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Abstract

We present the �rst experimental measurement of jet{jet azimuthal correlation

as a function of the rapidity interval between two jets. The data were accumulated

using the D� detector during the 1992{93 collider run of the Fermilab Tevatron atp
s = 1.8 TeV. These results are compared to next{to{leading order (NLO) QCD

predictions and to two leading{log approximations (LLA) where the leading{log

terms are resummed to all orders in �s. The �nal state jets as predicted by NLO

QCD are more correlated azimuthally than the data. The parton shower LLA Monte

Carlo HERWIG describes the data well and the analytical LLA prediction based on

BFKL resummation is found to be less correlated than the data.



Chapter 1

Introduction

Matter, as currently understood, consists of two types of elementary particles:

quarks and leptons. These are the fundamental building blocks of the Universe

including our bodies. We also believe that the electromagnetic, weak, and strong

forces describe the behavior of these elementary particles and, somehow, the har-

mony between the interaction forces and the elementary particles creates the most

exotic phenomenon, life.

For the last forty years, comprehensive theories have been established to describe

the behavior of the elementary particles and interactions between these particles.

Quantum Chromodynamics (QCD), as one of such, is believed to be a precise and

complete theory of quarks and gluons explaining various strong interaction phenom-

ena. Since the strong force keeps quarks and gluons from manifesting themselves

directly, jets or collimated sprays of hadrons, are the physical observable in the

experimental situations.

Including recent progress in next{to{leading order (NLO) calculations, perturba-

tive QCD has been quite successful in the description of high pT central jet produc-

tion at hadron colliders, such as the inclusive single jet [1] and dijet cross sections [2].

Along with this advance in the understanding of perturbative QCD, the higher en-

ergy colliders, such as the Fermilab Tevatron (p�p) and HERA(ep), have opened up a
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new era in the study of perturbative QCD including investigation of di�ractive and

small-x physics [3].

These new perturbative QCD regimes or equivalently higher order phenomena

may be described by summing all orders in �s, and not just by �xed order pertur-

bative QCD. The BFKL resummation [4] calculation formulated by Balitsky, Fadin,

Kuraev and Lipatov predicts that these higher order contributions manifest them-

selves as enhanced radiation accompanying a hard scattering process. This enhanced

radiation e�ect may be observed at the Fermilab Tevatron p�p Collider at
p
s = 1:8

TeV. Experimentally, additional radiation can be revealed by the transverse momen-

tum and azimuthal angle correlations between dijets with large rapidity separation.

In particular, the enhanced radiation is expected to reduce the azimuthal correlation

of two jets.

We have studied the azimuthal correlation between the two jets with the largest

rapidity separation above certain minimum transverse momentum in events pro-

duced in the Tevatron p�p collisions. In leading order, these two jets will be absolutely

correlated in both transverse momentum and azimuthal angle. With additional ra-

diation the degree of this correlation is expected to be decreased. These higher

order e�ects become particularly interesting as the rapidity interval between the

hard scattering jets becomes large.

This dissertation reports the �rst measurement of azimuthal angle correlation at

rapidity separations of up to �ve units. The correlation as a function of rapidity

interval is compared to various QCD predictions which treat higher order terms dif-

ferently. The D� detector [5] is particularly suited for this study since the hermetic

calorimetric coverage to j�j of 4.0 makes it possible to extend the measurement of

azimuthal correlation to rapidity intervals up to �ve units.
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Chapter 2

Quantum Chromodynamics

Quantum Chromodynamics (QCD) is a non-Abelian gauge theory with a three

dimensional gauge symmetry, SU(3) of color. In contrast Quantum Electrodynamics

(QED) is based on an Abelian gauge theory with one dimensional local phase rota-

tion, U(1) of electric charge. This di�erence in the underlying symmetry produces

a signi�cant complication in the interactions of the carriers of force. In QED, only

photons interact with electrically charged fermions or antifermions because photons

do not carry electric charge. In QCD, on the other hand, there are three- and four{

gluon interactions possible, since the gluons do carry the color charge, as well as

gluon{quark{antiquark interactions as shown in Fig. 2.1.

2.1 QCD Theory from Experiments

In retrospect, experimental results have motivated the birth of QCD. Therefore,

we will brie
y review the main experimental developments which have led to the

formulation of QCD and thus illustrate its origin while reinforcing our belief that

QCD is an accurate theory of the strong interaction.
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Figure 2.1: The interactions between quarks and gluons

Why quarks? In 1964 Gell-Mann and Zweig suggested the quark model [6]

that described the hadron spectrum known at that time. They have introduced

three very curious particles, quarks(u; d; s), having fractional electrical charges and

baryonic quantum numbers. This quark model reduced the \zoo" of hadrons to

simple combinations of those quarks, mesons consisting of quark-antiquark pairs,

and baryons of three quarks. With the successful description of hadron structure,

quarks became the essence of QCD.

Why color? The quark model includes hadrons which consist of identical

quarks. In particular, the �++ contains three u quarks with no orbital angular

momentum in a symmetric S= 3=2 spin state. According to the Pauli principle, one

cannot build such baryons from quarks with a symmetrical coordinate wave func-

tion. That is, it is impossible to have an antisymmetrical wave function for �++. A

solution to this puzzle was to increase the number of quarks by introducing a new

quantum number, color [7]. One needs at least three color charges, such as red,

green and blue, for each quark 
avor to describe the spectrum of baryons, e.g. the

�++ hyperon consists of three u quarks of di�erent colors. Since then, there has

been a great deal of experimental evidence for three color charges [8]. One of the
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examples is that the ratio R = �(e+e�!hadrons)
�(e+e�!�+��)

depends on the sum of the squares

of the electric charges of all types of quarks available since an intermediate virtual

photon annihilates into a quark-antiquark pair. The experimental results have been

consistent with the existence of three color charges for each quark 
avor.

Why gluons? All the attempts to �nd free quarks have failed. A strong force,

overruling the electromagnetic repulsion of the three u quarks in the �++ hyperon,

must be invoked to bind quarks into hadrons. The color charge of quarks yields a

new color �eld making this strong binding possible. It is only natural to assume

intermediate particles for the strong force as in the electromagnetic force of QED.

This intermediate particle, the gluon, is the quanta of the color �eld that binds

quarks into nucleons and also nucleons into nuclei.

In 1954 Yang and Mills [9] constructed a non{Abelian gauge theory, analogous

to QED, for a system in which the particle carries more than one \charge". Their

generalization of two charges mediated by a vector particle resulted in a theory that

was inconsistent with observation. However, with three charges mediated by vector

particles obeying exact SU(3) symmetry one arrived at a theory that seemed to

describe the strong interactions. It is the color charges of gluons that are represented

by SU(3) symmetry. This is an essential feature of QCD and yields three and four

gluon vertices. Inclusion of gauge invariance to ensure the masslessness of the gluon

is the last ingredient of QCD which describes the strong interactions [10].

2.2 The Quark-Parton Model

Since the beginning of history in science, scientists have simpli�ed the phenomena of

the Nature by describing only its essential components. In order to understand, for

example, e+e� interactions using QED, the assumption that the electron is a point-
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like particle with no substructure makes the theoretical prediction simpler without

the loss of physical insight. As a matter of fact, many experimental attempts to �nd

the substructure of the electron have failed, and, therefore, the electron is believed to

be a point-like particle. The proton was also believed to be a point-like particle until

a series of deep inelastic scattering (DIS) experiments (e+p! e+X) at the Stanford

Linear Accelerator (SLAC) in the late 1960s showed the proton to be made of hard

point-like objects, so called, partons. Bjorken [11] suggested that the structure

function of a proton is a function of only one variable x, parton momentum fraction,

and this scaling behavior of the structure functions was dramatically con�rmed by a

series of experiments at SLAC. The scaling e�ect was found to be a result of the fact

that the proton is made of point-like constituents. Expectations that the charged

constituents of the proton carry spin 1/2 was also con�rmed experimentally [13].

The experimental veri�cation of Bjorken scaling and the observation of spin 1/2

constituents in deep inelastic scattering have provided the �rst evidence for the

existence of quarks and given impetus to the intuitive picture of the quark-parton

model.

In such a naive quark-parton model, the proton was regarded as a collection of

point-like partons (or quarks) and, at high energy DIS, a virtual photon interacts

with a single free quark. As soon as the naive quark-parton model was established

physicists have started exploring the quark probability distributions with many DIS

experiments using e; �; and � beams and various targets [14]. One result of these

experiments was that the momentum sum of all the charged quarks inside the pro-

ton was only 50% of the total proton momentum. This indicated that a substantial

fraction of the proton momentum is carried by neutral partons, but not by charged

quarks. Those neutral partons were identi�ed as gluons. In the quark-parton model,

at last, the gluons are also considered as point-like partons residing inside the pro-

ton. Presently, the QCD parton model suggests that the proton is believed to be

an ensemble of point-like partons (guarks and gluons) undergoing incessant color

interactions.
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Figure 2.2: The running strong coupling constant: �s(Q2), courtesy of J. Yu. (Ph.D.

thesis, New York university at Stony Brook, 1993.)

2.3 Perturbative QCD and Asymptotic Freedom

Due to the characteristics of strong interactions single quarks can not be isolated

from other quarks and exist only as constituents of colorless hadrons. This con�ne-

ment of quarks to colorless hadrons is a result of strong couplings between color

charged particles. Despite of color con�nement various QCD predictions have been

calculated perturbatively and compared with experimental results.

The quark-parton model assumes the quarks behave as if they were free Dirac

particles, i.e. no mutual interactions occur between them. Since Bjorken scaling [11]

is relevant only at large momentum transfer (Q2 ! 1) we may infer that over the

short time scale in which the hard scattering takes place, the quarks act as free

particles. This motivated the hunt for a �eld theory of quarks which would describe
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quarks as free particles in the limit, Q2 ! 1. In other words, the e�ective color

charge of quarks in an interaction vanishes as distances become smaller and smaller.

This is called Asymptotic Freedom.

In the early of 1970s, several theorists established that non-Abelian gauge the-

ories had the important property of asymptotic freedom and consequently QCD

became the �eld theory of strong interaction. As shown in Fig. 2.2, results from

many experiments now show that the QCD coupling constant �s approaches zero in

the asymptotic limit, Q2 !1. The small coupling at high Q2 makes perturbative

QCD (pQCD) possible and credible.

When one calculates higher order loop corrections [14] to the quark-gluon cou-

pling, the result diverges. The renormalization procedure removes the divergence

by introducing a mass scale, �, into the de�nition of the e�ective coupling. This

prediction agrees well with many experimental results. The running QCD coupling

constant at leading order is given by

�s(Q
2) =

12�

(33 � 2nf )log(Q2=�2
QCD)

(2.1)

where nf is the number of quark 
avors contributing in the loops and �2
QCD is

a QCD fundamental parameter which is to be determined experimentally [14]. If

Q2! �2, the coupling constant diverges and the perturbative QCD fails. This leads

to the con�nement of quarks and gluons inside the proton. Thus, the parameter �2

provides an approximate boundary energy scale between perturbative and the non-

perturbative QCD.

2.4 Factorization Theorem

In hadron-hadron collisions, the scattering process can be factorized into two pro-

cesses: a) a short-distance process, characterized by a hard scale Q, explaining the

primary scattering between the partons; and, b) a long-distance region, character-

ized by a hadronization scale � �QCD, describing how the scattering partons split
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Figure 2.3: Factorization of the single hadron inclusive cross section at large pt, See

Eq.(2.2)

from the parent hadrons and how the �nal partons hadronize [15]. This factoriza-

tion disentangles the complex hadron collision into several calculable or measurable

parts. For example, the cross section for high pt (large scale Q) single hadron inclu-

sive production in hadron-hadron collisions (A(pa) + B(pb) ! h(ph) +X) [10] can

be factorized as follows,

Eh
d�

d3ph
=
X
abc

Z 1

xmin
a

dxa

Z 1

xmin
b

dxb
dz

z
�a=A(xa; �)�b=B(xb; �)

� j ~kc j d�̂
d3kc

(
pc
z
p
s
; �)Dh=c(z; �) (2.2)

which is also depicted in Fig. 2.3. The sum is over the various 
avors of partons,

i.e. quarks, antiquarks and gluons which take part in the hard scattering. The

cross section is represented as a convolution of a short-distance process and two

long distance processes:

a) short-distance (intermediate state): j ~kc j d�̂
d3kc

is for the hard scattering process

(a+ b! c +X) having a high pt scale at the parton level. This can be calculated

perturbatively due to the large pt. The renormalization scale or factorization scale

� is arbitrary, but it is large enough for the perturbative calculation. In general, the
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Figure 2.4: Kinematic variables for deep inelastic electron-proton scattering

scale � is chosen near the large scale of the process, e.g. � � pt.

b) long-distance (initial and �nal states): the parton distribution function, �(x; �),

is the probability density to �nd parton a(b) having the momentum fraction xa(xb)

of the parent hadron A(B). These parton densities are to be measured experimen-

tally in deep inelastic scattering since they are not calculable. The fragmentation

function, Dh=c(z; �), is the probability of �nding hadron h among all the hadrons

fragmented from a parton type c. The fractional momentum of the measured hadron

relative to its parent parton c is z. The fragmentation is also non-perturbative pro-

cess and can not be calculated theoretically.

At large pt scales the hard process takes place over the short time scale phenomena

in which the partons of the process can be considered as free particles. Therefore we

may consider factorization a simple consequence of the quark-parton model. Factor-

ization is now the basis of all applications of perturbative QCD to hard processes.
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2.5 The Structure Function

As mentioned above, deep inelastic scattering plays an important role in our

view of proton structure. Figure 2.4 shows a typical deep inelastic electron-proton

process. With the standard notations for DIS kinematic variables, Q2 = �q2, x =

Q2=2p � q, y = p � q=p � k with s = Q2=xy as indicated in Fig. 2.4, the cross section

for Q2 < 103GeV2 is given by

d�ep

dxdQ2
=

4��2

xQ4
(1� y + 1

2

y2

1 +R(x;Q2)
)F2(x;Q

2) (2.3)

where F2 is the proton structure function and is proportional to the sum of �T and

�L, the transverse and longitudinal virtual photon cross sections, respectively. The

theoretical value [16] R(= �L=�T = F2=2xF1 � 1) indicates the virtuality of the

photon (a real photon does not have a longitudinal polarization, therefore �L = 0)

and the spin of the quark (a spin 0 quark can not absorb a photon of helicity

� = �1, so �T = 0) [17]. It is straightforward to extract the structure function

F2 by measuring the electron-proton cross section as a function of x and Q2 from

Eq.(2.3). The recent results on the structure function from the ZEUS experiment [18]

are shown in Fig. 2.5.

The structure function F2(x;Q2) re
ects the kaleidoscopic world of the proton

and depends on the momentum of the virtual photon probe as shown in Fig. 2.6(a).

Figure 2.6(a) is a magni�ed picture of the electron-proton scattering shown in

Fig. 2.4. The proton represented as a blob in Fig. 2.4 is a system of many par-

tons interacting with each others as shown in Fig. 2.6(a). The probe or virtual

photon encounters a di�erent environment depending on its resolving power, some-

times almost empty space, sometimes crowded space. The proton was found to be

an ensemble of partons, each parton carrying some fraction x of the total momentum

of its parent proton. When a probe of a �xed Q = Q0 enters the proton, it has a

probability to see a parton with momentum fraction x as shown in Fig. 2.5. The
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Figure 2.5: Comparison of the measured structure function F2(x;Q2) (ZEUS data

in 1993) with NLO parton densities.
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proton

quark

gluon

(a)

(b) (c)

(d) (e)

Figure 2.6: (a) the proton interacting with a virtual photon, 
� (b) 
�q ! q;O(�)

(c) 
�q ! qg, quark contribution at O(��s) (d) 
�g ! qq, gluon contribution at

O(��s) (e) 
�q ! qgg, quark contribution at O(��2s).
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ZEUS data clearly show that F2(x;Q2) increases very steeply at small x, and the

number of partons carrying a small momentum fraction increases as Q2 increases at

a �xed x = x0.

2.5.1 Parton Distributions

As mentioned in section 2.2, the proton structure function, F2(x;Q2), consists of

several parton probability densities. DIS experiments enable us to explore the dif-

ferent parton densities depending on the probing beams (e; �; � etc.) and targets

particles (p; n etc.) [14]. For example, if we assume the structure function has no Q2

dependence (Bjorken scaling), F2(x;Q2) from the electron-proton DIS experiments

is,

F ep
2 (x;Q2) =

NfX
i=1

e2i [fqi(x) + fqi(x)]

� 4

9
x[u(x) + u(x) + c(x) + c(x)]

+
1

9
x[d(x) + d(x) + s(x) + s(x)] (2.4)

where fqi(x) � xqi(x) are the quark densities of the proton and ei are the quark

charges. For example, u(x) [u(x)] is the [anti] up quark density. In short, using DIS

data one can measure the structure function, and application of the QCD parton

model leads to the parton distribution functions (PDFs).

2.5.2 Evolution of Parton Distributions

We need F2 for a wide x and Q2 range to calculate, for example, one jet inclusive

cross section from p�p scattering. As mentioned in section 2.4, the one jet inclusive

cross section can be factorized into two parts, the parton densities and the hard

process. The parton density distributions at all x and Q2 are necessary because the

whole structure of the proton (anti-proton) is involved in jet production.
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Experimentally it is next to impossible to scan all x and Q2. In pQCD, however,

F2(x) at a di�erent Q can be surprisingly predicted by the experimental measure-

ment of F2(x) at Q0 when Q and Q0 are large enough. Thus, for instance, measuring

F2(x;Q0) is enough to predict F2(x) for any Q2. This means that even a single DIS

experiment can produce the complete picture of the proton structure. This result,

called the \evolution" of structure functions, is a distinct outcome of the factor-

ization theorem. Figure 2.6(b-e) shows the Feynman diagrams that contribute to

the parton distributions at O(��ns ). By calculating each Feynman diagram, we can

extract the following results.

In Figure (b) a virtual photon sees only a free quark as in the naive parton

model. This is a pure electromagnetic interaction and describes Bjorken scaling

theoretically. The result is given by,

F2(x;Q2)

x
=

X
i

e2i qi(x) =
X
i

e2i

Z 1

x

dy

y
qi(y)�(1� x

y
) (2.5)

where i runs for all quark 
avors.

In Figure (c) a virtual photon sees a quark interacting strongly through gluon

emission. The outgoing quark would have some transverse momentum relative to the

direction of the virtual photon. Figure(b) shows the outgoing quark collinear with

the virtual photon. The transverse momentum emerging from the gluon emission

provides the violation of Bjorken scaling. The violation of Bjorken scaling is an

experimental signature of gluon emission. The integrated 
� � quark cross section

is,

�̂(
�q ! qg) ' e2i �̂o
�s
2�
Pqq(z) log

Q2

�2
(2.6)

where �̂0 = 4�2�=ŝ and,

Pqq(z) =
4

3
(
1 + z2

1 � z ) (2.7)
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represents the probability of a quark emitting a gluon and so becoming a quark with

momentum reduced by a fraction z. The lower limit � is a cuto� to regularize the

divergence when the emitted gluon is soft (p2t ! 0). Adding �gures (b) and (c), we

�nd gluon emission modi�es Eq.(2.5) to become

F2(x;Q2)

x
=
X
i

e2i

Z 1

x

dy

y
qi(y)(�(1� x

y
) +

�s
2�
Pqq(

x

y
) log

Q2

�2
): (2.8)

The presence of the logQ2 factor means that the structure function describes the

violation of Bjorken scaling. That is to say, in QCD F2 is a function of Q2 as well

as of x, but the variation with Q2 is only logarithmic.

Equation Eq.(2.8) may be regarded as the �rst two terms in a power series in

�s. As discussed in the section 2.3, �s is small and a useful expansion parameter at

large Q2 since �s � (logQ2)�1. But �s of the second term is multiplied by logQ2,

which means that perturbative expansion is not applicable since �s logQ2 � 1. In

this form, Eq.(2.8) is not very useful. A good solution is to absorb the logarithmic

term into a modi�ed quark probability distribution. To this end, we may rewrite

Eq.(2.8) in the \parton-like" form

F2(x;Q2)

x
� X

i

e2i

Z 1

x

dy

y
(qi(y) + �qi(y;Q

2))�(1� x

y
)

=
X
i

e2i (qi(x) + �qi(x;Q
2)) (2.9)

where

�qi(x;Q
2) � �s

2�
log

Q2

�2

Z 1

x

dy

y
qi(y)Pqq(

x

y
): (2.10)

We can picture the above result as follows. At certain Q2, the photons see the

\point-like" quarks as shown in Fig. 2.6(b). If the quarks are noninteracting, no

further structure would be resolved as Q2 is increased and exact scaling would be

true. The scaling is represented in the �rst term of Eq.(2.9). However, the second

term, �qi(y;Q
2) of Eq.(2.9), shows a Q2 dependence of the structure function. As
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the resolving power Q2 increases photons start to see quarks surrounded by a cloud

of partons. Figure 2.6(c) and (d) represent a quark accompanied by a gluon and

two gluons, respectively. The number of resolved partons increases with Q2. But

those partons have a smaller momentum fraction of the proton. In other words the

larger the resolving power, the higher is the probability of �nding a quark at small

x and the less the chance of �nding one at high x since high-momentum quarks lose

momentum by radiating gluons.

The Q2 evolution of the quark densities is calculated by QCD through Eq.(2.10).

With the change in the parton density, �qi(y;Q2), and using � logQ2(= logQ2 �
log �2), the equation (2.10) can be written as follows;

d

d logQ2
qi(x;Q

2) =
�s
2�

Z 1

x

dy

y
qi(y;Q

2)Pqq(
x

y
): (2.11)

It is known as \Altarelli-Parisi evolution equation" [17]. The equation shows that a

quark with momentum fraction x (q(x;Q2) on the left-hand side) could have come

from a parent quark with a larger momentum fraction y (q(x;Q2) on the right-hand

side) which has radiated a gluon. This is an important consequence of QCD. Once

we know the parton density at some reference point q(x;Q2
0), we can calculate it for

any value of Q2 using Altarelli-Parisi(AP) evolution equations.

So far the interactions of Fig. 2.6(b) and (c) are included in the evolution equa-

tion. We should also include the process 
�g ! qq of Fig. 2.6(d). This represents

a gluon producing a quark-antiquark pair to which the photon then couples. If we

include it in the evolution of the quark density, the equation (2.11) becomes

dqi(x;Q
2)

d logQ2
=
�s
2�

Z 1

x

dy

y
(qi(y;Q

2)Pqq(
x

y
) + g(y;Q2)Pqg(

x

y
)): (2.12)

where Pqg(z) represents the probability that a gluon produces a qq pair such that

the quark has a fraction z of the gluon momentum. Equation (2.12) is the evolution

of the quark density.

Repeating the above argument for the gluon, we can calculate the gluon evolution
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equation,

dg(x;Q2)

d logQ2
=
�s
2�

Z 1

x

dy

y
(
X
i

qi(y;Q
2)Pgq(

x

y
) + g(y;Q2)Pgg(

x

y
)) (2.13)

where Pgq(z) represents the probability that a quark radiates a gluon such that the

gluon has a fraction z of the quark momentum, and Pgg(z) represents the probability

that a gluon radiates another gluon such that the radiated gluon has a fraction z of

parent gluon's momentum.

The evolution equation also shows the importance of the factorization theorem

in QCD. The right-hand sides of Eq.(2.12) and Eq.(2.13) are divided into two parts,

calculable and non-calculable. The AP equations Pij are calculable using perturba-

tive QCD. Non-calculable quantities, e.g. infrared divergence, can be included in

the initial parton density, q(x;Q2) which requires a measurement. To factorize the

evolution equation, we need to have a factorization scale �f which de�nes the sep-

aration of short-distance from long distance e�ects, as we discussed in section 2.4.

Usually for convenience, we choose �(renormalization scale) = �f = Q.

2.5.3 GLAP and BFKL evolution

So far, we have discussed only the Q2 evolution of the parton distribution. The

parton density also depends on the parton momentum fraction x and can also evolve

with x. The dominant role at small x is played by the gluon distribution, so �rst

we consider only the gluon density which can be written as follows:

xg(x;Q2) =
X
n

Cn(Q
2
0)�

n
s (L

n + an�1L
n�1:::a0)

= C0 +

C1�s(L+ a0) +

C2�
2
s(L

2 + a1L+ a0) +

C3�
3
s(L

3 + a2L
2 + a1L+ a0) + ::: (2.14)
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where L is the large logarithmic factor showing up in the evolution equation [19].

The value of L depends on the process and the kinematic regions, for example,

(a) L = logQ2 at Q2� Q2
0 but x � 1

(b) L = logQ2 log 1
x

at Q2� Q2
0 and x! 0

(c) L = log 1
x

at Q2 � Q2
0 and x! 0: (2.15)

The coe�cients Cn(Q2
0) contain non-perturbative information and depend on the

initial scale Q2
0 of the evolution. Although the strong coupling constant �s is small,

we can not ignore the higher order terms because �s � L is not necessarily small.

The �rst term of the right-handed side of Eq.(2.14) corresponds to the sum of

those terms which contain the maximal power of logarithm L at each order of the

perturbative expansion. If we consider only this leading term, it is called the Leading

Log Approximation (LLA).

Figure 2.7 summarizes the characteristics of each logarithm on the evolution

plane of the parton distribution of the proton. When the resolving power Q2 of the

probe increases at moderate x, it explores almost empty space or the asymptotic

region of the parton distributions since the partons carrying large momentum frac-

tion of the proton become rare. At small x with a moderate Q2, however, the probe

runs into crowded space of partons since the parton densities increase as x decreases.

But the parton densities with decreasing x can not increase inde�nitely due to the

limited space of the proton. At some stage of x the partons start overlapping and

the parton densities saturate as shown in Fig. 2.7. In case of small x and large

Q2 (see Eq.(2.15)(b)) both of large logarithms should be included in the parton

evolution and the Double Leading Log Approximation (DLLA) is necessary. Two

evolution equations, GLAP and BFKL, depending on the nature of the logarithms

are summarized in the following [19] [4].
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Gribov-Lipatov-Altarelli-Parisi evolution

The Gribov-Lipatov-Altarelli-Parisi (GLAP) equation describes the evolution of the

parton density due to collinear singularities; logQ2 (see Eq.(2.15)(a)). In sec-

tion 2.5.2, we have shown how to calculate the evolved parton densities with a

previous parton density. It is clearly shown from Eq.(2.12) that there is large logQ2

contribution. The GLAP equation resums those contributions in the parton cascades

by repeating the evolution of Eq.(2.12). The resummed evolution of the parton dis-

tribution is diagrammatically shown in Fig. 2.8(a) by repeating a single evolution

similar to Fig. 2.6(c) from an initial parton state at x0; Q0.

The characteristics of GLAP evolution are summarized in Table 2.1. The dom-

inant characteristic is the strong ordering in the transverse momenta of emitted

partons and no strong ordering in the parton momentum fraction x. Only with such

a condition does one get a logQ2 contribution for each integration over kit in the

parton cascade. This strong ordering means the GLAP evolution equation allows

us to calculate the probability to �nd a parton of transverse size rt � 1
Q
inside the

initial parton in the hadron at large x as shown in Fig. 2.7.

In the case where both Q2 and 1
x
are very large (see Eq.(2.15)(b)) the double

leading{log approximation (DLLA) is required, and the resummed solution for the

gluon density is given by

xg(x;Q2) � a0 exp
vuuutb0 log x0

x
log

log Q2

�2

log
Q2
0

�2

(2.16)

where Q0 and x0 are the initial scale of the parton cascade and a0(b0) are constants.

An example of GLAP evolution is shown in Fig. 2.9 using MRSD'� parton distri-

butions. At moderate x the densities decrease as Q2 increases. In other words at

small x the densities increase as Q2 increases.
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Figure 2.9: An example of GLAP evolution using MRSD'� structure function; uv

for up valence quark, usea for up sea quark, g for gluon as a function of momentum

fraction x.

Balitski-Fadin-Kuraev-Lipatov evolution

In another extreme regime of �xed Q2
0 and small x the behavior of the parton density

may change abruptly. Here we will have the large logarithm, L = log 1
x
, due to soft

gluon radiation. The number of partons increases drastically in the region of small

x because each parton in the branch of Fig.2.8(a) is allowed to decay into its own

chain of daughters. Its simpli�ed parton cascade process is shown in Fig.2.8(b).

The basic quantity in this approximation at small x is the unintegrated gluon

distribution f(x; k2) which is related to the conventional scale dependent gluon

distribution g(x;Q2) by [20]:

xg(x;Q2) =
Z Q2

0

dk2

k2
f(x; k2) (2.17)

In the LLA the unintegrated gluon distribution satis�es the following equation:

@f(x; k2)

@ log 1
x

=
3�s(k2)

�
k2
Z 1

k20

dk02

k02
[
f(x; k02)� f(x; k2)
j k02 � k2 j +

f(x; k2)p
4k04 + k4

] (2.18)
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GLAP BFKL

logQ2 log 1
x

x1 > x2::: > x2 > ::: > xn = x x1� x2:::� x2� :::� xn = x

Q2
0 � k21t:::� k2it � :::� Q2 no kt ordering

Table 2.1: Comparison of GLAP and BFKL evolution

which is called the Balitski-Fadin-Kuraev-Lipatov (BFKL) [4] equation. This equa-

tion resums the large leading log 1
x
contributions which arise from the sum of the

gluon emission diagrams of the type shown in Fig.2.8(b). The logarithm in the de-

nominator on the left-hand side indicates that the evolution is in log 1
x
, not logQ2.

This represents a strong ordering of the emitted gluons in x or rapidity, but with

comparable momenta. The characteristics of these two evolutions are summarized

in Table 2.1. The GLAP evolution related to large logarithms of Q2 shows a strong

ordering of emitted gluons in transverse momentum. On the other hand, the BFKL

evolution of log 1
x
shows a strong ordering of emitted gluons in x.

2.5.4 Application of the GLAP Evolution

For high energy processes the most relevant range of x values is given by x � Q=ps
where Q is a typical momentum scale and

p
s is the center-of-mass energy. At fu-

ture high energy colliders where
p
s will be still larger, many interesting physical

processes taking place at moderate values of Q, e.g. 5-50 GeV, will probe parton

distributions and interactions at very low values of x. In hadron-hadron interac-

tions the production of minijets (jets with moderate pt) is an example of such a

process [21]. In oder to make precise prediction for such processes, the behavior of

the parton distribution in this region must be understood.

To begin with it might be useful to perform a quantitative comparison between
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HERA data and pQCD predictions in the parton distributions. For clarity we con-

sider some of the next-to-leading order (NLO) parton density predictions that were

available before HERA began operation. These parton densities are calculated by

evolving an input distribution according to the GLAP equation at NLO. The input

parton densities at scale Q2
0 are �xed by �tting pre-HERA data [22]. Since pre-

HERA data represent only the high-x region (x > 10�2) the input gluon fg and

sea-quark distributions fsea are unconstrained for x smaller than 10�2, so the NLO

predictions di�er depending on the assumption of the input densities at small x.

GRV: The GRV parton distributions [23] are calculated by starting the evolu-

tion at very low input scale Q2
0 = 0:3 GeV2. At this scale the input distribution is

assumed to vanish as x ! 0: fg(x) � x2; fsea(x) � x0:7. Because of this \valence-

like" input, the steeper behavior at high Q2 as shown in Fig. 2.5 is entirely generated

by a very long Q2 evolution (started at small input scale).

MRS: The MRS [24] analysis used the input scale Q2
0 = 4 GeV2, much higher

than the one for GRV. They provided two representative sets of parton densities.

Set D'0 is obtained using 
at input density at small x, fg(x) � fsea(x) � const. Set

D'� is calculated using very steep input fg(x) � fsea(x) � x�0:5. The results are

shown in Fig. 2.5.

CTEQ: The CTEQ collaboration [25] also starts the perturbative evolution at

Q2
0 = 4 GeV2. CTEQ1MS, one of the sets they considered, has the the steepest in-

put densities, fg(x) � x�0:38log(1=x)0:09; fsea(x) � x�0:27 and the result is compared

with the others in Fig. 2.5.

The HERA data seem to be favored by the MRSD'� and GRV parton distributions.

In the case of the MRS and CTEQ parton distributions calculated by the NLO

Altarelli-Parisi perturbative evolution with the starting scale Q2
0 = 4 GeV2 the
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di�erences for F2 at small x are entirely due to the di�erent input densities. The

input density x�0:5 for MRSD'� was motivated by the BFKL formalism [22] [26]

although its evolution followed the AP equation.

Since HERA started operation in 1990, the data at 10�4 < x < 10�2 produced

new parton distribution functions(PDF's), e.g. CTEQ2M set, CTEQ3M set, MRSA

set [26, 27]. Furthermore the steep increase of F2 at small x � 10�2 caused much

debate as to whether it results from conventional GLAP evolution of the parton

density or whether it is from a new regime where the dynamics is described by the

BFKL evolution equation. As mentioned above the latter QCD evolution equation

is expected to be suitable for the study of the small x region since it resums all

leading log(1=x) terms in the perturbative expansion. As shown in Fig. 2.5 the

measured proton structure function F2 is well described by the GLAP evolution

equation. A hybrid �t using the BFKL equation for the evolution of the increasing

gluon density at small x and the GLAP equation elsewhere is also attempted and is

found to describe the data equally well [26, 28]. On the other hand one tries to get

the uni�ed evolution equation carrying both characteristics [29].

2.5.5 Application of the BFKL Evolution

Precision tests of perturbative QCD and searches for new physics within or be-

yond the standard model have been performed at hadron colliders. The recent

development of next-to-leading-order (NLO) predictions for high pt jet produc-

tion [30, 31, 32] is a milestone in the progress of pQCD, and compared favorable with

experimental data [1] [2] [33]. Along with these advances in pQCD at large pt scale,

the higher energy colliders such as the Fermilab Tevatron(p�p) and HERA(ep) opened

up a new era of pQCD including di�ractive physics [34], rapidity gap physics [35]

and small-x physics (hadron structure functions at small x) [22].

Many of attempts to understand these new processes are based on \Pomeron"

exchange [19] (The Pomeron was named after a Russian physicist Pomeranchuk who
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Proton

Antiproton

 Pomeron

(a)

2

(b) (c)

Figure 2.10: (a) Pomeron exchange in double di�ractive p�p scattering, (b) Feynman

Ladder diagram for colorless two gluon exchange, Pomeron, (c) Scattering amplitude

for t channel jet production. The scattering amplitude (c) is the same as (b).
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did pioneering work on the subjects). The concept of the Pomeron has been devel-

oped within the framework of Regge theory [36]. In the early 1960s, Regge theory

described the energy dependence of hadronic total cross sections. The total cross

section which �rst decreased with increasing center of mass energy
p
s started rising,

which requires the existence of a phenomenological objet, or Pomeron, mediating

elastic scattering [37]. As with mesons in the Regge trajectory [37] the Pomeron

has vacuum quantum numbers. This describes elastic or di�ractive scattering which

does not change the quantum numbers of the proton or antiproton. It is a colorless

object (color singlet). In several perturbative models [38, 4] the Pomeron is pictured

as a colorless two-gluon bound state shown in Fig. 2.10(a,b).

In the limit of large partonic center of mass energy
p
ŝ and �xed momentum

transfer Q, the scattering amplitude for rapidity gap production can be calculated

using a BFKL model [4] which resums the leading logarithms (log(ŝ=Q)) to all

orders in �s [39]. Since it is hard to observe the distinctive feature of the Pomeron

experimentally Mueller and Navelet proposed [21] measuring the two-jet inclusive

cross section as a function of the rapidity interval between two tagging jets. Since the

scattering amplitude of the dijet inclusive cross section contains the same Feynman

diagram of the Pomeron as described in Fig. 2.10 BFKL formalism can be applied

to Mueller and Navelet's dijet production. We shall discuss the phenomenology of

dijet production in detail.
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Chapter 3

Dijet Production

3.1 Kinematics

At hadron-hadron colliders, most commonly chosen coordinates are: rapidity y,

transverse momentum pt, and azimuthal angle �, since they satisfy simple transfor-

mation under the Lorentz boost. For example, the Lorentz Invariant Phase Space

(LIPS) is

dLIPS � d3p

E
=

dpxdpydpz
E

=
p2dpd�d(cos �)

E

=
ptdptdyd�

E
(3.1)

where (E; px; py; pz) is the 4-momentum of a particle. Rapidity is de�ned by

y � 1

2
loge

E + pz
E � pz : (3.2)

A boost along the z direction changes the rapidity y by

y! y + yboost (3.3)
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where yboost is a constant. Transverse momentum pt and azimuthal angle � are

invariant under longitudinal Lorentz boost. Therefore, the last equation of Eq.(3.1)

has a simple transformation under the boost.

In a detector which measures only energy it is often di�cult to determine the

true rapidity of a particle or a jet. So we de�ne the \pseudo-rapidity" � as the

rapidity of a particle or a jet with zero mass as follows.

� � 1

2
loge

1 + cos �

1� cos �
= � loge tan

�

2
(3.4)

Rapidity and pseudorapidity are almost equal to each other. So one can use � in

place of y for most calculations [40].

3.2 The de�nition of a Jet

When hard scattering does occur in hadron-hadron collision the �nal state is most

often characterized by collimated sprays of large pt hadrons or jets. At lowest order

a jet is a single parton, a quark or gluon, that is isolated in momentum space just

after scattering and its perturbative description is unambiguous since the partons

are well separated. However, the experimental situation is not as simple due to all

orders of emission and the remnants of the partons in the detector [41].

Figure 3.1 shows how partons, quarks or gluons, are associated with the �nal

state hadrons or the signals measured in a detector. A jet in a calorimeter is seen

as a localized peak of hadronic energy in a small group of adjacent calorimeter cells.

This calorimeter jet is expected to be matched with a parton originating from the

hard scattering. In reality, however, we are confronted with several ambiguities.

First, when one imagines a hard scattering having three partons in the �nal state

and two of the three partons are near each other the �nal state could be a two jet

event or a three jet event depending on the distance between the two partons and the

resolution of the detector. This ambiguity also appears in theoretical calculations

at O(�3s) when a parton is very soft or two partons are very near to each other.
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Figure 3.1: Evolution of a jet

Second, partons are connected by color strings and thus a single parton does not

evolve into an isolated jet of hadrons. That is, the fragmentation process involves

the collective action of several partons. Hence, except for large pt hadrons, there

can be no unique experimental de�nition of which hadrons are to be associated

with which jet. Therefore we could say that a jet is not well de�ned or a jet can

be de�ned in many di�erent ways which hinders the direct comparison of jet cross

sections in hadron collisions due to the di�erence in jet de�nition adopted by various

experiments [42].

At the 1990 Snowmass Workshop, a standardized jet de�nition was adopted

based on a cone de�nition of jets and speci�ed the main features of the algorithm [43].

In the de�nition we want to maintain the invariance appropriate for hadron collid-

ers under azimuthal rotations and longitudinal Lorentz boost. Thus particles are

described by their transverse momentum pt, azimuthal angles � and rapidities �.

The main feature of the cone de�nition is that a jet consists of particles (cells in a

calorimeter) whose momentum vectors lie in a cone in ��� space. The cone consists
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of a circle of radius R =
q
(��)2 + (��)2 and the standard radius is 0.7 which is

large enough to contain most of the energy of a jet. This de�nition is quite simple

and natural. However, when two jet cones overlap, a further speci�cation for the

merging and splitting of jets is to be required. This will be discussed later for the

D� jet de�nition.

3.3 Dijet production with BFKL

Perturbative QCD calculations of jet production rates in hadron-hadron collisions

involve several di�erent scales, �QCD, the center of mass energy
p
s, the center of

mass energy of the hard process
p
ŝ and the momentum transfer Q which is of the

order of the transverse momentum of jets in the hard scattering. The conventional

approach to these calculations is to work at �xed order in the coupling constant

�s, assuming that
p
s,
p
ŝ and Q are of comparable size, so that there are no large

logarithms involved. The results up to next-to-leading order (NLO) [31, 32] are

quite successful in the description of one or two jet inclusive distributions from

hadron-hadron colliders [33].

As the energy of hadron-hadron colliders (the Fermilab Tevatron or future hadron

colliders) increases, the detection of hard processes involving partons of small mo-

mentum fractions of their parent hadrons will be possible. There may then be some

kinematic regions where one cannot ignore the large ratio of these kinematic scales.

In the semi-hard region de�ned as �2
QCD � Q2 � s the calculation of jet cross

sections would be characterized by the large logarithms of the kinematic scales. Ifp
ŝ =
p
xAxBs is the center of mass energy of the hard process the large logarithm

in the semi-hard region can be written as follows.

log
s

Q2
= log

1

xA
+ log

ŝ

Q2
+ log

1

xB
: (3.5)

Following the factorization theorem the logarithms log 1
x
appear in the evolution of

the parton densities and log ŝ
Q2 parameterizes in the hard process �̂. Jet production

32



in the semi-hard region carries large logarithmic terms which must be resummed

either in the parton structure function or in the partonic cross section.

If no restrictions are made on
p
ŝ =
p
xAxBs jet or dijet production in the semi-

hard region can be represented as a convolution of the parton structure function

at small x and the hard process cross section. As mentioned in section 2.4 the

higher parton density at small x contributes to an increase of the cross section. In

this case it is rather di�cult to separate the hard process and the parton density

contribution to the cross section. Furthermore, if BFKL evolution is important the

parton structure function itself at small x requires more sophisticated analysis than

in the usual GLAP evolution. With the experimental uncertainty in the structure

function at small x it is not easy to make predictions in this kinematic region.

One way to minimize the complexity of the calculations is to restrict the kine-

matic range of the process. In the case of dijet production, if the transverse momenta

of the two tagging jets at the extremes of the rapidity interval are required to be

larger than some cuto� p?min the parton momentum fractions, xA; xB, are large

enough so that there are no large logarithm, log 1=x, in the evolution of the par-

ton distribution. Thus the parton densities evolve according to the usual GLAP

equation.

However, large logarithms (logQ2) still remain in the partonic cross section and

we need to resum them as we did for the evolution of the structure function. As it

will be shown in the next section this logarithm is the size of the rapidity interval. To

investigate the large logarithm e�ect Mueller and Navelet proposed [21] to measure

two-jet inclusive cross section and measure the growth of the cross section as the

rapidity interval between the tagging jets grows with the center of mass energy. To

deal with the large logarithms, they used the BFKL [4] theory which resums the

leading logarithms by using a multigluon amplitude with gluons uniformly �lling

the rapidity interval between the tagging jets as shown in Fig. 3.2. This study has

been extended by Stirling [44], Del Duca and Schmidt [45] independently.
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Figure 3.2: Multigluon amplitude a) at tree level b) with the virtual radiative cor-

rections, represented by the thicker gluon line.

3.3.1 Dijet inclusive cross section

We are now ready to calculate the dijet-inclusive process p�p! 2jets+X in the

semi-hard regime de�ned by ŝ � Q2. A typical momentum scale is Q2(� p1?p2?)

in the event. If we tag two jets with large rapidity interval �� = �1 � �2, we have
the following relations using x � (p?=

p
s)e�� at large rapidity, �.

�� = �1 � �2 � log
x1
p
s

p1?
+ log

x2
p
s

p2?

= log
x1x2s

p1?p2?

� log
ŝ

Q2
(3.6)

where Q2 � p1?p2? and ŝ = x1x2s. Other relevant parameters are the relative

azimuthal angle �� and the rapidity boost � = (�1 + �2)=2 of the two jets. In the
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semi-hard and large �� regime we can write the cross section at �xed x;

d�

dp21?dp
2
2?d��d��d�

=
X
ij

x1x2fi=A(x1; �
2)fj=B(x2; �

2)
d�̂ij

dp21?dp
2
2?d��

(3.7)

where fi(j) is the parton distribution function of 
avor i(j) = q; q and g inside the

initial hadron A(B). The partonic cross section d�̂ij
dp21?dp

2
2?d��

contains the information

about the hard scattering. and is separated from the parton distribution functions

by the factorization theorem.

Born Level Cross section

At the Born level, only two partonic jets are produced back-to-back and the cross

section is,

d�̂ij
dp21?dp

2
2?d��

! d�̂ij

dt̂
�(p21? � p22?)�(��� �) (3.8)

where

p? = p1? = p2?

�� = �1 � �2 (�1 > �2)

x1 =
p?e�1 + p?e��2p

s
=

2p?e�p
s

cosh(
��

2
)

x2 =
p?e��1 + p?e�2p

s
=

2p?e��p
s

cosh(
��

2
)

ŝ = x1x2s = 2p2?(1 + cosh(��))

t̂ = �p2?(1 + e���)

û = �p2?(1 + e��): (3.9)

The Mandelstam variables ŝ; t̂; û do not depend on the rapidity boost �. The lowest

order parton cross sections are well known and can be found in reference [46].
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Figure 3.3: Feynman diagrams for a) gg ! gg;O(�2s) b) gg ! ggg;O(�3s) c) gg !
gggg;O(�4s).

Born Level Cross section at Large ��

We shall now approximate the lowest order cross section for large ��. At large ��,

the lowest order amplitude is dominated by the gluon exchange, t-channel diagrams,

gg ! gg; qg! qg; qq! qq. Figure 3.3(a) shows the leading order gg ! gg process.

The hard cross section for gg ! gg is given by

d�̂gg

dt̂
=
�C2

A�
2
s

2p4?
(3.10)

with the Casimir operator CA = Nc = 3. Similarly we �nd

d�̂qq

dt̂
=
CF

CA

d�̂qg

dt̂
=
C2
F

C2
A

d�̂gg

dt̂
(3.11)

with the Casimir operator CF = 4=3. Thus it is possible to consider only gg ! gg

and put the other subprocesses into the e�ective parton distribution density[47],

feff (x; �
2) = G(x; �2) +

CF

CA

X
f

[Qf(x; �
2) +Qf(x; �

2)] (3.12)

where the sum is over quark 
avors. Then the cross section (3.7) can be rewritten

as follows.

d�

dp21?dp
2
2?d��d��d�

= x1x2feff (x1; �
2)feff (x2; �

2)
d�̂gg

dp21?dp
2
2?d��

(3.13)
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where only the gg ! gg process is factorized into the partonic cross section.

Minijet corrected cross section

Figure 3.2 shows a hard process with multiple parton emission. As mentioned above,

this process in the semihard region involves a large logarithmic term log ŝ=Q2. The

BFKL theory systematically resums the leading logarithmic term log ŝ=Q2 by using

multigluon amplitude where the rapidity interval between the tagging jets is �lled

with gluons, strongly ordered in rapidity. The approximate cross section is

d�̂gg
dp21?dp

2
2?d��

=
C2
A�

2
s

8p31?p
3
2?

eA��p
B���

e�
log2(p2

1?
=p2

2?
)

4B��

/ eA�� (3.14)

where A;B are constants. The exponential growth of the cross section with the

rapidity interval �� is due to the production of the minijets.

3.3.2 The Results

We examine the e�ect of soft gluon radiation between two tagging jets at the Teva-

tron with center of mass energy
p
s = 1:8 TeV. With a minimum transverse mo-

mentum the rapidity boost � is chosen to be zero, such that neither xi in Eq.(3.9)

can become small. We also name the leading jet in rapidity jet 1 and the last jet jet

2.

From Eq.(3.14) the exponential growth of partonic cross section as a function of

rapidity interval must be an observable signal for enhanced soft radiation between

the two jets. However, the minijet cross section does not show any great increase at

large rapidity since the cross section is a convolution of the partonic cross section

and the parton structure function. The parton structure function f(x; �2) decreases

as rapidity increases and confronts a cuto� since the parton momentum fraction
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pt1 φ1 η1
LO

pt2 φ2 η2

Higher Order
pt1 φ1 η1

pt2 φ2 η2

0 π 2π

0 0

0 π 2π

dN/d∆φ dN/d∆φ

∆η ∆η

1 1

<cos(π−∆φ)> <cos(π−∆φ)>

(  ∆η = η1  −   η2    ,   ∆φ =   φ1   −   φ2   )

Figure 3.4: A comparison between leading order and higher order e�ect in �� and

< cos(� ���) > distributions.
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Figure 3.5: From top to bottom, relative to the peak, the solid lines are the normal-

ized �� distributions at �� = 5, 6 and 7. (Here, � = ��)

x � (pmin
? =
p
s)e�� is a function of rapidity with �xed pmin

? and
p
s, and should be

less than one.

Thus, at the Tevatron energy we must look elsewhere for the e�ects of enhanced

radiation. As indicated in Eq.(3.8) the decrease of transverse momentum (pt) or

azimuthal angle (�) correlation as rapidity interval increases must be su�cient to

show the e�ect of enhanced radiation. Since the momentum resolution is not good

enough to study the transverse momentum correlation we have studied the azimuthal

angle correlation between the two jets with the largest rapidity separation.

As shown in Fig. 3.4 we expect the pt and � correlations between two jets decrease

as more jets are involved in a partonic subprocess. At LO two jets are back-to-back

in x�y plane and a sharp peak is expected at � in the number of events vs. �� plot.
At higher order, however, two jets are not in back-to-back correlation and a wide ��

distribution is expected. In order to express these correlation e�ects quantitatively

we have used cos(� � ��), and calculate its average as a function of ��. At LO

the average of cos(� ���) would be one. At higher order the average value would
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decrease as the number of jets in the partonic subprocess increases.

For example, Figure 3.5 shows the distribution of �� calculated by Del Duca and

Schmidt using BFKL resummation with �� = 0 and pmin
t = 20 GeV [45]. The solid

lines are the normalized �� distributions at �� = 5, 6 and 7. The decreasing peaks

represent the decrease of correlation between the two jets as the rapidity interval

increases.
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Chapter 4

The D� Detector

The D� detector was constructed to study proton-antiproton collisions at
p
s =

1.8 TeV in the Fermilab Tevatron collider [5]. Since the Tevatron collider provides

the highest beam energy in the world, the prime physics goal of the D� experiment

is new particle searches, e.g. the study of the high mass states and large pt physics.

These include the search for the top quark, precision tests of W and Z bosons to test

the standard model, perturbative QCD, production of b-quark hadrons and searches

for new phenomena beyond the standard model.

4.1 Detector Overview

The D� detector consists of three major sub-systems: the central detector, the

calorimeter and the muon system, as shown in Fig. 4.1. The detector design was

optimized to produce 1) excellent identi�cation and measurement of electrons and

muons, 2) good measurement of jets at large pt through �nely segmented calorimetry

with excellent energy resolution, 3) and a well-controlled measurement of missing

transverse energy ( E/T ) to identify neutrinos and other non-interacting particles. A

right-handed coordinate system is adopted with the z-axis along the proton direction

and the y-axis upward. The angles � and � are the azimuthal and polar angles (�=0
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Figure 4.1: The D� Detector
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Figure 4.2: The D� tracking system

along z-axis) respectively. The r-coordinate indicates the perpendicular distance

from the beam axis.

4.2 The Central Detector

The central detector (CD) is a non-magnetic tracking system and consists of the

vertex drift chamber (VTX), the transition radiation detector (TRD), the central

drift chamber(CDC) and two forward drift chambers (FDC) as shown in Fig. 4.2.

The VTX, TRD and CDC are concentric with the beam pipe and cover a large

angular region. The FDCs are oriented perpendicular to the beam axis. All central

detectors are located within the boundary, r=78 cm and z =�135 cm, which is

restricted by the inner radius of the calorimeter.

A momentum measurement of charged particles is not possible due to the ab-

sence of the magnetic �eld. Therefore, the prime considerations for tracking are

good two-track resolving power and high tracking e�ciency. Good ionization en-

43



ergy measurement is required in order to distinguish single electrons from converted

pairs. In order to obtain good z resolution in the large angle chambers, di�erent

measurement methods are used for each sub-system. They utilize charge division

(VTX), helical cathode pads (TRD) and delay lines (CDC) [48]. The tracking sys-

tem can determine the primary z-vertex to within 1 cm. The characteristics of each

sub-system are described below and summarized in Table 4.1.

The Vertex Detector

The VTX chamber is the innermost tracking detector which has an inner radius

of 3.7 cm and an outer active radius of 16.2 cm. It consists of three independent

concentric layers of cells mounted on carbon �ber tubes. The innermost layer has

16 cells in azimuth; the outer two layers have 32 cells. The sense wires provide

a measurement of the z-coordinate from readout at both ends. The electrostatic

properties of the cell are determined by the grounded planes of grid-wire, sense wire

planes and the cathode �eld wire planes. To obtain good spatial resolution and

track pair resolving power, a gas mixture of CO2(95%)-ethane(5%), at 1 atm with a

small admixture of H2O was chosen. Test beam results under normal D� operating

conditions showed good drift time-distance correlation with an average drift velocity

of 7.3 �m/ns at < E >�1 kV/cm [5].

The Transition Radiation Detector

The TRD is located between the VTX and the CDC, and provides independent

electron/pion separation in addition to that given by the calorimeter. Transition

radiation x-rays are produced when highly relativistic charged particles (
 > 103)

traverse boundaries between media with di�erent dielectric constants [49]. The en-

ergies of radiated x-rays depend on the mass of a charged particle since the velocities

of particles in media depend on its mass. The TRD consists of three separated units,

each containing a radiator and an x-ray detection chamber. The energy spectrum of
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VTX Sense wire resolution 60 �m

Charge division resolution 1 cm

Pair resolution 0.7 mm

TRD e/� discrimination

at 90% e�ciency 50:1

CDC Sense wire resolution 200 �m

Delay line resolution 2 mm

Pair resolution 2 mm

FDC Sense wire resolution 200 �m

Delay line resolution 4mm(�), 20mm(� module)

Pair resolution 2 mm

Table 4.1: Characteristics of the Central Detector

the x-rays, determined by the thickness of the radiator foils and the gaps between

the foils, peaks at 8 KeV and is mainly contained below 30 KeV. A two-stage propor-

tional wire chamber (PWC) is mounted just after the radiator for the detection of

x-rays. The x-rays convert mainly in the �rst stage of the chamber and the resulting

charge drifts radially outward to the sense wires. The average collected charges for

5 GeV electrons and pions in a test beam showed good separation between electrons

and pions as a function of arrival time [5].

The Central Drift Chamber

The CDC is located just after the TRD and just before the inner cylinder of the

calorimeter. It consists of four concentric layers of drift chambers and each layer has

32 azimuthal cells. Each cell contains seven sense wires with its readout on one end

and two delay lines with their readout on both ends. The delay lines propagate the
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signals induced from the nearest neighboring anode wire; the di�erence of the arrival

times at both ends provides the z-coordinate of the track. The CDC is operated with

Ar(92.5%)CH4(4%)CO2(3%) gas with 0.5% H2O. With a drift �eld of 620 V/cm,

the drift velocity is about 34 �m/ns.

The Forward Drift Chambers

The FDCs extend the tracking coverage out to j�dj � 3 (�d represents detector �,

calculated by drawing a ray from z =0). They are positioned at both ends of the

concentric barrels of the VTX, TRD and CDC as shown in Fig. 4.2. Each FDC

consists of three separate chambers, � module and two � modules, which provide

the � and �-coordinates depending on the directions of their sense wires. Resolutions

are listed in Table 4.1.

4.3 The Calorimeter

The D� calorimeter is a sampling calorimeter using liquid argon and depleted ura-

nium as active and passive materials, respectively. It consists of three cryostat

systems, a central calorimeter (CC) and two end-cap calorimeters (EC), as shown in

Fig. 4.3. Since there is no central magnetic �eld the D� calorimeter plays important

roles in the identi�cation of high pt objects, electrons, photons, jets and muons, and

providing the missing transverse energy using transverse energy balance in an event.

Each cryostat calorimeter consists of three distinct types of calorimeter modules:

an electromagnetic section (EM) with relatively thin uranium absorber plates, a �ne

hadronic section (FH) with thicker uranium plates and a coarse hadronic section

(CH) with thick copper (CC) or stainless plates (EC). These calorimeter modules

have Projective Tower Structure with Fine Segmentation, 0.1 � 0.1 in �� �
space, as shown in Fig. 4.4. There are 72 � 64 towers in � � � space which cover

the pseudorapidity region up to j�dj � 4:5. Only hadronic modules cover the region
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Figure 4.3: The D� Calorimeter

for 4:1 � j�dj � 4:5 due to the restricted space.

The transverse size of the cells, ����� = 0:1�0:1, was chosen to be comparable
to the transverse size of showers: � 1-2 cm for EM showers and � 10 cm for hadronic

showers. This �ne segmentation provides the opportunity to study the jet shape

since the typical transverse size of jets is much bigger. Longitudinal subdivisions

within EM, FH and CH are also useful since the longitudinal shower pro�les help

distinguish electrons and hadrons. These three types of calorimeter modules have

the following characteristics.

� Electromagnetic Section (EM): The EM section is the innermost structure

of the calorimeter and located just outside the tracking system. It consists of

nearly pure depleted uranium plates of 3-4 mm thickness. As shown in Fig. 4.5,

there are four separate layers with 2, 2, 7 and 10 radiation lengths (X0) in

thickness respectively. The �rst two layers provide the longitudinal shower

pro�le near the beginning of the showers in which photons and pions di�er
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Figure 4.4: A cross section of the calorimeter

statistically. The third layer has smaller transverse size, ����� = 0:05�0:05,
and spans the EM shower maximum region. This gives a better measure of an

EM shower centroid. The fourth layer (X0 = 10) is thick enough to contain

all the EM shower energy penetrating the �rst three layers.

� Fine Hadronic Section (FH): The FH section is located outside the EM

section and inside the CH section and has three or four longitudinal layers with

1.3, 1.0 and 0.9 interaction lengths (�I) in thickness as shown in Fig. 4.5. This

section is made of 6 mm thick uranium-niobium (2%) alloy, and the transverse

segmentation is 0:1 � 0:1 in �� � ��. The FH modules were designed to

contain most of the energy deposited by an hadronic shower.
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Figure 4.5: The layer structure of the D� calorimeter

� Coarse Hadronic Section (CH): The CH section has just one longitudinal

segment of either thick copper (CC) or stainless absorber plates (EC) with

0:1 � 0:1 segmentation. The thickness of the section is 3�4 �I depending on
the location of the incident particle. The modules contain hadronic shower

energy leaking from the EM and FH sections. The typical module resolutions

are listed in the table 4.2 [5].

4.3.1 Operation Principles

The D� calorimeter is a sampling calorimeter using depleted uranium as the passive

material (absorber) and liquid argon (LAr) as the active material. A typical unit

cell of the calorimeter consists of a uranium plate and a readout board submerged

in LAr as shown in Fig. 4.6. The readout board consists of two separate 0.5 mm

thick G-10 boards, one side of which is coated with a high resistivity epoxy. One of

the inner surfaces is bare G-10; the other inner surface is copper-coated. These two
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Figure 4.6: A typical unit cell of the calorimeter

G-10 boards were laminated with the resistance coats facing outward. An electric

�eld is formed by grounding the metal absorber plate and connecting the resistive

surfaces of the readout board to a positive high voltage (2.0-2.5 kV). Thus the

resistive surfaces act as an anode and the readout board operates as a capacitor.

When a high energy particle goes through dense material, e.g. uranium, a shower

of particles occurs via various electromagnetic and hadronic interactions. These par-

ticles ionize the active material, e.g. LAr, via electromagnetic interactions. These

ionized particles, e.g. electrons, drift to the anode under the in
uence of the electric

�eld and induce an image charge on the inner copper surface. This charge is routed

to external charge-sensitive preampli�ers and subsequently to baseline subtracters

(BLS) which are shaping and sampling hybrid circuits. The signal shaping is de-

scribed by a 430 ns integration time and a 33 �s di�erentiation time. The shaped

signal has a relatively broad maximum at around 2.2 �s. At the input to the BLS a

portion of the signal is extracted and added into trigger towers of ����� = 0:2�0:2
for early event selection (see sec. 4.5). The baseline and the peak (at 2.2 �s) of the
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signal are sampled in the circuit and their di�erence is sent to an analog-digital

converter (ADC), the output of which is brought to a computer. If signal values are

within a given range (�2�) of their pedestal values, their channels are suppressed
to reduce the quantity of the output data (zero suppression).

4.3.2 Massless Gap and InterCryostat Detectors

In order to improve particle detection in the gap between cryostats (0:8 <� j�dj <� 1:4),

intercryostat detectors (ICD) were built and mounted on the front surface of the

ECs as shown in Fig. 4.4. Each ICD consists of 384 scintillator tiles of size 0:1� 0:1
in � � �, exactly matching the liquid argon calorimeter cells. In addition, massless

gap (MG) detectors are installed in both CC and EC calorimeters as shown in

Fig. 4.4. Massless gap detectors consists of read-out cells in which the uranium is

replace by a G-10 board with resistive coating. The ICD and the MG provide a

good approximation to the standard D� sampling of EM showers.

4.3.3 Calorimeter Performance

The D� calorimeter has been tested and calibrated using test beams [50] and collider

data, such as Z ! e+e� samples. Electron and pion beams with energies between

2 and 150 GeV have been used to test various sections of the calorimeter. Test

beam studies include uniformity, linearity of response, energy resolution and position

resolution.

� Linearity: Calorimeter linearity and resolution tests have been performed on

the EM and IH (inner hadronic, see Fig. 4.5) sections of the end-cap calorime-

ter. The calorimeter response was linear to within 1% for electrons above �
10 GeV and charged pions above �20 GeV [51]. However, it is known that

the non-linear response of low energy particles invokes signi�cant e�ects on jet

energy resolution [52].
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Energy resolution - electromagnetic 15%/
p
E(GeV) + 0.3%

Energy resolution - hadronic 50%/
p
E(GeV) + 4%

Position resolution(EM) 2cm/
p
E(GeV)

Table 4.2: The performance of the D� calorimeter

� Uniformity: At low energies, where radiative process is not signi�cant, one

could use the muon (15 GeV/c) signal to study the uniformity of the calorime-

ter modules. The uniformity in depth has been studied by comparing the muon

signal on individual layers of ECEM and ECIH modules. Excellent uniformity

in the response, better than 1%, was obtained [50].

� Energy resolution: Energy resolution for electrons and pions was obtained

after subtraction of pedestals and corrections for gain variations. The results

were fully consistent with expectations and are listed in Table 4.2. It was

also found that the noise contribution was predominantly due to uranium

radioactivity. The jet resolution determined in simulation is approximately

85%/
p
E. This concurs with recent studies done with collider data [53].

� Position resolution: The calorimeter position resolution is important for

identi�cation of electron background from near-overlap of photons and charged

particles. With the EM section a position resolution of 2cm/
p
E was obtained

for electrons.

The resolution and linearity of a calorimeter is closely related to the ratio of

response of electrons and pions (e/�) [54]. For the D� calorimeter the e/� ratio falls

from about 1.11 at 10 GeV to about 1.04 at 150 GeV. The higher electromagnetic

response at low energy a�ects the jet energy resolution signi�cantly.
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4.4 The Muon System

The D� muon detection system consists of solid-iron toroidal magnets and three

layers of proportional drift tube chambers (PDTs). One layer of PDT chambers

inside the toroidal magnets has four drift planes. The other two layers have three

planes respectively and are located outside the magnet. The purpose of this sys-

tem is to identify muons produced in proton-antiproton collisions and to measure

their momenta using trajectories before and after they pass through the magnets.

The incident direction is determined from a combination of the primary interaction

point, the track matched in the CD and the �rst muon chamber track vectors. The

determination of the outgoing direction depends on the track vector from the outside

two PDT layers.

The muon system is divided into two sub-systems, wide angle muon chambers

(WAMUS) covering the central region (j�dj < 2:5) and small angle muon chambers

(SAMUS) with forward and backward coverage (2:5 < j�dj < 3:6). The toroidal

magnets are also separated into three parts: a central toroid covering the region

j�dj < 1:0, two end toroids for 1 < j�dj < 2:5 and two SAMUS toroids covering

2:5 < j�dj < 3:6. Since a muon must traverse the calorimeter and the thick toroidal

magnet, it requires a minimum momentum of 3.5GeV/c at � = 0 and 5GeV/c at

� = 2. The muon momentum resolution is �(1=p) = 0:18(p � 2)=p2 � 0:008 with p

in GeV/c.

4.5 The Trigger system

The D� trigger has three levels in order to select and record interesting physics

and calibration events. The Level 0 scintillation counters indicate the occurrence of

an inelastic collision. At a luminosity of L = 5 � 1030 cm�2s�1, the Level 0 rate is

about 150 kHz. The Level 1 trigger is a collection of hardware trigger elements using

signals from all sub-detectors. Most of the Level 1 hardware triggers operate within
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the 3.5 �s time interval between beam crossings and do not contribute deadtime.

Some of the Level 1 triggers require longer operation time and are referred as Level

1.5 triggers. The Level 1 trigger rate is around 200 Hz. After Level 1 (or 1.5),

the data are brought to a farm of microprocessors through the standard D� data

acquisition pathways. The farm of microprocessors, Level 2, reconstructs the data

and selects event to reduce the event rate to about 2 Hz. These trigger levels are

described below.

Level 0:

The Level 0 trigger utilizes the coincidence signal of two scintillation hodoscopes

which are located on the front surfaces (140 cm from the center of the detector)

of the end calorimeters. These hodoscopes have partial azimuthal coverage for 1.9

< j�dj < 4.3 and nearly full coverage for 2.3 < j�dj < 3.9. The rapidity coverage was

determined by requiring that a coincidence of both scintillation hodoscopes should be

� 99% e�cient in detecting non-di�ractive inelastic collisions. In addition, the Level

0 provides the z-coordinate of the primary collision vertex and serves as a luminosity

monitoring device. The z-coordinate is determined from the di�erence in the arrival

time for the particles hitting the two hodoscopes. A cut on the z-coordinate of the

primary vertex (jzj � 10:5cm) is applied to all the jet event triggers except the

highest Et trigger. In the case of multiple interactions the Level 0 time di�erence

is ambiguous and is used to set a 
ag identifying these events. Level 0 is also used

to veto events which happen to have beam coincidentally in the Main-Ring passing

through the D� coarse hadronic calorimeter.

Level 1 for Jet Trigger:

The Level 1 calorimeter trigger is used to tag jets in events. Each trigger tower sums

all the energy deposited in ��� = 0:2�0:2. The trigger coverage is j�dj � 3:2. The

number of trigger towers which have transverse momenta above a speci�ed threshold
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is used to de�ne di�erent sets of the jet triggers as listed in Table 4.3.

Level 2 for Jet Trigger:

The Level 2 trigger is also called a Level 2 �lter since it does software selection.

It performs a fast event reconstruction of the calorimeter region adjacent to the

Level 1 trigger towers (Et > 3GeV) using a cone algorithm with a radius R =p
��2 +��2 = 0:7 to �nd jets. Like the Level 1, the minimum number of jets above

a certain Et threshold de�nes several sets of the �lters as shown in the table 4.3.

The whole operation takes about 200 ms.

Trigger Name Level 0 Level 1 Level 2

JET MIN L�(10.5) JT(1,3) L2JT(1,20)

JET LOW L�(10.5) JT(1,7) L2JT(1,30)

JET MEDIUM L�(10.5) JT(2,7) L2JT(1,50)

JET HIGH L�(10.5) JT(3,7) L2JT(1,85)

JET MAX JT(4,5) L2JT(1,118)

Table 4.3: The jet triggers. The z-vertex position is given in cm and Et thresholds

in GeV. The z-vertex is not always applied to JET HIGH. JT(n,Et) means that

at least n trigger towers had transverse momentum greater than the minimum Et.

L2JT(n,Et) is for jets, not for trigger tower, and means that at least n jets had

transverse momentum greater than Et.
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Chapter 5

Jet Reconstruction

A quark or gluon produced in a hard scattering is characterized by a collimated

spray of large pt hadrons or a jet. Such a jet in the D� calorimeter is identi�ed

as a localized peak of hadronic energy in a group of adjacent calorimeter cells or

towers. The D� experiment has adopted a cone algorithm to reconstruct jets from

the calorimeter cells [55]. In this Chapter we shall discuss the jet algorithm, energy

correction, energy and position resolutions.

5.1 D� Cone Algorithm

The D� experiment has developed a �xed cone algorithm for the jet reconstruc-

tion which is similar to the Snowmass jet algorithm mentioned in section 3.2. If

the energy Ei in each calorimeter cell i is the energy of a \massless" particle the

momentum vector of a calorimeter cell is given by,

~Ei = n̂Ei (5.1)

where ~Ei � ~Pi and n̂ is a unit vector pointing from the primary interaction vertex to

the geometrical center of each cell i. The primary interaction vertex is determined

by using the tracks reconstructed in the central tracking system, CDC or FDC, with
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resolution around 1-2 cm in z for typical high-pt events [56]. The momentum of a

projective tower k is de�ned as a vector sum of the momenta of all cells in the tower:

~Ek =
all cellsX

i

~Ek
i : (5.2)

The energy, transverse momentum and position of a tower are de�ned as follows.

Ek =
all cellsX

i

Ek
i

Ek
T =

q
(Ek

x)
2 + (Ek

y )
2

�k = tan�1
Ek
y

Ek
x

�k = cos�1
Ek
zq

(Ek
x)

2 + (Ek
y )

2 + (Ek
z )

2

�k = � log(tan(�
k

2
)): (5.3)

The D� jet reconstruction starts from the above projective tower quantities. In

the �xed cone algorithm a jet consists of towers in the calorimeter with momentum

vectors located in a cone of radius R =
q
(��)2 + (��)2.

The D� jet algorithm can be divided into three distinct steps:

� Preclustering : First, towers with ET � 1 GeV are selected and registered as

seed towers in descending order of ET . The highest ET tower is singled out as

the �rst precluster seed. The �rst precluster is formed by adding neighboring

towers (ET � 1) within a square of �0:3 in � � � space to the seed tower.

The towers included in the precluster are removed from the seed list and the

highest ET tower among the rest of the towers is used as the next seed for the

next precluster. This preclustering is repeated until all towers with ET � 1

GeV are assigned to a precluster.

� Cone Clustering : Cone clustering begins with the above preclusters. The

ET weighted centroid (�0; �0) of a precluster is calculated and considered as
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the center of a jet. This jet is formed with all towers located within a cone of

radius R =
q
(� � �0)2 + (�� �0)2 = 0:7. The centroid of the jet is reassigned

using the ET weighted method as follows:

�jet =

Ptowers
i �iET iPtowers
i ET i

�jet =

Ptowers
i �iET iPtowers
i ET i

(5.4)

This process is iterated until the new centroid (�jet; �jet) is within the distance

of 0.0001 in � � � space from the previous jet centroid. Once the centroid

stabilizes the transverse momentum and position of the jet are recalculated

using the D� algorithm:

�jet = cos�1
Ezq

(Ex)2 + (Ey)2 + (Ez)2

�jet = � log(tan(�jet
2
))

�jet = tan�1
Ey

Ex
(5.5)

where

Ej =
towersX

i

Eji for j = x; y; z

The energy (transverse energy) of the jet is de�ned as the scalar sum of the

energy (transverse energy) of each tower within the jet cone.

Ejet =
towersX

i

Ei

ETjet =
towersX

i

ET i (5.6)

If the transverse energy ET of this reconstructed jet is greater than 8 GeV the

jet is retained for further consideration. This cone clustering process moves

on to the next precluster and is repeated for all preclusters.
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� Splitting=Merging : The reconstructed jet cones can overlap and share

some part of their energy. In this case one needs to de�ne a criterion to split

or merge those overlapping jets. If the shared ET is more than 50% of the jet

with the smaller ET the jets are merged into a new jet. On the other hand

if the shared ET fraction is less than 50% the jets are split by assigning each

shared cell to the jet whose center is nearest that cell. In either case, E;ET

and positions of those jets are recalculated using Eqs.(5.5) and (5.6). This

procedure is repeated until there are no overlapping jets.

5.2 Jet Energy Scale Correction

As previously mentioned jets appear as localized peaks of hadronic energy in a

group of adjacent calorimeter cells or towers. In order to reconstruct the correct jet

energies one needs to consider several factors contributing to jet energy response:

non-uniformity and non-linear response of the calorimeter, noise due to the radioac-

tivity of uranium, zero suppression and energy from the underlying events which are

the interactions of the spectator partons in p�p collisions.

For a 50 GeV jet, approximately 67% of the total jet energy comes from particles

with energies below 5 GeV [57]. According to test beam results the response of the

calorimeter to these low energy particles, electrons or pions, is lower than that

predicted from the response to higher energy particles [57]. Thus the abundance of

low energy hadrons in a jet becomes a dominate barrier to the accuracy of the jet

energy scale correction.

A jet consists of the calorimeter towers inside a cone of R =
q
(��)2 + (��)2 =

0:7 and the measured jet energy Ecal is the sum of the observed energy in those

towers. The true energy, Etrue, of the jet is the sum of the energy of all particles

within the same cone assuming no instrumental losses. The relation between the
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measured energy and the true energy of a jet is,

Ecal = EtrueRhad(E; �)[1 + C(E; �)] + U +N (5.7)

where Rhad is the overall hadronic response of the calorimeter which depends on the

energy and pseudorapidity of a jet, C is an algorithm correction for the losses, partic-

ularly unclustered energy, caused by the broad showering of jets in the calorimeter.

The last two terms represent corrections for the underlying events, noise, and zero

suppression.

� EM energy scale

The response of the EM calorimeter to electrons or photons is relatively stable

compared to the response to hadrons. The EM sections of the calorimeter are

calibrated using the invariant mass peak of Z! ee production and the central

Z mass (MZ) from LEP experiments[58]. By requiring both electrons to be

in a single calorimeter cryostat the absolute EM scale for each cryostat was

obtained. Also low mass resonances (�0! 

; J= ! ee) were used to check

the EM scale at di�erent energies[59].

� Central Jet Energy Scale
We have used direct photon events to calibrate jet energy in the central region

(j�j < 0:7) with the the missing transverse energy projection fraction (MPF)

method introduced by the CDF collaboration[60]. At leading order a direct

photon event includes a jet balanced in ET . After the EM energy scale cor-

rection any missing ET in this event is assumed due to the mismeasurement

of jet ET in the detector. The photon and the jet are required to be in the

central region j�j < 0:7 and the MPF is de�ned as follows,

MPF = �
~E/T � n̂

E

T

(5.8)
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where ~E/T is the missing transverse momentum vector, E

T is the transverse

momentum of the photon and n̂
 is a unit vector in the direction of the photon.

The missing transverse momentum E/T is de�ned as

E/T =
q
E/x 2 + E/y 2 (5.9)

where

E/x =
all cellsX

i

Ei sin �i cos �i

E/y =
all cellsX

i

Ei sin �i sin �i

(5.10)

The sum is over all calorimeter cells. The MPF re
ects the amount of missing

transverse momentum due to mismeasurement of the jet ET in the calorimeter.

The ratio of the hadronic response to the EM response Rhad is de�ned as

Rhad(Ejet) = 1 +MPF (5.11)

where Ejet = E

T cosh �jet is equal to the true jet energy in a 2 ! 2 process.

The correction scale to a jet is calculated by the average of the measured jet

energy for each E

T cosh �jet bin.

The MPF method assumes that the missing transverse energy in the direction

opposite the photon is due to a mismeasurement of the jet transverse energy.

However there are many factors which produce the missing transverse momen-

tum. For example if there are other jets unreconstructed due to their low ET

or 
uctuations in the sampling calorimeter the MPF method will be biased.

In order to minimize the bias events with a back-to-back topology only in �

are used.
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� Forward Jet Energy Scale

Due to the shortage of the statistics of direct photon events in the forward

region we can not apply the above method for forward jet calibration. Thus

for the calibration of forward jets we have used dijet events which have at least

one central jet (j�j < 0:7) satisfying the trigger conditions. The other jet, the

probe jet, is allowed to be at any place in the calorimeter. Since the central

jets are calibrated the trigger jet takes the place of the photon in the Eq.(5.8).

MPF = �
~E/T � n̂trigger
Etrigger
T

(5.12)

One can get the energy scale as a function of the pseudorapidity of the probing

jets using Eq.(5.12)

� Algorithm Correction

Due to the out-of-cone showering in the calorimeter the algorithm correction

is necessary to compensate for the loss caused by the �nite cone size. Central

jets (j�j < 0:7) are generated with the HERWIG Monte Carlo at various ener-

gies. The calorimeter response to the Monte Carlo generated jets is simulated

substituting the test beam data of electrons and pions for the hadrons and

photons in the Monte Carlo jets. The shower pro�le of the test beam was

used to mimic showered jets in the calorimeter cells. By applying the cone

algorithm for the unshowered jets and the showered jets, the loss due to the

out-of-cone showering was extracted.

� Underlying Events and Noise

The energy of jets reconstructed by the cone algorithm includes the energy

from the underlying event (spectator interactions) and uranium noise. These

external contributions to the jet energy are determined from events selected by

a minimum bias trigger. The minimum bias trigger in the D� experiment re-

quires only the coincidence of the forward and backward hodoscopes. The ET
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distribution of minimum bias events is expected to be 
at in pseudorapidity[40]

and can be extracted using the di�erences between single and double interac-

tion events among minimum bias events. We expect that double interaction

events have twice the contribution from underlying events as do single inter-

action events.

Since the D� calorimeter has almost a constant number of channels per pseu-

dorapidity interval, the energy contribution from uranium noise is also ex-

pected to be a fairly constant as a function of pseudorapidity and the same for

single or multiple interaction events. This implies that its ET distribution falls

o� as a function of sin �. The transverse momentum density from minimum

bias events is then parameterized as follow.

U +N = 0:6 + 1:2 sin � (GeV=rad=�) (5.13)

We can here presume that 0.6 GeV/rad/� is from the underlying events and

1:2 sin � GeV/rad/� from uranium noise.

With the MPF methods the overall hadronic response Rhad was obtained. The

algorithm correction C was calculated using HERWIG Monte Carlo and test beam

data and the contribution from the underlying events and noise was obtained using

minimum bias events. The �nal correction factors Etrue=Ecal are shown in Fig. 5.1.

The hadronic response is 
at above 60 GeV. The energy scale curve below 20 GeV

decreases sharply because of the reconstruction threshold of 8 GeV and the at least

one jet requirement in the MPF method. Low ET jets occasionally 
uctuate to

higher ET to satisfy those cuts and hence the bins near the 8 GeV threshold tend

to be biased. The second plot of Fig. 5.1 shows a slight increase in the energy

scale since the forward region consists of much smaller towers in physical size which

enhance the out-of-cone showering e�ect, an algorithm dependent losses.
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Figure 5.1: Jet Energy Scale Correction Version 4.2: The top plot shows the jet

energy scale as a function of jet ET at � = 0:0, and the bottom at � = 2:0. The

dotted and dashed lines represent �1� uncertainty.
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5.3 Energy Resolution

The abundance of low energy hadrons in a jet dominates the jet resolution as

well as the jet response. The jet energy scale correction is performed for the average

response of a jet. As shown in Fig. 5.1 a jet of 100 GeV in the central region needs

around 20% correction on average. The energy resolution study has been performed

after the jet energy scale correction.

The determination of jet energy resolution is based on the momentum conser-

vation in the transverse plane between the leading two jets in a event. Thus, the

events are selected very carefully to minimize the e�ect of additional low ET jets

and contamination of the sample [53]. The following cuts are applied to select clean

dijet events.

� The z-coordinate of the vertex must be within �100cm of the center of the

detector.

� The two leading jets must have ET > 15GeV and be back{to{back in � within

250. If there are other jets in the events they should have ET < 10GeV.

� All the jets must satisfy the jet quality cuts [61].

� The two leading jets must be in the same � region so that their resolutions are

approximately equal. In addition, the jet pseudorapidity is corrected for a jet

reconstruction bias which will be discussed in the next section.

Jet energy resolution is determined by using the dijet asymmetry variable A,

de�ned as:

A � ET1 �ET2

ET1 + ET2

(5.14)
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where ET1 and ET2 are the transverse energies of the two leading jets. The variance

of the asymmetry A is

�2A =

 ����� @A@ET1

������ET1

!2

+

 ����� @A@ET2

������ET2

!2

(5.15)

Assuming ET1 � ET2 � ET and �ET1
� �ET2

� �ET
the jet energy resolution can be

written as: �
�ET

ET

�
=
p
2�A (5.16)

With the energy corrected jets the jet energy resolution have been calculated as a

function of the average ET of the two leading jets for �ve di�erent regions of pseudo-

rapidity: j�j < 0:5; 0:5 < j�j < 1:0; 1:0 < j�j < 1:5; 1:5 < j�j < 2:0; 2:0 < j�j < 3:0:

Since the resolution uncertainty due to angular smearing is almost negligible we can

assume �ET
=ET = �E=E. The results, shown in Fig. 5.2, are �t to the following

function:

�
�E
E

�2
=
�
N

E

�2
+

 
Sp
E

!2

+ C2 (5.17)

The �t parameters are listed in Table 5.1.

In case of a single particle the three coe�cients in the above equation have

the following meaning: the �rst term N represents the contribution from uranium

noise. This contribution is independent of the particle energy E and dominates at

low energy. The sampling term S depends on the number of electrons or photons in

a shower process and is the most important term in the resolution parameterization.

The constant term C represents contributions from calibration uncertainties, non-

linear and non-uniform response, and leakage out of the calorimeter. This term is

proportional to the energy E of the incident particle and dominates at high energy.

Since a jet consists of many particles at di�erent energies the above interpretation

for a single particle may not be appropriate for jet energy resolution. If we presume,
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Figure 5.2: Jet Energy Resolution as a function of Scale Corrected Jet ET in all �

regions for R = 0.7 cone jets.
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� Noise Term Sampling Term Constant Term

Region (N) (S) (C)

j�j < 0.5 5.97 � 0.12 0.80 � 0.02 0.00 � 0.01

0.5 < j�j < 1.0 6.61� 0.19 0.68 � 0.06 0.00 � 0.01

1.0 < j�j < 1.5 1.83� 2.34 1.14 � 0.13 0.05 � 0.01

1.5 < j�j < 2.0 7.17� 0.35 0.56 � 0.12 0.09 � 0.04

2.0 < j�j < 3.0 6.09� 0.23 0.71 � 0.06 0.00 � 0.07

Table 5.1: Jet energy resolution as a function of pseudorapidity interval.

however, that the sampling 
uctuation from low energy particles dominates, the

above data show � 80% of the jet energy resolution. As we expected, this is higher

than a single pion resolution, � 50%.

5.4 Position Bias Corrections and Position Reso-

lution

Any bias in jet position determination is expected to depend on the jet shape

which is strongly related to hadronization and showering in the calorimeter [62]. We

have used the parton shower Monte Carlo HERWIG 4.6 [63] to model the hadroniza-

tion, and D� GEANT [64], the full D� detector simulator, to simulate the interac-

tions and showering of particles in the calorimeter. This process provides jets with a

realistic shape[65]. Jets at the parton and particle level (PJET) were reconstructed

using a package called PJETS [66] with a cone of radius R(=
p
��2 +��2) = 0:7

and a minimum transverse energy of Emin
T = 10GeV. PJETS mimics the real jet re-

construction except that it uses parton or particle energies rather than calorimeter
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tower energies to compute the fair momenta of the reconstructed jets. We perform

only one iteration and no splitting=merging for PJETS. Jets at the calorimeter level

(CAJET) are reconstructed using the D� standard reconstruction algorithm with

a cone of radius R = 0:7 and Emin
T = 8GeV. QCD 2 ! 2 parton event samples are

generated at the vertex position z = 0, so the detector pseudorapidity �d is the same

as the physics �. Assuming perfect position resolution � of a jet would be:

�partond = �recod + �(Ereco
jet ; �

reco
d ) (5.18)

where �recod is the reconstructed calorimeter jet � and � is the bias which may be

extracted from Monte Carlo. �(Ereco
jet ; �

reco
d ) is the average of �partond � �recod where

a matching condition is used to associate parton jets with reconstructed jets. The

two jets are matched if a single reconstructed jet is within a cone of 0.7 around a

parton jet. If there are two jets in the cone the matching cone size is reduced to

0.5. If there is only one reconstructed jet in that reduced cone the jets are matched.

If there are still two jets, the reconstructed jet with ET closest to the parton jet

ET is selected. If no jet is found in the cone there is no matching. Only isolated

calorimeter jets are used by requiring the merge=split 
ag to be zero. If any of the

calorimeter jets in an event is merged or split the event is skipped. In other words

only simple jets are used to avoid any bias due to merged or split jets.

5.4.1 � Bias

The physical tower size in the calorimeter is a function of pseudorapidity. Since

the central calorimeter towers are physically larger than their forward counterparts

more energy may be deposited in jet towers at smaller � than at high �. Since the

transverse momentum and pseudorapidity of each tower are used to calculate the

centroid of a jet it is natural that the center of the jet shifts toward the smaller

�. In other words, the pseudorapidity dependence of the physical calorimeter tower
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Figure 5.3: HERWIG Monte Carlo simulation of the � bias for all jet energies(GeV)

as a function of �recod .

size together with the jet algorithm are mainly responsible for a tendency to shift

the reconstructed jet � toward the central region. The average of �partond � �recod as

a function of �recod for all energies is shown in Fig. 5.3. Figure 5.4 shows the same

quantity in various energy bins. The bias in j�dj 2 [1.0,1.6] might be due to lower

energy response in the IC region. The increase in the bias for j�dj > 2.0 might be

due to the rapidly increasing physical size ratio between two neighboring towers as

a function of �. More energetic jets have less bias. This may be due to the fact that

higher energy jets are collimated and central.

The � bias between a parton jet and the matching particle jet was extracted in the

same way and is shown in Fig. 5.5. Since there is no detector showering simulation

this represents only the e�ects due to the D� jet reconstruction algorithm involved

in particle jet reconstruction. As one may notice there is a little bias due to the

particle spread during the hadronization. There is no IC region bump as we saw in
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the detector simulation.

5.4.2 � bias correction

We have used the methodology of reference [67] to determine the correction function

for the � bias. Since the bias appears to be symmetric in � the bias from the

negative side was projected onto the positive side with a reversed sign to minimize

the statistical uncertainty. The sample was divided into 6 energy bins as shown in

Fig. 5.4. A third degree polynomial was used to �t the range j�dj 2 [0.,1.8] for each

histogram. A quadratic function was used for the range j�dj 2 [1.8,3.0] and a third

degree polynomial for the region j�dj > 2.4. The parameterization functions are as

follows.

�(Ereco
jet ; �

reco
d ) = A+Bx+ Cx2 +Dx3 for j�dj 2 [0:1; 1:8] (5.19)

= A+Bx+ Cx2 for j�dj 2 [1:8; 3:0] (5.20)

= A+Bx+ Cx2 +Dx3 for j�dj > 2:4 (5.21)

A;B;C and D are the coe�cients for the parameterization. They are shown in

Table 5.2, 5.3 and 5.4. The overlap between j�dj 2 [1.8,3.0] and j�dj > 2.4 was used

to guarantee the continuity of the parameterization. To cross check the correction

parameterization we have applied this correction to the reconstructed jets. Solid

crosses in Fig. 5.4 show the bias before the correction whereas the dashed crosses

indicate the bias after the correction. No distinct � bias has been observed after the

correction was applied.

5.4.3 � Bias

An azimuthal angle bias study was conducted in the same way as in the � study.

There is no reason to expect a bias in the azimuthal angle since the calorimeter

tower structure is symmetric in �. The average of �parton� �reco as a function of �d
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Figure 5.4: HERWIG Monte Carlo simulation of the � bias. < �(Ereco
jet ; �

reco
d ) >

before the correction are plotted as solid crosses. The dotted crosses represent the

bias after the correction.
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Figure 5.5: HERWIG Monte Carlo simulation of the � bias between parton jets and

particle jets as a function of �particled and energies (GeV)
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as shown in Fig. 5.6 indicates the overall shift toward negative < �parton � �reco >
for both positive and negative �d and that the size of the shift is on the order of

-0.01 radian. This distinct bias was not seen between a parton and the matching

particle jet. Any bias introduced by this e�ect will be small for the physics analysis

because all jets are systematically shifted in the same direction. For example, the

relative angle between 2 jets will be useful for the physics analysis rather than the

� position itself of a jet. Therefore any �� correction is assumed to be zero.

5.4.4 Position Resolution

Once the bias is parameterized the �d of the calorimeter jet can be corrected to the

initial parton jet �d value. Although the average of �
parton
d � �recod is zero, the overall

distribution follows a gaussian distribution due to the �nite calorimeter position

resolution. The variance ��(E
parton
jet ; �) of the gaussian distribution was taken as the

jet � resolution. The data was binned with energy boundaries at 20, 40, 70, 100,

200, 300 and 400 GeV. In Figs. 5.7 and 5.8 we plot the � and � resolutions as a

function of the average energy in each bin. As can be seen the nominal resolution

varies from 0.01 to 0.05. The quantity ��(E
parton
jet ; �) was obtained in seven � bins

and was parameterized as a function of jet energy as follows.

��(E; �) = A+
B

E
+
C

E2
(5.22)

The same method is applied to the � resolution study. The parameterization coef-

�cients are listed in Table 5.5 and 5.6 for � and �.

5.5 Reconstruction E�ciency

Although a jet may form an energy cluster in the calorimeter the D� jet algorithm

may not reconstruct the jet. This may happen to broadly distributed and low ET

jets which do not deposit large amounts of energy in a single calorimeter towers.
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Figure 5.6: HERWIG Monte Carlo simulation of the � bias between parton jets and

calorimeter jets as a function of �recod and energies (GeV).
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20-40(GeV) 40-70 70-100 100-200 200-300 300-500

A 0.00300 0.00161 0.000469 0.00065 -0.000952 -0.000939

B -0.0214 -0.00109 -0.00356 0.00737 0.00685 0.0162

C 0.0791 0.0426 0.0385 0.00953 0.0101 -0.00858

D -0.0359 -0.0224 -0.0205 -0.00722 -0.00765 0.000533

Table 5.2: � bias parameterization for j�dj 2 [0.1,1.8].

20-40(GeV) 40-70 70-100 100-200 200-300 300-500

A -0.0591 -0.0717 0.0464 0.00553 0.0123 0.00592

B 0.0436 0.0470 -0.0770 -0.0257 -0.0266 -0.0188

C 0. 0. 0.0295 0.0141 0.0117 0.00888

Table 5.3: � bias parameterization for j�dj 2 [1.8,3.0].

20-40(GeV) 40-70 70-100 100-200 200-300 300-500

A 0.0 0.0 -1.09 -0.770 -1.89 -1.04

B 0.0 0.0 1.15 0.760 1.86 1.02

C 0.0 0.0 -0.398 -0.244 -0.605 -0.333

D 0.0 0.0 0.0473 0.0272 0.0662 0.0369

Table 5.4: � bias parameterization for j�dj > 2.4.
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Figure 5.7: The � resolution from a HERWIG Monte Carlo simulation.

Figure 5.8: The � resolution from a HERWIG Monte Carlo simulation.
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� A B C

0.0-0.5 0.006663 0.7727 2.130

0.5-1.0 0.005418 1.164 1.230

1.0-1.5 0.005667 1.826 -5.847

1.5-2.0 0.003866 2.693 -13.84

2.0-2.5 0.0004306 5.578 -116.2

2.5-3.0 0.004273 8.637 -328.4

3.0-3.5 -0.01897 19.64 -1241.

Table 5.5: Parameterization of the jet � resolution.

� A B C

0.0-0.5 0.007554 0.5897 3.452

0.5-1.0 0.007105 0.8484 5.042

1.0-1.5 0.005567 1.836 -10.80

1.5-2.0 0.006334 2.296 -15.85

2.0-2.5 0.003316 4.787 -101.4

2.5-3.0 -0.001437 8.534 -346.7

3.0- -0.01897 26.59 -2301.

Table 5.6: Parameterization of the jet � resolution.
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Figure 5.9: Jet reconstruction e�ciency as a function of parton jet ET using HER-

WIG4.6 and D� GEANT.

Additionally reconstructed jets are not considered in the D� jet algorithm if the

reconstructed ET is less than a threshold, 8 GeV. Since the reconstruction e�ciency

for the forward � region is important for this analysis the HERWIG 5.8 Monte Carlo

sample generated for the forward jet statistics was used.

For the purpose of studying the reconstruction e�ciency the matching method

in the previous section was utilized with the matching cone size R=0.7. In other

words, a parton jet (PJET) was de�ned to be reconstructed if a calorimeter jet was

found within a cone of 0.7 around the parton jet.

The e�ciency of the jet algorithm is around 95% at 20 GeV and almost 100% at

30 GeV as shown in Fig. 5.9. Other studies using the ISAJET Monte Carlo[57] and

data-based analyses[68] showed slightly better e�ciency but were consistent with

this result. The reconstruction e�ciency as a function of pseudorapidity was also

obtained for two transverse momentum ranges, ET > 20 GeV and 15 GeV < ET <
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25 GeV. As shown in Fig. 5.10 the e�ciency is almost constant over all � and �
99% for ET > 20 GeV and � 95% for 15 GeV < ET < 25 GeV.

Since splitting=merging was not applied in shaping parton jets (PJETs) we stud-

ied the reconstruction e�ciency with the selected Monte Carlo events required to

have no split or merged CAJETs. These requirements provided somewhat isolated

PJETs and CAJETs which are immune to the bias from the PJETS algorithm and

the splitting=merging between the overlapping jets. These results were consistent

with the above results to within a few percent.

5.6 Trigger E�ciency

There are �ve di�erent inclusive jet triggers: JET MIN, JET LOW, JET MEDIUM,

JET HIGH, and JET MAX. For this analysis we have used the JET LOW trigger

which requires at least one trigger tower(0.2 � 0.2) with ET > 7 GeV at Level 1(L1)

and at least one jet with a cone of R = 0:7 above 30 GeV in ET at Level 2(L2).

The e�ciency of Level 0(L0) has been calculated to be above 97% [69]. In order

to determine the L1 and L2 trigger e�ciencies a set of special QCD Mark-and-

Pass(QPM) runs were taken. In a Mark-and-Pass run every event which passed L1

was recorded with a 
ag indicating the outcome of the L2 trigger decision. The

trigger e�ciency of JET LOW was obtained using Mark-and-Pass runs for three

di�erent � regions: 0:0 < j�j < 0:6; 0:6 < j�j < 1:6, and 1:6 < j�j < 4:0[70]. The

results in Fig 5.11 show that the combined L1 and L2 triggers for JET LOW are �
90% e�cient at Euncorrected

T = 40 GeV for all three � regions. The central region and

forward regions (Fig.5.11(a)(c)) are � 95% e�cient while the intercryostat region

(Fig.5.11(b)) has a slightly lower e�ciency, � 90% at Euncorrected
T = 40 GeV.
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Figure 5.10: Jet reconstruction e�ciency as a function of pseudorapidity using HER-

WIG5.8 and D� GEANT.
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Figure 5.11: Total L1L2 event e�ciency for JET LOW: a) 0:0 < j�j < 0:6, b)

0:6 < j�j < 1:6, c) 1:6 < j�j < 4:0, d) 0:0 < j�j < 4:0.
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Chapter 6

Data Selection and Analysis

The data used in this analysis have been taken during the 1992-1993 Tevatron

collider run (Run 1A) at
p
s = 1:8 TeV. With instantaneous luminosities ranging

from 0:5�1030 cm�2s�1 to 8:7�1030 cm�2s�1 the accelerator delivered an integrated

luminosity of 27.7 pb�1. Data for 14.9 pb�1 have been recorded by the D� experi-

ment to tape. We have used the JET LOW trigger for this analysis corresponding

to a luminosity of 83 nb�1.

6.1 Luminosity

The D� integrated luminosity L is obtained by measuring non-di�ractive inelastic

collisions. With a beam crossing every 3.5 �s, the level � hodoscopes were used to

select inelastic collisions and monitor the instantaneous luminosity. The calculation

of integrated luminosity depends on the beam status and the speci�c trigger condi-

tions. During normal operations there were six bunches of protons and antiprotons

in the Tevatron. Since each bunch had di�erent intensities the six possible beam

crossings were treated independently. In addition experimental dead time, prescales,

multiple interactions, main ring veto con�gurations and beam related Level 1 trigger

conditions were considered in the calculation of the integrated luminosity. Further
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corrections for lost events during the o�ine reconstruction were also performed [71].

� Instantaneous luminosity:

The instantaneous luminosity L is simply related to the counting rate NL� in

the level � counters by:

L =
NL�

�L�
(6.1)

where �L� is the acceptance corrected cross section covered by these counters.

Strictly speaking this is true if the instantaneous luminosity is low enough so

that the counting rate corresponds to the interaction rate. As the luminosity

rises the probability for multiple interactions in a single bunch crossing in-

creases. In this case the counting rate is less than the interaction rate, since

the multiple interactions are counted only once. The multiple interaction loss

correction is based on Poisson statistics for the average number of interactions

per crossing [69].

� The Level � monitor constant:

Since the uncertainty of the monitor constant �L� is directly related to the

luminosity uncertainty the monitor constant should be treated very carefully.

The total, elastic and single di�ractive cross sections from the E710 [72] and

CDF [73] experiments were used in the calculation of the world average cross

sections. The inelastic collisions counted by the L� counters include hard

core, single di�ractive and double di�ractive scattering. The acceptance of

the L� counters for each process was obtained using a zero bias run and the

MBR and DTUJET [69] Monte Carlos. The observable cross section for the

L� counters was calculated to be �L� = 46.7 � 2.5mb.

� Integrated Luminosity:

The integrated luminosity L is calculated by integrating the instantaneous lu-

minosity over a period of live time corrected for dead time. The dead time can
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be caused by many factors, e.g., main ring veto (see section 4.5), DAQ failure

and the level 1 prescale for each trigger. Since the instantaneous luminosity

varies slowly with time the integration must be performed over su�ciently

small time periods during the run. The integrated luminosities were stored

into a database for each run. The �nal value of the integrated luminosity took

into account the loss of the data due to reconstruction errors, failure to read

events from tapes, etc.

During Run 1A, D� was able to record a total of 14.9 pb�1 out of 27.7 pb�1

delivered by the accelerator. The overall e�ciency was 54% and the uncertainty of

the measured luminosity 5.4%. The main reason for the low e�ciency was the main

ring veto. For the JET LOW trigger 82.6 nb�1 was accumulated during Run 1A.

6.2 Data Sample

The e�ciency of the JET LOW trigger was greater than 95% for events with at least

one jet above ET=50 GeV [70]. After the o�ine reconstruction a total of 480,000

events remained. The reconstruction program version 10 was used for this analysis.

This data sample included spurious events containing fake jets caused by detector

noise and accelerator background. In order to eliminate these fake jets or bad events

the jets, events and runs were closely examined as follows.

6.2.1 Bad Data Runs

Data runs between 51132 and 65429 were used for this analysis. A small portion of

these runs had systematic failures in the data acquisition system or the detector, e.g.,

level 2 node problem, BLS problem (see section 4.3.1), etc. Some of the data runs

were taken under bad beam environments of the accelerator. Since the occurrence

of these problems during data taking could a�ect the vertex determination from the

central detectors or the quality of the calorimeter data, these problematic runs have
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been removed from the data sample. The special runs for other purposes have also

been singled out.

6.2.2 Multiple Interactions

In any beam crossing more than one interaction can occur. The probability of a

multiple interaction increases with instantaneous luminosity. At low luminosity the

probability of having two hard interactions in a single beam crossing is very small, so

most multiple interactions consist of a soft (minimum bias) and a hard scattering.

Soft scatterings generate only low Et jets which do not a�ect vertex �nding. If

a distinct primary vertex is reconstructed o�ine soft scatterings will not change

the momenta and positions of jets. Thus soft scatterings are not to be concerned

at moderate luminosity. At high luminosity, however, the probability of two hard

interactions is not small and it is necessary to eliminate multiple interaction events.

Since the longitudinal size of beam bunches in the Tevatron is 50 cm there is

a spread in the time and position of each interaction with respect to the nominal

crossing time and the center of the detector. Therefore particles from multiple

interactions will have an increased spread in arrival times at the level 0 counters.

The standard deviation of the arrival time distribution in each counter was measured

and added in quadrature to obtain a total deviation �total. Depending on the size

of this total deviation four multiple interaction 
ags (MUL INTF) are de�ned as

follows [74]:


ag 1 : most likely a single interaction (�total < 0:4ns)


ag 2 : likely a single interaction (�total < 0:6ns)


ag 3 : likely a multiple interaction (�total > 0:6ns)


ag 4 : most likely a multiple interaction (�total > 1:0ns)

It was found that the fractional number of events with 
ag=2 increases with lu-

minosity. It represents that the fraction of multiple interaction events in the com-

bined 
ag=1 and 2 sample rises with luminosity. In particular, the deviation of the
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Figure 6.1: (a) Multiple interaction 
ag (MUL INTF) distributions for JET LOW,

(b) longitudinal vertex distributions for each 
ag, (c) number of jets for each 
ag

with Pmin
T = 8GeV, (d) number of jets for each 
ag with Pmin

T = 20GeV.

measured fraction of single interaction events from the expected fraction of single

interaction events based on Poisson statistics is noticeable at a luminosity of 5�1030
cm�2s�1 [75].

The multiple interaction tool (MI TOOL) was designed to improve the e�ciency

of the multiple interaction 
ags (MUL INTF). Instead of using only level 0 informa-

tion the multiple interaction tool results were determined using the level 0 multiple

interaction 
ag, the level 0 vertex position, the central detectors' vertex determina-

tion and the total energy in the calorimeter. The signi�cance of the MI TOOL 
ags
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is identical to that of the multiple interaction 
ags. This multiple interaction tool

has shown reasonable agreement with estimated multiple interaction rates based on

Poisson statistics [75].

The average number of interactions per beam crossing depends on the inelastic

cross section (� � 47 mb), beam crossing time (3.5 �s) and instantaneous luminosity

as follows:

�n = L��
= L � 0:164 � 10�30(cm2sec) (6.2)

The typical instantaneous luminosity for the JET LOW trigger was lower than � 4�
1030cm�2sec�1. At this luminosity the average number of interactions is 0.66 which

is less than a single interaction. The multiple interaction 
ag distribution is shown

in Fig. 6.1 (a). Approximately 50% of the data is \most likely a single interaction",

and 25% is \likely a single interaction". The longitudinal vertex distribution of

Fig. 6.1 (b) shows MUL INTF=1 and 2 have similar vertex position distributions,

MUL INTF=3 has wider vertex distribution. If this wider vertex distribution is

due to multiple interactions the distribution for MUL INTF=2 might have small

contamination from multiple interactions as well. The average number of jets (ET >

8 GeV) increases with MUL INTF as shown in Fig. 6.1 (c). When 20 GeV minimum

transverse momentum is required, however, the average number of jets are similar

as shown in Fig. 6.1 (d). It suggests that events containing multiple interactions

produce extra low pt jets, but not high pt jets. For this analysis only MUL INTF=1

and 2 events are used.

6.2.3 � Bias Correction

The results of the pseudorapidity bias study described in section 5.4.1 are used to

correct the measured pseudorapidity of jets. This pseudorapidity correction, as well

as azimuthal angle shift, will be discussed in the section on systematic errors.
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6.2.4 Good Jet Quality Cuts

The energy in the calorimeter cells does not always originate from p�p inelastic scat-

tering. Spurious energy depositions not associated with inelastic scattering can have

several origins, e.g. noisy calorimeter cells, electronic noise and main ring energy de-

posits. The jet trigger and subsequent jet reconstruction algorithm can misidentify

this spurious energy as a real jet.

Several cuts have been developed to remove spurious jets [76]. The \fake" jets

generally have very di�erent shower shapes or energy pro�les in the calorimeter

compared to real jets. Several factors related to shower shape are utilized to de�ne

good jets:

� Electromagnetic Fraction Cut (EMF) : The electromagnetic fraction of

a jet is de�ned as the fraction of jet energy deposited in the electromagnetic

calorimeter. The EMF is required to be between 0.05 and 0.95 for good jets in

the central and forward region. The upper limit, 0.95, removes misidenti�ed

electromagnetic objects, electrons or photons, as well as fake jets due to noisy

cells in the electromagnetic calorimeter. The lower limit, 0.05, removes fake

jets from noisy cells in the hadronic calorimeter. Since no electromagnetic

section was instrumented in the intercryostat region (1:0 < � < 1:6), the lower

EMF cut, 0.05, was not used for the jets in the ICR. The cut e�ciency for jets

with ET = 20GeV is greater than 99% [77].

� Hot Cell Fraction Cut (HCF) : The hot cell fraction is de�ned as the

ratio of the energy between the second most energetic cell of a jet and the

most energetic cell. The HCF for good jets is required to be greater than 0.1.

This cut was designed to remove fake jets originating in a very energetic noisy

cell (hot cell). In the central and forward region, the HCF cut e�ciency for

jets with ET = 20GeV is greater than 97%. In the intercryostat region it is

greater than 95% [77].
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� Coarse Hadronic Fraction Cut (CHF) : The coarse hadronic fraction is

de�ned as the fraction of jet energy deposited in the coarse hadronic calorime-

ter. In general most of the energy of a jet is deposited in the electromagnetic

and �ne hadronic calorimeters. Due to the ine�ciencies of the main ring veto

counters, however, particles from the main ring can deposit a fair amount of

energy in the coarse hadronic calorimeter. This cut is utilized to remove fake

jets arising from these main ring particles. The CHF for good jets is de�ned

to be less than 0.4. The cut e�ciency for jets with ET = 20GeV is greater

than 99% for all regions [77].

These standard good jet quality cuts remove more than 90% of the fake jets [78]

and have a combined e�ciency of � 97% for central and forward jets with ET =

20GeV. In the intercryostat region the combined e�ciency is around 95% [77].

6.2.5 Energy Scale Correction

After removing spurious jets the jet energies were corrected using the D� stan-

dard jet energy scale correction, version 4.0, as mentioned in section 5.2 which

increases jet energy by approximately 15-25%. The overall uncertainty of the en-

ergy scale is around 5%. We have also applied the updated energy scale, version 4.2,

to the same data samples and checked the e�ects of di�erent energy scale versions.

This will be discussed later.

6.3 Analysis

Before the application of analysis cuts it is worth considering the characteristics of

QCD multi-jet events. First, in order to minimize any bias from jet reconstruction

ine�ciency we have selected jets with ET greater than 20 GeV. Figure 6.2 (a) is a

scatter plot of jets in � and � space. After arranging jets in descending order of
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transverse energy, the transverse energy, pseudorapidity and azimuthal angle of the

�rst, second and third leading jets are plotted in Fig.6.2 (b), (c), and (d). Leading

jets are required to have a minimum transverse energy 50 GeV to remove any trigger

bias. The transverse energy distribution of the second leading jets for ET > 50 GeV

is similar to that of the leading jets in shape. Since the intercryostat region has poor

resolution resulting in more jets around that region the pseudorapidity distribution

of leading jets shows bumps in the ICD region. The second and third leading jets

show wider pseudorapidity distributions than the leading jets because they have

smaller transverse energies.

6.3.1 Analysis Cuts

In QCD physics jets are usually ordered by the magnitude of their transverse en-

ergies. In this analysis, however, we ordered jets by pseudorapidity. We start with

the clean jet, energy corrected event samples and apply the following conditions:

� Eminimum
T

= 20 GeV : Jets are required to have a minimum ET of 20

GeV. This threshold is the lowest transverse energy accessible without any

reconstruction ine�ciency (or bias).

� j�
jet
d j < 3.0 : Since trigger towers were implemented for j�dj � 3:2, jets of

j�dj < 3.0 are selected to remove any trigger edge e�ect. (�d is the pseudora-

pidity de�ned in the detector units.)

� � ordering : After the above cuts are applied, we select events consisting of

at least two jets and order those jets in pseudorapidity. Then we tag two jets

with the largest pseudorapidity separation. For convenience we name these

tagging jets : jet 1 and jet 2 referring to the most forward and the most

backward jets in pseudorapidity.
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Figure 6.2: (a) The distribution of jets in � and � space, (b) transverse energy, (c)

pseudorapidity, (d) azimuthal angle distributions of the leading, 2nd, and 3rd jets

after ordering in ET .

� Eforward
T > 50 GeV or Ebackward

T
> 50 GeV : One of the two tagging

jets must satisfy the JET LOW trigger condition ET >50 GeV to avoid any

trigger bias.

Using the two tagged jets we de�ned two variables, the rapidity interval �� and

the azimuthal angle di�erence �� as follows:

�� = �forward � �backward (6.3)

�� = �forward � �backward (6.4)
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Figure 6.3: (a) The scatter plot of the two tagging jets for ET and b) for azimuthal

angle �, c) jet multiplicity distribution, d) the distribution of rapidity interval (�� =

�forward � �backward) between the two tagging jets.

By de�nition, �� is always greater than zero.

The transverse momenta of the two tagging jets are plotted in Fig. 6.3 (a) in

which the boundaries at the minimum transverse momentum, 20 GeV, and trigger

threshold, 50 GeV, are clearly shown. The azimuthal angle distribution of the two

tagging jets is plotted in Fig. 6.3 (b). The two dark strips show that most of

the tagged jets are back-to-back in the transverse plane. The jet multiplicity is

plotted in Fig 6.3 (c). The distribution of the rapidity interval �� shown in Fig. 6.3

demonstrates the wide coverage of the D� calorimeter which extends to ��=6.
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Figure 6.4: The scatter plot of the two tagging jets in � space.

As shown in Fig. 6.4 the �� = 0 bin is de�ned to be 0 < �� < 0:5 and the

�� = 1 bin to be 0:5 < �� < 1:5 and so on. Due to the detector pseudorapidity

cut, j�jetd j < 3:0, there are few events in �� = 6 bin. The dashed lines represent

the boundaries for the pseudorapidity boost �� = 0:5 where pseudorapidity boost is

de�ned as follows:

�� =
�����1 + �2

2

���� (6.5)

The jet cross sections are the convolution of the matrix elements and the parton

distribution functions which are not well known in the region where parton mo-

mentum fraction x is small. In order to minimize the e�ect from the uncertainty

of the parton distribution functions in the small x region and to improve theoreti-
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cal predictions, the boost cut, �� � 0:5, is theoretically motivated. This cut forces

the parton momentum fraction, x = 2PTp
s
cosh(�), to be large such that the parton

distribution function is described by the standard DGLAP evolution [45].

However, the smallest x available with our event con�guration, ET > 20 GeV and

j�j < 3:0, is 0.0019 which is not exceedingly small. Therefore the rapidity boost cut

is not necessary for the present event con�guration. If a smaller transverse energy

threshold or wider pseudorapidity region is used the small x(< 10�4) region in the

parton distribution functions is accessible and the rapidity boost cut is necessary

to obtain a valid prediction. Even though we do not use the boost cut for the �nal

conclusion we will show the e�ect of the rapidity boost cut on this analysis since

the rapidity boost cut is important for future analysis with wider rapidity coverage

and lower minimum transverse momentum.

6.3.2 Characteristics of two tagged jets

The data were divided into six subsets from �� = 0 to 5. The last bin ��=5

(4:5 < �� < 5:5) contains 518 events. The jet multiplicities in each subset are

plotted in Fig. 6.5. As the rapidity interval increases there is more phase space for

extra radiation and it is natural for the average jet multiplicity to increase. It seems

there is linear relationship between rapidity interval and the average jet multiplicity

as shown in Fig. 6.6 (a). An increase of approximately 0.2 jets per rapidity interval

can be observed for 1 < �� < 4.

Figure 6.6 (c) shows a similar increase in the average multiplicity when the

�� = 0:5 cut is applied. The average jet multiplicity is independent of the �� cut. The

forward jet ET distributions for ��=1, 3 and 5 bins are shown in Fig. 6.6 (b) and

(d) with and without the �� cut. The ET distributions above the trigger threshold,

50 GeV, are typical and fall quickly as the rapidity interval increases. The error

bars indicate statistical errors only.

The rapidity distributions of the two tagging jets are shown in Fig. 6.7 as a
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Figure 6.5: Jet multiplicity distribution for various bins of rapidity interval (no ��

cut is applied).

function of the rapidity interval. The solid lines represent the two tagging jets

without the �� cut and the dotted lines with the �� cut. Jet 1 is the forward jet and

jet 2 the backward jet. As can be seen the �� cut removes many events with high

rapidity jets in small rapidity intervals. However, in bins sensitive to statistics, for

instance ��=5, only 14% of the data were removed by the �� cut.

6.3.3 < cos[n(� ���)] >

Since the asymmetric nature of the ET cuts on the two tagging jets (20 GeV and

50 GeV) tends to increase the probability of at least one additional radiation, the
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Figure 6.6: (a) Average jet multiplicity distribution, (b) forward jet ET distributions

for �� = 1, 3, and 5 bins. (c) Average jet multiplicity distribution, (d) forward jet

ET distributions for �� = 1, 3, and 5 bins with �� � 0:5.

decorrelation between the two tagging jets would be enhanced by this cut as well as

any minijet activity. However, due to trigger bias no symmetric ET cut is possible,

so we can not isolate the e�ect of this asymmetry ET cut. This asymmetric e�ect

will be discussed in detail in the Monte Carlo section.

The azimuthal angle di�erences �� are plotted in Fig. 6.8 (a) which shows

normalized �� distributions for ��=1, 3 and 5. The sharp peaks at �� = �

indicate that the two jets most separated in pseudorapidity are highly correlated

with each other. As the rapidity separation between the two jets increases, however,

97



1

10

10 2

10 3

-4 -2 0 2 4

∆η=0

Jet2 Jet1

∆η=0∆η=0∆η=0 η

N
um

. o
f e

ve
nt

s
1

10

10 2

10 3

-4 -2 0 2 4

∆η=1∆η=1∆η=1∆η=1

1

10

10 2

10 3

-4 -2 0 2 4

∆η=2∆η=2∆η=2∆η=2

1

10

10 2

10 3

-4 -2 0 2 4

∆η=3∆η=3∆η=3∆η=3

1

10

10 2

-4 -2 0 2 4

∆η=4∆η=4∆η=4∆η=4

1

10

10 2

-4 -2 0 2 4

∆η=5∆η=5∆η=5∆η=5

Figure 6.7: Pseudorapidity distributions of the two tagging jets, forward jet (jet 1)

and backward jet (jet 2), as a function of rapidity intervals: Solid lines are for no

rapidity boost cut and the dotted lines for rapidity boost cut.

the peaks of the �� distributions decrease and the widths increase indicating a loss

in correlation. The same type of correlation loss can be seen in Fig. 6.8(b) with the

�� cut.

In Fig. 6.8 (a) and (b) the decorrelation e�ects are shown only qualitatively. In

order to express the decorrelation e�ect quantitatively we use cos[n(� � ��)] and

calculate its average as a function of ��. The results are shown in Fig. 6.9 for the

�rst and second moments n=1 and 2. Since < cos(� ���) > = 1 would occur for

perfect correlation and < cos(� ���) > = 0 for perfect decorrelation between the
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Figure 6.8: (a) Azimuthal angle di�erence, �� = �forward � �backward, for various
rapidity intervals, 1, 3 and 5, without the �� cut, (b) with the �� cut. The distributions

are normalized to unit area.

two jets the slope in the plot represents the increase in decorrelation as a function

of rapidity interval.

In Fig. 6.9 the average values of �� in each bin are used for the abscissa and only

statistical errors are presented. It appears that the cosine average values decrease

linearly as the rapidity interval increases. Or, in other words, the azimuthal decor-

relation between the two tagging jets increases as a function of the rapidity interval.

The second moment shows a steeper slope than the �rst moment. When the ��=0.5

cut is applied, the overall < cos(� ���) > values barely change except in the ��
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= 2 and 3 bins which contain surplus ICD jets due to poor energy resolution. In

case some of the low ET jets are identi�ed as higher ET jets the decorrelation e�ect

may increase. The data values from Fig. 6.9 are listed in Table 6.1
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�� 0.25 1 2 3 4 5

no ��

< �� > 0.2532 1.0025 1.9596 2.9229 3.8758 4.8118

< cos(� ���) > 0.9576 0.9102 0.8590 0.7934 0.7406 0.6847

Stat. Error n=1 0.0012 0.0016 0.0022 0.0037 0.0076 0.0219

< cos 2(� ���) > 0.8704 0.8004 0.7147 0.5974 0.5209 0.4361

Stat. Error n=2 0.0024 0.0023 0.0031 0.0051 0.0100 0.0277

�� = 0:5

< �� > 0.2525 1.0165 1.9794 2.9323 3.9015 4.8333

< cos(� ���) > 0.9588 0.9065 0.8419 0.7779 0.7319 0.6755

Stat. Error n=1 0.0021 0.0028 0.0036 0.0055 0.0101 0.0240

< cos 2(� ���) > 0.8748 0.7934 0.6924 0.5784 0.5094 0.4285

Stat. Error n=2 0.0042 0.0041 0.0049 0.0073 0.0129 0.0299

Table 6.1: Average values of the correlation variables, cos[n(����)], versus �� for
the �rst moment n = 1 and second moment n = 2 with their statistical errors. See

Fig. 6.9.
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Chapter 7

Systematics

Until now, we have considered only statistical errors. In this chapter, we will

investigate several systematic factors which could a�ect the results of this analysis.

The systematic biases to be studied are : the uncertainty in the jet energy scale

correction, the �nite energy and position resolution of the calorimeter, the o�ine

cuts to remove fake jets, and biases due to the jet reconstruction algorithm. These

e�ects could alter the transverse momentum and position of a jet and sometimes

deform a jet event by producing fake jets or removing good jets.

7.1 Jet Energy Scale Uncertainty

7.1.1 Jet Energy Scale V4.0

As described in section 5.2, the jet energy scale carries its own uncertainty due to

statistical variations and systematic errors. Since the statistical uncertainty is small,

most of the error stems from various systematic biases. In Fig. 5.1 the central curve

represents the nominal energy scale and the uncertainty is given by the high and

low energy bands which are about �5% relative to nominal for the whole energy

range. The mismeasurement of jet transverse momentum can a�ect this azimuthal
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Figure 7.1: The dotted lines represent < cos[n(� ���)] > with the low jet energy

scale correction, the dashed lines for the high energy correction, and the solid circles

for the nominal values. Only statistical errors are shown.

angle decorrelation study by inserting mismeasured jets into an event. If an 18 GeV

jet, for example, is reconstructed as a 21 GeV jet there is a possibility it will be

a tagging jet and result in a wrong rapidity interval and wrong azimuthal angle

di�erence, depending on the position of the reconstructed jet.

In order to study the in
uence of the jet energy scale uncertainty the averages of

cos(����) are calculated using jets corrected by the high and low energy scales. The

results are shown in Fig 7.1. With the low energy scale the averages of cos(����)
are slightly less decorrelated in all �� bins since a smaller number of jets in each
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event satisfy the minimum transverse momentum or trigger threshold requirements.

On the other hand, the averages of cos(� � ��) with the high energy scale show

increased decorrelation. The di�erence between the nominal < cos(� � ��) >

values and the values obtained using the low and high jet energy scale is taken as

the systematic error on < cos(� � ��) > due to the jet energy scale uncertainty.

This systematic error dominates for all �� except �� = 5 where the statistical error

is dominant. This result and other systematic errors are shown in Fig. 7.7.

7.1.2 Out-of-Cone Showering Correction

The jet energy scale depends on the pseudorapidity of a jet in addition to the

transverse momentum. As shown in Fig. 7.2, the jet energy scale is nearly constant

for j�j < 2.5 except in the ICD region, 1.0 < j�j < 1.6. The sharp rise of the

correction scale beyond � = 2.5 is a combined e�ect of out-of-cone showering and

enhanced gluon radiation in the forward region.

The physical tower size in the calorimeter is a function of pseudorapidity (see

Fig. 4.4) and consequently the forward calorimeter towers are physically smaller

than their central counterparts. Therefore the energy of particles inside a cone of

R = 0:7 in the forward calorimeter can smear out-of-the cone through hadronic or

electromagnetic showering. This out-of-cone showering accounts for approximately

50% of the sharp increase. The rest of the increase is due to enhanced soft radiation

in the forward region [83]. Suppose there is a parton of ET=20 GeV in the forward

region, �=3, balanced with another parton of ET=20 GeV in the central region,

�=1. The forward parton has much higher energy and consequently has a higher

probability to radiate gluons. This radiation loss mimics out-of-cone showering.

However, this radiation is a physical process and should not be considered in the

energy calibration.

Since the calibration of forward jets was done using the dijet balance method

described in section 5.2 and due to the lack of Monte Carlo data we are unable to
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Figure 7.2: The jet energy scale correction as a function of pseudorapidity at �xed

transverse momenta, 25 GeV and 40 GeV.

separate the out-of-cone showering and enhanced radiation e�ects. Thus at large ra-

pidity the jet energy scale of Fig. 7.2 may be overestimated resulting in an increased

number of jets above a threshold. Since the excess forward jets could alter the cor-

relation between two tagging jets we also calculated the averages of cos(����) by

turning o� the out-of-cone showering correction. The systematic uncertainty due

to the out-of-cone showering is given by the di�erence between the cosine averages

with and without the out-of-cone correction. The result is shown in Fig. 7.7.

7.2 Intercryostat Detector Region

The intercryostat detector region has worse energy resolution � 120p
E
% than the

central and forward regions � 80p
E
%. Due to this degraded resolution an excess

105



0

500

1000

1500

2000

2500

3000

3500

4000

4500

-4 -2 0 2 4

(a)
IC

D
η

N
um

. o
f e

ve
nt

s

0

200

400

600

800

1000

1200

-4 -2 0 2 4

(b)

IC
D

η

N
um

. o
f e

ve
nt

s

Figure 7.3: The pseudorapidity distribution for, (a) the leading jets and (b), the

second leading jets (ET > 20 GeV). Note the excess in the ICR.

number of jets were reconstructed in the ICD region. Figures 7.3 (a) and (b) show

the pseudorapidity distributions of the leading jets and the second leading jets,

respectively. The bumps in the ICD region are clearly distinguishable and represent

additional jets reconstructed in the region.

Since the GEANT detector simulation does not simulate this excess we estimate

the e�ects of this excess on < cos(� � ��) > by using smearing method that

uses the jet energy resolution obtained in section 5.3. Parton jets were generated

by the HERWIG Monte Carlo and the energy of those jets was smeared using the

parameterized functions of the D� jet energy resolution. The average of cos(����)
is calculated using these smeared jets. Then the parton jets were smeared using the

same energy resolutions except that the ICD jet resolution was replaced by the

central jet resolution and the average of cos(� ���) is calculated. The di�erence

between the above two < cos(����) > values is taken as the systematic uncertainty

due to the excess jets in the ICD region. This di�erence is plotted in Fig. 7.7.

Since the systematic uncertainties in the �� = 4 and 5 bins are very important,

as one way of double checking, the in
uence of excess ICD jets in these high ��

bins was estimated by removing all the jets in 1:0 < j�j < 1:6 and calculating the
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Figure 7.4: The solid circle represent the average of cos(����) with ICR jets, and

the open triangles without ICR jets.

averages of cos(����). As shown in Fig 7.4 the removal of all ICD jets a�ects the

averages of cos(� ���) for �� < 3, but not in �� = 4 and 5 bins as we expected.

If one of two tagging jets is in the ICD region the event will most probably have a

small rapidity interval. Therefore �� = 4 and 5 bins are found to be very insensitive

to additional ICD jets and as can be noticed the e�ect of removing all ICD jets in

the high rapidity interval bins is less than that of the energy resolution smearing

described above.
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Figure 7.6: The solid circles represent the average of cos(����) with the standard
good jet cuts, and the open triangles without those cuts.

the < cos(� � ��) > values from the standard cuts to those from the tight cuts

we estimate systematic errors from the good jet quality cuts. Since the portion of

good jets removed by the standard cuts is much smaller than by the tight cuts these

errors are conservative.

We have also calculated < cos(����)> without any quality cuts and compared

these to the nominal values as shown in Fig. 7.6. This plot shows how fake jets a�ect

azimuthal correlations between the two tagging jets. Speci�cally two hot cell spots

at pseudorapidity 1 and 2.6 with the same azimuthal angles, 4.75 radian, deform

the distribution of the azimuthal angle di�erence for the �� = 2 bin and change the
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average of cos(� ���). This is a good examples of the importance and credibility

of the good jet quality cuts. These results are also shown in Fig. 7.7.

7.4 Jet Position Biases and Resolutions

In section 5.4 we obtained the position biases and position resolutions from a Monte

Carlo simulation. The results are utilized in this section to calculate systematic

biases on < cos(� ���) >.

7.4.1 Position Biases

In order to calculate systematic errors stemming from the � and � biases we calculate

the averages of cos(� � ��) with and without the � and � bias corrections. The

variations in < cos(� ���) > due to these biases are found to be small as shown

in Fig. 7.7.

7.4.2 Position resolution

The � resolution for jets is around 0.03. Due to this resolution, events can migrate

between �� bins. In order to study the magnitude of this e�ect we have generated

parton level event samples using the HERWIG event generator and smeared the

pseudorapidity of each jet using the resolution functions obtained in section 5.4.

The averages of cos(� � ��) before smearing are compared to the averages after

smearing. The � resolution for jets is also � 0:03. The same procedure has been

performed for azimuthal angles and the results are shown in Fig. 7.7 The systematic

errors due to the uncertainty in the position measurements are very small compared

to other uncertainties.

110



7.5 Summary

The results of the systematic error studies are listed in Table 7.1 and 7.2 for the

�rst moment and the second moment and plotted in Fig. 7.7 for the �rst moment

n=1. The dotted lines in Fig. 7.7 represent the statistical errors and the solid lines

(or hatched area) the systematic errors for the low and high energy scales. For the

other biases we have subtracted the nominal < cos(� � ��) > values from the

biased < cos(� ���) > values and show the di�erences with the solid circles. The

systematics from the energy scale uncertainty dominate all rapidity intervals except

�� = 5 where statistical error dominates. Among the other uncertainties, the errors

calculated by tightening the standard good jet cuts are dominant.

We separate these systematic errors as follows:

� Systematic uncertainties related to the energy scale : The errors

stemming from the low and high energy scales and the errors from the out-of-

cone correction are added in quadrature and the combined errors are called the

systematic uncertainty related to the energy scale uncertainty for < cos(� �
��) >. The larger errors between low energy scale and high energy scale

uncertainties are used in the quadratic sum.

� Other systematic uncertainties : All other uncertainties related to ICR

smearing, good jet cuts, position biases and �nite resolutions are added in

quadrature as systematic errors not related to the energy scale. The di�er-

ences obtained by removing all ICD jets or the good jet cuts are not used in

this error calculation. As mentioned in the above sections they were performed

as a way of double checking the high �� bins and were already estimated using

the ICR smearing and tightening the good jet quality cuts.
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n=1

�� 0.25 1 2 3 4 5

Stat. error 0.0012 0.0016 0.0022 0.0037 0.0076 0.0219

Energy scale related

High Escale -0.0021 -0.0062 -0.0083 -0.0089 -0.0112 -0.0111

Low Escale 0.0023 0.0039 0.0084 0.0087 0.0125 0.0108

Out-of-cone corr. -0.0011 -0.0015 -0.0031 -0.0044 -0.0022 -0.0058

Other systematics

ICR smearing -0.0016 -0.0006 -0.0018 0.0000 0.0034 0.0023

2 � good jet cut -0.0031 -0.0040 -0.0009 -0.0009 0.0039 -0.0072

� bias -0.0003 -0.0008 -0.0006 0.0005 -0.0020 -0.0023

� bias 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

� smearing -0.0002 -0.0002 0.0011 -0.0002 0.0036 0.0003

� smearing -0.0006 -0.0006 -0.0003 -0.0005 -0.0009 0.0001

Double checking for high ��

No ICR -0.0422 -0.0455 -0.0178 0.0004 0.0020 0.0012

No good jet cut 0.0010 -0.0018 -0.0599 -0.0070 -0.0070 -0.0108

Table 7.1: The lists of statistical errors and the di�erences between < cos(� �
��) >extremes � < cos(� � ��) >nominal for the �rst moment n=1. See text for

details.
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n=2

�� 0.25 1 2 3 4 5

Stat. error 0.0024 0.0023 0.0031 0.0051 0.0100 0.0277

Energy scale related

High Escale -0.0055 -0.0081 -0.0096 -0.0090 -0.0167 -0.0102

Low Escale 0.0042 0.0057 0.0128 0.0082 0.0175 0.0068

Out-of-cone corr. -0.0029 -0.0026 -0.0019 -0.0009 -0.0002 0.0042

Other systematics

ICR smearing -0.0016 -0.0006 -0.0018 0.0000 0.0034 0.0023

2 � good jet cut -0.0072 -0.0061 -0.0031 -0.0017 0.0006 -0.0039

� bias -0.0004 -0.0013 -0.0005 -0.0015 -0.0050 0.0047

� bias 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

� smearing -0.0001 -0.0002 0.0011 -0.0005 0.0047 -0.0044

� smearing -0.0019 -0.0018 -0.0014 -0.0011 -0.0023 0.0006

Double checking for high ��

No ICR -0.0979 -0.0765 -0.0281 -0.0031 -0.0054 0.0017

No good jet cut 0.0034 0.0007 0.0018 -0.0030 -0.0071 0.0036

Table 7.2: The lists of statistical errors and the di�erences between < cos 2(� �
��) >extremes � < cos 2(� � ��) >nominal for the �rst moment n=2. See text for

details.
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Figure 7.7: The comparison of the systematic errors for �� = 0 through 5 (n=1).

See text for details. (continues in the next page).
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Figure 7.7 : continues.
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Figure 7.7 : continues.
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Chapter 8

Theoretical Predictions

In order to compare the result of our analysis with the theoretical predictions, we

use a recently developed next-to-leading order Monte Carlo, JETRAD [79], and a

parton shower Monte Carlo, HERWIG (Hadron Emission Reactions With Interfering

Gluons) [63]. The BFKL resummation prediction by Del Duca and Schmidt [45, 86]

is also used. In JETRAD and HERWIG a jet is de�ned by a cone of radius R=0.7

which provides jet cross sections approximately independent of renormalization scale

� [31] and the approximated D� jet position de�nition was utilized for partons.

8.1 JETRAD

An exact next-to-leading order (NLO) calculation [79] is implemented in the JE-

TRAD Monte Carlo as tree and one loop corrections at O(�3s). At this order two

or three partons can be generated in the �nal state. This next-to-leading order cal-

culation provides two important improvements over the leading order predictions.

First it reduces the theoretical uncertainties due to the choice of the renormalization

and factorization scales and thereby provides more reliable predictions. Second the

cross sections become dependent on the jet clustering algorithm.

In the high energy collision of hadrons partons are generated with large momen-
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level (�2s), one may expect that each outgoing parton hadronizes into a narrow jet

of particles. However, at one order beyond the Born level (�3s) a jet may consist

of two partons instead of just one and have internal structure. Therefore jet cross

sections calculated to order �3s depends on the jet de�nition.

The distributions of azimuthal angle di�erences �� from JETRAD are normal-

ized and plotted in Fig. 8.1 using the same kinematic cuts as in the experimental

data analysis, j�j < 3:0, Emin
T > 20 GeV and Eforward

T > 50 GeV (or Ebackward
T > 50

GeV). Due to loop diagrams at O(�3s) the two parton matrix elements can have

negative weights and as a result give negative cross sections which is a result of

perturbative QCD being unstable with respect to infrared radiations. The central

bin in Fig. 8.1 shows smaller cross sections compared to the adjacent bins since most

of the events in this bin are dijet events with negative cross sections. Those two jets

are highly correlated in transverse momenta and azimuthal angles.

In order to see the e�ect in the central bin we have calculated the average of

cos(����) with and without the central bin. Both results are shown in Fig. 8.2(a).
The di�erences between them become smaller as the rapidity interval increases for

both moments n=1 and 2. This shift agrees with our expectation that the removal

of one central bin where the correlation is maximal results in lower < cos(����) >
values or more decorrelation. Since the distribution of < cos(����) > using all bins

shows reasonable linearity as a function of rapidity interval and < cos(����) > is

near one at �� =0 as kinematically expected, we may conclude that < cos(����) >
using all bins appears physically meaningful despite the abnormal cross sections in

the �� plots. This was suggested by an author of JETRAD [80].

We also explored several other features of perturbative QCD: renormalization

scale dependence, uncertainty in parton distribution functions and jet algorithm

dependence.

� Renormalization scales : Even though the renormalization scale (�) de-

pendence of NLO calculation is less than LO calculation, NLO calculation is
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Figure 8.2: (a) JETRAD < cos(����) > values with and without exclusion of the

one central bin, (b) < cos(� � ��) > values using various renormalization scales,

(c) using di�erent pdf's, (d) using two di�erent jet algorithms.
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still expected to depend on �. We used the maximum transverse energy Emax
T

of a jet, two times Emax
T and one half Emax

T as renormalization scales and cal-

culated the averages of cos(� ���) as shown in Fig. 8.2(b). The in
uence of

di�erent renormalization scales is almost independent of rapidity intervals ��

and the maximum di�erence in the < cos(� ���) > is found to be 0.026 for

the �rst moment and 0.058 for the second moment. We have also found that

the decorrelation is inversely proportional to the magnitude of renormalization

scales.

� Parton distribution functions : Since cross sections are a convolution of

parton distribution functions and matrix elements, various parton distribution

functions described in section 2.5.5 were tested as shown in Fig. 8.2(c). The

maximum di�erence is rather small compared to the renormalization scale

dependence, 0.005 for the �rst moment and 0.013 for the second moment.

� Jet algorithms : Since only two or three partons are available as jet seeds

next-to-leading order predictions invoke ambiguity in the de�nition of the

transverse energy and position of jets [81]. Thus the Snowmass jet algorithm

as mentioned in section 3.2 and 5.1 is also used and the result is shown in

Fig. 8.2(d). The di�erence in < cos(����) > between Snowmass and D� de-

creases as the rapidity interval increases. The maximum di�erences are 0.008

and 0.017 for the �rst and the second moments respectively.

8.2 HERWIG

HERWIG is a general purpose particle physics event generator for the simulation of

hadron-hadron collisions. It uses the parton shower approach for initial state and

�nal state QCD radiation and includes color coherence e�ects and azimuthal corre-

lations both within and between jets [63]. The �nal state of a QCD event consists of
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multi-partons or multi-particles through parton shower and particle fragmentation.

The simulation of QCD jet production can be factorized as follows:

� Hard subprocess : Each hard parton-parton collision (2 �! 2) is computed

exactly to leading order (�2s) using perturbative QCD and produces only two

partons. The hard process momentum transfer scale Q sets the boundary

conditions for the initial and �nal state parton showers.

� Final state emission : Each outgoing parton from a hard process emits

partons according to the Altarelli-Parisi splitting functions (GLAP evolution,

see section 2.5) and generates a shower of partons. The available phase space

for parton emission is restricted to an angular ordered region. At each parton

emission, the emission angle of a parton is smaller than that of the previous

parton emitted. The amount of emission depends on the virtuality of each

parton controlled by the momentum transfer scale Q.

� Initial state emission : An incoming parton in the hard subprocess generates
a shower of partons through \backward" Altarelli-Parisi evolution. Since the

parton that participated in the hard subprocess is evolved from an initial

parton inside a hadron as described in Chapter 2.5 this parton emits daughter

partons according to the backward evolution function until it reaches its initial

state in the hadron.

� Hadronization process : A QCD event contains a number of partons from

the initial and �nal state emissions. These partons are converted into hadrons

to construct a realistic event. This hadronization occurs at low momentum

transfer scale and the perturbation theory is not applicable. Therefore, a

phenomenological hadronization model is required. HERWIG adopted a clus-

ter hadronization model which is local in color and independent of the hard

process and the energy [63].
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Figure 8.3: The distributions of the azimuthal angle di�erences for various rapidity

intervals 1, 3, and 5 (a) without �� cut and (b) with �� < 0:5 using the parton jets of

HERWIG. The distributions are normalized to unit area.

In hadron-hadron collisions spectator partons from the incoming hadrons have color

connections with the partons participating in the hard subprocess. These color

connections mimic a soft collision and the interactions between the spectator beams

produce soft collisions. These soft collisions are called underlying events and produce

additional soft hadrons in the QCD events. This feature is also implemented in

HERWIG.

We have generated 200,000 QCD events with the HERWIG event generator using

the CTEQ2MS parton distribution function [82]. The standard D� jet algorithm
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Figure 8.4: The average of cos(� ���) using HERWIG events, (a) for comparison

between parton and particle jets and, (b) for the e�ects of rapidity boost cut.

was used to reconstruct parton and particle jets using partons and particles as

jet seeds instead of the calorimeter towers. The analysis cuts used for the data

and JETRAD events were utilized for these HERWIG events. The azimuthal angle

di�erences between the two tagging parton jets are plotted in Fig. 8.3. Figure 8.3 (a)

shows the increase in the decorrelation between tagging jets. In these distributions,

as the rapidity interval increases, the center peaks diminish and the tails grow.

Figure 8.3 (b) shows the same decorrelation trend when the rapidity boost cut

�� < 0:5 applied. These normalized distributions, with and without the rapidity

boost cut, are similar except for the size of the statistical errors.

Figure 8.4 shows the averages of cos(n(� ���)) for parton and particles jets.

There is a linear relationship between the rapidity interval and< cos(����) >. The
averages of cos(����) for parton and particle jets are consistent within statistical

errors. The di�erence in the �rst moment at �� = 5 is 0.019 which is less than the

statistical error 0.022. For the second moment, the di�erence in the �� = 5 bin is
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Figure 8.5: The evolution of azimuthal angle decorrelations from parton level to

particle and calorimeter levels. Particle jets contain the e�ects of fragmentation and

calorimeter jets contain the e�ects of particle showering in the calorimeter.

much less, 0.004. The values of < cos(� � ��) > with and without the rapidity

boost cut are compared as shown in Fig. 8.4. As in the experimental data and

JETRAD the di�erence is negligible being only 0.004 in the last bin for the �rst

moment.
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8.3 GEANT Detector Simulation

We have used parton or particle jets in the Monte Carlo study. The jets in the ex-

perimental data are reconstructed from the calorimeter cells or towers which contain

the energy of particles deposited through electromagnetic and hadronic showering.

After energy smearing in the calorimeter, the characteristics of an event can vary,

e.g. a di�erent number of jets, di�erent energy for a jet. In order to study these

showering e�ects we have generated 50,000 HERWIG events and performed a full

detector simulation based on GEANT [64]. In the event generation the leading jet

is required to have j�j > 1:6 in order to reduce the computer processing time and

populate the bins of large rapidity interval. This requirement is found to produce

biases for small rapidity intervals �� = 0; 1 and 2, but not for large rapidity intervals

�� = 4 and 5.

Jets in the calorimeter are reconstructed using the standard D� jet algorithm and

the energies of jets are corrected by the jet energy scale. The averages of cos(����)
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at parton, particle and calorimeter levels are calculated and compared in Fig. 8.5.

The e�ect of fragmentation is contained in particle jets and the showering e�ect is in

the calorimeter jets. All these levels appear to be consistent within statistical errors.

Since these values are from the same set of HERWIG samples these statistical errors

are highly correlated. Therefore the showering uncertainty is de�ned as follows:

(< cos >cajet � < cos >pejet) + (< cos >cajet � < cos >pjet)

2
(8.1)

where < cos > is the average of cos(����) for parton (pjet), particle (pejet), and

calorimeter jets (cajet). These di�erences are plotted in Fig. 8.6. The error bars are

statistical. The di�erence at �� = 5 is 0.03 for the �rst moment and 0.042 for the

second moment.

8.4 BFKL Prediction

Using the LO CTEQ parton distribution functions [85] with the renormalization and

factorization scales set to �2 = pt1pt2 (where pt1 and pt2 are transverse momenta of

two tagging jets), Del Duca and Schmidt used the BFKL resummation technique [45,

86] and calculated the average of cos[n(� � ��)] as shown in Fig. 8.7. The same

kinematic cuts are used as in the experimental data analysis. The boost cut, �� < 0:5

does not change the average of cos(����) very much. Since the prediction is valid

at large rapidity interval < cos(� � ��) > is shown from �� = 2. This BFKL

prediction shows steeper slopes than the experimental data and HERWIG, which

indicates more radiation is expected between the two jets.
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Chapter 9

Comparisons to Theory and

Conclusions

9.1 Experimental Results and Comparison

In this section, we compare experimental results with various theoretical predic-

tions. JETRAD [79] is an exact next-to-leading order (�3s) Monte Carlo calculation

for inclusive QCD 2 jet processes. HERWIG is a parton shower Monte Carlo in-

cluding initial and �nal state QCD radiation, color coherence e�ects and azimuthal

correlations both within and between jets. These higher order e�ects are calculated

by resumming the leading logarithmic terms to all orders in �s. The leading log

approximation of Del Duca and Schmidt [86] is based on the BFKL resummation.

The averages of cos[n(����)] for these various theoretical predictions and the data
are plotted as a function of rapidity interval in Fig. 9.1 and Fig. 9.2. The second

moment n=2 of Fig. 9.2 might be sensitive to the shape variation of �� distribution.

The error bars for JETRAD, HERWIG are the Monte Carlo statistical uncertainties,

and the errors for the BFKL predictions represent the numerical calculation errors.

On the experimental data the uncertainty related to the jet energy scale is rep-
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Figure 9.1: The average of cos(� � ��) as a function of rapidity interval, for the

experimental data, JETRAD, HERWIG, and the BFKL predictions of Del Duca

and Schmidt. (for the �rst moment, n = 1)

resented as a gray band at the bottom of the plots. These energy scale uncertainties

and the calorimeter showering uncertainties are added in quadrature, and these

combined uncertainties are represented as an open band at the bottom of the plot.

Other systematic errors and the statistical errors are added in quadrature and rep-

resented as bars on the data points. The errors within horizontal bars on each data

point indicate statistical errors. The detector showering uncertainty at �� = 5 is

the largest among all systematic uncertainties.

As shown in the �gures the next-to-leading order prediction underestimates the
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and Schmidt. ( for the second moment, n = 2 )

decorrelation at large rapidity separation while the BFKL calculations of Del Duca

and Schmidt predict too much decorrelation over their range of validity. HERWIG,

however, seems to describe the data rather well over the entire rapidity interval

studied.
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9.2 Conclusions

We have made the �rst measurement of azimuthal decorrelation as a function of

rapidity separation in inclusive dijet samples at the center of mass energy
p
s = 1:8

TeV using the D� detector. We have calculated the azimuthal angle di�erence

between the two jets most widely separated in rapidity. The distributions of the

azimuthal angle di�erences are used to calculate the averages of cos(� � ��) and

the results were compared to various theoretical predictions as shown in Fig. 9.1

and Fig. 9.2.

JETRAD, an exact next-to-leading order Monte Carlo, shows more azimuthal

correlation at large rapidity interval than the experimental data since only two and

three jets are available in the �nal states. HERWIG, the parton shower Monte Carlo

using the leading log approximation technique (GLAP evolution), describes the data

rather well for all rapidity intervals. A prediction based on BFKL resummation

overestimates the decorrelation in the large rapidity interval. The characteristics

of GLAP evolution is the strong ordering in the transverse momenta of emitted

partons and involves hard and soft gluon radiation. On the other hand, BFKL

evolution is based on mostly soft gluon radiation. This di�erence may be the reason

that BFKL resummation estimates more decorrelation than HERWIG. This also

indicates that the Tevatron energy might not be high enough to explore the QCD

regime requiring the leading order BFKL approximation, or the smaller transverse

momentum threshold and larger rapidity interval are necessary to probe the BFKL

regime.
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