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Introduction

This is a phenomenological thesis dealing with fragmentation phenomena

in perturbative QCD.

In the study of large pt phenomena, depending on the kind of variables

or distributions one is interested in, two di�erent approaches are available

for theoretical predictions: one is the analytical calculation of Parton Level

(PL) amplitudes, convoluted with distribution functions describing intial

and �nal state emission (structure and fragmentation functions) the other

is the so called Parton Shower (PS) which describes in complete fashion

the �nal state providing observable particles and allowing the generated

events to be interfaced to a detector simulation.

In this thesis we will use in a complementary way both the methods, in

order to study some fragmentation phenomena of interest like the inclusive

single particle production at letpon and hadron colliders, jet fragmentation

at hadron colliders, gluon radiation in jets physics.

The outline of the thesis is the following: after giving some brief re-
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2 Introduction

minds on QCD and deep inelastic phenomena in Chapter I we will de-

scribe the formalism of Fragmentation Functions in Chapter II along

with the procedure used to extract them from e+e� data for light mesons

to next-to-leading order. Two di�erent approaches have been used: the

�rst one based on NLO �t to data and the other one based on the use of a

Parton Shower MonteCarlo. The agreament between the two approaches

is indeed very good.

In Chapter III and Chapter IV we apply the formalism of Frag-

mentation Functions to study the inclusive single particle production at

hadron-hadron and lepton-hadron colliders in a complete NLO formalism,

giving predictions and comparing the results to data when available.

Finally in Chapter V we use the Parton Shower interfaced to a Parton

Level matrix element calculation in order to study the production of Wb�b

plus jets.
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� c) M. Greco , S. Rolli, A. Vicini,Inclusive single particle photopro-
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Chapter 1

Introduction to QCD

1.1 Introduction

In the Standard Model strong interactions are described by Quantum

Cromo Dynamics (QCD) [1].

In this chapter we will briey analyze some characteristics of this the-

ory that explains with some accuracy several of the phenomenological

aspects of processes in which we deal with hadron and their elementary

constituents: quarks and gluons.

We will analyze the theoretical frame starting from the parton model

successively improved with QCD corrections. We will consider in partic-

ular the concepts of asymptotic freedom and running coupling constant.

Perturbative QCD (pQCD) will be shown to be a very good theory to

5



6 Chapter 1

describe high transferred momentum processes. In the second part of

the chapter we will consider the phenomenology of some basilar processes

like deep inelastic scattering, e+e� annihilation into hadrons and hadron-

hadron collisions.

1.1.1 Asymptotic freedom

Non abelian gauge theory without spontaneous symmetry breaking are

renormalizable and asymptotically free. 1

This property is quite crucial, and for this reason pQCD is a very good

candidate to be the theory describing strong interactions, owing the fact

that it incorporates and extends the description of deep inelastic scattering

phenomena.

In this section we will give a simple introduction to the problem of

scaling and its breaking: we will see renormaliztion group equations and

running coupling constant and de�ne an asymptotically free theory.

Asymptotic scaling and renormalization group equations

We will start considering a renormalizable theory with just one adimen-

sional coupling constant. For large values of the external momenta (p2i =

�xiQ2; Q2 !1) one expects that physical observables become indepen-

dent on mass term (in the limit to disregard all the terms of powers of

mass divided by the scale of external momenta and when one is far from

thresholds and all the observables are �nite in the infrared limit, or with

the mass going to zero -massless limit-) owing the fact that in the theory

dimensional scale parameters are not left.

1We remember indeed that in the electroweak sector of the Standard Model this is

not true and the running coupling constant grows when the scale is growing, contrary

to what happens in QCD



1.1 Introduction 7

As we know our theory is not completely speci�ed by the bare La-

grangian, but we need a renormalization procedure in order to avoid ul-

traviolet divergences. This can be achieved for example via dimensional

regularization, ie the reduction of space-time dimension to n < 4

d4k

(2�)4
! (�)2�

d4�2�k

(2�)4�2�
(1.1)

where � = 2 � n
2 . Loop integrals ( of type dnk

(k2+m2)2 ) will show poles at

� = 0 and these singularities will be absorbed into the theory parameters.

The � scale is the point where the divergences are subtracted and the way

we subtract them de�nes the rinormalization scheme.

We can choose to subtract just the pole 1
�
and this is the Minimal

Scheme (MS) of subtraction. Or we can subtract the combination:

1

�
+ ln (4�)� E (1.2)

where E is the Eulero constant, and this de�nes the modi�ed minimal

subtraction scheme (MS). We will denote this convention as 1
�� .

When we introduce the new scale � to de�ne a renormalized coupling

constant, renormalized �elds and so on, we introduce a di�erent scale

for the momenta, breaking the original scale invariance and making the

physical quantities depending on the ratio Q=� in the asymptotic limit.

Now let us consider in more detail one adimensional physical quantity

S depending on a single parameter Q in a massless theory. As we saw

before after the renormalization S will be function of Q2

�
and � (it is itself

function of �). So, if we introduce:

t = ln

 
Q2

�2

!
; (1.3)

we will have in general

S = S(t; �): (1.4)
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The fact that S must not depend on the value of � puts some stringent

constraints on the functional form of S. Asking for invariance in respect

to variation of the parameter � is equivalent to establish the following

Renormalization Group Equations (RGE):

"
@

@�2
+

@�

@ln �2
@

@�

#
S(t; �) = 0 (1.5)

that, introducing the �-function

�(�) =
@�

@ln�2
(1.6)

become:

"
@

@ln�2
+ �(�)

@

@�

#
S(t; �) = 0 (1.7)

and whom general solution is:

S(t; �) = S(0; �(t)); (1.8)

where �(t) is the running coupling constant de�ned by:

t =
Z �(t)

�

dx

�(x)
: (1.9)

We can say that RGE's imply that all the Q2 dependence of S is

manifested via �(t)

For a generic Green function, �, RGE's are slightly complicated than

(5). The relation between bare Green function (as calculated from the

appropriate Feynman diagrams in terms of bare quantities and some cut-

o� M) and the renormalized ones is the following:

�UNR(
Q

M
;xi; �0) = Z��REN(

Q

�
; xi; �); (1.10)
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where Q is the energy scale and xi are �xed ratios of invariants in

respect to variation of the scale, �0(�s) is the bare (renormalized) coupling

constant and Z� is in general the product of renormalization factors for

the �elds.

RGE's for the Green function � are given by:

"
�@
@t

+ �(�)
@

@�
+ �(�)

#
�REN (t; xi; �) = 0 (1.11)

where �(�) =
1
Z�

@Z�
@ln�2 is the anomalous dimension. The solution is

given by:

�(t; xi; �) = �(0; xi; �(t))exp
Z �(t)

�

�(x)

�(x)
dx: (1.12)

In order to evaluate (12) one needs to know �(�), �(�) and �(0; xi; �(t))

Actually these quantities are known only in perturbation theory. We

can build an asymptotic expansion for � in the case very important where

�(t)! 0 per t!1.

This is what we call Asymptotic Freedom, and a theory asymptotically

free is the one where the running coupling constant tends to be zero for

t!1.

We will now briey show the perturbative expansion for �(�) and the

corresponding expressions for the running coupling constant.

We have:

�(�) = �b�2s(1 + b0�s +O(�2s)) (1.13)

with

b =
(33 � 2Nf )

12�
(1.14)

b0 =
153 � 19Nf

2�(33� 2Nf )
(1.15)
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where NF is the number of avors and the coe�cients of the �-function

are extracted from higher order corrections to quark-gluon and gluon-

gluon vertices.

From equation (13) we derive

@�s(Q2)

@t
= �b�2s(Q2)[1 + b0�s(Q

2) +O(�2s(Q
2))]: (1.16)

We can solve (16) perturbatively. At �rst order (leading logarithm

approximation) �s is given by:

�s(Q
2) =

�s(�)

1 + �s(�)bt
; (1.17)

while if we include even the second term (next-to-leading logarithm

approximation) �s is given by:

�s(Q
2) =

2�

b0 ln
�
Q2

�2

�
0
@1� b00 ln

h
ln
�
Q2

�2

�i
b0 ln

�
Q2

�2

�
1
A ; (1.18)

where

b0 =
11

6
N � 1

3
Nf (1.19)

b00 =
17

6
N2 � 5

6
NNf � 1

2
CfNf (1.20)

N = 3 is the number of colors and Nf is the number of avors with

Cf =
(N2�1)
2N and the asymptotically free regime is de�ned for Q2 >> �2.

The � parameter de�ned by:

ln
Q2

�2
= �

Z
1

�(t)

dx

�(x)
; (1.21)

represents the scale where the coupling becomes strong: it a universal

parameter of QCD and its numerical value depends on the approximation

used to calculate �s from the e�ective number of avors and the renor-

malization scheme. From phenomenology of deep inelastic processes we

have � = O(200 Mev) for NF = 5.
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1.2 Deep inelastic scattering

1.2.1 The naif parton model

Let us consider deep inelastic scattering of a photon of large invariant

mass Q on a hadronic target (ie a proton). If k and k0 are the four-

momenta of ongoing and outgoing leptons and q = k�k0 is the transferred
four-momentum and p is the four-momentum of the proton, we have the

following variables describing the kinematics:

Q2 = �q2; p2 =M2; (1.22)

x =
Q2

2pq
=

Q2

2M(E �E0)
; (1.23)

y =
q � p
k � p = 1� E

E0
; (1.24)

where the energies are de�ned in the reference frame where the proton is

at rest.

The di�erential cross section is given by:

d�

dxdy
=

8��2

Q2y

"
y2

2
W1(x;Q

2) + (1� y)
Q2W2(x;Q2)

4x2

#
; (1.25)

where we disregard the initial hadronic mass , and W1 and W2 are the

structure functions. At large Q2, in the �rst experiments at SLAC [2], it

was shown that F1 and F2 can be derived from W1 and W2 and they were

approximatively independent on Q2:

W1(x;Q
2)! F1(x); (1.26)

�W2(x;Q
2)! F2(x): (1.27)
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This is the so called Bjorken scaling, valid in a simple parton model

where we are not considering internal interactions in the hadron. In this

model if we sit in the frame where the impulse is in�nite, and we consider

the photon scattering on a pointlike quark with charge eq and proton

impulse fraction �, we obtain for the e�ective cross section (we are disre-

garding the masses) the following expression:

d�

dxdQ2
=

4��2

Q4
[1 + (1� y)2]

e2q
2
�(x� �) (1.28)

from this we can derive the expressions for the structure functions:

F2 = xe2q�(x� �) = 2xF1: (1.29)

If we de�ne q(�)d� as the probability for a quark q to have a fraction

of the impulse in the range between � and � + d� and assume incoherent

photon scattering on the quark, we obtain:

F2 =
X
q

Z 1

0
d�q(�)xe2q�(x� �) =

X
q

e2qxq(x) (1.30)

1.2.2 QCD corrections

In QCD, the original scale invariance is broken by logarithmic terms of

the type lnQ2.

Indeed, if we consider corrections of order �s to the reaction eq! eq,

i.e. the virtual and real emission of a gluon, we obtain in theMS scheme:

1

u
F q
2 (u;M

2) = e2q[�(1� u) +
�s
2�
�(1 � u)(Pqq(u)(�1

��
) +

+Pqq(u) ln (
Q2

M2
) + cqq(u))]; (1.31)
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1

u
F g
2 (u;M

2) =
X
q

e2q[
�s
2�
�(1 � u)(Pqg(u)(

1

��
) +

+Pqg(u) ln
Q2

M2
) + cqg(u))]; (1.32)

where F g
2 and F q

2 are the two terms of the structure function corre-

sponding to a electron-quark di�usion and electron-gluon one, u = x=�

and M will be de�ned below. Pqq, Pqg, cqq, cqg are calculable in the

frame of perturbative theory and they will be speci�ed below. Integrals

containing infrared and collinear divergences has been regularized and the

singularities appear as poles in 1=�. If we we should not use dimensional

regularization but for examples we should introduce a little mass for the

gluon in order to regularize the singolarities divergencies should appear as

logarithms of the regularizing masses.

Let us now introduce distribution functions for quarks, q(�), and glu-

ons, g(�). If we choose to de�ne the distribution functions in order they

are independent on the scale M we have:

F2(x;M
2) =

X
q

e2qxq(x;M
2); (1.33)

and equations (31) and (32) gives rise to the following relations:

q(x;M2) = q(x) +
�s
2�

Z 1

x

d�

�
q(�)[Pqq(

x

�
)(�1

�
+ ln

Q2

M2
) + cqq(

x

�
)] +

+
�s
2�

Z 1

x

d�

�
g(�)[Pqg(

x

�
)(�1

�
+ ln (

Q2

M2
) + cqg(

x

�
)]:(1.34)

The � ! 0 limit is interpreted in the following way: we absorb the

collinear singularities into the bare, non measurable, distribution q(x) in

order to de�ne a physical quantity q(x;M2), to the factorization scale M,

that is the analogous of the renormalization scale � we saw above. Pij
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have a simple probabilistic meaning and for this we address the reader to

Appendix A.

PQCD does not give absolute predictions for the renormalized distri-

butions q(x;Q2), nevertheless we can de�ne the Q2 evolution. If we de�ne

t = ln Q2

M2 we obtain:

d

dt
q(x; t) =

�s(t)

2�

Z 1

x

d�

�
[q(�; t)Pqq(

x

�
) + g(�; t)Pqg(

x

�
)]: (1.35)

This equation is the analogous of the one describing the evolution of

�s with Q2 and it has been known as Lipatov-Altarelli-Parisi equation [3].

More in general evolution equations are of the following form:

d

dt

 
q(x; t)

g(x; t)

!
=
�s(t)

2�
� (1.36)

Z 1

x

d�

�

 
Pqq(

x
�
; �(t)) Pqg(

x
�
; �(t))

Pgq(
x
�
; �(t)) Pgg(

x
�
; �(t))

! 
q(�; t)

g(�; t)

!
: (1.37)

At Born level kernels have the following perturbative development:

Pij(z; �s) = P 0
ij(z) +

�s
2�
P

(1)
ij (z) + : : : (1.38)

Physically Pij rappresent the probability to �nd a parton of type i

inside a parton of type j with impulse fraction x and negligible transverse

momentum in respect to the scale M .

For sake of clarity we should say that the probabilistic interpretation

for splitting functions is valid just at Born level (leading logs approxima-

tion) To this order kernels are given by:

P 0
qq(x) = CF

"
1 � x2

(1� x)+
+
3

2
�(1� x)

#
; (1.39)

P 0
qg(x) = TR[x

2 + (1 � x)2] con TR =
NF

2
; (1.40)
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P 0
gq = CF

"
1� (1 � x)2

x

#
; (1.41)

P 0
gg(x) = 2N

"
x

(1 � x)+
+
1� x

x
+ x(1� x)

#
+ �(1� x)

11N � 4TR
6

;

(1.42)

where +distribution are de�ned as:

Z 1

0
dxf(x)[g(x)]+ =

Z 1

0
dx[f(x)� f(1)]g(x); (1.43)

Finally cij(u)-functions de�ned in equations (31) (32) (34) rappresent

�nite factors in the parton distributions and they depend on the process

chosen to de�ne the structure functions.

1.3 e+e� annihilation into hadrons

Let us consider the inclusive hadron production:

e+e� ! H +X: (1.44)

In the naif parton model, if we don't consider e�ects due to weak

interactions, the di�erential cross sections in � and E is given by:

�H(z; cos �) =
3

8
(1 + cos2 �)�HT (z) +

3

4
(1� cos2 �)�HL (z); (1.45)

where in the center of mass frame � is the angle of the hadron with

the beam and z is proportional to the energy of the hadron.

If we considering p as the four-momentum of the hadron and q as the

four-momentum of the photon we have:

q2 = Q2, z = 2pq
Q2 .

In the parton model, after integration over � one has:
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�HL (z) = 0 (1.46)

and

�HT (z) = 3�0

fX
a=1

[DH
0qa(z) +DH

0�qa(z)]; (1.47)

where DH
0qa(z) is the type H hadron density inside the quark qa with

fraction z of energy of the quark and

�0 =
4��2

3Q2
(1.48)

is the total e+e� ! �+�� cross section.

If we want to take into account the QCD corrections, to �rst order in

�s we have to consider the tree level reaction e+e� ! q�qg and the one-loop

reaction e+e� ! q�q.

The naif parton model relations are modi�ed and we assist to logarith-

mic violation to the original scaling. De�ning t = ln ( Q
2

M2
f

) whereMf is the

fragmentation scale (analogous to the factorization scale) we obtain:

�HL (z) = 3�0
4

3

�s
2�

2
4Z 1

z

dy

y
(

fX
a=1

e2a[D
H
0qa(

z

y
) +DH

0 �qa(
z

y
)]

+
fX

a=1

e2aD
H
0g(
z

y
)
(1 � y)4

y
)

3
5 ; (1.49)

and

�HT (z; t) = 3�0

Z 1

z

dy

y

fX
a=1

e2a[D
H
0qa(

z

y
) +DH

0 �qa(
z

y
)][�(1� y) +

�s
2�
tPqq(y)

+�sdq(y)] + 2
fX

a=1

e2aD
H
0g(
z

y
)[
�s
2�
tPgq(y) + �sdg(y)];(1.50)
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where dg and dq are the subleading �nite terms given in Appendix D.

As for the case of deep inelastic scattering, singularities are absorbed

in bare fragmentation functions in order to de�ne a renormalized fragmen-

tation function to the scale Mf . In this case too the factorization schemes

can be di�erent. The relation between bare fragmentation functions and

renormalized ones is the following:

DH
q (z; t) =

Z 1

z

dy

y

�
DH

0q(y)[�(y� 1) +
�

2�
tPqq(y) + �sdq(y)]+

+DH
0G

 
z

y

!�
�s
2�
tPGq(y) + �sdG(y)

�!
: (1.51)

Starting from the previous equation one can demonstrate that the

fragmentation functions evolve with the scale Mf in accordance to the

following equations:

@DH
q (z;M

2
f )

@ ln(M2
f )

=
�s(M

2
f )

2�

Z 1

z

dy

y

"
P T
qq(y; �s(M

2
f ))D

H
q (
z

y
;M2

f )

+ P T
gq(y; �s(M

2
f ))D

H
g (
z

y
;M2

f )

#
(1.52)

@DH
g (z;M

2
f )

@ ln(M2
f )

=
�s(M2

f )

2�

Z 1

z

dy

y

"
P T
qg(y; �s(M

2
f ))D

H
q (
z

y
;M2

f )

+ P T
gg(y; �s(M

2
f ))D

H
g (
z

y
;M2

f )

#
: (1.53)

We note that the fragmentation functions evolution equations kernels

are di�erent from the ones of structure functions: the equality is valid just

at leading order.

Let us see now how it is possible to maintain a relation of the type of

(47) and how it is possible to relate fragmentation functions to physically

measurable quantity like a cross-section. [4]
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Let us consider equations (49) and (50). From the �rst one, remem-

bering the sum rules for the momenta, we can deduce:

X
H

Z 1

0
dz

1

2
z�HL (z) = 3�0(

fX
a=1

e2a)
�s
�
: (1.54)

If we consider that the cross section for e+e� ! hadrons is given by:

�TOT = 3�0

fX
a=1

e2a(1 +
�s
�
); (1.55)

we can see that the entire correction to the cross section �TOT is given

totally by �HL and then:

X
H

Z 1

0
dz

1

2
�HT (z; t) = 3�0

fX
a=1

e2a; (1.56)

without corrections of order �s.

In the same way as for the leptoproduction, where we required that

the relation between structure functions and quark distribution functions

was the same as in the naif parton model, here we will de�ne e�ective

fragmentation functions in terms of physical measurable quantities. We

adopt the following description:

�HT (z; t) = 3�0

fX
a=1

e2a[D
H
qa(z; t) +DH

�qa(z; t)] (1.57)

without corrections of order �s.2

2This de�nition corresponds to interpret the entire transverse cross section as due

to two-jets events. We could indeed choose the e�ective fragmentation functions in a

di�erent way. If we have:

�H(z; t) = 3�0

fX
a=1

e2a[1 +
�s(t)

�
]( �DH

qa
(z; t) + �DH

�qa
(z; t)) (1.58)

we can see that both the sum rules for charge and momentum conservation are not



1.4 Hadron-hadron collisions 19

We immediately obtain the formula for �L in terms of the e�ective

fragmentation functions, trading the coupling constant with the running

one and the bare fragmentation functions with the renormalized ones,

which depend on t:

�HL (z; t) = 3�0
4

3

�s(t)

2�

2
4Z 1

z

dy

y
(

fX
a=1

e2a[D
H
0qa(

z

y
; t) +DH

0 �qa(
z

y
; t)]

+
fX

a=1

e2aD
H
0g(
z

y
; t)

(1� y)4

y
)

3
5 : (1.59)

1.4 Hadron-hadron collisions

Let us consider high transfer momentum reactions, in which we have intial

state hadrons. These kind of reactions give rise to jets production or single

particle production of large momentum and are described by QCD in the

following way.

The e�ective two hadrons scattering cross section can be written in

this way:

�(P1; P2; �) =
X
i;j

Z
dx1dx2Fi(x1;M)Fj(x2;M)d�ij(p1; p2; �(�); Q);

(1.60)

P1 and P2 are the four-momenta of the incoming hadrons; p1 = x1P1

and p2 = x2P2 are the four momenta of the partons participating to the

hard subprocess, Fi(x;M) are the distribution functions de�ned by the

a�ected by order �s correction (as it was before for the charge sum rule). Nevertheless

from an aestethical point of view the �rst choice tells us that a fraction of events

to order �s is actually due to three-jets events, and the angular distribution for �HT

(1 + cos2 �) is more appropriate for q�q production.
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factorization scale M , and Q is the characteristic process scale (eg the

transverse momentum of the jet). � is an arbitrary parameter chosen of

order of Q scale characterizing the parton parton interaction and �ij is

the cross section for the hard interaction between partons i and j.

The latter can be developed as a perturbative series in powers of �s:

at leading log approximation is given by the parton model e�ective cross

section, while to next-to-leading order it is given by adding corrections

due to real and virtual gluon emission, where the intial state singularities

are factorized in the e�ective structure functions, while the �nal state

singularities are factorized in the fragmentation functions, in the case of

high pt single particle hadro-production.

1.4.1 Elementary hard subprocesses in QCD

Cross sections for elementary subprocesses at order �s are given by the

following expression:

d�ij!kl

dt
=
�2s
s2
jM j2ij!kl: (1.61)

In Table I we show the matrix elements expressions jM j2 as functions
of Mandelstam variables and the values of the matrix element at � = 90

degrees.

We see that for low values of x (x = 0:1) the two subrocesses:

gg ! gg; (1.62)

gq(�q)! gq(�q); (1.63)

start to dominate, owing the fact that the gluon distribution functions are

comparable to the quark ones.

In Figure 1, we show the inclusive jet cross section at CDF as function

of pt and the comparison with the theoretical calculations by Ellis, Kunzst

and Soper [6] to next-to-leading order, obtained using MRSD0' set of



1.4 Hadron-hadron collisions 21

structure functions. As we see the agreement is very good on more than

seven orders of magnitude.

We remind that to order �s is very strong the sensibility to the choices

of scales and to the value of �, and only with the order �3s corrections this

uncertainty can be reduced to no more than 20-30% [5].

Process jM j2 FM

qq0! qq0 4
9
s2+u2

t2
2:22

�qq0 ! �qq0

qq! qq 4
9

�
s2+u2

t2
+ s2+t2

u2

�
� 8

27
u2

st
3:26

�qq! �q0q0 4
9
t2+u2

s2
0:22

qq! qq 4
9

�
s2+u2

t2
+ t2+u2

s2

�
� 8

27
u2

st
2:59

�qq ! gg 32
27

u2+t2

ut
� 8

3
u2+t2

s2
1:04

gg ! �qq 1
6
u2+t2

ut
� 3

8
u2+t2

s2
0:15

qg! qg 4
9
u2+s2

us
+ u2+s2

t2
6:11

gg ! gg 9
2

�
3� ut

s2
� us

t2
� st

u2

�
30:04

Table I

1.4.2 Inclusive single particle production

The cross section for inclusive single particle production is obtained as a

convolution of partonic cross section, structure and fragmentation func-

tions, evolved in the appropriate way.

For a h particle we have:
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Figure 1.1: NLO inclusive jet production at CDF compared with the data
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E
d3�

dP 3
=
X
a;b;c

Z
dx1dx2dz

1

�z
Fa(x1; Q

2)Fb(x2; Q
2)
d�ab!c

dt
Dh
c (z;Q

2) (1.64)

where Dh
c (z;Q

2) is the fragmentation function for the parton c (quark

or gluon) into an hadron h with z fraction of longitudinal momentum of

the particle.

The multiplicity to produce n particles of type h coming form the

fragmentation of c-parton is given by:

< Nh >=
Z 1

0
Dh
c (z)dz: (1.65)

One can show the validity of the following sum rules:

a. momentum conservation

X
h

Z 1

0
zDh

c (z)dz = 1; (1.66)

b. charge conservation

X
h

eh

Z 1

0
dz[Dh

c (z)�Dh
c (z)] = 1: (1.67)
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Appendix A

1.5 Splitting functions in Altarelli-Parisi equa-

tions

We saw that the evolution equations which describe the evolution of parton

densities with the scale Q can be written as follows:

dqi

dt
(x; t) =

�

2�

Z 1

x

dy

y
[
2fX
j=1

qi(y; t)Pqiqj(
x

y
) +G(y; t)PqiG(

x

y
)]; (1.68)

dG

dt
(x; t) =

�

2�

Z 1

x

dy

y
[
2fX
j=1

qi(y; t)PGqj(
x

y
) +G(y; t)PGG(

x

y
)]; (1.69)

where indexes i and j are for di�erent avors.

The quarks number varies via two principal mechanism: a high energy

quark can loose part of its energy via the emission of a gluon, or a gluon

inside the proton can produce a q�q pair. In the same way the number

density of gluons inside a proton can change via radiation of a gluon from

quark or because a gluon can split into a q�q pair or gg pair.

The latter is typical for non abelian theory where we see triple bosons

vertices.

The P (z) functions that we saw as kernels of the evolution equations

are known as splitting functions and some of their properties are immedi-

ately derived from the fact that avour and color commute.

First of all, we have that Pqiqj is diagonal in the quark index, owing

the fact that a gluon exchange conserves the avour.

Pqiqj = �ijPqq: (1.70)
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Indeed when we disregard the masses, the gluon emission probability

is the same for every avour:

PGqi = PGq (independent on i) (1.71)

Finally a gluon gives rise to a q�q massless pair with equal probability

for every avour:

PqiG = PqG (independent on i) (1.72)

We can rewrite (68) and (69) without indexes i and j.

dq

dt
(x; t) =

�

2�

Z 1

x

dy

y
[q(y; t)Pqq(

x

y
) +G(y; t)PqG(

x

y
)] (1.73)

dG

dt
(x; t) =

�

2�

Z 1

x

dy

y
[
2fX
i=1

qi(y; t)PGq(
x

y
) +G(y; t)2fPGG(

x

y
)] (1.74)

The matrix

Z 1

0
dzzn�1

 
Pqq(z) 2fPqG(z)

PGq(z) PGG(z)

!
=

 
ANS
n 4T (R)AqG

n

AGq
n AqG

n

!
(1.75)

gives the logarithm exponents for every n as they are given in Litera-

ture [3].

For every value of n the matrix has to be diagonalized in order to

obtain eigenvalues and eigenvectors of evolution equations.

The non diagonal functions �
2�PGq(z) and

�
2�PqG(z) may be interpreted

as probability densities: �
2�PGq(z) as the probability to �nd to order �s

a gluon inside a quark (antiquark) with fraction z of the longitudinal

momentum of the parent parton and �
2�PqG(z) as the probability to �nd

to the same order a quark (antiquark) inside a gluon.

For the diagonal functions the interpretation is not immediate, owing

the fact that we have �-singularities at z = 1.
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The probability densities are given in this case by:

Pqq + dPqq = �(1� z) +
�

2�
Pqq(z)dt; (1.76)

PGG + dPGG = �(1� z) +
�

2�
PGG(z)dt; (1.77)

so we can see that only for z < 1 we can give a probabilistic interpre-

tation.

Momentum conservation at splitting vertices imposes further constraints

on P : indeed for z < 1 we have:

Pqq(z) = PGq(1� z); (1.78)

PqG(z) = PqG(1 � z) z < 1; (1.79)

PGG(z) = PGG(1 � z): (1.80)

Previous equations are derived from the fact that when a quark ra-

diates a gluon with fraction z of the momentum this is also equivalent

to radiate a quark with fraction 1 � z and so on. The presence of �-

singularities alters the form of these relations. Nevertheless it remains

valid that:

Z 1

0
dzz[Pqq(z) + PGq(z)] = 0; (1.81)

Z 1

0
dzz[2fPqG(z) + PGG(z)] = 0; (1.82)

in order to guarantee that the total momentum of the proton is con-

served.

d

dt

Z 1

0
dxx[

2fX
i=1

qi(x; t) +G(x; t)] = 0: (1.83)
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Splitting functions are calculable directly from simple QCD vertices.

We have then:

PGq(z) = CF
1 + (1 � z)2

z
; (1.84)

Pqq(z) = CF
1 + z2

1� z
(z < 1); (1.85)

with C2(R) =
N2�1
2N .

In the same way:

PqG(z) =
1

2
[z2 + (1� z)2]: (1.86)

and �nally:

PGG(z) = 2N
�
1� z

z
+

z

1� z
+ z(1� z)

�
(z < 1): (1.87)

These expressions have to be regularized at z = 1 interpreting them in

distributional sense, or better the terms 1
1�z

which become 1
(1�z)+

,where

\plus" distributions are de�ned as follows:

Z 1

0

dzf(z)

(1 � z)+
=
Z 1

0

dz[f(z)� f(1)]

(1� z)
=
Z 1

0
dz ln (1� z)

d

dz
f(z): (1.88)

We can then add to Pqq(z) and Pgg(z) the �-terms with coe�cients

determined by (78)-(79):

Pqq(z) = CF

"
1 + z2

(1� z)+
+
3

2
�(1� z)

#
; (1.89)

PGG(z) = 2N

"
1 � z

z
+

z

(1 � z)+
+ z(1� z)

+

 
11

12
� 1

3

T (R)

C2(G)

!
�(1� z)

#
: (1.90)
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Chapter 2

Perturbative fragmentation

functions

2.1 Introduction

In the prevoiuos chapter we have seen how some deep inelastic phenomena

are described by perturbative QCD.

In this chapter we will analyze in more detail the fragmentation phe-

nomenon and see how it is described in the frame of perturbative frag-

mentation functions.

29
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2.1.1 Q2 dependence of fragmentation functions

As we saw in the �rst chapter, pQCD rede�nes parton model fragmenta-

tion functions introducing a Q2 evolution [7]. It is possible to technically

calculate the Q2 dependence and then the evolution and the method is

clearly based on the evolution equations, as we saw in the previous chap-

ter. In this chapter we will see in more detail how we can solve the

evolution equations via their transformation in momentum space.

We can rewrite, for reader's convenience, the evolution equations for

FF:

@DH
q (z;M

2
f )

@ ln(M2
f )

=
�s(M2

f )

2�

Z 1

z

dy

y

"
P T
qq(y; �s(M

2
f ))D

H
q (
z

y
;M2

f )

+ P T
gq(y; �s(M

2
f ))D

H
g (
z

y
;M2

f )

#
(2.1)

@DH
g (z;M

2
f )

@ ln(M2
f )

=
�s(M2

f )

2�

Z 1

z

dy

y

"
P T
qg(y; �s(M

2
f ))D

H
q (
z

y
;M2

f )

+ P T
gg(y; �s(M

2
f ))D

H
g (
z

y
;M2

f )

#
: (2.2)

A quark can fragment into a hadron directly or it can radiate a gluon

that successively will fragment into hadrons. In the same way a gluon

can fragment into a hadron or it can produce a q�q pair , where one of the

quarks will later fragment. Finally it can produce a gg pair, one of them

will fragment.

We can solve the system given by (1) and (2). These can be rewrite

in terms of the momenta of the distribution functions:

dMh
qi

dt
(n; t) =

�(t)

2�
[An

qqM
h
qi
(n; t) +An

GqM
h
G(n; t)]; (2.3)
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dMh
G

dt
(n; t) =

�(t)

2�
[An

qG

2fX
i=1

Mh
qi
(n; t) +An

GGM
h
G(n; t)]; (2.4)

where

Mh
a (n; t) =

Z 1

0
dzzn�1Dh

a(z; t); (2.5)

An
ij =

Z 1

0
dzzn�1Pij(z): (2.6)

These equations are easily solved if we introduce the functions: Dh
NS(z; t)

and Dh
S(z; t), which correspond to non-singlet and singlet terms

D�

i (z;M
2
f ) � 1

2

�
DH
qi
(z;M2

f )�DH
�qi
(z;M2

f )
�

(2.7)

D+
i (z;M

2
f ) � 1

2

�
DH
qi
(z;M2

f ) +DH
�qi (z;M

2
f )
�
� 1

2Nf
DS(z;M

2
f ) (2.8)

DS(z;M
2
f ) �

NfX
i=1

�
DH
qi
(z;M2

f ) +DH
�qi
(z;M2

f )
�
: (2.9)

In the evolution equations the singlet part DS is coupled to the gluon

fragmentation function whereas the non-singlet parts D� and D+ are de-

coupled.

Solutions are complicated by the fact that singlet and non-singlet term

are mixed in the same way as they are for the structure functions. The

resulting expressions for momenta are given by:

Mh
NS(n; t) =Mh

NS(n; t)e
Anqqs=2�b; (2.10)

Mh
S (n; t) =

e�
n
+
s[�n�M

h
s (n; t0)�Mh

G(n; t0)]

(�n� � �n+)
+

+
e�

n
�
s[��n+Mh

s (n; t0)�Mh
G(n; t0)]

(�n� � �n+)
; (2.11)
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Mh
G(n; t) =

e�
n
+
s[�n+�

n
�M

h
s (n; t0)� �n+M

h
G(n; t0)]

(�n� � �n+)
+

+
e�

n
�
s[��n+�n�Mh

s (n; t0) + �n+M
h
G(n; t0)]

(�n� � �n+)
; (2.12)

where s = ln t
t0
�n+� = [An

22�An
11+

q
(An

22�An
11)2 + 4An

12A
n
21]=2A

n
12 and

t0 = ln
Q2
0

�2
�n+� = An

11+A
n
12�

n
+� , An

11 = An
qq=2�b, A

n
12 = 2fAn

Gq=2�b , An
21 =

An
qG=2�b , An

GG=2�b b =
33�2f
12�

.

Given a certain set of input momenta at the scale Q2
0 equations (3)-(4)

give the momenta at the desired Q2 scale. Fragmentation functions are

obtained simply applying an inverse Mellin transformation.

Momentum conservation gives rise to the following equations:

X
h

Z
dzzDh

G(z; t) = 1; (2.13)

X
h

X
i

Z
dzzDh

qi
(z; t) =

X
h

Z
dzzDh

S(z; t) = 2f; (2.14)

which become for the splitting functions:

Z
dzz[Pqq(z) + PGq(z)] = 0; (2.15)

Z
dzz[2fPqG(z) + PGG(z)] = 0: (2.16)

Fragmentation functions evolution can be done at several orders of the

perturbative series. We know infact that the running coupling constant

and the splitting functions can be developed at di�erent orders of the

perturbative expansion. During our study we used a FORTRAN code

that is able to perform a leading logarithm approximation evolution or a

next-to-leading logarithm one.
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Next-to-leading evolution is performed in the same scheme developed

to study heavy quark fragmentation and production [8]. In this case we

have very large logarithm to all orders in the perturbative expansion and

at �rst sight the perturbative approximation seems to fail. Nevertheless

it is possible resum all these logarithms to order next-to-leading-log and

the method is based on the factorization theorem which assures that the

cross section for heavy quark production can be written as a convolution

of the fragmentation function and the partonic cross section. This one

is calculable in QCD as an expansion in powers of the running coupling

constant, where the mass of the parton regularize the collinear divergences

coming from gluon emission, while infrared divergences are regularized in

the usual way of summing real and virtual contributions.

We then have:

d�̂

dx
(x;Q;m) =

1X
i=0

a(i)(x;Q;m)

 
�s(Q)

2�

!i
: (2.17)

If we write the cross section at order �s(Q) as

d�

dx

(1)

(x;Q;m) = a(0)(x) + a(1)(x;Q;m)
�s(Q2)

2�
; (2.18)

the diagrams contributing are the ones of real and virtual gluon emis-

sion: if one disregards terms of the order of powers of quark mass, then

one has the following contributions:

d�

dx

(1)

(x;Q;m) = �(1� x) +
�s(Q2)

2�
a(1)(x;Q;m); (2.19)

where

a(1)(x;Q;m) = CF + CF

"
ln
Q2

m2

 �
1

1� x

�
+
(1 + x2) +

3

2
�(1� x)

!

+2
1 + x2

1 � x
ln x�

 
ln (1 � x)

1� x

!
+

(1 + x2)
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+
1

2

�
1

1 � x

�
+
(x2 � 6x� 2) + (

3

2
�2 � 5

2
)�(1� x)

#
:(2.20)

As we can see a(1) contains logarithms of (Q
2

m2 ) and then in the limit

of high energy it becomes large: this is the manifestation of collinear

singularities due to gluons emission. We can forsee that collinear singu-

larities are due to all orders in perturbation theory and the coe�cients

a(n)(x;Q;m) behave as ln (Q
2

m2 )
n
for large Q.

Factorization theorem, along with the Altarelli-Parisi equations, al-

lows to extract logarithmic terms from the partonic cross section and use

them to de�ne an e�ective fragmentation function for quarks and gluons

satisfying Altarelli-Parisi equations, with kernels given by the following

expression:

Pij(x; �s(�)) = P
(0)
ij (x) + (

�s(�)

2�
)P

(1)
ij (x) +O(�3s) (2.21)

which contains leading e next to leading contributions.

If one solves the evolution equations using the zero-th order for P (x),

then D(x; �) will include the correct �ns (�) ln
n ( �

�0
) powers (leading loga-

rithms approximation), while if one uses the �s order expression for P (x)

subleading terms are also considered of the type: �n+1s (�) lnn ( �
�0
).

Now we will see some technical details of the FF calculation at next to

leading order. In momentum space, evolution equation has the following

form (we are considering for sake of simplicity, just the non-singlet part):

dD̂NS(�)

d ln �2
= A

(2)
N D̂NS(�) (2.22)

A
(2)
N =

�s(�)

2�

"
P

(0)
N +

�s(�)

2�
P

(1)
N

#
: (2.23)

where A
(2)
N is the Mellin transformation for the splitting functions, at

next to leading order.
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Of course �s(�) has to be accurate at the same order.

If we introduce

t =
1

2�b0
ln
�s(�0)

�s(�)
(2.24)

after some algebra we have:

D̂NS(�) = D̂NS(�0)exp
�
P

(0)
N t+

1

4�2b0
(�s(�0) � �s(�))

�(P (1)
N � 2�b1

b0
P

(0)
N )

#
: (2.25)

Kernels in momentum space are given in Appendix B.

Our evolution code is based on the procedure described above and the

result is the evolution of fragmentation functions at every scale we desirer.

During out analysis we used data obtained at Q2
0=30 GeV as input to

evolve at scales of interest covering all the range going from �xed target

experiment to hadron and lepton colliders.

In order to extract the phenomenological input we adopted three dif-

ferent strategies in the case of �0 production. Cross checks between the

three showed the intrinsic consistency of the methods, so we choose to use

the method based on use of a parton shower MonteCarlo to extract the

fragmentation functions for all the other light mesons: �, ��, K� , K0
s .

2.2 �0 fragmentation functions

2.2.1 Extraction of �0 fragmentation functions

Selection of experimental data.

We �rst discuss the experimental data we will use to extract the �0

fragmentation functions. We �rst consider e+e� collisions. The JADE

collaboration [9] has published data at
p
S = 14; 22:5 and 34:4 GeV. We
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use the data at 34:4 GeV, covering mainly the low zH range (up to zH =

0:209). Data from the TPC collaboration [10] at
p
S = 29 GeV are given

as 1
�had

d�
�dzH

, therefore a value of R=4.00 is assumed to bring them to the

usual form S
�

d�
dzH

. Data from the TASSO collaboration [11] at
p
S = 34:6

GeV extend up to zH = 0:728. The broadest zH range is covered by data

from the CELLO collaboration, extending from zH = 0:049 to zH = 0:919

at
p
S = 35 GeV [12] and from zH = 0:094 to zH = 0:847 at

p
S = 22

GeV [13]. Data from experiments at DORIS are not used, as hardly any

point survive with the cut on the lower energy of the �0 at 2 GeV. Data

obtained at LEP are for the moment not constraining. However, cross

checks have been performed with the 2 points surviving the cut of data

from the Argus collaboration [14] at
p
S = 10 GeV and the 4 points from

the L3 collaboration [15] at
p
S = 91 GeV.

Fragmentation functions from HERWIG.

We �rst consider the �0 inclusive production in e+e� annihilation at

Mf0 =
p
S = 30 GeV, as simulated by the Monte Carlo generator HER-

WIG. As well known, this event generator includes the QCD parton shower

to leading and next to leading accuracy - in particular the kinematical cor-

rections due to the phase space boundaries are summed up to all orders -

as well as the hadronisation of the color singlet clusters into the physical

particles. Furthermore HERWIG has been shown [16] to describe with

good accuracy the observed features of PETRA and LEP data. Then we

will use the �0 distribution generated by each quark avor which orig-

inates from the photonic vertex, as a realistic description of the quark

fragmentation into �0. Owing to the symmetry of quarks and antiquarks

fragmenting into �0 we extract the quark fragmentation functions from:

d�e+e� ! �0

dzH
(zH;M

2
f0) � 6�0

X
q

e2qD
�0

q (zH ;M
2
f0); (2.26)
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where the pointlike cross section �0 is given by:

�0 =
4��2

3Q2
;

. The reaction e+e� ! �0 +X has been therefore decomposed into each

contribution e+e� ! u�u, d �d, s�s, c�c and b�b. The generated distributions

are parameterized as

D�0

i (z;M2
f0) = Niz

�i(1 � z)�i (2.27)

and analyzed using the minimization procedure MINUIT. The coe�cients

Ni are constrained by the normalization condition:

Z 1

2m�
Mf0

dz Di(z;M
2
f0) = hn�ii; (2.28)

where the average values hn�ii are given by HERWIG for each quark avor,

in agreement with the total observed multiplicity hn�i. The parameters

Ni; �i and �i are extracted from the �0 inclusive distribution generated,

for each avor, in the x range :025 � zH � :95 and shown in table I. As

can be inferred from this table the statistical error on the parameters is

less than 5%.

As an illustration of the accuracy of the method and also of its limita-

tions, the �0 inclusive cross-section obtained from eqs. (2.26) and (2.27),

together with the results of table I , are compared in �gure 1 with the

CELLO data [12] at
p
S = 35 GeV. The agreement is reasonable in the

range zH � :5. So far we have not included the contribution from the gluon

fragmentation function. Indeed from the analysis of the three jet events it

would be possible, in principle, to extract from HERWIG the appropriate

information. The corresponding accuracy is however unsatisfactory, due

to the limited sensitivity to hard gluon e�ects in e+e� annihilation.
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For this reason we have followed a di�erent approach. To extract

the gluon fragmentation function from HERWIG we have analyzed the

subprocess gg ! gg ! �0 +X from p�p annihilation at Mf0 =
p
s � 30

GeV, in analogy to the quark case. In order to eliminate the background

from the fragmentation of the spectator partons we have considered the

pions lying only within a cone of semi aperture � = :35�:40 rad around the
direction of the parent gluons emitted at 90 deg. The value of � is found

by an appropriate angular study of the generated distribution. With a

parameterization of the form (2.27) we �nd the values of the parameters

Ng; �g and �g given in table II. After inclusion of the gluon fragmentation

function and use of NLO evolved fragmentation functions together with

NLO terms in the �0 inclusive cross section the agreement with CELLO

data is improved as can be inferred from �gure 2 up to zH ' 0:7

In the next chapter we will compare our predictions at NLO to exper-

imental data from hadronic colliders, while in the next subsection we will

extract the �0 fragmentation functions at next to leading order using two

di�erent hypotheses at the reference scale M2
f0 = 2 GeV2.

Set I: fragmentation functions with natural scales.

For this set, we take �s as given by:

�s(�
2) =

1

b ln(�2=�2)

"
1 � b0

b

ln ln(�2=�2)

ln(�2=�2)

#
: (2.29)

and � = 190 MeV, corresponding to the set of structure functions we

will use [17,18].

De�nition

We assume for this case an SU(2) symmetry:

D�0

u (z;M2
f0) = D�0

�u (z;M2
f0) = D�0

d (z;M2
f0) = D�0

�d (z;M2
f0) =
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DV (z;M
2
f0) +DS(z;M

2
f0): (2.30)

Then, we take

D�0

s (z;M2
f0) = D�0

�s (z;M2
f0) = D�0

c (z;M2
f0) == D�0

�c (z;M2
f0) = DS(z;M

2
f0);

(2.31)

and

D�0

g (z;M2
f0) = DG(z;M

2
f0): (2.32)

We parameterize the di�erent functions of z as follows

DV (z;M
2
f0) = Nv (1 � z)�v (2.33)

DS(z;M
2
f0) = Ns (1 � z)�s (2.34)

DG(z;M
2
f0) = Ng (1� z)�g : (2.35)

At the initial scale Mf0, we start with four avors. The b quark contribu-

tion is taken into account in the evolution. Fixing the threshold at 4 m2
b ,

so we have:

D�0

b (z;M2
f ) =

8<
: 0 if M2

f < 4m2
b

Ns (1� z)�s if M2
f = 4m2

b

(2.36)

So we are left with six parameters to be determined with the help of ex-

perimental data.

Choice of the scale

We use the standard approach to �x all the scales to the same value

which is some natural scale of the problem. More precisely, for e+e�

collisions, we take � = Mf =
p
S whereas for p p collisions, we set the

three scales equal and proportional to the transverse momentum of the

�0:

� =M =Mf = cPt

where c is a constant to be �xed by the �t to experimental data .
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Results for set I

First of all, for e+e� collisions, we limit ourselves to a �0 energy greater

than 2 GeV because we don't trust perturbation theory for low �0 energies.

Therefore for
p
S ' 30 GeV, we will only use z values greater than 0.1.

As it can be inferred from eqs (25-27) we have not used a factor z� in the

input parameterizations since in this z range it does not improve the �t

but only leads to correlations. With six parameters, a big correlation still

occurs between Nv and �v, so we �x �v = 1. Then Ns, Ng and �g remain

slightly correlated. A good �t to CELLO [12], TASSO [11], TPC [10] and

JADE [9] data leading to a �2 = 26:3 for 29 points is obtained for values

of the parameters given in table III (systematic errors have been added in

quadrature to statistical errors).

Set II: fragmentation functions with optimized scales.

For this set, we take the numerical solution of the following equation

equation of �s:

1

�s(�2)
+ b0 ln

 
b0�s(�2)

1 + b0�s(�2)

!
= b ln

 
�2

�2

!
; (2.37)

with:

b =
33 � 2Nf

12�
; b0 =

153 � 19Nf

24�2
;

which is more appropriate than eq.citeapalfa for small scales �. Indeed for

large � the two de�nitions agree but for small � they can di�er by more

than 20 %. � = 230 MeV, since we will use the ABFOW set of structure

functions [19] .
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De�nition

We assume also for this case an SU(2) symmetry:

D�0

u (z;M2
f0) = D�0

�u (z;M2
f0) = D�0

d (z;M2
f0) = D�0

�d (z;M2
f0) = Du(z;M

2
f0):

(2.38)

Then we take:

D�0

s (z;M2
f0) = D�0

�s (z;M2
f0) = Ds(z;M

2
f0); (2.39)

D�0

c (z;M2
f0) = D�0

�c (z;M2
f0) = Dc(z;M

2
f0); (2.40)

and

D�0

g (z;M2
f0) = Dg(z;M

2
f0): (2.41)

We parameterize these di�erent functions of z in the following way:

Du(z;M
2
f0) = Nu z

�1 (1� z)�u (2.42)

Ds(z;M
2
f0) = Ns z

�1 (1� z)�s (2.43)

Dc(z;M
2
f0) = Nc z

�1 (1� z)�c (2.44)

Dg(z;M
2
f0) = Ng z

�1 (1 � z)�g : (2.45)

So we are left with eight parameters to be determined with the help of

experimental data. Since we will use the optimized procedure for the de-

termination of the scales, it is much simpler not to change the number of

avors. So, in this case, we will neglect the b contribution. This assump-

tion is motivated by the fact that �(e+ e� ! � ! b �b) = 1=4 �(e+ e� !
� ! c �c) and in p p collision the b production is suppressed due to the

weak b content of the proton.

A few remarks are in order here. As in the case of set I, the non

singlet part D�

i is always zero due to our assumptions. We did not take

D�0

s = D�0

c because in this case the sum over the four avors of D+
i

weighted by the square electric charge is zero:

X
i=u;d;s;c

e2i
�
D+
i (z;M

2) +D+
�{ (z;M

2)
�
= 0:
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So, there is no non-singlet contribution to the cross-section. Therefore we

could parameterize directly the singlet and the glue with four parameters

only. The e+e� data could be correctly described, but the glue is very

constrained and it will not be possible to �t hadronic data in the whole

energy range.

Choice of the scale

For set II, we use optimized scales according to the procedure of

Politzer and Stevenson [20]. Concerning e+e� collisions, our approach

is the following. Firstly since the scale � does not appear at lowest order,

we cannot optimize with respect to it. Therefore we set � = Mf and

perform an optimization only with respect to the scale Mf . Therefore,

a priori, our optimized scale depends on the choice made for the input

fragmentation functions. We have not found a way to get rid from this

sensitivity. In practice, the optimized point changes slowly when the input

is modi�ed and in addition, since we are in a stable region, it does not

matter if we are not exactly on the optimized point. The optimized scale

Mopt
f is of order of

p
S=8 varying slowly with z. Furthermore, we �nd no

optimization scale for z � :03 for
p
S = 35 GeV, z � :05 for

p
S = 29

GeV and z � :1 for
p
S = 22 GeV. For lower values of

p
S, it is not

possible to optimize.

We also use an optimization procedure for hadronic collisions. So we

require that:

@

@ ln(�2=�2)
E�0

d�p+p!�0

d3 ~P�0
= 0 (2.46)

@

@ ln(M2=�2)
E�0

d�p+p!�0

d3 ~P�0
= 0 (2.47)

@

@ ln(M2
f =�

2)
E�0

d�p+p!�0

d3 ~P�0
= 0: (2.48)
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The �rst equation can be computed analytically:

@

@ ln(�2=�2)
E�0

d�p+p!�0

d3 ~P�0
= ��4s(�2)b

n
2b0A+ 3(1 + b0�s(�

2))

�
"
2bA ln

 
�2

�2

!
+B ln

 
M2

�2

!
+ C ln

 
M2

f

�2

!
+D

#)
(2.49)

having used
@�s(�2)

@ ln(�2=�2)
= �b �2s(�2) (1 + b0�s(�

2)): (2.50)

Note that terms of order of �3s have been cancelled as it should be. Now,

we determine the scale � in order to cancel the right-hand side of eq (2.49).

This ensures us that the corrective term K will be negative with a mag-

nitude of roughly 10 % of the lowest order. Then we compute numeri-

cally the value of the scales M and Mf which have to ful�ll the equa-

tions (2.47) (2.48), the scale � being now a function ofM ,Mf . We require

that the factorization scales must be greater than
p
2 GeV and that the

renormalization scale is such that the running coupling constant �s is less

than .34. With these constraints it will be impossible to optimize in low

Pt range. More precisely, for low center of mass energies (
p
S � 63 GeV),

the optimization is not possible for Pt � 5 GeV. Therefore these regions

are not appropriate to apply an optimization procedure.

Results for set II

First we freeze �s, �c and �g according to the counting rules. There

are still too many parameters, so we �x Ng and �t to e+e� data with four

parameters Nu, �u, Ns and Nc. The fragmentation functions extracted are

then used to evaluate hadronic cross sections. Then we vary Ng re�tting

e+e� data and apply the new input to pp data.This procedure is repeated

until a reasonable description of hadronic data is reached. Good �ts of

e+e� data (CELLO [13,12], TASSO [11], TPC [10] and JADE [9]) leading

to a �2 ' 1 per d.o.f. are obtained for the two sets - hereafter denoted as
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set IIa and set IIb - displayed in Table IV and Table V (see �gures 3 and

4 using set IIb). The two sets di�er mainly for the gluon normalization.

In the following chapter we will analyze the results for colliders.

Process � � Nq < n� >

e+e� ! u�u �0:95 � 0:02 3:67 � 0:19 1:20 2:95

e+e� ! d �d �0:95 � 0:02 3:67 � 0:15 1:24 2:87

e+e� ! s�s �0:88 � 0:02 5:32 � 0:23 1:68 2:73

e+e� ! c�c �0:82 � 0:02 8:02 � 0:24 3:09 3:42

e+e� ! b�b �0:95 � 0:02 10:94 � 0:29 2:92 4:20

Table I.

� � � Ng < n� >

0:35 rad �0:28 � 0:04 6:71� 0:39 14:49 3:65

0:4 rad �0:37 � 0:04 5:79� 0:36 12:93 4:55

Table II.

Parton �i �i Ni

valence 0: 1: 0:19

sea 0: 5:2 3:5

gluon 0: 2:03 4:9

Table III.
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Parton �i �i Ni

up �1: 0:94 0:11

strange �1: 3:0 0:55

charm �1: 4: 2:7

gluon �1: 2: 0:55

Table IV.

Parton �i �i Ni

up �1: 1:11 0:15

strange �1: 3:0 0:18

charm �1: 4: 2:5

gluon �1: 2: 0:75

Table V.

We are now quite con�dent of the reliability of the three di�erent

methods ( for this see also below in chapter 3) and so we can choose one

of them to perform the extraction of the fragmentation functions for light

mesons.

2.2.2 Fragmentation functions for ��, �, K�, K0
s

In this section we report the parameterizations at Q0= 30 GeV of ��, �,

K�, K0
s and the results on NLO �t to the e+e� data.
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Figure 2.3: NLO inclusive �0 production in e+e� annihilation with set II

of FF.Ng = 0:75. Data and theory multiplied by 0.1 at 22 GeV
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Figure 2.4: Same as �g 9 for TPC data
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�

In Table VI we report the parameterization for � fragmentation functions.

We show in Figure 5 our results at
p
S = 35 GeV, compared with JADE [9]

and CELLO [12] data. The agreement is satisfactory as can be inferred

from the �gure. The di�erence between Sets I and II is negligeable . After

evolution to
p
S = 91:2 GeV, we also obtain good agreement with L3 [15]

LEP data as shown in Figure 6.

Process � � Nq < n� >

e+e� ! u�u �0:91 � 0:02 2:09 � 0:07 0:24 0:35

e+e� ! d �d �0:88 � 0:02 2:14 � 0:08 0:26 0:36

e+e� ! s�s �0:72 � 0:02 2:73 � 0:08 0:37 0:42

e+e� ! c�c 0:14 � 0:03 7:10 � 0:14 8:73 0:57

e+e� ! b�b �0:20 � 0:05 11:24 � 0:31 9:92 0:69

Table VI.

� � � Ng < n� >

I 0:35 rad �0:18 � 0:06 4:58� 0:25 2:52 0:51

II 0:4 rad �0:43 � 0:06 3:47� 0:26 1:48 0:62

Table VII.

��

In Table VIII we report the parameterizations for charge pions. As we

can easily see these parameterizations di�ers from �0 FF just for a nor-
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Figure 2.5: NLO inclusive � production in e+e� annihilation with evolved

HERWIG FF
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Figure 2.6: NLO inclusive � production in e+e� annihilation with the

evolved HERWIG FF
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malization factor, owing the fact that we can apply a full SU(2) isospin

symmetry operation.

Parton � � Ni < ni >

u �1:18 � 0:01 2:32 � 0:05 0.53 2.83

d �1:17 � 0:01 2:41 � 0:05 0.55 2.82

s �0:94 � 0:01 5:83 � 0:08 1.46 2.66

c �0:81 � 0:01 9:01 � 0:14 3.5 3.41

b �1:35 � 0:01 7:16 � 0:07 1.25 4.19

g �0:59 � 0:01 4:43 � 0:10 4.57 3.52

Table VIII

K� and K0
s

In Table IX e X we report the parameterizations for charge and neutral

kaons fragmentation functions. Even in this case we can apply a full

SU(2) symmetry operation to the tow sets. In table XIa, b we compare

with data from 29 GeV to 90 GeV in the center of mass [21]. As usual the

theoretical prediction is a�ected by an uncertainty of order 30% coming

from the factorization/renormalization scales, parton densities, etc.

Parton � � Ni < ni >

u �1:42 � 0:03 1:48 � 0:13 0.1 0.59

d �1:10 � 0:03 4:32 � 0:05 0.34 0.55

s �0:83 � 0:03 2:5� 0:03 0.79 0.95

c �0:70 � 0:03 3:78 � 0:08 1.41 1.01

b �0:77 � 0:03 7:7� 0:18 2.82 1.24

g �0:39 � 0:03 4:74 � 0:08 1.97 0.62

Table IX
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Parton � � Ni < ni >

u �1:06� 0:03 4:37 � 0:13 0.19 0.27

d �1:39� 0:03 1:46 � 0:05 0.05 0.28

s �0:84� 0:03 2:45 � 0:03 0.40 0.45

c �0:80� 0:03 3:31 � 0:08 0.50 0.49

b �0:63� 0:03 8:15 � 0:18 2.02 0.62

g �0:56� 0:03 4:26 � 0:08 0.61 0.30

Table X

x data our �t

0.105 6:32 � 0:92 6:5

0.115 5:13 � 0:61 5:87

0.125 5:13 � 0:49 5:30

0.135 5:00 � 038 4:81

0.170 ����� 3:56

0.190 ����� 3:05

0.210 ����� 2:64

0.235 ����� 2:22

0.275 1:73 � 0:11 1:71

0.325 1:16 � 0:073 1:26

0.375 0:842 � 0:055 0:93

0.425 0:470 � 0:030 0:69

0.550 0:249 � 0:020 0:33

0.650 0:090 � 0:012 0:16

0.8 0:023 � 0:005 0:04

Table XI a
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x data our �t

0.035 18:1 � 0:8 24:5

0.055 13:1 � 0:6 14:7

0.075 10:1 � 0:5 10:2

0.095 7:5� 05 7:6

0.115 6:4� 0:5 5:9

0.135 4:4� 0:5 4:8

0.155 4:5� 0:5 3:98

0.175 3:4� 0:5 3:34

0.195 2:7� 0:4 2:84

0.215 2:5� 0:5 2:44

0.235 2:2� 0:5 2:1

0.255 1:6� 0:5 1:8

0.275 1:5� 1:1 1:6

0.295 0:8� 0:6 1:4

0.355 0:8� 0:5 0:9

Table XIIb

2.3 Check with other sets of fragmentation

functions

Recently we assist to an increased interest for fragmentation processes

and their description via the formalism of fragmentation functions. In

particular the DESY group of G. Kramer et al. in some recent papers

gave several interesting results regarding the fragmentation functions of

light mesons. Their fragmentation functions are extracted performing LO

and NLO �t to e+e� data in a way very similar to the one described in

section 2.1.3 and 2.1.7.
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Figure 2.7: HERWIG FF (full line) compared to those by Kramer et al.

(dashed line)
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In order to better describe the theoretical uncertainty on FF, we per-

formed a detailed check between our sets and the ones from Kramer et al.

and in Figure 7 we report the two sets of charged pions and kaons evolved

at Q2
0=900 GeV

2. As we can infer from the �gures the agreement is quite

good, if we exclude the region of high x where nevertheless the partonic

cross sections fall down.
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Appendix B

2.4 Splitting functions in momentum space

We saw that Pij(z) momenta are given by the so called anomalous dimen-

sions An
ij (i; j = q;G) given by the following expressions:

�An
ij =

Z 1

0
dzzn�1Pij(z) (2.51)

An
qq =

1

3�

"
1� 2

n(n� 1)
+ 4

nX
i=2

1

j

#
; (2.52)

2fAn
Gq = �4f

3�

n2 + n+ 2

n(n2 � 1)
(2.53)

An
qG = � 1

4�

n2 + n+ 2

n(n + 1)(n+ 2)
; (2.54)

An
GG =

3

4�

2
41
3
� 4

n(n� 1)
� 4

(n+ 1)(n + 2)
+ 4

nX
j=2

1

j
+
2f

9

3
5 : (2.55)

f as usual is the number of avours.

At next to leading order the splitting functions P (1)
qq (x) and its Mellin

transformation is given by:

P (1)
qq (x) = C2

FPF (x) +
1

2
CFCGPG(x) + CFNFTFPNF

(x); (2.56)

where

PF (x) = �21 + x2

1 � x
ln ln (1� x)� 3

�
3

1� x
+ 2x

�
(2.57)



2.4 Splitting functions in momentum space 59

� ln x� 1

2
(1 + x)ln x2 � 5(1 � x) (2.58)

PG(x) =
1 + x2

1� x

�
ln x2 +

11

3
ln x+

67

9
� 1

3
�2
�
+ 2(1 + x) ln x+

40

3
(1 � x)

(2.59)

PNF
(x) =

2

3

"
1 + x2

1 � x
(� ln x� 5

3
)� 2(1 � x)

#
; (2.60)

PA(x) = 2
1 + x2

1 + x

Z 1=(1+x)

x=(1+x)

dz

z
ln
1 � z

z
+ 2(1 + x) ln x+ 4(1 � x): (2.61)

In momentum space, if we de�ne:

PF (N) =

 
2S1(N) � 1

N(N + 1)

!
[2S2(N)� 1

�2]� 2(2N + 1)

N2(N + 1)2
S1(N)

(2.62)

+4S3(N)� 3S2(N) +
1

2
�2 +

3N3 +N2 � 1

N3(N + 1)3
� 23

8
; (2.63)

PNF (N) =
20

9
S1(N) � 4

3
S2(N) � 1

6
� 2

11N2 + 5N � 3

9N2(N + 1)2
(2.64)

PG(N) = �PF (N) + S1(N)

"
�134

9
� 2

2N + 1

N2(N + 1)2

#
+ 4S1(N)S2(N)

(2.65)

+S2(N)

"
13

3
� 2

N(N + 1)

#
+
43

24
+
151N4 + 263N3 + 97N2 + 3N + 9

9N3(N + 1)3

(2.66)
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�(N) = 2

"
�2S1(N) +

3

2
+

1

N(N + 1)

# "
2S2(N)� 1

3
�2 � 2N + 1

N2(N + 1)2

#

(2.67)

we obtain:

P 1
N = C2

F (PF (N) + �(N)) +
1

2
CFCAPG(N) + CFNFTFPNF (N); (2.68)

where, as usual CF = 4
3 ; CA = 3; TF = 1

2 and Nf is the number of avors.

S1;2;3 are particular combinations of the poligamma functions, de�ned by:

 m =
dmlog�(x)

dxm
: (2.69)
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One particle inclusive

production to next-to-leading

order

3.1 Introduction

Let us consider the inclusive production of a hadron H via the generic

reaction A + B ! H where A and B stand for hadrons and/or leptons.

The cross-section can be written as a convolution of the fragmentation

functions DH
l (z;M

2
f ) with the partonic cross-section:

EH
d�A+B!H

d3 ~PH
=
X
l

Z 1

zH

dz

z2
DH
l (z;M

2
f ) El

d�A+B!l

d3 ~Pl
(
zH
z
; �; �s(�

2);M2
f ; � � �);
(3.1)

where zH is the reduced energy of the hadron H: zH = 2EH=
p
S and � is

the scattered angle of the parton l. The inclusive production of the parton

61



62 Chapter 3

l via the reaction A+B ! l has the following perturbative development:

El
d�A+B!l

d3 ~Pl
(
zH
z
; �; �s(�

2);M2
f ; � � �) = �0A+B!l(

zH
z
; �)

+
�s(�2)

2�
�1A+B!l(

zH
z
; �;M2

f ) + � � � : (3.2)

Finally DH
l (z;M

2
f ) represents the number of hadrons H inside the parton l

carrying the fraction of impulsion z from H, evolved at the scaleM2
f . These

fragmentation functions satisfy Altarelli-Parisi type evolution equations as

we saw in the previous chapter.

In the LO approximation one keeps only the �rst order in the perturba-

tive development of the partonic cross-section and in the evolution kernels

whereas at NLO one keeps the �rst and second terms in the perturbative

expansion for both partonic cross-section and evolution kernels. Once in-

put fragmentation functions have been speci�ed at some reference scale

Mf0 the evolution equations are solved using an inverse Mellin transform

technique.

We will perform an exact NLO calculation valid in the Pt range where

perturbative QCD applies. We have not taken into account non pertur-

bative intrinsic transverse momentum e�ects. Since an extra parton is

emitted either from initial or from �nal parton legs a perturbative con-

tribution to intrinsic transverse momentum due to soft gluon e�ects is

partially included. In addition the inclusion of a non perturbative com-

ponent would act as an extra parameter and weaken the predictive power

of our calculation.

Let us consider now in detail the partonic cross-sections.

3.1.1 e+e� ! �0

The partonic cross sections from e+e� collisions read at next-to-leading
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order:

Eqi

d�e++e�!qi

d3 ~Pqi
(y; �; �s(�

2);M2
f ) =

6 �0
�Q2y

e2i

(
3

8
(1 + cos2 �)

"
�(1� y) +

�s(�2)

2�

 
P 0
qq(y) ln

 
Q2

M2
f

!
+KT

q (y)

!#

+
3

4
(1 � cos2 �)

�s(�2)

2�
KL

q (y)

)
(3.3)

Eg
d�e++e�!g

d3 ~Pg
(y; �; �s(�

2);M2
f ) =

12 �0
�Q2y

X
i=u;d;s;c;:::

e2i

(
3

8
(1 + cos2 �)

"
�s(�2)

2�

 
P 0
gq(y) ln

 
Q2

M2
f

!
+KT

g (y)

!#

+
3

4
(1 � cos2 �)

�s(�2)

2�
KL

g (y)

)
; (3.4)

where �0 is the usual point like cross-section

�0 =
4��2

3Q2
;

� is the QED coupling constant and Q2 is the invariant mass of the e+e�

pair. The functions KT
q , K

L
q , K

T
g and KL

g have been extracted from the

reference [4] (see also [22]).

KT
q (x) = CF

(
3

2
(1� x)� 3

2

1

(1� x)+
+ 2

1 + x2

1 � x
ln(x)

+ (1 + x2)

 
ln(1 � x)

1 � x

!
+

+

 
2�2

3
� 9

2

!
�(1� x)

)
; (3.5)

KT
g (x) = CF

(
1 + (1� x)2

x
(ln(1� x) + 2 ln(x))� 2

1 � x

x

)
(3.6)

KL
q (x) = CF (3.7)

KL
g (x) = 2 CF

1� x

x
: (3.8)

In the above equations two scales are involved: the renormalization scale

� at which the running coupling constant �s is evaluated and the frag-

mentation scale Mf at which fragmentation functions are evolved. The
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choice for these scales is rather arbitrary. Note that for every y, KT
g (y) is

negative, so the choice M2
f = Q2 leads to a negative contribution to the

partonic cross-section Eg d�e+e�!g=d
3 ~Pg.

The running coupling of QCD �s is de�ned at the next-to-leading

logarithm approximation by the approximate analytical formula:

�s(�
2) =

1

b ln(�2=�2)

"
1 � b0

b

ln ln(�2=�2)

ln(�2=�2)

#
: (3.9)

As we saw in Chapter 2 we also used for �s as given by the numerical

solution of the equation:

1

�s(�2)
+ b0 ln

 
b0�s(�

2)

1 + b0�s(�2)

!
= b ln

 
�2

�2

!
; (3.10)

with:

b =
33 � 2Nf

12�
; b0 =

153 � 19Nf

24�2
;

which is more appropriate than eq.3.9 for small scales �. Indeed for large

� the two de�nitions agree but for small � they can di�er by more than

20 %.

3.1.2 p p! �0

The partonic cross-sections for hadronic collisions are given by [23]:

El
d�p+p!l

d3 ~Pl
(y; �; �s(�

2);M2
f ) =

1

�S

X
i;j

Z V

VW

dv

1 � v

Z 1

VW=v

dw

w

�
2
4F p

i (x1;M
2)F p

j (x2;M
2)

0
@1
v

 
d�0

dv

!
ij!l

(s; v)�(1� w)

+
�s(�2)

2�
Kij!l(s; v; w;�

2;M2;M2
f )

!
+ (x1 $ x2)

#
: (3.11)

The variables V, W are de�ned by

V = 1 � y

2
(1 � cos �); W =

y(1 + cos �)

2 � y(1� cos �)
;
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and we also have

x1 =
VW

vw
; x2 =

1 � V

1 � v

and s = x1x2S. At NLO sixteen subprocesses contribute to the cross-

section. The terms �0 correspond to the lowest order 2! 2 parton scat-

tering subprocesses whereas the terms K contain the one loop corrections

to these subprocesses. In the hadronic case, we have three scales: the

renormalization scale �, the factorization scale for the initial state M (

the scale of the distribution functions) and the factorization scale for �nal

state Mf (the scale of the fragmentation functions). Schematically, the

hadronic cross-section can be written as:

E�0
d�p+p!�0

d3 ~P�0
= �2s(�

2)A+ �3s(�
2)

"
2bA ln

 
�2

�2

!
+B ln

 
M2

�2

!

+C ln

 
M2

f

�2

!
+D

#
: (3.12)

We show explicitly the dependence of the hadronic cross-section upon the

three scales �, M and Mf . The four functions A, B, C and D depend on

the scales M and Mf via the structure and fragmentation functions. In

addition, A, B and C are scheme independent. We always use the MS

scheme for �nal factorization whereas the initial factorization scheme is

�xed by the set of structure functions used.

Let us discuss now the partonic cross-sections. In order to determine

the kinematical region where each partonic reaction dominates we have

plotted in �gures 1, 2, 3, 4 the partonic cross-sections El d�p+p!l=d
3 ~Pl

for l = g, u + u + d + d, s + s + c + c against Pt at the leading log level

for various center of mass energies (WA70, ISR, UA2, LHC). We think

it is meaningless to use next-to-leading formulae since the dependence on

ln(M2
f ) is not balanced. We have used ABFOW structure functions [19].

We see that for the low center-of-mass energy experiments WA70 [24]

(
p
S = 23 GeV) and E706 [25] (

p
S = 31 GeV) the gluon and the valence
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quarks contributions are of the same order at low Ptl, whereas when Ptl

becomes larger, the valence quarks dominate. For ISR experiments [26],

[27] (
p
S = 63 GeV) the glue contribution dominates up to Ptl ' 10 GeV.

For the UA2 experiment [28], when the pseudo rapidity � = 1:4, the glue

contribution is important up to Ptl ' 35 GeV. Finally for LHC, in the Ptl

range between 30 and 1000 GeV the glue contribution represents (60 - 80)

% of the partonic cross-section. In all cases the "sea" contribution (s,c) is

always negligible.

In order to estimate the z range we are sensitive to we will study in

table I the integrand of eq. (3.1), i.e.:

< z >=

R dz
z

P
lD

�0

l (z;M2
f ) El

d�p+p!l

d3 ~PlR dz
z2
P

lD
�0
l (z;M2

f ) El
d�p+p!l

d3 ~Pl

(3.13)

with z varying between 2E�0=
p
S and 1. Note that the partonic cross-

sections reach their maximum for z = 1 while the fragmentation functions

decrease with z. As we can infer from Table I the large z region is kine-

matically favored. We have used set I of fragmentation functions which

have been discussed before.

p
S = 23 GeV and � = 0:

p
S = 63 GeV and � = 0:

p
S = 630 GeV and � = 1:4

P �0

t < z > P �0

t < z > P �0

t < z >

4.11 0.81 5.25 0.67 13 0.55

4.61 0.82 6.73 0.70 21 0.60

5.69 0.86 8.23 0.73 29.8 0.65

6.69 0.89 10.4 0.77 43.7 0.74

Table I
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Figure 3.1:
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Figure 3.2:
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Figure 3.3:
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Figure 3.4:
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3.2 �0 production at hadron colliders

Let us �rst discuss experimental data from hadronic colliders. Data in

hadronic reactions have been selected for this study taking into account

statistical and systematic accuracy. Whenever possible, reconstructed �0

are preferred. For SPS �xed target energies, the available data in pp

reactions are in reasonable agreement and we will use the data in the

central rapidity range at
p
S = 23 GeV, from the WA70 collaboration [24].

The FNAL �xed target range overlaps with the lower ISR energy range.

The recent data at
p
S = 31 GeV from pBe reactions obtained by the

E706 collaboration [25] are in agreement with some of the ISR results.

Resolved �0 at
p
S = 62:8 GeV taken from table 5 ( more precisely data

corresponding to the super-retracted geometry) of Kourkoumelis et al. [27]

are used. They will be compared with other data available at this energy.

We will use also the more recent data from the AFS collaboration [26],

which however show a di�erent Pt dependence. At collider energies, the

latest data from the UA2 experiment at
p
S = 630 GeV with average

pseudo rapidity � = 1:4 will be used [28]. Cross checks have been made

with data at
p
S = 540 GeV with average pseudo rapidity � = 0 although

�0 are not disentangled from direct photons.

3.2.1 FF from HERWIG

We compare now our predictions at NLO to experimental data from

hadronic colliders. We �rst consider the data from CERN ISR [26, 27],

for
p
S = 63 GeV, compared in �gures 5 with our predictions for � =

M = Mf = Pt and � = M = Mf = Pt=2 using the quark fragmentation

functions from table I and the two gluon sets from table II of the previous

chapter, with � = 0:35 and � = 0:40. The agreement is satisfactory within

the theoretical and experimental uncertainties.
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Figure 3.5: �0 production at ISR at 63 GeV
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Let us focus now on the UA2 data at the SppS collider [28]. We will

use two sets of quite precise data, for Pt � 15 GeV and � ' 0 and, for

15 � Pt � 45 GeV and � ' 1:4. The comparison with the theoretical

predictions is shown in �gures 6 and 7 for � = M = Mf = Pt=2; Pt

and for the two gluon sets of fragmentation functions. The agreement

is quite good, and slightly favors the set corresponding to � = 0:35. The

dependence on the renormalization, factorization and fragmentation scales

at NLO will be discussed later.

HERWIG fragmentation functions have been used to describe hadronic

data at energies higher than ISR one since for �xed target experiments

the sensitive z range is above the region where e+e� data are correctly

�tted.

Furthermore, as can be inferred from �g.2, the glue is already impor-

tant at
p
S = 63 GeV and its contribution increases with energy. The

e+e� data constrain essentially quark fragmentation functions in the high

z region. This explains why in most of the Pt range (except in high Pt

one) HERWIG fragmentation functions describe collider data.

3.2.2 Set I

Using set I of fragmentation functions we will now evaluate the NLO cross-

sections for inclusive �0 production in hadronic collisions and compare

them to experimental data from low center of mass energies up to the

CERN collider one. Here, the situation is less clear. First, if we keep

constant the value of the parameter c it is impossible to obtain a good

�t in the whole energy domain. For example, setting c ' 1:5, the ISR

data can be described but the theoretical predictions are by far too low

for WA70 and E706 and too high for UA2. A simple solution to this

problem is to allow c to vary with the hadronic kinematical variables, in
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Figure 3.6: �0 production at UA2 at 540 GeV
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Figure 3.7: �0 production at UA2 at 630 GeV
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particular
p
S. A correct description of the data requires c ' 0:39 for

WA70 [24] (see �gure 8), c ' 0:5 for E706 [25](see �gure 9), c ' 1:5 for

ISR experiment [26,27] (see �gure 10) and c ' 5:5 for UA2 [28] (see �gure

11).

In particular for the ISR energy range, the data from AFS collab-

oration [26] are marginally consistent with those of reference [27] since

the transverse momentum dependence in the two experiments is di�erent.

Therefore it is very di�cult to describe both ISR data with high precision.

We get rather good �ts of data of Kourkoumelis et al. [27] with �2 = 20:6

for 14 points using � =M =Mf = 1:3Pt and of the AFS collaboration [26]

with �2 = 12:2 for 11 points using � =M =Mf = 1:6Pt. Notice that the

slope of the UA2 data is not correctly reproduced, with a �2 = 50:2 for 11

points. The �2 have been calculated with statistical errors, allowing the

overall normalization to vary within the systematic error.

A comment is in order here. The approach followed so far is rather

simple. When the energy grows up the scales needed to describe data have

also to increase. As stated above an acceptable �t of UA2 data [28] in the

forward direction can be obtained for the choice of scales � =M =Mf =

5:5Pt which is a priori a large scale. The compensation occurring between

the leading and next-to-leading terms concerning the scale dependence is

much more e�ective at high energies. At low energy, since we prevent

the scale to be less than Mf0 =
p
2 GeV, this compensation does not

occur and the behavior of the leading and next-to-leading cross-sections

is quite the same. In other words, we are not in a good region to perform

perturbation theory.

A simple scaling form of the typeA(1�xR)mP�nt , where xR = 2Pt cosh(�)=
p
S

yields for data in the �xed target and ISR energy range (22 GeV � p
S �

63 GeV) n ' 8 while for data in the collider energy range (540 GeV

� p
S � 630 GeV) n ' 6:5. Such a simple form fails to describe si-

multaneously data in the ISR and collider energy range and theoretical
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Figure 3.8:
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Figure 3.9:
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Figure 3.10:
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Figure 3.11:
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predictions in the whole energy range if the scales are independent of
p
S.

Although some care has to be taken on the extraction of the power

values due to their sensitivity to the choice of parameterization, the power

dependence is di�cult to predict analytically in QCD since besides the P�4t

parton subprocesses dependance, factorization and renormalization scales

are involved. In addition, since we have arbitrarily set these scales equal,

the physical meaning of the increase of the scales with
p
S is unclear.

This approach might be criticized. Indeed it is not very predictive,

since the scales change with the energy. In other words one adds a new

parameter which acts as an overall normalization for each experiment.

Notice that the normalization of the glue fragmentation function Ng is

strongly correlated to the choice made for the scale. More precisely, we

could perfectly �nd a value for Ng which describes the UA2 data with

c = 0:5. But in this case we couldn't describe the other data at lower

energies.

3.2.3 Set II

The two sets di�er mainly for the gluon normalization. As can be seen

from inspection of �gures 12, 13, 14 and 15 a rather good �t of the latest

UA2 data at
p
S = 630 GeV [28], AFS [26] and Kourkoumelis et al data

[27] can be obtained leading to a �2 ' 50 for 31 points.

Kourkoumelis et al. data favor the set characterized by the largest

glue (set IIb) whereas UA2 data are better �tted by the other set (set

IIa). Notice that we have taken into account the systematic errors of the

data which a�ect the overall normalization. The �2 are 3:46 (4:28) for the

11 AFS points, 31:54 (23:52) for the 9 Kourkoumelis et al. points and 14:91

(20:00) for the 11 UA2 points with the parameters of set IIa (IIb). Inside

the systematic errors we can also describe UA2 data at
p
S = 540 GeV
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Figure 3.12:
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Figure 3.13:
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Figure 3.14:
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Figure 3.15:
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and � = 1:4. On the other hand we are not able to describe WA70 and

E706 data with the values of Ng found before. This is not very surprising

since the corrective term is found to be huge, and although we can �nd

an optimization point this is not very stable suggesting that we are not in

the appropriate region to trust perturbation theory.

3.2.4 Predictions at LHC

To our knowledge no global comparison of inclusive �0 production at

hadronic colliders to parton shower MONTE CARLO has been performed.

These MONTE CARLO, although based on a leading order calculation,

include angular ordering in parton radiation whereas our NLO evaluation

does not take into account resummation of large logarithms of kinematical

origin. Therefore a comparison of our approach with MONTE CARLO

would be interesting for �0 production at future colliders.

As we have seen present data do not allow to extract the �0 fragmen-

tation functions unequivocally. To this aim the forthcoming information

from ep HERA collider should be very helpful. With these limitations we

will now estimate the �0 rates at LHC using the various sets of fragmen-

tation functions previously derived.

Let us consider �rst set I of fragmentation functions. In order to

describe hadronic data we had to increase the scales � = M = Mf from
Pt
2
at
p
S ' 20 GeV up to 5Pt at

p
S = 630 GeV. An extrapolation to

LHC energy would lead to � = M = Mf ' 50Pt which seems by far an

unnatural scale. To estimate the sensitivity to scales we show in �gure 16

the ratio of cross sections at LHC for the two scales 50Pt and Pt at � = 0.

As can be inferred from the �gure the rates di�er by at most a factor

of three. To estimate the uncertainty due to structure functions we have

taken the set of structure functions of HMRS [18] using the MS scheme

and the set of Mor�ng-Tung [17] using the DIS scheme. The predictions
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di�er by at most 20%. Similarly the ratio of predictions using set II is

displayed in �gure 17.

The situation is summarized in �gure 18 where we show the absolute

rates at LHC for � = 0 from the most plausible sets in the three ap-

proaches:HERWIG with � = 0:35 (full line), set I with � = M = Mf =

100Pt (dot-dashed curve) and set II with Ng = 0:75 (dashed curve). This

gives an estimate of the theoretical uncertainty which is of the order of a

factor two. The uncertainty on structure functions is marginal compared

to the poor determination of fragmentation functions.

To show the stability of the NLO corrections we display the cross

section as a function of the scales � and M = Mf compared to the LO

result for Pt = 50 GeV (�gures 19-20). We vary the scales between Pt=5

and 5Pt. The NLO cross sections exhibit a saddle point whereas the LO

cross sections decrease monotonically when the scales increase.

The uncertainty due to factorization scheme, especially coming from

fragmentation functions is expected to be tiny for the two following rea-

sons. Firstly the evaluation done for one jet inclusive cross section has

shown[2] that at collider energies its magnitude is of the order of 5% -if

done correctly - and we can reasonably expect a same order of magni-

tude for one hadron inclusive cross section. Secondly a precise estimate

doesn't seem mandatory compared to the large uncertainty coming from

fragmentation functions.

3.3 � production at hadron colliders

In this section we will show some results regarding the inclusive � pro-

duction at hadron colliders comparing, whenever possible, the results to

experimental data.

We consider now our predictions for inclusive production in hadronic
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Figure 3.16:
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Figure 3.17:
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Figure 3.18:
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Figure 3.19: �0 cross sections at LHC in pb using set I of fragmentation

functions as a function of the scales � and M =Mf for Pt = 50 GeV and

� = 0. LO prediction
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Figure 3.20: Same as Fig.20 but NLO



3.3 � production at hadron colliders 93

colliders. We �rst compare with data from CERN ISR [26], for
p
S = 52:7

GeV and
p
S = 62:4 GeV, as shown in Figures 21 and 22 for � = M =

Mf = Pt and � = M = Mf = Pt=2 using the quark fragmentation

functions from Table VI and the two gluon solutions from Table VII, for

� = 0:35 (Set I) and � = 0:40 (Set II). In doing so, in absence of direct

data on � production, we have inferred the cross section from �0 data

assuming the experimental [26] �=�0 ratio R of 0:58�0:05 and 0:55�0:06

respectively, independent from pt. The agreement is satisfactory within

the theoretical and experimental uncertainties.

Let us focus now on the UA2 data at the SppS collider [28]. We will

use two sets of quite precise �0 data, for Pt � 15 GeV and pseudorapidity

y ' 0 and for 15 � Pt � 45 GeV and y ' 1:4, and an experimental

ratio �=�0 of 0.5 as obtained from ISR data [26]. The comparison with

the theoretical predictions is shown in Figures 23 and 24 for � = M =

Mf = Pt=2; Pt and for the two gluon sets of fragmentation functions. The

agreement is quite good at low pt, and slightly favours set I.

On the other hand we note that at higher pt the comparison with data

suggests a larger value for the ratio �=�0, and therefore a pt dependence

for this ratio. Indeed from the result of our previous study on inclusive

�0 production, we show in Figure 25 the predicted pt dependence of R =

�=� at
p
S =630 GeV, which indeed rises with pt.

Finally we proceed to the predictions for LHC
p
S = 16 TeV. The

cross sections are calculated at LO (Born) and NLO and using HMRS Set

of structure functions [18] and are displayed in Fig. 26.1

To estimate the theoretical uncertainty we study in Fig. 27 the ratio of

the two predictions from the two di�erent choices of gluon fragmentation

1The discontinuities in the curves are simply due to CPU time limitation on the

number of the data points.
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Figure 3.21: � production at ISR at 62.4 GeV
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Figure 3.22: � production at ISR at 52.7 GeV
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Figure 3.24: � production at UA2 at 630 GeV
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Figure 3.25: theoretical prediction of the ratio �=�0 as function of pT at

UA2
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functions, evolved to NLO accuracy, at
p
S = 16 TeV.

We then calculate the theoretical ratio �=�0 as evaluated from the �0

results of the previous subsection. The ratio increases with respect to ISR

energies, and shows a dependence on pt similar to what found at Sp�pS

energies.

The uncertainty due to factorization scheme, especially coming from

fragmentation functions is expected to be tiny because the evaluation done

for one jet inclusive cross section has shown [23] that at collider energies

its magnitude is of the order of 5% and we can reasonably expect the

same order of magnitude for one hadron inclusive cross section. Finally,

the theoretical uncertainty from the structure functions is much smaller

than that coming from fragmentation function.

3.4 Light mesons production at Tevatron

In this section we will show the prediction for light meson production at

Tevatron.

In Fig.28 we show the pt distribution for inclusive single particle pro-

duction for �0, �, ��, K�, integrated in the region of pseudorapidity

� = � ln(tan( �
2
)) between -0.7 and 0.7 and using the Set B-1 of Mor�n

and Tung [17]. We set all the scales equal to the pT of the produced

hadron.

In Figs. 29-30 we compare our predictions for charged kaons and pions

production to those of reference [29]. The di�erence is seen to be of order

of a factor 2 for the kaons.

Finally, in order to disentangle the fragmentation properties and the

hadronization mechanism of high pt jets, we consider the ratio between

the single hadron and jet cross sections, for �xed values of the variable

z = Ehadr=Ejet. Then, using the jet algorithm of ref. [6,?] and the NLO
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Figure 3.26: NLO inclusive � production in hadronic collisions at LHC

and SSC energies at y = 0.
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Figure 3.27: ratio of inclusive � cross sections for the two sets of gluon

fragmentation functions.
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evaluation of the jet cross sections of ref. [5], we present in Fig.31 result

on jet fragmentation in charged and neutral pions, with the energy of the

jet varying between 40 and 70 GeV, and a jet cone radius R=0.7 centered

around the � = 0 direction. The overall theoretical uncertainty -which

is not reported in �gure- can be estimated to be of order 50%. We also

show the analogous experimental result on jet fragmentation in charged

hadrons [31], in reasonable agreement with the theoretical prediction.

As a �nal result we give a mean value for the ratio R=�=�0 = 1:15�:30,
in the range 20 Gev < pt < 200 GeV which agrees with the recent exper-

imental value of R=1:02� 0:15� 0:23 [32]. The theoretical uncertainty is

related to the variation of the scales in parton distributions and fragmen-

tation functions.
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Appendix C

3.5 Mass divergences factorization in single

particle inclusive production

Let us consider the following reaction:

H1(K1) +H2(K2)! H3(K3) +X; (3.14)

at parton level it is described by:

pi + pj ! pl +X; (3.15)

and the inclusive cross section is given by:

E3
d�

d3K3
=
X
i;j;l

Z
dx1dx2

dx3
x23

FH1

pi
(x1;M

2)FH2

pj
(x2;M

2)DH3

p3
(x3;M

2
f )

�[1
v
(
d�0

dv
)pipj!pl(s; v)�(1� w) +

�s(�2)

2�
Kpipj!pl(s; v; w; �

2;M2;M2
f )](3.16)

where s = x1x2S and v e w are given in terms of x1,x2 and hadronic

momenta K1, K2 e K3. F and D are respectively structure and fragmen-

tation functions at factorization scale M and fragmentation scale mf ; d�0

is the Born cross section at order �2s(�
2) and Kij!l are the order �s(�)

corrections.

In the na�if parton model the inclusive cross section for reaction () is

simply given by:

E3
d�

d3k3
=
X
i;j;l

Z
dx1dx2

dx3
x23

FH1

0i (x1)F
H2

0j (x2)D
H3

0l (x3)
p03d�

0(pi1p
j
2 ! pl3)

d3p3

(3.17)
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As we can see no scale dependence is present in structure and fragmen-

tation functions. If we add QCD corrections we obtain a dependence on

the scale for D and F , which we can choose of order of pt of the scat-

tered parton. The great uncertainty in the choice of the scale (almost a

factor two at LO) is greatly reduced if we add order �3s corrections. We

can perform this task in the following fashion: we start from the squared

matrix elements in n dimensions for the parton subprocesses (2! 3) and

we integrate on the phase space. The divergences of type 1
�2
are cancelled

by adding virtual contributions, while terms of order 1
�
due to mass singu-

larities are absorbed into e�ective fragmentation and structure functions

beyond the leading order.

Singularities associated to initial state partons are factorized into the

structure functions evolved at scale M2 while divergencies associated to

�nal state partons are absorbed into a rede�nition of fragmentation func-

tions at scale Mf . For every process we add a term proportional to:

�s
2�
Hpipj(y)d�

0
pipj!pl

(ys; z) (3.18)

to the sum of Born cross section (order �2s) and corrections of order �3s.

In the previous equation H(y) has singularities in � and can be rewrit-

ten as:

Hpipj(y) = �1

�
Ppipj(y)(

4��2

M2
)�
�(1� �)

�(1 � 2�)
+ fpipj(y) =

= Ppjpi(y)(�
1

��
) + Ppipj(y) ln (

M2

�2
) + fpipj(y) (3.19)

where Ppipj(y) and fpipj(y) are respectively Altarelli-Parisi evolution equa-

tions kernels and �nite corrections of order O(�s) to structure functions.

In the same way divergencies associated to �nal state partons are cured

adding terms of type:

�s
2�

�Hplpl(y)d�
0
pipj!pl

(s;
vw

y
) (3.20)
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with y = 1 � v � wv and where, as before:

�Hplpl(y) = Ppipj(y)(�
1

��
) + Ppipj(y) ln (

M2
f

�2
) + dpipj (y) (3.21)

Until now only fqq and dqq have been explicitly calculated and imposing

momenta conservation rules we obtain:

fgg = 2N

"
x

 
ln (1� x)

1 � x

!
+

� x ln x

1 � x
+
�
5NF

24N
� 1

6
�2 � 1

2

�
�(1� x)

#

(3.22)

dgg = 2N

"
x

 
ln (1 � x)

1� x

!
+

� x2 ln x

1� x
+
�
7NF

16N
� 1

3
�2 � 17

4

�
�(1� x)

#

(3.23)

fgg(x) =
1

2
[x2 + (1� x)2] ln (

1 � x

x
) (3.24)

dgg(x) =
1

2
[x2 + (1 � x)2] ln [x2(1� x2)] (3.25)

fgq(x) = CF

"
1 + (1� x)2

x
ln [(1� x)x2]� 2

#
(3.26)

For reader's convinience we report the following expressions::

fqq(x) = CF

"
(1� x2)

 
ln (1� x)

1 � x

!
+

� 3

2

1

(1 � x)+
� 1 + x2

1 � x
ln x+ 3+

+2x� (
9

2
+
�2

3
)�(1� x)

#
(3.27)

dqq(x) = CF

"
(1� x2)

 
ln (1 � x)

1� x

!
+

+ 2
1 + x2

1� x
ln x� 3

2

1

(1 � x)+
+

+
3

2
(1� x) + (

2

3
�2 � 9

2
)�(1� x)

�
(3.28)
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Chapter 4

Inclusive particle

photoproduction at HERA

4.1 Introduction

In this chapter we study the inclusive photoproduction of neutral and

charged pions and � at HERA, via the resolved photon mechanism, in

QCD to next-to-leading order. We present various distributions of phe-

nomenological interest and study the theoretical uncertainties due to the

mass scales, and to photon and proton sets of structure functions.

Inclusive production of high pt particles and jets at HERA plays an

important role in testing QCD, providing a detailed source of information

on the hadron-like structure of the photon.

111
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For this purpose leading order (LO) perturbative QCD predictions -

based on evaluations of partonic cross sections at tree level and evolu-

tion of structure and fragmentation functions at one loop level{ are not

accurate enough, being plagued by the usual theoretical uncertainties as-

sociated to the large scale dependence of O(�em�S) terms. A consistent

calculation at next-to-leading order (NLO) needs two loop evolved struc-

ture and fragmentation functions and a NLO evaluation of parton-parton

subprocesses. As well known, two mechanisms contribute to the inclusive

photoproduction of particles or jets at high energies: the photon can inter-

act directly with the partons originating from the proton (direct process),

or via its quark and gluon content (resolved process). Previous theoretical

analyses have considered both direct photoproduction to NLO, Aurenche

et al. [33], and resolved photoproduction, Borzumati et al. [34], the latter

having used the NLO corrections to all contributing parton-parton scat-

tering processes of Aversa et al. [5] and LO fragmentation functions for

the �nal hadron. Those results show the dominance of the resolved com-

ponent at low pt (pt < 10 Gev), which is the region �rstly explored at

HERA, the role played by the direct contributions being shifted at higher

pt. The separation of the cross section in two components induces an

arti�cial dependence on the photon factorization mass scale M , which

should cancel when the two terms are added up. Indeed this mechanism

has been explicitly shown [35] to apply in the inclusive photoproduction

of jets, which has been recently studied to NLO accuracy.

Motivated by these results, the photoproduction of single hadrons in

electron-proton collisions at HERA energies, based on the NLO fragmen-

tation functions of second chapter, limiting ourselves to the study of the

resolved component only. In particular we present a detailed quantitative

evaluation of �0, �� and � photoproduction at HERA at moderate pt,

using the hard scattering cross sections of ref. [5], and two loop structure

and fragmentation functions.
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4.2 Theoretical framework

We give now the relevant formulae for the cross sections. The inclusive

cross section for ep! h+X in an improved next-to-leading-order approx-

imation is:

Eh
d3�(ep! h+X)

d3ph
=
Z 1

xmin

dxf=e(x)Êh
d3�̂(p! h+X)

d3p̂h
(x) (4.1)

where xmin is given in terms of the transverse momentum pt and of the

center-of-mass pseudorapidity �cm of the produced hadron as:

xmin =
pte

�cm

p
s� pte��cm

(4.2)

The rapidity �lab measured in the laboratory frame is related to �cm as:

�lab = �cm � 1

2
ln
Ep

E
(4.3)

where E and Ep are the energies of the electron and the proton respectively

(E = 27 GeV and Ep = 820 GeV, for the present HERA conditions).

The distribution in the longitudinal momentum fraction y of the out-

going photon has in the NLO approximation the following form [36]:

f (e) (y) =
�em
2�

(
2(1 � y)

"
m2

ey

E2(1� y)2�2c +m2
ey

2
� 1

y

#

+
1 + (1 � y)2

y
log

E2(1 � y)2�2c +m2
ey

2

m2
ey

2
+O(�2c ;m2

e=E
2)

)
;

(4.4)

where �c = 5� is the maximum value of the electron scattering angle and

me is the electron mass.

Finally the p inclusive cross section is given by:

E
d�p

d3P
=

1

�S

X
i;j;l

Z 1

0

Z 1

0

Z 1

0
dx1 dx2

dx3
x23

F p
i (x1;M

2
p )F


j (x2;M

2
 )D

h
l (x3;M

2
f )�



114 Chapter 4

�
 
�S(�2)

2�

!2 "
1

v
�0ijl(s; v)�(1� w) +

�S(�2)

2�
Kijl(s; v; w;M

2
p ;M

2
 ; �

2;M2
f )

#

(4.5)

where s; v and w are the partonic variables s = x1x2S; v =
x2�1+V

x2
; w =

x2VW
x1(x2�1+V ) and V = 1 + T

S
; W = �U

T+S , with S; T; U the hadronic Man-

delstam variables. �0ijl are the partonic Born cross sections O(�2S), while

Kijl are the �nite higher order corrections O(�3S) [5],with i; j; l run-

ning on all kinds of partons. As usual, the photon structure functions

are expressed in terms of the hadronic and the pointlike contributions as

F (x;Q2) = F 
had(x;Q

2) + F 
point(x;Q

2), and obey the appropriate evolu-

tion equation with the inhomogeneous term related to F 
point [37].

As already stated above a consistent calculation to next-to-leading or-

der needs two-loop evolved structure and fragmentation functions and a

NLO evaluation of parton-parton subprocesses. In the partonic cross sec-

tions to one loop [5], calculated from the squared matrix elements O(�3S)

of Ellis et Sexton [38], the initial state collinear divergences have been

factorized and absorbed into the dressed structure functions in the MS

scheme. Coherently with this choice, we have used for the proton struc-

ture functions set B1 of Mor�n & Tung, [17] (set A), set MRS S0 of Mar-

tins Roberts & Stirling [18] (set B), and set GRV HO of Gl�uck, Reya &

Vogt [39] (set C) and three di�erent NLO parameterizations of the photon

structure functions, namely the set of Aurenche et al. [40] with massless

charm (set I), that of Gl�uck, Reya and Vogt [41] (set II) (mode=272 in the

PDFLIB library) and that of Gordon and Storrow [42] (set III). Sets I and

II have been also used in the previous analysis of Borzumati et al. [34].

We have used �S calculated at 2-loop, with 4 avors and with �QCD =

200MeV . Set A of the proton structure functions has been indeed evolved

with �QCD = 194 MeV , but the error induced by this di�erent choice is

negligible. We have also considered 5 avors in the proton, in the photon

and in the �nal state, but the contribution given by the bottom is clearly

negligible in the range of pt values studied.
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We have used the improved expression (4) for the Weiszaecher-Williams

photon density in the electron [36]. When comparing our results with those

obtained with the usual leading order formula (e.g. see eq.1 in ref. [43])

we found a negative correction which is no larger than 5%.

4.3 Results

We present now various numerical results for the three sets of photon

structure functions, studying in particular the uncertainties of the theo-

retical predictions. We always use set A for the proton and set I for the

photon structure functions, except when explicitly mentioned.

Let us consider �0 photoproduction �rst. The dependence of the cross

section on the various mass scales involved in (5) is shown in �gs. 1. As

expected, the dependence is very strong at the Born level, as shown in

�g.1a for pT = 5 GeV , for �lab = �2.
The introduction of higher orders reduces the e�ect, although the de-

pendence on the photon factorization scale only is still important (�gs.1b-

1c), unlike to what is observed in the case of hadron-hadron collisions

[5, 44]. This behaviour has been also observed in the photoproduction of

jets at HERA [42,45,35] and the photon mass scale dependence is reduced

when the direct and resolved terms are both considered [35]. The above

e�ect is similar for the three sets of photon structure functions.

More explicitly we have isolated in the K factor in (5) the terms de-

pending on M2
p from those depending on M2

 , with the following method.

We split each term of the K-factors calculated in [5], which is propor-

tional to log
�

s
M2

�
, where in [5]M2 =M2

p =M2
 , in two pieces and assign

a weight factor which takes into account the splitting vertex (q ! qg; g !
gg) present in the collinear emission. For the subprocesses qq! H+X and

gg ! H +X the weight is 1
2 , due to the symmetry of all possible collinear

emission. In the subprocess q(p)g()! H+X and q()g(p)! H+X we
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give a weight CF
CF+2CA+nF

to the quark and 2CA+nF
CF+2CA+nF

to the gluon (CF

and CA are the usual color factors). Moreover for each subprocess one has

to multiply the partonic cross-section for the appropriate combination of

structure function.

In order to show the general pT behaviour of the cross section, d�
d�dpT

is plotted in �gs. 2 and �g. 3 for di�erent values of �lab, � =Mp =M =

Mf = pT , and for the three sets.

Comparing to the previous analyses of ref [34], we have found di�er-

ences which we believe are essentially due to the use of out set of frag-

mentation functions evolved to NLO. On the other hand we are able to

reproduce �g.9 of [34], using the same inputs, within a 15% of accuracy

but with an almost identical shape. For convenience we show in �g. 4 the

comparison between the old set of fragmentation functions [46] and the

one used in this thesis.

In �gs.5 we present the �lab distribution for �xed pt = 5 GeV. In �g.

5a the contributions is shown by the various partonic subprocesses, while

the di�erential cross-sections d�
d�dpT

for the three sets of photon structure

functions are compared in �g. 5b. Comparing with ref. [34], as for the case

of pt distributions, the di�erent shapes shown in �g. 5a can be understood

�rstly because of the di�erent set of fragmentation functions (see �g. 4);

furthermore the regions �lab < �3 and �lab > 1 lye at the edge of phase

space and therefore the numerical convolution of the  � p cross-section

with the Weiszaecher- Williams formula is sensitive to slight variations of

the parameters.

As in the case of inclusive jet photoproduction [35] the contribution

from the gluon content of the photon is too tiny to be observed in most

of the phase space available. Indeed from Fig. 5, if one considers the two

subpreocesses initiated by the gluon in the photon: q(p)g() ! jet+ X

and gg ! jet+X, the �rst one is clearly dominated by all other reactions,

while the second one could be of interest in the region of very negative

rapidities (�lab < �3), where it is however quite di�cult to disentangle
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the small-x behaviour of the photon structure function in the actual cross

section.

On the contrary, the gluon contribution from the proton structure

function plays a relevant role, and is essentially independent from the

photon and proton structure functions, as also shown in �g. 6, where the

�lab distribution of the subprocess q()g(p) ! �0 + X for three di�erent

parameterization NLO of proton structure functions.

We �nally show the cross section integrated over di�erent ranges of �lab

in �g. 7, for the Set I of photon structure functions, which is of immediate

phenomenological interest for HERA experiments.

Concerning the photoproduction of � and charged pions, we present in

Figs. 8 the pT distribution for di�erent values of �lab, in Figs. 9 the �lab

distributions for pt = 5 GeV and for di�erent subprocesses, and in Figs.

10 the distribution in pt integrated in �lab. The dependence on the photon

structure functions is similar to what found for the �0 case. Finally we

show in Table I our prediction for the ratio �=�0 where we de�ne R as

the ratio of the cross sections d�
d�dpt

for the production of eta and pions

respectively.

pt 3 4 5 6 7 8 9 10 11 12 13

R 0.55 0.60 0.64 0.67 0.67 0.72 0.72 0.79 0.80 0.84 0.86

Table I

In Fig. 11 we show the dependence of the cross section on the proton

structure functions.

To summarize, in this chapter a next-to-leading order calculation of

inclusive neutral and charged pions and � production in electron-proton

collisions has been presented, particularly via the resolved photon mecha-

nism. We have studied the e�ects of the theoretical uncertainties related

to the photon structure functions, as well as the dependence from the
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various mass scales, which is still signi�cative in the considered pt range.

The inclusion of the direct component should make this e�ect weaker. We

stress that the gluon content of the proton can be accurately disentangled

via the photoproduction of single particles at HERA.
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Chapter 5

Production of Wb�b plus jets

5.1 Introduction

In this chapter we will study the production of Wb�b in association with

jets, using a parton level matrix elements calculation for production of

Wb�b + n partons in the massless limit and a parton shower MC in order

to account for parton fragmentation into jets. We will show that after

fragmentation there is not di�erence between using massless matrix ele-

ments and the ones corrected for mass e�ects, in the particular case of

Wb�b production.

137
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5.2 Wb�b plus jets and top signal background

The Tevatron experiments CDF and D0 gave evidence for the existence

of top quark in 1994-1995 [48, 49, 51, 55]. The production cross section is

in agreement with the theoretical calculation [56] while the mass results

are quite di�erent: CDF quotes a top mass of 176�8 (stat.)�10 (sys.)

GeV/c2 while D0 gives 199�20(stat.)�22 GeV/c2. In this range of mass,

nevertheless, a produced top decay into a real W and a bottom quark, with

the subsequent decay of the W into a lepton or quark pair. Detecting the

top required a precise understanding of the possible sources of background

to every selected decay channel and this remains true even now, after the

discovery of the top quark, when for example one would like to study in

detail properties such as mass or angular distributions of decay products.

From the point of view of the background the two most reliable al-

ternatives are certainly the single and double leptonic decays. They have

complementary features, the dilepton channel being relatively background

free, but with a smaller branching ratio and more di�cult possibility to

reconstruct both the t, the single lepton having a higher branching ratio

and allowing a more precise reconstruction of one of the two t quarks.

Unfortunately we know that the background from associated production

of W and multijets is rather severe and has a large overall uncertainty

in the calculated rate. It is then important to isolate distinct features

which could unambiguously separate signal from background. A stronger

evidence that could discriminate the signal from background on an event

by event basis (rather than on a statistical one) comes from the direct tag-

ging of one of the b quarks in the event via the reconstruction of its decay

vertex. Events are initially selected via the leptonic decay of one of the

W's and then the presence of a b-tag is requested. The probability that

an event with W not coming from a top decay has a b quark is expected

to be very small, and therefore the background to the top is substantially

reduced. In a previous work [57] M. Mangano studied at which extent this
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is true and how well we can determine the sources of background to b-

tagging, using an exact calculation of the parton level matrix element for

production of Wb�b with the correct mass e�ect included and subsequently

convoluting it with HERWIG parton shower MC in order to account for

the jets activity, owing the fact that the exact matrix elements calculation

for pp ! Wb�b + jets with the correct b mass e�ects included does not

exist.

In this work we will be in some way complementary to the one of

Mangano. We will start infact from the LO partonic matrix elements

calculation of pp! Wb�b+ partons in the massless limit [62] given by the

MC VECBOS and use the parton shower MC HERWIG in order to study

the structure of the �nal state jets after the perturbative evolution and

the parton!jet transition. In this way we partially solve the problem

of having a massless b�b by the fact that HERWIG assigns the correct

masses to the b's at the beginning of the parton shower evolution. As

we know the shower MC will then evolve the partons involved in the

hard scattering process via a branching algorithm, in which the emissions

probabilities are calculated in accordance to the Altarelli-Parisi splitting

functions. The radiation emitted during initial and �nal state will give

rise to additional jets. Owing the fact that in the massless limit we have to

request that the b's are hard and well separated (in order to avoid infrared

and collinear divergences) and for this reason it is impossible to control

the rate of background down to small values of the b momentum as well

as small separations, we will check that the necessary parton level cuts

are not biasing the prediction in the contest of top analysis. In the case

of relatively light top (say around 100-120 GeV) this could be not true,

because in this case the b's will be soft and in order not to loose much

signal one would not be able to a�ord requiring the b's to form sti� jets.

Of course up to higher top masses b's become less and less soft, and the

massless calculation becomes more reliable. Has been shown infact [57]

that for 120 GeV � mtop �160 GeV, requiring the presence of at least two
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jets passing the following cuts : Et � 20 GeV , j�j � 2 in t�t events, with

j�bj �1, is highly e�cient in severely reducing the background. For higher

top masses, when the production rate is very small, additional cuts can

be placed (for example requiring an higher Ejet
t threshold). In this case

most of the events passing these cuts, in the signal sample, will have b

quarks with pt � 20 GeV. And this remove us from the \dangerous" zone

of soft b's limit.

We show in �gure 1 the pt distribution for the �rst b-quark in events

in which we request at least 2jets with Et � 15 GeV and j�j � 2. We also

request that the lepton cuts are the following: P lep
t � 20 GeV and j�lep �

2. Solid line is the result obtained using Wb�b massless matrix element

+HERWIG, while dashed line is the one fromWb�bmassive matrix element

+HERWIG and dotted is for HERWIG t�t production at mtop = 175 GeV.

The three distribution have been normalized to the unit area. In Figure 2

we see the same distribution compared with HERWIG t�t production with

mtop=140 GeV.

We can safely say, that with the actual top mass we are far from the

soft b's limit and then we can use the massless matrix element calculation.

The outline of the chapter is the following: in section 2 we will briey

describe the VECBOS MonteCarlo along with the interface to the parton

shower and the selection of the subprocesses needed to produceWb�b. Then

in section 3 we will show some results compared with the ones obtained

using the matrix elements for Wb�b corrected for mass e�ects [57]. We will

conclude in section 4.

5.3 VECBOS, HERPRT and the jet frag-

mentation

VECBOS is a parton level MonteCarlo that performs production ofW +n

partons with n � 4, in the massless limit. It is based on a tree level
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Figure 5.1: pt distribution for the �rst b-quark in events in which we

request at least 2jets with Et � 15 GeV and j�j � 2. Solid line is the result

obtained using VECBOSWb�b massless +HERWIG, dashed line is the one

from Mangano Wb�b massive +HERWIG and dotted is for HERWIG t�t.
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Figure 5.2: pt distribution for the �rst b-quark in events in which we

request at least 2jets with Et � 15 GeV and j�j � 2. Solid line is the

result obtained using VECBOS Wb�b massless +HERWIG, dashed line is

the one from Mangano Wb�b massive +HERWIG and dotted is for TOP

140.
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evaluation of the matrix elements obtained using elicity amplitudes tech-

niques [62, 58]. In this calculations is of course necessary to apply cuts

on the phase space of the outgoing partons in order to avoid infrared

and collinear divergences. In a more experimental-oriented language this

means that two of the outgoing partons will create a single jet, or that

the jet is too close to the beam, or is not energetic enough to be observed.

As we know adding virtual and real gluon emission diagrams will cancel

the infrared divergences, while the collinear ones are absorbed in a re-

de�nition of the parton density functions. Of course, the cross section will

depend on how jets are de�ned, for example on what angle of separation

is required to identify two partons as two di�erent jets.

The calculation for W+ partons production is indeed at parton level.

It gives infact the transition probabilities between quark and/or gluon

states (with some additional particles which interact weakly, such as lep-

tons and electroweak bosons). As we know quarks and gluons are not the

observable of the experiment. The problem of \translating" a theoretical

prediction at parton level to a simulation which gives as output quantities

like jets that are directly measured in an experiment has been solved by

CDF collaboration that has developed a simple algorithm (called HER-

PRT [59]) which transforms partons into jets. This algorithm is based on

the parton shower fragmentation model and having assigned a partonic

con�guration it develops each of the partons into a radiation cascade,

with the angular and energy spectrum of the emitted gluon or q�q pairs

determined by given probability distributions. The choice of the probabil-

ity distributions is what makes the di�erence between the di�erent MC's

available (say ISAJET [60],HERWIG [47],PYTHIA [61]). The algorithm

takes an arbitrary parton level con�guration and turns it into a con�gura-

tion with a de�nite assignment of avors and colors. Once this is done, the

event can be passed to the shower MC which will evolve it (both initial

and �nal state radiation), hadronize the �nal gluons and quarks, decay

unstable hadrons and include the interaction of the beam fragments.
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In our case we started from the production ofW+n partons (n � 2) of

which two are requested to be b's as performed by VECBOS MC. This is

equivalent to considering a particular set of subprocesses contributing to

the normal W + n partons events. To be precise, asking for a b�b massless

pair in the �nal state means that we have to consider just those diagrams

with two or more quark pairs, one pair representing the b�b and the other

representing the isospin doublet which couples to the W. In the case of

W + 2 partons the only contribution comes from q�q ! Wb�b,while in the

case of W + 3 partons we need to add the contributions coming from

gq(g�q) ! Wb�bq, qg(�qg) ! Wb�bq and �nally in the case of 4 partons

we have to consider also the contributions from gg ! Wb�bq�q and q�q !
Wb�bq�q. We modi�ed the routine that assigns avour and color connections

to the partons, in order to implement the case of a b�b massless pair in the

�nal state. In this way we can study the production of Wb�b plus jets.

5.4 Results

In this section we present some distributions that can be of interested in

comparing whenever possible the massless and massive approach after the

fragmentation process. In order to reconstruct jets we used an algorithm

developed by F. Paige to simulate standard jet clustering performed by

hadron collider experiments [63]. This algorithm de�nes seed towers as

regions of area 0.1�15� in �� space containing more than 1 GeV of trans-

verse energy. The transverse energy owing in a cone of radius Rjet around

a seed tower is collected to de�ne a jet. We use Rjet=0.7, 1.0 and consider

jets satisfying the following cuts: pjett > 15 GeV and j�j < 2.0. We use

set MRS Set (A) (L230-MSb) for structure functions, with �QCD = 230

MeV. At the VECBOS stage of generation we have the following set of

cuts: pjett � 8 GeV, j�jetj � 3.5, �R=0.4. We didn't place cuts on leptons.

In Table I we report the jet multiplicity for tho di�erent choices of the
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cone Rjet: 0.7, 1.0 after parton shower evolution of W + b�b (massless b's)

sample, Wb�b massive sample and Wb�b+ 1 parton sample.

Sample jet multiplicity Rjet = 0:7 jet multiplicity Rjet = 1:0

Wb�b massless 2.23 2.27

Wb�b massive 1.87 1.92

Wb�b massless +1 parton 2.82 2.87

Table I

In Figure 3, we show the correlation in �� space between the �rst b

and all the jets in the event. The solid line is obtained with VECBOS

Wb�b massless, while the shaded one is from the corrected matrix element

calculation. Dotted line is the same correlation for top events.

In Figure 4 we show the correlation between the two leading jets, for

reconstructed cones of 0.7 (upper) and 1.0. The di�erent behaviour in the

�rst bin is due to the fact that the b's are separated at parton level in the

massless case while they are not in the massive case.

In Figure 5 we show the pt distribution of the two leading jets for

the massless (solid) and massive case (shaded). We found that starting

with massive matrix element gives spectra a little bit softer, but this is in

agreement with the fact that even the pbt spectrum is slightly softer in the

massive than in the massless case (see Figure 1). The spectra are in any

case in reasonable agreement.

In order to better understand the possible di�erence between the mas-

sive and massless cases, we calculate the number of times that, in events

where we reconstruct two or more jets with pt=15 GeV and j�j �2, and
the lepton satisfying the following cuts: plept �20 GeV and j�lepj � 2, the

two b's belong each to the one of the two leading jets, the case in which

b or �b belongs to the leading jet, while �b and b does not, the case in

which both b's don't belong to the two leading jets and �nally the case



146 Chapter 5

Figure 5.3: Correlations in �� space between the �rst b and all the jets in

the event. See text for explanations
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Figure 5.4: Correlation in �� space of the two leading jets, after the

fragmentation. Massive matrix element (shaded), massless (solid)
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Figure 5.5: pT distribution for the two leading jets, after fragmentation.

Massive matrix element (shaded), massless (solid)
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in which they belong to the same jets. The results is reported in Table II

for VECBOS/HERPRT W+2jets and Mangano+HERWIG.

Combinations VECBOS/HERPRT Mangano/HERWIG

b 2 jet1 �b 2 jet2 12% 11%

b 2 jet1(jet2) �b =2 jet1(jet2) 60% 53%

b�b =2 jet1(jet2) 21% 15%

b�b 2 jet1(jet2) 20% 22%

Table II

We can see that the results are quite similar in the case of VEC-

BOS/HERPRT and Wb�b massive+HERWIG. b and �b give rise to sepa-

rate jets, with almost the same frequency. We also plot in �g 6-7 the pt

distribution for the b-quark in the case it belongs to the leading or second

leading jet, while the �b-quark does not, for VECBOS/HERPRT W+2jets

and Mangano/HERWIG Wb�b. In Fig 8-9 are the pt distributions of the

two leading jets in this case. The distributions look quite similar and the

means are very close.

In Fig 10-11 we have the pt distribution for b-quark and �b-quark in

the case that both does not belong to the two leading jets. As we can see

these are soft b's and the jets are given by initial state radiation.

To conclude, in this chapter we reported about the study on produc-

tion of Wb�b in association with jets. The calculation is complementary to

the one performed using massive matrix element for Wb�b production. In

the case of top analysis, where we required high pt b's we can reliably use

the massless matrix element calculation. We showed some comparisons

with distribution from the massive calculation and did not �nd substan-

tial disagreement. We are then quite con�dent on the possibility to use

VECBOS/HERPRT as a tool to study the Wb�b + jets background to

top.
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Figure 5.6: pt distribution of the b-quark in events with two or more jets

with pjett �15 GeV and j�jjet � 2, whit the b-quark belonging to the

leading jet or second leading and the �b-quark not. VECBOS/HERPRT

W+2jets
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Figure 5.7: pt distribution of the b-quark in events with two or more

jets with pjett �15 GeV and j�jjet � 2, with the b-quark belong-

ing to the leading jet or the second leading and the �b-quark not.

Mangano+HERPRT+QFL
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Figure 5.8: pt distribution of the two leading jets in events with two or

more jets with pjett �15 GeV and j�jjet � 2, whit the b-quark belonging to

the leading jet or second leading and the �b-quark not. VECBOS/HERPRT

W+2jets
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Figure 5.9: pt distribution of the two leading jets in events with two

or more jets with pjett �15 GeV and j�jjet � 2, with the b-quark be-

longing to the leading jet or the second leading and the �b-quark not.

Mangano+HERPRT+QFL
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Figure 5.10: pt distribution of the b-quark and �b-quark in events with two

or more jets with pjett �15 GeV and j�jjet � 2, when the two quarks does

not belong to either the leading or second leading jet. VECBOS/HERPRT

W+2 jets
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Figure 5.11: pt distribution of the b-quark and �b-quark in events with two

or more jets with pjett �15 GeV and j�jjet � 2, when the two quarks does

not belong to either the leading or second leading jet. Mangano-HERWIG
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