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ABSTRACT 

A DYNAMIC MOMENTUM COMPACTION FACTOR LATTICE FOR IMPROVEMENTS 

TO STOCHASTIC COOLING IN STORAGE RINGS 

MAY 1996 

DAVID NICHOLAS OLIVIERI, B.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Michael Church and Professor Monroe Rabin 

A dynamic momentum compaction factor, also referred to as a dynamic ~rt, lattice for the 

FNAL Antiproton Source Debuncher Storage Ring is studied, both theoretically and experimentally, 

for the purpose of improving stochastic precooling, and hence, improving the global antiproton 

production and stacking performance. A dynamic !:!..rt lattice is proposed due to the competing 

requirements inherent within the Debuncher storage ring upon rt· Specifically, the Debuncher 

storage ring performs two disparate functions, {i) accepting and debunching a large number of 

ps/pulse at the outset of the production cycle, which would perform ideally with a large value of rt, 

and {ii) subsequently employing stochastic cooling throughout the remainder of the p production 

cycle for improved transfer and stacking efficiency into the Accumulator, for which- a small value rt 
is ideal in order to reduce the diffusive heating caused by the mixing factor. In the initial design of 

the Debuncher optical lattice, an intermediate value of rt was chosen as a compromise between the 

two functional requirements. The goal of the thesis is to improve stochastic precooling by changing 

rt between two desired values during each p production cycle. In particular, the dynamic !:!..rt lattice 

accomplishes a reduction in rt, and hence the mixing factor, through an uniform increase to the 

dispersion throughout the arc sections of the storage ring. Experimental measurements of cooling 

rates and system performance parameters, with the implementation of the dynamic !:!..rt lattice, are 

in agreement with theoretical predictions based upon a detailed integration of the stochastic cooling 

Fokker Planck equations. Based upon the consistency between theory and experiment, predictions 

of cooling rates are presented for future operational parameters of the Antiproton Source with the 

dynamic !:!..rt. 
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SYMBOLS RELATED TO BEAM OPTICS 
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GLOSSARY 

-A-

The Accumulator Storage Ring The Accumulator is one of the two storage rings of the FNAL An­
tiproton Source with the purpose of collecting and storing antiprotons. 

Accumulator Efficiency: The Accumulator efficiency is the total beam power on the Accumulator 
injection orbit, which is averaged over a super-cycle, divided by the average numb~r of antiprotons 
stacked, ie. accumulator efficiency ~ A:FFTTOT / A:STCKRT 

FNAL Antiproton Source Debuncher: The primary purpose of the Fermilab Debuncher ring is twofold; 
to accept approximatajy 6.5µA/pulse. (there are 80 pulses which make up the incoming beam with a 
time structure of 1.5 [nsec]) of 8.9 GeV antiprotons (p) downstream from the production target and 
to subsequently reduce the momentum spread from !:l.p/p ~ 4% to~ .2%, and transverse emittance, 
from l ~ 2011" mm-mrad to ~ 511" mm-mrad, for improved transfer and stacking performance in the 
Antiproton Accumulator ring. 

Bunch r-0tation: A bunch of particles is defined as the collection of particle sharing the area in phase 
space within the separatrix, referred to as the bucket. Thus, bunch rotation refers to the collective 
circulation of particles in phase space along phase stable orbits. 

BEAMLINE: A collection of C++ objects for the purpose of calculating linear and nonlinear lattice 
parameters with results identical to MAD. 

betatron phase advance µ(s): is given by the phase in the solution for the particle trajectory through 

the accelerator µ( s) = J ds / fJ( s) 

Betatron Function (J(s): Given the homogeneous Hill differential equation, x" + l<(s)x = 0, the be­
tatron function is defined as the amplitude through x( s) = .Jf vl/J cos J ds / (J( s). Thus, the betatron 
function must satisfy 

2(J(J" - (J'2 + 4(32 
/{ = 4 

Cockroft-Walton: An electrostatic preaccelerator which provides negative hydrogen ions at 750kV. 
The large potentials are possible based upon the principle of charging capacitors in parallel and 

_ discharging them in series. 
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Debuncher /Accumulator Transfer Efficiency: The ratio of the amount of beam which is transfered 
into the Accumulator from the total integrated Schottky power (A:FFTTOT), divided by the to­
tal Schottky power (D:FFTTOT) in the Debuncher is referred to as the Debuncher/ Accumulator 
transfer efficiency. 

Dispersion: The dispersion function D( s) describes the local (at arc length s in the storage ring) 
transverse distance between the orbits of off- momentum particles and the design orbit. Thus, a 
definition of the dispersion function is .6.x(s) = D(s).6.p/p, for which .6.x(s) is the difference in the 
transverse excursion between the off- and on- momentum particles. 

Dispersion Killers: A dispersion killer is created at the interface between an arc section and a long 
straight section by creating a FODO cell with missing dipoles. The choice of a missing magnet 
dispersion killer forces the betatron phase to be 11" /3. 

11" Doublets: A 11" doublet refers to the perturbation of a pair of quadrupoles separated by 11" in 
b~tatron phase, and for which a localized dispersion wave is created between the two quadrupoles. 

Emittance The emittance is the phase space area occupied by the beam. Moreover, for the solution 
to the Hill equation x and x', the phase area occupied by the beam is bound by the ellipse given by 

l - = /X 2 + 2axx' + f3x' 2 

11" 

For a Gaussian distribution, the emittance may be written in terms of the phase space that contains 
a fraction of the beam. For the present case, the emittance is defined as that which contains 95% of 
the beam and is given by l = 67ru2 / {3. 

Feedforward electronics: In general, feedforward is a technique for increasing the effective bandwidth 
of a control system, such as the power supply voltage regulator circuit, by supplying the proper error 
signal without feedback. Thus, the feedforward signal is known or derivable prior to application to 
the control system. 

FODO cell: The FODO cell is the basic optical arrangement of quadrupoles in an alternating gradient 
synchrotron, which provides strong focusing. 

Fokker Planck Equation: The general character of a Fokker-Planck equation results from an approx­
imation of the Master equation, which describes stochastic processes. 
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HP 8990 Vector Signal Analyzer: The HP8990 is a digital .instrument which combines features of a 
wide-band super-heterodyne spectrum analyzer with the resolution of a dynamic signal analyzer. 

Localized Dispersion Waves: The notion of localized dispersion waves is predicated upon the the 
periodicity of the inhomogeneous Hill differential equation. Thus, for a given accelerator lattice 
with variable spring constant K(s), the Hill differential equation for the dispersion is 

D" + K(s)D - ~Po 
PP 

In terms of the solution to the Hill equation for transverse betatron motion, (3(s), an integral 
representation of the dispersion function is given by 

J vf3(s')f3(s) -
D(s) = 

2 
. Q K(s) cos(7rQ - lµ(s') - µ(s)l)ds 

S1Il7r 
(0.1) 

where Q is the fractional tune, (3( s') and (3( s) are the beta functions at the locations s' and s, 
respectively, and lµ(s') - µ(s)I is the betatron phase difference between s' ands. 

-M-

Magnet current bypass - shunt circuits: The active electronics for bypassing current from individual 
quadrupoles are referred to as magnet current bypass - shunt circuits. 

MAD: The Methodical Accelerator Design program is the industry standard lattice calculational tool 
and has originated and maintained at CERN. 

Main Injector Project: The Main Injector Project represents the first stage of the future luminosity 
upgrades at Fermilab within the immediate future. With respect to the operation of the Antiproton 
Source Debuncher, the predominant parameters represented by the Main Injector project are: (i) a 
faster repetition rate for producing j5s and a larger intensity (3.2 x 1012 protons/pulse -+ 5 x 1012), 

and (ii) a modification of the Debuncher yield of 6. 7 x 107 p/pulse -+ 8.9 x 107 [P/pulse], thus a factor 
of 1.32 above the present number of particles. With the incorporation of beam sweeping and a Li 
lens upgrades, the increase of antiprotons into the Debuncher shall be expected to increase from 
6.7 x 107 [P/pulse] -+ 18.5 x 107 [P/pulse], yielding a factor of 2.7 more particles than with present 
scenarios. 

Mixing Factor: A quantity which is a measure of the number of revolution periods it takes for a sample 
of particles to mix with an adjacent sample is the mixing factor, M. For a coasting beam with (i) a 
Gaussian transverse density distribution t/J, (ii) a momentum spread given by u11 /p, and (iii) a cooling 
system bandwidth W, an expression for the mixing factor is given by M = t/Jo/ [2Wl11h/1ru11 /p]. 
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Maximum 1r Doublet Filling: A complete design of 'Y~J) consists of maximally filling the arc sections 
with 1r doublets, for the purpose of minimizing the maximum current changes (fl/max) required. 

Momentum Compaction Factor: The momentum compaction factor is the circumference difference 
LlC, between the orbits of particles having different momenta, often referred to as off- momentum, 
from the orbit of the design particle. Thus, LlC/C = o:Llp/p, for which o: = 1/C f D(s)/ p(s)ds. 

Momentum Spread: The momentum spread Llp/p, shall refer to the full width containing 95% of the 
beam. 

Performance Parameters: (i} Debuncher p yield (YIELD), {ii) the Debuncher to Accumulator trans­
fer efficiency (DAE), (iii} the Accumulator stacking efficiency (ASE), and perhaps most important, 
(iv) the average stack rate (SR). 

Pickup £3 Kicker electrodes: The pickup and kicker electrodes utilized in the Debuncher stochastic 
cooling system are electromagnetic loop couplers. 

p production cycle: At the FNAL Tevatron complex, the p production cycle corresponds to the 
~ 2.4sec time in which protons are used to create antiprotons, the antiprotofis are then collimated, 
collected, and stored in the Antiproton Source. 

Separatrix: The well defined boundary in phase space between stable and unstable motion is refered 
to as the separatrix. 

Stochastic cooling: Stochastic cooling is the damping of transverse betatron oscillations and lon­
gitudinal momentum spread or synchrotron oscillations of a particle beam by a feedback system. 
In its simplest form, a pick-up electrode (sensor) detects the transverse positions or momenta and 
longitudinal momentum deviation of particles in a storage ring and the signal produced is amplified 
and applied downstream to a kicker electrode, which produces electromagnetic fields that deflect the 
particles, in general, in all three directions. The time delay of the cable and electronics is designed 
to match the transit time of particles along the arc of the storage ring between the pick-up and 
kicker so that an individual particle receives the amplified version of the signal it produced at the 
pick-up (22]. 

Stack Rate: The stack rate is the total antiproton beam current, averaged over one super-cycle 
(200sec/2.4sec = 83 production cycles). 

SEM grids: S.econdary ~mission monitors used for obtaining the beam size. 
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Simulated Annealing Optimization: The monte carlo optimization technique of simulated annealing 
has been introduced with particular emphasis upon large large combinatoric and non-smooth prob­
lems, such as the traveling salesman problem. Thus, given an object function, and a fundamental 
parameter, such as temperature, which is a measure of the energy of the system, relative to the 
ground state minimum, the global features of the object function may be probed at the beginning 
of the search since the system may search large areas of the object function without encountering 
barriers due to local minima. The temperature parameter plays the key role in deciding in a prob­
abilistic manner, whether to accept movement to some point in the configuration space which does 
not decrease the object function. As the system anneals, the sampled configuration space should 
reside close to the minima. 

Signal Suppression: An expression for the signal suppression factor t"m ( x, t), is given by the dispersion 
relation: 

N 7r {J2 E J 8.,P(x', t) dx' 
€m(x, t) = 1 + --2 F Gm(x) 0 1 ( ') • 

m T/Jo x x-x +iry 

Tune Footprint: The tune footprint is the path in the Vx, Vy plane as a function of time, during the 
A1tf !::it ramp. 

Tune footprint T tota1(t): The footprint excursion due to the total current errors during the A1tf At 
ramp, is given by Ttota1(t). 

Tune footprint Ti (t): The footprint excursion due to current errors in all devices during the A1t/ At 

ramp except for the jth device, is referred to as Ttotat(t). 

transverse tune v: The transverse tune is defined as the total number of betatron oscillations per 
turn in the accelerator ring, and is given by 

Transition energy (initial) 'Y~i): The value of the transition energy for the nominal Debuncher lattice 

is denoted by 'Y~i). In the dynamic A/t project /~i) = 7 .6 (corresponding to Tf = 0.0062) is the initial 
lattice configuration. 

Transition energy (final) 'Y~J): The value of the transition energy for the final lattice configuration, 

designed to improve stochastic cooling is denoted by/~!). In the dynamic A/t project, /~!) ~ 7.0 
(corresponding to Tf = 0.0093). 
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Timing Event T...,: A variable time corresponding to the interval in the cooling cycle at which the 

lattice attains the constant value -y}/) for improved cooling performance. Operationally, the time 
corresponds the on an $82 variable TEV TCLK trigger event for returning to the initial lattice for 
the beginning of the next cycle. 

Antiproton Debuncher Yield: The yield is obtained by measuring the total Schottky power obtained 
from the longitudinal monitor in the Debuncher, divided by the amount of beam current targeted 
from a measure of the injection line toroid (M:TOR109). 
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CHAPTER 1 

PROLOGUE: INTRODUCTORY CONCEPTS 

1.1 Introduction - The Debuncher Dynamic fl.it Project 

The primary purpose of the Fermilab Debuncher ring is twofold; to accept approximately 

6.5µA/pulse 1 of8.9 GeV antiprotons (p) downstream from the production target and to subsequently 

reduce the momentum spread2
, from l:l.p/p,..., 4% to,..., .2%, and transverse emittance, from i,..., 2071" 

mm-mrad to ,..., 571" mm-mrad, for improved transfer and stacking performance in the Antiproton 

Accumulator ring 3 . To accomplish this objective, rf- cavities are used to rotate and adiabatically 

debunch the beam on the time scale of ,..., 40 msec, after which stochastic cooling systems, -both 

transverse and longitudinal, are used to reduce the transverse emittance and longitudinal momentum 

spread throughout the remainder of the ,..., 2.4sec p production cycle. 

In the initial design of the Debuncher ring, the momentum compaction factor (a), or equiv­

alently the slip factor, 1J = a_.:_ l/12 , was chosen to have a value which is a compromise between the 

two competing functions of the ring; accepting and debunching a large number of ps/pulse, which 

requires a large It (77 small), and subsequently employing stochastic precooling, which requires a 

small value of It ( 1J large), prior to extraction. The goal of this experiment is to reconcile this 

compromise by changing 17 between two desired values during each p production cycle. 

1.2 Some Elementary Definitions and Physical Relations 

The momentum compaction factor is the circumference difference l:l.C, between the orbits 

of particles having momenta different, often referred to as off- momentum from the orbit of the 

design particle. Thus, l:l.C/C = al:l.p/p, for which a= 1/C § D(s)/p(s)ds. In this expression for 

a, the dispersion function D(s) describes the local (at arc length s in the storage ring) transverse 

distance between the orbits of off- momentum particles and the design orbit. Thus, a definition of 

1There are 80 pulses which make up the incoming beam with a time structure of 1.5 [nsec]. 
2 D..p/p shall refer to the full width containing 95% of the beam. 
3 The predominant difficulty in p production for high energy physics is with scale of the increase in phase space 

density which must be attained. For each~ 3 X 1012 protons on target, approximately 6.5 X 107 ps with D..p/p ~ .3% 
and e .l ~ 17tr are accepted into the Debuncher ring. The final requirements before ps are ready for injection into the 
Tevatron for.pp physics, are that N ~ 1012 with e.l ~ ltr and D..p/p ~ .1%. Such an increase in particle number and 
phase space density spans 7 orders of magnitude. 
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- the dispersion function is dx(s) = D(s)dpfp, for which dx(s) is the difference in the transverse 

excursion between the off- and on- momentum particles. In order to increase the momentum com-

paction factor for an existing storage ring, the equations just defined suggest that it is sufficient to 

increase the dispersion function. 

A convenient definition for the momentum compaction factor is through the transition energy 

'Yt. Since the transit time of a particle is given by r =Cf c/3, then dr fr= dC f C- d/3f /3. Utilizing 

the relations: dC fC = o:dpf p, and for a circular ring d/ ff= -dr fr then the following expression 

may be written 

df f I= ['Y- 2 
- o:] dpf p = 11dpf p 

The quantity 'Yt = lf via is defined as the transition energy. The physical implication of the 

transition energy follows from the fact that particles above transition ('Y > 'Yt) require a longer time 

for one revolution compared with the ideal particle, because of the larger average radius defined 

through the dispersion function. 

1.3 Changing _the Dispersion in the FN AL Debuncher 

The Debuncher ring has_ a circumference of 505 m and is composed of a sixfold symmetric 

separated function optical lattice. The basic arrangement of the ring consists of three long straight 

sections together with arc sections consisting of 57 regular FODO achromats in total. The lattice is 

designed to produce zero dispersion within the lbng straight sections in order to accommodate rf-

cavities for adiabatic debunching and stochastic cooling devices for precooling in all three dimensions. 

As a result of the optical scheme chosen for producing zero dispersion straight sections4 , each regular 

FODO cell has a betatron phase advance of Tr f3. Furthermore, the ring operates above the transition 

energy with large dispersion in the arc sections, thus limiting the momentum acceptance upon 

injection. The dispersion function in the arc sections reaches a maximum value of 2.4 m and the 

maximum transverse beta functions are approximately 14 m with tunes typically operated at 9.79 

horizontal, and 9.77 vertical. 

To accomplish the task of uniformly changing the dispersion function in the arc sections, 

while maintaining a large number of practical constraints, interleaved localized dispersion waves were 

4 The method used for producing zero dispersion in the straight sections is referred to a.s a missing magnet dispenrion 
killer. The importance of the special FODO cell is that boundary conditions upon the dynamical equations which 
describe the lattice parameters dictate the betatron phase advance must be 11" /3. 
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created by perturbing the field strengths (through changes in the currents) of judiciously chosen 

quadrupole pairs, which are separated by 7r in nominal betatron phase (A<p), and are referred to as 

7r doublets. Amongst the stringent constraints which the final design satisfied are the requirements 

that: (i) current changes, Al, to any quadrupole do not exceed ~ ±20 Amps due to the power supply 

limitations and present design of the current shunt devices used for individual focusing adjustments, 

(ii) the tunes shift between the initial and final /t is minimized such that Avz:,y ,...., ±.005 to avoid 

transverse resonance crossing resulting in beam loss, (iii)the dispersion function remains strictly 

zero in the straight sections due to the location of stochastic cooling devices and rf- cavities, (iv) 

the f3 functions do not exceed 10% of their nominal values 5 , and (v) the betatron phase advance 

between the stochastic cooling pickup and kicker A<ppu-K ~ 0 to avoid heating effects due to poor 

phasing. 

1.4 Resonance Issues 

A change in dispersion function with interleaved 7r- doublets in the arc sections is accompa-

nied with relatively large tune shifts, which must be removed through adjustments of the quadrupole 

magnet strengths located within the zero dispersion straight sections. While perfect (A'Yt/ At) ramps 

may be designed which produce a zero tune shift, the actual implementation must consider practical 

engineering issues such as the finite bandwidth of power supplies. Thus, in the actual dynamic A/t 

system, slew rates are restricted completely by hardware limitations. 

Since the magnet current errors during the A'}'t/ At ramps accounted for the major obstacles 

in avoiding beam loss due to tune shift, the dominant transverse resonances which lead to measurable 

beam loss are given in Figure 1.1 of the transverse tune plane. The lines in the figure correspond to 

the resonance condition 6 mvz:+kvy = i (m and k ±integers). Experimentally, the strength and width 

of the resonances were quantified by (i) moving the operating tunes ( llz:, lly ) , with adjustment of 

quadrupole field strengths in the zero dispersion straight sections, to values satisfying the resonance 

equation, and (ii) observing the beam loss through yield measurements at or near the resonance lines. 

From the results of the measurements, the following resonances cause beam loss: (i) the 3rd order 

sum resonances with (k, m, i) = (1, 2, 3), (0, 3, 3),.(3, 0, 3) (with a stopband width of Av,...., .006), (ii) 

5 In actuality, larger f3 functions at the location of the pickup and kicker tanks .would enhance the signal gain/length, 
thereby improving cooling performance. The difficulty in shaping the {3 functions in this manner, however, is a result 
of the location of these devices. Chapter 6 describes some possible schemes for future consideration. 

6 In the resonance condition equation mvx + kvy = i, i is the order of the resonance 
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the 4th order sum resonances with (k, m, i) = (±2, ±2, 4), (with stop band width of t::..v = .003), 

and {iii) the 5th order sum resonance with (k,m,i) = (1,4,5),(2,3,5),(3,2,5),(4,1,5), (with an 

associated stopband width of t::..v = .002). Avoiding these resonances placed considerable constraints 

upon the dynamic tl../t project. 

9.9 

9.8 

9.7 

9,6 

9.6 9.7 9.8 9.9 

horizontal Tune 

Figure 1.1: A diagram of a small region of transverse tune space indicating the dominant resonances 
leading to beam loss. 

1.5 Stochastic Cooling and the Mixing Factor 

Stochastic cooling is the damping of transverse oscillations and longitudinal momentum 

spread of a particle beam by a feedback system. With each revolution, the signal from a given dis­

tribution of particles is detected at a sampling rate given by the bandwidth of the feedback system. 

The sampled beam signal is subsequently applied back upon the same sample of particles down­

stream from the pickup. If a there existed a spread in revolution frequencies amongst the particle 

distribution, due to a finite dispersion and momentum spread, then particles of nearby samples will 

mix during subsequent revolutions through the ring. -The effect of mixing, or equivalently, producing 

more statistically independent sampling proc_esses, increases the stochastic cooling rates. 
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A quantity which is a measure of'the number of revolution periods it takes for a sample of 

particles to mix with an adjacent sample is the mixing factor, M. For a coasting beam with (i) a 

Gaussian transverse density distribution 1/J, {ii) a momentum spread given by up/P, and (iii) a cooling 

system bandwidth W, an expression for the mixing factor is given by M = 1/Jo/ [2Wl11lftup/P]. From 

this expression, an increase in the slip factor 17 decreases the mixing factor. 

Based upon the theory of stochastic cooling, the role of the mixing factor Mis more apparent 

from the equation describing the time evolution of the transverse emittance 7 cJ.: 

(1.1) 

In Equation (1.1) for cJ., the sum is over all sidebands of them- revolution harmonic corresponding 

to a frequency Wm= (m ± 11)fo. Although the cooling system has nonzero gain Ym(wm) only within 

the frequency band W from 2GHz - 4GHz, the sum over m is·finite. Furthermore, the open loop 

gain is modified by the closed loop feedback system through the quantity Tm(wm), referred to as the 

signal suppression factor. The first term of Equation (1.1) represents the cooling interaction, while 

the diffusive heating is described by the second term, which is proportional to {i) the mixing factor 

at each mth harmonic Mm(wm), and {ii) thermal noise/signal ratio at the mth harmonic Um(wm). 

Since the cooling term in Equation (1.1) is proportional to 'R.eal[gm(wm)] and the diffusion 

term is proportional to lgm(wm)l 2 , it is possible to define an optimal gain Yopt which maximizes 

the cooling rate of Equation ( 1.1): 1 / € l. [de l. / dt] . Because the stochastic cooling systems in the 

Debuncher are noise dominated, the systems operate far below the optimal gain. For improvements 

to the stoc~astic cooling performance, Equation (1.1) obviates the requirement to decrease the 

strength of the heating term through Mm(wm) and Um(wm)· In a future Antiproton Source upgrade 

project, the reduction of the thermal noise/signal term Um(wm) shall be accomplished with the 

implementation of liquid helium cryogenic systems for eliminating thermal noise within the front end 

electronics8 . Another approach for decreasing the strength of diffusive heating, and thus improving 

stochastic cooling, is by reducing Mm(wm)· The goals of this thesis for a dynamic .6.-yt lattice are 

tantamount to reducing the mixing factor Mm(wm). 

Together with transverse stochastic cooling systems, the Debuncher also performs longi-

7D. Mohl, Stochastic Cooling, from CERN Accelerator School Proceedings 1987 CERN 87-03, Vol. II,(453) 
8 A=ongst the Antiproton Source upgrade projects for the Main Injector project, a direct reduction in the 

noise/signal ratio (U) is scheduled with the replacement of liquid nitrogen cooling with liquid helium cooling ("' SK) 
of the front end pickup arrays and pre-amplifiers. For reference, see The Main Injector technical deaign handbook, 
Batavia IL, Fermilab Main Injector Dept. 1994 
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tudinal (momentum) stochastic cooling. An increase in TJ (decrease in 'Yt) shall also increase the 

momentum cooling rate due to the reduction of a diffusion term. Thus, increased precooling in all di­

mensions was predicted for the dynamic l:!:.-y1 project. Since the the mixing factor M""' 1/ [TJ(.6.p/p)], 

there exists a subtle competition between an increase in longitudinal cooling rate to the increase in 

transverse cooling rate. Thus, in order to predict the cooling rates for the dynamic l:!:.-y1 project, a 

full integration of the Fokker Planck transport equation was required. Based upon the successful 

comparisons between the predicted and experimental cooling rates, extrapolations have been per­

formed for the higher beam fluxes anticipated with the operation of the Main Injector. Moreover, it 

is with this extrapolation that the dynamic l:!:.-y1 project is expected to have significant cost/benefits 

performance improvements. 

1.6 Implications of Improved Precooling for the Antiproton Source 

Improved stochastic precooling in the Debuncher has direct benefits for the stacking of 

antiprotons in the Accumulator. Figure 1.2 is the result of an experimental study to quantify 

improvements to the Debuncher to Accumulator (D/ A) transfer efficiency with smaller transverse 

emittances. The smaller emittances cJ_ were obtained by extending the production cycle, and hence 

allowing longer cooling times. Measurements of the transverse beam size were obtained with SEM 

grids within the transfer channel, and the D /A efficiency was measured by taking the ratio of the 

total current in the Debuncher to that measured upon injection into the Accumulator. The results of 

the measurements indicate that a reduction of the emittance by a factor of 2 translates to an increase 

of the D /A efficiency by ""' 12%. Although this particular study could not predict the effect upon 

stack rate, since the longer cooling times result in less particles available for stacking, independent 

measurements suggest such an increase in the D /A transfer efficiency translates to a increase in the 

stacking rate by approximately 6%. 
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Figure 1.2: Debuncher to Accumulator (D/ A) transfer efficiency and transverse emittance as a 
function of the duration of the production cycle. 

1.7 Structure of Thesis 

The specific structure of this thesis is intended to facilitate, from several levels, a discussion 

of the technical challenges inherent within the dynamic Llrt project. First, details associated with 

designing a stable lattice with the required r}J) from the modification of an existing lattice design 

are presented. Together with design methodology inherent in the original Debuncher design and that 

for a dynamic Llrt, various theoretical underpinnings, historical perspectives, and measurements of 

the relevant lattice parameters shall be presented. 

A major ingredient associated with accelerator lattice design is often the need to solve a 

difficult constrained optimization problem. This was particularly true for the dynamic Llrt project, 

since the design was required to embody the original lattice concepts and constraints, while making 

dramatic changes to the dispersion. Standard optimization theory /techniques are discussed in the 

first chapter with specific_ application to the Debuncher dynamic t.rt lattice design. As a comparison 

to classical optimization algorithms, the method of simulated annealing is shown to be a possible 
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candidate for implementing difficult accelerator lattice design constraints. 

In the second chapter, details of the fast 6.11/ 6.t ramps (current slew) rates are presented and 

discussed through: {i) experimental examples and associated calculations illustrating the resulting 

transverse tunes as a function of time, {ii} engineering solutions to power supply regulation problems, 

and {iii} a complete characterization of the special case 6.1}!) /300msec. 

Together with hardware and regulation issues, questions about the generation of higher mul­

tipoles during the 6.1t/ 6.t ramps are addressed in chapter 2. Through comparison of the measured 

and calculated tune footprints, the beam may be used to assess whether the quadrupole focusing 

field is distorted by rapidly changing magnetic fields on the relevant time scales. Furthermore, the 

generation of sextupole components in the 1{ design is investigated through measurements of the 

chromaticity as function of time through the 6.1}'> / 6.t ramps. 

Issues related to stochastic cooling are introduced in chapter 3. Prior to investigating the 

effects of 6.11 , however, the cooling feedback system is described through experimental measurements 

which are used to extract inputs for a comprehensive computer model. Comparisons between the 

results of the computer calculation and the experimental cooling data are presented. 

The full results of the Debuncher dynamic /t project are given in the final chapter. Pre­

dictions from the stochastic cooling computer model, which is described in detail in chapter 3, 

are compared against experimental results. Based upon the success of the model, projections are 

made for the performance of stochastic cooling with a dynamic 6.11 lattice with Main Injector beam 

parameters. 
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CHAPTER 2 

THE 1if) LATTICE DESIGN: FUNDAMENTALS 

2.1 Introduction 

To optimize the performance of stochastic precooling within the Antiproton Debuncher 

Ring, while not degrading other functional requirements, an option is to to change 'Yt between 

two values; the original design value 'Yt = 7.63188(77; = 0.006155) at injection, to the final value 

-y~J) = 7.02655(11! = 0.00924) throughout the remaind_er of the production cycle, in order to increase 

the mixing amongst particles (a decrease in the mixing factor M). This chapter shall address the 

following issues: (i} the results from computational models of the nominal design lattice together 

with comparisons with experimental measurements of selected lattice functions, {ii} the theoretical 

underpinnings involved with decreasing -y?) ---+ -y~J) through localized dispersion waves produced 

with quadrupole 7r- doublets, (iii} the optimization problem for producing zero tune shift (dv ~ 0) 

between -y~i) and -y~J), (iii} the complete specifications for a -y~J) design, which includes comparisons 

to experimental measurements and hardware requirements, and (iv) the transverse resonances in 

the Debuncher relevant to the dynamic d-y, project. 

2.2 The Function of the FNAL Debuncher 

The fundamental role of the Antiproton Debuncher ring is predicated upon solving many 

difficulties involved with f> production [26]. For the luminosity objectives of the Tevatron project 

[32], it is such that an increase in antiproton number and phase space density must span 7 orders 

of magnitude. The obdurate technical challenges inherent in f> production are overcome at Fermilab 

in several stages and through a complex choreography amongst several different accelerators and 

storage rings. 

Figure 2.1 is a simplified illustration of the Fermilab complex layout. Antiproton (p) pro­

duction begins with acceleration of protons through a potential created by an electrostatic Cockroft­

Walton magnetron (negative ion) source. Bunches of H- ions are accelerated through a linear ac­

celerator (the LINAC) to 400 MeV and injected into a rapid cycling accelerator, the Booster. The 

energy of the protons is increased to 8 GeV in the Booster at which point they are injected into the 

Main Ring. 82 bunches of protons are accelerated to 120 Ge V in the Main Ring and may be used 
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for producing antiprotons. As described in the Tevatron I Design Report, the proton energy of 120 

GeV was selected for two reasons: {i) the p yield per unit volume per unit time does not increase 

appreciably beyond 150 GeV yet the operating costs increase dramatically beyond 120 GeV, and 

{ii) specific engineering issues of Main Ring dictate 120 GeV is the maximum energy which can be 

extracted from Fl 7 straight section. The j5 production momentum was chosen to be 8 GeV off the 

target, which was governed by {i) the fact that the j5 yield displays a plateau from 8-13 GeV /c, and 

{ii) the anti proton source matches the maximum energy of the Booster synchrotron. 

Debuncher 

l 

... 
Antiproton 

Source 

Acc1l9'ulator 
... ··· Linac 

p 

Booster 

p 

Main Ring/J'evatron 

Figure 2.1: A diagram of the FNAL Anti proton Source Debuncher/ Accumulator storage rings. 

Based upon yield measurements in the Debuncher, for every 106 protons incident upon the 

production target, 18 antiprotons are accepted into the Debuncher 1 . Since for the Main Ring beam 

current N ,...., 3 x 1012 protons, this corresponds to ,...., 6µAmps - p/pulse, or N ,...., 6 x 107 anti protons. 

Thus, for the purpose of obtaining the luminosities required of pp high energy physics, it is 

necessary to build up a collection of anti protons over several hours of production operation. For the 

purpose of producing, collimating, cooling and storing antiprotons, the Antiproton Source utilizes 

two storage rings - the Debuncher and the Accumulator. 

With each production cycle, the Debuncher ring accepts 80 j5 bunches having a time structure 

1 The ii accounting may be broken done further: (i) a total of 4 X 105 protons absorbed into the target, (ii) 300 ii 
are created within the AP2/Debuncher momentum aperture, (iii) -70 p absorbed in target and lens, (iv) -130 ii miss 
lens, and (v) -82 fall outside the transverse aperture of the AP2/Debuncher--+ 18 ii are accepted. Special thanks to 
Frank Bieniosik for supplying these estimates based on his work with the target sweeping project. 
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of 1.5nsec, an intensity of approximately 7µA/pulse, an energy of 8.9 GeV, a momentum spread 

.D..p/p"' 4%(95% FW) , and a transverse emittance 1: "' 207r mm-mrad. Since the time structure of 

the anti protons reflects the time structure of the targeted protons2
, the separate pulses are captured 

with rf-cavity voltage, which are frequency matched to the Main Ring. By allowing the particles 

to exchange energy with the applied rf electric field, the time structure of the antiprotons can be 

removed in a process referred to as bunch rotation. Within the .D..E - .D..t phase space, the rotation of 

the bunch of particles with a narrow time structure .D..t is exchanged for a narrow energy structure 

.D..E. Bunch rotation is accomplished in the Antiproton Debuncher with 8 rf- cavities, which produce 

a total initial voltage of 5MV (the rotation stage "' lOOµs) which is rapidly reduced to "' 120kV 

in order to slow the particles from rotating through more of the synchrotron phase. The voltage is 

then adiabatically reduced to zero with "' lOmsec and the rf- structure of the beam is removed. 

Stochastic cooling feedback systems in the Debuncher ring are used to precool the injected 

anti proton beam for improved stacking performance by the Accumulator. The details of the cooling 

systems are discussed at length in chapter 3. 

2.3 The Nominal FNAL Debuncher Lattice 

The FNAL Antiproton Source Debuncher is a sixfold symmetric, triangular shaped storage 

ring with an average radius of 80.42m. The shape of the storage ring was chosen for the purpose 

of obtaining maximum real estate for locating RF cavities and stochastic cooling devices within 

the optical lattice. The beam energy is 'Y = 9.52978 ( T = 8.0GeV and f3 = .99448 ), with a 

revolution period of r = 1.6948µsec. For a bending radius of p = l 7.44m, the magnetic rigidity 

is Bp = 296.5kG-m and the average dipole field strength is 1.7T for dipoles with an effective 

length of 1.6604m. The location of the Antiproton Source and Debuncher ring, relative to the other 

accelerators has been given in Figure 2.1. 

Within the long straight sections of the Debuncher ( labeled DlO, D30 and D50) , there are 

(i) RF cavities for performing phase space rotation and subsequent adiabatic debunching of injected 

2 Prior to targeting, bunch rotation is performed in the Main Ring to produce a narrow time structure in favor 
of a large t:..E. Increasing t:..E prior to targeting maximizes the number of antiprotons which are accepted into the 
Debuncher (since the momentum acceptance is a constant t:..p / p = 4 % ) 
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antiprotons3 , (ii} stochastic cooling pickup and kicker tanks 4 , and (iii) diagnostic beam sensing 

devices. By comparison, the arc sections are rather simple, consisting of regular FODO cells5 with 

sextupole chromatic correctors located at the entrance and exit of each quadrupole. 

A simplified illustration of the optical/electrical power configuration for one sector of the 

Debuncher is given in Figure 2.2. Represented in Figure 2.2 are: (i) the quadrupoles, by convex 

(focusing - odd numbered lenses) and concave (defocusing - even numbered lenses) thin lenses, (ii) 

the dipoles, by inverted triangles, {iii) although sextupoles are omitted from the diagram, they 

exist on either side of quadrupoles with alternating polarity, and (iv) the electrical power supply 

connections: D:QSS, the straight section power supply for Ql through Q5 with associated magnet 

current shunts, D:QF, the supply for the focusing odd numbered quadrupoles Q7 through Q19, 

and D:QD, the power supply for the even numbered quadrupoles Q6 through Q20. Also indicated 

in Figure 2.2 are the two general divisions of the lattice;. the long dispersion free straight section 

- composed of quadrupoles ~Ql through Q6, and the arc section - consisting of quadrupoles Q7 

through ~Q20, and dipoles D7 through Dl9. 

D:QF 
.---------1---------·---------·---------·--------"t"--------1 

D:QSS I I I I D.·QD I 
I I I I I 1 

r .... ·······1···:·· .. ·····1········ .... 1 ···········1 t·········~··········t·········l·········•·········l·········+·········t········•··········+········t·········+·········t·········r········t 

~~~~~~1· •.• ' .•• 
~ 1 ~ l ~ ~ ~v~v~\L~dv~dv~viv~v~v~vj 

2 3 4 

........... dispersionjree 
straight section 

5 6 7 8 9 \IO! }] 12 13 14 

missing magnet 
dispersion killer 

arc section 

15 16 17 18 19 20 

Figure 2.2: An optical element diagram of a representative sector in the Debuncher ring. 

For the purpose of obtaining zero dispersion in the long straight sections, FODO cells, 

3There are a total of 8 RF cavities (denoted DRFl - DRF8). Six of these cavities achieve a maximum voltage gain 
per turn of 5MV over approximately 50µsec, while the remaining two cavities adiabatically reduce the voltage from 
120 kV to less than 5kV in ~ lOmsec. 

~Tanks refers to 4 sets of 32 pickup pairs (and kickers) which are installed in the DlO straight section (D30 straight 
section). The number of pickup pairs is a multiple of 2 and as large as possible to get the maximum gain per length 

5 A FODO cell refers to the standard strong focusing arrangement of alternating gradient accelerators, having the 
structure: focusing (F) - drift (0 )- defocusing (D) - drift (0 ). 
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referred to as dispersion killers [11], [12], [13], which omit dipole bending magnets, are located at 

each of the interfaces of the arc sections and the straight sections. In Figure 2.2 the location of the 

FODO cell with missing dipole magnets is illustrated between Q9-Q10, and QlO-Qll. 

As a result of specific design choice of the missing magnet dispersion killer, the boundary 

conditions require~ for matching lattice parameters across the FODO cells imply 6 the betatron 

phase advance per FODO cell be ll.cp = 7r/3. 

Thin lens formulas may be used to obtain approximate values of the lattice parameters at the 

locations of the focusing and defocusing quadrupoles for a simple FODO cell [102]. For the given thin 

lens strengths7 in the Debuncher arc section FODO cells, Droc = 0.337267m- 1 and 8def = 0.33014m- 1 

and FODO cell length L = 8.865m, the phase advance in each transverse dimensionµ,,, and µy, 

respectively, may be obtained with Equations (2.1) 

£ 8 - cosµ,, + cos µy - 2 
Udef foe - - £ 2 

i: i: _ cosµy - cosµ,, 
Ufoc - Udef - L (2.1) 

With µ,, R: µy = 7r /3, approximate expressions for the lattice functions, f3 and D, at the 

location of the focusing and defocusing quadrupoles may be obtained. The betatron function at the 

location of focusing quadrupole in the standard arc section FODO cell is given by: 

L { 15.2[m] 
{3~~~ = sin [1 ± L8d/6] = 

µr,y 5.2[m] 
(2.2) 

which is approximately equivalent to the results at the defocusing quadrupoles, ~~;. Expressions 

for the dispersion may be obtained at the center of the focusing and defocusing quadrupoles of a 

FODO cell in the thin lens approximation, and are given by Dfoc and Ddef, respectively, 

Droc = _L_<I>_[8_dL_+_8_] 
8(1- cosµ,,) 

Ddef = _L_<I>_[ 8_d _+_8 '~]-
28d( l - cosµ,,) 

(2.3) 

(2.4) 

for which <I> = Ldipote/ p R: 0.092 is the bending angle of the sector dipole magnet. Thus, with 

µ,,,y R: 7r/3, and L = 8.865m the values of the dispersion are Dfoc = 2.lm, and Ddef = l.55m. 

6 The fact that the phase advance per FODO cell must be 7r /3 may be derived by elementary methods demanding 
the mapping across FODO cells obey a unitary transformation [89], [90), [93]. Given the transfer matrix M across one 
FODO cell and a lattice function(, then the symplectic condition demands: (M = (. One then writes the transfer 
map for a FODO cells with and without dipoles, e.g. M1 and M2 respectively, constructs M = M 1 M 2, and then solve~ 
the symplectic condition. The result is that the only manner in which the symplectic condition would be satisfied is 
if the {3- phase advance, cp = 7r /3 

7 The thin lens strengths bj correspond to the inverse of the focal length, or B' /[Bp]. 
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Furthermore, the thin lens approximation for the transition energy due to a single FODO cell, is 

given by 

_!__ = <1>
2 [5 COS µx - 3 COS µy + 46] 

-d 48 (1 - cosµx) 
(2.5) 

The numerical value of It obtained with the approximate FODO cell thin lens equation, and which 

assumes the entire storage is filled with regular cells, is given by It ~ 7.76. This value compares 

well with the exact value of It = 7.631. 

Utilizing a standard linear lattice model, Methodical Accelerator Design (43] (MAD), the 
-

lattice parameters may be calculated at all points in the storage ring. The dispersion and transverse 

f3 functions of nominal lattice in the Debuncher from a calculation with MAD is given in Figure 2.3. 

4.5 

3.5 

2.5 

1.5 

0.5 

-0.5 
0.0 200.0 400.0 

Arc Length [m] 

Figure 2.3: The nominal Debuncher lattice parameters for 1/ = 0.006 from MAD calculation. 

2.3.l Characterizing the Lattice 

In this section, the general notions about the optics in the Debuncher are developed further 

through comparisons between experiments and the results from ~omputer models. Moreover, these 

comparisons may be used to benchmark predictions for the design of l~J) in order to gain an appre-

ciation for the associated errors between simple linear lattice calculations and the actual Debuncher 
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optics. Specifically, measurements and calculations shall be described for the following quantities: 

(a) the /3 functions, (b) the chromaticity {, (c) the dispersion, D(s), and {d} the transition energy 

'Yt, or equivalently, the slip factor TJ = 1/'Yf - 1/'Y2
. 

2.3.1.1 Predictions/Measurements of the /3 Functions 

The transverse betatron functions, f3x and /3y were measured at the location of four quadrupoles 

equipped with power supply shunt circuits. Since the first order transverse tune shift, .6.v<1), is 

proportional to the perturbed quadrupole strength .6.K, the beta function are easily extracted. 
-

Specifically, the first order tune shift due to a change in the quadrupole field gradient is .6.v< 1) = 
j1f § f3(s).6.K(s)ds ::: },,/3;(s) J:

0
°+L .6.K(s)ds, for which /3; is the beta function at the i-th quadrupole. 

Utilizing I versus K magnet data, a parameterization was used for evaluating the integral, such that 

J;
0
°+L .6.K(s)ds = a0 + a1I + a2 J2 + aal3

• For the purpose of reference, tQ.e values of the fitted 

parameters, a;, for the three types of quadrupole magnets in the Debuncher are iisted in Table 2.1. 

Table 2.1: I versus K cubic fitting parameters a; for the three types of quadrupole magnets in the 
Debuncher. 

Magnet Type 

SQC 
SQD 
LQE 

Length 

0.70104 m 
0.82800 m 
0.87376 m 

3.59 x 10-4 

-2.19 x 10-4 

0.095 

1.323 
1.344 
0.199 

0.5288 
0.3738 

-5.7 x 10-2 

-1.985 
-0.848 

1.28 x 10-2 

A comparison between the measured transverse /3 functions and those calculated with the 

lattice code BEAMLINE8 [63], [64], [65], at the location of four quadrupoles are listed in Table 2.2 

together with the percentage differences between the model and experimental result. In Table 2.2, 

ll.6./3; I = (/3j - f3J)//3j, for which /3j is the model calculated value and /3J is the experimental 

value. Within the associated errors of the measurement, the results of the /3 at a finite number of 

locations in the ring are in agreement with the model calculations. Thus, the averages are given by 

(i) (%l.6./3xl) "'7.3 ± 2.7, and (ii) (%l.6./3yl)"' 10.8 ± 1.3. 

8 BEAMLINE is a collection of C++ objects for the purpose of calculating linear and nonlinear lattice parameters 
with results identical to MAD. 
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Table 2.2: Comparison between measured and predicted /3 function values at the location of four 
quadrupoles in the Debuncher. 

Magnet 

QSlOl(F) 
QS102(D) 
QS305(F) 
QS306(D) 

15.79 ± 0.78 
4.78 ± 0.24 

18.46 ± 0.92 
5.94 ± 0.30 

f3 e 
y 

4.22 ± 0.21 
13.08 ± 0.65 
5.06 ± 0.25 
11.76 ± 0.58 

2.3. l.2 Predictions/Measurements of Chromaticity ~ 

17.95 
4.72 
17.73 
5.30 

flm 
y 

4.72 
14.30 
4.61 
13.81 

12.0% 
1.2% 
4.1% 
12.0% 

10.5 % 
8.5 % 
9.7 % 
14.8 % 

Chromaticity is defined as the variation of the transverse tunes with energy,~= Av/[Ap/p]. 

Within the Debuncher, sextupoles are used to correct the natural chromaticity9 in each transverse 

dimension, (z:o :::::: -N j?r tan[µ.,/2] :::::: -10, and ~iio :::::: -11.6 [32], which results from magnet imper­

fections in the dipole and quadrupole fields. Although corrections are made with sextupole fields, 

there still exists a finite energy dependence of the tunes across the momentum aperture. To measure 

the chromaticity in each transverse dimension, the transverse tunes were measured for several values 

of Ap/p. 

For each transverse tune measurement, protons were bunched and decelerated/accelerated 

using the DRF3 rf cavity 10 . To facilitate further discussion, the raw data for the chromaticity 

measurement is given in Table 2.3. 

Table 2.3: Result of chromaticity measurement for 1J = .006 

ho[MHz] A/ If x 10 'I Ap/p x 10-2 11., lly 

53.10021 -0.5631 -0.9082 0.7552 ± O.Q15 0.8287 ± 0.017 
53.10132 -0.3540 -0.5710 0.7620 ± 0.015 0.8332± 0.017 
53.10243 -0.1450 -0.2339 0.7674 ± 0.015 0.8359 ± 0.017 
53.10286 -0.06403 -0.1033 0.7740 ± 0.015 0.8261 ± 0.017 
53.10464 0.2712 0.4374 0.7841±0.015 0.8398± 0.017 
53.10565 0.4614 0.7441 0. 7904 ± 0.016 0.8416 ± 0.017 
53.10676 0.6704 1.081 0.7850 ± 0.016 0.8398 ± 0.017 

In the first column of Table 2.3 is the readback frequency of the RF cavity (at the h = 

90 harmonic of the revolution frequency), obtained after the beam has been either accelerated or 

9 For thin lens formulas and for a sextupole correction strength given by m = B": ez = I ds{J;i:(k- mD,,) and thus 

the natural chromaticity is found by setting m = 0. For the thin lens FODO cell e,,0 = -1/n: tan[µ.,/2]. 
10 The Debuncher DRF3 RF cavity is tuned to 1.23MHz. This cavity is used for diagnostic purposes. 
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decelerated to the desired point in the momentum aperture and the cavity voltage reduced. The 

readback frequency corresponds directly to the revolution frequency of the beam centroid. 

Using a measured value of the slip factor 11 , T/ = 0.0062 ± 3. x 10-4 , the momentum spread, 

(6:..p/p) = (6:..f / /)/TJ, may be calculated. Figure 2.4 gives the results of the least square fits to the 

data in Table 2.3. The tune shifts, 6:..vi, as a function of 6:..p/p are then a direct measure of the 

chromaticity. The results of the measurements are ex= 1.74±0.24±.015 and e" = 0.635±0.23±0.017. 

The first error quoted for ex,y are the standard deviation of the respective linear least square fit, 

while the second value corresponds to the error associated with the error in reading the correct value 

of the transverse tune (an error of,...., 5% which is incorporated in the error barrs of of Figures 2.4(a) 

and (b)). 

0.M) 

! 0.7! 
i! 
] 

-~ 
~ 0.76 

o.u 

Horiwnlal ChromaJicily 

o.n c_~_,_~__J'----~--'-~---'-~-'-~~ 
.0.015 .0.010 .0.005 O.IXJO O.IXJ5 0.010 0.015 

dplp 

(a) Result of horizontal tune shift D.v_,, with D.p/p 
The fit to the·chromaticity is e_,, ::: 1.74 ± 0.24 ± 
.015 

Vertical Chromaticiiy 

0.860 

l+l1 l+t 0.840 

0.820 

0.800 

0·~.015 .0.010 .O.IXJ5 O.OIXJ QIXJ5 0.010 OJJ/5 
lf>'p 

(b) Result of vertical tune shift D.vy with D.p/p 
The fit to the chromaticity is ey ::: 0.635 ± 0.23 ± 
0.17 

Figure 2.4: Chromaticity data with associated linear least square fit. 

11 The details of the measurement of ri is given in the following sections. The error on the slip factor measurement 
is ±5%, which comes from the calibration error associated with the cavity voltage used in the measurement. 
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2.3.1.3 Predictions/Measurements of the dispersion, D(s) 

The local function describing the transverse difference in the orbits between off- momentum 

particles and the design particle, is the dispersion function, D(s) = t::..x(s)/(t::..p/p). Measurements 

of the horizontal closed orbit !::J.x(s) as a function of t::..p/p were obtained with the use of beam 

position monitors (BPM) located throughout the ring at the location of the focusing quadrupoles. 

The dispersion D(s;), at the locations; of each BPM , is extracted from the variation of !::J.x(s) with 

t::..p/p from linear least square fits. Figure 2.5( a) and (b) are two representative plots of specific BPM 

measurements for different t::..p/p obtained from locations corresponding to {i) a quadrupole in the 

dispersion free straight section, and {ii) from a quadrupole in the arc section, respectively. Error 

bars associated with the BPM data are approximately 5%, while the resulting dispersion should 

also contain the standard deviation of the linear least square fit, as.. well as an overall (calibration) 

systematic error between BPMs of approximately 10%. Despite the large systematic errors, the 

assumption of a linear dependence between the closed orbit !::J.x( s) and the energy is validacross 

the entire momentum aperture, and justifies the linear least square fit method for extracting the 

dispersion. 

BPM·I @ DIOQ (s= .• 15m) 

0.0500 -------------~ 

:~ 
~ 0.(!400 ID III R III ~ .,, 
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0.0300 '---~--'--~-~~--'--~---" 
-0.0020 OJX)()(} 0.0020 

d{ll{I 

0.()()40 0.00{,() 

(a) BPM-1 at the location of the quadrupole de­
noted by lOQ, which corresponds to quadrupole 
1 in Figure 2.2. 
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(b) BPM-10 at the location of the quadrupole 
denoted by D1Ql9, which corresponds to 
quadrupole 19 in Figure 2.2. 

Figure 2.5: Representative measurements from the BPM data as a function of !::J.p/p. 
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The results of the least square fits for obtaining a measurement of the horizontal dispersion 

D(s) and a comparison with the theoretical prediction from BEAMLINE (represented by the dotted 

line ) are given in Figure 2.6(a). In _Figure 2.5, the error bars associated with the measured data 

correspond to {i) the variance of the linear least square fits, and {ii) an overall systematic error 

of 10%. The differenc~ between the measured and predicted values of the dispersion, .6.D(s) = 
Dpred. - Dexp shall be used as a scale factor for comparisons to lattices with rV). Large differences 

between the predicted and measured dispersion in sector 50/60 ( arc length s ,..., 350m thru 500m 

) are believed to be attributed to poorly functioning BPMs and not a true artifact of the lattice 

functions12 . As such, the sector 50/60 data shall be omitted from further consideration and from 

comparisons with D(s) from .6.r{ lattices. 

Predicted I Mea.rured Dispersion 
!J=.006 

2.5 ---~--~--~--~--~--~ 

J.5 

0.5 

'' ~ 
j[n-\ RI 
fN 1 ~ 
I I i · 
I I + I + ::t:+ ± 
I * I , 

I 

. I +I ..-
-0.5 ~--~--~--~--~--~--~ 

0.0 200.0 400.0 600.0 
Arc Lenglh {m/ 

Figure 2.6: A Comparison of the predicted and measured dispersion for the TJ 
lattice. 

0.006 nominal 

12 The fact that the 50/60 sector show such large error deviations in all of the data is an indication of improper 
functioning of the BPMs in that sector. By contradiction, if there indeed existed a dispersion wave in sector 50/60 this 
would not be localized and would also degrade the measurement of -Yt· Since neither is observed, one may conclude 
that all evidence taken together, the BPM data in that sector should be ignored. 
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2.3.1.4 Predictions/Measurement of the Slip Factor, 1J 

The slip factor, defined by the equation 7J = a - "Y
1
2 and the momentum compaction factor 

a= -..!,, may be measured by recording the observed synchrotron sideband frequency f, as a function 
"Y' ' 

applied RF- cavity voltage V;. f from the longitudinal bunched beam Schottky spectrum [27]. An 

expression for the slip factor, and thus /t, in terms of other known constants is given by Equation 

(2.6) 

_ 27rf]/32 E _ 27rL/c(pbc)f] 
1]- - - -

hfJeVrj FrJ(eVrf) 
(2.6) 

The constants which appear in the Equation (2.6) are given by: L = 505294mm, p = 

8.89GeV /c, and Fr f = 2.36MHz. Upon substitution into Equation (2.6), the expression relating the 

synchrotron frequency to the applied RF- voltage is given by: 

(2.7) 

The longitudinal Schottky - bunched beam spectrum at the 126th harmonic for two different 

applied RF- voltages, Vrr = 705.4V and Vrr = 1321V, which are given in Figures 2.7(a) and 2.7(b), 

respectively, depict the synchrotron sideband spectra. The superb resolution in the measurements 

of the synchrotron spectra was possible with the HP 8990A vector signal analyzer [7]. 
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.7,0 

l.oftg. Sclwn/cyw!V(>f) = 705.4 /VJ 
fs=4.992/Hz/ 

I 
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I 

-9.0 ~~-~-~-~~-~-~-
-UW .JO.n 0.0 JO.O 20.0 

Wr~ydijference /Mt!V} 

(a) V,f = 705.4V and ls = 4.992 Hz 

U.gScho11/cy""V(>f) = 1321 /VI 
/1= 8325 /HzJ 

·5.0 c------,.----,----,---r-----,1--,--1 ---,-------, 

..... ,.l)pi ' 

~" ! ' I I I 
' ' ' ' 
!---- ----!-- -~---~-

I I 

-9.0 ~~-~-~-~~-~-~-
·20,0 .JO.O 0.0 /0.0 20.0 

w,,_., difftrt1tet /MtV/ 

(b) V,1 = 1321 V and ls = 8.325 Hz 

Figure 2.7: Power density (dB/Hz) versus energy difference x = E-E0 of the longitudinal Schottky 
signal (126th harmonic) for obtaining the synchrotron frequency f,. 
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Figure 2.8 is the result off? versus the RF- cavity voltage measurements13 , and Equation 

(2.7): f? = 2.51 x 10- 2 v(rf). The error bars in Figure 2.8 correspond to 10% of the abscissa value 

due to the error in calibration of the RF- cavity voltage, and approximately 5% in the ordinate, 

which is due to the error in reading the correct value of the synchrotron frequency from Figure 2.7. 

The slope of the least square fit through the data gives the measured value of, 17 = 0.0062 ± 6 x 10-4 

which is in excellent agreement with the theoretical value of 17 = 0.0061. 

Synchrotron Frequency vs RF Voltage 

300.0 

......, 200.0 

~ .,...., 

100.0 

0.0 ~-~-~-~-~-~-~-~-~-
0.0 500.0 1000.0 1500.0 2000.0 

RF Voltage V 1 

Figure 2.8: Measurements of the synchrotron frequency (!;) as a function of the rf- cavity voltage 
on DRF3 (Vrr). 

2.4 fl/t Lattice Design 

In the previous two sections, the function and optics of the nominal Debuncher lattice 

were described both through experiment and from the basic linear lattice model. Based upon the 

agreement between the measured and predicted lattice parameters, the linear lattice model was 

expected to be an accurate tool for the design of the dynamic fl/t lattice. This section addresses 

the inherent design constraints together with the analytic methods utilized for obtaining /~!). 

13 The RF- cavity scale factor must be used: 688V /V 
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Since 'Yt- 2 = 1/27rRJ dsD(s)/p(s), in order to change /t without moving magnets or chang­

mg the beam energy, it was necessary to increase the dispersion in the arc sections. The two 

fundamental constraints, are {i) the dispersion must be increased while maintaining zero dispersion 

in the straight sections, and {ii) fl/t be accomplished with an overall zero tune shift. Tertiary 

constraints were also presented problematic considerations. Thus, {i) the change in the betatron 

phase advance per FODO cell was to be kept to a minimum, (6ip13 :S 5%), {ii) the betatron phase 

advance between the pickup and kicker must not change, ( 'PPK ::::::: 0 ), {iii) it was necessary to 

keep the maximum beta function well controlled to avoid aperture restrictions, ( 6f3max ::; 10% ), 

and{iv) also due to aperture restrictions, the maximum value of the dispersion function should not 

attain too large a value at one location, ( 6Dmax/ Dmax :S 10% ). Indeed, the average value of the 

dispersion should ideally increase uniformly throughout the arc sections. 

Amongst all the constraints placed upon the resulting lattice parameters in the design of 

1}1), were the very important hardware constraints and limitations. In particular, {i) the original . 

lattice must be part of any dynamic fl/t design, which means that it was not possible to change the 

location/size o( magnets, add magnets, or add/modify the basic topography of the power supplies, 

and {ii) due to fast ll1t/ flt ramps (current slews), it was absolutely required to minimize the 

maximum current change ( !llmax ) required to produce 1V). 

2.4.l Early motivations and historical review 

Although there have been several investigations throughout the years which have been con­

cerned with lattice schemes for modifying /t, the motivations have been quite different from that of 

the present thesis. Such investigations were primarily concerned with microwave instabilities caused 

by longitudinal space charge forces at the transition energy. The space charge forces increase dra­

matically at the transition energy because the bunch length tends to zero as df /d[!lp/p]--+ 0 [31]. 

The result is a filamentation of the longitudinal emittance from {i) the change in the equilibrium 

bunch length, and (ii) the associated space charge tune shift. 

Thus, attempts to avoid emittance growth at transition have historically motivated novel 

lattice cell arrangements, which have departed from the basic FODO scheme. The first lattice 

schemes implemented were designed to jump the transition energy with time scales faster than the 

onset of the microwave instabilities. Despite the success of the /t- jump methods, later generation 
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machines were designed with the transition energy instability problem particularly in mind. These 

later generation designs sought to avoid the problem altogether by pushing the lattice /t beyond the 

range of the accelerating particles, and thus, the lattice designs departed further from the simple 

FODO cell arrangements. Present generation designs have addressed the problem with even more 

novel basic lattice cells which render /t imaginary. In this section, some of this work shall be reviewed 

from the perspective of what could be borrowed in redesigning an existing lattice - the Debuncher -

with only the possibility of changing the quadrupole field strengths. 

2.4.l.1 Historical Perspective 

Early work on the subject of /t jump schemes (then referred to as the Q- jump scheme) 

were reported by Hardt et al [45] for work on the CERN CPS as early as 1969. As mentioned in 

the previous paragraph, it was realized that instabilities at transition led to longitudinal emittance 

dilution. An obvious solution to the problem was to change /t very rapidly as the particles were 

accelerated through transition. The Q- jump scheme used in the CPS [46] used 6 sets of regularly 

spaced quadrupoles with identical field strengths and polarities to produce O/t ~ 0._3, and with a 

tune shift of 011 ~ .25. In the literature by Hardt et.al., equations were developed for (i) the first 

order modulation /:)./3, and (ii) the first order modulation of the transition energy O/t, for small 

perturbations due to a set of doublet lenses. The equations developed by Hardt et al were specific 

to the CPS having a cell structure FOFDOD with a phase advance of 7r / 4. 

A brief review of /t jump methods was reported by T. Risselada [82] in a recent CERN 

Accelerator School Proceeding. In this paper, specific theoretical details for the earlier work at 

CERN were presented, and in particular, a description of 7r- doublets 14 and the notion of producing 

localized dispersion waves. 

Later, high /t lattice schemes were investigated and used by many groups to avoid the 

instabilities at transition altogether. An early paper by Gupta et al [44] describes several schemes 

to increase the transition energy above the acceleration ranges for the TRIUMF KAON factory 

accelerator which was being designed for lOOµA proton beams at 30GeV. Since the transition energy 

from Courant and Snyder [30] is 

-2 __ Q3 ~ lanl 2 

'Yt - C L...J Q2 _ n2 
n 

14 As shall occupy much of the discussion in this chapter, 7r- doublets are perturbations of quadrupole lenses which 
are separated by 7r in betatron phase. 
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for which (i) the Fourier amplitude an = 2~ J0

2
" (3312 / pe-in<l>d<f;, (ii) f3 is the transverse beta function, 

</J is the normalized betatron phase advance which advances by 27r for a full revolution period, and 

(iii) p is the local curvature, the principle for changing the transition energy was to produce an 

extra super-periodicity S and thus excite one of the Fourier components an for n = S 15 . From the 

KAON factory work, modulated drift lattices, missing magnet lattices and other novel arrangements 

were developed, which contrary to implementing Q- jump schemes with an existing machine, had no 

restrictions upon magnet locations in order to produce the desired modulation of the f3 functions, 

or equivalently, an extra super-periodicity at n = S. More recently, designs at the SSC for the 

low energy booster ring also considered similar lattice schemes to those investigated for the KAON 

factory for producing a high It storage ring [101]. 

With a similar spirit used previously for the design of high It lattices, which avoid the 

instability problem at transition altogether, imaginary It lattices were proposed and investigated at 

Fermilab by D. Trbojevic, K.Y. Ng, and S.Y. Lee, for early conceptions of the Main Injector lattice 

[56], [57]. 

Recently, a project at SPEAR [96] was attempted for a variable momentum compaction 

electron storage ring for the purpose of controlling synchrotron tune and bunch length. Due, however, 

to -limitations posed by the dynamic aperture, the project was abandoned. 

2.4.2 Some comments on designing the dynamic It lattice 

Although the motivations and constraints of the dynamic .D..1t project are different from (i) 

1-jump schemes, (ii) high 1 lattices to avoid transition crossing, (iii) imaginary I lattices, and (iv) 

even dynamic It lattices as used in an electron storage ring for controlling bunch length, the basic 

principles affecting It follow from the basic accelerator physics principles contained within the early 

paper by Courant and Snyder. 

Within the following sections, the details for creating localized dispersion waves in the De-

buncher ring with 7r doublets shall be presented. First, the basic equations shall be given which 

express the local property of the perturbations in 7r doublets. Next, first order expressions for the 

tune shift .D..v and .D..1t shall be derived through a standard perturbation theory of Courant and 

15 There is nothing deep in this statement, since the solutions of Hill's differential equation for the dispersion function 
and the f3 functions are intimately connected. The statement of creating a non-zero spectral component at n = S, 
which people often refer to unwittingly as an extra super-periodicity is the same as creating localized dispersion waves 
as shall be seen later in the text 
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Snyder to probe the dependence upon the change in 7r doublet strength Ilk. The first order ex-

pression for ll/t is then used to make simple estimates of required field strength changes to change 

ll/t by the full amount, as well as predictions for the expected tune shift. And finally, the design 

with a maximum 7r doublet filling of the arc sections is given together with {i) the full results of 

lattice parameters, (ii) the calculated tune shift !l.v from MAD and/or BEAMLINE, and (iii} the 

calculated fl/~!) from MAD and/or BEAMLINE. 

2.4.3 fl/t with localized dispersion waves 

-

The notion of localized dispersion waves is predicated upon the the periodicity of the in-

homogeneous Hill differential equation. Thus, for a given accelerator lattice with variable spring 

constant f{ ( s), the Hill differential equation for the dispersion is 

D" ( )D 1 Po +Ks ---
PP 

In terms of the solution to the Hill equation for transverse betatron motion, f3(s), an integral 

representation of the dispersion function is given by Equation (2.8): 

J vf3(s')f3(s) / 
D(s) = 

2 
. Q K(s) cos(7rQ - /µ(s) - µ(s)/)ds 

sm 7r 
(2.8) 

In Equation (2.8) Q is the fractional tune, (3(s') and f3(s) are the beta functions at the locations s' 

and s, respectively, and /µ(s') - µ(s)/ is the betatron phase difference between s' ands. 

Perturbations to existing quadrupole strengths at locations Si, enters Equation (2.8) from 

the spring constant K(s) = l::llk(s;)c5(s - Si), and upon integration over the full accelerator, the 

resulting dispersion wave /lD(s) is given by: 

(2.9) 

Because of the absolute value /µ(s')- µ(s)/ appearing in Equation (2.9), the quadrupole per­

turbations create cusps in the closed orbit !lx( s) (and D( s)) at locations Si. Thus, if two quadrupole 

strength perturbations are chosen at locations s1 and s2 having a betatron phase difference Ill.fl= 71", 

then the resultant /lD(s) = /lD(llk1,s1) + /lD(ll.k2,s2) may be localized with the proper choice 

of llk1 and llk2. This arrangement, referred to as a 71"- doublet, is the basic building block in the 

design of the dynamic ll/t design. 
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2.4.4 Introduction to 11"- Doublets in the Debuncher Ring 

Since the D..cp = ( 11" /3)/[FODO cell] in the Debuncher ring, a 71"- doublet is formed with 

two quadrupoles separated by 3 basic FODO cells. Furthermore, superposition guarantees that 

the dispersion waves created from the focusing and defocusing quadrupoles should not interfere, 

since these quadrupoles are separated by a betatron phase by 11" /6. A more detailed discussion of 

overlapping 11" doublets, which maximally fill the arc sections, shall be given in subsequent sections. 

Figure 2.9 is an illustration of a 11" doublet arrangement formed from two quadrupoles in one 

of the arc sections of the Debuncher ring. The respective magnetic field strengths of the quadrupoles 

which constitute the 11" doublet are perturbed by D..k1 and D..k2, respectively. The ratio between the 

strengths is determined by the ratio .J7i(SJ/ ~' which is directly the result from Equation 

(2.9). Thus,_for lµ(s1) - µ(s2)I = 11", the resultant dispersion wave is: 

D..D(s) = D(s, s1) + D(s, s2) 

= C[D..k(si)./,6(s1),B(s) +D..k(s2)V.B(s2),6(s)] 

S D(s) 
·· .. 

·····--~ 

localized dispersion wave 

created with S k 1 and S k 2 

~ 

A:,: ..... ................... focusing s k : ................... 2 ... i ... $=7tl3 

~ v X v O. v Dot;' O v K v O v K v O 
<·········"t":····-··--····> · .. 

y 
.... A-'::~~---···> 

~ ........................... defocusing ................................. . $ = 7t/3 
7t Doublet 

Figure 2.9: Illustration of a localized dispersion function created by a 11" Doublet. 

(2.10) 

(2.11) 

Thus, the dispersion wave D(s) will be local if the superposition between the two waves 

D..D(s, s1) and D..D(s, s2), created at s1 and s2, have the same strength. Since the strength of the 

dispersion wave depends also upon the beta function ,B(s;), the 71"- doublet will produce a localized 

D..D(s) given the proper ratio of D..k(s1) and D..k(s2). 

An example illustrates the importance of the 11" doublet strength ratios upon localized dis­

persion waves. At the entran~e of the arc sections within the Debuncher, ,B(sqs) = 16.13 ::j:. ,B(sq11) = 
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14.83, due to the fact that the regular FODO cell arrangement is broken for matching zero dispersion 

straight sections to the arc sections with dispersion killers. Thus, proper matching of the dispersion 

function, creates an extra modulation of the betatron functions and the betatron phase advance at 

the interface of the straight and arc sections. A 7r doublet strength formed from the quadrupole q8 

and q14, must obey the relationship k2 = [~k1J, or 8kq14/8kqs = [~~~:!~],in order to obtain 

a localized dispersion wave between the quadrupoles and thus a matched lattice. 

2.4.4.1 Analytic expression for the b./t of a 7r doublet 

In order to understand the dependence of lattice parameters upon the change in field 

strength, or equivalently, the currents D.I invoked with 7r doublets, approximate analytic formu-

las provide insight into the scaling behavior of the b./t design. 

Within the present section, an expression for the first order change D.1}1)(D.k), which has 

been derived in many standard accelerator literature [50], shall be outlined. Furthermore, from the 

general equations of Courant and Snyder [30], expressions for the D.(3 modulation and the tune shift 

D.v, due to quadrupole strength perturbations at s; in the ring, may be derived. The derivation 2f 

b./t shall be compared against the results from the full lattice model calculation. 

2.4.4.2 First order expression for b./t 

The well known equation for the (3- functions from Courant and Snyder, in terms of the arc 

length in the machine is given by: 

d2 
ds2 ..Jii(S) + k(s)./if(S) - (J-3/2 = 0 (2.12) 

A first order perturbation solution to Equation (2.12) for each of the relevant lattice functions has 

been presented by many authors. The following section briefly reviews the derivation of D. [ 1/1lJ . 

Given a quadrupole perturbation at a location s;, or equivalently at a particular value 

of the unperturbed betatron phase efJ 0 , the betatron function may be expanded in terms of the 

perturbed betatron phase efJ through f = efJ - efJ 0 • Thus, the betatron function is given by (3( efJ 0 ) = 

(30 [1+8(31f + 6(32 <2 + ... ]. With a change in coordinates: 

d def> d 1 d 

ds ds def> Q(J def> 

d2 1 d2 d(J d 
ds2 = Q(32 [defJ2 - def> def>] 
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the differential equation for the /3 function may be re-written 

Although an exact solution of the above equation is not possible, a perturbation analysis 

follows from a Taylor expansion of the the quantity f = <P - ¢; 0 • Inserting the perturbation series in 

/3( </; 0 ), and expanding terms /3( <Po) = {30 [ 1 + 8/31 f + 8/32 t
2 + ... ] 2 ~ [ 1 + 28f3i] 

The first order equation is 

An expression for the first order tune shift and the first order /3- wave perturbation follows 

from the above equation in 8/3 by taking a Fourier integral 

With the definition 

and an integration by parts, the result is 

This last expression is the standard result for the first order shift in /3, 

In a similar manner, the first order shift 8/t follows from the definition and the equation in 

8/3. The definition of It in a Fourier spectral representation is 

-2 __ Q
3 "°"' lanl 2 

it - C L...J Q2 _ n2 
n 

where an = 2
1
"- 1:" f3312 / pe-in¢d<jJ. By writing the /3 function appearing in the integrand in terms 

of the first order shift, {3312 ( </; 0 ) = {3~12 [ 1 + 8 /31 t + 8 /32 t
2 + ... ] 2 ~ {3~12 [ 1 + ~8 f3i] . Inserting this 

expression into- that for the Fourier coefficient, an = 2
1
" 1:" ~12 [ 1 + ~8f3i] / pe-in¢ d</J, and using the 

first order expression for 8/3 
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an = _!__ {2rr _{t,_f2 e-in¢d</J [1 + ~-Q2 "_J_ne_in_if>_o ] 
27r }

0 
p 2 7r L,.. 4Q2 - n2 

n 

From this last result, an expression for rt 2 follows immediately, 

(2.13) 

2.4.4.3 Harmonic content of 7r- Doublet 

From the 7r- doublet illustrated in Figure 2.Q, with a phase advance of <P = 7r/3 per FODO 

cell, <P(si) = <P(s 0 ) + 27r-fr, and the Fourier amplitude given by Jn = v J d<fJ 0 ein¢0 j3;8k(<P 0 ), the ex­

pression for the phase advance of a 7r doublet is given by Jn = vf3(s 0 )8k( s0 ) [ 1 +ei2rr3nfN] e-i¢(•i)n = 
v/3( s0 )8k(s0 ) cos [n7r(3/ N)] e-i¢(s,)n. Thus, 

- " vf3(so )8k( So) cos [n7r(3/ N)] cin(¢(s )-¢(.,)) 

8/3//3 - L.J 4Q2 - n2 
n 

The effect of 7r doublet /3 -modulations Fourier spectra were studied through comparison 

with the nominal lattice /3 Fourier spectra. Figure 2.10 is a simplified diagram of one sector in the 

Debuncher lattice indicating the location of the 7r doublet, formed with Q13 ¢:> Ql 7 quadrupoles. 

<· 
dispersion-free 

straight section 

4 

Sector JO 

focusing 

·---·-·-·· x DoubJei ................. -···: 

/ 
6 8 9 / .. w 11 12 13 14 15 16 17 18 19 20 

missing magnet / 

dispenion kilkr 

'Figure 2.10: Illustration optics for one sector of the Debuncher ring indicating the location of a 7r 
doublet formed with Q13 ¢:> Ql 7 quadrupoles used in the numerical example. 

A comparison between the nominal lattice ( r~i)) P;(w) spectra and Prr(w) with the 7r doublet 

of 2.10 is given in Figures 2.ll(a). The n = 1 dominant line in the nominal lattice P;(w) Fourier 

spectra (top plot of Fi,gure 2.ll(a) ) corresponds to the wavelen&th of the standard FODO lattice 
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spacing A= Lfodo ~ 1./0.1128. Moreover, the next highest spectral line at A~ 0.224 corresponds 

the second n = 2 harmonic of the basic FODO cell excitation. At lower w, the structure in the 

P;(w) Fourier structure corresponds to the longer wavelength occurrence of straight sections, or 

equivalently a longer wavelength periodicity in the lattice. The nominal lattice Pi (w) spectrum is 

compared against the P"(w) spectrum with the 7r doublet excitation in the bottom plot of Figure 

2.ll(a). The extra periodicity produced by the 7r doublet corresponds to a harmonic excitation 

corresponding to 3 x the nominal FODO spacing L fodo, with a wavelength A = (3 x L fodo] ~ 1/0.038. 

Nominal latti:e 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 

with 1- piD ceU 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 

(a) Fourier spectra of the /3 functions for the 
nominal lattice and the Janice with a 7r doublet 
perturbation. 
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0 . . . .• . .. •. .. . .. • .. . .. • . . . . . . . . . . .. • .. ·•·. 

. . . . . -5== . . . . . . . . . . . . . . . . 
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3~ 
. . . . 

:~ 
(b) Plots of the (i) 6.beta .. (w) spectra, (ii) 
6./3.r(s), and (iii) D.r(s). 

Figure 2.11: Fourier spectra, tl.P"(w), for the single 7r doublet (formed with Q13 ~ Q17). 

The effect of the 7r doublet is best illustrated in Figure 2.ll(b), with the quantities: {i) 

LlP"(w) = P;(w) - fi".(w) (top plot), {ii) tl.P"(s) = tl.P;(s)tl.P"(s) (middle plot), and (iii) D"(s) = 

D;(s) + tl.D.r(s) (bottom plot). 

Several features of the perturbations created with a 7r doublet are illustrated in the plots 

of 2.ll(b). First, the top plot tl.P"(w) = P;(w) - P.r(w), as already pointed out, shifts then= 1 

dominant harmonic to a longer wavelength, such that .X(n = 1) ~ [3 x Lfodo] · In the middle plot for 

tl.P.,,(s) = tl.P;(s)tl.P"(s), the wavelength A corresponds to the region !ls= 3 x Lfodo between the 

quadrupoles Q13 and Q17, while the other dominant tl.f3(s) has a wavelength of A= 2 x Lfodo which 
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follows from the well known first order perturbation formula for b./3 //3 16
• An important feature of 

the middle plot in Figure2.ll is the fact that b./3 = 0 between the lenses of the 7r doublet. 

The effect of the 7r doublet which is most important (but as can be seen, intimately connected 

with the associated b./3 modulations) is the resulting dispersion D,.(s) = D;(s) + b.D.-(s) indicated 

in the bottom plot of2.11(b). The effect of b.D,,(s) in Figure 2.ll(b) is clear: the 7r doublet produces 

a localized dispersion wave, which attains a larger value inside the 7r doublet interval (between Q13 

and Ql 7) and is cancelled (b.D,, ( s) = 0) outside the 7r doublet interval. 

2.4.4.4 Evaluation of b.1} 1
) 

Based upon the denominator of the 1!2 in Equation (2.13) the convergence of the Fourier 

sum is quite rapid and with the inclusion of only the first few terms. Utilizing b.1}1
), the expression 

for the first order change in /t with equal strengths Ak1 = b.k2, and fractional tune Q: 

(2.14) 

b. -2 _ 9Q
4 

[ 1111 2 lhl2 

ft - 27r2 (4Q2 - 12)2(Q2 - 12) + (4Q2 - 22)2(Q2 - 22) 

lhl2 

+ (4Q2 - 32)2(Q2 - 32)] (2.15) 

For the 7r doublet given in Figure 2.11, with a betatron function /3(sQ13) ~ 15.m, v = 9.7, 

and the current b.I(8k), a calculation of b.1! 2 is given in Figure 2.12. The calculation of b.1; 2 

-
-
-
-
... 

-
-
-
-
-
-
-

retains only the first 3 terms in the Fourier sum. -

16 For a perturbation of the lattice with Ak, A/3//J(s) ~ Ak(si)cos(2lµ(s;) - µ(s)I) while AD(s) ~ 

Ak(si) cos(lµ(si) - µ(s)I). -
-
-
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Figure 2.12: Calculation of .0..11 , and TJ for a 7r doublet as a function of .0.I(flk) [Amps]. 

From the Figure 2.12, a change of tll ~ 6Amps, produces a change in T/ ~ 0.9 x 10-4 . 

It shall be shown in the next section that a maximum 7r doublet filling of the arc sections allows 

for a total of 39 7r doublets. If each 7r doublet is allowed an average .0../ ~ 6Amps, theri the total 

.0.TJ ~ 0.9 x 10-4 x 39 ~ 3.5 x 10-3 . Based upon the crude estimate, this is in very good agreement 

with the full lattice calculation to be presented. 

2.4.4.5 Maximum 7r- doublet filling of the arc sections 

In the previous sections, the 7r doublet was analyzed as a candidate for producing localized 

dispersion waves for changing /t. This section presents a complete design with interleaved 7r doublets 

for increasing the dispersion uniformly in the arc sections of the Debuncher lattice. Thus, a complete 

design of /~!) consists of maximally filling the arc sections with 7r doublets, for the purpose of 

minimizing the maximum current changes (.0.Imax) required. 

Previously, it was mentioned that 7r doublets may be formed from both a pair from the 

focusing quadrupole {7rJl7r E Foe} groups and the defocusing quadrupole groups {7rdl7r E Defoe}. 

Furthermore, the two types of 7r doublets may be interleaved without interference between the 

respective localized dispersion waves since the two groups of quadrupoles (focusing and defocusing) 
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are separated by 7r /6 betatron phase. Thus, the contributions to an increased dispersion function will 

result if 7r f ( 8 k;, 8 k i) + 7r d( -8 km , -8 kn), where the minus signs on the lens strengths of 7r d indicate 

the opposite polarity required. The full contribution to the dispersion, and therefore It, is given by: 

(2.16) 
max.no.'lf/ max.no.'lfd 

Figure 2.13 is an illustration of a sector in the Debuncher ring with maximum possible 7r 

doublet filling. From Figure 2.13, the maximum number of 7r doublets which can fill the arc sections 

of the entire Debuncher is 13 x 3 = 39 7r doublets. 

<( ... 
dispersion-free 

defocusing 

···· ·········· lt Doubkt· defocusing : 
i 

····························· ll Doubkt·· 

defocusing defocusing i 
··· ll Doubkt ······························ 

straight section : -····-····-···-· 11 Doublet i . i 

I ~ J ~ I ~v~v~ I ~vJv~v~v~vlv~v[v~vj 
2 3 4 5 6 7 8 9 JO II 12 13 14 15 16 17 18 19 20 

focusing 

lt Doubkt focusing ! · 
- ::::::::'focusing 

ll Doubkt 11 Doubkt 

Figure 2.13: Illustration of maximum 7r doublet filling in the arc sections. 

2.5 Specification for a complete fl1{ design 

From the previous subsection, the concept of a maximum 7r doublet filling fraction in the 

arc section led to the notion that flit is maximized by distributing (fl!) over many quadrupoles. 

For a given flit produced in the arc section, however, there is an associated tune shift flv which 

must be removed through adjustment of quadrupole lens strengths in the zero dispersion straight 

sections. These quadrupole strength adjustments have no effect upon It since the dispersion is zero 
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in that region of the storage ring. The tune correction, however must satisfy many constraints, and 

in general, there are 33 free parameters which may be adjusted which correspond to the total number 

of quadrupoles in the straight sections. 

In the first part of this section, the constrained optimization problem is defined for ad­

dressing the tune shift problem. Optimization algorithms form the foundations for obtaining the 

straight section excitation currents throughout the ~rt ramp. Moreover, tune correction must be 

done throughout the ~rt ramp due to the nonlinear dependence of the tune with the 7r- Doublet 

excitation. 

Throughout the remainder of this section, the full ~rt lattice design is presented. A full 

description of the final lattice design includes (i) hardware requirements, (ii) excitation currents, 

(iii) the predicted lattice parameters, and (iv) residuals between the predicted lattice parameters in 

the rf lattice design and the nominal lattice. Finally, the predictions of the r{ lattice are compared 

against experiments. 

2.5.1 Introduction: The problem of minimizing tune shift 

The objective of the ~r~f) tune shift problem is to find the optimal zero tune shift solution 

through the adjustment of 33 free parameters, in general, which correspond to the set of quadrupole 

strengths within the straight sections, and subject to a host of lattice function constraints. By de­

manding the original sixfold symmetry of the Debuncher lattice, the large number of free parameters 

may be reduced to 6. Mathematically the optimization problem may be stated formally, 

min{ F(v)} for v EM 

subject to 

where 

in which M is the orie turn map, and v may in general represent any of the lattice parameters, 

however, for the present restricted problem, it shall simply rep-resent the transverse tunes. The 

restrictions upon the changes in the free parameters (the currents l~Ij I) result from (i) trying to 
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equally distribute the necessary current changes so that the average change is as small as possible, 

(ii) staying within the practical requirements imposed by magnet current bypass shunt circuits and 

the fact that the straight section quadrupoles are already shunting some amount of current, which 

in some cases restricts the available current domain even more, and (iii) trying to maintain a highly 

symmetric .6.:y}J) design. 

While optimization of a group of parameters is a common feature of accelerator lattice design 

and has been incorporated into standard computer programs such as MAD or BEAMLINE, it was 

difficult to control the specific constraints inherent in the !:l."ft problem with such general routines. 

Therefore, instead of relying upon these standard programs, specific optimization algorithms were 

tailored to the !:l."ft in conjunction with BEAMLINE. 

The following section shall present the final result of the !:l."ft optimization problem, while the 

details are relegated to a thorough discussion in appendix A. Comparison of classical constrained 

optimization algorithms to the technique of simulated annealing optimization is reviewed in appendix 

A and applied to the specific !:l."ft problem. The use of simulated annealing optimization is advocated 

as a powerful candidate for accelerator lattice designs with difficult constraints and many local 

extrema. 

2.5.2 Details for a complete 7{ design 

The 7}!) lattice design, with !:l.v ~ 0 together with other constraints, is depicted graphically 

in Figure 2.14, and indicates the required current changes !:l.I for each quadrupole magnet. Since the 

final design maintains the full six-fold symmetry of the original design, only one sector is depicted in 

Figure 2.14. Actually, in the implementation of the !:l."ft, a slight break in the six-fold symmetry was 

allowed due to the current changes (to obtain the equivalent !:l.K} required in the large quadrupoles 

D:QT205, D:QT405, and D:QT606. This asymmetry does not have a profound effect, so is ignored 

in the present discussion. 
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Figure 2.14: The complete r}J) design for a sector of the Debuncher lattice indicating each Cl.I. 

A comparison of the dispersion functions for lattice designs with (i) r}f) ( 17 = 0.0093), (ii) 

the nominal ri(7J = 0.0062), and (iii) r~arge(77 = 0.0029), are given in Figure 2.15. 

Di.1per.1·ion ft" l]=.009 l]=.006 and l]=.0029 
0'1e secu1r i11 die Delnmclur 

an: se~·tion 

-0.5 ~---~--~-~-~--~-----~ 
0.0 20.0 .PJ.IJ {,().() HO.O 

Arc le11gth /m/ 

Figure 2.15: Comparison of the dispersion functions for r{ (1JJ = 0.0094), the nominal lattice rL 
and a design for a large ri ( 1J = .0028) 

Another feature of the present symmetric lattice design for r{ is the added benefit of produc-
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ing a bi-polar design, i.e. the ability to increase 'Yt ----+ 'Y!arge. This design may receive considerable 

attention, within plans of the Main Injector or the Tev33 project, in the future since in increase 

of ,...., 20% in momentum acceptance of targeted j5 may be realized. A more detailed optics study 

must be taken up with regard to the 'Y:arge design, and is therefore deferred from discussion in this 

thesis. For early papers on the subject of small 17 see reference by Ando [2], and Takayama [94]. 

For papers related to future implications for the Tevatron project, see the Main Injector Technical 

Design Hand book [33]. 

In summary, the features of the design are the following: 

l. the average changes of the quadrupole currents in the design are (D..I) ~ 20Amps. This 

represents a 8-10% change in the quadrupole currents from the operating value of~ 250Amps. 

2. the tune shifts D..vv,h are kept less than ,...., .005 betwee~ the initial,'""(; and the final 'Y{ lattice 

to avoid resonance crossing. 

3. the change in the maximum {3- function (in both transverse planes) is less than 5% of the 

nominal values. 

4. the average of the dispersion function increases uniformly in the arc sections by 10%, and 

remains strictly zero in the straight sections. 

The result of important lattice parameters for the 'Yt design, which includes the full tune 

shift correction, is given in Table 2.4, In particular, D..c/Jy(PU -+ K) are small in both planes and 

thus have a negligible heating effect upon the stochastic cooling. 

Table 2.4: Details of Lattice Parameters for the 'Y{ design 

PARAM. VAL. II PARAM. VAL. 

1J 0.0093 D,.f3pHx -0.702 
D..vx -0.004 D,.~PVy -2.41 
D..vy 0.005 D,.f3KHx 1.11 
D..c/Jx(PU-+ K) 0.00683rad(0.36°) D,.f3KVy 1.19 
D..c/Jy(PU-+ K) 0.023rad(l.33°) 
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Perhaps the most important feature of the optical lattice design is that it is completely 

symmetric and the changes in quadrupoles may be put into simple groupings. Table 2.5 gives the 

4 types of current changes amongst the qudrupoles on the D:QF power supply and the 3 types of 

current changes amongst the quadrupoles on the D:QD power supply. 

Table 2.5: Types of quadrupole current changes in arcs sections for the 1}1) design. 

Quad. Set Specific Mag. () AI ( 1/ (Ips) Al( /~J) ( Ips) Alps 
QF {qx07, qxll} 0.(244.0) 0.0(244.0) 0.0 
QFA {qx09,qxl3,qx17} 0.(244.0) -10.0(244.0) 0.0 
QFB {qx19} 0.(244.0) -9.6(244.0) 0.0 
QFC {qxl5} 0.(244.0) -5.0(244.0) 0.0 
QD {qxl0,qxl2,qx16} 

{qxl8, qx20} 0.(238.8) 0.0(248.8) 10.0 
QDA {qx08} 0.(238.8) -10.0(248.8) 10.0 
QDB {qxl4} 0.(238.8) -7.0(248.8) 10.0 

After the tune correction to obtain Av~ 0, with optimization amongst the quadrupoles in 

the straight section, hardware changes were needed to accommodate the larger Al requirements. 

Table 2.6 is a list of the required currents amongst the quadrupoles in the straight section for the 

1{ design. Also indicated (with boldface) in Table 2.6 are the magnet current shunt hardware 

modifications. In Figure 2.16, the result of a MAD calculation for the /3 functions and the horizontal 

dispersion function for the 1}1) ( 77 = 0.0093) design is given. 

Table 2.6: The straight section quadrupole current shunt settings for the nominal It and 1V) lattices. 

QuadShnt(Type) !•hunt T/ = 0.006 {fps} !shunt 1] = 0.009 {Ip,) Of shunt {)fps 

Q101(20A) -8.5(282.5) -0.5(290.5) 8.0 8.0 
Q102(50A) -26.8(282.5) -48.8(290.5) -21.0 8.0 
Q103(50A-+ 30A) -21.8(282.5) -5.8(290.5) 15.8 8.0 
Q104(20A-+ 30A) -0.6(282.5) -24.6(290.5) -26.4 8.0 
Q105(50A) -51.0(282.5) -35.0(290.5) 15.0 8.0 
Q106(20A-+ 50A) -4.2(238.) -36.0(250.) -30.2 12.0 
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Figure 2.16: The Debuncher lattice parameters for 'Y~!)(1J = 0.0093) from a BEAMLINE (or MAD) 
calculation. 

2.5.2.1 Hardware for the !::l.-y{ design 

Amongst the many constraints within the f::l.-y~!) lattice design was the desire to minimize 

the total number of magnet current bypass shunts which would be required, and thus minimize the 

monetary cost. Because of the six-fold symmetry in the design and the fact that the majority of 

defocusing quadrupoles would increase in current by the same amount, the number of shunt circuits 

required was~ 60% of the number of quadrupoles comprising the 71'- Doublets. Figure 2.17 indicates 

the location of the new magnet current shunt circuits which were installed in each of the six sectors 

of the Debuncher for the f::l.-y}/) design. 
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Figure 2.17: A diagram of a sector in the Debuncher indicating the location of the new magnet 
shunts to be used for the A 'Y~J). 

The nominal lattice had the following hardware: {i) 114 Quadrupoles in the Debuncher, (ii) 

3 major power supplies control these quadrupoles, {iii) 3 shunt supplies, and (iv) 33 existing shunt 

circuits in the long straight sections for tune control. The hardware requirements for the dynamic 

A")'~J) project were: (i) 42 new active power supply shunt circuits installed in the arc sections, {ii) 

control with CAMAC programmable ramp modules (of 465/468 type) and (iii) active feed-forward 

for fast slew regulation of the high voltage power supplies. 

2.5.3 Experimental Results of 1{ 

Based upon the lattices obtained in the previous section, the result of lattice parameter 

measurements are presented for several cases of ('Y~J) >---+ 'f/ = 0.007, 0.0085, 0.0093). In particular, 

before proceeding to discussions of higher order effects and issues related to a dynamic A/~!), 

confirmation must be made on two fronts: {i) experimental evaluation of the dispersion functions 

and (ii) measurements of ")'~!) (through the slip factor 'f/) for intermediate lattices. 
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2.5.3.1 Predictions/Measurements of the dispersion, D(s) 

For three intermediate values of It, between the nominal and the final lattice ( 1{ ), (i) 

77 = 0.0093, (ii) 77 = .0085, and (iii) 77 = .007, measurements of the dispersion function were made 

and the results are given in Figures 2.18, 2.19, and 2.20, respectively. Similar to the discussion of 

the dispersion function measurements for the nominal lattice (77 = 0.006), the dispersion function 

is extracted with linear least square fits to measurements of the transverse closed orbit ~x(s) as 

a function of the energy ~p/p. The error bars in Figures 2.18, 2.19, and 2.20 correspond to the 

variance of the least square fits, yet do not include a~ 10% systematic error resulting from absolute 

BPM calibration. 
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Figure 2.18: Comparison of D(s) between 7] = 0.0093(•) and 7] = 0.0062(+). 
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Figure 2.19: Comparison of D(s)'between 71 = 0.0085(•) and 71=0.0062(+). 
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Figure 2.20: Comparison of D(s) between 71 = 0.007(•) and 71 = 0.0062(+). 

In the Figures 2.18, 2.19, and 2.20, the comparison between the calculated and measured 

dispersion function is consistent in each case1 7 . 

17 As indicated previously, only the first two sectors of the Debuncher lattice are plotted, since the BPM data in 
sector 50/60 were not functioning properly. 
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2.5.3.2 Predictions/Measurements of the slip factor T/f 

Measurements of T/, or equivalently-.,,{, were carried out for the design case of the T/ = 0.009 

design lattice. The experimental setup was identical to that described in the previous section for the 

nominal lattice with T/ = .006. A comparison of the longitudinal Schottky bunched beam spectra is 

given in Figures 2.21(a) and (b). 
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Figure 2.21: Power density (dB/Hz) versus energy difference x = E- E0 of the longitudinal Schottky 
signal ( 126th harmonic) with the T/f = 0.009 lattice for obtaining the synchrotron frequency f,. 

Using measurements of the the synchrotron frequency f, versus rf- cavity voltage Vrr, a 

linear least square fit was used to extract the slip factor and is given in Figure 2.22. The measured 

value is T/meas. = 0.0093 ± 2. x 10-4
, which compares to the theoretical prediction 18 of T/pred = 

0.0095. The error bars in Figure 2.22 and T/meas. correspond to (i} the errors associated with reading 

the synchrotron frequency from the bunched beam spectra; ~ 5% error, and (ii} calibration error 

associated with the DRF3 readback (RF) voltage; ~ 10% error. 

18 The synchrotron frequency was obtained by choosing the frequency at the peaks of the sidebands, since it was 
assumed that most particles are far from the separatrix and are undergoing quasi- linear motion. 
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Synchrotron Frequency vs RF Voltage 
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Figure 2.22: Measurements of the synchrotron frequency (f'f) as a function of the rf- cavity voltage 

on DRF3 (Vrr) for the lattice 1!. 

2.5.4 Measurements of Resonances for l::!../t lattice 

Previous sections have dealt exclusively with linear lattice phenomena, with particular em-

phasis upon the f::!./t design. Issues and constraints related to nonlinear resonance crossing during 

l::!..1t/ l::!..t slews, however, played a major role. As such, experimental measurements shall be presented 

in this section, which address the question: what happens to the transverse resonance spectra with 

the implementation of the f::!./t lattice design? Should resonance structure proliferate and further 

enhance the strength of prominent resonances from the nominal lattice? Some theoretical guidance 

from Wiedemann's book is suggestive: [103] 

the beneficial effect of a high super-periodicity or symmetry N in a circular accelerator 
becomes apparent in such a resonance diagram because the density of lines is reduced by 
a factor of N and the area of stability between resonances becomes proportionally larger 
... Conversely, breaking a higher order of symmetry can lead to a reduction in stability 
if not otherwise compensated. 
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The above statement is a direct consequence of the resonance condition kv,, + mvy = iN, 

with the super-periodicity given by N. Thus, if there is a high degree of symmetry, N is small and 

only low order resonances should be important. With the introduction of asymmetry, one may 

expect a proliferation of resonances, which were previously unimportant. 

2.5.4.1 Resonances structure of 1?) and 1}!l 

A simple experimental procedure was carried out during normal stacking of ps to determine 

the relative strengths and widths of the transverse resonances for the nominal lattice (l}il) and 

the 1}!l lattice. The transverse tunes were adjusted through symmetric changes in the currents of 

straight section quadrupoles. The relative strength of the transverse resonances were determined 

by monitoring the amount of beam loss as points throughout the tune plane were visited. Two 

parameters were used to determine beam loss (i) D:FFTTOT/M:TOR109, which is a direct measure 

of the amount of beam entering the Debuncher normalized by the Main Ring current 19 , and {ii) 

the stacktail power in the Accumulator, which is sensitive to small changes in the beam from the 

Debuncher. 

Table 2.7 compares the percentage beam loss in crossing each of the major transverse res­

onances for the both the nominal 1}il lattice and the 1}!l lattice. For reference to the resonance 

plane refer back to Figure 1.1 in the preface. 

Table 2.7: A comparison between the measured percentage beam loss amongst the dominant trans­
verse resonances for the nominal lattice and the 1{ lattice design. 

resonance 

(2/3) 
(2/3 sum) 
(3/4) 
(3/4 sum) 
(4/5) 
(4/5 sum) 
(diagonal) 

(1}') = 7.6318, 7]i = 0.00615) 

80% 
100% 
60% 
45% 
0% 
3% 
0% 

(l}IJ(= 7.02655, 1/J = 0.00924) 

83% 
100% 
87% 
68% 
0% 

36% 
28% 

19 Actually, D:FFTTOT is derived through measurements of the total integrated beam power spectral density. The 
signal is derived through a gap monitor (wall current monitor) and analyzed with an HP signal analyzer 
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2.6 Chapter Summary 

Predictions and measurements of lattice parameters for the 1{ lattice were presented in this 

chapter. The discussion was limited to theoretical and experimental characterization of the static 

optics design for 1}!). Inherent within the characterization was a detailed comparison to the nominal 

lattice, experimental measurements and comparisons with theoretical results, and the presentation 

of results from a comprehensive optimization procedure. 

A few of the important details contained in the chapter may be highlighted: {i} experi­

mental determinations of the f3 function _agree within 10% on average, {ii} the chromaticity was 

measured:(nominal lattice) ~"' = 1.74 ± 0.24 ± 0.15, ~Y = 0.635 ± 0.23 ± 0.17 (1}!) lattice) ~"' =, 

~Y =, (iii) the dispersion functions were measured for several lattices and agree with models, and 

(iv) the value-of rJ (It) was measured (nominal) ry(meas.) = 0.0062 ± 6.0 x 10-4 , ry(pred.) = 0.0061 

(1}f)ry(meas.) = 0.0093 ± 2. x 10-4 , ry(pred.) = 0.0095. 

The method of producing 1}!) with 7r doublets was reviewed with specific emphasis upon 

the application to the Debuncher optical lattice. It was demonstrated that a closed form solution for 

~It may be derived through first order, which predicts well the change in It for a single 7r doublet 

in the Debuncher. Moreover, the first order estimate may be used to obtain a crude number for the 

total change in It for the case with maximum 7r filling in the arc sections. 

As a final note, the resonance structure of the Debuncher with the nominal It and 1{ was 

examined briefly. The emphasis of the discussion concerned operational issues for allowable tune 

excursions during a fast ~lt/~t slew. In that regard, the final comments concerning the density of 

resonances lines in the transverse tune planes forms the precursor to the next chapter, in which the 

~It! ~t is of principal concern. 

46 



CHAPTER 3 

THE DYNAMIC b..!t LATTICE 

3.1 Introduction 

The discussion of the first chapter considered only the constraints involved with changing 

an existing lattice to the final lattice 1}!), but without regard to the details of intermediate lattice 

configurations. During the .6.1}!) / .6.t ramp between the initial and final lattice, it is implicit that 

each of the constraints, as outlined in the first chapter, must be upheld. While the dispersion, and 

thus .6./t, scales approximately linearly with the change in the 7r doublet strengths, the transverse 

tunes depend nonlinearly upon the straight section quadrupole strengths used for maintaining a zero 

tune shift. A discussion of this problem and the solutions are reviewed in the first section for the 

case of ideal hardware response. 

Although it is possible to calculate/design ideal nonlinear .6.v ~ 0 ramps, the major source 

of difficulties in obtaining fast slew rates are the limitations associated with the electronic hardware 

- power supplies and magnet current bypass shunt circuits1
. Utilizing a simple circuit model for the 

power supply, magnets and magnet current bypass shunt circuits, regulation errors are explained 

and used to motivate the necessary requirement for feedforward electronics for fast .6.1}!) slew rates. 

Finally, a complete analysis of the .6.1}') / .6.t ramp is presented. In particular, questions 

related to current regulation and higher order effects are analyzed with comparisons between the 

measured and the calculated tunes, which are obtained through inputs of detailed parameterization 

of current errors as a function of time from each device. Also, chromaticity data is presented to 

corroborate the claim that higher order multipoles are not generated during the .6.1}!) ramping 

process. 

3.2 Ideal .6.1}!) Ramp 

The method for producing the final lattice with 1}!) has been discussed in the first chapter. 

To summarize, the design follows the two- step strategy: 

1. Produce 1}!) with interleaved 7r- doublet quadrupole combinations throughout the arc sec­

tions, such that {i) the dispersion function increases uniformly, except in the straight sections 

1 The response time of the quadrupole magnets is negligible on time scales of the Li1't ramps ~ lOOmsec 
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for which the dispersion remains strictly zero, and (ii} the design maintains the full six-fold 

symmetry of the original /~i) lattice. 

2. The tune shift, ~v, resulting from the ~/~!), is minimizeg with adjustment of field strengths 

amongst quadrupoles in the long straight sections. The constrained optimization problem 

is subject to the same constraints on lattice parameters as indicated previously in the first 

chapter. 

Because the transverse tunes v(~/t, ~I) do not change linearly with ~It between the initial 

lattice with /~i) and the final lattice with /~!), it is necessary to perform the two step design 

procedure for intermediate values of ~It throughout the ramps. The constrained optimization 

problem in the second step is identical to that described in the first chapter. Thus a symmetric 

design is maintained by minimizing ~v with respect to the six straight section quadrupole types 

{ Iq, Ii = 1, ., 6} and subject to the various lattice parameter constraints. 

3.3 Actual ~1{ / ~t Ramp 

Although within the design, the tune excursion during the ~l~J) / ~t ramps was negligible 

small, the predominant tune excursion effects were the result of power supply and magnet current 

bypass shunt circuit regulation limitations for fast ~it/ ~t slew rates. 

To further motivate the regulation problem, Figure 3.1 depicts the measured change in 

current ~I of the main power supplies during a ~~/~!) /300msec 2 . In the Figure 3.1 the full values 

of the power supply currents are D:QSS: 282.5---+ 291.17 Amps, D:QD: 239.4---+ 246.07 Amps, and 

D:QF: 243.9--+ 243.9Amps. Although the power supply D:QF should remain constant, there is a 

current regulation error of ~IQF ~ ±l.32Amps, which corresponds to a deviation of 1.1 part in 100 

of the total current. Such a deviation from perfect regulation of the D:QF supply produces a tune 

variation on the order of ~v ~ ±0.05. Also exhibiting significant deviation from ideal regulation is 

the D:QSS power supply, which supports the bulk of the quadrupoles in the long straight sections. 

For ~~/~/) /300msec, D:QSS experiences a regulation error of ~IQsS ~ ±l.38Amps, which may 

translate to a tune error ~v ~ ±0.04. This corresponds to a current regulation error in D:QSS 

of 9.5 parts in 1000. Although current regulation errors of D:QD do not appear to be large, i.e. 

2 As shall be used throughout the remaining discussions, the notation indicates the slew rate: 6.'Yt / 6.t. Thus,. for 
the quadrupole power supply ramp D:QD, fl.I= lOAmps for the full 6.'Yt· 
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.tl.lqD ,...., ±0.4Amps, it shall be demonstrated in the following sections that such errors in the 

D:QD supply would cause significant tune errors relative to the other supplies and/or trim elements 

.tl.v ,...., ±0.05. Moreover, the errors. in each of the elements on this scale cause large enough tune 

errors for complete beam loss. 

'v; 
0. e 
~ 

~ 
::l 
u 

7.5 

Regulation Errors 41511
1 

/~ 
I i \ 

I ) "'"-·------ . I i : : \; D:Q$S 

i) J?0L:JV"-i 
f, ; ; • i• I 

··-,-·t··- -----.. ·-···r;t --------~·-·- .. 
. I' ',\ 
! / ,' i ~ I 
i /' : ,\ 

2.5 
! I : '\ 

···········+·~ . ····i···-r-· 
! ( ; I\ 
: ; '\ 
;/ D:Qf j \\ 
1 ... . '\ 

\ : 
:::jo'·~j---..,,;--~ 

\1 
-····-··· -.+::~-- ·- .... , ...... :;,, .... ~. -+---~ 

-2.5 l'----'----'--~-'--'---'---'---
-0.5 0.5 1.5 

Time [sec] 
2.5 3.5 

Figure 3.1: .tl.I, indicating regulation errors, in each Debuncher power supply for the case of a 

t.tl.1}!) /300 msec ramp. 

3.3.1 The Power Supply/Magnet/Current-Bypass Shunt Model 

The power supply regulation errors depicted in Figure 3.1 of the previous subsection may 

be explained with the use of a simple equivalent circuit model representing the power supply, the 

quadrupole magnets, and the magnet current bypass shunt circuits. Figure 3.2 is a simplified equiv-

alent circuit, in which the ideal power supply is modeled as an ideal current source with a frequency 

response governed solely by the low - pass Preag filter (78]. Attached in series with the power supply 

are the quadrupole magnets Mk and Mj, in which the sets M1 each possess a magnet current bypass 

shunt circuit connected in parallel for the purpose of individual control of currents, and hence, fo-

cusing strength. The frequency response of the magnet current bypass shunt circuit may be i_gnored, 

49 

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-



and within the simple model may be represented as an ideal current sink. The current of the power 

supply is given by I, while the current in the bypass shunt is given in the figure by -I,(t). Each 

magnet may be represented by a simple resistor/inductor series combination. The resistance and 

inductance values for the three types of magnets present in the Debuncher ring are given by: (i) 

SQC ( R = 41.Smfl, L = 65.9mH ), {ii) SQD ( R = 46.3mfl, L = 77.9mH ), and {iii) LQE ( 

R = 87.8mfl, L = 34.4mH) 3
. 

Ideal -PS!QUadrupole!Shunt -System 

························································ . . . . . . . . . . 

_ITL c ··~/ 

c 

R 

! Preag Filter 

A 
: ........................... Ideal Power Supply ................... : : ... Magnets/Shunts .. .. 

Figure 3.2: The power supply /magnet/current-bypass shunt equivalent circuit model. 

From the model in Figure 3.2, an expression for the voltage Vk(t) for tbe k-th power supply, 

with the given current curves for /17tf !1t is: 

(3.1) 

In this expression, the sum extends over all j magnets in the k-th power supply /magnet/ current-

bypass shunt system. For each k-th system, the values of the resistances and inductances for use in 

the model are summarized in Table 3.1. In Table 3.1, the values R 1 and L1 are the resistance and 

inductive sums over magnets possessing current bypass shunt circuits, while the values R2 and L2 

refer to sums over the remaining set of magnets. The designation SQC and SQD correspond to the 

3 For detailed specifications of the types of quadrupoles, consult Tevatron I Design Report, 1983 
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two major quadrupole magnet types used in the Debuncher. 

Thus in each kth system, the (internal) feedback regulator circuit of the power supply, must 

respond to a rapidly changing impedance resulting from -!H,(t) and ~Jk(t) during the ~'Yt/~t 

slews. The necessary voltage required for the power supply to remain in perfect regulation with the 

reference, is given by Vk(t) of Equation (3.1). 

Table 3.1: Resistance and Inductance values of magnets for each power supply system used in the 
simple model for calculation of the required constant •current power supply voltage V(t) during 
ramps. 

ps no. mags no.w/shunts R1 R2 Li L2 Rioi. Lioi. 

D:QF 42(SQC) 30(SQC) 1.230 0.5130 l.977H 1.29H 1.740 3.267H 
D:QD 5(SQD) 5(SQD) 0.730 1.0790 l.180H 2.89H 1.810 4.074H 

38(SQC) 12(SQC) 
D:QSS 4(SQD) 4(SQD) o.om o.o l.56H O.H 0.9740 1.564H 

38(SQC) 12(SQD) 

3.3.2 Feedforward Correction: Introduction 

From the simple circuit model of Figure 3.2, the power supply voltage Vk (t) required for a 

specific ~,}n /300msec slew rate, is completely determined. Indeed, if the power supply regulation 

feedback system was accorded infinite bandwidth, then the voltage would change exactly by Vk(t), 

as required in order to keep a constant current. In order to maintain the required field tolerances 

of the initial design, the bandwidth of the power supply regulation feedback system was designed 

with a small value4 . Since Equation (3.1) specifies the exact power supply voltage slew Vk(t) for a 

given ~'Yt/ ~t, this information is equivalent to a system possessing an infinite bandwidth. Thus, 

a method, which is easily implemented electronically, for utilizing the exact knowledge of Vk (t) to 

improve the performance of the power supply regulation, is known as feedforward. 

For each power supply /magnet/current-bypass shunt system, a feedforward electronic system 

was designed and installed for the purpose of obtaining fast ~'Yt/ ~t slew rates. The inputs to the 

feedforward electronics are the required changes in current of power supplies [~Jk(t)] and the 

magnet current shunt circuits [~I.(t)] supplied by the reference. The output of the feedforward 

electronics is the voltage Vk(t), which is scaled appropriately and injected into the power supply 

4 It should be remembered that the Debuncher power supplies were never intended to ramp during normal operation, 
and so the initial designs of the regulators made no provisions for stiff current regulation during fast changes in the 
reference signal 
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regulation feedback circuit to correct the finite bandwidth error signal Av~. It is in this sense that 

feedforward assists the regulation feedback system, by enhancing the voltage error signal Av~. Thus, 

the feedforward system increases the effective bandwidth of the power supply's voltage regulator 

without the unwanted introduction of noise due to an actual increase in the bandwidth of the feedback 

system. For obtaining fast Art/ At slew ramps, the implementation of feedforward is absolutely 

essential. 

Returning to the specific case given previously, Table 3.2 lists the initial and final values of 

each device for the tAr}J) /300msec case. Utilizing the simple model, the calculated voltage Vk(t) 

from Equation (3.1) are given Figure 3.3. 

Table 3.2: The currents AI for gAr}J) /300msec associated with each device. 

Device 

QSxOl 
QSx02 
QSx03 
QSx04 
QSx05 
QSx06 
QSx08 
QSx09 

IstartAmps ltina1Amps Device I start Amps 

-5.99 -3.99 QSxl3 -0.40 
-26.81 -39.48 QSxl4 -0.40 
-17.77 -9.77 QSxl5 -0.40 
-0.39 -17.05 QSxl7 -0.40 

-46.00 -38.00 QSxl9 -0.40 
-4.19 -28.73 D:QSS 282.5 
-0.40 -6.80 D:QD 239.4 
-0.40 . -6.80 D:QF 243.9 

Power Supply Voltage Curve.< 

/1.0.0 ~-~--~-~--~-~--~ 

40.0 
./ V(l :QSS) 

I ................ ·r··· 

I I ,V(D QD) 
;, ............... . 

:.f..~ - -- -- -- --
0.0 

r
~--+-----C• . . . ......... ·;; .. 

. . . .... . . ;; 
"" 

-40.0 ......... \~ ... V(D:(F) 

I 

I 

-80.0 ~-~---~-~--~-~--~ 
0.0 0.5 /.0 1.5 

Time {.<ec/ 

Ifina1Amps 
-6.80 
-5.07 
-3.47 
-6.80 
-6.47 

291.17 
246.07 
243.90 

Figure 3.3: Voltage curves for each power supply with 300msec ramps and tAr}J) /300 msec. 

Prior to -a detailed discussion of the feedforward system, the performance of the feedforward 
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method is best illustrated in Figure 3.4, which is a comparison between the measured power supply 

readback currents with and without the application of the feedforward systems 5 for the specific 

~1rn /300msec case. 

l 
c • 
~ 

" u 

Regulation Errors 415T\1 

7.5 

2.5 

-2.5 ~~-~-~-~-~-~~~~ 
-0.5 0.5 1.5 

Time (sec] 
2.5 3.5 

(a) Current regulation errors without feedfor­

ward for il')'~/) /300msec 

10.0 

7.5 

l 5.0 

c 
~ 

2.5 " u 

0.0 

-2.5 
-0.5 

Implementation of Fe<dforward 41511! . 

D:QSS , ..... ---------,, 
I \ 
I D:QD I 
I .. ··························· ... \ 

r \\ 
! " I i.1 
! D:QF \.\ 

.. ·j \. -

0.5 1.5 
Time (sec] 

2.5 3.5 

(b) Current regualtion for the case with feedfor­

ward for il')'~J) /300msec 

Figure 3.4: Comparison between the change in power supply currents for ~~Ir!), with and without 
feedforward. 

3.3.3 The Feedforward Electronics System 

The feedforward system for the kth power supply /magnet/current-shunt system is given in 

Figure 3.5. Referring to the annotations within Figure 3.5, a description is as follows 

• A computer interface (1) is used to load data tables into programmable CAMAC ramp modules. 

• Each 465 ramp module (2) is connected to the DAC input of a magnet current shunt circuit, 

while the power supplies are controlled with the 468 ramp module. Stored together with the 

5 Specifically, Figures 3.4 are t~ken from fa.st time plot measurements of O:QFI, Q:QDI, and O:QSSI 
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D..11 current ramp data, specific ACNET clock events are used to trigger the ramps to and from 

1}!). From the 465 programmable ramp modules, the analog output signal is used as reference 

both for the magnet current shunt circuits (3) and also as input to the feedforward electronics 

(5). Although the power supply reference (4) requires a 16-bit word, the 468 programmable 

ramp module produces an equivalent analog output reference signal which may be used as an 

input to the feedforward electronics (5). 

• The feedforward circuit (5) sums the differential analog inputs with the proper weighting and 

solves the differential equation for Vk(t) Equation (3.1). 

• The output signal Vk(t*) of the feedback circuit at time t• is then combined with the error 

signal (6) 8vk(t*) from the power supply voltage feedback system. The resultant error signal 

D..Vk(t*) = f'k(t•) + 8vk(t•), is now used to fire the SCR ci~cuit. (7) and dial in the proper 

voltage slew, with a phase detection feedback circuit (8), to keep the error between the DAC 

reference and the measured current (9) zero. The superscript k on each of the quantities is 

a reminder that there is a feedforward system for each power supply /magnet/ current-bypass 

shunt system. 

• The power supply response is controlled also by a simple passive Preag filter (10), which is 

simply a low- pass device used to q.void excess noise ripple and to avoid large turn on voltage 

slews. 
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! Eelectronics 
: ........................... : 

Figu~e 3.5: The feedforward system for the kth power supply/magnet/current-bypass shunt system. 

3.3.4 Details of the Active Feedforward Circuit 

As described in the previous section, the feedforward system increases the effective band­

width of the power supply by enhancing the voltage error signal .6.v~ produced by the finite band­

width feedback regulator circuit. The voltage error signal is enhanced by providing the feedback 

loop with exact information about the required voltage slew for a given .6.1t/ .6.t. The active feedback 

electronic circuit, which solves the differential Equation (3.1) for Vk (t), is given in Figure 3.6. 
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/Ok 
/Ok -15V ~ 15V 

/Ok 
/Ok 

Shunt#/ Ref 

A A 

'·······················Differential Inputs 

········ Resistive Term (RI) 

/Ok 

.15µ 

di . 
···· · Inductive Term (L L- ) .............. : 

dt 

IOOQ 

To Voltage 

Regulator 

Figure 3.6: Feed-forward circuit implementation of Vk(t) = Z:i [Li ddtk + Rjlk +I{ Rj + Lj ~]. 

At the input stage of the feed-forward circuit of Figure 3.6, a set of differential amplifiers (op­

amps Ul, U2, and U3) provide high input impedance with unity gain for reference signals derived 

from the analog output of CAMAC 465 programmable ramp generator modules 6 . Thus, the terms 

in Equation (3.1) for Vk(t), for the kth power supply, are directly obtained from the analog reference 

signals which drive each device. Resistor pots at the output of the differential amplifiers are used to 

provide proper weighting between each device. 

The input reference signals, after appropriate weighting, are summed at the input of the 

inverting op-amp U4. The resistive terms, l:i[Rilk +Ril{], in the equation are represented by 

an adjustable gain op-amp stage at US, while the inductive terms, Z:i [Li dJ,k +~],are obtained 

with a pseudo differentiator P 1, The passive differentiator filter was chosen rather than an op-amp 

differentiator for stability and low noise requirements. In the filter P 1, C = .05µ (polystyrene -

for stability against temperature variations) and R = 2H2, produce a 3dB roll-off to unity gain at 

hdB ~ l.6kHz. The trade off with this particular design choice is the need for the non-inverting op-

6 The signals have been tapped at the same point at the output of the CAMAC 465 cards. For pairs of trim 
elements driven by the same card, it was often the case that three twinax cables were tied together. 
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amp arrangement at U6 which must provide a gain of~ 5000 to account for the small differentiated 

signal of Pl. For such large gain requirements, high precision (FET input) OP-27 amplifiers were 

used for minimizing noise. 

At the output of the both the resistive (US) and the inductive ( U6 and U7) legs of the circuit, 

the signals are summed, inverted through a unity gain amplifier UB, and ready to be combined with 

the current error signal of the power supply feedback regulation circuit (refer to Figure 3.5). 

3.3.5 The Magnet Current Bypass Shunt Circuit 

For the purpose of implementing fast b..rt/ b..t, it was required to improve the transient 

(frequency) response of the active magnet current bypass shunt circuits [19]. The modifications 

consisted of simple pole - zero compensation of the filter transfer function with changes to the 

impedance across the various op-amp feedback paths. The transient response design criteria sought 

to restrict overshoot S 5% for a slew rate of....., 10Amp/150msec. A simple diagram for the magnet 

current bypass shunt circuit, which contains the modifications, is given in Figure 3.7. 

!Ok 

!Ok 

IOOQ 

summing 
Junction 

5k 

········· ············ frequency jilter stage 

Shunt 

Figure 3.7: Active magnet- current bypass shunt circuit. 

transistor bank 

(-) 

Sil)ce the entire trim circuit and magnet are connected in parallel and floating above ground, 

the isolation amplifiers Ul (input) and U2 (output) provide unity gain with very large input 
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impedance to avoid voltage spikes reaching the CAMAC reference electronics. The magnet cur­

rent bypass shunt circuit tracks the input reference signal by controlling the MOSFET base current 

derived from the error signal voltage ~ VE(S) derived at the feedback summing point S. The error 

signal voltage at the summing point S, ~VE = Vref - V.hunt, is the difference between the input refer­

ence voltage Vref, and the voltage across the bypass shunt resistor V.hunt. If~ VE is nonzero, a finite 

MOSFET base current is produced to drive the transistors into the active region, sink more/less cur­

rent across the bypass shunt resistor. Thus, the feedback loop constantly strives to make ~VE = O 

at S. 

3.4 Analysis of the ~,}n /300msec Case 

For limited slew rates, it was possible to reduce the current regulation errors of each power 

supply, with the implementation of feedforward electronics. Slew rates greater than ~,}n /300msec, 

however were not possible with the present hardware without further engineering efforts. In order 

to address several of the relevant issues and challenges, this section shall consider the particular case 

of ~,}n /300msec. 

The objectives are the following: (i} show the resulting current regulation errors for each 

power supply system - with feedforward, (ii) demonstrate the cause of the current errors through 

calculation of the voltages across each magnet, (iii} demonstrate that the ·current errors entirely 

account for the tune excursions, through comparisons between experiment and a detailed calculation 

which takes into account all the current regulation errors, and (iv) discuss engineering issues. 

3.4.1 Current Errors in Power Supplies: ~,}n /300 msec case 

In Figure 3.8(a), the measured current errors for each power supply with the slew rate 

~1}!) /300msec are given. Although feedforward is used, the errors associated with D:QSS ( ±0.8Amps 

) and D:QD (±,0.6Amps) are significant. The tune footprint throughout the~/~!) /300msec ramp is 

given in Figure 3.8(b), and are seen to cross several fifth order sum resonances. From the previous 

discussion of resonances in the Debuncher, the fourth order sum resonances have a measurable effect 
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upon beam loss. Measurements of the yield upon injection for the nominal lattice (77,..., 0.006) were 

(yield} ,..., 1945.0 compared to the measurement with 1{ (17,..., 0.009), (yield} ,..., 1860.0 ± 33 .. This 

represents a reduction in the yield, or equivalently, beam current in the Debuncher, of,..., 4.3±0.5%.7 

1.0 ~~---.------.,--~----.-~-~ 

0.5 

-0.5 
..--.o:QF 
.__..D:QD 

______.. D:QSS 

./.0 ~-~~~~-~--~-~---~ 
0.0 0.5 1.0 

Time [.rec] 
1.5 2.0 

(a) Error deviations m the three quadrupole 
power supplies. 

Experimenlal Tune Footprint ela=.009 

nuX 

(b) Measured transverse tune footprint for 

C1')'~f) /300msec(1J = 0.009) 

Figure 3.8: The ~1V) /300 msec case. 

The reason that D:QD and D:QSS display such large current errors is well understood on the 

basis of the associated current regulation errors of the magnet current bypass shunt circuits within 

the respective kth power supply /magnet system and may be explained through a closer examination 

of each of the magnet current shunt readback8 curves. The readback currents for several of the 

magnet current bypass shunts are given in Figure 3.9 which display regulation problems. 

Since the feedforward system utilizes the analog reference signal from the 465 CAMAC 

module, rather than the true current through the magnet (the readback current), Vk(t) does not 

include the errors due to current regulation problems associated with the magnet current bypass 

shunt circuits. Thus, with respect to the bypass shunt current errors, the power supply must rely 

7 A more detailed discussion of the nature of th.is measurement is given in Chapter 4. It should be briefly noted, 
however, that the yield measurement is obtained from a wall current monitor and frequency analyzed with an HP 
signal analyzer by measuring the total pow~r in l 26th harmonic. The number represented by the yield has been 
averaged for 400msec, and thus takes into account the ')'t ramp tune excursions. 

8 The MADC on board the magnet current bypass shunts is tied into ACNET, the FNAL Accelerator control 
system. 
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upon the normal feedback regulator to track the reference signals for D.rtf D.t. As a particular case, 

the current regulation errors, as given in Figure 3.9, associated with QxOS and Qx06 contribute 

significantly to power supply regulation errors and a failure of the feedforward system as presently 

implemented. 

OD ass OF 0106 0206 0306 

:=rn··· ·······.··· ······· =m····················· :::::~ .. ········•············· -~l±7J·· •··· ·•· ~GZ· ·• ·•· · ~l±ZJ· : : ... 240 . . . . . . . . •. . . . . . . . . . 285 . . . . . . . . . •· . . . . . . . . . 2432 . . . . . . . . . . . . . . . . . . . -40 . . . . . . . . . . .. . . . . . -40 . . . . . .. . . . . . -40 . . . . . . • . 
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Figure 3.9: Readback currents for several magnet current bypass shunts with tir~J) /300 msec. 

The reason that the magnet current bypass shunts QSxOS and QSx06 do not remam m 

regulation is illustrated in Figure 3.10, which are plots of the voltage across several magnets for 

the tir~J) /300msec slew rate. In order for the bypass shunt circuit transistors to remain active, .the 

voltage across each magnet must be ~ 5V. From 3.10, the voltage across the magnet type QxOS 

falls below 5V on the return ramp from r~J) to r~i), while the voltage across magnet type Qx06 

falls below 5V for the tir~J) /300msec case. The effect in both cases is indicated in Figure '3.9 for 

each of the QSxOS and QSx06 readback currents. Specifically, in the QSxOS case, the return ramp 

falls out of regulation immediately and produces not only poor tracking of the reference, but also 

an overshoot of ,...., 5% of the total swing, at the end of the ramp. The situation is similar for each 

of theQSx06 current readbacks of 3.9, for the initiation ramp to r~J). 
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Figure 3.10: Voltages across each of the magnets possessmg magnet current bypass shunts for 

~,}n /300 msec. 

A few general features of the voltages across each magnet due to ~,}n /300msec, which are 

depicted in Figure 3.10, are: (i) typical voltage slews required of the arc section quadrupole circuits 

are ~ ±2.5V, while those circuits in the straight section are ~ ±5V, and (ii} the large changes in 

the voltages are due to the inductance (the Ljdlj/dt term). 

3.4.2 Future Engineering Considerations 

From the previous discussion, the present design of the magnet current bypass shunt circuits 

requires that the voltage across each magnet remain above 5V in order that the bypass shunt 

transistors remain active. Since voltage swings dropped below the transistor (collector - emitter) 

voltage threshold with ~,}n /300msec slew rates for Qx05 and Qx06, one solution to consider 

is mounting constant voltage supplies across the magnet/bypass shunt. This solution guarantees 

that the minimum voltage swing cannot be lower than the required 5V. The price to be paid, 

however, is large heat sinking requirements for the average power dissipated across the magnet 

current bypass shunt transistors9
. Thus, there exists a delicate balance between voltage requirements 

9 This is a nontrivial point from an operations perspective. The issue is that the bypass shunt circuits have been 
designed in a manner to best heat sink the Darlington transistors. Reliability is substantially degraded with increasing 
power loads without proper effective heat sinking. As is _well documented and realized, magnet current bypass shunt 
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of fast slew Llr}J) / Llt lattice design and power dissipation requirements for longevity and reliability 

of the magnet current bypass shunt transistor elements for increased magnet/shunt voltage levels. 

In Figure 3.11, summary plots of the currents Lllj and voltage LlVj across each j mag-

net/shunt are given10 . From these plots, the average instantaneous power across the magnet current 

bypass shunt circuits in the arc section may be determined and is ,...., 80Watts, while the average 

instantaneous power across the magnet current bypass shunt circuits within the straight section~ is 

,...., 200Watts, thus accounting for the larger current slews required. 

q101 q102 q103 q108 q109 q113 

q104 q105 q106 q114 q115 q119 

-30~---~ 

0 
-6()~-~-~ 

0 

Figure 3.11: Voltage Ll Vj [Volts] (top curve) and bypass shunt current Lllj [Amps] (bottom curve) 

for Llr}J) /300 msec. 

From 3.11, the total instantaneous power across several of the bypass shunt circuits may be 

determined. A more meaningful engineering number is the total instantaneous power per transistor, 

which provides an indication of whether the transistors are operating within specifications. For the 

20Amps magnet current bypass shunts within the arc section, there are 4 transistors in total; for 

the 30Amps and 50Amps current bypass shunt circuits there are 7 transistors in total to account 

for the larger power requirements. This discussion should serve as a motivation for future plans for 

failures can account for numerous Antiproton Source downtimes - so, power specifications must be a key component 
to any upgrades. 

10 Notice that for the case of Q108, while the shunt must change by :=::: - lOAmps, the power supply changes by 
+lOAmps, making the total voltage difference across Q108 :=::: O. 
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re-engineering the magnet current bypass shunt circuits with power requirements of fast t:l.rt/ t:l.t 

slew rates in mind. 

3.4.3 Tune Excursion: t:l.r}J) /300 msec case 

Together with the known source of tune excursion resulting from the current errors of 

the power supplies and magnet current bypass shunt circuits, a number of other technical ques-

tions/issues needed to be addressed. In particular, there was some concern that the t:l.rt/ t:l.t ramps 

could either generate higher order field moments, or corrupt the quadrupole field due to generation 

of eddy currents within the beam pipe or quadrupole windings. A deviation in the focusing fields 

would be detectable through a comparison of the measured transverse tunes and a calculation based 

upon the simple linear lattice model. Furthermore, if higher order multipoles were generated, then 

measurements of the chromaticity during the ramps should discern the strength of the effect. 

Utilizing all the current readbacks for the t:l.r}J) /300msec case as inputs to ~he model, 

the transverse tunes were calculated as a function of time throughout the entire production cycle. 

The calculated tunes were then compared against measured transverse tune spectrograms, obtained 

through the HP8990 vector signal analyzer with reverse protons. Comparisons between the measured 

and predicted tunes for both transverse planes are given in Figure 3.12. While the agreement is not 

perfect, it is consistent within 5-10% which can be attributed to two immediate sources: (i) error in 

reading the peak of the transverse Schottky for obtaining tune, and (ii) error associated with current 

errors used as inputs to the model. Nonetheless, the comparison of the transverse tune calculation 

to the experimental result strongly suggests that the tune excursions may be completely accounted 

for from current errors of the various power supplies and magnet current bypass shunts. 

The top plots in Figure 3.12(a) and (b) give the comparisons between experimental (x) and 

predicted (+) horizontal and vertical tunes, respectively. The bottom plots of Figure 3.12( a) and 

(b) are the differences t:l.vx = v~red. - v;xp. and t:l.vy = vred. - v~xp.' respectively. 
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Figure 3.12: Experimental ( x) and predicted ( +) tunes for Llr~f) /300 msec. 

3.4.4 Tune Excursion: Contribution from Each Device 

1.8 

1.8 

From the previous section, it was found that a calculation of the transverse tunes utilizing 

inputs of the full current errors was in agreement with the measured tune behavior. As a result, it 

is possible to investigate the contribution of current regulation errors from each device, either power 

supply or magnet current bypass shunt circuit, to the tune excursion. 

For the following discussion, it is convenient to define the tune footprint with the total 

current errors by 1'tota1(t), and the tune footprint with all current errors except device j by by 

T j ( t). Now, the contribution from the error _in each device, ill~, to the resultant tune excursion 

may be quantified. One manner for quantifying the effect of errors from an individual device to 

the tune excursion is to sum the differences between the tune footprints T total ( t) and T j ( t) at each 

time points, so that the jth residual is given by IRil =Et l1'j(t)-1'tota1(t)I. In order to determine 

those devices which contribute most to tune excursion, comparisons may be performed between each 

device in terms of the residual IRj I· 

As an example of the calculation of IR; I, Figures 3.13( a) and (b) compare the horizontal 
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and vertical tune footprints, respectively for the two cases ltota1(t) (denoted with (o)), the full tune 

footprint, and 1';=QD(t) (denoted with (x)), the footprint with all errors included except those 

for the power supply D:QD. In this particular case, errors in the D:QD power supply have the 

most dramatic effect upon the resulting tune excursion since the error appears on every defocusing 

quadrupole in the arcs together with Qx06, which has the largest effect upon tune correction. 
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(a) Calculation of vx(t) for D:QD with (o) with­
out ( x) current regulation errors. 

1.8 
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.-0.~ .. 
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(b) Calculation of vy(t) for D:QD with (o) and 
without( x) current regulation errors. 

Figure 3.13: Comparison of the transverse tune spectrograms, ltota1(t), and 1';=QD(t). 

1.8 

For the above case, the transverse footprints for the two cases ltota1(t) and 1';=QD(t) are 

summarized in the transverse tune plane of Figure 3.14 to indicate the crossing of fifth order sum 

resonances. Crossing these weak resonance accounted for approximately 5% beam loss. 
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Tune Foot-Print w/ OD Ideal 

9.75 9.76 9.77 9.78 9.79 9.8 9.81 9.82 9.83 9.84 

Figure 3.14: Tune footprint: ltotat(t) (+),and Yi=QD(t) (o). 

3.4.5 Summary: Effects of Errors to .6.1}!) /300msec Tune Excursion 

The above procedure was performed for each device in the machine to determine from each 

the total current regulation error contribution to the full tune excursion. As defined in the previous 

section, the individual contribution to the tune excursion from each device may be quantified by 

IRil =Lt l'fi(t) - 'ftotat(t)I. Therefore, defining the time averaged normed residuals, (R) 

Table 3.3 list the results of the calculation R for each device. 

Table 3.3: Result of residuals (R,,) x 10-2 and (Ry) x 10- 2 for each device. 

Device ('Rx} X 10 2 ('Ry} x 10 2 n x 10 2 Device ('Rx} X 10 2 (1ly} x 10 2 n x 10 2 

QF 3.090 1.048 4.140 QX05 3.413 0.7256 4.138 
QD 4.648 12.05 16.69 QX06 0.7850 0.2000 2.785 -- QSS 3.159 2.604 5.763 QX08 0.1784 0.5668 0.745 
QX02 0.3737 1.341 1.714 QX09 0.5345 0.2005 . 0.735 
QX03 0.3097 0.1485 0.458 QX13 0.5537 0.2160 0.769 

QX04 0.1967 0.7910 0.987 QX14 0.1395 0.4128 0.552 
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The percentage contribution of errors from each device is found from (Rj) / L1: (R1:). Results 

are given in Table 3.4. 

Table 3.4: The percentage contribution of errors, (Rj) / L1: (Rk), from each device. 

Device Device 

QF 17.8 10.5 QX05 
QD 26.7 59.3 42.3 QX06 4.5 1.0 7.1 
QSS 18.2 12.8 14.6 QX08 1.0 2.8 1.9 
QX02 2.2 6.6 4.3 QX09 3.1 1.0 1.9 
QX03 1.8 0.7 1.2 QX13 3.2 1.1 1.9 
QX04 1.1 

- 3.9 2.5 QX14 0.8 2.0 1.4 

3.4.5.1 Tolerances of each Constituent Quadrupole System 

For quantitative comparison, Table 3.5 gives av I al~ for the jth device. Each partial deriva­

tive was obtained by performing a linear least square fit through the results of 6 calculations at the 

current errors: Hj(Amps) = {±0.2, ±0.6, ±1.0}. 

Table 3.5: Current tolerance, av/alj, for the jth device. 

Device ~ x 10-2 
81· 

7ff:- x 10-2 Device ~ x 10-2 
81· Fr1':- x 10-2 

QF 4.7557 -1. 7136 QX06 -0.2428 0.6250 
QD -1.8386 5.0579 QX07 0.6907 -0.2400 
QSS 1.1429 0.8678 QX08 0.2500 0.7064 
QX:Ol 0.4000 -0.1250 QX09 0.6885 -0.2564 
QX02 -0.2185 0.7500 QX13 0.6592 -0.2500 
QX03 0.5385 -0.2250 QX14 0.6850 -0.2400 
QX04 -0.1814 0.5935 QX15 -0.2500 0.6500 
QX05 0.6114 -0.1250 

To compare the relative strengths of each term in Table 3.5, Figure 3.15 is a plot of the 

partial derivatives as a function of the index number in the table. As expected the relative strength 

of tune errors due to errors in the power supplies dominate those of the error deviations in the power 

supply trim elements. Also, it is clear from the figure, that the resulting strengths of tune errors are 

equal throughout the arc sections. 
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Figure 3.15: The partial derivatives jov,,/olil and \8vy/8Iil for each of the devices listed in Table 
3.5. 

3.4.6 Chromaticity Measurements for b.1}1) /300msec Case 

In order to investigate the possibility of generating higher order multi poles, an experimental 

measurement of the chromaticity for the b.1}1) /300msec ramp was performed. The experimental 

method was as follows: 

l. For each measurement, protons (reverse protons) were injected into the Debuncher m the 

2. 

3. 

4. 

direction counter to that normal for p production. 

RF was used to bunch the beam and accelerate/ decelerate the bunch to the desired point in 

the momentum aperture. 

The excess beam which was left behind by the RF was scraped to obtain a good measurement 

of the tunes. 

Measurements of the transverse Schottky sidebands were made as a function of time (spectro­

grams) during the b.1}1) /300msec ramps with the HP vector signal analyzer. These measure­

ments were performed for each b.p/p. 
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5. The chromaticity ~(t) in each plane was found by a linear least square fit to the D.v versus 

D.p/p data. 

For each value of D.f / f the transverse tunes, vx(t), and vy(t), during the !:11}!) /300msec 

ramp are given in Figure 3.16. Error bars on the measured tune spectrograms have been omitted in 

Figure 3.16 for clarity, however, each point has an error of::::; 5%, which is due to the error obtaining 

the peak frequency of the transverse sideband and the time resolution error of the spectrograms. 
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(a) vr(t) for different 6..f / f. 
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(b) Vy ( t) for different 6..f / f. 

8.0 

Figure 3.16: Tune spectrograms, vx(t) and vy(t), across the aperture D.f / f for !:11}!) /300msec. 

The chromaticity is defined by the relation ~; = D.v; [11(t)/ D.f / /]. For several points in 

time throughout the !:11~!) /300msec ramp, a linear least square fit is performed on the D.v; from 

Figure 3.16 data as a function of D.p/p = 17(t)/D.f /f. The result of this procedure for measuring 

the' chromaticity ~ is given in Figure 3.17. Although there is a finite dependence of the chromaticity 

as a function of D./t, it is quite small. Moreover, the tune spread in the Debuncher is small because 

D.p/p rapidly decreases because of longitudinal stochastic cooling. Thus, /:1~ can be neglected from 

further consideration. 
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Figure 3.17: The chromaticity, ex(t) and ey(t), during ~,}n /300 msec ramp. 

3.5 Chapter Summary 

In this chapter several issues related to the ~,vi/ ~t ramps have been presented and an­

alyzed. Solutions to the various problems associated with the fact that actual ~,}n ramps differ 

substantially from ideal ~,vi ramps, occupied the substantial part of the chapter. Notably, power 

supply regulation errors, which are caused by the stringent voltage slew rate requirements, result 

in significant beam loss due to resonance crossing. Such regulation errors must be corrected with 

feedforward electronics. 

A simple power supply /magnet/ current- bypass shunt model was used as a basis for the 

design of the corrective feedforward system. With the implementation of feedforward, it was found 

that regulation errors may be reduced by a factor of 10. 

The remainder of the chapter analyzed took up the ~,}n /300msec design case. While 

the original intention was for the implementation of faster slew rates, performing the full ~,vi in 

300msec posed considerable challenge with the present hardware. Furthermore, From a detailed in-

vestigation-of the currents in each device as a function of the production cycle time, the experimental 
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tune spectra could be compared against calculations which accounted for the detailed current errors. 

The calculation was used to indicate both (i) the major devices contributing to tune excursion, and 

(ii} the sensitivity of current errors in each device to the associated tune. 

The chromaticity was examined experimentally for the 6.1}!) /300 msec ramp, in order to 

investigate the possibility of generating higher order multipoles. Although there is a finite depen-

dence of the chromaticity as a function of 6./t, the tune spread of the machine, particularly due to 

momentum cooling, makes the effect negligible for the 6./t project. 

Having addressed the major lattice and slew rate requirement of the 6./t project, the next 

chapter investigates, in depth, stochastic cooling in the Debuncher. The model developed in the 

next chapter is then used to study the effects of 6.1t/ 6.t and also for extrapolating cooling rate 

performance into eras at Fermilab with higher luminosity objectives. 
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CHAPTER 4 

THE DEBUNCHER STOCHASTIC COOLING MODEL 

4.1 Introduction 

The objective of this thesis has been to investigate, both analytically and experimentally, 

the efficacy of a dynamic 6.11 lattice for improvements to stochastic precooling in the Antiproton 

Source Debuncher through a reduction of the mixing factor. Thus, it is necessary to be able to, 

both (i) predict the experimental results obtained with the present Debuncher particle flux, and 

(ii} extrapolate cost/benefits of a dynamic !l.11 lattice into higher particle flux regimes [33]. In 

order to accomplish the stated objectives, a model for the Debuncher stochastic cooling system 

was developed, which incorporated the measured cooling system parameters for direct comparison 

with (i) the cooling rates with the nominal Debuncher lattice, and later (ii} the cooling rates for a 

dynamic 6. /t. 

The main contribu-iion of this work to the discipline of stochastic cooling is through an anal­

ysis of the specific FN AL Anti proton Debuncher systems. In particular, experimental measurements 

provide a strong basis for the development of a phenomenologic based computer calculation based 

upon the known theoretical framework. Since ample descriptions of stochastic cooling theory may 

be found in the references [4], [5], [22], [61], [95], [69], [70], [28], no attempt is made to enumerate ab 

initio the steps leading to the cooling equations. Rather, it is the consequences, as applied to the 

Debuncher, which are presented from the perspective of a design report intended for the engineering 

upgrade of an existing machine. 

4.2 Historical Development 

As early as 1968, the first concept of stochastic cooling was originated by S. van der Meer. 

What was needed, however, was the ability to observe individual particle orbits. With parallel 

eff~rts in two separate endeavors: (i) early work with the observation of Schottky scans [8], and (ii) 

feedback systems for the damping of coherent instabilities [86], stochastic cooling was elevated from 

the status of a good idea to a technique rich with promise for increasing the phase space density of 

particle beams. 
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A short time thereafter, the Initial Cooling Experiment (ICE) [16] demonstrated both Ion-

gitudinal and transverse cooling with a system having an initial power of~ 1 kW and a bandwidth 

of W ,..., 100 - 180 MHz. The ICE project was possible through the realization of momentum stack 

cooling by Strolin and Thorndahl, together with electronic filter developments by Carron [17]. Al-

though the initial concept of S. van der Meer was that of transverse emittance cooling, the idea of 

longitudinal stochastic cooling by Thorndahl, unleashed the possibilities for collecting and storing 

large amount of antiprotons for high luminosity pp collision experiments. 

Progress in stochastic cooling technology was subsequently advanced with the CERN SPS 

and the Fermilab Tevatron I project and through the newly available technology in high-powered, 

wide-bandwidth TWT 1 amplifiers. Although the notion of sensing individual particle fluctuation 

was still not entirely realized 2
, large steps forward have been accomplished with amplifiers possessing 

high power with suitable linearity over octave bandwidths in the GHz regime. 

In parallel with the rapid strides in the hardware technology of stochastic cooling, theoretical 

efforts by groups at CERN and LBL/FNAL were quickly provi~ing a formal understanding of the 

stochastic cooling principles. What had emerged was a rich scientific subfield. Amongst the physical 

phenomenology having particular connection and impact upon the developments of stochastic cooling 

. were collective beam phenomena [24], [21], theory of fluctuations [23], within the broader context of 

Markov processes [20], [80], and elements from controls theory [48]. 

4.3 Stochastic Cooling: Definitions 

Two definitive texts, which had formed the foundation for a complete treatment of coasting 

beam stochastic cooling theory, were that of J. Bisognano [4], [5], and later for bunched beams by S. 

Chattopadhyay [22), [25). The efforts from both investigators presented a theoretical formulation of 

stochastic cooling of particle beams in a storage ring as a unified whole based upon both the kinetic 

theory in phase space and the fluctuation theory in frequency space. 

Figure 4.1 is a conceptual drawing of a stochastic cooling system used in a circular storage 

1 The power amplifier stages for cooling systems are TWT - Traveling Wave Tube amplifiers, which have octave 
frequency bandwidths l-2GHz, 2-4GHz, and 4-8GHz, with typical saturated output power ranges of up to 200Watts 

2 For the Debuncher with W "' 2GHz, Lpu "' 2.5cm, and Ip "' 5 X 107 there are "' 500ps under a single pickup (pu) 
at any one time. 
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ring. A lucid definition of stochastic cooling has been so concisely stated in Chattopadhyay's thesis 

[22], that it is worthwhi~e repeating verbatim: 

Stochastic cooling is the damping of transverse betatron oscillations and longitudinal 
momentum spread or synchrotron oscillations of a particle beam by a feedback system. 
In its simplest form, a pick-up electrode (sensor) detects the transverse positions or mo­
menta and longitudinal momentum deviation of particles in a storage ring and the signal 
produced is amplified and applied downstream to a kicker electrode, which produces elec­
tromagnetic fields that deflect the particles, in general, in all three directions. The time 
delay of the cable and electronics is designed to match the transit time of particles along 
the arc of the storage ring between the pick-up and kicker so that an individual particle 
receives the amplified version of the signal it produced at the pick-up. If there were only 
a single particle in the ring, it is obvious that betatron oscillation and momentum off-set 
could be damped. However, in addition to its own signal, a particle receives signals from 
other beam particles (Schottky noise), since more than one particle will be in the pickup 
at any time. In the limit of an infinite number of particles, no damping could be achieved; 
we have Liouville's theorem with constant density of the phase-space fluid. For a finite, 
albeit large number of particles, there remains a residue of the single particle damping 
which is of practical use in accumulating low phase-space density beams of particles such 
as antiprotons. 

Orbit of particle # 1 ········ ', 

Amplifier 

Pickup Arrays 

', 

Orbit of particle #2 

Ideal Orbit 

. . 
·• •• I 

·.I .. , 
,'" 

"·· 

Kicker Arrays 

Figure 4.1: Conceptual illustration of a stochastic cooling system within a particle storage ring. 
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4.3.1 Basic Physical Processes 

In Hamiltonian mechanics, the dynamical evolution of a system is described with a conve­

nient set of canonical variables, which define the coordinates of the system in phase space [39], (34], 

[92]. If the system is an ensemble of particles acting under conservative interactions, the system 

is said to be Hamiltonian and Liouville's theorem states that the phase volume may be deformed 

without change to the phase density. Non-conservative forces, as resulting from self- interactions 

in a feedback system which are velocity dependent [51], are non-Hamiltonian, and thus, Liouville 's 

theorem does not apply. Therefore, stochastic cooling is merely a method of introducing an interac­

tion which is a dissipative, velocity dependent force in order to decrease the phase space density. In 

particular, the non- Hamiltonian interaction of a stochastic cooling system in a storage ring is the 

self- interaction of a particle scattering with itself through an electronic system of amplifiers and/or 

filters. Thus it is the coherent, velocity dependent self interaction which leads to a reduction of the 

phase space volume. In addition to the ideal coherent interaction, however, there is also the two 

particle scattering through the feedback loop. Thus, the effect of particle j's signal upon particle i 

at the kicker leads to diffusion, which is in direct competition with the cooling self- interaction. 

The kinetic theory of stochastic cooling of Bisignano and Chattopadhyay is predicated upon 

the two fundamental interactions just described: (i) the coherent self- interaction through the feed­

back loop, and {i) the incoherent two particle interaction representing the presence of other particles 

in the beam. Chattopadhyay has distilled these fundamental processes of stochastic cooling into 

two diagrams reminiscent of Feynman scattering diagrams [35] as depicted in Figure 4.2. In his 

theoretical treatise, Chattopadhyay takes these diagrams quite literally in developing interaction 

Lagrangians with transit time matched Green functions. 
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;/ 
Figure 4.2: Scattering interpretation of the the two stochastic cooling interactions[22]. 

4.3.2 Macroscopic Quantities and Simple Systems 

Having briefly described the basic microscopic processes involved with stochastic cooling, 

the macro- behavior of the stochastic cooling system shall now be addressed. The emphasis in this 

brief section shall be to underscore (i) the relevant measurable quantities involved with a stochastic 

cooling system, and (ii) the scaling behavior as a function of the cooling time. For convenience, the 

longitudinal and transverse systems are segregated into separate descriptions, however, a few words 

shall be said about the unifying physical features of each. 

4.3.2.1 Longitudinal system 

The simplest longitudinal stochastic cooling system would operate in the following manner: 

(i) the voltage signal of a distribution of particles, which is derived from the sum mode of a pair of 
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pickup plates [38], is amplified, {ii) the amplified signal is differentiated, thus producing a voltage 

signal with a zero crossing at the central frequency, and (iii) the differentiated signal voltage is 

applied to the kicker plates, such that higher/lower momentum particles are decelerated/accelerated 

towards the central frequency. Dramatic improvements to the simple system just described are 

possible with the use of recursive notch filters which produce an energy dependent gain designed 

to reduce the noise signal from _particles already cooled to the central momentum. The simplest 

realization of a notch filter is with the half wave shorted transmission line, having a transfer function 

(impedance) Z,..,, tan[27rw/w0 ], which to first order, varies linearly as the frequency difference, or 

equivalently, the energy difference. If the filter is lossy, however, IZl 2 of the notch filter will not fall 

to zero in the notches at the revolution harmonics, thus diffusion will be enhanced compared with 

a lossless filter. Moreover, as the beam cools, the Schottky power spectra E(w) will increase if Z is 

lossless, thus, IZl 2 ,..,, !:!.E means diffusion increases as the beam is cooled [28]. 

The response of a simplified recursive notch filter is N(n) = 1 - Ae-inL/c = 1- Ae-mr •. 

Thus, Figure 4.3 is a plot of the magnitude IN(lw)I which together with the phase is given by 

IN(lw)I = [1 + A2 
- 2Acos 27r/f / fo] 

( ) 
_ 1 A sin 211"/f / fo 

arg N =tan 
1 - A COS 211"/j / fo 

Longitudinal Recursive Notch Filter 

f. 
J 

2f. 3f. 
J J 

harmonics 

Figure 4.3: A simplified diagram of the ideal recursive notch filter in frequency space. 

77 

( 4.1) 

(4.2) 

-

-
-
-
-
-

-
-
-
... 

-
-
-

-

-



--

Since the cooling gain is dominated by the response of the recursive notch filter, the full 

electronic transfer function of the stochastic cooling system, shall take the simple form, as a function 

of !1E, 

G(11E) = -g[sin[r11E] + i(l/A- cos[r!1E])] (4.3) 

Thus, Equation (4.3) represents the transfer function of (i) the pickup P11(!1E), (ii) the kicker 

Ku(11E), (iii) the amplifiers and notch geN(11E), and (iv) an overall phase factor exp[ii,o]: 

( 4.4) 

The full gain G11 ( 11E) of Equation ( 4.4) is dominated by the notch filter, N ( 11E), since over the 

energy (frequency) range of the beam, both Pu and Ku are constant. 

A more detailed description of the longitudinal cooling system shall be developed in subse­

quent sections. In particular, the time evolution of the beam width <T may be obtained from the 

second moment of a Fokker Planck transport equation, which makes use of the simple model of 

G(!1E) in Equation (4.3) for the system response. 

4.3.2.2 The transverse cooling system: 

A description of the transverse stochastic cooling system is similar in many respects to the 

longitudinal system. Physically, the voltage signal at the pickup electrode pair is derived from the 

difference mode, thus sensitive to the transverse electromagnetic modes. Moreover, the system acts· 

to reduce the transverse (betatron) oscillations of the beam, which corresponds to a reduction in 

the transverse (dipole) sideband power. The gain of the cooling system may be considered constant 

across the sidebands, and in the Debuncher, a recursive notch filter is used to reduce the noise from 

coupling to the longitudinal mode. A simplified illustration of the transverse notch filter, which has 

zeros at (i) the revolution harmonics and (i) between the sidebands, is given in Figure 4.4. 
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Transverse Recursive Notch Filter 

f. 
J 2f. 3f. 

J J 
harmonics 

Figure 4.4: A simplified diagram of the ideal transverse recursive notch filter in frequency space. 

The equation for transverse cooling, or equivalently, an e~pression for the change in the 

transverse emittance, consists of {i) the total electronic gain of the cooling system, g, (ii) the 

quantity f0 /[~fn] proportional to the mixing factor, and {iii} the electronic noise, p. 

1 - W [ 2 ( 1 '"' Jo )] - = - 2g-g - Lt-+p 
T 2N n1 ~Jn 

n 

(4.5) 

Equation ( 4.5) expresses the following physical relationships: {i) the cooling rate is propor­

tional to the system bandwidth W, thus obviating the desire for large bandwidth systems, {ii) the 

cooling rate is inversely proportional to the number of particles N, thus expressing the fact that the 

larger the number of particles the slower the cooling rate, and {iii) there should exist an optimal 

cooling gain 9opt given by the extremum of the parabolic functional r- 1(g). 

4.3.3 Brief Description of Stoch(lStic Cooling Hardware 

In the Debuncher, there are three distinct stochastic cooling systems: the vertical, horizon-

ta!, and the longitudinal systems each with a 2-4GHz bandwidth. Each of the Debuncher stochastic 

cooling systems are operated below the optimal gain with the output power from the TWT ampli­

fiers driven at saturation ( ,...., 75Watts/TWT ). The total operating power of the systems is typically 

,...., lOOOWatts, although during RunlB levels of,...., 1300Watts had been achieved. Such power levels 

correspond to system gains between ,...., 90 ~ lOOdB. Presently, the transverse system reduces an 
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initial beam emittance ot l77rmm-mrad to 47rmm-mrad over a production cycle time of~ 2.4sec3
, 

while the longitudinal system reduces !::l.p/p ~ 0.3% to !::l.p/p ~ 0.17%. 

Although possessing its own set of amplifiers and ancillary electronics, the longitudinal 

system derives signals from both the horizontal and vertical pickup arrays. Unlike the transverse 

systems, however, the longitudinal system is sensitive to particle momenta by summing the signals 

from the top and bottom loop coupler pairs. Subsequently, the signal is filtered and acts back 

upon the beam with both sets of transverse kickers, which are applied in sum mode. There are 128 

loop coupler pickup pairs, which constitutes the particle signal detection system for the transverse 

stochastic cooling systems (and hence 256 pickup pairs used for the longitudinal system). The 128 

pickup pairs are equally distributed between 6 tanks and are located in the D10-D20 straight sections. 

An exactly similar arrangement is used for the kicker arrays located in the D30-D40 straight sections. 

Figure 4.5 is a simplified schematic of a transverse stochastic cooling system in the De­

buncher. As indicated in Figure 4.5, signals from a particular pickup pair are added 7r out of phase. 

The microwave hybrid device is able to output either the !::l. (difference) signal or the E (sum) signal. 

The signals from the 4 separate tanks are pre-amplified and phase adjusted before finally b_eing 

combined .. Phase adjustment between the combined stochastic cooling tanks is accomplished with 

a variable path length microwave device (trombone). 

Basic Stochastic Cooling Schematic 

Pickup Arrays 180._Hybrid 
phase delay 
(trombone) 

It 
It 
It 
0-

~ ··· ... ... 

low-level 
Pre- Amplifiers 

Bulk Acoustic Wave 
Correlator Notch Filter 

Spectrum Analyzer 

PIN switch 

Kicker Arrays 
~:-. 

1WT Amplifiers 

(40-50d8) 

Figure 4.5: A basic schematic of a (transverse) stochastic cooling system in the Debuncher. 

-n 
-n 
-n 
-II 

i] 

-n 
-n 

-II 

3 This number does change depending upon the stack size, since it has been found that stack rate degradation must 
be compensated by longer cycle times 
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Once the pickup signals are combined, a correlator notch filter provides the proper gain 

shaping for stochastic cooling. In the case of the transverse system, the notch eliminates the revolu­

tion harmonic frequencies and also noise between the transverse sidebands, while in the longitudinal 

system the filter produces a notch in the center of the longitudinal distribution which has the proper 

gain and phase slope. A correlator notch filter, or equivalently, a recursive filter, works with the same 

principle of an interferometer, by splitting and recombining a signal between a short path length 

and a long path length. In the Debuncher, the long path length, or delay, is controlled by the use of 

a bulk acoustic crystal, which historically had their origin from the stringent requirements of radar 

systems. At the output of the notch filter is a point at which spectrum analyzer measurements may 

be made. The PIN switch is used for opening the cooling loop and may be triggered open/closed on 

any accelerator timing event. 

4.4 Longitudinal Stochastic Cooling in the Debuncher 

The momentum stochastic cooling system is designed to increase the number density of a 

particle beam in a storage ring about the central -beam energy Ea. In the Debuncher, a co_rrelator 

notch filter is used to increase the energy dependence of the gain G(x), in order to reduce the Schot­

tky noise at the kicker electrodes from particles at Ea. Thus the ideal momentum/filter stochastic 

cooling system should {i) have an electronic filter which has finite, complex gain G(x) except at 

the center of the beam distribution IJl(x), corresponding to infinitesimally narrow notches at all 

revolution harmonics and with a zero crossing phase shift of 71", and (ii) not introduce noise through 

intermodulation distortion. An idealization of the closed loop gain, assuming a flat phase response 

for the pickup and kickers, has been given in Equation (4.3) as G(x) = -g[sin[rx]+i(l/A-cos[rx])]. 

4.4.1 The Fokker Planck Description 

The number density of particles per energy shall be represented by IJt = dN/dE. Moreover, 

it shall be useful to define the distribution function 1/;(x), which is defined through the energy 

difference x = ~E = E - Ea, and which is independent of particle number, 

IJl(x, t) = Nl/J(x, t) 

81 

-
-
-
-
-
-

-
-

-

-
-
-

-



Under the action of a stochastic cooling system, the evolution of the longitudinal distribution function 

'lj!(x, t), is accurately described by the Fokker Planck equation4 and forms the basis for a computer 

model for the Debuncher systems, The longitudinal Fokker- Planck equation follows from Bisognano: 

o'lj!(x, t) 

ot 

'""' [ [ Gm(x) l <P(x, t) = ~ 1/J(x, t)1leal lm(x, t)J-
m,~m~m2 

o<P(x, t) 
OX 

-1f!(x,t)o'lj!(x,t)N7r{3
2
E IGm(x)l

2 
{i+Um(x,t)}] 

ox 2rJfo mllm(x, t)l 2 

(4.6) 

(4.7) 

The quantities appearing in Equations (4.6) and (4.7) are the following: {i) <P(x, t) is the 

conserved flux of particles, undergoing collisional interactions through the feedback loop, {ii) the sum 

is over all revolution harmonics, however the gain Gm(x) is only finite within the cooling bandwidth 

W from f = 2 - 4GHz, {iii) Gm(x) is the energy dependent gain function of the cooling loop at 

each m-th harmonic in units of GeV /sec, {iv) Um(x, t) is the energy dependent noise/signal ratio at 

each mth harmonic during the cooling cycle, and which may be defined through the Schottky power 

E(x, t), such that Um(x, t) = Enoise/.Esignal and may be written as Um(x, t) ,...., .Enoise/1/J(x, t) {v) 

lm(x, t), is the signal suppression factor, or equivalently, the closed loop response function, at each 

m-th harmonic as a function of time, and {vi) the relationship between the energy and frequency 

is given by x = (32 E~fm/[77mfo] for which ~fm = f - mf0 • The constants of the machine are 

Jo = 0.590035 x 106 Hz, 7] = .006, Ea= 8.938GeV, r = 9.5287, and (3 = 0.989, such that the energy 

variable x = 2.469MeV-sec~fm/m. An expression for the signal suppression factor lm(x, t), is given 

4 In general, the character of a Fokker-Planck equation is results from an approximation of the Master equation 
(the Boltzmann equation with the full collision term): thus, given, f (w, t), full distribution function in the pair of 
canonical variables w' and a collision operator r [ f] : 

df = af +v·Y'f-Y'<I>- af =r[J] 
& & av 

The Fokker Planck approximation is a truncation of r [ j] with a Taylor expansion: 

r[1] "'~[1v] + _a
2

-[1v] 
aw; aw;aWj 

For complete discussions, the development appears in a wide array of contexts: Reich! - Modern Statistical Mechan­
ics (80), Binney and Tramaine - Galactic Dynamics (p.506) (3), Ichamaru - Statistical Plasma Physics (49), Stix -
Nonlinear Waves in Plasma (91]. 
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by the dispersion relation: 

( t) - l N7r /32
EG ( )! 81/J(x',t) dx' 

Em X, - + --- m X 
m 2r!fo ox' (x - x') + i77 

(4.8) 

The first term in Equation ( 4. 7) represents the cooling - self interaction through the feedback 

loop, and involves the effect of the closed feedback loop through the signal suppression, Em(x, t). The 

second term of Equation ( 4. 7) represents the diffusive - two particle interaction term. In Equation 

(4.7) and (4.8), the gain Gm(x) passes through zero at x = 0, and has a phase shift of 7r, which is 

a feature of the recursive filter. The effect is to increase the density by reducing the large energy 

deviation of particles at the tails of the distribution function. Therefore, one expects for an initial 

distribution 'I/Jo at t = 0, G(x) ~ -x, and A(t) > t fort> 0, then 'l/J(x, t)......, A(t)'lfJ0 [A(t)x], which is 

the statement that density increases and thus the beam width decreases. 

Competing with the cooling process is a nonlinear diffusion effect resulting from the scat­

tering from other particles in the beam through the feedback loop. The general character of the 

nonlinear diffusion equation is %x [ 1( x )'lfJ( x) ~], in which the sum over the gain and the suppres­

sion factor have been grouped in a function 1( x). A comparison of non-linear diffusion, to linear 

diffusion, %x [ 1( x) ~] shows that the product 1/J( x) ~, constituting the Schottky heating, has the 

effect of diffusing particles closer to the beam centroid and acting less upon particles further in the 

tails of the distribution. In the present Debuncher cooling systems, the thermal noise Um ( x, t) is 

quite large and dominates the diffusion effects. Furthermore, in the aforementioned formulation, 

external diffusion arising from intrabeam scattering are negligible and therefore omitted. 

4.4.2 Schottky Signals at Microwave Frequencies 

Inputs to the Fokker Planck transport Equations ( 4.6) and ( 4. 7), may be provided from a 

number of measurements, which occupy the remainder of this section. Specifically, observation of 

Schottky signals within the microwave bandwidth of the cooling systems may be used to provide 

information about (i) the beam properties, (ii) a direct measure of the noise/signal ratio, {iii) the 

signal suppression, which in turn may be used to extract Gjf (x ), and (iv) open loop network analyzer 

measurements, which are also used to extract Gjf(x). More specifically, a detailed time integration 

of the longitudinal Fokker Planck equation for momentum stochastic cooling requires knowledge of: 

(i) the full system gain in Gfl in [MeV /sec] at each harmonic m,(ii} a characterization of the filter 
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function in terms of gain slope r in [l/MeV], (iii) the beam width u in [MeV] and strength in Watts, 

(iv) the notch center at each harmonic in [Me V]. 

Figure 4.6(a) is a typical spectrum analyzer Schottky signal measurement taken at the point 

depicted in Figure 4.6(b ). The measured spectra was taken at 2.8GHz with and without beam. 

Thus, the noise baseline, may be used to obtain the convexity r, or equivalently, the gain slope, of 

the notch filter from Equation ( 4.3). 
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(a) Longitudinal measurement 
with/without beam at 2.8GHz. 
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Measurement within Microwave Bandwidth 
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7WTAmp.r 
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PIN s .. itch 

Schottky DistribuJi<m 
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(b) Simplified diagram of stochastic cooling sys­
tem indicating the point at which the spectrum 
is measured. 

Figure 4.6: Configuration for the· longitudinal spectrum analyzer measurement. 

The spectrum analyzer measurement of Figure 4.6(a) is the power at the output of the notch 

filter, Pout. For an input Schottky beam power density [Watt/Hz] Pf~am = E(x)E*(x) and an input 

noise power P['noise = T(x)'.I*(x), 

(4.9) 

= p•ignal+noise (4.10) 

Equation ( 4.9) expresses the fact that the observed power is just the convolution of the gain (squared) 

transfer function with the input beam power, consisting of both (Pf~am) and the noise floor power 

(PI'noise). Using Equation (4.9), the specific model used for fitting the observed longitudinal Schottky 

spectra follows from two choices: (i) the Schottky beam voltage signal is taken as a simple Gaussian 

E(x) =exp [-Cx2~~ 0 )2], and (ii) a voltage gain function G(x) = -g [ sin[rx] + i(l/ A- cos[ rx])], which 
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is the simple model for a recursive notch filter. The observed power and the noise power may be 

used for obtaining fundamental quantities of the system. Thus, Equation ( 4.11) is the output signal 

+ the noise power 

[ (x-x,)
2J[· 2 (1 [ ))2] Pout =f3s exp -

2
0'2 sm {TX}+ A - cos TX 

+ {3~ [sin
2{Tx} + (~ - cos{Tx})] + >. (4.11) 

while the output noise power is given in Equation (4.12). 

(4.12) 

The free parameters appearing within the simple models of (4.11) and (4.12) for Pout and 

Pnoise, respectively, are (i) x, is the beam center at the mth harmonic, (ii) XN is the center of the 

recursive notch at the mth harmonic, (iii) a is the beam width, (iv) T is the curvature and thus 

the depth of the notch, (v) >. is a simple offset. In fixing a few of the parameters, especially those 

associated with the notch center and the notch width, fits to the the noise spectrum were made 

without beam, and (vi) although written separately for the model, the linear parameters {3~ = f3n, 

and thus, fits for {3, and f3n provide information about the noise to signal ratio. With a standard 

nonlinear least square fitting routine [40], free parameters may be extracted from the Schottky 

measurements. 

4.4.3 Longitudinal thermal noise: u!herm 

From the Schottky power measurements and the models of section 4.4.2 for Psignal + noise and 

Pnoise, a parameterization can be used in the computer code. The longitudinal thermal noise/signal 

ratio is given by u!herm = Pnoise/Psignal· In particular from the simple model of section 4.4.2, the 

expression for u!herm may be written in terms of the fitted parameters. Thus, the two quantities 

which are directly measurable have been given by Equations (4.11) and (4.12), 

Psignal+noise = ~s exp [-x2 
/ a 2

) + {3~] jG( X )12 + As 

Pnoise = .Bn\G(x)l2 +An 
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in which A, and An are offsets, and /3~ ~ f3n. From these expressions the signal power Psignal is 

( 4.13) 

The thermal noise/signal u!herm is obtained from Equation ( 4.13), thus, 

II (x t) ,..., [ f3n + An ] 
Utherm ' "' {3,-J'iicr(t)l/J(x, t) +(A, - An) 

(4.14) 

In Equation (4.14), u!herm(x,t) has been written directly in terms of the dimensionless quantity 

v'21iu(t)1f;(x,t), which is obtained at each time step within the Fokker Planck calculation. Fur­

thermore, from the expression for the thermal noise, outside the distribution, -limx-+±c:x:i u!herm -+ 00 

expressing the fact that without coherence through the feedback loop, the dominant effect is diffusive 

heating of the distribution. 

4.4.3. l The Fits 

For obtaining the linear parameters, {3, and /3n for u!herm(x,t = 0) in Equation (4.14), fits 

are made in the following manner: {i) utilize simple Gaussian fits to the longitudinal Schottky at 

the 127th harmonic (from the 79MHz Schottky detector outside the cooling loop), for extracting 

the beam width u, (ii) constrain the gain function G(x ), by fitting for the noise spectra pnoise = 
G(x, r) ©T(x ). for the convexity r, and (iii) using the specific models given in Equations ( 4.11) and 

(4.12), for Paignat+noise and Pnoise, respectively, determine parameterization required of u!herm· 

A fit to the beam width u is obtained from the measurements of the 127th longitudinal 

Schottky signal. Figure 4.7(a) and (b), are fits to the longitudinal Schottky spectra at the beginning 

of the cycle ( at D..t = 0.2sec with beam width u = 8.315MeV ) and for D..t = l.Osec ( with beam 

width u = 8.13MeV ), respectively. The spike in Figure 4.7(a) is the result of the slow de-coherence 

associated with bunch rotation. 
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Figure 4.7: Fits to the longitudinal beam Schottky spectra at the 127th revolution harmonic. 

The fits to the noise spectra Pnoise (no beam) at 2.8GHz and 3.2GHz are given in Figu_res 

4.8( a) and (b), respectively. From the fits the value of the convexity is given by ( r) = 2.58 x 

10- 2Mev- 1 . 
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Figure 4.8: Fits to the longitudinal noise spectra downstream from the notch filter. 
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Utilizing the fixed parameters r, and u, fits to Psignal+noise were made at several harmonics 

within the microwave bandwidth. Figures 4.9(a) and (b) are representative fits to the data at 2.8GHz 

and 3.2GHz, respectively. 
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(a) Psignal+noise at 2.8GHz with fit. (b) Psigna!+noise at 3.2GHz with fit. 

Figure 4.9: Fits to the longitudinal beam spectra Psignal+noise in the microwave bandwidth. 

A summary of the results for the linear parameter fits {33 and f3n (Equations ( 4.11) and 

(4.12)) at two frequencies in the cooling bandwidth, with r == 0.0198Mev- 1 and <r == 8.645MeV, is 

given in Table 4.1. 

ull ( t) [ f3n + >.n ] therm x, ~ f3.v'2ifu(t)?j;(x, t) + (>.s - >.n) 

Table 4.1: Summary of fitted parameters for u!herm (x, t). 

Frequency[GHz] 

2.8 
3.2 

/3.[mWatt/Hz] 
0.18 x 10 2 

0.26 x 10-2 

f3n [mwatt/Hz] 
0.70 x 10-4 

0.19 x 10-3 

>., [m Watt/Hz] 
0.33 x 10-4 

0.53 x 10- 4 

>.n [m Watt/Hz] 
0.10 x 10-4 

0.16 x 10-4 

The parameterization resulting from the fits to Psignal and Pnoise allow a determination of 

u!herm as given previously in Equation ( 4.14). Figure 4.10 is a plot of the experimentally determined 
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parameterization, which has been subsequently employed within the Fokker Planck model calculation 

for predicting the evolution of the particle distribution function. 

10.0 

8.0 

6.0 

E 
·;} 

4.0 

2.0 

0.0 
-100.0 -50.0 0.0 50.0 100.0 

x = !:::.E[MeV] 

Figure 4.10: The parameterization of u!herm which is used in the Fokker Planck calculation. 

4.4.4 Signal Suppression f11(x) & (G11} 

Signal suppression measurements provide a means for extracting the stochastic cooling sys-

tern gain G( x) using nonlinear fitting models. A description of signal suppression, or equivalently, 

the closed loop gain factor, follows from standard treatments of controls theory for feedback sys­

tems. Figure 4.11 is a simplified diagram of the stochastic cooling feedback system, together with 

the beam which closes the loop. The quantities appearing in the illustration are {i) B(w), which 

is the frequency (energy) dependent beam response function, (ii) 1/Jp, which is the beam signal at 

the pickup including the modulations of the feedback signal, {iii) Vi and Vi, the voltages at the 

Schottky detector and kicker respectively, and (iv) G(w), which is the frequency (energy) dependent 

gain function. 
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Pickup Arrays 

·· ·········-Bet111t··-•····· · ·· --- ~ 

Spectrum Analyzer 

······:;:::Beam::::· -
Schouky Distribution 
Convoluted with Notch 

Kicker Arrays 

Figure 4.11: A simplified diagram of the stochastic cooling feedback system used for defining signal 

suppression. 

The simplified derivation of signal suppression f was first performed by Sacherer [87] and 

follows from a controls theory analysis. Refering to the quantities in Figure 4.11, the beam signal 

at the pickup 1/Jpu is modified by modulations induced on the beam by the kicker >. = BVi,. Since 

Vi, = Gt/Jpu = Gtf;0 + BGVi,, the following expression may be found for >.: 

Therefore, the expression for the signal at the detection point is 

for which the denominator is identified as the signal suppression factor: 

vopen 
c=l-BG=-­

vc1asect 

The equation for c is an operator expression for the dispersion relation written previously 

N 7r (32 E j 81/;( x') dx' 
tm = 1 + --f Gm(x) -~-,-( ') . 

m 1/ 0 uX X - X + ZTJ 

As indicated, the signal suppression is obtained directly from the open and closed loop 

Schottky power such that Papen/Pclosed = 1<1 2
. The expression for ltl 2 follows from the observation 
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that the open loop Schottky signal mirrors the beam distribution in frequency (energy) space Papen = 
1f 0 ( x), whereas the closed loop Schottky signal necessarily contains the effect of the feedback system, 

such that 'Pclosed = 7fo(x)/jff 2
. 

4.4.4.1 Experimental Extraction of G11 

The procedure for extracting the gain is as follows: (i) make open and closed loop Schottky 

measurements at several revolution harmonics within the cooling bandwidth; (ii) construct the 

quantity [Em(x)j 2 directly from the measured Schottky signals Eapen and Ec1ased, respectively; and 

(iii) perform a nonlinear least square fit to [Em(x)l 2 based upon the definition written in terms of 

the unknown gain constant {G11) and other known machine constants. 

As depicted in Figure 4.11, the detection of the Schottky signals is at the output of the notch 

filter, but before the PIN switch. After the PIN switch there is an additional,....., 40 - 50dB of gain 

provided by TWT amplifiers. Both open and closed loop Schottky signals, just after the notch filter, 

may be made by gating the PIN switch for tim~s long enough for a single sweep of the spectrum 

analyzer (typically ,....., 100 - 200msec ). 

With the complex gain Gm = Gkm) + iG~m), the expression for f at the mth revolution 

harmonic in the cooling bandwidth is written in terms of the real part, f!R, and imaginary part, Eu. 

f(m) = 1 + N 7f 13
2 

E ['lfc(m) a'ljJ + a(m) PV J a'ljJ ~] 
!R m TJ!o ~ ax " ax' x - x' (4.15) 

/m) = N7r 13
2 

E ['lfdm) a'ljJ - a(m) PV J a'ljJ ~] 
u m TJf 0 u ax !R ax' x - x' (4.16) 

In particular, the gain function at each harmonic Gm(x; Tm) in terms of the gain slope Tm, and the 

beam distribution 7/J(x; u), in terms of the beam width u are given by 

Gm(x; T) =-gm [ sin[TmX] + i(l - cos[Tmx])] 

7/J(x;u) = Aexp[-(x - x 0 )
2 /2u2

] 

( 4.17) 

( 4.18) 

Fits to the beam distribution parameters were obtained from the longitudinal spectra at the 

127th harmonic. The results of the beam distribution fits to Equation ( 4.18) may be summarized 

as follows, (i) the beam distribution center x 0 = 1.19 ± .08MeV and (ii) the beam width u = 
8.635 ± .103MeV. Spectrum analyzer measurements of the baseline noise, obtained without beam, 
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at a point in the feedback circuit downstream of the notch filter, provide a determination of the gain 

slope in the equation with fits to Gm(x;Tm)· Results of fitting Tm with Equation (4.17) were given 

in the previous section and found to be Tm ,...., T = 2.503 x 10- 2Mev- 1 across the cooling system 

bandwidth. 

Since the free parameters u, x 0 , and T may be found from independent measurements of 

the distribution function and the noise spectra, respectively, only one free parameter is required for 

extracting (Gfl) from lf(x)l2. From Equations (4.15) and (4.16) for fR and f~r, respectively, 

(4.19) 

Specifically, the gain at each revolution harmonic m is found through the relationship 

4.4.4.2 Fits and Results 

Extracting the gain, (Gfl}, from fits to lfm(x; a, T, u)l 2 is summarized as follows: (i) at a 

sideband in the cooling frequency band, measure the signal suppression f(x, t) measuring the open 

and closed loop Schottky signals; {ii) measure the beam distribution at the 127th harmonic and 

perform simple Gaussian fits for the beam width u from P = Anorm exp [-(x - x 0 )
2 / u 2], (iii) obtain 

the gain slope T of the cooling system by fitting the noise power spectrum at each harmonic in the 

cooling system bandwidth to Gm(x) = -gm [ sin[Tmx] + i(l - cos[Tmx])] and (iv) using Equations 

(4.15), and (4.16), for fR, ffm, respectively, the magnitude 1£1 2 is fit for a defined through Equation 

(4.19). 

The result of three sets of signal suppression data at 3.2GHz (m = 5423) are given in Figures 

4.12, with trigger times 0.15sec, 0.25sec, and 0.35sec, respectively for determining (G11)· For each 

measurement, it is expected that a, and therefore (G11)m =ax [m7Jfo/[?rN,82 EJ], be constant, as 

the value of u and Anorm change due to longitudinal cooling. Thus, these measurements provide 

consistency checks between the fitting procedure for lf(x; a)l 2 and independent measurements of the 

beam parameters from the longitudinal Schottky measurements outside the cooling band. 
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Figure 4.12(a) is a plot of the the open and closed loop Schottky signal measurements ob­

tained at 3.2GHz and triggered at 0.15sec after beam is injected into the Debuncher. As previously 

described, the open loop measurement is made by gating the PIN switch open for "' 200msec corre-

sponding to the sweep time of the spectrum analyzer measurement. The resulting signal suppression 

l<(x; a)l 2 and the associated model fit for a given by Equation (4.19) is given in Figure 4.12(b). The 

value of the free fitting parameter in this expression is a = 8.89 ± .026, and therefore the gain is 

given by 

m a 5423 1 _ 1 
(Gu)m = N7r k = 4.5 x 107 7r 2.25MeV- 1 asec 

which corresponds to (G11)m = 8.73 x 10-4 MeV /sec. 

0.2 ~-~-~-~-~-,---.-----..,..-----.-, 

0.18 

0.16 

0.14 

0.<11 

0.00 

·IS -10 ·5 10 15 20 

(a) Open and closed loop Schottky spectra 

(rnWatts/MeV) versus energy (MeV). 

IB . 

1.5 

1.4 

1.3 

12 

/ 
1.1 Ni 

/~ 
., A~ ,/ 

'--~--

0.9 
~ ~ 

0.8 

0.7 i 
-20 -15 -10 -5 

(b) Ratio lf(x;a)l2 with (Gn)m 

10-4 MeV /sec. 

(4.20) 

··. 
\ 

\ 

10 15 20 

8.73 x 

Figure 4.12: (a) Comparison of the open and closed loop measurements, and (b) the resulting signal 

suppression l<J 2 at 3.2GHz at O.lsec. 

Similar to the above plots, Figure 4.13( a) is a plot of the the open and closed loop Schottky 

signal measurements obtained at 3.2GHz but t_riggered at 0.25sec after beam has been injected into 
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the Debuncher. The resulting signal suppression jt(x; a)l 2 and the associated model fit for a are 

given in Figure 4.13(b). The value of the fitting parameter in this expression is a = 8.79 ± .047, 

which corresponds to (G11)m = 8.64 x 10-4 MeV /sec. 

0.16 ~-~-~-~~-~----.....-----.--~ 

: l 
·····-· ~. ·-·+If•.:~· ···-'·········--···-'· -

': 
0.14 

0.12 

0.1 

0.04 LL----'--~-'---"---'---'---'---'-' 
·20 ·15 ·10 ·5 10 15 20 

(a) Open and closed loop Schottky spectra 

(rnWatts/MeV) versus energy (MeV). 

1.6 

1.5 
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1.3 
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1.1 

.... / .... ··· 
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0.7 
-20 -15 -10 .5 

(b) Ratio IE(x;a}l2 with (G11)= 

10-4 (MeV /sec). 

10 15 20 

8.64 x 

Figure 4.13: (a) Comparison of the open and closed loop measurements, and (b) the resulting signal 

suppression ltl 2 at 3.2GHz at 0.25sec. 

With a trigger time of 0.35sec after injection, Figure 4.14(a) is a plot of the the open 

and closed loop Schottky signal measurements obtained at 3.2GHz. The resulting ltl 2 and the 

associated model fit for a = 8.57 ± 0.042 is given in Figure 4.14(b). The fit corresponds to ( Gii )m = 

8.54 x 10-4 MeV /sec. 
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(a) Open and closed loop Schottky spectra 
(mWatts/MeV) versus energy (MeV). 
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Figure 4.14: (a) Comparison of the open and closed loop measurements, and (b) the resulting signal 
suppression lc/ 2 at 3.2GHz at 0.3sec. 

A summary of the results for extracting (G11)m given in Figures 4.12 through 4.14 is given 

in Table 4.2. 

Table 4.2: Experimental Fits to (Gn)-

flt 

0.15 sec 
0.25 sec 
0.35 sec 

9.89 ± 0.02 
8.79 ± 0.03 
8.57 ± 0.03 

{G11) N = 4.0 x 107 

8.73 x 10 4MeV /sec 
8.64 x 10- 4 MeV /sec 
8.54 x 10-4 MeV/sec 

Measurements of signal suppression were difficult to extract at other frequencies across the 

microwave cooling bandwidth. Therefore, independent measurement at other frequencies shall be 

provided through network analyzer measurements, which is taken up in the next section. 

4.4.5 Longitudinal Open-loop transfer function measurements 

Signal suppression measurements provide an experimental procedure for extracting the mag-

nitude of the system gain (G11 ). Another technique for extracting the gain is through direct excitation 

of the beam through the stochastic cooling system with open loop network analyzer measurements. 
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Open loop transfer function measurements are the most direct means for obtaining the system gain 

and phase. Figure 4.15 is a simplified diagram indicating the experimental setup for Debuncher 

stochastic cooling open loop network analyzer measurements for obtaining the S21 transfer matrix 

element, defined as the signal input power to the output signal power, as a function of frequency 

Pickup A~rays 

Network Analyzer 

•••• •• • 

Transfer Switch 

Beam 

Notch Filter Kicker Arrays 

TWTAmps 
· ..... 

PIN switch 

Beam 
-·--············ --·-·-········ ..... --··-----------------·------------------- ·····-· ......... ······· ............... ······ ------------····· 

E 

(4.21) 

Figure 4.15: Experimental Arrangement for the network analyzer beam transfer function measure­
ments. 

The S- parameter matrix element S2 1 consists of (i) the notch filter transfer function, N (w ), 

{ii) the beam transfer function [21], [10], B(w ), and {iii) the pickup and kicker transfer function 

P(w) which is constant across the operating frequency bandwidth. Thus, the expression for S21 

S21(w) = N(w) 0 B(w) 0 P(w) ( 4.22) 

In terms of {i) the energy difference x = /32 E /m17( df /Jo), {ii) an explicit integral expression 

for the longitudinal beam response function B( x), and (iii) the total transfer function of the cooling 

system G(x) = N(x)P(x), the longitudinal S21 parameter is given by: 

(Sm) ( ) - -c ( ) [·pv J olfJ(x') dx' 81/J(x')] 
II 21 X - K m X l -!l-

1
----

1
+11"-!l-

1
-

uX X - X uX 
( 4.23) 
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Specifically, Equation ( 4.23) consists of the quantities Gm(x) which is the gain at the mth revolution 

harmonic, '!/;, which is the beam (energy) distribution and normalized to the total number of particles, 

and the constant K, = N7r/32 E/ryf0 . 

For extracting the gain, fits are performed to the magnitude of S21 given from ( 4.23) by 

m _ { [ a'!/;(x, a) J a'!/; ·dx' ] 
2 

J(S11 h1(x)J =KG 7rgr(x, r) ax' + g;(x, r)PV ax' x - x' 

[ Ja'!/;(x,a) dx' a'!/;] 2
}

1
/

2 

+ gr(x,r)PV ax' x-x' +7rg;(x,r)ax' . 

As before the gain G(x; r) and the beam distribution '!j;(x; a) take on a simple form, 

G(x, r) = gr(x, r) + ig;(x, r) = sin(rx) + i(l - cos(rx)) 

'!/;(x;a) = 1/[~a] exp[-x 2/a2
] 

(4.24) 

(4.25) 

( 4.26) 

in which '!/; has been normalized to the total number of particles and the free parameters r and a 

may be fit independently of Equation ( 4.23) for S21- Therefore, the only free parameter in Equation 

(4.24) is the gain G. 

4.4.5.1 Experimental Results 

The open loop network analyzer measurements through the stochastic cooling feedback 

system were performed by allowing the unbunched, I ~ 2 µAmp antiproton beam to circulate for 

several minutes. Narrow frequency measurements, ll.f ~ lOOkHz, were made at three revolution 

harmonic frequencies across the cooling system bandwidth, corresponding to 2.lGHz, 3.0GHz, and 

3.8GHz. From independent measurements of the notch filter with no beam, it was found that across 

the cooling system bandwidth the gain slope r = 2.503 x 10- 2Mev- 1 . For each measurement, a 

new pulse of antiprotons were injected into the Debuncher, and thus the beam distribution for each 

521 measurement was saved, fit for a, and used in the fits of JS21 J for extracting the gain. 
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Fits to the magnitude /(Sjib/ at 2.lGHz is given in Figure 4.16(a). The corresponding 

(Sjl)2 1 phase response is given in Figure 4.16(b). For performing the fits to /(Sjib/ in 4.16(a) the 

corresponding longitudinal Schottky beam distribution is given in Figure 4.17, with a <T = 3.377Me V. 

The free parameter of equation I ( Sjl )2 i/ is given by 

a= 
KGm 

rn= = 1.0363 
mv L:ir<T 

With N ,...., 1.8 x 107 , K = N 7r2.46MeV-sec, m = 3728, and <T = 3.77MeV, Gm = 7.35 x 

10-4 Me V /sec, which is in agreement with the value of the gain obtained through signal suppression. 

0.011--~--~--~-~--~-~ 

0.07 

(a) l(S[ih1I Magnitude. Fit corresponds to 

Gm = 7.35 x 10-4 MeV /sec 

400 . .-----..-----.----,----,----,----,----,----, 

350 

300 

2fll 

200 

1fll 

100 

fl) 

.l) ·20 ·10 0 10 20 40 
""VJ 

(b) (S[1)21 Phase (degrees). 

Figure 4.16: (Sjih1 measurements at f 

harmonic. 

2.lGHz, corresponding to the m 3728 revolution 
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Figure 4.17: Longitudinal beam distribution for (Sii )2 1 measurements at f = 2. lGHz 

If the output power of the network analyzer is too strong, the beam will absorb energy 

through the resistive term. Thus the magnitude of the S21 = S~'ial + iS~'f response will be mostly 

from S!{l. In Figure 4.18, the magnitude and phase of l(S!i"hrl at 3.0GHz are given together with 

the corresponding measured longitudinal Schottky beam distribution in Figure 4.19. The fit was 

obtained with (i) S21 = 0.1 x S~'i_al + iS~'f indicating the strong reduction in the real S21 response, 

(ii) x 0 = 2.0MeV indicating that the notch is not centered exactly at the revolution harmonic, and 

(iii} the beam width u = 3.7MeV. Fitting IS21I, 

Ct = KGm = .902 
mv'21ru 

With N ~ 1.8 x 107
, K = N7l'2.46MeV-sec, m = 5084, and u = 3.7MeV, Gm= 6.88 x 10-4MeV /sec. 
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(a) l(S1i")21I Magnitude. Fit corresponds to 

Gm = 6.88 X 10-4MeV /sec. 
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Figure 4.18: (Swh1 measurements at f 3.0GHz, corresponding to the m 5084 revolution 

harmonic. 

2.So-05 .-----~--~--.----~----~ 

0 
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10 15 

Figure 4.19: Longitudinal beam distribution for (Si1')21 measurements at f = 3.0GHz 

The magnitude and phase of (Sil' )21 at 3.8GHz are given m Figure 4.20 together with 

the corresponding measured longitudinal S_chottky beam distribution in Figure 4.21. As with the 
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previous case at 3.0GHz, the beam absorbed a fraction of the output power of the network analyzer, 

and therefore the S2 1 response is dominated by the reactive part. The parameters involved in the fit 

were (1) 521 = 0.1 x S~1al + is~rr, (ii) x 0 = 2.0MeV indicating that the notch is not centered exactly 

at the revolution harmonic, (iii) the gain slope of the notch r = 2.03 x 10- 2Mev- 1 , and (iii) the 

beam width u = 3.5MeV. The fitted parameter 

KGm (}' = x = 0.843 
m-/'Fiu 

With N ~ 1.8 x 107 , K 

10-4 MeV /sec. 

N 7r2.46Me V-sec, m 

025 ~-~-~-~-...,.---....-----.--.----, 

0.1 

0.05 

0'----L---'----'----'-------'-----1.l.---1'-'-'--'--'-' 
·20 ·15 -10 -5 0 

IM•VJ 
10 15 

(a) \(Stt'hil Magnitude. Fit corresponds to 

Gm = 7.82 X 10-4MeV /sec. 

20 

6440, and u 3.5MeV, Gm 

-15 -10 ·5 0 10 
IM•VJ 

(b) (S1i")21 Phase (degrees) 

7.82 x 

15 20 

Figure 4.20: (Sjl )21 measurements at f 3.8GHz, corresponding to the m 6440 revolution 

harmonic. 
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Figure 4.21: Longitudinal beam distribution for (SjJ )21 measurements at f = 3.8GHz 

A summary of the results of extracting (Gu} across the cooling system bandwidth are given 

in Table 4.3. The most accurate fit was that for 2.lGHz given in Figures 4.16. For the measurements 

at 3.0GHz and 3.8GHz, the error in the fit is large because {i) the model is quite crude in fitting 

the spectra in which much of the microwave power is absorbed by the beam, and {ii) the beam 

distributions are not Gaussian, in particular, the edges of the distribution fall rather abruptly to 

zero. 

Table 4.3: Summary of the open loop network analyzer fits to (Gu}. 

Frequency 

2.lGHz 
3.0GHz 
3.8GHz 

{G11} N = 1.8 x 107 

7.35 x 10 4MeV /sec 
6.88 x 10-4MeV /sec 
7.82 x l0-4 MeV /sec 

In conclusion, the experimental determination of the longitudinal cooling system gain (G 11 ) 

obtained with the open loop network analyzer measurements independently confirm the values ob-

tained from the signal suppression measurement. Agreement between the results is within the 

,...., 5 - 10% error margin resulting from the error in the number of particles and also from assump-

tions of the model fits. 
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4.5 Transverse Stochastic Cooling 

From a mathematical perspective, the description of transverse stochastic cooling is sim­

plified, compared with the longitudinal counterpart, for two reasons: {i) the gain of the system is 

constant across the transverse tune lines, and {ii} to first order, there is no need to calculate the 

beam distribution; all that is required is the evolution of the beam emittance, thereby reducing a 

nonlinear partial differential equation to a first order differential equation. Thus, the transverse 

cooling equation [61] for the transverse beam size, €1., is given by: 

1 dcl. 

€1_ dt 

In Equation ( 4.27) (i) the sum is over sidebands at the revolution harmonic m within the 

microwave frequency band !:l.f = (m2 - m1)f0 {ii} qm = (m ± Q)w, for which Q is the fractional 

tune, (iii} gm(qmw) is the electronic gain at the mth harmonic given in terms of the transfer function 

as gm(qmw) =,{iv) ll.(qmw) is the transverse signal suppression factor, which is proportional to the 

transverse beam response function only, since the gain is flat across the sideband, {v) Mm(qmw, up) 

is the mixing factor, and (vi) Ul.(qmw) is the noise/signal ratio. As discussed in previous sections, 

the right hand side of Equation ( 4.27) consist of two terms (i) the cooling interaction, and {ii) the 

heating, or diffusion term. 

The mixing factor, Mm(qmw,up) appearing in Equation (4.27) is defined as the ratio of the 

dipole Schottky signal spectral density at the sideband associated with the mth revolution harmonic to 

the average dipole transverse Schottky signal spectral density, Mm(qmw) = Edipole(qmw)/{Edipole) in 

which {Edipoie) = [Pp(•t::A))
2

] is the average signal spectral density for an observed beta function /3p 

at and beam size {A} at the pickup. For a Schottky signal having parabolic frequency distribution5 , 

w 
Edipole(w),...., '1/J(--Q-),...., N/(rJWo<Tp/p) 

m± 

and an expression for the peak transverse Schottky signal to the average transverse Schottky signal is 

M(w) = ff3 2 E'1f;(!:l.E)/[2WryN]. Withadistributionfunction'!/J(!:l.E) = N/[v'27fu] exp[-(!:l.E)2/u2], 

then 

1 
M(w)=-----

2m-/'Firy( up/ P) 

5 0. Mohl. Physics and Techniques of Stochastic Cooling, Physics Reports 58,No.2 (1980) 73-119 
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This definition of Equation (4.28), which is explicit in the longitudinal beam width up/p, obviates 

the connection between the longitudinal cooling and transverse cooling equations. 

The thermal noise associated with the transverse system, as represented by U1* ( qw) in Equa-

tion ( 4.27), is defined as the ratio of the transverse noise spectral density to the average dipole Schottky 

signal spectral density, 

( 4.29) 

The fact that the gain acts equally across the transverse sideband simplifies both the calcu-

lation and the experimental determination of the system parameters. In the simplest manifestation 

of Equation ( 4.27), the time constant T specifies the cooling rate by: 

1 1 dt:J. 2W 2 j - = - - -- = - [2g - g { M + U} 
T CJ_ dt N 

( 4.30) 

Another form of Equation { 4.27) given in the literature, which makes includes the bad mixing 

between the kicker and the pickup, represented by M(qmw), is -given by 

1 dt:J. 

cj_ dt 
L [neat{ Ym(qmw) }(1- M(qmw) 

lm(qmw) m <m<m l_ - 2 

4.5.1 Schottky signals & UJ.(qmw) 

(4.31) 

By comparison with the longitudinal analysis, extracting the relevant phenomenologic quan-

ti ties, which appear in the transverse stochastic cooling Equation ( 4.27), from measurements are 

greatly simplified by the flat gain slope across each transverse sideband. Referring once again to 

Figure 4.5, which depicts a simplified diagram of the stochastic cooling system and the location of 

the measurement point after the correlator _notch filter, transverse Schottky signals may be used to 

extract the noise/signal ratio for the determination of Ul.(qmw). 
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Closed loop measurements with and without beam were made at three frequencies within 

the bandwidth of the vertical stochastic cooling system {i) 2.2GHz, {ii) 3.0GHz, and (iii) 3.8GHz. 

The measurements were performed by measuring the average Schottky power at the peak of the 

corresponding transverse sideband and triggered at the beginning of the cooling cycle ( ~ f:!.t ~ 

200msec). Results of the measurements at the selected frequencies across the cooling band are given 

in Table 4.4. 

Table 4.4: Ul.(qmw) Result of ~easurements across the microwave band at the beginning of cycle 
(!:!.t = 0.lsec after injection). 

Frequency P si~nal+noise Pnoise UI(qmw) 

2.2GHz -74.9dB -75.7dB 4.98 
3.23 x 10-s 2.69 x 10-s 

3.0GHz -78.2dB -79.0dB 5.04 
1.51 x 10-s 1.26 x 10-s 

3.2GHz -75.8dB -76.6dB 4.84 
2.63 x 10-s 2.18 x 10-s 

Transverse noise/signal (Ul.(qmw)) measurements were also measured as a function of time 

throughout the cooling cycle. Figures 4.22 and 4.23 are the results of measurements at 2.2GHz 

obtained with the spectrum analyzer frequency span FS = OHz, and resolution bandwidth RB = 
300Hz, for the two cases: {i) at the peak of the dipole tune line, which is the signal + noise power 

(Psignal+noise), and (ii} for the case with no beam, which is given by the noise power (Pnoise) The 

thermal noise to signal ratio at the peak of the dipole Schottky line qmw from these measurements 

is given by 

Ul.( ) _ Pnoise _ Pnoise qmw - -
Psignal Psignal+noise - Pnoise 

105 

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-



x 10"" 
3.6 

3.4 

3.2 

2.8 

2.6 

Si~ 2.2GHz @ .1sec 

2
·
4o 0.002 0.004 0.006 0.008 O.Q1 0.012 0.014 O.Q16 O.Q18 O.Q2 

x 10"" 3.8 ..... . 
Si~ 2.2GHz @ .5sec 

3.6 

2.4~~-~~.~-~-~~~~--~-~~ 

0 0.002 0.004 0.006 0.008 O.Q1 0.012 0.014 0.016 O.Q18 0.02 

Figure 4.22: Measurements of the transverse signal/noise at (a) O.lsec, and (b) 0.5sec, into the 
cooling cycle. 
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Figure 4.23: Measurements of the transverse signal/noise at (a) l.5sec, and (b) 2.2sec, into the 
cooling cycle. 

The results of the measurements and the value of UL(qmw) as a function of time at 2.2GHz 

are given in Table 4.5. 
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Table 4.5: Ul.(qmw) for 2.2GHz as a function of time. 

time flt Psi!>nal+noise Pnoise UI(qmw) 

(1) 0.1 sec 3.320 x 10 4 2.862 x 10 4 6.25 
(2) 0.5 sec 3.232 x 10-4 2.862 x 10-4 8.33 
(3) 1.0 sec 3.053 x 10-4 2.862 x 10-4 14.9 
(3) 2.2 sec 3.008 x 10-4 2.862 x 10-4 20.0-

4.5.2 Signal Suppression fJ.(w) & (gl.) 

For the case of transverse stochastic cooling, the signal suppression factor fJ. (w ), is propor-

tional to a term giving the transverse beam response. 

l. _ N J '1/J(w')dw' 
fm -1+-Gm(w) ( ') . m w -w + 117 

( 4.32) 

Since the entire dipole Schottky line is suppressed by the feedback loop, due to the flat 

gain across the line, the useful quantity is the peak signal suppression obtained at the center of the 

distribution. Such a simplification makes the extraction of the gain a trivial matter [69] since 

( 4.33) 

From the definition of the mixing factor at the mth band, given in Equation ( 4.28), the open 

loop transverse Schottky power is ¢ 0 = Popen· Thus, with f = [Popen/Pc1osed], the approximation 

by Mohl, for the signal suppression at the center of a Gaussian beam distribution, Equation ( 4.33) 

becomes 

(4.34) 

The result of simple least square fits to the peak transverse power spectra measurements for 

the open and closed loop data, Popen and Pc1osed, respectively, are given in Table 4.6 for {i) 2.2GHz, 

(ii) 3.0GHz, and (iii) 3.8GHz. Together with the values of the measured power, the gain (gl.) is 

calculated for each mth harmonic from Equation (4.34) with M = v'2/[m17ft(tlp/p)]. 
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Table 4.6: Experimental fits to transverse signal suppression, £;, across the microwave bandwidth, 
at the begininning of the cycle 6.t = . lsec. 

Frequency Popen Pc1osed 1£1 2 M1 at peak (gT(qmw)} 
2.2GHz -82.0dB -82.6dB 11.9 0.008 

6.31x10- 9w 5.49 x 10-9w 1.072 
3.0GHz -83.9dB -84.8dB 8.7 0.017 

4.07 x 10-9w 3.31 x 10-9w 1.108 
3.8GHz -81.75dB -82.4dB 8.17 0.013 

6.68 x 10-9w 5.75 x 10-9w 1.077 

Transverse signal suppression measurements as a function of time within the production 

cycle were made at 2.2GHz. Figures 4.24(a) and (b) indicate the result of linear least square fits 

to the total integrated power at the peak of the transverse tunes, at 0.5sec and l.Osec, respectively. 

The measurements were performed in a similar manner to those described in the previous section 

for the longitudinal signal suppression. In particular, open loop measurements were made by gating 

the PIN switch on for "" 200msec and measuring the total power at the peak of the dipole Schottky 

line with zero frequency span and a resolution bandwidth lOkHz. 

4x10-' Signal Suppressioo 2.2GHz @ 0.5sec 

3.6 

2.8 

2.6~~-~-~~-~--'----~~-~~ 

x 10-' 
3.6 . 

Signal &Jppressioo 2.2GHz @ I .Osec 

0 0.002 0.004 0.006 0.008 O.Ql 0.012 0.014 0.Q16 O.QIB 0.02 0.002 0.004 0.006 0.008 O.Q1 0.012 0.014 0.016 O.QlB 0.02 

(a) CJ. for 2.2GHz at 0.5sec (b) EJ. for 2.2GHz at 1.0sec 

Figure 4.24: Transverse signal suppression measurements at f = 2.2GHz for (a) 0.5sec and (b) l.Osec 

into the cooling cycle. 
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The result of the fits to Popen. and Pc1osed in Figures 4.24( a), (b), and ( c), are listed in Table 

4.7, together with an average electronic gain (gl.(Qmw)) ~ 0.01 calculated from Equation (4.33) with 

M at 2.2GHz, as a function of time. 

Table 4. 7: Experimental fits to transverse signal suppression, f;, at 2.2GHz as a function of time. 
Values for Popen and Pc1osed are obtained from fits to data in Figure 4.24. 

Time D.t Popen Pc1osed 1{1 2 

O.lsec 3.36 x 10 4mW 3.35x10 4mw 1.003 
0.5sec 3.28 x 10-4 mW 3.19 x 10-4 mW 1.028 
l.Osec 3.12 x 10-4 mW 2.95 x w- 4mW 1.057 

4.5.3 Open-loop Transfer Function & (Yi.) 

Transverse open loop network analyzer measurements through the stochastic cooling feed-

back system, as given previously in Figure 4.15, are similar to those described for the longitudinal 

case. Despite the similarity, the analysis for-extracting (g l.) are greatly simplified for the transverse 

case because the gain is constant across the measured sideband frequency. Thus, for the transverse 

case, the S21 response is given by 

S21(D.f) = [ Pin(D.f)] 
Pout(D.f) 

S21(w) = N(w) © Y(w) © P(w) 

(4.35) 

( 4.36) 

for which Y(w) is now the transverse (dipole) beam transfer function [10]. Therefore, the expression 

for the transverse open loop measurement at the mth harmonic, is 

- J 1/J(w')dw' 
(S~b = kgm(w) [PV w _ w' + i7r'lj;(w')] ( 4.37) 

Measurements of (ST )2 1 were made at several transverse sideband frequencies across the 

microwave cooling bandwidth. A representative (ST )2 1 measurement at 3.0GHz over a lOOkHz 

frequency span is given in Figures 4.25. The magnitude l(ST)2 1 1 = Vin/Vout in Figure 4.25(a) 

mirrors the frequency distribution. Figure 4.25(b) illustrates the proper phase change of 7r through 

the center of the sideband from the beam transfer function. 
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Figure 4.25: Transverse open loop measurements at the 3.lGHz sideband. 

For extracting (g1-), a simple expression for (ST)21 results from taking only the center of 

the distribution. From S. van der Meer (98], the value of (ST )21 at the center of the distribution 

may be written 

(4.38) 

(4.39) 

Thus, 

l(S'.L)21 l(at peak)=: Vin/Vout(at peak)=: [ gJ ../27r 
m17 D.p/p 953 27!' 

( 4.40) 

Utilizing Figure 4.25, at the peak of the distribution l(S'.Lbl ~ .089, u =: 3.9MeV, so that 

approximately 95% of the beam is given by ±2 x u and 

(4.41) 

Therefore with m == 5048, 17 =: 0.006, 

gm=: m17[D._E/E] 953 ..;'2;1(S'.Lbl(at peak)=: .0075 ( 4.42) 

110 



which is in agreement with that obtained with the transverse signal suppression measurements. 

Figures 4.26( a) and (b) are the results of network analyzer measurements at the edges of the 

frequency cooling band, i.e. 2.lGHz and 3.8GHz respectively. 

0.07 ~----.---~--~--,~----,--~ 

0.06 

0.05 --··-·-.................... -._ -· 

0.04 f--- ......... _ ... _ _ _____ .. c ........... - ...... _ .. . 

0.03 

0.02 

0.01 

O'---'---~--"'---~--~~~ 

2199.44 2199.46 2199.411 2199.5 
!MHz\ 

2199.52 2199.54 2199.56 

(a) l(S'.[')211 magnitude at 2.lGHz (b) \(S'.[')21 I magnitude at 3.8GHz 

Figure 4.26: Transverse l(S'.Lhil measurements at 2.lGHz and 3.8GHz. 

A summary of the transverse open loop network analyzer measurements for the extraction 

of the gain across the cooling bandwidth is given in Table 4.8. 

Table 4.8: Summary of the open loop network analyzer fits to (g.L)· 

4.6 Computational Results 

Frequency 

2.lGHz 
3.0GHz 
3.8GHz 

(g.L) N = 1.8 x 107 

7.5 x 10-3 

5.0 x 10-3 

7.7 x 10-3 

In the previous sections, the necessary physical quantities for calculating stochastic cooling 

rates have been experimentally determined. Specifically, the following quantities have been obtained 

at several frequencies across the cooling frequency band: {i) the cooling system gain: GiJ (longitu-
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dinal) and YT (transverse), (ii) the thermal signal/noise: U1i (longitudinal) and ur;: (transverse), 

and (iii) determination of the signal suppression as a function of time: Eji' (longitudinal) and E'.t · 

In this section, the experimental quantities shall be used to numerically characterize the 

cooling performance through integration of the stochastic cooling equations. To complete the anal­

ysis, comparisons between the relative strength of the cooling and heating effects shall be given and 

discussed. 

4.6.1 Longitudinal system: cooling, diffusion, optimal gain and comparisons 

As given previously in the text, a nonlinear Fokker- Planck transport equation describes the 

evolution of the particle beam's momentum distribution throughout the cooling process. In terms 

of the energy difference, x = E - E 0 , the transport equation for the number of particles per unit 

energy W = N'lj>(x,t) = dN/dx, is given by the expression 

fN(x,t) 
at 

8¢>(x,t) 
OX 

_ 1/;(x, t/N(x, t) N7r(J2 E 1 IGm(x)l
2 {i + Um(x, t)}] 

Bx 21]fo m llm(x, t)l 2 

( 4.43) 

( 4.44) 

Once again the quantities appearing in the above equation are as follows: (i) <f>(x, t) is the conserved 

flux of particles, undergoing collisional interactions through the feedback loop, (ii) the sum is over all 

revolution harmonics, however the gain Gm(x) is only finite within the cooling bandwidth W from 

f = 2 - 4GHz, (iii) Gm(x) is the energy dependent gain function of the cooling loop at each m-th 

harmonic in units of GeV /sec, (iv) Um(x, t) is the energy dependent noise/signal ratio at each mth 

harmonic during the cooling cycle, and which may be defined through the Schottky power :E(x, t), 

such that Um(x, t) = Bnaise/Bsignal· (v) tm(x, t), is the signal suppression factor, or equivalently, the 

closed loop response function, at each m-th harmonic as a function of time, and {vi) the constants 

of the machine are fo = 0.590035 x 106 Hz, 1J = .006, Eo = 8.938GeV, I= 9.5287, and (3 = 0.989, 

such that the energy variable x = 2.469MeV-sec~fm/m. 
The cooling and diffusion sums of the longitudinal stochastic cooling Equation ( 4.44), S1 (x, t) 
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and S2(x, t), respectively, such that, 

(4.45) 

may be evaluated explicitly through digamma functions (42), ;j;(z). Moreover, given given the ex­

perimental values of the phenomenologic models, the relative strengths between S1 ( x, t) and S 2 ( x, t) 

may be determined to evaluate the system with relation to optimal gain. Finally, the full model is 

utilized for a comparison of the calculated cooling rate to the measured beam width as a function 

of the production cycle. 

From the experimental measurements of signal suppression for both the longitudinal and 

~ransverse systems, <'II :::::: 1 and £.i. :::::: 1 respectively. Thus, it is because the stochastic cooling 

systems in the Debuncher are gain limited, i.e. the thermal noise is so large that the systems can 

not operate at higher power levels without damage to the hardware, that signal suppression is not 

expected to have a pronounced effect upon the cooling equations. Nevertheless, with higher gain, the 

effect of signal suppression shall become important, and it is for this reason that a careful evaluation 

of S1 (x, t) and S2(x, t) is worthwhile. Moreover, for investigation of the optimal gain, inclusion of 

the signal suppression effects is absolutely essential. 

4.6.l.1 Longitudinal cooling term: S1(x, t) 

An analytic expression for 51 ( x, t) shall be derived in this section. For a complex gain 

Gm(x) = (G} [gm,!R + igm,u], and complex signal suppression factor <'m(x, t) = [<'m,!R + ilm,u], the 

cooling term S1 (x, t) of Equation (4.45) (which represents the first term in Equation (4.7)) is given 

by 

S1(x,t) = 'l/;(x,t) ( 4.46) 

The real and imaginary part of <'m(x, t) may be written explicitly 

N7rk 
<'m,!R = [1 + --;;;-(G)(g!R7rR + gU<PV)] ( 4.47) 

N7rk 
<'m,ll = [--;;;-(G}(gU<7rR - g!RPV)] ( 4.48) 
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in which {i) the residue is R = 8.,P/8x, {ii) the principle value is PV = P J dx'8.,P/8x' / [x - x'], and 

(iii) the constant k is evaluated in terms of the known machine constants: 

k = 132 E = 8939.MeV = 2.465MeV -sec 
11!0 2( .006)( .590035MHz) 

Thus, expanding the expression S1 (x, t) in ( 4.46), 

S1(x, t) =1/J(x, t) x 

"""" (G) 1 + ¥(G)(yi,m + Y~,m)/YR 
mi <~<m2 YR (1 + N:.k (G}(yR?rR + YU<PV)] 

2 + [ N:;k (G}(y<;J?rR - YRPV)] 2 

- - (4.49) 

Define the following quantities, 

then the sum S1(x, t) is 

a(x) = N?rk(G)(yi,m + Y~,m)/y~ 

b(x) = N?rk(G)(yR?rR + YU<PV) 

c(x) = N?rk(G)(YU<?rR - YRPV) 

) 
m[m + a(x)] 

= .,P(x, t) L (G YR [ ] 
m,::;m::;m, m2 + 2mb(x) + (b2 + c2(x)) 

(4.50) 

( 4.51) 

( 4.52) 

( 4.53) 

( 4.54) 

The sum 51 ( x) may be evaluated analytically in terms of the integral representation of the 

diyamma function ~( z) = d In r I dx' 

Thus, with the following definitions, 

~(x) = J-c2(x) = ic(x) 

r±(x) = ~ [±a(x) =f 2b(x)] + i 2 c~x) [b2(x) - b(x)a(x) - c2(x)] 

a±(x) = (m2 + 1) + b(x) ± ~(x) 

/3±(x) = m1 + b(x) ± ~(x) 
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the exact result for the sum between m 1 and m 2 is 

S1(x, t) = '!j;(x, t){ (1 + m2 - m1) + r+(x)[.;(a+) -.;(,8+)] 

- r_ (x) [.;(a_) - .;(,8-)]} ( 4.59) 

The expressions for the digamma function are computationally advantageous compared to 

brute force evaluation of the recursive sums, since quadrature method for evaluating.; requires trivial 

CPU expenditure. 

4.6.l.2 Longitudinal heating term 

The second term in the Fokker Planck equation contains the following sum 

o'lj; - '"""' 1 IGm(x)l
2 

{ }· 
S2(x, t) = '!j;(x, t) ox Nd L.J m l<m(x, t)l 2 1 + Um(x) 

m 

( 4.60) 

As described in the previous discussion of the cooling term, consider the average value of the mea-

sured gain to be taken across the bandwidth of the system, so that (G) may be factored from the 

above equation. Based upon measurements, the term { 1 +Um( x)} is well represented by the average 

value (1 + U(x, t)). Thus, the sum S2(x, t) may be written 

in which the sum s' is given by 

[1 + N:.k (G)(g~7r1? + g\SPV)] 2 + [ N:.k (G)(gc;s7r1? - g~PV)] 2 

Just as before, the following definitions are made: 

a'(x) = (g~,m + 9~,m) 

b(x) = N7rk(G)(g~7r1? + g\SPV) 

c(x) = N7rk(G)(g«J1f1? - g~PV) 
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such that, 

a~ ~ 
S2(x,t)=~(x,t) 0xN7rk(G}

2 {(l+U(x,t)}} L £.(=-2 '; ~ 2 
m1 :'Sm:'Sm 2 [ 1 + m ] + [ m ] 

( 4.66) 

N k(G}2{( ( )}} '"""' ma'(x) 
= 7r 

1 
+U x m,f;::-;m

2 
[m2 + 2mb(x) + (b2(x) + c2(x))] 

( 4.67) 

Now the sum S2(x, t) may be evaluated analytically in terms of digamma functions with the 

aid of the following definitions 

c(x) = J-c2(x) = ic(x) 

a±= (m2 + 1) + b(x) ± c(x), fh = m1 + b(x) ± c(x), 

Finally, the full equation for the diffusion term is 

4.6.1.3 Comparison of S1(x, t) and S2(x, t) 

a[b±c(x)] 
r± = 2c(x) 

( 4.68) 

( 4.69) 

( 4.70) 

(4.71) 

A comparison between the cooling and diffusion terms, S1 (x, t) and S2 (x, t) respectively, 

are given in Figure 4.27 at the beginning of the cooling cycle, t 0 . The value of the gain, which were 

used in computing the terms S1(x,t) and S2(x,t) in Figure 4.27 (G} = 8.0 x 10-4 Mev/sec, and 

gain slope (convexity) T = 2.5 x 10- 2 1/MeV, are those obtained experimentally. Also compared in 

the Figure 4.27 are the values of S1(x, t) and S2(x, t) with and without signal suppression <(x) for 

N = 4.5 x 107 particles and TJ = 0.006. 
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Figure 4.27: Comparison of S1(x, t = 0) and S2(x, t = 0) with and without signal suppression and 
with ( G} = 8.0 x 10-4 Mev /sec, T = 2.5 x 10- 2Me v- 1 . 

4.6.l.4 Model comparison to longitudinal cooling measurements 

Measurements of the longitudinal Schottky spectra at the 127th harmonic were obtained 

for trigger times throughout the p production cycle for comparison with model calculations. For 

each time point, the spectra were fit with the nonlinear least square model</>( x) = {31 exp [-<x2-~·)']. u, 

Figure 4.28 is the experimental values for the beam width <T as a function of time in the p production 

cycle, obtained from nonlinear fits to the beam spectra. Superposed over the longitudinal data 

in Figure 4.28 is the model calculation. The comparison between the longitudinal Fokker Planck 

model calculation, with inputs obtained from independent experimental measurements described 

in previous sections, and the experimental data for the widths <T is striking. The gain and gain 

slope, which were the average values obtained from signal suppression and from the open loop 

transfer function measurements, used in the calculation were (G} = 7.5 x 10-4 Mev/sec, and T = 
2.5 x 10- 2Mev- 1 , respectively. 
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Figure 4.28: Comparison of beam width to model prediction with (G) 
re = 2.5 x 10- 2Mev- 1 . 

7.5 x 10-4 Mev/sec, 

From the calculated beam width <T, the mixing factor M = 1./ [-J?f7J<rp/P] may be obtained 

as an input to the transverse cooling model calculation. In the next section, comparisons between 

the experimental transverse cooling rates and the model calculations are presented. 

4.6.1.5 Transverse model comparison with cooling rate measurement 

The transverse cooling equation with experimental input parameters, now take the simpler 

form given by 

(4.72) 

The quantities in Equation (4.72), have been obtained experimentally, and in particular, (i} U.L(t) 

has been obtained throughout the cooling cycle, (ii} l.L (t) is measured at the beginning of the cycle, 

(iii} the mixing factor M(t) is obtained throughout the cycle from the longitudinal calculation for 

<rp(t)/p, and (iv) the system gain g.L has been obtained through signal suppression and open loop 

network analyzer measurements. 

Figure 4.29 is a plot of the measured peak power of the 127th harmonic vertical dipole 

Schottky line as a function of the production cycle. The measurement was made with zero frequency 
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span (FS = OHz), and a resolution bandwidth of l.OkHz. As given in the previous discussions, the 

measured power in the transverse sideband is proportional to the transverse emittance. Superposed 

on the transverse spectra in Figure 4.29 is the result of the full calculation with the transverse 

calculation for cJ. with (gl.) = .007, together with the calculated <J"p/p(t), which enters through the 

mixing factor (M(t)). From the previous section, <J"p/p(t) was obtained from the longitudinal Fokker­

Planck equation with (G11) = 7.5 x 10-4 MeV /sec, <J"(t 0 ) = 8.64MeV, and r = 2.503 x 10-2Mev- 1 . 
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Figure 4.29: A comparison of the measured integrated power within the 127th harmonic vertical 
Schottky sideband as a function of time against the transverse cooling calculation. (gJ.) = 7.0x10-3 

As another independent check, Figure 4.30 is a comparison between the full stochastic cool-

ing model calculation and the experimental measurements of the integrated Schottky power in a 

transverse sideband at discrete times throughout the cooling cycle. The measurements of the Schot­

tky sidebands were obtained with the vector signal analyzer and were subsequently fit to a Gaussian 

distribution. An integration of the the resulting curve is the total power contained in the sideband. 

From Figure 4.30, the model calculation predicts the cooling rates exceedingly well. 
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Figure 4.30: A comparison of the measured_ integrated vertical Schottky power obtained with Gaus­
sian fits and the cooling model with (g l.) = 7 .0 x 10-3 . 

4. 7 Chapter summary 

The discussion of this chapter has been restricted to that of the present Debuncher stochastic 

cooling system, both through experimental measurements and through the description of a computer 

model based upon the well known stochastic cooling equations. Most striking is the ~uccess of the 

computer model in predicting the cooling rates for both the transverse and longitudinal systems. 

Furthermore, it has been demonstrated that the independent experimental determinations of fun-

damental system quantities are self- consistent with the computational results. Thus, the validity of 

stochastic cooling model, as described in this chapter, shall form the basis for further predictions of 

the model. Specifically, a summary of the experimental measurements for fundamental parameters 

of the cooling is given. 

The longitudinal noise/signal ratio is defined by the parameterization U~herm ( x, t) ~ [,an + 

An/[,B,v'21Ta-(t)1/>(x, t) + (A 8 - An)]], Averages obtained from the spectra fits are ,6, ~ .22 x 

10-2mWatt/Hz, ,Bn ~ .13x10-3 mWatt/Hz, As ~ .43x 10- 4mWatt/Hz, and An ~ .13x 10-4mWatt/Hz. 
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The transverse noise/signal ratio, Ul. were measured across the stochastic cooling band and 

throughout the production cycle; measurements at the beginning of the cycle (6.t = .lsec) are (a) 

2.2GHz Ul.(qmw) = 4.98 , (b} 3.0GHz Ul.(qmw) = 5.04 , and (c} 3.8.GHz Ul.(qmw) = 4.84, (iii} 

throughout the cooling cycle Ul.(qmw) is given by (a) Ul.(t = O.lsec) = 6.25, (b) Ul.(t = 0.5sec) = 
8.33, (c) Ul.(t = l.Osec) = 14.9, and (d) Ul.(t = 2.2sec) = 20.0. 

The longitudinal system gain, G11 were found from signal suppression measurements From 

the signal suppression measurements at 3.2GHz and with N = 4.0 x 107 as a function of time, (a) 

(G 11 (0.15sec}8.73 x 10-4 MeV/sec, (b) (G11(0.25sec)8.64x10- 4MeV/sec, and (c) (G11(0.35sec}8.54 x 

10-4 MeV /sec. Open loop network analyzer measurements were also used for obtaining the system 

gain as an independent check. At three frequencies across the microwave band, the results are: 

(a) 2.lGHz G11 = 7.35 x 10-4 MeV /sec, (b} 3.0GHz Gu = 6.88 x 10-4 MeV /sec, and (c) 3.8GHz 

G11 = 7.82 x 10-4 MeV /sec. 

The longitudinal gain slope, r was obtained across the cooling bandwidth through mea­

surements of the noise signal through the notch filter. Results of the measurement is: (r) = 
2.58 x 10- 2 Mev- 1 . 

The transverse system gain was obtained through transverse signal suppression measure-

ments and the results are given by: (a) (g'l'(2.2GHz)) = 0.008, (b) (g'l'(3.0GHz)) = 0.017, and {c) 

(g'l'(3.2GHz)) = 0.013. Open loop network analyzer measurements have also been used to confirm 

the values obtained from the signal suppression results. The transverse system gain extracted from 

the (SJ.hi measurements are: (a) (g'l'(2.lGHz)) = 0.0075, (b) (g'l'(3.0GHz)) = 0.005, and (c) 

(g'l'(3.8GHz)) = 0.0077. 

The computational model utilizes the measured phenomenologic results in order to calculate 

the evolution of the longitudinal distribution function. Thus, given the equation, 

the two terms have been evaluated in terms of digamma functions and are given by: 

GR,mfR,m + Gs,mf\S,m 
2 2 

fR,m + f\S,m 
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Evaluation of S 1 (x, t) and S2(x, t) form the basis of a calculation for the beam distribution 

t/J(x, t) from the full Fokker Planck equation. From the second moment of the distribution the beam 

width is obtained 

(<T(t) 2
) = j x2 t/J(x, t)dx 

A comparison between the model calculation of <T(t) and the experimental measurement were in 

excellent agreement. 

The transverse emittance calculation is performed by using the calculated longitudinal beam 

width <T(t) for the mixing factor. Comparison between the experimental integrated transverse side­

band power agrees well with the calculation, which utilizes the independent phenomenologic inputs. 
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CHAPTER 5 

THE STOCHASTIC COOLING RESULTS WITH A DYNAMIC ~It 

5.1 Introduction 

The first two chapters have addressed several technical issues for obtaining a dynamic 11/t 

lattice. Experimental measurements of the fundamental lattice parameters have also been presented 

and compared with predictions. In the previous chapter, stochastic cooling phenomenology in the 

Antiproton Debuncher has been discussed through measurements and through a model based upon 

a Fokker Planck equation. Within this chapter, the major experimental results of the dynamic 11/t 

project are presented, which demonstrate improvements to stochastic cooling rates based upon a 

reduction in the mixing factor. 

5.1.1 Beam Loss Normalization: T-y 

To normalize out the beam loss effects due to transverse resonance (stop-band) crossing 

during the 111t/ 11t ramps, both indirect and direct measurements of cooling parameters were made 

as a function of T-y, which is defined as the total time duration in which the/~!) lattice configuration 

is maintained, and is indicated in the p production time-line of Figure 5.1. Therefore, if resonance 

crossing occurs only during the 111t/ 11t slew due to associated current regulation errors, then each 

set of measurements as a function of T-y will incur the same amount of beam loss. In counterpoint, 

if the final low /~!) lattice configuration is on or near a stop-band resonance, then longer T-y will 

incur more beam loss, and give the appearance of cooling, at least through a reduction in transverse 

Schottky power. In order to absolutely guarantee that the latter scenario is not a factor, and any 

beam loss occurs only during the 111t/ 11t slew process, a fundamental and necessary check is through 

a measurement of the total integrated longitudinal Schottky power, triggered at the beginning and 

end of the cycle. These measurements correspond to measuring the total number of particles as a 

function of T-y. Therefore, as long as a stop band resonance is not encountered with/~!), the number 

of particles will be independent of T-y for both the beginning and end of the cycle. 
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Figure 5 .1: Time line and trigger events for defining T-y during p production cycle. 

In Figure 5.1, (i} the releva!lt trigger events for the !:l.1t/ !:l.t ramps are indicated, and (ii) as 

mentioned previously, the quantity T-y = ITA($81) - TB($82)1 is defined specifically for the trigger 

events. The sequence of events indicated in the time line of Figure 5.1 for the dynamic !:l.11 ramps 

are as follows: (1) instructions to programmable CAMAC modules are sent out on a timing event 

A (a TCLK $81 Tevatron clock event in FNAL parlance), (2) the 465/468 programmable ·cAMAC 

ramp modules initiate the !:l.1t/ !:l.t ramp 1}i) ----> 1V) by sending analog reference signals to the 

magnet current shunt circuits (and power supplies1 ); (3) the low I~!) lattice is maintained until 

the event B occurs, which triggers the return !:l.1t/ !:l.t ramp I~!) ----> l~i)_ For each change of the 

timing delay between the $82 and $81 TCLK events2 , which is by definition T-y, the performance 

parameters and Schottky signals (both transverse and longitudinal and triggered at the beginning 

and end of the cycle), were measured by averaging over several production super-cycles ("' 10 - 15 

minutes). 

5.1.2 The Measurements 

There are two types of data which were used to investigate the cooling effects of the dynamic 

!:l.11 lattice, (a) direct measurement of the transverse and longitudinal Schottky signals, and (b) 

indirect measurements through several standard Antiproton Source performance parameters, which 

include (i) Debuncher p yield (YIELD), (ii} the Debuncher to Accumulator transfer efficiency (DAE), 

1 Digital reference current values are sent to the power supplies, whereas an analog reference signal is sent to each 
of the magnet curreqt shunt circuits 

2 Actually, the trigger event $82 is variable and is referenced to $81 +r, for which T is the adjustable time delay. 
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{iii) the Accumulator stacking efficiency (ASE), and perhaps most important, (iv) the average stack 

rate (SR) 3
. In either case, measurements were made as a function of the time duration, T...,, which 

has been defined as the total time within the production cycle for which the lattice has the final value 

--,,}fl(7J = 0.0093) 

Direct measurements of the transverse and longitudinal cooling through Schottky spectra 

provide the best determination of the effect due to the increase in the momentum compaction 

factor (small' 1Vl). Moreover, the results of fits to the Schottky spectra are directly amenable 

to comparisons with the predictions obtained from the stochastic cooling model. The agreement 

between the stochastic cooling model predictions and the observed longitudinal widths and transverse 

emittance, as a function of T...,, shall be presented for the two cases: {i) t.6.1if) /300msec and {ii) 

.6.1}!) /300msec. 

With regard to the indirect measurement effects of the dynamic Ll/t lattice, 1.e. the per­

formance parameters, a theoretical prediction is not readily apparent due to the large number of 

competing effects. Instead, empirical data shall be given to corroborate {i) the direct Schottky mea­

surements of improved precooling as a function of T...,, and {ii) the claim that improved precooling 

improves the overall performance of the Antiproton Source. 

5.2 Indirect Experimental Results: The performance parameters 

Within this section, three sets of data shall be presented for the indirect performance pa­

rameter results: {i) ~.6.1{ /300msec, {ii) t.6.1{ /300msec, and {iii) .6.1{ /300msec. For the first data 

set, only the performance parameters were recorded, however, for the last two data sets, the direct 

measurements of the Schottky spectra were measured at injection into the Debuncher and just before 

extraction. A full summary of the results shall be given in the last section of the chapter. 

3 A more detailed description is as follows: (i) the yield is obtained by measuring the total Schottky power obtained 
from the longitudinal monitor in the Debuncher, divided by the amount of beam current targeted from a measure 
of the injection line toroid (M:TOR109). (ii) Debuncher/ Acrnmulator efficiency, is the ratio of the amount of beam 
which is transfered into the Accumulator from the total integrated Schottky power (A:FFTTOT), divided by the 
total Schottky power (D:FFTTOT) in the Debuncher, (iii) the Acrnmulator efficiency is the total beam power on 
the Accumulator injection orbit, which is averaged over a super-cycle, divided by the average number of antiprotons 
stacked, i.e. accumulator efficiency ~ A:FFTTOT / A:STCKRT, (iv) the stack rate is the total anti proton beam 
current, averaged over one super-cycle (200sec/2.4sec = 83 production cycles) 
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5.2.1 The early data: ~~1{ 

During the initial commissioning of the /t project, it was realized rather quickly that power supply 

regulation was a non-trivial problem which threatened even modest ~It/ ~t slew rates. Indeed the 

second chapter demonstrated that a feedforward system is an essential feature for a dynamic ~It. 

While testing and working out the details of the feedforward system early in the commission­

ing of the dynamic ~!ti ~t project, preliminary measurements of performance parameters provided 

the first indications of cooling as a function of T-y, i.e. first indication that the cooling rate did 

increase because of a reduction in the mixing factor. Figures 5.2 and 5.3 are the results of (a) 

the Debuncher yield, {b) the Debuncher to Accumulator efficiency, (c) the Accumulator stacking 

efficiency, and {iv) the averaged stack rate, as a function of T-y for these initial measurements for 

h~J) /300msec (flat top of 1/(J) = .007). 

Yield MewunnLnts Debuncher/Accwnulalor Eff. 
1]=.007 ~=.007 

0.88 

227M 

0.116 

12000 O.IU 

rnrnnrnn II I II II II II H 
0.112 

11250 

O./IO 

Zlll<UJ 0.7B 

0.76 

1975.0 

0.7< 

ISW.O o:n 
/.l 1.7 l.l 1.2 1.7 2.2 

(a) Yield (b) D /A Efficiency 

Figure 5.2: The performance parameters (a) yield, and (b) D /A Efficiency, as a function of T-y for 
~~/t/300msec(1J = .007). 
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Figure 5.3: The performance parameters (a) Accumulator efficiency and (b) stack rate, as a function 
ofT1 for ~drt/300msec(77 = .007). 

Within each of the plots of 5.2 and 5.3, the error bars correspond to the standard deviation 

of measurements taken with approximately 250 production pulses per point. Furthermore, in order 

to avoid systematic effects in the measurements given in Figures 5.2 and 5.3, each subsequent T, 

measurement was preceded with a return to the nominal static lattice configuration with r?), for 

a period corresponding to several super-cycles. A new value of T1 was chosen, which was out of 

sequence from the previous value, alternating between large and small time delay values. 

From Figure 5.2(a), the yield into the Debuncher is constant as a function of T1 , which 

indicates that any trend in the data cannot be accounted by variations of particle flux. Figure 5.3(a) 

and 5.3(b), give the first suggestion of improved cooling through the small increase in Accumulator 

efficiency and the stack rate. Utilizing linear least square fits to the data of Figure 5.2, and 5.3 the 

time rate of change in each of the parameters is given by the slopes: (i) AE/time,....., 2.92 ± 0.6, which 

corresponds to a fractional change,....., 4.8%, and (ii) SR/time,....., 0.14 ± 0.03 which corresponds to a 

fractional change ,....., 3.8%. 
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5.2.2 t~!}J) /300msec and ~1}!) /300msec: Performance Parameters 

Figures 5 .4 and 5 .5 are plots of performance parameter data for t ~1}!) (corresponding to 

r,Cn = .0085) The procedure for obtaining the performance data was identical to that described 

in the previous section for the ~~It for the T-y data. In particular, the error bars are obtained by 

taking the standard deviation of the distribution in performance parameter values taken over several 

production super-cycles. Systematics were eliminated by returning the lattice to the nominal value 

prior to the measurement of a new T-y value. Also the values of T-y were chosen with an alternating 

sequence to avoid any correlations between measurements. 

Yield DIA Efficienq 
~=.0085 ~=.009 

11120.0 0.750 

llliJO.O I 0.740 III 
II I I 17/VJ.O 

II 
0.710 

I 17M.O I o.no I 
II 

1740.0 0.710 I 
mo.o 0.700 

O.B 1.0 1.2 1.4 1.6 1.8 0.8 1.0 1.2 1.4 16 1.8 

(a) Yield (b) D /A Efficiency 

Figure 5.4: The performance parameters for t~l}J) /300msec(77 = 0.0085). 
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Figure 5.5: The performance parameters for tili}f) /300msec(77 = 0.0085). 

Least square fits for obtaining the fractional change of the performance parameters of Figure 

5.4 and 5.5 for the til1}f) /300msec versus T, data are given by: {i) D/A versus time,....., 0.38 ± 

.01, corresponding to a fractional change in the D/A efficiency of,....., 7.3%, (ii} AE/time,....., 5.5 ± 

1.1 corresponding to a fractional change in AE of,....., 10.3%, and {iii} SR/time 0.41 ± 0.1, which 

corresponds to a fractional change in SR of,....., 14.7%. 

The performance parameter data for L'.l1}f) is given in Figures 5.6 and 5.7. Again, to elimi-

nate systematics, the time delay T, was always chosen concurrently between small and large values, 

not monotonically increasing or decreasing. Furthermore, each T, measurement point is separated 

by approximately 15 minutes, and between each point the performance parameters were measured 

with the nominal lattice. 
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Figure 5.6: The performance parameters for L~:y}J) /300msec(77 ~ 0.0093). 
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Figure 5.7: The performance parameters for Ll1}J) /300msec(77 ~ 0.0093). 
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The fractional change in each parameter in Figures 5.6 and 5.7 for ~/~/) versus T, are 

obtained with least square fits. The results of the fits are: {i) D/ A versus time ....., 0.04 ± .007, 

corresponding to a fractional change in the D/ A efficiency of......, 9.0%, {ii) AE/time was inconclusive, 

and (iii) SR/time 0.42 ± 0.1, which corresponds to a fractional change in SR of......, 13.4%. 

5.2.2.1 Particle Number as a function of T1 

In order to justify the validity of the performance parameter data obtained for the ~~/~!) /300msec 

and ~/t/300msec cases, Figures 5.8 and 5.9 are plots of the total integrated longitudinal Schottky 

power as a function of T1 , respectively, at the beginning and the end of the cycle. Since, the inte­

grated power P = (31 exp{ -(x2-::,rl
2

} + a3 is proportional to the number of particles in the beam 

.N(T1 ) = J~00 dx' 1/J( x', t) ....., f31 a2, the results underscore the fact that particle loss has been factored 

out of the data as a function of T1 . 
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(a) N(T"f) beginning of j5 production cycle. (b) N(T"f) end of j5 production cycle. 

Figure 5.8: The measured zeroth moment of the longitudinal distribution versus T1 for ~1{ ( 'f/ = 
0.0085). 
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Figure 5.9: The measured zeroth moment of the longitudinal distribution versus T'"Y for rf (77 
0.009). 

5.3 Direct Cooling Measurements and Debuncher Cooling Model 

Similar to the procedure outlined in chapter 3, and from the discussion of the previous section 

pertaining to the number of particles as function ofT'"Y, gaussian fits with P = {31 exp{ -(x2~r)
2
} +a3 

to the longitudinal and transverse Schottky spectra provide a direct measure of stochastic cooling 

performance and comparison with model calculation. The results of the fits to the longitudinal and 

transverse spectra as a function of T'"Y shall be presented in this section. First, a discussion of the 

Debuncher stochastic cooling model predictions as a function o(T'"Y shall be given, both to motivate 

the experimental data and to explain the model calculation. Next, the longitudinal widths and peak 

transverse power (proportional to the transverse emittance) shall be presented for the two cases 

t~r}J) /300msec and ~rt/300msec, together with the result of the model predictions. Finally, the 

next section presents a summary of all the results, direct and indirect. 
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5.3.1 Theory: The Debuncher Stochastic Cooling Model 

The Debuncher stochastic cooling model, described in the previous chapter, has been used 

to predict the final longitudinal beam width and the transverse emittances as a function of T-y. As 

input to the model calculations, both longitudinal and transverse signal suppression data are used 

to extract (G11) and gl. respectively. 

With the input parameters for both the longitudinal and transverse calculation, numerical 

integration is used to calculate the longitudinal width <T f ( t; T-y) and the final transverse emittance, 

c 1(T-y ), for a comparison with the experimental data for the dynamic 1{ lattice. The details of the 

calculation are given in the following two steps: {i) the longitudinal calculation is performed first, 

obtaining M(t; T-y) through rrp/P from the integrating the partial differential equation with a flux 

t; < t < T-r 

otherwise(5.l) 

where T}J = 1 / if1 - 1 h'/,; {ii) a calculation of the final emittance, c{ (T-y), is found by integratin-g 

(5.2) 

An expression for the final emittance as a function of the time T-r is c1(T-r) = J;1 Gl.(t)dt. Since 

the mixing factor is reduced for t; < t < T-y, the rate of cooling should increase and thus the final 

transverse emittance should decrease. 

5.3.2 The full results as function of T-y 

The full results of the direct stochastic cooling measurements from the longitudinal and 

transverse Schottky signals, recorded at the beginning and end of production/cooling cycle, are 

given for both the ~Ll1{ /300msec and Ll1{ /300msec case. 

From the fitting parameters defined in the introduction of this section, the power in a 

transverse Schottky sideband is given by P,..., a2/31. Since the power density of the transverse (dipole) 

Schottky spectrum is given by (Pd),..., q 2 Nf~(A2 }'1/!(fn) [23] the power from the fits, P = a2/31 is 

proportional to the beam emittance. At the beginning of the p production cycle the plot of a2/31 
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as a function of T-y should be flat, indicating the same pulse intensity at the start of the cycle. For 

those measurements at the end of the cycle /31 should be a monotonically decreasing function of T-y. 

5.3.2.l The ht/300msec Results 

The result of the beam widths from fits to the longitudinal Schottky spectra at the beginning 

of the cycle (triggered 0.2sec from an $81 event) and at the end of the cycle (triggered at 2.2sec 

from an $81 event) are given in Figures 5.lO(a) and (b), respectively, for the tlf /300msec case. 

Superposed upon the data in Figure 5. lO(b) is the result of the longitudinal stochastic cooling 

calculation. The ~ode! predicts a change in the final width a-J with T-y for h{ /300msec of 6..a-1 /T-y ~ 

.25MeV /sec, which corresponds to a fractional change of a-1 of~ 3.9%. 
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(a.) Beginning of j5 production cycle. (b) End of j5 production cycle. 

Figure 5.10: The measured longitudinal widths versus T-y for tlf /300 msec (11 = 0.0085) together 
with results of the longitudinal stochastic cooling model, with inputs to the cooling model, (G) = 
2.5 x 10-4MeV /sec and re= .02051/MeV. 

The results of the integrated transverse dipole (sideband) power (in mWatts) is given in 

Figures 5.11 for the beginning and the end of the cycle, respectively. As mentioned in the previous 

paragraph, the integrated transverse sideband power density is proportional to the beam emittance. 

Therefore, Figure 5.11 indicates that the initial beam emittance as a function of T-y is a constant 
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~ 0.16 m Watts. At the end of the cycle, the emittance is a monotonically decreasing function of T"'I, 

indicating an increased cooling as a function of a reduced mixing factor. 

Tmn.r .. rideh1J11d power @ .Olsec Tran.1vme 1]=.0085 vs T
1 

J.60t.05 I I I 
J.55t:--05 

1.50.-0l 

l.45t:-lJ5 ~~~~~~-~~~~~~~ 
0.8 1.0 1.2 1 .4 1.6 1.8 

(a) Beginning of p production cycle. (b) End of p production cycle. 

Figure 5.11: Transverse Schottky sideband p~wer versus T"'I for h'{ /300 msec (Tl = .0085) at the 
beginning and the end of the cycle. 

The model calculation, which is compared with the data in Figure 5.11, predicts a change 

of the integrated transverse power ( ~ c:) with T"'I of&/ tl.T"'I ::::::: .032m Watts/sec, which corresponds 

to a fractional change inc: of::::::: 7.0%. 

5.3.2.2 The tl.1}!) /300msec Results 

Results of the measured widths to the longitudinal Schottky spectra triggered at the begin­

ning and end of cycle are given in Figure 5.12 for the case of tl.1}!) /300msec. The model calculation 

for the final widths u, predicts a change of UJ with T"'I of tl.u1 / tl.T"'I ::::::: .25MeV /sec which corresponds 

to a fractional change in u J of::::::: 4.1 %. 
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(a) Beginning of jj production cycle. (b) End of jj production cycle. 

Figure 5.12: The measured longitudinal widths versus T'Y for 6-1}!) /300 msec (17 = 0.0094) together 
with cooling model results for inputs: (G) = 2.5 x 10-4 and Tc = .0205. 

The results of the transverse dipole power density (in mWatts) is given in Figures 5.13 for 

the beginning and the end of the cycle, respectively. 
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(a) Beginning of jj production cycle. 
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(b) End of jj production cycle. 

Figure 5.13: Transverse Schottky sideband power versus T'Y for 6-1}!) /300 msec (17 = .0094) at the 
beginning and the end of the cycle. 
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Figure 5.13 indicates that the rate of change in a quantity proportional to the emittance c: 

with T1 is tl.c:/tl.T1 ~ 0.032, which corresponds to a fractional change inf of"" 7.6%. 

5.4 Summary tl.1{ versus T1 : Indirect and Direct 

As a comparison between the different sets of data, Figures 5.14 (a) and (b) are summary 

plots of the rate of change of {i) the D/A efficiency with T1 , RnA = 8DAE/8T1 (1J), and {iii) the 

stack rate with T1 , RsR = 85 Rf 8T1 ( 1J)), respectively. Despite the low statistics with 1J, Figures 

5.14( a) and (b ), represent the predominant motivation for a dynamic f:l./t lattice. 
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(a.) Debuncher to Accumulator transfer efficiency 
a.s a. function of t/. 
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(b) Sta.ck Rate efficiency a.s a. function of ti· 

Figure 5.14: Experimentally determined dependence of T1 upon the the Debuncher/Accumulator 
efficiency and the stack rate for three values of 77. 

In particular, Figure 5.14(a) indicates that tl.RnA/tl.77 ~ 28.0 for values of 7J :S 0.008, while 

the rate drops off to tl.RnA/ tl.77 ~ 16.3 between 77 = 0.008 and 77 = 0.0095. Therefore, although 

there is still an improvement for larger 7], the effect does begin to saturate. 

Since the p stacking rate is intimately related to the Debucher/ Accumulator efficiency, the 

rapid fall off of RsR = aSR/aT,(77)) with larger 77 witnessed in the data of Figure 5.14(b) is 

not surprising. Indeed, at smaller values of 77 (77 :S 0.008), f:l.RsR/tl.77 ~ 18., while in the range 

0.008 :S 77 :S 0.0095, f:l.RsR/ tl.77 ~ 10 .. 
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Collectively, these statements, summarized by Figures 5.14(a) and (b), suggest the rate of 

stack rate improvement diminishes for increasing 'f/· In the next chapter, calculations with the 

full Fokker Planck model shall investigate the 'f/ dependence of the cooling rates further, with the 

present stochastic cooling parameters and extrapolation into a regime of higher particle flux and 

higher system gain. 

5.5 Chapter Summary 

The experimental results of the dynamic ~It have been reviewed and found to be consistent 

with the theoretical predictions. In particular, improvements to the performance parameters as a 

function of 'f/ confirm the notion that Antiproton Source performance is directly effected by improved 

Debu~cher stochastic precooling. While theoretical predictions of the performance-parameters have 

not been attempted, the experimental results of fractional improvements to the parameters are 

consistent with earlier measurements as discussed in Chapter 1 (see Figure 1.2 and the accompanying 

discussion). Thus, it was found that under the present conditions, a fractional improvement of,.._, 4% 

in the stacking rate per ~'f/ = 0.001 has been obtained. The corresponding fractional improvement in 

the Debuncher to Accumulator (D/ A) transfer efficiency is approximately,...., 3-4% per ~'f/ = 0.001. 

The nearly one-to-one improvement in D /A efficiency and stacking rate observed with the ~It versus 

T-y experiments is consistent with that obtained from the previous measurements cited above. 

Longitudinal and transverse Schottky Measurements versus T-y have provided the most direct 

evidence of increased cooling as a function of 'f/· Moreover, comparisons with the stochastic cooling 

model are in good agreement. In summary, it was found that for each ~'f/ ~ 0.001 (i) the fractional 

change inc is,.._, 2.5%, and (ii} the fractional change in u1 is,.._, 1.4%. 
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CHAPTER 6 

STOCHASTIC COOLING EXTRAPOLATIONS AND GENERAL 

CONCLUSIONS 

6.1 Introduction 

The purpose of the dynamic .6.rt project was to investigate the feasibility of utilizing optics 

modifications to improve the stochastic cooling rates under the auspice of a marked increase in 

particle flux. In any_ variety of the proposed scenarios for future operation of the Fermilab Tevatron, 

an increased particle flux to the Antiproton Source is an inherent design feature and assumption. 

Thus, the performance of the Debuncher precooling system with the increased particle flux stands 

amongst the numerous technical challenges, which are presently being addressed in earnest. 

The Main Injector Project represents the first stage of the future luminosity upgrades at 

Fermilab within the immediate future. With respect to the operation of the Antiproton Source 

Debuncher, the predominant parameters represented by the Main Injector project are: (i) a faster 

repetition rate for producing ps and a larger intensity (3.2 x 1012 protons/pulse --+ 5 x 1012
), and 

(ii) a modification of the Debuncher yield of 6.7 x 107p/pulse--+ 8.9 x 107 [.P/pulse], thus a factor 

of 1.32 above the present number of particles. With the incorporation of beam sweeping and a Li 

lens upgrades, the increase of antiprotons into the Debuncher shall be expected to increase from 

6.7 x 107[.P/pulse] --+ 18.5 x 107[.P/pulse], yielding a factor of 2.7 more particles than with present 

scenanos. 

In response to the need for improved precooling in the Debuncher within the Main Injector 

Era and beyond, the pickup arrays shall be cooled to 4°K, in order to dramatically reduce the 

noise to signal ratio, which presently limits the ability to operate at optimum gain. This upgrade 

decreases the effective noise temperature by a factor of 4 from 125°K to 30°K. Together with ancillary 

improvements to power handling capability of the kicker tanks, such a reduction of the noise figure 

shall allow an increase of the power in each system by ~ 1.6 above the present power levels. Thus, 

a crude estimate would suggest a direct improvement of the overall gain in each system, G11 and 91-

respectively, to increase by a factor of~ 1.8. 
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6.2 Projections of the Debuncher stochastic cooling model 

Based upon the stated scenarios and upgrades, the stochastic cooling model, which has 

been discussed in chapter 4 for the nominal lattice and Debuncher parameters, may be used to 

extrapolate cooling rates in terms of three parameters: (i) the number of particles (Np), which 

shall most certainly increase, (ii) the system gain (G11 and 91-), which shall increase by a factor of 

~ 1.3 -1.5, and (iii) several values of the lattice parameter T/ (or equivalently It). This section shall 

present extrapolations of the full Fokker Planck calculation for the longitudinal width 1J"(t), which is 

then used as input for the transverse calculation for the emittance c(t), through the mixing factor 

M,..., 1/IJ"(t). 

6.2.1 Longitudinal Rates with present system gain 

Utilizing the longitudinal Fokker Planck Equation (4.7), the beam width as a function of 

time in the cooling cycle was calculated as a function of T/ (or equivalently It), several values of N, 

and the system gain G11. The resulting 1J"(t; ri) is then utilized to calculate the emittance c(t; ri) in 

terms of an increase in 91-· In Figure 6.l(a), comparisons of the ratio 1J"0 /1J"J (initial IJ"0 to the final 

IJ"j) are made between several values of N as a function of T/ for the present values of system gain, 

a 11 = 7.5 x 10-4 MeV and r = 2.5 x 10- 2Mev- 1
. For comparison, Figure 6.l(b) are comparisons 

of IJ" 0 /IJ"J as a function of T/ for different values of N without signal suppression included in the 

calculation. While at N = 4.6 x 107 , the effect of signal suppression upon the IJ"J is negligible, this 

is not the case for an increase in particle number, and a decrease in T/. 

If the thermal noise is neglected from the calculation a dramatic improvement of the cooling 

rate for IJ" would not result with the present value of Gii. This is the statement that the system is 

gain limited, and that the present value of the gain is small enough to render the diffusion force 

negligible as compared with the cooling force, as has been plotted for comparison of the two terms 

51 (x) and 52 (x) in Figure 4.27 of the chapter 4. Figure 6.2(a) and (b) compare 1J"0 /1J"J for several 

N and T/ for the case with the thermal noise/signal ratio U = 0 and G11 = 7.5 x 10-4 MeV, with and 

without signal suppression, respectively. With signal suppression, the omission of the thermal term 

U does not have a profound effect for the value of the present system gain. 
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Figure 6.1: Comparisons ofo·0 /u1 as a function of N and 77 for the present values Gii = 7.5x10-4MeV 
and r = 2.5 x 10-2Mev- 1 . 
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Figure 6.2: Comparisons of u0 /u1 as a function of N and 77 for the present values but without 
thermal noise U = 0, G11=7.5x10-4 MeV, and r = 2.5 x 10-2Mev- 1 . 
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At the present gain, G = 7.5 x 10-4 MeV, the fractional change, ~" of <r0 /<TJ with 17, is 

~" ~ 3.5% between 1J = 0.006 and 1J = 0.009. The calculation is consistent with the result obtained 

experimentally in the previous chapter as a function of T-y (see Figure 5.12), in which a~ 3% change 

in the beam width was observed for <r(T-y). 

6.2.2 Longitudinal rates with increased gain 

For the case in which the system gain is increased by a factor of 1.5, such that c
11 

11.25 x 10-4 MeV, marked improvements in the cooling rates are possible. Figures 6.3(a) and (b) 

compare <T 0 / <T J calculations, with and without signal suppression respectively, for several values of 

incident particle flux N into the Debuncher. With the increased value of the system gain, signal 

suppression is no longer negligible and must be included in calculations in order to accurately 

calculate the time evolution of the longitudinal beam widths <r(t), and also the transverse emittance 

c:( t) 

Comparisons of <T 0 / <T J with and without the inclusion of of thermal noise U in the calculations 

are provided in_6.4(a) and (b) to underscore the relative importance of the diffusion term at larger 

values of the gain. 
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Figure 6.4: Comparisons of u0 /u1 as a function of N and 77 for the present values but without 
thermal noise U = 0, G

11 
= 7.5 x 10-4 MeV, and r = 2.5 x 10- 2Mev- 1 . 

A few observations from Figure 6.3 are apparent, (i} with N = 4.6 x 107 and 77 = 0.006 

fixed, the final beam width u 1 decreases by a factor of ~ 1.11 for an increase in the system gain 

of~ 1.5. The fractional change in u 0 /u1 for the increased gain, from 77 = 0.006 to 77 = 0.009, is 

~" ~ 6%. Thus, although operating closer to optimal gain with 1.5 x Gnominal, the dependence of 

the final width u 1 , and hence the longitudinal cooling rate is larger, but not dramatically so. 

As a further comparison of the dependence of longitudinal cooling rate as function of 77, 

Figures 6.5(a) and (b) compare calculated rates at several values of 77 for: (i} the present case 

with G = 7 .5 x 10-4 , N = 4.6 x 107 , and (ii} a case with an increased gain and particle flux 

G = 11.25 x 10-4 and N = 13.5 x 107 , respectively. Despite the increase in particle number by 50%, 

the final width u f in Figure 6.5(b) with a lattice 77 = 0.009, shall still be reduced by ,..__, 8% compared 

with the case for which 77 = 0.006. 
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Figure 6.5: Comparison of longitudinal cooling rates for several values of T/ and compared against 
the present experimental rate. 

6.2.3 Dependence of the transverse rates with T/ 

With the values of <T(t; TJ, N, €) obtained from the longitudinal Fokker Planck calculation 

described in the previous subsection, the transverse cooling rates for t:(t; T/, N) have been calculated. 

Figures 6.6(a) and (b) compare the ratio of the initial emittance to the final emittance, t:(t = 

O;N,TJ)/e(t = t1;N,TJ), as a function of N for different values of TJ. In particular, Figure 6.6(a) 

utilizes the present gain in each cooling system (G11=7.5x10- 4 and 91- = 4.7x10-3 ) for calculating 

<T(t) and e(t). Figure 6.6(b), however, compares t:(t = O;N,TJ)/e(t = t1;N,TJ) for different T/ as 

function of N with the gain increased in each system by a factor of 1.5 from the present values, 

thus, G11 = 11.25 x 10-4 and 91- = 7.05 x 10-3 . The effects of signal suppression have been included 

in the calculations for both the longitudinal beam width <T( t) and t:( t). 
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The dependence of the transverse stochastic cooling rate upon 7J is further elucidated in 

Figure 6.7(a), in which the ratio e(t = O;N,TJ)/e(t = t1;N,TJ) is plotted directly as a function of TJ 

for different values of gain and number of particles N. 
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Figure 6.7: Plots of e(t = O; N, TJ)/e(t = t1; N, TJ) as a function of 7J for different values of gain and 
number of particles N. 
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Specifically, two calculations are compared in Figure 6.7(a): {i) the present parameters, thus, 

Gii = 7.5 x 10-4, gl. = 4.7 x 10-3 , and N = 4.6 x 107
, and (ii) an increased particle flux by a factor 

~ 1.5, and an increased gain in each system of~ 1.5, thus, Gu = 11.25 x 10-4
, gl. = 7.05 x 10-3

, 

and N = 6.75 x 107
. 

From 6.7 two observations may be made, {i) the fractional change in between TJ = 0, 006 

and T/ = 0.009 is ~ 3%, in either case, and {ii) although the increase in transverse cooling is not 

profoundly effected by T/, approximately the same cooling rates can be obtained with ,...., 50% more 

beam and ,...., 50% more gain. 

6.2.4 Summary of the cooling rate extrapolations 

Within the short discussion of this chapter, extrapolations of cooling rates were made in 

terms of the particle flux N, the system gain Gu and g l., and TJ (It), utilizing the Debuncher stochastic 

cooling model. While the variety offuture scenarios must be investigated more thoroughly and for 

more specific cases, general trends may be discerned from the results of this chapter, and previous 

chapters, concerning the benefits of a dynamic It lattice. According to the the calculations of this 

chapter, with the stochastic cooling model, and considering the source of errors, the conclusions are 

the following: (i) the longitudinal beam width may be reduced by ....., 3 - 4% per l:!..TJ,...., 0.001 and an 

increase of the gain l:!..G ,...., l.5Gnominali and {ii) the transverse emittance may be reduced by ....., 2-3% 

per l:!..T],...., 0.001 and increase in gain of l:!..g ~ l.5gnominal· The first of the conclusions suggests that 

TJ ~ 0.0095 should reduce the final width <TJ of,...., 10.5 - 14% compared with the nominal lattice 

of TJ = 0.006, assuming the gain may be increased by ,...., 50%. -The second observation suggests a 

reduction of the beam emittance£/ by,...., 7 - 10% with the implementation of T/ ~ 0.0095 and an 

increase in the transverse system gain of,...., 50%. 

6.3 Final Comments regarding a dynamic f:!..1t 

Many results related to a dynamic f:!..1t lattice have been presented in this thesis. First, the 

feasibility of constructing the necessary lattices has been demonstrated with the use of 7r doublet 

filling of the arc sections. A robust f:!..1t design has been constructed, for which (i) initial commis­

sioning requirements were amply satisfied, (ii) it is possible to produce larger f:!..1t than obtained in 

the commissioning described in this thesis from the perspective of beam stability, with the provision 
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of power supply engineering efforts for obtaining reasonable slew rates, (iii) the result of lattice 

calculations for the ~It design are in excellent agreement with the experimentally measured results, 

and (iv} a bi-polar design which obtains a small value of 77 for increasing the momentum acceptance 

,..., 20% is feasible with the ~It lattice design. 

The second observation concerns resonance crossing. It was shown that power supply errors 

produce tune excursions which can be detrimental to the beam by crossing significant resonances 

through 5th order. Solutions to the tune excursion problem during the ~It/ ~t represent the most 

obdurate challenge to the successful implementation of a dynamic ~It lattice as a permanent oper­

ational feature of the Anti proton Source. 

As had been well known before the commissioning of the dynamic ~It project, the present 

Debuncher stochastic cooling systems are gain limited due to the large thermal noise at the input to 

the amplifiers. As a result, the systems are far from the optimal gain, and thus, the diffusion term 

is small in comparison to the cooling term. The third observation concerning the present feasibility 

project is that under the present conditions, a reduction in the diffusion term, through a reduction 

of the mixing factor does not have a profound effect. It has been fou11d that during a cooling cycle 

of ~t ~ 2.4sec, the stacking rate can be increased by ......, 5%. Thus, a more positive cost/benefits 

analysis would result with the system operating closer to optimal. Such shall be the ca.Se under the 

proposed upgrades scheduled for Antiproton operation in the Main Injector era. 

The final observations to be made concern (i) the ability to predict stochastic cooling rates 

with the numerical computer model developed and described in the third chapter, and (ii) the 

accuracy of the related experimentally measured input parameters. In the previous two chapters, 

comparisons of the longitudinal and transverse stochastic cooling models to experimental measure­

ments of the beam width and emittance (actually, the power in the transverse Schottky sideband), 

respectively. Agreement between the model and measurements was, in general, quite good despite 

the fact that (i) variations of input parameters across the microwave band were averaged for sim­

plicity, (ii) details of improper phasing were not measured carefully, thus only crude estimates were 

used in the models, and (iii) extraction of the gain, Gu and gl. from signal suppression and open 

loop measurements were in good agreement, however, introduce an erro'r at a level of 20%. 
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APPENDIX A 

SOME NOTES RELEVANT TO THE ~It/ ~t OPTIMIZATION PROBLEM 

A.1 Introduction 

The flit/ flt optimization problem was stated formally in chapter 1 in the following manner: 

min{ F(LI)} for LIEM 

subject to 

where 

- for which M is the one turn map, and LI may in general represent any of the latti"ce parameters, 

however, for the present restricted problem shall simply represent the transverse tunes. The restric­

tions upon the changes in the free parameters, the currents jflli I, results from {i) trying to equally 

distribute the necessary current changes so that the average change is as small as possible, {ii} 

staying within the practical requirements imposed by shunts and the fact that the straight section 

quadrupoles are already shunting some amount of current, which in some cases restricts the available 

current domain even more, and {iii} trying to maintain a highly symmetric fl1~J) design. 

A.2 General Comments 

The following sections shall discuss some of the possible solution methods of the flit/ flt optimization 

problem with {i} classical optimization, notably quadratic models for which conjugate gradient/set 

methods are a subset, and {ii} simulated annealing optimization, for which the object function 

is sampled through a Monte Carlo algorithm. General discussions of some selected methods are 

included together with details of an object function for the tune space of the Debuncher. 

A.2.1 Classical Methods Optimization methods 

As posed, the constrained flit optimization problem is represented well by a number of classic 

gradient search algorithms. In particular, if the constraints are not very complicated to implement, 

it is possible to accurately utilize a quadratic function obtained with the first rank (Jacobian) and 

second rank (Hessian) tensor$, such that the object function is given by 
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(A.l) 

Quadratic models, based upon the the form of Equation (A.l), are particularly well suited for 

any of the following minimization algorithms1: (i) Newton method, (ii) restr~cted step methods, (iii) 

quasi-Newton methods, and (iv) conjugate direction methods 2 , including the most popular method 

of conjugate gradient as a subset. In the case of the conjugate direction methods, the algorithms 

rely upon a line search, which has the steps: (i) determine a direction of search s(k), (ii) find some 

a(k) to mi~imize f(x(k) +a(k)s(k)) with respect to a(k), and (iii) set x(k+l) = x(k) +a(k)s(k)). From 

this, \lf(k+l)Ts = 0 and conjugacy can be found with the Hessian tensor, s(i)T · {H} · s<i) = O and 

may be formally satisfied with a Gram- Schmidt procedure. 

The problem of treating optimization problems composed of several competing objectives, 

ie. minf(i) = min(/1(i),'2(i), ·,/k(i)) with associated constraints gi :S: O,h; = 0, was treated first 

in economics by V. Pareto [73]. For an informative and interesting application to the design of the 

LHC superconducting magnets using the Pareto- optimality criteria, see Russen~chuck, [84], [85]. 

The Pareto- optimal solution i" produces a set of solutions when there is no i such that fk ::; fk(i*) 

and fk < fk(i*) for at least one k. Therefore the Pareto - optimal solution set describes a situation 

for which an improvement of one object function compromises at least one other objective. 

A.2.2 Simulated Annealing Optimization 

For object functions possessing many local minima, the gradient algorithms are plagued with strong 

dependencies upon the start values. In the past 15 years, large scale optimization problems in 

econometrics and in VLSI [54] design have benefited from a Monte Carlo technique called simulated 

annealing. A more recent article by Martin and Ott [62], suggests that combination with other local 

search heuristics greatly improves the most complex of problems such as the traveling salesman and 

the graph partition problem. 

1 The .treatment of constrained optimization requires construction of the Lagrangian function£, = F( x )-L >.;c; ( x), 

then V' C(x*, >. *) = 0 is the minimizer within the feasible region. 
2 Conjugacy, sC i)T GsJ, is a direct way of invoking quadratic termination, ie. the notion that a method will locate 

a minimizing point x• of a quadratic function after a finite number of iterations. An intuitive way of realizing 
this is given by the following: let x• = x(l) + L a;s(i) and some point x = x< 1) + L a;sU), then a quadratic 

q(a) = (a - a*)STGS(a - a*). Minimization is achieved by choosing {S} conjugate so that a; = a;-, then the 
conjugacy is simply a transformation of G to a system a which are decoupled. 
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The notion of simulated annealing is quite simple and intuitive both for large combinatoric 

and smooth problems. Given an object function, and a fundamental parameter, such as temperature, 

which is a measure of the energy of the system, relative to the ground state minimum, the global 

features of the object function may be probed at the beginning of the search since the system may 

search large areas of the object function without encountering barriers due to local minima. The 

temperature parameter plays the key role in deciding in a probabilistic manner, whether to accept 

movement to some point in the configuration space which does not decrease the object function. 

Thus, unlike the descent methods, there is a natural mechanism to escape a local minimum and probe 

nearby features of the function. The radius by which the function may be probed is controlled by a 

separate step size parameter. 

As the number of function evaluation increase, what is required is a schedule, or order 

parameter to both decrease the temperature and decrease the step size. As the system anneals, the 

sampled configuration space should reside close to the minima. 

A.3 Optimization with a second order model 

For the transverse tunes, calculated through the linear lattice model of the Debuncher, it is sufficient 

to consider an expansion in of the perturbed excitation currents through the Hessian tensor. Table 

A.1 and Table A.2 compare the components of the aforementioned tensors for the nominal lattice 

and for the case in which the fl./t has been created without tune correction. For each comparison 

the difference between the elements between the two cases. Although the change is small between 

the first rank Jacobian elements, significant deviation does ·enter in the second rank Hessian. 

Table A. l: Jacobian matrix elements for the tune optimization problem free parameters - the 
quadrupoles in the straight sections quadrupoles. 

T]1 = 0.009 T]2 = 0.006 Difference 
J;j av,:f adlj avy/adlj avx/adlj avy/adlj D..avx I ad Ii tl.avy /ad Ii 

x10-3 x 10-3 x10-3 x10- 3 x10- 3 x10- 3 

(1) 3.729 -1.458 3.833 -1.252 -0.104 -0.206 
(2) 5.605 -2.089 5.488 -2.207 0.118 0.118 
(3) 6.338 -1.255 6.263 -1.257 0.075 0.002 
(4) -2.118 8.152 -2.149 7.405 0.031 0.747 
(5) -1.957 5.152 -1.904 5.963 -0.053 -0.811 
(6) -2.412 7.335 -2.446 6.232 0.034 1.103 
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Table A.2: Hessian matrix elements for the tune optimization problem free parameters - the 
quadrupoles in the straight sections quadrupoles. 

1/ = 0.009 1/ = 0.006 Difference 
H;''; fPv,, fPvy /Pv,, fPv" Ll(82v,,) Ll(o~v") 

x10- 5 xlO a xlO 5 x10- 5 x10-5 x10- 5 

(1,2) 0.944 -0.933 -3.150 -0.562 4.093 -0.371 
(1,3) 4.858 0.421 4.867 0.324 -0.009 0.098 
(1,4) 2.607 -1.086 1.524 1.411 1.084 -2.498 
(1,5) -2.607 2.658 -0.787 0.212 -1.820 2.446 
(1,6) 1.053 -4.572 -1.057 -0.693 2.110 -3.880 
(2,3) -5.755 -0.167 -5.050 -0.235 -0.706 0.068 
(2,4) -0.269 3.453 0.904 1.888 -1.173 1.565 
(2,5) 2.689 -1.214 0.751 -0.164 1.938 -1.050 
(2,6) -1.032 1.722 0.912 0.534. -1.944 1.188 
(3,4) -1.273 -1.651 -1.340 -1.094 0.067 -0.557 
(3,5) 2.561 1.417 2.312 1.507 0.249 -0.090 
(3,6) 0.659 -0.453 0.085 0.057 0.574 -0.510 
(4,5) 0.723 -9.798 0.224 -0.723 0.499 -9.075 
( 4,6) -0.288 18.178 0.312 2.301 -0.599 15.878 
(5,6) 0.477 -15.237 -0.431 -3.340 0.908 -11.896 

In the introductory comments, it was postulated that one could utilize a quadratic-expan­

sion of the tunes for small perturbations of the excitation currents, Llii ~ J · 61 + 61 · {H} · 61. 

For convenience, the tensors are given below for the configuration space defined by the free param-

eter set of excitation currents (the quadrupoles in the straight sections of the Debuncher lattice): 

{ 6Iqf1, 6lqf2, 6Iqf3, 6Iqd1, 6Iqd2, 6Iqd3}. 

J .. _ (°vif 811 8vif 812 .. . 8vif8h ) ' 1 - 8v2/8Ii 8v2f8I2 ... 8v2f8h 

( 3.832 5.487 6.262 -2.148 -1.903 
J;j(1/ = .006) = -1.251 -2.207 -1.256 7.405 5.962 

( 3.729 5.605 6.338 -2.118 -1.957 
J;j(7J = .009) = -1.458 -2.089 -1.255 8.152 5.152 

82 Vk I 8Ii 8 h 82 Vk I{) Ii {)/3 
0. 8 2vk/8I28h 
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0. 0.944 4.858 2.607 -2.607 1.053 
0.944 o. -5.755 -0.269 2.689 -1.032 

{H} ;/77 = .009) = 4.858 -5.755 0. -1.273 2.561 0.659 x 10- 5 

2.607 -0.269 -1.273 0. 0.723 -0.288 
-2.607 2.689 2.561 0.723 0. 0.477 
1.053 -1.032 0.659 -0.288 0.477 0. 

0. -0.933 0.421 -1.086 2.658 -4.572 
-0.933 0. -0.167 3.453 -1.214 1.722 

{H}~1 (77 = .009) = 0.421 -0.167 0. -1.651 1.417 -0.453 x 10-5 

-1.086 3.453 -1.651 o. -9.798 18.178 
2.658 -1.214 1.417 -9.798 0. -15.237 

-4.572 1.722 -0.453 18.178 -15.237 0. 

0. -3.149 4.866 1.523 -0.786 -1.056 
-3.149 0. -5.049 0.904 0.751 0.912 

{H};1(77 = .006) = 4.866 -5.049 0. -1.340 2.311 0.085 x 10-5 

1.523 0.904 -1.340 0. 0.223 0.311 
-0.786 0.751 2.311 0.223 0. -0.430 
-1.056 0.912 0.085 0.311 -0.430 0. 

0. -0.561 0.323 1.411 0.212 -0.692 
-0.561 0. -0.235 1.887 -0.163 0.534 

{H}~/77 = .006) = 0.323 -0.235 o. -1.094 1.506 0.057 x 10-5 
1.411 1.887 -1.094 0. -0.723 2.300 
0.212 -0.163 1.506 -0.723 0. -3.340 

-0.692 0.534 0.057 2.300 -3.340 0. 

A comparison of the quadratic model for predicting tune shifts 3 is given in Table A.3 for 

several cases. 

3 The more general problem of predicting shifts in other parameters, in particular the value of {3 functions at selected 
points, requires a calculation of fJ2{3k/8lf, which in the case of tune shifts were considered negligible. These must be 
done if one is to rigorously include restrictions of the feasible domain through constraint equations on these variables. 
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Table A.3: Test of the quadratic model with Jacobian and Hessian given in Tables A.I and A.2, 
respectively, against the actual lattice calculation. The comparison is used to quantify the accuracy 
of the quadratic model for calculating the tune shifts Av. 

Aii Aii 
s latt. model quadratic A %1/; 

1, 1, 1, -1,-1, -1 ( .0220, -.0252) (.0221, -.0254) (6.3 x 10 ", 3.7 x 10 ;:s) (.31, .61) 
2, 2, 2, -2, -2, -2 (.0439, -.0504) (.0440, -.0515) (1.4x10- 4 ,1.1 x 10-3 ) ( .62, 1.2) 
3, 3, 3, -3, -3, -3 (.0656, -.0756) (.0659, -.0777) (2.3 x 10-4 ' 2.1 x 10-3 ) ( .93, 1.8) 

1·· 4,4,-4,-4,-4l (.0872, -.1009) (.0875, -.1043) (3.0 x 10-4 , 3.3 x 10-3 ) (1.3, 2.4) 
5, 5, 5, -5, -5, -5 (.1087, -.1262) ( .1091, -.1311) (3.4 x 10-4 ' 4.8 x 10-3 ) (1.6, 3.0) 
6, 6, 6, -6, -6, -6 (.1302, -.1517) (.1305, -.1583) (3.4 x 10-4 ' 6.5 x 10-3 ) (1.9, 3.6) 
7,7,7,-7,-7,-7 (.1515, -.1775) (.1518, -.1781) (2.0 x 10-4 , 8.0 x 10-3 ) (2.2, 4.1) 

{ 8, 8, 8, -8, -8, -8} (.1729, -.2037) (.1729, -.2135) (2.5 x 10-5 , 9.8 x 10-3 ) (2.5, 4.6) 

Two main avenues of optimization inquiry were studied for the simple quadratic model: {i) 

the direction set methods, and (ii) the simulated annealing method. The motivation for comparing 

the two methods in the quadratic model is predicated on the belief that the annealing methods are 

easier to implement for the more complex case, especially for the inclusion of inequality constraints. 

Although in the restricted problem of demanding a high degree of symmetry, the direction set 

methods may be fine, the reliability in finding the proper minimum with the annealing method is 

greater. This statement shall be qualified in this section. 

A variation of the simulated annealing method by Goffe et. al. [37] and Corana [29], have 

been used to study the quadratic model with 6 free parameters. The specific annealing schedule 

used is based upon the Metropolis algorithm, in which points visited in the domain are accepted 

randomly based upon a Boltzmann criteria p = exp((fp - J)/T], for the function value fp, the 

function value at the present point f, and the order parameter T. The schedule is as follows: {i) 

n 8 number of steps, or function evaluations, are performed with the a step size, {ii) nt iterations of 

the n 8 evalauations are performed before the step size is reduced, thus limiting the domain as the 

system anneals; the step size v; changesaccording to the equation 

v; = {v;[l+ :~c·f:·-')] 
[ l+c;( ·•-~4/n, )j 

na/ns > .6 
(A.2) 

otherwise 

in which na is the number of events accepted from the Metropolis criteria, and (iii) after nt iterations, 

the temperture T parameter in the Metropolis criteria is changed by a simple scaling relation T -+ rT, 

where r < 1. The smaller r, the more rapid the solution anneals to an extremum. 
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The plots Figure A.l are the graphical representation of a particular simulated annealing 

result for the 6 parameter quadratic model. The schedule chosen has the reduction factor r = .2, an 

initial temperature of T = 2., n, = 20, and nt = 5. 
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Figure A.l: A simulated annealing results for the 6 parameter quadratic model. 

The top left plot in Figure A.l illustrates the values of the function f sampled (represented 

as points) together with the optimal function fr as a function of the number of evaluations N. As 

can be seen in the bottom right plot for the optimal points x opt, a solution for an extremum becomes 

stable after 500 evaluations, which is highly dependent upon the step size (middle left plot) and the 

temperature T, (the top right plot). 

A.4 Conclusion: Optimization within Lattice Calculation 

The real power of the simulated annealing optimization algorithm is not restricted to quadratic 

models, in fact, the ease of the method is more manifest through the direct implementation of the 

algorithm into the lattice calculations. Thus, because obtaining each point in tune space through 
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a lattice calculation, i.e. calculating the one turn map to determine the lattice functions, is com­

putationally expensive, and also difficult with complicated constraints, an appropriate annealing 

schedule may be used to reduce the total number of evaluations while maintaining the ability to 

search a large domain of local minima. 
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APPENDIX B 

NUMERICAL INTEGRATION FOR THE LONGITUDINAL COOLING 

MODEL 

B.1 Introduction 

Numerical analysis and methods for solving partial differential equations have long constituted an 

exciting area of applied mathematics. For their part, physicists have contributed profoundly to 

the field of numerical analysis, particularly with the need to solve nonlinear hydrodynamic (fluid) 

or magneto-hydrodynamic problems (nonlinear plasma in tokamaks) problems involving the Navier 

Stokes equations, Burgers equations, and transport equations. This brief appendix reviews a few of 

the methods which have been employed for the solution of the longitudinal Fokker Planck equation 

for the stochastic cooling model in the Debuncher. 

B.2 Analytic Methods 

In utilizing numerical methods for obtaining the solution to partial differential equations, it is es-

sential to check the approximations with those equations for which an exact solution is possible. 

This section considers the two terms in the longitudinal Fokker Planck equation, separately, with 

appropriate approximations to yield exact solutions, which may then be used for tests against the 

computer model. 

B.2.1 Method of Characteristics for Cooling 

From the longitudinal cooling equation for the distribution function '!f;(x, t), and the simple model 

for the gain R.eal[G(x)] ,...., -gsin[rx], the effect of the cooling interaction may be studied in the 

absence of diffusion. Indeed, with the simplified gain an exact solution is obtain~d with the method 

of characteristics. The following derivation is given by Zwillinger [105]. 

Given a quasi-linear partial differential equation 

a1 (x, u)ux, + · · · + an(x, u)uxn == b(x, u) 

define 
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Using these expressions, the following differential equation results 

du 
ds = b(x, u) 

Integration of this equation requires the knowledge of the trajectory along some curve in s in xk and 

u determined by some initial conditions, g(x, u) = 0. Solution to the above differential equations 

in x and u determine an implicit solution in a set of variables S = { s, ti, t 2 , · · · , tN - 1}. If these 

equations can be inverted in the set of variables S then an explicit solution is obtained. 

For the cooling term ~{ G} ,.._, -g sin( rx) so that 

with '!/;( t = 0) = '!/Jo 

axi _ 
1 as - ' 

t/Jt = [gsin(rx)tf;],, 

t/Jt - g sin( rx )t/Jx = gr cos( rx )'!/; 

du _ axi ·'· ax2 ·'· 
ds - as o/t + as o/x 

ax2 . ( ) as = -g Sill TX ~ -gTX, 
du 
- = gr cos( rx )'!/; ~ gr'!/; 
ds 

(B.l) 

(B.2) 

(B.3) 

where the approximations are accurate since that portion sampled by the distribution func-

tion is essentially linear. Initially, 

Using the approximation: 

t(s = 0) = 0 x(s = 0) =ti t/J(s = 0) = t/Jo(ti) 

dt = 1, 
ds 

dx - = -grx, 
ds 

dtf; 
- =gr'!/; 
ds 

Upon integrating these equations 

The solution: 

x(s) = x(s = O)exp[-grs] =ti [-grs] 

tf;(s, ti)= t/Jo(ti) [grs] 

tf;(x, t) =exp [grt] t/;0 (x exp[grt]) 
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then, 

Solution to the full problem without the approximations 

1/!t - g sin( TX )1/!x = gr cos( TX )V; 

du_ox 1 • 1• ox2.,, 
ds - Os 'Pt + OS 'l'x 

OX1 - 1 
OS - , 

OX2 . ( ) 
os = -gsm rx , 

dt dx . 
- = 1, - = -gsm(rx) 
ds ds 

du 
ds = gr cos( TX )1/! 

dV; 
ds = gr cos( rx )1/! 

Upon integrating these equations 

x(s) = t; arctan [exp [-grs]] 

~~ = gr cos( T t; arc tan [exp [-grs]] )V; 

(B.6) 

(B.7) 

(B.8) 

The above equation illustrates that although formal implicit expressions may be obtained 

with the method of characteristics, it is often difficult to obtain explicit expressions for the exact 

solution. Nonetheless, a numerical solution may be used to test against the convergence of the finite 

difference formulas derived for the solution to the various terms. for which the exact solution is 

V;(x, t) =exp [grt] V; 0 (x exp[grt]) 

B.2.1.1 Linear Diffusion Green Function 

For the case in which the cooling interaction is entirely dominated by diffusion, the relevant PDE is 

1/!t = [1(x )1/!1/!x lx, for which 1( x) = IGl 2
{ 1 + U}. For the test cases, 1(x) = 4g 2 sin 2 ( TX /2). 

To obtain an exact solution of linear diffusion with 1( x) = g is straight forward. A Green 

function for linear diffusion a solution to the equation 1/!t = g21/!xx is 

7/J(x, t) = ;_: dx'G(xJx', t)'ljJ(x', 0) 

with the Green function G(xlx', t) = 1/ V4g7i1 exp [-(x - x') 2 /4gt]. For an initial Gaussian distri­

bution 1j; 0 (x,O) = l/J27r0"2 exp[-(x') 2 /20"2] the second moment is given by (x 2) = J40"2 +gt 

Although it is a straight forward exercise to derive the linear diffusion Green function, the 

Green function for the nonlinear (Schottky) diffusion is not readily obtainable. Thus, it is necessary 

to resort to numerical techniques. 

158 



B.3 Numerical Finite Difference Methods 

B.3.1 Explicit Methods 

Several variants of explicit methods exist for finite differencing [l]. In this approach, a simple finite 

difference scheme was implemented for which an initial distribution is pushed forward in time on 

a two dimensional grid. The easiest variant of the Euler method is the leapfrog scheme, or Lax -

Wendroff method, which gives better stability by using overlapping meshes. 

B.3.1.1 Euler Method 

In the classic finite difference Euler method, the partial differential equation Ut = -'V F(u) for u(x, t) 

is solved on a discretized grid (x, t)---+ (j, n), with the first order accuracy in time and second order 

accuracy in the spatial variable. Hence, 

Ut 

ur:i+ 1 - u"!-
J J 

!:l.t 
Uf+l - Uf-1 

2!:l.x 

The- Euler method is conditionally stable if the fundamental scale of the problem >. = !:l.t / [ 2!:l.x] S 1. 

For nonlinear problems, in which F = uk for example, the stability condition takes the approximate 

form >.F = k!:l.t/ [2b.x] S 1. Therefore, for nonlinear problems, the simple Euler method is par­

ticularly unsuitable because of the requirements placed upon the grid spacing in order to maintain 

numerical stability. 

B.3.1.2 General Two Step Lax-Wendroff 

Amongst the many explicit finite difference algorithms which exist to improve the conditional stabil­

ity beyond that of the Euler method, such as the flux corrected transport of Boris and Book [9], the 

two step Lax- Wendroff method [79] makes use of intermediate mesh points by performing a centered 

average. Given the advective partial differential equation 

Ut =-'VF 

the differencing scheme is given by the following steps: (i) find the half points 

n+l _ 1 [ n "] f:l.t [Fn Fn] 
ui+l/2 - 2 ui+l + ui - 2!:l.x i+l - i 

n+l _ 1 [ n n ] f:l.t [Fn Fn ] 
uj-1/2 - 2 u; + u;-1 - 2!:l.x i - _;-1 
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(ii) use the half points u'Jti12 to calculate the fluxes at th half points Fj";1j 2
2

, and finally {iii) 

calculate the n + 1 grid points for u 

The two-step Lax Wendroff method for Fokker Planck equation follows immediately with 

the appropriate substitution of the flux F. 

B.3.2 Implicit Methods: Linear Diffusion 

Implicit methods offer two advantages over Euler methods; (i) coarse and long time behavior with no 

restriction on grid spacing, and (ii) unconditional numerical stability. If an implicit finite difference 

method is to be used, however, the partial differential equation to be solved must be linear. 

For a linear diffusion problem ?/;t = 'i72 F( ?/;) the difference scheme is obtained with centered 

derivatives defined on half grid points: 

F n+l Fn+l 
[ 

j+l/2 - j-1/2 

-p 2Ax 
F" --Fn 

-(1 - p)[ j+l/2 j-1/2 
2Ax 

for which the flux points are given by: 

Fj-1/2 

Given the definitions, 

1 
4[(rj+l + r1) ± D(lj+l + 11)] 

fh 
1 
4[(r1 + r1-1) ± D(/1 + /;-i)] 

the system of equations results: 

a·'·n+l + b·'·n+l + c-'·n+l = a'·'·n + b'·'·n + c'·'·n 'l'J 'l'J-1 'l';+I 'l'J '1';-1 '1';+1 

which defines a tridiagonal system of equations: 
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A formal solution follows with the inversion of A, 

Despite the simplicity of implicit methods for linear diffusion equations, nonlinear diffusion 

equations are not directly solvable with this technique. Instead, two different techniques may be used 

in conjunction with implicit finite differencing for nonlinear equations, {i) approximate linearization, 

and {ii) predictor- corrector methods. While unconditional stability is a guarantee, some estimate 

of the errors introduced with the linearization or the successive approximations must be performed. 

Such error estimates are nontrivial and represent the major obstacle with the use of implicit methods 

for nonlinear equations. 

B.4 Tests of the Finite Difference Equations 

A number of tests are used to ensure that the numerical finite difference equations are converging to 

the exact solution of the partial differential equation. First, the individual terms of the equation are 

isolated and solved for the simple cases: (a) linear convection, and (b) linear and nonlinear diffusion. 

In each case, m-th moments of the distribution are calculated (the zeroth through third moment) 

which is defined over the grid space X 

Physically, the zeroth moment (x 0 (t)} represents the conservation of particle number as a function 

of time, the first moment (x 1(t)} represents development of asymmetry about the origin, or a net 

convection (net beam velocity from the central energy of the entire distribution), and the (x2 (t)} 

moment represents the change of the beam width O". 
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