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ABSTRACT 

NONLJNEAR RESONANCE ISLANDS AND M0DULA1'10NAL 

EF'F'ECTS IN A PROTON SYNCHROTRON 

'l~odd J. Snt<>gatn 

~Ve exanline both onc-dimcrtsiottal nnd t\\ro-dimcnsional nonlinear rt.-'Sc>nance 

isla11ds created in the tra11sverse phase space of a protott synchrotron by nonli11ear 

magnets. \\'c also e:icatnine applicntiott of the the<>retical frame,\·c>rk constru(..-ted 

to tlte 1>henc>nlettC>n of modulational dift'1t.Si<>n in n c<>llider model of the Fermilnb 

Tcvatr<>n. 

For the one-dimensional rosottance island system, ;i;c examine tlte effects of tl\·c> 

t)rpes of m<>dulati<>nnl pcrturbatiotts on tlte stability of these resonance islands: 

tutte nu>d11lati<>n and betn fu11<..-tio11 modulation. Ha1niltonian nu>dels aro present­

ed which 1>redict stabilitj• boundaries that dqumd <>n only throe 1>aranleters: the 

strcrtgth and frequcrtcj• of the modulation and tl1e frequcrlc)• of snlall oscillations 

i11side tl1e resonance island. ·t·hese nu>dels are cc>nlpared to 1>art icle tracki11g \\·ith 

e.xoellent agrumnent. ·t·he t11ne nu>d11lation mode) is also successfully tested in 

e.:q>erinlent, '"here freq11ency dc>nlain analysis coupled with tune 1nodulatio11 is 

denu>nstratcd to be useful in measuri11g the strcr1gth of a nonlinear resonance. 

Nonli11ear rt.-'Sc>nance islands are also exami11ed in t;i.·o transver:!le dimensions 

i11 the prt.>Sence of cou1>ling and linearly inde1>cr1dent crossing reso11ances. \\'e 

present a first-order Hatniltonian 1nodel '"hich predicts fixed 1>oint locations, but 

does not reproduce small oscillation freq11encies see11 in tracki11g; tl1erclc>re in this 

circu1nstance sucl1 a 1nodel is inadequate. !>article tracking is presented "'·hicl1 

shows evidence of t\\rc>-di1ncnsional 1>crsistent sig11als1 and y;e make s11ggestions on 

nlethods for observing sucl1 signals in future experinletlt. 

iii 



Fittally, ;i;e apply the t11ne nu>dulatic>n stability diagra1n tc> the explicitly t;i1c>­

dimcrtsio1ta) phenomenon of 1nodulatio1tal diffusiott itt the Jo""cnnilab Tcvatron "'·ith 

beam-beam kicks as the source of nonlinearity. We find that the amplitude gro;i;t.lt 

created by this mechattism in s imulatiott is exponential rather than root-time 

as predicted by modulatiottal diffusion models. Finally, ;i;e comment u1>01t the 

lumitu>sity and li£eti1ne limitations such a mechattism inlplies in a proton storage 

ring. 
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CHAPTER 1INTRODUCTIONHigh energy physics, the study of matter at its most fundamental observedlevel, is divided into two general classes of research: theory and experiment. Thedrive of the theorist is to condense explanations of a broad class of phenomenato a simple model. The experimentalist must deal with existing technologies andabilities, seeking to observe exceedingly rare \events" in an attempt to reconcileour observations of nature with theory. These two work hand in hand, providingphysicists with a progressively more coherent, cohesive and cogent understandingof the way nature works.Experimental high energy physics accomplishes its task with particle accelera-tors, devices which raise the energies of particles such as protons and electrons,and in exotic cases, antiprotons, muons and other species, and collide them withother particles. (Accelerators also are used for other applications such as radio-therapy and coherent gamma ray production.) The objective is to create andobserve events that occur at high energies, such as production of massive highlyunstable particles (such as the top quark or the Higgs boson) or events that sig-nal the e�ects of exceedingly weak processes (such as CP violation observed inB-meson systems).Because these events are so weak, the number of events produced per unit timeper unit cross section must be high in order to provide reasonable statistics forexperimentalists. This is measured in terms of a quantity called the luminosity, aquantity depending on the frequency f with which bunches of particles interact,the number N of particles in each bunch and the transverse beam size �. For1



2round beams such as those at the Fermilab Tevatron,L = f N24��2 : (1:1)The current maximum luminosity achieved with a hadron collider, L = 8:97 � 1030cm2 s�1, was achieved at the Tevatron in April, 1993. Any e�ect that removesparticles from the beam (reducing N) or increases the transverse size of the beam� reduces the luminosity, or the e�ciency of the accelerator in producing eventsof interest to high energy physicists.Particle motion around an accelerator is approximately, but not completely,linear. Even without magnetic �eld and alignment errors (always present at the10�4 level) the presence of sextupoles commonly used to correct the chromaticityalso introduces nonlinear kicks. Nonlinearities, therefore, cannot be removed |they must be understood and corrected if their presence adversely a�ects accel-erator performance and operations. The focus of this thesis is on e�ects, calledresonances, driven by these nonlinearities | how their strengths can be measured,and how they might interact with modulations existing within the accelerator toa�ect the stability of particles in a storage ring or collider.The study of the long-term stability of particles traveling around one of thesedevices is also a study of fundamental issues in classical dynamics, dating backto Poincar�e's investigation of the long-term stability of the solar system in thelate 19th century. Coincidentally, typical timescales are roughly the same orderof magnitude for both systems: the solar system has existed in its present formfor a few billion years (109 Earth orbits), and protons and antiprotons are storedin the Fermilab Tevatron for a few billion revolutions between beam dumps andre�lls. In order to prevent luminosity degradation in a collider over this time, themechanisms responsible for growth of transverse particle oscillations about thecentral orbit over timescales up to billions of turns must be investigated. Such



3mechanisms fall into three categories | slow, medium and fast.Fast amplitude growth is typically caused by severe distortions of the orbit,either by intense magnetic �eld errors (such as a reversed-polarity corrector orstrong nonlinear �elds) or by a major fault condition such as blockage of the beampipe. Here the timescales for particle loss, either at the blockage or at the physicalaperture, range from fractions of a turn to turns. Such losses are usually easy todiagnose with beam position and loss monitors, and it is of particular importanceto guard against such losses in machines with superconducting magnets, wherethese losses could easily lead to a magnet quench.Medium timescale amplitude growth occurs over timescales ranging from tens tothousands of revolutions. This growth is characteristically driven by distortions ofthe particle orbit, called resonances, created by nonlinear magnetic �elds. Strongisolated resonances perturb the amplitudes of the orbit, possibly leading to lossat the physical aperture in tens to hundreds of turns. If many resonances aredriven, nearby resonance structures in the phase space of particle motion canoverlap, causing stochastic motion with timescales of up to thousands of turns(Schoch 1958). These sorts of mechanisms and structures have been investigatedin the context of resonant trapping (Chao and Month 1974, Chao et. al. 1987b)and general nonlinear dynamics (Lichtenberg and Lieberman 1983) as applied toaccelerators. Experience with such systems in real machines leads to constraintson the horizontal and vertical tunes at which operation is acceptable, reasonablyfar from loss-creating resonances.Slow amplitude growth occurs over much much longer timescales, from 104 to109 turns. These timescales are macroscopic, seconds to hours of actual accelera-tor operation, and are therefore normally very di�cult to diagnose. Most mech-anisms that drive slow growth depend strongly on the coupled multidimensionalnature of the particle motion and weak sources of stochasticity or noise. Modu-



4lational (or thick-layer) di�usion, Arnold (or thin-layer) di�usion and amplitudegrowth driven by weak external noise all fall into this category (Lichtenberg andLieberman 1983). Modulational di�usion (Vivaldi 1984, Chirikov et. al. 1985) isof particular interest in this dissertation because, as the name implies, it is driv-en by the modulation of a parameter of the dynamical system, in this case theaccelerator tune.Chapter 2 contains a review of fundamental concepts of accelerator physics thatare relevant to remainder of this dissertation. A discrete Hamiltonian approachdescribing one-dimensional resonance islands is described in Chapter 3, includ-ing description of the primary tracking program used to simulate particles underthe in
uence of a single nonlinear resonance. Chapter 4 extends this analysis toinclude both the e�ects of tune modulation and beta function modulation, com-paring simulation and theory with excellent agreement. The tune modulationportion of Fermilab experiment E778 is described in Chapter 5, where particlestrapped by nonlinear resonance islands were observed in a real accelerator andthen detrapped in a controlled way with tune modulation. Chapter 6 returns tounperturbed resonance islands, extending the one-dimensional results of Chapter 3to two transverse dimensions, and Chapter 7 investigates modulational di�usion,a multidimensional phenomena driven by tune modulation in two transverse di-mensions.



CHAPTER 2ACCELERATOR PHYSICS FUNDAMENTALSThis chapter describes the coordinate systems and magnet strength de�nitionsused in the remainder of this thesis. Because a thorough background in accelera-tor physics is not assumed and de�nitions used by various researchers within the�eld typically vary, aspects of the �eld are also discussed here that are relevant tothe remainder of this work. In x 2.1 the local transverse coordinate system usedto expand transverse motion in a synchrotron is described, as well as the de�ni-tions of both linear and nonlinear magnet strengths. In x 2.2 the transverse lineardynamics of a strong-focusing synchrotron are discussed. In x 2.3 the discreteHamiltonian formalism that will be used to investigate the nonlinear dynamicsof this system is introduced, and the forms of generating functions and transfor-mations that will be applied to the discrete Hamiltonian in Chapters 3 and 4 aredescribed; x 2.4 returns to investigate the longitudinal motion in a synchrotronand how this motion couples to the transverse dimension.Table (2.1) lists typical values of many quantities relevant to accelerator oper-ations at the Tevatron collider, the Indiana University Cyclotron Facility (IUCF)cooling ring and the SSC collider. Many of these quantities are not mentionedhere in detail, but are listed for completeness.2.1 ACCELERATOR COORDINATE SYSTEMSTypically the equilibrium orbit, or closed orbit, around a synchrotron can beapproximated as a circle with a constant radius � | this is equivalent to statingthat the accelerator approximately consists of nothing but dipole magnets, ignor-ing the e�ects of vertical bends and long straight sections. (For example, 75% ofthe Fermilab Tevatron and 80% of the Fermilab Booster circumferences consist5



6Parameter Symbol FNAL IUCF SSC(units) Tev Cooler ColliderHorizontal Tune Qx 20.586 3.82 123.28Vertical Tune Qy 20.575 4.85 123.78Synchrotron Tune Qs 5:7 � 10�4 5 � 10�4 1:2 � 10�3Revolution Freq. frev (kHz) 47.7 103 3.4Minimum Beta �? (m) 0.5 1 1Maximum Beta �max (m) 200 50 8 � 103Dispersion (ave.) � (m) 0.5 0.2 1Momentum Spread �p=p 2 � 10�4 4 � 10�5 10�4Kinetic Energy E (GeV) 900 0.045 2 � 104Rigidity jB�j (T-m) 3 � 103 3.6 7 � 104Bend Radius � (m) 7:5 � 102 1.2 1:0 � 104Table 2.1: Various operational accelerator parameters for the FermilabTevatron collider (1993 collider lattice), the IUCF cooling storage ringand the SSC collider (Design Report). For the colliders the values givenrefer to a single beam.of dipole magnets.) All transverse motion is expanded in the transverse displace-ments from this equilibrium closed orbit, with x̂ being de�ned in the outwardradial direction. The direction of beam travel on the closed orbit is de�ned asŝ, always tangential to the closed orbit; then ŷ � �x̂� ŝ and the triplet (x̂; ŷ; ŝ)forms a right-handed coordinate system. This agrees with the convention usedin the MAD 8.1 and TEAPOT lattice design and tracking programs (Grote andIselin 1990, Schachinger and Talman 1985), as well as that of Edwards and Syphers(Edwards and Syphers 1987).In such a coordinate system, the magnetic dipole bending �eld ~B0 for a pos-itively charged particle is oriented in the +ŷ direction; this makes it natural tospeak of a �eld error as being positive if it points in this direction. For a typicalproton synchrotron with normal temperature dipoles this magnetic �eld can beas high as 2 Tesla; with superconducting dipoles such as those used in RHIC, the



7
ρ

x̂

ŷ

ŝ

x

y

sFigure 2.1: The local coordinate system in a synchrotron.CERN LHC, the Tevatron and the SSC, B0 can be as high as 6.6 Tesla. Magnetic�elds and �eld errors can now be analytically expanded byi�Bx +�By = B0 1Xn=0(bn + ian)(x + iy)n ; (2:1)where the bn denote multipole strengths of normal �eld components and the andenote multipole skew �eld components. The units of these multipole strengthsarem�n, and the strengths themselves range from .3m�2 for sextupole correctorsin the Tevatron to approximately 10�4 m�n for higher order multipole errors fromfringe �elds or magnet coil misalignments.This �eld expansion agrees with the multipole strength conventions used inTEAPOT, but does not agree with the conventions used by MAD 8.1, whichinstead uses a Taylor expansion for the magnetic �eld on the midplane of themagnet, y = 0. A comparison of the two de�nitions for normal multipole strengthsgives the relationshipbn(thesis) = bn(TEAPOT) = Bn(MAD)n!B0 = 1n!B0 �@nBy@xn �y=0 : (2:2)Typically magnetic multipole strengths are measured from angular fourier analysisof �eld strengths for a distribution of angular positions at a constant radius fromthe magnet center bore.In this dissertation we make the normally realistic approximation that kicksfrom nonlinear magnetic �elds are small and applied over a negligible magnet



8length L, or that the transverse momentum change from the nonlinearity is smallcompared to the total momentum of the kicked particle. The following discussionis therefore only relevant for kicks applied over short distances such as thosefrom dipole fringe �elds, quadrupoles and correctors; it does not trivially applyto multipole errors within long dipoles. The small-amplitude kicks over a shortmultipole are given by�x0 = � LjB�j�By ; �y0 = LjB�j�Bx : (2:3)Here jB�j is the magnetic rigidity, related to the particle's total momentum pand charge e by jB�j = p=e; units are such that jB�j � 3:3357pc for a particlewith electron or proton charge when pc is expressed in GeV and B� in T-m. Theprime denotes di�erentiation with respect to the longitudinal coordinate s, sox0 � dx=ds. We then have�x0 � i�y0 = �B0LjB�j 1Xn=0(bn + ian)(x + iy)n : (2:4)For the n = 0 case (the primary dipole bending �eld) b0 = 1 in the horizontalplane and the quantity B0L=jB�j is the bend angle for each main dipole.In the case of a normal quadrupole, for example, n = 1 and�x0 � i�y0 = �B0LjB�jb1(x + iy) : (2:5)For a positive normal quadrupole strength b1 a particle displaced positively inthe x̂ direction receives a negative (focusing) kick. In the ŷ direction, however, apositively displaced particle is given a positive (defocusing) kick.In this thesis dispersive e�ects are ignored except for a few comments aboutsources of beta modulation in Chapter 4 | particle energies are held constant andthere is no variation in the rigidity jB�j which a�ects relative �eld strengths. Forsimplicity in the notation we therefore absorb the leading term (the dipole bend



9angle) into the multipole strength terms and rewrite the multipole kick expansion(2.4) as �x0 � i�y0 = � 1Xn=1(~bn + i~an)(x + iy)n ; (2:6)where (~b; ~a)n � (b; a)nB0L=jB�j. These are called the normalized multipolestrengths and have the units m�n.2.2 TRANSVERSE LINEAR MOTION IN A SYNCHROTRONBy far the most in
uential paper in accelerator physics has been that of Couran-t and Snyder (1958), which laid the foundations for much of the �eld. Therethe transverse linear motion near the closed orbit of an alternating-gradient syn-chrotron was shown to be parameterized by a pair of quantities, �(s) and �(s) ���0(s)=2, for each transverse plane of oscillation. With the dispersion function�(s) (see Equation (2.33)) these parameters are commonly referred to as the latticefunctions of the accelerator.The \beta function" �(s) has units of length | it ranges from approximatelyhalf a meter to 200 meters in the Tevatron collider lattice. As will be shownshortly, the amplitude of transverse particle oscillations scales with p�(s) inmotion around the accelerator. At the interaction regions of many colliders, alow-beta insertion is designed to lower the beta function at the beam crossingpoint, thus reducing the actual beam size and increasing the luminosity.Motion of particles in the two transverse planes is coupled even in the lin-ear approximation by a variety of perturbations such as longitudinal solenoidal�elds from experimental detectors, normal dipole and quadrupole rotation errors,vertical dipole bends and deliberately installed skew quadrupoles. With the as-sumption that the accelerator under consideration is 
at and that there are nosigni�cant solenoidal �elds, this coupling is usually small and treated perturba-



10tively. Such a treatment is followed in this thesis, and allows the linear motion ineach of the transverse planes to be treated as independent.In either transverse dimension the motion of a particle through the straight driftsections, dipoles and quadrupoles of a synchrotron is described by Hill's equation,x00(s) +K(s)x(s) = 0 ; (2:7)where K(s) the focusing strength in that plane, piecewise continuous and periodicover one revolution of the machine. If the synchrotron has a superperiodicity,K(s)naturally also has this superperiodicity | however, this symmetry is normallybroken by low-beta insertions or other practical necessities.Because Hill's equation is so similar to the equation of motion of a harmonicoscillator, it is typically solved by substituting a harmonic solution where boththe amplitude and phase depend on s:x(s) =p2J�(s) cos (s)= a(s) cos  (s) : (2:8)The choice of normalization here is motivated by transformations derived in thenext section, where J is shown to be the action canonical to the phase  (s).Substitution of this ansatz into Equation (2.7) gives two di�erential relations for (s) and �(s): dds(� 0) = 0 ; (2:9)2�00� � (�0)2 � 4�2( 0)2 + 4�2K(s) = 0 : (2:10)Equation (2.9) can be integrated immediately, using the standard convention thatchooses the constant of integration as one, to �nd the integrated phase, (s) = Z s0 dS�(S) : (2:11)



11Similarly the phase advance over any section of the ring (s1; s2) can be de�ned:� = Z s2s1 dS�(S) : (2:12)With this  0, Equation (2.10) for the betatron function �(s) takes the standardforms: 2�00� � (�0)2 + 4�2K(s) = 4 ;1 + �0� + �2 = �2K(s) : (2:13)With periodic boundary conditions and piecewise continuous K(s) this equationcan be solved numerically to give the betatron function � as a function of s.The tune Q in each plane is de�ned as the long-term average number of trans-verse betatron oscillations executed in that plane in each traversal of the ring, orthe average transverse oscillation frequency divided by the revolution frequencyof the machine. It is found in the linear approximation by taking the total phaseadvance over one traversal and dividing by 2�:Q � 12� I dS=�(S) : (2:14)Generally the solution to any linear second-order di�erential equation such asEquation (2.7) is uniquely determined by the initial conditions of x and x0. It hasbeen shown (Courant and Snyder 1958) that the linear motion in each plane overany section (s1; s2) of the ring can be completely described by� xx0�2 =M21� xx0�1 ; (2:15)whereM21 = 0B@ q�2�1 (cos� + �1 sin� ) p�1�2 sin� �(1+�1�2) sin� �(�2��1) cos� p�1�2 q�1�2 (cos� � �2 sin� )1CA : (2:16)The same mapping also holds for motion in the y plane, using lattice functionsand phase advances there. The linear transformation matrixM21 is a combination



12of rotations and scalings which map the particles around a rotation on an ellipsein the phase space (x; x0); it is unwieldy in this basis because the parameters �and  are more natural for a circular coordinate system as will be shown in thenext section.The transformation matrixM21 is actually a concatenation of several individualtransformation matrices which can be found by solving simpler versions of Hill'sequation. For the case where K is zero, as is true in straight drift sections andapproximately true in dipoles of length L,M21(K = 0) = � 1 L0 1 � : (2:17)For the case where K is a nonzero constant, as in a quadrupole of length L,M21(K = constant) =  cos(LpK) 1pK sin(LpK)�pK sin(LpK) cos(LpK) ! : (2:18)Keeping the integrated magnet strength KL = ~b1 constant while taking the thinmagnet limit L ! 0 here gives the transformation matrix of a thin horizontalquadrupole kick, M21(thin quad) = � 1 0� ~b1 1� : (2:19)Since a horizontally focusing quadrupole defocuses equally in the vertical direction(see Equation (2.5)), reversing the sign of ~b1 in the above mapping gives thecorresponding thin quadrupole kick in the vertical plane.For the subjects examined in this dissertation, motion is only observed once peraccelerator turn in a Poincar�e surface of section; in this approach, the transversephase space is observed in discrete time steps instead of continuously around thering. This method of visualization is more practical in application, because beamposition monitors and other diagnostic equipment measure beam properties ona turn-by-turn basis. The longitudinal coordinate s is transformed to an integer
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Figure 2.3: Seven turns of a linear one-dimensional turn-by-turnPoincar�eplot in normalized coordinates (xN ; x0N ), with tune Q = :57 near the4Q = 7 resonance. This is simulation of a single particle following thelinear one-turn map of Equation (2.20); each successive point lies on acircular contour.A coordinate transformation exists that transforms the elliptical mapping ofEquation (2.21) into a circular one, so that linear motion consists of a rota-tion around this circle. One transformation to these \normalized coordinates"(xN ; x0N ) is given by x(s) =p�(s)xN (s) ;x0(s) = 1p�(s)x0N (s) � �(s)p�(s)xN (s) : (2:23)Both xN and x0N have units of m1=2 as do all distances in the normalized coor-dinate system. After this transformation both M12 and M become pure rotationmatrices, rotating in the clockwise direction in the (xN ; x0N ) plane by angles of � and 2�Q respectively. Both � and � are functions of the longitudinal coordinates, but due to the periodicity of the lattice functions they are independent of t andthus so is the one-turn mapping.



15Because linear phase space motion is nothing more than a rotation, if the ro-tation angle is a rational multiple of 2� (or the tune Q is rational), the particlereturns to the same phase space position in some number of turns. A perturbationat a particular location in the accelerator having the same periodicity in the phaseangle will always kick the particle in the same way, possibly creating amplitudegrowth, luminosity degradation and particle loss. Generalizing to both transversedimensions, the resonance condition on the horizontal and vertical tunes is givenby jQx + kQy = l ; (2:24)where j, k and l are integers. The perturbations mentioned above, periodic inthe phase, drive these resonances | they are caused by nonlinear forces such asnonlinear magnet errors and magnetic forces felt by particles comprising collidingbeams (the beam-beam force). Following (2.24), resonances have nonlinear kickswith a phase dependence cos(j x + k y).2.3 GENERATING FUNCTIONS AND CANONICAL TRANSFORMATIONSHill's equation, Equation (2.7), is also the equation of motion for a harmonic os-cillator with a time-dependent restoring force and no damping. A nonautonomousHamiltonian can be written for such an oscillator:H(x; px; s) = p2x2 +K(s)x22 ; (2:25)where px is the canonical momentum associated with the position x. Applicationof Hamilton's equations immediately gives px = x0, so the coordinate x0 is thecanonical conjugate of the position x. This Hamiltonian can be canonically trans-formed to the form of an action-angle harmonic oscillator with the time-dependenttype 1 generating function (Goldstein 1980, Chapter 9):G1([x; x0]! [ ; J ]; s) = � x22�(s) [tan (s) + �(s)] : (2:26)



16This nontrivially produces the coordinate transformations and new Hamiltonianx =p2J� cos (s) ;x0 = �p2J=� [sin (s) + �(s) cos (s)] ;H( ; J ; s) = H(x; x0; s) + dG1ds = J�(s) : (2:27)This is exactly the same as the harmonic solution, Equation (2.8), of Hill's e-quation mentioned previously, but this approach also identi�es the appropriatecanonical coordinates for a Hamiltonian analysis of the linear problem.Motion will be expressed in a \discrete" Hamiltonian formalism throughoutthis thesis, where one-turn and N-turn maps similar to the linear map of Equa-tion (2.20) are generated from the discrete Hamiltonian H and the correspondingdiscrete forms of Hamilton's equations:�xN�t = @H@x0N ; �x0N�t = � @H@xN : (2:28)The linear one-turn motion over the ring is reproduced if the linear Hamiltonian(2.27) is integrated over one ring revolution. Then the discrete Hamiltonian andone-turn discrete equations of motion for the canonical coordinates ( ; J) are:H1( ; J) = 2�QJ ;� = 2�Q ;�J = 0 : (2:29)Since the beta function is periodic around the ring, the linear one-turn Hamilto-nian H1 is independent of turn number if the tune of the synchrotron is constant.In order for the discrete forms of Hamilton's equation to retain their form whencoordinate transformations are applied to the Hamiltonian, it is necessary andsu�cient to require these transformations to be canonical. In this dissertationa variety of (possibly time-dependent) generating functions are used to gener-ate these canonical transformations (Goldstein 1980, Landau and Lifshitz 1975).



17q G1 QG2 G3P G4 p G1(q;Q) : p = @G1=@q P = �@G1=@QG2(q; P ) : p = @G2=@q Q = @G2=@PG3(p;Q) : q = �@G3=@p P = �@G3=@QG4(p; P ) : q = �@G4=@p Q = @G4=@PFigure 2.4: The generating function mnemonic square. The generat-ing functions Gi are functions of the coordinates that bracket them, andpartial derivatives in the direction of the arrows are positive. The Hamil-tonian is also changed by an amount dGi=dt in the transformation, if thegenerating function is time-dependent.There are four common types of canonical transformations from coordinates (q; p)to (Q;P ), imaginatively named type 1 through type 4. For example, the type 1generating function used above depends only on the old and new coordinates qand Q, not on the momenta p and P ; it gives the transformation equationsp = @G1(q;Q; t)@q ;P = � @G1(q;Q; t)@Q ;H(q; p; t) ! H(Q;P ;T ) + dG1(q;Q; t)dt : (2:30)The four types of generating functions and their respective transformation equa-tions may be conveniently summarized using a mnemonic square similar to thatused in thermodynamics, as shown in Figure (2.4). All linear transformation-s, time dependent or not, are canonical | when these are used the coordinatetransformations will be stated for clarity. Other types of canonical transforma-tions applied here are stated explicitly by their generating functions.At several places in this thesis, discrete Hamiltonia are \integrated" (or, moreproperly, summed) to give equations of motion over timescales of N turns, whereN is an integer. This requires rescaling the time coordinate; however the productof the Lagrange action and time used to derive Hamilton's equations from a least-



18action principle (Goldstein 1980, p. 364),dL � [p _q �H(p; q)]dt ; (2:31)remains invariant under this transformation if the Hamiltonian is scaled to suitthe time change. Since this is implicit in the summation process, the only changenecessary for such a transformation to respect the di�erence forms of Hamilton'sequations is the rescaling of the time coordinate, t! Nt � T .2.4 LONGITUDINAL MOTION AND CHROMATICITYIn the context of the stability of transverse motion, longitudinal dynamics areimportant because they provide a mechanism for tune modulation to exist in everymachine which uses RF systems to longitudinally stabilize and accelerate particlebeams. The parameter used to quantify the coupling of the fractional momentumo�set to the transverse tune in each plane is called the chromaticity �i; it is de�nedby �Qi = �i � (2:32)in each plane. Here � � �p=p0 is the fractional momentum o�set from the idealdesign momentum p0. European convention di�ers signi�cantly in de�nition ofthe chromaticity, using the fractional tune shift �Q=Q instead of �Q. Chro-matic e�ects arise from the momentum dependence of the focusing strength ofquadrupoles | if a particle has a larger energy than the design energy, it is fo-cused less strongly and executes a smaller number of betatron oscillations in onemachine revolution. For a simple uncorrected alternating-gradient synchrotronthe chromaticity is roughly equal in magnitude and opposite in sign to the tune.For most machines such a large net chromaticity is undesirable, as particles witheven small fractional momentum o�sets can experience tune shifts large enoughto shift them onto undesirable resonances. Chromaticity is adjusted with the



19addition of correction sextupoles at points of nonzero dispersion in each plane,since dispersion is the coupling between momentum o�set and transverse position;for example, horizontal dispersion givesx(total) = x(closed orbit) + �x�pp0 : (2:33)Examining Equation (2.6) for a normal sextupole (n = 2) and including the e�ectof dispersion in the horizontal plane to �rst order in momentum o�set, we �nd thatsextupoles give kicks linear in displacement, or momentum-dependent quadrupolekicks: �x0 � i�y0 = �~b2 �(x + iy)2 + 2�pp �x(x + iy)� : (2:34)For maximum e�ciency a normal chromaticity correction sextupole would beplaced at a point with high horizontal dispersion. Using the tune shift from aquadrupole kick, Equation (2.22), one can immediately �nd the contribution tothe total chromaticity from a distribution of normal sextupoles:�x = 12�Xi �x(si)�x(si)~b2(si) ;�y = � 12�Xi �x(si)�y(si)~b2(si) : (2:35)It is also important to note that though sextupoles can correct the chromaticity,they also introduce nonlinear kicks and transverse coupling.Particles with momentum o�sets subject to RF focusing also execute syn-chrotron oscillations, where � is not constant but varies sinusoidally as thoughit were being modulated. Although investigation of the longitudinal phase spaceof a particle is complicated (Edwards and Syphers 1987, chapter 2), for longi-tudinal beam distributions much smaller than the RF bucket size it is a goodapproximation that all particles have their momentum o�sets oscillating at thesame frequency, the synchrotron frequency Qs. In the absence of explicit tune



20modulation (as was used in E778) and strong power supply ripple, this is thesource of tune modulation that motivates the long-term stability inquiries raisedin later chapters.



CHAPTER 3NONLINEAR RESONANCE ISLANDS ANDONE{DIMENSIONAL PERSISTENT SIGNALSIn this chapter a discrete Hamiltonian approach to two-dimensional transversenonlinear resonances is presented that gives perturbative results exact to �rst or-der in nonlinear magnet strength. One-turn and N-turn Hamiltonians are derivedfrom a projection map (Peggs 1982) in x 3.1-2 respectively; these Hamiltonians canbe considered to respectively generate the one-turn and N-turn Poincar�e surfaceof section maps. Certain phase space structures, called \resonance islands", canappear with one-dimensional resonant motion as pictured in Figure (3.1). Thesestructures are shown to be parameterized by several experimentally accessiblequantities including the island tune, QI, in x 3.3; a computational single particletracking simulation is described in x 3.4 and compared to theoretical prediction forthe 5Qx resonance. Various methods used to experimentally investigate nonlinearresonance islands are discussed in x 3.5, in particular those used in experimentCE22 at the IUCF Cooling Ring and for this thesis in experiment E778 at Fermi-lab. 3.1 THE FIRST ORDER NONLINEAR ONE{TURN HAMILTONIANIn the previous chapter the action-angle parameterization was presented for theuncoupled linear transverse one-turn particle motion in a synchrotron. The nextissue is how to include the e�ects of nonlinear magnets to form a discrete Hamilto-nian that more adequately describes motion in a real accelerator. A perturbativeapproach that is correct to �rst order in nonlinear magnet strengths is used here;however, there exist a multitude of other methods, both perturbative (Miche-lotti 1986a) and non-perturbative (Gabella 1991), that give similarly-structured21
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23Hamiltonians.Consider a synchrotron with a single thin nonlinearity of normalized strength~bn, where n represents the order of the nonlinearity. Transverse single-particlemotion around the ring consists of three parts: a linear phase advance to thenonlinearity, the nonlinear kick and another linear phase advance back to thestarting point. Since the linear portion of this motion is already well-described bythe Hamiltonian of the previous chapter, it is removed here by a reverse rotationthrough the ring while ignoring the nonlinearity. This has the e�ect of projectingthe kick at the phase advance of the nonlinearity to a nonlinear one-turn map ofthe initial particle coordinates.Denote the horizontal and vertical phase advances at the location of the non-linearity by (�nl;x; �nl;y) (as measured from a reference point) and the linear betafunctions by (�nl;x; �nl;y). The nonlinear kicks at this location in normalized co-ordinates are then given by substitution the of normalized coordinate de�nitionsinto the nonlinear kick expansion, Equation (2.6):�x0N = �~bn n=2Xk=0� n2k�(�1)k� n+12 �knl;x xn�2kN �knl;y y2kN ;�y0N = ~bn n=2�1Xk=0 � n2k + 1�(�1)k� n�12 �knl;x xn�2k�1N �k+1nl;y y2k+1N : (3:1)This nonlinearity is a perturbation at a particular phase advance within themachine. To quantify this consider the \projection mapping":0BB@�xN�x0N�yN�y0N 1CCA = R�1(�nl;x; �nl;y)�KxKy �R(�nl;x; �nl;y)0BB@ xNx0NyNy0N 1CCA (3:2)where R is the 4� 4 block diagonal linear rotation matrixR(�x; �y) �0B@ cos�x sin�x 0 0� sin�x cos�x 0 00 0 cos�y sin�y0 0 � sin�y cos�y1CA (3:3)
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R-1(φx,nl, φy,nl)Figure 3.2: A simple lattice for the projection of a nonlinear kick onto amapping of initial particle coordinates.and the Ki symbolize the nonlinear kicks (3.1) in each plane. This accuratelyaccounts for the nonlinear motion | the linear portion of the motion has beenremoved by the inverse rotation R�1.If x0N is the canonical momentum for x, the mapping of Equation (3.2) is actuallyintegrable. A discrete one-turn nonlinear Hamiltonian H1;nl(xN ; x0N ; yN ; y0N) canbe written such that discrete forms of Hamilton's equations are obeyed as in theprevious chapter: 0BB@�xN�x0N�yN�y0N 1CCA = 0BB@ @H1;nl=@x0N� @H1;nl=@xN@H1;nl=@y0N� @H1;nl=@yN 1CCA : (3:4)The Hamiltonian can be written in these coordinates but it is much more mean-ingful to write it in action-angle coordinates ( x; Jx;  y; Jy), which are related to



25the normalized coordinates via the canonical transformationG1([xN ; x0N ]![ ; J ]) = �x2N2 tan xN =p2J cos x0N =�p2J sin (3:5)in each plane. Including the linear portion of the motion and denoting the unper-turbed linear base tunes by (Qx0; Qy0), we �nd the explicit form of the one-turn�rst-order nonlinear Hamiltonian:H1( x; Jx;  y; Jy) = 2�Qx0Jx + 2�Qy0Jy+~bn n=2Xk=0 n! (�1)k 2n+12(2k)!(n� 2k + 1)! (�nl;xJx)n�2k+12 (�nl;yJy)k� cosn�2k+1( x + �nl;x) cos2k( y + �nl;y) ; (3:6)where the n=2 limit in the sum is rounded up. This Hamiltonian may be writtenin another form as a useful ansatz:H1( x; Jx;  y; Jy) =2�Qx0Jx + 2�Qy0Jy+ 12�xxJ2x + �xyJxJy + 12�yyJ2y+Xk;l Vkl(Jx; Jy) cos(k x + l y + �kl) : (3:7)The �rst line of the Hamiltonian contains the linear phase advance terms asin the previous chapter. The second line contains some of the so-called \shearterms", which are not phase dependent but instead cause action-dependent tunesvia Qx(Jx; Jy) = �@H1@Jx � = Qx0 + 12� (�xxJx + �xyJy);Qy(Jx; Jy) = �@H1@Jy � = Qy0 + 12� (�xyJx + �yyJy) : (3:8)Here the brackets mean to average over all phases �x and �y | this phase aver-aging is explicitly incorrect in the case of resonant motion where only a certainsubset of particle phases are reached.



26The last line of the Hamiltonian (3.7) contains phase dependent terms, or reso-nances, that are driven by this multipole, obtained by expanding the trigonometricfunctions in Equation (3.6). Equation (3.7) is a general form of the Hamiltonianfor all orders of the nonlinear strength, with �rst order terms given exactly byEquation (3.6); these are tabulated for sextupole, octupole and decapole magnetsin Table (3.1). The Vkl coe�cients are resonance strengths which depend on theactions, and the �kl are the relative phases of the resonance driving terms.The treatment of several multipoles to �rst order is straightforward, becauseto that order there are no interactions between the nonlinearities. Thus the �rst-order nonlinear Hamiltonian for any collection of multipoles is simply the sumof their individual nonlinear Hamiltonians. For higher order nonlinear contri-butions to the �ij and Vkl coe�cients this procedure is inadequate, and othertechniques must be used to evaluate these coe�cients such as successive iterationof the discrete mapping (Peggs and Talman 1986), Deprit's algorithm (Miche-lotti 1986a,Michelotti 1986b) or application of successive Moser transformations(Merminga and Ng 1989).Examination of Table (3.1) demonstrates that sextupoles contain no shear termsto �rst order, but instead drive three sets of nonlinear resonances: Qx, 3Qx, andQx � 2Qy. Shear terms quadratic in action, which correspond to detuning, aredriven to second order in the sextupole strength; explicit formulae for this tuneshift exist (Peggs and Talman 1986, Michelotti 1986a) and have been veri�edagainst simple particle tracking. Generally, the Hamiltonian of Equation (3.6)demonstrates that for a multipole kick of order n, the highest order resonancedriven to �rst order in the multipole strength is (n + 1)Q = l. For a head-onnonlinear beam-beam kick (see Equation (7.4)), in contrast, all even resonancesare driven to �rst order in the small quantity parameterizing the kick.The 5Qx resonance investigated in E778 is explicitly directly driven to third



27HamiltonianCoe�cient Lattice ValueV1;0 p24 ~b2 J1=2x [2Jx � Jy]V3;0 p26 ~b2 J3=2xV1;�2 �p28 ~b2 J1=2x Jy�xx 34 ~b3�yy 34 ~b3�xy �32 ~b3V2;0 12 ~b3 Jx[Jx � 3Jy]V0;2 12 ~b3 Jy[Jy � 3Jx]V2;�2 �34 ~b3JxJyV4;0 18 ~b3J2xV0;4 18 ~b3J2yV5;0 p220 ~b4J5=2xV3;0 p24 ~b4J3=2x [Jx � 4Jy]V1;0 p22 ~b4J1=2x �J2x � 6JxJy + 3J2y �V1;�2 p22 ~b4J1=2x Jy [2Jy � 3Jx]V3;�2 �p22 ~b4J3=2x JyV1;�4 p24 ~b4J1=2x J2yTable 3.1: First-order Hamiltonian coe�cients in Equation (3.7) for sex-tupole, octupole and decapole magnets. The beta functions scale intothese with the actions Jx;y, but have been set equal to one here for clar-ity. For the octupole-decapole lattice octupole detuning coe�cients �ijare tripled due to the presence of three octupoles.



28order in sextupole strength (Merminga and Ng 1992,Michelotti 1986b). However,it has been hypothesized that the structure of this resonance may be adequatelyreproduced at a lower order by interference between the 3Qx and 2Qx resonances(Michelotti 1991). This issue remains a subject of debate; in either event theresonance strength driving by sextupoles is smaller than the �rst-order approachpresented here.3.2 THE ONE{DIMENSIONAL NONLINEAR N{TURN HAMILTONIANThe general multi-resonanceHamiltonian as given in Equation (3.7) is extremelydi�cult to investigate analytically. Instead we examine an explicitly one-dimen-sional case (Jy = 0), dropping the (x; y) subscripts. We also assume that thehorizontal base tuneQ0 is very close to a one-dimensional resonance: Q0 �M=N+�Q, where �Q � 1=N . Under these conditions, we shall show that the Hamiltonianis approximately that of a isolated resonance model with a family of ellipticallystable N-turn �xed points and that motion around any of these stable �xed pointscan be transformed to a form approximating that of a classical free pendulum(Chirikov 1979).One di�culty of the discrete Hamiltonian is the discontinuous nature of thephase advance | if the tune is not near an integer the net phase advance everyturn is large. However, with the assumption that the tune is near the resonanceM=N , the accumulated phase advance over N turns is very close to 2�M andthus e�ectively small. It therefore makes sense to look at a di�erence Hamilto-nian that reproduces a Poincar�e surface of section not every turn, but every Nturns. Alternatively, one could embed this system in a system of higher dimension-ality (Vivaldi 1984), but the method of integrating (summing) the Hamiltonianexplicitly at low orders is more intuitive for this application.When examining N-turn motion, the time variable needs to be changed from



29t = 0; 1; : : : to \N-turns", T � t=N = 0; 1; : : :, as stated in the previous chapter.One must also be careful to distinguish the relevant timescales for frequency-domain variables; from here on any frequency variable, say Q, is de�ned to be thefrequency of oscillations in the one-turn timescale:sin(2�Qt) = sin(2�QNT ) : (3:9)Dropping x and y subscripts and setting Jy = 0, the general one-turn one-dimensional Hamiltonian can be written from Equations (3.6) and (3.7) asH1( ; J) = 2�Q0J + 12�J2 +Xk;k0 Vkk0Jk=2 cos(k0 + �kk0) : (3:10)It is important to note that the action dependence has been removed from theresonance strength Vkk0 here and inserted as a sum of its own. Summing thisHamiltonian over N turns and approximating the action J as constant over theseN turns givesHN ( ; J) =2�N�QJ + N2 �J2+Xk;k0 Vkk0Jk=2 N�1Xi=0 cos �k0� + 2�iMN + 2�i�Q�+ �kk0� : (3:11)Only the linear contribution to the phase advance has been included in the reso-nance terms since this analysis is to �rst order in the nonlinear terms Vkk0 and �.The sum over i in (3.11) is easily found by using the identityN�1Xi=0 cos(A+ iB) = D(B;N) cos(A + N � 12 B) ;D(B;N) � sin(NB=2)sin(B=2) : (3:12)D(B;N) is extremely similar to the Dirichlet kernel found in the theory of Fourierseries; it is very strongly peaked at values of B where the di�erence betweenB=� and the nearest integer is much less than 1=N , in which case its value is



30approximately N . In this case B=� = 2k0(M=N + �Q), and so the only termsthat contribute signi�cantly are terms where k0 is a multiple of N . (This is inpractice an approximation, because very large resonance strengths, possibly fromlower order terms, can overcome this suppression.) For typical multipole magnetsencountered in accelerators (i.e. small order, n) the k0 = N term will dominate,and there will be only one resonant term that contributes. In this case we havethe isolated resonance N-turn HamiltonianHN ( ; J) =2�N�QJ + N2 �J2+NVNJN=2 cos[N + �N ]+ suppressed resonance terms ; (3:13)where a constant phase o�set N(N � 1)��Q has been absorbed into �N .3.3 PARAMETERIZATION AND CHARACTER OF RESONANT MOTIONNow that we have this Hamiltonian, we can answer the question of how the smallnonlinearity distorts the normal linear phase space motion of particles within anaccelerator. With no resonance driving at all (i.e. only linear and shear terms)particles still trace out circular trajectories in (xN ; x0N ) space, with radii p2Jand phases  . However, the particle tunes are action-dependent due to the shearterms in the Hamiltonian. This section will show that when a resonance termis introduced with shear terms present, structures called \resonance islands" areformed in phase space that can be parameterized in a way completely equivalentto free pendulum motion.Applying the discrete forms of Hamilton's equations to the N-turn Hamiltonianof Equation (3.13) gives, over N turns,� = @HN@J = 2�N�Q +N�J + N22 VNJN�2=2 cos(N ) (3:14)



31and �J = �@HN@ = N2VNJN=2 sin(N ) : (3:15)The map described by Equations (3.14) and (3.15) exhibits N-turn �xed pointswhen both �J and � are zero. The constraint �J = 0 gives one trivial solution(Jfp = 0) and 2N �xed points at the phases  fp = kres�=N , where kres is aninteger. Using these phases in Equation (3.14) then gives the equation for Jfp:2��Q + �Jfp � N2 VNJ N�22fp = 0 (3:16)where the top sign refers to even kres, and the bottom to odd kres. This equationfor the �xed-point action is in general transcendental, but can be exactly solvedfor all N below 7. Note that when no positive real solutions exist for Jfp, thereare no �xed points. In practice the detuning term is usually much larger than theresonance term, in which case an approximate solution is Jfp � �2��Q=�.We can now apply a last linear transformation to the Hamiltonian, by ex-panding the N-turn Hamiltonian (3.13) around these �xed points with the linear(canonical) translation  =  fp + � ;J = Jfp + I : (3:17)The expansion action I is assumed to be small with respect to the magnitudes ofthe �xed points action, so I � Jfp; no such constraint is placed on �. The �nalHamiltonian is then found to beHN (�; I) = N2 �I2 �NVNJN=2fp cos(N�) +O(VNI) : (3:18)If �VN is negative, there is a family of N elliptic (stable) �xed points (at phases� = 0; 2�=N; : : :, corresponding to even kres), surrounded by a separatrix inter-secting another family of N hyperbolic �xed points (at phases � = �=N; 3�=N; : : :,corresponding to odd kres); if �VN is positive the converse is true. We assume the



32latter and choose the negative sign in this Hamiltonian to examine local motionaround a stable �xed point.Motion within the separatrix is termed \resonant" or \phase-locked" | parti-cles within this region have a long-term average phase advance per turn, or tune,of exactly M=N . Particle trajectories just outside of the separatrix are distortedbut nonresonant, as seen in Figure (3.1). Consider a set of particles populatingone of these resonance islands at one particular time in the accelerator; this en-semble of particles will advance from island to island turn by turn in a completelycoherent fashion. A position measurement of the centroid of this distribution willexhibit a coherent oscillation. This oscillation can in practice be observed on aonline spectrum analyzer as a \persistent signal" at exactly the resonant tune, andwith unperturbed resonance islands it typically has an exceptionally long lifetimeof millions of turns.Ignoring terms of order VNI and higher, Equation (3.18) is a free pendulumHamiltonian and the equation of motion for � that arises is�� = �N3�VNJN=2fp sin(N�)= �N(2�QI)2 sin(N�) ; (3:19)where the time derivatives are taken with respect to the \N-turn" time variableT, and QI (the \island tune", or frequency of small librations of this pendulumsystem) is de�ned by QI � 12�NJN=4fp pj�VN j : (3:20)A typical island tune observed in the E778 experiment is approximately 0:006,with similar values given by tracking with realistic nonlinear magnet strengths.The island half-width �I can also be found from the Hamiltonian, becausethis Hamiltonian is autonomous. The separatrix is a contour along which theHamiltonian is constant, and so the Hamiltonian value at an unstable �xed point



33is equal to the Hamiltonian value at a stable �xed point phase with actions ��I:HN (� = �=N; I = 0) = HN (� = 0; I = ��I)!�I = 2JN=4fp s����VN� ���� : (3:21)Knowledge of the base tune Qx0 (and thus �Q), the island tuneQI and the detuning� allows deduction of the �xed point action Jfp, island size �I and resonancedriving strength VN .Since the motion is that of a pendulum within the resonance island, particlesat di�erent actions within the island circulate with di�erent frequencies or tunes.These tunes range from the island tune QI at actions near zero to zero frequencyon the separatrix, and can be written in terms of elliptic integrals. This nonlineardependence of frequency with action (or amplitude) of the pendulum systemmakesmeasurement of QI more di�cult, for only particles with actions near the �xedpoint action actually rotate in the island with this tune.3.4 FIRST ORDER NONLINEAR TRACKING AND SIMULATIONFor the issues investigated in this thesis, it was deemed necessary to design adedicated simulation program that tracked a minimal lattice which drives relevantterms in the nonlinear Hamiltonian to �rst order. The Octupole-Decapole modellattice is designed with this goal in mind; it also uses sets of specially placedquadrupoles to independently control tune modulation and beta modulation atthe resonance-driving nonlinearity. For simplicity, all beta functions are set at onemeter in the following discussion and within the tracking codes themselves.The lowest order multipoles that drive action-dependent nonlinear detuning ofthe form �J2 are octupoles, as seen in Table (3.1). To �rst order all resonanceterms contributed by the octupoles should vanish in the simulation. This enablescomplete separation between detuning, the function of the octupoles, and reso-nance driving from the decapole. It is possible to eliminate all but one of the �rst
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Figure 3.3: The octupole-decapole lattice.order octupole resonances, the diagonal coupling resonance 2Qx�2Qy, by drivingthree octupoles with the same strength, spaced apart by a betatron phase advanceof 60� = 2�=3 between each octupole. This also triples the phase-independent de-tuning coe�cients �ij over their single octupole values. The decapole is used todrive the 5Qx resonance, motivated by the study of this resonance in E778.To investigate the e�ects of tune modulation and beta modulation, the linearphase advances in the lattice were set to constant values and only special quad-rupoles explicitly introduced into the lattice were modulated. Three quadrupolesare su�cient to independently control the tune modulation of the lattice and betamodulation at the resonance-driving decapole. The tune shift from a single smallquadrupole error is given by Equation (2.22), recalling �x = �y = 1m for thislattice, �Q(quad) = ~b14� : (3:22)



35This is independent of the phase of the quadrupole within the machine, so a pairof modulated quadrupoles driven with the same sign will produce tune modulationwith strength q = 2�Q = ~b1=2�. The beta modulation created by a quadrupoleerror is given by Equation (4.4),��(s) = ~b12 [sin(2j�(s) � �quadj)� cos(2j�(s) � �quadj) tan(2�Q0)] : (3:23)Two quadrupoles driven with equal strength, opposite sign and 90� apart in phaseadvance will destructively interfere outside of this phase advance. They construc-tively interfere within the 90� phase advance, and at a point exactly halfway inbetween them they will modulate the beta function with strength b = �� = ~b1,with no tune modulation since the quadrupoles are driven with equal and oppositestrengths.The elements of this lattice are shown in Figure (3.3); the phase advancesoutside the cluster of quadrupoles and nonlinear elements are set by the twoconstraints that the linear tunes are some set values, say (Qx0; Qy0), and thedecapole is positioned exactly halfway through the lattice from the reference point,so �dec = �Q0 in each plane.A one-dimensional tracking program, OdTrack, has been written which trackssingle particles through horizontal phase space in this lattice and includes thee�ects of either or both tune modulation and beta modulation. The inputs to thisprogram include the horizontal base tune, the octupole and decapole strengths ~b3and ~b4, the amplitude and period (in turns) of the modulation and the number ofturns to track. Particles can be launched at a variety of amplitudes but only at asingle phase during every execution of the simulation. Output includes the phasespace coordinates of every particle for each synchrotron period and the measuredtune of each particle over the entire tracking run.Timing tests on a Sparcstation IPX show an iteration CPU time of 33 �s per



36turn, making million-turn tracking with this lattice easily accessible. Raising thetimescales by several orders of magnitude to examine thousands of millions ofturns (or millions of synchrotron periods) of evolution still only requires tens ofhours of processing time, and is quite feasible.The prediction for the island tune of Equation (3.20) is proportional to thesquare root of both the detuning � and the resonance driving strength V5. How-ever, with the approximation that V5J �12fp � � in Equation (3.16) for the �xedpoint action Jfp, it is apparent that the �xed point action also varies inverselywith the detuning. Therefore, since the resonance strength VN is driven to �rstorder in the decapole strength and the detuning is driven to �rst order in octupolestrength (see Table [3.1]), the island tune is expected to vary as:QI / ~b�343 ~b124 : (3:24)Figure (3.4) shows a comparison of the theoretical prediction for QI to trackingin this lattice while varying the octupole strength, showing the scaling of (3.24)for small ~b3. As this strength becomes nonperturbatively large (on the orderof 3~b3 � 1, since there are three octupoles in this lattice), the naive �rst orderpredictions fail. This is due to a higher-order contribution to the resonance drivingby the octupoles which cannot be ignored in this limit. However, for octupolestrengths smaller than :1 m�3=2, the results of �rst order perturbation theoryappears adequate.Figure (3.5) shows a similar comparison while varying the decapole strength,keeping the octupole strengths constant. Here the approximation begins to fail atlower orders as the 3Qx resonance, also driven to �rst order in ~b4, begins to distortthe phase space where the resonance islands are located. For decapole strengthsless than 10�3 m�2, at the octupole strength listed, the prediction and scaling of(3.24) agree with tracking.
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383.5 MEASUREMENTS IN REAL ACCELERATORSThe detuning coe�cient � can be experimentally measured in several ways. Onemethod is to kick the beam transversely and observe the resulting tune shift at thisbetatron amplitude. This is typically only possible if the beam is small enoughsuch that there is no appreciable tune spread over the beam distribution, due tothe presence of tune spread decoherence as discussed in the next paragraph. Thisis also the method used by tracking programs to measure the tune dependenceon amplitude, because the phase advance for a single particle can be measuredto the computational precision and there is no tune spread or decoherence insingle-particle motion.With a moderately sized beam, the detuning coe�cient can be measured byobserving the decoherence time of a bunch kicked into a non-resonant section ofphase space. Particles that comprise a kicked bunch will have di�erent tunes(because of their di�erent amplitudes after the kick), and so the distributionwill \decohere", with the phases of particles with smaller tunes lagging furtherand further behind those of particles with larger tunes. The timescale for thisphenomena to decohere the beam is� (decohere) = 1�dQdJ �J(kick) � � ; (3:25)where J(kick) is the action of the kick and � is the size of the beam measured inunits of the action. For conditions experienced in experiment E778, the typical de-coherence time is tens to hundreds of machine turns. This phenomenon has beenpreviously studied, both within the context of E778 (Chao et. al. 1987b, Chao et.al. 1988, Merminga 1989) and in other environments (Lee et. al. 1991, Byrd 1992).It gives a quantitative measurement of the detuning strength even when the co-herent oscillation decays rapidly and direct measurement of the tune at the new



39betatron amplitude is impossible. An illustration of this decoherence is shownin Figure (3.6), and an actual experimental turn-by-turn position measurementshowing this decoherence is shown in Figure (3.9).With this independent measure of �, one now needs to know the island tuneor island width in order to deduce the resonance strength. The island width hasbeen measured in past E778 experimental runs by observing the fraction of kickedbeam trapped within a resonance island (Chao et. al. 1988, Merminga 1989). Atypical value of the physical island width, p�I�x, reported by Merminga is half amillimeter. This method usually can only give general estimates of �I, and relieson �ne calibration of the kicker.Instead, recent experiments have concentrated on measuringQI, the island tune,in machines where strong resonances have been driven by explicitly introducednonlinearities. Sextupoles have predominantly been used, since they are the low-est order nonlinear multipoles and are commonly found in many accelerators tocorrect chromatic focusing errors. The procedure of �nding and populating suchresonance islands in the phase space of a real machine is greatly simpli�ed bythe appearance of \persistent signals" when a signi�cant fraction of the beam iscaptured within a resonance island. When this occurs, the trapped beam exhibitsa coherent oscillation with an exceptionally long lifetime | millions of turns |and the frequency spectrum of the beam on an online spectrum analyzer shows along-lived peak exactly at the resonant frequency.One possible method to determine the island tune is to examine the coherentmotion of a bunch kicked into a resonance island. If the bunch is small enough (ie.has an RMS size much smaller than the size of the island), it behaves essentiallyas a single particle for times much smaller than it's decoherence time withinthe island. The resulting coherent motion within the resonance allows directmeasurement of QI; such an approach was adopted by the CE22 collaboration at



40IUCF (Lee et. al. 1991). Figure (3.7) shows a representation of such a kick appliedto the resonant system seen in Figure (3.6).In the Fermilab Tevatron, beam sizes are typically large compared to the sizeof induced resonance islands; creation of larger resonance islands is impracticaldue to physical aperture considerations. This means that when the beam is kickedonto the resonance, the entire resonance island is populated. There is still a strongpersistent signal corresponding to the coherent motion from island to island, butthere is no local coherent motion of the particles trapped within the resonanceisland that allows direct observation of QI. Figure (3.8) shows a symbolic rep-resentation of such a kick, including the decoherence of the portion of the beamnot trapped within the resonance island. A sample turn-by-turn position mea-surement from E778 showing this decoherence and a persistent signal is seen inFigure (3.10), showing beam capture on a 5Qx resonance island chain.There are various frequency-domain methods of examining the distribution ofparticles �lling a single resonance island (Chen 1990). For example, if the reso-nance island is completely but not evenly populated, the discrete Fourier trans-form of a BPM measurement taken every N turns should show a low-frequencyelement similar to that of an ensemble of driven pendula, dropping o� quickly intobackground noise at frequencies near the island tune.Since the distribution of particles within the resonance island was indeed ex-pected to be relatively even due to the nature of the beam size used in E778,another method is investigated in this thesis. Resonantly captured beam was ex-cited with a set of very weakly modulated quadrupoles, modulating the tune ande�ectively turning the ensemble of free pendula into driven pendula. The frequen-cy response of the beam was then correlated to the frequency of the modulationfor a reasonable measurement of the island tune.
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Figure 3.6: Beam decoherence from a kick into a sheared non-resonantsection of phase space. The intermediate distribution has a centroid po-sition that decays with time and approaches a �nal annular distribution(which has a larger emittance than the initial distribution and a centroidposition of zero) over approximately hundreds of turns.
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Figure 3.7: Phase space plot of a small beam kicked into an N = 5nonlinear resonance island. Measurement of the centroid of the kickeddistribution every 5 machine turns shows coherent motion around thecenter of the island, making direct measurement of the island tune QIpossible.
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Figure 3.8: Phase space plot of a large beam kicked into anN = 5 nonlin-ear resonance island. The untrapped portion of the beam decoheres anddoes not contribute to the coherent centroid motion. The trapped por-tion coherently moves between resonance islands, but shows no evidenceof the island tune QI.
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Figure 3.9: Sample E778 turn-by-turn data at kick time, showing thekick and gaussian decoherence. Kicker voltage is 11 kV, in the E77891 0 lattice. The graphics are produced by the kaspar graphics program.The decoherence pictured has a timescale of approximately 100 turns.
Figure 3.10: Sample turn-by-turn data at kick time for two BPMs sepa-rated by a betatron phase of approximately 70 degrees, showing the kickand production of a Qx = 20:40 persistent signal. Kicker voltage andlattice are as in above �gure. Only 2500 turns are pictured here, but thiscoherent oscillation survives for millions of turns.



CHAPTER 4PERTURBATIONS OF NONLINEAR RESONANCES |TUNE MODULATION AND BETA MODULATIONThe e�ects of various types of perturbations on particle motion in
uenced byan isolated nonlinear resonance are investigated in this chapter. Two types ofperturbation are of particular interest here: modulation of the machine tune andmodulation of the linear beta functions at the nonlinear magnets driving theresonance.Modulation e�ects are important for a variety of reasons. From a general dy-namic viewpoint, the separatrices surrounding nonlinear resonance islands areextremely fragile under small perturbations such as modulations because theyare homoclinic, or asymptotically joined to the unstable �xed points of the res-onances (Lichtenberg and Lieberman 1983, Vivaldi 1984). As the modulationstrength grows motion becomes stochastic in a widening area around the separa-trix; this stochasticity can then act as a noise source for di�usion models that maybe important mechanisms limiting the luminosity lifetimes of present and futurecolliders. One of these di�usion models, aptly named modulational di�usion, isdescribed in greater detail in Chapter 7. Tune modulation is also important instudy of the beam-beam interaction where its inclusion is necessary to reconcileoperational observations with simulation and theory (Peggs and Talman 1986,Saritepe and Peggs 1991). Modulation methods have been proposed for use incrystal channeling and parasitic beam extraction at the SSC (Gabella et. al. 1992)where controlled RF modulation would be used to create trapping resonances inlongitudinal phase space.Most importantly from the perspective of this dissertation, modulations pro-45



46vide a frequency-dependent mechanism for detrapping particles captured withinnonlinear resonance islands. This allows measurement of the island tune QI evenin the experimental circumstance of large beam sizes. It is the objective of thischapter to describe this mechanism within the discrete Hamiltonian context andto summarize the requirements for both tune modulation and beta modulation todetrap particles captured near the resonance island �xed points.The general character and sources of tune modulation and beta modulationare described in x 4.1. The one-dimensional driven pendulum N-turn Hamiltoni-an with tune modulation is derived in x 4.2, and the corresponding equations ofmotion are developed. In x 4.3 we explore the structure of the tune modulationparameter space (q;QM ) and �nd four dynamical regions of interest | the adi-abatic \amplitude-modulation" region, the fast-modulation \phase-modulation"region, the \strong-sideband" region and a region of chaos where the regular lo-cal motion around the �xed points vanishes. We investigate the e�ects of betamodulation in the N-turn Hamiltonian and compare them to those of tune mod-ulation in x 4.4, and compare the theoretical predictions of the previous sectionsto particle tracking for both modulations in x 4.5.4.1 SOURCES OF TUNE MODULATION AND BETA MODULATIONIf Q0 denotes the unperturbed tune, tune modulation is assumed to be of theform Q0 ! Q0 + q sin(2�QM t) : (4:1)The tune modulation strength, or depth, is q, and QM is the modulation fre-quency; both are frequency-domain parameters and are expressed in inverse turn-s. This type of tune modulation unavoidably arises from two sources: ripple onquadrupole power supplies and coupling of synchrotron oscillations to the tunes via



47chromaticity. The latter is normally the more important source due to the conser-vative bounds placed on power supply current ripple, on the order of �I=I � 10�5to stabilize machine tunes to 10�3 accuracy.With typical chromaticities of several units and fractional momentum o�sets � ofabout 10�4, Equation (2.19) shows that modulation strengths q of approximately10�3 are always present in the Tevatron. The modulation frequency for theseoscillations is the synchrotron frequency, ranging from 1:4 � 10�3 at injection to5:7 � 10�4 at collision energies. It is di�cult to reduce the momentum spreadof the beam, both because of demands on RF systems and because of coupledbunch instabilities that appear at high longitudinal beam densities. Reduction ofchromaticities � is also impractical because chromaticities much smaller than afew units can cause strong head-tail instabilities in individual beam bunches.Tune modulation can also be explicitly introduced by modulating the powersupply currents of a set of quadrupole correctors. A modulated quadrupole errorof strength �~b1 at a location with horizontal beta function �x(quad) will modulatethe horizontal tune vis. Equation (2.22):q = �~b1 �x(quad)4� : (4:2)The vertical tune is modulated with an opposite sign (completely out of phase fromthe horizontal) using the corresponding beta function. Discussion of controlledmodulation for the E778 tune modulation experiment is deferred until Chapter 5.Quadrupole modulation not only changes the tune of the machine but alsomodulates the beta functions around the ring. Quantitatively the amplitude b(s)of this beta modulation, � ! � [1 + b(s) sin(2�QM t)] ; (4:3)is given by Sands (Sands 1970, eq. [2.105]):b(s) � ��(s)�(s) = 2�qsin(2�Q0) cos[2j (s) �  (quad)j � 2�Q0] : (4:4)



48The only longitudinal position dependence is in the cosine; this perturbation caus-es a so-called \beta wave" around the accelerator with a cusp at the location of thequadrupole error. Examination of the �rst-order nonlinear Hamiltonians Equa-tions (3.6) and (3.7) shows that, for the single resonance term cos(N ) selectedby N-turn summation, the �nal e�ect of beta modulation is, to �rst order in b, amodulation of the resonance strength:VN ! VN �1 + Nb2 sin(2�QM t)� : (4:5)The beta modulation strength in Equation (4.4) is expressed in terms of thetune shift for the quadrupole to compare the relative e�ectiveness of tune andbeta modulation in detrapping particles captured within nonlinear resonance is-lands. For a single quadrupole error the maximum beta modulation amplitude bis roughly an order of magnitude larger than the corresponding tune modulationdepth q; for a set of modulated quadrupoles distributed in phase  (s) (as usedin E778) interference between beta waves from individual quadrupoles makes thisratio about two to three times smaller.A similar, though not equivalent, modulation is produced by synchrotron oscil-lations of a particle with nonzero fractional momentum o�set �. These modulatethe magetic rigidity jB�j ! jB�j [1 + � sin(2�QM t)], e�ectively modulating thenormalized multipole strengths. For � � 1, always the case in realistic operations,~bn ! ~bn[1� � sin(2�QM t)] (4:6)to �rst order in �. This modulates the resonance strength VN di�erently than betamodulation does, since here VN is proportional to ~bn in a �rst-order nonlinearanalysis: VN ! VN [1� � sin(2�QM t)] : (4:7)So b = 2�=N for beta modulation induced by synchrotron oscillations.



494.2 THE N{TURN HAMILTONIAN FORTUNE MODULATED ONE{DIMENSIONAL RESONANCESWe begin with the one-turn one-dimensional Hamiltonian of Equation (3.13),including tune modulation:H1( ; J ; t) = 2�Q0J + 12�J2 + VNJN=2 cos(N ) + 2�qJ sin(2�QM t) : (4:8)The single resonance term is the only one kept because all others, not of interestin an isolated resonance model, are suppressed in the summation used to producean N-turn Hamiltonian. The tune is again assumed to be near the resonant tune,Q0 = MN + �Q where �Q � 1N . We shall consider only tune modulation frequen-cies QM much smaller than 1=N so the tune is adiabatically changing over theseN turns, and tune modulation depths q <� �Q. Real sources of tune modulationdescribed in the previous section agree with these limits; much larger tune modu-lation strengths prohibit any regular motion with strongly driven resonances. Theone-turn Hamiltonian is now summed over N turns as in the previous chapter togive, to �rst order in the small strengths �, VN and q:HN ( ; J ;T ) = 2�N�QJ + 2�NqJ sin(2�NQMT ) + N2 �J2+NVNJN=2 cos(N ) : (4:9)The N-turn Hamiltonian can exhibit �xed points as before for certain sectionsof the modulation parameter space (q;QM ). Solving the equation _J = 0 for the�xed point phases gives �fp = 0; �=N; : : : (2N � 1)�=N . Similarly, solving _ = 0for the �xed point actions gives0 = 2��Q + 2�q sin(2�NQMT ) + �Jfp ;_Jfp = � 4�2N� qQM cos(2�NQMT ) : (4:10)We transform the coordinates to the small action-angle coordinates (�; I), ex-panded around a stable �xed point, via the linear transformations of the previous



50chapter | � = �N + � ;J = Jfp(T ) + I : (4:11)This transformation also changes the Hamiltonian because it is nonautonomous,or time-dependent: HN( ; J ;T ) ! HN(�; I;T ) + � _Jfp : (4:12)Performing this change of coordinates produces a driven pendulum Hamiltonian,HN(�; I) = N2 �I2 +NVNJN=2fp cos(N�) � 4�2N� qQM � cos(2�NQMT ) ; (4:13)The equation of motion of the angle variable � becomes that of a pendulum, drivenat the modulation frequency QM :�� = �N(2�QI)2 sin(N�) � 4N2�2qQM cos(2�NQMT ) : (4:14)This form agrees with others previously published (Peggs 1988, Chen 1990) if thetimescale is changed back to single turns via T ! t=N .When the equation of motion for the angle � is linearized, it can be solved easilyand explicitly for �(T ). The solution is found to be�(T ) = qQM Q2MQ2M �Q2I cos(2�QMNT ) : (4:15)From the Hamiltonian we can also get the solution for the action I as a functionof T , since _� � N�I: I(T ) = 2�q� Q2MQ2I �Q2M sin(2�QMNT ) : (4:16)4.3 STRUCTURE OF THE (q;QM ) PARAMETER SPACEFrom the structure of the driven pendulum equation of motion, it is natural toinvestigate the structure of the (q;QM ) modulation parameter space. Rescaling



51the time by T ! T=QI in Equation (4.14) shows that the natural scaling for bothq and QM is QI, since only the ratios q=QI and QM=QI appear under this scalechange:�� = �N(2�)2 sin(N�) � 4N2�2� qQI��QMQI � cos �2�N �QMQI �T� : (4:17)It is interesting to look at three extremes of the parameter space: when QM � QI(adiabatic modulation), QM � QI (fast modulation) and QM � QI (resonance).First consider the case of adiabatic tune modulation, where the modulationtune is much smaller than the island tune, or many particle oscillations take placearound the �xed point with every modulation cycle. Here we can consider thetune to be changing linearly with a small rate of _Q = dQ=dT . The transformedHamiltonian of Equation (4.13) is now given byHN (�; I;T ) = N2 �I2 +NVNJN=2fp cos(N�) + 2� _QTI : (4:18)The dependence on _QT may be relegated to second order with the generatingfunction G(I; ��;T ) = �I �� + 2� _Q� T �� ; (4:19)which gives the transformations �I = I�2� _QT=� and � = ��. The new Hamiltonianis now no longer periodic in the angle variable ��, for it becomesHN(��; �I) = N2 ��I2 +NVNJN=2fp cos(N ��) + 2� _Q� �� : (4:20)This Hamiltonian explicitly modulates the pendulum amplitude �I, as can be seenby the Hamilton's equation for it's rate of change:_�I = �@HN@�� = N2VNJN=2fp sin(N ��) + 2� _Q� : (4:21)Now there are only angle �xed points if we can �nd ��fp such that _�I = 0. Notingthat the maximum value of the rate of change of the tune is _Qmax = 2�NqQM ,



52we �nd the constraint ���� qQI QMQI ���� < 1N (4:22)for adiabatic stability over the entire modulation sweep. As has been previouslymentioned (Peggs 1988, Chao and Month 1974), this is an analogue to RF buck-et shrinkage during particle acceleration. The above procedure is equivalent totransforming the original N-turn Hamiltonian (4.9) via a generating function thatmodulates only the action (or amplitude),G( ; I;T ) = [Jfp(T ) + I][ � kres�] ; (4:23)hence this region is dominated by \amplitude modulation", where the modulationpredominantly modulates island amplitudes instead of island phases as mentionedabove.Second, consider the \fast modulation" case, where QM � QI. As might be ex-pected from the above comments, this region is dominated by \phase modulation."Consider transforming to the phase-modulated �xed points with application of thegenerating function G2( ; I;T ) = [Jfp + I][ �  fp(T )] (4:24)to the N-turn Hamiltonian (4.9) | this producesHN (�; I) = N2 �I2 + 2�NqI sin(2�NQMT ) +NVNJN=2fp cos(N�) : (4:25)Here the phase is explicitly modulated by the term linear in the action I, asexpected. Applying yet another generating function,G2(�; �I ;T ) = ��I + qQM cos(2�NQMT )�I ; (4:26)shifts the modulation inside the angle dependence:HN (��; �I;T ) = N2 ��I2 +NVNJN=2fp cos �N �� + NqQM cos(2�QMNT )� : (4:27)



53The cosine term can be expanded in Bessel functions Jm and harmonics via avariant of the Jacobi-Anger expansion of a plane wave,cos(A +B cosC) = 1Xm=�1Jm(B) cos(A+mC +m�=2) ; (4:28)to produce a new Hamiltonian that has an in�nite number of resonance terms:HN (��; �I) = N2 ��I2+NVNJN=2fp 1Xm=�1Jm�NqQM� cos(N ��+2�mNQMT +m�=2) :(4:29)Examine a particle at non-zero �I in the above Hamiltonian; there is a family ofactions �Il (parameterized by an integer l) where a particle has a net phase advanceof zero (modulo 1) over NTM turns, or a tune ofQl = MN + lN QM : (4:30)The action that corresponds to this tune is �Il = 2�lQMN� . Now we can performa sum over TM N-turn periods near this tune if not much happens in that time(if QM � QI) to �nd a new Hamiltonian that is autonomous over discrete timeintervals of TM �N turns. When this sum is performed, only one resonance (m =�l) remains since the others are suppressed in a similar manner to the resonancesuppression before, and we �nd the Hamiltonian for (TM �N)-turn motion:HN �TM (��; �I) = N2 TM�(�I � �Il)2 +NVNJN=2fp TMJ�l�NqQM� cos(N ��) : (4:31)Note that this Hamiltonian contains a sideband resonance for every integer l;however the Bessel functions suppress the amplitudes of these sideband resonancestrengths for large l since J�l � 0 for Nq=QM < jlj. For the unsuppressedsidebands the Bessel functions can be approximated byJ�l�NqQM� � �2QMN�q �1=2 cos�NqQM + l�4 � �4� ; for jlj < NqQM (4:32)



54with rms values pQM=N�q. This means that the l = 1 sideband suppressed andno sidebands are driven strongly if q < QMN : (4:33)Generally the kth sideband is suppressed if q < kQM=N .From the Chirikov overlap criterion (Chirikov 1979), sideband resonances over-lap and local stochasticity results if 2IW > Isep, where IW is the sideband reso-nance island action half-width and Isep is the action separation of the �xed pointsof neighboring sidebands. From the above formula for �Il, it is apparent thatIsep = 2�QM=N�. The island width must be calculated from Hamiltonian con-tour considerations and Equation (4.31) in the same fashion as the unperturbedprimary resonance width calculation in Chapter 3; here it is found to beIW = 2"VNJN=2fp� J�l� NqQM�#1=2 � 2"VNJN=2fp� #1=2 � QMN�q�1=4 (4:34)for each sideband. Combining these with the overlap criterion and the de�nitionof QI for the primary resonance (Equation [3.21]), sidebands overlap and chaosbegins when 256 Q4I > N�qQ3M : (4:35)Even though separatrices are destroyed and sidebands overlap when this conditionis obeyed, the central regions of the primary resonances can still be locally stablefor small enough QM , where adiabatic trapping takes over as in the previousdiscussion.Lastly consider the nearly resonant case, QM � QI, as described approximatelyby the linearized equations of motion. Equations (4.15) and (4.16) representlocally phase-locked motion only when the linearization of this motion aroundthe �xed point in phase is a good approximation. This approximation fails when



55sin(N�) becomes strongly nonlinear | that is, when jN�j � 1. This gives a weakconstraint for bounded motion as���� qQMQ2M �Q2I ���� < 1=N : (4:36)This constraint can be improved by including the next order (nonlinear) termsin the expansion of the driven pendulum equation (Tsironis 1990) but it is satis-factory in the resonant region where QM � QI and large motion is expected tobecome unbounded.Summarizing, there are four basic constraints in the parameter space that dividethe (q;QM ) plane into four distinct regions. Near the driven pendulum resonance(QM � QI), chaos occurs when���� qQMQ2M �Q2I ���� > 1=N : (4:37)In the adiabatic regime (QM � QI), chaos occurs whenjqQM j > Q2IN ; (4:38)below this threshold we have adiabatic stability of the �xed point and amplitudemodulation dominates. In the fast-modulation approximation (QM � QI) thekth sideband appears when q > jkjQM=N . The �rst sideband o� the primaryresonance is then of non-negligible size whenq > QMN ; (4:39)below this threshold there is stability with fast \phase modulation". The side-bands overlap and produce chaos when256 Q4I > N�qQ3M : (4:40)
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57of the overlapping sidebands created by the modulation. The presence of sucha region does not necessarily prohibit stable motion at larger amplitudes if thedetuning that is present is su�ciently strong to pull the tunes of particles at theseamplitudes to nonresonant values. This is a contrast to \thin-layer" stochasticity,which is created by the overlap of thinner higher-order resonances in the vicinityof perturbed separatrices. For our purposes such thin-layer stochasticity can beignored in this discussion, since the phase space extent of such regions is a greatdeal smaller than the extent of the chaotic band created by tune modulation.The phase space of particles in each area of the tune modulation parameterplane is shown in Figure (4.2), plotted every modulation period. Shown on topfor reference is the phase space of unperturbed particles, with QI = 6:1 � 10�3for the primary isolated N = 5 resonance shown. This is a nominally realisticvalue for QI, also similar to values found for small nonlinear strengths in trackingin the last chapter. Note that motion in the amplitude modulation and phasemodulation regions is essentially indistinguishable from the unperturbed phasespace and small-amplitude nonresonant motion is undisturbed in all cases. In thelower right �gure the k = 1 sidebands can be seen on either side of the primaryresonance, with stochasticity already beginning to form where the separatrices ofthe resonances overlap.Alternative schemes to investigating the stability of the driven pendulum equa-tion of motion (4.14) have been proposed which do not linearize the pendulumcompletely but including the �rst nonlinear terms in the expansion of the sine(Tsironis, Peggs and Chen 1990). Such an analysis predicts stability boundariesof the Mathieu equation, similar to the discussion of beta modulation in the nextsection. However these resonances are expected to be signi�cantly weaker thanthe main driven pendulum resonance because they are found within the nonlinearresponse of the pendulum system.
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Figure 4.2: Phase spaces at various points in the (q;QM ) tune modula-tion parameter plane as produced by the simulation program OdTrackfor N = 5 resonance islands. Here the action a = p2J is plotted a-gainst particle phase, for QI = 6:08 � 10�3. From the top and left toright, the �gures are described as: (a) The unperturbed phase space atq = QM = 0. (b) Amplitude modulation with q = QM = QI=10. (c)Phase modulation with q = QI=10, QM = 10QI. (d) A thick stochasticband is produced in the chaos region with q = QI=2, QM = QI. (e) The�rst sideband (k = 1) appear at q = 2QI=5, QM = QI=3.



594.4 THE N{TURN HAMILTONIAN FORBETA MODULATED 1{DIMENSIONAL RESONANCESNow consider the one-turn one-dimensional Hamiltonian of Equation (3.13),representing the motion of a particle trapped in a nonlinear resonance islandin
uenced by a small beta modulation (4.5):H1( ; J ; t) = 2�QJ + 12�J2 + VNJN=2 cos(N ) �1 + Nb2 sin(2�QM t)� : (4:41)With the assumption that the tune is near an NQ resonance as before, quanti�edby stating that Q = M=N + �Q, we can now go through the N-turn summingprocess to arrive at an N-turn version of this Hamiltonian:HN ( ; J ;T ) = 2�N�QJ + N2 �J2+NVNJN=2 cos(N ) �1 + Nb2 sin(2�QMNT )� : (4:42)The equations of motion given by this Hamiltonian show that neither the �xedpoint action nor phase are modulated by beta modulation | it is the depth of theoscillator well, or resonance strength, which is being modulated. Transformingto the coordinates (�; I) is then not time-dependent, and can be accomplishedusing the linear canonical transformation of Equation (3.17). The Hamiltonianafter this transformation has the form of a parametrically modulated nonlinearpendulum,HN (�; I;T ) = N2 �I2 +NVNJN=2fp cos(N�) �1 + Nb2 sin(2�QMNT )� : (4:43)Comparison of the relative e�ectiveness of tune modulation and beta modulationin detrapping particles within resonance islands and destroying persistent signalsis more straightforward if we compare the respective equations of motion. Theequation of motion for the angle of this oscillator in all ranges of modulationstrength b and frequency QM is then�� = �N(2�QI)2 sin(N�) �1 + Nb2 sin(2�QMNT )� : (4:44)



60The parametric form of the equation of motion is expected in the case of betamodulation because the strength of the resonance is being modulated as mentionedabove, thus modulating both the island tune QI and the island width. The �xedpoint phases are not expected to change with beta modulation to any order, ascan be seen by examining the above equation of motion when � = 0. FromEquation (4.41) the equation for the �xed point action Jfp is0 = 2�Q + �Jfp + N2 VNJ N�22 �1 + Nb2 sin(2�QMNT )� ; (4:45)indicating that this action is modulated in some complicated weak way.The linearized form of Equation (4.44) is called the Mathieu equation. Condi-tions for the stability of such a parametrically driven oscillator have been describedextensively in classical mechanics literature (Landau and Lifshitz 1975) and vari-ous tables of stability curves have been produced (Abromowitz and Stegun 1965,McLachlan 1951). The above form can be transformed to the canonical form citedin the literature, d2�dz2 + [a � 2f sin(2z)]� = 0 ; (4:46)noting the equivalences z = N�QM , (QM=QI) = 2=a1=2, and b = f2N �QMQI �2.Note that the modulation frequency still scales naturally with the island frequency,but the modulation strength b usurprisingly does not because it is not a naturalfrequency domain variable. For values of b � 1, resonances exist for the beta-modulated parametric oscillator whenQM (resonant) = 2QIk (4:47)where k is an positive integer. The strength of these resonances increases withincreasing modulation strength b, but decreases with increasing k as bk; the sub-harmonic resonance at k = 1 (or QM = 2QI) is the strongest.
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Figure 4.3: The N = 5 modulation parameter plane (b;QM=QI) forbeta function modulation, showing approximate widths for resonancesof orders k = 1 to k = 5. Small oscillation stability is predicted beloweach set of resonance lines.The k = 1 through k = 5 Mathieu resonances are shown in Figure (4.3), wheremotion within a resonance is expected to lead to instability of motion very closeto the �xed point and subsequent detrapping. The k = 1 subharmonic resonanceis evident at QM = 2QI. All of the resonance widths typically grow non-negligibleat a beta modulation depth of approximately b � 0:10. Higher order resonancesare present but not shown for the sake of clarity. Note that in this stabilitydiagram the vertical scale is b = ��� . Comparison of this �gure to Figure (4.1)and recalling comments about the relative strengths of beta modulation and tune



62modulation induced by a quadrupole error shows that tune modulation is on theorder of 1=(10QI) times more e�ective than beta modulation in destroying localregular motion near the center of a nonlinear resonance island.4.5 COMPARING HAMILTONIAN RESULTS TO SIMULATIONThe entirety of this chapter concerns the phase-locking \stability" of particlestrapped within nonlinear resonance islands subject to tune modulation and betamodulation. It is quite tedious to examine phase-space plots by hand for a varietyof modulation conditions to determine the stability of the �xed-points, and so analgorithm was developed that allows fast and e�cient location of �xed points inthe two-dimensional map of the octupole-decapole lattice. This algorithm is quiteeasily extendible to any two-dimensional map.Consider a �xed point in the phase space (x; x0) at the location (�x; �x0). If this�xed point is elliptically stable a particle circulating around it will experience thelinear transformation from initial coordinates (x; x0) to (x +�x1; x0 +�x01)� x+�x1x0 +�x01� = � �x�x0�+�A BC D�� x � �xx0 � �x0� ; (4:48)or � x +�x1x0 +�x01� = � Ax �A�x +Bx0 �B�x0 + �xCx� C�x+Dx0 �D�x0 + �x0� : (4:49)The transformation matrix has the form of a rotation matrix if the motionaround the �xed point is perfectly circular. For a more general elliptical �xedpoint, the trace of the rotation matrix is twice the cosine of the the total phaseadvance induced by the mapping; if this phase advance is denoted 2�QIT , whereT is the number of turns tracked to produce one iteration of this map in Odfp,then cos(2�QIT ) = A +D2 : (4:50)



63This determines QI within an aliasing factor from the cosine once the trans-formation matrix elements are known, and this aliasing factor can be found bycomparison of this QI to the theoretically predicted value.Equation (4.49) only gives two constraints to �nd six unknowns, the �xed pointlocation and the elements of the transformationmatrix. Four other constraints aregiven by launching two more particles through the same mapping, o�set by smallamounts �x and �x0 in the x and x0 directions respectively. The second particleexperiences the linear transformation from (x + �x; x0) to (x +�x2; x0 +�x02):� x +�x2x0 +�x02� = � Ax �A�x +Bx0 �B�x0 + �x +A�xCx� C�x+Dx0 �D�x0 + �x0 + C�x� : (4:51)Subtracting the mapping equations for the �rst particle from those of the secondgives equations for the matrix elements A and C:A = �x2 ��x1�x C = �x02 ��x1�x : (4:52)Repeating the same process for a particle mapped from coordinates (x; x0 + �x0)to (x +�x3; x0 +�x03) gives the other two matrix elements:B = �x3 ��x1�x0 D = �x03 ��x01�x0 : (4:53)Once the transformation matrix is known, Equation (4.49) can be inverted to�nd the �xed-points of the mapping:� �x�x0� = �1��A BC D���1 ��x +�x1y +�x01���A BC D�� xx0 �� : (4:54)This implies a matrix inversion | if this matrix inversion fails, then the initialconditions were such that the three particles were proceeding essentially linearlyand there is no �xed point nearby.This method has several advantages that make it extremely useful. It is ex-tremely fast, requiring only three iteration about the local �xed point to assess



64local motion, as opposed to minmax �xed-point location techniques where manyhundreds of iterations must be performed. It is also very e�cient and accurate;only two or three iterations of this procedure were required to �nd the �xed pointof a particle even launched near the separatrix. And �nally, it is very robust; any-where in the two-dimesional phase space where there is local curvature createdby the presence of a resonance island, this method will iterate. If such curvatureis produced by proximity of a stable �xed point, the method will converge; con-versely, if such curvature is produced by proximity of an unstable �xed point, thismethod will rapidly diverge.The program Odfp is used to monitor local stability of a 5Qx resonance island�xed point in the octupole-decapole lattice. For a given modulation tune QM ,the �xed point was found for zero modulation strength. The modulation strengthwas then gradually increased and the local �xed point was again located, andthe process was repeated until local motion was so distorted by the perturbationthat no �xed point was found. This scan of modulation strengths was repeatedfor many tune modulation frequencies, and the points in the parameter space(q;QM ) where the �xed point disappeared were plotted. Consecutive iterationswith a variety of modulation strengths makes it possible to extrapolate �xed pointlocations through vertically thin regions of instability in some cases. However, forlarge regions of chaos merely the edges can be examined, as the strongly chaoticmotion precludes any chance of �nding �xed points.The results of such a set of simulations for the case of tune modulation, withbeta modulation explicitly absent, are shown in Figure (4.4). A point is plottedfor each (q;QM ) point where the �xed point was not found (or when local motionaround the �xed point was not phase locked). The scan begins at QM = 0:1QI,corresponding to a modulation period of approximately 1650 turns | searchingfurther into the low-frequency adiabatic territory is constrained by available com-
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Figure 4.4: The (q;QM ) parameter plane for N = 5, showing �xedpoint stability for a run of the tracking program Odfp. For this lattice~b3 = 0:010, ~b4 = 0:005, QI = 0:0061 and 1=QI � 165 turns. Lines fromFigure (4.1) are shown for comparison to theory.puter time and shows highly erratic behavior of many closely spaced resonances asdescribed in the next paragraph. The frequency scan ends at QM = 10QI, wherethe modulation period is approximately 16 turns and the approximation of mod-ulation adiabaticity with respect to the turn time within the machine, QM � 1,begins to break down.This �gure shows the dominant QM = QI resonance, but also indicates thatthe stability border around this resonance is asymmetric. The low-frequency sideof this resonance curves to low frequencies, and qualitatively agrees with the pre-
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Figure 4.5: The (b;QM ) parameter plane for N = 5, showing �xed pointstability for a run of the tracking program Odfp. Tracking conditionswere the same as those in Figure (4.4), and stability curves from Fig-ure (4.2) are shown as solid lines for comparison.dictions of tune modulation stability. However, the high-frequency side of thisresonance appears almost vertical | at modulation frequencies just above theisland tune, stability is greatly enhanced. This asymmetry is probably due tothe higher order terms that have been neglected; indeed, the parametric oscillatordisplays such an asymmetry at this resonance (Landau and Lifshitz 1975). Thepresence of a cascade of thinner higher-order resonances at low frequencies, eachdipping down at precisely the harmonics corresponding to Mathieu resonances,and the crescent-shaped instability region between QM = QI and the subhar-



67monic resonance QM = 2QI also indicate that the nonlinear driven pendulumequation of motion (4.14) has weak instabilities de�ned by the Mathieu equation,as predicted elsewhere (Tsironis, Peggs and Chen 1990). At higher frequenciesstability is shown up to large modulation strengths, on the order of values thatwould make the assumption that the tune modulation depth q is less than thedi�erence between the base tune and the resonant tune false. There is indeed alarge stable region in the area of \stable sidebands".For beta function modulation a similar set of simulations were performed, withtune modulation absent, and the results of these simulations are shown in Fig-ure (4.5). Resonance locations are exactly the same as predicted, though thebehavior of tracking stability is somewhat di�erent than that of the Mathieu pre-dictions. This is quite reasonable because an approximation was made that b� 1in the derivation of the Mathieu form for beta modulation, and so the predictedstability is expected to hold only for modulation levels much less than the be-ta function itself. Comparing the vertical scales between Figures (4.4) and (4.5)again shows that, for tune and beta modulation created by the same strengthquadrupole ripple, tune modulation destroys the phase localization of resonanceislands much more e�ectively.



CHAPTER 5TUNE MODULATION AND EXPERIMENT E778Experiment E778, nonlinear dynamics in the Fermilab Tevatron, started in 1987to answer several questions regarding nonlinear dynamics issues in accelerators,in particular how accurately the the linear aperture of an actual synchrotroncompares to that predicted by design and simulation programs. Various type-s of simulation programs have been used within the �eld of accelerator physics,both to assist in machine design and lattice modi�cation. These simulations areextremely important in the design of new accelerators such as SSC, LHC, andRHIC, where performance demands typically requiring magnets with larger aper-tures and higher �eld quality must be balanced against the �nancial burden ofconstruction.Examination of the linear aperture is a more straightforwardmatter than exam-ining the dynamic aperture, de�ned as the betatron oscillation amplitude whichseparates stable motion from unstable motion over some period of time. The dy-namic aperture depends on many quantities, such as the physical aperture of themachine and the time period over which stability is being questioned. The linearand dynamic apertures depend strongly on nonlinearities, both intentionally andunintentionally introduced, in the synchrotron; it is therefore important to be ableto model these nonlinearities with con�dence for the sake of reducing magnet costwithout sacri�cing performance, and design correction schemes for nonlinearitiesthat adversely a�ect the performance of these machines.Prior to 1991 several experimental runs of E778 investigated the linearity of theTevatron in normal operational mode (i.e. without any intentionally introducedstrong nonlinearities) and such e�ects as smear, detuning and dynamic aperture68



69as created by 16 controlled strong sextupoles. These portions of the experimenthave been extensively documented elsewhere (Chao et. al. 1987b, Merminga 1989,Li 1990). Persistent signals due to resonant capture of a fraction of the beam werealso used as an experimental beam diagnostic in E778, and comparison of kickamplitudes and persistent signal amplitudes allowed estimates of the island size�I.In this chapter we describe the procedure and results of a tune modulation ex-periment performed in the Fermilab Tevatron in January, 1991. This experiment,a portion of Fermilab experiment E778, observed persistent signals in the horizon-tal transverse dimension corresponding to beam capture on a variety of resonancescreated by a set of strong sextupoles. The behavior of particles trapped in oneof these resonances, the 5Qx resonance at the horizontal tune Qx = 20:40, wassystematically examined under the in
uence of controlled tune modulation for twodistinct nonlinear con�gurations and three di�erent horizontal island amplitudes.For one particular case of sextupole con�guration and island amplitudes a detailedanalysis of the response of the persistent signal at high frequencies is found to a-gree with the one-dimensional tune modulation model presented in Chapter 4. Atransverse di�usion experiment was also carried out during this experimental runbut is not commented upon further here (Chen et. al. 1992).The requirements for the E778 persistent signal and tune modulation experi-ment in the Tevatron are outlined in x 5.1. Preparations for the January, 1991experimental run are described in x 5.2, including magnet calibrations and the re-sults of preliminary tracking to determine which nonlinear magnet con�gurationsshould be used. The island tunes and detuning coe�cients � are also measuredfrom tracking of the con�gurations chosen for the experiment. The experimentalrun itself is described brie
y in x 5.3, and in x 5.4 the data analysis procedure isexplained and results of this experiment are summarized.



705.1 REQUIREMENTS FOR THE EXPERIMENTSeveral requirements must be ful�lled before a persistent signal and tune mod-ulation experiment can be undertaken. These requirements fall under two generalcategories: the requirements of the accelerator lattice and the requirements of thedata acquisition system. 5.1.1 Lattice RequirementsThe requirements of the machine lattice are threefold: �rst, the lattice mustbe relatively linear with the exception of strong controlled nonlinearities, whichare used to create resonance islands in transverse phase space. Without a rela-tively linear machine, other sources of nonlinearity will a�ect the resonance understudy, possibly changing its size and position in phase space. Although this doesnot invalidate the experiment, the results of particle tracking and theoretical pre-dictions are much less likely to compare favorably with experiment in the presenceof unknown strong nonlinearities. It has previously been demonstrated that thenominal con�guration of the Tevatron is exceptionally linear (Chao et. al. 1987b).Several unused sextupoles originally intended for harmonic correction are idealfor use as controlled nonlinearities. The sixteen sextupoles shown in Figure (6.1)were chosen for use in this experiment.The accelerator must have available a fast kicker magnet in the transverse planeunder study. This kicker must have a kick time less than the revolution period ofthe accelerator in order to kick the beam only once. Typically most acceleratorshave fast kickers such as these for abort systems, injection and fast extraction.The Tevatron has several such kickers; the one chosen for this experiment is thehorizontal proton injection alignment kicker which is located at the Tevatronlattice location E17 and has a fall time of approximately 1{2 �s, much smallerthan the 21 �s revolution period of the Tevatron.



71
D0

E0F0

A0

B0 C0

Fermilab Main Ring / Tevatron

B
38B

19

C19

C26
C22

C28
C24

C32
E

24

E
28

F19
F24F26F28

F34
F38

E17 kicker

BPM F42BPM F44

Figure 5.1: The lattice used in the January 1991 run of experimentE778, showing locations of sextupoles, beam position monitors and theE17 horizontal kicker.



72To investigate tune modulation e�ects, the tune modulation parameters mustbe varied over wide ranges and controlled with a high degree of accuracy. Becausethe synchrotron frequency of o�-momentum particles cannot be widely varied dueto RF system considerations, using tune modulation produced by such oscillationsis impractical. Instead a quadrupole or set of quadrupoles with low inductance canbe powered sinusoidally, creating tune modulation directly. A set of quadrupolesexist in the Tevatron that are powered by a 720 Hz digital waveform; they are pri-marily used for �ne adjustments during slow extraction for �xed target operation.These quadrupoles are described in more detail in Section 2.1 of this chapter.There are other less unusual but no less important requirements for controlof the accelerator lattice in this experiment. Linear coupling must be minimized,since this causes the coherent transverse oscillation produced by the kicker to cou-ple into the unkicked plane. Chromaticity must be reduced to as small a value aspossible, typically one or two units, so tune modulation induced by bunched beamsynchrotron oscillations does not interfere with the controlled tune modulation ofthe modulated quadrupoles. These are both normal operational procedures in theTevatron and can be easily be performed while on experimental shifts.5.1.2 Data Acquisition RequirementsThe data acquisition system used for E778 used is based on Sun CPU archi-tectures, dual crates (both VME and Camac) and twin LeCroy 6810 5 MHz 12-bit transient digitizers. It is diagrammed in Figure (5.2). The data acquisitionsystem requires three inputs from the central accelerator control system: a turn-by-turn clock used to gate the turn-by-turn digitizers (which must be appropri-ately synchronized to the kicked bunch), a trigger to start the digitizing process,and the BPM signals themselves. The general con�guration as a simple portableunix-based data acquisition system was originally implemented as MIRABILE at
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Controls triggerFigure 5.2: A block diagram of the E778 data acquisition system, show-ing both VME and Camac crates, general networking, and input signals.Fermilab and the Cornell Electron Storage Ring (CESR) (Peggs, Saltmarsh andTalman 1987).The turn-by-turn clock was supplied by the RF clock of the Tevatron dividedby 1113, since there are 1113 RF cycles in one revolution of the machine when the53 MHz bunching RF is on. A programmable delay to synchronize this clock withthe kicked bunch was created by a Fermilab Camac 279 module which delays in in-crements of 7 RF cycles. The acquisition trigger was supplied by a programmable345 card synchronized to a timing event in the Tevatron timeline, allowing dataacquisition either to begin on the order of thousands of turns before the E17 kick-er was �red, allowing observation of decoherence for detuning measurements, orhundreds of thousands of turns after the kick, when transients had damped and



74the only coherent oscillation still remaining was the persistent signal.The beam position monitor signals were acquired from the voltage di�erence ofindividual plates of parallel plate horizontal BPMs at the F42 and F44 Tevatronlocations. Front-end hardware included a peak-detector and a pulse stretcherwith a decay time on the order of several microseconds. This setup gives outputsignals which are appropriate for digitization by the Lecroy 6810 digitizers. Forthe frequency-domain data analysis presented later in this chapter, note that fullphase space reconstruction is not necessary and so only one digitized BPM signal,from F42, was used in this analysis.A signi�cant amount of software development also was needed for this project.The entire set of data acquisition system software was developed in C and C++using the tools of ISTK (the Integrated Scienti�c Toolkit) developed by ChrisSaltmarsh, Vern Paxson and others (Lutz 1991). The data transfer protocol ofISTK is SDS, the self-describing data standard which allows storage of all turn-by-turn data in simple processor-portable form. ISTK also includes a sequencinglanguage and executive, Glish, which allows the control of many dependent tasks,or agents. For E778 there were several of these agents, includingCamel (the Lecroy6810 control program), Harc (the data archiver), Soc (the main experiment userinterface) and Clod (the delay controller for the Camac 279 delay module). TheGlistk graphics library, developed on top of the native C++ window managementsystem InterViews, was used to write graphical user interfaces for all of theseprograms. A sample user interface for Camel is shown in Figure (5.3) with typicaldigitizer settings for the January 1991 E778 run.5.2 LOCAL PREPARATION FOR THE EXPERIMENT5.2.1 Magnet and Kicker Calibration



75

Figure 5.3: Camel, the graphic user-interface and control program fora Lecroy model 6810 digital waveform recorder. Settings are typical forthose used in the January 1991 run of experiment E778.



76SextupolesCon�guration E24 F19 F24 F34 B19 C19 C22 C24E28 F26 F28 F38 B38 C26 C28 C3291 0 +/{ +/{ {/+ +/{ 0 +/{ +/{ +/{91 1 0 +/{ +/{ {/+ 0 +/{ +/{ {/+91 2 +/{ +/{ +/{ {/+ 0 +/{ +/{ {/+Table 5.1: Sextupole polarities and locations for 1991 E778 con�gura-tions. The �rst sign indicates the polarity of the �rst listed sextupole ineach column. All sextupoles used in the actual tune modulation experi-ment were driven at a current of 30 amperes.Knowledge of the sextupole strengths and their variation with current is crucial.Experimental results cannot reasonably be expected to match those of particletracking if the strengths and locations of the strong nonlinearities are not knownaccurately and if other sources of nonlinearity are not accounted for.Calibration measurements performed before the sextupoles were installed mea-sured a magnetic �eld of Bs = 0:148 T at r = 1 inch from the magnet center; thesextupoles also have length Lsex = :732 m. Using the magnetic rigidity jB�j = 500T-m for the Tevatron at its injection energy of 150 GeV where the experimentwas performed gives the normalized sextupole strength of the sextupoles used ata current of 50 amperes:~b2 = B0LjB�jb2 = BsLjB�jr2 = 0:336 m�2 : (5:1)During the actual run the sextupole currents used were 30 Amps, with a corre-sponding normalized sextupole strength of ~b2 = 0:201 m�2.The sextupoles are also ganged together on 9 separate buses, paired with op-posite polarities as listed in Table (5.1) with the exception of the B19 and B38sextupoles which are individually powered. The con�guration 91 0 listed in thistable is the nominal operational con�guration, and this con�guration and 91 1were those investigated in the actual tune modulation experiment. A decision



77was made to turn o� the B19 and B38 sextupoles to limit the number of con�gu-rations investigated in preliminary tracking.The QXR quadrupoles used for tune modulation were also calibrated before theexperimental run, and again during the initial startup shifts. These quadrupolesare driven by a digital waveform generated with a clock rate of 720 Hz, so they canmodulate the tune at frequencies up to 360 Hz or QM = 7:55 � 10�3. Calibrationwas performed at DC current to measure the variation in tune versus quadrupolecurrent, and showed the expected linear response in Figure (5.4), giving the tunechanges �Qx = 4:1 � 10�4 IQ ;�Qy = �1:0 � 10�4 IQ ; (5:2)where IQ is the quadrupole current in amperes. For the QXR system a currentof 5 amperes was provided by a current supply for 1 volt setting on the controlsystem, and the current range for this supply was 0 to 50 amperes. For a maximummodulation amplitude of 25 amperes or q = 1:02 � 10�2, a constant current wasof 25 amperes was superimposed on the sinusoidal modulation when the QXRsystem was used.AC calibration of the QXR system is signi�cantly more di�cult, since tunemeasurements currently cannot be acquired more quickly than once or twice persecond in the Tevatron. A calibration of the QXR quadrupoles was instead per-formed by setting the voltage on the voltage source to a certain value with asinusoidal modulation with an amplitude of 5 amperes and observing the read-back of the actual current supplied to the quadrupoles. This procedure allowsmeasurement of the inductive decay of quadrupole response with rising frequen-cy, showing a hyperbolic rollo� beginning near 100 Hz as in Figure (5.5). Thismeasurement was performed during Tevatron downtime without making physicalmeasurements of tune changes on the actual beam.
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79There is some concern about the e�ects of skin depth and penetration into thestainless steel beam pipe of the Tevatron by the �eld of the QXR quadrupoles.The conductivity of this material is approximately � = 4 �107 (ohmm)�1, giving askin depth of approximately 4 mm at frequencies of 350 Hz. This is several timesthe actual thickness of the beam pipe in the Tevatron, approximately 1.5 mm,and so for all frequencies involved in the chirp there should be negligible dampingof the quadrupole modulation amplitude by conductive e�ects of the beam pipe.5.2.2 Preparatory Tracking and SimulationsOnce the sextupole strength scaling versus excitation current is known, trackingcan be performed to �nd the optimal conditions for beam capture in a resonanceisland. The transverse phase space should contain large resonance islands, similarto those pictured in Figure (3.1). These resonance islands should not be severelydistorted by the presence of the 3Qx resonance, which is driven to �rst order bythe sextupoles | previous E778 runs have measured such distortions (Chao et.al. 1987b, Merminga and Ng 1992). The resonance islands should also have �xedpoint phases positioned in such a manner than a stable �xed point lies in the x0direction of the phase space at the E17 kicker; this maximizes the amount of beamcaptured in the resonance island and the persistent thus produced. And �nally,tracking should predict island tunes that fall within the experimentally accessiblerange for the tune modulation experiment.Beta functions and phase positions of the sextupoles and E17 kicker were foundusing the most recent version of the Tevatron lattice and the accelerator designcode MAD 8.1. A lattice was designed in Evol using only the sextupoles and linearphase advances, and the phase space at the kicker for a variety of con�gurationswas produced. Of several con�gurations investigated, the con�gurations 91 1 and91 2 satis�ed the above criteria, as well as the nominal con�guration 91 0. During
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Figure 5.6: Transverse phase space for the 91 0 sextupole con�gurationat the E17 kicker. Tracking was performed with Evol with base tunes(Qx; Qy) = (20:394; 20:460).
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Figure 5.7: Transverse phase space for the 91 1 sextupole con�gurationat the E17 kicker. Tracking was performed with Evol with base tunes(Qx; Qy) = (20:406; 20:460).



81the experimental run only con�guration 91 1 and the nominal con�guration 91 0were investigated.Figures (5.4) and (5.5) show the phase spaces produced by the 91 0 and 91 1sextupole con�gurations, respectively. Each has a separate variation of tune withamplitude, necessitating di�erent base tunes for these phase space diagrams inorder to detune into the resonance and display resonance islands, and both showresonance islands that are positioned properly without severe distortion from thepresence of the third-integer resonance. The island tunes for each of these sex-tupole setups are 335 Hz (QI = 7 �10�3) and 700 Hz (QI = 1:9 �10�2) respectively,indicating that the resonant region should be barely accessible for lattice 91 0, butnot for lattice 91 1. There are also small 13Qx resonance islands evident in thephase space of the simulated 91 1 lattice, indicating that capture on resonancesother than the 5Qx is feasible in these con�gurations.5.3 THE EXPERIMENTAL RUNThe experimental run of this section of E778 took place during two weekends inJanuary, 1991, lasting a total of fourteen eight-hour shifts. Of those shifts, nearlya third each were dedicated to setup, the di�usion experiment and the persistentsignal and tune modulation experiment.Shifts for the �rst weekend were dedicated to debugging and testing the dataacquisition system, calibrating and testing tune modulation quadrupoles, and s-canning various kicker voltages, base tunes and nonlinearity con�gurations to �ndpersistent signals. For this section of the weekend, the data acquisition systemacquired 64 kiloturns of data, or approximately 1.4 seconds of data per data-taking \shot". Persistent signals were located at Qx = 0:375 (the 8Qx resonance),Qx = 0:400 (the 5Qx resonance), and Qx = 0:417 (the 12Qx resonance). TheE17 kicker kick amplitude was also calibrated versus applied kicker voltage in the
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Figure 5.8: Calibration of the E17 kicker voltage versus kick amplitude.The linear �t slope is 0.41 mm/kV, and the kicker does not �re at voltagesbelow 4.75 kilovolts.early portion of the run; response was found to be approximately linear, with a.41 mm/kV slope. Samples of the turn-by-turn data produced online by the dataacquisition system are shown in Figures (5.9) and (5.10), showing both a resonantpersistent signal and gaussian decoherence without beam capture:The event timeline for a typical 2 minute machine cycle or \shot" was as follows:� Inject beam into Tevatron at 150 GeV, without acceleration, andcoalesce to single bunch. (0{7 seconds)� Reduce normalized beam emittance from 15� mm{mrad to 3� mm{mrad with scraper at Tevatron lattice location D17 (10{30 seconds)� Ramp up sextupole currents and trigger E17 kicker. (35-45 seconds)� Wait approximately 10 seconds for transients from the transversekick to settle. (45-56 seconds)� Trigger data acquisition system and tune modulation quadrupoles.(56-58 seconds)� Data transfer, sextupole ramp down and preparation for the next
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Figure 5.9: Sample turn-by-turn data at kick time, showing the kick andgaussian decoherence. Kicker voltage is 11 kV, and the lattice is 91 0;graphics are produced by the kaspar graphics program.
Figure 5.10: Sample turn-by-turn data at kick time, showing the kickand production of a Qx = 20:40 persistent signal. Kicker voltage andlattice are as in above �gure.
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Figure 5.12: Distrubution of systematic tune modulation scans.volts (q = 2 � 10�4 to 10�2), chirps were performed in 50 Hz segments within theregion of linear quadrupole response. During this second weekend such scans wereperformed for two kick amplitudes (5 kV and 9 kV) with the 91 1 con�guration,and two kick amplitudes (7 kV and 9 kV) in the 91 0 con�guration, all concentrat-ing on the 5Qx resonance. Some individual chirps ranging from 0 to 350 Hz werealso performed at small modulation amplitudes. Upgrades to the data acquisitionsystem also allowed digitization of 128 kiloturns of data per shot, approximately2.7 seconds of real beam time.5.4 DATA ANALYSIS AND RESULTSApproximately one gigabyte of turn-by-turn data were taken in the January1991 run of E778. This included both turn-by-turn data taken at kick time awayfrom a resonance to measure the variation of tune with amplitude by decoherence,and turn-by-turn data taken after initial transients had decayed and tune mod-ulation was turned on. This section describes the analysis of both the detuningand tune modulation data.



865.4.1 Measuring DetuningPrevious results from E778 and elsewhere have observed and successfully com-pared measurements of the decoherence of a gaussian beam kicked transverselyinto sheared nonresonant phase space with theory (Chao et. al. 1987b, Mermin-ga 1989, ByrdThesis). For a gaussian beam of transverse size �x kicked to producea coherent oscillation of amplitudeX0 � �x as observed at a beta function of �obs,the decoherence of the observed centroid position is predicted to be approximatelygaussian (Chao et. al. 1987a):x(t) � X0 exp "�12 �2��x�X0t�obs �2# ; (5:3)where � is the one-dimensional Hamiltonian detuning from Equation (3.7).The analysis program Tevex developed by Peggs, Chen and Merminga (Mer-minga 1989) was used to �t turn-by-turn data from two horizontal BPMs to thepredicted gaussian decoherence. Tevex uses a �ve-parameter �t: the exponentialterm in the gaussian decoherence, values for the closed orbit o�sets (or digitizervoltage o�set) at both BPMs, the phase advance between the BPMs and the ratioof the horizontal beta functions at the BPMs. Tevex also returns the horizontaltune and the horizontal smear. Two approaches can be taken to measure thedetuning parameter �: if the beam size and the beta functions at the BPMs areaccurately known, the �t of the gaussian decoherence exponent by Tevex givesthe detuning. However, if these are not known but the base tune setting of themachine is, then one can calculate from the tune returned by Tevex how muchthe tune has shifted for a given kick and thus the detuning. This second proce-dure was the procedure followed here, though the former method returns similardetuning after substitution of a typical beam size and beta function.Figures (5.13) and (5.14) display a comparison of the detuning data for bothnonlinear con�gurations examined to tracking with Evol through these con�gu-
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Figure 5.13: Comparison of Evol tracking to detuning data for the 91 0sextupole con�guration.
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88rations, with lines displayed as �ts to each set of data. The evident discrepancybetween tracking and experiment can be due to several di�erent factors. Thebase tune setting of the Tevatron was noted during the course of the run to berather inaccurate, varying by as much as 0.005 units from set values. Allowingthis base tune of the experimental measurement to vary by this amount providesa better �t of the detuning. The sextupole strengths used in tracking may alsodi�er by those experimentally used; since the detuning is driven to second orderin sextupole strength, a di�erence by a factor of 1.4 between simulated and ex-perimental sextupole strengths is su�cient to reconcile the detuning as shown inthese �gures. 5.4.2 Frequency Domain BehaviorBecause the boundaries between regions in the tune modulation stability plane(q;QM ) scale with the island tune, QI, it is logical to expect the frequency responsethe of beam to give information about the rate at which the phase-locked portionof resonance island is shrinking in response to chirped tune modulation. A fastFourier transform (FFT) applied to a segment of unmodulated persistent signalturn-by-turn data displays an extremely sharp peak at exactly the resonant tunedue to the highly coherent nature of the island-to-island motion that occurs fortrapped particles. As particles are lost from this coherent signal due to tunemodulation, the amplitude of this peak in the FFT spectrum decays with a ratethat indicates how quickly the stable portion of the resonance island is shrinking.For a 128 kiloturn data set acquired during the second weekend, the data waspartitioned into overlapping 8192 turn segments, and FFTs were performed. Thisgives a frequency resolution in the resulting power distribution of approximately10�4 for each FFT. The amplitude of these FFTs were then plotted versus time.The three-dimensional plots of FFT amplitude versus frequency within the FFT



89and turn number are displayed in Figure (5.15) through (5.22), for the con�gura-tion 91 0, a kicker voltage of 9 kV, the smallest modulation amplitude q = 2 �10�4and both 50 Hz and 350 Hz frequency chirps. These diagrams all have a largespike exactly at the resonant frequency, 0.4, which corresponds to the persistentsignal | as the modulation detraps particles from the resonance island, this per-sistent signal decays. Progressing through the 50 Hz chirps, the persistent signallifetime under modulation decreases steadily until the chirp from 300 Hz to 350Hz. The stability of this scan indicates that the island frequency has been passedby the modulation frequency, thus implying that the island tune to be somewherebetween 250 Hz and 300 Hz. For both con�gurations and sets of kicks examined,these are the only such data to exhibit behavior that indicates stability above theisland frequency. We therefore discuss in the following how the island tune canbe found more accurately from this data.A convenient way to view this decay is by examining the instantaneous decayrate of the persistent signal from FFT to FFT, or as time (and the modulationfrequency) increases. Assume that this decay is exponential and of the formAFFT(t) = A0e�
t ; (5:4)where A0 is the initial FFT amplitude and 
 is the instantaneous persistent signaldecay rate expressed in inverse turns. This gives a formula for the decay ratebetween any two times t1 and t2:
 = logAFFT(t1) � logAFFT(t2)t2 � t1 : (5:5)One particular advantage of this analysis is that it is independent of the initialFourier amplitude A0. If the BPM voltage varies linearly with centroid position,such an approach in the frequency (or tune) domain does not require scaling forvariations in beam current from shot to shot or fraction of the beam captured.
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Figure 5.15: A segmented FFT for turn-by-turn tune modulation of the91 0 sextupole con�guration. Here q = 2 � 10�4 and QM is chirpedfrom 0 to 50 Hz. Overlapping FFTs are taken every 8192 turns, andthe amplitude of these FFTs for the frequency range (0:398; 0:402) isdisplayed versus turn number, or modulation frequency during the chirp.
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Figure 5.16: Same as Figure 5.15, with QM chirped from 50 to 100 Hz.
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Figure 5.17: Same as Figure 5.15, with QM chirped from 100 to 150 Hz.
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Figure 5.18: Same as Figure 5.15, with QM chirped from 150 to 200 Hz.
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Figure 5.19: Same as Figure 5.15, with QM chirped from 200 to 250 Hz.
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Figure 5.20: Same as Figure 5.15, with QM chirped from 250 to 300 Hz.
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Figure 5.21: Same as Figure 5.15, with QM chirped from 300 to 350 Hz.
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Figure 5.22: Same as Figure 5.15, with QM chirped from 0 to 350 Hz.
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Figure 5.23: Persistent signal decay rate as a function of tune modulationfrequency, QM in con�guration 91 0. The tune modulation amplitude isheld constant at q = 2:04�10�4. Circles represent experimental data froma single chirp from 0 to 350 Hz, and crosses represent data from sevenindividual 50 Hz scans. The line is a cubic spline �t through simulationdata from the program OdChirp, with QI = 6:3 � 10�3.The decay rate data for this modulation amplitude are shown in Figure (5.23),with crosses representing 50 Hz frequency chirps and circles representing the 350Hz chirp. Error bars are produced by scaling the remaining persistent signal tothe initial persistent signal, since a smaller signal size gives less accurate measuresof the signal decay rate.For larger modulation amplitudes in this data set, there was no sudden drop indecay rate indicating modulation above the island tune | each set of modulationsdestroyed the persistent signal at progressively smaller and smaller frequencies. Apair of these cuto� frequencies for higher modulation amplitudes are also shownin the tune modulation plane of Figure (5.24), just below the small-angle stabilitycurve predicted by theory.Another consistency with the results of Chapter 4 and simulation is the sudden
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Figure 5.24: The tune modulation parameter plane, with stability linesas predicted by theory and experimental chirps for the 91 0 sextupolecon�guration. QI has been set to the value 6:3 � 10�3 here. The diag-onal chirp corresponds to the data in Figure 5.11; the horizontal chirpcorresponds to the 0 Hz to 350 Hz chirp shown in Figure 5.23.stability at modulation frequencies above the island tune, as depicted in the Od-Chirp simulation results of Figure (4.4). The slowly rising response at frequencieslower than the island tune is also expected because the ensemble of particles �llingthe resonance island has a frequency distribution which is the same as that of anensemble of stable pendula, varying from zero frequency at the separatrix to theisland tune. Naively, little response is expected above the island tune, becausethere are no particles oscillating with this frequency to respond to the externaldrive. Another way to examine the island tune is to start the chirp above theisland frequency and chirp downwards | a sudden sharp rise in response at theisland tune should be observed. However, technical problems in the tune modu-lation controls prevented use of this sort of modulation during this experimentalrun.



965.4.3 Chirp Simulation and Comparison to DataSimulations were performed of this modulated island system using the pro-gram OdChirp, which uses the tune modulation lattice of OdTrack and Odfp tosimulate E778 conditions. This program launches an array of initial condition-s, typically 103, populating a transverse resonance island in much the same wayresonance islands were populated to produce persistent signals in the experimen-t. After allowing untrapped particles to decohere over approximately 500 turns,tune modulation was applied in the exact same fashion as in the experimental run,with the same modulation ramps, strengths and frequencies. The turn-by-turnposition of the centroid of the distribution of phase-locked particles was recorded.This procedure allowed application of exactly the same data reductions as thoseapplied to the actual data, and comparison of the simulated and actual frequencydomain response. Because the island amplitude and base tune were well-de�nedfrom knowledge of the machine base tune and kicker settings, they could be in-serted as known amplitudes, base tunes and octupole strengths for the simulation.The only free parameter then left in the simulation is the decapole strength; vari-ation of this strength allowed a one-parameter �t to the data to produce a �nalvalue of the island tune, QI. An excellent �t was produced for an island tuneQI = 6:3 �10�3 or 296 Hz, in moderately good agreement with the predicted valueof 335 Hz from particle tracking of the 91 0 lattice. Using this value of the is-land tune, a tune modulation plane can be drawn similar to Figure (4.1) showingexcellent agreement for higher amplitude tune modulation chirps.



CHAPTER 6PERSISTENT SIGNALS IN TWO TRANSVERSE DIMENSIONSIn this chapter, we extend the previous one-dimensional analysis of unmodulat-ed resonance islands presented in Chapter 3 to two transverse dimensions. Theobvious disadvantage of the previous methods is that they o�er little or no hopeof investigating two-dimensional resonance strengths experimentally, as persistentsignals are not present when a beam is kicked onto a single coupling or di�erenceresonance. However, if the crossing point of two linearly independent resonancesis examined with detuning present in both planes, this chapter shows that oneexpects to �nd locally phase-locked motion (and corresponding persistent signals)in both planes created by the interaction of the pair of resonances.In x 6.1 a dual-resonance N-turn map is derived from the results of previouschapters, and predictions for both the stable �xed points of such a map andthe island tunes of linearized motion around these �xed points are presented.These results are compared to particle tracking in the octupole-decapole latticein x 6.2, where the inadequacy of �rst-order perturbation theory in predictingsmall oscillation frequencies for this system is demonstrated. x 6.3 discusses thisand other possible methods of measuring two-dimensional resonance strengths,and outlines a possible experiment to observe two-dimensional persistent signals,including realistic requirements on availability of controlled nonlinearities.6.1 THEORETICAL PREDICTIONSHere we examine the crossing point of a one-dimensional resonance and a two-dimensional resonance. For the sake of simplicity and relevance to the previouschapters, the one-dimensional resonance is assumed to be 5Qx, while the two-dimensional resonance is completely general, but speci�ed by kQx + lQy. Sac-97



98ri�cing other resonance terms with the assumption that they are either small oraverage out over future summations via the Dirichlet kernel suppression, we canwrite a one-turn two-dimensional dual resonance Hamiltonian:H1( x; Jx;  y; Jy) = 2�Qx0Jx + 2�Qy0Jy+ 12�xxJ2x + �xyJxJy + 12�xyJ2y+ V50(Jx) cos(5 x + �50)+ Vkl(Jx; Jy) cos(k x + l y + �kl) : (6:1)Here V50 and Vkl contain the functional dependence of the resonance strengthson the actions Jx and Jy, since these dependences cannot be expected to be assimple as the one-dimensional case. Note that the detuning contains a nonlinearcoupling term �xy, even though the absence of linear coupling is still assumed.Horizontal motion is expected to be resonant when the horizontal tune is onthe 5Qx resonance; for the vertical motion to also fall on the two-dimensionalresonance, the net phase advance within the angle dependence of this resonanceterm must be near some multiple of 2�. This gives the natural base tunes for thisinvestigation: Qx0 = Mx5 + �x ; Qy0 = Myl � kMx5l + �y ; (6:2)where Mx and My are integers. Here the �i are again assumed to be small, andmotion will approximately repeat itself in the 4-dimensional phase space everyN � 5kl turns. (This is the maximum value necessary for repetition; the motionwill repeat faster than this if 5 and kl are commensurate.) The actions are invari-ant to zeroth order, and we can sum over N turns to �nd the �rst-order N-turnHamiltonian,HN( x; Jx;  y; Jy) = 2�N �x Jx + 2�N �y Jy+ N2 �xxJ2x +N�xyJxJy + N2 �yyJ2y+N V50(Jx) cos(5 x + �050)+N Vkl(Jx; Jy) cos(k x + l y + �0kl) : (6:3)



99Here the phases of the nonlinearities have absorbed the shift from the summation:�050 � �50 + 5�(N � 1)�x and �0kl � �kl + �k(N � 1)�x + �l(N � 1)�y.Equation (6.3) has �xed points akin to the one-dimensional �xed points of theanalysis in Chapter 2. These can be found by examining the di�erence equationsof motion generated by this Hamiltonian, and setting them to zero at the �xedpoints of the map.� x = 0 ! 2��x + �xxJx;fp + �xyJy;fp + #(V ) = 0 ; (6:4a)� y = 0 ! 2��y + �xyJx;fp + �yyJy;fp + #(V ) = 0 ; (6:4b)�Jx = 0 ! 5 x;fp + �050 = 2�kx ; (6:4c)�Jy = 0 ! k x;fp + l y;fp + �0kl = 2�ky : (6:4d)Assuming the detuning terms are stronger than the resonance driving terms, asbefore, Equations (6.4a) and (6.4b) are coupled linear equations for the �xed pointactions, and so they can be easily solved to �nd�Jx;fpJy;fp� = 2��2xy � �xx�yy � �yy ��xy��xy �xx �� �x�y � (6:5)if they are not degenerate; if they are indeed degenerate, no action �xed pointsexist. Equations (6.4c) and (6.4d) give the �xed point phases: x;fp = �kx � �0505 ; y;fp = �ky � �0kl � k x;fpl : (6:6)Motion around these �xed points can be classi�ed in one of four ways dependingon the parity of the integers kx and ky | it is either hyperbolically unstable inboth oscillation directions, hyperbolic in one direction and elliptically stable inthe other, or elliptically stable in both oscillation directions. This last case is theone that interests us here, because phase localization in both planes will result inobservable persistent signals in both planes. We choose kx and ky even for now,



100with the knowledge that other �xed points can be investigated by changing theirparity and thus the signs of the resonance strengths V50 and/or Vkl.Now transform the coordinates to those centered on one of these �xed points,( x; Jx;  y; Jy) ! (�x; Ix; �y; Iy), via the uncoupled two-dimensional generatingfunctionF ( x; Ix;  y; Iy) = (Ix + Jx;fp)( x �  x;fp) + (Iy + Jy;fp)( y �  y;fp) : (6:7)Applying this transformation to the N-turn Hamiltonian (6.3) and keeping only�rst order terms in the nonlinear strengths Vkl and �ij gives a N-turn Hamiltonianthat has the form of a pair of coupled pendula:HN = N2 �xxI2x +N�xyIxIy + N2 �yyI2y+N V50(Jx;fp) cos(5�x)+N Vkl(Jx;fp; Jy;fp) cos(k�x + l�y) : (6:8)The resonance strengths V50;fp and Vkl;fp are evaluated explicitly at the action�xed points (Jx;fp; Jy;fp).Linearizing the coupled motion given by this Hamiltonian is a tedious but s-traightforward process. The �nal result of this linearization gives the motion ofthe angle variables (�x; �y) as� ��x��y � = N2�M11 M12M21 M22�� �x�y � ; (6:9a)where time derivatives are taken with respect toN-turn motion, and the individualmatrix elements of the coupled motion areM11 = 25 �xx V50;fp + k Vkl;fp (k�xx + l�xy)M12 = l Vkl;fp (k�xx + l�xy)M21 = 25 �xy V50;fp + k Vkl;fp (k�xy + l�yy)M22 = l Vkl;fp (k�xy + l�yy) : (6:9b)



101There are two normal mode \island" frequencies of the two coupled oscillators inEquation (6.9). These could be found by diagonalizing the matrix M , as couldthe eigenvectors that represent the normal modes of oscillation. However, sincewe are primarily concerned with the island frequencies here, we can �nd thoseby calculating the eigenvalues of M directly. Note that if either or both of theseeigenvalues are negative or imaginary, local motion here is unstable and expansionshould proceed around a di�erent �xed point, changing either or both of the signsof the resonance strengths in the N-turn Hamiltonian (6.8).For completeness, the island tunes corresponding to this motion are[2�QI(1;2)]2 = A50V50;fp +AklVkl;fp2� q(A50V50;fp +AklVkl;fp)2 ��lV50;fpVkl;fp2 ; (6:10a)where the amplitudes A50, Akl and �l are de�ned byA50 = 25�xx ;Akl = (k2�xx + 2kl�xy + l2�yy) ;�l = 100l2(�xx�yy � �2xy) : (6:10b)Assuming that the resonance strengths V50 and Vkl are both positive, these islandtunes are both positive real if �l lies within the range0 � �l(stable) � (A50V50;fp +AklVkl;fp)2V50;fpVkl;fp : (6:11)An amazing prediction of Equation (6.11) is that if all detuning strengths scalesimilarly according to some nonlinearity strength, and the resonance strengthsscale similarly according to another nonlinearity strength, then the local stabilityof this system is independent of both these resonance strengths to �rst order.One easily testable scaling of the island tune prediction is that the island tunesshould scale as the square root of the nonlinearity strength if the resonances are



102driven to �rst order in that strength. The sum of the squares of the island tunes isalso a more easily accessible quantity to test against theory; from Equation (6.10a)this is found to be[2�QI;1]2 + [2�QI;2]2 = A50V50;fp +AklVkl;fp ; (6:12)which scales as the product of the nonlinear strengths driving the detuning andthe resonances. 6.2 TRACKING OF TWO-DIMENSIONALRESONANCE ISLANDS AND PERSISTENT SIGNALSThe question remains as to whether such two-dimensional resonance islandscan be observed in a tracking code, and whether the �rst-order analysis su�cesto predict their island tunes and locations in phase space. Using the octupole-decapole model and a program Od2Track, which was written to track this modelin both transverse dimensions, two-dimensional detuning parameters �ij are �rstmeasured as functions of amplitude in both planes and compared to �rst-orderpredictions for the octupoles. A working point must be chosen where the 5Qxresonance and another resonance driven to �rst order by the decapole cross; thispoint in the tune plane (Qx0; Qy0) should also be free of second-order octupoleresonances, since such resonances are not calculated in a �rst-order analysis. Next,two-dimensional resonance islands are found and their �xed point amplitudes andphases are compared to theoretically predicted values. Island tunes are found forthe normal mode oscillations within these resonance islands and compared againstboth absolutely predicted values and scaling with the decapole strength ~b4.From the discussion of the octupole-decapole lattice in Chapter 3 we can writethe �rst-order dependences of the Hamiltonian parameters �ij and Vkl on the



103Tracking Parameter Symbol ValueOctupole strengths (each) ~b3 0.0100Decapole strength ~b4 0.0015Horizontal Tune O�set �x 0.0050Vertical Tune O�set �y 0.0050Horizontal Base Tune Qx0 20.6050Vertical Base Tune Qy0 20.6550Table 6.1: Parameters used for two-dimensional persistent signal inves-tigation in the tracking program Od2Track.lattice parameters listed in Table 6.1 . The detuning is driven by the octupoles,�xx = �yy = �12�xy = 94~b3 (6:13a)and the resonances are driven by the decapole:V50 = p220 ~b4J5=2x ;V1�2 = p22 ~b4J1=2x Jy(2Jy � 3Jx) ;V3�2 = � p22 ~b4J3=2x Jy ;V1�4 = p24 ~b4J1=2x J2y : (6:13b)These detuning parameters give the action dependences of the tunes:�QxQy � = �Qx0Qy0�+ 9~b38� � 1 �2�2 1 ��JxJy � (6:14)The resulting \footprint" of this tune shift on the tune plane is a rhombus with anoblique opening angle of 143�; this is shown in Figure (6.1) as contours of constantamplitude. Circles in this �gure are tunes for tracked particles, with actions ineach plane ranging from 0.0 to 4.0 in steps of 0.4 ; excellent agreement is shown forthe situation where particles are not a�ected by nearby strong resonances. Notethat the decapole was not turned o� for this check, since the second-order tuneshiftfrom the decapole is expected to be small compared to that of the octupoles.
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106resonant tunesQx;res = 0:600 = 35 ; Qy;res = 0:650 = 1320 :At this point the 5Qx and Qx� 4Qy resonances cross, so k = 1 and l = �4. Sinceboth resonance tune denominators are commensurate it su�ces to take a Poincar�esurface of section every 20 turns, instead of every 100 turns as would be suggestedby the previous discussion.For the tracking conditions of Table (6.1) and previously calculated detun-ing coe�cients, the �xed-point actions are predicted by Equation (6.5) to beJx;fp(theory) = Jy;fp(theory) = 1:396. Instead of going through tedious calcula-tions necessary to predict the �xed point phases, these actions were used as initialconditions with which to track at a variety of initial phases, searching for initialconditions that at least lay within the separatrix of the four-dimensional phasespace resonance islands. Such a set of phases, ( x = 0:2;  y = 0:3), was easilyfound after a small range of initial phases were checked, since the long-term tunesof resonantly trapped particles will be exactly the resonant tunes.A turn-by turn Poincar�e plot of the four-dimensional phase space motion of thisset of initial conditions is pictured at the top of Figure (6.3). This plot certainlyshows that there is some sort of phase space structure present, but it is di�cultto determine whether or not there is resonant motion. Various types of othertools can be used to visualize di�erent sections of this phase space, includingthree-dimensional projections instead of the two-dimensional projections that arenormally used (Holt et. al. 1992). For this analysis, however, a simpler techniqueis available, which consists of taking a Poincare surface of section every N = 20turns of the motion. If the motion is truly resonant, then this stroboscopic viewwill show phase-locked motion, and a persistent signal would be visible for a realdistribution of particles launched on and near this orbit. This is indeed the case
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Figure 6.3: Four-dimensional phase space projections used in �nding two-dimensional resonance islands and persistent signals. Coherent motionis evident in all three plots.
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Figure 6.4: Close-up of tracking very near the �xed point of the two-dimensional resonance islands, plotted every 20th turn.for the above initial conditions, as can be seen in the middle of Figure (6.3) | aresonant orbit appears.Once any sort of resonant orbit has been found, an iterative process can be usedto �nd the actual �xed point of the lattice used for tracking. The centroid of thedistribution in each plane is calculated for a number of turns much larger thanthe expected island periods, thus averaging over many rotations in the island,and these centroids are substituted back into the tracking program as new initialcoordinates. This is much less e�cient than the more sophisticated methodsused in the one-dimensional �xed-point location algorithm of Chapter 4, but ismuch more easily implemented than would be the corresponding 2-dimensionalextension of such an approach. Four iterations yield the �xed point of the lattice



109described in Table (6.1) to four signi�cant �gures,( x;fp; Jx;fp) = (0:0967; 1:5104) ;( y;fp; Jy;fp) = (0:3314; 1:2040) ;which is gives modest (10-15%) agreement with the �xed point amplitudes predict-ed by theory. The resulting phase space of an intermediate step of this iterativeprocess is shown at the bottom of Figure (6.3), and magni�ed in Figure (6.4) toshow the character of motion for small amplitudes Ii near the �xed point. Thismotion falls on a two-dimensional torus embedded in the four-dimensional phasespace, since there are two invariants corresponding to the locally phase-lockedmotion in each transverse dimension.Once the �xed point has been found, the island tunes can be measured fromtracking data by taking 20-turn stroboscopic data from either plane and perform-ing an FFT on some portion of data with 2n data points. Taking 16384 datapoints su�ces for a measurement of these tunes to an accuracy of approximately10�4, and gives QI;1 = 2:1 � 10�4 and QI;2 = 8:7 � 10�4 for the data presented inFigure (6.4).For a large range of decapole strengths, up to strengths comparable to the oc-tupole strength, the island tunes are displayed in Figure (6.5). One peak from theFFT of small oscillatory motion scales according to ~b1=24 as predicted, but the oth-er appears to scale linearly. No other signi�cant peaks appear in an examinationof the FFT of this motion, indicating that the linear scaling is not an anomolouspeak created by interference of the natural oscillation frequencies. There is alsono evidence that these peaks are aliased from higher frequencies, as they eachapproach zero at zero decapole strengths.The island tunes predicted by Equations (6.10a) and (6.10b) are also shown inFigure (6.5), and are nearly three to �ve times larger than the island tunes foundby tracking. The inconsistency between theory and tracking for the resonant
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Figure 6.5: Two-dimensional island tunes (QI;1; QI;2) measured as afunction of decapole strength ~b4 in the tracking program Od2fp. Allother lattice parameters for this tracking are as listed in Table (6.1).Lines are theoretical predictions for island tunes.crossing point small oscillation tunes also appears at other values of the octupolestrength as well as other resonance crossing points where second-order octupoleresonances are present. This inability of �rst-order perturbation theory to predictthe small-oscillation motion in these areas of the tune plane is a strong indicationthat such approaches fail to give meaningful results at the crossing of several reso-nances. Higher order resonances are undoubtedly present at these crossing points,and possibly higher orders of perturbative magnet strengths must be introduced toreconcile theory with tracking. However, with the addition of other resonances thelinearization process previously described becomes di�cult, particularly becausethe equations de�ning the �xed-point phases are transcendental.6.3 A POSSIBLE EXPERIMENTHow might these two-dimensional persistent signals be observed in a real accel-



111erator? First, one must operate with a small beam | much smaller, in fact, thanany available at the Fermilab Tevatron, since the Tevatron beam size is typicallyone-tenth of the physical aperture. Use of a small cooled beam would be optimal,since this would maximize the proportion of the beam actually trapped within thefour-dimensional phase space well and produce the highest signal-to-noise ratio forpersistent signals in both planes.Kicks to move the beam onto the two-dimensional resonance islands cannot beapplied independently in each plane with linear coupling present; such linear cou-pling would rapidly transfer energy in the kicked plane to energy in the unkickedplane, increasing the beam emittance in the unkicked dimension. Linear couplingcan be removed globally by adjustment of skew quadrupoles, a standard proce-dure that was also performed in E778 for the explicitly horizontal one-dimensionalkick.The lattice must be studied extensively for nonlinearities before the study is be-gun, and both linear and nonlinear coupling must be removed as much as possible.This implies measuring the detuning coe�cients �xx, �yy, and �xy. The nonlin-ear coupling �xy can be measured by kicking the beam in one transverse planeand observing the tune shift in the unkicked plane, far from strong resonances.Measurement of three or four points should su�ce for a reasonable measurement,and then octupoles (if present) can be adjusted to remove this component. Whenthe nonlinear coupling has been removed, turn-by-turn data can be taken in bothplanes with separate kicks to test the turn-by-turn data acquisition system andmeasure the detuning coe�cients �xx and �yy, as has been done previously inE778.Once the detuning coe�cients are known, the actual amplitudes of the resonanceislands can be calculated to �rst order, and base tunes can be chosen to optimizethe positions of the four-dimensional phase space �xed points. Kicking �rst in the



112plane where the one-dimensional resonance is present, a systematic scan of variouskick amplitudes can be performed, and persistent signals should be evident whenthe beam is kicked onto the one-dimensional resonance island. Up to this pointsuch an experiment reproduces previous persistent signal results of E778 withouttune modulation, as well as those of Experiment CE22 at IUCF.Once the kick amplitude has been found which consistently populates the one-dimensional resonance island, another kick in the opposite plane can be inserted inthe cycle after the �rst kick. If linear and nonlinear coupling have been su�cientlyminimized this kick does not couple into motion in the opposite the plane whichhas already been resonantly captured, and so it does not disturb this motion.A similar scan of various kick amplitudes can then be performed in this plane,searching for production of another persistent signal.For the purposes of practical measurement of the strengths of two-dimensionalresonances this method is most probably inadequate, since the crossing pointswhere two-dimensional persistent signals are present are also crossed by manyother resonances which a�ect the motion around the �xed point. This is evidentin the failure of �rst-order perturbation theory to predict island tunes. Othertechniques involving observation of orbit distortions in four-dimensional phase s-pace have been investigated, and prove to be more promising for this application(Li 1990, Liu 1989). However, such an experiment could be considered a preludeto investigations of modulational di�usion, which provides a mechanism for lumi-nosity and luminosity lifetime limitations in storage rings as described in the nextchapter. Modulational di�usion is expected to be present near the intersection oftwo strong resonances, in the same region of the tune plane that two-dimensionalpersistent signals could be observed.



CHAPTER 7MODULATIONAL DIFFUSIONIn this chapter a summary of the requirements for modulational (thick-layer)di�usion to exist in a particle synchrotron is presented and applied to a simpletune-modulated collider model of the Fermilab Tevatron where the only nonlin-earities present are two beam-beam kicks. This is presented as an example ofhow nonlinearities combined with tune modulation can cause individual particleamplitude growth, leading to emittance growth and possible lifetime limitationsin a storage ring.Modulational di�usion has been the subject of many investigations in the pastten years, since it provides a particle loss mechanism in many-dimensional dy-namical systems such as particle accelerators over timescales that are longer thanthose from pure resonant loss (typically hundreds of turns), but shorter than thetimescales of Arnol'd (or thin-layer) di�usion (typically hundreds of millions ofturns). Most of the salient features and quantitative analysis can be found in as-sorted publications (Chirikov et. al. 1985, Vivaldi 1984, Lichtenberg and Lieber-man 1983); in x 7.1 the requirements for modulational di�usion to exist in asynchrotron are outlined, and the qualitative characteristics of amplitude growthcreated by this di�usion are described. The simulation lattice, a mockup of theFermilab Tevatron collider lattice, and the beam-beam force are described in x 7.2.The results of Evol simulation of such a circumstance in an area of phase spacewhere modulational di�usion is expected are described in x 7.3, which shows thatamplitude growth in this circumstance is exponential instead of root-time as clas-sically predicted by di�usion theory. These results and possible future directionsare summarized in x 7.4. 113



1147.1 CHARACTERISTICS OF MODULATIONAL DIFFUSIONConsider the one-dimensional tune modulation parameter plane of Figure (4.1).For appropriate tune modulation parameters falling within the \Chaos" region,sets of sidebands are created and overlap with the primary resonance and create aband of chaotic motion. Particles located at amplitudes within this chaotic bandhave phases that oscillate highly irregularly; in modulational di�usion models thischaos serves as a noise source for regular motion in the other transverse plane,coupled to this phase through a weak nonlinear coupling resonance.Here we assume that there is horizontal tune modulation creating a localizedchaotic region in the horizontal phase space and examine what would nominallybe regular motion in the vertical dimension, in
uenced by one or more of these\weak" coupling resonances. (For these purposes such resonances are considered tobe \weak" if their amplitudes are much smaller than that of the primary resonancein the horizontal plane driving the horizontal stochasticity.) The motion in thevertical plane is now that of a very weakly driven oscillator, where the drivingforce is now chaotic due to its weak coupling to the horizontal stochastic motion.Such motion is similar to that of a random walk problem; the stochastically drivenvertical motion can \di�use" out to large amplitudes in �nite time.Chirikov, Lieberman, Vivaldi and Shepelyanski (1985) write the Hamiltonianfor the standard modulational di�usion model asH1(�x; Ix; �y; Iy) =12I2x � � cos[(k + 1)�x + � sin
t]+12I2y � � cos[k�x + �y] ; (7:1)where (�; I) are action-angle variables in each plane. Ignoring the weak two-dimensional coupling, the motion in the horizontal dimension of this model issimilar to that of the tune-modulated resonance islands in Chapter 4 as given bythe N-turn Hamiltonian of Equation (4.27) | � represents the square of the island
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Figure 7.1: 1 dimensional phase space on the Qx = 3=5 resonance, formoderately realistic parameters in the FermilabTevatron. Particle track-ing is done in Evol with the B0D0 lattice, showing resonance islandstructures without tune modulation and a thick stochastic band withtune modulation induced by chromaticity.tune, and � and 
 represent the strength and frequency of the tune modulation,respectively. Modeling this system with a lattice to be described in the next sectionproduces the one-dimensional phase-space plots shown in Figure (7.1). Motion inthe vertical plane in Equation (7.1) is that of a pendulum, weakly coupled to thehorizontal motion via the coupling strength � � �.A signi�cant di�erence between the modulational di�usion Hamiltonian (7.1)and the tune modulation nonlinear resonance Hamiltonian (4.27) is the presenceof amplitude dependence in the resonance strengths of the latter. In particular,though the horizontal amplitude only varies through the stochastic band, the ver-tical amplitude growth predicted by modulational di�usion may a�ect the globalmotion. Such growth may either carry the horizontal tune o� the primary reso-nance that drives the chaos through detuning, or alter the strength of the couplingresonance, thus changing the vertical amplitude growth rate as the vertical am-plitude increases.
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Figure 7.2: Resonance structure for modulational di�usion. � is thehorizontal tune distance between the primary driving resonance and thesecondary weak coupling resonance, scaled by the modulation depth q.One prediction of modulational di�usion theory is that this di�usive growth inthe vertical dimension will scale as the square root of turn number. A di�usioncoe�cient can be de�ned, D � h(�Iy(t))2i2T ; (7:2)where �Iy is the vertical action excursion from the initial action and T is the timewidth of the averaging, in turns. The averaging should be performed over a timeT short compared to the vertical di�usion time (so �Iy � Iy(t = 0) but longcompared to the timescales of motion across the thick horizontal chaotic band(typically hundreds of turns). As the vertical tune is varied along the horizontalone-dimensional resonance, the proximity of the weak coupling resonance changes,as given by the dimensionless quantity� � jQx(weak coupling resonance) �Qx(primary resonance)jq : (7:3)A plot of the logarithm of the di�usion coe�cient D versus this scaled proximity� shows a series of descending plateaus and sudden drops (Chirikov et. al. 1985).



117Operational Parameter Symbol ValueHorizontal and vertical chromaticities (�x; �y) 3.0Typical momentum o�set �p=p 0.0003Synchrotron (modulation) frequency QM 0.00078Beam-beam linear tune shift per crossing � 0.005Revolution frequency frev 47.7 kHzTable 7.1. Typical Fermilab Tevatron 1992 operational parameters at900 GeV.This strange structure has sharp drops in D at even integer values of � for thecase where both the driving resonance and the coupling resonance are modulated,and it is this sort of structure we attempt to qualitatively reproduce here withinthe operational framework of the Fermilab Tevatron.7.2 THE TEVATRON SITUATION AND AN OPERATIONAL MODELIn the Fermilab Tevatron during the 1992 collider run with separators, therewere two strong beam-beam interactions every turn| one at the CDF experimen-tal site at ring location B0 and one at the D0 experimental site. The operatingestimate of the linear beam-beam tune shift � is approximately � � 0:005 perinteraction, and with planned upgrades including the Fermilab Main Injector,this value may very well rise even further (Holmes 1991). With the exceptions ofthese beam-beam kicks and chromaticity-correction sextupoles (which are neglect-ed for the sake of simplicity of the tracking model), the Tevatron is quite a linearmachine, and so its transverse dynamics in this situation here can be modeledextremely simply in the tracking program Evol using only linear phase advancesand beam-beam kicks. Typical operating parameters for the 1992 collider run arelisted in Table 7.1.The base tunes of the Tevatron in typical collider run circumstances are Qx0 �20:586 and Qy0 � 20:575, running at a horizontal tune between the 12th order



118resonance, Qx = 20:583 and the 5th, Qx = 20:600. For the purposes of this study,however, a worst case scenario is investigated, where the driving resonance forthe horizontal stochasticity necessary for modulational di�usion is the 5th orderresonance and single particles are launched at a variety of vertical tunes alongthis resonance. If � ever exceeds .009 with two collisions in the Tevatron, theavailable space between the 12th and the 5th becomes too small for the entirebeam, and a signi�cant portion of the beam could be strongly a�ected by one ofthese resonances. The relevant portion of the tune plane diagram and the strangeshape of the beam-beam footprint are shown in Figure (7.3).The beam-beam force used here and within the tracking program Evol usesthe weak-strong approximation and assumes both beams have round gaussiandistributions of equal transverse size �. For the horizontal beam-beam kick,�x0� = �4���?xR2 h1� e�R2=2i x� ; (7:4)where x is the transverse position relative to the opposing beam center, x0 �dx=ds, �?x is the beta function at the interaction point, and R is the distance fromthe center of the opposing beam scaled to the beam size �:R2 � �x��2 + �y��2 ; (7:5)a kick similar to Equation (7.4) is seen in the vertical plane. Salient featuresrelevant to this study can be noted:The detuning is drastically di�erent from the model of Equation (7.1), wherethere is explicitly no coupling other than the weak resonance. The explicit vari-ation of resonance strength with particle amplitude is also a di�erence betweenthese two models. As vertical amplitude grows in the beam-beam situation, one oftwo mechanisms will halt modulational di�usion: the vertical amplitude growthwill either pull the horizontal tune o� the primary driving resonance or it will
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120� The variation of tune with amplitude (detuning) given by the beam-beam force is nonlinear and strongly coupled, quite unlike the oc-tupole detuning observed in the previous chapter.� From the form of R, even-order resonances are driven to �rst orderin �. Odd-order resonances of order N are driven as even orderresonances of order 2N .� Resonance strengths vary with particle amplitude, or action.� There is no beam-beam tuneshift or resonance driving at in�niteamplitudes, so global motion of the unperturbed beam-beam systemis stable.suppress the coupling resonance strength. It remains to be conclusively shownwhether such vertical amplitude growth will cause signi�cant particle loss; how-ever, even collective vertical amplitude growth without loss will raise the verticalbeam emittance and result in luminosity degradation.7.3 SIMULATION RESULTSThe tracking program Evol was used for all simulations, using the B0D0 lat-tice described in the previous section. In order to drive the 5th order resonancestrongly for the worst-case scenario, a small :1� beam-beam o�set was included;closed orbit alignment errors of this magnitude at the collision points are quitepossible. Tracking this lattice with no tune modulation with the beam-beamtuneshift given in Table 1 on the Qx = 20:6 resonance �nds an island tune ofQI = 1:51 � 10�3. Since the synchrotron frequency of the Tevatron at this energyis approximately QM = 7:8 � 10�4 (with a period TM = 1=QM = 1280 turns),the chaotic region of the tune modulation parameter space is quite accessible formoderate tune modulation depths q.Tracking was performed with tune modulation depth q = 0:0010, present onlyin the horizontal plane for comparison to the results originating in the similarlymodulated Hamiltonian of Equation (7.1). This tune modulation amplitude cor-responds to a horizontal chromaticity of about 3 units with a momentum o�set
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Figure 7.4: Maximum vertical amplitudes of single particles with initialvertical amplitudes :1�, tracked over 10 and 100 synchrotron periods.The particle's horizontal amplitude is 3�, inside a chaotic band.
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Figure 7.5: Maximum vertical amplitudes of single particles with initialvertical amplitudes :1�, tracked over 103 and 104 synchrotron periods.Conditions for tracking are otherwise the same as those in Figure (7.4).



123�p=p of 3 � 10�4, realistic values for the Tevatron. Particles were launched withhorizontal amplitude of 3 �, with base tune Qx0 = 20:597, and vertical amplitudeof .1 � with various base tunes. Tracking was stopped when a �nite number ofsynchrotron periods had been tracked (104, corresponding to nearly 5 minutes ofreal particle evolution), or the vertical amplitude had reached 1.0 �. The one sig-ma vertical cuto� was introduced because the in
uence of the vertical motion onthe horizontal stochastic band was expected to become non-negligible at moderatevertical amplitudes.To establish the timescales of the relevant amplitude growth mechanisms, themaximum vertical amplitude was recorded for single particles launched at theabove initial conditions over a mesh on the tune plane, for tracking times rangingfrom 10 to 104 synchrotron periods. The tune mesh limits used were the sameas those shown in the tune plane diagram, Figure (7.3), and the results of thistracking are shown in Figures (7.4) and (7.5). In these �gures there is a quitede�nite amplitude growth near the intersections of theQx�Qy and 5Qx resonancesthat evolves over timescales of thousands of synchrotron periods, consistent withthe naive timescales of modulational di�usion. Such growth is completely absentwith modulation turned o� (q = 0), where only amplitude growth on the Qx�Qyresonance is seen due to energy exchange between the unbalanced horizontal andvertical amplitudes; this is a conclusive indication that the modulation drivesthis vertical amplitude growth. The growth also displays structure along thehorizontal resonance, consistent with the modulational di�usion expectations ofthe dependence of the amplitude growth rate on distance from the nearest couplingresonance. There is also some growth that appears on the 3Qx + 2Qy resonance;however, the structure along this resonance is quite minimal in comparison to thegrowth near the previously mentioned intersection of Qx�Qy and 5Qx resonances.Once the timescales of amplitude growth have been established, there remains



124the question of how the vertical amplitude evolves with time. It has already beenmentioned that classical di�usion predicts that the vertical amplitude will growproportionally to t1=2 | if this is the case a plot of log ay versus log t should bea straight line with a slope of one half. However, if the vertical amplitude growsexponentially with time, ay(t) = ay0 e
t ; (7:6)the plot of log ay versus t, not log t, should grow linearly, and the slope of thisline is the exponential growth rate 
. 
 has units of inverse synchrotron periods,because the natural time unit for problems involving direct modulation is themodulation period, not turns.Figure (7.6) shows three examples of vertical amplitude evolution over relativelylong timescales, each plotted on log-linear and log-log scales. It is clear fromexamining these evolutions (as well as those of many other particles at di�erentdistances � from the nearby weak coupling resonance 4Qx+Qy) that the verticalamplitude is growing as an exponential of time, not a power law as one wouldexpect from standard di�usion phenomenology. It has been suggested that thisgrowth may be explained by the dependence of resonance strengths on particleamplitude| the change in amplitude creates a changing resonance strength whichfeeds back upon the amplitude growth, creating exponential growth.The exponential growth coe�cient 
 can now be plotted versus the scaled dis-tance to the weak coupling resonance as one varies the vertical tune along the5Qx resonance to investigate whether there is any structure present. Since 
 isexpected to vary over many orders of magnitude, we instead plot log 
 versus �;� can be directly determined from the vertical base tune Qy0 via� = 20:60�Qy05q (7:7)when considering the 4Qx + Qy resonance to be the source of weak coupling.
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Figure 7.7: Exponential vertical amplitude growth rate 
 plotted versusthe scaled distance � from the 4Qx +Qy resonance.Other resonances, such as Qx � Qy and 3Qx + 2Qy are also nearby, but arefarther away in horizontal tune distance � than this resonance as can be seen inFigure (7.3). 
 is measured from a standard linear �t of tracked log ay versustime data. Figure (7.7) shows this data; note the two distinct \plateaus" and thesudden drops in the growth rate at � = 2 and � = 3.7.4 CONCLUSIONS AND FUTURE DIRECTIONSModulational di�usion has been investigated within a simple model of the beam-beam interaction in the Fermilab Tevatron collider. Realistic operational param-eters indicate that particles subject to horizontal stochasticity, or naively thosethat are within the tune modulation depth distance in horizontal tune of the 5Qxresonance, experience modulational di�usion that causes their vertical amplitudesto grow exponentially over timescales of thousands of synchrotron periods, or



127millions of turns, leading to possible long-term particle loss. The rate of this am-plitude growth is also dependent on proximity of nearby coupling resonances, andshows a structural dependence similar to those of previous modulational di�usionstudies, even though the vertical amplitude growth is not root-time as naivelypredicted in these models where resonance strengths are not action-dependent.Under current operating conditions, no particles are expected to be a�ectedby the 5Qx resonance this severely unless the horizontal tune drifts upwards,dragging particles into the �fth, or the linear beam-beam tune shift � increases.However, with future luminosity upgrades, this tune shift per crossing will almostcertainly rise and the operational space used in past runs may not be large enoughto accommodate the entire tune spread of the beam. A signi�cant portion of thebeam would be in
uenced by the horizontal 7th and 5th integer resonances andvertical beam blowup could possibly occur. This circumstance would lead toluminosity degradation and intensity loss over a collider store as the beam sizegrows. These e�ects, were they present in an actual collider, would be di�cult todiagnose due to their slow growth timescales.Future studies should be twofold. First, a concrete theoretical structure ofmodulational di�usion should be investigated to conclusively show that in the caseof amplitude-dependent coupling resonance strengths, vertical amplitude growthis exponential instead of root-time as in classical models. Second, the collectivenature of the particle growth should be investigated to see what observable e�ectssuch a mechanism could have on the beam size (and thus luminosity) evolutionover time. These collective e�ects and the emittance growth timescale dependenceon proximity to driving resonances would be experimentally observable.The octupole-decapole tracking model might also be used to investigate theamplitude growth mechanism once a theoretical framework is in place, to avoidthe rather complex detuning and coupling of the beam-beam force. Tracking with



128this lattice has several distinct advantages | motion at large particle amplitudesis no longer stable, so no ad hoc aperture needs to be introduced, and parametersfor a Hamiltonian description as in Equation (7.1) can easily be found to �rstorder in the individual magnet strengths as described in Chapter 3.



CHAPTER 8CONCLUDING REMARKSIn this dissertation we have described one and two-dimensional nonlinear reso-nances in an accelerator context and examined how motion within a one-dimen-sional resonance may be perturbed by tune and beta function modulation. Tunemodulation was used in an experiment, E778, to measure a quantity, the islandtune QI, associated with the strength of a one-dimensional resonance, showingexcellent agreement with theory and simulation. This modulation also drives anonuniversal instability, modulational di�usion, in weakly coupled systems, andthis was investigated for a simple operational model of the Fermilab Tevatroncollider.Nonlinearities are always present in any accelerator, either deliberately installedor due to imperfections in magnetic �eld quality. A simple class of nonlinear per-turbations, one-dimensional resonances, were the primary focus of this disserta-tion. They were shown to create structures, \resonance islands", within phasespace, and capture of particles within these islands was demonstrated throughsimulation and experiment, creating coherent motion or \persistent signals" os-cillating exactly at the resonant tune. Motion within these resonance islands wasexamined in a discrete Hamiltonian formalism and shown to be equivalent to thatof a free pendulum. This motion was also parameterized by three quantities:the island tune, the phase space amplitude of the resonance and the resonanceamplitude width.A stability model was developed for particles oscillating close to the resonanceisland �xed point under the in
uence of tune modulation and beta modulation.This model predicts boundaries for the phase-locked stability of this motion that129



130depend only on the island tune QI and the modulation strength and frequency.Comparison of the two showed that for realistic operational parameters the e�ectsof tune modulation are much stronger than those of beta modulation, and bothwere compared to a simple robust simulation program to show excellent agreementfor a particular resonance of interest.The procedure and results of a tune modulation experiment, a portion of exper-iment E778 at Fermilab, were also described. The behavior of particles trappedin a nonlinear one-dimensional resonance, the 5Qx resonance at the horizontaltune Qx = 20:40, was systematically examined under the in
uence of controlledtune modulation for two distinct nonlinear con�gurations and three di�erent hor-izontal island amplitudes. For one particular case of sextupole con�guration andisland amplitudes a detailed analysis of the response of the persistent signal athigh frequencies agreed with the one-dimensional tune modulation model.Frequency domain analysis was shown to be a useful tool for investigation ofone-dimensional persistent signals, requiring no scaling with initial beam intensityor normalization of the beam position monitor measurement. This method hasseveral advantages over time domain analysis, because tune modulation parame-ters and the island tune are all natural frequency domain variables characterizingthis system. Because the tune modulation frequency can be �nely controlled, thismethod may also allow investigation of the frequency (or particle) distributionwithin the nonlinear resonance island from examination of the rate of capturedsignal loss as the modulation frequency is increased.The unperturbed single-resonance model was extended to two transverse di-mensions, and a �rst order nonlinear model with two crossing resonances wasexamined. Simulation showed the existence of two-dimensional coherent motionand resonance islands at a particular set of base tunes corresponding to the pointwhere the resonances under investigation crossed. The corresponding theoretical



131model predicted �xed point locations and phases accurately, but did not repro-duce island tunes even at small nonlinear strengths. This indicates that the simpletwo-resonance model breaks down at the points in phase space where these reso-nances cross. Although persistent signals are present here, it is more likely thatvaluable information about the strengths of two-dimensional resonances will beobtained from two-dimensional smear, which is a qualitative measure of how theresonance distorts nearby nonresonant phase space.An understanding of the e�ects of modulations leads to characteristic timescalesof motion that are much larger than those typically encountered in the commis-sioning of many storage rings and colliders. Modulational di�usion is a previouslyuninvestigated amplitude growth mechanism, and it is shown here to cause lumi-nosity loss over timescales of minutes using realistic operational parameters forthe Tevatron. These timescales are long enough to prove di�cult to diagnose yetshort enough to signi�cantly impact the luminosity lifetime of a collider, reducingthe e�ectiveness of this machine in meeting experimental goals.The character of amplitude growth due to modulational di�usion was shownto be di�erent than that predicted by classical models, with exponential growthinstead of root-time. Although not shown here, this is a general characteristicof systems where the resonance strength depends on particle amplitude, creatinga feedback of this strength on the amplitude growth it creates. Modulationaldi�usion is not universal | there are limits that can be prescribed, correspondingto the tune modulation diagram, which preclude the existence of this mechanismin operational circumstance. These conditions can provide useful design limits forfuture colliders, including limits on power supply ripple and synchrotron frequency.Future avenues of investigation and research include examination of the e�ectsof tune modulation on two-dimensional nonlinear resonances. Though this is amore realistic scenario, the coupled nature of the motion and the complexity of



132examining multi-resonance systems make such an examination di�cult. Since tunemodulation exists in both planes of motion, it is feasible that such a mechanismcould create a web of weak overlapping resonances in the tune plane, and thatregions where modulational di�usion exists could be characterized.
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