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Amplitude analyses of the D+; D+
s
! K+K��+ and D+; D+

s
! �+�+��

Dalitz plots are presented using data collected by the Fermilab high energy pho-

toproduction experiment E687. Our data are �t to a model consisting of a sum

of constant and Breit-Wigner amplitudes for the intermediate three-body non-

resonant and two-body resonant decay modes. We extract decay fractions and

relative phases. These results are used to infer new branching ratios for the

D+
! ��+ and D+

! K
�

(892)0K+ channels.
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List of Abbreviations

ADC Analog to Digital Converter.

BGM Beam Gamma Monitor { an electromagnetic shower detector

designed to collect uninteracted beam photons.

CKM matrix Kobayashi, Maskawa, Cabibbo matrix - a transformation ma-

trix contained in the Standard Model. It rotates the quark

weak eigenstates into the physical mass eigenstates.

CL Con�dence Level { the percentile rank of a �2

CL1 The con�dence level that a charm daughter does not point

back to the primary vertex.

CL2 The con�dence level that no tracks, not in the primary or

secondary are in the secondary vertex.

DCL The con�dence level of a secondary or charm vertex.

`=� The separation between the primary vertex and a charm sec-

ondary vertex divided by its error.

FSI Final state interaction - mixing and rescatterring of the out-

going hadrons due to strong interaction e�ects.

5� chamber A particle trajectory that is measured in all PWC planes and

passes through M2.

Golden modes The copious all charged D decays K�, K2�, and K3�.

H�V The horizontal and vertical scintillator trigger array.

Link The requirement that a particle trajectory is found in the

SSD's and the PWC's and the two segments are associated.

viii



M1; M2 The �rst and second analysis magnets.

MCS Multiple Coulomb Scattering

MWPC { Multiwire Proportional Chambers, also PWC or chambers.

OE; IE Outer electromagnetic detector and inner electromagnetic de-

tector.

OM; IM Outer muon detector and inner muon detector.

Primary vertex The photon-nucleon interaction point.

RESH Recoil Electron Shower Hodoscope.

SSD Silicon Microstrip Detector

Stub A particle trajectory that is measured in the �rst 3 PWC

planes only, P0-P2.

Track parameters A set of slopes and intercepts used to specify a particle trajec-

tory. The parameters take the form (x; x0 = px=pz; y;�y0 =

py=pz) or (x; x
0; y; y0; p).
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Chapter 1

Introduction

This thesis reports the analysis of a sample of charm meson decays collected

during the 1990 - 1991 data-taking period of the high-energy physics experiment

Fermilab E687. Our study identi�es previously undiscovered hadronic decay

modes of the D
+ and D

+
s

mesons to the K
+
K
�

�
+ �nal state and con�rms

known modes for decays to the �+�+�� �nal state.

Since their discovery in 1974, large samples of charm hadrons (bound states

of charm and other quarks) have been produced via three methods: QED e
+
e
�

annihilation to a virtual photon coupling to a cc bound state; inelastic scattering

of hadrons upon hadrons; and photoproduction. When the center of mass energy

is set to the rest mass of a resonance (such as the 	(3770)) e+e� annihilation

has the advantage of producing charm hadrons with little or no background. It is

limited by beam luminosity ,
1

where a typical value is � 1030cm�2s�1. On the

other hand, hadroproduction has a large production cross section but copious

hadronic backgrounds. Photoproduction obtains both a moderate production

rate and background level. Physics studies of these charm states have focused on

production and decay mechanisms. We brie
y review these topics below.

E687 events are consistent with the photon-gluon fusion production mecha-

nism, [1] where an incident real photon couples with a gluon emitted from a target

nucleon via a heavy quark propagator. The resulting cc pair then hadronizes to

form bound quark states.
2

The lowest order Feynman diagrams of this process

are shown in Fig. 1.1 below.

Typical charm decay studies measure lifetimes and branching fractions into

purely leptonic, semileptonic and nonleptonic decay modes.
3

This thesis employs

1 Luminosity is de�ned by the equation, production rate = luminosity � cross section.
2 Recall that states consisting of a single valence quark do not exist in nature. The process
of hadronization \dresses" each quark in the cc pair with other quarks from the vacuum to
form bound states (mesons and baryons).

3 Decays are categorized by the types of the �nal state particles. Decays with only leptons in

1



Figure 1.1 The two lowest order (in �QCD) Feynman diagrams of the photon-

gluon fusion charm production mechanism. The hadronization process is not

shown.

a multidimensional minimization technique to study the resonant substructure

of nonleptonic decay modes of the D+ and D+s charm mesons. Our \charm

interferometry" technique measures quantummechanical interference phenomena

in these decays over the entire space of physical observables, thereby maximizing

the information content of our results. Although this technique, Dalitz amplitude

analysis, has been used for at least thirty years to study light meson spectroscopy,

only recently have high statistics charm samples become available for Dalitz

analysis. We develop the technology of nonlinear minimization to study the

rich substructure of these decays.

We begin with a description of the phenomenology employed to describe non-

leptonic decay amplitudes. The E687 experimental apparatus, event reconstruc-

tion software and Monte Carlo device simulation are outlined in Chapters 3 and

4. The analysis of the decays D+;D+s ! K+K��+ and D+;D+s ! �+�+��

occupies Chapters 5 and 6. To facilitate comparison with other experiments we

extract branching fractions from our Dalitz �t results. Finally, Chapter 7 con-

cludes with an overview of our analysis results.

the �nal state are called `leptonic;' when the �nal state contains both leptons and hadrons

it is `semileptonic;' a decay to a purely hadronic �nal state is termed `nonleptonic.'

2



Chapter 2

The Phenomenology of Nonleptonic Decays

2.1 Introduction

The Standard Model succesfully describes the weak interactions between

pointlike objects as proceeding via the exchange of charged or neutral bosons

(i.e., photons, W�, Z0) between particle currents. The amplitude for this pro-

cess is ASM = 4GFp
2
Vqq0V �q00q000J

�j�; where the fVqq0g are the appropriate CKM

matrix elements.
1

On the other hand, weak interactions between composite

particles (i.e., mesons and baryons) cannot be completely described by the Stan-

dard Model. Several models have been developed [3, 4] to explain the weak

hadronic decay mechanisms of D mesons. Most of these models require ex-

perimentally measured branching ratios and deal only with decays mediated by

resonant states. Some can accommodate �nal state interaction,
2

the level of

which can be measured by looking at the relative phases between interfering de-

cay amplitudes. The extent to which model calculations can adequately describe

the data can be gauged by comparing the predicted pattern of two-body decays

to experimental measurement.

A particular model developed by Bauer, Stech and Wirbel [4, 6, 7] is an

attempt to apply the standard model framework to these complex interactions. It

is motivated by the spectator valence quark 
ow diagram for 2-body weak decays

of hadrons (see, for example, Figure 2.1). This diagram identi�es the exchanged

boson with the heavy quark (i.e., charm, bottom, top) in a hadron, while the light

quark does not contribute to the interaction (except in hadronization). The BSW

model postulates the amplitude M for the two-body decay process D ! Mm

1 See, for example pages 251-291 in Ref. [2].
2 Final state interaction refers to mixing and rescatterring of the outgoing hadrons due to

strong interaction e�ects (i.e., gluon exchange, quark fragmentation, etc.). The classic

example is the decay process D0
! K�0� ! K

0

�, where the K
0

� state results from
rearrangement of the � valence quarks. [5]

3



factorizes as follows (see, for example, Eq. 2.9 in Ref. [8]):

M(D !Mm) =
4GFp

2
VcqV

�

udh
�H�: (2:1)

Here H� and h� are e�ective hadronic current matrix elements and they contain

the dynamics of this 2-body process. GF is the Fermi coupling constant and

Vcq; Vud are CKM matrix elements. Regrettably, particle physics does not have

a complete understanding of these hadron wave functions and hence the exact

form of these hadronic currents is unkown. Fortunately all

s

c

π

φ
s

s

d

u

W

D

s

s

K

*0
K

u

d

s

s

c

s

D W

Figure 2.1 Spectator valence quark 
ow diagrams for the two-body decays of

the D+
s into ��+ (left) and the K

�

(892)0K+ (right) decay channels.

is not lost because the method of Dalitz plot analysis provides the particle physi-

cist with a framework to obtain phenomenological descriptions of these decays.

We presently describe this method.

This thesis investigates nonleptonic decays of the D+ and D+
s

3
charmed

mesons of the formD! rc followed by r ! ab. Here, D represents a ground state

0� charmed meson, a,b and c are 0� psuedoscalar mesons and r is a meson with

spin-parity JP belonging to the list 0+; 1�; 2+; 3�; ::: : By limiting our analysis to

3 Unless otherwise stated, when referencing a particular state, we implicitly include its charge

conjugate.
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these particular spin-parity mesons r, we can apply the results of Zemach Table

I [9] to our formalism. Also, by studying the 3-body �nal state (ab)c we obtain

insight into the 2-body process D! rc:

Figure 2.2Dalitz scatterplot from a Monte Carlo simulation ofD+
! K

+
K
�

�
+

using a constant decay amplitude (so-called nonresonant decay).

By applying symmetry arguments one can determine the minimum number

of degrees of freedom necessary to completely specify the decay of a hadron

into N spinless daughter particles. The decay is described fully in terms of

3N momentum components. Rotational invariance of the decay matrix element

means it does not depend on the three Euler angles which orient the �nal state

particles in Cartesian space. Hence we lose three additional degrees of freedom.

Energy-momentum conservation provides 4 additional constraints, thus reducing

the number of observables required to fully specify the N-particle �nal state to

3N � 3 � 4, which for a 3� body �nal state leaves only two observables.

For the three-body �nal state, a particularly convenient choice of observables

is the squared invariant mass of any two of the possible three two-body combi-

nations, say m
2

ab

4
and m

2
ac: This choice is motivated by the observation that

4 If p�
X

is the energy-momentum four-vector for particle X, then m2

ab = (p�a + p�
b
)2.

5



the decay width d� for the three-body decay D ! abc depends on the quantum

mechanical amplitude A according to:

d� =
jAj2

256 �3 M3
dm2

ab
dm2

ac
(2:2)

where M is the mass of the parent particle. Hence a constant amplitude will

manifest itself as a uniform scatterplot in m2

ab
and m2

ac, as shown in Fig. 2.2.

Departures from uniformity 
ag resonant substructure. So our preferred observ-

ables are the squared masses of the �nal state particles which we display on the

so-called Dalitz scatterplot.

2.2 Amplitude Formalism

We begin this section with an informal description of the phenomenology of

decay amplitudes by appealing to angular momentum conservation arguments.

Section 2.2.2 outlines the Zemach [9-10] formalism, which uses angular momen-

tum tensor operators to form decay amplitudes. We will use it in our analysis

of charm meson decay in Chapters 5 and 6. In the Appendix, we describe an

alternative analysis framework, the helicity formalism, which employs the rota-

tional invariance of the helicities of the daughter particles to construct decay

amplitudes. This formalism will enter our analysis as a systematic check on our

method.

2.2.1 An Informal Look

Figure 2.3 shows Dalitz plots for the D+ and D+
s decaying to the K+K��+

�nal state. The resonant structure is evident in each of these Dalitz plots and

it is especially clear in the plot for the decay D+
s ! K+K��+ where the plot is

strongly dominated by a band of events near m2

K+K�

� 1 GeV 2 due to the decay

chain D+
s ! ��+ ! (K+K�)�+: The band near m2

K��+
� 0:8 GeV 2

6



Figure 2.3. Dalitz scatterplots for the decays D+ and D+
s
to K+

K
�

�
+.

Figure 2.4 Illustration of nodal structure for Monte Carlo simulated Dalitz plots

for decays of the form D
+
! K

�0
K
+.
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is due to D+
s
! K

�

(892)0K+
! (K+K�)�+ decays. The depopulation in the

center of both the � andK
�

(892)0 bands is due to a node in the angular wave func-

tion describing the decay of the vector meson resonance to two pseudoscalars.
5

Consider the band due to ��+. Because the D+
s
has no spin, the � must be in a

j1; 0 > state in the � rest frame in which we quantize angular momentum along

the direction of the spinless �+. The subsequent decay distribution of the kaons

is thus jY 0
1
(�; �)j2 which has a node at � = 90o where � is the angle between the

K+ and the �+ viewed in the � rest frame. As one varies � from 0 ! 180o one

moves from the smallest, allowablem2

K��+
value to the largest, and therefore the

90o node in Y 0
1
will appear in the center of the � band. Possible higher spin-J

resonances will decay into two pseudoscalars according to jY 0
J
(�; �)j2 which in

general will have J angular nodes in � and will appear as J nodes on the Dalitz

plot. Figure 2.4 illustrates the nodal pattern in the Dalitz plots for simulated

D+ decays into several, pure spin� J resonances.

In addition to the readily apparent � and K
�

(892)0 bands, the remaining

dots may be due to decay via the three-body nonresonant channel or due to

some superposition of resonant channels. An important application of Dalitz

analysis is to determine the strength of a nonresonant component.

Comparison of the K
�

(892)0 bands of the two KK� Dalitz plots shown in

Figure 2.3 illustrates the importance of interference e�ects in three� body D

decay. The D+
s Dalitz plot exhibits symmetric intensity lobes on either side of

the Y 0
1

node while the D+ Dalitz plot's lower K+K� mass lobe is much more

intense than the upper mass lobe. This e�ect cannot be explained by either

acceptance or resolution as will be discussed below. The asymmetry of the two

lobes for the D+ can be explained by having the K�K+ amplitude interfere with

either a constant or very slowly varying amplitude
6

of relative strength a and

5 These nodal regions are called Zemach zeros.
6 In Chapter 5, we will argue that the `very slowly varying amplitude' is a broad scalar

K
�

0
(1430)0K+ decay amplitude. It is responsible for the interference with the K

�

(892)0K+

channel.

8



relative phase �:

A =
cos �KK

M2
r
�M2

K�
� i�Mr

+ a (cos � + i sin �) (2:3)

The K� amplitude is described by a Breit-Wigner form along with a factor of

cos �KK to represent the angle dependent amplitude described above (�KK is

the angle between the two kaons in the K� rest frame). The interference of these

two amplitudes will produce a contribution to the intensity function AA� of the

form:

2 a Re

�
(cos � + i sin �)�

cos �KK

m2
r
�m2

K�
� i�mr

�
=

2 a

 �
m
2
r �m

2

K�

�
cos �KK cos ��

m2
r
�m2

K�

�2
+ �2m2

r

+
�mr cos �KK sin ��
m2
r
�m2

K�

�2
+ �2m2

r

!
(2:4)

As one moves in the direction of increasing m
2

K+K�

mass along the K� band,

cos �KK goes from +1 to -1 and both terms of Eq. (2.4) will switch sign. Along

a line of constant m2

K+K�
mass, the �rst interference term which dominates for

Figure 2.5 A graphical representation of the signs of the interference terms in

the intensity function for real and imaginary phase di�erences overlayed with the

D
+ Dalitz boundary and a scale giving the cos�KK axis.

9



relatively real amplitudes (eg � = 0) switches sign as one moves from m2(K��+)

masses below the K� resonance to masses above the resonance; while the second

interference term which dominates for relatively imaginary amplitudes does not

change sign under this motion. The pattern for real and imaginary phase dif-

ferences is illustrated in Figure 2.5. The interference present in the D+ Dalitz

plot most resembles the pattern for a relatively imaginary amplitude, and since

the destructive interference of the upper lobe is nearly complete, both the con-

stant amplitude and Breit-Wigner K� amplitudes must have comparable local

intensity.

2.2.2 The Zemach Formalism

Unlike the helicity formalism described in the Appendix, the Zemach model

[9,10,11] has the pleasing feature that it naturally includes the momentum depen-

dence of the decay amplitude in an unambiguousmanner. In this section we detail

the Zemach amplitude for the two-step sequential decay processD ! rc! (ab)c.

Before describing the details, we motivate this parameterization by applying the

familiar Feynman rules, [pp. 117-151 in Ref. 2] to obtain the amplitude for decay

via an intermediate vector resonance.

Figure 2.7 is an example Feynman diagram of a particular decay, D !

��+ ! (K+K�)�+: According to the Feynman rules, the matrix element is

M = FD(q
2) (� +D)� � (Massive Propagator) � Fr(q

2)(K+ �K�)�; where

FD and Fr are the q2 dependent hadronic form factors which describe the non-

pointlike nature of the hadrons. The terms (�+D)� and (K+�K�)� are e�ective

hadron currents. For the case of a decay mediated by a vector meson resonance

we obtain [13, 14]

M = (pc + pD)
�
(�g�� + q�q�

m2

ab

)

q2 �m2
r

(pa � pb)
�

=
(m2

ac �m2
bc)�

(m2

D�m
2

c)(m
2

a�m
2

b)
m2

ab

m2
r �m2

ab
� i�mr

(2:5)

10



The numerator simpli�es to �4~cab � ~aab = �4j~cabj j~aabj cos �abca; where the 3-

momentum vectors are measured in the (ab) rest frame. The periodic function

cos �abca carves out the Zemach zeros in the resonance bands of the Dalitz plot,

and results in the cos2 � dependence of the intensity function discussed in Eq.

2.3.

φ

q

π

(π + D)µ

K
+

FD - K -+
K( )ν

K
-

2
o

D

µν

2
o 

(m ) 2- -i Γ/2

g q
νµ

q-

Fr

/m

Figure 2.7 Feynman diagram for the process D ! rc! (ab)c: In this example,

a = K+ , b = K�, c = �+ and r = �. The arrows represent 4-momenta of the

participating mesons. q is the 4-momentum of the exchanged meson r of spin J.

In this example, the resonance particle is a spin� 1 �.

The spin limitation of these rules is due to the fact the Feynman theory does

not address higher spin propagators. Below we describe the Zemach framework,

which will form the heart of our generalized amplitude formalism.

Within the Zemach framework we model the decay chain with a complex

amplitude consisting of a Breit-Wigner propagator for the intermediate resonance

r multiplied by a product of form factors and e�ective hadronic matrix elements

for each hadronic current. These current terms are constructed from the 3-

momenta of the particles. Following Zemach, [9] the amplitude for the double

decay is written

M [D! rc! (ab)c] = [y T J (~c) + z(~c � ~r)T J (~c)] : T J (~a) � BW (q) (2:6)

11



Here, y and z are the vertex form factors. T J is a tensor of rank J in 3-space:

T J

m1m2:::mJ
; mi = 1; 2; 3

It is a function of the indicated 3-momentum vectors. The `:' operator denotes

a tensor product (a summation over the indices mi): With the three-momenta

evaluated in the r rest frame, the term z(~c � ~r)T J (~c) vanishes. BW is the Breit-

Wigner propagator and is a function of the momentum transfer q between the D

and the �nal state psuedoscalar c. It takes the form

1

m2
0 �m2

ab
� i�m0

(2:7)

where m0 is the on-shell mass of the resonance r and � is its width. The term

m2
ab

is the squared invariant mass of the �nal state particles a and b. Applying

Zemach [10] equation 5.1 we obtain

M [D! rc! (ab)c] = y T J (~c) : T J (~a) � BW (q)

= y cJ j~cj
J j~ajJPJ (cos �

r

ac) � BW (q)
(2:8)

Here, �rac is the angle between a and c in the r rest frame. PJ is the familiar

Legendre polynomial. cJ is a normalization constant which by convention is set to

(�2)J : This result enables us to list the matrix elements for various intermediate

resonances, as shown in Table 2.1.
7

Table 2.1 Zemach AmplitudesM(abcjr) for D! rc! (ab)c

JP (r) Example M(abcjr) Notation

nonresonant - 1 NR

0+ f0(975) y � BW S(abcjr)

1� �(1020) y � �2j~Cj j ~Aj cos �R
AC

� BW P (abcjr)

2+ K�(1430) y � (�2j~Cj j ~Aj)2 1
2
(3 cos2 �R

AC
� 1) � BW D(abcjr)

3� K�(1780) y � (�2j~Cj j ~Aj)3 1
2
(5 cos3 �R

AC
� 3 cos �R

AC
) � BW F (abcjr)

7 Our model for the f0(980) resonance is described in Appendix C.
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Note that P (abcjr) contains the cos � dependence we expected from section 2.2.1.
8

It gives rise to the Zemach zeros in the Dalitz plot. These matrix elements contain

the traditional momentum dependent form factors and resonance decay widths

developed by Blatt and Weisskopf. [15] The form factor y above is a product of

the D meson form factor FD and the form factor for the resonance, Fr. They

take the forms [16] listed below:

Table 2.2 Blatt and Weiskopf Form Factors FX

Spin J of Decaying Particle Form Factor FX

0 1

1 1p
1+R2

X
P �2

2 1p
9+3R2

X
P �2+(R2

X
P �2)2

> 2 1

RX is the meson radius parameter and is taken to have the following values [16]:

Table 2.3 Blatt and Weiskopf Meson Radii RX

Parent charm meson D 5 GeV �1

Intermediate resonance particle R 1:5 GeV �1

The resonance width �(m2
ab
) is written

� = �0

 
j~Pabj
j~P �j

!2J+1
M0

Mab

F 2
r (P

�2)

F 2
r
(P �2

0 )
(2:9)

where ~P � � decay 3-momentum in the (ab) rest frame and J is the spin of the

resonance particle.

8 The term cos �KK in Eq. 2.3.
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The reader may be bothered by the fact the the Zemach amplitude, Eq. 2.8,

appears to be not Lorentz invariant, which clearly must hold for our amplitude

formalism to be useful. In Appendix D we address this issue and show that in

fact the Zemach amplitude is Lorentz invariant. The non-relativistic appearance

is simply an artifact of our choice to write the amplitude in the rest frame of the

intermediate resonance r.

2.3 Method of Amplitude Analysis

At this point we have developed the phenomonology for the matrix elements

for the nonleptonic decay of a charm meson via a single intermediate resonance.

In order to make the formalism complete we must allow interference between

these various decay channels. So the general amplitude for D ! rc! (ab)c is a

coherent superposition of N amplitudes of the form in Table 2.1.
9

It is written

A(D! rc! (ab)c) =

NX

i=1

aie
i�iM(abcjri) (2:10)

As a concrete example, visual inspection of the D+
s ! K+K��+ Dalitz plot,

Fig. 2.3, leads one to guess that this decay proceeds via the landmark channels

��+ and K
�

(892)0K+ as well as the three-body nonresonant mode -

A = aNR ei�NR + a� ei��P (K+K��+j�)

+ a
K

�

(892)0
e
i�
K
�

(892)0P (�+K�K+jK
�

(892)0)
(2:11)

We interpret the terms involving the intermediate resonances � and K
�

(892)0

as a superposition of the spectator Feynman diagrams in Figure 2.1. The goal

of the present work is to obtain the mixing parameters ai and �i by �tting our

hypothesized intensity function AA� to the observed distribution of �nal states

on the Dalitz plot.

9 We discuss our convention for the amplitude for decay of the antiparticle, D, in Sec. 5.2.
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It is important to note that although most D decay analyses thus far essen-

tially use a variant of Eq. (2.10), it is really only a phenomenological approxima-

tion to the strong interaction portions of the true decay amplitude. In particular,

all phase shifts other than kinematic phase shift evolution for ideal Breit-Wigner

resonances
10

are neglected, and the ai amplitude strengths are treated as con-

stants, although in principle they can certainly exhibit slow variations across the

Dalitz plot. Given large enough charm sample sizes, one would surely expect

that the naive form of Eq. (2.10) would fail to �t the data except in a qualitative

sense.

We note one of the ai and �i parameters in Eq. (2.10) is redundant. Because

the intensity or Dalitz population is unchanged by an overall phase factor, one

phase (usually taken to be the dominant contribution) is de�ned to be � =

0. Similarly, one of the ai's is actually determined through the normalization

condition required in a likelihood �t on the e�ciency corrected intensity (See

Section 5.2).

It has become customary to present information on the amplitude strengths

ai indirectly { by way of a \decay fraction". The decay fraction (fi) into a given

resonance is computed by taking the integral of an intensity which just includes

the amplitude contribution for the given mode divided by the integral of the

intensity with all amplitudes present.

fi =

R
dm2

ab
dm2

ac

�
ai e

i�i M(a b c jr)
�
�
�
ai e

i�i M(a b c jr)
�

R
dm2

ab
dm2

ac

�P
i
ai ei�i M(a b c jr)

�
�
�P

i
ai ei�i M(a b c jr)

� (2:12)

The decay fraction roughly represents the probability that the state decays via

a given resonant channel. Of course, unlike a conventional probability, one fre-

quently �nds that
P

i
fi 6= 1 owing to interference. One big advantage of quoting

10 By `kinematic phase shift evolution for ideal Breit-Wigner resonances,' we mean the mass-

squared dependent `intrinsic' phase of the Breit-Wigner function, tan�1 Im BW

Re BW
. In princi-

ple, the �tted phases �i could also be functions of the mass-squared observables, but in our

formulation they are constants to be found by our �tting procedure.
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decay fractions rather than amplitude coe�cients is that many phase, Breit-

Wigner, and spin factor conventions cancel out in the ratio, thus allowing for

easy comparison between di�erent analyses.

2.4 Closing Remarks

Other authors [6, 16, 17, 18, 19, 20] have accomplished fully coherent ampli-

tude analysis of charm meson decays by considering three-body K�� �nal states

of the D+ and D0. The E691 collaboration [21, 22] has presented semi-coherent

�ts to the KK� and ��� �nal states of the D+ and the Ds: This thesis describes

the �rst fully coherent analysis of D+ and Ds decays to KK� and ���:

It is worth pointing out that the measured decay fractions can be converted

into branching ratios if the absolute branching fraction for the respective �nal

states are known. These are computed by multiplying the branching fraction

by the �t fraction determined by the Dalitz plot �t, and then dividing by the

appropriate branching ratio (or Clebsch Gordon coe�cient) for the (K�) or (KK)

resonance where appropriate. By following this procedure, we can compare our

results to the predictions of various models of nonleptonic charm decay, including

that of Bauer, Stech and Wirbel. [4]

As we will see in the following chapters, our method allows one to determine

the relative strengths of the diagrams in Figure 2.1. Although the �t qualita-

tively reproduces many features of the data, there remain statistically signi�cant

discrepancies. Hence, our analysis can only be considered a �rst step toward

understanding nonleptonic decays of charm mesons.
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Chapter 3

The E687 Apparatus

The design goal of the Fermilab Wideband Photon Beam Laboratory is to at-

tain high charm photo-production rates while suppressing non-charm background

processes. We achieve these competing goals by combining a high energy photon

beam with outstanding vertexing and particle identi�cation capabilities. The

spectrometer has been descibed in detail elsewhere. [23, 24] Here we summarize

the major features of the detector. Figure 3.1 shows the overall layout of the

apparatus and Table 3.1 summarizes its dimensions.

3.1 Beamline

The high energy photon beam for the E687 experiment is obtained by

bremsstrahlung. The process starts at the Fermilab Tevatron, which operates

in cycles of about 60 seconds. It is �lled with 800 GeV protons which are ex-

tracted over a 20 second `spill.' About 3� 4� 1012 protons are delivered to the

E687 beamline during each spill. This proton beam is directed to a deuterium tar-

get (the primary production target) where it initiates a hadron shower. Sweeping

magnets downstream of this target remove charged particles, leaving only pho-

tons, neutrons and K
0's. This beam of neutral particles then interacts in a 50%

radiation length lead foil (the converter), which causes about half of the pho-

tons to convert into electron-positron pairs. The electrons are swept into a beam

transport system consisting of dipole and quadrupole magnets. The positrons

and neutral hadrons are absorbed in the neutral dump.

The electron beamline contains collimators which select electrons of mean

energy 350 GeV. The energy bite is large, �7:5% (hence the name Wideband)

to achieve high luminosity. Finally the electrons are directed to a 27% radiation

length lead foil (the radiator) where photons are created by bremsstrahlung.

The recoiling electron is swept away by magnets and the photon beam strikes

the beryllium experimental target.
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Figure 3.1 Side view of the E687 spectrometer.

Table 3.1 Spectrometer Layout

Device z (center) x Full Aperture y Full Aperture

TARGET -3.00 2.54 2.54

SSD1 4.56 2.48 3.50

SSD2 10.57 4.96 4.96

SSD3 16.59 4.96 4.96

SSD4 28.51 4.96 4.96

M1 US MIRROR 77.44 25.40 101.60

M1 220.95 76.20 127.00

M1 DS MIRROR 370.17 76.20 127.00

PWC 0 403.14 76.20 127.00

C1 519.75 101.60 152.40

PWC 1 644.58 152.40 228.60

C2 757.00 152.40 228.60

(continued)
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Table 3.1 Spectrometer Layout (continued)

PWC 2 879.18 152.40 228.60

OE 962.99 270.00 300.00

M2 US MIRROR 1091.43 76.20 127.00

M2 1238.11 76.20 127.00

M2 DS MIRROR 1383.52 76.20 127.00

OMX 1399.24 304.80 508.00

OMY 1416.94 304.80 508.00

PWC 3 1444.13 76.20 127.00

OMH 1474.56 304.80 487.68

OMV 1505.06 304.80 508.00

C3 1884.42 190.50 228.60

PWC 4 2285.88 152.40 228.60

H x V 2328.19 274.30 365.80

IE 2399.67 137.16 228.60

HC 2569.78 203.20 304.80

BGM 2445.00 25.40 22.86

CHC 2778.00 45.72 45.72

IM SHIELD 1 2895.66 231.14 330.20

IM1X 2973.48 203.20 304.80

IM1Y 62993.21 203.20 304.80

IM1V 3012.52 213.36 304.80

IM1H 3036.07 203.20 304.80

IM SHIELD 2 3079.66 231.14 330.20

(continued)
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Table 3.1 Spectrometer Layout (continued)

IM2X 3138.95 203.20 304.80

IM2Y 3158.09 203.20 304.80

IM2H 3178.25 203.20 304.80

3.2 Experimental Target and Microstrip Detector

The experimental target is a slab of beryllium 2.54 cm square and approxi-

mately 4cm long. This con�guration obtains a radiation length:hadronic interac-

tion length ratio of 11.5% : 10%. Given that this ratio > 1, the experiment can

run at high photon 
ux (about 3� 106
=sec) without saturating the spectrometer

with 
N! e+e� non-charm events.

Figure 3.2 Top and side views of the E687 silicon microstrip planes.

The microstrip detector is located about 5 cm downstream of the experi-

mental target. By measuring the trajectories of charged particles with very high

precision, one can exploit the lifetime of charm paticles (typically 1 cm decay

length for D mesons) to identify charm signals. Refering to Figure 3.2, the mi-

crostrip system consists of 12 planes arranged into 4 stations of 3 planes each. In

each station , one plane measures in the y-direction and two planes are tilted in
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opposite directions from the y-axis by 45� . Each plane is divided into an inner

high-resolution region and an outer lower-resolution region. The strips in the

planes of the most upstream station have 25� pitches in the inner region and 50�

pitches in the outer region. The remaining stations have 50� and 100� pitches,

respectively.

3.3 MWPC's and Magnets

Momentum measurement of charged particles is achieved by a system of

two dipole magnets integrated with 20 planes of multi-wire-proportional wire-

chambers (MWPC's). The �rst magnet, M1, bends charged particles in the y-

direction with a kick ( 0:3
R
Bd`) of 0:4 GeV=c: The second magnet, M2, bends

particles so that their trajectories return to their unde
ected positions toward

the downstream end of the apparatus. It has a kick of �0:835 GeV=c:

Table 3.2 PWC Speci�cations

# instrumented wires

Station Pitch X U V Y

P0 2mm 376 640 640 640

P1 3mm 512 832 832 768

P2 3mm 512 832 832 768

P3 2mm 376 640 640 640

P4 3mm 512 832 832 768

Located downstream of M1 and M2 as well as upstream of M2 are 20 planes

of MWPC's arranged in 5 stations. Each station contains 4 planes (also called

views). One view measures in the y-direction, another in x, and two others (u

and v) are tilted in opposite directions from the y view by 11�: Each view is a

set of readout wires separated from the other views by a cathode plane which is

also made of wires. Charged particles passing through these chambers ionize an

argon-ethane gas mixture while a high voltage between the readout and cathode
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planes ampli�es and collects the ions. These signals are further ampli�ed and

recorded by Time-to-Digital-Converters (TDC's).

The speci�cations of these chambers are summarized in Table 3.2.

3.4 �Cerenkov Particle Identi�cation

When charged particles traverse a dielectric with a velocity exceeding the

phase velocity of light in the material they emit �Cerenkov radiation. For a volume

containing a dielectric of index of refraction n = 1 + � (� << 1), the momentum

threshold for �Cerenkov radiation due to a particle of mass m obeys the (approx-

imate) relation pthreshold =
mp
2�
: So by carefully choosing n one can engineer the

momentum threshold for �Cerenkov radiation for a selected particle. E687 has

three threshold �Cerenkov counters which discriminate between electrons, pions,

kaons and protons.

The features of the �Cerenkov detectors are summarized in Table 3.3. Each

counter is segmented into cells, each cell consisting of mirrors (planar and focus-

ing) and a phototube for conversion of the �Cerenkov photons into electrons.

Table 3.3 Characteristics of the �Cerenkov Detectors

Photoelectron Thresholds (GeV)

Counter Gas cells yield (ave) � K p

C1 57% He/43% N2 90 3.1 8.4 23.3 44.3

C2 N2O 110 9.4 4.5 16.2 30.9

C3 He 100 9.0 17.0 61.0 116.2

The response of each counter can be described by the average number of pho-

toelectrons detected in a particular cell by a � = 1 particle when all the

�Cerenkov light is enclosed by the cell.
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3.5 Muon Identi�cation

Muons are essentially heavy electrons (m� = 0:105GeV=c2) which interact via

the weak and electromagnetic interactions. Since muons have absorption lengths

which are much longer than typical hadronic interaction lengths, in order to

detect muons it is necessary to �lter out the hadrons with large amounts of dense

material (i.e., steel shielding). By interleaving layers of shielding with layers of

scintillator (or proportional tubes) one can detect the unabsorbed chargedmuons.

The E687 spectrometer contains a section for identifying low angle muons

(the inner muon detector) produced at less than 40 mradians, and a section for

wide angle muons extending out to 125 mradians (the outer muon detector).

The inner muon counter is shielded by the inner electromagnetic calorimeter,

the hadronic calorimeter, cement blocks and steel. It contains three planes of

scintillator for triggering and four planes of proportional tubes (in x and y) for

localising the muon trajectory. M2 provides the shielding for the outer detector.

It has two layers of scintillator and separate x/y views of proportional tubes. The

muon system is not used for this analysis.

3.6 Calorimetry

Electromagnetic showers are initiated by the electromagnetic interactions of

electrons, positrons and photons. They are dominated by bremsstrahlung of

e�=e+ followed by conversion of the photons via 
N! e+e�: Calorimeters work

by absorbing the incident energy of a particle and converting it into recordable

signals. EM showers have the characteristics that they are completely described

by Quantum Electrodynamics and all of their energy is deposited as ionization

energy loss of electrons. So by installing alternating layers of steel and scintillator

one can e�ect EM showers and detect the subsequent ionization energy loss. On

the other hand, hadronic showers are much more complicated, involve the entire

spectrum of hadrons, and are not well understood. Basically, hadron showers are

detected in a fashion similar to EM shower detectors with much more absorber

material (i.e., steel) being used.
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The E687 spectrometer has two electromagnetic shower detectors. The inner

electromagnetic calorimeter (IE) is located immediately upstream of the hadron

calorimeter and provides coverage for electrons and photons produced up to about

26 mrad. The outer electromagnetic calorimeter (OE) is located just upstream of

M2 and samples electromagnetic interactions up to about 150 mrad. Each counter

consists of alternating layers of lead and scintillator. The electromagnetic shower

detectors are not used for the analysis in this thesis.

The hadron calorimeter (HC) is immediately downstream of the IE and covers

the region from 5 mrad to approximately 30 mrad. It uses steel as the absorber

and argon-ethane proportional tubes as the ionization energy loss sampler. The

measured resolution is �E=E ' 1:33=
p
E: It is primarily used as a part of the

trigger, which is described in the next section.

3.7 Event Trigger

Most of the components of the E687 spectrometer described so far are essen-

tial for o�-line analysis of the data. As stated in the introduction of this chapter,

an essential function of the on-line hardware and software is to identify charm

events and suppress the background. It can be shown that for high energy photo-

production, the rate for hadronic interactions is about 1/500 of the rate for pair

production. The purpose of the trigger is to e�ciently identify these hadronic

interactions and initiate writing the state of the detector (i.e., ADC values, scalar

counts, etc) to magnetic tape for subsequent o�-line analysis. Generally, e+=e�

pairs are produced with little transverse momentum so they populate a region

approximately the size of the beam. Conversely, hadronically produced particles

typically have wide angle trajectories and also deposit non-negligible energy in

the hadron calorimeter. So the trigger hadware is arranged to detect wide angle

charged hadronic particles.

The trigger is organized in two levels : a fast �rst level (master gate or MG)

and a slower second level trigger. The master gate is responsible for gating the

data acquisition devices so that wire chambers may be read out, latches set,
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analog to digital converters are gated, etc. The MG also inhibits subsequent

triggers while the second level trigger is evaluated. It applies more stringent

requirements on the event. If it is satis�ed, the state of the spectrometer is

stored on magnetic tape, otherwise the readout of the event is stopped, the data

aquisition is reset and becomes available for the next MG.

3.7.1 First Level Trigger

The �rst level is derived from several scintillators. A schematic diagram of

the trigger counters in the region of the experimental target is shown in Figure

3.3. TR1 lies between the target and the microstrips. It ensures there are charged

particles coming from the target. TR2 lies downstream of the microstrips and

requires that the particles that �red TR1 also go through the microstrips.

Figure 3.3 Schematic Diagram of the trigger scintillation counters in the region

of the experimental target.

This arrangement of the TR1 and TR2 counters also facilitates noise reduction

in the TR2 signal. By requiring a time coincidence (i.e., TR1 � TR2) we veto

hits in TR2 due to Compton scattering of soft photons. On the other hand, the

Compton scattered electrons would not have su�cient energy to make it thought

the microstrips to �re TR2:

We ran with several combinations of veto requirements. The large TM coun-

ters, located upstream of the target, are intended to veto events with a muon

coming from interactions in the primary production target. There are also two
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small counters, A0 and A1, in the photon beam to reject events with hadrons in

the beam. The TR counters and the vetoes are combined into a signal called T

given by the following logical expression -

T = A0 � TR1 � TR2 � (TM1 + TM2)

To require wide angle tracks in the event we use a scintillator hodoscope

called H�V. This array of a layer of horizontal paddles crossed with a layer of

vertical paddles lies immediately downstream of M2, just after the last PWC

station. A vertical gap (of about 8cm) allows pairs from conversion of beam

photons to pass. A logic module computes if the pattern of hits is consistent

with at least one particle (H�V1) or more than one (H�V2). Another single

layer of scintillator mounted on the upstream end of of the outer electromagnetic

calorimeter is called OH. The full requirement of the MG is then

T � (H �V2 + H�V1 �OH)

although some data was restricted to the H�V2 component.

3.7.2 Second Level Trigger

When the second level trigger is evaluated, the modules reading out the

PWC system have produced a pulse proportional to the number of hits in each

plane. The outputs from all planes are combined and a minimum requirement

is made in a logic module. Most of the data required evidence for at least three

tracks outside of the pair region. Some data was taken with looser multiplicity

requirements.

The most important element in the second level trigger is the HC energy

requirement which provides additional rejection against e
+
e
� pair events. The

charge output of the HC is summed to provide an estimate of the hadronic energy

and a minimum deposition is required. The requirement corresponded to roughly

35 GeV in the 1988 run and 40-50 GeV in the 1990 and 1991 runs.
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When a MG �res, it holds o� further MG's for approximately 100ns while

the second level trigger is decided. If the second level trigger is satis�ed, further

MG's are are again held o� until the detector is read out. The combination of

these processes gives a typical deadtime of about 25%.

3.8 Coordinate Systems

There are two main coordinate systems employed in analysis. Both have

the positive z axis oriented along the beam direction, positive x pointing to the

west, and positive y vertically upward. The �rst system, called the M2 system,

has the origin at the bend center of M2. The second system, called granite block

coordinates, has its origin at the upstream edge of the granite block that supports

the microstrips; the o�set between the two is � 1240cm. M2 coordinates are used

for analysis of MWPC data and lepton identi�cation while the granite block

coordinates are used for analysis of SSD based information such as vertexing.

3.9 Run History

E687 took data during three separate periods which are called the '88, '90,

and '91 runs, referring to the year they took place. The '88 run took � 60 million

hadronic triggers while the '90 and '91 runs each took about 250 million hadronic

triggers.

During part of the 1990 run, there were timing problems in the muon pro-

portional tube readout which caused the muon identi�cation to be ine�cient.

There were also periods where the muon system was moved out of the detector

to accommodate tests of the downstream experiment. These periods of no muon

identi�cation comprised about 40% of the 1990 luminosity and are removed for

analyses involving muons.
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Chapter 4

Event Reconstruction, Monte Carlo and Data Skims

This chapter describes how the low level information stored during the E687

data taking is assembled into high level information which is subsequently run

through our physics analysis software. We devote special attention to vertex

reconstruction and �Cerenkov particle identi�cation. Next the Monte Carlo event

generation and detector simulation software are detailed, with emphasis on the

parameterization of the hadronic energy sum trigger. We close this chapter by

describing the process of data skimming, where we reduce the approximately 500

million trigger accepted events into smaller and more managable (and physics-

rich!) datasets.

4.1 Event Reconstruction

Event reconstruction is the process of using the raw data collected by the

spectrometer (hits in the wire chambers and microstrips, photomultiplier tube

ADC counts in the trigger arrays, �Cerenkov counters, hadronic calorimeter, etc.)

to construct the event topology (track three momentum vectors, particle iden-

ti�cation information and total event energy). The key steps in this process

are obtaining the microstrip and PWC track parameters, linking PWC and mi-

crostrip tracks, momentum measurement, �Cerenkov particle identi�cation and

constructing the vertex topology of the event.

4.1.1 Microstrip Track Reconstruction

Recall (Sec. 3.2) the microstrip detector consists of twelve planes arranged

into four stations of three planes each. Reconstruction of the microstrip tracks

begins by �nding projections of particle trajectories in the three views. A track

must have hits in at least three of the four planes in each view. A linear least

squares �t is then performed to solve for the particle trajectory in Cartesian three-

dimensional space. The parameters of the �t are the slope and intercept of the
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track in the granite block coordinate system. Each track is required to pass a loose

�2 cut. In this �t hits are shared between tracks and are subsequently arbitrated

according to their �2 values. Hits not yet associated with a reconstructed track

are used to search for wide-angle or highly multiple Coulomb scattered tracks.

These tracks are required to have at least six hits.

The transverse resolution of tracks which consist entirely of hits in the high

resolution region of the microstrips (extrapolated to the center of the experimen-

tal target) is determined to be:

�x = 11�m

s
1 +

�
17:5GeV

p

�2

�y = 7:7�m

s
1 +

�
25GeV

p

�2

(4:1):

The second term in the square root is due to multiple Coulomb scattering in the

experimental target, the TR1 counter and the microstrip system.

4.1.2 PWC Track Reconstruction

The reconstruction of tracks in the PWC system is iterative. In the �rst iter-

ation, simpli�cations about the magnetic �eld (i.e., sudden bend approximation)

are used to estimate the track parameters in three-dimensional space. This step

also performs hit arbitration for shared hits. In later iterations, the e�ects due to

magnetic fringe �elds, ~B components in the y and z directions and the position

dependence of the ~B �eld are treated as higher order corrections. We limit the

following description to the initial �t.

Like the microstrip tracks, the PWC tracking begins with �nding projections

in the four views (X, Y U and V ) using the PWC hit information. All tracks

are required to have hits in the �rst chamber, P0, and cannot have more than

four missing hits among the chambers. Furthermore, tracks cannot have more

than two missing hits within any single chamber. Projections are combined into
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three-dimensional trajectories using a linear least squares �t to the hits in the

PWC planes. This �t solves for the x and y intercepts and slopes of the tracks at

the center of M2. These �t parameters de�ne the three-dimensional Cartesian

trajectory of the track witin the PWC system. In addition, the change in slope

in the Y view (bend angle) in M2 is calculated for �ve-chamber tracks. A �2 cut

is applied to �lter out poor �ts.

4.1.3 Linking Microstrip and PWC Tracks

The linking process corresponds microstrip track segments to PWC track seg-

ments, thereby making it possible to momentum analyze microstrip tracks which

pass through M1. It also makes it possible to obtain high quality momentum,

slope, and intercept information near the experimental target. Linking is accom-

plished by comparing the extrapolated positions of SSD and PWC tracks at the

center of M1.

4.1.4 Momentum Analysis of Tracks

The momentum of charged tracks is determined by their bend (as measured

by the MWPC's and SSD's) in the magnetic �elds of M1 and/or M2. The

algorithm applies magnetic �eld corrections. The momentum resolution obtained

with the algorithm is,

�p

p
= 3:4%

� p

100 GeV

�s
1 +

�
17 GeV

p

�
2

for stubs, and for �ve-chamber tracks it is

�p

p
= 1:4%

� p

100 GeV

�s
1 +

�
23 GeV

p

�2
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4.1.5 �Cerenkov Particle Identi�cation

Recalling Table 3.3, charged particles have di�erent threshold momenta for

�Cerenkov radiation. So for each track traversing a �Cerenkov counter, the particle

identi�cation software calculates the anticipated light yield in the counters based

on a particular particle hypothesis. This predicted yield is also a function of

the momentum returned from the momentum analysis. Below we describe the

particle identi�cation algorithm.

The analysis begins by setting up an on/o� code for every cell in each detec-

tor. This is determined by the presence or absence of a phototube pulse height

above an ADC cuto�. This cuto� was chosen to exclude the pedestal and cor-

responds to a few picocoulombs of charge deposited in the ADC. The algorithm

then considers every track in each counter individually. First the principal cell

that a particular track passed through is determined. Using the momentum of

the track, the detector threshold, and a particle hypothesis, the amount of light

expected in the principal and adjacent cells is calculated. A track is called on by

the algorithm when one or more cells is on and some light was expected, and o�

when a reasonable amount of light was expected and the cells are o�. If neither

condition exists, the track is given a confused status.

Once the �Cerenkov responses are determined for a track ( on, o�, or confused),

they are compared to the track momentum and the detector thresholds given

in Table 3.3. To the extent the three counters agree, the "on"/"o�" pattern

for each track is combined with the momentum information to place the track

into a de�nite or ambiguous identi�cation category. The �Cerenkov response is

summarized by a status word whose bits are set to \1" if the track is consistent

with a particle hypothesis or \0" if they are inconsistent. Bit 0 represents the

consistency with the electron hypothesis, bit 1 the pion hypothesis, bits 2 and

3 the kaon and proton hypotheses, respectively. A status of 2 represents the

track is pion de�nite whereas status 7 represents the track is electron-pion-kaon

ambiguous. For example, consider the identi�cation of a �ve-chamber track whose
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momentum is measured as 32 GeV=c: It radiates �Cerenkov light in only C1 and

C2. Comparison with Table 3.3 shows this pattern is consistent with the K�

hypothesis. The �Cerenkov status word ISTATP is set to the value 4. The

meanings of the ISTATP values are listed in Tab. 4.1 below.

Table 4.1 �Cerenkov Identi�cations

ISTATP Meaning

0 inconsistent information

1 e�

2 ��

3 e�; �� ambiguous

4 K�

5 e�;K� ambiguous

6 ��;K� ambiguous

7 e�; ��;K� ambiguous

8 p�

9 e�; p� ambiguous

10 ��; p� ambiguous

11 e�; ��; p� ambiguous

12 K�; p� ambiguous

13 e�;K�; p� ambiguous

14 ��;K�; p� ambiguous

15 e�; ��;K�; p� ambiguous

These ISTATP values are the expected identi�cation codes for well isolated (i.e.

unconfused) tracks in the absence of noise and ine�ciencies.

Typical cuts employed in the analysis of reconstructed events are listed in

Table 4.2.
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Table 4.2 Typical �Cerenkov Cuts Applied to Data

Useful for

Name Identifying Description

NOT HEAVY �� NOT e de�nite, NOT K de�nite

NOT p de�nite, NOT K=p ambiguous;

ISTATP 6= 1; 4; 8; 12

Kaon de�nite K� ISTATP = 4

K;KP K� ISTATP = 4 OR 12

KP7 K� ISTATP = 12

AND j~P j < 61:8 GeV

OR

ISTATP = 7 AND

j~P j > 61:8 GeV

The performance of the �Cerenkov system has been studied using topologically

identi�ed �! K+K� decays. The invariant mass of this resonance can be recon-

structed as a clean peak without relying on the �Cerenkov particle identi�cation.

The �Cerenkov system's ability to identify kaons can be evaluated by seeing how

often it obtains the correct identi�cation for the daughter kaons. Speci�cally,

we start with an unbiased sample of fully reconstructed events and reconstruct

pairs of oppositely charged tracks as K+K�. We require the pair verticize with

a con�dence level of greater than 1%. In addition, we require one of the tracks

be �Cerenkov identi�ed as kaon de�nite (ISTATP = 4). In our study we place

various identi�cation requirements on the remaining member of the di-kaon pair.

We bin the invariant mass to obtain Fig. 4.1 shown below. We use the sidebands

indicated on this histogram as an estimate of the distribution of background

events under the signal peak. By counting the events in the central signal region
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and subtracting the count of events in the sidebands we obtain an estimate of

the true di-kaon events in the signal region. The kaon identi�cation e�ciency of

various kaon selections is listed in Table 4.3. For, example, the e�ciency of the

KP7 cut is de�ned as

�KP7 =
yield of sideband subtracted events passing KP7 cut

yield of sideband subtracted events with no ISTATP cut

where, recall that both the numerator and denominator have the cut that at least

one member of the di-kaon pair is kaon de�nite. This kaon \e�ciency" re
ects

both the �Cerenkov system performance as well as the momentum spectrum for

observed �! K+K� daughters.

Figure 4.1 Invariant mass of the topologically reconstructed K+K� sample for

determining kaon �Cerenkov identi�cation e�ciency. Solid vertical lines indicate

the signal region, dashed vertical lines delimit the sidebands.

Table 4.3a Kaon Detection E�ciency for

3-Chamber Tracks

K� �CerenkovCut 1990 Run 1991 Run

KP7 0:371� 0:088 0:433� 0:088

K;KP 0:747� 0:139 0:712� 0:126

Kaon De�nite 0:374� 0:079 0:279� 0:064
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Table 4.3b Kaon Detection E�ciency for

5-Chamber Tracks

K� �CerenkovCut 1990 Run 1991 Run

KP7 0:453� 0:044 0:457� 0:034

K;KP 0:689� 0:060 0:665� 0:045

Kaon De�nite 0:238� 0:027 0:210� 0:019

Recent studies [25] conclude the ine�ciencies are reasonably reproduced by the

Monte Carlo detector simulation - eg post hoc �Cerenkov corrections are not nec-

essary.

4.1.6 Vertex Reconstruction

E687 exploits the three-dimensional separation between the charm produc-

tion point (primary vertex) and the charm decay point (secondary vertex) to

separate charm signals from noncharm background. Two algorithms are in use:

the candidate driven algorithm and the stand alone algorithm. We presently

describe these two methods.

4.1.6.1 Candidate Driven Vertex Reconstruction Algorithm

Consider the decay process D+s ! K+K��+. The decay daughters' momen-

tum vectors are reconstructed by the microstrip and PWC system. The vertexing

software requires that the daughter PWC tracks be linked to microstrip tracks.

Candidate daughter tracks are intercepted to form the decay vertex in three-

dimensional space. The algorithm calculates a �2 by summing over the tracks in

the vertex �t according to

�2 =

NX
i=1

�
xv � (xi + x0izv)

�x;i

�2
+

�
yv � (yi + y0izv)

�y;i

�2
(4:4)

and returns the con�dence level (DCL) of this �t to the decay vertex. The

track parameters (xi; x
0

i; yi; y
0

i) are obtained from the microstrip or PWC track
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reconstruction routines, whereas the vertex �t parameters are (xv; yv; zv). The

errors are due to extrapolating the track to the �tted vertex. The Cartesian

sum of the momentum vectors emanating from the decay vertex becomes the

candidate parent track's momentum vector. We construct the associated track

parameters for this so-called `seed' track (xs; x
0

s; ys; y
0

s) This step di�erentiates the

candidate driven vertex reconstruction algorithm from the stand-alone algorithm

to be described in the next section. The seed track is assumed to go through both

the primary and secondary vertices. It is intercepted with leftover tracks not in

the secondary vertex in order to form the primary vertex. These leftover tracks

are intercepted with the parent track and assigned to the primary vertex as long

as the con�dence level of the resulting vertex (PCL) exceeds 1%. The candidate

vertex algorithm calculates the signed three-dimensional separation between the

vertices (`) as well as its error (�`). One of the most important cuts in E687 data

is the statistical signi�cance of detachment between the primary and secondary

vertices, `=�, which is essentially a lifetime cut.

Another important feature of the algorithm is the ability to form isolation

cuts to suppress backgrounds. The con�dence level that a charm daughter track

is in the primary vertex (CL1, also called `point back isolation con�dence level')

is often required to be below 0.15. CL1 e�ectively suppresses non-charmed back-

grounds. It usually depends critically on the multiplicity of the �nal state being

considered, since more �nal state tracks facilitate formation of a good vertex. It is

calculated by looping over the tracks in the secondary vertex. For each secondary

track we re-verticize the primary vertex using the original primary and a given

secondary track. The value of CL1 is the highest con�dence level resulting from

this process.
1

The con�dence level that other tracks (excluding the secondary

and primary tracks) is near the secondary (CL2, also called `secondary

1 The background process D�0
! D

0
�
+
! (K+

K
�)�+ is e�ectively removed by the point

back isolation con�dence level cut. It can be mistaken for the process D0
! K

�

�
+ be-

cause the low momentum pion points back to the primary vertex. By requiring the charm
daughters miss the primary vertex, one can reject this contamination.
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point back isolation

Charm daughters miss

primary vertex

Recoil daughters miss

secondary isolation

secondary vertex

Figure 4.2 Schematic representation of isolation cuts CL1 (top) and CL2 (bot-

tom).

vertex isolation con�dence level') is usually required to be less than 0.0001. CL2

suppresses backgrounds from higher multiplicity charm �nal states which "feed

down" into the state being considered. For example, the secondary vertex iso-

lation con�dence level cut removes contamination of candidate D+ ! K
�

�
+
�
+

events with D0
! K

�

�
+
�
+
�
� decays. The operation of these isolation cuts is

schematically illustrated in Fig. 4.2. The evolution of the signal in a sample

37



Figure 4.3 Invariant mass histograms for D+ ! K��+�+ candidates with

DCL > 0:01 and the indicated vertex separation cuts. Harder signi�cance of

detachment cuts isolate the charm signal and reject non-charm background. The

bump at 2:01GeV=c2 is due to D�+
! D0�+ ! (K��+)�+ decays.

38



Figure 4.4 Invariant mass histograms for D+ ! K��+�+ candidates with

DCL > 0:01, `=� > 10 and the indicated isolation cuts. Note the D�0 peak (from

D�+
! D0�+ ! (K��+)�+ decay) at 2:01 GeV=c2 on the CL2 < 0:0001 sample

disappears once the CL1 < 0:10 cut is applied. This phenomenon illustrates the

\pointback isolation" behavior of the CL1 cut.

39



of D+ ! K��+�+ decays as harder and harder cuts on `=�, CL1 and CL2 are

applied is demonstrated in Figs. 4.3 and 4.4.

4.1.6.2 Stand-Alone Vertex Reconstruction Algorithm

This alternative vertexing algorithm searches for vertices without reference to

a particular charm candidate track. It iteratively intersects tracks to obtain the

entire vertex topology of the event. Linkage of the tracks is not a requirement

- it only uses the microstrip information. It requires the secondary track be

downstream of the primary.

4.2 Monte Carlo

A typical high energy physics measurement involves counting the number of

detected particles of a particular type. This process is made considerably more

challenging by the presence of ine�ciencies in equipment and techniques, causing

the number of detected particles to not equal the number of particles created in

a reaction. Among the causes of these detection ine�ciencies are: the limited

geometrical acceptance of the spectrometer; de�ciencies in the reconstruction and

analysis software; tracking errors due to multiple Coulomb scattering; hadronic

absorption; electronic noise in the spectrometer hardware. In order to assess

the e�ects these processes have on our analysis, it is necessary to model the

spectrometer's performance. Monte Carlo software accomplishes this task in two

steps: particle energy-momentum four-vectors are generated according to known

(and postulated) physical processes (i.e., the photon-gluon fusion mechanism);

these particles (and their decay daughters) are propagated through a simulation

of the E687 hardware. A brief description of these steps follows below.

The E687 Monte Carlo program employs the LUND/Pythia [26] software

package to generate charm particles according to the photon-gluon fusion mech-

anism described in Chap. 1. One member of the cc pair is selected to hadronize

into a user speci�ed charm hadron (say a D+ or a D+
s
) while the remaining
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quark is allowed to hadronize according to the known branching ratios [28]. The

hadronization model employed by LUND/Pythia is illustrated in Fig. 4.5 below.

g

N

c

γ

Q

(3)

q (3)(3)

-
(3)-c

-

Figure 4.5 Illustration of the LUND/Pythia string framentation model. Our

Monte Carlo particle generator uses this model to hadronize the photoproduced

charm� charm pair. In order to conserve color, the nucleon resolves itself into

a color quark (q) and anticolor diquark (Q). The charm quark must dress in the

same string as the diquark, leaving the anticharm to dress in a string with the

quark. [27]

The generated charm particles are propagated through the spectrometer sim-

ulation software and allowed to decay according to a user speci�ed matrix ele-

ment, usually phase space (i.e., nonresonant). An important application of the

amplitude analysis described in Chapters 5 and 6 is to decay the charm hadrons

according to the physical matrix elements. The device simulation and particle

generation routines mimic e
+
e
� showers, hadronic absorption, eletronic ine�-

ciencies in the MWPC system and multiple Coulomb scattering. The simulation

also models the time dependent changes in spectrometer performance. An ex-

ample of this e�ect was evidenced in Table 4.3, where it is apparent there is a

di�erence in the 1990 performance of the �Cerenkov system and its performance in

1991. A standard raw data tape is produced which is subsequently run through
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the standard event reconstruction and analysis software.

An important component of the device simulation is the hadronic energy sum

trigger which, as described in Sect. 3.7 is an essential component of the second

level trigger and hence is crucial for determining the overall counting e�ciency.

Because the detector simulation software does not model hadronic energy re-

sponse using hadronic shower simulations, we parameterize the response of the

hadronic energy sum trigger from the data in terms of the total \charged" mo-

mentum striking the calorimeter face outside of a central hole (the CHC region).

The tracks which enter this momentum sum (also called our e�ective energy

sum),
Pquality tracks

j~Ptrackj, must satisfy the following requirements:

a) Five-chamber linked tracks: the 5-chamber cut selects tracks which travel

through P4 and hence have a high probability of traversing the hadron

calorimeter. The linking requirement permits us to require the track is

related to a high quality hadron production vertex.

b) Not photon beam related 
 ! e+e� photon conversion electron. Because

these e+e� pairs are created with low transverse momentum, they travel at

very shallow angles with respect to the beam. So this cut merely removes

low angle tracks.

c) The reconstructed track must be consistent with coming from a hadronic

vertex reconstructed by the stand-alone vertex algorithm. This cut requires

jXvertex �Xtrackj

�Xtrack

� 3

Xtrack = X coordinate of the track projection in the plane de�ned by the Z

coordinate where the vertex is reconstructed (with position ~rvertex). �Xtrack

is the error in the track projection. Association with a vertex reconstructed

by the microstrip vertexer rejects spurious PWC tracks as well as tracks

due to decay daughters from long-lived vees (i.e., K0
s ! �+��).

42



d) The track cannot have embedded pairs. An embedded e
+
e
� pair is pro-

duced upstream of the experimental target (in the radiator) and travels

through it. Hence they become `embedded' in a legitimate multihadronic

event and can confuse the microstrip vertexing algorithm.

e) The track must come from a well determined production vertex which is

obtained from the intersection of three or more tracks. Recall (Sec. 4.1.6)

that the primary vertex is obtained by intersecting tracks as long as they

are consistent with coming from the same vertex.

We chose these cuts because only a very small, prescaled portion of our data

is suitable for measuring hadronic energy busline response.
2

Furthermore, this

heavily prescaled unbiased sample is very seriously contaminated by e
+
e
� pairs.

We require topological cuts be satis�ed in order to

(i) eliminate Bethe-Heitler events;

(ii) avoid including the momentum from e
+
e
� daughters in the momentum sum

(since they presumably leave very little energy in the calorimeter).

Finally there is the issue of how to deal with neutral hadrons (K0
0

L
s and

neutrons) in the simulated energy sum. We don't detect these hadrons in the

measured response, but we could in principle include them in the simulated sum

for Monte Carlo events. We simulate under the assumption that K0
0

L
s and neu-

trons are rarely produced in unbiased photoproduced hadronic events but are

more prevalent in charm events. For this reason we include them in the simu-

lated energy sum.

The resulting plot is shown in Fig. 4.6. In this plot the status of the hadronic

trigger (1 or 0) is histogrammed in bins of the track energy sum described above.

2 Recall HC busline response is part of our second level trigger.
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Figure 4.6 Hadronic energy trigger e�ciency parameterization.

In the Monte Carlo simulation, the energy of tracks which pass through the

hadronic calorimeter is summed and the state of the hadronic energy trigger is

determined by Monte Carlo rejection with respect to the curve in Fig. 4.6.

By comparing the number of generated and reconstructed events in a Monte

Carlo sample, it is possible to assess the time-averaged e�ects of the ine�ciencies

in event triggering and reconstruction.

4.3 Data Skims

The entire 1990-1991 raw E687 data sample consists of approximately 4000

8mm magnetic data storage tapes. Each tape is run through the event recon-

struction software described in Section 4.1. E687 used a `farm' of IBM RISC

and Silicon Graphics workstations to accomplish this task. Because high quality

charm events are rare in E687 data, it would be very ine�cient to run all 4000

reconstructed tapes through the high level analysis software. For this reason, the

reconstructed data is �rst run through skimming routines to select events (and

store on tape) which are likely to contain charm and therefore reduce the number

of data tapes to analyze.
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4.3.1 All-Charged Skim

The EZDEE skim begins by looping over all combinations of charged tracks

with charges and �Cerenkov particle identi�cation consistent with coming from

known (up to multiplicity 6) decays of the D0, D
+ and D+

s
. Those in combina-

tions over a large invariant mass range (typically Mass > 1:6GeV=c2) are then run

through the candidate driven vertex �nder. Charm candidates satisfying mini-

mal detachment and vertex quality cuts are then written to tape. This skim is

essentially 100% e�cient at selecting reconstructable charm hadrons which decay

into an all-charged �nal state through the candidate driven vertex technique.

4.3.2 Global Vertex Skim

The Global Vertex skim is somewhat less e�cient but puts no reliance on a

speci�c exclusive �nal state topology. It is independent of particle identi�cation.

It intersects pairs of tracks to form pair vertices, and demands that at least two

pair vertices are separated by 4�. It also requires the con�dence level of these

two vertices exceeds 0.01.
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Chapter 5

The D+;D+
s
! K+K��+ Dalitz Plots

In this chapter we analyze the decayD+;D+
s
! K+K��+ (and charge conju-

gate). We will show that the K+K� spectrum is dominated by the intermediate

� resonance and K��+ spectrum is dominated by the K
�

(892)0 resonance. Dra-

matic di�erences will be found between theD+ and theD+
s
involving the mixtures

of participating intermediate decay channels and their relative strengths.

The chapter begins with a description of the cuts employed to bring out the

signal. Background sources are discussed in detail. We continue this chapter by

applying the phenomenology of Chap. 2 to the analysis of the amplitude for the

decays D+;D+
s
! K+K��+. Our checks for systematic e�ects are described.

The quality of the �t is discussed - we will �nd that although we believe our �t is

technically correct, the descrepancies between the �t and the data indicate that

weaknesses of our model. Finally, we use our results on the D+ amplitude to

extract branching fractions.

5.1 The D+;D+
s
! K+K��+ Signal

Starting with the EZDEE skim tapes (Sec. 4.3.1), we search for three-body

�nal states where two tracks (the kaon candidates) are �Cerenkov identi�ed as kaon

or kaon/proton consistent (ISTATP = 4 or 12) and the remaining track (the

pion candidate) passes the .NOT. HEAVY cut (ISTATP 6= 1; 4; 8; 12). These

tracks are combined to form the secondary vertex which is required to have a

con�dence level (DCL) greater than 1%. The secondary must be separated from

the primary by at least eight standard deviations (`=� > 8). We also require the

secondary be well isolated from the primary by requiring the candidateK+K��+

tracks form a vertex with the tracks in the primary with a con�dence level less

than 20% (CL1). Isolation is improved by rejecting combinations where leftover

tracks (i.e., tracks not in the secondary and primary) form a vertex with the

secondary vertex with a con�dence level (CL2) greater than 0:1%. Because the
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raw data was collected with di�erent second-level trigger requirements, we remove

events where the hadronic trigger is not satis�ed.

The above cuts (the baseline cuts) e�ectively remove non-charm background

(background due to track reconstruction errors, errors in pattern recognition in

the microstrips, etc.). We studied two sources of charm background: D+ !

K
�
�
+
�
+ and D

�+ ! D
0
�
+ ! (K+

K
�)�+: Removing these backgrounds is

discussed in detail below in Sections 5.1.1 and 5.1.2. After �ltering out these

background signals we obtain the sample characterized in Table 5.1, the so-called

full dataset. This sample is used for the analysis described in this chapter. The

mass histogram is shown in Figure 5.1 below. The �gure also shows the so-called

airgap sample, which we collected in order to study background systematics.

These K+
K
�
�
+ candidates are required to verticize in the space downstream of

the experimental target and upstream of the next detector component, the TR1

veto counter (see Fig. 3.3). To accomplish this cut we de�ne the normalized

displacement of the decay vertex from the target and the TR1 counter, Znorm
secondary

and Znorm
TR1 :

Z
norm
secondary =

Zsecondary vertex � Ztarg

�(Zsecondary vertex)
(5:1)

Z
norm
TR1 =

Zsecondary vertex � ZTR1

�(Zsecondary vertex)
(5:2)

For the airgap sample we require Znorm
secondary > 3 and Znorm

TR1 < �3 This cut sharply

reduces charmbackground due to hadronic re-interactions in the beryllium target.

The statistics of the airgap sample are listed in Table 5.2 below. Superimposed

on the histogram is a Gaussian + linear polynomial �t, G + P: The signal

region is de�ned as �2� about the reconstructed charm meson mass.
1
In order

to estimate the background distribution we also de�ne sideband regions and

assume the distribution of events in the sidebands is the same as the distribution

of background events in the signal region. In Section 5.2.1 we describe in detail

1 Here, � represents the �tted width of the mass histogram (the three-body mass resolution).
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how we use the sidebands to characterize the background events.

Table 5.1 Full Dataset Sample Statistics

Parameter D+ D+
s

Fitted Yield 922� 38 725� 36

Mass (GeV=c2) 1:869� :0004 1:968� :0005

Width � (GeV=c2) :0079� :00034 :0091� :00047

Signal Fraction F0 :745� :0305 :710� :0339

Overall E�ciency (%) 3:81� :0180 1:75� :013

Table 5.2 Airgap Sample Statistics

Parameter D+ Ds

Fitted Yield 351 � 20 250 � 18

Mass (GeV/c2) 1:8695� :0004 1:9671� :0007

Width � (GeV/c2) :0070� :0004 :0096� :0006

Signal Fraction F0 :919� :005 :899� :008

Figure 5.1 Invariant mass of histogram of K+K��+ candidates used for this

analysis: A) the full data sample; B) the airgap sample.
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The signal fraction F0 is
R
signal
region

GdmKK�=n signal
region

; where n signal
region

is the number

of events counted in the signal region (see the following table). Table 5.3 sum-

marizes our choice of sideband and signal regions. The sidebands are of equal

width (4�) and are separated from the signal region limits by 2� for the D+ low

sideband, 1� for the D+ high sideband, 1� for the D+
s low sideband and 2� for

the D+
s high sideband.

Table 5.3 Signal and Sideband Regions, Full Dataset

Region Mass cut (GeV=c2) Events

D+ low sideband 1:805 < m(KK�) < 1:837 317

D+ signal region 1:853 < m(KK�) < 1:885 1173

D+ high sideband 1:893 < m(KK�) < 1:925 312

D+
s low sideband 1:905 < m(KK�) < 1:941 307

D+
s signal region 1:950 < m(KK�) < 1:986 958

D+
s high sideband 2:004 < m(KK�) < 2:040 218

Likewise, we list the signal and sideband limits for the airgap sample in Table

5.4 below.

Table 5.4 Signal and Sideband Regions, Airgap Sample

Region Mass cut (GeV/c2) Events

D+ low sideband 1:8135 <M(KK�) < 1:8415 30

D+ signal region 1:8555 <M(KK�) < 1:8835 370

D+ high region 1:8905 <M(KK�) < 1:9185 32

Ds low sideband 1:8999 <M(KK�) < 1:9383 40

Ds signal region 1:9479 <M(KK�) < 1:9863 273

Ds high region 2:0055 <M(KK�) < 2:0439 14
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The Dalitz scatterplots for signal region events are shown below in Fig. 5.2.

Figure 5.2 Dalitz scatterplots for K+K��+ samples. Top row is the full dataset

sample , bottom row the airgap samples. The full dataset is used used to obtain

our nominal analysis results. The airgap sample is used to assess systematic

e�ects due to charm background (Sec. 5.4.2) and to help identify participating

resonances in the D+
s
decay (Sec. 5.3.2).

5.1.1 D
+
! K

�

�
+
�
+ Contamination

An important source of background in the signal is the copious yield of

K
�

�
+
�
+ from the Cabbibo favored decay of the D+ meson. These �nal states

are �Cerenkov misidenti�ed as K��+K+. We study this e�ect by reconstruct-
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ing each K+K��+ candidate as �+K��+ and plotting the result in Figure

5.3. This plot is for KK� candidates over the full histogrammed range from

1:7GeV=c2 < m(K+K��+) < 2:1GeV=c2: This so-called re
ection appears as

an extended shoulder above the Ds peak in Figure 5.3b. Comparison of �gures

5.3a and 5.1 shows that the contamination is of order the D+
s
yield in the �nal

sample. To remove this contamination we simply require the K��+�+ mass be

outside the 2� region in Figure 5.3a
2
. We will return to this cut in Sect. 5.2.5.

Figure 5.3 Invariant mass of histograms which demonstrate contamination by

Cabbibo favored D+
! K��+�+ decays: A) obtained by calculating the 3-

body mass with the K��+�+ hypothesis; B) K+K��+ with all cuts except the

anti-re
ection cut imposed. Note the long tail above the D+
s
mass peak due to

�Cerenkov misidenti�ed D+
! K��+�+ decays.

5.1.2 D�+
! D0�+ ! (K+K�)�+ Contamination

The �nal state of this background process is identical to our analysis sample,

so it appears on the Dalitz plot at m2
KK

= m2(D0) = 3:48(GeV=c2)2: This

background shows up in the upper sideband of the Ds Dalitz plot in Figure

5.4, where we plot the upper sideband scatterplot of the data. We con�rm our

claim this contamination is due to D0
! K+K� by plotting the Dalitz plot

2 We choose the D+ re
ection region to be 1:846 < m(K��+�+) < 1:888:
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(Figure 5.4b) for a cc phase space Monte Carlo sample that has passed our

analysis cuts. We see an acumulation of points in the same region. Note there

is very little contamination in the signal region. By cutting candidates with

m2
KK

> 3:4(GeV=c2)2 we remove this background.

Figure 5.4 Dalitz scatterplots demonstrating contamination from D�+
!

D0�+ ! (K+K�)�+ decay. In both �gures, the solid line represents the Dalitz

boundary for the central value of the high mass sideband and the dashed line

is the boundary for the center of the signal region: A) Dalitz plot for events in

the upper-sideband of the D+
s sample; B) Dalitz plot for events generated from

a phase-space cc Monte Carlo.

5.2 The D+;D+
s ! K+K��+ Analysis Formalism

Because the amplitude for the D+ decay is simpler (i.e., we include fewer

intermediate decay channels in the �nal D+ �t), we will use it to illustrate the

analysis formalism. In Sections 5.3.1 and 5.3.2 we motivate our selection of

amplitudes which participate in the amplitude �ts.

Recalling Equation 2.11, we write the amplitude for our D+
! K+K��+

signal as a coherent superposition of K
�

(892)0K+, ��+ and K
�

0(1430)K
+ ampli-
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tudes as follows:

A(D+ ! K+K��+)s = a
K
�

(892)0
e
i�
K
�

(892)0P (�+K�K+jK
�

(892)0)

+ a� ei��P (K+K��+j�)

+ a
K
�

0(1430)
e
i�
K
�

0(1430)S(�+K�K+jK
�

0(1430))

(5:3)

Here we have used the notations P and S introduced in Table 2.1, to represent

p�wave and s�wave intermediate resonances. Because CP violation in the D

sector is thought to be small [29] we obtain the amplitude for the D� by replacing

all particles with their associated antiparticles in Eq. 5.3.

A(D� ! K�K+��)s = aK�(892)0 e
i�K�(892)0P (��K+K�jK�(892)0)

+ a� ei��P (K�K+��j�)

+ aK�

0 (1430)
e
i�K�

0
(1430)S(��K+K�jK�

0 (1430))

(5:4)

Note that we have not inverted the relative strong phase shifts �� and �K�(1430):
3

The �t amplitudes ai and phases �i are the parameters which we deter-

mine in the procedure. We use the K
�

(892)0 as the reference channel and set

a
K
�

(892)0
= 1 and �

K
�

(892)0
= 0:

4
The termsMi(abcjri) are functions of the Dalitz

plot variables m2
K+K�

and m2
K��+

: They are listed in Table 2.1. The notation is

signi�cant because it de�nes the phase convention. One obtains the signal prob-

ability density function pdfs by multiplying As by its complex conjugate, being

careful to maintain normalization:

pdfs = �(m2
KK;m

2
K��+)�

AsA�s
Ns

(5:5)

The e�ciency correction function, �(m2
KK;m

2
K�), is discussed below in Section

4.2.2. The normalization constant Ns is merely the integral of � �AsA�s across

3 See chapter 9 of Ref. [30].

4 Recall the comments near the end of Sec. 2.3.
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the Dalitz plot:

Ns =

Z

Dalitz P lot

�AsA
�

sdm
2
KKdm

2
K��+ (5:6)

We use a maximum likelihood method to solve for the �t parameters ai and �i:

The likelihood is the product of pdf 's for the entire sample:

Lsr(~x; ~�) =
Y

events i

pdfi:

In this notation the signal region likelihood is a function of the measured observ-

ables ~x and the �t parameters ~�. For the present analysis ~x =
�
m2

KK;m
2
K��+

�
and ~� =

�
~a; ~�

�
. Our method is to minimize the function wsr = �2 lnLsr in order

to obtain the �t parameters ~�: Note that it is a continuous function (as opposed

to a binned function) of the mass-squared variables and hence provides us with

maximum information regarding interference between channels.

At this point we run into our �rst complication - \how do we deal with the

background?" The last equation contains a total probability density function

which includes both signal and background. The unfortunate truth of experi-

mental physics is that in spite of our best e�orts, the analysis sample is con-

taminated by background events. So in general, a signal region event may be an

actual KK� �nal state from D+ meson decay or it may be from background.

Hence we modify our probability density function by writing it as a superposition

of signal and background pdf 's as follows:

pdf = �F
AsA

�

s

Ns

+ (1�F)
Ibg

Nbg

(5:7)

In writing equation 5.7 we have used the observation that identifying an event as

`signal' or `background' are mutually exclusive occurences. Therefore, we must

separately normalize these contributions to the pdf: It is also important to note

that the e�ciency correction � only modulates the signal part of the pdf: Since
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we make polynomial parameterization of Ibg directly from the the data (see Sec.

5.2.1), there is no need to include an e�ciency correction in the second term

(1�F)
Ibg
Nbg

: The normalization integrals Ns and Nbg are explicitly written
5

Ns =

Z
DP

� AsA
�
sdDP (5:8)

Nbg =

Z
DP

IbgdDP (5:9)

Parameterizing the background involves �tting the sideband events to a model

function Ibg. The procedure is outlined in the next section.

At this point we have described the function w0
sr which is minimized to obtain

the optimal �t amplitudes and phases.
6

It contains the signal and background

pdf 's and takes the form

w0
sr = �2 lnLsr

= �2
X

sr events
i

ln

�
�i F

As;iA
�
s;i

Ns

+ (1�F)
Ibg

Nbg

�
(5:10)

In order to allow for the in
ation of statistical error bars due to background 
uc-

tuations, we allow the �tter to adjust the background on an event-by-event basis.

This is done by allowing the �tter to adjust the parameters in the background

model, within errors, by adding �2 type terms to the function w0
sr. Upon adding

5 The notation dDP represents the di�erential volume on the Dalitz plot, in this case
dm2

KK
dm2

K��+
.

6 We use �2 lnL to make the connection with the usual �2 of a multivariant Gaussian pdf .
G(~x) / exp(�1

2
�2), hence �2 lnG(~x) = �2 + constant.
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these terms we obtain the actual function wsr we are minimizing.

wsr = �2 lnLsr + �2 terms

= �2
X

sr events
i

ln

�
�i F

As;iA
�

s;i

Ns

+ (1 �F)
Ibg

Nbg

�

+
X
�;�

(�� � �
(sb)
�

)E�1
��

(�� � �
(sb)
� ) +

�
F �F0

�F0

�2
(5:11)

The sum over the index i is with respect to all the events in the signal region.

This function wsr is used for our standard �t, the background parameterization

method. The parameters ~�sb and their error matrix E�� are from the sideband

�t. They determine the background lineshape whereas the parameter F the

background normalization. The �tter minimizes wsr to obtain the optimal values

for aj; �j;F ; and �j:

In the early stages of our work we used an alternative method (which we even-

tually abandoned) called the likelihood subtraction method It has the advantage

of addressing the background in a model-free manner. In this method we form a

log-likelihood sum over the signal region events and subtract a log-likelihood sum

over the sideband events while adding a �2 term to allow the �tter to determine

the background normalization. Speci�cally, we write

walt = �2 lnLsr + 2Q lnLsb + �2 terms

= �2
X

sr events
i

ln

�
��

As;iA
�

s;i

Ns

�

+ 2Q
X

sb events
j

ln

�
� �

As;jA
�

s;j

Ns

�
+

�
F �F0

�F0

�2 (5:12)

With this method, the �tter minimizeswalt to obtain the amplitudes ai; �i; and F :

Note that the same probability density function that describes the signal events,

pdfs of equation 5.5, is here used to also represent the background events. The

56



Q factor is the strength of the background. It is a function of F as follows:

Q =
1�F

1�F0

The problem with this method is it is very sensitive to nodes (or approximate

nodes) in the intensity function AA� where the logarithm is unde�ned. These

regions are weighed very heavily in the �t and cause it to fail. [31]

5.2.1 Background Parameterization

The background in our �nal sample is due to both charm and non-charm

sources. Our purpose in the present section is to �nd a suitable model for the

background that remains after the analysis cuts described in Section 5.1. We �t

the sideband data to the product of cubic polynomials in x (= m2

K+K�

) and y

(= m2

K��+
) as follows:

Ibg = 1 + �1x + �2y + �3x
2 + �4y

2 + �52xy

+ �6x
3 + �7y

3 + �83x
2y + �93xy

2
(5:13)

Starting with this unnormalized background intensity function Ibg we form the

normalized pdfbg with the usual prescription:

pdfbg =
Ibg

Nbg

(5:14)

where

Nbg =

Z

sideband
limits

IbgdDP (5:15)

We perform a joint �t to both the low and high sideband data for the coe�cients

�i by again forming a continuous likelihood function. So in the normalization
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above, Eq. 5.15, the region of the integration is determined by the Dalitz bound-

ary calculated according to the central mass of the respective sideband. The

sideband likelihood function becomes

L
sb =

Y

sideband
events j

pdfbg;j

Again, our method is to minimize �2 lnLsb: The results of this procedure are

listed in Table 5.5 and displayed in Figs. 5.5 and 5.6.

It is interesting that in our actual Dalitz �t for the amplitude, where we

minimize wsr in Eq. 5.11, we use the same same intensity function Ibg. So in

the actual amplitude �t the background normalization integral 5.15 is calculated

over the Dalitz boundary calculated with respect to the central KK� mass of

the signal region.

Table 5.5 Sideband Fit Results

Parameter D+ D+s

�1 �0:211� :0806 0:525� 1:1872

�2 �0:884� :0471 5:409� :8727

�3 0:012� :0619 1:824� :8349

�4 0:246� :0331 �3:451� :5806

�5 0:042� :0278 �2:648� :4606

�6 0:070� :0237 �0:376� :2181

�7 �0:019� :0077 0:575� :1105

�8 0:017� :0064 0:519� :0799

�9 �0:038� :0104 0:057� :1016

In the �gure we plot the Dalitz scatterplots of the sidebands and the mass-squared

projections m2
K+K�

;m2
K��+

;m2
K+�+

in data (points) and as predicted by the �t
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Figure 5.5 D+ sideband Dalitz plot �t. A) - D) are the low sideband repre-

sentations; E) - H) the high sideband. In the histograms, the points with error

bars are the data, the histogram the prediction of the polynomial model. In the

Dalitz scatterplots, the Dalitz boundary is drawn with respect to the center of

the respective sideband.
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Figure 5.6 D+
s

sideband Dalitz plot �t. A) - D) are the low sideband repre-

sentations; E) - H) the high sideband. In the histograms, the points with error

bars are the data, the histogram the prediction of the polynomial model. In the

Dalitz scatterplots, the Dalitz boundary is drawn with respect to the center of

the respective sideband.
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results (solid histogram). Roughly speaking, the distribution of events in the

sidebands is uniform.

As one indication of the quality of the �t we calculate the likelihood con�dence

level for the function which we minimize, �2 lnL
sb; according to the method

developed by the ARGUS Collaboration [16] and described in Section 5.5. In

Table 5.6 we report the likelihood con�dence levels for the various sidebands.

Table 5.6 Sideband Fit Quality Assesment

Region �2 logLfit

sb
h�2 logLfit

sb
i LCLV L(%)

D+ LSB 162:7 167:2� 12:56 63.9

D+ HSB 348.3 344:1� 15:14 39.0

D+s LSB 363.9 378:4� 13:63 85.6

D+s HSB 403.2 377:0� 15:32 4.4

5.2.2 E�ciency Correction Function

Equation 5.7 contains the function �(m2

KK;m
2

K��+
) which corrects for the

imperfect geometrical acceptance and reconstruction e�ciency. In general one

models the acceptance by �rst generating a high statistics Monte Carlo sample of

particle four-vectors, propagating them through a simulation of the spectrometer

and running this output tape through the analysis software. The e�ciency is

the ratio of reconstructed events to generated events. Departures from unity are

indications of imperfections in our equipment and/or methods.

Before we describe our procedure for parameterizing this function, it is im-

portant that we address the question `how many Monte Carlo events should be

generated in order that �nite Monte Carlo statistics is a negligible source of

errors?' To answer this question, it is useful to consider partitioning the Dalitz

scatterplot into rectangular regions. We will show that in a given two-dimensional

Dalitz bin the error on the e�ciency corrected yield is proportional to
q
1 + Ndata

Nacc

MC

.
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As a result, once Nacc
MC

>> Ndata for each bin, uncertainty due to �nite Monte

Carlo statistics becomes negligible.

We presently employ Poisson and binomial statistics to demonstrate how one

obtains a minimum variance estimate of the e�ciency corrected yield Ycorr =

Ndata

�MC

: The fractional error on the e�ciency corrected yield is

�(Ycorr)

Ycorr
=

�2data

N2

data

+
�2�MC

�2
MC

(5:16)

Ndata obeys counting (i.e. Poisson) statistics, so

�2data

N2

data

=
1

Ndata

:

The Monte Carlo e�ciency function �MC follows binomial statistics. Therefore,

�2�MC
=

�

NMC

� (1 � �)

which obtains for
�2�MC

�2
MC

�2�MC

�2
MC

=
(1� �)

�NMC

If we assume � << 1 and de�ne the productNgen��MC as the number of accepted

Monte Carlo events, Nacc
MC we obtain

�2(Ycorr) =
1

Ndata

+
1

Nacc
MC

Solving for the statistical error in the corrected yield obtains

�(Ycorr) =

s
1

Ndata

+
1

Nacc
MC

=

r
1

Ndata

s
1 +

Ndata

Nacc
MC

= �1

s
1 +

Ndata

Nacc
MC

(5:17)

So, as we approach an in�nite number of accepted Monte Carlo events, Ndata

Nacc

MC

! 0;
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and hence we arrive at the best fractional uncertainty in the corrected yield.

In fact, there is a slight subtlety in describing the importance of Eq. 5.17.

Our goal of generating enough Monte Carlo events to obtainNacc

MC
>> Ndata must

be weighed against our need to get a good result within a reasonable amount of

simulation CPU time. For a given amount of simulation CPU time, the best

strategy is therefore to arrange Nacc

MC
>> Ndata in each bin by generating the

Monte Carlo data with an intensity distribution very close to that in the data.

To the extent that Idata is di�erent from IMC , one is wasting CPU time by

running the Monte Carlo longer in order to populate bins where Nacc

MC
< Ndata

while generating extra events in bins where Nacc

MC
>> Ndata already, which does

not reduce errors in those bins. The basic point of Eq. 5.17 is not that the

error gets better as Nacc

MC
increases, but that diminishing returns set in once

Nacc

MC
>> Ndata: Eq. 5.17 tells you when to stop!!!

7

The special problem to be addressed for the KK� data is that most of the

data occurs in the narrow � and K
�

(892)0 bands. In order to insure ndata

nMC

! 0

everywhere on the Monte Carlo sample, we must generate it with an amplitude

which approximates the true amplitude in the data. Our e�ciency modeling

procedure is illustrated in Fig. 5.7 and is described below.

First we get a crude decay amplitude by �tting the �nal analysis sample with

the pdfs in equation 5.5 and the e�ciency function � �xed to unity. This step ob-

tains the �t parameters ~�uncorrected:We then use the resulting pdfuncorrected to re-

ject events generated by a phase space Monte Carlo. By rejecting on pdfuncorrected

one creates a sample whose Dalitz distribution approximates that of the data.

Now propagate these four-vectors through the spectrometer simulation (ROGUE)

and run this sample through our data reconstruction and �ltering software. The

resulting Monte Carlo generated D+
s Dalitz plot is shown in Fig. 5.8.

7 To the extent that the simulated intensity matches the data intensity one can simply use

Eq. 5.17 to in
ate the error bars due to �nite Monte Carlo statistics, where Ndata and N
acc

MC

refer to the total number of events in the plot rather than the number in a given bin.
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Figure 5.7 Flowchart for the parameterization of the e�ciency function �.

The next issue is how to choose the bins. We use the adaptive binning

strategy (described in the next section). It allows us to place the binning over the

smallest bin sizes commeasurate with our statistics by binning until the number of

events in a bin falls below a minimum. Within each bin i calculate the e�ciency

according to

�i =
ni
reconstructed events

ni
predicted

(5:18)

As always, the predicted number of events in the bin ,npredict, is

ni
predicted = NMC; total

Z

bin i
limits

pdfuncorrecteddDP

Here, NMC; total is the total number of Monte Carlo signal region events which

pass our cuts. The e�ciency factors obtained from this adaptive binning scheme

are displayed in Figure 5.9. From this �gure we calculate the following RMS

spread in e�ciency across the Dalitz plots:
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Table 5.7 RMS Variation of Relative E�ciencies

Parent Particle RMS Variation

D
+ 12:76%

D+
s

25:59%

Figure 5.8 Monte Carlo generated Dalitz scatterplot used for the parameter-

ization of the e�ciency function � (D+
s

�t). The D+ Monte Carlo sample is

similar.

5.2.3 The Adaptive Binning Algorithm

The algorithm
8
begins by considering a single bin containing all events

and having (x; y) = (m2

K+K�
;m2

K��+
) corner coordinates de�ned by kinematic

boundary limits. This is the starting point for bin splitting, and we consider

splitting into two new bins. A bin can be split so long as the predicted number of

events for the bin exceeds a certain value, in this case 25
9
. Ultimately each bin

used in the �2 is required to contain at least 10 events. We maintain the lower

8 This section borrows material from Ref. [34].
9 For the high statistics Monte Carlo we use for the e�ciency samples, this value is increased
to 50.
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Figure 5.9a Bins resulting from running the adaptive binning algorithm on

the high statistics D+ ! K
+
K
�

�
+ Monte Carlo sample. Within each bin i

we calculate the e�ciency according to �i =
n
i
reconstructed events

n
i
predicted

: We emphasis the

binning by suppressing the resulting bin-by-bin e�ciency factors from the �gure.
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Figure 5.9b Bins resulting from running the adaptive binning algorithm on the

high statistics D+
s
! K+K��+ Monte Carlo sample (Fig. 5.8). Note there

are more bins in Fig. 5.9a. This di�erence in binning is a consequence of the

dominance of the � and K�(892)0 bands on the D+
s

Dalitz plot. This Dalitz

plot requires large bins to get su�cient statistics in regions outside these bands.

There is a much larger fraction of D+ events outside of the two landmark bands

and hence one can use more bins in the `out of band' region. As in Fig. 5.9a, we

emphasis the binning by suppressing the resulting bin-by-bin e�ciency factors

from the �gure.
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limit so that the �2 for the bin,

�2 =
(Npred �Nobs)

2

Npred

(5:19)

is computed reliably, i.e. the statistics falls within the distribution described

by the Gaussian function. Although this statistic, the so-called two-dimensional

�2, does not come into play in the e�ciency correction parameterization, it will

be used later (Sec. 5.5) to characterize the quality of our Dalitz amplitude �t

results.

To decide how to split the bin, we look at the average derivative in x; y across

the bin. We split the bin in the direction of most rapid change, at the location of

the centroid (i.e. the average value of the coordinate weighted by the intensity).

It is desirable to avoid bin comparisons using bins with very large height-width

aspect ratio. To keep the aspect ratio from becoming too large, we split the

longitudinal coordinate if the bin is longer than wide by a factor of 1.5, and visa

versa. This value was arrived at simply by trial and experience. Sometimes bins

are created having an aspect ratio larger than 1.5 since the decision is made on

a proposed bin and not on the two created. Bins which have some portion of

their area outside the kinematic boundary are split di�erently depending on the

size of the data sample. For large statistics samples, bins which have more than

10% of their area outside the kinematic boundary are simply split in two. In

this case we want to split the bin so as to create two bins, one which is highly

overlapping with the kinematically allowed phase space, and the other which is

mostly outside limits. Thus if two corners are outside of the boundary, we split

in the direction parallel to the line joining them. Otherwise, the rules above are

followed.

For smaller statistics samples, we make two \passes": in the �rst we split

in the usual way and ignore bins which are outside limits. On the second pass

we split the outer bins by successively shaving 1% o� the edge determined as

above (by considering corners or direction of rapid change, etc.). This was found
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to work better for sparsely populated areas of the Dalitz plot which otherwise,

using this algorithm, would be missed in the bin comparison.

5.2.4 Resolution E�ects

So far we have addressed distortion of the signal probability density function

due to background contamination and detection e�ciency. A �nal agent of cor-

ruption is the experimental uncertainty of our measurements. For example, an

event having a true value of m2

KK
will yield a measured value m02

KK
: The prob-

ability density function for this process is the resolution function r(m2

KK
;m2

K�
):

So the total true density function (signal + background) is pdftrue whereas the

measured density is

pdfmeas(m
2

KK 0;m
2

K�0) =

Z

DP

r(m2

KK
;m2

K�
;m2

KK 0;m
2

K�0)

� pdftrue(m
2

KK
;m2

K�
)dm2

KK
dm2

K�

(5:20)

Note that measurement resolution is fundamentally di�erent from detection ef-

�ciency because now the "true" variables m2

KK
and m2

K�
have been integrated

out and replaced with the measured variables m02

KK
and m02

K�
: Resolution can

give rise to a measured value at a location where the true density is zero. On

the other hand, the e�ciency function �(m2

KK
;m2

K�
) is the density for observing

an event at (m2

KK
;m2

K�
): It modulates the underlying actual density to obtain

a distorted observed density.

It is traditional to take r(m2

KK
;m2

K�
) to be a Gaussian function

r(m2

KK
;m2

K�
) =

1

�
p
2�

exp

�
(m02

KK
�m2

KK
)2

2�2

�

The Monte Carlo resolution widths � for m2

KK
and m2

K�
in the � and K

�
(892)0

regions, respectively, are listed in the following table and shown in Figure 5.10.
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Table 5.8 Monte Carlo Resolution

D
+

Ds

�KK (MeV) 1:47� :009 1:53� :0118

�K��+ (MeV) 3:83� :0255 4:45� :0703

These numbers are to be compared to the K
�

(892)0 and � resonance widths:

50.5 and 4.43 MeV, respectively. [28] Hence it is appropriate to focus only on

the KK measurement uncertainty.

Recall that to obtain �(m2
KK;m

2
K�) we �t a Monte Carlo sample that includes

the detector simulation. Hence it re
ects the experimental resolution because the

kinematic variables (i.e.,m2

KK;m
2

K�) su�er frommeasurement resolution. There-

fore, we do not have to explicitly fold resolution into our calculations. We test

this simpli�cation by generating a sample according to a preliminary amplitude,

running it through the spectrometer simulation and �nally �tting this sample

with our Dalitz analysis software. As shown in the table, the �t results agree

with the generation level parameters within errors, thereby proving we can safely

neglect explicit resolution according to equation 5.20.

Table 5.9 Resolution Test Results

D+ D+
s

Parameter Generation Fitted Generation Fitted

fK� 0:278� 0:022 0:276� 0:023 0:380� 0:023 0:374� 0:020

f� 0:368� 0:021 0:366� 0:021 0:564� 0:026 0:586� 0:021

fNR 0:392� 0:026 0:390� 0:023 0:111� 0:025 0:095� 0:016

�K� (�xed) 0:0o 0:0o 0:0o 0:0o

�� 162:5� 9:3o 174:232� 8:2o 147:4� 13:0o 143:2� 10:0o

�NR 95:7� 6:1o 94:7� 5:8o 173:9� 13:0o 175:5� 9:3o

An interesting consequence of resolution smearing is the reconstruction of
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events outside the nominal Dalitz boundary, which is drawn (in Fig. 5.2) with

respect to the world average [28] D+ or D+
s

meson mass. We include these

events in the minimization of wsr in Eq. 5.11 as well. This presents no technical

problems because the likelihood function is in fact analytic outside this boundary.

By averaging in these events which smear past the boundary, one obtains a truer

estimate of unresolved intensity.

5.2.5 The Anti-Re
ection Cut

The cut on the D+ ! K��+�+ re
ection is essentially a �lter on the 3-

momentum of the kaon with the same electric charge as the pion (i.e., D+s !

K+K��+ and D+ ! �+K��+). [14,35] One obtains this result by writing

m2

abc = (p�a + p
�

b + p
�
c )
2 and taking the limit of j~pij � mi and �ij ' 0:

Expanding and simplifying gives equation 5.21 below:

m2

K+K��+ = m2

�+K��+ +
m2

K+ �m2

�+

x
(5:21)

x is the (laboratory) 3-momentum fraction of the same sign kaon. In this section

we describe a study of the correlation between this cut and the Dalitz plot mass-

squared variables.

Upon performing a Lorentz transformation along the z-axis to the rest frame

of the D+
s (denoted by \*") obtains

Elab
K+ = 
�[E�

K+ + ��P �

Z;K+]

=
Elab
Ds

MDs

[E�

K+ + P �

K+U
�]

Here, �� ' 1 and U� � cos ��(D+
s ;K

+). With P lab
Ds

' Elab
Ds

we have

xlab =
1

MDs

[E�

K+ + P �

K+U
�]

Since E�

K+ and P �

K+ are functions of the Dalitz plot variables, for a given

(M2

K�K+;M2

K+��) the only independent variable in this equation is U�. Ac-

cording to the equation 1, the re
ection cut (1:850 < m�+K��+ < 1:887) de�nes
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a rejection region, x1 < x < x2 on the (U�; xlab
K+) plane. An example plot of the

(U�; xlabK+) plane for a particular (M2

K�K+;M
2

K+��
) is illustrated in Figure 5.11.

Regions A1 and A3 are the acceptance regions, while region A2 is the rejection

region. Using the trapezoidal areas de�ned on the �gure, we obtain the e�ciency

of the re
ection cut is

�refl cut(M2

K�K+;M
2

K+��) =
A1 +A3

A1 +A2 +A3

:

Figure 5.11 Illustration of momentum rejection region in the (U�; xlab
K+) plane.

This �gure illustrates the mapping between U� and xlab
K+. In our analytic model

of the re
ection cut (Fig. 5.12) we use the mapping to translate the cut on xlab
K+

to a cut on U�.

We show a 2-dimensional histogram (Lego-plot) of this function in Figure

5.12. The overall e�ciency of the re
ection cut obtained from this plot is 0.828,

which is consistent with the e�ciency obtained from Monte Carlo, 0:81� 0:0196.

More importantly, the Lego plot shows that the re
ection cut produces only a

very gentle modulation in the acceptance across the Dalitz plot. So we �nd that

the re
ection cut depends on both the decay's position in the Dalitz plot as well

as the D+ rest frame orientation of the same sign kaon with respect to the D+
s

lab direction. Because the orientation is random, the anti-re
ection cut e�ciency
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has only a relatively mild (� 20% ) variation across the Dalitz plot and is most

strongly tied to m2(K��+). It is therefore quite simple to correct for using our

Monte Carlo derived e�ciency function �(m2
KK

;m2
K�

); as described in section

5.2.2.

Figure 5.12 Lego plot of re
ection cut acceptance.

We close this section by emphasizing that our treatment of the re
ection cut

implied by Fig. 5.11 is primarily discussed in order to reassure the reader that

the anti-re
ection cut is easy to model and has a relatively mild e�ect on the

e�ciency across the Dalitz plot. We add that the e�ciency of the anti-re
ection

cut is automatically included in the the e�ciency tables illustrated in Figure 5.9.

5.3 Fit Results

Recall that our method for �tting the decay amplitudes, Eq. 2.10, is to

minimize equation 5.11 with the Minuit [32] software package to obtain the

�t amplitudes faig, �t phases f�ig, signal fraction F and background shape

parameters f�ig.
10

Using equation 2.12 we calculate the decay fractions. In this

10 The signal fraction F and background shape parameters f�ig are obtained from separate

�ts to the KK� mass histogram and sideband Dalitz plots, respectively. In the Dalitz
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section we motivate our choice of participating decay channels for the D+ and

D
+
s
, respectively. In our searches, we employ three tools for identifying which

decay channels participate in the amplitude sum Eq. 2.10:

a: Visual comparison of the Dalitz scatterplot of the data
11

to scatterplots

obtained from Monte Carlo simulations imcluding only pure resonant (or

nonresonant) decay channels. We employ Monte Carlo rejection on the pdf

of Eq. 5.7 where As includes only one decay channel and F is �xed to

unity.
12

These simulated scatterplots are displayed in Fig. 5.13.

b: Careful study of the mass-squared projections of the data to identify inter-

ference phenomena.

c: Our main tool for establishing the statistical signi�cance of an amplitude is

the change ��2 in the �2 calculated from the �tted amplitude in the adap-

tively chosen two-dimensional bins. That is to say, given two �t hypotheses

1 and 2 and their respective �2's, if �2
2
< �2

1
the Hypothesis 2 is preferred

to Hypothesis 1 at the level of
q
�2
2
� �2

1
=
p
��2 standard deviations. By

hypothesis we mean a particular sum of intermediate decay amplitudes.

Our searches obtain good �ts using purely resonant intermediate decay modes

without the need for a nonresonant component. We will present evidence for

previously undiscovered decay modes [28]. The D+ �t is covered �rst and is

followed by the D+
s
results.

5.3.1 Results of the D+ Fit

As illustrated in the D+ ! K+K��+ Dalitz plot, Fig. 5.14, the most promi-

nent channels in this decay are K
�

(892)0K+, ��+ and at least one additional

amplitude �t they are allowed to vary within errors by the mechanism of the added �2

terms in Eq. 5.11.

11 We found both the full dataset and airgap Dalitz plots useful in deciding on the appropriate

channel mixture.

12 To remove the pdfbg terms from the simulation.
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Figure 5.13a D+ simulated pure resonances.
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Figure 5.13b D+ simulated pure resonances.
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slowly varying (in the mass-squared variables) resonant or nonresonant contri-

bution. The asymmetry evidenced by the � lobes labeled L1 and L2 on the

the M2

K��+
projection, suggests the presence of a high mass K��+ resonance.

13

Furthermore, the arguments of Sec. 2.2.1 indicate that the asymmetry in the

K
�

(892)0 lobes (L3 and L4) may be caused by inteference between the K
�

(892)0

and a slowly varying amplitude whose �tted phase shift (with respect to the

K
�

(892)0K+) is approximately 90o. Upon examination of our simulated Dalitz

Figure 5.14 D+ Dalitz scatterplot, m2
KK

and m2

K��+
projections. Examination

of these plots motivate inclusion of the K
�

0(1430)
0K+ channel in the amplitude

�t.

scatterplots, Fig. 5.13, we identify theK
�

0(1430)
0K+ channel as a likely candidate

13 A pure � would obtain symmeteric L1 and L2 lobes.
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which provides these resonance structures. It is a wide (i.e., slowly varying) high

massK��+ resonance with no Zemach nodes. It greatly resembles a nonresonant

contribution except it preferentially populates the high m2

K��+
region of the

Dalitz plot. A coherent superposition of the landmark channels K
�

(892)0K+

and ��+, along with the K
�

0(1430)
0K+, does a good job of reproducing the lobe

Figure 5.15 Mass-squared projections obtained with the D+ �t. The points

with error bars are the data; the large histogram the prediction pf the �t (signal

+ background); the small histogram is the prediction of the background model.

asymmetries described above. The �nal result is compared to the data in Fig.

5.15 and summarized in Table 5.10.
14

Although the mass projections of the �t

shown in Fig. 5.15 are a fairly good match to the projection histogram of the

14 This table only shows statistical errors. The �nal results showing systematic errors will be

listed in Table 5.17.
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data, the �t has an unacceptably large �2 for matching the data in adaptively

chosen, two dimensional bins (94.2 for 44 degrees of freedom). This suggests that

the model, although �tting the data fairly well in a qualitative sense, may be over

simpli�ed.
15

The mass-squared projections obtained with this �t are shown in

Fig. 5.15.

We use our adaptive binning software to deduce where the �t matches the

data and where it fails to mimic the physical intensity. Figure 5.16 shows the

bin-by-bin contribution to the �2 in Eq. 5.19.

Table 5.10 D+ Fit Results

Parameter Fitted Value ��stat

a
K

�

(892)0K+
1:0 (�xed)

a��+ 0:98� 0:05

a
K

�

(1430)0K+
1:11� 0:07

�
K

�

(892)0K+
0o (�xed)

���+ �159� 8o

�
K

�

(1430)0K+
70� 7o

f
K

�

(892)0K+
0:301� 0:020

f��+ 0:292� 0:031

f
K

�

(1430)0K+
0:370� 0:035

To estimate the statistical level this mixture is preferred, we compare the

goodness of this �t to others where we include di�erent mixtures of amplitudes.

The result of this exercise is shown below in Table 5.11. Note that the �t which

is both the simplest and obtains the lowest value of �2 is �t # 7, our quoted

15 There may be contributions from slowly varying, nonresonant amplitudes or perhaps the

phases � are functions of the mass-squared Dalitz variables. Of course undiscovered reso-

nances may also be playing a role.
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Figure 5.16 Bin-by-bin contribution to the two-dimensional �2 for the D+ �t.

The �t obtains a two-dimensional �2 of 92.2. A naive count of the degrees of

freedom (i.e., Nbins � Nparams) obtains 44. As described in Sec. 5.3.2, this

calculation underestimates the true number of degrees of freedom. The dotted

bins have �2 < 1:0, dashed bins have �2 < 3:0, solid bins have �2 > 3:0
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�t.
16

Although its �2 value (94.16) is somewhat larger than several more com-

plicated �ts, the �tter cannot discriminate between these many-amplitude �ts

(i.e., they obtain essentially degenerate values of �2). Indeed, a su�ciently com-

plicated mixture can certainly mimic the broad, slowly varying structure on the

D+ Dalitz plot. However, our dataset cannot discriminate between these com-

plicated �ts and hence does not provide adequate evidence for the presence of

channels in addition to K
�

(892)0K+, ��+ and K
�

0(1430)
0K+.

5.3.2 Results of the D+
s
Fit

As Fig. 5.2 shows, the D+
s
! K+K��+ Dalitz plot is very strongly dom-

inated by the K
�

(892)0K+ and ��+ bands. The Dalitz plot for the very clean

\airgap" sample, Fig. 5.2, shows an accumulation of events in the nodal region of

the � band. We suspect these events are due to a spinless object (since there is no

evidence of Zemach nodes) with broad structure interfering with the �:
17

After

studying contributions from known (K+K�) and (K��+) resonances, we found

the decay D+
s
! f0(980)�

+ is the most likely source responsible for this accumu-

lation. The Dalitz plot for simulated D+
s
! f0(980)�

+ decays tends to populate

the low M2
KK

region and hence `�lls in' the � nodal region. The f0(980) decays

via both �+�� and K+K�: [28] Because a large fraction of D+
s ! �+�+�� de-

cays are known (Ref. [22] and see Chapt. 6) to proceed via D+
s ! f0(980)�

+, one

expects to observe contributions from D+
s ! f0(980)�

+ to the K+K��+ Dalitz

plot as well. A �t to the full dataset with a coherent sum of K
�

(892)0K+, ��+

and f0(980)�
+ amplitudes obtains �2 = 80:5, whereas replacing the f0(980)�

+

with three-body nonresonant gets 99.9. This change in �2 means the data prefers

the f0(980)�
+ solution at the

p
99:9 � 80:5 ' 4 standard deviation level.

16 It is interesting to note that replacing the K
�0
(1430)K+ channel with the three-body non-

resonant amplitude (Hypothesis 12) obtains an increase of � 30 units in �2, indicating that

the K
�0
(1430)K+ channel is preferred at the � 5:5 standard deviation level.

17 Here again we apply the arguments of Sec. 2.2.1 to the observed symmetry of the � lobes
in the M2

K��+
projection points.
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Table 5.11a Comparison of D+ Fits, 3 Amplitudes

�2 Rank Fit Hypothesis �2 �2lnL L C.L.

7
p

K
�0
(892); �; K

�0
(1430) 94.16 -723 34.2

12 NR; K
�0
(892); � 124.08 -675 7.8

15 f0(980); K
�0
(892); � 213.40 -641 0.004

16 K
�0
(892); �; K

�

(1680) 242.00 -561 0.0

17 K
�0
(892); �; K

�

2(1430) 242.9 -559 0.0

Table 5.11b Comparison of D+ Fits, 4 Amplitudes

�2 Rank Fit Hypothesis �2 �2lnL L C.L.

4 K
�0
(892); �; K

�0
(1430); K

�

2(1430) 87.24 -737 36.1

5 NR;K
�0
(892); �; K

�0
(1430) 88.62 -726 36.3

6 K
�0
(892); �; K

�0
(1430); �(1680) 91.98 -729 28.4

8 NR; K
�0
(892); �; f0(1710) 95.76 -721 21.8

9 NR; K
�0
(892); �; �(1680) 100.80 -708 20.5

10 NR; K
�0
(892); �; K

�

2(1430) 108.36 -697 15.2

11 NR; K
�0
(892); �; f2(1270) 113.82 -694 6.1

13 NR; K
�0
(892); �; K

�

(1410) 118.86 -691 20.3

14 NR; K
�0
(892); �; K

�

(1680) 126.00 -687 22.7

Table 5.11c Comparison of D+ Fits, � 5 Amplitudes

�2 Rank Fit Hypothesis �2 �2lnL L C.L.

1 NR; K
�0
(892); �; K

�0
(1430); �(1680); K

�

2(1430) 84.42 -741 38.1

2 K
�0
(892); �; K

�0
(1430); �(1680); K

�

2(1430) 86.53 -741 33.4

3 NR; K
�0
(892); �; K

�0
(1430); K

�

2(1430) 86.40 -737 31.9
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Despite this sizable ��2, we tested the statistical signi�cance of this apparent

preference for the f0(980)�
+ solution as described below.

From our qualitative comments about the airgap sample at the beginning

of this section, it is apparent that the low background contamination in this

sample enables it to discriminate between the structureless nonresonant and the

broad f0(980)�
+ channel. Therefore, we designed `by hand' two-dimensional

bins which accentuate the key features of the airgap Dalitz plot: the � and

K� lobes, their Zemach zero regions, and the region far from these reso-

nances. These so-called static bins are displayed in Fig. 5.17. The static

�2 values for �ts to the airgap data are listed in Table 5.12. We tested this

� 2� preference for the f0(980)�
+ solution by �tting ensembles of Monte

Carlo datasets generated with the amplitudes resulting from our �ts to the

airgap data.
18

Fig. 5.18 shows the static �2 obtained from these �ts. This

test points out that the preference for the f0(980)�
+ is not due to background


uctuation - the amplitude de�nitely requires a contribution from f0(980)�
+.

Figure 5.17 Static two-dimensional bins used for discriminating between three-

body nonresonant and f0(980)�
+ channel.

18 Within each ensemble, each generated sample had the signal region statistics listed in Table

5.4.
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Table 5.12, f0/NR Air Gap Data Fit Comparisons, Static �2

Fit Hypothesis

NR;�;K� f0(WA76); �;K�

Static 2D �2 13.4 8.5

Figure 5.18 Static two-dimensional �2 obtained from �tting ensembles of Monte

Carlo generated datasets generated with the indicated amplitude The indicated

static �2 values from Table 5.12 (dashed lines) correspond to 1.6% and 6.8%

con�dence levels for the NR;K�K;�� and f0�;K
�K;�� �ts, respectively.

This Monte Carlo exercise obtained another somewhat surprising result.

Naively, the number of degrees of freedom is calculated to be

NDOFnaive = Nbins � Nparams

= 7 bins � 4 fit parameters

= 3 dof

(5:22)

In Fig. 5.19 we plot the con�dence levels obtained from Fig. 5.18 for the non-

resonant and f0(980)�
+ �ts as functions of the static �2. We also show analytic

calculations of the con�dence level for Gaussian distributed data (the CERNLIB

function PROB(�2;NDOF )) for di�erent degrees of freedom. Apparently, the

correct number of degrees of freedom to use for two-dimensional �2 is a com-

plicated function - in this example it falls between 3 and 5. We believe this
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phenomenon is a consequence of our parameter estimation procedure, which is

to minimize a �2 lnL function instead of the two-dimensional �2.

Figure 5.19 Tests of counting degrees of freedom.

Having established the presence of the f0(980)�
+ channel in the D+

s
decay

amplitude we now critically examine the �t projections and �nd there are some

notable descrepancies between the �t prediction and the data. The projections

(from the �t to the full dataset) are shown in Fig. 5.20. This �t underpredicts of

the K
�

(892)0 peak, R1 in Fig. 5.20, and overpredicts R2. We also note the �tted

K
�

(892)0 mass of the two K
�

(892)0 lobes di�er.
19

These observations suggest

the presence of additional amplitudes which interfere with the K
�

(892)0. After

studying contributions from established (K+K�) and (K��+) resonances ( see

following paragraph), we found the inclusion of a contribution from fJ (1710)�
+

and K
�

0(1430)
0K+ signi�cantly improved the agreement between the �t and data

in Regions 1 and 2, as shown in Fig. 5.20.
20

The results of this �ve amplitude

D+
s �t, which is our �nal solution, are summarized in Table 5.13.

19 We �t the (background subtracted) low and high m2

K+K�
K

�

(892)0 lobes to p-wave Breit
Wigners convoluted with the Gaussian function and obtained 888 � 5 MeV=c2 and 876�

5 MeV=c2 for the low and high lobes, respectively. The world average [28] K
�

(892)0 mass
is 896� 0:28 MeV=c2.

20 In this �t the fJ (1710) is assumed to be a scalar particle.
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Table 5.13 D
+
s
Fit Results

Parameter Fitted Value ��stat

a
K

�

(892)0K+
1:0 (�xed)

a��+ 0:91� 0:05

a
K

�

(1430)0K+
0:44� 0:08

af0(980)�+ 0:48� 0:08

afJ(1710)�+ 0:27� 0:07

�
K

�

(892)0K+
0o (�xed)

���+ 178� 20o

�
K

�

(1430)0K+
152� 40o

�f0(980)�+ 159� 22o

�fJ(1710)�+ 110� 20o

f
K

�

(892)0K+
0:478� 0:046

f��+ 0:396� 0:033

f
K

�

(1430)0K+
0:093� 0:032

ff0(980)�+ 0:110� 0:035

ffJ(1710)�+ 0:034� 0:023

Inclusion of the K
�

(1430)0K+ channel in the �t results in a subtle improvement

in the �t which is revealed by examing the bin-by-bin contribution to the two-

dimensional �2. The bin with the maximum value (hot bin) obtains a � 6 unit

decrease in �2 after including the K
�

(1430)0K+ channel, as demonstrated by

Fig. 5.21.

As in the D+ �t we pursue a study where we compare our quoted �t to �ts

including reasonable mixtures of known decay channels. The results are listed

below in Table 5.14.
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f0(980)�
+;K

�

K+; ��+ + fJ (1710)�
+; K

�

0(1430)K
+

Figure 5.20 Mass-squared projections obtained with the D+
s �t. The points

with error bars are the data; the large histogram the prediction pf the �t (signal

+ background); the small histogram is the prediction of the background model.

Left column shows result of a �t with the f0(980)�
+;K

�

K+ and ��+ amplitudes;

right column also includes the fJ (1710)�
+ and K

�

0(1430)K
+ channels. The right

column projections illustrate our �nal �t result.
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Figure 5.21 Bin-by-bin contribution to the two-dimensional �2 for the indi-

cated �t hypotheses for the D+
s

�t. Our quoted �ve-amplitude �t obtains a

two-dimensional �2 of 50.2 with, naively speaking, 33 degrees of freedom.
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Table 5.14 Comparison of D+
s
Fits

# Fit Hypothesis �2 �2lnL L C.L. (%)

1
p

K
�0
(892); �; f0(980); fJ (1710); K

�0
(1430) 50.16 -1075 80.2

2 K
�0
(892); �; f0(980); K

�0
(1430) K

�

(1410); K
�

2(1430) 54.6 -1068 91.1

3 K
�0
(892); �; f0(980); f0(1400); K

�

1(1680) 55.11 -1073 80.7

4 K
�0
(892); �; f0(980); K

�0

1 (1430) K
�

(1410) 55.77 -1067 91.0

5 NR; K
�0
(892); �; f0(980) 56.0 -1068 69.5

6 K
�0
(892); �; f0(980); K

�0
(1430) 57.05 -1060 83.8

7 K
�0
(892); �; f0(980); K

�

(1410) 66.5 -1048 85.3

8 K
�0
(892); �; f0(980); f0(1400) 66.85 -1055 53.9

9 K
�0
(892); �; K

�0
(1430); K

�

(1410); K
�

2(1430) 69.6 -1042 61.1

10 K
�0
(892); �; f0(980); fJ (1710) 70.7 -1046 36.7

11 K
�0
(892); �; K

�

1(1410); K
�0
(1430) 71.05 -1036 57.3

12 K
�0
(892); �; K

�0
(1430) 76.96 -1027 52.8

13 K
�0
(892); �; K

�

(1410) 79.18 -1020 20.8

14 K
�0
(892); �; f0(980); f2(1270) 80.15 -1023 43.4

15 K
�0
(892); �; f0(980) 81.4 -1018 53.2

16 K
�0
(892); �; f0(980); K

�

2(1430) 81.55 -1020 51.2

17 K
�0
(892); �; f0(980); �(1680) 83.3 -1020 56.6

5.4 Measurement Error

We believe [17] that it is appropriate to quote two independant types of error

on amplitude measurements.
21

The �rst error is the usual statistical error which

we obtain from the �tter itself, after checking that it is a fair representation of the

variation of parameters using an ensemble Monte Carlo technique (Mini Monte

21 This section is borrowed from Ref. [33].
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Carlo) to be described shortly. The second error is a systematic error which (as

we discuss below) is estimated by considering di�erences in the �t parameters

obtained with di�erent �tting techniques, and non-statistical di�erences in the

parameters obtained by �tting disjoint (i.e. essentially uncorrelated) sub-samples

of the data. A third error due to the lack of knowledge [28] about some of the

resonance parameters themselves was found to be totally negligible
22

and is not

included in our error estimates.

5.4.1 Monte Carlo Tests of Fit Biases and Errors

We checked the �delity of parameter errors and the presence of biases in the

parameters returned by the �t using expedited Monte Carlo simulations (so called

Mini Monte Carlo). An expedited simulation prodeeds by generating three body

decays according to the �nal �tted amplitude (our parent distribution), simultane-

ously correcting for acceptance variation by using the parameterized acceptance

which was originally based on the full, hit level simulation (see section 5.2.2).

We also simulate accompanying backgrounds using the model for the parame-

terized background version of our �t as described in Section 5.2.1. Expedited

simulations run very quickly compared to full simulations and as a result, one

can simulate hundreds of ensembles of the complete E687 data set and �t each

ensemble to study the distribution of returned �t parameters. Figure 5.22 shows

deviations between the �tted and input �t parameters (i.e., ~�fit � ~�parent) for

500 simulated data sets each consisting of a number of signal region events equal

to the number of signal region events listed in Table 5.3.
23

We show in Tables

5.15 and 5.16 the �tted widths of these distributions and their biases (in units of

standard deviation).
24

22 These uncertainties result in errors on the order of 0:5%.

23 For conciseness, we just show the plots for the D+ deviations. The D+
s

deviations are

similar.

24 We de�ne the bias=� for �t parameter i as the normalized deviation from zero,
�i;fit � �i;parent

�i;parent
.
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Figure 5.22 Mini-Monte Carlo deviations, D+ �t.
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Table 5.15 D
+ Mini-Monte Carlo Checks

Parameter �MMC �fitter Bias

���+ 7:5o 7:9o 0.070

�
K

�

(1430)0K+
6:8o 7:4o 0.029

f
K

�

(892)0K+
0.020 0:012 -0.139

f��+ 0.016 0:031 0.179

f
K

�

(1430)0K+
0.021 0:035 -0.081

Table 5.16 D+
s Mini-Monte Carlo Checks

Parameter �MMC �fitter Bias=�

���+ 19:8o 18:6o -0.131

�
K

�

(1430)0K+
40:2o 32:8o 0.171

�f0(980)�+ 21:8o 16:9o -0.035

�fJ (1710)�+ 20:2o 20:0o -0.004

f
K

�

(892)0K+
0.046 0.021 -0.350

f��+ 0.019 0.033 -0.089

f
K

�

(1430)0K+
0.030 0.032 -0.127

ff0(980)�+ 0.035 0.034 0.153

ffJ (1710)�+ 0.023 0.019 0.580

The extent which the RMS deviations are equal to the statistical errors returned

by the �tter in Tables 5.10 and 5.13 indicates how well the �tter estimates these

errors.
25

Only �(f
K

�

(892)0K+
) for the D+ is underestimated, so we will use the

MMC value for our �nal �t result.
26

Although the results do show some bias, we

25 MINUIT uses the matrix equation �
2
�2 lnL

��i�j

�1

, evaluated at the �nal �tted value of �2 lnL,

to estimate the matrix of statistical errors.

26 We conservatively choose to quote the larger of the MMC and �tted errors for our �nal

statistical errors.
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do not believe it is severe.

5.4.2 Estimating Systematic Error

Because of the complexity of Dalitz �tting it is rather di�cult to compute sys-

tematic errors directly from known uncertainties about the apparatus or known

de�ciencies of �tting techniques. In order to facilitate our systematic checks, we

de�ne below [17] split sample and �t variant systematic uncertainties:

1. We split the data sample in disjoint pieces and compare the �t parameters

obtained in splits of the data sample. In a �xed target experiment most

e�ciency corrections (geometric acceptance, �Cerenkov particle identi�ca-

tion, triggering) are highly momentum dependent, hence a natural split is

to divide the sample on the basis of high momentum (p > 90GeV=c) versus

low momentum (p < 90GeV=c). The problem in estimating systematics by

comparing split sample estimators is deciding how much of the di�erence

in �t parameters is due to statistical 
uctuation and how much should be

ascribed to systematic error. We use a method for handling this based on

the S-factor technique which is used by the Particle Data Group [28] to

combine data from statistically inconsistent experiments.

2. One can also estimate systematic errors by varying reasonable �tting tech-

niques for a complete data set. Fit variations include using the helicity am-

plitudes described in Appendix A and �tting the airgap data. The problem

in estimating systematics by comparing �t parameters between �t variants

is to decide how to extract a meaningful systematic error from the spread

of estimates obtained with the various �t variants.

Our high statistics sample allows many oportunities for systematic checks.

Having de�ned these types of systematic uncertainties, we now must develop a

systematics error estimation technique which meets certain goals.

(a) We would like the split sample systematics to be quoted in a common

currency with the �t variant systematics if possible.
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(b) We would like the quoted systematic error to be essentially independent

of the number of systematic sources considered. For example, it isn't

really that fair to just add the split sample di�erences in quadrature

to obtain a grand systematic error. Such a scheme insures that this

systematic error will tend to grow as the number of splits increases.

The same can be said for trying many possible �t variants.

We begin by describing our technique for split sample systematics. Consider

splitting the sample in two disjoint sets corresponding to high and lowD momen-

tum. The standard test for statistical consistency is to construct a con�dence

level for the hypothesis that the 2 measurements can be �t by a single (weighted

average) �t parameter. For N independent samples, the con�dence level would

be constructed from a �2 with N � 1 degrees of freedom of the form:

�2 =

NX
i

(xi� < x >)2

�2
i

where < x >=

P
i
xi=�

2

iP
i
1=�2

i

(5:23)

We can use this �2 to extract an estimate of the systematic error in analogy with

the S-factor method of the Particle Data Group. [28] Let us consider the case

where �2=(N � 1) > 1. We can say that this inconsistency arises because the

split sample true errors are all underestimated because of an unknown systematics

problem. If all subsample errors are scaled up to �i
p
�2=(N � 1), the new �2

per degree of freedom will automatically be unity. In addition, the statistical

error for the weighted average of the subsample estimates

�� =
1qP
N

i
1=�2

i

(5:24)

will be increased by the same factor and become a \scaled error" (~�) of:

~� = ��
q
�2=(N � 1) =

s
< x2 > � < x >2

N � 1
(5:25)

94



where we use the weighted averaging brackets < > de�ned in Eq. (5.23). Let

�f be the statistical error returned by the �tter on the unsplit data set. Our

procedure is to quote a \split sample" systematic error of:

(5.26)

�
split
sys =

q
~�2
� �2

f
If ~� > �f

�
split
sys = 0 If ~� � �f

By construction this systematic error is able to separate true indications of sys-

tematics problems from normal statistical 
uctuations. Furthermore the er-

ror ~� and �sys will tend to be independent of the number of subsamples N

and thus satisfy Goal B. As one increases N the variance of each subsample

(< x2 > � < x >2) will grow proportional to N since the statistics of each

sample is reduced by a factor of 1=N . The factor of N � 1 in Eq. (5.25) will

tend to cancel this growth, while simultaneously making the result degenerate at

N = 1. This property is desired since one can't assess split sample systematics

without splitting the sample!

We turn next to a discussion of �t variant systematics. We now try to see if we

can extend the split sample systematics method to cover �t variant systematics.

This would insure that we meet the criteria of a common currency (Goal A). The

�t variant systematics is di�erent from the split sample systematics in the three

following respects:

1. We assume that the �t variants are all a priori likely. This means we should

not use the weighted average implied by Eq. (5.23) but rather use a straight

average: < x >=
PN

i xi=N .

2. Furthermore, we are not making a combined average of the �t variants

where each variant is adding independent information. As a result we

should remove a factor of 1/
p
N in the ~� expression which re
ected the

fact that we were averaging the N split samples to get an error on the
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combined sample. In this sense we were trying to get the error on the mean

of a set of parameters. Now we are trying to assess the actual rms spread

in a set of estimators rather than the spread on the mean. The answers to

these two questions di�er by 1=
p
N .

3. Lastly there is no need to subtract the statistical variance from ~�2, since

the �t variations should essentially have fully correlated statistical errors.

Making these modi�cations we get:

�variant
sys =

sP
N

i
x2
i
�N < x >2

N � 1
(5:27)

Eq. 5.27 is the expression for the sample standard deviation and di�ers from the

population standard deviation by N ! N � 1

Because Eq. 5.27 for the \�t variant" systematic error is really a special case

of Eq. (5.25) we automatically have a common currency of errors. In addition

the sample standard deviation should be roughly independent of the number of

events in the sample so long as reasonable �t variants actually follow a normal

distribution.

Lastly we believe that �t variant systematics, which re
ect uncertainty in

technique, are essentially independent of split sample systematics, which indicate

uncertainty of modeling as gauged by the degree of internal inconsistency of the

data. For this reason we would add the �t variant systematic error to the split

sample systematic error in quadrature to get the combined systematic error. We

report in tables 5.17 the �nal results and systematic errors. The split sample

systematic errors are calculated according to equation 5.26 using low and high

momentum samples. The �t variants considered are:

� Using helicity amplitudes.

� Fitting the airgap sample.
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� Setting the error on the signal fraction �F to in�nity.

� Fitting a sample reconstructed with the stand-alone vertexer (Sec.

4.1.6.2)

� Setting the Blatt-Weiskopf vertex form factors FD; Fr to unity.

Table 5.17 Fit Results

Parameter D+ D+s

�
K

�

(892)0K+
0o (�xed) 0o (�xed)

���+ �159� 8� 11o 178� 20� 24o

�
K

�

(1430)0K+
70� 7� 4o 152� 40� 39o

�f0(980)�+ - 159� 22� 16o

�fJ(1710)�+ - 110� 20� 17o

f
K

�

(892)0K+
0:301� 0:020� 0:025 0:478� 0:046� 0:040

f��+ 0:292� 0:031� 0:030 0:396� 0:033� 0:047

f
K

�

(1430)0K+
0:370� 0:035� 0:018 0:093� 0:032� 0:032

ff0(980)�+ - 0:110� 0:035� 0:026

ffJ(1710)�+ - 0:034� 0:023� 0:035

5.5 Assessing Goodness of Fit

It is clearly important to be able to quantitatively report on how well the

measured intensity function actually matches the data.
27

For one dimensional

distributions, a standard technique is to bin the data into a histogram, overlay

the �tted prediction and quote a con�dence level based on the value of �2, which

describes how well the predicted bin contents matches the observed populations

given the number of degrees of freedom in the histogram.

27 This section is borrowed from Ref [34].
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Figure 5.23 D+ systematic checks: A) Decay fractions; B) Fitted phases.
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Figure 5.24 D+
s

systematic checks: A) Decay fractions; B) Fitted phases.
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The case of two dimensional distributions is somewhat more problematic. The

ARGUS collaboration [16] discusses the use of a con�dence level test to assess

goodness of �t which is based on the log likelihood distribution for an ensemble

of simulated data sets. The idea here would be to quote a con�dence level as the

fraction of times the log likelihood variable (w) for simulated data sets exceeds

the actual log likelihood variable returned by the �t to the data. Each simulated

data set would in principle be generated with the measured intensity returned

by the �t. We call this method of assessing the goodness of �t the \likelihood

con�dence level". The ARGUS collaboration made the very useful observation

that in typical �ts to the Dalitz plot, the number of �t parameters is often so

large that the w variable for an ensemble of �ts closely approximates a Gaussian

distribution with a centroid and variance given by:

< w >= N

Z
I(~x)[�2� ln I(~x;�)]d~x � n (5:28)

�(w2) =

s
N2

Z
I(~x; ~�)[�2� logI(~x; ~�)]2d~x � (< w > +n)2 (5:29)

where the integrals range over the Dalitz variables, ~x = (M2

ab
;M2

ac ), and use the

e�ciency corrected intensity for the parameters returned by the �t, ~�. n is the

number of �t parameters andN is the number of signal events predicted by the �t,

F�number of signal region events: We con�rm that the ARGUS approximation

works beautifully for our Dalitz �ts as well, thereby saving the computer time

required to generate ensembles of datasets.
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Figure 5.25 Illustration of the likelihood con�dence level for an ensemble of

simulated data sets.

Through the inclusion of a su�cient number of amplitudes, the ARGUS Col-

laboration [16] was generally able to produce �ts with an acceptable, likelihood

con�dence level. Our experience has been quite similar; we are always able to

�nd at least one �t to the KK� Dalitz plots with a likelihood con�dence level

which exceeded 30 %. On the other hand, we often notice (See Section 5.3) a pat-

tern of statistically signi�cant discrepancies between the predicted and observed

histograms of the individual mass squared projections.
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We are of the opinion that although an acceptable likelihood con�dence level

is a necessary and important condition for a good �t it is not a su�cient condition.

We have developed what we feel is a more stringent criteria for goodness of �t in

response to our observation that �ts with poor con�dence levels based on �2 tests

to the various mass-squared projections often have quite acceptable con�dence

likelihoods. The reasoning that led to our conclusion that an acceptable likelihood

con�dence level is insu�cient information to conclude that one has an acceptable

�t can be most easily explained using a hypothetical example.

Imagine that one is trying to �t intensity distributions to a parameterized

wave function using a model that assumes that the state is in an s-wave and is

therefore isotropic in angle. In reality, let us say that state is in a p-wave. The

log likelihood will depend on radius only and thus data for a p-wave state with

the same radial wave function will match the expected log likelihood distribution

as the s-wave model. But clearly s-wave and p-wave distributions can be dis-

tinguished by looking at angular distributions. Even though the s-wave �t has

an acceptable likelihood con�dence level the s-wave hypothesis does not actually

\�t" the wave function. Under the s-wave assumption, radial distribution can be

transformed into a projection in log likelihood. This projection is clearly blind

to the orthogonal, angular variations of the intensity. A really good model, once

tuned from the visible, likelihood projection, will correctly predict the hidden,

orthogonal projection as well as correlations between the two projections.

In spite of this view, however, we feel that the likelihood con�dence level does

have special signi�cance as a necessary condition for a reasonable �t. One often

extracts physical parameters using models with arbitrary or minimal parameter-

izations of those details of the distribution deemed unimportant to the physics (

eg polynomial backgrounds in a �t to a mass distribution). One is generally con-

cerned that a �t looks good for the physics features one is trying to measure and

is not as concerned that the �t fails to match less relevant aspects of the distri-

bution. The likelihood con�dence level describes how well the model matches the

intensity variations expected in the context of the model but ignores unexpected
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variations along the likelihood contour. A very poor likelihood con�dence level

means that the model can't adequately �t the data along the projection most

sensitive to the assumed physics of the model and thus leads one to question the

validity of the model as well as the �t parameters returned by the �t. A good

likelihood con�dence level obtained in a �t with poorly �t projections might be

excused by saying that the model is over simpli�ed but the features we were

looking at in the extraction our measurements are well reproduced.

Because of the aforementioned problems associated with assessing goodness of

�t through single projections, we turned to a �2 test based on dividing the Dalitz

plot into two dimensional bins using the adaptive binning algorithm discussed in

Sec. 5.2.2 and our �nal �tted amplitudes. To insure the validity of the �2 test,

we required that each bin chosen by the adaptive binning algorithm preserved

a minimal number of predicted and observed counts (typically greater than 10).

We thus felt that we had achieved a statistically valid �
2 test over the �nest

binning scales supported by our sample size.

We typically ran the algoritm to �nd a two dimensional �2 based con�dence

level as well as the location of the most troublesome bins which supplied the

biggest contributions to the overall �2. Subjected to this adaptive binning �2

criteria, poor �ts of the amplitude model was the rule rather than the exception.

For example, our best �ts produced the �2 reported in Table 5.18.

Table 5.18 Goodness of the Fits

Parent ARGUS 2-Dimen.

Meson �2 lnL < �2 lnL > CLV L �2=DOF

D+ -723 �771� 117 34:2% 92.2 (44 dof)

D+
s

-1075 �966� 129 80:2% 50.2 (33 dof)

In the Table we quote a naive number of degrees of freedomwhich, as we described

in Sec. 5.3.2, underestimates the true number of degrees of freedom. To insure

that these poor �2 are not artifacts of ignoring resolution, or approximations in
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modeling the e�ciency, we also apply the adaptive �2 test to full Monte Carlo

simulations of the decays. As expected, the Monte Carlo samples produced very

acceptable �2, thus leading us to conclude that the problem lay with the overly

simpli�ed physics of the amplitude model we have used. illustrates the severity

of our best �ts miss-match to the data. The �gure shows each adaptively chosen

bin's contribution to the over all �2 for the Dalitz plot. Fig. 5.26 shows the ratio

of the number of observed to predicted events in each of these bins. The pattern

of the disagreement, with the ratio straying further from unity at regions removed

from the landmark resonance regions, could be caused by an interference with

either an unknown broad resonance overlapping in that region (but not others),

or by an essentially nonresonant term with a slowly varying phase. Although

we cannot isolate a unique cause for this discrepency it has led us to conclude

that given enough data one will �nd that all strong interaction e�ects which

a�ect nonleptonic charm decay cannot be modeled as a pure linear combination

of Breit-Wigner resonances with constant strengths and relative phases.

5.6 K+K��+ Branching Fractions

An important application of the present Dalitz amplitude analysis is the

extraction of branching fractions into the inclusive K+K��+ �nal state. Often

[28] for convenience, \branching fractions" are quoted for the decays of charmed

particles into particular intermediate state resonant modes (eg. D+
! ��+)

which because of the possibility of interference should actually be described by

amplitudes rather than partial widths.
28

The amplitude �ts described here

automatically take into account the small but non-negligible e�ects of interference

as well as providing a detailed intensity model for correcting the inclusive yield

to account for non-uniformities in the acceptance across the Dalitz plot.

28 Although the charm particle decay into resonant intermediate states should be described by

an amplitude rather than an intensity, we quote \branching fractions" into the intermediate

two-body resonant states to allow comparison of our results with other groups in Table 5.19.
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Figure 5.26 The ratio of the number of observed to predicted events in each of

the bins used calculate the two-dimensional �2.
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We have resisted the temptation to quote branching fractions for any of

the decays mentioned in Tables 5.17 other than the landmark �nal states

K
�

(892)0K+ and ��+ or set an upper limit on nonresonant (phase space)

K+K��+ decays. Although we have presented evidence for the presence of each

of the broad resonances included in our �ts, we lack su�cient statistics to exclude

alternative �ts where the set of resonance contributions is expanded. Because of

interference e�ects, these broad resonance contributions can 
uctuate wildly in

expanded �ts while the the landmarkK
�

(892)0K+ and ��+ contributions remain

stable within quoted errors.

Because the existing D+
! K+K��+ absolute branching fraction measure-

ment is based on a very low statistics sample [36], we extract ratios of partial

widths for the D+ decays
29

by using the following formula:

�(D+
! ��+)

�(D+
! K��+�+)

=
1

�(D ! K��+�+)
�

�(D ! K+K��+) f(D ! ��+)

B(�! K+K�)
(5:30)

The experimental ratio
�(D+!K+

K
�

�
+)

�(D+!K��+�+) represents the ratio of e�ciency corrected

yields for D+
! K+K��+ and D+

! K��+�+ and has a value of 0:0976 �

0:0042 � 0:0046: The second factor is the current world average [28] absolute

branching fraction for D+
! K��+�+.

30
We compare our measured branching

ratios to other recent measurements in Table 5.19.
31

It is interesting to compare these measurements to model predictions. We

can convert the ratios of partial widths in Table 5.19 to absolute branching

ratios by multiplying by the world average [28] absolute partial width of the

D+
! K��+�+ decay

32
. Both the BSW [4] and BLMPS [37] models employ

29 We neglect the D
+
s branching fractions because it depends on the theoretical ratio

�(D+
s
!��

+
�)

�(D+!K
�

(892)0�+�)
, which is not well determined. It lies in the range 0.78 - 1.02. [28]

30 We use our published [17] amplitude forD+
! K

�

�
+
�
+ to get the K�� e�ciency corrected

yield.
31 The �rst error is statistical, the second is systematic, the third is due to the theoretical

uncertainty in
�(D+

s
!��

+
�)

�(D+
!K

�

(892)0�+�)
: See Appendix B for additional remarks about the esti-

mation of branching fraction errors.
32 It has a value 0:091� 0:006.
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factorization of the decay amplitude. In addition, BLMPS includes a contribu-

tion from �nal state interactions. The comparison of our results and the models

is shown in Table 5.20 below.

Table 5.19 Ratios of Partial Widths

Exp.
�(D+!K

�

(892)0K+)
�(D+

!K��+�+)
�(D+

!��
+)

�(D+
!K��+�+)

this work 0:044� 0:003� 0:004 0:058� 0:006� 0:006

CLEO 0:077� 0:011� 0:005

NA14 0:098� 0:032� 0:014

WA82 0:062� 0:017� 0:006

E691 0:058� 0:009� 0:006 0:071� 0:008� 0:007

MARK III 0:048� 0:021� 0:011 0:084� 0:021� 0:011

Table 5.20 Comparison of Absolute Branching Ratios

this work BSW [4] BLMPS [37]

�(D+
!K

�

(892)0K+)
�(D+

!all) 0:0040� 0:0003� 0:0004 0.0044 0.0025

�(D+
!��+)

�(D+
!all) 0:0053� 0:0006� 0:0006 0.0028 0.0059

Very generally speaking, BSW agrees with our measured K
�

(892)0K+ branching

ratio, whereas BLMPS matches our value for the ��+ fraction. In Sec. 5.7 we

discuss �nal state interaction e�ects.

5.7 Comments About Final State Interactions

Although much of the interest in Dalitz amplitude analyses is centered on

the measurement of new charm branching ratios, the �tted relative phases f�g

provide important information about strong rescattering e�ects in the �nal state.

It is instructive to borrow the phenomenology of neutral kaon decay to infer

information from the present Dalitz analysis.
33

In the decays K ! ��, the

33 This discussion borrows material from Secs. VIII-4 and IX-2 in Ref. [30]
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s� wave di-pion �nal state has a total isotopic spin of either 0 or 2. Thus, such

decays can be parameterized by the amplitudes

AK0
!�+�� = jA0jei�0ei�0 + jA2jp

2
ei�2ei�2 ;

A
K
0

!�+��
= �jA0jei�0ei�0 � jA2jp

2
e�i�2ei�2

(5:31)

The subscripts 0 and 2 represent the isospin quantum number. The phases �0;2

parameterize CP-violation, whereas the phases �0;2 model scattering of the two

outgoing pions (i.e., �nal state interactions). Note that under the CP operation,

i� becomes �i� but i� does not change. In the limit of no CP-violation (i.e., �!
0), Watson's theorem tells us that all imaginary phases (i.e., phases consistent

with 90o) in the decay amplitude are due to �nal-state interactions.

Our amplitudes for KK� decays of charm follow a similar construction. Very

generally speaking, the particle/anti-particle decay amplitudes are written (see

Sec. 5.2) as follows:

A / 1

m2(K��+)�
�
mK� � i�K�2

�2 +
1

m2(K+K�)�
�
m� � i

��
2

�2 ei(����K�)

A / 1

m2(K+��)�
�
mK� � i�K�2

�2 +
1

m2(K�K+)�
�
m� � i���2

�2 ei(����K�)

(5:32)

To the extent that �� andK�K �nal state interactions are elastic (ie, the process

�� ! K�K is ignorable) and there are no narrow �� orK�K resonances to induce

rapid phase shifts in the KK� mass region M(D+) < M(KK�) < M(D+
s ), we

would expect same relative ��=K�K phase for the D+ and D+
s . In other words,

j sinDs
(�� � �K�)j ' j sinD+(�� � �K�)j

is what we expect. Our �ts obtain
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�� � �K�

D+ �159� 8� 11o

D+s 178� 20� 24o

which obtains j sin(��� �K�)j ' 0 for both the D+ and D+s . From our comments

at the beginning of this section, this �nding suggests that there is either very little

�nal state rescattering between the outgoing ��+ and K
�

(892)0K+ channels at

charmed mass scales, or the rescattering is the same and the phase shift cancels.

However, if we compare the di�erence in �tted phase for the K�(1430)K+ and

K�(892)K+ channels, we have

�K�(1430) � �K�

D+ 70� 7� 4o

D+
s 152� 40� 39o

which are consistent at about the 1:46 standard deviation level. They are also

consistent with relatively imaginary phase, which indicates there are consider-

able �nal state interactions between these two channels. We knew from visual

inspection that the pattern of interference with the upper K�(892) lobe required

interference from a relatively imaginary amplitude so the large degree of FSI was

apparent from the start (see L4 in Fig. 5.14).

5.8 Closing Remarks

We have presented a D+;D+
s ! K+K��+ Dalitz plot analysis. Al-

though both decays are dominated by the two-body intermediate states ��+

and K
�

(892)0K+, they display dramatic di�erences. The bottom line is that

while the physics included in our formalism describes the gross features of the

data, it fails to mimic the �ne interference structures in these decay amplitudes.

Future experiments with larger datasets may be able to provide clues about more

complete models which include more strong interaction e�ects.
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Chapter 6

The D+;D+
s
! �+���+ Dalitz Plot

In this chapter we analyze the decays D+;D+
s
! �+���+ (and charge con-

jugate). [38, 39] We will show that the di-pion spectra of the D+ and Ds are

dominated by the intermediate ��+ and f0(980)�
+ resonances. Previous Dalitz

amplitude analysis of these states has been reported by the E691 Collaboration

[22]. Our resulting branching fractions are consistent with these previous mea-

surements.

Because of the relative rarity of three-pion D+ and D+
s

decays, and the

harshness of cuts required to pull these signals over the very copious three-pion

combinatoric background, we are left with signal yields which are about an order

of magnitude smaller than the KK� samples we analysed in Chapter 5. This

statistical limitation hinders our ability to consider more than just two amplitude

contributions. We are able to obtain satisfactory �ts using (in both cases) a single,

dominent di-pion resonance interfering with a constant, nonresonant amplitude.

Due to our limited statistics we are unable to determine to what extent this

constant ampltude contribution is in fact a real decay amplitude or rather an

amplitude which we included to represent a collection of broad resonances which

appear as nearly constant amplitudes over the kinematical region of the Dalitz

plot.

The chapter begins with a description of the cuts used to bring out the signal.

We next outline the background model, e�ciency correction and the (neglible)

mass resolution e�ects. Next we describe the �t formalism, which is slightly

modi�ed by the need to Bose symmetrize the amplitudes. Finally, the Dalitz �t

results are presented and the branching fractions are calculated.

6.1 The D+;D+
s
! �+���+ Signal

The global vertex skim, which requires evidence for multiple vertices without

regard to speci�c decay modes (as described in Chapter 4), provides a minimum
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bias dataset for our analysis.
1

We search these skim tapes for three-body all-

charged �nal states which satisfy the following cuts:

(a) the con�dence level of the secondary vertex (DCL) exceeds 10%.

(b) Znorm
secondary > 5, Znorm

primary < 0, Znorm
TR1 < 0.

(c) Second-level trigger satis�ed.

(d) CL1 < 30%, con�dence level of the primary vertex (PCL) greater than

20%.

Figure 6.1 Invariant mass of histograms of the �+�+�� signals under various

cuts described in the text. The curves represent �ts to Gaussian signal peaks over

a 4th order polynomial background. In each case the Gaussian width is �xed to

the value obtained in Monte Carlo. The Dalitz amplitide �t is performed on the

`Analysis Sample.'

The normalized measures of the Z-component of the secondary vertex with re-

spect to the experimental target and the TR1 trigger counter are as de�ned in

Eqs. 5.1 and 5.2. Znorm
primary is the normalized z-component of the primary vertex

1 In the early stages of this analysis, we were concerned that a skim-level �Cerenkov cut might

reject too many events, so we elected to skim only on the vertex topology of the event.
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with respect to the downstream end of the beryllium target Ztarg -

Znorm
primary =

Zprimary vertex � Ztarg

�(Zprimary vertex)
(6:1)

The cuts (b) allow us to require the primary vertex is ststistically consistent

with charm production in the experimental target while the secondary vertex

is consistent with coming from the airgap between the beryllium and the �rst

detector element, TR1. As in the case of the KK� analysis, this airgap cut

reduces background due to hadronic reinteractions in the target and detector

material.

The invariant mass histogram obtained upon applying these baseline cuts to

the global vertex data is displayed in Figure 6.1. The peak at low mass is due

to �Cerenkov misidenti�cation of the Cabbibo favored decay D+
! K��+�+ as

D+
! ���+�+: By imposing a hard cut on the opposite sign pion, ISTATP =

2 or 3, we greatly reduce this background. Additional contamination is due

to �Cerenkov misidenti�cation of D�+
! D0�+ ! (K��+)�+ as the tri-pion

state. We remove this re
ection by cutting events with K�� mass consistent

with the D�+ region, 1:988 < mK�� < 2:030:. After applying the baseline cuts,

the �Cerenkov cuts (ISTATP = 2 or 3 on the opposite sign pion) and the D�+

re
ection cut, we obtain the �nal signal characterized in Table 6.1 below and

shown in Figure 6.1. This signal is used for our amplitude �ts.

Table 6.1 Sample Statistics

Parameter D+ D+
s

Yield 74� 12 49� 9

Mass (GeV=c2) 1:869� :0021 1:966� :0027

Width � (GeV=c2) 0.01359 (�xed) 0.01420 (�xed)

Integrated Signal:Background 2:42� :609 5:16� 1:17

Signal Fraction F0 :708� :052 :838� :031

Overall E�ciency (%) 1:0� 0:01 0:5� 0:01
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The �tted widthes are �xed to the values obtained from a cc Monte Carlo simu-

lation. The �t function overlaid on the mass histogram is two Gaussians plus a

quadratic polynomial to model the background. Note the signal widths are not

well reproduced by the Monte Carlo widths. This mismatch may simply be due

to 
uctuations with small statistics.

We will use the same maximum likelihood method employed in the KK�

Dalitz analysis for the ��� decay. Hence, the next step is to de�ne signal and

sideband regions. The sidebands are all 2� wide and are separated from the

signal regions by 1�. We characterize them below in Table 6.2.

Table 6.2 Signal and Sideband Regions

Region Mass cut (GeV=c2) Events

D+ low sideband 1:801 < m(KK�) < 1:828 25

D+ signal region 1:842 < m(KK�) < 1:896 106

D+ high sideband 1:910 < m(KK�) < 1:937 13

D+
s
low sideband 1:895 < m(KK�) < 1:924 11

D+
s
signal region 1:938 < m(KK�) < 1:995 58

D+
s
high sideband 2:009 < m(KK�) < 2:037 4

An essential question in �tting the amplitude is what channels to include in

the amplitude sum Eq. 2.10. Our choice is guided by landmarks in the di-pion

mass projections shown in Fig. 6.2 for the D+ and D+
s
. Because there are two

neutral dipion combinations (�+��low and �+��high) for every �+�+�� decay,

we increment the Fig. 6.2 histograms twice for each tri-pion combination. The

dominant resonance in the D+ di-pion spectrum appears to be the �(770), while

that for the D+
s is the f0(980). Both the D+ and D+

s projections appear to con-

sist of these resonance peaks along with either broad or non-resonant structures

over a background. Given our limited statistics, we chose to model this broad

constribution with a single constant, nonresonant amplitude which might well be
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a stand in for a complex mix of broad resonances. Hence our model for the D+ is

a mixture of three-body nonresonant which interferes with �(770)�+. Our model

for the D+
s
is a mixture of three-body nonresonant and f0(980)�

+.

D+ D+
s

Figure 6.2 The summed mass-squared projections (i.e., m2

low+m
2

high) for signal

region events in the D+ and D+
s mass peaks. We expect statistically signi�cant

resonance structures to show up as bumps on these plots. Some evidence for �

and f0 are indicated on these projections. Data are points with error bars, large

histogram is the predicted sum of signal and background, and the small histogram

is the predicted background distribution. These predictions are described in the

text.

The Dalitz scatterplots for the D+ andD+
s signal regions are shown in Figure 6.3.

We plot the higher �+�� squared mass on the vertical axis and the lower �+��

squared mass on the horizontal axis. In this way, each datum occurs only once on

this so-called folded Dalitz plot. It is useful to compare the Dalitz plot obtained

in the data to the simulated Dalitz plots of known di-pion resonances shown in

Fig. 6.4. The D+
s Dalitz plot reproduces the \L" band structure of the f0(980)

simulation while the situation for the D+ is far less obvious. Although the �

appears clearly in the D+ di-pion projection, the Zemach zero (quite evident in

the simulated Dalitz plot for �(770)) is very di�cult to see in the data. Perhaps

it is being populated by background and/or nonresonant contributions.
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Figure 6.3aDalitz scatterplot for theD+ ! �
+
�
+
�
� �nal state.

Figure 6.3b Dalitz scatterplot for the D+
s
! �

+
�
+
�
� �nal state.
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Figure 6.4 Simulated decay channels on the D+ Dalitz boundary.
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6.2 Background Parameterization

Because our background sample is very small, we do not have the statistical

strength to model the sideband distributions as a polynomial in the Dalitz vari-

ables as we did for the ��� Dalitz plots. Instead, we model the ��� background

Dalitz distributions with a 
at intensity corresponding to a phase space popula-

tion. Therefore we assume that the normalized background probability density

function is simply

pdfbg =
1

R
DP

dDP
(6:2)

We compare this model to the sideband data in Figs. 6.5 and 6.6 where we show

the reconstructed and predicted event distribution in each sideband for the D+

and D+s . On the scatter plot the solid contours represent the sideband central

values and the dashed lines the signal region central values. As always, the mass-

squared projections are plotted with the sideband data shown as the points with

error bars, the phase-space prediction as the histogram.

We assess the quality of this background model via the likelihood con�dence

levels, as described in Sec. 5.5. These con�dence levels are listed in Table 6.3.

It appears from this table that,within our limited statistics, a pure phase space

description is consistent with the Dalitz plot of the sideband data.

Table 6.3 Sideband Fit Quality Assesment

Region �2 logLfit

sb h�2 logLfit

sb i CLV L(%)

D+ LSB 39.97 40:1� 0:47 61.4

D+ HSB 27.4 27:5� 0:50 59.4

D+s LSB 22.5 22:6� 0:44 58.4

D+s HSB 10.2 10:2� :22 53.5
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Figure 6.5 D+ sideband Dalitz plot �t. A) - D) are the low sideband repre-

sentations; E) - H) the high sideband. In the histograms, the points with error

bars are the data, the histogram the prediction of the polynomial model. In the

Dalitz scatterplots, the Dalitz boundary is drawn with respect to the center of

the respective sideband.
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Figure 6.6 D+
s

sideband Dalitz plot �t. A) - D) are the low sideband repre-

sentations; E) - H) the high sideband. In the histograms, the points with error

bars are the data, the histogram the prediction of the polynomial model. In the

Dalitz scatterplots, the Dalitz boundary is drawn with respect to the center of

the respective sideband.
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6.3 E�ciency Correction and Resolution E�ects

Using the standard acceptance correction method described in Section 5.2.2,

we obtain the acceptance correction binning shown in Figs. 6.7 and 6.8. For the

D
+ Monte Carlo sample we use an amplitude consisting of a coherent superposi-

tion of nonresonant and �(770)0�+; whereas the D+
s
sample employs nonresonant

and f0(980)�
+: The �nal Monte Carlo samples which pass the analysis cuts are

138 and 77 times as large as the data, for D+ and Ds, respectively. The RMS

variation of the e�ciency correction factors is shown in Table 6.4.

Table 6.4 RMS Variation of Relative E�ciencies

Parent Particle RMS Variation

D+ 0.191

Ds 0.213

We do not expect resolution e�ects to induce signi�cant biases in our �nal re-

sults. To check this simpli�cation, we �t an (approximately) uncorrelated Monte

Carlo sample, i.e., the �rst 1000 events of the sample we used to obtain the ef-

�ciency correction. This sample manifests resolution of the Dalitz observables

since it was created with the ROGUE spectrometer simulation. If our simpli�ca-

tion is reasonble, a �t to the �rst 1000 events should obtain results statistically

consistent with the generation parameters. Tables 6.5 and 6.6 con�rm that

neglecting resolution introduces no signi�cant bias in the �tter.

Table 6.5 D+ Resolution Test

Parameter Generation Value Fitted Value

aPS 1:22 1:22� :05

a� 1.0 (�xed) 1.0 (�xed)

(continued)
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Table 6.5 D
+ Resolution Test (continued)

�PS �35:4o �36:0� 3:2o

�� 0:0o (�xed) 0:0o (�xed)

fPS(%) 60:0 60:0� 2:0

f�(%) 40:3 40:3� 2:0

Table 6.6 Ds Resolution Test

Parameter Generation Value Fitted Value

aPS 1:36 1:30� :10

af0 1.0 (�xed) 1.0 (�xed)

�PS 24:5o 24:3� 5:0o

�f0 0:0o (�xed) 0:0o (�xed)

fPS(%) 48:2 46:4� 3:1

ff0(%) 26:0 27:6� 2:8

6.4 Fit Formalism

As usual, we write the amplitude for D+;D+s ! �+�+�� as a coherent sum

of amplitudes as follows:

A = a0e
i�0 +

X

resonances i

aie
i�iMi

where the �rst term represents the nonresonant contribution and the resonant

amplitudesMi are Bose-symmetrized. They are written as follows -

Mi = Bi(abcjr) +Bi(acbjr) (6:3)

The functions B take the form of the entries in Table 2.1. As always, the a; b; c

label the �nal state particles and de�ne our phase convention. The momentum

121



Figure 6.7 Bins resulting from running the adaptive binning algorithm on the

high statistics D+ ! �
+
�
+
�
� Monte Carlo sample. Within each bin i we cal-

culate the e�ciency according to �i =
n

i

reconstructed events

n
i
predicted

: We emphasis the binning

by suppressing the resulting bin-by-bin e�ciency factors from the �gure.
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Figure 6.8 Bins resulting from running the adaptive binning algorithm on the

high statistics D+
s
! �

+
�
+
�
� Monte Carlo sample.
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vectors are in the reference frame of the decaying intermediate resonance. So,

according to Eq. 6.3 we write the amplitude for the f0�
+ channel as Mf0�+ =

S
�
(�+��)lo�

+
�� f0]+S

�
(�+��)hi�

+
�� f0]: The remaining amplitudes are similarly

constructed.

We perform a continuous likehood �t to the Dalitz plot. The normalized

probability density function for the signal is

pdfs = �
AsA�s
Ns

where Ns is the integral across the Dalitz plot of the product AsA�s. The like-

lihood function is a continued product (over the signal region events) of the

(weighted) sum of the signal and background probability density functions -

Ls =

srY
fFpdfs + (1�F)pdfbgg

As always, we use MINUIT to minimize the w = �2 lnL function. It is written

as follows -

wsignal region = �2 lnLsr

= �2
X
sr

lnfFpdfs + (1 �F)pdfbgg+

�
F �F0
�F0

�2 (6:4)

The additional �2 term ,
h
F�F0

�F0

i2
, allows the background normalization to vary

within erors. Recall that the background model �t parameters are �xed (i.e., the

background is taken to have a purely phase-space distribution), so the function

w does not contain a term for varying the background pdf , unlike Eq. 5.11 in

Chapter 5.

6.5 Fit Results

The standard amplitude for the D+ is a coherent sum of nonresonant and

�(770)0�+ channels whereas theD+
s amplitude is written as a sum of nonresonant

and f0(980)�
+. The resulting �ts are shown in Figs. 6.9 and 6.10 and are listed

in the following tables.
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Table 6.7 D
+ Fit Results

fNR 0:650� 0:091� 0:0523

f�(770)�+ 0:353� 0:091� 0:0518

�NR 0:0o (�xed)

��(770)�+ 22:8� 12:9� 2:2� 3:8o

�2ln(L) 157.9

ARGUS conf. level (%) 46.6

�2 5.65 (5 DOF)

Table 6.8 D+
s Fit Results

fNR 0:981� 0:144� 0:0896

ff0(980)�+ 1:241� 0:126� 0:0404

�NR 0:0o (�xed)

�f0(980)�+ 84:3� 9:5� 10:6o

�2ln(L) 108.8

ARGUS conf. level (%) 40.1

�2 1.34 (2 DOF)

We note a dramatic di�erence in the amount of interference found in the decay

of the D+ and D+
s . The former obtains a decay fraction sum of 1:00 whereas

the latter obtains 2:22. The relative simplicity of our ��� �ts allows us to easily

motivate this observed di�erence in interference by using analytic arguments.

Recalling our informal discussion of decay amplitudes in Sec. 2.2.1, we consider

the total decay intensity

I =
X

i;j

AiA
�
j

=
X

i

jAij
2 +
X

i;j 6=i

AiA
�
j

(6:5)
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Figure 6.9 Results of the D+ ! �+�+�� amplitude �t. Mass-squared projec-

tions are as indicated. Points with error bars are the data; large histogram is

the predicted signal + background; small histogram is the predicted background

distribution. All points are singly plotted (as per the prescription of the folded

Dalitz plot). Bottom plot shows the adaptive bin-by-bin absolute �2 obtained

from the �t.
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Figure 6.10 Results of the D+
s
! �+�+�� amplitude �t. Mass-squared projec-

tions are as indicated. Bottom plot shows the adaptive bin-by-bin absolute �2

obtained from the �t.
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We consider the sign of the interference terms
P

i;j 6=iAiA
�
j . Using arguments

identical to the example of Sec. 2.2.1, we determine the pattern of interference

on the ��� Dalitz plots to be as displayed on Fig. 6.11.
2

Note the tremendous

interference detected in the D+
s �t.

3
Also note the �tted phase �f0 is consistent

with the case of relatively imaginary (i.e., � ' 90o) amplitudes, which implies

maximal interference. Onn the other hand, the D+ interference pattern is con-

sistent with the case of relatively real amplitudes.

To estimate the systematic errors, we add in quadrature the \split sample"

and the \�t variant" systematic errors, as described in Chap. 5. We divide the

data into high (p > 90GeV ) and low momentum (p < 90GeV ) samples for the

former, and use the following �t variants to assess the �t variant systematics:

helicity amplitudes, �xing the Blatt-Weiskopf form factors FD and Fr to unity

and letting the background normalization vary without constraint (i.e., �F !1).

The largest systematic uncertainty is due to the background level.

The next step is to test the technical correctness of the �t (i.e., \are the

statistical errors returned by MINUIT correct, are the �t parameter estimates

unbiased ?"). To address these questions we ran mini-Monte Carlo trials consist-

ing of 1000 experiments each containing statistics identical to that in the data

(see Table 6.2). We show in Figure 6.12 (D+) and 6.13 (Ds) the deviations of the

�t parameters obtained from �tting each of these samples. To the extent these

plots are unbiased (i.e., mean consistent with 0) and have widths comparable to

the statistical error returned by MINUIT, the �t is technically correct. In both

cases the decay fractions are fairly unbiased and the returned estimators have

widths commeasurate with the statistical errors returned by the �t. Contrary to

our �nding of negligible bias (due to mass resolution e�ects) in the phases � in

Sec. 6.3, signi�cant biases are observed for the two phases.

2 In the �gure, we disregard complications due to the folded Dalitz boundary.

3 The Ds and D+ decay fractions sum to 2.22 and 1.00, respectively.
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Vector / NR

Scalar / NR

Figure 6.11 Sign of the interference terms in Eq. 6.5 for the D+ (top row)

and D+
s
(bottom row) decays to �+�+��. For the Ds decay, relatively real (� =

00) amplitudes contribute zero net interference, relatively imaginary amplitudes

contribute large amounts of inteference to the intensity function. Similarly, � = 0o

and � = 90o correspond to zero and maximal net interfernce, respectively, for the

D+
! �+�+�� �t. For the �, the total interference cancels independent of the

�tted phase but the pattern of interference is sensitive to whether the phase is

real (i.e., � ' 0o) or imaginary (i.e., � ' 90o).
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These results are summarized in Tables 6.9 and 6.10.
4

Table 6.9 D
+ Mini-Monte Carlo Checks

Parameter �MMC �fitter Bias

���+ 13:4o 12:9o 1.17

fNR 0.084 0.091 -0.11

f��+ 0.085 0.091 0.10

Table 6.10 D+
s Mini-Monte Carlo Checks

Parameter �MMC �fitter Bias

�f0�+ 8:1o 9:50 1.22

fNR 0.151 0.144 -0.03

ff0�+ 0.122 0.126 -0.25

We next employ likelihood con�dence levels and adaptive two-dimensional

�2 tests to assess the ability of the �tter to mimic the data. The likelihood

con�dence levels are 52% and 61% for the D+ and Ds, respectively. The bin-

by-bin contributions to the two-dimensional �2 are shown in Figures 6.14 and

6.15. Although the biggest �2 bin contribution implies only about a 1.5 standard

deviation discrepancy. we �nd it disconcerting that the biggest discrepancies are

in the region of the D+ � band close to the �0s Zemach zero. In light of the

weak visual evidence of the � Zemach structure in the Dalitz plot (i.e. it's \�lled

in" in the data) this discrepancy is not surprising. This mismatch between the

�t prediction and the data probably means, once again, that our model is over

simpli�ed. The �2 values are listed in Tables 6.7 and 6.8. In Chapter 5 we

discussed the fact that the �2 distributions for the binned Dalitz plots do not

strictly follow the �2 distributions expected for a �t with a degrees of freedom

equal to number of bins minus the number of �t parameters because the �t is

4 We de�ne the bias for �t parameter i as the normalized deviation from zero,
�i;fit � �i;parent

�i;parent
.
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Figure 6.12 Mini-Monte Carlo tests on the D
+
! �

+
�
+
�
�

�t.

Figure 6.13 Mini-Monte Carlo tests on the D
+
s
! �

+
�
+
�
�

�t.
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minimizing the log likelihood rather than the binned �2 test statistic. If one

naively computes the con�dence level using this erroneous degree of freedom,

we obtain con�dence levels of 34% and 52% for the D+ and D+
s

respectively,

which suggests that the �ts are quite consistent with the data. Because we have

undercounted the degrees of freedom, the true con�dence levels are probably

higher.

6.6 Branching Fractions

We extract ratios of partial widths in a manner identical to the procedure

described in Chap. 5. Our results are listed below in the table. Basically, our

D+
s
results are consistent with E691.

Table 6.11Ratios of Partial Widths

this work E691

�(D+
!�0�+)

�(D+
!�+�+��

NR
)

0:543� 0:159� 0:091 -

�(D+
s!f0(980)�

+)

�(D+
s !�+�+��

NR
)

1:215� 0:216� 0:118 0:966� 0:457� 0:144

6.7 Closing Remarks

We have presented �ts to the amplitudes for the nonleptonic decaysD+;D+
s !

�+���+. We found evidence for three-body nonreasonant decay in both ampli-

tudes and ��+ and f0�
+ in the D+ and D+

s , respectively. Although we �nd a

substantial nonresonant contribution in our model, we cannot prove that this

contribution is purely nonresonant, i.e. it may be a mixture of several broad

resonances which can mimic a nonresonant contribution.
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Chapter 7

Conclusion

We have reported Dalitz amplitude analysis of nonleptonic decays of the D+

and D+
s
mesons to the K+K��+ and �+�+�� �nal states. We obtained �t am-

plitudes and phases. We extracted decay fractions and ratios of partial widths

from our �t results. Unlike many previous studies of these decays, our \charm in-

terferometry" technique properly accounts for quantum mechanical interference,

thereby allowing us to discover previously unknown KK� decay channels.

The KK� Dalitz plots described in Chapter 5 were excellent laboratories

for studying these interference e�ects. Although the Dalitz scatterplots in Fig.

5.2 seemed to be dominated by the ��+ and K
�

(892)0K+ channels, considerable

interference
1
was found (see Table 5.17). The asymmetric intensity of the � lobes

in the D+ scatterplot
2
betrayed the notable interference between the K

�

(892)0

and K
�

(1430)0 resonances. In fact, we found a sizable relative �tted phase �
3

between these channels, indicating signi�cant �nal state interactions between

them. Another D+ decay analysis [17] found a large K
�

(1430)0�+ decay fraction

(0:284 � 0:063) in D+
! K��+�+: Our statistical tests (two-dimensional �2)

as well as compelling visual evidence in the mass-squared projections led us

to write the D+ amplitude as a three-channel process and the D+
s

as a �ve-

channel decay.
4

By obtaining the full quantum mechanical decay amplitude

and e�ciency correction function over the entire space of physical observables,

we were able to extract high precision ratios of partial widths for the landmark

D+ decays. The branching fractions reported in Table 5.19 tend to be somewhat

lower than previous measurements. This might re
ect the fact that our �ts are

fully coherant for this state while other group's are not.

1 The D+ decay fractions sum to 96%, the D+
s

to 111%.
2 Recall lobes L1; L2 in Fig. 5.14.
3 Which also happened to be consistent with 90o at the 2:5 standard deviation level.
4 There has been recent speculation [28] that two of the resonances which participate in the
D+

s
! K+K��+ decay, the f0(980) and fJ (1710), are candidate non� quark quark states,

possibly glueballs or KK molecules.
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Although the sample sizes were small, our �+�+�� analysis identi�ed two

channels in each decay. The large nonresonant fractions reported in Tables

6.7 and 6.8 were probably low statistics manifestations of more complicated res-

onant substructure. On the other hand, the simplicity of our �ts allows us to

cleanly identify FSI e�ects. The ��+ and nonresonant D+ channels had no net

FSI whereas the Ds channels had essentially maximal interaction. Our branching

fractions were consistent with E691's [22] measurements.

It is hoped that future Dalitz analyses based on more sophisticated decay

models and employing larger data samples will shed more light on this fascinating

subject.
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Appendix A

The Helicity Formalism

We presently describe the helicity amplitude formalism for describing decay

amplitudes. The helicity h is de�ned by ~S � p̂: It is well suited for relativis-

tic processes because one can construct relativistic basis vectors that are either

eigenstates of total angular momentum and helicity, or of linear momentum and

helicity.

Within the helicity formalism [40] we consider the two body decay D ! rc,

where particle D has angular momentum J , angular momentum component M

along the (arbitrary) quantization axis Z (see Fig. A.1), and the two daughter

particles have spin components (i.e., helicity) �r and �c along the decay axis Z 0:

We write the parent state (in the familiar Dirac bra notation) as jJMi jP�i. In

b

Z
c

Z

a

Reference
Frame

θ

D

r

Figure A.1 Coordinate system for the decay D ! rc ! (ab)c: The arrows rep-

resent 3-momentum vectors of the particles in the rest frame of the intermediate

resonance r.

this notation we have employed the fact that the parent state is explicitly an

eigenstate of the four-momentum P�. This observation allows one to factorize

the state vector into angular momentum and four-momentum parts. Likewise,

in the so-called two-particle plane-wave helicity basis, the �nal state is written
�
�pf ; �f ; �f ; �1; �2

�
jP�i. Here, the decay axis Z 0 has polar angles �f and �f with
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respect to the quantization axis Z of the decaying D. The amplitude for the

process D ! rc is written

M = (2�)3
�
4mD

pf

� 1

2 

�f�f�1�2

��U jJMi (A:1)

U is the time evolution operator that propagates the initial state to the �nal

state. The factors preceding the transition matrix element


�f�f�r�c

��U jJMi
in Equation A.1 are due to the normalization condition which holds for the two-

particle plane-wave helicity basis kets:



�0�0�0�0j���r�c

�
= (2�)6

4
p
s

p
�4
�
P 0� � P�

�
�
�
cos �0 � cos �

�
� �

�
�0 � �

�
��0

r
;�r��0

c
;�c

(A:2)

To apply conservation of angular momentum to the transition matrix element

�f�f�1�2

��U jJMi ; it is necessary to use eigenstates of total angular momentum

as the basis of the two-particle center-of-momentum states. To this end we make

a change of basis from the two-particle plane-wave helicity basis to the so called

spherical helicity basis fjJM�r�cig according to the following rule -



JM�0

r�
0

cj���r�c
�
= ��0

r
;�r��0

c
;�c

r
2J + 1

4�
DJ
M�(�; �;��) (A:3)

The next step is to insert a complete set of spherical helicity basis kets into

equation A.1. Unfortunately, at this point the literature is confusing - the crucial

momentum normaliztion fators 4
p
s

p
are ignored [40- 42]. Upon dropping the

momentum dependence the decay amplitude becomes

A(D ! rc) =

�
2J + 1

4�

� 1

2

DJ�
M�(�f ; �f ;��f)A�r�c

(A:4)

In these equations, � = �r � �c and pf = j~prj = j~pcj in the center of momentum

frame. The term A�r�c is the matrix element h�r�cjU jMi : Since it must be rota-

tionally invariant, we write simply A�r�c , a notation that explicitly neglects the
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M quantum number. It is straightforward to extend this result to the sequen-

tial two-body decay, D ! rc ! (ab)c that is the subject of this thesis. Again,

dropping the momentum normalization factors obtains

A(D! rc! (ab)c) =
X
�r

Dsr�
�r ;�a��b

(�a; �a;��a)D
J�
M;�r��c

(�r; �r;��r)

� B�a;�bA�r�cBW (mr)

(A:5)

Here we have summed over the allowed helicities of the intermediate particle r

because it cannot be measured. The function BW is a Breit-Wigner propagator

which represents the strong interaction dynamics of the intermediate resonance r:

It is the same Breit-Wigner propagator used in the Zemach formalism described

in Sec. 2.2.2. It takes the form

1

m2

0
�m2

ab
� i�m0

The angles �r; �r are measured in the rest frame of the decaying parentD, whereas

the angles �a; �a are measured in the rest frame of the intermediate resonance r.

One might ask, `why are we spending so much time describing the helicity

amplitude formalism, especially since our analysis is based on the Zemach (fol-

lowing section) formalism?' The answer is we must have an alternative amplitude

formalism to assess systematic e�ects due to the details of our model. We will

compare our standard results (obtained within yje Zemach amplitude formalism)

to results obtained within the helicity framework. In order to a�ect this com-

parison, we have to decide how to accomodate the missing momentum factors in

the helicity formalism. We adopt the expedient step employed by the MARK III

[6] Collaboration - the momentum dependence is `put in by hand' by placing a

factor
q

�mr

pab
in front of the amplitude in Eq. A.5. The result is to obtain the

amplitudes listed in Table A.1 below.
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A.1 Helicity Amplitudes

J(r) M

nonresonant 1

0 y �
q

�mr

pab
BW

1 y �
q

�mr

pab

h
�2j~Cj j ~Aj cos �RAC

i
� BW

2 y �
q

�mr

pab

h
(�2j~Cj j ~Aj)2 1

2
(3 cos2 �RAC � 1)

i
� BW

3 y �
q

�mr

pab

h
(�2j~Cj j ~Aj)3 1

2
(5 cos3 �RAC � 3 cos �RAC )

i
� BW

The factor y is a product of the hadronic vertex form factors FD and Fr which

are described in Sec. 2.2.2.
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Appendix B

Notes on the Estimation of Branching Fraction Errors

There is a subtle issue concerning the propagation of errors for the various

quantities in Eqn. 5.30 due to the fact that there is a potential correlation

between �(K+K��+) and f(D ! ��). To illustrate this let's consider the

slightly simpler problem of estimating the branching ratio of D+
! �� relative

to K��+�+

BR(D+
! ��+) =

�(D+
! K+K��+)

�(D+ ! K��+�+)
�

f(D+
! ��)

B(�! K+K�)
: (B:2)

Rather than quoting the factor
�(D+!K+K��+)
�(D+!K��+�+) from the literature, we measure

it in our data. Speci�cally,
�(D+!K+K��+)
�(D+!K��+�+) =

N(KK�)=�̂(KK�)
N(K��)=�̂(K��) : The overall KK�

reconstruction e�ciency �̂(KK�)
1
,is obtained from a Lund /Rogue Monte Carlo

phase-space simulation where we reject on the D+ decay amplitude in Table 5.17.

Likewise, the �̂(K��) is obtained by rejecting phase space with our published [17]

D+
! K��+�+ amplitude. The potential correlation we are concerned with

comes about since an upward 
uctuation in the KK� yield will increase both

the perceived �(KK�) and the signal fraction F used in obtaining our likelihood.

This correlation will in turn induce a correlation in the �t fraction f(��).

In this section we compute this correlation using the mini-Monte Carlo

techique and will show that it can be neglected. We �nd that the error is well

estimated by neglecting the o�-diagonal elements of the covariance matrix for

the factors in Eq. B.2 and just simply taking a quadrature sum of terms. It

is more transparent to write
�(D+!K+K��+)
�(D+!K��+�+) as

�(D+!K+K��+)
�(D+!K��+�+) =

N(KK�)corr
N(K��)corr

;

where Ncorr is the e�ciency corrected yield. So the branching ratio expression,

1 This is not to be confused with the e�ciency function �(m2

KK
;m

2

K��+
) used in the amplitude

�t.
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Eq. B.2, becomes

BR(D+
! ��+) =

N(KK�)corr
N(K��)corr

�

f(D+
! ��)

B(�! K+K�)
(B:3)

Note this equation is just products and quotients of the quatities Qi. Now, the

propagation of error formula

�2(BR) =
@BR

@Qi

< �Qi; �Qj >
@BR

@Qj

obtains for the fractional error on this branching ratio

�2(BR)

BR2
=
X

i

�2(Qi)

Q2
i

+ 2
X

i;j; j>i

�(Qi)

Qi

�(Qj)

Qj

signi signj �(i; j) (B:4):

In this formula, signi is +1 if Qi appears in the numerator in equation B.4,

�1 otherwise. �(i; j) is the correlation coe�cient between the quantities Qi and

Qj - it ranges from -1 to +1, inclusive.
2

The dominant errors are likely to

be on N(KK�)corr and the ��+ �t fraction, which are both in the numerator

and thus have sign = +1. In this case, we have a simple geometrical interpre-

tation. The fractional error �(BR)=BR is the vector sum of fractional errors

�(KK�)=N(KK�)corr and �(f(��+))=f(��+), where �(KK�)=N(KK�)corr

is inclined with respect to �(f(��+))=f(��+) by an angle whose cosine is

�(f(��+);N(KK�)corr). For simplicty, we can think

2 The correlation coe�cient �,
<�Qi;�Qj>

�(Qi)�(Qj )
; is useful because it sets a natural scale for the

covariance between quantities Qi; Qj. It can be shown that when j�j > 1, the covariance

matrix is not positive de�nite.
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Figure B.1 Geometrical interpretation of the correlation coe�cient.

of �(KK�)=N(KK�)corr as the fractional error in the number of KK� events

which appears in the signal peak. If �(f(��+);N(KK�)corr) is zero, the frac-

tional errors are at right angles and one adds them in quadrature to get the

fractional error in the BR. We plot
�(BR)
BR

from equation B.4 in Fig. B.2.

We used the quantities and statistical errors quoted in the Table 5.17. We as-

sumed the correlation coe�cient matrix had +1: along the diagonal and just

varied �(f;Ncorr(KK�)) (and �(Ncorr(KK�); f)) from �1: to +1. From these

plots it is apparent that if we can establish that �(f;Ncorr(KK�)) is close to zero

the calculation of the error on the branching ratio is well approximated by the

quadrature sum

�2(BR) =
X

i

@BR

@Qi

2

�2i :

It follows that the error in our quoted ratios of partial widths in Table 5.19 can

also be approximated by a quadrature sum of terms.

To compute �(f(��);Ncorr(KK�)) we need to simulate the background sub-

traction process used to extract the KK� yield , the signal fraction , and the ef-

fects of a signal fraction 
uctuation on the measurement of the �� decay fraction.

To do this we will have to de�ne parent distribution quantities, measured
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quantities and estimated quantities. We presently describe our Monte Carlo

simulation procedure.

As a simpli�cation , we consider simulating independent yields for the signal

region signal (S), the signal region background (B) , the low sideband (A) and

the high sideband (C). The schematic (parent) histogram is

S

A B C

We chooseA = B = C and choose S to be the real signal region signal and B to be

the real signal region background. These are parent distribution quantities. In

the limit N !1 (where Poisson! Gaussian) the yield simulation is essentially

independent Gaussians described by

S �
p
S A�

p
A B �

p
B C �

p
C

On a given trial the measured yields S�; A�; B�; C� are generated by simu-

lating Gaussian random numbers with indicated means and rms spreads. By

\measured" we mean these yields are obtained from counting events in a given

mass region. Let us denote estimated (�tted) values with a~. These values are

obtained from a Gaussian + polynomial �t to the KK� mass histogram.
3

For

each trial we can estimate B (of the parent distribution) from the weighted sum

of A and C. Let R be the sideband weight (for example, R = 1=2 if A = B = C).

The estimate of B is then

~B = R(A� + C�)

The estimate of S for each trial is then:

~S = S� +B� �R(A� + C�)

3 The estimated �t fractions ~f are obtained from the full Dalitz �t.
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The a priori rms error on ~S is

�( ~S) =
q
S +B +R2(A + C) =

p
S +B(1 +R)

The estimate of the signal fraction ( ~F) for each trial is

~F =
(S� +B�)�R(A� + C�)

S� +B�

This trial signal fraction ~F goes directly into the Dalitz �tter as the starting point

for the solution of the signal fraction. The assumed error on the signal fraction is

the same one used in the real Dalitz �ts
4
. Once B� and S� yields are randomly

drawn for the given trial we then randomly populate the signal region Dalitz

plot to be �t with B� events drawn from the parameterized parent background

distribution (polynomial) and S� events with the Dalitz intensity. Speci�cally,

the background and signal parent probability density functions are those used

in the �nal Dalitz �t. One completes the �t to obtain the trial's estimated �t

fraction and its estimated error: ~f � �( ~f ):

The correlation coe�cient,�(f(�);N(KK�)corr) , is the average over many

trials of the quantity

( ~f (�) � f(�))( ~S � S)

�( ~f (�))�( ~S)
(B:5):

We take the �( ~f (�)) to be the �t fraction error returned for each trial �t. For

expediency, we use the a priori error on �( ~S) (
p
S +B(1 +R)). We histogram

this quantity for each trial and �nd the typical or mean value of � from the

histogram.

For our mini-Monte Carlo simulation we use the following parent distribution

quantities:

4 �F0
in Table 5.1.
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Table B.1 D+ Parent Distribution Quantities

Signal region signal S 915

Sideband population:A,B,C 318

In Fig. B.3 we plot the expectation value of B.5 for the landmark decay

channels we used for the D+ �t. We also show the value of
�(BRX)
BRX

from Fig.

B.2 corresponding to this correlation coe�cient and for zero correlation.

Table B.2 < � >

Channel < �(f;N(KK�)corr) >
�(BRX)
BRX

�(BRX)
BRX

�
�
�=0

K�K +0:008 0.075 0.08

�� +0:036 0.094 0.118

Given that
�(BRX)
BRX

'
�(BRX)
BRX �=0

, it is appripriate to approximate the branch-

ing ratio error with quadrature sums of the contributing errors. It follows that

little accuracy is lost by using quadrature sums of the participating terms to

calculate the errors of the ratios of partial widths in Table 5.19.

Figure B.2 Branching fraction correlation coe�cient study. Curves are plots

of Eq. B.4. Lines show the result of a Mini-Monte Carlo study of < � > and

indicate the corresponding fractional error in BR.
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Appendix C

The Parameterization of the f0(980) Resonance

Because the literature is �lled with many di�erent parameterizations of the

f0(980) resonance, an essential �rst step for our Dalitz analysis is to decide what

impact our chosen f0 model has on our amplitude �t. In an e�ort to understand

the impact of our parameterization on the KK� analysis, we tried fully coherent

Dalitz plot �ts using the ��+;K
�

(892)0K+ and f0(980)�
+ amplitudes. The f0

parameterizations we tried are listed in Tables C.1 and C.2.

Table C.1 f0(980) Amplitudes

Type Mf0(980) m0 (GeV ) g� gK

WA76 [43] 1
m2

0
�m2

KK
�im0(��+�K)

.979 :28� :04 :56� :18

Mark II [44] 1
m2

0
�m2

KK
�im0(��+�K)

.956 .088 .2

Rutherford [45] 1
m2

0
�m2

KK
�i

m0

2
(��+�K)

.987 1. 3.8

LEBC [46] 1
m2

0
�m2

KK
�im0�K

.971 - -

Zou [47] gK
m2

0
�m2

KK
�im0(��g�+�KgK)

.9535 :1108 GeV 2 :4229 GeV 2

Table C.2 Terms in the f0(980) Amplitudes

Type �� �K �� �K

WA76 g�

q
m2

KK

4 �m2
�

gK
2

�q
m2

KK

4 �m2
K+ +

q
m2

KK

4 �m2
K0

�
- -

Mark II g�

q
m2

KK

4 �m2
� gK

q
m2

KK

4 �m2
K+ - -

Ruth. g�

q
m2

KK

4 �m2
� gK

�q
m2

KK

4 �m2
K+ +

q
m2

KK

4 �m2
K0

�
- -

LEBC - �0
m0

mKK

p�

p�
0

- -

Zou - -
q
1� 4m2

�

m2

KK

r
1�

4m2

K

m2

KK

All the amplitudes have similar forms. m0 is the on-shell mass and the re-

maining constants appear as listed in the formulas. Note that because the
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kinematic boundary of the KK� Dalitz plot requires m2
KK

� [2 �mK+]2, the

WA76, Mark II, Rutherford and Zou amplitudes are analytic in all regions of

the Dalitz boundary. Only resolution e�ects might put a datum in the dreaded

`subthresold region.' However, the LEBC model (with �0 = :0374GeV ) explic-

itly contains p�
0
, the 3-momentum of the f0(980) daughters in the f0(980) rest

frame whenmKK =m0: In this region, p�
0
is the square root of a negative number�

=

q
m

2
f0(980)

4
�m2

K+

�
. To get around this explicit reference to the 'subthreshold

region' we take p�
0
to be +

q
j
m

2
f0(980)

4
�m2

K+j:

We show the simulated scatterplots for these pure f0(980)'s (on the Ds kine-

matic boundary) in Figure C.1. The most dramatic di�erence is evidenced by

the extent of the Breit-Wigner tails in the K+K� direction.

We ran �ts to the data with the background amplitudes and signal fraction

F �xed to their initial values. The spread in �t fraction and phase are shown in

Figure C.2. The �ts `WA76+ 1; 2�' are done with the coupling constants varied

within their errors. Note that all the models give consistent results for the Ds.

In fact, we found about 1% systematic uncertainty in the decay fractions of the

landmark channels (K
�

(892)K+ and ��+) due to which model is used in the �t.

The results quoted in Chapters 5 and 6 use the WA76 model.
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Figure C.1 Simulations of various pure f0(980)�
+ decays on the D+

s
!

K+K��+ Dalitz boundary.
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Figure C.2 Comparison of �ts to D+
s
! K+K��+ data with coherent mixtures

of K
�

(892)K+, ��+ and the indicated model for f0(980)�
+: Top plot shows the

resulting decay fractions, bottom the �tted phases.
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Appendix D

The Lorentz Covariance of the Zemach Amplitudes

In this appendix, we address the apparent non-Lorentz invariance of our

Zemach amplitude for the decay process D ! rc! (ab)c, Eq. 2.8-

M [D! rc! (ab)c] = y T J (~c) : T J (~a) � BW (q) (2:8)

It is understandable that the reader may be confused by the fact that, although

we introduced the Zemach formalism with a manifestly Lorentz invariant decay

amplitude (see Fig. 2.7 and Eq. 2.5), our formalism appears to not be covariant.

We will discover that in fact our Zemach amplitudes are Lorentz invariant. By

writing the amplitude in the rest frame of the intermediate resonance we hide

the required covariance.
1

We begin by writing the simplest Lorentz invariant decay amplitude for the

decay D ! rc ! (ab)c -

M [D! rc! (ab)c] = y �BW �
X

m

a�b�e��(~q;m)e���(~q;m)D�c� (D:1)

In this equation, e�� (and e��) is an energy-momentum spin state vector of the

intermediate resonance r. The 4-vectors of the participating particles are as

indicated. m is the spin eigenvalue along the z-axis of the resonance r: We now

de�ne the projection operator

P
(J)
����

=
X

m

e��(~q;m)e���(~q;m) (D:2)

which accomplishes the summation over all the spin polarizations of the reso-

nance. This de�nition allows us to write the manifestly Lorentz invariant ampli-

1 The present discussion echoes Sec. 8.4 in Ref. [48].

149



tude Eq. D.1 as follows -

M [D! rc! (ab)c] = y �BW � a�b�P
(J)
����D

�c� (D:3)

In the rest frame of the resonance, ~q = ~0: Therefore, the spin state four vector

of the resonance becomes e��(~0;m) = f~0; ê(m)g; where ê(m) are the polarization

vectors in three-momentum space.
2

The key point is the Lorentz contractions in

Eq. D.3 lose their dependence on energy, and therefore can be written in terms

of sums over Cartesian indices i; j; k: In other words, in RFr D.3 becomes

M [D ! rc! (ab)c] = y �BW � a�ib�jP
(J)
ijkl

D�kc�l (D:4)

where `�' denotes RFr quantities. If we de�ne the following tensors

T
(J)
ij (D�k ; c�l) = P

(J)
ijkl

D�kc�l

T̂
(J)
ij (a�i; b�j) = a�ib�j

(D:5)

we may write Eq. D.4 as follows -

M [D! rc! (ab)c] = y �BW � T̂
(J)
ij (a�i; b�j) : T

(J)
ij (D�k ; c�l) (D:6)

In RFr, ~a� = �~b� and ~D� = �~c�, so we simply abbreviate the notation as follows

-

M [D! rc! (ab)c] = y �BW � T̂ (J)(~a) : T (J)(~c) (D:7)

where, although the momenta are in the rest frame of particle r, we have sup-

pressed the `�'. This expression is identical to our Zemach amplitude, Eq. 2.8.

We have shown that the apparent non-covariance of the Zemach formalism

is just a smokescreen - the decay amplitude is in fact Lorentz invariant. We

avoid the complications arising from bookkeeping the four-momentum indices by

evaluating the amplitude in the rest frame of the intermediate resonance.

2 As an example, the polarization vectors in three-momentum space for spin-1 are ê(�1) =
� 1p

2
(x̂� iŷ) and ê(0) = ẑ.
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