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ABSTRACT

NONLINEAR RESONANCE ISLANDS AND MODULATIONAL
EFFECTS IN A PROTON SYNCHROTRON

Todd J. Satogata

We examine both one-dimensional and two-dimensional nonlinear resonance
islands ereated in the transverse phase space of a proton synchrotron by nonlinear
magnets. We also examine application of the thearetieal framework construeted
to the phenomenon of modulational diffusion in a collider model of the Fermilab

Tevatron.

For the ane-dimensional resonance island system, we examine the effects of two
types of maodulational perturbations on the stability of these resonance islands:
tune modulation and beta funetion modulation. Hamiltonian models are present-
ed which prediet stability boundaries that depend on only three parameters: the
strength and frequeney of the modulation and the frequency of small oscillations
inside the resonance island. These models are compared to particle tracking with
excellent agreement. The tune modulation model is also suceessfully tested in
experiment, where frequency domain analysis eoupled with tune modulation s

demonstrated to be nseful in measuring the strength of a nonlinear resonance.

Nonlinear resonance islands are also examined in two transverse dimensions
in the presence of coupling and linearly independent crossing resonances. We
present a frst-order Hamiltonian model which predicts fixed point loeations, but
does not reproduce small oscillation frequencies seen in tracking; therefore in this
circumstance such a model i3 inadequate. Particle tracking is presented which
shows evidenee of twa-dimensional persistent signals, and we make suggestions on

methods for abserving such signals in future experiment.
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Finally, we apply the tune modulation stability diagram to the explicitly two-
dimensional phenomenon of modulational diffusion in the Fermilab Tevatron with
beam-beam kicks as the souree of nonlinearity. We find that the amplitude growth
ereated by this mechanism in simulation is exponential rather than root-time
as predicted by modulational diffusion models. Finally, we comment upon the
luminasity and lifetime limitations such a mechanism implies in a proton storage

rng.
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CHAPTER 1
INTRODUCTION

High energy physics, the study of matter at its most fundamental observed
level, is divided into two general classes of research: theory and experiment. The
drive of the theorist is to condense explanations of a broad class of phenomena
to a simple model. The experimentalist must deal with existing technologies and
abilities, seeking to observe exceedingly rare “events” in an attempt to reconcile
our observations of nature with theory. These two work hand in hand, providing
physicists with a progressively more coherent, cohesive and cogent understanding

of the way nature works.

Experimental high energy physics accomplishes its task with particle accelera-
tors, devices which raise the energies of particles such as protons and electrons,
and in exotic cases, antiprotons, muons and other species, and collide them with
other particles. (Accelerators also are used for other applications such as radio-
therapy and coherent gamma ray production.) The objective is to create and
observe events that occur at high energies, such as production of massive highly
unstable particles (such as the top quark or the Higgs boson) or events that sig-
nal the effects of exceedingly weak processes (such as CP violation observed in

B-meson systems).

Because these events are so weak, the number of events produced per unit time
per unit cross section must be high in order to provide reasonable statistics for
experimentalists. This is measured in terms of a quantity called the luminosity, a
quantity depending on the frequency f with which bunches of particles interact,

the number N of particles in each bunch and the transverse beam size o. For
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round beams such as those at the Fermilab Tevatron,

_ SN

dro?

L (1.1)

The current maximum luminosity achieved with a hadron collider, L = 8.97 - 103°
em? s7!, was achieved at the Tevatron in April, 1993. Any effect that removes
particles from the beam (reducing N) or increases the transverse size of the beam
o reduces the luminosity, or the efficiency of the accelerator in producing events
of interest to high energy physicists.

Particle motion around an accelerator is approximately, but not completely,
linear. Even without magnetic field and alignment errors (always present at the
10~* level) the presence of sextupoles commonly used to correct the chromaticity
also introduces nonlinear kicks. Nonlinearities, therefore, cannot be removed —
they must be understood and corrected if their presence adversely affects accel-
erator performance and operations. The focus of this thesis is on effects, called
resonances, driven by these nonlinearities — how their strengths can be measured,
and how they might interact with modulations existing within the accelerator to
affect the stability of particles in a storage ring or collider.

The study of the long-term stability of particles traveling around one of these
devices is also a study of fundamental issues in classical dynamics, dating back
to Poincaré’s investigation of the long-term stability of the solar system in the
late 19th century. Coincidentally, typical timescales are roughly the same order
of magnitude for both systems: the solar system has existed in its present form
for a few billion years (10° Earth orbits), and protons and antiprotons are stored
in the Fermilab Tevatron for a few billion revolutions between beam dumps and
refills. In order to prevent luminosity degradation in a collider over this time, the
mechanisms responsible for growth of transverse particle oscillations about the

central orbit over timescales up to billions of turns must be investigated. Such



mechanisms fall into three categories — slow, medium and fast.

Fast amplitude growth is typically caused by severe distortions of the orbit,
either by intense magnetic field errors (such as a reversed-polarity corrector or
strong nonlinear fields) or by a major fault condition such as blockage of the beam
pipe. Here the timescales for particle loss, either at the blockage or at the physical
aperture, range from fractions of a turn to turns. Such losses are usually easy to
diagnose with beam position and loss monitors, and it is of particular importance
to guard against such losses in machines with superconducting magnets, where
these losses could easily lead to a magnet quench.

Medium timescale amplitude growth occurs over timescales ranging from tens to
thousands of revolutions. This growth is characteristically driven by distortions of
the particle orbit, called resonances, created by nonlinear magnetic fields. Strong
isolated resonances perturb the amplitudes of the orbit, possibly leading to loss
at the physical aperture in tens to hundreds of turns. If many resonances are
driven, nearby resonance structures in the phase space of particle motion can
overlap, causing stochastic motion with timescales of up to thousands of turns
(Schoch 1958). These sorts of mechanisms and structures have been investigated
in the context of resonant trapping (Chao and Month 1974, Chao et. al. 1987b)
and general nonlinear dynamics (Lichtenberg and Lieberman 1983) as applied to
accelerators. Experience with such systems in real machines leads to constraints
on the horizontal and vertical tunes at which operation is acceptable, reasonably
far from loss-creating resonances.

Slow amplitude growth occurs over much much longer timescales, from 10* to
10° turns. These timescales are macroscopic, seconds to hours of actual accelera-
tor operation, and are therefore normally very difficult to diagnose. Most mech-
anisms that drive slow growth depend strongly on the coupled multidimensional

nature of the particle motion and weak sources of stochasticity or noise. Modu-
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lational (or thick-layer) diffusion, Arnold (or thin-layer) diffusion and amplitude
growth driven by weak external noise all fall into this category (Lichtenberg and
Lieberman 1983). Modulational diffusion (Vivaldi 1984, Chirikov et. al. 1985) is
of particular interest in this dissertation because, as the name implies, it is driv-
en by the modulation of a parameter of the dynamical system, in this case the
accelerator tune.

Chapter 2 contains a review of fundamental concepts of accelerator physics that
are relevant to remainder of this dissertation. A discrete Hamiltonian approach
describing one-dimensional resonance islands is described in Chapter 3, includ-
ing description of the primary tracking program used to simulate particles under
the influence of a single nonlinear resonance. Chapter 4 extends this analysis to
include both the effects of tune modulation and beta function modulation, com-
paring simulation and theory with excellent agreement. The tune modulation
portion of Fermilab experiment E778 is described in Chapter 5, where particles
trapped by nonlinear resonance islands were observed in a real accelerator and
then detrapped in a controlled way with tune modulation. Chapter 6 returns to
unperturbed resonance islands, extending the one-dimensional results of Chapter 3
to two transverse dimensions, and Chapter 7 investigates modulational diffusion,
a multidimensional phenomena driven by tune modulation in two transverse di-

mensions.



CHAPTER 2
ACCELERATOR PHYSICS FUNDAMENTALS

This chapter describes the coordinate systems and magnet strength definitions
used in the remainder of this thesis. Because a thorough background in accelera-
tor physics is not assumed and definitions used by various researchers within the
field typically vary, aspects of the field are also discussed here that are relevant to
the remainder of this work. In § 2.1 the local transverse coordinate system used
to expand transverse motion in a synchrotron is described, as well as the defini-
tions of both linear and nonlinear magnet strengths. In § 2.2 the transverse linear
dynamics of a strong-focusing synchrotron are discussed. In § 2.3 the discrete
Hamiltonian formalism that will be used to investigate the nonlinear dynamics
of this system is introduced, and the forms of generating functions and transfor-
mations that will be applied to the discrete Hamiltonian in Chapters 3 and 4 are
described; § 2.4 returns to investigate the longitudinal motion in a synchrotron
and how this motion couples to the transverse dimension.

Table (2.1) lists typical values of many quantities relevant to accelerator oper-
ations at the Tevatron collider, the Indiana University Cyclotron Facility (IUCF)
cooling ring and the SSC collider. Many of these quantities are not mentioned

here in detail, but are listed for completeness.

2.1 ACCELERATOR COORDINATE SYSTEMS

Typically the equilibrium orbit, or closed orbit, around a synchrotron can be
approximated as a circle with a constant radius p — this is equivalent to stating
that the accelerator approximately consists of nothing but dipole magnets, ignor-
ing the effects of vertical bends and long straight sections. (For example, 75% of

the Fermilab Tevatron and 80% of the Fermilab Booster circumferences consist
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Parameter Symbol FNAL IUCF SSC
(units) Tev Cooler Collider
Horizontal Tune Q. 20.586 3.82 123.28
Vertical Tune Qy 20.575 4.85 123.78
Synchrotron Tune Qs 5.7-107% 5-107% 1.2-1073
Revolution Freq. freo (kHz) 47.7 103 3.4
Minimum Beta p* (m) 0.5 1 1
Maximum Beta Brmaz (M) 200 50 8103
Dispersion (ave.) n (m) 0.5 0.2 1
Momentum Spread op/p 2.1074 4-107° 1074
Kinetic Energy E (GeV) 900 0.045 2. 10*
Rigidity \Bp| (T-m) | 3-10° 3.6 710
Bend Radius p (m) 7.5-102 1.2 1.0-10*

Table 2.1: Various operational accelerator parameters for the Fermilab
Tevatron collider (1993 collider lattice), the IUCF cooling storage ring
and the SSC collider (Design Report). For the colliders the values given
refer to a single beam.

of dipole magnets.) All transverse motion is expanded in the transverse displace-
ments from this equilibrium closed orbit, with & being defined in the outward
radial direction. The direction of beam travel on the closed orbit is defined as
§, always tangential to the closed orbit; then § = —& x § and the triplet (2,9, §)
forms a right-handed coordinate system. This agrees with the convention used
in the MAD 8.1 and TEAPOT lattice design and tracking programs (Grote and
Iselin 1990, Schachinger and Talman 1985), as well as that of Edwards and Syphers
(Edwards and Syphers 1987).

In such a coordinate system, the magnetic dipole bending field By for a pos-
itively charged particle is oriented in the +¢ direction; this makes it natural to
speak of a field error as being positive if it points in this direction. For a typical
proton synchrotron with normal temperature dipoles this magnetic field can be

as high as 2 Tesla; with superconducting dipoles such as those used in RHIC, the



Figure 2.1: The local coordinate system in a synchrotron.

CERN LHC, the Tevatron and the SSC, By can be as high as 6.6 Tesla. Magnetic

fields and field errors can now be analytically expanded by

(. @)

iAB, + ABy =By Y (bn +iay)(x +iy)" . (2.1)

n=0

where the b,, denote multipole strengths of normal field components and the a,,
denote multipole skew field components. The units of these multipole strengths
are m™", and the strengths themselves range from .3 m =2 for sextupole correctors
in the Tevatron to approximately 107 m ™" for higher order multipole errors from
fringe fields or magnet coil misalignments.

This field expansion agrees with the multipole strength conventions used in
TEAPOT, but does not agree with the conventions used by MAD 8.1, which
instead uses a Taylor expansion for the magnetic field on the midplane of the
magnet, y = 0. A comparison of the two definitions for normal multipole strengths

gives the relationship

_ B,(MAD) 1 [0"B
by(thesis) = b,(TEAPOT) = = . : 2.2
(thesis) ( ) 1 Be 7By ( D )y:O (2.2)

Typically magnetic multipole strengths are measured from angular fourier analysis
of field strengths for a distribution of angular positions at a constant radius from
the magnet center bore.

In this dissertation we make the normally realistic approximation that kicks

from nonlinear magnetic fields are small and applied over a negligible magnet
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length L, or that the transverse momentum change from the nonlinearity is small
compared to the total momentum of the kicked particle. The following discussion
is therefore only relevant for kicks applied over short distances such as those
from dipole fringe fields, quadrupoles and correctors; it does not trivially apply
to multipole errors within long dipoles. The small-amplitude kicks over a short

multipole are given by

L L

Az’ =
Here |Bp| is the magnetic rigidity, related to the particle’s total momentum p
and charge e by |Bp| = p/e; units are such that |Bp| ~ 3.3357pc for a particle

with electron or proton charge when pe is expressed in GeV and Bp in T-m. The

prime denotes differentiation with respect to the longitudinal coordinate s, so

x' = dx/ds. We then have

. ByL . .
Az —iAy = — |BO,0| Z(b" +iay)(x +y)" . (2.4)
n=0

For the n = 0 case (the primary dipole bending field) by = 1 in the horizontal
plane and the quantity BoL/|Bp| is the bend angle for each main dipole.

In the case of a normal quadrupole, for example, n = 1 and

B, L
|Bp|

Az —iAy' = bi(x +y) . (2.5)

For a positive normal quadrupole strength b; a particle displaced positively in
the & direction receives a negative (focusing) kick. In the ¢ direction, however, a
positively displaced particle is given a positive (defocusing) kick.

In this thesis dispersive effects are ignored except for a few comments about
sources of beta modulation in Chapter 4 — particle energies are held constant and
there is no variation in the rigidity |Bp| which affects relative field strengths. For

simplicity in the notation we therefore absorb the leading term (the dipole bend
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angle) into the multipole strength terms and rewrite the multipole kick expansion

(2.4) as

A’ =iy == (by +idn)(x +iy)" (2.6)

n=1

where (b,d), = (b,a),BoL/|Bp|. These are called the normalized multipole

strengths and have the units m™".

2.2 TRANSVERSE LINEAR MOTION IN A SYNCHROTRON

By far the most influential paper in accelerator physics has been that of Couran-
t and Snyder (1958), which laid the foundations for much of the field. There
the transverse linear motion near the closed orbit of an alternating-gradient syn-
chrotron was shown to be parameterized by a pair of quantities, 5(s) and «a(s) =
—/'(s)/2, for each transverse plane of oscillation. With the dispersion function
n(s) (see Equation (2.33)) these parameters are commonly referred to as the lattice
functions of the accelerator.

The “beta function” (s) has units of length — it ranges from approximately
half a meter to 200 meters in the Tevatron collider lattice. As will be shown
shortly, the amplitude of transverse particle oscillations scales with m in
motion around the accelerator. At the interaction regions of many colliders, a
low-beta insertion is designed to lower the beta function at the beam crossing
point, thus reducing the actual beam size and increasing the luminosity.

Motion of particles in the two transverse planes is coupled even in the lin-
ear approximation by a variety of perturbations such as longitudinal solenoidal
fields from experimental detectors, normal dipole and quadrupole rotation errors,
vertical dipole bends and deliberately installed skew quadrupoles. With the as-
sumption that the accelerator under consideration is flat and that there are no

significant solenoidal fields, this coupling is usually small and treated perturba-
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tively. Such a treatment is followed in this thesis, and allows the linear motion in
each of the transverse planes to be treated as independent.

In either transverse dimension the motion of a particle through the straight drift

sections, dipoles and quadrupoles of a synchrotron is described by Hill’s equation,
:1;”(3) + K(s)x(s) =0, (2.7)

where K (s) the focusing strength in that plane, piecewise continuous and periodic
over one revolution of the machine. If the synchrotron has a superperiodicity, K (s)
naturally also has this superperiodicity — however, this symmetry is normally
broken by low-beta insertions or other practical necessities.

Because Hill’s equation is so similar to the equation of motion of a harmonic
oscillator, it is typically solved by substituting a harmonic solution where both

the amplitude and phase depend on s:
x(s) = /2J5(s)cosp(s)
= a(s)cos(s) .

The choice of normalization here is motivated by transformations derived in the

(2.8)

next section, where J is shown to be the action canonical to the phase ¢ (s).

Substitution of this ansatz into Equation (2.7) gives two differential relations for

6(s) and B(s):

sy =0, (2.9)
23" 3 — (B')? —4p%(¢')* +4B8°K(s) = 0. (2.10)

Equation (2.9) can be integrated immediately, using the standard convention that

chooses the constant of integration as one, to find the integrated phase,

*dS

P(s) = 39 (2.11)
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Similarly the phase advance over any section of the ring (s1,s2) can be defined:

2 S
A¢:L1a§. (2.12)

With this ¢', Equation (2.10) for the betatron function 3(s) takes the standard

forms:

28— () AP E(s) =4
1+a'f+a?= ﬂzK(s) )

With periodic boundary conditions and piecewise continuous K(s) this equation

(2.13)

can be solved numerically to give the betatron function § as a function of s.
The tune @ in each plane is defined as the long-term average number of trans-
verse betatron oscillations executed in that plane in each traversal of the ring, or
the average transverse oscillation frequency divided by the revolution frequency
of the machine. It is found in the linear approximation by taking the total phase

advance over one traversal and dividing by 27:
Q= iyde/ﬁ(S) . (2.14)
27
Generally the solution to any linear second-order differential equation such as
Equation (2.7) is uniquely determined by the initial conditions of @ and 2. It has
been shown (Courant and Snyder 1958) that the linear motion in each plane over

any section (s1,s3) of the ring can be completely described by

<$>2:A@1<$>1, (2.15)

\/%(cos A + aq sin Ay) V312 sin Ay

—(14aias) Sinjz’l—ﬂiw—al)COSAw %(cos At — g sin A@Z’)

where

My, = (2.16)

The same mapping also holds for motion in the y plane, using lattice functions

and phase advances there. The linear transformation matrix My, is a combination
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of rotations and scalings which map the particles around a rotation on an ellipse
in the phase space (x,2'); it is unwieldy in this basis because the parameters /3
and ¢ are more natural for a circular coordinate system as will be shown in the
next section.

The transformation matrix My is actually a concatenation of several individual
transformation matrices which can be found by solving simpler versions of Hill’s
equation. For the case where K is zero, as is true in straight drift sections and

approximately true in dipoles of length L.

My (K = 0) = <(1) {J) . (2.17)
For the case where K is a nonzero constant, as in a quadrupole of length L,

cos(LVK) ﬁ sin(LVE) ) ‘

(2.18)
—VEKsin(LVEK)  cos(LVE)

M51(K = constant) = (

Keeping the integrated magnet strength KL = b; constant while taking the thin
magnet limit L — 0 here gives the transformation matrix of a thin horizontal

quadrupole kick,
M1 (thin quad) = (—1b~1 (1)> . (2.19)

Since a horizontally focusing quadrupole defocuses equally in the vertical direction
(see Equation (2.5)), reversing the sign of by in the above mapping gives the
corresponding thin quadrupole kick in the vertical plane.

For the subjects examined in this dissertation, motion is only observed once per
accelerator turn in a Poincaré surface of section; in this approach, the transverse
phase space is observed in discrete time steps instead of continuously around the
ring. This method of visualization is more practical in application, because beam
position monitors and other diagnostic equipment measure beam properties on

a turn-by-turn basis. The longitudinal coordinate s is transformed to an integer
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dhy

e/mﬁi

Figure 2.2: The phase space ellipse transformation (2.23) from phys-
ical transverse coordinates (x, ') to normalized transverse coordinates
(xn,2'y). The physical amplitude of betatron oscillations at a point with

beta function 3 is a = /2J 3.

turn-number coordinate t = [s/27p] so the mapping represented by Equation-

s (2.15) and (2.16) now becomes a “one-turn map”:

<§,>t+1:M<§,>t : (2.20)

where the linear one-turn transformation matrix is

(cos(27rQ) + asin(27Q) Bsin(27Q) )
M =

_ (1+4a? (2.21)

T) sin(27Q) cos(27Q)) — a sin(27Q)
and the lattice functions # and « are those of the observation point. It is also
interesting to note that imposing a small thin quadrupole kick on the one-turn
map gives the tune shift associated with a quadrupole error of strength by as

n by B(quad)

AQ; y(quad) = = \ (2.22)

with the positive sign referring to the horizontal plane and the negative to the

vertical.
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Figure 2.3: Seven turns of a linear one-dimensional turn-by-turn Poincaré
plot in normalized coordinates (zy, '), with tune ¢ = .57 near the
4@) = 7 resonance. This is simulation of a single particle following the
linear one-turn map of Equation (2.20); each successive point lies on a
circular contour.

A coordinate transformation exists that transforms the elliptical mapping of
Equation (2.21) into a circular one, so that linear motion consists of a rota-

tion around this circle. One transformation to these “normalized coordinates”

(zn,z'y) is given by

afs) i | (2.23)

Both zx and 'y have units of m/? as do all distances in the normalized coor-
dinate system. After this transformation both M, and M become pure rotation
matrices, rotating in the clockwise direction in the (@, 2y ) plane by angles of A
and 27 (Q) respectively. Both a and 3 are functions of the longitudinal coordinate
s, but due to the periodicity of the lattice functions they are independent of ¢t and

thus so is the one-turn mapping.
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Because linear phase space motion is nothing more than a rotation, if the ro-
tation angle is a rational multiple of 27 (or the tune @ is rational), the particle
returns to the same phase space position in some number of turns. A perturbation
at a particular location in the accelerator having the same periodicity in the phase
angle will always kick the particle in the same way, possibly creating amplitude
growth, luminosity degradation and particle loss. Generalizing to both transverse
dimensions, the resonance condition on the horizontal and vertical tunes is given
by
JQe +kQy =1, (2.24)
where j, k and [ are integers. The perturbations mentioned above, periodic in
the phase, drive these resonances — they are caused by nonlinear forces such as
nonlinear magnet errors and magnetic forces felt by particles comprising colliding
beams (the beam-beam force). Following (2.24), resonances have nonlinear kicks

with a phase dependence cos(ji, + kiby ).

2.3 GENERATING FUNCTIONS AND CANONICAL TRANSFORMATIONS

Hill’s equation, Equation (2.7), is also the equation of motion for a harmonic os-
cillator with a time-dependent restoring force and no damping. A nonautonomous

Hamiltonian can be written for such an oscillator:

2 1’2

H(z,ps;s) = % + K5 (2.25)

where p, is the canonical momentum associated with the position x. Application
of Hamilton’s equations immediately gives p, = ', so the coordinate z' is the
canonical conjugate of the position x. This Hamiltonian can be canonically trans-
formed to the form of an action-angle harmonic oscillator with the time-dependent

type 1 generating function (Goldstein 1980, Chapter 9):

1}2

Gl '] = [0 7)) = =50 [an (s) )] (2.26)
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This nontrivially produces the coordinate transformations and new Hamiltonian

x=+/2Jcos(s)

o = /IR (s) + a(s)costi(s)] . (227
H(, J;s) = H(z,2';s) + dj; = ﬂ(Js) .

This is exactly the same as the harmonic solution, Equation (2.8), of Hill’s e-

quation mentioned previously, but this approach also identifies the appropriate
canonical coordinates for a Hamiltonian analysis of the linear problem.

Motion will be expressed in a “discrete” Hamiltonian formalism throughout
this thesis, where one-turn and N-turn maps similar to the linear map of Equa-
tion (2.20) are generated from the discrete Hamiltonian H and the corresponding

discrete forms of Hamilton’s equations:

Az y OH Azly OH
= = — . 2.2
At ox'y ’ At drn (2.28)

The linear one-turn motion over the ring is reproduced if the linear Hamiltonian
(2.27) is integrated over one ring revolution. Then the discrete Hamiltonian and
one-turn discrete equations of motion for the canonical coordinates (v, .J) are:
Hi(16,7) = 22Q .
Ay =270, (2.29)
AJ=0.
Since the beta function is periodic around the ring, the linear one-turn Hamilto-
nian H, is independent of turn number if the tune of the synchrotron is constant.
In order for the discrete forms of Hamilton’s equation to retain their form when
coordinate transformations are applied to the Hamiltonian, it is necessary and
sufficient to require these transformations to be canonical. In this dissertation

a variety of (possibly time-dependent) generating functions are used to gener-

ate these canonical transformations (Goldstein 1980, Landau and Lifshitz 1975).



17

¢ G @Q Gi(q,Q): p=0G1/0q P =-0G1/0Q
Ga(q,P): p=0G2/0¢q Q= 0G2/OP
G- Gs
Gs(p,Q): q=—0G3/0p P =-0G;/9Q
P G4 P G4(p,P) q = —8G4/8p Q = 8G4/8P

Figure 2.4: The generating function mnemonic square. The generat-
ing functions G; are functions of the coordinates that bracket them, and
partial derivatives in the direction of the arrows are positive. The Hamil-
tonian is also changed by an amount dG;/dt in the transformation, if the
generating function is time-dependent.

There are four common types of canonical transformations from coordinates (¢, p)
to (@, P), imaginatively named type 1 through type 4. For example, the type 1
generating function used above depends only on the old and new coordinates ¢

and (), not on the momenta p and P; it gives the transformation equations

_ 9&1(9, @)
P=""p, :
_ aGl(QvQ;t)
P=-— - (2.30)
H(q,p;t) — H(Q,P;T) + W .

The four types of generating functions and their respective transformation equa-
tions may be conveniently summarized using a mnemonic square similar to that
used in thermodynamics, as shown in Figure (2.4). All linear transformation-
s, time dependent or not, are canonical — when these are used the coordinate
transformations will be stated for clarity. Other types of canonical transforma-
tions applied here are stated explicitly by their generating functions.

At several places in this thesis, discrete Hamiltonia are “integrated” (or, more
properly, summed) to give equations of motion over timescales of N turns, where
N is an integer. This requires rescaling the time coordinate; however the product

of the Lagrange action and time used to derive Hamilton’s equations from a least-
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action principle (Goldstein 1980, p. 364),
dC = [pg — H(p, ¢)]dt , (2.31)

remains invariant under this transformation if the Hamiltonian is scaled to suit
the time change. Since this is implicit in the summation process, the only change
necessary for such a transformation to respect the difference forms of Hamilton’s

equations is the rescaling of the time coordinate, t — Nt =T

2.4 LONGITUDINAL MOTION AND CHROMATICITY

In the context of the stability of transverse motion, longitudinal dynamics are
important because they provide a mechanism for tune modulation to exist in every
machine which uses RF systems to longitudinally stabilize and accelerate particle
beams. The parameter used to quantify the coupling of the fractional momentum
offset to the transverse tune in each plane is called the chromaticity &;; it is defined
by

AQi =& 6 (2.32)

in each plane. Here 6 = Ap/py is the fractional momentum offset from the ideal
design momentum py. European convention differs significantly in definition of
the chromaticity, using the fractional tune shift AQ/Q instead of AQ. Chro-
matic effects arise from the momentum dependence of the focusing strength of
quadrupoles — if a particle has a larger energy than the design energy, it is fo-
cused less strongly and executes a smaller number of betatron oscillations in one
machine revolution. For a simple uncorrected alternating-gradient synchrotron
the chromaticity is roughly equal in magnitude and opposite in sign to the tune.

For most machines such a large net chromaticity is undesirable, as particles with
even small fractional momentum offsets can experience tune shifts large enough

to shift them onto undesirable resonances. Chromaticity is adjusted with the
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addition of correction sextupoles at points of nonzero dispersion in each plane,
since dispersion is the coupling between momentum offset and transverse position;

for example, horizontal dispersion gives

z(total) = x(closed orbit) 4+ 7795% : (2.33)

Po
Examining Equation (2.6) for a normal sextupole (n = 2) and including the effect
of dispersion in the horizontal plane to first order in momentum offset, we find that
sextupoles give kicks linear in displacement, or momentum-dependent quadrupole
kicks:
roA 1 N2 Ap .
Az’ — 1Ay = —by |(x + 1y)° + 2?7795(:1; + )| - (2.34)

For maximum efficiency a normal chromaticity correction sextupole would be
placed at a point with high horizontal dispersion. Using the tune shift from a
quadrupole kick, Equation (2.22), one can immediately find the contribution to

the total chromaticity from a distribution of normal sextupoles:

o= 5o D malsi)Balsi (o)
) ' ) (2.35)
§y = —527790(81‘)5;/(81‘)52(81‘) :

It is also important to note that though sextupoles can correct the chromaticity,
they also introduce nonlinear kicks and transverse coupling.

Particles with momentum offsets subject to RF focusing also execute syn-
chrotron oscillations, where 6 is not constant but varies sinusoidally as though
it were being modulated. Although investigation of the longitudinal phase space
of a particle is complicated (Edwards and Syphers 1987, chapter 2), for longi-
tudinal beam distributions much smaller than the RF bucket size it is a good
approximation that all particles have their momentum offsets oscillating at the

same frequency, the synchrotron frequency Js. In the absence of explicit tune
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modulation (as was used in E778) and strong power supply ripple, this is the
source of tune modulation that motivates the long-term stability inquiries raised

in later chapters.



CHAPTER 3
NONLINEAR RESONANCE ISLANDS AND
ONE-DIMENSIONAL PERSISTENT SIGNALS

In this chapter a discrete Hamiltonian approach to two-dimensional transverse
nonlinear resonances is presented that gives perturbative results exact to first or-
der in nonlinear magnet strength. One-turn and N-turn Hamiltonians are derived
from a projection map (Peggs 1982) in § 3.1-2 respectively; these Hamiltonians can
be considered to respectively generate the one-turn and N-turn Poincaré surface
of section maps. Certain phase space structures, called “resonance islands”, can
appear with one-dimensional resonant motion as pictured in Figure (3.1). These
structures are shown to be parameterized by several experimentally accessible
quantities including the island tune, @)1, in § 3.3; a computational single particle
tracking simulation is described in § 3.4 and compared to theoretical prediction for
the 5@), resonance. Various methods used to experimentally investigate nonlinear
resonance islands are discussed in § 3.5, in particular those used in experiment
CE22 at the IUCF Cooling Ring and for this thesis in experiment E778 at Fermi-
lab.

3.1 THE FIRST ORDER NONLINEAR ONE-TURN HAMILTONIAN

In the previous chapter the action-angle parameterization was presented for the
uncoupled linear transverse one-turn particle motion in a synchrotron. The next
issue is how to include the effects of nonlinear magnets to form a discrete Hamilto-
nian that more adequately describes motion in a real accelerator. A perturbative
approach that is correct to first order in nonlinear magnet strengths is used here;
however, there exist a multitude of other methods, both perturbative (Miche-

lotti 1986a) and non-perturbative (Gabella 1991), that give similarly-structured

21
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Figure 3.1: Isolated 5@}, resonance islands in various phase space coor-
dinate systems. Data is taken from simulation and tracking using the
octupole/decapole lattice described in Section 3.4, which drives the res-
onance seen here to first order in decapole strength.
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Hamiltonians.

Consider a synchrotron with a single thin nonlinearity of normalized strength
b,, where n represents the order of the nonlinearity. Transverse single-particle
motion around the ring consists of three parts: a linear phase advance to the
nonlinearity, the nonlinear kick and another linear phase advance back to the
starting point. Since the linear portion of this motion is already well-described by
the Hamiltonian of the previous chapter, it is removed here by a reverse rotation
through the ring while ignoring the nonlinearity. This has the effect of projecting
the kick at the phase advance of the nonlinearity to a nonlinear one-turn map of
the initial particle coordinates.

Denote the horizontal and vertical phase advances at the location of the non-
linearity by (¢ni,z, @ni,y) (as measured from a reference point) and the linear beta
functions by (Bni,«, Fni,y). The nonlinear kicks at this location in normalized co-

ordinates are then given by substitution the of normalized coordinate definitions

into the nonlinear kick expansion, Equation (2.6):

n/2

z n 2Lk
AxlN = _bn Z <2k>(_1)kﬂnl,w N 2k 651,3; yjz\;C )
k=0
w21 (3.1)

Ay?v =5,

i

n katsr—k n—2k—1 sk+1_ 2k+1

This nonlinearity is a perturbation at a particular phase advance within the

machine. To quantify this consider the “projection mapping”:

Az N TN
A(E’]\f —1 K xl
=R nl,zy Pn “1R nl,zy Pn N 3.2
AV =R Gt t) () R | 1Y | 52)
Ayl YN
where R is the 4 x 4 block diagonal linear rotation matrix
cos ¢,  sing, 0 0
_ | —sing, coso, 0 0
R(¢z,¢y) = 0 0 cos ¢,  sin g, (3.3)

0 0 —sin @, COS Py
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R(@x,ni, Gy,ni)

RY(@xnl, @y.n1)
Reference Point

Figure 3.2: A simple lattice for the projection of a nonlinear kick onto a
mapping of initial particle coordinates.

and the K, symbolize the nonlinear kicks (3.1) in each plane. This accurately
accounts for the nonlinear motion — the linear portion of the motion has been

removed by the inverse rotation R™1.

If 2y is the canonical momentum for , the mapping of Equation (3.2) is actually
integrable. A discrete one-turn nonlinear Hamiltonian Hy ni(zn, 2y, yn, ) can
be written such that discrete forms of Hamilton’s equations are obeyed as in the

previous chapter:

AJ}N 8H1,n1/8:1;’N

AJ}IN _ — 8H1,n1/8:1:N (3 4)
Ayn OH1 1/ 0Y'y '
Ay?\f — 8H1,nl/8yN

The Hamiltonian can be written in these coordinates but it is much more mean-

ingful to write it in action-angle coordinates (¢;, J4, ¥y, Jy ), which are related to
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the normalized coordinates via the canonical transformation

2

x
Gr([en, @y] =, J]) = —7F tany
xy =V2J cosp (3.5)
2y = —V2Jsine
in each plane. Including the linear portion of the motion and denoting the unper-

turbed linear base tunes by (Q0,@yo), we find the explicit form of the one-turn

first-order nonlinear Hamiltonian:

H1(¢I, Jf,L/)y, Jy) = 27TQ$0JI —|— 27TQy0Jy

bt o/ n'(—l)k 2nT+1 n—2k+1 &
o kz:(%)'(n —2k+1)! (Bntade) 2 (Bt yJy) (3.6)
=0

X cos"_2k+1(@/)x + Oniz) COSzk(l/Jy + Onty)

where the n/2 limit in the sum is rounded up. This Hamiltonian may be written

in another form as a useful ansatz:
H1(¢I, JI, ¢y7 Jy) = 27TQ$0JI —|— 27TQy0Jy

1 1

+ > Vil Je, Jy) cos(kibe + by + dia) -
ol

(3.7)

The first line of the Hamiltonian contains the linear phase advance terms as
in the previous chapter. The second line contains some of the so-called “shear

terms”, which are not phase dependent but instead cause action-dependent tunes

via
OH 1
QI(Jxa Jy) — < aJ1> = QxO + %(Ofxxjx + axyjy)a
8HI 1 (3:8)
1
Qy(Je. Jy) = <8—Jy> = Qyo + %(O‘xy']x + ayyJy) -
Here the brackets mean to average over all phases ¢, and ¢, — this phase aver-

aging is explicitly incorrect in the case of resonant motion where only a certain

subset of particle phases are reached.
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The last line of the Hamiltonian (3.7) contains phase dependent terms, or reso-
nances, that are driven by this multipole, obtained by expanding the trigonometric
functions in Equation (3.6). Equation (3.7) is a general form of the Hamiltonian
for all orders of the nonlinear strength, with first order terms given exactly by
Equation (3.6); these are tabulated for sextupole, octupole and decapole magnets
in Table (3.1). The Vi coeflicients are resonance strengths which depend on the
actions, and the ¢ are the relative phases of the resonance driving terms.

The treatment of several multipoles to first order is straightforward, because
to that order there are no interactions between the nonlinearities. Thus the first-
order nonlinear Hamiltonian for any collection of multipoles is simply the sum
of their individual nonlinear Hamiltonians. For higher order nonlinear contri-
butions to the «;; and Vi coefficients this procedure is inadequate, and other
techniques must be used to evaluate these coefficients such as successive iteration
of the discrete mapping (Peggs and Talman 1986), Deprit’s algorithm (Miche-
lotti 1986a,Michelotti 1986b) or application of successive Moser transformations
(Merminga and Ng 1989).

Examination of Table (3.1) demonstrates that sextupoles contain no shear terms
to first order, but instead drive three sets of nonlinear resonances: @),, 3Q,, and
Q. £2Q,. Shear terms quadratic in action, which correspond to detuning, are
driven to second order in the sextupole strength; explicit formulae for this tune
shift exist (Peggs and Talman 1986, Michelotti 1986a) and have been verified
against simple particle tracking. Generally, the Hamiltonian of Equation (3.6)
demonstrates that for a multipole kick of order n, the highest order resonance
driven to first order in the multipole strength is (n + 1)@ = [. For a head-on
nonlinear beam-beam kick (see Equation (7.4)), in contrast, all even resonances
are driven to first order in the small quantity parameterizing the kick.

The 5@), resonance investigated in E778 is explicitly directly driven to third



Hamiltonian
Coefficient Lattice Value
Vi V25, 1220, — 7
Vi 2j, g3
Viaa — 2, g,
Qgy % 23
ayy 3 by
Qgy —% 23
Vao Ly Jo[Je — 37,
Voo Ly T[Ty — 37
Va 42 -3 b Jody
Vio L,
Vou Lbs.72
Vs.o VAW
Vao 25, )3 T, — 4T,
Vio 2y 12 [J2 61,7, + 377
Vito 24, 722 T, (27, — 37,
Vs a2 2, g3,
Vi a4 V25,74 g

Table 3.1: First-order Hamiltonian coefficients in Equation (3.7) for sex-
tupole, octupole and decapole magnets. The beta functions scale into
these with the actions J, ,, but have been set equal to one here for clar-
ity. For the octupole-decapole lattice octupole detuning coefficients ay;

are tripled due to the presence of three octupoles.

27
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order in sextupole strength (Merminga and Ng 1992, Michelotti 1986b). However,
it has been hypothesized that the structure of this resonance may be adequately
reproduced at a lower order by interference between the 3Q), and 2¢), resonances
(Michelotti 1991). This issue remains a subject of debate; in either event the
resonance strength driving by sextupoles is smaller than the first-order approach

presented here.

3.2 THE ONE-DIMENSIONAL NONLINEAR N-TURN HAMILTONIAN

The general multi-resonance Hamiltonian as given in Equation (3.7) is extremely
difficult to investigate analytically. Instead we examine an explicitly one-dimen-
sional case (J, = 0), dropping the (z,y) subscripts. We also assume that the
horizontal base tune @ is very close to a one-dimensional resonance: Qo = M /N +
6¢, where 6g < 1/N. Under these conditions, we shall show that the Hamiltonian
is approximately that of a isolated resonance model with a family of elliptically
stable N-turn fixed points and that motion around any of these stable fixed points
can be transformed to a form approximating that of a classical free pendulum
(Chirikov 1979).

One difficulty of the discrete Hamiltonian is the discontinuous nature of the
phase advance — if the tune is not near an integer the net phase advance every
turn is large. However, with the assumption that the tune is near the resonance
M/N, the accumulated phase advance over N turns is very close to 27 M and
thus effectively small. It therefore makes sense to look at a difference Hamilto-
nian that reproduces a Poincaré surface of section not every turn, but every N
turns. Alternatively, one could embed this system in a system of higher dimension-
ality (Vivaldi 1984), but the method of integrating (summing) the Hamiltonian
explicitly at low orders is more intuitive for this application.

When examining N-turn motion, the time variable needs to be changed from
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t=0,1,... to “N-turns”, T = t/N = 0,1, ..., as stated in the previous chapter.
One must also be careful to distinguish the relevant timescales for frequency-
domain variables; from here on any frequency variable, say @, is defined to be the

frequency of oscillations in the one-turn timescale:
sin(27rQt) = sin(2rQNT) . (3.9)

Dropping = and y subscripts and setting J, = 0, the general one-turn one-
dimensional Hamiltonian can be written from Equations (3.6) and (3.7) as
Hi(,J) =21Q0J + %a,ﬂ + ) Vi T2 cos(k' + b (3.10)
kK
It is important to note that the action dependence has been removed from the
resonance strength Vi here and inserted as a sum of its own. Summing this
Hamiltonian over N turns and approximating the action J as constant over these

N turns gives

N
Hy (3, J) =27NbégJ + Eoz,fz

V; ,J"?/?N_1 k! 2mM s
+Z k! Zcos Y+ N T 2miog + drrr | -
1=0

kK

(3.11)

Only the linear contribution to the phase advance has been included in the reso-
nance terms since this analysis is to first order in the nonlinear terms Vi and «.

The sum over ¢ in (3.11) is easily found by using the identity

z_:cos(A—l—iB):D(B,N)COS(A—I-% )
i=0 3.12
D(B.N) = sin(NB/2) 242
"7 sin(B/2)

D(B, N) is extremely similar to the Dirichlet kernel found in the theory of Fourier
series; it is very strongly peaked at values of B where the difference between

B/7 and the nearest integer is much less than 1/N, in which case its value is
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approximately N. In this case B/m = 2k'(M/N + 6¢g), and so the only terms
that contribute significantly are terms where k' is a multiple of N. (This is in
practice an approximation, because very large resonance strengths, possibly from
lower order terms, can overcome this suppression.) For typical multipole magnets
encountered in accelerators (i.e. small order, n) the k' = N term will dominate,
and there will be only one resonant term that contributes. In this case we have

the isolated resonance N-turn Hamiltonian

N
Hy (3, J) =27NbgJ + Eaﬁ
+ NVNIN2 cos[ Nt + ¢ (3.13)
+ suppressed resonance terms ,

where a constant phase offset N(N — 1)mdg has been absorbed into ¢ .

3.3 PARAMETERIZATION AND CHARACTER OF RESONANT MOTION

Now that we have this Hamiltonian, we can answer the question of how the small
nonlinearity distorts the normal linear phase space motion of particles within an
accelerator. With no resonance driving at all (i.e. only linear and shear terms)
particles still trace out circular trajectories in (zy,2'y) space, with radii V2T
and phases t». However, the particle tunes are action-dependent due to the shear
terms in the Hamiltonian. This section will show that when a resonance term
is introduced with shear terms present, structures called “resonance islands” are
formed in phase space that can be parameterized in a way completely equivalent
to free pendulum motion.

Applying the discrete forms of Hamilton’s equations to the N-turn Hamiltonian

of Equation (3.13) gives, over N turns,

A= BN o Nso 4 Nad + N g2 (Ny) (3.14)
=7 Q 3 N cos .
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and
OH N
o
The map described by Equations (3.14) and (3.15) exhibits N-turn fixed points

AJ = = N2V TN 2 sin(Ne) . (3.15)

when both AJ and A are zero. The constraint AJ = 0 gives one trivial solution
(Jfp = 0) and 2N fixed points at the phases ¢ ¢, = kyesm/N, where ky¢, is an

integer. Using these phases in Equation (3.14) then gives the equation for J¢,:
N
27T(5Q+Ozjfp:|: ?VNpr =0 (316)

where the top sign refers to even k,.,, and the bottom to odd k,.s. This equation
for the fixed-point action is in general transcendental, but can be exactly solved
for all N below 7. Note that when no positive real solutions exist for Jg,, there
are no fixed points. In practice the detuning term is usually much larger than the
resonance term, in which case an approximate solution is Jf, &~ —2md¢g/a.

We can now apply a last linear transformation to the Hamiltonian, by ex-
panding the N-turn Hamiltonian (3.13) around these fixed points with the linear

(canonical) translation

V=1 +0,
J:pr—l—f.

The expansion action [ is assumed to be small with respect to the magnitudes of

(3.17)

the fixed points action, so I < Jy,; no such constraint is placed on 6. The final

Hamiltonian is then found to be
N 2 N/2
Hn(0,1) = EOéI + NVNpr cos(NO) + O(VNI) . (3.18)

If oV is negative, there is a family of N elliptic (stable) fixed points (at phases
6 = 0,27/N,..., corresponding to even ky.s), surrounded by a separatrix inter-
secting another family of N hyperbolic fixed points (at phases § = /N, 37 /N, ...,

corresponding to odd ky.s); if aVy is positive the converse is true. We assume the
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latter and choose the negative sign in this Hamiltonian to examine local motion
around a stable fixed point.

Motion within the separatrix is termed “resonant” or “phase-locked” — parti-
cles within this region have a long-term average phase advance per turn, or tune,
of exactly M/N. Particle trajectories just outside of the separatrix are distorted
but nonresonant, as seen in Figure (3.1). Consider a set of particles populating
one of these resonance islands at one particular time in the accelerator; this en-
semble of particles will advance from island to island turn by turn in a completely
coherent fashion. A position measurement of the centroid of this distribution will
exhibit a coherent oscillation. This oscillation can in practice be observed on a
online spectrum analyzer as a “persistent signal” at exactly the resonant tune, and
with unperturbed resonance islands it typically has an exceptionally long lifetime
of millions of turns.

Ignoring terms of order VyI and higher, Equation (3.18) is a free pendulum

Hamiltonian and the equation of motion for € that arises is

§ = —N3aVyJY/?sin(N6)
& (3.19)
= —N(27Q1)* sin(N) |

where the time derivatives are taken with respect to the “N-turn” time variable

T, and Q1 (the “island tune”, or frequency of small librations of this pendulum

system) is defined by
1
Q= ﬂNJﬁ/4\/|aVN| . (3.20)

A typical island tune observed in the E778 experiment is approximately 0.006,

with similar values given by tracking with realistic nonlinear magnet strengths.
The island half-width 61 can also be found from the Hamiltonian, because

this Hamiltonian is autonomous. The separatrix is a contour along which the

Hamiltonian is constant, and so the Hamiltonian value at an unstable fixed point
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is equal to the Hamiltonian value at a stable fixed point phase with actions +61:
HN(G = F/N,IZO) = HN(G =0,1= :E(SI) —

VN

[a%

Knowledge of the base tune (), (and thus ¢ ), the island tune ()1 and the detuning

N1 (3.21)

oI =27,

« allows deduction of the fixed point action Jy,, island size 6I and resonance
driving strength V.

Since the motion is that of a pendulum within the resonance island, particles
at different actions within the island circulate with different frequencies or tunes.
These tunes range from the island tune @)1 at actions near zero to zero frequency
on the separatrix, and can be written in terms of elliptic integrals. This nonlinear
dependence of frequency with action (or amplitude) of the pendulum system makes
measurement of ()1 more difficult, for only particles with actions near the fixed

point action actually rotate in the island with this tune.

3.4 FIRST ORDER NONLINEAR TRACKING AND SIMULATION

For the issues investigated in this thesis, it was deemed necessary to design a
dedicated simulation program that tracked a minimal lattice which drives relevant
terms in the nonlinear Hamiltonian to first order. The Octupole-Decapole model
lattice is designed with this goal in mind; it also uses sets of specially placed
quadrupoles to independently control tune modulation and beta modulation at
the resonance-driving nonlinearity. For simplicity, all beta functions are set at one
meter in the following discussion and within the tracking codes themselves.

The lowest order multipoles that drive action-dependent nonlinear detuning of
the form «.J? are octupoles, as seen in Table (3.1). To first order all resonance
terms contributed by the octupoles should vanish in the simulation. This enables
complete separation between detuning, the function of the octupoles, and reso-

nance driving from the decapole. It is possible to eliminate all but one of the first
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Figure 3.3: The octupole-decapole lattice.

order octupole resonances, the diagonal coupling resonance 2¢), —2Q),, by driving
three octupoles with the same strength, spaced apart by a betatron phase advance
of 60° = 27/3 between each octupole. This also triples the phase-independent de-
tuning coefficients a;; over their single octupole values. The decapole is used to

drive the 5@), resonance, motivated by the study of this resonance in E778.

To investigate the effects of tune modulation and beta modulation, the linear
phase advances in the lattice were set to constant values and only special quad-
rupoles explicitly introduced into the lattice were modulated. Three quadrupoles
are sufficient to independently control the tune modulation of the lattice and beta
modulation at the resonance-driving decapole. The tune shift from a single small
quadrupole error is given by Equation (2.22), recalling 5, = 8, = 1m for this

lattice,

b
AQ(quad) = ﬁ : (3.22)
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This is independent of the phase of the quadrupole within the machine, so a pair
of modulated quadrupoles driven with the same sign will produce tune modulation
with strength ¢ = 2AQ = g1/27r. The beta modulation created by a quadrupole

error is given by Equation (4.4),

AB(s) = 2 [sin(2]6(3) — dyuaal) — con(216(5) — Gyuaal) ton(27Qu)] . (3.23)

Two quadrupoles driven with equal strength, opposite sign and 90° apart in phase
advance will destructively interfere outside of this phase advance. They construc-
tively interfere within the 90° phase advance, and at a point exactly halfway in
between them they will modulate the beta function with strength b = Afg = by,
with no tune modulation since the quadrupoles are driven with equal and opposite
strengths.

The elements of this lattice are shown in Figure (3.3); the phase advances
outside the cluster of quadrupoles and nonlinear elements are set by the two
constraints that the linear tunes are some set values, say (Qg0,@yo0), and the
decapole is positioned exactly halfway through the lattice from the reference point,
50 ¢gec = ™Qg in each plane.

A one-dimensional tracking program, OdTrack, has been written which tracks
single particles through horizontal phase space in this lattice and includes the
effects of either or both tune modulation and beta modulation. The inputs to this
program include the horizontal base tune, the octupole and decapole strengths by
and 54, the amplitude and period (in turns) of the modulation and the number of
turns to track. Particles can be launched at a variety of amplitudes but only at a
single phase during every execution of the simulation. Output includes the phase
space coordinates of every particle for each synchrotron period and the measured
tune of each particle over the entire tracking run.

Timing tests on a Sparcstation IPX show an iteration CPU time of 33 ps per
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turn, making million-turn tracking with this lattice easily accessible. Raising the
timescales by several orders of magnitude to examine thousands of millions of
turns (or millions of synchrotron periods) of evolution still only requires tens of
hours of processing time, and is quite feasible.

The prediction for the island tune of Equation (3.20) is proportional to the

square root of both the detuning « and the resonance driving strength V5. How-
-1

ever, with the approximation that VsJ;, < a in Equation (3.16) for the fixed
point action Jy,, it is apparent that the fixed point action also varies inversely
with the detuning. Therefore, since the resonance strength Vy is driven to first
order in the decapole strength and the detuning is driven to first order in octupole

strength (see Table [3.1]), the island tune is expected to vary as:

=3
I

Qloczi,) b

ol

(3.24)

Figure (3.4) shows a comparison of the theoretical prediction for Q1 to tracking
in this lattice while varying the octupole strength, showing the scaling of (3.24)
for small 5. As this strength becomes nonperturbatively large (on the order
of 3b; &~ 1, since there are three octupoles in this lattice), the naive first order
predictions fail. This is due to a higher-order contribution to the resonance driving
by the octupoles which cannot be ignored in this limit. However, for octupole
strengths smaller than .1 m™3/2, the results of first order perturbation theory
appears adequate.

Figure (3.5) shows a similar comparison while varying the decapole strength,
keeping the octupole strengths constant. Here the approximation begins to fail at
lower orders as the 3Q, resonance, also driven to first order in by, begins to distort
the phase space where the resonance islands are located. For decapole strengths
less than 1072 m ™2, at the octupole strength listed, the prediction and scaling of
(3.24) agree with tracking.



0.003
g 0.002 - —— Theory (Equation [3.20]) -
c — — — Tracking
5
|_ L
©
3
w 0.001 -

0.000 :

0.0 0.2 0.4 0.6 0.8 1.0

-3/2

Octupole Strength ~b, (m ™)

Figure 3.4: A comparison of the theoretical prediction for the island
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3.5 MEASUREMENTS IN REAL ACCELERATORS

The detuning coefficient o can be experimentally measured in several ways. One
method is to kick the beam transversely and observe the resulting tune shift at this
betatron amplitude. This is typically only possible if the beam is small enough
such that there is no appreciable tune spread over the beam distribution, due to
the presence of tune spread decoherence as discussed in the next paragraph. This
is also the method used by tracking programs to measure the tune dependence
on amplitude, because the phase advance for a single particle can be measured
to the computational precision and there is no tune spread or decoherence in
single-particle motion.

With a moderately sized beam, the detuning coefficient can be measured by
observing the decoherence time of a bunch kicked into a non-resonant section of
phase space. Particles that comprise a kicked bunch will have different tunes
(because of their different amplitudes after the kick), and so the distribution
will “decohere”, with the phases of particles with smaller tunes lagging further
and further behind those of particles with larger tunes. The timescale for this

phenomena to decohere the beam is

1
@) .
< 47 ] 7(kick) 4

where J(kick) is the action of the kick and o is the size of the beam measured in

7(decohere) =

: (3.25)

units of the action. For conditions experienced in experiment E778, the typical de-
coherence time is tens to hundreds of machine turns. This phenomenon has been
previously studied, both within the context of E778 (Chao et. al. 1987b, Chao et.
al. 1988, Merminga 1989) and in other environments (Lee et. al. 1991, Byrd 1992).
It gives a quantitative measurement of the detuning strength even when the co-

herent oscillation decays rapidly and direct measurement of the tune at the new
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betatron amplitude is impossible. An illustration of this decoherence is shown
in Figure (3.6), and an actual experimental turn-by-turn position measurement
showing this decoherence is shown in Figure (3.9).

With this independent measure of «, one now needs to know the island tune
or island width in order to deduce the resonance strength. The island width has
been measured in past E778 experimental runs by observing the fraction of kicked
beam trapped within a resonance island (Chao et. al. 1988, Merminga 1989). A
typical value of the physical island width, \/6I3,, reported by Merminga is half a
millimeter. This method usually can only give general estimates of 61, and relies
on fine calibration of the kicker.

Instead, recent experiments have concentrated on measuring @1, the island tune,
in machines where strong resonances have been driven by explicitly introduced
nonlinearities. Sextupoles have predominantly been used, since they are the low-
est order nonlinear multipoles and are commonly found in many accelerators to
correct chromatic focusing errors. The procedure of finding and populating such
resonance islands in the phase space of a real machine is greatly simplified by
the appearance of “persistent signals” when a significant fraction of the beam is
captured within a resonance island. When this occurs, the trapped beam exhibits
a coherent oscillation with an exceptionally long lifetime — millions of turns —
and the frequency spectrum of the beam on an online spectrum analyzer shows a
long-lived peak exactly at the resonant frequency.

One possible method to determine the island tune is to examine the coherent
motion of a bunch kicked into a resonance island. If the bunch is small enough (ie.
has an RMS size much smaller than the size of the island), it behaves essentially
as a single particle for times much smaller than it’s decoherence time within
the island. The resulting coherent motion within the resonance allows direct

measurement of (J1; such an approach was adopted by the CE22 collaboration at
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IUCF (Lee et. al. 1991). Figure (3.7) shows a representation of such a kick applied
to the resonant system seen in Figure (3.6).

In the Fermilab Tevatron, beam sizes are typically large compared to the size
of induced resonance islands; creation of larger resonance islands is impractical
due to physical aperture considerations. This means that when the beam is kicked
onto the resonance, the entire resonance island is populated. There is still a strong
persistent signal corresponding to the coherent motion from island to island, but
there is no local coherent motion of the particles trapped within the resonance
island that allows direct observation of ;. Figure (3.8) shows a symbolic rep-
resentation of such a kick, including the decoherence of the portion of the beam
not trapped within the resonance island. A sample turn-by-turn position mea-
surement from E778 showing this decoherence and a persistent signal is seen in
Figure (3.10), showing beam capture on a 5@, resonance island chain.

There are various frequency-domain methods of examining the distribution of
particles filling a single resonance island (Chen 1990). For example, if the reso-
nance island is completely but not evenly populated, the discrete Fourier trans-
form of a BPM measurement taken every N turns should show a low-frequency
element similar to that of an ensemble of driven pendula, dropping off quickly into
background noise at frequencies near the island tune.

Since the distribution of particles within the resonance island was indeed ex-
pected to be relatively even due to the nature of the beam size used in E778,
another method is investigated in this thesis. Resonantly captured beam was ex-
cited with a set of very weakly modulated quadrupoles, modulating the tune and
effectively turning the ensemble of free pendula into driven pendula. The frequen-
cy response of the beam was then correlated to the frequency of the modulation

for a reasonable measurement of the island tune.
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Figure 3.6: Beam decoherence from a kick into a sheared non-resonant
section of phase space. The intermediate distribution has a centroid po-
sition that decays with time and approaches a final annular distribution
(which has a larger emittance than the initial distribution and a centroid
position of zero) over approximately hundreds of turns.
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Figure 3.7: Phase space plot of a small beam kicked into an N = 5
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distribution every 5 machine turns shows coherent motion around the
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Figure 3.8: Phase space plot of a large beam kicked into an N = 5 nonlin-
ear resonance island. The untrapped portion of the beam decoheres and
does not contribute to the coherent centroid motion. The trapped por-
tion coherently moves between resonance islands, but shows no evidence
of the island tune ;.
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Figure 3.9: Sample E778 turn-by-turn data at kick time, showing the
kick and gaussian decoherence. Kicker voltage is 11 kV, in the E778
91.0 lattice. The graphics are produced by the kaspar graphics program.
The decoherence pictured has a timescale of approximately 100 turns.
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Figure 3.10: Sample turn-by-turn data at kick time for two BPMs sepa-
rated by a betatron phase of approximately 70 degrees, showing the kick
and production of a (), = 20.40 persistent signal. Kicker voltage and
lattice are as in above figure. Only 2500 turns are pictured here, but this
coherent oscillation survives for millions of turns.
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CHAPTER 4
PERTURBATIONS OF NONLINEAR RESONANCES —
TUNE MODULATION AND BETA MODULATION

The effects of various types of perturbations on particle motion influenced by
an isolated nonlinear resonance are investigated in this chapter. Two types of
perturbation are of particular interest here: modulation of the machine tune and
modulation of the linear beta functions at the nonlinear magnets driving the

resonarce.

Modulation effects are important for a variety of reasons. From a general dy-
namic viewpoint, the separatrices surrounding nonlinear resonance islands are
extremely fragile under small perturbations such as modulations because they
are homoclinic, or asymptotically joined to the unstable fixed points of the res-
onances (Lichtenberg and Lieberman 1983, Vivaldi 1984). As the modulation
strength grows motion becomes stochastic in a widening area around the separa-
trix; this stochasticity can then act as a noise source for diffusion models that may
be important mechanisms limiting the luminosity lifetimes of present and future
colliders. One of these diffusion models, aptly named modulational diffusion, is
described in greater detail in Chapter 7. Tune modulation is also important in
study of the beam-beam interaction where its inclusion is necessary to reconcile
operational observations with simulation and theory (Peggs and Talman 1986,
Saritepe and Peggs 1991). Modulation methods have been proposed for use in
crystal channeling and parasitic beam extraction at the SSC (Gabella et. al. 1992)
where controlled RF modulation would be used to create trapping resonances in

longitudinal phase space.

Most importantly from the perspective of this dissertation, modulations pro-

45
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vide a frequency-dependent mechanism for detrapping particles captured within
nonlinear resonance islands. This allows measurement of the island tune () even
in the experimental circumstance of large beam sizes. It is the objective of this
chapter to describe this mechanism within the discrete Hamiltonian context and
to summarize the requirements for both tune modulation and beta modulation to
detrap particles captured near the resonance island fixed points.

The general character and sources of tune modulation and beta modulation
are described in § 4.1. The one-dimensional driven pendulum N-turn Hamiltoni-
an with tune modulation is derived in § 4.2, and the corresponding equations of
motion are developed. In § 4.3 we explore the structure of the tune modulation
parameter space (¢, Qyr) and find four dynamical regions of interest — the adi-
abatic “amplitude-modulation” region, the fast-modulation “phase-modulation”
region, the “strong-sideband” region and a region of chaos where the regular lo-
cal motion around the fixed points vanishes. We investigate the effects of beta
modulation in the N-turn Hamiltonian and compare them to those of tune mod-
ulation in § 4.4, and compare the theoretical predictions of the previous sections

to particle tracking for both modulations in § 4.5.

4.1 SOURCES OF TUNE MODULATION AND BETA MODULATION

If QQy denotes the unperturbed tune, tune modulation is assumed to be of the

form
Qo — Qo + ¢sin(2rQurt) . (4.1)

The tune modulation strength, or depth, is ¢, and (s is the modulation fre-
quency; both are frequency-domain parameters and are expressed in inverse turn-
s. This type of tune modulation unavoidably arises from two sources: ripple on

quadrupole power supplies and coupling of synchrotron oscillations to the tunes via
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chromaticity. The latter is normally the more important source due to the conser-
vative bounds placed on power supply current ripple, on the order of AI/I ~ 107°
to stabilize machine tunes to 1072 accuracy.

With typical chromaticities of several units and fractional momentum offsets 6 of
about 10™*, Equation (2.19) shows that modulation strengths ¢ of approximately
1073 are always present in the Tevatron. The modulation frequency for these
oscillations is the synchrotron frequency, ranging from 1.4 - 1072 at injection to
5.7 - 10™* at collision energies. It is difficult to reduce the momentum spread
of the beam, both because of demands on RF systems and because of coupled
bunch instabilities that appear at high longitudinal beam densities. Reduction of
chromaticities ¢ is also impractical because chromaticities much smaller than a
few units can cause strong head-tail instabilities in individual beam bunches.

Tune modulation can also be explicitly introduced by modulating the power
supply currents of a set of quadrupole correctors. A modulated quadrupole error
of strength Aby at alocation with horizontal beta function Bz (quad) will modulate

the horizontal tune vis. Equation (2.22):
Aby B(quad)
9= ———
4

The vertical tune is modulated with an opposite sign (completely out of phase from

. (4.2)

the horizontal) using the corresponding beta function. Discussion of controlled
modulation for the E778 tune modulation experiment is deferred until Chapter 5.

Quadrupole modulation not only changes the tune of the machine but also
modulates the beta functions around the ring. Quantitatively the amplitude b(s)

of this beta modulation,
B = BL+b(s)sin(27Qrt)] (4.3)

is given by Sands (Sands 1970, eq. [2.105]):

= Aﬂ(S) = 27Tq COS S) — ua — 4T
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The only longitudinal position dependence is in the cosine; this perturbation caus-
es a so-called “beta wave” around the accelerator with a cusp at the location of the
quadrupole error. Examination of the first-order nonlinear Hamiltonians Equa-
tions (3.6) and (3.7) shows that, for the single resonance term cos(Nv) selected
by N-turn summation, the final effect of beta modulation is, to first order in b, a

modulation of the resonance strength:

Nb
Vo = VN |1+ 7 Sin(?ﬂ'QMt) . (45)

The beta modulation strength in Equation (4.4) is expressed in terms of the
tune shift for the quadrupole to compare the relative effectiveness of tune and
beta modulation in detrapping particles captured within nonlinear resonance is-
lands. For a single quadrupole error the maximum beta modulation amplitude b
is roughly an order of magnitude larger than the corresponding tune modulation
depth ¢; for a set of modulated quadrupoles distributed in phase ¥(s) (as used
in E778) interference between beta waves from individual quadrupoles makes this
ratio about two to three times smaller.

A similar, though not equivalent, modulation is produced by synchrotron oscil-
lations of a particle with nonzero fractional momentum offset 6. These modulate
the magetic rigidity |Bp| — |Bp|[l 4 6 sin(27Q pt)], effectively modulating the
normalized multipole strengths. For 6 < 1, always the case in realistic operations,

by — by[1 — §sin(27Q )] (4.6)

to first order in 6. This modulates the resonance strength Vi differently than beta
modulation does, since here Vy is proportional to b, in a first-order nonlinear
analysis:

VN — VN[l — (Ssin(QFQMt)] . (47)

So b = 26/N for beta modulation induced by synchrotron oscillations.
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4.2 THE N-TURN HAMILTONIAN FOR
TUNE MODULATED ONE-DIMENSIONAL RESONANCES

We begin with the one-turn one-dimensional Hamiltonian of Equation (3.13),

including tune modulation:
1
Hi(, J;t) =27Q0J + §aJ2 + Vi JN/? cos(N) + 2mqJ sin(2rQust) . (4.8)

The single resonance term is the only one kept because all others, not of interest
in an isolated resonance model, are suppressed in the summation used to produce
an N-turn Hamiltonian. The tune is again assumed to be near the resonant tune,
Qo = % + 6¢g where 6g < % We shall consider only tune modulation frequen-
cies @y much smaller than 1/N so the tune is adiabatically changing over these
N turns, and tune modulation depths ¢ & §g. Real sources of tune modulation
described in the previous section agree with these limits; much larger tune modu-
lation strengths prohibit any regular motion with strongly driven resonances. The
one-turn Hamiltonian is now summed over N turns as in the previous chapter to

give, to first order in the small strengths o, Vv and ¢:

Hn(,J;T) =27NégJ +2rNqJ sin(2rNQuT) + %a]z (4.9)

+ NVNJN/2 cos(Nv) .

The N-turn Hamiltonian can exhibit fixed points as before for certain sections
of the modulation parameter space (¢, @nr). Solving the equation J = 0 for the
fixed point phases gives ¢, = 0,7/N,...(2N — 1)x/N. Similarly, solving b =0
for the fixed point actions gives

0=2mbg + 27rqsin(2r NQuT) + aJyp ,

2 4.10
AN qQar cos(2nNQuyT) . ( )

Jpp= -
Ip o

We transform the coordinates to the small action-angle coordinates (6,I), ex-

panded around a stable fixed point, via the linear transformations of the previous
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chapter —
6= —+6
N (4.11)
J = pr(T) + 1.

This transformation also changes the Hamiltonian because it is nonautonomous,

or time-dependent:
Hy(p, J;T) = Hy(6,L;T) + 6.7, . (4.12)

Performing this change of coordinates produces a driven pendulum Hamiltonian,

A2 N

[a%

N
Hn(6,I) = EQIZ + .7\71/]\7,]){\;/2 cos(NO) — qQ 0 cos(2rNQyT), (4.13)

The equation of motion of the angle variable 8 becomes that of a pendulum, driven

at the modulation frequency Q) ;:

6 = —N(27Q1)? sin(N8) — 4AN*72¢Qps cos(2nNQuyT) . (4.14)

This form agrees with others previously published (Peggs 1988, Chen 1990) if the
timescale is changed back to single turns via T — ¢/N.
When the equation of motion for the angle 8 is linearized, it can be solved easily

and explicitly for 8(T). The solution is found to be

oT) = L Qs cos(2rQuNT) . (4.15)
Qm Q3 — QF

From the Hamiltonian we can also get the solution for the action I as a function
of T, since 6 ~ Nal:

2rq Q%

=g a

sin(2rQuNT) . (4.16)

4.3 STRUCTURE OF THE (¢, Q) PARAMETER SPACE

From the structure of the driven pendulum equation of motion, it is natural to

investigate the structure of the (¢, @) modulation parameter space. Rescaling
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the time by T — T'/Q1 in Equation (4.14) shows that the natural scaling for both
g and Qs is @1, since only the ratios ¢/Q1 and Qnr/Q1 appear under this scale
change:

§ = —N(2r)? sin(N) — 4N?r? (é) (%—J‘Q cos [27TN (%‘f) T] . (417)

It is interesting to look at three extremes of the parameter space: when QJy; < Q1
(adiabatic modulation), @ > Q1 (fast modulation) and Qs ~ Q1 (resonance).

First consider the case of adiabatic tune modulation, where the modulation
tune is much smaller than the island tune, or many particle oscillations take place
around the fixed point with every modulation cycle. Here we can consider the
tune to be changing linearly with a small rate of Q = d@Q/dT. The transformed

Hamiltonian of Equation (4.13) is now given by
N 2 N/2 :
Hn(0,I;T) = EOéI + NVn Ty, cos(NO) +27QTI . (4.18)

The dependence on QT may be relegated to second order with the generating
function

_ Y s
GUI6:T) = —16+ 2% 1g (4.19)
«
which gives the transformations I = I—27rQT/oz and § = §. The new Hamiltonian
is now no longer periodic in the angle variable 8, for it becomes

N _ 9270 -
Hy(0,1) = Eaﬁ + NV J /% cos(N) + Qg (4.20)

[a%

This Hamiltonian ezplicitly modulates the pendulum amplitude I, as can be seen

by the Hamilton’s equation for it’s rate of change:

OHyN

27TQ
0 T

[a%

p N . —
I=— = N2V J /% sin(N6) (4.21)

Now there are only angle fixed points if we can find 8¢, such that I[=0. Noting

that the maximum value of the rate of change of the tune is Qmaz = 27NqQur,
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we find the constraint

1

q Qu
SN

Q1 Qr

for adiabatic stability over the entire modulation sweep. As has been previously

(4.22)

mentioned (Peggs 1988, Chao and Month 1974), this is an analogue to RF buck-
et shrinkage during particle acceleration. The above procedure is equivalent to
transforming the original N-turn Hamiltonian (4.9) via a generating function that

modulates only the action (or amplitude),
G(¢7 I7 T) = [JfP(T) + I] [¢ - kresﬂ-] ) (423)

hence this region is dominated by “amplitude modulation”, where the modulation
predominantly modulates island amplitudes instead of island phases as mentioned
above.

Second, consider the “fast modulation” case, where Qs > (J1. As might be ex-
pected from the above comments, this region is dominated by “phase modulation.”
Consider transforming to the phase-modulated fixed points with application of the

generating function
Go(h, ;T) = [gp + 1[0 — b p(T)] (4.24)
to the N-turn Hamiltonian (4.9) — this produces
Hy(8,1) = %aﬁ + 27Nl sin(2rNQuT) + NV J /2 cos(N8) . (4.25)

Here the phase is explicitly modulated by the term linear in the action I, as

expected. Applying yet another generating function,

Go(0,1;T) = 0T + —L— cos(2rNQuT)I , (4.26)
Qm
shifts the modulation inside the angle dependence:

Hn(0,I;T) = %a[z + .7\71/]\7,]){\;/2 cos | N6 + g—q cos(2rQuNT)| . (4.27)
M
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The cosine term can be expanded in Bessel functions J,, and harmonics via a

variant of the Jacobi-Anger expansion of a plane wave,

cos(A + BcosC) Z Jm(B)cos(A+ mC +mn/2), (4.28)

to produce a new Hamiltonian that has an infinite number of resonance terms:
__ N
Hy(8.1) = Sal’ + NVy I Z T ( ) cos(NO+2rmNQuT +mn/2) .
(4.29)
Examine a particle at non-zero I in the above Hamiltonian; there is a family of
actions I; (parameterized by an integer /) where a particle has a net phase advance

of zero (modulo 1) over NTy; turns, or a tune of

M
= 4.30
Q="+ - Qu (4:30)
The action that corresponds to this tune is I; = % Now we can perform

a sum over T3y N-turn periods near this tune if not much happens in that time
(if @um < Q1) to find a new Hamiltonian that is autonomous over discrete time
intervals of Ty - N turns. When this sum is performed, only one resonance (m =
—[) remains since the others are suppressed in a similar manner to the resonance

suppression before, and we find the Hamiltonian for (T - N )-turn motion:

_ N -~ -~
Hy 1y, (6.1) = - Tya(I — I)? + NVNJN/zTMJ (

Ngq

QM) cos(N8). (4.31)

Note that this Hamiltonian contains a sideband resonance for every integer [;
however the Bessel functions suppress the amplitudes of these sideband resonance
strengths for large [ since J_; ~ 0 for Nq¢/Qun < |l{|. For the unsuppressed

sidebands the Bessel functions can be approximated by

Vo) (20 (Nq E_z> or 1] < 4
- (sz) (qu> Ou © ) ° IZI<QM (4.32)
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with rms values \/Qar/Nmq. This means that the [ = 1 sideband suppressed and
no sidebands are driven strongly if

q< QTM . (4.33)

Generally the k" sideband is suppressed if ¢ < kQas/N.

From the Chirikov overlap criterion (Chirikov 1979), sideband resonances over-
lap and local stochasticity results if 21w > I, where Iy is the sideband reso-
nance island action half-width and I,., is the action separation of the fixed points
of neighboring sidebands. From the above formula for I;, it is apparent that
Isep = 27Q 1 /Na. The island width must be calculated from Hamiltonian con-
tour considerations and Equation (4.31) in the same fashion as the unperturbed

primary resonance width calculation in Chapter 3; here it is found to be
N/2

Vi 12
Iy = 2 [M J_ (&)]
a Qum

for each sideband. Combining these with the overlap criterion and the definition

4.34
Nrq (4.34)

[a%

1/2
VN'])]“\]ZN] |:QM:|1/4

of @ for the primary resonance (Equation [3.21]), sidebands overlap and chaos
begins when

256 Qf > N7mqQ3, . (4.35)

Even though separatrices are destroyed and sidebands overlap when this condition
is obeyed, the central regions of the primary resonances can still be locally stable
for small enough @), where adiabatic trapping takes over as in the previous
discussion.

Lastly consider the nearly resonant case, Qys & (1, as described approximately
by the linearized equations of motion. Equations (4.15) and (4.16) represent
locally phase-locked motion only when the linearization of this motion around

the fixed point in phase is a good approximation. This approximation fails when
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sin(N6) becomes strongly nonlinear — that is, when |N6| ~ 1. This gives a weak

constraint for bounded motion as

qQm

g7 < 1/N . (4.36)

This constraint can be improved by including the next order (nonlinear) terms
in the expansion of the driven pendulum equation (Tsironis 1990) but it is satis-
factory in the resonant region where Q3 ~ ()1 and large motion is expected to
become unbounded.

Summarizing, there are four basic constraints in the parameter space that divide
the (¢, @ ar) plane into four distinct regions. Near the driven pendulum resonance

(Qu ~ Q1), chaos occurs when

qQm

2| 1/N . (4.37)

In the adiabatic regime (@ < Q1), chaos occurs when

Qr

7 (4.38)

lg@nr| >

below this threshold we have adiabatic stability of the fixed point and amplitude
modulation dominates. In the fast-modulation approximation (Qur > Q1) the
k" sideband appears when ¢ > |k|Qn/N. The first sideband off the primary
resonance is then of non-negligible size when

Q.

T (4.39)

below this threshold there is stability with fast “phase modulation”. The side-

bands overlap and produce chaos when

256 Qf > NmqQ3, . (4.40)
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Figure 4.1: The (¢, Q) parameter plane for N = 5, showing four dis-
tinct phases of motion. Local motion near the fixed point of the 5@,
resonance is stable (i.e. phase-locked, or resonant) for all regions except

“Chaos”.

These regions of the tune modulation parameter plane (¢, Q) and the lines sep-
arating them are shown in Figure (4.1).

The only tune modulation parameters that create detrapping of particles cir-
cling near the centers of nonlinear resonance islands are in the “Chaos” region of
this figure, where there is expected to be no regular motion at all within the reso-
nance island chain. It is important to note that with the presence of detuning and
for purely one-dimensional motion, this chaotic region is localized. That is, the

chaotic motion is restricted to a “thick layer” of stochasticity, covering the extent
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of the overlapping sidebands created by the modulation. The presence of such
a region does not necessarily prohibit stable motion at larger amplitudes if the
detuning that is present is sufficiently strong to pull the tunes of particles at these
amplitudes to nonresonant values. This is a contrast to “thin-layer” stochasticity,
which is created by the overlap of thinner higher-order resonances in the vicinity
of perturbed separatrices. For our purposes such thin-layer stochasticity can be
ignored in this discussion, since the phase space extent of such regions is a great
deal smaller than the extent of the chaotic band created by tune modulation.

The phase space of particles in each area of the tune modulation parameter
plane is shown in Figure (4.2), plotted every modulation period. Shown on top
for reference is the phase space of unperturbed particles, with Q1 = 6.1 - 1073
for the primary isolated N = 5 resonance shown. This is a nominally realistic
value for (1, also similar to values found for small nonlinear strengths in tracking
in the last chapter. Note that motion in the amplitude modulation and phase
modulation regions is essentially indistinguishable from the unperturbed phase
space and small-amplitude nonresonant motion is undisturbed in all cases. In the
lower right figure the £ = 1 sidebands can be seen on either side of the primary
resonance, with stochasticity already beginning to form where the separatrices of
the resonances overlap.

Alternative schemes to investigating the stability of the driven pendulum equa-
tion of motion (4.14) have been proposed which do not linearize the pendulum
completely but including the first nonlinear terms in the expansion of the sine
(Tsironis, Peggs and Chen 1990). Such an analysis predicts stability boundaries
of the Mathieu equation, similar to the discussion of beta modulation in the next
section. However these resonances are expected to be significantly weaker than
the main driven pendulum resonance because they are found within the nonlinear

response of the pendulum system.
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Figure 4.2: Phase spaces at various points in the (¢, @) tune modula-
tion parameter plane as produced by the simulation program OdTrack
for N = 5 resonance islands. Here the action a = \/ﬁ is plotted a-
gainst particle phase, for Q; = 6.08 - 1073. From the top and left to
right, the figures are described as: (a) The unperturbed phase space at
g = Qu = 0. (b) Amplitude modulation with ¢ = Q» = Q1/10. (¢)
Phase modulation with ¢ = Q1/10, Q@3 = 10Q1. (d) A thick stochastic
band is produced in the chaos region with ¢ = Q1/2, Qs = Q1. (e) The
first sideband (k = 1) appear at ¢ = 2Q1/5, Qum = Q1/3.
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4.4 THE N-TURN HAMILTONIAN FOR
BETA MODULATED 1-DIMENSIONAL RESONANCES

Now consider the one-turn one-dimensional Hamiltonian of Equation (3.13),
representing the motion of a particle trapped in a nonlinear resonance island

influenced by a small beta modulation (4.5):
1 Nb
Hi(yp, Jit) =27QJ + §aJ2 + Vi JN/? cos(Nv) |1+ <> sin(2rQart)| . (4.41)
With the assumption that the tune is near an N () resonance as before, quantified

by stating that @ = M/N + ég, we can now go through the N-turn summing

process to arrive at an N-turn version of this Hamiltonian:

N
Hx(¢, J;T) =27NégJ + Eaﬁ

N (4.42)
+ NVN TN/ cos(Ny) |1+ - sn(2rQu NT)

The equations of motion given by this Hamiltonian show that neither the fixed
point action nor phase are modulated by beta modulation — it is the depth of the
oscillator well, or resonance strength, which is being modulated. Transforming
to the coordinates (6,1) is then not time-dependent, and can be accomplished
using the linear canonical transformation of Equation (3.17). The Hamiltonian
after this transformation has the form of a parametrically modulated nonlinear

pendulum,
N Nb
Hy(0.1:T) = Sal” + NV /2 cos(N§) |1+ - sin(2rQuNT)| . (4.43)

Comparison of the relative effectiveness of tune modulation and beta modulation
in detrapping particles within resonance islands and destroying persistent signals
is more straightforward if we compare the respective equations of motion. The
equation of motion for the angle of this oscillator in all ranges of modulation

strength b and frequency Qs is then

6 = —N(27Qr)*sin(N6) |1 + N7b sin(2rQuNT)| . (4.44)
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The parametric form of the equation of motion is expected in the case of beta
modulation because the strength of the resonance is being modulated as mentioned
above, thus modulating both the island tune )1 and the island width. The fixed
point phases are not expected to change with beta modulation to any order, as
can be seen by examining the above equation of motion when 6 = 0. From

Equation (4.41) the equation for the fixed point action J¢, is

N

N —2 Nb
0=27Q + aJsp + EVNJ = |1+ <> sin(2rQuNT)| (4.45)

indicating that this action is modulated in some complicated weak way.

The linearized form of Equation (4.44) is called the Mathieu equation. Condi-
tions for the stability of such a parametrically driven oscillator have been described
extensively in classical mechanics literature (Landau and Lifshitz 1975) and vari-
ous tables of stability curves have been produced (Abromowitz and Stegun 1965,
McLachlan 1951). The above form can be transformed to the canonical form cited
in the literature,

d*6

e +[a —2fsin(22)]6 =0, (4.46)

2N\ Q1

Note that the modulation frequency still scales naturally with the island frequency,

2
noting the equivalences z = N7Qur, (Qua/Q1) = 2/@1/2, and b = L <Q_M> )

but the modulation strength b usurprisingly does not because it is not a natural

frequency domain variable. For values of b < 1, resonances exist for the beta-

modulated parametric oscillator when

21
k

Q) ps(resonant) = (4.47)

where k is an positive integer. The strength of these resonances increases with
increasing modulation strength b, but decreases with increasing k as b%; the sub-

harmonic resonance at k =1 (or Q3 = 2Q)1) is the strongest.
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Figure 4.3: The N = 5 modulation parameter plane (b, Qr/Qr) for
beta function modulation, showing approximate widths for resonances
of orders k£ = 1 to k& = 5. Small oscillation stability is predicted below
each set of resonance lines.

The k& =1 through k = 5 Mathieu resonances are shown in Figure (4.3), where
motion within a resonance is expected to lead to instability of motion very close
to the fixed point and subsequent detrapping. The k = 1 subharmonic resonance
is evident at Qs = 2Q)1. All of the resonance widths typically grow non-negligible
at a beta modulation depth of approximately b ~ 0.10. Higher order resonances
are present but not shown for the sake of clarity. Note that in this stability

8

diagram the vertical scale is b = %. Comparison of this figure to Figure (4.1)

and recalling comments about the relative strengths of beta modulation and tune
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modulation induced by a quadrupole error shows that tune modulation is on the
order of 1/(10Q1) times more effective than beta modulation in destroying local

regular motion near the center of a nonlinear resonance island.

4.5 COMPARING HAMILTONIAN RESULTS TO SIMULATION

The entirety of this chapter concerns the phase-locking “stability” of particles
trapped within nonlinear resonance islands subject to tune modulation and beta
modulation. It is quite tedious to examine phase-space plots by hand for a variety
of modulation conditions to determine the stability of the fixed-points, and so an
algorithm was developed that allows fast and efficient location of fixed points in
the two-dimensional map of the octupole-decapole lattice. This algorithm is quite
easily extendible to any two-dimensional map.

Consider a fixed point in the phase space (x,2') at the location (z,z"). If this
fixed point is elliptically stable a particle circulating around it will experience the

linear transformation from initial coordinates (z,2') to (z + Axy, 2" + Axl)
x+Axy\ _ [ T A B r— T
(ran)-(2)+ (4 B)(22). s

x+Ax1\ [ Ar —Ax + B2 — B’ + % (4.49)
'+ Az ] T \Cae—Cx+ D2’ —Dz' +2' ) - ‘

or

The transformation matrix has the form of a rotation matrix if the motion
around the fixed point is perfectly circular. For a more general elliptical fixed
point, the trace of the rotation matrix is twice the cosine of the the total phase
advance induced by the mapping; if this phase advance is denoted 27T, where
T is the number of turns tracked to produce one iteration of this map in Odfp,

then

A+ D

cos(2rT) = 5

(4.50)
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This determines ()1 within an aliasing factor from the cosine once the trans-
formation matrix elements are known, and this aliasing factor can be found by
comparison of this ()1 to the theoretically predicted value.

Equation (4.49) only gives two constraints to find six unknowns, the fixed point
location and the elements of the transformation matrix. Four other constraints are
given by launching two more particles through the same mapping, offset by small
amounts éx and dz' in the x and 2z’ directions respectively. The second particle

experiences the linear transformation from (x + éx,2') to (@ + Axg, 2’ + Axl):

x4+ Axy \ [ Axr — Az + B2' — Bx' + 1 4 Adzx (4.51)
'+ Az, ] T \Coe—Cx+ D2’ — D' +3 +Céx |~ ‘

Subtracting the mapping equations for the first particle from those of the second

gives equations for the matrix elements A and C"

_ Awxg — Axy C- Azl — Axq

A
bx bx

(4.52)

Repeating the same process for a particle mapped from coordinates (z, 2" + 6z')

to (v + Awxs, 2’ + Azl) gives the other two matrix elements:

Az — Az D Azl — Az

B
ox! ox!

(4.53)

Once the transformation matrix is known, Equation (4.49) can be inverted to

find the fixed-points of the mapping:

()= B [(ran) - (2 5)(5)] o

This implies a matrix inversion — if this matrix inversion fails, then the initial
conditions were such that the three particles were proceeding essentially linearly
and there is no fixed point nearby.

This method has several advantages that make it extremely useful. It is ex-

tremely fast, requiring only three iteration about the local fixed point to assess
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local motion, as opposed to minmax fixed-point location techniques where many
hundreds of iterations must be performed. It is also very efficient and accurate;
only two or three iterations of this procedure were required to find the fixed point
of a particle even launched near the separatrix. And finally, it is very robust; any-
where in the two-dimesional phase space where there is local curvature created
by the presence of a resonance island, this method will iterate. If such curvature
is produced by proximity of a stable fixed point, the method will converge; con-
versely, if such curvature is produced by proximity of an unstable fixed point, this
method will rapidly diverge.

The program Odfp is used to monitor local stability of a 5@, resonance island
fixed point in the octupole-decapole lattice. For a given modulation tune @)y,
the fixed point was found for zero modulation strength. The modulation strength
was then gradually increased and the local fixed point was again located, and
the process was repeated until local motion was so distorted by the perturbation
that no fixed point was found. This scan of modulation strengths was repeated
for many tune modulation frequencies, and the points in the parameter space
(¢, Qnr) where the fixed point disappeared were plotted. Consecutive iterations
with a variety of modulation strengths makes it possible to extrapolate fixed point
locations through vertically thin regions of instability in some cases. However, for
large regions of chaos merely the edges can be examined, as the strongly chaotic
motion precludes any chance of finding fixed points.

The results of such a set of simulations for the case of tune modulation, with
beta modulation explicitly absent, are shown in Figure (4.4). A point is plotted
for each (¢, Qr) point where the fixed point was not found (or when local motion
around the fixed point was not phase locked). The scan begins at Qs = 0.1 Qr,
corresponding to a modulation period of approximately 1650 turns — searching

further into the low-frequency adiabatic territory is constrained by available com-
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Figure 4.4: The (¢q,Qn) parameter plane for N = 5, showing fixed
point stability for a run of the tracking program Odfp. For this lattice
by = 0.010, by = 0.005, Q1 = 0.0061 and 1/Q1 ~ 165 turns. Lines from

Figure (4.1) are shown for comparison to theory.

puter time and shows highly erratic behavior of many closely spaced resonances as
described in the next paragraph. The frequency scan ends at ()3; = 10 ()1, where
the modulation period is approximately 16 turns and the approximation of mod-
ulation adiabaticity with respect to the turn time within the machine, Qs < 1,
begins to break down.

This figure shows the dominant 3y = ()1 resonance, but also indicates that
the stability border around this resonance is asymmetric. The low-frequency side

of this resonance curves to low frequencies, and qualitatively agrees with the pre-
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Figure 4.5: The (b, Qs ) parameter plane for N = 5, showing fixed point
stability for a run of the tracking program Odfp. Tracking conditions
were the same as those in Figure (4.4), and stability curves from Fig-
ure (4.2) are shown as solid lines for comparison.

dictions of tune modulation stability. However, the high-frequency side of this
resonance appears almost vertical — at modulation frequencies just above the
island tune, stability is greatly enhanced. This asymmetry is probably due to
the higher order terms that have been neglected; indeed, the parametric oscillator
displays such an asymmetry at this resonance (Landau and Lifshitz 1975). The
presence of a cascade of thinner higher-order resonances at low frequencies, each
dipping down at precisely the harmonics corresponding to Mathieu resonances,

and the crescent-shaped instability region between @y = @1 and the subhar-
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monic resonance @y = 2@ also indicate that the nonlinear driven pendulum
equation of motion (4.14) has weak instabilities defined by the Mathieu equation,
as predicted elsewhere (Tsironis, Peggs and Chen 1990). At higher frequencies
stability is shown up to large modulation strengths, on the order of values that
would make the assumption that the tune modulation depth ¢ is less than the
difference between the base tune and the resonant tune false. There is indeed a
large stable region in the area of “stable sidebands”.

For beta function modulation a similar set of simulations were performed, with
tune modulation absent, and the results of these simulations are shown in Fig-
ure (4.5). Resonance locations are exactly the same as predicted, though the
behavior of tracking stability is somewhat different than that of the Mathieu pre-
dictions. This is quite reasonable because an approximation was made that b < 1
in the derivation of the Mathieu form for beta modulation, and so the predicted
stability is expected to hold only for modulation levels much less than the be-
ta function itself. Comparing the vertical scales between Figures (4.4) and (4.5)
again shows that, for tune and beta modulation created by the same strength
quadrupole ripple, tune modulation destroys the phase localization of resonance

islands much more effectively.



CHAPTER 5
TUNE MODULATION AND EXPERIMENT E778

Experiment E778, nonlinear dynamics in the Fermilab Tevatron, started in 1987
to answer several questions regarding nonlinear dynamics issues in accelerators,
in particular how accurately the the linear aperture of an actual synchrotron
compares to that predicted by design and simulation programs. Various type-
s of simulation programs have been used within the field of accelerator physics,
both to assist in machine design and lattice modification. These simulations are
extremely important in the design of new accelerators such as SSC, LHC, and
RHIC, where performance demands typically requiring magnets with larger aper-
tures and higher field quality must be balanced against the financial burden of

construction.

Examination of the linear aperture is a more straightforward matter than exam-
ining the dynamic aperture, defined as the betatron oscillation amplitude which
separates stable motion from unstable motion over some period of time. The dy-
namic aperture depends on many quantities, such as the physical aperture of the
machine and the time period over which stability is being questioned. The linear
and dynamic apertures depend strongly on nonlinearities, both intentionally and
unintentionally introduced, in the synchrotron; it is therefore important to be able
to model these nonlinearities with confidence for the sake of reducing magnet cost
without sacrificing performance, and design correction schemes for nonlinearities

that adversely affect the performance of these machines.

Prior to 1991 several experimental runs of E778 investigated the linearity of the
Tevatron in normal operational mode (i.e. without any intentionally introduced

strong nonlinearities) and such effects as smear, detuning and dynamic aperture

68
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as created by 16 controlled strong sextupoles. These portions of the experiment
have been extensively documented elsewhere (Chao et. al. 1987b, Merminga 1989,
Li 1990). Persistent signals due to resonant capture of a fraction of the beam were
also used as an experimental beam diagnostic in E778, and comparison of kick
amplitudes and persistent signal amplitudes allowed estimates of the island size
o1.

In this chapter we describe the procedure and results of a tune modulation ex-
periment performed in the Fermilab Tevatron in January, 1991. This experiment,
a portion of Fermilab experiment E778, observed persistent signals in the horizon-
tal transverse dimension corresponding to beam capture on a variety of resonances
created by a set of strong sextupoles. The behavior of particles trapped in one
of these resonances, the 5@}, resonance at the horizontal tune @), = 20.40, was
systematically examined under the influence of controlled tune modulation for two
distinct nonlinear configurations and three different horizontal island amplitudes.
For one particular case of sextupole configuration and island amplitudes a detailed
analysis of the response of the persistent signal at high frequencies is found to a-
gree with the one-dimensional tune modulation model presented in Chapter 4. A
transverse diffusion experiment was also carried out during this experimental run
but is not commented upon further here (Chen et. al. 1992).

The requirements for the E778 persistent signal and tune modulation experi-
ment in the Tevatron are outlined in § 5.1. Preparations for the January, 1991
experimental run are described in § 5.2, including magnet calibrations and the re-
sults of preliminary tracking to determine which nonlinear magnet configurations
should be used. The island tunes and detuning coefficients « are also measured
from tracking of the configurations chosen for the experiment. The experimental
run itself is described briefly in § 5.3, and in § 5.4 the data analysis procedure is

explained and results of this experiment are summarized.
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5.1 REQUIREMENTS FOR THE EXPERIMENT

Several requirements must be fulfilled before a persistent signal and tune mod-
ulation experiment can be undertaken. These requirements fall under two general
categories: the requirements of the accelerator lattice and the requirements of the

data acquisition system.

5.1.1 Lattice Requirements

The requirements of the machine lattice are threefold: first, the lattice must
be relatively linear with the exception of strong controlled nonlinearities, which
are used to create resonance islands in transverse phase space. Without a rela-
tively linear machine, other sources of nonlinearity will affect the resonance under
study, possibly changing its size and position in phase space. Although this does
not invalidate the experiment, the results of particle tracking and theoretical pre-
dictions are much less likely to compare favorably with experiment in the presence
of unknown strong nonlinearities. It has previously been demonstrated that the
nominal configuration of the Tevatron is exceptionally linear (Chao et. al. 1987b).
Several unused sextupoles originally intended for harmonic correction are ideal
for use as controlled nonlinearities. The sixteen sextupoles shown in Figure (6.1)
were chosen for use in this experiment.

The accelerator must have available a fast kicker magnet in the transverse plane
under study. This kicker must have a kick time less than the revolution period of
the accelerator in order to kick the beam only once. Typically most accelerators
have fast kickers such as these for abort systems, injection and fast extraction.
The Tevatron has several such kickers; the one chosen for this experiment is the
horizontal proton injection alignment kicker which is located at the Tevatron
lattice location E17 and has a fall time of approximately 1-2 us, much smaller

than the 21 us revolution period of the Tevatron.
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Figure 5.1: The lattice used in the January 1991 run of experiment
E778, showing locations of sextupoles, beam position monitors and the
E17 horizontal kicker.
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To investigate tune modulation effects, the tune modulation parameters must
be varied over wide ranges and controlled with a high degree of accuracy. Because
the synchrotron frequency of off-momentum particles cannot be widely varied due
to RF system considerations, using tune modulation produced by such oscillations
is impractical. Instead a quadrupole or set of quadrupoles with low inductance can
be powered sinusoidally, creating tune modulation directly. A set of quadrupoles
exist in the Tevatron that are powered by a 720 Hz digital waveform; they are pri-
marily used for fine adjustments during slow extraction for fixed target operation.
These quadrupoles are described in more detail in Section 2.1 of this chapter.
There are other less unusual but no less important requirements for control
of the accelerator lattice in this experiment. Linear coupling must be minimized,
since this causes the coherent transverse oscillation produced by the kicker to cou-
ple into the unkicked plane. Chromaticity must be reduced to as small a value as
possible, typically one or two units, so tune modulation induced by bunched beam
synchrotron oscillations does not interfere with the controlled tune modulation of
the modulated quadrupoles. These are both normal operational procedures in the

Tevatron and can be easily be performed while on experimental shifts.

5.1.2 Data Acquisition Requirements

The data acquisition system used for E778 used is based on Sun CPU archi-
tectures, dual crates (both VME and Camac) and twin LeCroy 6810 5 MHz 12-
bit transient digitizers. It is diagrammed in Figure (5.2). The data acquisition
system requires three inputs from the central accelerator control system: a turn-
by-turn clock used to gate the turn-by-turn digitizers (which must be appropri-
ately synchronized to the kicked bunch), a trigger to start the digitizing process,
and the BPM signals themselves. The general configuration as a simple portable

unix-based data acquisition system was originally implemented as MIRABILE at
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Figure 5.2: A block diagram of the E7T78 data acquisition system, show-
ing both VME and Camac crates, general networking, and input signals.

Fermilab and the Cornell Electron Storage Ring (CESR) (Peggs, Saltmarsh and
Talman 1987).

The turn-by-turn clock was supplied by the RF clock of the Tevatron divided
by 1113, since there are 1113 RF cycles in one revolution of the machine when the
53 MHz bunching RF is on. A programmable delay to synchronize this clock with
the kicked bunch was created by a Fermilab Camac 279 module which delays in in-
crements of 7 RF cycles. The acquisition trigger was supplied by a programmable
345 card synchronized to a timing event in the Tevatron timeline, allowing data
acquisition either to begin on the order of thousands of turns before the E17 kick-
er was fired, allowing observation of decoherence for detuning measurements, or

hundreds of thousands of turns after the kick, when transients had damped and
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the only coherent oscillation still remaining was the persistent signal.

The beam position monitor signals were acquired from the voltage difference of
individual plates of parallel plate horizontal BPMs at the F42 and F44 Tevatron
locations. Front-end hardware included a peak-detector and a pulse stretcher
with a decay time on the order of several microseconds. This setup gives output
signals which are appropriate for digitization by the Lecroy 6810 digitizers. For
the frequency-domain data analysis presented later in this chapter, note that full
phase space reconstruction is not necessary and so only one digitized BPM signal,
from F42, was used in this analysis.

A significant amount of software development also was needed for this project.
The entire set of data acquisition system software was developed in C and C++
using the tools of ISTK (the Integrated Scientific Toolkit) developed by Chris
Saltmarsh, Vern Paxson and others (Lutz 1991). The data transfer protocol of
ISTK is SDS, the self-describing data standard which allows storage of all turn-
by-turn data in simple processor-portable form. ISTK also includes a sequencing
language and executive, Glish, which allows the control of many dependent tasks,
or agents. For ET78 there were several of these agents, including Camel (the Lecroy
6810 control program), Harc (the data archiver), Soc (the main experiment user
interface) and Clod (the delay controller for the Camac 279 delay module). The
Glistk graphics library, developed on top of the native C4++ window management
system InterViews, was used to write graphical user interfaces for all of these
programs. A sample user interface for Camel is shown in Figure (5.3) with typical

digitizer settings for the January 1991 E778 run.

5.2 LOCAL PREPARATION FOR THE EXPERIMENT

5.2.1 Magnet and Kicker Calibration



a El camel T
| Branch0 | Crate1l [ Station6 | FReset BCS |
| WRITE ALL |
CAMEL SETTINGS MODULE
| carnel_G | il Bz | 2 | Cc |mn1 nf
|B Editable ABf SwaP | Arm | DisArmed
e " LAM Disabled "
n Mo Holdoff a | Lock Retry B4 |
Tirne Stamnp Fes 10 msec Module Unlocked
5 External
Skl TIMEBASE
Slope Positive -
Coupling DC | Single Timebase |
Uoper Level 160 f1 Exterral | 250 Hz
Lower Level 0 MEMORY
Faost Trigger 4 Block 5 K | Samp 128 K
Celay 0O Segments 1
CHANMELS
| 1 an | 2an | 4 an | | Full Scale | Offset Coupling
[1] H Fa4 2043y [ 128 AL Diff
H Fa6 2043y [ 128 AL Diff
W F43 2043y [ 128 AL Diff
\f F45 2045\ 128 AL Diff
DATA FLOW
READ FROM CAMAL z z
SHIP z z
INITIALIZE 2 2
RESET archive File: DefaultFile
| a | | InstaCuit

Figure 5.3: Camel, the graphic user-interface and control program for
a Lecroy model 6810 digital waveform recorder. Settings are typical for
those used in the January 1991 run of experiment E778.
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Sextupoles

Configuration E24 | F19 | F24 | F34 | B19 | C19 | C22 | C24
E28 | F26 | F28 | F38 | B38| C26 | C28 | C32

91.0 sy i A I e B I e R A v
911 O |/ |+/ | /+ | 0 | +/ |+ |/+
91.2 S B I e B Il e B

Table 5.1: Sextupole polarities and locations for 1991 E778 configura-
tions. The first sign indicates the polarity of the first listed sextupole in
each column. All sextupoles used in the actual tune modulation experi-
ment were driven at a current of 30 amperes.

Knowledge of the sextupole strengths and their variation with current is crucial.
Experimental results cannot reasonably be expected to match those of particle
tracking if the strengths and locations of the strong nonlinearities are not known
accurately and if other sources of nonlinearity are not accounted for.

Calibration measurements performed before the sextupoles were installed mea-
sured a magnetic field of B, = 0.148 T at » = 1 inch from the magnet center; the
sextupoles also have length L., = .732 m. Using the magnetic rigidity |Bp| = 500
T-m for the Tevatron at its injection energy of 150 GeV where the experiment
was performed gives the normalized sextupole strength of the sextupoles used at

a current of 50 amperes:

- ByL BsL

= by = =0.336 m 2. 5.1
2= B T Bl m (5:1)

During the actual run the sextupole currents used were 30 Amps, with a corre-
sponding normalized sextupole strength of b, = 0.201 m~2.

The sextupoles are also ganged together on 9 separate buses, paired with op-
posite polarities as listed in Table (5.1) with the exception of the B19 and B38
sextupoles which are individually powered. The configuration 91_0 listed in this
table is the nominal operational configuration, and this configuration and 91_1

were those investigated in the actual tune modulation experiment. A decision
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was made to turn off the B19 and B38 sextupoles to limit the number of configu-
rations investigated in preliminary tracking.

The QXR quadrupoles used for tune modulation were also calibrated before the
experimental run, and again during the initial startup shifts. These quadrupoles
are driven by a digital waveform generated with a clock rate of 720 Hz, so they can
modulate the tune at frequencies up to 360 Hz or Qu; = 7.55 - 1073, Calibration
was performed at DC current to measure the variation in tune versus quadrupole
current, and showed the expected linear response in Figure (5.4), giving the tune

changes

AQ, =4.1-10"" I,
(5.2)

AQ, =-1.0-10""Ig,
where Ig is the quadrupole current in amperes. For the QXR system a current
of 5 amperes was provided by a current supply for 1 volt setting on the control
system, and the current range for this supply was 0 to 50 amperes. For a maximum
modulation amplitude of 25 amperes or ¢ = 1.02 - 1072, a constant current was
of 25 amperes was superimposed on the sinusoidal modulation when the QXR

system was used.

AC calibration of the QXR system is significantly more difficult, since tune
measurements currently cannot be acquired more quickly than once or twice per
second in the Tevatron. A calibration of the QXR quadrupoles was instead per-
formed by setting the voltage on the voltage source to a certain value with a
sinusoidal modulation with an amplitude of 5 amperes and observing the read-
back of the actual current supplied to the quadrupoles. This procedure allows
measurement of the inductive decay of quadrupole response with rising frequen-
cy, showing a hyperbolic rolloff beginning near 100 Hz as in Figure (5.5). This
measurement was performed during Tevatron downtime without making physical

measurements of tune changes on the actual beam.
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Figure 5.4: DC QXR quadrupole calibration, showing horizontal and
vertical tune versus quadrupole current Ig. Linear fits give AQ, =
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Figure 5.5: AC QXR quadrupole calibration, performed at 5 amps ex-
citation current corresponding to tune modulation strength ¢ = 21073
Response rolloff begins at 100 Hz, or a tune modulation frequency of
approximately Qu ~ 21073,
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There is some concern about the effects of skin depth and penetration into the
stainless steel beam pipe of the Tevatron by the field of the QXR quadrupoles.
The conductivity of this material is approximately o = 4107 (ohmm)™!, giving a
skin depth of approximately 4 mm at frequencies of 350 Hz. This is several times
the actual thickness of the beam pipe in the Tevatron, approximately 1.5 mm,
and so for all frequencies involved in the chirp there should be negligible damping

of the quadrupole modulation amplitude by conductive effects of the beam pipe.

5.2.2 Preparatory Tracking and Simulations

Once the sextupole strength scaling versus excitation current is known, tracking
can be performed to find the optimal conditions for beam capture in a resonance
island. The transverse phase space should contain large resonance islands, similar
to those pictured in Figure (3.1). These resonance islands should not be severely
distorted by the presence of the 3¢}, resonance, which is driven to first order by
the sextupoles — previous E778 runs have measured such distortions (Chao et.
al. 1987b, Merminga and Ng 1992). The resonance islands should also have fixed
point phases positioned in such a manner than a stable fixed point lies in the z’
direction of the phase space at the E17 kicker; this maximizes the amount of beam
captured in the resonance island and the persistent thus produced. And finally,
tracking should predict island tunes that fall within the experimentally accessible
range for the tune modulation experiment.

Beta functions and phase positions of the sextupoles and E17 kicker were found
using the most recent version of the Tevatron lattice and the accelerator design
code MAD 8.1. A lattice was designed in Evol using only the sextupoles and linear
phase advances, and the phase space at the kicker for a variety of configurations
was produced. Of several configurations investigated, the configurations 91_1 and

91_2 satisfied the above criteria, as well as the nominal configuration 91_0. During
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Figure 5.6: Transverse phase space for the 91_0 sextupole configuration
at the E17 kicker. Tracking was performed with Evol with base tunes
(Qz,Qy) = (20.394,20.460).
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Figure 5.7: Transverse phase space for the 91_1 sextupole configuration
at the E17 kicker. Tracking was performed with Evol with base tunes
(Qz,Qy) = (20.406,20.460).
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the experimental run only configuration 91_1 and the nominal configuration 91_0
were investigated.

Figures (5.4) and (5.5) show the phase spaces produced by the 91.0 and 91_1
sextupole configurations, respectively. Each has a separate variation of tune with
amplitude, necessitating different base tunes for these phase space diagrams in
order to detune into the resonance and display resonance islands, and both show
resonance islands that are positioned properly without severe distortion from the
presence of the third-integer resonance. The island tunes for each of these sex-
tupole setups are 335 Hz (Qr = 7-107?%) and 700 Hz (Q1 = 1.9-1072) respectively,
indicating that the resonant region should be barely accessible for lattice 910, but
not for lattice 91_1. There are also small 13¢), resonance islands evident in the
phase space of the simulated 91_1 lattice, indicating that capture on resonances

other than the 5@, is feasible in these configurations.

5.3 THE EXPERIMENTAL RUN

The experimental run of this section of E778 took place during two weekends in
January, 1991, lasting a total of fourteen eight-hour shifts. Of those shifts, nearly
a third each were dedicated to setup, the diffusion experiment and the persistent
signal and tune modulation experiment.

Shifts for the first weekend were dedicated to debugging and testing the data
acquisition system, calibrating and testing tune modulation quadrupoles, and s-
canning various kicker voltages, base tunes and nonlinearity configurations to find
persistent signals. For this section of the weekend, the data acquisition system
acquired 64 kiloturns of data, or approximately 1.4 seconds of data per data-
taking “shot”. Persistent signals were located at @, = 0.375 (the 8@Q), resonance),
@, = 0.400 (the 5Q), resonance), and @, = 0.417 (the 12Q), resonance). The

E17 kicker kick amplitude was also calibrated versus applied kicker voltage in the
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Figure 5.8: Calibration of the E17 kicker voltage versus kick amplitude.
The linear fit slope is 0.41 mm/kV, and the kicker does not fire at voltages
below 4.75 kilovolts.

early portion of the run; response was found to be approximately linear, with a
41 mm/kV slope. Samples of the turn-by-turn data produced online by the data
acquisition system are shown in Figures (5.9) and (5.10), showing both a resonant
persistent signal and gaussian decoherence without beam capture:
The event timeline for a typical 2 minute machine cycle or “shot” was as follows:
o Inject beam into Tevatron at 150 GeV, without acceleration, and
coalesce to single bunch. (0-7 seconds)
¢ Reduce normalized beam emittance from 15 7 mm-mrad to 3 7 mm-—
mrad with scraper at Tevatron lattice location D17 (10-30 seconds)
e Ramp up sextupole currents and trigger E17 kicker. (35-45 seconds)
o Wait approximately 10 seconds for transients from the transverse
kick to settle. (45-56 seconds)
o Trigger data acquisition system and tune modulation quadrupoles.
(56-58 seconds)

e Data transfer, sextupole ramp down and preparation for the next
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Figure 5.9: Sample turn-by-turn data at kick time, showing the kick and
gaussian decoherence. Kicker voltage 1s 11 kV, and the lattice is 91_0;
graphics are produced by the kaspar graphics program.
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Figure 5.10: Sample turn-by-turn data at kick time, showing the kick
and production of a (), = 20.40 persistent signal. Kicker voltage and
lattice are as in above figure.
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Figure 5.11: Turn-by-turn data for a strong persistent signal destroyed by
chirped tune modulation. The tune modulation strength and frequency
were ramped from (¢,Qp) = (0,0) to (1.0 - 1072,3.1 - 1073). Lattice
configuration is 91.0.

shot. (60-120 seconds)

Some unsystematic tune modulation data were also acquired in the first weekend
for the nominal 91_0 lattice, starting approximately 9 kiloturns after the data
acquisition system was activated and ramping for one second, or 47.7 kiloturns. An
excellent example of the turn-by-turn data thus produced is shown in Figure (5.11)
where the tune modulation parameters are chirped from (¢, @) = (0,0) to (1.0-
1072,3.1 - 107%). At approximately 28 kiloturns amplitude modulation of the
islands becomes clearly visible, and the resonant response of the system destroys
the persistent signal between 35 and 45 kiloturns.

On the second weekend systematic tune modulation scans were performed in
order to make the search of the available tune modulation parameter space more

efficient. For QXR voltages ranging roughly logarithmically from 0.1 volts to 5
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Figure 5.12: Distrubution of systematic tune modulation scans.

volts (¢ = 2-107* to 10™2%), chirps were performed in 50 Hz segments within the
region of linear quadrupole response. During this second weekend such scans were
performed for two kick amplitudes (5 kV and 9 kV) with the 91_1 configuration,
and two kick amplitudes (7 kV and 9 kV) in the 91_0 configuration, all concentrat-
ing on the 5@, resonance. Some individual chirps ranging from 0 to 350 Hz were
also performed at small modulation amplitudes. Upgrades to the data acquisition
system also allowed digitization of 128 kiloturns of data per shot, approximately

2.7 seconds of real beam time.

5.4 DATA ANALYSIS AND RESULTS

Approximately one gigabyte of turn-by-turn data were taken in the January
1991 run of E778. This included both turn-by-turn data taken at kick time away
from a resonance to measure the variation of tune with amplitude by decoherence,
and turn-by-turn data taken after initial transients had decayed and tune mod-
ulation was turned on. This section describes the analysis of both the detuning

and tune modulation data.
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5.4.1 Measuring Detuning

Previous results from E778 and elsewhere have observed and successfully com-
pared measurements of the decoherence of a gaussian beam kicked transversely
into sheared nonresonant phase space with theory (Chao et. al. 1987b, Mermin-
ga 1989, ByrdThesis). For a gaussian beam of transverse size o, kicked to produce
a coherent oscillation of amplitude Xy > o, as observed at a beta function of 3.,
the decoherence of the observed centroid position is predicted to be approximately
gaussian (Chao et. al. 1987a):

oo X 2
x(t) ~ Xogexp [—% (%) ] , (5.3)

where « is the one-dimensional Hamiltonian detuning from Equation (3.7).

The analysis program Tevex developed by Peggs, Chen and Merminga (Mer-
minga 1989) was used to fit turn-by-turn data from two horizontal BPMs to the
predicted gaussian decoherence. Tevex uses a five-parameter fit: the exponential
term in the gaussian decoherence, values for the closed orbit offsets (or digitizer
voltage offset) at both BPMs, the phase advance between the BPMs and the ratio
of the horizontal beta functions at the BPMs. Tevex also returns the horizontal
tune and the horizontal smear. Two approaches can be taken to measure the
detuning parameter «: if the beam size and the beta functions at the BPMs are
accurately known, the fit of the gaussian decoherence exponent by Tevex gives
the detuning. However, if these are not known but the base tune setting of the
machine is, then one can calculate from the tune returned by Tevex how much
the tune has shifted for a given kick and thus the detuning. This second proce-
dure was the procedure followed here, though the former method returns similar
detuning after substitution of a typical beam size and beta function.

Figures (5.13) and (5.14) display a comparison of the detuning data for both

nonlinear configurations examined to tracking with Evol through these configu-
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rations, with lines displayed as fits to each set of data. The evident discrepancy
between tracking and experiment can be due to several different factors. The
base tune setting of the Tevatron was noted during the course of the run to be
rather inaccurate, varying by as much as 0.005 units from set values. Allowing
this base tune of the experimental measurement to vary by this amount provides
a better fit of the detuning. The sextupole strengths used in tracking may also
differ by those experimentally used; since the detuning is driven to second order
in sextupole strength, a difference by a factor of 1.4 between simulated and ex-
perimental sextupole strengths is sufficient to reconcile the detuning as shown in

these figures.

5.4.2 Frequency Domain Behavior

Because the boundaries between regions in the tune modulation stability plane
(¢, Qnr) scale with the island tune, Qr, it is logical to expect the frequency response
the of beam to give information about the rate at which the phase-locked portion
of resonance island is shrinking in response to chirped tune modulation. A fast
Fourier transform (FFT) applied to a segment of unmodulated persistent signal
turn-by-turn data displays an extremely sharp peak at exactly the resonant tune
due to the highly coherent nature of the island-to-island motion that occurs for
trapped particles. As particles are lost from this coherent signal due to tune
modulation, the amplitude of this peak in the FFT spectrum decays with a rate
that indicates how quickly the stable portion of the resonance island is shrinking.

For a 128 kiloturn data set acquired during the second weekend, the data was
partitioned into overlapping 8192 turn segments, and FFTs were performed. This
gives a frequency resolution in the resulting power distribution of approximately
10™* for each FFT. The amplitude of these FFTs were then plotted versus time.

The three-dimensional plots of FFT amplitude versus frequency within the FFT
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and turn number are displayed in Figure (5.15) through (5.22), for the configura-
tion 91_0, a kicker voltage of 9 kV, the smallest modulation amplitude ¢ = 2-107*
and both 50 Hz and 350 Hz frequency chirps. These diagrams all have a large
spike exactly at the resonant frequency, 0.4, which corresponds to the persistent
signal — as the modulation detraps particles from the resonance island, this per-
sistent signal decays. Progressing through the 50 Hz chirps, the persistent signal
lifetime under modulation decreases steadily until the chirp from 300 Hz to 350
Hz. The stability of this scan indicates that the island frequency has been passed
by the modulation frequency, thus implying that the island tune to be somewhere
between 250 Hz and 300 Hz. For both configurations and sets of kicks examined,
these are the only such data to exhibit behavior that indicates stability above the
island frequency. We therefore discuss in the following how the island tune can
be found more accurately from this data.

A convenient way to view this decay is by examining the instantaneous decay
rate of the persistent signal from FFT to FFT, or as time (and the modulation

frequency) increases. Assume that this decay is exponential and of the form
Appr(t) = Age ™", (5.4)

where Ay is the initial FFT amplitude and ~ is the instantaneous persistent signal
decay rate expressed in inverse turns. This gives a formula for the decay rate

between any two times t; and ¢s:

. 10g AFFT(tl) — 10g AFFT(tQ)
B ty —t

. (5.5)

One particular advantage of this analysis is that it is independent of the initial
Fourier amplitude Ay. If the BPM voltage varies linearly with centroid position,
such an approach in the frequency (or tune) domain does not require scaling for

variations in beam current from shot to shot or fraction of the beam captured.
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FFT Tune 0.3%0 Turn Number x 10*

Figure 5.15: A segmented FFT for turn-by-turn tune modulation of the
910 sextupole configuration. Here ¢ = 2 - 10™% and Qs is chirped
from 0 to 50 Hz. Overlapping FFTs are taken every 8192 turns, and
the amplitude of these FFTs for the frequency range (0.398,0.402) is
displayed versus turn number, or modulation frequency during the chirp.

FFT Tune 0.3%0 0 Turn Number x 10*

Figure 5.16: Same as Figure 5.15, with () 3; chirped from 50 to 100 Hz.
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Figure 5.18: Same as Figure 5.15, with Qs chirped from 150 to 200 Hz.
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FFT Tune 0390 0 Turn Number x 10*

Figure 5.19: Same as Figure 5.15, with Qs chirped from 200 to 250 Hz.

5

Turn Number x 10

Figure 5.20: Same as Figure 5.15, with Qs chirped from 250 to 300 Hz.
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Figure 5.21: Same as Figure 5.15, with Qs chirped from 300 to 350 Hz.

FFT Tune 0.390 Turn Number x 10

Figure 5.22: Same as Figure 5.15, with (s chirped from 0 to 350 Hz.
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Figure 5.23: Persistent signal decay rate as a function of tune modulation
frequency, (s in configuration 91_0. The tune modulation amplitude is
held constant at ¢ = 2.04-107*. Circles represent experimental data from
a single chirp from 0 to 350 Hz, and crosses represent data from seven
individual 50 Hz scans. The line is a cubic spline fit through simulation

data from the program OdChirp, with Q; = 6.3 - 1073.

The decay rate data for this modulation amplitude are shown in Figure (5.23),
with crosses representing 50 Hz frequency chirps and circles representing the 350
Hz chirp. Error bars are produced by scaling the remaining persistent signal to
the initial persistent signal, since a smaller signal size gives less accurate measures

of the signal decay rate.

For larger modulation amplitudes in this data set, there was no sudden drop in
decay rate indicating modulation above the island tune — each set of modulations
destroyed the persistent signal at progressively smaller and smaller frequencies. A
pair of these cutoff frequencies for higher modulation amplitudes are also shown
in the tune modulation plane of Figure (5.24), just below the small-angle stability
curve predicted by theory.

Another consistency with the results of Chapter 4 and simulation is the sudden
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Tune modulation frequency, Qm

Figure 5.24: The tune modulation parameter plane, with stability lines
as predicted by theory and experimental chirps for the 91_0 sextupole
configuration. Qp has been set to the value 6.3 - 1072 here. The diag-
onal chirp corresponds to the data in Figure 5.11; the horizontal chirp
corresponds to the 0 Hz to 350 Hz chirp shown in Figure 5.23.

stability at modulation frequencies above the island tune, as depicted in the Od-
Chirp simulation results of Figure (4.4). The slowly rising response at frequencies
lower than the island tune is also expected because the ensemble of particles filling
the resonance island has a frequency distribution which is the same as that of an
ensemble of stable pendula, varying from zero frequency at the separatrix to the
island tune. Naively, little response is expected above the island tune, because
there are no particles oscillating with this frequency to respond to the external
drive. Another way to examine the island tune is to start the chirp above the
island frequency and chirp downwards — a sudden sharp rise in response at the
island tune should be observed. However, technical problems in the tune modu-
lation controls prevented use of this sort of modulation during this experimental

rur.
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5.4.3 Chirp Simulation and Comparison to Data

Simulations were performed of this modulated island system using the pro-
gram OdChirp, which uses the tune modulation lattice of OdTrack and Odfp to
simulate E778 conditions. This program launches an array of initial condition-
s, typically 103, populating a transverse resonance island in much the same way
resonance islands were populated to produce persistent signals in the experimen-
t. After allowing untrapped particles to decohere over approximately 500 turns,
tune modulation was applied in the exact same fashion as in the experimental run,
with the same modulation ramps, strengths and frequencies. The turn-by-turn
position of the centroid of the distribution of phase-locked particles was recorded.

This procedure allowed application of exactly the same data reductions as those
applied to the actual data, and comparison of the simulated and actual frequency
domain response. Because the island amplitude and base tune were well-defined
from knowledge of the machine base tune and kicker settings, they could be in-
serted as known amplitudes, base tunes and octupole strengths for the simulation.
The only free parameter then left in the simulation is the decapole strength; vari-
ation of this strength allowed a one-parameter fit to the data to produce a final
value of the island tune, (J1. An excellent fit was produced for an island tune
Q1 = 6.3-1073 or 296 Hz, in moderately good agreement with the predicted value
of 335 Hz from particle tracking of the 910 lattice. Using this value of the is-
land tune, a tune modulation plane can be drawn similar to Figure (4.1) showing

excellent agreement for higher amplitude tune modulation chirps.



CHAPTER 6
PERSISTENT SIGNALS IN TWO TRANSVERSE DIMENSIONS

In this chapter, we extend the previous one-dimensional analysis of unmodulat-
ed resonance islands presented in Chapter 3 to two transverse dimensions. The
obvious disadvantage of the previous methods is that they offer little or no hope
of investigating two-dimensional resonance strengths experimentally, as persistent
signals are not present when a beam is kicked onto a single coupling or difference
resonance. However, if the crossing point of two linearly independent resonances
is examined with detuning present in both planes, this chapter shows that one
expects to find locally phase-locked motion (and corresponding persistent signals)
in both planes created by the interaction of the pair of resonances.

In § 6.1 a dual-resonance N-turn map is derived from the results of previous
chapters, and predictions for both the stable fixed points of such a map and
the island tunes of linearized motion around these fixed points are presented.
These results are compared to particle tracking in the octupole-decapole lattice
in § 6.2, where the inadequacy of first-order perturbation theory in predicting
small oscillation frequencies for this system is demonstrated. § 6.3 discusses this
and other possible methods of measuring two-dimensional resonance strengths,
and outlines a possible experiment to observe two-dimensional persistent signals,

including realistic requirements on availability of controlled nonlinearities.

6.1 THEORETICAL PREDICTIONS

Here we examine the crossing point of a one-dimensional resonance and a two-
dimensional resonance. For the sake of simplicity and relevance to the previous
chapters, the one-dimensional resonance is assumed to be 5@, while the two-

dimensional resonance is completely general, but specified by kQ, + 1Q,. Sac-
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rificing other resonance terms with the assumption that they are either small or
average out over future summations via the Dirichlet kernel suppression, we can

write a one-turn two-dimensional dual resonance Hamiltonian:

H1(¢x7 JZ,L/)y, Jy) = 27TQ$0JI —|— 27TQy0Jy
1 1
+ Vio(Je) cos(Btby + ¢50)

+ Vi(Jz, Jy) cos(ktby + by + ort) -

Here Vi and Vj; contain the functional dependence of the resonance strengths

(6.1)

on the actions J, and J,, since these dependences cannot be expected to be as
simple as the one-dimensional case. Note that the detuning contains a nonlinear
coupling term «,,, even though the absence of linear coupling is still assumed.
Horizontal motion is expected to be resonant when the horizontal tune is on
the 5@, resonance; for the vertical motion to also fall on the two-dimensional
resonance, the net phase advance within the angle dependence of this resonance
term must be near some multiple of 27. This gives the natural base tunes for this

investigation:

M, kM,

M,
QxOZ 5 ‘I’(Swa QyOZT_ 51 ‘|‘6y7

where M, and M, are integers. Here the ¢; are again assumed to be small, and

(6.2)

motion will approximately repeat itself in the 4-dimensional phase space every
N = 5kl turns. (This is the maximum value necessary for repetition; the motion
will repeat faster than this if 5 and k[l are commensurate.) The actions are invari-
ant to zeroth order, and we can sum over N turns to find the first-order N-turn

Hamiltonian,
Hn(Yg, Jo by, Jy) =27N 6, Jo 4+ 20N 6y J,
N N
+ e JE A+ Nagy JoJy + =y, J?
+ N Vso(Jz) cos(5ba + 650)

+ N Via(Ja, Jy) cos(kiby + liby + &%) -
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Here the phases of the nonlinearities have absorbed the shift from the summation:
Pro = 050 + OT(N — 1)o, and ¢, = ¢pr + k(N — 1)0, + 7l(N — 1)b,.

Equation (6.3) has fixed points akin to the one-dimensional fixed points of the

analysis in Chapter 2. These can be found by examining the difference equations

of motion generated by this Hamiltonian, and setting them to zero at the fixed

points of the map.

Atp, =0 — 270, + pade fp+ aayJy,pp + (V) =0, (6.4a)
Aty =0 = 200y + agyJu pp+ ayyJy fp +9(V) =0, (6.4D)
AT, =0 — B gp+ oy =27k, (6.4¢)
ATy =0 — kby pp+ lby p + by = 27k, . (6.4d)

Assuming the detuning terms are stronger than the resonance driving terms, as
before, Equations (6.4a) and (6.4b) are coupled linear equations for the fixed point

actions, and so they can be easily solved to find

S, fp 27 Qyy Oy bq
; — 6.5
(Jy,fp> QF, — QzgQyy <_0‘xy Qg by (65)

if they are not degenerate; if they are indeed degenerate, no action fixed points

exist. Equations (6.4c) and (6.4d) give the fixed point phases:
7k, — @
¢fafp = Tm ’

b _ wky — O — ke, p
y,fp I :

(6.6)

Motion around these fixed points can be classified in one of four ways depending
on the parity of the integers k, and k, — it is either hyperbolically unstable in
both oscillation directions, hyperbolic in one direction and elliptically stable in
the other, or elliptically stable in both oscillation directions. This last case is the
one that interests us here, because phase localization in both planes will result in

observable persistent signals in both planes. We choose k, and k, even for now,
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with the knowledge that other fixed points can be investigated by changing their
parity and thus the signs of the resonance strengths Vs and/or Vi;.

Now transform the coordinates to those centered on one of these fixed points,
(Yo, Juy by, Jy) — (04, 1;,0y, 1), via the uncoupled two-dimensional generating

function

F(?Z)xvfxv?byvfy) = (Ix + Jf,fp)(¢f - ¢x,fp) + (Iy + Jy,fp)(¢y - ¢y,fp) . (6-7)

Applying this transformation to the N-turn Hamiltonian (6.3) and keeping only
first order terms in the nonlinear strengths V3; and a;; gives a N-turn Hamiltonian

that has the form of a pair of coupled pendula:

N N
Hy = Eoszg + Nagy, LT, + anyfj
+ N Vso(Ja.gp) cos(56,) (6.8)

+ N Vi( Tz, tp, Sy, fp) cos(kb, +16,) .
The resonance strengths Vo 5, and Vi 5, are evaluated explicitly at the action
fixed points (J tp, Jy, fp)-
Linearizing the coupled motion given by this Hamiltonian is a tedious but s-
traightforward process. The final result of this linearization gives the motion of

the angle variables (6,,6,) as

éx _ 2 Mll M12 ex
()= (G 3) (5) (50

where time derivatives are taken with respect to N-turn motion, and the individual
matrix elements of the coupled motion are

My =25 ag, V50,fp +k Vkl,fp (kaww + Zawy)
M, =1 Vkl,fp (kawx + Zawy)

(6.95)
Moy = 25 agy Vso,pp + k Viapp (kaey + loyy)

Moz =1 Vi, fp (kagy + layy) .
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There are two normal mode “island” frequencies of the two coupled oscillators in
Equation (6.9). These could be found by diagonalizing the matrix M, as could
the eigenvectors that represent the normal modes of oscillation. However, since
we are primarily concerned with the island frequencies here, we can find those
by calculating the eigenvalues of M directly. Note that if either or both of these
eigenvalues are negative or imaginary, local motion here is unstable and expansion
should proceed around a different fixed point, changing either or both of the signs
of the resonance strengths in the N-turn Hamiltonian (6.8).

For completeness, the island tunes corresponding to this motion are

Aso0Vs0,rp + At Vi, fp

[27Q1(1,2)]2 = )
2 (6.10a)
N \/(A50V5o,fp + ArtVit,p)” = AiVso,1p Vit gp
2 2
where the amplitudes Asg, Ax; and A; are defined by
A50 = 2505xx 5
Apr = (B ogy + 2klogy + Pay,) , (6.100)

A= 10012(0zmayy — aiy) )

Assuming that the resonance strengths Vo and Vi, are both positive, these island

tunes are both positive real if A; lies within the range

(AsoVso,rp + Akt Vi, fp)?

0 < Aj(stable) <
< A )< Vso,rp Vit fp

(6.11)

An amazing prediction of Equation (6.11) is that if all detuning strengths scale
similarly according to some nonlinearity strength, and the resonance strengths
scale similarly according to another nonlinearity strength, then the local stability
of this system is independent of both these resonance strengths to first order.
One easily testable scaling of the island tune prediction is that the island tunes

should scale as the square root of the nonlinearity strength if the resonances are
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driven to first order in that strength. The sum of the squares of the island tunes is

also a more easily accessible quantity to test against theory; from Equation (6.10a)

this is found to be
[27Q11]* + [27Q12])? = As0Vso. rp + AktVit fp 5 (6.12)

which scales as the product of the nonlinear strengths driving the detuning and

the resonances.

6.2 TRACKING OF TWO-DIMENSIONAL
RESONANCE ISLANDS AND PERSISTENT SIGNALS

The question remains as to whether such two-dimensional resonance islands
can be observed in a tracking code, and whether the first-order analysis suffices
to predict their island tunes and locations in phase space. Using the octupole-
decapole model and a program Od2Track, which was written to track this model
in both transverse dimensions, two-dimensional detuning parameters a;; are first
measured as functions of amplitude in both planes and compared to first-order
predictions for the octupoles. A working point must be chosen where the 5Q),
resonance and another resonance driven to first order by the decapole cross; this
point in the tune plane (Q.0,Qyo) should also be free of second-order octupole
resonances, since such resonances are not calculated in a first-order analysis. Next,
two-dimensional resonance islands are found and their fixed point amplitudes and
phases are compared to theoretically predicted values. Island tunes are found for
the normal mode oscillations within these resonance islands and compared against
both absolutely predicted values and scaling with the decapole strength by.

From the discussion of the octupole-decapole lattice in Chapter 3 we can write

the first-order dependences of the Hamiltonian parameters «;; and V3; on the
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Tracking Parameter Symbol Value
Octupole strengths (each) bs 0.0100
Decapole strength by 0.0015
Horizontal Tune Offset Oz 0.0050
Vertical Tune Offset Oy 0.0050
Horizontal Base Tune Qo 20.6050
Vertical Base Tune Qyo 20.6550

Table 6.1: Parameters used for two-dimensional persistent signal inves-
tigation in the tracking program Od2Track.

lattice parameters listed in Table 6.1 . The detuning is driven by the octupoles,

1 9.
Uag = Qyy = =50y = 163 (6.13a)

and the resonances are driven by the decapole:

2~
Vig = £b4J;/2 ,

20
2.
Vits = gbu;/?,]y(z,fy —3J,), 6130
\/§~ 3/2 '
Vags = — 754% Jy

2~
Vies = %64,];/2,]5 .

These detuning parameters give the action dependences of the tunes:

)05 0 1))
The resulting “footprint” of this tune shift on the tune plane is a rhombus with an
oblique opening angle of 143°; this is shown in Figure (6.1) as contours of constant
amplitude. Circles in this figure are tunes for tracked particles, with actions in
each plane ranging from 0.0 to 4.0 in steps of 0.4 ; excellent agreement is shown for
the situation where particles are not affected by nearby strong resonances. Note

that the decapole was not turned off for this check, since the second-order tuneshift

from the decapole is expected to be small compared to that of the octupoles.
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Figure 6.1: Comparison of octupole detuning as predicted by Equa-
tion (6.14) to tracking of the octupole-decapole lattice. Lines are pre-
dicted contours of constant action, ranging from 0 to 2 in steps of 0.2.
Circles represent tracked tune offsets. Magnet strengths are as in Ta-
ble (6.1); base tunes are @z = 20.66, Qo = 20.64, far from prevailing

resonarnces.

Now the tune plane must be investigated for an optimal working point for this
tracking experiment to find 2-dimensional persistent signals. For agreement with
the previous theory, the resonances under investigation should both be driven to
first order in the decapole strength, and one should be the horizontal resonance
5@) ;. Since the octupoles are much stronger than the decapoles in this simulation,
creating strong stabilizing detuning, all resonances up to second order in octupole
strengths should be avoided. Examination of the tune plane of Figure (6.2), with
first order decapole resonances represented by solid lines and second order octupole

resonances represented by dashed lines, shows a promising working point at the
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Figure 6.2: The tune plane for the octupole-decapole lattice. Resonances
driven to first order in the decapole strength are represented by solid
lines; resonances driven to second order in the octupole strength are
represented by dashed lines. The circle marks the chosen resonant point,

(Qu ress Qy,res) = (20.60,20.65), for a 2-dimensional decapole resonance
crossing simulation.
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resonant tunes

3 13
r,res — 0.600 = - 5 res — 0.650 = — .
Q 3 5 Qy, 20

At this point the 5Q), and ), —4Q), resonances cross, so k = 1 and [ = —4. Since
both resonance tune denominators are commensurate it suffices to take a Poincaré
surface of section every 20 turns, instead of every 100 turns as would be suggested
by the previous discussion.

For the tracking conditions of Table (6.1) and previously calculated detun-
ing coefficients, the fixed-point actions are predicted by Equation (6.5) to be
Jz sp(theory) = Jy gp(theory) = 1.396. Instead of going through tedious calcula-
tions necessary to predict the fixed point phases, these actions were used as initial
conditions with which to track at a variety of initial phases, searching for initial
conditions that at least lay within the separatrix of the four-dimensional phase
space resonance islands. Such a set of phases, (¢, = 0.2,%, = 0.3), was easily
found after a small range of initial phases were checked, since the long-term tunes
of resonantly trapped particles will be exactly the resonant tunes.

A turn-by turn Poincaré plot of the four-dimensional phase space motion of this
set of initial conditions is pictured at the top of Figure (6.3). This plot certainly
shows that there is some sort of phase space structure present, but it is difficult
to determine whether or not there is resonant motion. Various types of other
tools can be used to visualize different sections of this phase space, including
three-dimensional projections instead of the two-dimensional projections that are
normally used (Holt et. al. 1992). For this analysis, however, a simpler technique
is available, which consists of taking a Poincare surface of section every N = 20
turns of the motion. If the motion is truly resonant, then this stroboscopic view
will show phase-locked motion, and a persistent signal would be visible for a real

distribution of particles launched on and near this orbit. This is indeed the case
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Figure 6.3: Four-dimensional phase space projections used in finding two-
dimensional resonance islands and persistent signals. Coherent motion
is evident in all three plots.
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Figure 6.4: Close-up of tracking very near the fixed point of the two-
dimensional resonance islands, plotted every 20th turn.

for the above initial conditions, as can be seen in the middle of Figure (6.3) — a

resonant orbit appears.

Once any sort of resonant orbit has been found, an iterative process can be used
to find the actual fixed point of the lattice used for tracking. The centroid of the
distribution in each plane is calculated for a number of turns much larger than
the expected island periods, thus averaging over many rotations in the island,
and these centroids are substituted back into the tracking program as new initial
coordinates. This is much less efficient than the more sophisticated methods
used in the one-dimensional fixed-point location algorithm of Chapter 4, but is
much more easily implemented than would be the corresponding 2-dimensional

extension of such an approach. Four iterations yield the fixed point of the lattice
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described in Table (6.1) to four significant figures,
(Yu,fp» To,pp) = (0.0967,1.5104) ,

(ty, £p> Iy, fp) = (0.3314,1.2040) ,

which is gives modest (10-15%) agreement with the fixed point amplitudes predict-
ed by theory. The resulting phase space of an intermediate step of this iterative
process is shown at the bottom of Figure (6.3), and magnified in Figure (6.4) to
show the character of motion for small amplitudes I; near the fixed point. This
motion falls on a two-dimensional torus embedded in the four-dimensional phase
space, since there are two invariants corresponding to the locally phase-locked
motion in each transverse dimension.

Once the fixed point has been found, the island tunes can be measured from
tracking data by taking 20-turn stroboscopic data from either plane and perform-
ing an FFT on some portion of data with 2" data points. Taking 16384 data
points suffices for a measurement of these tunes to an accuracy of approximately
107*, and gives Q71 = 2.1-107* and Q72 = 8.7-107* for the data presented in
Figure (6.4).

For a large range of decapole strengths, up to strengths comparable to the oc-
tupole strength, the island tunes are displayed in Figure (6.5). One peak from the
FFT of small oscillatory motion scales according to gi/z as predicted, but the oth-
er appears to scale linearly. No other significant peaks appear in an examination
of the FFT of this motion, indicating that the linear scaling is not an anomolous
peak created by interference of the natural oscillation frequencies. There is also
no evidence that these peaks are aliased from higher frequencies, as they each
approach zero at zero decapole strengths.

The island tunes predicted by Equations (6.10a) and (6.10b) are also shown in
Figure (6.5), and are nearly three to five times larger than the island tunes found

by tracking. The inconsistency between theory and tracking for the resonant
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Figure 6.5: Two-dimensional island tunes (Qr1,Q72) measured as a
function of decapole strength by in the tracking program Od2fp. All
other lattice parameters for this tracking are as listed in Table (6.1).
Lines are theoretical predictions for island tunes.

crossing point small oscillation tunes also appears at other values of the octupole
strength as well as other resonance crossing points where second-order octupole
resonances are present. This inability of first-order perturbation theory to predict
the small-oscillation motion in these areas of the tune plane is a strong indication
that such approaches fail to give meaningful results at the crossing of several reso-
nances. Higher order resonances are undoubtedly present at these crossing points,
and possibly higher orders of perturbative magnet strengths must be introduced to
reconcile theory with tracking. However, with the addition of other resonances the
linearization process previously described becomes difficult, particularly because

the equations defining the fixed-point phases are transcendental.

6.3 A POSSIBLE EXPERIMENT

How might these two-dimensional persistent signals be observed in a real accel-
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erator? First, one must operate with a small beam — much smaller, in fact, than
any available at the Fermilab Tevatron, since the Tevatron beam size is typically
one-tenth of the physical aperture. Use of a small cooled beam would be optimal,
since this would maximize the proportion of the beam actually trapped within the
four-dimensional phase space well and produce the highest signal-to-noise ratio for
persistent signals in both planes.

Kicks to move the beam onto the two-dimensional resonance islands cannot be
applied independently in each plane with linear coupling present; such linear cou-
pling would rapidly transfer energy in the kicked plane to energy in the unkicked
plane, increasing the beam emittance in the unkicked dimension. Linear coupling
can be removed globally by adjustment of skew quadrupoles, a standard proce-
dure that was also performed in E778 for the explicitly horizontal one-dimensional
kick.

The lattice must be studied extensively for nonlinearities before the study is be-
gun, and both linear and nonlinear coupling must be removed as much as possible.
This implies measuring the detuning coefficients a,., ayy, and a,,. The nonlin-
ear coupling a,, can be measured by kicking the beam in one transverse plane
and observing the tune shift in the unkicked plane, far from strong resonances.
Measurement of three or four points should suffice for a reasonable measurement,
and then octupoles (if present) can be adjusted to remove this component. When
the nonlinear coupling has been removed, turn-by-turn data can be taken in both
planes with separate kicks to test the turn-by-turn data acquisition system and
measure the detuning coefficients «,, and ay,, as has been done previously in
ET7TS.

Once the detuning coefficients are known, the actual amplitudes of the resonance
islands can be calculated to first order, and base tunes can be chosen to optimize

the positions of the four-dimensional phase space fixed points. Kicking first in the



112
plane where the one-dimensional resonance is present, a systematic scan of various
kick amplitudes can be performed, and persistent signals should be evident when
the beam is kicked onto the one-dimensional resonance island. Up to this point
such an experiment reproduces previous persistent signal results of E778 without
tune modulation, as well as those of Experiment CE22 at IUCF.

Once the kick amplitude has been found which consistently populates the one-
dimensional resonance island, another kick in the opposite plane can be inserted in
the cycle after the first kick. If linear and nonlinear coupling have been sufficiently
minimized this kick does not couple into motion in the opposite the plane which
has already been resonantly captured, and so it does not disturb this motion.
A similar scan of various kick amplitudes can then be performed in this plane,
searching for production of another persistent signal.

For the purposes of practical measurement of the strengths of two-dimensional
resonances this method is most probably inadequate, since the crossing points
where two-dimensional persistent signals are present are also crossed by many
other resonances which affect the motion around the fixed point. This is evident
in the failure of first-order perturbation theory to predict island tunes. Other
techniques involving observation of orbit distortions in four-dimensional phase s-
pace have been investigated, and prove to be more promising for this application
(Li 1990, Liu 1989). However, such an experiment could be considered a prelude
to investigations of modulational diffusion, which provides a mechanism for lumi-
nosity and luminosity lifetime limitations in storage rings as described in the next
chapter. Modulational diffusion is expected to be present near the intersection of
two strong resonances, in the same region of the tune plane that two-dimensional

persistent signals could be observed.



CHAPTER 7
MODULATIONAL DIFFUSION

In this chapter a summary of the requirements for modulational (thick-layer)
diffusion to exist in a particle synchrotron is presented and applied to a simple
tune-modulated collider model of the Fermilab Tevatron where the only nonlin-
earities present are two beam-beam kicks. This is presented as an example of
how nonlinearities combined with tune modulation can cause individual particle
amplitude growth, leading to emittance growth and possible lifetime limitations

in a storage ring.

Modulational diffusion has been the subject of many investigations in the past
ten years, since it provides a particle loss mechanism in many-dimensional dy-
namical systems such as particle accelerators over timescales that are longer than
those from pure resonant loss (typically hundreds of turns), but shorter than the
timescales of Arnol’d (or thin-layer) diffusion (typically hundreds of millions of
turns). Most of the salient features and quantitative analysis can be found in as-
sorted publications (Chirikov et. al. 1985, Vivaldi 1984, Lichtenberg and Lieber-
man 1983); in § 7.1 the requirements for modulational diffusion to exist in a
synchrotron are outlined, and the qualitative characteristics of amplitude growth
created by this diffusion are described. The simulation lattice, a mockup of the
Fermilab Tevatron collider lattice, and the beam-beam force are described in § 7.2.
The results of Evol simulation of such a circumstance in an area of phase space
where modulational diffusion is expected are described in § 7.3, which shows that
amplitude growth in this circumstance is exponential instead of root-time as clas-
sically predicted by diffusion theory. These results and possible future directions

are summarized in § 7.4.

113
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7.1 CHARACTERISTICS OF MODULATIONAL DIFFUSION

Consider the one-dimensional tune modulation parameter plane of Figure (4.1).
For appropriate tune modulation parameters falling within the “Chaos” region,
sets of sidebands are created and overlap with the primary resonance and create a
band of chaotic motion. Particles located at amplitudes within this chaotic band
have phases that oscillate highly irregularly; in modulational diffusion models this
chaos serves as a noise source for regular motion in the other transverse plane,
coupled to this phase through a weak nonlinear coupling resonance.

Here we assume that there is horizontal tune modulation creating a localized
chaotic region in the horizontal phase space and examine what would nominally
be regular motion in the vertical dimension, influenced by one or more of these
“weak” coupling resonances. (For these purposes such resonances are considered to
be “weak” if their amplitudes are much smaller than that of the primary resonance
in the horizontal plane driving the horizontal stochasticity.) The motion in the
vertical plane is now that of a very weakly driven oscillator, where the driving
force is now chaotic due to its weak coupling to the horizontal stochastic motion.
Such motion is similar to that of a random walk problem; the stochastically driven
vertical motion can “diffuse” out to large amplitudes in finite time.

Chirikov, Lieberman, Vivaldi and Shepelyanski (1985) write the Hamiltonian
for the standard modulational diffusion model as

H(0,.1,,8,,1,) :%Ig% —ecos[(k + 1)8, + Asin Q]+

1
51—5 — prcoslkd, + 6] ,

(7.1)

where (0,I) are action-angle variables in each plane. Ignoring the weak two-
dimensional coupling, the motion in the horizontal dimension of this model is
similar to that of the tune-modulated resonance islands in Chapter 4 as given by

the N-turn Hamiltonian of Equation (4.27) — € represents the square of the island
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Figure 7.1: 1 dimensional phase space on the ), = 3/5 resonance, for
moderately realistic parameters in the Fermilab Tevatron. Particle track-
ing 1s done in Evol with the BODO lattice, showing resonance island
structures without tune modulation and a thick stochastic band with
tune modulation induced by chromaticity.

tune, and A and € represent the strength and frequency of the tune modulation,
respectively. Modeling this system with a lattice to be described in the next section
produces the one-dimensional phase-space plots shown in Figure (7.1). Motion in
the vertical plane in Equation (7.1) is that of a pendulum, weakly coupled to the
horizontal motion via the coupling strength p < e.

A significant difference between the modulational diffusion Hamiltonian (7.1)
and the tune modulation nonlinear resonance Hamiltonian (4.27) is the presence
of amplitude dependence in the resonance strengths of the latter. In particular,
though the horizontal amplitude only varies through the stochastic band, the ver-
tical amplitude growth predicted by modulational diffusion may affect the global
motion. Such growth may either carry the horizontal tune off the primary reso-
nance that drives the chaos through detuning, or alter the strength of the coupling
resonance, thus changing the vertical amplitude growth rate as the vertical am-

plitude increases.
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Figure 7.2: Resonance structure for modulational diffusion. « 1s the
horizontal tune distance between the primary driving resonance and the
secondary weak coupling resonance, scaled by the modulation depth gq.

One prediction of modulational diffusion theory is that this diffusive growth in
the vertical dimension will scale as the square root of turn number. A diffusion

coefficient can be defined,

_ (ALmP)
="

where AI, is the vertical action excursion from the initial action and T is the time

(7.2)

width of the averaging, in turns. The averaging should be performed over a time
T short compared to the vertical diffusion time (so AI, < I,(t = 0) but long
compared to the timescales of motion across the thick horizontal chaotic band
(typically hundreds of turns). As the vertical tune is varied along the horizontal
one-dimensional resonance, the proximity of the weak coupling resonance changes,

as given by the dimensionless quantity

|Q,(weak coupling resonance) — Q. (primary resonance)| (7.3)
o= . .
q

A plot of the logarithm of the diffusion coefficient D versus this scaled proximity

« shows a series of descending plateaus and sudden drops (Chirikov et. al. 1985).



Operational Parameter Symbol Value
Horizontal and vertical chromaticities (&2, &y) 3.0
Typical momentum offset Ap/p 0.0003
Synchrotron (modulation) frequency Qm 0.00078
Beam-beam linear tune shift per crossing £ 0.005
Revolution frequency frev 47.7 kHz
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Table 7.1. Typical Fermilab Tevatron 1992 operational parameters at
900 GeV.

This strange structure has sharp drops in D at even integer values of « for the
case where both the driving resonance and the coupling resonance are modulated,
and it is this sort of structure we attempt to qualitatively reproduce here within

the operational framework of the Fermilab Tevatron.

7.2 THE TEVATRON SITUATION AND AN OPERATIONAL MODEL

In the Fermilab Tevatron during the 1992 collider run with separators, there
were two strong beam-beam interactions every turn — one at the CDF experimen-
tal site at ring location B0 and one at the D0 experimental site. The operating
estimate of the linear beam-beam tune shift ¢ is approximately & =~ 0.005 per
interaction, and with planned upgrades including the Fermilab Main Injector,
this value may very well rise even further (Holmes 1991). With the exceptions of
these beam-beam kicks and chromaticity-correction sextupoles (which are neglect-
ed for the sake of simplicity of the tracking model), the Tevatron is quite a linear
machine, and so its transverse dynamics in this situation here can be modeled
extremely simply in the tracking program Evol using only linear phase advances
and beam-beam kicks. Typical operating parameters for the 1992 collider run are
listed in Table 7.1.

The base tunes of the Tevatron in typical collider run circumstances are Qo ~

20.586 and (Quo ~ 20.575, running at a horizontal tune between the 12th order
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resonance, ¢}, = 20.583 and the 5th, ), = 20.600. For the purposes of this study,
however, a worst case scenario is investigated, where the driving resonance for
the horizontal stochasticity necessary for modulational diffusion is the 5th order
resonance and single particles are launched at a variety of vertical tunes along
this resonance. If £ ever exceeds .009 with two collisions in the Tevatron, the
available space between the 12th and the 5th becomes too small for the entire
beam, and a significant portion of the beam could be strongly affected by one of
these resonances. The relevant portion of the tune plane diagram and the strange
shape of the beam-beam footprint are shown in Figure (7.3).

The beam-beam force used here and within the tracking program Evol uses
the weak-strong approximation and assumes both beams have round gaussian

distributions of equal transverse size o. For the horizontal beam-beam kick,

Adl _ —dnt [1 - e_R2/2} , (7.4)

x
o BrR? o
where x is the transverse position relative to the opposing beam center, ' =
dx/ds, B} is the beta function at the interaction point, and R is the distance from
the center of the opposing beam scaled to the beam size o:

R? = <5>2 + <2>2 : (7.5)

g g

a kick similar to Equation (7.4) is seen in the vertical plane. Salient features
relevant to this study can be noted:

The detuning is drastically different from the model of Equation (7.1), where
there is explicitly no coupling other than the weak resonance. The explicit vari-
ation of resonance strength with particle amplitude is also a difference between
these two models. As vertical amplitude grows in the beam-beam situation, one of
two mechanisms will halt modulational diffusion: the vertical amplitude growth

will either pull the horizontal tune off the primary driving resonance or it will
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is shown for ¢ = 0.005 with two collisions at BO and DO0. Footprint
contours of constant amplitude range from .10 to 5.1¢ in 1o increments.
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e The variation of tune with amplitude (detuning) given by the beam-
beam force is nonlinear and strongly coupled, quite unlike the oc-
tupole detuning observed in the previous chapter.

e From the form of R, even-order resonances are driven to first order
in £. Odd-order resonances of order N are driven as even order
resonances of order 2N.

o Resonance strengths vary with particle amplitude, or action.

o There is no beam-beam tuneshift or resonance driving at infinite
amplitudes, so global motion of the unperturbed beam-beam system
is stable.

suppress the coupling resonance strength. It remains to be conclusively shown
whether such vertical amplitude growth will cause significant particle loss; how-
ever, even collective vertical amplitude growth without loss will raise the vertical

beam emittance and result in luminosity degradation.

7.3 SIMULATION RESULTS

The tracking program Evol was used for all simulations, using the BODO lat-
tice described in the previous section. In order to drive the 5th order resonance
strongly for the worst-case scenario, a small .10 beam-beam offset was included;
closed orbit alignment errors of this magnitude at the collision points are quite
possible. Tracking this lattice with no tune modulation with the beam-beam
tuneshift given in Table 1 on the ), = 20.6 resonance finds an island tune of
Qr = 1.51-1073. Since the synchrotron frequency of the Tevatron at this energy
is approximately Qp = 7.8 - 107* (with a period Ty = 1/Qn = 1280 turns),
the chaotic region of the tune modulation parameter space is quite accessible for
moderate tune modulation depths g.

Tracking was performed with tune modulation depth ¢ = 0.0010, present only
in the horizontal plane for comparison to the results originating in the similarly
modulated Hamiltonian of Equation (7.1). This tune modulation amplitude cor-

responds to a horizontal chromaticity of about 3 units with a momentum offset
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Ap/p of 3-107%, realistic values for the Tevatron. Particles were launched with
horizontal amplitude of 3 o, with base tune @),o = 20.597, and vertical amplitude
of .1 o with various base tunes. Tracking was stopped when a finite number of
synchrotron periods had been tracked (10%, corresponding to nearly 5 minutes of
real particle evolution), or the vertical amplitude had reached 1.0 o. The one sig-
ma vertical cutoff was introduced because the influence of the vertical motion on
the horizontal stochastic band was expected to become non-negligible at moderate
vertical amplitudes.

To establish the timescales of the relevant amplitude growth mechanisms, the
maximum vertical amplitude was recorded for single particles launched at the
above initial conditions over a mesh on the tune plane, for tracking times ranging
from 10 to 10* synchrotron periods. The tune mesh limits used were the same
as those shown in the tune plane diagram, Figure (7.3), and the results of this
tracking are shown in Figures (7.4) and (7.5). In these figures there is a quite
definite amplitude growth near the intersections of the Q). — @, and 5Q), resonances
that evolves over timescales of thousands of synchrotron periods, consistent with
the naive timescales of modulational diffusion. Such growth is completely absent
with modulation turned off (¢ = 0), where only amplitude growth on the @, — @,
resonance is seen due to energy exchange between the unbalanced horizontal and
vertical amplitudes; this is a conclusive indication that the modulation drives
this vertical amplitude growth. The growth also displays structure along the
horizontal resonance, consistent with the modulational diffusion expectations of
the dependence of the amplitude growth rate on distance from the nearest coupling
resonance. There is also some growth that appears on the 3Q), 4+ 2@, resonance;
however, the structure along this resonance is quite minimal in comparison to the
growth near the previously mentioned intersection of @), — @, and 5@), resonances.

Once the timescales of amplitude growth have been established, there remains



124
the question of how the vertical amplitude evolves with time. It has already been
mentioned that classical diffusion predicts that the vertical amplitude will grow
proportionally to #'/2 — if this is the case a plot of log a, versus logt should be
a straight line with a slope of one half. However, if the vertical amplitude grows

exponentially with time,

ay(t) = ayo ™, (7.6)

the plot of loga, versus ¢, not log?, should grow linearly, and the slope of this
line is the exponential growth rate +. 4 has units of inverse synchrotron periods,
because the natural time unit for problems involving direct modulation is the
modulation period, not turns.

Figure (7.6) shows three examples of vertical amplitude evolution over relatively
long timescales, each plotted on log-linear and log-log scales. It is clear from
examining these evolutions (as well as those of many other particles at different
distances « from the nearby weak coupling resonance 4@}, + @) that the vertical
amplitude is growing as an exponential of time, not a power law as one would
expect from standard diffusion phenomenology. It has been suggested that this
growth may be explained by the dependence of resonance strengths on particle
amplitude — the change in amplitude creates a changing resonance strength which
feeds back upon the amplitude growth, creating exponential growth.

The exponential growth coefficient v can now be plotted versus the scaled dis-
tance to the weak coupling resonance as one varies the vertical tune along the
5(), resonance to investigate whether there is any structure present. Since 7 is
expected to vary over many orders of magnitude, we instead plot log~y versus «;

« can be directly determined from the vertical base tune @y via

20.60 — Qy0
===

[a%

(7.7)

when considering the 4@}, + ), resonance to be the source of weak coupling.
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Figure 7.6: Character of vertical amplitude growth for particles launched
within a horizontal stochastic band, and initial vertical amplitudes .10
and three different base tunes, or three values of the scaled coupling res-
onance proximity «. Tracking was stopped when the vertical amplitude
reached 1o or after 10* synchrotron periods. The vertical amplitude
growth rate changes by an order of magnitude here.
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Other resonances, such as Q. — @, and 3Q, + 2@, are also nearby, but are
farther away in horizontal tune distance « than this resonance as can be seen in
Figure (7.3). 7 is measured from a standard linear fit of tracked loga, versus
time data. Figure (7.7) shows this data; note the two distinct “plateaus” and the

sudden drops in the growth rate at & =2 and o = 3.

7.4 CONCLUSIONS AND FUTURE DIRECTIONS

Modulational diffusion has been investigated within a simple model of the beam-
beam interaction in the Fermilab Tevatron collider. Realistic operational param-
eters indicate that particles subject to horizontal stochasticity, or naively those
that are within the tune modulation depth distance in horizontal tune of the 5Q),
resonance, experience modulational diffusion that causes their vertical amplitudes

to grow exponentially over timescales of thousands of synchrotron periods, or
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millions of turns, leading to possible long-term particle loss. The rate of this am-
plitude growth is also dependent on proximity of nearby coupling resonances, and
shows a structural dependence similar to those of previous modulational diffusion
studies, even though the vertical amplitude growth is not root-time as naively
predicted in these models where resonance strengths are not action-dependent.

Under current operating conditions, no particles are expected to be affected
by the 5@, resonance this severely unless the horizontal tune drifts upwards,
dragging particles into the fifth, or the linear beam-beam tune shift ¢ increases.
However, with future luminosity upgrades, this tune shift per crossing will almost
certainly rise and the operational space used in past runs may not be large enough
to accommodate the entire tune spread of the beam. A significant portion of the
beam would be influenced by the horizontal 7th and 5th integer resonances and
vertical beam blowup could possibly occur. This circumstance would lead to
luminosity degradation and intensity loss over a collider store as the beam size
grows. These effects, were they present in an actual collider, would be difficult to
diagnose due to their slow growth timescales.

Future studies should be twofold. First, a concrete theoretical structure of
modulational diffusion should be investigated to conclusively show that in the case
of amplitude-dependent coupling resonance strengths, vertical amplitude growth
is exponential instead of root-time as in classical models. Second, the collective
nature of the particle growth should be investigated to see what observable effects
such a mechanism could have on the beam size (and thus luminosity) evolution
over time. These collective effects and the emittance growth timescale dependence
on proximity to driving resonances would be experimentally observable.

The octupole-decapole tracking model might also be used to investigate the
amplitude growth mechanism once a theoretical framework is in place, to avoid

the rather complex detuning and coupling of the beam-beam force. Tracking with
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this lattice has several distinct advantages — motion at large particle amplitudes
is no longer stable, so no ad hoc aperture needs to be introduced, and parameters
for a Hamiltonian description as in Equation (7.1) can easily be found to first

order in the individual magnet strengths as described in Chapter 3.



CHAPTER 8
CONCLUDING REMARKS

In this dissertation we have described one and two-dimensional nonlinear reso-
nances in an accelerator context and examined how motion within a one-dimen-
sional resonance may be perturbed by tune and beta function modulation. Tune
modulation was used in an experiment, E778, to measure a quantity, the island
tune (), associated with the strength of a one-dimensional resonance, showing
excellent agreement with theory and simulation. This modulation also drives a
nonuniversal instability, modulational diffusion, in weakly coupled systems, and
this was investigated for a simple operational model of the Fermilab Tevatron

collider.

Nonlinearities are always present in any accelerator, either deliberately installed
or due to imperfections in magnetic field quality. A simple class of nonlinear per-
turbations, one-dimensional resonances, were the primary focus of this disserta-
tion. They were shown to create structures, “resonance islands”, within phase
space, and capture of particles within these islands was demonstrated through
simulation and experiment, creating coherent motion or “persistent signals” os-
cillating exactly at the resonant tune. Motion within these resonance islands was
examined in a discrete Hamiltonian formalism and shown to be equivalent to that
of a free pendulum. This motion was also parameterized by three quantities:
the island tune, the phase space amplitude of the resonance and the resonance

amplitude width.

A stability model was developed for particles oscillating close to the resonance
island fixed point under the influence of tune modulation and beta modulation.

This model predicts boundaries for the phase-locked stability of this motion that
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depend only on the island tune @)1 and the modulation strength and frequency.
Comparison of the two showed that for realistic operational parameters the effects
of tune modulation are much stronger than those of beta modulation, and both
were compared to a simple robust simulation program to show excellent agreement
for a particular resonance of interest.

The procedure and results of a tune modulation experiment, a portion of exper-
iment E778 at Fermilab, were also described. The behavior of particles trapped
in a nonlinear one-dimensional resonance, the 5@}, resonance at the horizontal
tune @, = 20.40, was systematically examined under the influence of controlled
tune modulation for two distinct nonlinear configurations and three different hor-
izontal island amplitudes. For one particular case of sextupole configuration and
island amplitudes a detailed analysis of the response of the persistent signal at
high frequencies agreed with the one-dimensional tune modulation model.

Frequency domain analysis was shown to be a useful tool for investigation of
one-dimensional persistent signals, requiring no scaling with initial beam intensity
or normalization of the beam position monitor measurement. This method has
several advantages over time domain analysis, because tune modulation parame-
ters and the island tune are all natural frequency domain variables characterizing
this system. Because the tune modulation frequency can be finely controlled, this
method may also allow investigation of the frequency (or particle) distribution
within the nonlinear resonance island from examination of the rate of captured
signal loss as the modulation frequency is increased.

The unperturbed single-resonance model was extended to two transverse di-
mensions, and a first order nonlinear model with two crossing resonances was
examined. Simulation showed the existence of two-dimensional coherent motion
and resonance islands at a particular set of base tunes corresponding to the point

where the resonances under investigation crossed. The corresponding theoretical
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model predicted fixed point locations and phases accurately, but did not repro-
duce island tunes even at small nonlinear strengths. This indicates that the simple
two-resonance model breaks down at the points in phase space where these reso-
nances cross. Although persistent signals are present here, it is more likely that
valuable information about the strengths of two-dimensional resonances will be
obtained from two-dimensional smear, which is a qualitative measure of how the
resonance distorts nearby nonresonant phase space.

An understanding of the effects of modulations leads to characteristic timescales
of motion that are much larger than those typically encountered in the commis-
sioning of many storage rings and colliders. Modulational diffusion is a previously
uninvestigated amplitude growth mechanism, and it is shown here to cause lumi-
nosity loss over timescales of minutes using realistic operational parameters for
the Tevatron. These timescales are long enough to prove difficult to diagnose yet
short enough to significantly impact the luminosity lifetime of a collider, reducing
the effectiveness of this machine in meeting experimental goals.

The character of amplitude growth due to modulational diffusion was shown
to be different than that predicted by classical models, with exponential growth
instead of root-time. Although not shown here, this is a general characteristic
of systems where the resonance strength depends on particle amplitude, creating
a feedback of this strength on the amplitude growth it creates. Modulational
diffusion is not universal — there are limits that can be prescribed, corresponding
to the tune modulation diagram, which preclude the existence of this mechanism
in operational circumstance. These conditions can provide useful design limits for
future colliders, including limits on power supply ripple and synchrotron frequency.

Future avenues of investigation and research include examination of the effects
of tune modulation on two-dimensional nonlinear resonances. Though this is a

more realistic scenario, the coupled nature of the motion and the complexity of
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examining multi-resonance systems make such an examination difficult. Since tune
modulation exists in both planes of motion, it is feasible that such a mechanism
could create a web of weak overlapping resonances in the tune plane, and that

regions where modulational diffusion exists could be characterized.
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