance corrections, respectively.

For the acceptance corrections we used the Monte Carlo events generated as described

in Sect.4.2, to calculate the acceptance integrals for the partial waves. For a given bin of

the K0
sK

0
s invariant mass, the acceptance integrals for the generated (accepted) events, are

de�ned as the sum over all the events generated (accepted) in that bin, of the probability

for each event. The probability of each event is given by the di�erential cross section as

a function of the generated (reconstructed) kinematical variables for that event, weighted

by the matrix element, which consists of the products of the amplitudes of the interfering

waves. That is, the di�erential cross section for Ng events generated in the k-th bin is given

by

d�

dxd

=

1

Ng

NgX
i=1

(const) (phase space)A(x;
) jMj2

=
1

Ng

NgX
i=1

(const) (phase space)A(x;
)

�����X
J

DJ

�����
2

= (const)
NgX
i=1

X
J1;J2

(phase space)A(x;
)DJ1D�J2
= (const)

X
J1;J2

AJ1;J2(x;
) (17)

where

AJ1;J2(x;
) =
NgX
i=1

(phase space)A(x;
)DJ1D�J2 (18)

is the acceptance integral for the amplitudes DJ1; DJ2. The constant term is irrelevant, since
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it will be absorbed in the normalization process. More on the acceptance corrections can be

found in the Appendix.

Comparing to �gs.37-40, we see that the results are identical, within error bars, but one

has to remember that using maximum likelihood gives a better estimation of the parameters

of the �t. The fact that the error bars in the phase are so big, may be due to the use of very

few events in the mass bin (which is not the case, since each mass bin consists of hundreds

of events), or to the fact that one is trying to parametrize a mass region so big, that the

angular distribution changes a lot, and the parametrization is not good enough. In the latter

case, one should use smaller mass bins. This is what we found to be truth, and therefore we

shall use smaller mass bins in the following Sections, when doing the analysis.
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Figure 41: Number of events in the S�0 and D�0 waves, from maximum likelihood, as a
function of the K0

sK
0
s invariant mass (x-axis). Comparing to �g.38, we see that within error

bars both methods give the same amounts for each wave, although maximum likelihood is a
better estimation of the parameters used to describe the intensity distribution.

90



Figure 42: Number of events in the S�0 and D�0 waves, from maximum likelihood, after
acceptance corrections, as a function of the K0

sK
0
s invariant mass (x-axis). Compare to

�g.40.
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4.5 Moments in the K0
sK

0
s System.

In the previous Sections we described the way to analyze the data using an expansion of the

invariant matrix amplitude, M in terms of the reectivity eigenstates. This in turn gives a

quadratic expansion for the cross section in terms of the spherical harmonics. Another way

to perform the analysis is to write the intensity distribution as a linear expansion in terms

of the spherical harmonics

I(
) =
1p
4�

X
`;m

t`m Y
`
m(
)

=
1p
4�

X
`;m�0

cm t`mReY `
m(
) (19)

=
1p
4�

8<
: X
`=0;2;4;:::

t`0 Y
`
0 (
) +

X
`=2;4;:::

t`m 2ReY `
m(
)

9=
;

where, for a system consisting of two K0
s only ` = 0; 2; 4; : : : are allowed, and

cm =

8><
>:

1 m = 0
2 m > 0
0 m < 0

which give the normalization Z 4�

I(
) d
 = t00 (20)

The coeÆcients t`m are called moments, and the method used to �nd the wave amplitudes,

based on this expansion, is called the method of moments.

In practice, the detector has a limited acceptance. The observed event distribution can

be written as

Iacc(
) = A(
) I(
) (21)

Multiplying both sides of this equation with Y `
m
�
(
) and integrating over the solid angle,

one gets Z
d
Y `

m

�
(
) Iacc(
) =

Z
d
Y `

m

�
(
)A(
)

1p
4�

X
`0;m0

t`0m0 Y `0

m0(
)

=
1p
4�

X
`0;m0

�Z
d
Y `

m

�
(
)A(
)Y `0

m0(
)
�
t`0m0 (22)
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The uncorrected moments t0`m are de�ned by

t0`m =
X
`m

A`m;`0m0t`0m0 (23)

They can be directly calculated from the onserved angular distributions, in bins of the K0
sK

0
s

invariant mas, using the following identity

t0`m =
Z
d
 I(
)Y `

m

�
(
) '

NobsX
i=1

Y `
m

�
(
i) (24)

where the sum (integral) is over the Nobs observed events in the mass bin. The acceptance

integrals A`m;`0m0 are de�ned as

A`m;`0m0 =
Z
d
Y `

m

�
(
)A(
)Y `0

m0(
)

They were calculated using Monte Carlo techniques: we generated six million MC events in

the region 1:0 �M(K0
sK

0
s ) � 2:4 GeV=c2, processed them through the whole reconstruction

chain, and �t the results for each moment with a cubic equation

t0`m = P1 + P2MKK + P3M
2
KK + P4M

3
KK

the results can be found in Section B.4.

For the calculation of uncertainties in the (uncorrected) moments, t0`m, one uses the

same technique as described in Section B.3, where the calculation of uncertainties for the

acceptance integrals is explained. The result for the moments error matrix E�� (where

� = f`;mg and � = f`0; m0g) is

E�� =
NobsX
i=1

Y�(
i)Y�(
i)� 1

Nobs

t0�t
0
� (25)

and the uncertainty for the uncorrected moment t0� is

�2(t0�) = E��

The uncorrected moments obtained from the data using the previous description are

shown in �gs.43-44. The moment t000 does not have error bars, since it represents only
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the number of events in the mass bin (�2(t00) = 0). The most prominent distributions in

the uncorrected moments can be seen in the moments t020 and t021. In particular, the odd

moments, t0`m; ` = 1; 3; : : :, should be zero, from parity conservation.

The moments in eq.(19) can be written in terms of the real part of the spherical harmonics.

One can verify that the imaginary part is consistent with zero for a system of two identical

bosons. A plot of the uncorrected moments \t0`m" calculated using the imaginary part of Y`m

in eq.(19), instead of the real part, for the �rst six moments which are not identically zero,

is shown in �g.45. t21 and t22 show some structure in the low mass region, the region with

more background, and the rest of the plots are consistent with zero.

The relevant uncorrected moments, with ` = 0; 2; 4, are plotted in �g.46. One can also

use maximum likelihood to calculate the moments. The results of this are shown in �g.47.

Comparing �g.46 and �g.47 we see that the results are identical. We have also seen that

the results of using maximum likelihood for the amplitudes analysis gives identical results to

the results when doing a �t. In the next Sections we shall only use maximum likelihood to

calculate amplitudes and moments, since this is the best method of estimation of parameters

when the statistics are not very high.
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Figure 43: Uncorrected moments t0`m for ` = 0; : : : ; 4, m = 0; : : : ; `, as a function of the
K0

sK
0
s invariant mass (x-axis).
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Figure 44: Uncorrected moments t0`m for ` = 5; 6, m = 0; : : : ; `, as a function of the K0
sK

0
s

invariant mass (x-axis).
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Figure 45: Uncorrected moments calculated using the imaginary part of the spherical har-
monics, for f`;mg = f2; 1g; f2; 2g; f4; 1g; f4; 2g; f4; 3g; f4; 4g, as a function of the K0

sK
0
s

invariant mass (x-axis).
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Figure 46: Relevant uncorrected moments, with ` = 0; 2; 4, as a function of the K0
sK

0
s

invariant mass.
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Figure 47: Relevant uncorrected moments, with ` = 0; 2; 4, using maximum likelihood, as a
function of the K0

sK
0
s invariant mass.
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4.5.1 Relation to Amplitudes.

The parametrizations of the intensity distribution in terms of amplitudes or in terms of

moments are identical, and should give the same results

d�

dxdy
= (const) (P:S:)

�����X
J

DJ

�����
2

= (const) (P:S:)
1p
4�

X
`;m�0

cm t`m ReY `
m(
) (26)

where (P:S:) is the phase space factor. The way to relate moments and amplitudes is by

using the well known properties of the rotation matrices D`
mn

Z
d
Dj1

�1m1
(�; �; 0)Dj2

�2m2
(�; �; 0)Dj3�

�3m3
(�; �; 0) =

4�

2j3 + 1
(j1�1j2�2kj3�3)(j1m1j2m2kj3m3)

(27)

D`�
m0(�; �; 0) =

s
4�

2`+ 1
Y `
m(�; �) (28)

These relations together give the following form for the moments, in terms of the spherical

harmonics, or in terms of Clebsch-Gordan coeÆcients

t`m =
Z
d
Y `1�

�1
Y `2
�2
Y `�
m =

p
4�

s
(2`1 + 1)(2`+ 1)

2`2 + 1
(`1�1`mk`2�2)(`10`0k`20) (29)

The relations of the moments, up to ` = 4, to the amplitudes, up to ` = 2, are given by

t00 =
���S�0 ���2 + ���D�

0

���2 + ���D�
1

���2 + ���D�
2

���2 + ���D+
1

���2 + ���D+
2

���2
t20 = 2Re

�
S�0 D

�
0

�
+
q

5
49

����D�
1

���2 + ���D+
1

���2��q
20
49

����D�
2

���2 + ���D+
2

���2�
t21 =

p
2Re

�
S�0 D

��
1

�
+
q

10
49
Re
�
D�

0 D
��
1

�
+
q

30
49

�
Re
�
D�

1 D
��
2

�
+Re

�
D+

1 D
+�
2

��
t22 =

p
2Re

�
S�0 D

��
2

�
+
q

15
98

����D�
1

���2 � ���D+
1

���2��q
40
49
Re
�
D�

0 D
��
2

�
t40 = 6

7

���D�
0

���2 � 4
7

����D�
1

���2 + ���D+
1

���2�+ 1
7

����D�
2

���2 + ���D+
2

���2�
t41 =

q
60
49
Re
�
D�

0 D
��
1

�
�
q

5
49

�
Re
�
D�

1 D
��
2

�
+Re

�
D+

1 D
+�
2

��
t42 =

q
30
49
Re
�
D�

0 D
��
2

�
+
q

10
49

����D�
1

���2 � ���D+
1

���2�
t43 =

q
5
7

�
Re
�
D�

1 D
��
2

�
� Re

�
D+

1 D
+�
2

��
t44 =

q
5
14

����D�
2

���2 � ���D+
2

���2�

(30)
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4.6 Background Subtraction Revisited.

In Sect.3.4.2 we presented a method to count the number of background events. The idea

there was to know how many events should be introduced in the analysis as background.

We are performing the analysis in two di�erent ways: 1) using the partial wave amplitudes,

and 2) using the moments. The question now is: Where do we subtract the background?

We shall proceed as we did in Sect.3.4.2, where we compared the shape of the estimated

number of background events, in terms of the K0
sK

0
s invariant mass, to the shape of the

K0
sK

0
s invariant mass for the events dropped using the vetoes in the region of high missing

mass squared. The idea here is to do the amplitudes and moments analysis in a set of the

data that we know is composed of background only, and from the results infere where we

should subtract the number of background events. For this purpose we selected data in the

high missing mass squared region, m2
missing �m2

p � 1:5 GeV=c2, with no other cuts, to have

enough statistics.

For the analysis of the background region, in terms of the amplitudes, we used four waves,

S�0 ; D�0 ; D�1 ; D+
1 ;. Therefore, we used only six parameters, the four squared amplitudes, and

two phases, �(D0�S0) and �(D�
1 �S0), which are the phases of the D�

0 and D�
1 amplitudes

with respect to amplitude S�0 . The results are shown in �g.485. The two top plots are the

squared amplitude
���S�0 ���2 and the sum of the squared amplitudes of the D waves. The three

plots in the middle are the squared amplitudes for each of the D waves, and the plots in the

bottom are the phases of the negative reectivity D waves with respect to the S wave. The

K0
sK

0
s invariant mass was divided in 20 MeV=c2 bins. What these plots tell us, is that the

estimated number of background events should be considered as a non-interfering S0 wave

background, and therefore subtracted only in the amplitude
���S�0 ���2.

Remember that for the data analysis we are trying to minimize the logarithm of the

5When using these four waves there are always two solutions, as will be explained in Sect.4.7. The second
solution in this case gives the same contribution for each D wave, and little S wave, which reminds us that
a at distribution can be described by a S wave alone, or by summing all contributions from non-interfering
D waves, with the same weights.
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likelihood

� lnL = �
NX
i=1

ln I(
) +
Z
I(
)d
 (31)

but now, the N events in the mass bin consists of Nev physically meaningful events, and

Nbk background events, in a non-interfering S wave, and hence the probability I(
) can be

separated as

I(
) = Iev(
) + Ibk(
)

In terms of amplitudes, we can write

I(
) =
���A����2 + ���A+

���2 +Nbk (32)

where A�; A+ represent the invariant amplitudes for negative and positive reectivity, re-

spectively, which do not interfere among themselves. Considering the background as a non-

interfering S wave, we can write

I(
) =
X
��

D�D�
�D�D�

� +
���A+

���2 +Nbk

���S�0 ���2

=
����S�0 ���2 +Nbk

� ���S�0 ���2 +X
��

0
D�D�

�D�D�
� +

���A+
���2 (33)

where the prime in the sum is to indicate that the term with
���S�0 ���2 has been extracted from

it. This form of I(
) must be introduced in eq.(31), to perform the analysis.

If one uses only these four waves for the amplitudes, it is obvious from eq.(30) that there

are seven nonzero moments, but one of them is proportional to another: t42 =
q

4
3
t22. Thus,

there are again six independent parameters, t00; t20; t21; t22; t40, and t41. Since we are

going to subtract the number of background events only in the moment t00, we can write

the intensity in the following way, using � = f`;mg

I(
) =
X
�

t�Y�(
) +Nbk

=
X
�

tev� Y�(
) + tbk00Y00(
) (34)
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Figure 48: Amplitudes for events in the region m2
missing�m2

p � 1:5 GeV=c2, as a function of
the K0

sK
0
s invariant mass (x-axis). These plots tell us that the estimated number of back-

ground events should be considered as a non-interfering S0 wave background, and therefore

subtracted only in the amplitude
���S�0 ���2.
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Figure 49: Moments for events in the region m2
missing �m2

p � 1:5 GeV 2=c4, as a function of
the K0

sK
0
s invariant mass. As we can see, these plots tell us that the estimated number of

background events should be subtracted only in the moment t00.
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The relevant moments, up to ` = 4, after acceptance corrections and background sub-

traction, are shown in �g.50. We can see that moments t43 and t44 are compatible with zero,

and since they are proportional to the helicity m = 2 waves, we assume that only waves with

helicity m = 0; 1 are present in the data.

The acceptance integrals for moments depend only on the particular moment calculated,

that is, there is no interference between di�erent moments. Therefore, it is straight forward

to add the acceptance integrals and background subtraction in the moments analysis. This

is not true for the amplitudes analysis, where waves of the same reectivity do interfere,

and one has to subtract the background in a proper way, so that it does not interfere with

negative reectivity waves.

From here on we shall use background subtraction as well as acceptance corrections when

plotting amplitudes or moments.
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Figure 50: Acceptance corrected moments after background subtraction, as a function of the
K0

sK
0
s invariant mass (x-axis).
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4.7 Amplitude Analysis of a System of two Identical Spinless Par-

ticles.

This Section describes the formalism necessary for exploring partial{wave amplitudes in a

system involving two spinless particles. Here we work in some detail the cases of interest for

our analysis, and refer the reader to the works by S.U.Chung [52, 53], and Sadovsky [54],

where a complete description of the general method can be found. These works were based

on a prervious paper by Barrelet[55].

If a system consists of two identical spinless particles, then only even waves are allowed

due to Bose symmetry. Let `m be the maximum even wave present at a given mass bin, and

let � be the Jackson angle for the two{particle system. Consider, for example, the following

reaction

��p! �0�0n (35)

for production of a dipion system in the forward direction, i.e. approximately along the

beam line. Assume that the cross section for this process is independent of the helicities of

the nucleons. In the Jackson frame, the amplitudes may be written

�U(
) =
X
`m

�V`m
�A`m(
) (36)

where

�A`m(
) =

s
2`+ 1

4�
�D` �

m0(�; �; 0) (37)

are the decay amplitudes. The modi�ed D{functions in the reectivity basis are given by

�D` �
m0(�; �; 0) = C(m)

h
D` �

m0(�; �; 0)� �(�)mD` �
�m0(�; �; 0)

i
(38)

with

C(m) =

8><
>:

1=
p
2 m > 0

1=2 m = 0
0 m < 0

(39)

It is seen that the modi�ed D{functions in the reectivity basis are given by

�D` �
m0(�; �; 0) = 2C(m)d`m0(�) cosm� (40)

+D` �
m0(�; �; 0) = 2iC(m)d`m0(�) sinm�
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The resulting angular distribution is

I(
) =
���+U(
)���2 + ����U(
)���2 (41)

The partial waves �V`m stand for the production amplitudes for the ket states j�`mi , and �
is the reectivity, set equal to the naturality of the exchanged Reggeon in reaction (35).

The angular distribution may be expanded in terms of the moments tLM via

I(
) =
X
LM

tLM

s
2L+ 1

4�
DL �

M0(�; �; 0) (42)

The moments tLM are measurable quantities, since

tLM =

s
2L+ 1

4�

Z
d
 I(
)DL

M0(�; �; 0) (43)

which, by means of the orthogonality properties of the D functions, gives

tLM =
X
`m

`0m0

 
(2`0 + 1)(2L+ 1)

4�(2`+ 1)

!1=2

V`mV
�
`0m0 (`0m0LM j`m)(`00L0j`0) (44)

The normalization integral is

t00 =
Z
d
 I(
) (45)

The symmetry relations for the moments are well known. From the hermiticity of � =

V`mV
�
`0m0 in (44), one gets

t�LM = (�)M tL�M (46)

and, from the parity conservation in the process, one �nds

tLM = (�)M tL�M (47)

These equations show that the t's are real. The angular distribution can be recast into

I(
) =
X
LM

s
2L+ 1

4�
�(M) tLM dLM0(�) cosM� (48)

where

�(M) =

8><
>:

2 M > 0
1 M = 0
0 m < 0

(49)
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Because of the identity of the two{�nal{state particles, the odd `'s are absent [56], and

tLM = 0 if L =odd.

Suppose that `m is the maximum spin present in a given �� mass bin. It can be shown

[53] that the number of independent non{zero t's is

N = 3`m + 1

Now, assume that the z{component m of spin ` can take on the values 0 and 1 only, that is,

the production amplitudes �V should be zero if m > 1. It is convenient to separate out the

� dependence from that of �, as follows:

�U(
) =
1p
4�

h
h0(�) +

p
2h�(�) cos�

i
+U(
) =

1p
4�

hp
2h+(�) sin�

i
(50)

where

h0(�) =
`mX
`=0

p
2`+ 1 �V`0 d

`
00(�)

h�(�) =
`mX
`=1

p
2`+ 1 �V`1 d

`
10(�) (51)

h+(�) =
`mX
`=1

p
2`+ 1 +V`1 d

`
10(�)

which satisfy

h0(��) = +h0(�); and h�(��) = �h�(�) (52)

Eq.(50) says that

I(
) =
1

4�

���h0(�) +p2h�(�) cos����2 + 1

4�

���p2h+(�) sin����2 (53)

or, equivalently, rewrite the angular distribution as

I(
) =
1

4�
[f0(�) + 2f1(�) cos�+ 2f2(�) cos 2�] (54)
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The f functions are experimentally measurable, as they are completely determined given a

set of moments tLM . Indeed, one �nds that

fM(�) =
2`mX
L=0

q
4�(2L+ 1) tLM dLM0(�) (55)

Comparing (53) to (54), one �nds

f0(�) = jh0(�)j2 + jh�(�)j2 + jh+(�)j2

f1(�) =
p
2Re

n
h0(�)h

�
�(�)

o
(56)

f2(�) =
1

2

n
jh0(�)j2 � jh+(�)j2

o

These equations summarize the problem at hand: on the left hand side are the functions

involving the measured moments tLM , and on the right hand side are the the functions

containing the partial waves V`m to be determined.

One may eliminate h+ by combining f0(�) and f2(�), and modify f1(�) to obtain

fa(�) � f0(�) + 2f2(�) = jh0(�)j2 +
���p2h�(�)���2 (57)

fb(�) � 2f1(�) = 2Re
n
h0(�)

p
2h��(�)

o

The form of fa and fb suggest that one can de�ne, from (52),

G�(�) =
1p
2

h
h0(�) +

p
2h�(�)

i
(58)

G�(��) =
1p
2

h
h0(�)�

p
2h�(�)

i

such that

fa(�) = jG�(�)j2 + jG�(��)j2 (59)

fb(�) = jG�(�)j2 � jG�(��)j2

It can be shown [52] that the function

(1 + u2)`mG�(u) (60)
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where

u(�) = tan(�=2) (61)

is a polynomial in u of order 2`m. Moreover, the function

G�(v) =
1

u`m
G�(u) =

1

u`m
(1 + u2)`m

h
h0(u) +

p
2h�(u)

i
(62)

= a`m

`mY
k=1

(v � vk)

is a polynomial in v of order `m, with a`m the coeÆcient of v`m, and there are `m complex

roots vk, the Barrelet zeroes of G�. The new variable v is related to u via

v =
1

u
� u = 2 cot � (63)

Since G�(v) and G�(�v), through (62) and (63), enter as absolute squares in the expression

for the f{functions [see eq.(60)], the complex conjugate of a root vk does not perturb tLM ,

leaving the angular distribution invariant, although it could alter the partial waves. Since

taking the complex conjugate of all the roots does not lead to a new solution, there are in

general 2`m�1 solutions. For each new G�(v), one may calculate

h0(�) =
1p
2
[g(�) + g(��)] (64)

h�(�) =
1

2
[g(�)� g(��)]

to search for a new set of partial waves �V`0, �V`1. Next, the third equation of (57) is used

to calculate

jh+(�)j2 = jh�(�)j2 � 2f2(�) (65)

Note that the allowed partial waves, �V`0 and �V`1, must satisfy the condition that the right

hand side of this equation remain non{negative.

The ambiguity among the partial waves +V`1 can be treated by examining the function

G+(v) =
1

u`m
G+(u) =

1

u`m
(1 + u2)`m h+(u) (66)

= c+v
`m=2�1Y
k=1

(v2 � rk)
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where c+ is the coeÆcient of v`m�1 and comes with `m=2� 1 complex roots rk. This means

that there exists a total of 2`m=2�2 ambiguous solutions involving +V`1, if `m � 4. Combining

the two ambiguities, one concludes that a system containing partial waves for `m � 4 has a

total of N e
a = 2`m�1 � 2`m=2�2 ambiguous solutions.

4.8 An Example with S{ and D{Waves.

Consider the case of two identical spinless particles for which `m = 2. There are 5 parameters

involving the partial waves with unnatural{parity exchange, i.e. S0 (real), D0 (complex) and

D� (complex). There exists only one parameter, D+ (real), for the partial wave produced

by natural{parity exchange. So, one sees that a total of 6 parameters are required in this

case.

The unnormalized moments are expressed in terms of the partial waves, as follows:

t00 = S2
0 +D2

0 +D2
� +D2

+

t20 = S0D0 �
s
20

49
D2

0 +

s
5

49

�
D2
� +D2

+

�

t21 =
1p
2
S0D� +

s
5

98
D0D�

t22 =

s
15

98

�
D2
� �D2

+

�
(67)

t40 =
6

7
D2

0 �
4

7

�
D2
� +D2

+

�

t41 =

s
15

49
D0D�

t42 =

s
10

49

�
D2
� �D2

+

�
(68)

where A2 stands for jAj2 and AB for 2RefAB�g. Note that the moments with M = 1

have contributions from the partial waves with unnatural{parity exchange only. Not all 7

moments are independent; one �nds, in fact,

t42 =

s
4

3
t22 (69)
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Therefore, there are 6 independent moments, corresponding to 6 partial{wave parameters to

be determined in the problem.

The ambiguities among the partial waves with unnatural parity exchange are determined

by the complex roots of the Barrelet function

G�(v) = S0

�
1

u
+ u

�2
+
p
5D0(v

2 � 2)�
p
60D�v (70)

= a2v
2 � a1 + a0

where

a2 = S0 +
p
5D0

a1 = 2
p
15D� (71)

a0 = 4S0 � 2
p
5D0

Solving for S0 and D0 one �nds

6S0 = a0 + 2a2 (72)

6
p
5D0 = �a0 + 4a2

The Barrelet zeroes are

fv1; v2g =
a1 �

q
a21 � 4a0a2

2a2
(73)

for

G�(v) = a2(v � v1)(v � v2) (74)

such that

a1 = a2(v1 + v2) (75)

a0 = a2(v1v2)

Finally, the partial waves can be expressed in terms of the Barrelet zeroes

6S0 = a2(2 + v1v2)

6
p
5D0 = a2(4� v1v2) (76)

2
p
15D� = a2(v1 + v2)

113



There exist two ambiguous solutions, corresponding to the sets v1; v2 and v1; v
�
2.

The one wave with natural{parity exchange, D+, can be set real, and can be determined

from any one of the moments t20, t22, t40, or t42. There are no ambiguities involving D+. For

instance,

jD+j2 = jD�j2 � 14p
30
t22 (77)

The two solutions found can be seen in �gs.51-52. The �rst solution has one Barrelet

zero with the imaginary part positive, and the other Barrelet zero with the imaginary part

negative, for all mass bins. The second solution has both Barrelet zeroes with imaginary

parts positive. In the �gures, the upper left plot is the squared of the S0 amplitude, and the

upper center is the sum of the squares of the D amplitudes, which are plotted separately in

the three central plots. The two lower plots represent the phases of the negative{reectivity

D amplitudes with respect to the S0 amplitude. The di�erence, obviously, is that one

solution gives most of the intensity in an S0-wave, and a little contribution of D-wave. This

is reversed in the second solution.
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Figure 51: Amplitudes �rst solution, using four waves, as a function of the K0
sK

0
s invariant

mass (x-axis). Most of the events are in the S wave, where there is a clear peak around 1530
MeV=c2, and the region of the fJ(1710) is also in this wave. In the D wave one can see a
peak at about 1560 MeV=c2.
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Figure 52: Amplitudes second solution using four waves, as a function of the K0
sK

0
s invariant

mass. Most of the events are in D wave, and there is little S wave, each D wave component
having about the same distribution.
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5 Discussion and Conclusions.

5.1 Ambiguities in the Solutions.

As can be seen in �gs.51{52, if the two solutions found were well separated from bin to

bin, and one could give a physical reason to discard one of them, then the solution would

be clearly established. But looking carefully at the solutions found, one can see that they

give the same results in the mass bin from 1560 to 1580 MeV=c2, where one of the Barrelet

zeroes becomes real. Therefore, there is a bifurcation point at this bin, and from the two

initial solutions we end up with a set of four solutions. For example, the solution which at

threshold was mainly S wave, after 1580MeV=c2 could follow two di�erent paths, one which

gives mostly S-wave, and another which gives mostly D-wave. The two combinations of the

solutions in �gs.51{52 taking one of them from 1000 to 1560 MeV=c2, and the other one

from 1580 to 2000 MeV=c2, can be seen in �gs.53{54.

From this set of four solutions we can get rid of two of them. The clue to this is re-

membering what has been seen in �+�� events (see �g.3). There, a rapid fall of events at

around 1 GeV=c2, and a rapid raise in the K0
sK

0
s spectrum, are both related to the existence

of the f0(980). Therefore, what one expects in the K0
sK

0
s system, is to see a rapid raise

at threshold, with predominancy of S-wave. Then, solutions two and four, which give very

little S wave at threshold can be discarded, owing to the existence of the f0(980).

We get again two solutions, but this time both having S wave predominancy at threshold.

Both solutions have a clear peak around 1530 MeV=c2 in the S-wave, and some structure

around 1300MeV=c2 inD-wave. Solution number one, in �g.51, has a clear peak around 1560

MeV=c2 in D-wave, and S wave dominance in the fJ(1710) region. Solution number three,

in �g.53, has almost no S-wave after 1600MeV=c2, where the three D-waves considered seem

to have about the same intensity distribution. This solution favors D-wave for fJ(1710).
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Figure 53: The bifurcation point at the bin 1560-1580 MeV=c2 makes it possible to have
two more solutions. This plot corresponds to the third solution. The x-axis is the K0

sK
0
s

invariant mass.
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Figure 54: The fourth combination, resulting from the bifurcation point at 1560-1580
MeV=c2.
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There is still one extra point which we have not taken into account yet. When we used

only two waves, S and D0, to describe the data, we found S-wave dominance for all the

mass region considered, from 1 to 2 GeV=c2 (see �gs.40-42). This fact is enough to support

the statement that solution number one, in �g.51, is the correct solution in the amplitudes

analysis, when using four waves.

5.2 Comparison of the Results from Moments and Amplitudes

Analysis.

We claimed in Sect.4.5.1 that moments and amplitudes give the same results, but we have

not shown this yet. From the results for the moments in a given bin of mass (six parameters

when using four waves), we can construct the corresponding set of amplitudes and waves

in that bin (six parameters again), and vice versa. However, the error bars from one set of

parameters can not be directly used to determine the error bars in the other set of parameters.

This is due to the non-linear relation between moments and amplitudes, where the existence

of trigonometric functions makes it impossible to propagate the errors from one set to the

other.

Let us consider the case in which the amplitudes and phases of the four waves are the

parameters that MINUIT has found when using the maximum likelihood method (the same

considerations can be applied to the moments). What one does in this case is to generate

Monte Carlo events with the amplitudes distributed according to the correlations found

by MINUIT. If there were only two parameters, p1 and p2, with correlated gaussian{like

distributions, the likelihood would have the form

L = (const)� e�
1

2(ap21+2bp1p2+cp22) (78)

and the logarithm of the likelihood would be

lnL = ln(const)� 1

2

�
ap21 + 2bp1p2 + cp22

�
(79)
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The matrix of second derivatives of lnL, in this case, is given by

�
 
@2 lnL
@p1@p2

!
=

 
a b
b c

!
�M (80)

In general, the covariance matrix is de�ned as the inverse of the matrix of second derivatives

of the logarithm of the likelihood C � M�1. Then, eq.(79) can be written as

lnL = ln(const)� 1

2
P T
c C�1Pc (81)

where Pc is the matrix of the correlated parameters. What one knows how to do is to generate

uncorrelated parameters. Therefore, instead of using the matrix of correlated parameters,

we change to a new basis of uncorrelated parameters, Pc = UPu, where Pu is the matrix of

uncorrelated parameters, and U is a n � n unitary matrix (UT = U�1), which diagonalizes

the covariance matrix

U�1C�1U =

0
BB@
��21 0 � � �
0 ��22
...

. . .

1
CCA (82)

or, equivalently

U�1CU =

0
BB@
�21 0 � � �
0 �22
...

. . .

1
CCA (83)

Thus, diagonalizing C gives both the errors �2n, and the uncorrelated parameters, Pu.

The values for the amplitudes calculated by MINUIT are used to obtain the central values

for the moments, and the Monte Carlo events generated according to the distributions given

by the covariance matrix are used to calculate the error bars above and below those central

values.

The six independent moments obtained from the maximum likelihood analysis are plotted

in �g.55, together with t42 =
q

4
3
t22. The moments obtained from the amplitudes, with the

error bars calculated as explained above, are shown in �g.56. We can see that both plots are

identical. The same method was applied to obtain the amplitudes from the moments. The

results are shown in �gs.57-58. Again, we can see that these plots are identical to those of

�gs.51-52.
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Figure 55: Non-zero moments when using four waves, as a function of the K0
sK

0
s invariant

mass. These were obtained using the expansion of the intensity distribution directly in terms
of moments.
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Figure 56: Moments from the amplitudes, using four waves, as a function of the K0
sK

0
s

invariant mass. In this case, we used the MC events obtained using the correlations between
amplitudes, as given by MINUIT, to calculate the moments.
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Figure 57: Amplitudes �rst solution, as a function of the K0
sK

0
s invariant mass, from the MC

events obtained using the moments correlations, as given by MINUIT. Compare to �g.51.
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Figure 58: Amplitudes second solution, from moments, as a function of the K0
sK

0
s invariant

mass. Compare to �g.52.
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5.3 Conclusions

We have performed a partial wave analysis on the centrally produced K0
sK

0
s system at

800 GeV=c, using two methods: 1) directly calculating the amplitudes, and 2) calculating

the amplitudes using the method of moments. In both cases we used the CERN program

MINUIT, and maximum likelihood techniques, to perform the analysis. Both methods gave

the same results.

We used four waves, S0; D0; D� and D+, in the analysis, where D� � D�1 , based on the

assumption that the moments t43; t44 were consistent with zero. as can be seen in �g.46, and

on the relations between amplitudes and moments, depicted in eq.(30). This equation states

that if t43 = t44 = 0, then one can assume that D�
2 = D+

2 = 0, leaving m = 0; 1 only. With

these four waves, we found two di�erent solutions for the amplitudes.

At 1560-1580 MeV=c2, the two solutions are identical. At this bin, thus, the solutions

bifurcate, leading to a total of four possible combinations of solutions. Of these four solutions,

two of them have a large D wave component at threshold, which contradicts the well known

fact that, at threshold, the intensity distribution is dominated by the f0(980), which is S
wave. From the other two solutions, we favor the solution depicted in �g.51, owing to the

fact that when using only two waves, there is S-wave predominancy, as can be seen in �g.40.

This solution has the following characteristics:

1. The intensity distribution from 1 to 2 GeV=c2 in the K0
sK

0
s invariant mass is predom-

inantly S{wave.

2. There is some D-wave structure at 1300 GeV=c2.

3. There is a clear peak in S-wave at about 1530 MeV=c2, which can be related to the

glueball candidate f0(1520).

4. A peak in D-wave is also seen at about 1560 MeV=c2.
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5. The fJ(1710) region, the other candidate for the lightest scalar glueball, is essentially

composed of S-wave, contrary to what was observed by experiment WA76.

It is important to notice that this is the �rst experiment to report the observation of the

f0(1520) in central production.

Still, we can not de�nitively rule out the possibility that the solution depicted in �g.53 is

the correct one. This solution gives also an S-wave peak at around 1530MeV=c2, but favors

unpolarized D wave in the region of the fJ(1710).
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6 Appendix

A Use of the Veto Box and Veto Collar for Background

Analysis

In Section 3.4 we made a description of the use of one of the vetoes in the veto box, to cut

background events, and the relevant features of the procedure can be seen in �g.19. In this

Section we show the plots for each one of the vetoes in the veto box and the veto collar.

Figure 59: (a) � distribution and (b) TDC vs.ADC when veto #1 in the veto box is on. (c)
pm pointing to cell, (d) not pointing. The events with hits above the arrows were cut.
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Figure 60: (a) � distribution and (b) TDC vs.ADC when veto #2 in the veto box is on. (c)
pm pointing to cell, (d) not pointing. The events with hits above the arrows were cut.
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Figure 61: (a) � distribution and (b) TDC vs.ADC when veto #3 in the veto box is on. (c)
pm pointing to cell, (d) not pointing. The events with hits above the arrows were cut.
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Figure 62: (a) � distribution and (b) TDC vs.ADC when veto #4 in the veto box is on. (c)
pm pointing to cell, (d) not pointing. The events with hits above the arrows were cut.
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Figure 63: (a) � distribution and (b) TDC vs.ADC when veto #5 in the veto box is on. (c)
pm pointing to cell, (d) not pointing. The events with hits above the arrows were cut.
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Figure 64: (a) � distribution and (b) TDC vs.ADC when veto #6 in the veto box is on. (c)
pm pointing to cell, (d) not pointing. The events with hits above the arrows were cut.
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Figure 65: (a) � distribution and (b) TDC vs.ADC when veto #7 in the veto box is on. (c)
pm pointing to cell, (d) not pointing. The events with hits above the arrows were cut.
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Figure 66: (a) � distribution and (b) TDC vs.ADC when veto #8 in the veto box is on. (c)
pm pointing to cell, (d) not pointing. The events with hits above the arrows were cut.
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Figure 67: (a) � distribution and (b) TDC vs.ADC when veto #9 in the veto box is on. (c)
pm pointing to cell, (d) not pointing. The events with hits above the arrows were cut.
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Figure 68: (a) � distribution and (b) TDC vs.ADC when veto #10 in the veto box is on.
(c) pm pointing to cell, (d) not pointing. The events with hits above the arrows were cut.
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Figure 69: (a) � distribution and (b) TDC vs.ADC when veto #11 in the veto box is on.
(c) pm pointing to cell, (d) not pointing. The events with hits above the arrows were cut.
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Figure 70: (a) � distribution and (b) TDC vs.ADC when veto #12 in the veto box is on.
(c) pm pointing to cell, (d) not pointing. The events with hits above the arrows were cut.
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Figure 71: (a) � distribution and (b) TDC vs.ADC when veto #1 in the veto collar is on.
(c) pm pointing to cell, (d) not pointing. The events with hits above the arrows were cut.
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Figure 72: (a) � distribution and (b) TDC vs.ADC when veto #2 in the veto collar is on.
(c) pm pointing to cell, (d) not pointing. The events with hits above the arrows were cut.
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Figure 73: (a) � distribution and (b) TDC vs.ADC when veto #3 in the veto collar is on.
(c) pm pointing to cell, (d) not pointing. The events with hits above the arrows were cut.
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Figure 74: (a) � distribution and (b) TDC vs.ADC when veto #4 in the veto collar is on.
(c) pm pointing to cell, (d) not pointing. The events with hits above the arrows were cut.
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B Acceptance Corrections Using Monte Carlo Events

B.1 Angular Distributions Acceptance.

In Section 4 we presented the acceptance corrected angular distributions in bins of 60

MeV=c2. In order to do these acceptance corrections6, we generated 30000 Monte Carlo

events per bin, run these events through the whole reconstruction chain, and calculated the

acceptance of the K0
sK

0
s invariant mass, K

0
s polar angle � in the X rest frame, K0

s azimuthal

angle �, and the �+ polar angle in the K0
s rest frame �. These are few events for doing accep-

tance corrections, but the intention is to get an idea of how much the acceptance corrections

change the amplitudes resolution. As we can see in Section 4, the changes in the amplitudes

solution is minor, due to the high acceptance of our spectrometer. This acceptance in terms

of the K0
sK

0
s invariant mass is shown in �g.75, for the Monte Carlo events used to calculate

the acceptance corrections for the angular distributions.

Figure 75: Acceptance as a function of the K0
sK

0
s invariant mass.

6For the acceptance integrals, 6 million Monte Carlo events were used for 1:0 �M(K0

s
K0

s
) � 2:4GeV=c2.
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We used the K0
s angular distributions in the X rest frame, of the Monte Carlo events,

to calculate the acceptance in bins of the K0
sK

0
s invariant mass, and in bins of cos � and �.

We can see in �g.76 that the acceptance for cos � depends very much on the K0
sK

0
s invariant

mass, being at for low mass, and becoming less at for higher masses, bending towards

the edges cos � = �1. This means that the acceptance corrections do not a�ect the cos �

distributions for low masses, but make them bend upwards for cos � = �1 for high masses.

For the azimuthal angle �, we can see in �g.77 that the distributions are at for all bins of

the K0
sK

0
s invariant mass. Therefore, the acceptance corrections in this angle are small. The

same is truth for the �+ polar angle � in the K0
s rest frame.
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Figure 76: cos � acceptance as a function of the K0
sK

0
s invariant mass
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Figure 76 continued.
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Figure 77: � acceptance as a function of the K0
sK

0
s invariant mass
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Figure 77 continued.
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B.2 Di�erential Cross Section.

The production process is a function of the variables x, and the decay process is a function

of the variables 
. Independently of the choice of the variables x and 
, the di�erential cross

section is given by

d8�� =
(2�)4

4p0
p
s
jM�j2 (2�)3 d8�4(P ; pm; p2; p3; pf) (84)

where the index � labels the helicities of the missing and fast protons, M is the Lorentz

invariant scattering matrix, p0 is the momentum of the protons in the pp center of momentum

system (CMS), and
p
s is the total CMS energy.

Following the Review of Particle Properties [3], we write the four{particle Lorentz invari-

ant phase space as

d�4(P ; pmp2p3pf) = Æ4(P �
4X

i=1

pi)
4Y

i=1

d4pi
(2�)3

Æ(p2i �m2
i ) =

= Æ4(P � (pm + q + pf ))
Y
m;f

d4pi
(2�)3

Æ(p2i �m2
i ) Æ(q

2 �M2
X) dM

2
X

� d4q Æ(q � p2 � p3)
Y
2;3

d4pi
(2�)3

Æ(p2i �m2
i ) =

= d�3(P ; pmqpf) d�2(q; p2p3) (2�)
3 dM2

X (85)

where we have introduced the equalities

q = p2 + p3 ; q2 =M2
X

using the deltas

Æ4(q � p2 � p3) d
4q ; Æ(q2 �M2

X) dM
2
X

q is the four momentum of the X system, and p2; p3 are the four momenta of the two

K0
s . Since both phase space terms are Lorentz invariant, we can choose the reference

frame in which we are going to calculate them. The appropriate frames are the CMS,

for d�3(P ; pmqpf), and the X rest frame for d�2(q; p2p3).
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B.2.1 Calculation of the Production Phase Space.

We begin by writing the production phase space as

d�3 = Æ4(P � (pm + q + pf))
Y

m;X;f

d3~pi
(2�)32Ei

then, perform the integrals over the variables that are not needed. So, we �rst integrate over

the transverse momentum of the X system, qx; qy, and over the longitudinal momentum of

the missing proton. That leaves us with only one delta

d�3 = Æ(E � (Em + Eq + Ef ))
dpx;m dpy;m dqz dpx;f dpy;f dpz;f

8(2�)9EmEXEf

Here we use the fact that, in the CMS,

Æ
�
E �

q
m2

p + p2t;m + (�pz;X � pz;f)2 � EX �
q
m2

p + p2t;f + p2z;f
�
dpz;f =

=
EmEf

j�pz;mEf + pz;fEmj
The result of integrating the deltas is, then,

d�3 =
dpx;m dpy;m dqz dpx;f dpy;f
8(2�)9EX jpz;fEm � pz;mEf j

and, using the change of variables dx dy = � d� d� = 1
2
d�2 d�, and that, in the CMS,

dqz = 2
p
s dxF , we get

d�3(q; p2p3) =

p
s

24(2�)9
dp2t;m d�m dp2t;f d�f dxF

EX jEmpz;f � Efpz;mj (86)

B.2.2 Calculation of the Decay Phase Space.

The Lorentz invariant phase space for the decay is

d�2(q; p2p3) = Æ4(q � p2 � p3)
d3p2 d

3p3
4(2�)6E2E3

To perform the calculation, integrate over ~p3, that leaves us with

d3 ~p2 = p22 dp2 d(cos �) d�
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thus

d�2(q; p2p3) =
Æ(EX � E2 � E3) p

2
2 dp2 d(cos �) d�

4(2�)6E2E3

Now, m2 = m3 = mK0
s
, and in the X rest frame, ~p2 = �~p3, so

Æ(EX � E2 � E3) dp2 = Æ(EX � 2
q
m2

K0
s
+ p22) dp2 =

=

����� E2

2p2

����� =
MX

4
q
(MX=2)2 �m2

K0
s

since in the X rest frame MX = 2E2; p
2
2 = (MX=2)

2�m2
K0
s
. Thus, the decay phase space is

d�2(q; p2p3) =

q
(MX=2)2 �m2

K0
s

4(2�)6 MX

d(cos �) d� (87)

Finally, the complete phase space for both production and decay is given by

d�4(P ; pmp2p3pf ) =

p
s
q
(MX=2)2 �m2

K0
s

25(2�)12 EX jEmpz;f � Efpz;mj d
6x d2


and the di�erential cross section for process (3{4) is given by

d8�� =
1

27(2�)8p0
jM�j2

q
(MX=2)2 �m2

K0
s

EX jEmpz;f � Efpz;mj d
6x d2
 (88)

The �rst term in this equation is an irrelevant constant, since it will be absorbed in the

normalization process.

B.3 Calculation of Uncertaintiess for Acceptance Integrals.

When calculating the acceptance integrals for the waves or moments analysis, one gets values

for these integrals that depend on the number of Monte Carlo events and the binning used

to calculate them. The impossibility of having an in�nite number of events in each bin

causes that one gets a distribution of values that do not have a smooth variation in the

range of interest of the parameter on which one is doing the analysis. In the present work,

the parameter is 
i, the angular distribution for events in the i{th bin of the invariant mass

of the K0
sK

0
s system. One way to overcome this lack of smoothness is to �t a function
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f(x) to the acceptance integral for each wave or moment, and consider this function as \the

acceptance integral" for that wave or moment. This procedure also helps to avoid calculating

the acceptance integrals each time one has to change the width or position of the bins. In

order to perform this �t, one needs to calculate not only the waves or moments, but also

the errors in this calculations. This Section contains the calculations of these errors for a

general function f(
) of the angular distribution 
 of the accepted events.

Suppose we generated Ng Monte Carlo events, with a at distribution in variables 
i.

After passing each event through the whole reconstruction chain of programs that simulate

the detector, one ends up with Na accepted events, and would like to �nd the mean Q of the

function f(
) of the angular distribution 
 of the accepted events

Q =
1

Ng

NaX
i=1

f 0(
i) =
1

Ng

NgX
i=1

f(
i) (89)

where we used the fact that, for the Monte Carlo events, the acceptance factor has values 0

and 1 only, and that the phase{space factor is constant for the bin being considered (thus, it

is assumed that this bin is very small, but contains an in�nite number of events), to de�ne

f(
i) � f 0(
i) � (Acceptance) � (Phase Space) (90)

which includes the acceptance and phase space factors. Note that the distribution function

f is evaluated on the generated variables 
i.

To calculate the error made when calculating Q, one has to repeat the \experiment"

(Monte Carlo generation of events) a very big (in�nite!) Nr number of times, calculate Qr

for each experiment, and from them calculate the mean ~QNr , and standard deviation �2Nr8>>>>><
>>>>>:


1
1 
1

2 
1
3 � � � 
1

Ng


2
1 
2

2 
2
3 � � � 
2

Ng

...

Nr
1 
Nr

2 
Nr
3 � � � 
Nr

Ng

9>>>>>=
>>>>>;

!
Nr!1

experiments

8>>>>>><
>>>>>>:

1
Ng

PNg

i=1 f(

1
i )

1
Ng

PNg

i=1 f(

2
i )

...
1
Ng

PNg

i=1 f(

Nr
i )

9>>>>>>=
>>>>>>;

(91)

Hence, ~QNr and �
2
Nr

are

~QNr =
1

Nr

NrX
r=1

Qr ; �2Nr
=

1

Nr

NrX
r=1

�
Qr � ~QNr

�2
(92)
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The next step is to look for a simpler form for �2Nr
. We have that

�2Nr
=

1

Nr

NrX
r=1

8<
:
0
@ 1

Ng

NgX
i=1

f(
r
i )� ~QNr

1
A
0
@ 1

Ng

NgX
j=1

f(
r
j)� ~QNr

1
A
9=
;

=
1

Nr

NrX
r=1

8<
: 1

N2
g

NgX
i;j

f(
r
i )f(


r
j)� 2 ~QNr

1

Ng

NgX
`=1

f(
r
`) + ~Q2

Nr

9=
; (93)

In the limit Ng !1, we can write this as

�2Nr
=

1

Nr

NrX
r=1

8<
: 1

N2
g

NgX
i;j

f(
r
i )f(


r
j)

9=
;� ~Q2

Nr
(94)

Since the variables 
i were randomly generated, there is no correlation among them. Now,

the term in brackets in the last expression of eq.(94), contains the product f(
r
i )f(


r
j), which

is composed of two terms: one, f(
r
i )f(


r
i ), in which the terms are totally correlated, and

another one, f(
r
i )f(


r
j); i 6= j, in which the terms are totally uncorrelated. Thus, each

term should be analyzed separately.

The �rst term in (94), totally correlated, is

�2tc =
1

Nr

NrX
r=1

8<
: 1

N2
g

NgX
i=1

f 2(
r
i )

9=
; =

1

N2
g

NgX
i=1

(
1

Nr

NrX
r=1

f 2(
r
i )

)
(95)

Moreover, for each i, the sum over variable r is on an in�nite set Nr, which, therefore,consists

of all possible values of 
. Then, all terms in the sum over i are equivalent, so that

�2tc =
1

Ng

(
1

Nr

NrX
r=1

f 2(
r)

)
(96)

The totally uncorrelated term is

�2tu =
1

Nr

NrX
r=1

8<
: 1

N2
g

NgX
i6=j

f(
r
i )f(


r
j)

9=
; =

1

N2
g

NgX
i 6=j

(
1

Nr

NrX
r=1

f(
r
i )f(


r
j)

)
(97)
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The expression in brackets in (97), for each r, consists of a very large number of terms

n subsets

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

[
i1 ]


j1


j2
...


m1

9>>>>=
>>>>;

m terms

[
i2 ]


j1


j2
...


m2

9>>>>=
>>>>;

m terms

...
...

[
n]


j1


j2
...


mn

9>>>>=
>>>>;

m terms

; n�m = Nr (98)

One can divide this set of terms in n subsets (n very large), each one having a de�nite

value for 
r
i for �xed i, and hence labeled [
i]. Each one of this subsets contains m terms

(n � m = Nr), and, m being very large, there are all possible values of 
j in each subset.

Using this considerations, it is possible to evaluate �2tu in the following way

�2tu =
1

N2
g

NgX
i6=j

(
1

Nr

nX
r0=1

 
mX

r00=1

f(
r0

i )f(

r00

j )

!)
(99)

=
1

N2
g

NgX
i6=j

(
n �m
Nr

 
1

n

nX
r0=1

f(
r0

i )

! 
1

m

mX
r00=1

f(
r00

j )

!)

=
1

N2
g

NgX
i6=j

( 
1

n

nX
r0=1

f(
r0

i )

! 
1

m

mX
r00=1

f(
r00

j )

!)

Using (96) and (99), �2Nr
can be written as

�2Nr
=

1

Ng

(
1

Nr

NrX
r=1

f 2(
r)

)
+

1

N2
g

NgX
i6=j

( 
1

n

nX
r0=1

f(
r0

i )

! 
1

m

mX
r00=1

f(
r00

j )

!)
� ~Q2

Nr
(100)

This expression is easier to interpret than (92), owing to the following considerations. First,

the since we are doing the \experiment" an in�nite number of times, Nr !1, we can take

n!1 and m!1. In these limits, we have that

1

n

nX
r0=1

f(
r0

i ) ! ~QNr
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1

m

mX
r"=1

f(
r"
j ) ! ~QNr

Second, since it is impossible to repeat the experiment an in�nite number of times, what one

does is to assume that the mean ~QNg is what one got when doing the experiment

~QNg =
1

Ng

NgX
i=1

f(
i) (101)

Then, one can approximate the value of �2Ng
by

�2Ng
=

1

Ng

8<
: 1

Ng

NgX
i=1

f 2(
i)

9=
;+

1

N2
g

NgX
i 6=j

8<
:
0
@ 1

Ng

NgX
r=1

f(
r)

1
A
0
@ 1

Ng

NgX
s=1

f(
s)

1
A
9=
;� ~Q2

Ng

=
1

N2
g

NgX
i=1

f 2(
i) +
1

N2
g

NgX
i6=j

n
~Q2
Ng

o
� ~Q2

Ng

=
1

N2
g

NgX
i=1

f 2(
i) +
1

N2
g

�
N2

g �Ng

�
~Q2
Ng
� ~Q2

Ng

=
1

N2
g

NgX
i=1

f 2(
i)� 1

Ng

~Q2
Ng

Finally

�2Ng
=

1

N2
g

NgX
i=1

f 2(
i)� 1

N3
g

0
@NgX
i=1

f(
i)

1
A2

(102)

(101) and (102) are the quantities one needs to perform �ts on any function f(
) of the

(angular) variables 
.
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B.4 Acceptance Integrals for Moments and Amplitudes.

Figure 78: Moments acceptance integrals.
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Figure 79: Amplitudes acceptance integrals for generated events. The upper triangle corre-
sponds to negative naturality waves, and the lower triangle corresponds to positive naturality
waves.
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Figure 80: Amplitudes acceptance integrals for accepted events. The upper triangle corre-
sponds to negative naturality waves, and the lower triangle corresponds to positive naturality
waves.
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