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ABSTRACT

Coherent Nonlinear Longitudinal Phenomena in Unbunched Synchrotron Beams

Linda Klamp Spentzouris

Coherent nonlinear longitudinal phenomena are studied in proton and antiproton

synchrotron beams. Theoretical development done in the �eld of plasma physics

for resonant wave-wave coupling is applied to the case of a particle beam. Results

are given from experiments done to investigate the nature of the weakly nonlinear

three-wave coupling processes known as parametric coupling and echoes. Storage

ring impedances are shown to amplify the parametric coupling process, underlining

the possibility that machine impedances might be extracted from coupling events

instigated by external excitation. Echo amplitudes are demonstrated to be sensitive

to di�usion processes, such as intrabeam scattering, which degrade a beam. The

result of a fast di�usion rate measurement using echo amplitudes is presented. In

addition to the wave-wave interactions, observations of moderately nonlinear wave-

particle interactions are also included. The manifestations of these interactions that

are documented include nonlinear Landau damping, higher harmonic generation, and

signs of the possible formation of solitons.
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Chapter 1

Introduction

1.1 Subject of research

The work presented here is an investigation of coherent nonlinear longitudinal dy-

namics in unbunched particle beams. In contrast to forces which may be experienced

by a single particle, coherent wave motion in a beam is sensitive to the intensity.

As particle density has been continuously increasing in synchrotrons in recent years,

nonlinear wave motion is playing more of a role than ever in beam dynamics, and

the consequences are often intrusive. It was just such an intrusion which not only

triggered, but controlled the subsequent evolution of the studies presented in this

work. In 1990, Colestock and Jackson undertook a standard measurement of linear

stability in the Fermilab Tevatron proton synchrotron. The result could not be inter-

preted with the linear theory, as a weak nonlinearity manifested itself in the data. A

study of this weak nonlinearity was undertaken, but it was to be just the �rst step

in the exploration of nonlinear beam dynamics which followed. The results of one

1



2

investigation would point to the next, high intensity particle beams proving to be a

workshop rich in nonlinear e�ects.

As technology improves and beam brightness increases, stability becomes more

di�cult to achieve, with nonlinear coherent processes taking a more dominant role in

the evolution of particle motion. There has been considerable e�ort in other areas of

physics to develop a theoretical framework for nonlinear wave dynamics. The work

that has been done in plasma physics is particularly suited for adaption to particle

beams, since a plasma is also a system of particles supporting coherent wave motion.

There has so far been little systematic e�ort to apply the fruit of decades of labor in

plasma physics to the case of a particle beam. The work presented here is an attempt

to discuss nonlinear e�ects in a beam in the language of plasma physics, in the hope

that such an application will prove useful in the years to come.

Many physical systems have been described in terms of the degree of nonlinearity

of the dynamical processes governing their evolution. There is an available theoreti-

cal hierarchy spanning from the linear to the chaotic regimes. Between linearity and

strong turbulence, there is a range of weak to moderately nonlinear processes. These

have been categorized for plasmas by authors such as Sagdeev and Galeev [2]. In

particular, in order of increasing nonlinearity, there are a nonlinear wave-wave in-

teraction, where linearly-independent modes can couple; a quasilinear wave-particle

interaction, in which 
uctuation-induced di�usion can take place; and a nonlinear

wave-particle interaction, where trapping or soliton-like behavior can occur. The

main subject of this work is wave-wave coupling, the weakest of these nonlinearities,

although some attention is devoted to the nonlinear wave-particle interaction as well.

These will be described for the system of a stored particle beam in more detail below.
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Although most of the experimental results presented are phenomenological in na-

ture, already there are hints of potential practical uses for data taken under nonlinear

beam conditions. A fast measurement of the di�usion rate in a stored beam using a

technique based on weakly nonlinear dynamics was carried out, and will be discussed.

The extraction of machine impedance from nonlinear data is also examined qualita-

tively. These are just the beginnings of a systematic investigation of new measurement

techniques which might be developed.

1.2 De�nition of terms

Particle beams support wave motion in all three coordinates. Transverse motion is

de�ned to be in the plane perpendicular to the direction of beam motion. All of

the discussion in this work pertains to the longitudinal coordinate, de�ned to be

along the direction of beam motion. The beams used for these studies were at least

initially spatially uniform in the longitudinal direction. In accelerator language, the

unperturbed beams were unbunched. The longitudinal position of a particle in an

unbunched circulating beam is given as the angular position (or phase) of the particle

around the storage ring. The other degree of freedom in the longitudinal phase space

is energy; speci�cally, the deviation from the design energy of the storage ring. The

particle energy distribution in these studies approximated a Gaussian, the central

energy being the design energy of the storage ring. The two phase space coordinates

are to lowest order linearly related, an energy error causing an error in the phase of

the particle. In other words, the relative position of two particles is dependent on

their relative energies. Oscillations in the longitudinal plane are 
uctuations of the

particle density and particle energies.
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Much of beam behavior in a storage ring may be described in terms of single par-

ticle dynamics, where the motion of the individual particles is governed by externally

provided electromagnetic �elds. The nonlinear motion of individual particles has long

been an important factor in the design of particle accelerators. By the early 1950's,

people such as Courant, Moser and Snyder were concerned with the impact of nonlin-

ear magnetic �eld components on transverse particle motion in alternating-gradient

synchrotrons [1]. Ultimately, not only has transverse nonlinear single particle motion

been controlled, it has also been exploited, such as in the utilization of nonlinear

resonances for the slow resonant extraction process.

While motion arising from externally applied �elds may be examined on a single

particle basis, motion due to electromagnetic �elds generated by the beam itself can-

not be understood without some knowledge of the beam density and shape. These

self-generated �elds may act back upon the beam in either a coherent or incoherent

manner. An example of an incoherent e�ect is the space charge force, whereby a single

uniformly charged beam is defocused by the repulsive �elds its particles. The mag-

nitude of this force varies depending on the location of a particle within the charge

distribution.

Coherent e�ects are possible via a sustained self-generated electromagnetic inter-

action between the entire beam distribution and the physical structure of the storage

ring through which the beam travels [8]. Once a beam is perturbed, the 
uctuating

current generates a �eld, which may be supported by the architecture of the storage

ring. Positive feedback may develop between the beam and the stored �eld energy,

enhancing the amplitude of the initial oscillation. This type of self-�eld is called a

wake�eld, because trailing particles experience the electromagnetic wake of leading
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particles. Beam current traversing a wake�eld will experience a voltage change, since

particles are accelerated or decelerated by the longitudinal electric �eld component.

Thus, it is equivalent to describe the e�ect of the wake�eld in terms of the energy

change of the particles due to the �eld strength, or in terms of the voltage change of

the beam due to the impedance of the device storing the �eld.

The degree of nonlinearity in the wave motion of a beam may be characterized by

the strength of the forces present acting to disrupt the particle distribution. As the

amplitude of a wake�eld becomes larger, more particles become trapped in the po-

tential wells of the wave. The motion of particles remaining outside of these potential

wells (or 'buckets' in accelerator physics terminology) approximates free-streaming

motion. In the limit of no self-�eld generation, the entire beam approximates free-

streaming motion, removing the necessity of a self-consistent treatment of the beam

dynamics. In this case, an externally applied voltage would trigger a free-oscillation.

Admission of self-�elds into the problem requires a self-consistent analysis, although

if coherent motion is initiated as a small oscillation, a perturbative treatment is still

valid. Once large voltages are acting on the beam, the particle distribution may

change signi�cantly, and more traditional analysis techniques no longer apply.

1.3 Stability in particle beams

In the case of a particle beam, growth of the amplitude of coherent wave motion is

normally undesirable, and when it occurs unintentionally, this growth is called an

instability. Wake�elds can drive the growth of a mode of oscillation, but there is also

a mechanism for damping. The frequency with which a particle returns to the same

location in its circular orbit is called its revolution frequency. Particles of di�ering
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energies travel more or less quickly around the machine, so the energy spread of

the particle distribution is proportional to the frequency spread of the distribution.

The energy, or frequency, spread of a beam is responsible for providing damping of

longitudinal oscillations [6, 7]. One aspect of longitudinal oscillation is compression

and rarefaction of the particle density, so particle frequency dispersion due to energy

di�erences will tend to damp these oscillations. When a particle beam is stable to

perturbation, and still within the linear regime, its impulse response damps away

with a time constant having a speci�c dependence on the beam energy spread. This

characteristic damping time is called the linear Landau damping time.

Linear stability theory may be used to describe the competing mechanisms for

mode damping and growth, and to �nd the boundary outside of which an initial per-

turbation results in the growth of coherent oscillation. An early treatment of linear

stability in particle accelerators was published in 1965 by Neil and Sessler [3]. The

analytic method for �nding the linear stability boundary in a coasting beam was

developed by Keil and Schnell, and is known as the Keil-Schnell criterion [5]. Investi-

gation of the subject has continued, and linear stability theory has since been clearly

presented by others such as Hofmann [4]. The growth of an instability in the linear

regime is exponential, so that in the absence of nonlinear e�ects, the wave amplitude

would quickly be beyond the physical boundaries of the storage ring. However, ex-

perience has shown that often mode growth saturates, usually at the expense of the

particle density in phase space.

In an analysis using linear stability theory, each potential frequency component

in a system is treated independently. A Fourier expansion is done on the function



7

which describes the particle distribution, along with a similar expansion of the driv-

ing mechanism. The undisturbed particle distribution is assumed large in comparison

to the other terms in the frequency expansion, which are considered perturbations.

For a particle beam, the linear theory is of primary importance, because the onset

of instability is nearly always in the linear regime. However, as damping is charac-

teristically weak in hadron machines, instabilities grow to large amplitudes and it is

important to understand nonlinear e�ects which govern mode saturation and beam

dilution.

1.4 Wave-wave coupling

Weakly nonlinear processes such as three-wave coupling are described using the same

techniques as in linear stability theory, with the exception that a second-order fre-

quency mixing term is now also included in the description of the dynamics. Keeping

a frequency mixing product term allows the oscillation of waves at two di�erent fre-

quencies to generate coherent motion in a wave at yet a third frequency. The system

is not strongly nonlinear in the sense that this coupling resonance is still considered a

perturbation, not signi�cantly changing the initial particle distribution. If the particle

distribution were allowed to change (but on a slow timescale relative to the wave os-

cillation period) causing growth or decay of the external oscillation, the wave-particle

interaction would be considered quasilinear.

This work focusses on manifestations of the 3-wave coupling resonance, known

as echoes and parametric coupling. These phenomena, both being aspects of 3-

wave coupling, are two views of the same underlying physics. The study of echoes

examines the growth and decay of the wave amplitudes when it occurs sequentially,



8

with a time delay between the decay of one wave and growth of the next. The

mathematical description of echoes is thus naturally based in the time domain. The

study of parametric coupling examines the growth and decay of the waves when

growth of one wave is occurring simultaneously with the decay of another. The

mathematical description of parametric coupling is based in the frequency domain.

Each of the initial waves involved in the frequency mixing phenomena are coherent

by virtue of a driving voltage. Externally applied excitations or wake�elds are both

possible sources of driving voltage. The echo experiments presented in this work were

carried out in a low impedance storage ring, so that each of the initially excited modes

had to be externally driven. The parametric coupling experiments presented in this

work were carried out in a marginally stable storage ring with moderate impedances.

Although the coupling was initiated with an external pulse, the subsequent evolution

of mode growth was driven by machine impedance. It may be possible to extract

information about machine impedances from such coupling measurements.

Particles undergoing longitudinal oscillation must change their phase by some

multiple of 2� for every circuit around the machine. Thus, the longitudinal modes of

oscillation supported by a stored beam are all harmonics of the same fundamental,

frev, which is the particle revolution frequency. A feature of stored particle beams

that is not present in all physical systems is that the longitudinal harmonics of the

beam are also the entire set of eigenmodes for the system. It is not always the case

that there is such regularity in a set of possible excitations.

The permittivity in a particle beam is given by the linear dispersion relation,

which, except near a longitudinal resonance, is nearly one. This implies that there

is little interference from the medium (the beam) in getting a clean measurement of
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the coherent signals which it contains. This, together with the great regularity of the

pattern of available modes, and extremelyweak coupling between the longitudinal and

transverse motion, make particle beams particularly suitable for the clear observation

of three-wave coupling phenomena.

1.4.1 Parametric coupling

During parametric coupling, the energy of the coherent motion of two waves of dif-

fering frequencies gets transferred into the energy of coherent motion at a third fre-

quency. This transfer of energy may behave as either a scattering process or as a

decay process. In the case of a decay, the initial coherent motion of a wave at, say,

frequency f1 decays in favor of coherent motion at frequencies f2 and f3. In the

case of a scattering process, the energy of coherent motion in waves with frequencies

f2 and f3 gets transferred into a wave with frequency f1. Both the decay and the

scattering are inherently the same process known as parametric coupling. Frequency

and mode number selection rules govern the coupling, namely, f1 = f2 + f3, and

n1 = n2 + n3. These rules are alternative expressions of the conservation of energy

and the conservation of momentum [2, 9, 10].

The number of phase oscillations per revolution experienced by a particle is equal

to the harmonic number of the oscillation. For example, a particle oscillating at a

frequency f = n�frev experiences � = n�2� phase oscillations per revolution. Con-

sequently, in the system of a stored particle beam, if the mode number selection rule

of three-wave coupling is satis�ed, then the frequency selection rule is automatically

satis�ed.

Parametric coupling has been studied extensively in areas such as electronics [41];



10

however, the theoretical development of 3-wave coupling in plasma physics is espe-

cially appropriate for particle beams. The parametric coupling resonance for the case

of a plasma was analytically formulated in 1968 by Nishikawa [13]. There were also

complete analyses done around this time by Sagdeev and Galeev [2], and also by

Davidson [10].

1.4.2 Beam echoes

A temporal echo is the spontaneous growth (and subsequent decay) of coherent mo-

tion in a wave of frequency f1 some time after separate, sequential excitations of

waves at f2 and f3 have damped away. The frequency and phase selection rules men-

tioned previously are general properties of three-wave coupling, and they also hold

for echo generation. The phenomena of echoes relies on the fact that the correlation

between the energy and phase of the particles in the beam remains after the coherent

oscillations have damped away. The frequency information from each of the excita-

tions remains within the particle distribution, and the combined e�ect is to cause a

recoherence at the di�erence frequency. The phase correlation of the particles may

be destroyed by random processes such as small angle coulomb scattering. If ran-

domizing e�ects are present, the phase correlation breaks down, decreasing the echo

amplitude. Echo reconstruction is no longer possible if either the time delay to the

echo or the scattering rate are su�ciently large. Since the time delay to the echo is

dependent on the kick parameters, which are controlled, it is possible to measure the

di�usion rate in a beam [11, 12].

Spin echoes in nuclear magnetic resonance experiments were seen as early as 1950

by E.L. Hahn [14]. The possibility of seeing echoes in a plasma was raised in 1967
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by Gould, O'Neil and Malmberg [15, 16], who followed up with extensive analytical

work as well as the �rst experimental observation in a plasma. The use of echoes

to determine collisional damping rates was then discussed by Su, Oberman, and

O'Neil [11, 16]. Echo generation also has some history in particle accelerators and

storage rings. In 1983, transverse beam echoes were observed and utilized by Edwards,

et al., in the Fermilab Tevatron proton synchrotron. These echoes were due to the

modulation of a coherent transverse betatron oscillation by the synchrotron frequency,

and so it was possible to use them to tune the chromaticity of the machine. Similar

echoes were seen by Edwards, Syphers, and Gerig in 1987 in the Fermilab Main Ring

proton synchrotron. Potential transverse echo generation in a beam has also been

proposed by Kau�mann and Stupakov [17, 18], but in this case the mixing frequencies

were to be supplied by external quadrupole kicks. Bunched beam longitudinal echoes

have been observed by Colestock and Assadi [19].

1.5 Nonlinear wave-particle interactions

Large wake�elds disrupt an initially smooth particle distribution, by trapping parti-

cles within the potential wells of their voltage waveforms. There are several observable

aspects of this imposition of bunch structure onto the beam, and all are indications

that the system is now decidedly nonlinear.

The particle motion decoheres with a time constant which is signi�cantly longer

than the Landau damping time of linear motion. Particles trapped within the po-

tential well of the wake�eld will oscillate about the equilibrium point, alternately

gaining energy from the �eld or giving up energy to the �eld. This corresponds to
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a rotation between energy and phase in the bunched beam phase space of the parti-

cles. The combination of the energy dispersion of the particles and the nonlinearity

of the voltage waveform will cause phase mixing of the trapped particles. This phase

mixing causes the particles to decohere within their potential wells, smearing out so

that there is no longer any net energy exchange between the voltage wave and the

particles. The decoherence time is longer than the bunch rotation period. The peak

beam current goes down as the particle bunches decohere, and there is therefore also

a concurrent reduction in the amplitude of the self-�eld. This nonlinear damping

mechanism is called nonlinear Landau damping.

Considerable analysis and numerical work on nonlinear Landau damping has

been done, beginning with Dawson in 1961 [6]. Since then, there have been many

other treatments, among which are those by O'Neil in 1965 [7], Oei and Swanson in

1972 [20], and Canosa and Gazdag in 1974 [21]. Nonlinear Landau damping was �rst

observed in plasmas by Malmberg and Wharton [22].

O'Neil, Winfrey and Malmberg have pointed out that the advent of particle bunch-

ing is accompanied by the appearance of power in higher harmonics of the fundamental

frequency of the wake�eld [23]. This is a natural result of the periodicity imposed

on the spatial coordinate, with the harmonic content becoming richer as the bunch

compresses. Higher order harmonic generation will necessarily be associated with the

occurrence of moderately nonlinear phenomena, and was documented during both

parametric coupling and echo studies. Since echoes were observed in the time domain,

higher harmonic generation manifested itself there as higher order beam echoes.
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1.6 Strongly nonlinear phenomena

The strongly nonlinear dynamic of soliton formation may arise under the special cir-

cumstance of a nonlinear equilibrium between the dispersive force in a system and

nonlinearities in the �eld. The phenomenon of this pulselike nonlinear wave was ob-

served hydrodynamically as early as 1834. Scott, Chu and McLaughlin include a

description of this observation in their review paper, and go on to do a thorough

mathematical analysis of the equations which may exhibit behavior engendering soli-

tons [24]. Bisognano has since raised the possibility of seeing solitons in a particle

beam subject to space charge forces [25]. As the necessary attribute of the nonlinear

wave motion is steepening and braking of the wavefront, soliton formation in beams

may also be expected when particles experience wake�eld forces. The wavefront

of a wake�eld will steepen with particle compression, and particles may experience

compression when the �eld gradient opposes the dispersive force. There may be a

localized portion of the beam distribution where the particle compression strikes a

balance with the dispersive force. Studies done for this work have revealed small

islands of trapped particles in the phase space of the beam, which are reminiscent

of generalized solitonic behavior. Further study of this nonlinear e�ect needs to be

done, to better determine its true nature.

Beyond the moderately nonlinear regime lies turbulence, which is described by

Davidson as the regime where many waves are present in the system, with phases

that are considered random, requiring a statistical treatment of the problem [10]. A

chaotic beam would have little regularity in the distribution, the particles within the

distribution would 
uctuate in energy and phase in an unpredictable way. Particle

beams at present are not normally strongly turbulent.
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1.7 Summary of material to be presented

Chapter 2 contains a review of relevant accelerator terminology, single particle longi-

tudinal dynamics, and linear stability theory. This is the point of departure for the

remainder of the thesis.

Results of beam transfer function measurements made in the Accumulator and

in the Main Ring are found in chapters 3 and 4 respectively. These also contain

descriptions of the hardware used for the studies presented throughout the thesis. The

importance of the frequency domain measurementswas in gaining an understanding of

the stability properties of the storage rings used for the time domain studies presented

in this thesis. The results show that the Accumulator is a stable, low impedance

machine, while the Main Ring is marginally stable. Consequently, the Accumulator

was used for echo studies, while the Main Ring was used to study parametric coupling

and moderately nonlinear wave-particle e�ects.

The theoretical framework for parametric coupling is given in chapter 5, beginning

with a heuristic example of coupled pendula. This is followed by a treatment appro-

priate for particle beams. The experimental observations of parametric coupling are

described in chapter 6. The data are shown to conform to the behavior required of

parametric coupling, as delineated by the theory. The role of machine impedance in

the manifestation of parametric coupling is examined, with the background thought

that perhaps machine impedances may eventually be derived from observations of

coupling. This experimental results chapter also contains data showing evidence of

moderately nonlinear phenomena, namely, nonlinear Landau damping, higher har-

monic generation, and behavior suggestive of solitons.

The theoretical framework for beam echoes is given in chapter 7, beginning with a
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heuristic example of a collisionless, neutral gas. This is followed by several treatments

for particle beams, each being appropriate under di�erent dynamical conditions. Ob-

servations of beam echoes are described in chapter 8. The data are shown to conform

to the predicted behavior of echoes. There is also presentation of a measurement of

the di�usion rate of the beam.



Chapter 2

Linear beam dynamics

The purpose of this chapter is to de�ne the standard terminology and fundamen-

tal concepts of longitudinal particle motion in a storage ring. Both single particle

dynamics and the linear stability theory for a beam will be discussed.

2.1 Coordinate Convention

A depiction of the coordinate convention for storage rings and multiple pass accel-

erators is shown in �gure 2.1. The x and y directions de�ne a plane perpendicular

to the beam motion, and are called the coordinates of the transverse motion. The

coordinate along the beam motion is the z, or sometimes s, direction. At any given

point along the particle orbit, z is de�ned by the tangent to the orbit at that point.

The z direction is called the coordinate of longitudinal motion. All of the studies

and theoretical development in this work concern beam dynamics in the longitudinal

plane only. Speci�cally, they were applied to unbunched, coasting beams.

16
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Figure 2.1: Particle Accelerator Coordinate System

2.2 Longitudinal Dynamics of Unbunched, Coast-

ing Beams

A beam is said to be coasting if it is not undergoing acceleration, the particles re-

maining at a �xed average energy. The beam may also be unbunched, if in addition

to not being accelerated, particles are also not captured in potential wells created by

an externally applied sinusoidal electric �eld. In an unbunched beam, the particles

are allowed to drift longitudinally with respect to each other, and will do so if they

do not all have exactly the same energy.

A beam of particles will not all be at the design energy of the storage ring, but

rather will have a (hopefully) tight distribution of energies around this ideal energy.

Any given particle can be described in terms of its energy error, ", from that of

an ideal particle. Energy error is one of the degrees of freedom, and hence phase

space variables, for longitudinal motion. The other degree of freedom is the angular

position, �, around the machine; a particle going through 2� radians in one circuit,

or revolution. The distribution in phase of the particles in a beam is ideally uniform
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in the available 2�, whereas a perfect beam would be monoenergetic. In practice, an

unperturbed beam may be considered uniform in �, but will generally be Gaussian in

energy.

The particle revolution period, T , is the transit time for one circuit around the

machine. Particles having di�erent energies will have di�erent revolution periods due

to the fact that they may have di�erent orbits (path lengths) around the machine, or

di�erent speeds, or both [26]. The relation between the energy error of a particle and

its deviation from the ideal revolution period is given by,

�T

T0
= �

�p

p0
=

�

�2

�E

E0
(2.1)

where T0 is the revolution period of an ideal particle, E0 is the total energy of an

ideal particle, p0 is the momentum of an ideal particle, � is the relativistic beta factor

� � v=c, and � is a machine dependent function called the 'slip factor' which will

be described shortly. Usually it is more convenient to deal with revolution frequency

di�erences, in which case Eq. 2.1 would be written,

�f

f0
=

��

�0
=

�!

!0
= � �

�2

�E

E0

where f0 is the revolution frequency of an ideal particle, �0 is the phase of an ideal

particle, and !0 is the angular revolution frequency of an ideal particle. For later

convenience, the proportionality constant between �! and �E will be called k0,

k0 � � �!0

�2E0
(2.2)
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The nature of the proportionality between the energy error of a particle and

its error in revolution period is described by the slip factor �. Particles which are

not very relativistic will have revolution period di�erences which are dominated by

their di�erence in speed, whereas highly relativistic particles which are going nearly

the same speed (the speed of light) will have revolution period di�erences which

are dominated by their di�erences in path length. These orbital di�erences arise

from the momentum dispersion of the bending magnets in the storage ring. Higher

momenta particles experience less bending angle through a dipole �eld than do lower

momenta particles. The cumulative e�ect of all dipoles in the ring is to cause higher

momenta particles to travel on orbits of greater radius than the ideal orbit, and so

these particles travel a greater distance every turn around the machine than do their

low momenta cousins. The greater pathlength of a high momentum particle creates

a transit time error of the opposite sense to that of an error caused by greater speed.

Which factor dominates depends on the particle energy and the composition of dipoles

in the machine, this information being contained in �. The � function is expressed

as an expansion in �E
E0

since neither the particle velocity nor the path length of the

ideal orbit is linear in �E
E0

. The � function may be written [27],

� = �0 + �1
1

�2

�E

E0
+ �2

 
1

�2

�E

E0

!2

+ � � � (2.3)

Normally the � function is approximated by the �rst term, and unless otherwise

speci�ed, throughout this work the assumption will be made that � = �0. At a given
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machine energy �0 is a constant, and is de�ned by,

�0 � 1


2t
� 1


2

where 
 is the standard relativistic gamma factor, and 1

t

2
is the average of the

dispersion function around the storage ring divided by the radius of curvature of the

ring. So, 
t may be calculated by knowing the momentum dispersion generated by

the magnets from which the machine is constructed.

For a highly relativistic particle, v ! c, so that 
 ! 1, and the dispersion of

the ring magnets dominates the particle transit time, as one expects for particles all

moving at nearly the same speed. The energy at which the two factors 
 and 
t are

exactly balanced is called 'transition'. When a machine is at transition, to �rst order

there is no relation between a particle's energy error and its phase slip relative to an

ideal particle. When momentum dispersion e�ects dominate, a machine is said to be

'above transition', whereas when particle speed dominates a machine is said to be

'below transition'.

The dependence of transit time on particle energy provides a mechanism for the

damping of coherent oscillations. A group of particles which are initially at the same

location in the ring, will eventually spread out in phase due to their relative energy

di�erences. A concentration of particles gives the beam a high peak current, so phase

mixing will tend to damp the amplitude of a current oscillation.
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2.3 Machine Impedance and Wake�elds

Commonly, longitudinal beam instabilities arise from an unwanted electromagnetic

interaction of the beam with the physical structure through which it travels. The

machine environment typically consists of an evacuated chamber which is composed

of straight beampipe, bore tube through magnetic devices, beam detection devices,

accelerating cavities, and various connecting pieces between accelerator components.

Under certain circumstances the beam deposits stored electromagnetic energy into a

portion of the machine structure. Since beam continues to pass through this struc-

ture, the stored �eld may then act back on the beam. A positive feedback situation

may arise whereby this self-�eld interaction acts to constructively reinforce an oscil-

lation [28]. An electromagnetic �eld which persists after the passage of its generating

charges is called a wake�eld.

If a storage ring were made up only of cylindrically symmetric, perfectly smooth

conducting beampipe, beam moving almost at the speed of light would not create

wake�elds. The ~E �eld lines radiating from a highly relativistic charge would be

compressed into a pancake in the plane perpendicular to the motion of the particle,

necessarily coming into contact with the conducting pipe at right angles. However,

beampipe is usually somewhat resistive, causing the �eld lines to stream out some

distance behind the passing charge [8]. The electric �eld excites image charges and

currents in the beampipe walls, and if other particles are close enough behind the

initial charge, they feel the resulting electromagnetic wake.

In addition to not being purely conductive, the chamber through which the beam

passes often changes its size and shape. Of particular concern with respect to wake-

�elds are resonant structures such as accelerating cavities. High Q devices have a
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narrowband frequency response; once a cavity is �lled with energy, the �eld persists

for a much longer time than it would in a broadband device. In other words, a narrow

response in the frequency domain corresponds to a broad response in the time domain.

While �eld energy at the accelerating frequency is desirable, simple resonant cavities

have the unfortunate feature of supporting other, higher order resonant modes [29].

These higher order modes (HOM) can be excited by the passage of beam through the

cavity, provided the beam contains energy at these frequencies.

When a particle traverses a structure with a stored ~E �eld, it experiences a change

in voltage given by the integral of the longitudinal electric �eld over the distance

traveled through the �eld.

V = �
Z L

0
Ez(z; t)dz

Alternatively, the voltage change can be expressed as the product of the beam current

times the longitudinal impedance of the device.

V = �I(z; t)Z(
)

The larger the impedance of the device, the larger V is, and the more strongly the

beam is a�ected. An ideal accelerator would present no impedance to the beam.

The amplitude versus frequency dependences of some typical kinds of accelerator

impedances are shown in �gure 2.2.

Wake�elds and impedances are intimately related, wake�elds being a time do-

main description of the interaction of a beam with its environment, and impedance

being a frequency domain description. The electromagnetic force acting on a trailing
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Figure 2.2: Typical accelerator impedances. The vertical scale of the broadband
impedance has been exaggerated 100 times for clarity.
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charge due to image currents in its surrounding environment is proportional to the

wake function of the leading charge. The resulting impedance that a trailing charge

experiences is the Fourier transform of the wake function [26, 8].

2.4 Linear Stability Theory

One method of investigating the stability of a beam is to examine its behavior in

the presence of a small perturbation [4]. In an unstable situation, there is continued

growth of the amplitude of coherent oscillation, even after the initial disturbance is

removed. Instabilities are collective e�ects, and as such, need to be examined in light

of the beam distribution as a whole, rather than in terms of the motion of individual

particles.

The longitudinal distribution function of an unbunched, coasting beam will be

symbolized by f(�; "). The total number of particles can be found by integrating the

distribution function over the phase space variables,

N =
Z 1

�1

Z 2�

0
f(�; ") d� d" (2.4)

Once a beam is perturbed, the density may no longer be uniform in �, but may vary

around the machine as particles oscillate longitudinally. The number of particles per

radian is,

n =
Z 1

�1
f(�; ") d"

The instantaneous beam current is found by multiplying the total number of particles
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per radian by their angular velocity, !0 [rad/sec], and by e, their charge.

I(�) = e!0

Z 1

�1
f(�; ") d" (2.5)

Assuming the total number of particles is conserved, then the total time rate of

change of the particle distribution, df
dt
, is zero. This is a reasonable assumption; due

to the nature of the sources of instabilities, the response of the beam envelope to

a disturbance is slow compared to the period of any mode supported by the beam.

Thus, the initial development of an instability occurs with no concurrent beam loss.

The transport equation is,

df

dt
= 0

This is also a statement of Liouville's theorem, which says that although individual

particles in the distribution change their phase space coordinates with time, the total

area of the distribution in phase space is conserved. Since f is a function of � and ",

the transport equation may be written,

@f

@t
+
@�

@t

@f

@�
+
@"

@t

@f

@"
= 0

This is the Vlasov equation,

@f

@t
+ _�

@f

@�
+ _"

@f

@"
= 0 (2.6)
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where _� = ! = !0 + k0" is the revolution frequency of a particle with energy error ".

Again, the Vlasov equation is a suitable description of the beam dynamics as long as

the time scale for growth or decay of an instability is slow compared to the period of

the mode oscillations in the beam system.

A storage ring is a periodic system, a particle returning to the same location every

revolution. The harmonics of the revolution frequency are the natural longitudinal

modes of an unbunched beam. When a beam is undergoing oscillation, the frequency

is conventionally speci�ed by the mode number (for example h = 2), rather than by

the corresponding number of cycles per second (2�frev = 1:25 MHz). Localized forces

must be periodic at one of these revolution harmonics in order to interact resonantly

with the beam, potentially causing growth of coherent motion. Due to the periodic

nature of the motion, it is convenient to examine the stability issue in the frequency

domain, writing f and _" in terms of their Fourier components. Fourier analysis is also

suitable for a perturbative treatment of the Vlasov equation, since an excitation at

one of the normal modes of the system begins as a small perturbation on the initially

uniform beam distribution, f0. Proceeding with this analysis, f is written,

f(�; ") = f0(") +
X
m6=0

fm(")e
i(m��
t) (2.7)

where f0 is the unperturbed distribution, and the perturbative term is the expansion

in longitudinal modes. The m = 1 term in the summation represents a modulation

at the revolution frequency, the m = 10 term a mode at 10 times the revolution

frequency, and so on.
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The voltage change per turn due to a perturbation experienced by the beam is,

V =
X
m 6=0

Ume
i(m��
t) = �Z(
) X

m6=0
Ime

i(m��
t) (2.8)

where Imei(m��
t) is the perturbed current at mode m, and Z is an impedance present

in the beam environment. Thus _", the energy change due to the perturbation is,

_" =
e!0

2�

X
m6=0

Ume
i(m��
t) (2.9)

Equations 2.7 and 2.9 are substituted into the Vlasov equation (Eq. 2.6), which may

then be written for a given modem. By keeping only �rst order terms in the expansion

parameter (which is on the order of the ratio of the perturbed to unperturbed portion

of the particle distribution, fm
f0
) the Vlasov equation is linearized,

(�i
+ im!)fm +
@f0
@"

e!0

2�
Um = 0

Rearranging,

fm(
) =
e!0

i2�
Um

@f0
@"


�m!
(2.10)

A dispersion relation may be obtained from Eq. 2.10. By integrating over the

energy error, the left hand side of this equation may be put in terms of Im (see

Eq. 2.5). Next, using the relation of Eq. 2.8, the Um term on the right hand side

of the equation may also be put in terms of the perturbed current Im. Cancelling
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Ime
i(m��
t) from both sides of Eq. 2.10 now results in the desired linear dispersion

relation.

1 =
i(e!0)2

2�
Z(
)

Z @f0
@"


�m!
d" (2.11)

The dispersion relation reveals an intrinsic relationship between complex frequencies

generated in the beam and impedances present in the beam environment. Given any

impedance, there is at least one complex frequency which satis�es the dispersion re-

lation. This means that if the machine impedance is known, it can be determined

whether or not growth will result from an initial perturbation of the beam. Examin-

ing the form of the perturbed beam current, Imei(m��
t), it is evident that as long as


 is purely real, the motion of the perturbed current is purely oscillatory. However, in

the case where 
 is complex, then e�i
t either grows or decays exponentially. A curve

representing the boundary between stable and unstable motion can be drawn in the

complex impedance plane. Stability boundaries, such as the inner curve of �gure 2.3,

are generated using the dispersion relation to map a range of purely real frequencies

into their associated impedances. When this is done for a Gaussian beam distribu-

tion, it can be veri�ed that impedance values falling inside the stability boundary

correspond to frequencies with a negative imaginary part. On the other hand, if an

impedance lies outside of the stability curve, there is a frequency satisfying the dis-

persion relation which has a positive imaginary part. Thus, mapping out the stability

boundary is a method for determining the range of storage ring impedances which do

not lead to exponential growth of mode oscillations in the beam.

The stability boundary for a particular beam can be made by supplying eq. 2.11

with the appropriate beam parameters and a reasonable functional form for the beam



29

-0.30 -0.20 -0.10 0.00 0.10 0.20
Real Impedance   (Re Z)

-0.2

0.0

0.2

0.5

0.8

1.0

1.2

1.5

Im
ag

in
ar

y 
Im

pe
da

nc
e 

  (
Im

 Z
)

Ω

Ω

ΩIm(

Im(

Im()=1.1

)=0

)=.3

Figure 2.3: Impedance curves for three �xed values of Im(
), while varying Re(
).
The inner curve represents the stability boundary. The beam distribution used was
Gaussian in energy, and the beam parameters were arbitrary.
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distribution. A realistic stability boundary for the Accumulator is shown in �gure 2.4.

The shape of the stability curve depends on the form of the beam distribution, a

Gaussian distribution in energy is a good approximation for the Accumulator. The

functional form of a Gaussian is given by,

f0 =
Ap
2��"

e�
1

2(
"
�"
)
2

The normalization constant A is found using equation 2.4,

f0 =
N

(2�)
3
2 �"

e�
1

2(
"
�"
)
2

(2.12)

The derivative of the beam distribution with respect to energy error is then,
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Now the dispersion relation can be written,

1 =
I0�

2Z

i2m��3=2E0[eV ](
�"
E0
)2

Z
dx

xe�x
2

x� �

where � = ��2p
2m�( �"

E0
)
[ 

!0
� m]. The � in the coe�cient of the dispersion relation

is the slip factor, and its sign depends on whether the machine is running at an

energy above or below transition. The normal energy of the core of the beam in the

Accumulator is 8.696 MeV, which is above transition. Above transition � is positive
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Figure 2.4: Stability boundary for the Accumulator beam. This curve was made using
the following beam parameters: Beam Intensity I0 = 68:28 mA, Beam Harmonicm =
2, Total Beam Energy E0 = 8:696 GeV, Slip Factor � = :023, Relativistic Beta � =
:99416, and Beam Energy Sigma �" = 1:59 MeV. The beam distribution was assumed
to be Gaussian in energy, which is a good approximation for the Accumulator. The
curve is pointing downward because the Accumulator is above transition.
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and purely inductive impedances are stable, whereas below transition � is negative

and purely capacitive impedances are stable. Thus, stability curves for machines

above transition will have their 'tails' along the negative imaginary axis rather than

the positive imaginary axis [4].

Using the above dispersion relation, it is possible to determine that the area

internal to the stability boundary will decrease as the beam intensity increases. For

a given frequency, an increase in I0 must result in a decrease of Z in order for the

equation to still be satis�ed. As a beam becomes more intense, there is a smaller

range of machine impedances which are inside the region of stability. Similarly, as

the energy spread of a beam goes up, the stable region increases. Note also that

the scaling of the stability curve depends on the harmonic number, or frequency, in

question. In order to avoid discussing a di�erent stability boundary for every beam

harmonic, it is conventional instead to refer to Z=n, where n is the harmonic number.

2.4.1 Beam response to an external voltage

The expected beam response to an excitation may be obtained theoretically [32]. The

response to an applied driving voltage is given by R = �V0
Im

, where V0 is the driving

voltage, and Im is the perturbed current at the frequency of the driving voltage. The

Vlasov formalism is used to express the perturbed current in terms of the driving

voltage, the beam distribution, and the machine impedance; ultimately allowing the

beam response to an external drive to be written in terms of the machine impedance

and known quantities. Starting with a uniform, unbunched coasting beam, the energy
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change due to the drive is,
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where U0 = �ImZ(
) is the self-�eld voltage initiated by the externally applied

excitation. Substituting _" into the Vlasov equation and solving for fm,
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Integrating over the distribution to get an expression containing Im,
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Then the measured response in terms of the ring impedance is,

R =
�V0
Im

=
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+ Z(
) (2.13)

If there is no machine impedance at the frequency 
 of the applied voltage, then

Z(
) in equation (2.13) is zero. Multiplying both sides by the denominator on the
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right hand side,
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yields a result of the same form as the linear dispersion relation given by equa-

tion (2.11). Thus, in the absence of a machine impedance Z(
), and any nonlinear

e�ects, the response curve obtained from a network analyzer measurement will match

the stability boundary of the dispersion relation derived from the linearized Vlasov

equation. When a machine impedance is present, Z(
) 6= 0, and its e�ect is to shift

the origin of the response curve by Z(
), as shown in �gure 2.5. The experimentally

measured beam response to an applied excitation can thus be used to determine the

impedance of a storage ring. Such a measurement, which exhibits a shifted response

curve due to an impedance, will be presented in the next chapter.
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Figure 2.5: Theoretical shift of the beam response due to an impedance. The
curve centered on the origin (dashed) is the response when there is no impedance,
and the displaced curve (dotted) is the response when there is an impedance of

(Zx; Zy) = (:05;�:04). The magnitude of the impedance is jMj =
q
Z2
x + Z2

y = :064
,

and the phase is � = �39�. The beam distribution used was Gaussian in energy, and
the beam parameters were arbitrary.



Chapter 3

Accumulator beam transfer

function measurements

3.1 Introduction and overview

The original motivation for doing studies in the Fermilab Accumulator antiproton

storage ring was a desire to investigate the weakly nonlinear parametric coupling

phenomenon. For reasons which later became clear, it was di�cult to initiate para-

metric coupling, and the experiments evolved into a study of beam echoes, which are

another manifestation of weakly nonlinear wave-wave coupling. As a preliminary to

the search for parametric coupling, the linear stability properties of the Accumulator

were measured. This served as a baseline for understanding the measurement equip-

ment and the properties of the machine. This turned out to be important, since the

low impedance, stable nature of the Accumulator were exactly what made it di�cult

to trigger parametric coupling events in the machine.

36
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This chapter is primarily concerned with presenting the results of the beam trans-

fer function measurements that were done during the initial investigation of machine

stability. Some important beam parameters that will be used throughout the thesis

are listed in table 3.1 at the end of this section.

The experimental setup for the frequency domain measurements is documented in

section 3.2. This section also has information about the hardware, given as a series of

short descriptions of the devices used in acquiring data during studies. Some emphasis

is placed on the frequency response, since this should be 
at over the range of a given

measurement, or over the range of measurementswhich are being compared. Standard

cable does attenuate with frequency, but the frequency range of the measurements

was small, so the response of devices which may behave resonantly is more of an issue.

Impedance measurements were done at many frequencies, but the frequencies of

particular interest were the 2nd and 84th harmonics of the revolution frequency. The

standard notation in accelerator physics for the frequency of the 2nd harmonic, 2�f0,

is h = 2. Similarly for all other harmonics. The Accumulator has RF systems at

h = 2 and h = 84, and the cavities are likely candidates for generating wake�elds.

Fortuitously, the cavities may be shorted, curtailing their resonant behavior. Besides

the operational bene�t, this provided the opportunity to directly determine the cavity

impedance, by comparing measurements with the cavity shorts in and out.

Results of the h = 2 impedance measurements are presented in section 3.3. Cali-

bration is always a delicate issue, as the response of each component in the measure-

ment chain must be well-known to obtain the machine impedance from the measured

data alone. However, it is possible to get a calibration by matching the data to a

theoretically generated curve appropriate for the machine conditions at the time of
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the measurement. This calibration technique is applied to cavity shorts in and cavity

shorts out data, and a comparison of the scaled curves yields a reasonable value for

the impedance of the cavity. At the end of section 3.3, a stability measurement com-

paring large and small beam sizes is presented in order to give a quantitative picture

of how large energy spreads improve stability.

Results of the h = 84 impedance measurements are presented in section 3.4.

Unfortunately, the measurements obtained at this frequency were either noisy, or

worse, the excitation used for the measurement was not su�ciently perturbative,

and so changed the nature of the beam distribution. It is possible to improve the

experimental technique and get a better measurement, nevertheless, the results are

presented. The data give a very rough idea of the machine behavior, and give graphic

demonstration of nonlinear beam response to large voltages.

The FermilabAccumulator is an antiproton storage ring, having a wide momentum

aperture. Beam is injected on an outside orbit and moved to an inside orbit where

the collected, stored beam circulates. During these studies the injection process was

halted and data was taken using the stored beam, or 'core'. The beam in the core

was not captured by an RF system, and so was unbunched. Table 3.1 lists typical

Accumulator beam parameters [34]. Wherever the beam energy spread is written

symbolically as �"
E0
, as in table 3.1, �" is the standard deviation of a distribution

which is assumed to be Gaussian, and E0 is the particle energy at the center of the

distribution. The standard deviation is related to the full-width at half-maximum by

the proportionality fwhm = 2:354�.
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Table 3.1: Accumulator Beam Parameters

Parameter Value
Revolution Frequency f0 628.955 kHz

Slip Factor � .023
Total Particle Energy on Core Orbit E0 8.696 GeV
Typical Beam Energy Spread �"=E0 1 � 4� 10�4

3.2 Experimental setup

The hardware setup for the Accumulator beam transfer function measurements is

shown in block diagram form in �gure 3.1. The beam transfer function measure-

Out In

HP 8753C
Network Analyzer

Amp
Amp

ARF2
Resistive  Wall

Pickup

+55 dB ENI Amp

BW:250 kHz-150 MHz
+20 dB Sonoma Amp

BW: 20 kHz - 6 GHz

h=2 Suppressed Bucket RF Cavity
wideband (Q<5)

Broadband 5 kHz - 6 GHz pickup

Beam

Figure 3.1: Block diagram of Accumulator transfer function measurement setup.

ments were S21 transmission coe�cient measurements using a network analyzer with

an attached S-parameter test set. Appendix A gives a general description of this
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measurement technique. The network analyzer excited the beam longitudinally by

applying a swept frequency sine wave to a broadband RF cavity. The resulting fre-

quency content of the beam was monitored using a broadband longitudinal beam

current monitor. The signal from this beam pick-up was directed to the return port

of the network analyzer, completing the path needed for the measurement. The

hardware components are described in more detail below.

The frequency source for the transfer function measurements was an HP 8753C

network analyzer with a frequency range of 300 kHz - 3 GHz and an attached HP

85047A S-parameter test set. After a long cable run, necessary due to the distance

between the beam kicker and the available signal from the beam detector, the voltage

from the network analyzer was ampli�ed by a 3100 LA +55 dB ampli�er having a fre-

quency range of .25-150 MHz. The output of this ampli�er was connected directly to

the drive cable for the ARF2 cavity; the normal cavity drive system was disconnected

during these studies.

ARF2 is a broadband (Q < 5) suppressed bucket RF cavity, used to take antipro-

tons out of the core of the stored beam when they are needed for the physics program.

The center frequency of the cavity is h = 2, or 1.25791 MHz. The ARF2 cavity is a

ferrite loaded cavity with a low impedance (approximately 50
) gap.

The gap voltage of ARF2 may be monitored using the fanback signal. The result

from a previous calibration at h = 2 was that for every volt on the fanback signal there

are 273 volts across the gap [36]. Before commencing with the beam transfer function

measurements, the frequency response of the cavity was examined by comparing the

fanback signal to the input signal. The fanback signal was connected to the R port

of the network analyzer, while the cavity drive signal, after passing through a 30 dB
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Directional 
Coupler 

30 dB
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Network Analyzer

Amp

ARF2  Broadband
Accelerating Cavity

Input signal

Figure 3.2: Technique for the ARF2 cavity fanback measurement

coupler and further attenuated by 20 dB, was connected to the A port of the network

analyzer. A schematic of the measurement setup is shown in �gure 3.2. It is best to

try and compare the input signal to the fanback signal directly, preferably tapping

at the locations shown by the x's in the diagram. Since this was not possible, some

adjustments were made. The 30 dB coupler was measured over the frequency range

of interest and the e�ect of the coupler as well as the 20 dB pad was subtracted from

the �nal result. There were also long cables run back from the vicinity of cavity to the

location of the network analyzer, both from the coupler and from the cavity fanback.

As a rough approximation, the e�ect of these cables cancel each other in the A=R

measurement, and so neither was subtracted from the measurement. The frequency

response R=(A � coupler � pad) is shown over three frequency ranges in �gure 3.3.

Note that at h = 2 the ratio measurement gives -49.65 dB. The result predicted by

the fanback calibration is 20 log(1=273) = �48:72 dB. So, this measurement of the
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Figure 3.3: Measured frequency response of the ARF2 cavity.
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frequency response of the cavity is good to about 10%.

The longitudinal beam pickup used was a resistive wall current monitor [37, 38]

with a 
at frequency response from 3 kHz to 6 GHz. The pickup is called a 'resistive

wall' detector because of its construction. This type of detector relies on the principal

that a particle beam will create an image current in the surrounding beampipe walls

if they are made of conducting material. The continuity of the pipe is broken by a

resistive gap which is in series with the wall. The image current 
ows through the

gap resistance, some portion of which is combined into a 50 
 line that carries the

signal away for monitoring. Some care must be taken in the design to ensure broad-

band response, insensitivity to beam position, and isolation from stray currents. A

conceptual sketch of a wall current monitor is shown in �gure 3.4. The gap resistance

AAAAA
AAAAA
AAAAA
AAAAA

AAAAA
AAAAA
AAAAA
AAAAA

Toroid

Beam

Figure 3.4: Conceptual idea for a resistive wall current monitor

of the actual detector is surrounded by a ferrite loaded cavity with several types of

ferrite, whose purpose is to create a large shunt impedance thereby forcing the wall

current to go through the gap resistance rather than around it. The combination

of these various ferrites is responsible for realizing the 
at frequency response up to
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the several GHz range. Microwave absorbing material upstream and downstream of

the detector, and an electric shield externally surrounding the ferrites, were installed

to ensure that only current due to the instantaneous passage of beam goes through

the gap resistance. There are eighty, 120 
 resistors distributed around the gap

circumference, providing a uniform gap resistance. This resistance, along with the

inductance of the ferrite materials is responsible for the low frequency corner of the

detector response. Four microstrip transmission lines are also evenly spaced around

the gap circumference, substituting for gap resistors at those four locations. This

distribution of transmission lines provides a position insensitive signal. The currents

in the transmission lines are combined to make the single 50 Ohm output. A ceramic

has been inserted into the break in the beampipe, so that the entire assembly of

resistors and ferrites may be isolated from the storage ring vacuum.

The signal from the wall current monitor was passed through a +20 dB Sonoma

ampli�er with a bandwidth of 20 kHz to 6 GHz, before being connected to the return

port of the network analyzer.

3.3 Impedance measurements at the 2nd harmonic

Figure 3.5 shows a typical beam transfer function measurement at h = 2 in the

Accumulator. In order to be centered on the second revolution harmonic, the center

frequency of the scan was 2 � f0 = 1:2579 MHz. The frequency span was chosen to

be just wide enough to completely encompass the frequency spread contained in the

beam distribution. Frequencies outside this range are uninteresting, and opening up

the frequency span may cause loss of resolution bandwidth.

Using equation A.1, this s21 measurement may be used to directly generate the
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Figure 3.5: S21 measurement at h = 2 in the Accumulator. The top plot is the
magnitude response, and the bottom plot is the phase response. Beam parameters:
beam intensity 68 mA, and beam energy sigma 1.6 MeV. Network analyzer setup:
401 data points, sweep time 41 sec, and a resolution bandwidth of 10 Hz.

uncalibrated response curve of �gure 3.6. As it stands, the network analyzer in

�gure 3.1 is set up to measure the transfer function of the beam, combined with the

ampli�ers, the cables, the cavity, and the pickup. There will also be an additional

phase advance due to the distance between the kicker and the detector. In order to

get solely the response of the beam in its normal machine environment, the transfer

function of each component used in the measurement must be known and divided

out of the total result (or subtracted if using a log scale). Unless these components

were measured in isolation on the bench before installation into the storage ring, it
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Figure 3.6: Uncalibrated response curve made using s21 data displayed in �gure 3.5.

is di�cult to untangle their individual contributions to the overall measurement.

Knowledge of the absolute magnitude of the frequency response of the equipment

used during beam studies was not su�cient for an accurate brute force calibration

of the beam transfer function measurements. However, if the frequency response of

each piece of equipment is determined to be 
at across the measurement span (thus

leaving the shape of the total system response unchanged) then there is an alternative

technique for calibrating the beam transfer function data. With knowledge of the

beam parameters at the time of the measurement, the scale of the measured data can

be set by matching it to the stability boundary obtained from the linear dispersion

relation. In order to use this method, the form of the beam distribution function used

in the dispersion relation must approximate the actual beam shape, at least in the

center where most of the particles are located. Otherwise, it may be too di�cult to
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�t the shape of the measured curve to the stability boundary.

This alternative method allows calibration of the beam response data even when

the response of individual measurement components is unknown. However, there will

still be a statistical error on the measured curve, and possibly also some systematic

errors. In addition, the curve given by the dispersion relation will have an associated

error which depends on how well the beam parameters are known, since there is a

product of these parameters in the coe�cient of the integral.

Based on experimental data, there is reasonable con�dence that the frequency

response of each unwanted component in the Accumulator beam measurement chain

was 
at during any given scan. However, the systematic error on the beam transfer

function measurements was greater than the statistical error, and is the limiting

factor on the accuracy of a calibration. This can be seen in �gure 3.7, in which

the magnitude response of two identical measurements made during the same study

period are overlaid. The top and bottom plots of the �gure are the same, except that

the amplitude of the top plot is shown on a log scale, while that of the bottom plot

is shown on a linear scale. The beam parameters and network analyzer setup are the

same as are listed in �gure 3.5.

The calibrated impedance curves generated from the beam transfer function mea-

surements of �gure 3.7 are shown in �gure 3.8. Note that while the middle portion

of the measured and theoretical curves do match up pretty well, the portions which

come down along the imaginary axis do not. The central regions of the curves corre-

spond to the center of the beam distribution, while those parts along the extremes of

the imaginary axis correspond to the tails of the distribution. So, while a Gaussian

curve is a good match near the beam center, it breaks down at the beam edges. The
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Figure 3.7: The Magnitude response of two independent, identical beam transfer
function measurements taken during the same study period. The top plot shows the
amplitude of the response on a log scale, while the bottom plot shows the response
of the same measurements on a linear scale. The dashed curve was the second mea-
surement, and so the discrepancy cannot be due to a small beam loss. The dashed
curve is the same data as shown in �gure 3.5.



49

-4000.0 -2000.0 0.0 2000.0 4000.0
Real Impedance (Re Z)

-8000.0

-6000.0

-4000.0

-2000.0

0.0

2000.0

Im
ag

in
ar

y 
Im

pe
da

nc
e 

(I
m

 Z
)

Figure 3.8: Impedance curves from two sets of measured data (dotted and dashed
curves) �t to the stability boundary obtained from the dispersion relation (solid
curve). The stability boundary here is the same as in �gure 2.4, and the dashed
impedance curve is the same as in �gure 3.6, except for the calibration scale change
and phase rotation. The same calibration was used for both measured curves. The
beam parameters used to generate the stability boundary (listed in �gure 2.4) were
the actual conditions at the time of the measurement.
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Accumulator has a beam cooling system (the Core Momentum Stochastic Cooling

system) which actively works to compress the energy spread of the beam and narrow

the distribution of particles. One manifestation of its operation is in the pinched tails

of the actual response curves.

In order to get the match shown in �gure 3.8, the measured curves were o�set

in magnitude by 28.23 dB and in phase by 8.5 degrees, before transforming into

the impedance plane. These scale factors were found by comparing the magnitude

and phase curves from one of the measurements (�gure 3.5) to the magnitude and

phase curves which generate the theoretical stability boundary. The necessary phase

rotation can be easily determined by comparing the initial (or �nal) 
at portion of

the measured and theoretical phase curves, and then correcting the measured curve

by the di�erence. The 
at parts of the phase curve correspond to the tails on the

stability diagram, and these orient the diagram.

The magnitude scaling is not as straightforward, but it turns out that using the

di�erence between the magnitude of the measured and theoretical curves at the center

frequency is usually a fairly good estimate of the required o�set. This is supported by

�gure 3.9, which gives a measure of how well the two curves match up as a function

of the applied o�set. An estimate of the quality of the match is 1
N�1

P
i[(xmeasi �

x0) � xtheori]
2; where xmeasi is the magnitude of the measured beam response at

frequency i, x0 is the o�set in dB applied to the measured beam response, xtheori is

the magnitude of the theoretical beam response at frequency i, and N is the number

of points included in the summation. Points from the center frequency out to the

location where the theoretical curve falls by :5� were included in the summation used

for �gure 3.9. Note that the curve is smooth with the minimum located near 28.2 dB.
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Figure 3.9: Average of the square of the di�erence between a measured impedance
curve and the theoretical stability boundary as a function of the applied o�-
set to the measured curve. Speci�cally, the plot is f(x0) vs. x0, where
f(x0) =

1
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P
i[(xmeasi � x0)� xtheori]2 .
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The result that the magnitude di�erence between the theoretical and experimental

beam response at the center frequency is close to the best overall scaling choice,

can also be corroborated more loosely by visual inspection. Figure 3.10 compares

the match between the stability boundary and three impedance curves which were

generated using di�erent magnitude o�sets. The three o�sets used were 28:23, and

28:23 � 1 dB, with 28:23 giving the best match.

The experimental curves in �gure 3.8 indicate that there was no signi�cant ma-

chine impedance at h = 2 in the Accumulator at the time of the measurement. The

e�ect of an impedance would have been to shift the origin of the measured response

curve with respect to the origin of the stability boundary. The uncalibrated curve

(shown in �gure 3.6) had to be shrunk and rotated in order to be matched to the

theoretical curve, but it did not have to be translated.

The Accumulator has two di�erent RF systems at h = 2. One of these systems

is ARF2, the cavity used as a kicker for these studies. The other system is ARF3,

which was o� during these studies. The ARF3 cavities are normally shorted (made

non-resonant) when they are o�, in order to remove them as a source of machine

impedance. These cavity shorts can be removed without losing the beam, providing

the opportunity to measure the impedance of ARF3. Figure 3.11 shows the magnitude

portion of two sequential beam transfer functions, the only di�erence between the two

being that the top trace was taken with the ARF3 cavity shorts in, while the bottom

trace was taken with the shorts out. The impedance of ARF3 has non-uniformly

enhanced the frequency response, as seen in the asymmetry of the bottom trace. As

a result, the calculated impedance curve will no longer be centered on the origin in

the impedance plane, but will in fact be shifted as expected theoretically. Figure 3.12
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Figure 3.10: Comparison of the theoretical stability boundary (solid) to impedance
curves generated by applying di�erent magnitude o�sets to data from a beam transfer
function measurement (dashed). The scaling o�sets used for the curves from inside
to outside were 29.23, 28.23, and 27.23 dB.
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Figure 3.11: Comparison of magnitude portion of two beam transfer function (s21)
measurements taken with di�erent machine impedances. The top trace was taken with
ARF3 cavity shorts in place, the bottom trace was taken with the ARF3 cavity shorts
removed. Beam parameters: I0 = 68 mA, E0 = 8:696 GeV, � = :023, � = :99416,
and �" = 1:6 MeV. Network analyzer setup: center frequency at h = 2, 401 data
points, sweep time 41 sec, and resolution bandwidth 10 Hz.
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Figure 3.12: Calibrated impedance curves of measured data with ARF3 cavity shorts
in (dashed curve) and with cavity shorts out (dotted curve). The origin of the response
curve with the shorts out is shifted by approximately (x,y)=(900,-390), which gives

an ARF3 cavity impedance of Z=n =
q
(900 �p2� 170)2 + 3902=2 = 490
 � 110,

at a phase angle of �23�.
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shows the impedance curves calculated from the two transfer function measurements

of �gure 3.11. The curve for the case of 'cavity shorts in' was calibrated as shown

in �gure 3.8. Since this calibration must apply to all measurements made under the

same beam conditions, the curve for 'cavity shorts out' was scaled identically. Again,

no translation was done, only rotation and shrinking. Thus, the shift of the curves

in �gure 3.12 is a calibrated measure of the impedance of ARF3. The result for Z=n

is 490 � 110
, which may be compared with a previous bench measurement for a

comparable cavity (� 480
) given in reference [33].

The uncertainty quoted on the machine impedance is due to the systematic error

seen on the measured beam response. Examination of �gure 3.8 shows that while the

Zy intercept and one of the Zx intercepts are the same for the two measured curves, the

other Zx intercept di�ers by 170
. Assuming that either of the two measurements

(shorts in and shorts out) could give Zx di�erent from the true value, the error is

found by adding the possible systematic error for each curve in quadrature. Then,

�Zx =
q
(�Z in

x )2 + (�Zout
x )2 =

p
2� 170, and Z =

q
(Zx ��Zx)2 + Z2

y .

Another similar measurement of the machine impedance of ARF3 was done on a

di�erent day to check the reproducibility of the results. The systematic error during

this study period was less, as can be seen in �gure 3.13. Here the magnitude response

of two independent, identical measurements are overlaid. The bottom plot of the

�gure shows the complete traces with the amplitudes on a linear scale, and the top

shows only the central portion of the traces (also on a linear scale) in order to better

show the di�erence between the two traces. While the same type of systematic error

as shown in �gure 3.7 is present, the e�ect is much less. Since the source of the

systematic error is unknown, the cause of the reduction of systematic error during
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Figure 3.13: The Magnitude response of two independent, identical beam transfer
function measurements taken during the same study period. The bottom plot shows
the amplitude of the response on a linear scale, and the top plot is a close-up of the
central region of the bottom plot. The curve from the �rst measurement is solid,
and from the second measurement is dashed. At the time of these scans, the beam
intensity was I0 = 81 mA, and the beam energy sigma was �" = 2:5 MeV.
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the second study period is also unknown. The beam characteristics, the gain of the

experimental setup, and the frequency span of the measurement are known di�erences

between the �rst and second study period. During the second study period, there

was more gain in the system, primarily due to the removal of a 20 dB attenuating

pad from the network analyzer output. The beam intensity was higher (81 mA), and

the energy spread of the beam larger (2.5 MeV). The frequency span of the network

analyzer was 500 Hz instead of 100 Hz, but the number of measurement points in the

scan remained the same.

Impedance curves for the cases of 'cavity shorts in' and 'cavity shorts out' obtained

during the second study period are shown in �gure 3.14. The theoretical stability

boundary appropriate for the beam conditions is also shown. The results of the two

study periods agree within the range of the systematic error.

The range of impedances for which a machine is stable depends on the beam

size and intensity. A quantitative example of how beam size changes the range of

allowable impedances in the Accumulator is shown in �gure 3.15. There are two

measured impedance curves in this �gure, the inner one from a transfer function

measurement taken under normal conditions, and the outer one from a measurement

taken 1.33 hours after the core momentum stochastic cooling system had been turned

o�. The beam energy sigma with the cooling system on was �" = 2:74 MeV, while

with the cooling o� it was �" = 4:86 MeV. The larger, uncooled beam is much more

tolerant of machine impedances. It is also more Gaussian, as indicated by the better

�t between the measured curve and the calculated stability boundary.
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Figure 3.14: Calibrated impedance curves of measured data with ARF3 cavity shorts
in (dashed curve) and with cavity shorts out (dotted curve). The solid curve is the
stability boundary from the linear dispersion relation. The origin of the response
curve with the shorts out is shifted by approximately (x,y)=(980,-490), which gives

an ARF3 cavity impedance of Z=n =
q
(980 �p2� 20)2 + 4902=2 = 550 � 9
, at a

phase angle of �27�.



60

-30000.0 -20000.0 -10000.0 0.0 10000.0 20000.0 30000.0
Real Impedance (Re Z)

-24000.0

-16000.0

-8000.0

0.0

8000.0

16000.0

Im
ag

in
ar

y 
Im

pe
da

nc
e 

(I
m

 Z
)

Figure 3.15: Calibrated Accumulator impedance curves at h = 2 measured when the
momentumcooling was on (inner curve) and after it had been o� for 1.33 hours (outer
curve). When the cooling was on, the beam energy sigma was �" = 2:74 MeV. When
the cooling was o�, �" = 4:86 MeV. The beam intensity was 80 mA. The solid lines
are the corresponding stability boundaries calculated from the dispersion relation.
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3.4 Impedance measurements at the 84th harmonic

The Accumulator also has an RF system at h = 84, ARF1, which is o� during the

studies described in this work. However, ARF1 also has removable cavity shorts,

allowing the opportunity to try to measure the cavity impedance with the same tech-

nique as used for ARF3. This is a more di�cult measurement because ARF2 is still

used as the kicker, and its frequency response has rolled o� at h = 84 (see �gure 3.3).

Also, the signal to noise ratio gets worse at higher frequencies. Two preliminary at-

tempts at this measurement were made. The �rst, shown in �gure 3.16, was done

with a low enough drive power on the kicker to avoid disturbing the beam distribution

(as is usually done). The result was quite noisy, and multiple measurements should

have been averaged for better precision. Since this was not the case, the calculated

impedance is less reliable than the h = 2 measurement. The second measurement

attempt was done with too much drive power, disturbing the beam distribution. As

�gure 3.17 shows, in this case the response curve does not �t the calculated stabil-

ity boundary well. The same �tting technique was used, but the magnitude o�set

had to be a bit smaller than the di�erence at the center frequency, due to the small

notch created in the center of the beam distribution at the time of the measurement.

The notch was caused when some of the particles close to the center frequency were

moved by the drive power to enhance one side of the beam distribution. This causes

an asymmetry of the measured response with respect to the stability boundary which

is not due to machine impedance. It may still be possible to sort out this asymmetry

from the o�set due to an impedance, since the lower power measurement shows the

'shorts in' response to be centered on the origin. However, since it is more di�cult to

do a reasonable �t to the stability boundary, the impedance result once again lacks
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Figure 3.16: Noisy low power impedance measurement of ARF1. Calibrated re-
sponse curves of measured data with ARF1 cavity shorts in (crosses) and with cavity
shorts out (open circles). The solid curve is the stability boundary from the linear
dispersion relation. The origin of the response curve with the shorts out is shifted
by approximately (x,y)=(29700,-9400), which gives an ARF1 cavity impedance of
Z=n =

p
297002 + 94002=84 = 400
, at a phase angle of �18�.
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Figure 3.17: An attempt to �t a distorted response curve (crosses) taken at h = 84 to
the theoretical stability boundary. The distortion was due to excessive drive power
used for the measurement. Beam parameters: I0 = 81 mA and �" = 2:4 MeV.
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precision. The higher power impedance measurement is shown in �gure 3.18. The

value for Z=n indicated by the higher power power measurement was 600
, that for

the lower power measurement was 400
, while 760
 was the value extracted from

an R=Q measurement of the cavity [33]. The distortion of the beam distribution by

the external voltage during the measurement is a good example of the relative ease

with which nonlinearities can arise in a beam. There has been an energy exchange

between the voltage wave and the particle distribution which resulted in heating of

the distribution. Particles in the center of the distribution were matched in frequency

to the applied voltage wave, which was directly on the harmonic. These particles

were thus able to maintain a constant phase relationship with the voltage wave, and

were consequently decelerated. Deceleration shifted the frequency of these particles

upward (the Accumulator is above transition), leaving a notch at the vacated center

frequency. Although in this case the voltage wave was externally applied, essentially

the same dynamics occur when the nonlinear wave-particle interaction is due to a

wake�eld voltage.

Transfer function measurements of the Accumulator give every indication of a

stable, low impedance machine. This helps clarify why it was di�cult to trigger

parametric coupling, on the one hand, and to get clean echo measurements on the

other. As seen in chapter 4, measurements of this type paint a very di�erent picture

of stability in the Main Ring.
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Figure 3.18: Higher power impedance measurement of ARF1. Calibrated response
curves of measured data with ARF1 cavity shorts in (crosses) and with cavity shorts
out (open circles). The origin of the response curve with the shorts out is shifted
by approximately (x,y)=(51500,-6300), which gives an ARF1 cavity impedance of
Z=n =

p
515002 + 63002=84 = 600
, at a phase angle of 7�.



Chapter 4

Main Ring beam transfer function

measurements

4.1 Introduction and overview

Once it was determined that a spontaneous series of parametric coupling events was

not easily triggered in the Accumulator, the investigation moved to the Main Ring.

The original observation had been in the Fermilab Tevatron, during which time it was

noted that the frequency distribution of the beam was not smooth during transfer

function measurements. Instead, there appeared to be 'notches' cut into the distri-

bution at various frequencies. It was postulated by the original investigators that

these regions of depletion in the particle phase space might be caused by localized

resonances. Thus, before embarking on the parametric coupling experiments in Main

Ring, transfer function measurements were done to determine the nature of the beam

distribution. Once again the notches appeared, and a small series of studies was done

66
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to investigate their origin. Those results are presented in this chapter.

The experimental setup for the frequency domain measurements is reviewed in

section 4.2. This section also has information about the hardware, given as a series

of short descriptions of the devices used in acquiring data during studies. There is

some discussion of the frequency response of the major hardware components.

The experimental results for the frequency domain measurements are presented

in section 4.3. The shape of the beam pro�le, as given by the magnitude response

of the transfer function measurement, is examined under various circumstances. In-

vestigations were made of the notch pattern as a function of machine tune (number

of transverse oscillations per revolution), chromaticity (tune dependence on particle

energy), and beam intensity. It should be noted that the notches were examined as

a function of the set values of the tune and chromaticity, rather than of measured

values. Therefore, the results should be considered as relative dependences, with little

con�dence in the absolute numerical value of the tunes and chromaticities.

The Main Ring proton synchrotron is normally used as an accelerator, which

requires bunched beam. However, during these studies the energy was held �xed at

the injection level, allowing the use of a stored, unbunched beam. An unbunched

beam was used for all studies presented in this work. The machine was still cycled,

beam being regularly injected and extracted. Study pulses were anywhere between 2

to 12 seconds. Most of the studies were done at low intensity, so that beam intensity

and losses were consistent from pulse to pulse. Table 4.1 lists typical Main Ring beam

parameters [35]. Referring to table 4.1, �" is the standard deviation of a distribution

which is assumed to be Gaussian, and E0 is the particle energy at the center of the

distribution. The standard deviation is related to the full-width at half-maximum by
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Table 4.1: Main Ring Beam Parameters

Parameter Value
Revolution Frequency f0 47.450 kHz

Slip Factor � 9.7E-3
Total Particle Energy E0 8.938 GeV

Typical Beam Energy Spread �"=E0 3 � 5� 10�4

the proportionality fwhm = 2:354�.

4.2 Experimental setup

The hardware setup for the Main Ring transfer function measurements is shown in

block diagram form in �gure 4.1. The beam transfer function measurements were S21

transmission coe�cient measurements using a network analyzer with an attached s-

parameter test set. Appendix A gives a general description of this measurement

technique. The analyzer excited the beam longitudinally by applying a swept fre-

quency sine wave to a broadband RF cavity. The resulting frequency content of the

beam was monitored using a strip line type of longitudinal detector. The signal from

this beam pick-up was directed to the return port of the network analyzer, completing

the path needed for the measurement.

The major components in �gure 4.1 will be described here. The frequency source

for the transfer function measurements was an HP 8753C network analyzer with a

frequency range of 300 kHz - 3 GHz and an attached HP 85047A s-parameter test set.

After a long cable run, necessary due to the distance between the beam kicker and
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Figure 4.1: Block diagram of Main Ring transfer function measurement setup.

the available signal from the beam detector, the signal from the network analyzer

was substituted for the normal 5 MHz signal at the input of the low level system

for the cavity drive. The output of the low level system was ampli�ed by a +55 dB

ampli�er having a frequency range of .3-35 MHz. This ampli�er in turn drove the

power ampli�er and cavity in the accelerator enclosure.

The Main Ring 5 MHz coalescing cavity is a relatively broadband (Q � 42) RF

cavity normally used in the process of combining 11 or so small 53 MHz bunches

into one large 53 MHz bunch for collider physics [39, 40]. The center frequency of

the cavity is h = 106, or 5.029 MHz. The cavity has 10 ferrites on either side of

the accelerating gap. The gap is in parallel with a tunable capacitance, allowing �ne

control of the resonant frequency of the cavity. The +55 dB ampli�er on the output

of the low-level electronics drives a power ampli�er, which in turn drives the 5 MHz
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cavity to which it is attached.
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Figure 4.2: S21 measurement of coalescing cavity fanback, centered at h=106. Top
plot is the magnitude response, and bottom plot is the phase response. Measurement
made with no beam. Network analyzer setup: 30 dB attenuating pad on output, 101
data points, sweep time 10.4 sec, and resolution bandwidth 10 Hz.

The frequency response of the cavity was examined by doing a transfer function

measurement where the output port of the network analyzer was used to drive the

cavity, and the return port was the signal from the cavity fanback. The fanback

calibration is 2031:1 accelerating volts to fanback volts [39]. The results of the transfer

function measurement are shown in �gure 4.2. The frequency span in this �gure covers

approximately 11 revolution harmonics. Although the coalescing cavity is relatively

broadband, it does exhibit a resonant response, and so the Q of the cavity can be
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determined from the s21 measurement. The bandwidth of the cavity response was

found to be 119.6 kHz, giving Q = f0=BW = 42.

The longitudinal beam pickup used was a quarter wave transmission line, consist-

ing of two concentric stainless steel tubes [39]. Each end of the inner tube is connected

to four signal ports via eight stainless steel connecting strips. Usually only the output

terminals from one end are used to get a faster, shorter pulse. The quarter wave beam

detector is 55.56 inches long, corresponding to a frequency of f = c=� = 53:1 MHz.

The detector impedance has nulls at n�=2. The �rst null has an impedance of 3.2

Ohms, while the �rst maxima (at 53.1 MHz) has an impedance of 23.6 Ohms. Since

there are 1113 harmonics between 0 and 53.1 MHz, the change in impedance over,

say, 15 harmonics is small. The impedance of the detector increases linearly by .4

Ohms going from h=99 to h=113. The roll-o� of the beam detector begins around

1.4 GHz.

AA

AA A
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A

A

AA

AA

5.769”

7.355”

Figure 4.3: Conceptual idea for a strip line beam current monitor



72

4.3 Experimental results

Figure 4.4 shows a typical beam transfer function measurement at h=106 in the

Main Ring. The center frequency of the scan was 106 � f0 ' 5:0298 MHz. The
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Figure 4.4: S21 measurement at h = 106 in the Main Ring. The top plot is the
magnitude response, and the bottom plot is the phase response. The beam intensity
was 1:85 � 1012 protons per pulse. Network analyzer setup: averaged 10 times, 101
data points, sweep time 10.41 sec, and a resolution bandwidth of 10 Hz.

magnitude response is not a nice, smooth curve such as one gets in the Accumulator

(see �gure 3.5). Here instead there are deep holes or notches at certain frequencies

in the sweep. These notches are not manifestations of a noisy measurement, as they

do not go away with averaging or as the power is increased. Thus, the notches
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must correspond to regions of particle depletion in the beam distribution. The sharp

drops in population occur at certain frequencies which, since the beam in unbunched,

correspond to speci�c particle momenta. The momentum dependence of the notches

implies that speci�c driving resonances are responsible for the depletion zones. These

could easily be transverse resonances, since there is a correspondence between particle

momentum and the number of transverse oscillations per circuit around the machine

(betatron tune), due to chromatic e�ects from the magnets. An investigation to check

whether the notches are related to particle tune was undertaken.

One study was to examine whether the pattern of notches was tune dependent by

varying the horizontal tune setting and then taking transfer function measurements.

As Main Ring is a pulsed machine, beam was re-injected after each tune change, so

each scan re
ects only one tune setting. There was a repeatable correlation between

the tune setting and the pattern of notches. Transfer function measurements taken

after adding various o�sets to the base tune setting of 19.42 are shown in �gure 4.5.

There are four di�erent plots showing the results of four tune o�sets. Each of these

plots has two traces made with the same tune o�set, but taken during di�erent study

periods on di�erent days. These results show that the shape of the curves was fairly

reproducible, those with the same tune settings were similarly shaped. In contrast,

as seen in �gure 4.6, transfer functions taken at di�erent tune o�sets were often

quite distinct. With some e�ort, perhaps speci�c resonances could be mapped to

notches in the transfer function, providing an alternative to the standard technique

for identifying coherent betatron frequencies present in the beam.

While the tune setting controls the average tune of the ensemble of particles

comprising the beam, the chromaticity setting controls the spread in tunes within the
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Figure 4.5: Magnitude response measurements taken in the Main Ring with various
horizontal tune settings. From top to bottom, the tune o�sets were +.04, +.02, 0,
and -.04. The two traces of each plot were taken in di�erent study periods.
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Figure 4.6: Magnitude response measurements taken in Main Ring with horizontal
tune o�sets +.04 (dashed line) and .00 (solid line) added to the normal tune setting.
Network analyzer setup: 10 averages, 101 points, resolution bandwidth 10 Hz, sweep
time 10.413 seconds.
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distribution of particles. Chromaticity determines the proportionality between the

momentumspread of the beam and its transverse tune spread. If each depletion region

in the particle distribution corresponds to a di�erent transverse driving resonance,

then the chromaticity of the machine should a�ect the number of resonances which

fall within the distribution.

A second study examined the relation between the chromaticity setting and the

shape of the magnitude response of the beam transfer function. The results are

shown in �gure 4.7, where each of the four plots displays the magnitude response for

di�erent chromaticity settings. In the bottom plot, notches eat deeply into the beam

distribution. The situation gets progressively better going from the bottom to the top

plot of the �gure. Although the injected beam intensity was the same in each case,

the extracted beam intensity was greater when the magnitude response was cleaner,

as expected if the notches are due to resonances. The average injected beam intensity

was Iinj = 3:3�1012 protons per pulse (ppp), which is 25 mA of current (for the Main

Ring 1 � 1012 = 7:6 mA). For the top plot, the horizontal and vertical chromaticity

settings were (CH; CV ) = (+8;�8), and the average extracted beam intensity was

Iext = 1:5 � 1012 ppp. For the next three plots in order, the chromaticity settings

were (CH; CV ) = (0; 0), (CH ; CV ) = (�7;+6), and (CH; CV ) = (�15;+14); while
the average extracted beam intensities were Iext = 1:4 � 1012, Iext = :7 � 1012, and

Iext = :8� 1012 ppp.

In a third study, the magnitude of the response was examined as the injected

beam intensity was varied, with all other machine conditions remaining the same.

The results are shown in �gure 4.8. The four plots from top to bottom had injected

intensities of Iinj = :6� 1012, Iinj = 1:8� 1012, Iinj = 2:2� 1012, and Iinj = 3:0� 1012
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Figure 4.7: Magnitude response measurements taken in Main Ring with various chro-
maticity settings. From top to bottom: (CH ; CV ) = (+8;�8), (0, 0), (-7, +6), and
(-15,+14). These chromaticities were set, but not measured.
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Figure 4.8: Magnitude response measurements taken in Main Ring with various in-
jected beam intensities. From top to bottom: Iinj = :6 � 1012, Iinj = 1:8 � 1012,
Iinj = 2:2� 1012, and Iinj = 3:0� 1012 ppp.
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ppp; with e�ciencies of 58%, 40%, 46%, and 26%. That the e�ciencies went down

as the injected intensities went up may be expected, but it is interesting to see what

happened to the magnitude response. As the injection intensity increased, the mo-

mentum width of the beam also increased, and the notches became more pronounced

and greater in number. Probably the additional resonances encompassed by the larger

tune spread contibuted to beam loss. In addition to the increase of momentumwidth

with intensity, the beam distribution became increasingly asymmetric. It is possible

that an instability developed at the higher intensities, with the self-�eld voltage wave

gaining energy by virtue of beam heating.

Since the momentum distribution of the particles in the beam is not smooth,

the impedance curve generated from the transfer function measurement also is not

smooth. The magnitude portion of a typical s21 measurement in Main Ring and

the associated impedance curve is shown in �gure 4.9. The points on the magnitude

curve in the notches are marked with special symbols, and these map one to one

into the corresponding symbols in the loops of the response curve in the impedance

plane. These loops correspond to unstable regions in the longitudinal phase space,

but longitudinal impedance does not drive these instabilities. It is no longer a simple

matter to use the response curve as an indicator of machine impedance. As will

be shown in the next chapter, according to the theory for parametric coupling, the

likelihood of coupling occurring is highly sensitive to the momentum width of the

beam. The presence of notches in the beam distribution considerably lowers the

threshold for nonlinear, or parametric coupling.
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Figure 4.9: Magnitude response from a typical transfer function measurement in Main
Ring (top plot) and its mapping into the impedance plane (bottom plot). The notches
in the magnitude response (marked with symbols) map into loops in the impedance
curve (marked with the same symbols).



Chapter 5

Theory of parametric coupling

5.1 Introduction and overview

Parametric coupling is, in essence, when energy supplied to a system at one frequency

is converted into energy at another frequency through the agency of frequency mix-

ing [41]. This wave-wave coupling is considered to be the �rst stage in the advent

of coherent nonlinear phenomena in the system of a particle beam and storage ring.

Parametric coupling is widespread and has been studied extensively in such disciplines

as electronics and plasma physics. Parametric coupling has now also been observed

in the realm of high energy beams; three-wave coupling of longitudinal modes has

been seen in the Fermilab Main Ring. Power present in the beam at one frequency

was transferred into coherent excitation at another frequency, via modulation from a

third frequency. Once initiated, this three-wave coupling process happened multiple

times, creating a cascade of coherent excitations at successively lower harmonics. The

theoretical framework to describe parametric coupling in beams closely follows that

81
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developed for plasma physics, as in both cases the Vlasov formalism is used to model

the dynamics of the system.

The wave carrying the supplied energy is called the pump wave. In systems where

damping exists, the energy supplied by the pump must cross a threshold if coupling is

to occur. Once in progress, the parametric transfer of energy can deplete the energy

available from the pump, and the system remains near threshold. There are other

conditions which must be satis�ed if resonant coupling is to occur. The frequencies

and phases of the three waves involved must obey the following sum rules,

!m = !n + !k (5.1)

�m = �n + �k (5.2)

where m, n, and k are integers identifying the mode numbers of the three waves

involved in the coupling. The phase matching condition, eq. 5.2, may be written as

a simple integer relation (m = n+ k instead of �m = �n + �k) due to the periodicity

of a storage ring.

The interpretation of these sum rules depends on the physical situation. For

example, the pump wave with frequency !m may decay parametrically, transferring

energy into two daughter waves with frequencies !n and !k. Another possibility is

that the pump wave with frequency !n combines with another coherent excitation of

frequency !k to build up a third wave of frequency !m.

The sum rules are manifestations of fundamental conservation laws. The fre-

quency sum rule is a consequence of the conservation of energy, while the phase

sum rule is a consequence of the conservation of momentum. This relationship will
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be demonstrated in section 5.5, following closely techniques used by Davidson and

Sitenko [10, 9].

Three-wave coupling cannot be described by the �rst order linearized Vlasov equa-

tion. In a perturbative treatment of the Vlasov equation, a frequency mixing term

of second order must be retained in order to have a valid description of these beam

dynamics. Repeating the Vlasov equation here for reference,

@f

@t
+ _�

@f

@�
+ _"

@f

@"
= 0

Proceeding as in section 2.4, the beam distribution function, f , and the energy change

per turn, _", are written as longitudinal mode expansions,

f = f0(") +
X
m 6=0

fm("; t)e
im�

_" =
e!0

2�

X
m6=0

Ume
im�

where Um is the amplitude of the voltage change per turn due to the perturbation

at mode m, !0 is the angular revolution frequency, and e is the elementary charge.

Upon substitution of these expansions into the Vlasov equation, an expression for

a particular mode m is obtained. However, rather than linearizing the equation by

keeping only �rst order terms, the frequency mixing term is now retained.

@fm
@t

+ im!(")fm +
e!0

2�

@f0
@"

Um +
e!0

2�

X
n+k=m

Un
@fk
@"

= 0 (5.3)
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where !(") = (!0+k0"), with k0 being the constant de�ned in eq. 2.2. The dynamics

of mode m are described by eq. 5.3. The �rst two terms of this equation directly

contain the mth harmonic of the beam distribution, fm. The third term represents

coupling between the unperturbed beam distribution and a voltage at the frequency

of the mth harmonic. The last term represents coupling between a perturbation in

the beam distribution at mode k and a voltage at the frequency of mode n. It is now

evident that the phase sum rule, m = n+ k, is an intrinsic requirement coming from

the inclusion of the frequency mixing term.

The voltage in the coupling terms of eq. 5.3 can either be experimentally applied

from an external source, or it can be present in the machine environment due to

the existence of wake�elds. If Un is an externally applied voltage, then the frequency

mixing term describes source-mode coupling; whereas if Un is a wake�eld voltage, then

the frequency mixing term describes mode-mode coupling. While the initial instance

of mode coupling in the Main Ring began with an externally applied voltage, the

ensuing series of coupling events was enabled by wake�elds.

The linear dispersion relation obtained from the linearized Vlasov equation pre-

dicts whether there will be growth of a single mode based on the machine impedance

and beam properties. The dispersion relation is a central tool in evaluating stability.

It is similarly bene�cial in evaluating stability with respect to coupling resonances to

derive a second order dispersion relation. The threshold for mode growth as well as

the frequency selection rule are embedded in such a dispersion relation. The assump-

tion of weak 3-wave coupling leads to a new dispersion relation built from the linear

dispersion relations of individual modes.

A dispersion relation for the process at resonance can be obtained mathematically,
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starting with eq. 5.3, and proceeding in either of two ways. The method of section 5.3

follows R.C. Davidson, utilizing a multiple time scale perturbation expansion, and

solving coupled second order equations by normal mode analysis to obtain the de-

sired dispersion relation [10]. A perturbation expansion in the dependent variables

alone may not be valid for all times, as there is no systematic method for removing

secularities which cause the solution to diverge. Even if an exact solution is bounded,

an expansion to �nite order may not be bounded, since not all secular terms are rep-

resented and thus cannot cancel. Expanding in the time variable as well allows the

removal of secular terms order by order in the expansion, insuring a uniform solution

at all times [42]. In our case, the secular terms are the interesting ones since para-

metric coupling is a resonance condition. Mode growth due to three-wave coupling is

represented by the secular terms in the second order equation. Identi�cation of these

terms yields the frequency selection rule given by eq. 5.1. Setting the sum of these

terms to zero gives an expression for the growth rate, and is the platform from which

the resonant dispersion relation for parametric coupling is obtained. The strength of

this technique is in the acquisition of the growth rate equation, and the ease with

which the resonant terms are identi�ed.

Alternatively, the result presented in section 5.4 derives from a method which

follows D.G. Swanson [43]. This method, which is fully developed in appendix B,

begins by taking the Fourier transform of eq. 5.3, and making direct substitutions

until both sides of the equation are written in terms of a perturbed current at the

same mode number. Cancellation of this perturbed current then gives the dispersion

relation. This result is more general than the dispersion relation found in section 5.3,

which is valid only directly at resonance. The general result is useful in that it
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contains a coupling coe�cient which gives the likelihood of a parametric coupling

event based on the impedance as well as other beam and machine parameters. Directly

on resonance the impedance dependence cancels out of the dispersion relation. As

shown in appendix B, when the more general dispersion relation is expanded around

the resonant frequency, it is formally identical to that found in section 5.3.

Before embarking on the derivation of the second order dispersion relation for

parametric coupling in particle beams, section 5.2 gives a mathematically simpler

example inspired by Sagdeev and Galeev [2]. Using a pair of parametrically coupled

mechanical pendula, the purpose of this section is to conceptually demonstrate some

of the techniques in the following sections. A dispersion relation is �rst found using

coupled equations and doing normal mode analysis. Although a perturbation expan-

sion is not done, the solution is assumed to have two characteristic time scales, the

natural oscillation periods of the pendula, and the slower period of the growth of

the oscillation amplitude. Next, the dispersion relation is found by doing a Fourier

transform of the equations of motion and using direct substitution to get an equation

in one dependent variable. The equivalence of the dispersion relations at resonance

is demonstrated. It may be useful to go through these mathematical methods with-

out the additional symbolic overhead of the self-consistent Vlasov formulation. Since

later material is not based on section 5.2, it may be skipped with no ill e�ect.

5.2 Simple example of mechanical pendula

Parametric coupling can occur in simple systems such as two mechanical pendula

connected with a spring of variable spring constant. In this section, a dispersion
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relation for the system depicted in �gure 5.1 will be derived using two di�erent meth-

ods. Two pendula, each having bob of mass m, are connected by a weak spring of

l1 l2

m m

x1 x2

K=k cos(Ω t)ο ο

Figure 5.1: System of two parametrically coupled mechanical pendula

variable spring constant k0 cos(
0t). The �rst pendulum has length l1 and its dis-

placement from equilibrium is given by x1. The second pendulum has length l2 and

its displacement is given by x2. The Lagrangian for this system is the following,

L = T � V =
m

2
(v21 + v22)�

m

2
(
g

l1
x21 +

g

l2
x22)�

k0
2
cos(
0t)(x1 � x2)

2 (5.4)

The frequency of the �rst pendulum, !1 is given by !2
1 =

g
l1
+ k0

m
cos(
0t) ' g

l1
, where

the change in the natural frequency of the pendulum due to the spring is small and

will be neglected. Similarly for !2. The equations of motion are given by Lagrange's

equations,

d

dt

 
@L
@ _qk

!
� @L

@qk
= 0
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For this system the equations of motion are then,

d2x1
dt2

+ !2
1x1 =

k0
m

cos(
0t)x2

d2x2
dt2

+ !2
2x2 =

k0
m

cos(
0t)x1 (5.5)

Since the parametric coupling between the pendula is small, each pendulum will

oscillate about its equilibrium position at its natural frequency, but the amplitude of

the oscillation may change slowly due to the spring. Then the displacements of the

pendula are of the form,

xj = Aj(t)e
i!jt +A�

j (t)e
�i!jt (5.6)

Using the expression given by eq. 5.6, and writing the cosine function of the spring

as cos(
0t) =
ei
0t+e�i
0t

2 , the �rst of equations 5.5 becomes,

d2A1

dt2
+ 2i!1

dA1

dt
= �

"
d2A�

1

dt2
� 2i!1

dA�
1

dt

#
e�2i!1t

+
k0
2m

A2e
i(
0+!2�!1)t

+
k0
2m

A�
2e

i(
0�!2�!1)t

+
k0
2m

A2e
i(�
0+!2�!1)t

+
k0
2m

A�
2e

i(�
0�!2�!1)t (5.7)
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The result is similar for the second of equations 5.5, the only di�erence being that

the indices are swapped.

The amplitudes Aj and A�
j are more interesting than the free oscillations, since

these envelope functions contain the mode growth information. If eq. 5.7 is averaged

over the rapid time scale of the natural oscillations of the system, then only the time

evolution of the envelope functions remain. The exponential terms on the RHS will

average to zero, unless the sum of the frequencies in one of the exponents is zero.

When some combination of the frequencies !1, !2, and 
0 sum to zero, there is a

resonant condition which allows transfer of energy between the pendula. Unless this

condition is met, the averaged equations are uncoupled. This is the manifestation of

the frequency selection rule of parametric coupling for this system.

Suppose the frequency selection rule 
0 = !1 � !2 is satis�ed, then the averaged

equations of motion become,

d2A1

dt2
+ 2i!1

dA1

dt
=

k0
2m

A2

d2A2

dt2
+ 2i!2

dA2

dt
=

k0
2m

A1 (5.8)

In order to do normal mode analysis on these equations, let the envelope functions

of the displacements be A1(t) = ae�t and A2(t) = be�t. Upon substitution into

equations 5.8, the constants a and b may be eliminated to �nd the dispersion relation,

�������
�2 + 2i!1�

k0
2m

k0
2m �2 + 2i!2�

������� = 0
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Working to lowest order in �
!j
, the dispersion relation for the system of weakly para-

metrically coupled pendula takes the following simple form,

� = i
k0
4m

(!1!2)
1

2

(5.9)

As a consequence of satisfying the frequency selection rule 
0 = !1 � !2, the

envelope frequency � has turned out to be imaginary (!1 and !2 are de�ned as

positive). Since the functions A1(t) and A2(t) are then purely oscillatory, there is no

growth of the motion. If, on the contrary, the selection rule 
0 = !1+!2 is satis�ed,

then the motion will grow. This can be seen by deriving the dispersion relation

from the new averaged equations of motion. Proceeding from there as previously, the

dispersion relation corresponding to this selection rule is the following,

� =
k0
4m

(!1!2)
1
2

In this case � is real, and values of the envelope functions increase with time. It is

signi�cant that the selection rule resulting in mode growth is 
0 = !1 + !2. Since

all frequencies are de�ned as positive, 
0 is greater than !1 and !2. Unless this

condition holds, the spring cannot transfer energy to the pendula. In other words,

this is a process of parametric decay; there cannot be mode growth at frequencies

higher than the pump frequency. This example is analogous to photon decay, which

cannot occur unless the frequencies of the decay products sum to the frequency of

the original photon.

There is an alternative technique for �nding the dispersion relation, eq. 5.9, which

will now be demonstrated. The �rst step is to take the Fourier transform of the
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equations of motion (eq. 5.5). To facilitate the procedure, write the cosine term on

the RHS as the sum of exponential functions. Then it can be seen that a modulation

in time causes a frequency shift in the argument of the transformed variable. The

transformed equations of motion are as follows,

(�
2 + !2
1)X1(
) =

k0
2m

[X2(
� 
0) +X2(
 + 
0)] (5.10)

(�
2 + !2
2)X2(
) =

k0
2m

[X1(
� 
0) +X1(
 + 
0)] (5.11)

All of the terms in eq. 5.10 must explicitly contain X1 rather than X2, so that X1 can

be eliminated from the equation. The required substitutions are found by shifting

the frequency in eq. 5.11, letting 
! 
�
0 to get X2(
�
0), and 
! 
+
0 to

get X2(
 + 
0).

Since only X2(
 � 
0) is resonant, the contribution from X2(
 + 
0) is not sig-

ni�cant, and this term may be discarded. In order to determine the strength of these

terms, consider the following. Assuming that the �rst pendulum is being driven near

its resonant frequency sets the value for 
, namely, 
 ' !1. The frequency sum rule

driving the coupling resonance requires 
0 = !1 � !2, where !2 is the resonant fre-

quency of the second pendulum. Therefore, X2(
 � 
0) ' X2(!2) is near resonance

and makes a large contribution to the motion of the �rst pendulum compared to

X2(
 +
0) ' X2(!2 +2
0). The latter term could be kept until the �nal dispersion

relation is evaluated near resonance, at which time it is explicit that its contribution

is small. Selecting the dominant terms based on their strength is equivalent to the

phase averaging which was done in the time domain.



92

Find X2(
� 
0) by shifting the frequency in eq. 5.11,

[�(
� 
0)
2 + !2

2]X2(
 � 
0) =
k0
2m

[X1(
� 2
0) +X1(
)]

The X1(
 � 2
0) is non-resonant and will be dropped. Then,

X2(
� 
0) =
k0
2m

[�(
� 
0)2 + !2
2]
X1(
) (5.12)

Upon substitution of eq. 5.12 into eq. 5.10, X1(
) may be eliminated to yield the

dispersion relation,

1 =

�
k0
2m

�2
[�(
� 
0)2 + !2

2][�
2 + !2
1]

(5.13)

This will be shown to be equivalent to the result of the normal mode analysis tech-

nique by doing an expansion around the resonant frequency. Assume the frequency is

nearly resonant, 
 = !1 � i�, where � is small compared to !1. Then the two terms

in the denominator of eq. 5.13 can be written,

�
2 + !2
1 = �!2

1 + 2i!1� + �2 + !2
1 = 2i!1� + �2

�(
� 
0)
2 + !2

2 = �[(
0 + !2 � i�)�
0]2 + !2
2 = 2i!2� + �2

Giving the resonant dispersion relation,

1 =

�
k0
2m

�2
�4!1!2�2 + 2i!1�3 + 2i!2�3 + �4
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To lowest order in �
!j
, the resonant dispersion relation for the coupled pendula has

the same form as that which resulted from the method using normal mode analysis.

� = i
k0
4m

(!1!2)
1

2

5.3 Method of multiple scales applied to a beam

While the principal of parametric coupling is the same in a particle beam as it is

for a pair of mechanical pendula, the modes of oscillation in a beam are macroscopic

averages of the motion of a very large number of particles. Consequently, the coupling

will be described using a perturbative treatment of the Vlasov equation, beginning

with eq. 5.3 which was developed in the introduction of this chapter.

When three-wave coupling is su�ciently weak, the multiple time scale expansion

technique can be used to get a resonant dispersion relation for the process [10, 42].

This method is suitable for the parametric coupling observed in Main Ring, since the

normal modes oscillate rapidly compared to the slower time scale for the growth or

decay of power in these modes. Treating the time scales as independent variables

allows the time derivative @
@t
to be expanded in powers of �, where � is on the order

of the ratio of the time scales. The dependent variables are also expanded, using �

as the expansion parameter for convenience.

@

@t
=

@

@�0
+ �

@

@�1
+ �2

@

@�2
+ � � �
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fm = �f1m + �2f2m + �3f3m + � � �

Um = �U1
m + �2U2

m + �3U3
m + � � � (5.14)

Where,

f1m = f̂m(�1)e
�i!m�0

U1
m = Ûm(�1)e

�i!m�0

The envelope of f1m is given by f̂m(�1), �1 being the timescale for its growth or decay.

The period of oscillation of f1m is �0, with �0 << �1. Similarly for U1
m.

Substituting expansion 5.14 into eq. 5.3, the �rst order equation in � is found by

collecting the �rst order terms,

@f1m
@�0

+ im!(")f1m +
e!0

2�

@f00
@"

U1
m = 0 (5.15)

With,

I1m = e!0

Z 1

�1
f1m d" (5.16)

The �rst order equation in � leads to the linear dispersion relation. Rearranging the

terms of eq. 5.15, and using U1
m = �ZmI

1
m together with eq. 5.16 gives the familiar

result,

1 =
i(e!0)2

2�
Zm(!m)

Z 1

�1

@f0
0

@"

!m �m!(")
d"
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The second order dispersion relation is needed to describe the three-wave coupling

resonance. The derivation begins with the second order equation in �, which is found

by substituting expansions 5.14 into eq. 5.3 and collecting the second order terms,
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+ im!(")f2m +
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1
k e
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0

@"
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1
A (5.17)

Only the most weakly nonlinear dynamical process will be considered here, and the

unperturbed portion of the beam distribution will not be allowed to change. There-

fore, the �rst term on the RHS of eq. 5.17 will be dropped.

The sum of the secular terms is next set to zero, which is equivalent to carrying

out phase averaging. There is no envelope growth of the non-resonant terms, so

they will phase average to zero, leaving only the secular terms which describe the

resonant behavior of three-wave coupling. The secular terms in eq. 5.17 are more

easily identi�ed by taking the Laplace transform,
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Both terms on the LHS of eq. 5.18 may be put in terms of ~U2
m using the relation,
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The term in curly brackets on the LHS is just the linear dispersion relation for mode

m, Dm(s), written as a function of s, the Laplace transform variable, instead of �i!m.
The frequency selection rule is a natural consequence of identifying the secular

terms in eq. 5.19. If both sides of the equation are divided by Dm(s), it can be seen

that ~U2
m will be larger as the dispersion relation is closer to zero. The root of the

dispersion relation occurs when s = �i!m, with !m = m!0 being the frequency of

the mth normal mode. Independent of Dm, the �rst term on the RHS of eq. 5.19 will

also be larger when s = �i!m due to the doubly resonant denominator. On simple

physical grounds, if ~U2
m is large, then an oscillation at !m must be present in the beam.

Thus, the �rst term on the RHS of eq. 5.19 is necessarily secular. The second term
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on the RHS will be secular when !n+!k = !m, due to the s+ i(!n+!k) term in the

denominator. Thus, the frequency selection rule of parametric decay is a consequence

of the condition for the secularity of this second term. Using the phase selection rule

k = m�n, the frequency selection rule may also be written !n+!m�n = !m. Setting

the secular terms to zero,
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Now that the secular terms have been identi�ed and the equation describing resonant

coupling has been obtained, take the inverse Laplace transform of eq. 5.20 to return

to the time domain,
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Û1
n

^U1
m�n

Z 1

�1
d"

@

@"

0
@ @f0

0

@"

!m�n � (m� n)!(")

1
A

�
Z c+i1

c�i1
ds es�0

[s+ im!(")][s+ i(!n + !m�n)]

The evaluation of the s integrals is expedited by doing a partial fraction expansion
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on the arguments of the integrals. Then,
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Equation 5.21 may be simpli�ed by doing an integration by parts on the energy

integral on the RHS,
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In order to examine the circumstance where the response at mode m is due to

mode mixing with an externally applied voltage, let Un be a driving voltage of the

form,

Un = V0e
i(n��
0t) + V �

0 e
�i(n��
0 t) (5.23)

where V0 is the amplitude of the applied voltage, and 
0 = n!0 is the frequency of

the applied voltage. Once mode m is speci�ed in eq. 5.22, if Un is replaced with

the expression given by eq. 5.23, then the summation reduces to two terms. These

describe the coupling of modem to modes m�
0 and m+
0 via the driving voltage.

In other words, each term represents a di�erent selection rule, !m = !n + !m�n and
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!m = �!n + !m+n. For example, suppose that the mode driven by the coupling

resonance is m = 105, and that the drive frequency is n = 106. Then there are two

possible third waves involved. The selection rule 105 = 106 + !k requires !k = �1,
while the selection rule 105 = �106 + !k requires !k = 211. Each of these coupling

terms may be considered separately, as in general modes 211 and -1 will not both be

present. For the sake of simplicity, the m+ n term will be discarded.
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When m is excited, there will also be a response at mode m � n due to the

frequency mixing of !m with 
0. Swapping m and m � n in eq. 5.24 and letting


0 ! �
0, produces the second of the pair of coupled equations. Proceeding with

normal mode analysis, the envelope functions for mode growth, Û1
m(�1) and

^U1
m�n(�1),

are replaced with ae��1 and be��1, where a and b are constants, and � is the envelope

frequency.
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Eliminating the constants a and b in equations 5.25 and 5.26, the second order

dispersion relation at resonance is found,
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The relation !m = 
0 + !m�n has been used to simplify the form of the result.

5.4 Fourier transform method applied to a beam

The dispersion relation for parametric coupling can be found using an alternative

technique to that used in section 5.3. The method is to Fourier transform eq. 5.3,

and then to express all terms as products of the perturbed current Im. This allows

Im to be cancelled out of the equation, resulting in the second order dispersion rela-

tion. The detailed procedure is carried out in appendix B, and only the result will be

discussed here. The form of the dispersion relation obtained using this Fourier trans-

form method is somewhat more general than the result found in section 5.3, since it

is not based on normal mode analysis where the system is implicitly being treated
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near resonance. In order to support the validity of both methods, appendix B shows

the equivalence of the two dispersion relations when the system is near resonance.

The response of the beam at mode m due to parametric coupling of modes n

and k = m� n, may be described by the second order dispersion relation derived in

appendix B,
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where V0 is the amplitude of the applied voltage, 
0 = n!0 is the frequency of the

applied voltage, Dm represents the linear dispersion relation for modem (similarly for

Dm�n), and other symbols in the equation are consistent with previous de�nitions.

When it is feasible to assume a Gaussian beam distribution of the form given by

eq. 2.12, then the dispersion relation may be written in terms of generally available

beam parameters,
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where x = "p
2�"

, �1 =
1p

2�"mk0
(
�m!0), �2 =

1p
2�"(m�n)k0 (
�
0 � (m� n)!0), and

the other variables are as previously de�ned. The coe�cient to the integrals can be

considered a coupling coe�cient; the larger the coe�cient, the more likely parametric

coupling is to occur. The general character of the dependences are as one might

expect. For example, the likelihood of this coupling goes up with beam intensity,

applied driving voltage, or impedance, while it goes down as the momentum width

of the beam increases. However, the level of sensitivity to these parameters is less

intuitive, particularly the dependence on the momentum width of the beam, which

goes as ��8" .

The coupling coe�cient is an indication of why parametric coupling readily oc-

curs in a marginally stable machine such as the Main Ring, while it is di�cult to

stimulate in a stable machine such as the Accumulator. First, there is an absence of

coupling impedance available in stable machines. Secondly, the e�ective beam width

in the Main Ring was much narrower than the actual beam width, due to the de-

pletion within the beam distribution. These depletion regions caused deep notches

to be visible in the magnitude response of the transfer function measurements. In

contrast, Accumulator transfer function measurements showed a beam distribution

with a smoothly varying particle population.

One signi�cant di�erence between the simple case of a system of parametrically

coupled pendula and the analysis for a beam, is that in the system of pendula there

was no mechanism for damping. There is damping in the beam case, which is con-

tained mathematically in the complex denominators in the integrands of the disper-

sion relation, and is due physically to the energy spread of the beam. Damping in

the parametric coupling process in a beam is due to a combination of the resonant
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denominators in the linear dispersion relations of the individual modes. Thus, the

relative stability of each of the independent modes also determines the beam stability

with respect to the coupling resonance. This might be expected, as the parametric

coupling process is weakly nonlinear. The waves are essentially scattering o� each

other without changing the distribution of particle energies in the beam.

5.5 Mode growth and conservation laws

The frequency sum rule for parametric coupling and conservation of energy for the

process are mutually implied [2, 9, 10]. The time rate of change of the total wave

energy density per mode number of the three-wave system will be shown to be zero,

provided that the frequencies of the three modes sum to zero. This will be shown only

for a weakly dissipative system, with the additional restriction that the impedance is

a constant. The method used here follows one given by Davidson [10] for a plasma,

with a departure being that the conserved quantity in the beam case is wave energy

density per mode number, rather than wave energy density. Also, for a beam, the

coe�cient of the interaction matrix Vmnk is written in terms of the machine impedance

and the revolution frequency, whereas in the plasma case the coe�cient is written in

terms of the plasma frequency and the wave number. Although it is not treated here,

consideration of the general case would be useful, for this more complete accounting

of the energy 
ow should allow for the extraction of the frequency dependent machine

impedance from a parametric coupling event.

The mode number sum rule for parametric coupling and conservation of momen-

tum for the process are also mutually implied. They can be linked using the same
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formal technique as the one shown below, except that the de�nition of wave momen-

tum is used in place of the de�nition for wave energy density.

The wave energy density per mode number of mode m, symbolized by Wm

m
, and

the wave momentum per mode number of mode m, symbolized by Pm
m
, are given in

MKSA units by,
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where m is the mode number, !m is the frequency of the mode, �0 is the permittivity

of free space, Um is the the wake�eld voltage per turn at mode m, and the linear

dispersion relation Dm is equivalent to the dielectric coe�cient. These relations may

also be written,
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where Am is the wave amplitude Am = 1
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,

with sm = �1, depending on whether the wave is a positive or negative energy wave.

Wave energy density per mode number is conserved if the following holds,

d
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Using eq. 5.30, the change in the wave energy density per mode number can be

expressed,
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The time rate of change of mode amplitude m, @Ûm
@t

, is found by rearranging eq. 5.21

and dropping the multiple time scale perturbation notation,
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The denominator of eq. 5.33 has nearly the same form as @Dm
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The growth rate of the wave amplitude can be cast in the form,
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Equation 5.34 may be written more compactly,
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where the matrix element of the interaction has been symbolized as Vmnk, and is

de�ned by eq. 5.34 as the following,
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Substituting eq. 5.35 into eq. 5.32 and carrying out the summation over modes,
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Equation 5.37 is invariant under permutation of the indices on the RHS. Performing

two such permutations, and adding the three resulting equivalent expressions, allows

the RHS to be of eq. 5.37 to be re-written,
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In order to complete the proof, use is made of the following equalities,

!�m = �!m

A�m = A�
m

The �rst equality is true since the normal mode frequencies of a storage ring are given

by !m � m!0, where !0 is the revolution frequency of the ring. The second equality

can be seen by letting m ! �m in the de�nition of the wave amplitude Am, and

making use of the fact that �m � m� in a ring.

The following symmetry relations, which are demonstrated in appendix C, are

also needed:
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Thus, the total change in energy density per mode number of the system is zero,
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provided that the frequency sum rule !m = !n + !k is satis�ed. Proof of the rela-

tion between the conservation of wave momentum and the mode number sum rule

follows the same steps as the preceding proof, except that it begins with eq. 5.31, the

de�nition for wave momentum.

While this derivation does not apply in the presence of signi�cant dissipative ef-

fects, its importance lies in the realization that the wave-wave coupling process is

governed by conservation of energy. The requirements of energy conservation de-

termine which combinations of wave coupling will be allowed in the system. If the

analysis is extended to include dissipation and a more generalized machine impedance,

it may prove useful for extracting the impedance from measurements of a beam in

the weak to moderately nonlinear regime.



Chapter 6

Main Ring time domain results

6.1 Introduction and overview

The observations motivating this study of parametric coupling of longitudinal modes

in coasting beams were made in the Tevatron [44, 45], a high energy proton syn-

chrotron at Fermilab. These observations showed growth of multiple modes after a

single drive frequency had been applied to the beam. There was an indication that

these modes were sequentially excited from higher to lower frequencies in a cascade.

Further, this multiple frequency response occurred only after the applied voltage had

crossed a certain threshold. The evidence suggested a classic second-order frequency

mixing e�ect, known as parametric coupling. This led to the studies presented here,

which were done in the Main Ring proton synchrotron, whose purpose was to de-

termine and document the nature of this process. Once it was established that the

parametric coupling process was indeed an aspect of beam dynamics in the Main

Ring, new studies were initiated to investigate beam behavior under more strongly

109
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nonlinear conditions.

One possible way to characterize a system is by its degree of nonlinearity. There

is a continuous spectrum of possibilities, from linear to chaotic. The �rst level of

nonlinearity after the linear regime are weakly nonlinear processes such as parametric

coupling. This 3-wave coupling process is analyzed using the same techniques as used

in linear stability theory, with the exception that now besides the linear terms a second

order frequencymixing term is retained in the description of the beam dynamics. This

coupling resonance is not strongly nonlinear in the sense that it is still considered a

perturbation, not signi�cantly changing the initial particle distribution.

The experimental setup for the study of parametric coupling is described in sec-

tion 6.2. Experimental results are reviewed in section 6.3. These results show that

a single frequency excitation can produce a multiple frequency cascade from higher

to lower harmonics. The mode coupling is single-sided, only those modes lower than

the pump frequency were excited. The timing of growth at the di�erent harmonics

relative to a short initial drive pulse was determined, giving evidence of the frequency

selection rules which were in operation. The data provide con�rmation that the

phenomenon being studied was indeed parametric coupling.

The role of machine impedance in the parametric coupling process is examined in

section 6.4, where it is shown to enhance coupling. Since the strength of parametric

coupling depends on the machine impedance, perhaps ultimately the impedance could

be extracted from a coupling measurement. If machine conditions are conducive to

parametric coupling, then the nonlinear response to an excitation would make it

di�cult to get a clear impedance measurement using conventional methods. In order

to get an accurate measurement out of the coupling process, a more quantitative



111

analysis of power 
ow in the system is needed.

An investigation of the Main Ring threshold for parametric coupling is presented

in section 6.5. Unlike the case of the Tevatron, parametric coupling occurred in the

Main Ring as soon as there was any detectable perturbation of the beam at the drive

frequency. Main Ring is a marginally stable machine (see chapter 4), with plenty of

available coupling impedance. In addition, the Tevatron has a sti�er beam, coasting

at 150 GeV as opposed to 8.9 GeV in the Main Ring. These factors strengthen

the coupling coe�cient which governs the parametric process in the Main Ring (see

chapter 5).

The dynamics of a particle beam become moderately nonlinear as the strength

of the wake�elds increase, and the initial particle distribution is disrupted. Some

of the signatures of moderate nonlinearity are a longer, nonlinear Landau damping

time for the decay of coherent motion, higher harmonic generation, and asymmetric

particle clumping across the beam distribution. These processes are described brie
y

below. All of these characteristics have been observed experimentally in the Main

Ring. In order to enhance nonlinearities, the power delivered by the drive pulse was

increased, primarily by increasing the length of the pulse. Results of experiments in

the moderately nonlinear regime are summarized in section 6.6.

When wake�eld voltages increase beyond a perturbative level, coherent mode os-

cillations decay with a nonlinear Landau damping time that may be long compared

to the linear Laundau damping time [7, 20, 21]. As a wake�eld amplitude increases,

more particles become trapped in the potential well of its voltage waveform, which

causes them to travel on nonlinear orbits. This bunching of particles in energy (and

phase) modi�es the particle distribution. The coherent beam motion, which consists
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of the phase oscillations of the trapped particles, may sustain itself as a result of en-

ergy exchange between the voltage wave of the wake�eld, and the coherent oscillation

of the trapped particles.

The phase relation of the bunched particles and the voltage wave is such that the

particles in turn gain energy by acceleration from the voltage wave, and then due

to this energy gain, slip in phase so that the voltage wave then takes energy back

out of the particle bunch. This rotation of the particle bunch between energy and

phase causes a 'bouncing' or modulation of the mode power during its decay. The

decay itself is due to the energy spread of the trapped particles and the nonlinearity

of the voltage wave. Energy dispersion causes the particles to be at di�erent relative

phases on the wave, and the nonlinearity of the wave then causes phase mixing of the

particles. This phase smearing dilutes the trapped particles, thus reducing the peak

current of the coherent oscillation, damping the coherent motion. In addition, the

decrease in peak current will in turn decrease the amplitude of the self-�eld.

Higher harmonic generation refers to the phenomena whereby not only the cascade

of modes directly excited by the pump frequency become coherent, but also higher

multiples of these modes [23]. For example, besides supporting h = 105, the beam

would also have a coherent response at h = 2 � 105, h = 3 � 105, and so on. Like

nonlinear Landau damping, higher harmonic generation is a result of particle bunching

by wake�eld voltages. The periodic 
uctuation of the particle density in the spatial

coordinate produces harmonics of the fundamental frequency of the 
uctuation.

There are speci�c circumstances under which nonlinear phenomena not generally

present may occur. One example is soliton formation [24, 25, 48]. Normally the

coherent motion of a group of trapped particles will damp as the particles disperse
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due to their relative energy di�erences and the nonlinearities in the �eld. However,

under some circumstances, the particles may interact with the machine in such a way

as to steepen the wavefront of the wake�eld. The wavefront may change enough so

that the nonlinear driving force of the �eld comes to a balance with the dispersion.

In this case, the particles will remain clumped together, caught in this nonlinear

equilibrium.

Asymmetric particle clumping across the beam distribution has been observed.

Particle clumping, or the formation of pockets of trapped particles into bunchlets, on

only one side of the beam distribution was indicated by a particle tracking simulation,

and then veri�ed experimentally. The simulation modeled a longitudinal coasting

beam experiencing a machine impedance [46, 47]. Power in the higher order harmonics

was found to be modulated with a bunchlet rotation frequency on only the high energy

side of the beam distribution. This high frequency grouping of a subset of particles,

which are selected on the basis of their energies, may be an indication of a generalized

soliton-like behavior.

The importance of studying and understanding nonlinear e�ects lies in the fact

that although beam instabilities (mode growth) begin in the regime of linear stability

theory, if the motion is unstable, the beam dynamics move quickly into nonlinearity.

Emittance dilution and saturation of mode growth are nonlinear phenomena, and are

increasingly important in the era of high intensity beams.

6.2 Experimental setup

The experimental setup used for time domain measurements in the Main Ring is

shown in block diagram form in �gure 6.1. An impulse excitation was applied to
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Figure 6.1: Block diagram of Main Ring time domain setup.
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the beam via the 5 MHz coalescing cavity, which was used as a longitudinal kicker.

The frequency and width of the pulse were both adjustable. The beam response

to the excitation was monitored via a quarter wave transmission line pickup, which

operates as a broadband longitudinal beam detector. More complete descriptions of

the hardware may be found in section 4.2.

The signal from the beam detector was monitored with an HP 8568B 100 Hz-1.5 Gz

spectrum analyzer. The spectrum analyzer was set up in such a way as to determine

the time development of power at selected frequencies. This is done by setting the

center frequency of the sweep to the frequency of interest, and the frequency span

to 0 Hz. Power at the selected frequency will then be recorded over the sweep time

of the instrument. The setting for the frequency resolution determines how wide the

monitored frequency band will be. The spectrum analyzer traces were stored on a

VAX using a GPIB interface. The beam kicker, beam pickup, and ampli�er were the

same as those used for the frequency domain measurements.

The frequency source for the pulse was the HP 8753C network analyzer, with

a continuous wave sweep at a �xed frequency. The frequency was chosen to be

somewhere within the band of the 5 MHz cavity, the typical selection being the

center frequency h = 106, or 5.029805 MHz. The output of the network analyzer

was gated onto the beam kicker for a short time using an RF power switch with a

single, triggerable gate pulse. The gate, with a typical width of .5 ms, was supplied

by an HP 8011A pulse generator operating with an external trigger. Unlike studies

conditions in the Accumulator, the beam in the Main Ring did not coast inde�nitely,

but was dumped anywhere between 3-12 seconds after injection. For this reason,

the instruments were all triggered externally by available timing pulses which had
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adjustable delays from the beginning of the Main Ring beam cycle.
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Figure 6.2: Fanback signal when a .5 ms drive pulse is applied to the Main Ring 5 MHz
cavity. Spectrum analyzer setup: Center frequency at h=106, Frequency span=0 Hz,
Resolution bandwidth=10 kHz, Sweep time=20 ms.

There was no signi�cant distortion of a driving pulse applied to the Main Ring

5 MHz coalescing cavity. This can be seen in �gure 6.2, which shows the cavity

fanback signal while the drive pulse was being applied to the cavity. The drive pulse

was at frequency h=106, and the spectrum analyzer trace in �gure 6.2 shows the

power level of the fanback signal at the same frequency.

In order to determine the quality of the frequency isolation, nearby harmonics

were also examined while driving the cavity at h=106. The results are shown in

�gure 6.3. Most of the unwanted power was in the adjacent harmonics which were

down by 20 dB. While this is not perfect isolation, it was su�cient for the nature of

the studies undertaken.
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Figure 6.3: Examination of the frequency isolation of the 5 MHz cavity: amplitude
of the Main Ring cavity fanback signal at several harmonics while driving the cavity
at h=106.

6.3 Mode coupling cascades

Longitudinal mode growth after a short, single frequency excitation develops in time

as a cascade from higher to lower harmonics. Studies, whose results will be presented

here, show that after a drive pulse at h = 106, coherent motion occurs �rst at h = 106,

and then downward through a succession of additional harmonics. There seems to be

no signi�cant coupling of the motion to the high frequency side of mode 106.

The drive pulse, with a duration of .5 ms, together with the beam response at the

drive frequency, are shown in �gure 6.4. Both curves are spectrum analyzer traces

of power at harmonic 106 versus time. The trace of the drive pulse was obtained by

looking at the cavity fanback as the pulse was applied to the cavity, while the trace

of the beam response came from the longitudinal beam detector. The two curves are

overlaid, but the relative timing is correct, since in both cases the same trigger and

sweep time were used.
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Figure 6.4: Power versus time at h = 106 in response to a .5 ms drive pulse. There
are two overlaid traces in this �gure, each was taken with the same trigger and with
the same sweep time. One trace is the power versus time at h = 106 as seen on the
longitudinal detector signal. The other is the cavity fanback signal at h = 106.

As seen in �gure 6.4, the peak response of the beam at h = 106 occurs about 10

ms after the drive pulse is over. In addition, rather than exhibiting a smooth rise and

decay of signal power, the trace shows a 'bouncing' e�ect. The application of voltage

to the cavity acts to bunch some fraction of the beam. There is an ensuing rotation of

these particles in the bunched beam phase space in which particle clumping in the time

dimension evolves into clumping in the energy dimension. As particle clumping in

time increases, the instantaneous beam current passing through the detector increases,

causing a larger signal. The exchange between energy and time creates an apparent

modulation on the overall decline of power in the beam. In spite of the short drive

pulse, the evidence shows that mode 106 is subject to nonlinear Landau damping. The

coherent oscillation damps signi�cantly more slowly than the linear Landau damping
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time, which is �landau = :011, according to eq. 7.7. This result is expected in light of

the bunch structure modulation, which indicates that the initial beam distribution

has been signi�cantly altered.

Figure 6.5 has been included since it shows signal modulation due to bunching

particularly clearly. It also shows coherent motion lasting long after the drive pulse

had terminated, which requires the presence of wake�elds. Notice that as the peak

power in the signal declines, the 'bounce' frequency decreases, an indication that the

wake�eld voltage is also decreasing.
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Figure 6.5: Power versus time at h = 105 in response to a .5 ms drive pulse. The
placement of the drive pulse has been drawn in for reference (located at .005 sec).

The cascade of mode excitation occurring after the drive pulse is shown in �g-

ure 6.6. Eight traces of the evolution of power in harmonics 106-99, having the

correct relative timing are displayed. Since the complete �gure is complex, the power

evolution in only the odd harmonics is shown in �gure 6.7. It can be seen in either of
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Figure 6.6: Power in all excited harmonics versus time in response to a .5 ms drive
pulse. Even harmonics are represented by a solid line, odd harmonics by a dashed
line.
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Figure 6.7: Power versus time at odd harmonics in response to a .5 ms drive pulse
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�gures 6.6 or 6.7, that the mode growth is sequentially downward, with each mode

reaching its peak and then declining as lower harmonics grow in their turn. Each

mode peaks at a di�erent power level, the level of the peak increasing from h = 106

to h = 100. Afterwards, the peak power decreases again down through h = 95, which

is close to the last mode to be excited with this short drive pulse.

One purpose of �gure 6.8 is to demonstrate the single sided nature of the growth

of the coupled modes. The top plot of the �gure shows peak power versus harmonic

number, while the bottom plot shows the time to reach peak power versus harmonic

number. Only those harmonics whose peak power was arguably above the noise 
oor

have been plotted. As can be seen in �gures 6.6 and 6.7, the noise 
oor is somewhere

around -95 dB. While there was a slight increase in power in a few of the harmonics

above h = 106, the peak power in these harmonics was only slightly above the noise,

and may have been due to imperfect frequency isolation in driving the cavity. The

conclusive evidence that these higher harmonics were not coupled into h = 106 in

the same way as the lower harmonics, can be seen in the bottom plot of �gure 6.8.

The time to the peak power for harmonics 107 and 108 was roughly the same as for

harmonic 106. In contrast, all harmonics lower than 106 reached their peaks later

and in sequence.

Assuming that frequency mixing was responsible for the excitation of multiple

harmonics, the orderly cascade of energy through the lower modes suggests that

h = 1 was the third wave in each of these coupling events. Depending on the initial

distribution of power, each instance of coupling may have been either a wave scattering

or decay. The high frequency wave could have decayed into two lower frequency waves,
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Figure 6.8: The top plot shows peak power at the harmonics excited during parametric
coupling. The bottom plot shows time to peak power at these harmonics. The drive
voltage was a .5 ms pulse applied at h = 106.
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one of which was the h = 1 mode. Symbolically,

!106 ! !105 + !1

!105 ! !104 + !1

...

Alternatively, the high frequency wave could have scattered with a wave at h = 1,

producing the next lower harmonic. Symbolically,

!106 � !1 ! !105

!105 � !1 ! !104

...

In either case, the pattern of excitation is consistent with the frequency selection

rule required for parametric coupling. The distinction between scattering and decay

can only be made by understanding the direction of power 
ow. The scattering

process would require that the h = 1 mode be initially coherent, and remain coherent

throughout the time of the cascade. In principal, conservation of energy could be

used to make this determination, since power in the h = 105 mode would be greater

if energy were 
owing in from both the h = 106 and h = 1 modes. However, the actual

storage ring has dissipation which removes energy from the system, and impedance

which enhances the wave motion. These e�ects have not been quanti�ed..
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Figure 6.9: The top spectrum analyzer trace shows power at h = 1 when the beam
was unbunched, and the bottom trace shows power at h = 1 for a bunched beam.
The sweep time was 3 seconds and the resolution bandwidth was 10 Hz.
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Power measurements at h = 1 indicate that wave scattering is possible in the

Main Ring. Even with an unbunched, low intensity beam, there was enough power

in the h = 1 mode that the signal was signi�cantly above the noise 
oor. The two

spectrum analyzer traces in �gure 6.9 show power measured at h = 1 for bunched

and unbunched beams. The intensity during the scan was 3.6E11 ppp. The power

at h = 1 versus time was also measured. Although the power did decrease slowly

by about 20 dB from the level at injection, at the end of the beam cycle the signal

was still 15-20 dB above the noise 
oor. The h = 1 mode was also examined during

the parametric process, with no detectable change in the signal level. It is possible

that the additional energy gain from a parametric decay was too small to be resolved,

but it seems more likely that h = 1 is continuously coherent, providing an available

partner for frequency mixing.

6.4 The role of impedance in coupling

Parametric coupling can only transfer coherent energy between di�erent modes, it

cannot cause damping or ampli�cation of the total mode energy of the system. There

must be other sources to drive coherent oscillations. Although a .5 ms drive pulse

was provided to initiate mode growth during the coupling experiments, the e�ect of

the pulse was enhanced by wake�elds.

Although the coalescing cavity was being used as the beam kicker, it also provided

impedance which ampli�ed the mode coupling. After an initial perturbative impulse,

the cavity supports wake�eld generation, which in turn causes the self-bunching re-

sponsible for coherent signals. The role of the cavity during the parametric coupling

cascade is shown in �gure 6.10, where the frequency response curve of the cavity is
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superimposed on the power spectrum of the beam during parametric coupling.
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Figure 6.10: Superposition of maximum power spectrum of beam after .5 ms drive
pulse (diamonds), and the frequency response of the cavity (circles). The absolute
scale of the y-axis corresponds to the curve for the beam spectrum, the cavity response
curve has been o�set by -60 dB for viewing convenience.

The peak signal level of modes within the cavity bandwidth grows from harmonic

to harmonic in the direction of the power 
ow. Energy at the driving frequency

gets coupled into h = 105, where the cavity supports mode growth. There is then

more energy available for transfer into h = 104, which also grows due to the cavity

impedance. This continues, the mode growth slowing down as the frequency shifts

away from the center frequency of the cavity. Once outside the cavity bandwidth, the

peak signal level of successive harmonics then declines as the coherent mode energy

dissipates away. When the initial driving signal approximates an impulse, the shape

of the cascade of parametric coupling events is determined by the machine impedance

(plus dissipative e�ects and the cumulative e�ect of the contribution from h = 1).
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The slope of the energy change during the cascade gives a good qualitative picture of

the nature of the machine impedance.

Additional evidence as to the role of the cavity impedance is shown in �gure 6.11.

The peak power in two selected harmonics is plotted as a function of the frequency
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Figure 6.11: Peak power at harmonics 102 (circles) and 110 (diamonds) as the fre-
quency of the driving pulse is varied.

of the driving pulse, which is varying for this particular study. The two harmonics

chosen for monitoring were on the upper and lower side of the center frequency of

the cavity (lower:106-4=102, upper:106+4=110). Due to the single-sided nature of

the mode coupling, the lower harmonic (102) could receive energy when the drive

frequency fell within the center of the cavity bandwidth, while the higher harmonic

(110) could only receive energy when the drive frequency fell on the tail of the cavity

bandwidth. The mode growth at h = 102 could be fully ampli�ed by the cavity

impedance, while that at h = 110 could not.
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During the majority of the parametric coupling studies, the beam was stimulated

by a short perturbative pulse. The coherent response of the beam quickly dissipated

once the coupling reached harmonics outside the range of the cavity impedance, as

shown in �gure 6.10. However, during one study a continuous voltage wave was

applied, rather than a gated pulse. In this case, the parametric coupling was seen to

continue down through many harmonics outside the range of the cavity impedance.

6.5 Threshold measurements

There were a few studies aimed at addressing the question as to whether there is a

threshold condition for the parametric process in the Main Ring. One of these was to

slowly increase the power in the driving voltage while looking for mode growth. Power

was increased by changing the attenuation on the drive signal. As seen in �gure 6.12,

even before a coherent signal is discernible at the drive frequency (h = 106), mode

growth is detectable at the coupled frequencies.

Another study was to lower the beam intensity in an attempt to drop below the

coupling threshold. The power of the mode response for harmonics 105, 106, and 107

versus the beam intensity is shown in �gure 6.13. Even at the lowest beam intensity,

there was evidence of the coupling resonance.

Based on these studies, the Main Ring is already above the threshold for para-

metric coupling.
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Figure 6.12: Peak signal power versus drive level for excited harmonics
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Figure 6.13: Peak signal power versus beam intensity for harmonics 105, 106, and
107.
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6.6 Nonlinear wave-particle e�ects

Observation of 'bouncing' in the power signals of excited modes, along with the par-

ticle clumping and �lamentation e�ects seen in a particle tracking simulation [46, 47],

were invitations to experiment with greater driving voltages. The trapping of parti-

cles into bunchlets is an inherently nonlinear process, and for the case of low energy

electron beams, has been demonstrated by O'Neil, Winfrey, and Malmberg [23] to

generate a response at higher harmonics of the fundamental bunching frequency. The

higher order harmonics are naturally coherent as a result of the newfound periodicity

of the particle density, and are not due to an energy transfer from lower harmonics.

With su�cient driving voltage, higher harmonics of the parametrically coupled

modes were detected in the Main Ring experiments. For example, with a 45 ms pulse,

harmonics of up to 40 times h = 105 were excited. The relative power levels in several

of these harmonics are plotted in �gure 6.14. During this study, there was actually
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Figure 6.14: Peak power at the higher harmonics of h = 105.
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more power in some of the higher harmonics of h = 105 than at the fundamental.

These higher harmonics must be generated from nonlinear voltages which result from

the bunching process itself, rather than through some type of higher order mode

generation of the cavity. Evidence of this lies in the fact that the power spectrum

of the higher order modes is consistent with the power spectrum of the beam at low

frequencies (see �gure 6.15). For example, h = 107 is not excited due to the single-

sided nature of parametric coupling, and there are no higher harmonics of h = 107.

Another interesting investigation was to examine the e�ect that the width of the

drive pulse had on the parametrically coupled modes. The magnitude response of

h = 105 versus time for pulse widths of 10, 20, 40, and 80 ms is shown in �gure 6.16.

As the initial drive pulse increased, not only did the coherent motion due to the

self-�eld persist for much longer, the synchrotron period of the bunched particles also

increased. (Synchrotron period is accelerator physics terminology for the period of

rotation between energy and phase of the particles in a bunched beam.) Note that for

the responses shown in �gure 6.16, the synchrotron period approximately doubles as

the width of the initiating pulse is doubled. However, this series of measurements was

somewhat fortuitous, as the evolution of the particle trapping and subsequent motion

is also dependent on initial conditions, such as the energy spread of the beam. This

can be seen in �gure 6.17, where two identical 80 ms drive pulses initiated a di�erent

response pattern at the same harmonic. A di�erent arrangement of trapped particles

in phase space must be the cause of these variations in the signal modulation.

Particle tracking simulations with a machine impedance built into the beam dy-

namics suggested the possibility of an asymmetry in wake�eld induced bunchlets
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Figure 6.15: Peak signal power at higher order harmonics.
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Figure 6.16: Power versus time at h = 105. Each trace was taken with a di�erent
drive pulse width. From top to bottom the pulse widths were 10ms, 20ms, 40ms, and
80ms.
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Figure 6.17: Power versus time at h = 105. Both traces were taken with an 80 ms
drive pulse.
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across the beam distribution. This asymmetry is a consequence of the impedance,

which may have both resistive and reactive components. The phase evolution of par-

ticles on the high energy side of the beam distribution has the opposite sense with

respect to an ideal particle than that of the particles on the low energy side. Particles

on one side of the distribution or the other may be able to resonantly interact with the

impedance. Whether it will be the higher or lower energy particles that experience a

frequency shift due to energy exchange with the �eld, depends on whether the �eld

is capacitive or inductive. It is possible for the combination of the nonlinearity of

the wake�eld voltage and the particle dispersion to trap a subset of particles. This

coherent clump of particles may then undergo deceleration depending also on the

resistive component of the wake�eld.

It was feasible to look for the asymmetry demonstrated by the simulation, since

the spectrum analyzer being used allowed resolution bandwidths down to 10 Hz. By

setting the center frequency at di�erent points across the frequency distribution of

the beam, and then narrowing down the resolution bandwidth of the instrument, it

was possible to monitor the time development of power in various fractions of the

beam. Upon following this procedure at some of the higher harmonics (for exam-

ple, h=5x105) the posited asymmetry was discovered. One such scan is shown in

�gure 6.18, where the three traces represent three frequency slices of the beam. The

middle trace resulted when the center frequency of the spectrum analyzer was set to

the center frequency of the chosen harmonic, which was 5x105. The center frequency

of the upper trace was o�set by +500 Hz, while that of the lower trace was o�set

by -500 Hz. The resolution bandwidth of the spectrum analyzer was set to 300 Hz.
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Note that since the Main Ring was below transition in these studies, the high fre-

quency side of the beam distribution corresponds to the high energy side of the beam

distribution.

The power evolution of the high frequency side of the beam distribution exhibited

a modulation which was not present at the center frequency or on the low frequency

side. This modulation is reminiscent of the bunch rotation modulation seen on power

signals exhibiting nonlinear Landau damping (discussed in section 6.3). This suggests

that there were indeed small islands of particles in phase space, or bunchlets, that only

developed on one side of the energy spectrum. The phase of the wake�eld is indicated

by the particular side of the energy spectrum on which the bunching occurs.

In order for groups of particles to remain clumped into bunchlets, there must be a

nonlinearly generated voltage which at least compensates for the natural tendency of

energy dispersion. If these bunches do not become narrower with time, then perhaps

the nonlinear force of the wake�eld is just balancing the energy dispersion e�ect.

This behavior is similar to that of solitons, which have been studied in other areas of

physics, and may be a fruitful area of future study.

This concludes the description of the nonlinear studies which were carried out in

the Fermilab Main Ring. Attention will now be turned to another manifestation of

weak wave-wave coupling that may be seen in particle beams, namely, beam echoes.
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Figure 6.18: Power versus time in cross-sectional frequency slices of the beam. In
the middle plot the center frequency is h = 5 � 105 = 24:9 MHz, while in the top
plot cf=(5� 105) + 500 Hz (this is the higher energy side of the distribution), and in
the bottom plot cf=(5 � 105) � 500 Hz. The resolution bandwidth of the spectrum
analyzer was set to 300 Hz.



Chapter 7

Theory of echoes

7.1 Introduction and overview

An echo in a particle beam is a coherent current oscillation, occurring with some

delay after a sequence of two independent pulse excitations. The beam response to

a longitudinal kick naturally decoheres, with a decoherence time that is inversely

proportional to the energy spread of the particles in the beam. Damping due to a

spread in the natural frequencies of a system is generally called Landau damping. A

key characteristic of Landau damping is that although the coherent motion damps,

the phases of the particles remain correlated. Due to this correlation, the phase

evolution of the decoherence is reversible. An echo is a partial reconstruction of the

particle phase relations present during the coherent motion from the initial kicks.

This reconstruction normally occurs some time after the beam response to the kicks

has damped away, the coherent motion of the echo growing in the absence of direct

excitation.

140
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Echoes are enabled by frequency mixing of the two initial pulse excitations. As

such, echo phenomena are directly related to parametric 3-wave coupling, although

they are best described with time domain analysis. Echoes arise from a speci�c

temporal 
ow of events; the phase evolution of the particles following the �rst kick is

modi�ed by the action of the second kick in such a way as to reconstruct a coherent

oscillation at the mixing frequency. Echoes have been observed and studied in other

areas such as nuclear magnetic resonance [14] and plasma physics [15]. It is also

possible to study beam echoes in transverse phase space [17, 18], as well as in the

longitudinal phase space of a bunched beam [19].

Longitudinal echoes in an unbunched beam have been seen with good clarity in the

Fermilab Accumulator. The frequency of these echoes was the di�erence frequency

of the applied excitations. Both the timing of the echo and its amplitude can be

theoretically predicted. The time delay to the echo has a simple linear dependence

on the frequencies and the pulse separation of the applied excitations. The amplitude

dependence is more complicated, and in some cases depends on factors other than the

kick parameters. Echo generation relies on the phase relationship of the particles not

becoming disrupted. Processes such as small angle coulomb scattering (intrabeam

scattering) will decrease the echo amplitude, completely eradicating it if either the

collision rate is high enough, or the echo delay is long enough. The measurement of

the decay of the echo amplitude thus allows the opportunity to determine the di�usion

rate in a beam.

As delineated in Lifshitz and Pitaevskii [48], one of the simplest physical systems

allowing the presence of echoes is a collisionless, neutral gas. Section 7.2 goes through

this example for the purpose of presenting the basic features of the echo mechanism
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with a minimum of complication. The gas particle density is modulated by two purely

sinusoidal continuous excitations of di�ering wave numbers. One of the excitations

starts with some delay after the other. This example shows that although the particle

distribution retains information from the modulations on a microscopic level, the

macroscopic perturbations of the gas density damp with characteristic damping rates.

The coherent response due to the frequency mixing of the two excitations happens at

a speci�c time, techo. This is calculated and shown to depend on the wave numbers of

the two excitations, and on the time delay to the start of the second excitation. The

physical principles as well as the form of the result for techo are the same as those in

the later particle beam examples.

The extent of the mathematical treatment of echo generation in high energy par-

ticle beams depends on what dynamical processes are playing a role in the particle

motion. The simplest situation is that in which the initial particle distribution is

a�ected only by the externally applied excitations. The distribution then evolves

in a free-streaming manner since no self-�elds are generated, and the self-consistent

Vlasov treatment is not necessary. A treatment of beam echoes neglecting wake�elds

and particle collisions is given in section 7.3, which follows the method used by T.M.

O'Neil [16]. The external excitations used for the beam studies in this work were

short kicks approximating impulse excitations. Although the analytic method in sec-

tion 7.3 is similar to Lifshitz and Pitaevskii, the nature of the applied excitations is

more suitable for the beam case. In order to examine the perturbed beam current at

a certain frequency, a Laplace transform of the beam distribution is done to pick out

the desired mode. The kicks, while still sinusoidal, are of �nite duration and cause a

discrete phase change, which then evolves accordingly. The damping time constant,
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or Landau damping time, of the coherent beam response to a single kick is calculated.

The response at the echo frequency is examined in some detail. The dependence

found for techo is the same as in the example of section 7.2, but the amplitude of the

echo now has a Bessel function dependence. In addition, as a consequence of the

short pulse lengths, higher order echo generation is also possible. These higher order

echoes have frequencies which are combinations of multiples of the frequencies of the

driving pulses. If the applied kicks are su�ciently weak, then this general result

may be simpli�ed for the perturbative case, by approximating the Bessel function

dependence with the �rst term of the expansion.

A treatment of beam echoes which includes wake�eld e�ects was done by P. Cole-

stock and is presented in section 7.4. Analysis allowing for wake�elds begins with

the Vlasov equation. Since echoes are a frequency mixing e�ect, in a perturbative

treatment, the second order equation is required. Barring any collisional terms, this

equation would be the same as eq. 5.3. The result for the echo current amplitude

obtained with this method is favorably compared in the limit of no wake�elds to the

result of section 7.3 for weak kicks.

Finally, in section 7.5 the continued analysis of P. Colestock which includes both

wake�elds and collisional e�ects on the beam dynamics is examined. In order to

include di�usion in the beam dynamics, collisional terms (which can be represented

by the Fokker-Planck operator [12]) are added to the Vlasov equation. This transport

equation which includes collisions is now called the Boltzmann equation [50]. A

calculation of the echo current amplitude beginning with the Boltzmann equation is

done in 7.5. The analysis technique is the same as that used in section 7.4, only

somewhat more cumbersome due to the extra collision terms in the initial equation.
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The disadvantage of this treatment is that the Boltzmann equation cannot be easily

solved analytically without a perturbative expansion of the dependent variables. As

long as the kick strength is small enough, the results of this method are valid.

Once the general solution for the echo current is found, it is then examined in the

limit of no wake�elds. Wake�elds were not a signi�cant factor in the Accumulator

echo experiments presented in this work. Neglecting wake�elds in the solution for the

echo current curtails the work needed to extract relationships for speci�c measurable

parameters, such as techo, and the di�usion rate. In chapter 8, these analytic results

are compared with the experimental data.

7.2 Simple example of a collisionless neutral gas

Echoes can occur in a gas of uncharged particles which are not undergoing collisions.

The echo mechanism is purely kinematic and may be investigated in a single plane

having phase space variables x and p. The gas is initially spatially uniform with a

Maxwellian distribution in momentum,

f0(p) = A0e
� p2

2mkBT = A0e
�( �

2m
)2p2

In general, the distribution function is integrated over momentum to give the number

of particles per length,

n =
Z 1

0
f(x; p) dp
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A sinusoidal perturbation with wave number k1 is applied at t = 0, modulating the

unperturbed particle distribution,

f(x; p) = A1 cos
�
k1(x� 1

m
pt)
�
f0(p)

The applied perturbation also produces a modulation of the density of the gas. Al-

though f remains oscillatory, the density perturbation damps,

n = A1Re
�
eik1x

Z 1

0
e�i

k1
m
tpe�(

�
2m

)2p2 dp
�

= aRe

"
eik1xe�

k2
1
t2

�2

#

The oscillation is damped by an exponential in t2, with a damping time constant

of �
k1
. This damping, or decoherence, of the density 
uctuation is considered to be

Landau damping in the free-streaming limit, where there is no exchange of energy

between the particles and an external wave. A second perturbation with a di�erent

wave number, k2, is applied at t = �t. This second perturbation modulates the

already modulated particle distribution,

f = A2 cos
�
k2(x� 1

m
p(t��t))

�
A1 cos

�
k1(x� 1

m
pt)
�
f0(p)

=
1

2
A1A2f0(p)

�
cos

�
(k2 � k1)x� (k2 � k1)

p

m
t+ k2

p

m
�t
�

+cos
�
(k2 + k1)x� (k2 + k1)

p

m
t+ k2

p

m
�t
��

(7.1)
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The trigonometric angle sum and di�erence relations have been used to write the

product of cosines as the sum of two cosine terms. This is a mathematical statement

that the presence of excitations at wave numbers k1 and k2 produces modulations

of the gas at the mixing frequencies, k2 � k1 and k2 + k1. Normally, macroscopic


uctuations of the gas density at these frequencies would not be detectable, since

each of the oscillatory terms time-averages to zero. However, the time oscillation of

the �rst cosine term vanishes under the following condition,

t =
k2

(k2 � k1)
�t (7.2)

When eq. 7.2 is satis�ed, there is no time dependent portion in the �rst cosine term of

eq. 7.1, and this in turn removes any damping e�ect on the density function. Thus, a

large coherent response is enabled in the gas at a speci�c time, techo, which is given by

eq. 7.2. The time of the echo is dependent on the wave numbers of the two excitations,

as well as on their relative timing. If the wave numbers are assumed to be positive,

then in order to have an echo, k2 must be greater than k1 (otherwise techo will be

negative).

When the wave numbers are positive, under no circumstance can the second cosine

term of eq. 7.1 cause an echo. In order for the time dependent part of this oscillation

to vanish, the following condition must be met,

t =
k2

(k2 + k1)
�t

This gives an echo time which comes before the second excitation, since k2
(k2+k1)

is less

than one.
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This neutral gas has demonstrated several important features of echo generation

which are characteristic of the echo mechanism itself, holding broadly for di�erent

systems and forms of excitation. An echo is enabled through frequency mixing, hence

the echo frequency is the di�erence frequency of the applied excitations. The time of

the echo is given by eq. 7.2, where k1 and k2 will in general be the harmonic numbers

of the excitations. The coherent particle density 
uctuation which is the echo occurs

even when the response to the initial excitations has damped away.

7.3 Beam echoes without wake�elds or collisions

This section will explore the nature of longitudinal echoes in a particle beam, when

the dynamics are una�ected by wake�elds or di�usion e�ects. In a beam, it is more

feasible to create temporal, rather than spatial, echoes. Temporal echoes require short

pulse excitations, which are impulse approximations. Since the kicks are narrow

bursts, higher harmonics are also present, allowing the generation of higher order

echoes. Having a short pulse rather than a continuous excitation gives the echo

amplitude response a Bessel function dependence. Experimental conditions in the

Accumulator were such that the echo width was much shorter than the time scale

associated with the �rst zero of the Bessel function. Multiple echoes at di�erent echo

times were necessary to determine larger scale structure such as a Bessel function

dependence.

A pair of applied kicks will alter the phase development of particles within the

beam. In the absence of any external excitation, the phase evolution of a particle is
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given by,

� = �i + !i(")t

= �i + (!0 + k0")t

where �i is the initial phase, and !i is the initial frequency. The initial frequency is

the revolution frequency, plus a small deviation which depends on the particle energy

error, and on the constant scaling factor, k0 (de�ned in eq. 2.2). A kick applied at

t = 0 causes an energy change of (�")1, and a second kick applied at t = �t causes

an energy change of (�")2. Now the phase evolution of a particle after the �rst kick

is given by,

�(t) = �i + !it+ k0(�")1t

The phase evolution after the second kick is given by,

�(t) = �i + !it+ k0(�")1t+ k0(�")2(t��t)

This may be written as the sum of the initial phase at the time of the second kick,

��t, and the phase development thereafter,

�(t) = ��t + !i(t��t) + k0(�")1(t��t) + k0(�")2(t��t) (7.3)



149

where ��t = �i + !i�t+ k0(�")1�t. It is useful to express the time development of

the phase in this way. If a kick is short enough, then the energy change due to the

kick is dependent only on the particle phase at the time of the kick, not on the energy

error of the particle at the time of the kick. An energy error causes the particle phase

to slip, but if this phase shift is small during the kick, it may be neglected.

Let the kicks be short pulse excitations, both of duration �Tp, with each kick

singular in frequency, and each having amplitude V0. If the �rst kick is applied at the

kth harmonic, and the second kick applied at the nth harmonic, the resultant energy

changes are given by,

(�")1 = _"1�Tp =
e!0

2�
V0�Tp cos(k�i)

(�")2 = _"2�Tp =
e!0

2�
V0�Tp cos(n��t)

The perturbed particle density at a given harmonic, m, is given by,

nm(t) =
Z

d�
Z
f(�; "; t)e�im�(t) d" (7.4)

The density perturbation after the �rst kick is then,

nm =
Z

d�i

Z
f0("i)e

�im[�i+!it+k0 e!02� V0�Tp cos(k�i)t] d"i (7.5)
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In order to evaluate eq. 7.5, use the following Bessel function identity,

e�iA cos# =
X
l

(�i)lJl(A)e�il# (7.6)

where (l = 0;�1;�2; : : :). It is in this mathematical step where higher order har-

monics come into the analysis. Now there are multiple sinusoidal terms at di�erent

frequencies, each of which eventually might contribute to echo generation.

Assume the beam distribution function is a Gaussian,

f0(") =
N

(2�)
3

2�"
e�

1
2
(
"i
�"

)2

The expression for nm may be written,

nm =
N

(2�)
3

2�"
e�im!0t

X
l

(�i)lJl(me!0

2�
k0V0�Tpt)

�
Z
e�i(m+lk)�i d�i

Z
e�imk0"ite�

1
2
(
"i
�"

)2 d"i

The density 
uctuation vanishes, and there is no perturbed current, unless lk = �m.

In other words, when a kick acts on an unperturbed beam, the kick can only result

in a perturbed current at harmonics of the mode number of the kick. In this analysis

it can be assumed that the harmonic number k is positive with no loss of generality,

since the Bessel function index multiplier l may be either positive or negative. If
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l = �1, then k = m, and the instantaneous beam current at mode m is,

Im(�) = iI0J1(m
e!0

2�
k0V0�Tpt)e

�im!0te
� 1

2
(m!0

�

�2
�"
E0

)2t2

where I0 =
eN!0
2�

is the unperturbed beam current. Once again, the result is that in

the absence of wake�elds, the coherent oscillation resulting from a kick damps away.

When an energy kick at mode m is applied to a beam, the damping time is,

�landau =

p
2�2

m!0�
�"
E0

(7.7)

This expression for the damping time is useful in time domain measurements for

gaining a qualitative idea of beam stability. If the motion from a kick decoheres

within this characteristic time, it is evidence that self-�eld e�ects at this frequency

are negligible. As the machine impedance at the kick frequency increases, so does the

decay time of the coherent response.

The perturbed particle density at harmonic m after the second kick is found by

again using eq. 7.4, but this time �(t) is the phase evolution after the second kick

(given by eq. 7.3),

nm =
Z

d�i

Z
f0("i)e

�im[��t+!i(t��t)+k0(�")1(t��t)+k0(�")2(t��t)] d"i

=
Z

d�i

Z
f0("i)e

�im(�i+!it)e�imk0tA cos(k�i)e�imk0(t��t)A cos(n��t) d"i

where A = e!0
2� V0�Tp, is the energy amplitude of the kicks. Assuming a Gaussian
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beam and using eq. 7.6, the expression for nm becomes,

nm =
N

(2�)
3

2

X
l2

(�i)l2Jl2(mk0A[t��t])

�X
l3

(�i)l3Jl3(mk0At)
X
l4

(�i)l4Jl4(l2nk0A�t)

�
Z
e�i(m+l2n+(l3+l4)k)�ie�i!0(mt+nl2�t d�i

Z
e�ik0"i(mt+l2n�t)e�

1

2
(
"i
�"

)2 d"i

Notice that since the indices of the Bessel functions go up as the order of the echo

harmonic; the amplitude of the beam response should be correspondingly smaller for

the higher order echoes. Let l1 = l3 + l4, and rewrite the expression for the echo

current density using the following identity,

J�(u� v) =
X
�

J���(u)J�(v)

Then,

nm =
N

(2�)
3

2�"

X
l2

(�i)l2Jl2(mk0A[t��t])
X
l1

(�i)l1Jl1(k0A[mt+ l2n�t])

�
Z
e�i(m+l2n+l1k)�ie�i!0(mt+nl2�t) d�i

Z
e�ik0"i(mt+l2n�t)e�

1
2
(
"i
�"

)2 d"i (7.8)

Unless the argument of the � exponent under the �rst integral in eq. 7.8 is zero, the

density 
uctuation will average to zero. Thus, to have an echo of any order, the
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following phase matching condition must be satis�ed,

m+ l1k + l2n = 0

The last integral in eq. 7.8 produces a damping term, unless the argument of the

sinusoidal term under this integral is zero. The time when there is no damping is the

time of the echo. This is,

techo = � l2n�t

m
=

l2n�t

l1k + l2n
(7.9)

Again, it may be assumed that the mode numbers k and n are are positive, letting

the indices l1 and l2 determine the signs of l1k and l2n. Equation 7.9 for techo then

says that in order to have an echo, l1 and l2 must be of opposite signs.

Suppose that l1 = �1 and l2 = 1, then the phase matching condition becomes

m = k � n, and the time of the echo is given by,

techo = � n

m
�t =

n

n� k
�t

This result for the echo time is the same as that found in the system of gas particles

described in section 7.2.

After two initial pulses at modes k and n, the instantaneous beam current is given

by,

Im(�) =
�
eN!0

2�

�
J1(

e!0

2�
k0V0�Tp[mt�m�t])J1(

e!0

2�
k0V0�Tp[mt+ n(�t)])
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� expf�i!0(mt+ n(�t)g expf�1

2
(k0�")

2(mt+ n�t)2g (7.10)

This result is similar to that obtained by Br�uning [49]. For small kicks the Bessel

functions may be approximated, and the echo current then becomes,

Im(�) = I0

�
1

2

e!0

2�
V0(�Tp)k0

�2
m[t��t][mt+ (k �m)(�t)]

� expf�i!0[mt+ (k �m)�t]g expf�1

2
(k0�")

2[mt+ (k �m)�t]2g (7.11)

where I0 = eN!0
2�

is the unperturbed beam current. During the Accumulator echo

studies, the time independent portion of the argument of the Bessel functions typically

had a value of .49, so the small kick approximation roughly held. Notice that at

exactly techo, the echo current goes to zero, which describes the notches observed in

the center of the beam echo.

7.4 Beam echoes with wake�elds

In a treatment of beam echoes when there are wake�elds present, the self-consistent

Vlasov approach must be taken. In a perturbative treatment, the second order Vlasov

equation must be used, since beam echoes are enabled through frequencymixing. This

is the same point of departure as in the development of parametric coupling, but the

description will diverge when a speci�c form for the voltages are chosen; namely short,

externally applied pulses. Although there are explicitly applied external voltages in

this analysis that do create a beam echo; in principal, these pulses could also generate
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wake�elds. The voltages from the wake�elds would modify the beam response, and

change the shape of the echo. The analysis begins with the perturbatively expanded

second order Vlasov equation,

@fm
@t

+ im!(")fm = �e!0

2�

@f0
@"

Um � e!0

2�

X
n+k=m

Un
@fk
@"

(7.12)

The symbolic de�nitions in this equation are consistent with previous usage (see

section 2.4). Equation 7.12 describes the dynamics of mode m, where this mode

will be taken to be that of the echo. The �rst term on the RHS represents coupling

between the unperturbed beam distribution and a voltage at the frequency of the

mth harmonic.

The second term on the RHS of eq. 7.12 is the frequency mixing term, and rep-

resents coupling between a perturbation in the beam distribution at mode k and a

voltage at the frequency of mode n. This frequency mixing is derived from the e�ect

of the second excitation on a beam already perturbed by the �rst excitation. In other

words, the perturbation fk arose from the voltage at mode k of the �rst pulse; and

Un is the voltage due to the second pulse. The total voltage change per turn at mode

n experienced by the beam due to the drive pulse is the sum of the self-�eld voltage

initiated by the external excitation, and the driving voltage itself.

Un = V ext
n + e!0Zn

Z 1

�1
fn d" (7.13)

The expression given by eq. 7.13 also holds for mode k of the �rst excitation.

There are several steps which facilitate the solution of eq. 7.12. A Laplace trans-

form is done to remove the time derivative. The �rst order terms of the equation are
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grouped together in such a way as to get the product of the perturbed current and

the linear dispersion relation. The terms in the linear dispersion relation may then

be written symbolically as ~Dm(s), freeing attention for the second order term. First

order solutions for the transformed quantities ~Fk and ~Un may be used in the second

order term, since ~Fk and ~Un themselves are not generated through frequency mixing.

Beginning with the Laplace transform,

[s+ im!(")] ~Fm("; s) = �e!0

2�

@f0
@"

~Um

�e!0

2�

1

2�i

Z c+i1

c�i1

X
n+k=m

~Un(s� s0)
@ ~Fk(s0)
@"

ds0 (7.14)

The summation in the third term on the RHS of eq. 7.14 may be dropped, since

the echoes being investigated arise from a single frequency mixing event. Due to

the m = n + k condition on the summation, it will be understood that k = m � n,

but this substitution will not be made until later for notational convenience. Also of

importance to note is that in this analysis all three mode indices, m, k, and n may

be either positive or negative. Next, the terms are rearranged and the equation is

integrated over ", for the purpose of writing the linear terms as ~Im ~Dm,

~Im(s) ~Dm("; s) = �(e!0)2

2�

1

2�i

Z c+i1

c�i1
~Un(s� s0) ds0

Z 1

1
d"

[s+ im!(")]

@ ~Fk(s0)
@"

(7.15)
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A �rst order solution for ~Fk may be found by Solving the linearized Vlasov equa-

tion,

~Fk("; s) = �e!0

2�
~Uk(s)

@f0
@"

[s+ ik!(")]
(7.16)

This may also be written,

~Fk("; s) = �e!0

2�
~Uk(s)

@f0
@"

Z 1

0
expf[s+ ik!(")]�g d� (7.17)

For later convenience, de�ne the integral portion of eq. 7.17 as F

Fk � 1

[s+ ik!(")]

=
Z 1

0
expf[s+ ik!(")]�g d� (7.18)

Having obtained a �rst order solution for ~Fk, a �rst order solution for ~Un is needed.

This can be done beginning with the Laplace transformation of eq. 7.13, and writing

the second term on the RHS as a function of ~Un. The desired substitution is obtained

by integrating eq. 7.16 over " and multiplying by e!0
~Zn. Then,

~Un = ~Vn
ext � (e!0)2

2�
~Un(s) ~Zn(s)

Z 1

�1

@f0
@"

[s+ in!]
d"

~Un =
~Vn
ext

~Dn(s)
(7.19)
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Substituting for ~Fk and ~Un in eq. 7.15, gives the expression for the perturbed

current at the echo frequency,

Im(s) = �i
�
e!0

2�

�3 Z c+i1

c�i1
ds0

V ext
n (s� s0)V ext

k (s0)
Dn(s� s0)Dk(s0)Dm(s)

�
Z 1

�1
d"Fm("; s)

@

@"

"
@f0
@"
Fk("; s

0)

#

Doing an integration by parts on the energy integral, and substituting the expression

given by eq. 7.18 for Fm and Fn,

Im(s) =
�
e!0

2�

�3
mk0

Z c+i1

c�i1
ds0

V ext
n (s� s0)V ext

k (s0)
Dn(s� s0)Dk(s0)Dm(s)

�
Z 1

�1
d"
@f0
@"

Z 1

0
� exp [�(s+ im!)� ] d�

�
Z 1

0
exp [�(s0 + ik!)� 0] d� 0 (7.20)

If the applied excitations can be considered pulses of a single frequency, then the

external voltages may be written,

V ext
k (s0) = A exp[�s0�1]

V ext
n (s� s0) = A exp[�(s� s0)�2]

where �1 is the start time of the �rst pulse, and �2 is the start time of the second

pulse. Assuming that the excitations approach an impulse, the amplitude of the
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applied pulses, A, is found by proper normalization to be 1
2
V0(�Tp), where V0 is the

peak voltage of the kick, and �Tp is the time duration of the kick.

An expression for the perturbed current in the time domain may be obtained

by doing an inverse Laplace transform on eq. 7.20. Using the explicit form for the

external voltages, doing the inverse transform, and changing the order of integration,

Im(t) is then,

Im(t) = �i
�
e!0

2�

�3 mk0
2�

A2
Z 1

�1
d"
@f0
@"

Z 1

0
� d�

Z 1

0
d� 0 exp[�i!(")(m� + k� 0)]

�
Z c+i1

c�i1
ds0

Z c+i1

c�i1
ds
exp(�s� ) exp(�s0� 0) exp(st) exp[�(s� s0)�2] exp(�s0�1)

Dn(s� s0)Dk(s0)Dm(s)

This result for the perturbed current at mode m includes wake�eld e�ects. If the

wake�eld e�ects are neglected, this solution should agree with the small kick approx-

imation of section 7.3, where wake�elds were not considered. Assuming that there is

su�cient Landau damping to ignore the poles in the the linear dispersion relations,

allows their contribution to the integrand to be neglected, and is equivalent to as-

suming that wake�elds are unimportant. Proceeding in this manner, the fact that

the applied voltages are pulse excitations considerably simpli�es evaluation of the

integrals. Doing the s and s0 integrations �rst yields delta functions in � and � 0. The

evaluation of the remaining integrals is then straightforward. After evaluating the

integrals in s, s0, � , and � 0, the expression for the echo current becomes,

Im(t) = �i(e!0)3

(2�)2
k0m(t� �2)[

1

2
V0(�Tp)]

2
Z 1

�1
d"
@f0
@"

� expf�i(!0 + k0")[k(�2 � �1) +m(t� �2)]g
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The energy integral will average to zero unless the sinusoidal dependence in the inte-

grand is removed. The condition for its removal determines when the echo will occur.

The echo time is then given by,

techo � �1 =
(m� k)(�2 � �1)

m

If the �rst pulse is applied at t = 0, then �1 = 0. Also, the time between applied

pulses is �t = �2 � �1 = �2, and m = k + n holds because of the frequency matching

condition. The echo time can then also be written,

techo =
n

m
�t

=
n

n+ k
�t

Although there is a sum, rather than a di�erence, in the denominator of the expression

for techo, all mode numbers may be either positive or negative. It is then a requirement

that n and k have opposite signs in order for an echo to be generated.

Assuming the beam distribution is a Gaussian, then the energy integral may also

be evaluated,

Im(�) = I0

�
1

2

e!0

2�
V0(�Tp)k0

�2
m[t��t][mt+ (k �m)(�t)]

� expf�i!0[mt+ (k �m)(�t)]g expf�1

2
(k0�")

2[mt+ (k �m)(�t)]2g
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where I0 =
eN!0
2�

is the unperturbed beam current. This result agrees with that from

the small kick approximation in section 7.3 (given by eq. 7.11).

7.5 Beam echoes with wake�elds and collisions

A full treatment of beam echoes, including collisional e�ects, uses the same analysis

techniques as the previous section (7.4), but begins with the Boltzmann equation,

which contains the Fokker-Planck operator to model di�usion. The Fokker-Planck

terms describe the slow relaxation processes which play a role in the evolution of

the particle distribution, and these are added to the Vlasov equation to get a full

description of the beam evolution. The coe�cients of these terms represent average

characteristics of the collisional processes [48]. Again, in a perturbative treatment,

the second order term frequency mixing term present in the Boltzmann equation must

be retained. Beam echoes are a consequence of frequency mixing, whether or not a

di�usion mechanism is present. For a more detailed account of the following analysis,

refer to the previous section. Adding collisional terms to eq. 7.12,

@fm
@t

+ im!(")fm = �e!0

2�

@f0
@"

Um � e!0

2�

X
n+k=m

Un
@fk
@"

+�
@("fm)

@"
+ 2��2

"

@2fm
@"2

(7.21)

where �" is the rms beam energy spread, � is the collision rate, the quantity 2��2
"

is called the coe�cient of di�usion, and the other terms have been de�ned elsewhere

(see section 2.4). The last two terms on the RHS are the Fokker-Planck terms which
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represent the e�ects of the random collisional processes. The third term on the

RHS represents a collisional drag force, whereas the last term is the di�usion term

describing such processes as intrabeam scattering. If both terms are kept throughout

the analysis, it can be seen that the decorrelation time associated with the drag term

is signi�cantly longer than the decorrelation time due to the di�usion term. Since the

di�usion term dominates, the drag term will be neglected in this analysis.

Taking the Laplace transform of eq. 7.21, and dropping the summation with the

understanding that m = n+ k,

[s+ im!(")] ~Fm("; s) = �e!0

2�

@f0
@"

~Um + 2��2
E

@2 ~Fm("; s)

@"2

�e!0

2�

1

2�i

Z c+i1

c�i1
~Un(s� s0)

@ ~Fk(s0)
@"

ds0 (7.22)

Proceeding in a manner similar to that of section 7.4, all terms save the second

order mixing term will be grouped together, eventually being manipulated into the

form ~Im ~Dm. Since the collision term is included in this exercise, now Dm represents a

new dispersion relation which takes collisions into account. Similarly, the expressions

which are to be substituted for ~Un and ~Fk are also modi�ed.

Writing eq. 7.22 without the mixing term, the di�erential equation for ~Fk is now

given by the following,

�2��2
E

@2 ~Fk("; s)

@"2
+ [s+ ik!0 + ikk0"] ~Fk("; s) = �e!0

2�

@f0
@"

~Uk(s) (7.23)

This equation can be solved for ~Fk, using a method �rst outlined for the case of a
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plasma by Su and Oberman [51, 11, 52]. The solution is given by,

~Fk("; s) = �e!0

2�

@f0
@"

~Uk(s)
Z 1

0
d� exp

(
�(s+ ik!)� � 2�k2k20�

2
"�

3

3

)
(7.24)

De�ne the integral portion of eq. 7.24 as F ,

Fk("; s) =
Z 1

0
d� exp

(
�(s+ ik!)� � 2�k2k20�

2
"�

3

3

)

Allowing for di�usion has modi�ed F such that there is now a damping term in the

exponent (compare with eq. 7.18). The coe�cients of the damping terms in Fk and

Fm de�ne the particle phase correlation time constant.

The �rst order solution for ~Un is found as before, except that now the Fn in the

dispersion relation ~Dn
0
is altered due to the collisional term.

~Un = ~Vn
ext � (e!0)2

2�
~Un(s) ~Zn(s)

Z 1

�1
@f0
@"

d"Fn

~Un =
~Vn

ext

~Dn
0
(s)

(7.25)

Equation 7.22 can be manipulated so that all terms except for the mixing term are

incorporated into ~Im ~Dm
0
. Once this is done, substituting the expression given by

eq. 7.24 for ~Fk and the expression given by eq. 7.25 for ~Un, and doing an integration

by parts on the energy integral, gives the following result,

Im(s) = i
�
e!0

2�

�3 Z c+i1

c�i1
ds0

V ext
n (s� s0)V ext

k (s0)
D0

n(s� s0)D0
k(s

0)D0
m(s)
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Applying excitation pulses of a single frequency, the external voltages may be

written,

V ext
k (s0) = A exp[�s0�1]

V ext
n (s� s0) = A exp[�(s� s0)�2]

where �1 is the start time of the �rst pulse, and �2 is the start time of the second

pulse.

An expression for the perturbed current in the time domain may be obtained

by doing an inverse Laplace transform on eq. 7.26. Using the explicit form for the

external voltages, doing the inverse transform, and changing the order of integration,

Im(t) is then,

Im(t) = �i
�
e!0
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Except for the assumption of relatively weak driving pulses and linear energy depen-

dence, this result for the perturbed current at mode m is general, taking into account

both wake�elds and collisional e�ects. At this point, the assumption will be made

that there is su�cient Landau damping to ignore the poles of the linear dispersion

relations. This takes the calculation out of the realm of large self-�eld e�ects, and

implies that the decay of coherent oscillation due to the driving pulses is fast rel-

ative to the time between pulses. This condition was met during the Accumulator

studies. Neglecting wake�elds in the calculation is expeditious for understanding the

collisional e�ects, which were present in the Accumulator. The beam current at the

echo frequency is then,

Im(t) = �i(e!0)3

(2�)2
k0m(t� �2)A

2
Z 1

�1
d"
@f0
@"

� expf�i(!0 + k0")[k(�2 � �1) +m(t� �2)]g

� expf�2�k20�
2
"

3
[k2(�2 � �1)

3 +m2(t� �2)
3]g (7.27)

The @f0
@"

in the integrand causes the echo current to go to zero in the center of the

echo, creating a notch in the echo. If the beam distribution is smooth and peaks in

the center, then the slope of the distribution function must be zero at the center of the

echo. Echoes previously observed in plasmas did not have detectable notches, while

notches were clearly present in the particle beam echoes observed in the Accumulator.

The dispersion relation for a stored beam plays the role of the dielectric function

in a plasma. When wake�elds are not a signi�cant factor, and the free-streaming

calculation is valid, the value of the dispersion relation is nearly one. In contrast, the
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dielectic function in a plasma is large, and may be responsible for �lling in the notch

in a plasma echo.

The separation of the peaks of the echo on either side of the central notch may be

calculated. By �nding the times of the maxima of the echo current and subtracting,

the expression for the peak separation is found to be of the form,

(�t)peak =
�2

�frevj�j �"E0
(7.28)

The time delay to the echo, techo, can be found by examining eq. 7.27,

techo =
n

m
�t

where the time between applied pulses is �t = �2� �1, the �rst pulse occurs at t = 0,

and the relationship m = k + n holds because of the frequency matching condition.

As a consequence of including collisions in the beam dynamics, there is now a

damping factor on the amplitude of the echo current. At the time of the echo,

techo =
n
m
�t, the damping factor is,

e
�
h
2��2"
3

k2j1� k
m
j
i
(�t)3

There are two competing time dependences acting on the amplitude of the perturbed

current. Since techo is linearly dependent on �t, the damping decrement goes as t3echo.

For the free-streaming case in the absence of collisional damping, as seen in eq. 7.27,
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the peak echo amplitude grows linearly with techo. If the pulse amplitude were non-

perturbative, then the echo amplitude goes as a Bessel function (see eq. 7.10). In

either case, the e�ect of collisions is to damp out the normal amplitude dependence

on techo, until at some time determined by the collision rate, echoes are no longer

possible. Thus, by measuring the echo amplitude dependence on techo, the collision

rate may be found. In the perturbative case, the time of the peak echo response

depends directly on the collision rate,

� =
1

(�t)3peakk
2
02�2

"k
2j1� k

m
j

Echoes, like all other aspects of beam dynamics, are sensitive to properties of the

beam, and to the conditions created by the storage ring in which the beam circulates.

Those properties which are variable, and perhaps di�cult to measure, are of special

interest since echo measurements may help in their determination. In particular,

the dependence of the shape and size of longitudinal echoes on wake�elds, collisional

e�ects, and the momentumspread of the beammay be useful in various circumstances.

If wake�eld e�ects are too severe, it may be di�cult to get a clear echo. On

the other hand, if the machine impedances are more benign, they are perhaps more

easily determined by doing a transfer function measurement, or by using the damping

time of the transient response. However, there may be circumstances where available

hardware does not allow an excitation at the frequency of interest, whereas an echo (or

higher order echoes) could be generated at the proper frequency through the agency

of frequency mixing.

The separation of the peaks around the notch of an echo may be used to determine
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the momentum spread of the beam. Although, if there are no signi�cant wake�elds

present, the landau damping time after a single kick could also be used for this

measurement.

Perhaps the best use of echoes is in the measurement of the collision frequency in

the beam. A determination of intrabeam scattering is most important for a stored

beam, where it is particularly important not to degrade the beam quality. The

impedance budget of such a storage ring is normally carefully controlled. So, just

when intrabeam scattering becomes an important parameter, echo measurements

should be fairly clean. The strength of this technique lies in its speed and sensitivity.



Chapter 8

Accumulator time domain results

8.1 Introduction and overview

The study of echoes in the Fermilab Accumulator was a natural extension of the mode

coupling experiments that were done in the Main Ring. Both phenomena are second

order frequency mixing e�ects, whereby existing modes at two di�erent harmonics

combine to cause the growth of a third mode at the di�erence frequency. Echo gen-

eration is a time domain analog of parametric coupling. For the echo experiments in

the Accumulator, both of the mixing frequencies were applied to the beam externally

as a succession of pulses; whereas in the Main Ring parametric coupling experiments,

only one external voltage pulse was needed to stimulate the second order coupling. In

contrast to the Accumulator, the h = 1 mode is already coherent in the Main Ring,

and the initially applied pulse spontaneously generated a series of coupling events. A

stable low impedance machine such as the Accumulator is better suited to the study

of echoes.

169
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The experimental setup for the echo studies is detailed in section 8.2. The follow-

ing section, section 8.3, begins with the description of a typical echo. Measurements

of the frequency and time dependence of the echo are discussed and shown to match

the theoretical predictions. The observation of higher order echoes and their rela-

tive timing is presented. The purpose of section 8.3 is to show that there is good

agreement between the predicted basic properties of echoes, and the experimental

results.

Echoes are a potentially useful tool for measuring the di�usion rate in a beam.

Di�usion processes are statistical in nature, rather than a�ecting the beam distribu-

tion as a whole. A di�usion mechanism of importance in high energy beams is small

angle coulomb scattering, called intrabeam scattering. Intrabeam scattering tends to

increase beam size, and in the case of colliding beam physics, can be one of the factors

limiting luminosity. Current methods of measuring thermal e�ects in a beam take

on the order of hours. Echoes e�ectively amplify the e�ects of scattering, producing

a measurement of a small collision frequency in a short time. If echo measurement

techniques with su�cient accuracy are developed, these measurements would be on

the order of minutes, and could be done quickly and routinely.

The presence of a di�usion mechanism destroys the reversibility of the decoherence

of particle bunching. In the absence of di�usion, the phase evolution of the spreading

particles depends strictly on their relative energies. The phase development of the

particles due to their energy change from the second kick combines with their phase

development from the �rst kick in such a way as to rebunch the particles. The di�usion

process breaks down the correlation between energy and phase. Partial decorrelation

reduces the echo amplitude, and full decorrelation completely inhibits the echo. A
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di�usion process is thus expected to change the dependence of echo amplitude on

the time at which the echo occurs, decreasing the amplitude until there is no echo

at all. A measurement of echo amplitude versus the time of the echo is presented

in section 8.5. This curve is �tted to extract the di�usion rate in the beam. The

accuracy of the results and the potential sources of the di�usion are discussed.

Other information besides the di�usion rate lies buried in the echo characteristics.

In particular, the echo shape is sensitive to parameters such as the machine impedance

at echo-related frequencies, and to the momentum distribution of the beam. In the

absence of impedance, the decoherence of particle motion following an applied pulse

will happen on a time scale dependent on the energy spread of the beam, the harmonic

of the excitation, and on the momentum dispersion characteristics of the storage

ring. If there is su�cient machine impedance, the resulting wake�elds will extend

the duration of coherent particle motion, thus extending the damping time of the

beam response to a driving pulse. As demonstrated by O'Neil and Gould [16], this

will directly impact the shape of the echo. The echo time depends inversely on the

time between coherent excitations at the mixing frequencies. The decay of the beam

response after the �rst driving pulse, rather than the response during the pulse, is

closer in time to the second driving pulse. Thus, the shape of the leading edge of

the echo is in
uenced by the damping of the beam response to the �rst drive pulse.

Similarly, the shape of the trailing edge of the echo is in
uenced by the damping

of the beam response to the second pulse. Scattering e�ects in general could also

a�ect the shape of the echo; but if the di�usion coe�cient for the scattering process

is independent of energy, then only the amplitude of the echo will be a�ected by

scattering [12].
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The Fermilab Accumulator did not have signi�cant impedances at the frequencies

used in echo generation. However, the shape of the echo did depend on the momentum

distribution of the beam. One of the major features of the observed echoes was

a deep notch in the center of the response. As shown in section 7.5, the perturbed

current at the echo frequency is dependent on the derivative of the unperturbed beam

distribution with respect to energy. Since the slope of the distribution is zero at the

center, the perturbed current goes to zero in the middle of the echo. The separation

of the peaks on either side of this zero has a predicted dependence on the energy

width of the beam. In section 8.4, experimental results and theory are shown to

agree to within 20%. More generally, section 8.4 examines the qualitative variation

in the character of echoes with beam energy spread.

8.2 Experimental setup

The experimental setup used for time domain measurements in the Accumulator

is given in block diagram form in �gure 8.1. Two successive approximate impulse

excitations were applied to the beam via the ARF2 cavity, which was used as a longi-

tudinal kicker. The frequencies, pulse widths, and time separation of the two pulses

were independently controlled parameters. The beam response to the excitations was

monitored via the wall current detector, whose ampli�ed output was hooked to an

oscilloscope.

The frequency source for the �rst pulse was an HP 3335A synthesizer/level genera-

tor, which has a continuous wave output at a frequency and power level chosen by the

user. Typically, the somewhat arbitrary choice for the frequency was h = 9, the power

level being set between +7-+10 dBm. Using �gure 8.3, and the fanback calibration
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Figure 8.1: Block diagram of Accumulator time domain setup



174

of 273 cavity volts per fanback volt, a power level setting of +7 dBm would give 43

rms volts on the cavity gap. Similarly, the frequency source for the second pulse was

an HP 8656A signal generator. Here, the frequency was usually set to one harmonic

above that of the �rst pulse, and the power level was made to be the same as that of

the �rst pulse. The continuous outputs of the frequency generators were gated onto

the beam kicker for a short time using RF power switches with single, triggerable

gate pulses supplied by pulse generators. The gate for Pulse 1 was provided by an

HP 8011A pulse generator which was manually triggered. The gate for Pulse 2 was

provided by an HP 8013A pulse generator, which was triggered by a Systron-Donner

101D pulse generator that was acting as a delay box. The scope used for taking data

and the delay box used the manual trigger. The widths of the pulses applied to the

beam were controlled by the widths of the gate pulses, both of which were typically

set to 5 ms. Pulse widths and power levels were constants during a particular beam

study, the delay between pulses being the variable parameter.

The Pulse 1 and Pulse 2 outputs from the two RF switches were sent through a

power combiner, so that one signal could be ampli�ed and applied to the longitudinal

kicker. The broadband ARF2 cavity was used as the beam kicker. The wall current

monitor was used as the beam detector; its ampli�ed output going to the Tektronix

DSA 602A digitizing signal analyzer, whose traces were recorded on inserted 
oppy

disks. The kicker, pickup, and the two ampli�ers were the same as those used for the

frequency domain measurements, and more complete descriptions may be found in

section 3.2.

There is no signi�cant distortion of a driving pulse applied to the ARF2 cavity.

This can be seen in �gure 8.2, which shows the fast rise of the cavity fanback signal
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Figure 8.2: Fast rise of a pulse applied to the Accumulator ARF2 cavity, as seen on
the fanback signal.

at the initiation of the pulse, as viewed by the signal analyzer.

There is little variation in the amplitude of the response of the cavity when pulsed

at adjacent harmonics. The amplitude of the fanback signal was measured at each

of the harmonics used during data acquisition. The input power level was kept �xed

for all harmonics. The frequency generator output was set at +7 dBm, and the

gated signal then sent through the +55 dB ampli�er in the usual way. The measured

fanback response at the various harmonics is shown in �gure 8.3.

8.3 Echo characteristics

A typical view of a longitudinal beam echo in the Fermilab Accumulator is shown in

�gure 8.4, which displays peak beam current versus time during the echo formation.

The beam signal that was used came from the longitudinal wall current monitor.
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Figure 8.3: ARF2 peak amplitude response at di�erent harmonics, as seen on the
cavity fanback signal. The power setting on the frequency source was +7 dBm, and
the pulse width was 5 ms. These were typical conditions during echo studies.

Since the total intensity was constant, an increase in the signal re
ects a greater

instantaneous current due to coherent oscillation. The two large peaks occurring

within the �rst 100 ms are the response to the externally applied pulses. The �rst 5

ms pulse at the frequency h = 9 de�nes t = 0, and is followed 75 ms later by another

5 ms pulse at h = 10. By the time of the second excitation, there is no remnant of

the bunch structure caused by the �rst excitation.

The echo is the large coherent signal centered at .75 seconds, and resulted from

the frequency mixing of the initial pulses, rather than from direct excitation. The

frequency of the echo was measured, and found to be h = 1, which is the di�erence

frequency of the applied pulses, 1!0 = (10 � 9)!0. The shape of the echo is double

peaked, with a notch in the center. The echo shape is dependent on the derivative

of the unperturbed beam distribution with respect to energy. Since the distribution
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peaks in the center, the slope there is zero, and this causes the notch seen in the echo.

The time delay from the �rst applied pulse to the echo is expected to depend on

the pulse separation, �t, and the mode numbers of the applied pulses as follows,

techo =
jnj

jnj � jkj�t

where n is the mode number of the second pulse, and k is the mode number of the �rst

pulse. This prediction was checked with two scans, one with initial pulse frequencies

of pulse 1 at h = 9 and pulse 2 at h = 10, and the other with initial pulse frequencies

of pulse 1 at h = 4 and pulse 2 at h = 5. For a given set of frequencies, the echo

time was measured as the pulse separation was varied. The results of the two scans

conform with expectation, and are shown in �gure 8.5.

The additional check of reversing the pulse order was also made. When the fre-

quency of the �rst pulse was h = 10, and that of the second h = 9, no echo developed.

The frequency of the second pulse must be higher than the �rst, otherwise the im-

possible situation arises where the calculated echo time is before the second pulse.

Higher order echoes were clearly seen during the echo studies, an example is

shown in �gure 8.6. A single pair of driving pulses produced three visible higher

order echoes in �gure 8.6, which shows signal level versus time on the longitudinal

beam detector. The largest part of the signal at approximately .02 seconds was the

beam response to the second drive pulse; the scope was triggered between drive pulses.

The damping time after the drive pulse is consistent with the expected decoherence

time when wake�elds are neglected. Using Accumulator parameters at the time of

the measurement, and eq. 7.7, the calculated damping time is �landau = :003 sec.



178

0.0 0.2 0.4 0.6 0.8 1.0
Time [sec]

-0.025

-0.015

-0.005

0.005

0.015

0.025

A
m

pl
itu

de
 [v

ol
ts

]

∆∆ tt peak

techo

Figure 8.4: Beam response to impulse excitation at h = 9, followed by h = 10.
An echo at h = 1 occurs centered at 0.75 seconds after the initial impulse. The
beam parameters were: beam current I0 = 147 mA, � = :023, total beam energy
E0 = 8696 MeV, beam energy spread obtained from Schottky pickup �" = 3:2 MeV,
transverse normalized emittances �H = 1:75� mm-mrad, �V = :56� mm-mrad, and
peak separation of the echo �tpeak = :07 sec. Note the presence of a higher-order
echo immediately following the second excitation pulse.
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Figure 8.5: Measured echo delay time as a function of separation of the drive pulses.
Upper curve: 1st pulse at h = 9, 2nd pulse at h = 10, giving expected time dependence
techo = [10=(10 � 9)]�t = 10�t. Lower curve: 1st pulse at h = 4, 2nd pulse at h = 5,
giving techo = [5=(5 � 4)]�t = 5�t.



180

This is con�rmation in the time domain of the stability seen in the transfer function

measurements. The three echoes had frequencies h = 11, h = 21, and h = 31; which

are h = (2 � 10) � 9, h = (3 � 10) � 9 and h = (4 � 10) � 9. The stronger second

order echo at h = 1 (not shown in the �gure) happened at time techo = 10�t, where

�t = 139 ms was the driving pulse separation. The higher order echoes were closer

to the drive pulses, occurring at t = 20=11��t, t = 30=21��t, and t = 40=31��t.

8.4 Echo shape

The shape of an echo in the free-streaming case is dependent on the energy derivative

of the unperturbed distribution function. If the beam distribution varies smoothly

and peaks in the center, there should be a notch in the center of any echoes. The

echo with a notch has a peak on either side of the notch, and the separation of these

two peaks is expected to have the following dependence (see section 7.5),

�tpeak =
�2

�f0j�j �"E0

For the Accumulator this is, �tpeak =
2:2�10�5

�"
E0

. Information on the echo peak separa-

tion versus beam energy width was available from the Accumulator echo studies data,

and has been plotted in �gure 8.7. Several echo amplitude versus techo scans were

done, each with a beam of di�erent energy width. Each scan in this set used the same

stored beam with the same intensity; the beam energy width was controlled using

the momentum cooling system. The value for the peak separation of each data point
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Figure 8.6: Higher order echoes. The leftmost and largest peak is the beam response
to the second drive pulse. The other peaks are echoes at h = 31, h = 21 and h = 11.
The echo at h = 31 is barely visible, but the relative timing veri�es that this is also an
echo. The delay between driving pulses was 139 ms, and there are [3021� 40

31]:139 = :019
seconds between the echoes at h = 31 and h = 21.
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in �gure 8.7 is an average of all echoes in the scan of the corresponding momentum.

The slope of the linear �t is 1:76 � 10�5 which has a 20% error with the prediction.

One interesting result of doing amplitude versus techo scans at various beam energy

spreads, was that for large enough �" the notch in the echo disappeared. Scans were

done for �" in the range of 2.3 to 8 MeVc, with no notch in the echoes of the scans

done at 7 and 8 MeVc. Figure 8.8 shows echoes from three scans, each with a di�erent

�". The echoes occur at approximately the same time relative to the driving pulses,

but their shape is quite distinctive. As the energy spread of the beam goes up, the

amplitude and the width of the echoes go down, and the notch begins to �ll in,

eventually vanishing completely. Although only three echoes are shown in the �gure,

the trend is assiduously followed in all seven scans which were done.

Another set of scans were done with varying transverse beam sizes, and there was

no systematic variation of the echo shape with transverse beam size. The echoes are

expected to be muchmore sensitive to the longitudinal beam size, since they are being

driven longitudinally. When the energy width of the beam is narrow, there are more

particles directly on the driving frequency. So, it may be expected that there are

larger echo amplitudes for energetically narrower beams. However, even a wide beam

peaks at the center frequency, so it is not so easy to see why the echo notch vanishes

completely. One possibility is that nonlinearities in the � function are mixing the

particle distribution in such a way as to destroy the notch. The �rst term in � which

causes a nonlinear dependence of the revolution period on the beam energy spread

is �1
1
�2

�E
E0

(see section 2.2). In the Accumulator �1 is approximately .82, which for a

large energy error of, say, 8 MeVc is about a 3% correction to �0.
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Figure 8.7: Peak separation of double-peaked echoes, �tpeak, versus the inverse of
�"
E0
,

the energy spread of the beam. The value of the slope from the linear �t is 1.76E-5.
The beam parameters were I0 = 147 mA, � = :023, and �2 = :988
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Figure 8.8: Three longitudinal beam echoes occurring in beams with di�erent energy
widths. The beam energy sigmas (�") were from top to bottom, 4.0, 6.1, and 8.0
MeVc. The energy spread was controlled with longitudinal stochastic cooling systems,
all other beam conditions were the same. The beam intensity was 147 mA. Echoes
which occurred at nearly the same time relative to the driving pulses were chosen for
comparison.
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8.5 Di�usion rate measurements

The phenomena of beam echoes allows the intriguing possibility of developing a fast

method for measuring the di�usion rate in a beam. Processes such as small angle

coulomb scattering attenuate beam echoes, by destroying the phase correlation of

particles necessary for their growth. As these processes are statistical in nature, their

impact will increase as the time delay to the echo increases, eventually obliterating

the echo completely. The initial evidence of di�usion e�ects in the Accumulator was

that for su�ciently long pulse separations there were no echoes.

The scattering rate in a beam may be determined by making a measurement of

echo amplitude as it varies with time. When there is no di�usion and there are

no wake�elds, the echo amplitude versus time delay has a Bessel function depen-

dence [16]. The time independent portion of the Bessel function arguments goes as

2� j�j
�2
f20

eV0
E0
�Tp, the value of which was about .49 for these studies. Although the

more general expression for echo amplitude was used in the data analysis, for times

on the order of a few seconds, a perturbative treatment or small kick approximation

are valid. The time delay of the echo from the two driving pulses may be varied

by changing the pulse separation. The result of one echo amplitude scan is shown in

�gure 8.9, which shows the superposition of 10 echoes from ten pairs of applied pulses

with di�erent separations. The echo amplitude grows nearly linearly until a peak at

approximately .65 seconds, and then decays. The large spike at the beginning of the

plot is the beam response to the driving pulses during one of the ten measurements,

and may be ignored.

A scattering rate for the Accumulator beam was obtained by doing a �t on an

echo amplitude scan that was recorded out to techo = 3:7 seconds. The data from this
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Figure 8.9: Superposition of echoes with varying driving pulse separations. As the
initial pulse separation is increased, the echo delay time (techo) also increases. The
echo amplitude is a function of techo. The beam intensity during this scan was 125
mA.
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scan, as well as the theoretical �t is shown in �gure 8.10. However, as this was a �rst

attempt at such a measurement, the results were only good to about 30%. This was

not su�cient to unequivocally identify the source of di�usion. One source of error

was a lack of statistics, usually there was only one measurement for a given pulse

separation. There were some instances of multiple measurements at a given pulse

separation, allowing for an estimate of the size of the error bars on the data points.

The result of the �t was � = (3:0 � 0:8) � 10�4 Hz. The theoretical estimate for

the intrabeam scattering rate was low by about a factor of 3 [53, 54, 19]. It is possible

for other sources of di�usion to dominate, for example the randomizing e�ect of the

cooling systems could be responsible for the phase decorrelation. The gain of the

cooling systems have not been completely quanti�ed across the relevant frequency

band, so it was not possible to theoretically predict whether these systems have a

signi�cant contribution compared to intrabeam scattering. A few other sources of

di�usion have been ruled out. Power supply noise has been measured and found to

be insigni�cant [55]. The e�ect of the damper systems was investigated during these

studies. Scans of the echo amplitude versus techo were done with the damper systems

o� as well as on. The shape of the curve and location of the peak amplitude did

not depend on the state of the damper systems, indicating the contribution of the

dampers to the scattering rate is negligible.

Although the �rst attempt at determining the collision rate in the Accumulator

beam did not have the desired accuracy, and in fact did not clearly identify the source

of the di�usion, the method employed appears to have the potential of becoming a

useful beam diagnostic. It may also be possible to extend the use of echoes to bunched

beams [17, 18, 19].
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Figure 8.10: Peak echo response as a function of the time to echo following the initial
pulse. The solid line represents a theoretical �t corresponding to a collision rate
� = (3:0 � 0:8) � 10�4 Hz. The beam parameters were I0 = 147 mA, � = :023,
E0 = 8696 MeV, beam energy spread obtained from Schottky pickup �" = 4:0 MeV,
transverse normalized emittances �H = :84� mm-mrad, and �V = :34� mm-mrad.



Chapter 9

Conclusions

9.1 The original objective

In the interest of obtaining a value for the machine impedance of the Fermilab Teva-

tron proton synchrotron, transfer function measurements were made on a coasting,

unbunched, 150 GeV beam. The results of the measurement were not linear, as the

applied power coupled out of the driven mode in a downward cascade of successive

harmonics. The phenomena was recognized as a weakly nonlinear wave-wave coupling

phenomena known as parametric coupling. This was the point of departure for this

thesis work. The goal was to study the 3-wave coupling of longitudinal modes in un-

bunched particle beams, with the purpose of learning how to extract the impedance

of a machine out of nonlinear data.

189
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9.2 The experimental 
ow

The �rst attempt at studying parametric decay was made in the Fermilab Accumu-

lator antiproton storage ring, since this was the �rst machine available for studies.

Here, the experience in the Tevatron could not be duplicated. Conditions in the Main

Ring were known to be closer to those in the Tevatron, for the results of transfer func-

tion measurements had shown deep notches in the magnitude response of the beam,

and these had also been seen in the Tevatron. It turned out that classic parametric

coupling was easy to stimulate in the Main Ring.

The next step was to take the measurement into the time domain, applying a short

pulse to trigger the cascade of events. The idea was to make a clear determination of

the sequential order of the coupling events; and, by knowing how much energy was

supplied to the system by the pulse, quantify the machine impedance. The sequence

of coupling events was proven to be single-sided, cascading downward in an orderly

progression from higher to lower harmonics. This in turn indicated that the h = 1

mode was either a partner in parametric scattering, or a product of parametric decay.

An examination of power in the h = 1 mode indicated the scattering scenario is more

likely. That mode was alway coherent, whether or not an external pulse was applied.

Since the energy gain or loss during coupling was not detectable, the result is not

conclusive, but it certainly suggests that the large coherent energy reservoir at h = 1

is at least in part responsible for the cascading behavior of the parametric coupling

events.

Although the coherence at h = 1 made direct determination of the impedance

di�cult, repeated studies have outlined the qualitative role of the impedance. It

may yet be possible to quantify the process. The major source of impedance at the
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frequencies being studied was the broadband RF cavity that was also being used as

the kicker during the experiments. The cavity functioned as an ampli�er for the decay

process, having an integrated e�ect on the power in the mode progression within the

cavity bandwidth. Once the coupling process had moved out of the cavity window,

the power of the modal excitation quickly dissipated. Perhaps the impedance may

be unfolded from the total harmonic response, using a baseline measurement outside

of the cavity bandwidth to account for the natural power 
ow of the coupling events,

and other dissipative sources in the storage ring.

An unexpected observation during the parametric coupling studies was that even

with a very short pulse excitation, power in the resulting excited modes decayed too

slowly. The time development of the power signals exhibited a 'bouncing' e�ect char-

acteristic of classic nonlinear Landau damping. A new door had opened, an e�ort to

document moderately nonlinear wave-particle interactions had begun. Increasing the

drive pulse width produced much longer nonlinear Landau damping times, together

with an increase in the bunch rotation period (due to bigger buckets). Signi�cant

higher harmonic generation was also documented. Meanwhile, Colestock and Os-

tiguy had developed a particle tracking simulation code with a narrow impedance

built into the beam dynamics, and the code indicated the possibility of small islands

of trapped particles asymmetrically located across the beam distribution. This small

subset of particles maintaining a constant relative phase relation was generally sug-

gestive of soliton-like behavior. Indeed, this coherent bunchlet behavior was then also

observed experimentally.

The Accumulator had not been forgotten. Eventually it was realized the the failure

to produce parametric coupling was due to the stable, low impedance nature of the
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Accumulator. The beam energies in the Accumulator and the Main Ring were the

same, and not a factor. Two aspects of the Main Ring act to increase the likelihood

of coupling. The cavity impedance increases the value of the coupling coe�cient, and

enhances the coupling process. In addition, the notches in the beam distribution are

depopulated regions in phase space, drastically reducing the area of linear stability.

The dispersion relation for the 3-wave coupling resonance is built from a combination

of linear dispersion relations of the individual modes, and so the area of stability to

the coupling resonance is likewise decreased.

The lack of wake�eld e�ects in the Accumulator, evident from the damping time

of for coherent motion, and the clean transfer function measurements, make this

machine ideal for echo generation, the time domain analog of parametric coupling.

Echoes and higher order echoes, complete with theoretically predicted attributes,

were easily observed. There was a clear notch in the center of the echoes, which

had not been seen in other media. The lack of self-�elds in the Accumulator allows

free-streaming particle motion away from the drive pulses, and so the notch resulting

from the smoothly peaked form of the beam distribution does not deteriorate. Also,

the permittivity of the beam allows observation of a clean beam current signal. These

notches did �ll in, however, if the momentum spread of the beam became very large.

Although some possible paths of investigation present themselves, the cause is still

undetermined.

Echoes were used to measure the di�usion rate in the beam. The random processes

which cause beam heating destroy the correlation between particle energy and phase,

which in turn degrades the echo amplitude. Phase decorrelation weakens the echo
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more as the time to the echo increases. Therefore, by �tting the functional depen-

dence of echo amplitude on time, the collision rate in the beam may be determined.

Following this procedure did indeed yield a collision rate, albeit with a large error

bar. It was not possible to pinpoint the source of di�usion with the initial rough mea-

surement. However, the experimental technique may be considerably polished and

there is no indication of an intrinsic limitation to the accuracy of the measurement.

9.3 Summary

The formal, theoretical approach of the discipline of plasma physics has been applied

to observations of weakly nonlinear to moderately nonlinear e�ects in particle beams.

This has allowed a systematic classi�cation of experimental data, and guidance by

the insights gained from the depth of the developed theory. In particular, the weakly

nonlinear wave-wave coupling phenomena known as parametric coupling and echo

generation have been carefully documented and compared to the theory.

It is now understood that the study and use of echoes is well suited to low

impedance machines where there is little interference from wake�elds. Echoes may

be used to make fast, sensitive measurements of the di�usion rate in a beam, and

proof of principal has been shown here. In the era of high intensity, low emittance

storage rings, a fast method of obtaining the magnitude of collisional e�ects such as

intrabeam scattering should be a useful addition to the �eld of accelerator physics.

The diagnostic potential of echo generation has just been touched on, there may be a

considerable wealth of information in the shape of echoes. Assuming that a machine

is not so nonlinear so as to prevent the observation of discernible echoes, any wake-

�elds present will modify the rise and fall of the echoes in a predictable way. The echo
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shape is also sensitive to the nature of the di�usion coe�cient in the Fokker-Planck

operator. If the coe�cient is a function of the particle energy, then it also has an

e�ect on the shape of the echo. In addition, there is the issue of the echo notch, which

�lls in for large energy spreads in the particle distribution. What causes this, and

can the cause be quanti�ed?

In contrast, the diagnostic potential of parametric coupling comes into its own in

a marginally stable storage ring. The original motivation of quantifying the machine

impedance through an examination of the power 
ow in a coupling cascade has not

be met, but the gap has closed somewhat. The role of an impedance as an ampli�er

for the coupling process is understood, and it remains to �nd a means of unfolding

the various contributions to the total beam response. To this end, it is important to

know whether the parametric coupling is a scattering or a decay process so that the

power 
ow between modes may be quanti�ed. It appears that in the Main Ring the

coupling is scattering of the excited mode o� the continuously coherent h = 1 mode,

although this is not absolutely conclusive.

Investigation of moderate to strongly non-linear phenomena has begun with the

observation of nonlinear Landau damping, higher order harmonic generation, and

bunchlet formation which is asymmetric in the particle distribution. Although this

exploration is still in the beginning stages, there is already some preliminary infor-

mation buried in these observations. The bunch rotation period in nonlinear Landau

damping time may be used to �nd the amplitude of the wake�elds, and the rate of

their decay. The asymmetric bunchlet formation so suggestive of solitons, gives an

indication as to the relative phase of a wake�eld. There is muchmore work to be done

before this area of study is well understood and exhausted. While inquiry into the
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nonlinear regime is still in the exploratory stage, ultimately a deeper understanding

of these beam phenomena may allow either the quantization or control of parameters

a�ecting beam dynamics.



Appendix A

Beam transfer function

measurements

Beam transfer function measurements are two-port network transmission coe�cient

measurements using scattering parameters (S-parameters). These S-parameters de-

scribe the relations between transmitted and re
ected voltage waves at each port

of the network, and thus are appropriate for high frequency excitations. A general

two-port network is shown schematically in �gure A.1. Referring to �gure A.1, the

s

Vr2

Vi2Vi1

Vr1

Figure A.1: General two-port network
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relation between the traveling waves and the scattering matrix is

0
B@ Vr1

Vr2

1
CA =

0
B@ s11 s12

s21 s22

1
CA
0
B@ Vi1

Vi2

1
CA

If an incident voltage is applied to port 1 while port 2 is terminated with the charac-

teristic input impedance, then Vi2 = 0, as there is no re
ection from the termination.

For these cases, s11 is the input re
ection coe�cient, since Vr1 = s11Vi1. Similarly,

s21 is the forward transmission coe�cient, since Vr2 = s21Vi1. When a two-port net-

work responds linearly to an excitation frequency, it is possible to extract the series

impedance, the parallel impedance may be neglected in a particle beam measurement.

A representation of a network analyzer set up to measure a series impedance, which

is shown as R, is given by �gure A.2. The network analyzer is represented by the

V0

R0 

R0 

R 

Vin Vout

Figure A.2: Network con�guration for an impedance measurement

source of excitation V 0 and a characteristic input impedance R0. The impedance

being measured is given by R, which is then matched back into the analyzer through

the characteristic impedanceR0. From transmission line theory, the voltage re
ection
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coe�cient is,

� =
ZL � Z0

ZL + Z0

where ZL is the impedance of the load, and Z0 is the characteristic impedance of

the line [31]. In �gure A.2 the load impedance at port 1 of the two-port network is

R +R0, so the re
ection coe�cient becomes,

� = s11 =
(R +R0) �R0

(R +R0) +R0
=

R

2R0 +R
:

The transmission coe�cient is then,

1 � � = s21 = 1� R

2R0 +R
=

2R0

2R0 +R
:

The expression for the transmission coe�cient can be re-arranged so that R is given

in terms of s21,

R = 2R0
�

1

s21
� 1

�
: (A.1)

Network analyzer measurement results are typically displayed using a logarithmic

scale in decibels (dB) for the magnitude response and a scale in degrees for the

phase response [30]. Amplitude in dB is de�ned in terms of the power ratio of the

transmitted and received signals, A[dB] = 10 log Pr
Pt
. When Pr and Pt are due to

voltages across equivalent resistances, then the resistances cancel, and this relation

can be written A[dB] = 20 log Vr
Vt
.
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Referring again to �gure A.2, suppose a simple circuit device is inserted which has

no impedance, R = 0. In this case, the ratio Vout
Vin

will be one, and s21 will be 0dB. As

the impedance R increases, Vout
Vin

decreases, and the measured amplitude in decibels

gets more negative.

When a storage ring with beam is inserted for R, then the interpretation of s21

is more subtle. Generally the output port of the network analyzer is connected to a

device in the ring which is capable of exciting the beam, while the response of the

beam is monitored elsewhere in the ring through the use of a suitable detector. Under

normal circumstances, a signal completing the path to the return port of the network

analyzer must be transmitted through the particle beam. Thus, there can be power

in the response only at frequencies supported by the beam. If the frequency of the

external voltage is not a natural frequency of the beam, then there is no mechanism for

energy absorption from the voltage source. The particles in the beam do not all move

with the same frequency; rather there is a distribution of frequencies, which in the

longitudinal case corresponds to the energy distribution of the beam. Barring e�ects

from the hardware comprising the ring, or the measurement itself, the amplitude

versus frequency of s21 should closely resemble the energy pro�le of the beam. Only

those particles whose frequencies match the frequency of the driving voltage are able

to absorb energy from the voltage wave. Thus, the beam response to a voltage source

of a given frequency is in direct proportion to the number of particles that move with

that frequency. A plot of the magnitude from an s21 measurement and a concurrent

beam spectrum are shown in �gure A.3. For purposes of comparison, the ratio of the

frequency span to the center frequency is the same for both traces. When there is an

impedance present in the ring at a frequency within the beam distribution, it may
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Figure A.3: Comparison of a beam transfer function measurement to the undisturbed
frequency distribution of the beam. The top plot is the magnitude response of an S21
measurement, and the bottom plot is the beam spectrum.

enhance the beam response at this frequency, distorting the amplitude of s21. It is

this fact which makes beam transfer functions a potentially useful tool for identifying

machine impedances.



Appendix B

Alternative derivation of the

dispersion relation for parametric

coupling

The second order dispersion relation for parametric coupling will be found using

a technique derived from D.G. Swanson [43]. The procedure is to do a Fourier

transformation of the second order perturbatively expanded Vlasov equation, eq. 5.3.

Through the use of direct substitutions, all terms of the equation are written as ex-

pressions in the perturbed current, Im. In addition, non-resonant terms are neglected.

Then Im may be cancelled out of the equation, giving the second order dispersion re-

lation. Once this general dispersion relation is obtained, it is expanded around the

resonant frequency in order to get an expression describing the system when it is close

to resonance. This resonant form of the dispersion relation is identical to the result

obtained in section 5.3, which uses the multiple time scale expansion technique and

201



202

normal mode analysis.

Starting with eq. 5.3, consider the response of the beam at a mode m due to the

frequency mixing of another mode k with an externally applied voltage. Let Un be a

driving voltage of the form,

Un = V0e
i(n��
0t) + V �

0 e
�i(n��
0 t)

where V0 is the amplitude of the applied voltage, and 
0 = n!0 is the frequency of

the applied voltage. Then the summation in eq. 5.3 reduces to two terms, and the

equation may be written,

@fm
@t

+ im!(")fm = �e!0

2�

@f0
@"

Um � e!0

2�
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@fm�n
@"

e�i
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Taking the Fourier transform,
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Z 1
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e�i
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fme
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The evaluation of eq. B.1 is facilitated by an integration by parts of the �rst term

on the left hand side (LHS), and by applying the modulation property of Fourier
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transforms to the last two terms of the right hand side (RHS). Then,

i[
�m!(")]Fm(
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(B.2)

In order to obtain the dispersion relation, it is necessary to write each term in eq. B.2

as an expression in the same dependent variable, so that it may be cancelled out

of the equation. The purpose of most of the remaining analysis in this section is to

manipulate eq. B.2 so that Im may be factored out of the equation. Begin by isolating

the Fm on the LHS, and also make the substitution Um = �ZmIm,

Fm(
) = �e!0

2�
Zm(
)Im(
)

@f0
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�m!(")]
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@"
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�m!(")]
(B.3)

In order to change the Fm on the LHS into the perturbed current, Im, multiply eq. B.3

by e!0 and integrate over the energy error, ". If, in addition, an integration by parts

is done to the second and third terms on the RHS, then eq. B.3 becomes,

Im(
) = e!0

Z 1

�1
Fm(
) d"

= �(e!0)2

2�
Zm(
)Im(
)

Z 1

�1
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�m!(")]
d"
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Re-arranging so that the terms in Im are on the same side of the equation,

Im(
)Dm(
) = �(e!0)2
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where Dm is just the linear dispersion relation for mode m,

Dm(
) �
(
1 � i(e!0)2

2�
Zm(
)

Z 1

�1

@f0
@"


�m!(")
d"

)
(B.5)

Note that the closer the dispersion relation is to being satis�ed, the more nearly Dm

is zero. If both sides of equation B.4 are divided by Dm(
), it can be seen that Im(
)

will be larger as the dispersion relation is closer to zero. The root of the dispersion

relation occurs when 
 = m!0, (since !(") = !0 + k0" ' !0), with m!0 being the

frequency of the mth normal mode. On simple physical grounds, if Im is large, then

an oscillation at m!0 must be present in the beam.

Now, to get an alternative expression for Fm�n, begin with eq. B.3, letting m!
m� n and 
! 
 � 
0,

Fm�n(
� 
0) = �e!0

2�
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0)Im�n(
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@"
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As seen in eq. B.3, mode m may couple to modes m � n, m + n, or both by virtue

of the existence of the pump at the nth harmonic. Similarly, the pump enables mode

m� n to couple with modes m, m� 2n, or both. Any existing mode may couple to

two others via the drive, but for the sake of clarity we are only interested in a single

combination of 3-wave coupling. Then the m � 2n term in eq. B.6 is not resonant

and will phase average to zero.

Substituting the expression for Fm�n given by eq. B.6 and a similarly acquired

expression for Fm+n into eq. B.4,
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Each of the coupling terms, m � n and m + n, may be considered separately, as

in general both modes will not be present in the beam. The m + n term will be

discarded. The second and forth terms on the RHS may also be discarded, as they

represent coupling between modem and the drive, and it is coupling between di�erent

modes which is of interest here. Now we have,

Im(
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) =
(e!0)

3
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d" (B.8)

In order to get an expression for Im�n, begin with eq. B.4, letting m ! m � n and


! 
� 
0 yielding,

Im�n(
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0) =
1

Dm�n(
 �
0)
f

� (e!0)2

2�
V0(m� n)k0

Z 1

�1
Fm�2n(
� 2
0)

i[
� 
0 � (m� n)!(")]2
d"

� (e!0)2

2�
V �
0 (m� n)k0

Z 1

�1
Fm(
)

i[
�
0 � (m� n)!(")]2
d" g(B.9)

Again, the m�2n term will be dropped. In the remaining term, Fm may be replaced

using eq. B.3, although it is only necessary to use the �rst term on the RHS for the

substitution. The second and third terms would end up being third order in the
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coupling coe�cient V0, and so may be neglected. Now Im�n can be written,
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(B.10)

Using the expression for Im�n(
�
0) given by eq. B.10 in eq. B.8, and then cancelling

Im(
) from both sides, results in the second order dispersion relation,
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It will now be shown that the general dispersion relation given by eq. B.11 is

consistent with the result of the multiple time scale technique. This is done by

expanding the linear dispersion relations on the LHS around the resonant frequency,

!m = !m�n+
0. Assume the frequency of the system is nearly resonant, 
 = !m�i�,
where � is small compared to !m. Then,

Dm(
) = 1� i(e!0)2

2�
Zm(!m)

Z 1

�1
d"

@f0
@"

[!m �m!(")][1� i�
!m�m!

]



208
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Note that Dm(!m) = 0 and may be dropped. Dealing with Dm�n(
 � 
0) =

Dm�n(!m�n � i�) in a similar manner, the second order dispersion relation given

by eq. B.11 becomes,
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This is identical to eq. 5.27.



Appendix C

Demonstration of symmetry

relations used in section 5.5

The following symmetry relations are needed in section 5.5 to link the frequency and

mode selection rules to wave energy and momentum conservation laws,

Vm;n;k

m
=

V�n;�m;k

�n =
V�k;n;�m
�k

where,
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The portion which must be shown to be invariant to permutation is:

Xmnk =
1

m
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A 1
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The symmetry relations will be demonstrated using a technique derived from R.C.

Davidson [10]. The �rst step is to write expression C.1 in a more symmetric form:

Xmnk =
1
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(C.2)

This form of Xmnk makes it explicit that the wave interaction !m = !n + !k is the

same as the interaction !m = !k + !n.

Integrating eq. C.2 by parts,
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Adding the fractions in the integrand,
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However, !n + !k = !m and n+ k = m, so eq. C.3 may be written,

Xmnk = �k0
Z 1
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d"
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From the form of eq. C.4, it is now possible to see that making the transformations

m ! �n and n ! �m results in no change, since the minus signs cancel. There is

also no change under the transformations m! �k and k ! �m.
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