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Abstract 

We have measured emittances in a low energy proton beam at energies between 19 

and 49 KeV and currents between 9 and 39 mA. We find that therms emittance 

of the proton beam grew by an average amount of 60 % in a propagation distance 

of 2.5 cm. An Abel inversion procedure is applied to the charge distribution of 

the proton beam in order to calculate the electrostatic field energy of the beam. 

We find that all the emittance growth is due to ~ 10% of the beam particles. 

In addition, a study of low energy beam focusing in a Gabor lens was done. We 

show that the Gabor lens is not useful for focusing negative ion beams. 
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CHAPTER 1. INTRODUCTION 1 

Chapter 1 

INTRODUCTION 

1.1 Introduction 

1.1.1 Motivation and Background 

This research project began with the goal of developing a new technique for 

matching a low energy space charge dominated beam into a radio frequency 

quadrupole accelerator (RFQ). The general problem of the transport of low en­

ergy space charge dominated beams is a difficult blend of plasma physics, acceler­

ator physics, and statistical mechanics. The goal of the designer of a low energy 

beam transport (LEBT) is to transport the beam to the next acceleration section, 

usually a drift tube linac, while preserving the "quality" of the beam (emittance). 

A LEBT is the system of focusing elements and field free regions (drifts) between 

the ion source and the linac. In the ideal case the beam would be transported 

from the ion source to the RFQ or linac with a negligible emittance growth. In 

practice there is a rapid emittance growth which occurs within one-quarter of a 



CHAPTER 1. INTRODUCTION 2 

plasma period after the beam has left the ion source. 2 So as accelerator designers 

we must strive to limit this growth of emittance while providing a good "match" 

of the beam into the RFQ. Lower emittance beams are generally more desirable 

from the experimenters point of view. For example, when the emittance is low­

ered, the rate of collisions is increased in a colliding beam accelerator like the 

Fermilab Tevatron. 

A note on units: unless otherwise stated, the units used throughout this paper 

will be rationalized MKS units. The most common exception to this will be the 

particle density n, which we tend to express in cm-3
. For a general discussion of 

units, the reader is referred to the appendix of Jackson's book. l9 

Historically the need for intense beams has been driven by experimental 

physics. In colliding beam experiments the signal of interest is proportional to 

the intensity of the beam squared, hence the desire to increase the beam intensity. 

This relationship is expressed mathematically through 

fN2 
£= ---

47rO'xO'y 
(1.1) 

where .C is the luminosity in cm- 2 s-1
, f is the frequency of beam-beam collisions, 

N is the number of particles in a beam "bunch," and O' x and O' Y are the transverse 

spot size of the beam at the collision point. Since O' ex c1
/

2
, the emittance, 

.C ex c-1 . 

In the early days of modern physics the experiments were involved with atomic 

physics. As accelerator physicists learned how to build better accelerators with 

higher energy beams, the atomic and nuclear physicists examined the atomic and 

sub-atomic realm at smaller and smaller length scales. Even today physicists 

at high energy accelerator facilities such as Fermilab and CERN are striving to 
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examine the fundamental particles of nature at increasingly smaller length scales 

which correspond to higher beam energies in the accelerators. With the comple­

tion of the Superconducting Super Collider (SSC), the highest attainable energy 

will have reached a new level an order of magnitude larger than the previous 

highest beam energy, attained in the Tevatron at Fermi National Accelerator 

laboratory. This growth of energy places a requirement on the emittance of the 

beams used for high energy physics experiments; since the cross sections for the 

fundamental processes involved are proportional to E-2
, where E is the energy 

of the interaction, the emittance must also scale like E-2 if a given reaction rate 

is to be maintained. 

Lapostolle 24 and Sacherer 37 realized that the emittance growth of a space 

charge dominated beam is driven by the electrostatic field energy· of the beam. 

Thus it is desirable to neutralize the beam space charge in order to limit emittance 

growth. One method through which neutralization occurs is in the passing of the 

beam through the residual gas in a vacuum chamber. The beam particles ionize 

the gas atoms through collisions. Since the beam is a potential well for charged 

particles of the opposite sign, neutralization can occur when the particles become 

trapped in the well. This can also lead to interesting physical phenomena through 

the beam-plasma interaction. 

Another way to neutralize the beam space charge is to provide a compensat­

ing charge of the opposite sign to the beam, e.g. a nonneutral plasma. '" This is 

how a Gabor lens neutralizes a proton beam. A nonneutral plasma is a collec­

tion of charged particles in a plasma state which does not exhibit overall charge 

•1t should be noted that a neutral plasma can also neutralize the space charge of a beam. 
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neutrality. A charged particle beam is an example of a nonneutral plasma. The 

Gabor lens plasma is another example which we shall discuss at length below. In 

addition to providing neutralization, a Gabor lens is also an azimuthally symmet­

ric focusing device, at least for positively charged beam particles. The focusing 

strength of a Gabor lens is given by 

(1.2) 

where ,.., 2 is the focusing strength squared of the lens in m-2
, q and m are the 

charge and mass of the plasma particles, Q is the charge of the beam particles, 

T = mv 2 /2 is the kinetic energy of the beam ions, and Wp = Jnq 2 /tom is the 

plasma frequency. The focusing strength is a measure of the ability of the lens 

to curve the path of the beam particles. For a thin lens, it is -equal to the 

negative inverse of the focal length, thus it has units of inverse length. If we 

write the equation of motion of the charged particle passing through the lens in 

the transverse coordinate x, then it is given by 

(1.3) 

The primes denote differentiation with respect to the length coordinate z, which 

is the axis along which the particle is moving. Note that q and Q are algebraic 

quantities and that K is in general a function of z. In order to obtain a positive 

focusing strength for a Gabor lens the plasma and the beam must have opposite 

charge, i.e. "opposite charges attract." 

Since it supplies a compensating charge to the unneutralized ion beam, pro­

vides a strong focus, and exhibits azimuthal symmetry, a Gabor lens seems to 

be a prime candidate for a LEBT focusing device. Whether or not this is so 
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must be determined by practical experience. It was found in the course of this 

thesis that a Gabor lens is not an ideal focusing element for a LEBT. This will 

be discussed below in detail. At the time of this writing, magnetic solenoid or 

electrostatic lenses must be considered more appropriate for solving the problem 

of low energy beam transport. The only practical application of a Gabor lens to 

date of which this author is aware has been in an ion microprobe beam line with 

a very small current of the order of 1 pA or less. 27 The beam in this experiment 

had a negligible space charge. On the other hand in the LEBT regime the beam 

density is nearly comparable to that of the plasma and hence is able to perturb 

it or perhaps even excite an instability. 

A large step forward in the theoretical understanding of emittance growth in 

space charge dominated beams was taken with the previously mentioned papers 

of Lapostolle and Sacherer. Additional insight was found by Hoffman, 18, Wan­

gler 41 , and Anderson 2. These authors presented a theory in which electrostatic 

field energy was the driving force behind emittance growth. A differential equa-

tion was discovered which relates the change of the emittance with z, the axial 

length coordinate, to changes in the field energy: 41 

dc
2 

]{ X 2 d ( u ) 
dz = --2-dz W

0 
(1.4) 

where I< is now the generalized perveance (to be defined), X is twice the RMS 

width of the beam, U is the "nonlinear field energy," (to be defined) and W0 = 

( eN)2 /167rco is a constant determined by the line density N of the beam. W0 is 

physically equivalent to the field energy contained within the boundaries of the 

beam. This equation was first written in a different form by Lapostolle in his 1970 

paper. 24 At first glance the equation appears simple to solve, until one realizes 
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that X = X(z). The evolution of Xis determined by the envelope equation 

(1.5) 

in which"' is again the focusing strength, and/{ is the "generalized perveance." 25 

The envelope equation contains the emittance c. Thus the equations are coupled. 

In practice it is no easier to solve this pair of equations then it is to solve the 

Vlasov equation from which they are derived. Fortunately, an experiment involv­

ing a real beam is relatively simple to set up and observe, so that insight into the 

dynamics of emittance growth can be gained from actually observing a beam. 

1.1.2 Summary of the Thesis 

First, a note on units. We will use rationalized MKS units throughout, unless 

stated otherwise. The common exception to this will be that the particle density 

n is usually expressed in cm-3 • 

The focus of all the research presented in this thesis is the area of low en­

ergy beam transport. It has been stated that there are strong motivations for 

preserving the emittance of a beam in an accelerator at all stages of the accel­

eration process. Early on, in February of 1987, it was thought that a Gabor 

lens showed some promise as a means of doing this. A Gabor lens has azimuthal 

symmetry, which greatly simplifies the design of the beam transport, since the 

entrance conditions ("acceptance") of an RFQ are also azimuthally symmetric. 

Using quadrupole type lenses complicates the design. 

Our first Gabor lens was constructed in 1988. The solenoid was rather large 

(for a Gabor lens), being 2 feet in length. It was designed to carry a current of 



CHAPTER 1. INTRODUCTION 

IRON 
SHIELD 

w-z~~~~~~~~~~~~~COIL 

Figure 1.1: Fermilab Gabor lens. 
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up to 200 Amps with water cooled conductor wires. We later found that it was 

not necessary to use this large a solenoid to trap the Gabor lens plasma. At the 

time our first lens was constructed it was not understood what the relationship 

is between the plasma density and the magnetic field strength. The Brillouin 

limit gives the maximum nonneutral plasma density that can be contained by a 

magnetic field B0 : 

2£oB2 

n=--. (1.6) 
m 

Using this equation, one finds that to trap an electron plasma with n ,...., 1016m-3 

a magnetic field of strength at least equal to 7.1 x 10-3 Tesla = 71 Gauss is 

needed. In laboratory experiments one finds that the density n is well below the 

Brillouin limit. In the experiments done at Fermilab, n for the Gabor lens plasma 

was typically .07 of the limiting value. Thus to trap the electron plasma with 

n ,...., 1016m-3 one would use a field of approximately 300 Gauss (,...., 71/.../fff). 
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What this means is that it is possible to use a simple air cooled solenoid magnet 

to provide the magnetic field for the Gabor lens. 

Another problem with using the large solenoid magnet was discovered early 

on in the experiment. The ion source being used was a proton source of the 

duoplasmatron type. This source depends on a magnetic field for its operation. 

It was discovered that the magnetic field of the large solenoid was perturbing the 

field of the duoplasmatron and making it unstable, which was quite visible on an 

oscilloscope trace of the current pulse from the duoplasmatron. Having learned 

from our mistakes, we decided to construct a second Gabor lens with improved 

features. 

The second Gabor lens was designed with an air cooled primary coil and a 

smaller secondary coil in opposition to the primary. See figure (1.1). This was 

so that a cusp could be created in the magnetic field on the axis of the lens. 

The reason for doing this is simple - it gives the plasma greater stability. We 

will discuss this stability issue below. There are also increased losses, but these 

are not a problem since the lens is run in a discharge mode which continually 

replenishes the plasma density. 

We found that the Gabor lens did provide a focus of the proton beam. How­

ever that focus was not as sharp as we had hoped. In order to match a low energy 

proton beam into an RFQ, a very sharp focus must be obtained just before the 

entrance into the RFQ. The transverse beam dimensions must be on the order 

of 200 µm. The Gabor lens focal spot was never observed to be this small, being 

on the order of 1 cm in size. 

A program of emittance measurements was undertaken to try to understand 



CHAPTER 1. INTRODUCTION 9 

what the transformation of the beam is in traversing the Gabor lens. This in­

volved a series of emittance runs both upstream and downstream of the Gabor 

lens. Knowing the beam phase space before and after the lens one can then infer 

what the effect of the lens on the beam is. 

As we have mentioned a very important problem in low energy beam transport 

is to try and limit the emittance growth experienced by a beam as it traverses a 

LEBT. Therefore the LEBT designer must have an understanding of the dynamics 

of emittance growth in low energy space charge dominated beams. 

Many hours of computer time have been spent by others "verifying" with 

particle in cell codes that the relations expressed by equations ( 1.4) and ( 1.5) 

are correct. We decided to perform a simple experiment which would test these 

relations. An experimental apparatus was available in the Fermilab ion source 

test stand. We undertook an investigation of the evolution of the distribution 

function of the beam and the emittance as the beam propagated through a short 

distance on the test stand. This was just a drift space, no focusing elements were 

involved. The emittance of the beam was measured at several locations in z, 

the beam direction, to see if some understanding of the dynamics of emittance 

growth could be obtained through direct measurement. 

We found that the experimental results were in fairly good agreement with 

the theory. The emittance grew over a distance of 7 cm by a factor of "J 2. This 

is roughly equal to 1/4 of a plasma wavelength for the test stand proton beam. 

New Results 

There were essentially three new results from this thesis research. 
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We found that a Gabor lens was not capable, with current technology, of 

focusing a negative ion beam. This is a theoretical result. It may be possible 

some day to maintain a nonneutral positron plasma in a Gabor lens in order to 

effectively focus a negative ion beam, but it is not possible today. 

We used an Abel Inversion procedure applied to a proton beam charge distri­

bution to calculate the electrostatic field energy of the beam. This quantity is of 

great importance in the theory of emittance growth in space charge dominated 

beams. 

Finally, we observed emittance growth on a scale length which was small 

compared to the plasma wavelength of the beam. This is the distance the beam 

travels in an internal plasma oscillation. 

1.2 The Problem of Low-Energy Beam Trans­

port 

1.2.1 The Need For Intense Beams 

We have mentioned that the transport of intense low-energy ion beams is an out­

standing problem of accelerator physics today. Experimentalists at accelerators 

and heavy-ion fusion facilities need more intense beams to do the experiments 

which are at the forefront of science in their fields. There is always an interac­

tion point where physically interesting collisions and reactions occur and these 

reactions are more plentiful at high intensity. Therefore, at existing accelerator 

facilities such as Fermilab and CERN, physicists are always pushing to reach 
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higher energies and intensities. One is therefore confronted with the question: 

what limits the intensity of an accelerator? Liouville's theorem places a con­

straint on the final beam emittance (ordinarily it cannot be less than the initial 

emittancet), and hence the possible luminosity at the interaction point. We shall 

provide a precise definition of emittance below; for now we remark that emit­

tance is related to the volume occupied by the beam particles in phase space. 

The maximum possible luminosity is ultimately constrained by the emittance of 

the beam leaving the ion source in a proton accelerator. Thus we seek to always 

preserve the emittance at every step of the acceleration process. 

At a large high energy proton accelerator facility such as Fermilab, there are 

several accelerators arranged in series to accelerate the beam to the final energy. 

We are concerned with the very beginning of the acceleration process where the 

beam is created in an ion source and then transported to the input of a linear 

accelerator. The transport of the proton beam in this low-energy regime is a 

crucial part of the overall acceleration process. The emittance will grow in the 

low energy beam transport (LEBT) by a factor of two or three. We are interested 

in minimizing this emittance growth in the LEBT for many reasons; as we have 

already mentioned the preservation of a low emittance can lead to increased 

luminosity in collider experiments being performed with the accelerator. Low 

emittance beams are less likely to scrape the beam pipe in the upstream portions 

of the accelerator because of their small transverse dimensions. The current state 

of the art in linac design is to use a radio frequency quadrupole (RFQ) accelerator 

to accelerate the beam in the energy regime from several tens of kilovolts to 2.5 

tThe emittance of a beam can be decreased via beam cooling techniques. 
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Me V. The optical matching of the beam into the entrance of an RFQ requires 

great precision and a very strong focusing of the beam. This places constraints 

on the LEBT, as we shall see. 

Some emittance growth is inevitable in any accelerator or beam transport line. 

Nonlinearities due to the focusing fields and the beam self fields lead to amplitude 

dependent oscillation frequencies of the beam particles and the dilution of the 

phase space density of the beam. By carefully designing accelerator components, 

we seek to minimize the emittance growth which inevitably occurs. In order to 

understand the methods by which we hope to limit emittance, we shall have to 

investigate the theoretical physics of space charge dominated beams. 

1.2.2 Beam Optics and the Definition of Matching. 

First a note on coordinate systems. The standard arrangement in accelerator 

physics is to define a beam axis which is usually taken to be the z axis of a 

cartesian coordinate system, with x, y, and z forming a right handed coordinate 

system. In the literature s is often used instead of z. In general, the path the 

beam takes is curved, however, we will only be concerned with linear systems in 

what follows. 

The purpose of a LEBT is to prepare the beam for acceleration in a linear 

accelerator (linac). Given a linac, transport line, or circular accelerator, we must 

decide what the proper beam parameters are to inject into it. We will consider 

the case of a uniform transport line (k = const.), with a monochromatic (Pz the 

same for all particles) beam, for simplicity. The results can be extended to more 

complicated situations. In this case the individual particle motions are described 
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by a harmonic oscillator equation. The particles trajectories are sinusoids in 

z. Equation (1.5) describes the evolution of the rms beam envelope X in the 

transport line. The generalized perveance I< is defined by 

J( = 2I Io = 47rt:0mc
3 

Io('Y/3) 3
' q 

(1.7) 

Io has the units of current and is numerically about 3.1 x 107 Amps for protons. 

We define the matched beam as having X" = 0. Inserting this into (1.5) and 

solving for X we have, using a to denote the solution, 

a= 
/( 

2K2 + 

If we have a beam with negligible current then I< ,...., 0; we obtain 

(1.8) 

(1.9) 

where ao is the matched beam envelope size in the absence of current. In terms 

of this result (1.8) becomes 

a = a0 ( 
I< )2 

2K2a5 + 1. (1.10) 

If, however, we have a strongly space charge dominated beam then the emittance 

term in the envelope equation is neglected and we find 

v'K 
a1 = --. (1.ll) 

K 

for the size of the beam. Using the definitions of a0 and a1 we can rewrite 

equation (1.10) to read 

a= (1.12) 
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In this form it is easy to see how the two limits are obtained. Equation (1.12) tells 

us that as the current increases from zero ( a 1 = 0) then the matched beam size 

for a given transport line increases. When the matched size is equal to the size of 

the beam pipe we have reached the maximum current which can be transported 

through the pipe. 

If the beam is not matched into the focusing structure, then the envelope of 

the beam will oscillate as z increases. It is easy to substitute X = a + 8, where 

8 ~a, into (1.5) and Taylor expand, keeping only lowest order terms, to obtain 

8
11 + 2 ( K 2 + :: ) fJ = Q (1.13) 

which shows that the envelope oscillations are simple harmonic with wavelength 

>. - 21r 
- J2(K2 +c2/a4 ). 

(1.14) 

These envelope oscillations have an adverse affect for space charge dominated 

beams. They cause emittance growth. Since real beams are not uniform, the 

oscillation frequencies of the particles in the beam are amplitude dependent, 

hence the phase space is "diluted" when the envelope oscillates. 

If the transport channel is non-uniform, e.g. a system of alternating quadrupole 

lenses, then the matched beam envelope is no longer independent of z. The 

matched beam is now defined as that beam which has an envelope X with the 

same periodicity as the focusing structure. Note that this is not inconsistent 

with the definition of matching for a uniform focusing channel. The period for 

the uniform channel is infinite. 

In order to find the matched solution one must solve (1.5) with the appropriate 

initial conditions. A mismatched beam will exhibit envelope oscillations with a 
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periodicity not equal to that of the focusing structure. In addition, in a periodic 

structure, the envelope oscillations can develop into an instability, which causes 

emittance growth. The instability can develop whenever the wavelength of the 

zero current solution to (1.5) becomes less than four periods of the focusing 

structure. 35 

1.2.3 Emittance Growth of Space-Charge Dominated 

Beams. 

We will provide here a brief review of the theory of emittance growth in space 

charge dominated beams. We start with the equations discovered by Kapchinskii 

and Vladimirskii in 1959. 2l What Kapchinskii and Vladimirskii found was that 

if the distribution of the beam particles in the transverse phase space x, x', y, y' 

was given as 

(1.15) 

where Fo is a constant related to the constants of the motion for the transverse 

single particle motion, 2l and h is the Dirac delta function, then the semiaxes of 

the (elliptical) beam obey the following equations, known as the "K-V" equations: 

a"+ Kxa 
2I< c; 

(1.16) - --+-
a+ b a 3 

b" + Kyb 
2I< €~ 

a+b+b3 
(1.17) 

where K represents external focusing forces, I< is the perveance, c the emittance, 

and a and b are the dimensions of the beam envelope. 
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The K-V equations are important because they provide a useful approximation 

to the behavior of real beams which are not axially symmetric. If the "smooth 

approximation" is made then they can be solved analytically for some important 

cases involving beams in realistic transport systems. It is worth noting that the 

envelope equation (1.5) is a special case of the K-V equations with a= b = X. 

With the K-V equations in hand, it is possible to calculate beam envelopes for 

space charge dominated beams only if the emittance, which appears on the right 

hand sides of the equations, is a given function of z, and the beam distribution 

function is a K-V distribution. However, this is an ideal case suited only for the 

theoretical study of beam dynamics. A useful approximation for quick calculation 

is to assume a constant emittance and an axisymmetric beam. 

Progress in the area of space charge dominated beam transport was made with 

two papers published in 1970 by Lapostolle and Sacherer. 24, 37 Both showed 

the importance of an rms formulation for calculating the evolution in time of the 

properties of a space charge dominated beam. In computer simulations the rms 

emittance t of a beam transported through a uniform focusing channel was found 

to oscillate with an overall increase in the emittance. This behavior is sketched 

in figure (1.2). 

Lapostolle identified two distinct types of oscillations which led to emittance 

growth in space charge dominated beams: oscillations of the beam envelope and 

tThe rms emittance of a beam is given by the formula 

(1.18) 

where Pz is the average momentum of the particles in the direction of motion of the beam; x 
and p., are a transverse displacement and momentum, respectively. 
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Figure 1.2: Evolution of the beam emittance in a uniform focusing channel. 



CHAPTER 1. INTRODUCTION 18 

oscillations of the charge density in the beam. 

Sacherer showed that the K-V equations were not restricted to the case of 

a beam with a K-V distribution function. In fact, they could be applied to 

any beam in which the charge was distributed with elliptical symmetry, i.e., the 

distribution function could be written as 

(1.19) 

if the beam boundary and emittance are specified by rms values. However, this 

does not get around the problem that the time dependence of therms emittance 

must be known beforehand in order to solve for the envelope of the beam. 

Further progress in the theoretical understanding of emittance growth came 

from the work of Wangler, Hoffman, and others in the mid 1980's. These re­

searchers discovered an equation relating emittance growth to electrostatic field 

energy in a beam. Starting with the Vlasov-Maxwell equations one can arrive at 

equation (1.4) for an axially symmetric beam. 41, 18 In (1.4) U = W - Wu where 

W is the electrostatic field energy per unit length, given by 

W = 7rco fo00 

r E;dr. (1.20) 

Physically, Wu is the electrostatic field energy per unit length of a uniform beam 

with the same current and energy as the real beam. It is given by 

Wu= Wo(l + 4ln(b/X)), b? X, (1.21) 

where b is the radius of the (assumed present) beam pipe and X = 2.J;2 is twice 

the width of the beam. We see that W0 = (eN)2/l67rco is the field energy within 

the uniform beam, with the logarithmic term giving the contribution from the 
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field outside of the beam. The magnetic field energy of the beam is negligible for 

non-relativistic beams and is not considered here. 

About a year later, Anderson published a paper which showed that for certain 

initial beam distributions it is possible to analytically calculate the evolution of 

the beam envelope and the emittance simultaneously. 2 He found that there 

was an "explosive" growth in the emittance which occurred over a distance of 

one quarter of a plasma wavelength as a "cold" beam began to propagate in a 

focusing channel. In this context, cold means that the transverse kinetic energy 

of the beam distribution is small compared to the energy contained within the 

electrostatic field of the beam. 

Thus we have arrived at a picture in which emittance growth is driven by the 

excess or nonlinear space charge field energy in the beam, excess being defined 

as greater than that of the equivalent uniform beam. It can be shown that the 

quantity W - Wu is positive definite. 18 The related quantity (W - Wu)/W0 is 

essentially a function of the shape of the charge distribution, being zero for a per­

fectly uniform beam and non-zero otherwise. The space charge dominated beam 

will evolve to an equilibrium state in which the density in the center of the beam 

is uniform. As the beam evolves toward a uniform density the emittance increases 

and W decreases. This conversion of space-charge field energy to emittance is 

really a conversion of potential to kinetic energy with a corresponding increase 

in the entropy of the beam. Thus it is possible to understand emittance growth 

as being related to the second law of thermodynamics. It can be shown that the 

entropy of a beam is given by a simple formula involving the emittance. 26 
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1.2.4 Experimental Techniques Used with Space-Charge 

Dominated Beams 

There are, of course, a plethora of techniques for creating, transporting, and 

accelerating space charge dominated beams. We shall only discuss those which 

pertain to the goals of this thesis, namely transport of low energy proton beams. 

From this viewpoint, then, there are two main elements to proton beam transport: 

neutralization and focusing. The type of focusing element used has a large effect 

on the neutralization, so the two topics are related. 

Neutralization is a very important and complex phenomenon in low energy 

beam transport. When a beam encounters a low pressure gas in the vacuum vessel 

through which it is propagating, ion-electron pairs are created in collisions. This 

process can create a plasma which then interacts with the beam. Particles with 

the same sign of charge as the beam are repelled from the beam, while oppositely 

charged particles are attracted. If the beam current is DC or changing over a 

time scale which is sufficiently long it is possible for an equilibrium state to form 

in which particles are lost at the same rate at which they are created. For a gas 

of density n, beam particles moving at velocity v, and ionization cross-section u, 

the neutralization time T is given by the simple expression 

r = (nuvf 1
• (1.22) 

If the ion source is pulsed with a pulse length of the same order of magnitude 

as r, then the neutralization of the beam will always be changing, which makes 

matching the beam into a focusing structure difficult. Unfortunately for the 

densities and velocities typically encountered with low energy proton beams this 
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is often the case. For example, the proton source on the Fermilab ion source test 

stand is often run with gas density n ~ 1011 cm-3 and speed v ~ 8 x 10-3c. If 

we take the cross section to be the "billiard ball" cross section of a gas atom 

10-15 - 10-16cm2 , then we find T ::::: 4 - 40µ.s. The pulse length used is typically 

100 µ.s hence the neutralization state of the beam is changing during a significant 

part of the pulse length. This makes it difficult to keep the beam matched into 

downstream structures. 

However, if the beam pulse is long enough then the initial part can be dis­

carded and the latter part used when the beam has stabilized. This has a disad­

vantage in that the useful life of the ion source is wasted since part of each pulse 

is not used. 

The type of lens used has a large effect on the neutralization. If a conventional 

electrostatic lens is used, e.g. an electrostatic quadrupole, then any low-energy 

ion or electrons created in beam gas collisions will be immediately swept out 

of the beam by the electric field in the vicinity of the lens. Conversely for a 

magnetic lens, trapping of the low-energy ions and electrons can occur as they 

spiral around the magnetic field lines. Thus magnetic lenses must be used if beam 

induced neutralization is to occur in the vicinity of the lens. 

There is another way to neutralize the beam. If the beam encounters a non­

neutral plasma with the opposite sign of charge then immediate neutralization 

can occur on the time scale of a plasma period. 10 In our experiments there was 

no observation of time dependent neutralization for the beam passing through a 

Gabor lens, which contained a nonneutral plasma. The other extreme is to use 

electrostatic lenses and prevent neutralization completely. There is some increase 
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in emittance growth when this approach is taken since the field of the beam is 

what drives the growth, as we have seen. 

1.3 Lenses used in low-energy beam transport 

We can classify the lenses used in low energy beam transport into two types: 

azimuthally symmetric (axisymmetric) lenses and lenses which are not axisym­

metric, for example a quadrupole lens. We can further divide these two classes 

into two types each: magnetostatic and electric lenses. Of the symmetric lenses, 

we will consider the Gabor lens, the magnetic solenoid, and the electrostatic lens. 

For the non-symmetric lenses, there is the electric and magnetic quadrupole and 

the helical quadrupole. 

1.3.1 Azimuthally symmetric lenses 

The Solenoid Lens 

The solenoid is a particularly simple and robust means of providing focusing to a 

low energy proton beam. In the form usually used for beam transport, it consists 

of a coil of wire wrapped by an iron yoke to concentrate magnetic flux in the 

region of the beam. 

The focal length of a solenoid is given by the expression 

.!. =I (~)2dz 
f 2mv 

(1.23) 

where f is the focal length. 25 The integral is taken along the axis of the solenoid. 

Since the focusing is second order in the field strength and charge, the focusing 
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Figure 1.3: Electrostatic cylinder lens. 

is always positive, i.e. beam particles are deflected towards the axis in traversing 

the lens. Also because the beam particles follow helical paths in the solenoid 

the beam undergoes a net rotation in passing through. However, no net angular 

momentum is imparted to the beam. 

Neutralization effects can be significant for an intense beam propagating 

through a solenoid. Charged particles formed in the lens move slowly in the 

direction perpendicular to the field. The trapping of charged particles in the 

region of the beam increases the effective focusing force of the lens and can sig­

nificantly enhance the amount of current which can be transported through the 

lens. 36 It takes time for neutralization to occur. The focusing is changing during 

this time, which can have adverse consequences. 

The Electrostatic Cylinder Lens 

The azimuthally symmetric electrostatic lens comes in a number of configurations. 

The simplest consists of two coaxial cylinders with a bias voltage applied between 

them. The focusing is due to the fringe fields at the entrance and exit of the lens 
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and the fact that the beam particles undergo acceleration in the lens. As with 

the solenoid, the focusing is second order in the field strength. The expression 

for the focal length is given approximately by 

~ = ~ (<1>1) 1/4 j (<I>') 2 dz 
f 16 <1>2 <I> 

(1.24) 

where <I>1 is the potential of the tube at the lens entrance, <1> 2 that of the exit 

tube, and <I> is the electrostatic potential. 

The electrostatic cylinder lens suffers from spherical aberration, as does the 

solenoid. Spherical aberration limits the attainable minimum spot size which can 

be achieved with a lens, 17 so it is an important consideration for lenses that will 

be used to match into RFQs. An RFQ requires a very sharp beam focus at its 

input. Spot size requirements of a millimeter in size or less are typical. 

Neutralization effects do not exist in an electrostatic lens. Any free ions or 

electrons created in collisions with beam particles are immediately swept out of 

the lens by the electric field. This can be a great advantage in designing a LEBT 

using electrostatic lenses. However, emittance growth is greater than the growth 

that would occur in a neutralized beam precisely because the electric field of the 

beam is not neutralized. 

The Gabor Lens 

It is possible to obtain a focusing which varies with the first power of the field by 

placing current or charge in the path of the beam. The Gabor lens is an example 

of the latter. l5 It works by producing a stable cloud of electrons in the lens. If 

the cloud is perfectly uniform in density, the fields will vary linearly with radius 
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and the lens will have very good focusing properties. The actual form of the 

equilibrium plasma density distribution will be derived below. 

The focal length of a Gabor lens is given by 

J = 11: sin (11:L) (1.25) 

where 11: = -(mw;/4T)(Q/q) is the focusing strength, T = mv2 /2 is the kinetic 

energy of the beam ions, Q is the charge of the beam ions, q is the charge of the 

plasma particles, and wp = jnq2 /€om is the plasma frequency. 

The Gabor lens has some very desirable properties for LEBT. The beam is 

neutralized while passing through the lens, so emittance growth is limited. The 

focusing is strong. It is not clear if high beam currents can be transported through 

the lens. If the density of beam particles is not much less than the density of 

the nonneutral plasma in the lens, then beam-plasma instabilities may develop, 

limiting the focusing precision of the lens. The lens must be able to sustain a 

plasma for long periods of time if it is to be used in an accelerator operation 

environment. 

1.3.2 N onsymmetric Lenses 

The discussion of nonsymmetric lenses will be brief. There is only one which 

is used in LEBT, the quadrupole lens. The focusing properties of electric and 

magnetic quadrupoles are identical. 
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Figure 1.4: "Beam's eye" view of quadrupole lens. 

Quadrupole Lenses 

By employing a lens geometry which has two symmetry planes, it is possible to 

obtain a lens in which the focusing is first order and linear. The quadrupole 

lens is focusing in one plane while defocusing in the other, perpendicular, plane. 

For example, if we take the beam axis to be the z axis of cartesian coordinate 

system, then if the quadrupole focuses particles moving in the xz plane it will 

defocus particles traveling in the yz plane. It must be used in a more complex 

configuration to construct a LEBT, using the lenses in an alternating arrangement 

to obtain a focusing array. This is dependent on the fact that a pair of lenses of 

equal strength, one focusing, the other defocusing, has a net focusing effect. This 

phenomenon is used to great advantage in an alternating gradient synchrotron. 9 

In order to obtain the equivalent of a thick lens which is focusing in both planes, 
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three quadrupoles in a symmetric triplet arrangement must be used. Quadrupole 

LEBTs require more lenses to take a given beam and match it into a given 

structure. Electrostatic quadrupoles are totally immune to neutralization effects, 

magnetic quadrupoles nearly so. 

The focal length of a magnetic quadrupole lens is given by the expression 

J = ksin(kL) (1.26) 

where 

(1.27) 

and L is the length of the quadrupole and Pz = mvz. For an electrostatic 

quadrupole the same expression holds for 1/ f with 

k2 = _q_8E11 _ _ q_8Ex 
mv2 ox - mv2 oy . (1.28) 
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Chapter 2 

PHYSICS OF BEAMS WITH 

SPACE CHARGE 

2.1 Characteristics of Space Charge Dominated 

Beams 

2.1.1 Distribution Functions and Phase Space 

In this thesis we shall refer many times to beams of charged particles. Therefore 

it is necessary to begin by defining a beam. Following Lawson 25 we shall define a 

beam as a distribution of charged particles, roughly cylindrical in shape, which are 

moving with their velocity vectors approximately parallel to a line called the beam 

axis. In all the situations which we shall discuss, the angles between the velocity 

vectors and the beam axis are small enough that the paraxial approximation may 

be used. 
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Consider a system composed of N identical charged particles. This could be 

a plasma for example. Classically the state of the system is completely specified 

by the 6N coordinates and momenta of the particles. The systems we will be 

dealing with have large numbers of particles, greater than 1010
, hence any attempt 

to specify all the coordinates and momenta of the particles is futile. From a 

statistical viewpoint this is analogous to specifying the N particle distribution 

function 

The interpretation of this function f is that the probability that the particles in 

the system have coordinates qi,···, QN and momenta p 1, • · ·, PN in the ranges 

dq1 , · · · , dqN and dp1, · · · , dp N at the time t is given by the expression 

The function f satisfies the following equation: 

of 3
N. of . of 

at + L:qia. +Pia:= o. 
i=l q, p, 

(2.1) 

This result is known as Liouyille's theorem 30 and it has profound implications 

for the behavior of a distribution of particles. It is of fundamental importance in 

statistical mechanics. Although the N particle description is complete, it is quite 

intractable for a system with a large number of particles. 

We shall instead describe the system with a reduced one particle distribu­

tion function f = f (q, p, t), where q and pare the generalized coordinate and 

momentum vector of a particle in the Hamiltonian sense. The one particle dis­

tribution function is formally related to the N particle distribution function by 
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an integral: 

(2.2) 

The physical significance of f is that f d3qd3p is the number of particles in the 

system in the phase-space volume element d3qd3p located at ( q, p ). The function 

f is normalized so that ff d3qd!lp = N, the number of particles in the system. The 

density of particles in the lab is n. If the plasma approximation is valid, 22 the 

distribution function f and the density n satisfy the Vlasov-Maxwell equations: 

n(q) = j fd3p 

a J + ~ P . V' q f + q (E + v x B) . V' pf = 0 
at m c 

qn 
Y'q·E=­

c:o 

V'q·B=O 

aE 
V' x B = µoJ + -

q at 
aB 

V'q x E + at = o 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

where V' q denotes the gradient operation with respect to coordinate q, V' p with 

respect to momentum p. E and B are the electric and magnetic field vectors, J 

is the current density, and c:0 and µ0 are the usual electromagnetic constants. l9 

The distribution function and the fields are coupled through this set of equations. 

If the beam current is independent of time or if the variations in the beam 

current occur over a much longer time than the period of plasma oscillations of 

the beam we can write equation (2.4) as 

afJ. _.!_ ( ofJ. of J.) F af J. F of J. _ 0 !lt + Px a + Py 8 + x !l + Y a -u m X Y upx Py 
(2.9) 
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where fl. = h.(x, y,p:c,Pin t) and F:c and Fy are the x and y components of the 

electromagnetic self force 

( 
v x B) F=q E+ c . (2.10) 

Formally this "transverse" distribution function is obtained from the full six 

dimensional function f = f ( q, p, t) by integrating over all values of z and 

Pz:f J.. (x, P:c, y,py, t) = J J ( q, p, t) dzdpz. This equation is useful if we have some 

knowledge of the analytical form of the distribution function. If we wish to simu­

late the time evolution of the beam distribution function then we can do so with 

a particle in cell (PIC) code. 

2.1.2 Standard Beam Parameters 

We will attempt to follow as closely as possible the notational conventions of 

Lawson. 25 We shall describe the beam by specifying a number of parameters. A 

complete description would include the current, energy, type of particle and the 

distribution function of the beam. In practice one is lucky to know the current, 

energy, and one of the second moments of the transverse distribution function 

of the beam. Any spread in the energy value of the beam is neglected. When 

we speak of the energy it should be understood that we mean the kinetic energy 

T = (l/2)mv2 of the particles, equal to the total accelerating potential they have 

fallen through. Since the beams dealt with are non-relativistic (v/c < io-2
), the 

non-relativistic formula for kinetic energy can be used. 

We shall choose a cartesian coordinate system whose z-axis coincides with the 

beam axis. We then choose the x-axis to lie in a horizontal plane and the y-axis to 
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be vertically upward such that x, y,and z form a right-handed coordinate system. 

If the beam distribution is azimuthally symmetric then a cylindrical coordinate 

system r, (},and z will be used. 

One way of specifying some of the properties of the beam distribution is by 

using three parameters which we shall refer to as the Courant-Snyder parameters 

ax,y, f3x,y 1 and 'Yx,y· 12. The x, y notation indicates that the Courant-Snyder 

parameters are defined for either transverse plane x or y. In a linear accelerator or 

a beam transport line, the Courant-Snyder parameters are intimately associated 

with the beam, and their values must be specified at some point in order for them 

to be defined. In a circular accelerator like a synchrotron the Courant-Snyder 

parameters are determined by the magnetic field structure of the accelerator itself 

in the absence of any beam. We shall be discussing linear beam transport, hence 

we will be using them in the first sense in which they are associated with the 

beam. They may be determined experimentally from measurements of the beam 

phase space. If one measures the transverse distribution of the beam in the x, Px 

plane then the Courant-Snyder parameters can be defined by the following set of 

equations: 

(2.11) 

where the () denote averages over the beam distribution and 

(2.12) 

is our definition of the RMS emittance. l, 29, 24 It is sufficient for our purpose 

here to define the Courant-Snyder parameters and the emittance in this way. It 
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follows from (2.11) and (2.12) that 

/xf3x - a; = 1. (2.13) 

2.1.3 Liouville's Theorem and the Emittance 

The theory we are presenting is statistical in nature. Since Liouville's theorem is 

fundamental to statistical mechanics it is not surprising that it has a fundamen­

tal role in the theory of space charge dominated beams. We present here a brief 

definition of the concept of emittance, which is vital to the theory of space charge 

dominated beams. At Fermi National Accelerator Laboratory there is a standard 

definition for the beam at high energy, depending on the beam width from flying 

wire measurements and the value of the beta function of the magnet lattice at 

the point where the measurement is taken. 32 This is due to the fact that there 

is no way to measure the angular width of the beam at energies greater than 10 

MeV. Unfortunately the other high energy physics laboratories do not use the 

same definition of emittance as Fermilab * so that caution must be exercised when 

comparing numbers from different experiments. For low energy beams the situa­

tion is much better. There is a commonly accepted definition of emittance which 

is in widespread use. It can be accurately measured in a reproducible fashion, and 

is a good indicator of the nature of the particle beam. For a detailed discussion 

of emittance the reader is referred to the excellent monograph of Lejeuene and 

Aubert 29 A good discussion can also be found in Lawson's book. 25 

*When fitting beam width measurements, the full emittance is defined as contained within 
two standard deviations at CERN and v'6 standard dev. at Fermilab. But even within the 
laboratories there is variation in the definition used. 
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In order to understand emittance one must try to understand Liouville's the-

orem, equation (2.1). The state of the system at a given time is a single point in 

the 6N dimensional phase space of the coordinates and momenta of the particles 

in the system. The N particle distribution function specifies the probability den­

sity of the state of the system in this space. As the system evolves in time the 

system point traces out a path in phase space. Only one path can pass through 

any given point. This is because Hamilton's equations 16 

8H 
Pi 

oqi 
(2.14) 

8H 
qi -

OPi 
(2.15) 

are first order differential equations. The subscript i ranges from 1 to N so that 

there are 2N equations total. The function 

(2.16) 

is the Hamiltonian function of the system, which may be derived from the La­

grangian function. The only important point here is that the equations of motion 

can be put in the form of Hamilton's equations. Since the equations are first order 

in the time, the path of the system point is uniquely determined by the initial 

conditions of the motion. Now consider an ensemble of systems all with different 

initial conditions of their coordinates and momenta at some instant of time t. As 

these systems evolve in time their system points trace out paths which do not 

cross in phase space. Thus a group of system points contained within a boundary 

remains within the boundary as the system evolves in time. If we define a density 

function J(qi,Pi, t) of system points in phase space then it will obey a continuity 
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equation (the number of systems is a constant). By combining Hamilton's equa­

tions with this continuity equation we can arrive at (2.1) 30 which states that the 

density of system points in the neighborhood of a particular system point does 

not change with time. One can consider this ensemble of points as a sort of fluid. 

Liouville's theorem says that the fluid flow is incompressible. 

Liouville's theorem is true in general only in the 6N dimensional phase space 

of the coordinates and momenta of all N particles. If the particles interact, it is 

not in general possible to simplify this result and recast it in terms of the one 

particle distribution function. However, if the interaction is collective and the 

plasma approximation holds 22, then (2.1) becomes the Vlasov equation. 

Consider now the reduced one particle distribution function f, which lives in 

the six dimensional space of Hamiltonian coordinates and momenta. If there are 

interparticle forces, then in general Liouville's theorem must be modified. The 

simplest approach is to approximate the interaction of the charged particles of 

the system with the smooth electric field of all the charges. The Vlasov-Maxwell 

equations are then used to solve for the properties of the system. If the effects of 

short-range collisional forces are to be included in the theory then the Boltzmann 

equation must be used. 8 

How, then, is Liouville's theorem connected with the emittance? Consider 

again a system for which Liouville's theorem holds for the one particle distribu­

tion function. An emittance c can be defined to be the "area" enclosed by the 

particles in the two dimensional phase space of one of the coordinates and its con­

jugate momentum. Assume that the motion is uncoupled, i.e., the Hamiltonian 

separates into three parts each of which depends on one of the coordinates and 
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its conjugate momentum. Liouville's theorem says that the emittance is constant 

in time: 

de= O. 
dt 

(2.17) 

It is worth pointing out that the "area" occupied by a collection of particles must 

be carefully defined in a theoretical sense. In classical mechanics a particle is 

represented by an infinitesimal point in phase space. Thus it seems the total 

area occupied by any collection of particles is zero. One imagines a boundary 

enclosing the collection of particles in phase space which delimits the volume, but 

it is not clear how to choose the boundary. It is possible to choose the boundary 

by a statistical process; this is what the rms emittance does. The rms emittance 

does not necessarily obey Liouville's theorem. Its time rate of change is covered 

by (1.4) if the beam is azimuthally symmetric. 

In practice, when the emittance is measured, what is usually obtained is an 

intensity signal l(x, x'), where x' = Px/Pz· The boundary of the distribution 

is defined as a particular intensity level. The emittance is taken to be the two 

dimensional area contained within this curve in the x, x' plane, and it has units 

of length. 
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Chapter 3 

PHYSICS OF GABOR LENSES 

A Gabor lens, figure (1.1 ), is a device which traps a nonneutral plasma column. 

The other distinguishing characteristic of the lens besides nonneutrality is the 

azimuthal symmetry. Radial confinement is provided by a solenoidal magnetic 

field, axial confinement by the electric field of one or more electrodes. Since the 

plasma is nonneutral, it creates an electrostatic field which will focus a positively 

charged particle beam. We will discuss some of the plasma physics of the Gabor 

lens in this chapter. 

3.1 Nonneutral Plasma Physics 

Nonneutral* plasma physics is a subfield of plasma physics which has seen much 

increasing activity in the last several years. 11 In 1989 the Nobel prize in physics 

*This is the spelling used by most authors in the field. The AIP hyphenates it (non-neutral) 
in their journals and conference proceedings. 
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was awarded to physicists doing research in nonneutral plasma physics. A non­

neutral plasma is a collection of charged particles which does not exhibit overall 

charge neutrality. There is an excess of one charge species relative to the other. 

Examples occur in ion and electron traps, intense relativistic electron beams, 

klystrons, free electron lasers, low energy ion beams, etc. Nonneutral plasmas 

are characterized by intense electrostatic self fields due to the nonneutrality of 

the system. In all cases of interest they are also magnetized. It is the magnetic 

field which provides the restoring force necessary to keep the system in equilib­

rium. An unneutralized cloud of charge tends to disperse itself because of the 

electrostatic repulsion exhibited by like charges. 

The choice of the magnetic field configuration is very important and must be 

made with care. The stability of any magnetized plasma including nonneutral 

plasma can be shown to depend in a general fashion on the curvature of the 

magnetic field lines. 22 If the field lines curve into the plasma then it is stable 

and vice versa. 

3.1.1 The Brillouin Limit 

We will now discuss an important fundamental limit on the attainable density of 

a plasma in a Gabor lens or cylindrical ion-trap type geometry. This limit was 

first calculated by Brillouin in 1945. 6 Consider a distribution of particles all of 

the same mass m and charge species q which is symmetric about the z axis in 

a cylindrical coordinate system r, 0, z. There are no charges of the opposite sign 

to q in the system, so it is nonneutral. We consider the plasma to have much 

greater extent in the z direction than in radius, with a uniform line density so 
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that we can ignore variations of the charge density in z, on/ oz = 0. There is a 

uniform magnetic field in the -z direction B = - Bz. 

The fluid equation of motion of the cold plasma with zero pressure gradient 

and no collisions is given by 

mn [ ~~ + (v · \7) v] = nq [E + v x B]. (3.1) 

We also have from Gauss's law \7 · E = p /co that the electric field in the plasma 

column is Er= (nq/c0 )r. We look for a steady state solution of (3.1) and Gauss's 

law with a I at = a I{)() = 0. Combining the two we obtain the force balance 

equation: 

Vi 1 (nq
2

) m- = -- - r + qBVo. 
r 2 co 

(3.2) 

The() component of (3.1) vanishes identically with the stated assumptions. Equa­

tion (3.2) has a simple interpretation. The term on the left is the centripetal 

acceleration of a small fluid element. The first term on the right comes from the 

outward electrostatic self-force of the nonneutral plasma and the second term on 

the right represents the inward magnetic force which binds the system. This is a 

quadratic equation for n = V0/r. Solving for n we find 

[ ( 
2 2) 1/2] 

n = ( ~c) 1 ± 1 - :; ' (3.3) 

where w; = nq2 /com is the plasma frequency and We = qB /m is the cyclotron 

frequency of a particle in the magnetic field. Equation (3.3) is plotted in figure 

(3.1). Since the rotation frequency is independent of r, equation (3.3) describes 

a rigid rotation of the plasma as a whole. We note that for each value of 2w;/w; 

there are two possible rotation frequencies given by the intersection of a verti­

cal line with the upper and lower branches of the parabolic curve, except when 
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Figure 3.1: Rotation frequency of nonneutral plasma column. 
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2w;/w~ = 1, or n = We/2. This is known as the Brillouin limit or Brillouin flow, 

which was mentioned above. We rewrite it here for convenience. In terms of the 

plasma density n we have 
2c0 B 2 B2 

n= cx:-
m m 

(3.4) 

at the limit. 

It is interesting to see what condition if any results from applying the same 

assumptions (azimuthal symmetry, time independence, and infinite length of the 

column) to the single particle equation of motion for a plasma particle. The 

equation of motion of a plasma particle is 

mr = q (E + v x B) (3.5) 

which we can rewrite as 

(3.6) 

Now transform to a coordinate system rotating with angular velocity Or using 

x' x cos nrt + y sin nrt (3.7) 

(3.8) 

In the rotating coordinate system the equation of motion (now written in com­

ponent form) is, with B = -Bz as before, 

X1 
- (fl~ - Weflr + ~w;) X

1 
- (we - 2f2r) y' 

(fl~ - Weflr + ~w;) y' + (We - 2f2r) X1
• 

••/ y 

(3.9) 

(3.10) 

Now choose nr to be the solution (3.3) so that the first terms on the right side 

of (3.10) will vanish leaving 

x' (3.11) 
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.. , ( 2() ) •I Y = We - Hr X. (3.12) 

This pair of equations is familiar from the problem of charged particle motion 

in a static, homogeneous magnetic field. The plasma particles are found to be 

executing circular orbits in the rotating frame with the frequency We - 2S1r. When 

nr equals wcf 2 then the particles are at rest in the rotating frame and when nr 
vanishes then the particles are describing cyclotron orbits. Thus the same limits 

apply to nr as apply to n in the fluid case. This is reasonable since the fluid 

velocity represents an average velocity of all the particles in the plasma. If we 

average over many cyclotron orbit periods then the average motion is represented 

by the motion of the rotating frame. 

3.1.2 Finite Temperature Equilibrium of a Nonneutral 

Plasma Column 

We shall now investigate the effect of a finite temperature on the equilibrium 

of the plasma column. This requires the insertion of a temperature term into 

equation 3.1. The modified equation now reads 8 

mn [ ~; + (v · '\7) v] = nq (E + v x B) - '\7p. (3.13) 

We will use the same coordinate system as in the previous section. We are 

searching for an equilibrium solution of (3.13) and Gauss' law '\7 · E = nq/co. 

Writing (3.13) out we have with 8/8t = 0 

(v. '\7) v = 1-E - We (v x z) - kT '\71/J 
m m 

(3.14) 



CHAPTER 3. PHYSICS OF GABOR LENSES 43 

where t/J is defined as 

t/J = ln (n/no). 

Now we shall make what may seem like a restrictive assumption. We are looking 

for an equilibrium solution of (3.13) and Gauss' law which is a description of 

the state of the system. There is a theorem from statistical mechanics which 

states that if a system is in thermodynamic equilibrium then its macroscopic mo­

tion must consist of a uniform translation and/or rotation.23 We shall therefore 

assume that our system is undergoing uniform rotation so that we may write 

v = V(JJ. Using this equation we have that 

(v · \7) v = ( w :()) wrO = -w2rr. 

Inserting this into (3.14) we obtain 

2 A q E ( A ) kT 't"'7 ·'· -W rr = - - We V X Z - -v '//· 
m m 

(3.15) 

Now take the divergence of this equation to obtain, after some rearrangement 

(3.16) 

or, since a;az = a;ae = 0 ' 

(pt/J')' = p (g +et/I) (3.17) 

where g = 2w ( w - We) / w;, p = r / >.d, and >.d is the Debye length 22• 8 defined by 

the equation 

(3.18) 
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Figure 3.2: The dimensionless function 1/;(r ). 

The ' denotes differentiation with respect to p . This is a singular, nonlinear 

differential equation. It is not known to have a general solution in terms of 

analytic functions. Fortunately, equation (3.17) can be accurately integrated 

with a Runge-Kutta integration routine on a computer. The correct initial value 

problem is to solve (3.17) with the initial conditions 1/;(0) = 1/;'(0) = 0. A graph 

of the solution for 'lj; is shown in figure (3.2) for g = 0.005. If we now take the 

exponential of 'lj; the the function n(r) is obtained. This is plotted in figure (3.3). 

We see the general behavior of the function - it is flat from the middle of the 
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Figure 3.3: The dimensionless function n(r)/n(O). 
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column to several Debye lengths from the z-axis. The column width depends on 

the parameter g. As g decreases, the width of the column increases. Outside the 

flat region in the center of the column there is a gentle falloff to zero density with 

a scale length of >.d. 

3.1.3 On the Difficulty of Focusing Negative Ion Beams 

with a Gabor Lens 

Because of the fact that the charge to mass ratio of the electron is larger than 

that of any other easily generated charged species seen in laboratory nonneutral 

plasmas, the Gabor lens has an interesting property. It is only useful for focusing 

beams containing positively charged species. This asymmetry arises because of 

the need to confine the nonneutral plasma with a solenoidal magnet. In order 

to focus a given beam we need a certain electric field strength. This yields a 

focal length. The electric field strength is determined by the central (nonneutral) 

plasma density in the lens. In addition we must have the plasma density in 

the lens much greater than the density of the beam, in order that the beam 

space charge is neutralized. We must construct a magnetic field strong enough 

to contain this density in the Gabor lens. We recall that the maximum possible 

density in the center of the lens is given by n = 2e0 B 2 /m. This is the Brillouin 

limit. Now we must inquire into what density is necessary in the Gabor lens to 

focus the beam. Let us take the H- beam from the Fermilab magnetron source as . 
an example. Typical beam densities are ,....., 108 cm-3 . Assume the density of the 

Gabor lens plasma to be ~ 109 cm-3 • If we plug a density of of n = 109 cm-3 , and 

a lens length L of lOcm (this should approximate our Gabor lens; the measured 
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density was in the 108 - 109cm-3 range, while the electrode length was 10 cm.) 

into the focal length equation (1.25), then, assuming we are focusing 30 keV 

protons, we find that f ~ 9cm. 

The nonneutral plasma particles must be positively charged to focus the neg­

ative beam. One could imagine forming a proton plasma from hydrogen gas. 

However the plasma particles are now 1836 times more massive then they are for 

an electron plasma. This means that we need a large magnetic field, as given 

by the Brillouin limit. We should also take into account the fact that laboratory 

plasmas of this type are usually well below the Brillouin limit when in equilib­

rium. In the Fermilab Gabor lens we obtained a plasma with 2 w;Jw; ~ 7 x 10-2
• 

For n = 109 cm-3 we find that B ,....., 1 Tesla. This is a strong solenoid magnet. 

So strong that the focusing effect of the magnet is just as great as that of the 

nonneutral plasma, making the combined focusing effect too large. In addition, 

it would be necessary to shield any nearby ion source from the field of the beam. 

The magnet would be large and costly to construct. This is to be contrasted with 

an electron Gabor lens which can be made with a simple air core magnet with a 

central field of~ 200G. 

3.2 Focusing properties 

3.2.1 The fields of the N onneutral Column 

Because the charge density p of the plasma column contained in the Gabor lens 

is non-zero, there is an electrostatic field in the region of the plasma given by 
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Gauss's law, 

p 
V"·E=-

c:o 

48 

(3.19) 

where E is the electric field vector and c:0 is the "permittivity of free space," a 

constant. For a plasma column in which the charge density is independent of z 

we obtain the elementary result: 

E - 2q P 

{ 
(!!!:.) w2 r 

r - ( ~) w; ( ~2 ) 
(3.20) 

where Wp = ..jnq2/f.om is the plasma frequency. This electric field leads to the 

equivalent thin-lens focal length 33 given by (1.25) for beam particles moving 

within the body of the plasma. 

In general, the density will not be completely uniform and the electric field 

will have a z component. This means treating the column as having a finite 

length. Numerical methods must be used to solve the Vlasov-Maxwell equations 

in all but the simplest cases. With certain assumptions, it is possible to solve for 

the electrostatic potential. 34 

One could also use detailed knowledge of the charge density pin order to solve 

(3.19) (numerically) for the electric field. Since there was no measuring capability 

for the plasma density as a function of r and z within the lens, we were not able 

to do this. Given that the plasma density is nearly uniform in the body of the 

plasma, it is a good approximation to treat the lens as a simple thick lens, much 

like a thick glass lens used in a pair of binoculars, e.g, so such an exercise would 

only be of academic interest. 
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Chapter 4 

EXPERIMENTAL RESULTS 

4.1 Experimental Setup 

4.1.1 Data Acquisition Electronics and Software 

The data acquisition hardware consisted of a Fermilab linac console 38, a multiple 

channel sample and hold amplifier board, and a Fermilab "DO Rack Monitor 

Module (RMM)." 14 The digital output of the RMM was sent over an MIL-

1553 data bus to a token ring interface card housed in a VME crate. The data 

was then sent over a token ring network to a Sun Microsystems 4/260c computer 

where it was stored and analyzed. The Sun console was used to examine the data 

values from the experiment in real time and to debug the emittance measurement 

apparatus. The functions of the other equipment will be explained below. 

The software which controlled the data acquisition was developed on the Sun 

by several people. It is a mixture of C, C++, and unix shell scripts (the shell 

is the command line interface for unix and a programming language in its own 
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right). 

AC++ program ("meas_emit") was used to actually control the experiment 

and acquire the data. There were two separate programs used as "front ends" to 

meas_emit. One program ("emit-sun") employed a graphical interface and could 

only run on the Sun graphics console. Most of the data was taken with a unix 

shell script ( "measit") which could be run from any ascii terminal. This was 

important since the only terminal in the lab was an ascii terminal. 

For each emittance run a separate file was created on disk which contained 

all the raw data associated with the run. We felt it was important to save the 

raw data to disk. Any manipulation of the data (smoothing, noise removal) was 

then done in the analysis program without alteration of the original data files. 

Multiple Channel Sample and Hold Module 

In order to do the analog to digital conversion of the output signals from the 

experiment, a multiple channel sample and hold circuit was devised. The basic 

circuit of the the sample and hold module (SHM) was quite simple (figure 4.1). 

The analog input signal is fed into a Precision Monolithics OP37ez operational 

amplifier. With the external resistors used in the circuit the gain is 200. The 

output pin of the op amp is connected to the input of a Harris ha-5320-5 sample 

and hold amplifier. Since there is a 50 n resistor between the op amp input and 

ground, the output signal was proportional to the current from the wires. The 

acquisition time of the ha-5320-5 chips is lµs. That is, the output of the module 

follows the input until the control voltage goes high, at which point the output 

is "clamped" within one µ s. All the sample and hold modules are controlled by 
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Figure 4.1: Circuit for sample and hold module. 
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a single hold signal which is buffered out to all the chips through a buffer circuit 

on the same board. The timing of the hold signal could be varied over the entire 

length of the beam pulse, which was 90 µs in length. In all of the emittance 

measurements, the hold signal arrived 50 µs after the start of the beam pulse. 

We found no significant time variation of the emittance over the length of the 

beam pulse. 

Thirty-six of these circuits were placed in parallel on a single circuit board to 

provide simultaneous sample and hold capability for the signals from the emit­

tance probe. With fifty signals for the emittance wires, as well as current and high 

voltage read back, two boards were constructed to provide enough data capacity. 
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DO Rack monitor module 

The RMM is used to do the analog to digital conversion (A/D) in the experiment. 

This is a general purpose monitoring module that was designed for monitoring 

data in the DO collider detector at Fermilab. It provides 64 channels of A/D 

conversion with 8 output channels, and four words of digital I/O. The RMM uses 

an MIL 1553 data bus to communicate with an IEEE 802.5 Token Ring interface 

card that was developed at Fermilab. The MIL 1553 is a multiplexed, 1 MHz 

data bus that operates over a shielded, twisted pair cable. In the jargon of MIL 

1553, the RMM is a "remote terminal" that is being controlled from a token ring 

device. Both devices can and do reside within a single VME bus crate. The VME 

is a standard data bus that is used in many applications in experimental physics. 

4.1.2 Ion Source Test Stand and Duoplasmatron 

The Fermilab ion source test stand is a general purpose tool for the testing of ion 

sources and low energy beam transport devices. It has the capability to run with 

both n+ (proton) and n- beams. The Gabor lens (which was discussed previ­

ously) is not useful for focusing negative ion beams, and the emittance growth of 

the beam does not depend on the sign of the beam space charge (if neutralization 

effects are not important). Hence proton beams were used to do the experiment. 

A schematic drawing of the ion source test stand experiment is shown in 

figure ( 4.2). Vacuum was provided by a turbo molecular pump with a pumping 

speed of 450 liter/s. A typical vacuum with the duoplasmatron running was 

,..., 10-5 torr. There was a large ion pump on the test stand but it was not used 
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Figure 4.2: The Fermilab ion source test stand beam measurement equipment. 

because of difficulties with its operation. 

The duoplasmatron is a design that is more than thirty years old. l3 These 

ion sources were used for operation in the early days of Fermilab. An n- source 

is used currently. One of the old Fermilab duoplasmatrons was used for the 

emittance growth experiment. This particular source is based on a MURA design. 

A schematic diagram of the ion source is shown in figure 4.3. The apparatus is 

very nearly azimuthally symmetric, except for the cathode filament. Hydrogen 

gas is fed into the rear of the source through a gas leak valve. The gas is heated 

and ionized by the filament, which has a direct current flowing through it. With 

a voltage of several hundred volts between the filament and the anode, an arc 

discharge is generated in the gas in the chamber. In the region of the intermediate 

electrode (IE), a plasma sheath is formed with a corresponding increase in the 
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potential on the symmetry axis. There is a strong magnetic field on the order 

of several kilogauss in the gap between IE and the anode, which are opposite 

magnetic poles. Because of the strong magnetic field, only the most energetic 

electrons can traverse this gap into the anode region. Ionization in the second 

discharge in the expansion cup is due entirely to collisions between these energetic 

electrons and neutral gas atoms. Another sheath is formed between the second 

discharge and the extraction electrode, which is biased negatively with respect 

to the anode. Ions extracted through this second sheath form the beam. 

In our experiment, the filament to anode voltage is pulsed with a duty factor 

of 0.13 % (90 µs, 15 Hz). The output current of the source shows a rise time of 

,...., 5µs, then the current is constant to ±1 mA over the length of the pulse, during 

which time the source operates as stated above. 

The duoplasmatron is capable of producing proton currents well in excess of 

100 mA. The peak current in the experiment was limited by the acceptance of 

the emittance probe to 30 mA or less. A table of typical operating parameters 

follows: 

Duoplasmatron parameters 

filament current 18-23 Amps 

filament voltage 2-3 Volts 

magnet current 1-2 Amps 

arc voltage 100-300 Volts 

arc current 4-20 Amps 

beam energy 30-45 keV 

gas pressure 10-5 torr 
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Figure 4.4: Emittance probe. 

Beam Diagnostics 

The primary diagnostic used in the experiment was the moving slit emittance 

probe. In addition to this there was a toroidal current transformer and a Faraday 

cup. 

The moving slit emittance probe principle is illustrated in figure 4.4. The 

beam impinges on the front face of the probe, where a fraction of the beam 

passes through the slit, which is 51 µm in width. The probe face is assumed to 

be perpendicular to the beam axis. The "beamlet" thus selected then drifts for a 
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distance of 5 cm before hitting the backplane of the probe, which consists of 50 

parallel wires (copper strips, actually), each with a width of 130 µm, separated 

by insulating kapton strips of ,...., 50µm width. Each wire strip is connected via 

a shielded cable to the input of one of the sample and hold modules discussed 

above. 

By passing through the slit, the part of the beam within 8x of x, where the 

slit has width 28x, has been selected. Within this beamlet there is some spread 

of angles 8x'. Thus the beamlet will spread before it impinge on the wires: 

The signals on the wires are proportional to the amount of current intercepted. 

The angle between the beam axis and a given wire is known since the wires and 

their insulating separators are of uniform width. Hence the distribution of wire 

voltages from the beamlet gives a discrete angular distribution for position x. 

In practice the beam distribution is measured by "stepping" the emittance 

probe through the beam with a stepper motor, which can move in increments as 

small as 50 µm. The larger steps are multiples of 50 µm, i.e. the stepper motor 

steps are quantized. A typical step size was 200 µm. At each position, the wire 

voltages are read and digitized. When the run has ended, the data file is written 

to the Sun disk. 

In order to help understand why the emittance probe measures the distribu­

tion of beam intensity I(x, x'), it helps to imagine a rectangular region of the 

x, x' plane centered at the origin. This region is divided up into smaller rectan­

gles which measure 8x by 8x'. Each such rectangle then corresponds to a single 

•The spreading of the beamlet due to space charge forces can be estimated analytically and 
is found to be< 1 % of the separation between adjacent wires for a 30 mA, 30 keV beam with 
a width of 1 cm, so it can be safely neglected. 
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wire reading at a particular x. The width 8x corresponds to the step size, while 

the height 8x' is the separation between the wires. The wire voltage is a number 

stored in the smaller rectangle. Each step of the probe fills in a narrow strip of 

rectangles situated at x and ranging over 50 8x' in the x' direction. When all the 

steps are done, the entire area is filled in and we have sampled I(x, x') in the 

reg10n. 

The Faraday cup is essentially an open ended cylinder which intercepts the 

beam to provide a direct measurement of the beam current. A 100 n resistor 

was placed between the cup body and ground. The voltage on the cup was then 

viewed on the oscilloscope display. A fine wire grid biased to several hundred volts 

negative is placed approximately one cm in front of the cup to suppress secondary 

electron emission, which would give a false reading of the current otherwise. 

The beam toroid is essentially a transformer with the beam as a single turn 

primary and the output signal taken from the secondary. The body of the toroid 

is a high magnetic permeability material with the secondary windings wrapped 

around it. In addition there is a resistance Rs in the secondary. With the proper 

choice of Rs and the number of turns in the secondary, the output voltage will 

follow the input voltage for signals of short duration. The beam pulse used was 

90 µs in length. 

4.2 Gabor Lens 

As we stated above, the Gabor lens was studied because it has an azimuthally 

symmetric focusing field and it neutralizes the beam space charge. The question 
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that needs to be answered is whether or not the Gabor lens has sufficient optical 

quality to match a beam into an RFQ. Since the focus required at the input to 

the RFQ is very sharp, the lens used to focus the beam must be nearly free of 

aberrations. In particular the spherical aberration should be small. However, it 

is not possible to eliminate spherical aberration in an azimuthally symmetric lens 

such as a Gabor lens. 25 

4.2.1 Design of the Gabor Lens 

The first Gabor lens was built in June, 1987. The coil for the solenoid magnet 

was designed with a power dissipation of,....., 750 watts and a central field of,....., 500 

Gauss. The magnet was water cooled with hollow magnet wire. In addition 

multiple anodes were built inside of the lens in order to control the potential 

variation inside of the nonneutral plasma. This was found to be of little use. 

Observations of nonneutral plasmas show that when placed in an azimuthally 

symmetric external confining field provided by a single cylindrical electrode the 

plasma tends to reach a state in which the plasma interior is of uniform density 

with an edge region in which the density drops to zero in a distance on the order 

of one Debye length. 11 Uniformity of the interior density is what is needed for 

good focusing, so there is really no need to try and control the plasma potentials 

with multiple exterior anodes. It is more important to shape the profile of the 

magnetic field, since this has a greater effect on the density. Ideally one would 

have a uniform B field in the region occupied by the plasma. 
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4.2.2 Magnetic Field of the Lens 

When it was built, the first lens did not work as well as was hoped. After 

some understanding of the physics of the nonneutral plasma was gained, we 

realized that the central field could be at the level of ,...., 200 Gauss to maintain 

the desired density of 1010cm-3 • This is a consequence of equation (3.4). Some of 

the literature on the Gabor lens contains incorrect results; namely, the nonneutral 

plasma physics is not handled correctly. This created confusion in the early going. 

As mentioned above, we found that the unshielded field of the lens magnet 

disturbed the operation of the duoplasmatron. This is not surprising, since the 

duoplasmatron principle depends on the magnetic field being concentrated in 

the gap between the IE and the anode/expansion cup. With the Gabor lens 

magnet energized, there was a stray field in the region of the duoplasmatron of 

approximately 10 Gauss. 

A second design (figure 1.1) was conceived with two separate magnet coils 

instead of one. The coils were constructed of solid core wire with no water 

cooling necessary. The main coil was constructed with 206 turns, the smaller 

"buck" coil with 80 turns. The power level of the main coil in the new lens was 

only 50 watts, an order of magnitude less than the previous magnet. Two coils 

were used in order that a cusp could be created in the magnetic field, i.e. a place 

where the field on the symmetry axis went to zero and then reversed. This was 

done in order to increase the stability of the plasma, as discussed above. 

Computer calculations using the POISSON code were done to compute the 

magnetic field of the Gabor lens magnet. 31 POISSON uses a "successive point 



CHAPTER 4. EXPERIMENTAL RESULTS 61 

~ 
) 

-------------··-------. ;--__ -, ------.-- --- -

Figure 4.5: Magnetic Field of the Gabor lens. 

over-relaxation" method to compute magnetostatic fields for the region of inter­

est. The solution is done on a grid which is computed by a separate program 

AUTO MESH. 

Because the magnetic field was interfering with the operation of the duoplas­

matron, an iron shield was added to provide a return path for the flux. An 

estimate of the field in the region of the source found it to be comparable to the 

earth's field, i.e. less than 1 Gauss, with the shield in place. Experimentally, it 

was observed that the magnet did not affect ion source operation after installa­

tion of the new lens. A plot of the magnetic field lines is shown in figure 4.5. 
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4.3 Beam Measurements 

4.3.1 Measurement of the Emittance 

There were two sets of emittance measurements done. The first set involved 

passing the beam through the Gabor lens and measuring the emittance before 

the lens and afterwards in order to determine the effect of the lens. The second 

set of measurements was done solely on the "young" beam immediately out of the 

ion source. The emittance seen out of the source depends on many factors. An 

important part of the experiment was finding a way to measure the emittance in a 

reproducible fashion, which was accomplished by varying the extraction voltage of 

the Pierce geometry accelerating column. The extraction voltage is the potential 

difference between the anode and the first electrode of the column. 

It was found that for any setting of the ion source parameters used to produce 

extracted beam, there was a minimum value of emittance that was obtained as 

the extraction voltage was varied. This is shown in figure ( 4.6). The procedure to 

acquire data that was used for the second set of measurements was to change the 

ion source arc voltage and the accelerating voltage to produce a desired energy 

and current, then the extraction voltage was varied until a minimum emittance 

was found. This ensured that the beam was matched into the accelerating column. 

By varying the extraction voltage, the shape of the "plasma emissive menis­

cus" from which the beam is extracted in the expansion cup of the duoplasmatron 

is changed. 28 This directly affects the angular distribution of the emitted beam, 

since ions tend to leave along trajectories normal to the meniscus. Since the 

shape of the distribution function f(x, x') is changed, the emittance changes. 
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Figure 4.6: Emittance vs. extraction voltage. 
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Figure 4.7: Geometry for Abel transform. 

4.3.2 Abel Inversion of the Density Profile 

As we mentioned above, the emittance growth of a space charge dominated beam 

is driven by the electrostatic field energy of the beam. Thus we are interested in 

calculating the electrostatic field energy from the measured distribution function 

of the beam. A necessary part of this process is the Abel inversion of the density 

profile. It is easy to extract the distribution f ( x) from the measured data. Since 

the beam is azimuthally symmetric, what is needed to calculate the electric field 

is J(r). With f(r) in hand, it is straightforward to calculate the electric field by 

solving Poisson's equation. 

Consider the measurement of the beam distribution by a moving slit emittance 

probe (figure 4. 7). The intensity of the integrated signal measured at a particular 
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value of x, I(x), is given by 

1+= 
I(x) = -= f(r)dy. (4.1) 

Using the fact that x, y, and r are related by the Pythagorean theorem as shown 

in the figure, dy can be expressed in terms of dr to yield 

I(x) = 2 r+= r f(r)dr . 
Jx Jr2 - x2 

(4.2) 

We say that I(x) is the Abel transform of f(r). This is an integral equation which 

must now be solved for f(r ), the quantity of physical interest. The solution can 

be written as 4 -
1 (di) dx 

f(r) = -- r= dx . 
7r lr Jx2 _ r2 

(4.3) 

The literature on the numerical evaluation of ( 4.3) is large. This is not a form 

which is suitable for application to experimental data, for several reasons. There 

is a singularity in the integrand, and the evaluation of the derivative dl / dx tends 

to introduce large errors, since the intensity I ( x) is discretely sampled. We would 

therefore like to express the inverse transform in a different form. Also, real data 

has a noise component, which can be amplified by the inversion process, partic­

ularly for points near the origin. 40 It is desirable to remove the noise as much 

as possible while processing the data. Fortunately, this can been done. It can be 

shown that the Fourier, Hankel, and Abel transforms form a set known as the 

FHA cycle; i.e., applying the Abel transform and then the Fourier transform to 

a function, we obtain the Hankel transform. 4 The Fourier and Hankel transform 

can be computed with fast Fourier transform (FFT) algorithms, thus decreasing 

the computation time required. 39 
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We can write the Fourier transform of ( 4.1) as 

r+oo 1+00 .1" {I(x)} = 1_00 -oo f(r)exp(-i27rxq)dxdy (4.4) 

Using an identity from the theory of Bessel functions, 3 we can rewrite ( 4.4) as 

r+oo 
.1" {l(x)} = 27r lo r f(r)J0 (27rrq)dr (4.5) 

We recognize the right hand side of (4.5) as the Hankel transform of J(r). The 

inverse Hankel transform is identical to the forward Hankel transform, hence if 

we take the inverse Hankel transform of ( 4.5 ), it can be written 

r+oo r+oo 
f(r) = 27r lo qJo(27rrq) }_

00 

l(x )exp(-i27rxq)dxdq (4.6) 

This is the form which was used for the inversion of the experimental data. This 

equation has several advantages over (4.3). There is no singularity in the in­

tegrand. The data can he filtered in the transform domain to smooth it after 

application of the FFT. 20 Considering the baseband nature of the data, a low 

pass filter is appropriate. A filter with a bandwidth of 0.2 times the Nyquist 

frequency was used. This smoothing is an important part of the Abel inver­

sion process. Without smoothing the output would contain noise which is the 

Abel transform of the input noise. The use of FFT routines increases the speed 

with which the calculations can be done on a computer, and the absence of the 

derivative removes a source of (numerical) uncertainty in the analysis. 

Source code for a program to perform the inversion was obtained, modified 

to suit our data, and debugged. 39 The FFT is implemented using a standard 

algorithm. 5 The Hankel transform is calculated with a method due to Candel 

which uses the FFT. 7 The routine was tested in several ways. One test is to 
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input a Gaussian. It is easy to show using the defining equation ( 4.1) that the 

Abel transform of a Gaussian distribution is a Gaussian. A test input 

I(x) = exp(-x2 /400) (4.7) 

was used. The inverse transform of ( 4. 7) can be easily calculated from ( 4.3). The 

result is 
1 

J(r) = 
20

1Texp(-r2/400) (4.8) 

which is easy to show. Thus the output of the inversion routine can be checked 

against a known inverse in this instance. If the filtering is good, then the com­

puted inverse will agree well with the calculated inverse. Equation ( 4. 7) was 

finitely sampled at 256 evenly spaced points on the interval [-100, 100] and in­

put into the inversion routine. In addition, a random sequence with uniform 

deviation on the interval [-0.05, 0.05] was added to I. The result of the inversion 

calculation is shown in figure ( 4.8). Other test inputs were applied for which 

the inverse could be calculated analytically to compare with the output of the 

computer program. A "waterbag" distribution was input as a second test. The 

form of the waterbag distribution in the x coordinate is 

{ 

C(a2 - x2)3/2 !xi~ a 
I(x) = 

0 otherwise 
( 4.9) 

where a is a constant that defines the edge of the beam and C is the normalization 

constant. The result of this inversion is shown in figure ( 4.9). As before, we 

compare the result with the analytically calculated inverse function, 

{ 
3c (i r2) 

f(r) = ~ - ~ 
r~a 

(4.10) 
otherwise, 
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Figure 4.8: Abel inverse of Gaussian input distribution. The circles represent 
the output of the computer program; the solid line is the calculated inverse. The 
normalization of f is arbitrary. 
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Figure 4.9: Abel inverse of waterbag input distribution. The circles represent the 
computer calculated inverse, the solid curve is the analytic inverse. 
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where C and a are the same as above. The results of these two test cases indicate 

that the inversion routine is effectively filtering the input noise and calculating the 

correct inverse for these functions. It is possible to find slightly more pathological 

input functions for which the output shows spurious oscillations. In particular, 

these oscillations are seen for an input in which the function falls sharply to 

zero, e.g. a Heaviside step function in x. This is a manifestation of the Gibbs 

phenomenon. 3 In all such cases which were studied, the addition of noise actually 

improves the results, since noise tends to blur any "hard" edges the function might 

have. 

4.3.3 Calculation of the Electrostatic Field Energy 

Given the radial distribution function f(r), it is straightforward to calculate the 

electrostatic field energy of the beam. To be more precise, we calculate the field 

energy per unit length of the beam W, since that is the quantity which enters 

into the theory. For an azimuthally symmetric beam, that quantity is given by 

(1.20). This calculation was done by a subroutine ecalc, which was called from 

the main inversion routine. Simpson's rule was used to do the integration. Since 

the inverted distribution contained random errors at the level of a few percent 

relative to the signal strength, it was not necessary to use a more sophisticated 

routine. Simpson's rule was adequate for these calculations. 

Ecalc worked in two steps. The input to the subroutine was the distribution 

f( r) obtained from the inversion procedure. Before the electric field is calculated, 

the distribution is normalized. It follows from continuity considerations that the 
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correct normalization constant N is 

( 4.11) 

where I is the beam current, q is the magnitude of the proton charge, and v is 

the speed of the beam particles J2T /m. The first integration obtained the radial 

electric field: 

1 lr I ( ') / Er= - r pr dr. 
c:0r o 

(4.12) 

With the electric field in hand, the field energy per unit length can be calculated 

using (1.20). The result of this series of calculations for a real beam is shown in 

figure (4.10). It is noticeable that the function W(r), the electrostatic field energy 

per unit length as a function of r, is a very smooth function of r. This is not 

surprising, since it was obtained after two integrations of f(r), a function with 

some slight undulation. The high frequency noise evident in I(x) is completely 

gone after Abel inversion to obtain f(r). It has to be remembered that the 

uncertainty in J(r) is largest near the origin of r when comparing the results of 

two inversions. Since it is the product r f( r) which is integrated to obtain Er( r ), 

this does introduce uncertainty into W. This was born out in the experiments, 

which showed that W varied by ±5% over a set of 10-20 runs taken with identical 

ion source parameter settings. 

4.3.4 Data Interpretation 

The two most important quantities observed were the beam emittance and the 

electrostatic field energy of the beam distribution. We recall that it is the elec­

trostatic field energy that drives the emittance growth. There were a total of 366 
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Figure 4.10: Input x density, Inverted density J(r), electric field, and electrostatic 
field energy W(r) for 45 keV proton beam. 
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Figure 4.11: "Hollow" beam distribution. The units off are cm-3
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emittance runs studied. 

The Shape of the Function f ( r) 

73 

One observation that was made concerns the shape of the function f(r). Emit­

tance was measured at three different positions along the beam axis. We shall 

call them z1 , z2 , and z3 • At position z1 , we observed that the beam had a hollow 

shape. This is illustrated by the distribution in figure ( 4.11 ), which shows the 

result of the Abel inversion procedure for a single emittance run. This shape can 

be changed some by varying the ion source parameters. However, we found that 

the hollow shape was predominant at the z1 position with the extraction optics 
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Figure 4.12: Sample beam distribution at the z2 position. 

tuned for minimum emittance as stated above. 
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1.2 

When we moved the emittance probe out 5.9 cm to z2 , we found that the beam 

was no longer hollow. It had assumed more of a flattened shape, with a "peak" 

in the middle. See figure ( 4.12). ,(8 before, the figure corresponds to a single 

emittance run. Moving another 2.5 cm to position z3 , the beam has assumed an 

even more pronounced peaked shape in its distribution. This is shown in figure 

( 4.13), which is for a single run. The interpretation is that the particles on the 

edge of the beam at position z1 have moved into the region near the beam axis 
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Figure 4.13: Sample beam distribution at the z3 position. 

due to an inward component of radial velocity. Of course, the space charge of 

the beam also contributes to development of this shape, although it is not easy 

to untangle the two contributions. 

Field Energy 

An important part of the theory of space charge dominated beams is the state­

ment of energy conservation given by 

T+ W = const. (4.13) 
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where W is the field energy of the beam, defined above, and T is given by 

( 4.14) 

where x' = Pxf Pz· This equation is derived from a similar result in the liter­

ature. 18 Physically, T is the transverse kinetic energy per unit length of the 

beam. As part of the data analysis, the two quantities T and W were tabulated 

for each emittance run. Examination of histograms of these quantities for each 

of the three positions zi, z2 , and z3 shows that T + W is constant within the 

statistical spread in the data. This is in agreement with the theory. The results, 

tabulated from all of the data, are shown in the following table. 

T+W J position, cm I 
(2.9 ± 1.6) x 10-6 0.0 

(5.1±3.2) x 10-6 5.9 

(6.5±3.5) x 10-6 8.4 

Since (1.4) predicts that the emittance growth depends on the field energy 

of the beam, one might expect to see a correlation between field energy W and 

emittance. No clear correlation is seen in the data, plotted in figure ( 4.14). This 

plot shows data from 338 emittance runs. 

There is a correlation found between W and the perveance I<, which is pro­

portional to I /V312• This relationship is plotted in figure ( 4.15). This data set 

is fit rather well with the simple inverse relationship shown in the figure. It is 

unknown exactly why this dependence seems to apply. 

There is another correlation found between the quantity U of equation (1.4) 

and the rms width of the beam. This is plotted in figure ( 4.16). This particular 
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correlation was unexpected when first seen in the data. This is perhaps the 

most striking relationship found in the data. There is as yet no satisfactory 

quantitative explanation for it. Qualitatively, the relationship is that the smaller 

beams have more nonlinear field energy. This quantity is strongly dependent on 

the shape of the distribution function. It must be considered to be a property of 

the duoplasmatron. Although it is not shown on the graph, the points with the 

largest U values come mostly from the emittance measurements at position z1, 

immediately outside the exit of the ion source. 

Emittance Growth 

Perhaps the most dramatic prediction of emittance growth theory is the large 

"explosive" growth of emittance that a beam experiences when injected into a 

uniform focusing channel. Recall that this growth is predicted to occur in a 

distance Ap/4 = mwp/Pz· A number of comments are appropriate before we 

reach a conclusion on the nature of any such growth in the data presented here. 

Therms emittance is calculated from formula (2.12). Rms fitting procedures 

suffer from a sensitivity to outliers; that is, a small subset of data points that are 

far from the mean can contribute a large amount to therms value. In our case, 

these outliers came from electrical noise on the wires in the emittance measuring 

apparatus. Thus it is important to understand something about the nature of 

this noise. A histogram plot of the noise signal on the emittance wires is shown in 

figure ( 4.17). These readings were taken by simply digitizing the wire voltages in 

the emittance probe with the probe positioned out of the beam. We see that there 

are no counts with a voltage greater than 0.0134 volts. This is to be contrasted 
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Figure 4.17: Noise readings on emittance wires. 
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with a plot of the wire voltages from the same voltage range of an actual run; see 

figure (4.18). In both cases the distribution had a mean value near zero. For the 

noise signal we find statistically 

V = (3.9 ± 3.9) x 10-3 Volts (4.15) 

while for the same range of a actual run, 

V = (0.0 ± 1.0) x 10-2 v olts. ( 4.16) 

Statistically, then, there is no significant difference between the voltages in the 

range < 0.0134 volts when the probe is in the beam and when it is out of the 

beam. We note that for the run plotted in figure (4.18), there were 11,000 wire 

readings stored, 9,870 of them being within the range of the noise levels. 

The effect of the noise on the rms emittance calculated from the data was to 

cause the output rms emittance to be much larger than the true rms emittance of 

the beam. The outliers introduced by noise could increase therms emittance by 

a factor of 2-4. In order to eliminate this spurious contribution to the emittance, 

a cut was taken at the 0.015 volt level. Unless stated otherwise, this cut was 

used for all the data presented here. This was implemented by setting all wire 

voltages to zero if the stored value was less than the cut level. We see from 

the numbers presented above that approximately 10 % of the wire readings in a 

typical emittance run contribute to the calculation, the other 90 % being noise 

which is discarded. 

As was done with the field energy data, it is possible to tabulate the average 

rms emittances for the three positions at which emittance data was taken. This is 
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shown in the following table. The units of emittance are conventionally expressed 

as "7r mm · mrad . " 

J RMS Emittance j position, cm I 
0.98 ± .31 0.0 

1.02 ± .32 5.9 

1.6 ± .15 8.4 

This is because of the well known formula relating beam width, the beta function 

(3, and emittance: 12 

( 4.17) 

Having the 7r in the units is convenient for calculation. 

There is no statistically significant growth in the rms emittance as the beam 

propagates from z1 to z2 , a distance of 5.9 cm. As the beam moves from z2 to z3, 

however, the emittance has grown by a factor of 1.6. The typical value of >.P / 4 

for the beams measured was 13.3 cm. This certainly qualifies as an explosive 

growth. Simulations published in the literature often neglect the emittance of 

the initial beam, and also assume that the beam is subjected to an external force 

field. In addition, the initial distributions are idealized abstractions which do not 

completely simulate the charge distribution of a real beam. It is not clear how 

to relate this observation of emittance growth in a drifting beam to published 

emittance growth curves. It is plausible that the sharp growth seen is sharply 

dependent on the initial distribution. 

We have found that almost all of the emittance growth is due to particles in 

the "halo" of the beam, i.e. particles which are positioned near the edge of the 

distribution in phase space. Figure (4.19) is an illustration of this effect. This 
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figure was produced by taking two sets of emittance runs and then increasing the 

level of the cut from the minimum level (0.015 volts) upward until there was no 

emittance growth evident at all. Then the fraction of beam removed is calculated. 

This is proportional to the volume of the distribution that is removed, i.e. the 

change in the integral 

V = j j f(x, x')dxdx'. ( 4.18) 

We see that all of the emittance growth is due to the approximately 10 % of the 

beam particles which are in the halo of the beam. In the core of the beam, the 

curve is flat. In the upper curve, which represents data from position z3 , a larger 

percentage of the beam has moved into the halo. This contributes significantly 

to the rms emittance. 
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Chapter 5 

CONCLUSION 

We conclude this work with a summary of what we have done and a few state­

ments about future work on low energy space charge dominated beams. 

This thesis was largely experimental in nature. There has been much excellent 

theoretical work published in the field of low energy beam transport. We have 

done some new measurements to test the most important part of that theory, 

the theory of emittance growth. In the course of the experiments, we found that 

accurately testing the emittance growth theory was quite difficult to do. This is 

often the nature of experimental work. The results obtained are not inconsistent 

with the theory. This is not surprising, since it is well founded in classical physics. 

We have found some new correlations which were not predicted by the theory. 

It is a well known fact that emittance grows for almost any beam as it prop­

agates through almost any kind of transport line or accelerating structure. We 

undertook to study the particularly rapid growth of emittance which occurs in 

a space charge dominated beam over a relatively short distance. The dynamics 
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of this process for a cold space charge dominated beam were predicted to show 

an explosive growth, and that has been observed. Another important prediction 

is the constancy of the field energy sum for a drifting beam, T + W. This also 

is verified, although not with high precision. We have found that the emittance 

growth observed is due entirely to particles in the halo of the beam. If a cut is 

taken in an emittance run data set which removes 10 % of the beam particles, 

the emittance growth vanishes. 

In conclusion, then, it is hoped that others will continue to experiment with 

low energy space charge dominated beams, in the hopes of improving existing 

accelerator facilities and discovering new ways to transport low energy beams. 

Other technologies which would benefit include heavy-ion fusion, which may pro­

vide a source of cheap power in the years to come. Accelerators are also finding 

use as cancer treatment tools, and the improvement of their low energy injector 

systems can only help this field. There is much work to be done, and we have 

only explored a small nook of the available parameter space. 
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