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ABSTRACT

Dijet angular distributions provide a excellent look at the interactions between

partons. The measurements performed by the D� detector are the most precise

accomplished to date at pp colliders and cover a larger angular range than pre-

viously possible. Both leading order and next-to-leading order QCD calculations

show agreement with the data over a large range in dijet invariant mass. This com-

parison is limited mainly by the large size of the theoretical uncertainties which

are larger than the experimental uncertainties for some mass ranges. Additionally,

a limit on quark compositeness of �C > 1:1 TeV has been obtained.
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CHAPTER 1

Introduction

Jet production was �rst observed at e+e� colliders in 1975. At p�p colliders such

as the Fermilab Tevatron, the production of jets is one of the fundamental pro-

cesses observed in events with large transverse momentum. Jets are the observable

remnants of the quarks and gluons (collectively known as partons) from hard scat-

tering events. Measurements of the properties of jet events is a good test of the

theory known as Quantum Chromodynamics, or QCD.

At lowest order, the QCD predictions refer to jet events in which a parton

from each of the incoming hadrons participates in a collision that results in two

outgoing �nal state partons. To a good approximation, the cross section for two

jet events can be factorized into a term dependent on the parton distribution

functions and another dependent on the center-of-mass scattering angle. Hence the

angular distribution measurement is largely independent of the parton distribution

uncertainty and directly related to the hard scattering matrix elements of QCD.

The measurement is also sensitive to the strong coupling constant (a measure of

the strength of the interaction between partons), �s, and its dependence on the

momentum transfer.

Currently, due to the di�culties in calculation, only leading order (O(�2
s))

and next-to-leading (O(�3
s)) order QCD calculations exist. The higher order pre-

diction should be superior and in certain kinematical regions the di�erence between

leading and next-to-leading order calculations is substantial enough for us to at-

tempt to discriminate between the two.

The D� detector is ideally suited to measurements of this type due to its

excellent calorimetry which enables us to measure jet properties to high precision
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over a large angular region. It is mainly the large region of uniform coverage and

jet triggering ability that make our measurement of the dijet angular distribution

superior to previous attempts.

The following chapters will expand the theoretical motivation behind this

measurement and discuss in detail the experimental apparatus and issues such

as jet energy calibration and resolution, jet triggering and acceptance, and data

selection criteria. Finally, the results and conclusions will be presented.
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CHAPTER 2

Theory

At the Fermilab Tevatron, protons are collided with antiprotons at a center-of-

mass energy of 1.8 TeV, and jets are produced copiously. In this chapter we will

explain how jets can be studied in order to gather some information about the

processes which are governed by the theory known as Quantum Chromodynamics,

or QCD.

Protons are made up of smaller particles called quarks which are held

together by gluons. Quarks and gluons are collectively referred to as partons. It

is these proton constituents which interact to generate an observable event. First

we will review our understanding of the proton itself, knowledge that is essential

since we must know the internal structure of the proton in order to predict which

interactions will take place. Then we will review the QCD predictions for the

dijet angular distributions for individual parton-parton subprocesses. Also the

theoretical de�nition of a jet will be presented.

2.1 Parton Model

The proton is a fairly stable object, not prone to breaking apart easily. Yet, when

probed by high energy particles, the partons that make it up are not locked rigidly

together but rather appear to be connected in a very loose fashion. This apparent

contradiction �rst came to light when the results of deep inelastic electron-proton

scattering showed that the cross section for

e+ P ! e+X
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shown diagrammatically in Figure 2.1 could be expressed as a function of a sin-

gle kinematic variable, x, the fraction of the proton momentum carried by the

interacting quark[1]. In the massless approximation for electrons and quarks, the

massless condition for the �nal quark gives

0 = k02 = (k + q)2 = q2 + 2k � q:

Using k = xP; q2 = �Q2 and P � q = M� where Q2 is the invariant momentum

transfer squared, M is the proton mass and � is the momentum carried by the

virtual photon in the proton rest frame, we obtain

x =
�q2
2P � q =

Q2

2M�
:

Both Q2 and 2M� are much greater than M2 in deep inelastic scattering, making

the time scale of the interaction very short compared to the lifetime of a virtual

state of the proton, thereby justifying the treatment of the partons as free during

the collision.

2.2 Renormalization and the Running Coupling

Renormalization is an elaborate process whereby in�nities which occur when cal-

culating Feynman diagrams are eliminated. It also introduces a parameter, �,

which embodies the uncertainties due to uncalculated higher order loops. The ma-

jor result of renormalization is an expression for the strong coupling constant in

terms of a momentum scale, �, which is given here in the one-loop (leading order)

approximation[2]:

�s(Q
2) =

12�

(33 � 2f) ln(Q2=�2)

where f is the number of 
avors contributing at a given Q2 and � is the experimen-

tally derived fundamental scale parameter of QCD. This shows that the strength

of the coupling between partons, �s, depends on the momentum scale of the parti-

cles involved. We see that for large values of Q2, the coupling becomes small and



21

e
xP

γ,Z

(q ,q)

Figure 2.1: Deep inelastic electron-proton scattering.

perturbative calculations can be used. But for values of Q ' �, all orders of the

theory contribute equally and perturbative calculations are useless. The value of

� depends on the renormalization scheme used and the number of quark 
avors

involved. The currently accepted value of � is around 200 MeV, the exact value

not being too critical. For measurable jet physics at the Fermilab Tevatron, �s of

the parton-parton scattering ranges from about 0.10 to 0.15, so that perturbative

calculations may be used with reasonable accuracy.

The falling of �s(Q2) with increasing momentum scale is known as \asymp-

totic freedom" and explains the scaling result of deep inelastic scattering; that the

partons scatter incoherently when interactions occur at short distances and short

times. The increase of the strong coupling at low momentum scales (longer times

and distances) is called \con�nement" and is what keeps the proton together un-

der normal circumstances. The phenomenological description of jets as a spray

of collimated hadrons is also predicted by the increase of the coupling at large

distances.
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Figure 2.2: Parton distribution functions weighted with x for the u valence quark
and the gluon shown for di�erent values of Q. The distribution MRS S0 is used.

The momentum scale also comes into play when we try to describe the

structure of the proton. As we probe it deeper, we see not only the valence quarks

that nominally make up the proton, but also a sea of gluons, quarks and anti-

quarks. The equations governing the evolution of the protons structure with Q2

are called the Altarelli-Parisi equations [3]. They predict a logarithmic dependence

on Q2 of the momentum fraction distribution of the partons. At higher Q2, the

distribution gets softer, which can be explained by an increased likelihood that a

quark has just radiated a gluon. This is shown in Figure 2.2 where the gluon and u

valence quark distributions are shown for several values of Q. As Q increases, the

distributions tend toward lower x (the fraction of the proton's momentum carried

by the parton.) This \evolution" of the momentum distribution functions gives

violations of the deep inelastic scaling that become observable only when a large

kinematic range is studied, due to the logarithmic dependence on Q2.
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2.3 Parton Distribution Functions

Since we are dealing with proton-antiproton collisions and we have theoretical

predictions for parton-parton subprocesses, we must have some knowledge of how

much contribution a given parton makes to the total momentum of the proton.

The parton distribution functions (PDF), fq(x) give the probability that a given

parton, q, carries momentum fraction x. The PDF's are calculated based on exper-

imental data. Deep inelastic scattering of electrons and muons o� protons can give

the quark distributions, but gluons, which have no electroweak coupling, are not

measured by this method. Gluon distributions can be probed by direct photons or

Drell-Yan lepton pairs from a quark-gluon interaction, but current measurements

are of limited usefulness and do not extend to low values of x, where the gluon

density gets very large. Several constraints are placed on the distributions:

Z 1

0
uv(x)dx = 2

Z 1

0
dv(x)dx = 1

Z 1

0
xdx[g(x) +

X
q;�q

[q(x) + �q(x)]] = 1

simply that there be 2 valence u quarks, 1 valence d quark, and the momentum of

all the partons add up to the momentum of the proton. Using these constraints,

experimental results, and the previously mentioned Altarelli-Parisi equations the

parton distribution functions and their Q2 dependencies can be generated by �tting

the parameters of some assumed form. Most of the experimental measurements

were done at low values of Q, from 4-10 GeV, so that evolution up to the current

experimental scale is essential.

Many sets of PDF's exist, each using di�erent experimental results, renor-

malization schemes, and �tting methods. Also, some sets use the leading order �s

calculation while others use the next-to-leading order evolution. Two are shown

in Figure 2.3 evolved up to a scale Q2 = (50 GeV )2. Using PDF's, we may now
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Figure 2.3: Parton distribution functions weighted with x for the gluon and the u
valence quark. Two di�erent distributions are shown: set MRS S0 (solid line) and
set Mor�n-Tung B2 (dotted line) at Q2 = (50GeV )2.

�nally calculate cross-sections for proton-antiproton collisions by summing over all

the possible initial partons and integrating over the x for each one:

�(p�p! jet+ jet) =
X
a;b

Z Z
dxadxbfa=p(xa)fb=�p(xb)�̂(ab! jet+ jet):

Where a and b are the initial state partons, �̂ is the subprocess cross-

section.

2.4 Jet Production

The production of jets in hadron-hadron collisions can be reduced to three steps,

the perturbative hard interaction, the perturbative but di�cult-to-calculate parton

showering, and the non-perturbative \hadronization" or \fragmentation". These

steps will be discussed separately since they are handled in completely di�erent

ways.
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Figure 2.4: Feynman diagrams for parton-parton scattering to order �2
s.

2.4.1 The hard interaction

The QCD hard-scattering predictions are derived directly from the theory, and

these are what we hope to measure experimentally. The accuracy of the test

is limited by the di�culty in calculating higher order terms in the perturbation

theory. Leading-order (O(�2
s)) calculations are derived from the Feynman diagrams

of Figure 2.4. Leading order subprocess predictions are presented in x 2.6.2.
Next-to-leading-order (O(�3

s)) calculations have become available in recent

years [4] and have increased our predictive accuracy. Examples of next-to-leading-

order diagrams are shown in Figure 2.5. These predictions increase the theoretical

accuracy by including possible third jets, but also cause additional di�culties in
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Figure 2.5: Examples of �3
s-order processes.

jet de�nition. This problem will be discussed more fully in x 2.5.
The value of Q (the momentum transfer) used in �2

s and the parton dis-

tribution evolution is normally chosen as some fraction of the outgoing parton PT .

Uncertainties in the scale � lead to uncertainties in what fraction of PT to use,

for instance, Q2 = (PT=2)2; (PT )2; (2PT )2, etc. Since � is related to the uncer-

tainty due to missing higher orders, O(�2
s) calculations depend on this choice more

strongly than do O(�3
s) calculations.

2.4.2 Parton Showering

At this stage we have 2 (or 3) partons moving at high momentum transverse to

the initial beam momentum. As the partons move apart the time and distance
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scales increase causing the coupling to strengthen (See Figure 2.6.) The quarks and

gluons from the original collision begin radiating gluons and the gluons can also

split into quark-antiquark pairs. This is called the parton shower. At early times

in the shower, the parton invariant masses are large and gluons may be emitted

at large angles. Later in the shower the invariant masses decrease and the \gluon

bremmstrahlung" is collinear. The parton shower is perturbative, and although the

exact higher order matrix elements have not been calculated, the process may be

simulated using using a so-called \leading-log" approximation where all the terms

�n
s ln

nQ2 are summed. Events can be generated which have multi-jet character-

istics, but the approximation is poor for early times when Q2 (equals invariant

mass) is large and interference e�ects (left out with the non-leading-log terms) are

important. Leading-log approximations will be used here to generate Monte Carlo

simulated events, but data will be compared only to O(�2
s) and O(�3

s) theoretical

predictions.

It is important to note that the partons can radiate before the hard col-

lision as well. This initial state radiation will take part in the parton showering

after the collision as will the remnants of the proton and antiproton, which will

shower and hadronize into the so-called \beam jets."

2.4.3 Hadronization

When the invariant masses drop to order �, �s becomes large, and non-perturbative

hadronization takes over. This process is characterized by a fragmentation function

Dk
h(z;Q

2), the probability of �nding a hadron of type h with momentum fraction

z = 2Eh=Q where k is the initiating parton type. Various models using fragmen-

tation functions have been incorporated into event generator Monte Carlos.
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Invariant mass decreases

Time increases

Distance increases

qq

Hadrons

Form

Figure 2.6: Schematic of the development of a parton shower. The time and
distance increase from left to right while the invariant mass decreases. Hadrons
form when the masses become of the order of �, the QCD scale parameter.
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2.5 Jet De�nition

When dealing with leading order 2! 2 processes, the outgoing partons are widely

separated and the jet's 4-momentum is equated with the 4-momentum of the par-

tons. With next-to-leading-order calculations, where 3 outgoing partons are pos-

sible, it is more tricky. As we have seen, the parton showering and hadronization

processes tend to widen jets, so that if two of the outgoing partons are close to-

gether, they will be experimentally unresolvable and appear as a single jet. If we

are to compare experimental results to theory, then these partons must be merged

into a single object. Also, theoretical divergences occur as the radiated parton's

energy become small (\infrared divergence") or the angle between it and the par-

ent parton become small (\collinear divergence".) They can removed by requiring

some separation distance cuto� parameter.

The question then arises as to what constitutes \close." To answer this

we must �rst de�ne the rapidity:

y =
1

2
ln(

E + pz
E � pz

) = tanh�1(
pz
E
)

and the pseudorapidity:

� = � ln tan(�=2)

where the z-axis is de�ned along the beam line (initial parton direction) and � is

the angle between the parton (or jet) and the z-axis. The pseudorapidity is easily

measured experimentally and approaches the rapidity in the limit p � m. It is a

very useful variable since under a boost � = v=c in the z-direction, the rapidity

transforms like y! y+tanh�1 �. Hence distributions in rapidity such as jet shapes

are invariant under longitudinal boosts. This variable along with the azimuthal

angle � are used to de�ne distances between partons.

The O(�3
s) predictions of Ellis, Kunszt, and Soper[4] used here to compare

with data do indeed merge partons into jets when they are too close in y; �-space.

They also make use of the parton's transverse momentum, PT , the momentum

component perpendicular to the beam line. The criteria they use is to merge the
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partons if they are both inside a cone (circle in y; �-space) with a PT -weighted

centroid: If q
(y1 � y2)2 + (�1 � �2)2 � (PT1 + PT2)R

max(PT1; PT2)

then the two partons are merged into a single jet with

PTJ = PT1 + PT2

and

yJ =
y1PT1 + y2PT2

PTJ

�J =
�1PT1 + �2PT2

PTJ

:

The nominal size of the cone, R, is the cuto� parameter mentioned above. The

theoretical results are dependent on R and its value can be chosen experimentally

in consultation with detector resolution and the normal jet width due to parton

showering and hadronization. This topic will be discussed further in x4.1.

2.6 Dijet Angular Distributions

2.6.1 De�nition of Angular Variables

There are 3 independent variables used here to describe dijet events,MJJ , the dijet

invariant mass, �boost, the longitudinal boost in rapidity, and cos ��, the cosine of

the angle between a parton and the beam line in the center-of-mass frame. These

variables are shown schematically in Figure 2.7. It should be noted that since we

are experimentally unable to di�erentiate between �� and �� ��, what we actually

measure is j cos ��j. An implicit absolute value is assumed for all angular variables.
In the simple dijet case, if the pseudorapidities of the two jets are �1 and

�2, then the center-of-mass pseudorapidity is �� = 1
2(�1� �2). This is related to ��

by this equation:

cos �� = tanh ��:

The longitudinal boost of the dijet system can be expressed in terms of the two

jet �'s as well:

�boost =
1

2
(�1 + �2):
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Lab Frame CM Frame

η

η

η

*

*

η

2

1

Figure 2.7: Dijet event in lab frame and center-of-mass frame.

The dijet mass, MJJ , is calculated using M2
JJ = (P1 + P2)

2, where the P 's are the

jet's 4-momenta. In this simple dijet case where there is no transverse boost (i.e.,

the two jet PT 's are equal) then MJJ = 2PT cosh ��:

Jet production is dominated by t-channel exchange of a vector gluon

between partons, which gives the characteristic angular distribution known as

Rutherford scattering at larger angles. This distribution d�=d cos �� � (1 �
cos ��)�2 is strongly peaked in the forward direction. Figure 2.8 shows both a

pure Rutherford scattering distribution and a leading order QCD calculation nor-

malized over the range in cos �� shown. Figure 2.9 shows the same two curves

versus ��.

The variable � will also be used here. Although it is not easily visualized

in terms of physical coordinates, it tends to 
atten the distributions and makes

the various contributions and di�erences more easily observable. It is de�ned by:

� = e2j�
�j

or
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Figure 2.8: dN=d cos � for pure Rutherford scattering (solid line) and for leading
order QCD dijets (dashed line) .

Figure 2.9: dN=d�� for pure Rutherford scattering (solid line) and for leading order
QCD dijets (dashed line) .
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Figure 2.10: dN=d cos � for pure Rutherford scattering (solid line) and for leading
order QCD dijets (dashed line) .

� =
1 + cos ��

1� cos ��
:

Using �, The Rutherford scattering distribution can be written as

d�

d�
=

d�

d cos ��
d cos ��

d�
�
 
1� �� 1

�+ 1

!�2  
1

�+ 1
� �� 1

(�+ 1)2

!

=

 
2

�+ 1

!�2
2

(�+ 1)2
=

1

2

using cos �� = (� � 1)=(� + 1): Thus the distribution in � is completely 
at for

pure Rutherford scattering. In Figure 2.10 the QCD leading order curve (same as

used in Figure 2.8 and Figure 2.9) is shown plotted versus � and it is clearly not

completely 
at at large �. This discrepancy between leading order QCD and pure

Rutherford scattering will be explained in the next section.

Experimentally, there are often non-negligible transverse boosts due to the

transverse momentum components of the partons inside the proton and additional
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low PT jets. The de�nition shown above,

cos �� = tanh(
1

2
(�1 � �2));

assumes the dijet system is boosted along the beam axis only. Using this de�ni-

tion for dijet masses below around 200 GeV, the dijet transverse boosts (typically

around 10 GeV) could smear the observed angular distribution, thereby 
atten-

ing it slightly. The \Collins-Soper" angle[5], which determines the center-of-mass

scattering angle along a general boost vector, may provide better agreement with

leading order predictions. The de�nition is:

cos �� =
(E1 + Pz1)(E2 � Pz2)� (E1 � Pz1)(E2 + Pz2)

MJJ

q
M2

JJ +
~Q2
T

where

~Q2
T = ( ~PT1 + ~PT2)

2 = (Px1 + Px2)
2 + (Py1 + Py2)

2:

Additionally, due to transverse boosts, the experimental dijet mass will be

calculated using the general de�nition,

MJJ = (P1 + P2)
2 = (E1 + E2)

2 � (Px1 + Px2)
2 � (Py1 + Py2)

2 � (Pz1 + Pz2)
2:

The derivation of the 4-vectors involved in the calculation will be explained in

x4.1.1.

2.6.2 Calculation of dN=d� in Leading Order

The leading order matrix elements are calculated using Feynman diagrams such

as those in Figure 2.4. The individual subprocesses have been symmetrized and

combined for inclusive �nal states and represented in terms of � in Table 2.1[6].

In Figure 2.11, the subprocess matrix elements are plotted in the form jMj2

g4s

1
(�+1)2 ,

thereby showing only the explicit � dependence and color factor di�erences. Note

that they are all quite similar in shape, making the contribution of quarks relative

to gluons of little importance. Therefore we expect the full distributions to be

mostly independent of the choice of parton distribution.
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Figure 2.11: Subprocess matrix elements �-dependence = jMj2

g4s

1
(�+1)2 .
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Table 2.1: Squared matrix elements for leading order 2 ! 2 subprocesses with
appropriate spin and color factors. q and q0 are separate 
avors of quarks and
g2s = 4��s:

Subprocess jMj2=g4s

qq0; q�q0! jj 8
9
(�2 + �+ 1 + ��1 + ��2)

qq ! jj 8
9
(�2 + 2

3
�+ 1

3
+ 2

3
��1 + ��2)

q�q ! jj 8
9(�

2 + 8
3�+

2
3 +

8
3�

�1 + ��2 � (�2+1)
(�+1)2 )

qg ! jj 2(�2 + 11
9 �+ 5

3 +
11
9 �

�1 + ��2)

gg ! jj 9
2(�

2 + 29
27�+ 3 + 29

27�
�1 + ��2 � �

(�+1)2 )� 3
4
(�2+1)
(�+1)2

The curves 
atten as expected at large � where the t-channel contribution

dominates. The sharp rise at low � (which is also low cos ��) is due partly to s-

channel contributions which are only visible above the large t-channel cross section

where the jets are nearly perpendicular to the beam line (in the CM frame). This

corresponds to � < 3 or j��j < 60 degrees or j��j < :5:

To generate an observable distribution we must now sum over these sub-

process matrix elements weighted with parton distribution functions and multiply

by appropriate phase space factors. This can be written as follows:

d�3

d�boostdMJJd�
=

1

128�Ebeam

E2
T

�MJJ

X
a;b

fa(xa; Q
2)fb(xb; Q

2)jMabj2

where a; b are the initial state partons, ET is the parton transverse energy and Ebeam

is the initial proton(antiproton) energy in the lab frame. In order to generate

d�=d�, integrate �boost and MJJ over the ranges of interest. All the plots have

been normalized to unity over the region of interest. This normalization reduces

the largest source of experimental uncertainty, the jet energy scale uncertainty,

and makes the measurement sensitive to di�erences in shape. Results are shown in
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Figure 2.12 for the parton distribution functions MRS S0[7], Mor�n-Tung B2[8],

and CTEQ 1M [9] using Q2 = P 2
T=4. As expected, little variation is seen due

to di�ering PDF's. For all ranges of MJJ and � within experimental reach the

di�erences between curves generated using di�erent parton distributions is of order

2% or less.

The subprocess � distributions tended to 
atten at larger � (Figure 2.11)

in agreement with pure Rutherford scattering. However, the full distributions

shown in Figure 2.12 keep rising. This is due to two factors, both related to the

running of �s with Q2, which is proportional to P 2
T . For constant MJJ , or range

of MJJ such as used here, the jet PT decreases as � increases. This may be seen

from the equation shown above, MJJ = 2PT cosh ��, which may be rewritten as:

PT =
MJJ

2 cosh ��
=

MJJp
�+ 1=

p
�
:

The two e�ects which cause the rise in the distribution at large � are:

� The parton distributions get harder (tends to higher x) as Q2 decreases. This

increases the number of partons available to scatter at higher �.

� The matrix elements contain a factor �2
s(Q

2) which increases as Q2 decreases.

Since the rise of the distribution at large � is due to the running of �s, we may

be sensitive to the choice of momentum scale used. Shown in Figure 2.13 is the

distribution using CTEQ 1M and varying the choice of Q2 over the range: Q2 =

P 2
T=4; P

2
T ; 4P

2
T . The distribution is seen to be sensitive at about the 3% level to

choices in this range. Since the choice of momentum scale e�ects the slope of the

curve, as the � range increases the sensitivity to the choice of scale increases.

2.6.3 Next-to-Leading-Order Calculation of d�=d�.

Calculation of the dijet angular distribution to order �3
s is far more di�cult than

for leading order. There are very many more Feynman diagrams to add up and the

subprocess expressions are much more complex{ they will not be reproduced here.
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Figure 2.12: Calculated d�=d� for 200 < MJJ < 400 and j�boostj < 2:0 using
Q2 = P 2

T=4. The parton distribution functions MRS S0(solid), M-T B2(dashed)
and CTEQ 1M(dotted) are used and the curves have been normalized over the
range shown in �.
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Figure 2.13: Calculated d�=d� for 200 < MJJ < 400 and j�boostj < 2:0 using CTEQ
1M. Di�erent values of Q2 = P 2

T=4(solid); P
2
T (dashed); 4P

2
T (dotted) have been used

and the curves have been normalized.
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Calculations have been performed by Ellis, Kunszt, and Soper [4] using the matrix

elements provided by Ellis and Sexton[10] and they have been made available for

this analysis via a computer program from Dave Soper. In the O(�3
s) case, the two

highest PT �nal partons (if there are three) are used to calculate the kinematic

parameters, MJJ ; �boost, and �: The choice of momentum scale is di�erent also.

Using a modi�ed Principle of Minimal Sensitivity, Ellis, Kunszt, and Soper[11] use

the following parameterization:

Q =
AMJJ

2 cosh (B��)

where A and B are chosen in order to minimize the derivative of the result with

respect to Q. In other words, for some choice of A and B, variations of Q about this

choice will minimally e�ect the resultant cross section. This choice is A = 0:5 and

B = 0:7. Note that if B = 1 in the above formula, it is equivalent to Q = APT and

that the parameter B e�ectively controls the rate at which Q varies as a function of

the angular variable. If we use this choice of Q in the leading order calculation, we

get very nearly the same curve as the next-to-leading order prediction as expected.

In Figure 2.14 the O(�2
s) and O(�3

s) distributions are compared and the slope is

seen to be less steep for the O(�3
s) QCD distribution. Ellis, Kunszt, and Soper

claim an uncertainty of 10% [11] for the O(�3
s) curve and 40% for the O(�2

s) curve

due to the uncertainty in the choice of momentum scale.

2.6.4 E�ects of Compositeness

The dijet angular distribution can be used to test for new physics. It is sensitive to

the presence of composite quarks, i.e., quarks that are made up of smaller, as yet

unknown, particles. In high-PT quark-quark scattering, these quark constituents

could be exchanged and give rise to point-like interactions. Calculations are usu-

ally made assuming color-singlet isoscalar exchanges between left-handed u and d

quarks, which can be expressed by the addition of the e�ective Lagrangian[12]

L =
�g2

2�2
C

(�uL

�uL + �dL


�dL)(�uL
�uL + �dL
�dL)
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Figure 2.14: Calculated d�=d� for 200 < MJJ < 400 and all values of �boost for
O(�2

s) and O(�3
s) QCD calculations. The O(�3

s) curve is 
atter at high �. The
leading order prediction is shown for two choices of the momentum scale, Q = PT=2
and Q = :5MJJ=2 cosh (0:7��).
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to the QCD Lagrangian. This is often referred to as a contact term or 4-point

interaction. Here �C is the scale of compositeness and � = �1 is the sign (phase.)

The matrix elements are then modi�ed by the addition of the following jMj�2
terms:

jM(q�q! q�q)j�2 = �8
9

4��g2sM
2
JJ

�2
C

�3

(�+ 1)2
+
8

3

 
4��M2

JJ

�2
C

!2
�2

(�+ 1)2

jM(qq! qq)j�2 = �8
9

4��g2sM
2
JJ

�2
C

+

 
4��M2

JJ

�2
C

!2  
�2 + 1

(�+ 1)2
+
2

3

!

jM(qq0! qq0)j�2 = jM(q�q! q0�q0)j�2 = jM(q�q0! q�q0)j�2 = 
4��M2

JJ

�2
C

!2
�2

(�+ 1)2

These additional terms can be included in the O(�2
s) calculation above to

see the results of the contact term in the � distribution. The results are shown

in Figure 2.15 for 500 < MJJ < 600 with and without a compositeness scale of

�C = 1000 GeV, � = +1, and normalized to unity. The contact term is seen to

increase the peak at low �. Also note that since the added terms have factors of

MJJ=�C , the higher theMJJ range selected, the more sensitive we are to higher �C.

But due to the rapidly falling cross section, the statistical uncertainties increase

as the mass threshold increases.
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Figure 2.15: Calculated d�=d� using O(�2
s) QCD for MJJ > 500 with and without

the contact term. The compositeness scale used is �C = 1 TeV. Although the
contact term increases the cross section at low �, here the two curves have been
normalized over the range in � shown in order to show di�erences in shape.
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CHAPTER 3

The D� Detector

The D� detector [13, 14] was designed as a multipurpose collider physics detector.

It consists of three main components: the central detector, the muon system and

the calorimeter as shown in Figure 3.16. Since jets are detected and measured in

the calorimeter, it will receive special emphasis in the following descriptions. A

discussion of jet triggering at D� is also included.

At the Fermilab Tevatron, the distribution of the interaction points can

be described by a Gaussian in the coordinate z, de�ned as the distance along the

beam line where z = 0 is the center of the detector. During the run during which

the data presented here was collected the center of the Gaussian was shifted 11

cm from the detector center and the width was 31 cm. When a pseudorapidity, �,

is mentioned in the following descriptions, it is assumed the interaction occurs at

z = 0. This will also be referred to as the \detector �" or \� index" and should be

considered as a label for a given readout channel rather than a true pseudorapidity.

The other coordinates used are the polar angle � and the azimuthal angle �.

3.1 Central Detector

The central detector resides in a barrel-shaped region surrounding the interaction

point[15] (Figure 3.17.) It consists of three types of drift chambers and the

transition radiation detector. Drift chambers consist of wires at high potential in

a gaseous medium. They operate by timing the arrival of charge on the wires due

to a high energy charged particle ionizing the gas. This time can then be used

to form a \hit" coordinate in the chamber and a series of such hits can be linked

together to form a \track", the reconstructed trajectory of the particle. Unlike
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D0 Detector

Figure 3.16: The D� detector.
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some other collider detectors, D� has no central magnetic �eld, so that particle

tracks are straight and the momentum and sign of the charged particles cannot be

determined. The four subdetectors are:

� Vertex Chamber (VTX): This subdetector consists of three concentric layers

of drift chambers close to the beam pipe. It is used to measure the longitu-

dinal position of the interaction point which in turn is used to correct the jet

� and ET .

� Transition Radiation Detector (TRD): The TRD is used to discriminate elec-

trons from charged pions by measuring the radiation produced when crossing

the boundary between materials with di�erent dielectric constants. It con-

sists of many layers of alternating dielectric and a proportional wire chamber

to detect the induced radiation.

� Central Drift Chamber (CDC): The CDC consists of four layers of drift cham-

bers just inside the central calorimeter cryostat. This subdetector, along with

the two previously mentioned, measure tracks in the range of pseudorapidity

j�j < 1:

� Forward Drift Chamber (FDC): The FDC's each include two types of cham-

bers. The �-chambers have radial sense wires and the �- chambers have 4

quadrants with the sense wires perpendicular to and surrounding the beam.

3.2 Muon System

The wide angle muon system (WAMUS) consists of three layers of proportional

drift tubes and a steel toroid. The �rst layer is inside the magnet and together

with the central detector give the muon trajectory before the track is bent by the

magnetic �eld. The two layers outside the steel measure the altered direction. In

addition, the small angle muon system (SAMUS) end toroids and chambers give
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Figure 3.17: The D� central tracking system.

coverage for j�j < 3. There are from 13-19 absorbtion lengths before the outer two

muon chambers so the probability of pion punch-through is very small.

3.3 Calorimeter

Jets at D� are measured exclusively in the calorimeter. This detector is a sampling

calorimeter with depleted uranium as an absorber and liqui�ed argon as the active

ionizing material. As particles enter the calorimeter, they interact with the dense

uranium and more particles are created. These particles also interact to generate

more particles and this \shower" of particles passes from absorber plate to sampling

layer to absorber plate again as they travel away from the interaction vertex. When

charged particles traverse the sampling layer of liquid argon, they ionize the argon

atoms. As shown in Figure 3.18, there exists a read-out board in the center of

each argon gap where the copper pads and the absorber plates are held at ground
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Figure 3.18: Cross-section through calorimeter readout sampling cell.

while the resistive coat is at high voltage (typically 2.0 kV.) The thin G-10 board

between the resistive coat and the copper pads serves as a blocking capacitor for

the preamp. As the charge moves across the argon gap, each copper readout pad

produces a signal which is then sent through a charge-sensitive preamp, a shaping

and sampling circuit known as the base line subtracter (BLS), and next to an

analog-to-digital converter (ADC). The ADC's also subtract the pedestal value

and zero-suppress each channel [16].

Typical transverse segmentation is 0:1� 0:1 in �; � where all longitudinal

layers with the same �; � index are projective from the center of the detector which

is the nominal interaction point 1.

Physically, the D� calorimeter is divided into 3 sections, the central (CC)

and two end caps (EC) calorimeters (see Figure 3.19) each in its own cryostat

in order to keep the liquid argon cold. In terms of function, it can be divided

1Actually, the calorimeter geometry is usually described as \pseudo-projective" since in the

interest of cost, not every read-out board pad layout is customized for its particular depth in

the calorimeter. The boards were produced typically in groups of 5, giving a somewhat \blocky"

tower border.
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Figure 3.19: Cutout view of the D� calorimeter.

into 3 di�erent types in order from the interaction point outwards: First is the

�nely segmented electromagnetic section which absorbs almost all of the energy

from electromagnetic showers. Next is the �ne hadronic with thicker absorber and

coarser sampling. Last is the coarse hadronic section with very thick absorber

plates and very coarse sampling. Each of these calorimeter types will be discussed

here in order.

� Electromagnetic Section (EM): The electromagnetic calorimeter uses ura-

nium plates with thickness 4 mm in the EC and 3 mm in the CC for �ne

sampling and good energy resolution. It is read out in four longitudinal

layers of thickness 2, 2, 7, and 10 radiation lengths (X0), where the �rst

layer thickness includes the cryostat wall. The transverse segmentation is

�� � �� = 0:1 � 0:1, except for the third longitudinal layer where it is

�� ��� = 0:05 � 0:05: This provides better positional resolution for elec-

trons and photons since the average electromagnetic shower deposits about
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65% of its energy in the third layer.

� Fine Hadronic Section (FH): The �ne hadronic section uses 6 mm uranium

plates and consists of four read-out layers in the EC and three in the CC.

It is a total of about 5 interaction lengths in depth and has a transverse

segmentation of �� ��� = 0:1� 0:1.

� Coarse Hadronic Section (CH): The coarse hadronic section consists of very

thick (46.5 mm) plates of stainless steel in the EC and copper in the CC that

amounts to about 4 interaction lengths. This maximizes the containment of

the shower in the calorimeter and prevents (except for the most energetic

jets) the spraying of particles into the muon chambers.

The calorimeter modules were studied during test beam runs taken be-

tween 1985 and 1992 where various sections of the calorimeter were exposed to

monochromatic beams of electrons or charged pions. The test beam results show

that the calorimeter response is linear to within 0.5% for electrons above 10 GeV

and pions above 20 GeV. The e�ects of nonlinear response for low energy particles

is very important for jets, which are typically composed of many low energy par-

ticles. The low energy test beam data and its implications to jet energy response

will be studied in great detail in chapter 5.

3.3.1 Massless Gaps and Inner Cryostat Detectors

Between calorimeter cryostats there exists a region of non-uniform response. A

jet entering this region may encounter very little EM and FH calorimetry and

deposit large portions of its energy in uninstrumented materials such as cryostat

walls (2.5 cm thick steel) and support structures. For this reason, two separate and

complimentary methods are used in this region in order to recover some of this lost

information. The massless gap detectors consist of alternating sets of high voltage

and grounded signal boards placed on the steel endplates of modules both in the

CC and EC. They are sensitive to showering in the argon between the cryostat walls
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Figure 3.20: Cutout view of the calorimeter crack region.

and the steel endplates. The inner cryostat detector (ICD) consists of scintillator

placed between the CC cryostat and the EC cryostats. The arrangement of these

detector elements can be seen in Figure 3.20. They have been calibrated in a test

beam setup and can contribute large fractions to the reconstructed energy of jets

that enter the crack between cryostats.
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3.4 Trigger System

At a typical running luminosity of 5 � 1030cm�2sec�1, inelastic scattering events

occur 200,000 times per second. Since events are written to tape at a rate of only 2

per second, the trigger system must quickly decide which events are worth keeping

and which are not. This is accomplished using three trigger layers, each more

restrictive than the previous:

� Level 0: The level 0 trigger system consists of a set of scintillators on each side

of the interaction region[17]. By comparing the time at which particles passed

through each side, these detectors are used to signal whether an interaction

occurred, �nd its approximate position along the beam line, and also 
ag

events with more than one interaction.

� Level 1: This trigger level accepts or rejects events on the basis of localized

energy ( actually ET ) deposits in the calorimeter[18]. It makes a decision by

counting how many \trigger towers" were found above a certain ET threshold.

A trigger tower is formed by the summation of calorimeter cells (excluding

the coarse hadronic, ICD and massless gaps) in a square of :2� :2 in � � �

space using special fast readouts on the BLS cards. These triggers can be

prescaled by a number N , where only one event in N is passed on to the

next layer. The level 1 trigger covers the range of pseudorapidity j�j < 3:2.

� Level 2: The level 2 trigger layer performs an event reconstruction similar to

that used o�ine. This is performed on one of 50 Vaxstation 4000 model 60

computers, making this a software trigger as opposed to the �rst two trigger

layers, where all decisions were made in hardware. Jet events are �ltered at

this stage by requiring at least one jet above a certain ET threshold. Jets

are constructed using the list of �red (above threshold) level 1 trigger towers

as centers of the jet cone and without iterations. See x4.1 for a complete

discussion of the o�ine jet reconstruction.
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CHAPTER 4

The Jet Reconstruction Algorithm

For this analysis, jets are reconstructed using a cone algorithm[19]. Calorimeter

energy clusters are found using an �; � cone with radius 0.7. In this chapter, the

algorithm will be discussed in detail and its ability to reproduce theoretical results

will be studied.

Before the algorithm is presented, it is necessary to describe the processing

of the data before it is used by the algorithm. The data for each event is zero-

suppressed in hardware, that is, each cell with energy below some threshold is

set to zero and not read out. The threshold used is 2�, where � is the width of

the pedestal distribution, typically 10 MeV for a electromagnetic calorimeter cell

and 50 MeV for an hadronic cell. Since the noise has negative as well as positive

energy tails, the decision was made to use a two-sided zero-suppression, i.e., to zero

channels when jCell Energyj < 2�: The zero-suppression has a negligible e�ect on

the reconstruction but is important in energy scale considerations.

In the �rst step of the reconstruction, calorimeter cells with the same �

and � detector index are summed into towers. The energy centroid of each cell is

corrected using the actual z-vertex, as obtained by central tracking, to obtain the

cell's energy vector. The mass of each cell is taken as zero, so ~Pcell = ~Ecell. The cells

in a given calorimeter tower are then summed vectorially to obtain Ex; Ey; Ez, and

Etotal. After the summation a true physics �; �, and ET for each tower is calculated

using ~E and used for all subsequent steps of the jet �nding.
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4.1 Cone Algorithm

As a �rst step of implementing the cone algorithm, localized energy deposits are

found and labeled \preclusters." The �; � coordinates of these preclusters are used

as initial centers for the iterative cone algorithm, which will try to �nd a stable

centroid for the jet. If the �nal, stable jet cone then overlaps with any previously

found jet cones, a decision must be made whether to split the overlap energy

between the two jets or merge the two into one jet. The three steps are described

in detail as follows:

� Preclustering: The preclustering algorithm loops over all towers. A

precluster is formed for each tower with ET > 1 GeV and the nearest neigh-

bors are then added to the precluster if they also have ET > 1 GeV. The

ET -weighted �; � center of each precluster is calculated and kept in a list.

� Jet Cone Implementation: The input to the algorithm consists of the list

of preclusters and the towers obtained as described above. The algorithm

loops through the list of preclusters using the coordinate of each precluster

as a \seed", or initial starting center, of the jet cone. Given the center of the

cone, (call it �0; �0), all the towers having an �; � within the radius R = 0:7

are summed. That is, all towers with

q
(�0 � �)2 + (�0 � �)2 < 0:7

are summed. The four quantities Etotal; Ex; Ey, and Ez are summed individ-

ually. A �; � centroid is obtained from this sum in the following manner:

� = tan�1
Ex

Ey
� = tan�1

ET

Ez
� = ln cot

�

2

where ET =
q
E2
x + E2

y : The jet mass obtained from this procedure M2
J =

E2
total � ~E2 is what you would get if each calorimeter cell were a massless

particle. This is poorly measured and in the next section we will discuss how

it is avoided altogether.
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If the new centroid is the same as the initial centroid then it is considered

stable and we are done with this stage. Otherwise, if the new centroid is

di�erent from the old, we must re-sum the towers using the new centroid as

the center of the cone. In this way iterations are carried out to ensure that

our jet centroid is the actual center of the calorimeter energy cluster. The

stable jet centroid is then cut on ET by requiring a minimum of 8 GeV in

the jet. It is important to note that this iteration procedure can be thought

of as a �rst pass of jet merging. If two energy clusters are close enough

together, the iterations will bring the jet center to some point between the

two clusters, and they will both be inside the jet cone.

� Splitting and Merging: If the newly found jet cone does not overlap any

previously found jet cone, then we move on to the next precluster seed.

Otherwise, if there is overlap, then we must decide whether to split the two

jets or merge them into one. This decision is based on the fraction of ET

contained in the region of overlapping cones between the two jets. If the jet

ET 's are labeled ET1 and ET2, then they are merged if

shared ET

min(ET1; ET2)
> 0:5:

That is, if the jets share more than 50% of their ET , then they are merged.

Otherwise they are split and the shared energy is divided between the two

by awarding individual towers to the jet with the nearest centroid. In either

case, the jet parameters are recalculated based on the new set of towers in

each jet.

Often two or more di�erent initial seeds will lead, after iteration, to the same

or very nearly the same jet centroid. If the new jet is within 0.01 in �; �-space

of a previously found jet and their ET di�erence is less than 10 MeV then

they are considered to be the same object and the new jet is not merged but

simply erased.
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4.1.1 Dijet Mass Measurement

As discussed above, by constructing sums of Etotal; Ex; Ey; and Ez individually,

we obtain an individual jet mass M2
J = E2

total � ~E2 that is determined as if each

calorimeter cell were a massless particle. Jets actually do have a mass, obtained

through the process of parton showering and fragmentation. The measured quan-

tity is a poor measurement of the actual jet mass, since it is sensitive to �-dependent

calorimeter segmentation and particle showering spread in the calorimeter as well

as the actual jet width.

We need not measure the individual jet mass in order to calculate the dijet

(equals di-parton) mass. The jet energy we measure is an accurate re
ection, on

average, of the parton energy[20], so we may set the individual jet mass to zero

and rede�ne Ex; Ey, and Ez using Etotal; �, and �. Now our de�nition of dijet

mass requires only that we measure the jet energy and position well, and not the

spread of individual particles. This is only approximate for the higher order QCD

processes where two �nal state partons are close enough to be a single jet with

mass, but studies indicate this e�ect is much smaller than the known calorimeter

energy resolution contribution to the dijet mass uncertainty.

4.2 Jet Reconstruction Tests

We will be concerned here with how well the jet reconstruction algorithm performs

in yielding the correct jet � and �. Also of interest is how well the splitting and

merging criteria used in the reconstruction match the theoretical criteria described

in Chapter 2. The question of jet reconstruction e�ciency will be covered brie
y.

A detector Monte Carlo was used for the following tests. At D� this in-

cludes a detailed simulation of the calorimeter geometry in the GEANT[21] physics

program. GEANT simulates the interactions and showering of particles inside the

calorimeter in order to provide some approximation of what actually happens in

the D� calorimeter. Although the GEANT simulation of D� does not reproduce
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the single particle energy responses seen at the test beam, it does give reasonably

accurate transverse shower pro�les which is all that is required here[22].

Simulated events used here are produced using the ISAJET [23] event

generator. It is used to generate two jet events and includes leading-log parton

showering and a fragmentation model. The output of ISAJET is a list of particle

types and momenta which can be fed directly into GEANT. The particles from

ISAJET are also formed into jets directly using a package called PJETS [24].

PJETS mimics the real jet reconstruction except that it uses particle energies

rather than calorimeter tower energies. The jet from PJETS will also be referred

to as the generated jet and the GEANT calorimeter jet as the reconstructed jet.

Comparisons between the PJETS particle jets and the reconstructed jets will then

show the degradation of the jet signal (including � and � position) that arises in

the calorimeter.

4.2.1 Jet Reconstruction E�ciency

Although the jet may form an energy cluster in the calorimeter, the reconstruction

algorithm may not �nd it, for whatever reason: 
uctuations near the ET threshold,

too broad, no precluster found, etc. This reconstruction e�ciency can be found

using the Monte Carlo GEANT and the particle jet �nder, PJETS. A comparison

is made between PJETS with the ET threshold set at 3 GeV and reconstructed

GEANT-simulated jets with the normal threshold of 8 GeV. Preclustering e�-

ciency is not a concern with PJETS since it uses every particle as a jet seed in

order from highest to lowest in ET . The PJET is considered reconstructed if a

reconstructed jet is found within a radius 0.7 in �; � space where both use a cone

size of 0.7. The results are shown in Figure 4.21 for jets above 3 GeV ET . The

PJETS reconstruction de�ned above is estimated to be fully e�cient at 6 GeV ET .

The calorimeter jet reconstruction is seen to reach 99% e�ciency at 16 GeV. In

the analysis to come, no jets are used with reconstructed ET below 20 GeV, so the

reconstruction e�ciency is taken always to be 100%.
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Figure 4.21: Jet reconstruction e�ciency. The algorithm is seen to be nearly 100%
e�cient for jets with ET > 20 GeV.

4.2.2 Uncertainty in Reconstructed Jet Position

The detector position resolution can also be studied using the Monte Carlo.

ISAJET is used to generate two parton �nal states which are then parton show-

ered and hadronized. The � and � of the two outgoing partons from the hard

scatter are considered to be the actual jet position and compared to the results

of the jet reconstruction on the GEANT output. The reconstructed jet nearest

the parton is used in the comparison but must be within R = 0:5 of the parton.

The � and � resolution results are shown versus jet ET in Figure 4.22 for jets with

j�j < 1:0. The resolution is seen to go to about 0.015 at high ET in both � and

�. The di�erence between the � and � resolution at low ET may be due in part to

the additional � position smearing from the measured z-vertex position smearing

which was also simulated in the Monte Carlo.

The resolution in � can also be tested, although somewhat imperfectly,

using actual D� two jet events. By requiring two and only two reconstructed jets
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Figure 4.22: Resolution in � and � versus jet ET using the Monte Carlo simulation.

with j�j < 1:0 in the event we get a sample of jets that should be back-to-back in

�. The deviations from �� = � � (�1 � �2) = 0 come from two sources:

� Smearing due to the �nite � resolution of the calorimeter. This is the only

contribution to the Monte Carlo � resolution obtained above.

� Fluctuations due to unreconstructed low-ET jets at large angles from the two

highest ET jets. This contamination should be substantial for the lower ET

dijets and decrease as the dijet ET increases.

Assuming the � uncertainty is the same for each jet, then

��� =
q
�2� + �2� =

p
2��

or �� = ���=
p
2. So the � resolution is simply the width of the �� distribution

divided by
p
2. The resolution is shown in Figure 4.23 versus jet ET and is seen

to be larger than that obtained from the Monte Carlo, as expected.

Systematic shifts of the reconstructed � and � of the jet can be determined

using the Monte Carlo. Figure 4.24 shows the average value of �� and �� versus
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Figure 4.23: Resolution in � using actual dijet events compared to � resolution
from Monte Carlo.

�. Small shifts in � away from the beam line are seen in the crack region, but since

this region is physically complex and therefore hard to simulate, no corrections

in eta position will be performed. An additional � position uncertainty will be

introduced to account for these results.

4.2.3 Tests of Jet Splitting and Merging

The splitting and merging algorithm must be tested for compatibility, at the parton

level, with the splitting and merging criteria used in the next-to-leading-order

calculations of Ellis, Kunszt and Soper (EKS.) This test has been conducted[25]

using generated events with only two partons that were within R = 1:1 of each

other with the requirement that the events satisfy the EKS de�nition (See Chapter

2) of two jets using a cone size of 0.3. Additionally, the partons were required to

have j�j < :5, total ET between 75 and 140 GeV, and minimum ET of 15 GeV.

The two parton events were simulated in the detector using GEANT, and the jet

reconstruction using a cone size of R = 0:7 was performed. Figure 4.25 shows the
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Figure 4.24: Systematic shifts in reconstructed � and � versus jet � using the
Monte Carlo simulation. An � dependent bias is seen.
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results of the comparison using the variable (Number of EKS jets) - (Number of

reconstructed jets) for a splitting fraction of 0.5 and a cone size R = 0:7. A value

of zero indicates agreement and as can be seen from the Figure, the two methods

agree about 85% of the time. This is encouraging, since the sample we have tested

should optimize the disagreement between the two methods.
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Figure 4.25: Number of jets found with EKS algorithm minus number of jets found
with reconstruction algorithm when the splitting fraction equals 0.5.
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CHAPTER 5

Data Selection and Corrections

In this chapter we will discuss how the �nal event samples are obtained, both the

online triggering that was used and the o�ine cuts that have been made. An

explanation of the derivation of the jet energy scale correction will follow.

The data used in this analysis was taken during a 10-month period at the

Fermilab Tevatron collider. A total of 8.277 pb�1 will be used in this analysis

which was accumulated during the run with instantaneous luminosities ranging

from about 0:5�1030cm�2sec�1 to 8:7�1030cm�2sec�1. Except for luminosity, the

trigger conditions were quite stable. Some of the triggering parameters did change

during the run, as mentioned below, but these changes were minor and did not

necessitate separate analyses.

5.1 Jet Triggering

The D� trigger system, which has been introduced in Chapter 3, is composed of

3 separate trigger levels. It can support up to 32 di�erent combinations of level 0

and level 1 trigger requirements, and up to 64 combinations in level 2.

5.1.1 Description of Triggers

Since the jet ET and dijet mass spectrum fall very rapidly as the energy increases,

a trigger that was fully e�cient for 30 GeV ET jets would see very few 100 GeV

ET jets. For this reason, the jet data used in this analysis was taken using 5

di�erent trigger combinations, each covering a di�erent range in single jet ET (with

some overlap.) Table 5.2 gives each trigger by name, and running parameters of

each. Also shown is the number of events accumulated from each trigger, and
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Table 5.2: Triggers used to acquire dijet data. See text for explanation of terms.
Jet Triggers

Name Level 0 Level 1 Level 2 Events Luminosity

JET MIN SL0, MB JT(1,3) L2JT(20) 321,000 8.166 nb�1

JET LOW SL0, MB JT(1,7) L2JT(30) 395,000 94.08 nb�1

JET MEDIUM SL0, MB JT(2,7) L2JT(50) 249,000 678.6 nb�1

JET HIGH SL0*, MB JT(3,7) L2JT(85) 217,000 3.380 pb�1

JET MAX { JT(4,5) L2JT(115) 186,000 8.277 pb�1

* The slow z-vertex requirement was used for approximately half of the
JET HIGH events.

the corresponding e�ective luminosity. All of the triggers except JET MAX were

prescaled with a value dependent on the instantaneous luminosity.

� Level 0: The level 0 scintillator counters give a signal if evidence of proton-
antiproton breakup is seen and it is in coincidence with a bunch crossing.

This requirement is always made on jet triggers. The timing between the

two counters (one on each side of the interaction region) can also give a

measurement of the position of the interaction vertex along the beam line

(z-axis.) This has been used for the jet triggers; in Table 5.2, SL0 indicates

that the level 0 z-vertex was required to be within 10.5 cm of the nom-

inal interaction point. This requirement was made for all triggers except

JET MAX and JET HIGH, and was used on the JET HIGH trigger until

approximately halfway through the run. This requirement reduces the rate

by about about a factor of 4, and since the triggers were prescaled anyway,

limiting the z-vertex position to center gives us a sample of more accurately

measured jets.

All of the triggers except JET MAX utilized micro-blanking (MB in Ta-

ble 5.2.) The main ring accelerator component that runs through the out-

ermost (coarse hadronic) section of the calorimeter (see x3.3) has protons
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injected at about 4 second intervals when in operation1. For a short time af-

ter injection (350 �s) these protons can collide with the main ring beam pipe

walls, thereby depositing large amounts of energy in the coarse hadronic sec-

tion. Events with this problem can be almost completely avoided by simply

vetoing any events which occur during this time period.

The trigger JET MAX is used to collect the highest ET (and highest mass)

jet events and so has the fewest restrictions in order to collect as much as

possible of these rare and interesting events. This trigger was never limited

by prescales, level 0 z-vertex cuts or micro-blanking.

� Level 1: The calorimeter level 1 trigger operates by making a fast sum-

mation over all layers in a :2 � :2 region in �; � and testing to see if these

\trigger towers" are over the requested threshold. In Table 5.2, the notation

\JT(n; x)" means that the requirement for an event to pass level 1 is that n

towers have ET greater than x GeV. The number of trigger towers requested

should not be confused with the number of jets, since very often a single jet

will result in two or more trigger towers above the threshold.

� Level 2: The level 2 jet trigger operates by forming jets using the calorimeter
cell information and requiring at least one above a threshold. In Table 5.2,

L2JT(x) indicates that the level 2 requirement was at least one jet with

ET greater than x GeV. A cone size of R = 0:7 was used and the ICD

and massless gap data was not available for the level 2 reconstruction. The

z-vertex from level 0 was used to calculate the actual jet � and ET .

The level 2 jet reconstruction uses the list of above-threshold trigger towers

from level 1 as centers of its jet cones. Since the reconstruction is constrained

in the computer CPU time it can use, no iterations of the jet center and no

splitting or merging of jets is done. Therefore it cannot �nd jets that did

1The main ring accelerates protons during the store for use in making antiprotons, which are

accumulated in storage ring.
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not trigger in level 1. In order to improve the level 2 e�ciency, the 3 GeV

level 1 threshold JT(1,3) was in operation for all triggers. Although this has

no e�ect on the level 1 rates or e�ciencies, it does make available all those

trigger towers with more than 3 GeV ET for level 2 jet �nding.

The jet trigger is designed to pass events with at least one jet above a

certain threshold, and each successive level sharpens this cut. In order to use the

data from these triggers, however, we must know how well each trigger performed

its task by determining the e�ciency of each trigger and its dependence on jet ET

and �.

5.1.2 Jet Trigger E�ciencies

The trigger e�ciencies are calculated using the data. The level 1 trigger tower

and level 2 reconstructed jet information are stored in each event, so one can

determine whether a given jet either caused or would have caused a trigger given

the level 1 and level 2 thresholds. So, starting with events from a minimum bias

trigger (only level 0 required) we test the jets to see if they would have triggered

the JET MIN trigger. Figure 5.26 shows the results of this test where the trigger

e�ciency is de�ned as the ratio of jets that would have caused a trigger with all

the jets found at the given ET and �. The JET MIN trigger is seen to become

e�cient (> 95%) for jets at 25 GeV ET . Although not shown here, the trigger

shows some �-dependency in the form of a dip in e�ciency at about 1.4 is due to

the fact that the ICD and massless gaps are not used in the trigger. The e�ciency

also drops above j�j = 3:0 is due the limit of the level 1 trigger instrumented area.

The most forward rings of trigger towers cover the range from 3:0 < j�j < 3:2.

Knowing the e�ciency for the JET MIN trigger, we can now use these

events to calculate the e�ciency of the JET LOW trigger in a manner very similar

to above. By testing jets to see whether they would have passed the JET LOW

trigger requirements and dividing the number that would have passed by the total



71

Figure 5.26: Trigger e�ciency for JET MIN trigger. E�ciency versus jet ET for
jets with j�j < 0:7:

number we obtain the e�ciency versus jet ET . The results for the JET LOW

trigger are shown in Figure 5.27.

In the same fashion, we obtain the e�ciencies for the JET MEDIUM

trigger by studying events from JET LOW, JET HIGH from JET MEDIUM and

JET MAX from JET HIGH. The results are shown in Figures 5.28,5.29, and 5.30

for the JET MEDIUM, JET HIGH, and JET MAX triggers, respectively. This

information is summarized in Table 5.3 where the average e�ciency at the bench-

mark ET for j�j < 3:0 is shown. The benchmark ET for each trigger is de�ned as

the value for which the trigger is approximately 95% e�cient and also a multiple

of 5 GeV.

5.2 Event Selection

Not all events that pass a given trigger should be used in the analysis. Events which

contain fake jets from a background source should be removed along with events

with kinematical variables outside the region of interest. Also, we will remove



72

Figure 5.27: Trigger e�ciency for JET LOW trigger. E�ciency versus jet ET for
jets with j�j < 0:7.

Figure 5.28: Trigger e�ciency for JET MEDIUM trigger. E�ciency versus jet ET

for jets with j�j < 0:7.
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Figure 5.29: Trigger e�ciency for JET HIGH trigger. E�ciency versus jet ET for
jets with j�j < 0:7.

Figure 5.30: Trigger e�ciency for JET MAX trigger. E�ciency versus jet ET for
jets with j�j < 0:7.
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Table 5.3: Trigger ET thresholds and e�ciencies.
Jet Triggers

Name Benchmark ET Average E�ciency
JET MIN 25 GeV 98%
JET LOW 35 GeV 97%

JET MEDIUM 55 GeV 98%
JET HIGH 90 GeV 94%
JET MAX 125 GeV 97%

events for which the trigger is ine�cient. Kinematical cuts will be discussed in the

next chapter when acceptances are known.

5.2.1 Removal of Fake Jets

The trigger and o�ine jet reconstruction are susceptible to spurious energy deposi-

tion in the calorimeter from sources other than �nal state partons from an inelastic

scatter. These sources include, but are not limited to, main ring energy deposi-

tion, cosmic ray bremmstrahlung, and noisy calorimeter cells. Cuts are made on

jet energy deposition topology and tested using data with known problems for

their e�ciency at detecting the fake jets. Monte Carlo events are used to estimate

how many real jets are removed by the cuts. The cuts used are described below:

� .05 < EMfrac < .95: The electromagnetic fraction (EMfrac) is de�ned as

the fraction of the jet's ET that was deposited in the electromagnetic portion

of the calorimeter. It is constrained to be greater than .05 and less than .95.

This cut is very e�ective against noisy calorimeter cells and has been seen to

�nd over 90% of these fake jets. It rejects very few real jets as can be seen in

Figure 5.31, which shows the fraction of Monte Carlo (noise-free) jets that

are passed by this cut versus jet ET and �. Since there is no electromagnetic

calorimetry in the cryostat crack region, a slight dip in e�ciency can be seen

at around j�j = 1:4.
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Figure 5.31: E�ciency of the cut :05 < EMfrac < :95 (a) versus j�j for jets with
ET > 25 GeV, and (b) versus ET for 0:9 < j�j < 1:4.

� CHfrac < .4: This cut is intended to remove fake jets caused by main ring

deposits. Even with micro-blanking, particles under acceleration in the main

ring still sometimes hit the beam pipe in the vicinity of D�. The majority

of the energy for such occurances will be in the coarse hadronic, so a cut

requiring the fraction of ET of the jet in the coarse hadronic calorimeter to

be less than 0.4 removes most all (> 95%) of fake jets from this source. This

cut will also remove over 99% of fake jets due to noisy cells in the coarse

hadronic calorimeter. Figure 5.32 shows the e�ciency of this cut for Monte

Carlo events and it is seen to be greater than 99% everywhere except in

the cryostat crack region, where it drops to 95%. This is due to the higher

probability that a jet will deposit the majority of its energy in the outer coarse

hadronic due to the missing electromagnetic and �ne hadronic calorimetry.

Since we need two good jets in the event, the event is rejected if either of

the �rst two cuts fail for either of the two highest ET jets in the event. Another

cut that is not used on the �nal data sample but is used on the energy calibration
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Figure 5.32: E�ciency of the cut CHfrac < :4 (a) versus j�j for jets with ET > 25
GeV, and (b) versus ET for 0:9 < j�j < 1:4.

data is the \cell ratio", de�ned as the ratio of the ET of the highest ET cell in the

jet to the 2nd highest ET cell in the jet. This cut is very e�cient at removing jets

due to noisy cells but also removes a sizable fraction of good jets.

5.2.2 Trigger Threshold Cuts

In order to keep biased events out of the data sample, a cut is made on the average

uncorrected ET of the two highest jets. It is required to be above the level 2

threshold of each trigger (see Table 5.2) where the e�ciency is typically 70% or

higher. This also has the e�ect of making the acceptance calculations more reliable

by removing events where the trigger turn-on is steepest, and therefore not well

determined.

5.3 Jet Energy Calibration

The jet energy scale is very important for almost every jet measurement and anal-

ysis made at D�. Uncertainties in jet energy calibration are the largest source of
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systematic error for this analysis.

Jet response in the calorimeter is based on many factors, the most impor-

tant of which is the single particle energy response. Jets are often composed of

many low energy (E < 10 GeV) particles and the calorimeter in general responds

poorly to low energy particles. So while we may read out 50 GeV of energy for a

50 GeV incident pion or electron, we may only get 40 GeV from a 50 GeV jet.

Other e�ects which may contribute to a lowering of the calorimeter jet

response include out-of-cone showering, de�ned here as the showering occurring

inside the calorimeter which can deposit energy outside the jet cone although

the incident particle itself is inside the jet cone. Also, calorimeter cells are zero-

suppressed before being read out (see Chap. 4) which removes energy from the

jet if many cells have small amounts of energy deposited in them. This is what

happens for high energy jets. But for low energy jets zero-suppression actually

increases the amount of energy seen since the pedestal distribution for a given

cell is not symmetric and has a positive side tail due to background from the

radioactive uranium. The average of the distribution (after pedestal subtraction)

is by de�nition zero, but after zero-suppression the average energy is positive due

to the tail of the distribution. This has the e�ect of adding a constant amount of

energy to each jet.

The last e�ect to be considered is the underlying event energy due to the

breakup of the proton and antiproton after the hard scattering takes place. This

adds a constant ET to a jet cone.

5.3.1 Jet Energy Scale in the Central Calorimeter

As the �rst step in calibrating for jets, we concentrate on jets well-contained in the

central calorimeter. Here there is an abundance of low energy test beam data and

most systematic e�ects are simpler; uncomplicated by non-uniform calorimetry

and high-� jet shape considerations. The extension of the energy calibration from

the central region to the rest of the calorimeter will be done using dijet PT balance,
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and is discussed in x5.3.2.
The calibration has been performed using two completely separate meth-

ods, one using data from test beam runs and the other using actual collider data.

The jet energy scale from the actual data is the one used later to correct the jet

energies, but the test beam method itself is a useful and informative process.

Jet Energy Scale from Test Beam Data

The method described here is an attempt to use the test beam data to obtain

a jet energy response that one can use to correct collider data. The test beam

single particle responses were used to simulate the calorimeter response to a jet.

A jet was generated using a given event generator Monte Carlo (either Pythia,

Herwig, or ISAJET) and each particle's energy was multiplied by the appropriate

test beam response and summed. The sum of response-altered particle energies

divided by the sum of unaltered particle energies is the jet energy response. Test

beam particle showering information gives us the e�ect of out-of-cone showering

and zero-suppression.

The test beam data used in this note is shown in Figures 5.33 and 5.34 and

was taken during 1990-1991 run at Fermilab[26]. The response is de�ned as the

fraction of the incoming particle's energy which is measured by the calorimeter.

The data at and below 10 GeV was obtained from a special low-energy beamline

setup. The responses shown are from the benchmark point of � = 0.05, � = 31.6.

The pion response drops a great deal at low energies, and this is the

dominating e�ect when considering the jet energy scale. The shape of the jet energy

scale depends mostly on the shape of the pion response curve and, to a lesser extent,

the shape of the electron response curve (assuming a given jet fragmentation.)

The electron response decreases at low energies due mainly to e�ects of upstream

material, but low energy hadronic response is not well understood.

Since there is no test beam data below 2 GeV, a (somewhat arbitrary)

choice was made to use the 2 GeV point for all particle energies below 2 GeV. In
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Figure 5.33: Test beam responses for electrons.

Figure 5.34: Test beam responses for pions.
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e�ect, the response was chosen to be constant below 2 GeV. This was done for

both pions and electrons and the rami�cations of this choice will be explored later.

The detector response is not uniform in � due to the segmentation into

32 CCEM modules and 16 CCFH modules. Since the test beam responses used

here were taken at a value of � away from these module/module cracks, a further

correction must be applied in order to make the simulation more realistic. CCEM

� crack e�ects were simulated using data from 25 GeV electrons at � = 0.025 and

scanning in �. The data shows a drop in response of about 15% at the center of

the crack (due to uninstrumented regions) and an increase near the edges of the

crack (due to less absorber.) These e�ects average out when integrated over �

and the result is a negligible di�erence in jet response when the CCEM � crack is

included. Cracks also exist between CCFH modules and e�ect hadronic response

adversely. Data from 25 GeV pions near the CCFH � cracks shows a 10% drop

in pion response at the center of these cracks. Using this data to simulate the

e�ects of the cracks on hadronic response results in about a 1% decrease in the

jet response. Pions in the test beam were seen to be insensitive to CCEM cracks

and likewise electron response was independent of CCFH crack position. Both the

CCEM and CCFH � crack e�ects were included in the simulation.

The jet simulation was accomplished using the Pythia[27] event generator.

Jets were de�ned using the particle PJET jet �nder as described in x4.2. The jets
were required to be free of overlap with other jets found in the same event in

order to minimize algorithm dependent biases. Figure 5.35 shows the particle

energy composition of an average 50 GeV jet where electromagnetic and hadronic

contributions are shown separately. The Figure shows the importance of low energy

responses; note that on average 67% of the total jet energy comes from particles

with energies below 5 GeV.

To generate a jet energy scale the particles in the jet cone were multiplied

by the test beam response according to particle type. Electrons and photons were

multiplied by the response from electrons at the test beam. In order to make the
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Figure 5.35: Particle composition of 50 GeV jets. The percent contribution is
shown integrated over lower energies. For example, particles with energies below
5 GeV make up about 70% of the total jet energy.

simulation more accurate, �o's were treated as if they decayed into two photons,

each with half the energy of the original particle. All other particles were considered

to be hadronic and were multiplied by the response from pions at the test beam.

Since at the test beam the responses were measured at discrete values of particle

energy, and the event generator gives a continuous spectrum of particle energies,

the responses were calculated by interpolating between test beam data points. As

mentioned above, below the lowest data point the response and error was taken to

be constant equal to the response and error at 2 GeV for both pions and electrons.

In order to incorporate � cracks the distance of each electromagnetic particle to

the nearest CCEM � crack was calculated and the response corrected accordingly.

The CCFH cracks are handled in a similar manner.

The nominal scale was generated using the nominal test beam response

values. To get the upper limit on the uncertainty, the upper points of the error bars

in Figures 5.33 and 5.34 were used as well as an additional 2% for electrons and

5% for pions to re
ect the overall scale uncertainty that occurs when transferring
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Table 5.4: Results of �tting Emeasured versus Eactual

Emeasured = A0 +A1Eactual +A2E
2
actual

Fit Data A0 A1 A2

Nominal -1.666 0.896 0.000239
High Response -0.822 0.949 0.000142
Low Response -2.177 0.843 0.000316

the test beam results to the D-Zero calorimeter. The lower limit was obtained in

a similar way, by using the lower points on the error bars minus 2% for electrons

and 5% for pions.

The simulated response curves were then �t to the following polynomial:

Emeasured = A0+A1Eactual+A2E
2
actual. The �ts were made using the data from 25

GeV to 200 GeV and agree with the data curve to within .5%. The values of Ai

are shown in Table 5.4 for the 3 �ts. In Figure 5.36 we show Emeasured=Eactual, the

jet energy response in the calorimeter. The nominal curve ranges from 84% at 25

GeV to 93% at 200 GeV. The errors on the response are seen to range from 10%

at 25 GeV to 4% at 200 GeV. Also note that the response is still somewhat less

than 100% even for 200 GeV jets. This is due to the fact that low energy particles

make up a substantial portion of the jet energy even for 200 GeV jets. The shape

of the response curve is due to two main e�ects:

� The variation of the test beam results with particle energy (Figures 5.33 and

5.34.)

� The change in particle energy composition of jets with jet energy Figure 5.35

shows the composition of 50 GeV jets, but 200 GeV jets will show a di�erent

composition, with higher energy particles making up a larger fraction of the

total jet energy.

The above results were calculated using Pythia jets which were free of

both underlying event and initial state radiation. The jet energy response was also

calculated using the Herwig and ISAJET Monte Carlo event generators, which
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Figure 5.36: Nominal jet energy scale and limits of errors. The thick line is the
nominal response and the thin lines are the upper and lower limits.
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include both of the above-mentioned e�ects. Despite this, the results were seen to

agree with the Pythia results to within 1.5%[28].

Since there is no reliable test beam data below 2 GeV, the response in

that energy region is not known. In this study the response below 2 GeV, both

for pions and electrons, was taken to be the same as the response used at 2 GeV.

The question of how the jet response curve changes using other reasonable choices

of single particle responses below 2 GeV are explored below for three reasonable

cases:

� If the electron response continued to drop as an extrapolation of the test

beam data the jet response would be 2% lower for 50 GeV jets and 1% lower

for 150 GeV jets.

� The pion response is expected to increase at very low energy since charged

pions begin to act like minimum ionizing particles. Assuming the response

increases to 100% at 1 GeV increases the response by 2% for 50 GeV jets

and 0.5% for 150 GeV jets.

� If the pion response continues to decrease as an extrapolation of test beam

data, then the jet response decreases by 2% for 50 GeV jets and 1% for 150

GeV jets.

The uncertainties due to very-low-energy particle response uncertainty are

seen to be much less than the uncertainties already present and can therefore be

safely ignored.

The magnitude of such shape-dependent e�ects as out-of-cone showering

and zero-suppression are estimated using actual test beam single-particle events

added together using the ISAJET fragmentation scheme[29]. The out-of-cone e�ect

in the central region was seen to be of the order of 3-4 %. Zero-suppression,

as discussed above, tends to add a constant amount of energy (measured from

calorimeter cell pedestal distributions to be 2.1 - 2.4 GeV for a jet with cone
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Figure 5.37: Energy lost due to zero-suppression of data for jets with cone size
R = 0:7. Plotted is ((unsuppressed energy) - (suppressed energy))/(unsuppressed
energy) versus suppressed jet energy.

size R = 0:7) as well as subtract an energy-dependent amount. By using unzero-

suppressed data and comparing the jet energies before and after zero-suppression

we obtain the energy-dependence of this e�ect as shown in Figure 5.37. These

e�ects and others will be discussed in more detail later.

Jet Energy Scale from Direct Photon PT balance

The Missing ET Projection Fraction (MPF ) method was used by the CDF

collaboration[30] on dijet events in order to calibrate high-� jets. Here it will

be used to derive an absolute jet energy scale using our knowledge of the electro-

magnetic energy scale and PT balance of direct photons events. TheMPF method

is useful in this application since it comes close to giving us the true calorimeter

response to jets and minimizes e�ects of multiple jets in the event and the di�er-

ences between jet and photon showering and reconstruction algorithms. A method

simply using the reconstructed jet and photon ET to calibrate would be sensitive

to these e�ects and require either more stringent cuts (and hence a reduced data
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sample) or additional, as yet undetermined, corrections.

The events we will use consist of a mixture of actual direct photon events

and jet events where one jet 
uctuates into mostly electromagnetic energy and is

reconstructed as an isolated photon. In that sense, the word \photon" will be used

loosely here. In the following analysis, the photons and jets are restricted to the

central calorimeter, j�
j < 1:0, and j�jetj < 0:7: The �'s used here are detector

�, the actual position in the calorimeter calculated from the physics � and the

z-vertex. The jet cone size used is the same as that of the analysis as a whole,

R = 0:7.

The MPF used here is de�ned as

MPF =
6 ~ET � n̂jetT

Ejet
T

;

where n̂jetT is the unit vector giving the transverse direction of the jet with ET =

Ejet
T : The missing ET vector is de�ned as the sum over calorimeter cells:

6 ~ET = �X
i

Ei
T n̂i; i = calorimeter cell number.

The unit vector n̂i is transverse to the beam line and points in the direction of the

ith calorimeter cell.

For the case of a photon balanced by a single jet the operation of the

MPF is straightforward (Figure 5.38.) We assume the calorimeter response to

the photon is 100% and the response to the jet is R. If Ejet
T is the uncorrected

reconstructed ET of the jet and Ecorr
T is the actual jet ET , then R = Ejet

T =Ecorr
T : If

R 6= 1 then there will be a 6 ~ET component along the jet direction and:

6 ~ET � n̂jetT = Ecorr
T � Ejet

T :

Then:

MPF =
6 ~ET � n̂jetT

Ejet
T

=
Ecorr
T �Ejet

T

Ejet
T

=
Ecorr
T

Ejet
T

� 1 =
1

R
� 1

so that the jet response R may be written in terms of the MPF as:

R =
1

1 +MPF
:
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Figure 5.38: Direct photon event with single jet balancing PT . If the calorimeter
response to both the photon and jet is 100%, then the reconstructed missing ET

is zero. If the jet response is less than 100%, then there will be a reconstructed
missing ET vector pointing along the direction of the jet that is equal to the jet
ET lost due to low response.

If R > 1 then the 6 ~ET will point opposite to the jet and theMPF will be negative.

Essentially this method operates by balancing PT along the direction of the jet,

thereby minimizing the e�ect of out-of-cone showering of the jet, including partonic

radiation out of the cone which is observed as another jet in the event.

If a second jet is present due to either initial state or �nal state gluon

bremmstrahlung, the situation will be as shown in Figure 5.39. Depending on

its ET , this jet may or may not be reconstructed due to the jet reconstruction

threshold which requires the jet to have 8 GeV of ET . Now equating 6 ~ET � n̂jetT with

Ecorr
T � Ejet

T is only approximate since the response of the second jet (which may

be di�erent than the response of the �rst) is included in the 6 ~ET . Taking the dot

product with the transverse direction of the �rst jet minimizes this contamination,

which will be zero if the direction of the second jet is uncorrelated with the direction

of the �rst (just as likely to add as to subtract from the 6 ~ET .) If the direction of

the second jet is correlated with the direction of the �rst this will tend to lower
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γ

Figure 5.39: Direct photon event with two balancing jets

the apparent response of the �rst jet since the second jet is lower in energy (hence

response) than the �rst. The following simulation will serve to put limits on the

magnitude of any perturbative e�ects.

TheMPF -derived jet response calculation was tested using HERWIG[31]

generated direct photon events as well as dijet events where one jet 
uctuated into

mostly electromagnetic energy (�0's) so as to simulate a direct photon event. The

PJETS particle jet �nder was used to �nd jets in the data and the photons (or

�0's) were required to be isolated as described below.

The simulation was accomplished by scaling each particle by an assumed

energy- and �-dependent response and smearing with test beam energy- and �-

dependent resolution. What is termed the \actual" jet response is the sum of all

the response-altered particle energies in the given PJET divided by its unaltered
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Figure 5.40: Comparison of \actual" jet response (open circles) andMPF -derived
response (solid circles) using HERWIG generated direct photon events and simu-
lated calorimeter single particle responses and resolutions.

particle energy sum (the same as the method described earlier in this section.) The

missing ET is simply the opposite of the sum of all the response-altered particles

in the event with j�j < 4:0. Since jets are composed of some sizable fraction of low-

energy particles with a low calorimeter response, the missing ET should re
ect this

by pointing toward the largest cluster of low-response particles, just as it should

in the actual calorimeter.

The results of the simulation using simulated direct photon data is shown

in Figure 5.40. The highest ET jet was used and required to have j�j < 1. The

open circles are from the \actual" response using only the particles in the jet cone

and the solid circles are from theMPF -derived response. The data was generated

in two bins of photon ET , from 10 - 50 GeV and 50 - 150 GeV, hence the poor

statistics in the range 30 - 50 GeV. The agreement is seen to be very good (within

0.5%) over a large range in jet ET .

The following variations of cuts, response and resolution were made in

order to study the e�ects on the comparison between actual and MPF -derived
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response and all were found to have minimal (< 0.5%) impacts on the comparison

either singly or in various combinations:

� Requiring only one jet and one photon, i.e., no second reconstructed jet in

the event.

� Requiring photon and jet to be back-to-back in � to within 50 degrees.

� Simulate ICD/MG cryostat crack region by lowering electromagnetic parti-

cle scale by 10%, lowering hadronic particle scale by 5% and doubling the

smearing (particle resolution) in the region 1:0 < j�j < 1:5. In this case both

the photon and jet were restricted to the region j�j < 1.

� The electromagnetic particle response was lowered everywhere by 10%. The

MPF -derived response was then seen to be exactly 10% higher than the

actual jet response. This indicates that the MPF -derived response can be

easily corrected using the known electromagnetic response.

Results of these simulations show that the MPF method is very insen-

sitive to other activity (besides the photon and highest ET jet) in the event for

direct photons. However, the actual direct photon sample to be used is consider-

ably contaminated with �0's from jet fragmentation that simulate isolated direct

photons. These events might have di�erent event topologies or other e�ects that

might lead to discrepancies between the MPF method and the actual jet energy

scale.

The �0 portion of the calibration data was simulated using HERWIG dijet

events where one jet was required to fragment into a �0 that carried at least 50%

of the jet ET . The jets were generated in the ET range from 55 - 65 GeV and the

�0's were required to be isolated. The results are shown in Figure 5.41 and the

agreement is seen to be within the statistical uncertainties.

Several conclusions may be drawn from the simulation studies:
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Figure 5.41: Comparison of \actual" jet response (open circles) andMPF -derived
response (solid circles) using HERWIG generated electromagnetic jet events and
simulated calorimeter single particle responses and resolutions.

� The MPF method gives excellent agreement with the actual response over

a large range in jet ET . This indicates that contamination due to multiple

jets is not a major factor.

� Photon (or �0) must be restricted to a detector region where the response is

known.

� Where electromagnetic response is known to be di�erent than unity, simply

correct using the known electromagnetic response.

There are some aspects of the calorimeter that the Monte Carlo cannot

simulate very well or at all and therefore cannot be studied. It an e�ort to homog-

enize the photon/�0 response into something that we can hopefully measure, cuts

are made on the data to remove photons that may have gone into cracks, may be

noisy cells, may be charged �'s, etc.

Events are selected from the direct photon trigger sample using the fol-

lowing requirements:
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� The photon must be above the 95% trigger e�ciency point (7 GeV

for GAM LOW ISO, 15 GeV for GAM MED ISO and 30 GeV for

GAM HIGH ISO.)

� The jet ET must be 30% above the photon threshold to prevent

the photon threshold from biasing the response distribution (10 GeV

for GAM LOW ISO, 20 GeV for GAM MED ISO and 40 GeV for

GAM HIGH ISO.)

� A photon isolation requirement is made by determining whether there is a

signi�cant fraction of energy in a cone of radius 0.4 outside the core cone of

radius 0.2.
(ET in 0:2 cone)

(ET in 0:4 cone)
> :85:

� The reconstructed z-vertex must be within 40 cm of the nominal center point

of the detector.

� The photon cannot be within 0.01 radians of a CCEM � crack.

� There must be at least one reconstructed jet in the event.

� If there is more than one reconstructed jet, the 2nd jet (ordered in ET from

highest to lowest) must have ET < 15 GeV.

� All the reconstructed jets in the event must pass the following cuts to remove

events with jets due to noisy cells or main ring activity (see x5.2.1):

{ Cell Ratio =(highest ET cell)/(2nd highest cell) < 10.

{ Coarse Hadronic fraction < :4.

{ :05 < Electromagnetic fraction < :95.

� As an additional cut on noisy cells, the 6ET must be less than 90% of the

photon ET .
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A missing ET correction is applied to correct for the transverse shift of the

vertex position. The average 6 ~ET (ETx = 1:00 GeV, ETy = �:55 GeV) is subtracted
from the 6 ~ET of each event. While this constant shift will not e�ect the average

MPF , it should reduce the 
uctuations about the average.

With the cuts and corrections explained above, theMPF -derived energy-

dependent response for jets with j�j < :7 and photons with j�j < 0:9 is shown in

Figure 5.42. The �t shown is:

R =
E0

1:6494 + 1:0495E0

where R = E0=E
corrected is the response and E0 is the uncorrected reconstructed

jet energy. The �t was made over the range from 15 to 125 GeV and the error-

weighted values were used. The �t is somewhat sensitive to the range used, the

weighting and the form of the �t and can change by up to 2% depending on these

choices. The statistics above 100 GeV are very poor and the extrapolation of the

�t to much higher energies (up to 400 GeV) adds additional uncertainties that

depend greatly on the form of the �t. The form used here �t the test beam data

well from 25 to 400 GeV. These uncertainties are shown in Figure 5.42 by the

dashed lines.

As shown earlier, if the calorimeter response to the photon is less than

100% then an additional correction must be applied to the jet energy. Currently

our best estimate for the electromagnetic scale is from reconstructed decays of the

Z0 particle, which has been measured using collider data to be a factor of 1.088

below the accepted value of 91.2 GeV from LEP experiments[32]. Approximately

4.5% of the total of 8.8% is understood in terms of di�erences in high voltage and

liquid argon, etc., between the D� and the test beam calorimeters. The remaining

di�erence cannot be explained. On the basis of this, the correction applied is energy

independent (we know 4.5% of it is) and an uncertainty is energy dependent. The

uncertainty used is 0.5% at a jet energy of 40 GeV (where the scale is best known

from Z0 decays) and increases linearly to 4.0% at 10 GeV and at 440 GeV. This

scale factor is assumed to e�ect both the electromagnetic and hadronic sections
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Figure 5.42: Jet energy response using the MPF method. The best �t is shown
by the solid line and the limits of the uncertainties by the dashed lines
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equally, and the 4.5% accounted for is such an overall correction. If part of the

correction is not and only e�ects the electromagnetic, then only the jet resolution

is e�ected and the overall scale obtained above is not.

Hadronic particles in the jet make broad showers in the calorimeter, and

if they are near the edge of the cone, may shower energy into calorimeter cells

outside the cone. This can also be calculated by using the test beam shower sizes

and a Monte Carlo event generator[33]. This e�ect was determined to be mostly

energy independent, and is corrected for using the multiplicative factor 1:04� :02.

There are two e�ects which cause energy unassociated with the jet to be

added into the cone. Zero-suppression, as discussed earlier in this section and

in Chapter 4, adds a constant average energy to each cell due to a positive-side

tail on the calorimeter pedestal distribution and underlying events add a constant

transverse energy due to the breakup of the proton and antiproton involved in

the collision. This ET must be subtracted since it is not associated with the jets

but is a uniform (on average) background to each event. This has been measured

using MIN BIAS trigger events (events where no jets were required, only a level 0

signal for the breakup of a proton or antiproton) to be 3:0 � 0:5 inside a jet cone

of radius 0.7 in the central region[34]. Additionally, one can measure the so-called

\jet pedestal", the amount of energy deposited at a point perpendicular (in �) to

the jets in dijet events. This has been done[35] and a value of 4.0 GeV obtained for

a jet with radius 0.7 in the central calorimeter. The zero-suppression background

is the same for each, while the underlying event is:

� di�erent, due to the di�erence in the momentum scale of the interaction for

the two processes.

� di�erently measured, since part of the jet pedestal measurement may be due

to partons from the primary hard scatter causing an overestimate of the

underlying event.

For these reasons, the energy o�set is chosen as 3:0�1:0 GeV, where the MIN BIAS
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measurement is considered more reliable but the uncertainty does encompass the

jet pedestal measurement as well.

The order in which the corrections are applied is very important and is

accomplished as follows:

� Correct using response from central jet-photon MPF method.

� Subtract zero-suppression and underlying event energy.

� Correct for electromagnetic scale response from measured Z0 mass.

� Correct for out-of-cone e�ect in the central region.

The e�ects of the electromagnetic scale correction, the out-of-cone showering cor-

rection, and the energy o�set (zero-suppression and underlying event) on the jet

response are shown in Figure 5.43.

5.3.2 Jet Energy Scale at Large �

Once we know how to calibrate jets in the central region, one can use PT balance of

dijet events to extend the calibration to all regions of the calorimeter. By selecting

dijet events which have one jet in the central (j�j < 0:7) region (hereafter referred

to as the \central" jet) and the other jet anywhere (the \probe" jet) the ratio of

the probe jet ET to the central jet ET gives the probe jet response relative to the

central jet, which we already know how to calibrate.

Event selection begins by requiring each event to have only two recon-

structed events with ET > 10 GeV and these jets must be back-to-back in � to

within 25 degrees. One of the two jets must have detector j�j < 0:7: In order

to minimize trigger biases, the average jet ET must be greater than the trigger

e�ciency threshold (see Table 5.3.) When both the central and probe jet have

j�j < 0:7, the central jet is chosen at random. Fake jets are removed using the

same cuts as discussed in x5.2.1. If either of the two highest ET jets fails any fake



97

Figure 5.43: Jet energy response in the central calorimeter using theMPF method
and e�ects of corrections.



98

jet cut, then the event is not used. Additionally, the event z-vertex is required to

be within 100 cm of the detector center.

The \asymmetry"

A = (Eprobe
T � Ecentral

T )=(Eprobe
T + Ecentral

T )

is calculated for each event and plotted versus detector � of the probe jet. With

this de�nition, the relative response of the probe jet is

R = Eprobe
T =Ecentral

T = (1 +A)=(1�A):

The results of this analysis are shown in Figure 5.44 for various bins of average jet

ET . The cryostat crack region is seen to be over-corrected due in part to a known

calibration problem with the inter cryostat detectors (ICD's.) One might expect

the response at large � to be better than in the central region due to the fact that,

since the jet ET 's are similar, the jet energy is much higher in the forward region.

Figure 5.44 shows that the response is similar in the central and forward regions.

This may be due to a cancellation due to large out-of-cone showering e�ects for

high-� jets.

The forward response can also be determined using the Missing ET Pro-

jection Fraction (MPF ) method introduced in x5.3.1. Using the same sample of

dijet events, the MPF is calculated using this de�nition:

MPF =
6 ~ET � n̂probeT

Eprobe
T + Ecentral

T

:

Where Ecentral
T is the transverse energy of the central jet and n̂probeT is the unit

vector along the probe jet direction in the transverse plane. The missing ET , 6 ~ET ,

is the vector sum of the ~ET of all the calorimeter cells. Now the MPF can be

assumed to represent the fractional di�erence in probe jet ET to central jet ET ,

MPF =
Ecentral
T � Eprobe

T

Eprobe
T + Ecentral

T

= (1�R)=(1 +R)
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Figure 5.44: Jet energy response versus detector � using dijet PT balance asym-
metry.
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where R is the response of the probe jet since the central jet is calibrated. The

response calculated in this manner R = (1�MPF )=(1+MPF ) is shown in Figure

5.45. Note that the MPF method shows a distinctly higher response at high j�j
that is not shown by the jet ET asymmetry method of Figure 5.44. The MPF

method, which uses the entire calorimeter to balance PT , is insensitive to out-of-

cone showering e�ects, and so shows how the calorimeter response increases as

the jet energy increases. The jet ET ratio method is sensitive to both increasing

response for higher energies as well as the out-of-cone showering e�ect, which

increases for higher j�j. This di�erence can be seen in the higher relative response

obtained from the MPF method as compared to the dijet asymmetry method in

Figures 5.44 and 5.45.

The full energy correction now can proceed by �rst correcting using the

dijet asymmetry (Figure 5.44.) This scales the jet energy to the corresponding

central jet with the same ET . Then the corrections listed at the end of the previous

section can be employed. The complete correction proceeds as follows, starting

with a jet at � = �0 with energy E0:

1. Do �-dependent correction from dijet asymmetry(A) to get E0 = E0=A. This

scales the jet to a central jet with the same ET .

2. Correct using response from central jet-photon MPF method. The relevant

energy to use is the ET of the forward jet, namely E0 sin �0 to get the proper

response.

3. Subtract zero-suppression energy and underlying event energy appropriate

for a central jet.

4. Correct for electromagnetic scale response from Z0 mass as measured in the

central calorimeter.

5. Correct for out-of-cone e�ect in the central region.
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Figure 5.45: Jet energy response versus detector � using dijet PT balance and the
MPF method.
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The uncertainty in the procedure is due mainly to threshold biases arising

from jet energy resolution �-dependence. Consider the case where one jet is in

the crack region and the other is central and both have the same ET . Since the

resolution in the crack region is much worse than that of the central region and

the cross-section falls steeply with increasing ET , it is more likely for the jet in

the crack region to 
uctuate from a lower to a higher ET and cause the event

to pass the threshold than it is for the central jet to 
uctuate higher. One might

expect then that the response in the crack region would appear to be higher than it

actually is. The uncertainty used is zero for j�j < 1:0 (where the dijet asymmetry

method is not used) and increases linearly thereafter to 4% at j�j = 3:0.

Addendum: �-dependent biases.

At a point late in the process of writing this document, it was discovered that

large systematic biases are possible due to di�ering energy resolutions in di�erent

regions of the detector. For example, consider a two jet event where each jet has 25

GeV ET and one jet is at � = 0:0 and the other at � = 3:0. Using the resolutions

determined in the next section, the central jet has �(E)=E = :18 and the endcap

jet has �(E)=E = :08. Since the cross section falls rapidly with increasing jet

ET , this smearing and the threshold requirement conspire to bias the calculated

�-dependent response. Since the smearing is much larger in the central region, it

is more likely for a low-ET jet there to be smeared higher and cause the event to

pass the threshold cut than it is for the endcap jet to do so[36].

Preliminary studies indicate that this e�ect is large for low ET and high

� jets. For the ET range from 25 to 35 GeV, it ranges from 3% at j�j = 2:0 to 8%

at j�j = 3:5. For the ET range from 35 to 45 GeV, it ranges from 2% at j�j = 2:0

to 5% at j�j = 3:5. This mainly e�ects results from the low ET triggers, JET MIN

and JET LOW, making the resultant distributions steeper as a function of �. The

e�ects on the other (higher ET ) triggers is most likely negligible.
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5.3.3 Jet Energy Resolution

The asymmetry variable can also be used to measure jet energy resolution. By

selecting only dijet events, then the asymmetry, A, de�ned as

A =
ET1 � ET2

ET1 + ET2

has a width that may be written as follows:

(�A)
2 =

 ����� @A@ET1

������ET1

!2

+

 ����� @A@ET2

������ET2

!2

=

" 
2ET2

(ET1 + ET2)
2

!
�ET1

#2
+

" 
2ET1

(ET1 + ET2)
2

!
�ET2

#2

Assuming ET1 = ET2 and �ET1
= �ET2

then

(�A)
2 =

" 
2ET

(2ET )2

!
�ET

#2
+

" 
2ET

(2ET )2

!
�ET

#2
=

1

2

�
�ET

ET

�2

we obtain the result for the fractional transverse energy resolution:

�
�ET

ET

�
=
p
2�A

where we have ignored other e�ects which could widen the asymmetry distribution

such as � position smearing and transverse boosts of the dijet system from physical

sources such as additional unreconstructed low ET jets and transverse momentum

of the partons in the colliding hadrons. Through event selection, we will attempt

to minimize these e�ects. The corrected ET is used to calculate the asymmetry

and the resolution is plotted versus the average of the two jets corrected energy.

Dijet events are selected using the following cuts:

� Only 2 reconstructed jets above 10 GeV.

� Both jets must have ET > 15 GeV.

� Jets must be back-to-back in � to within 25 degrees.
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� z-vertex must be within 100 cm of detector center.

� Both the reconstructed jets must pass the fake jet cuts (see x5.2.1):

{ Cell Ratio =(highest ET cell)/(2nd highest cell) < 10.

{ CH fraction < :4.

{ :05 < Em fraction < :95.

Events are grouped into bins according to � (detector �) where both jets are

required to be in a certain region of the detector in order that our approximation of

�ET2
= �ET1

is appropriate. The central region (j�j < 0:8) has uniform calorimetry

and most additional smearing e�ects are minimal. The crack region ( 0:8 < j�j <
1:5 ) is not uniform due to the cryostat walls and other uninstrumented material.

The resolution should be much worse there than in the central region. In the

endcaps ( 1:5 < j�j < 3:0 ) the systematic e�ects mentioned above dominate

despite the cuts since the � resolution is a much larger e�ect and all the events are

low ET , thereby more sensitive to transverse 
uctuations. For this reason, we will

also use the Monte Carlo to determine the energy resolution in a manner similar

to the method used to obtain the position resolution (x4.2.2.)
Figure 5.46 shows the measured resolution, �ET

=ET , versus E for the cen-

tral and crack regions of the detector described above. Both the dijet asymmetry

method and the Monte Carlo results are shown. The Monte Carlo resolution in

the central region agrees quite well with the measured resolution. Note that the

crack region does have much worse resolution than the central and that the Monte

Carlo reproduces it reasonably well except for one data point at high energy. For

these two regions, the actual data will be used to determine the �ts, whereas in

the forward region, the Monte Carlo data will be used. The data for the three

calorimeter regions is shown in Figure 5.47 Energy resolution �ts of the form:

�
�E
E

�2
=
�
N

E

�2
+

 
Sp
E

!2

+ (C)2
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Table 5.5: Jet energy resolution �t parameters.
� region Noise(N) Sampling(S) Constant(C)

0:0 < j�j < 0:8 Central 1.74 .860 0.016
0:8 < j�j < 1:5 Crack 7.81 .349 0.117
1:5 < j�j < 3:0 Endcap 1.97 1.10 0.034

have been made and the results are in Table 5.5.

Although the forward region uses virtually the same calorimetry as the

central, the energy resolution is worse there than in the central region. This is

due to the large out-of-cone e�ect we measured earlier. If the jet cone does not

contain 100% of the jet energy, then jet-to-jet 
uctuations of jet width will mean

large 
uctuations in measured energy. Also, the � position resolution is folded into

the energy resolution for endcap jets, but this contribution is only 5-10% and can

be safely ignored.



106

Figure 5.46: Jet transverse energy resolution versus jet energy using the asymmetry
for two regions of the detector. Actual data is compared to Monte Carlo resolution
and the agreement is seen to be good.
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Figure 5.47: Jet energy resolution versus energy using the asymmetry for the
central and crack region and Monte Carlo results for the end region. Resolution
�ts are shown for each region.
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CHAPTER 6

Results

Before any data can be presented, we must use our knowledge of the detector's

ability to detect and measure jets to calculate the acceptance as a function of the

angular variable of interest. The acceptance is simply the ratio of number of events

measured to number of events actually in a given bin. Once we know how to relate

what we measure to physical reality, we can correct our distributions and compare

to theoretical predictions. The rami�cations of these distributions will then be

explored in terms of agreement with QCD and evidence for parton compositeness.

6.1 Acceptance Corrections

The acceptance is calculated using the Papageno[37] event generator and com-

paring unmolested distributions with those that have been smeared using known

energy and position resolutions and e�ciencies. The smeared distribution will then

be compared to the unsmeared distribution.

The Papageno generator produces simple two-parton events with no initial

state radiation, parton showering or fragmentation. Each generated event consists

of the � and PT of the two partons. A weight for each event is calculated using the

matrix elements and parton density functions for the given kinematic parameters.

The unsmeared distribution is obtained �rst by selecting events based

on dijet mass (MJJ ) and dijet longitudinal boost (j�boostj.) Exactly the same

thresholds are used here as will be used on the actual data. The j�boostj cut is
used to extend the region of good acceptance to larger angles, since events with

both large j�boostj and large center-of-mass angle means one of the two jets will be

very far forward, either outside the triggerable region or even outside the detector.
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The j�boostj threshold selection is based on how far in �� we hope to go. This can

be demonstrated using the de�nitions:

�boost =
1

2
(�1 + �2)

�� =
1

2
(�1 � �2)

which means that

�1 = �� + �boost

�2 = ��� + �boost:

So that if we plan on measuring �� out to 2.0, say, and we must have both jets

with j�j < 3:5 (contained in the calorimeter) then we must require j�boostj < 1:5 or

the acceptance will begin dropping before we reach �� = 2:0.

The major factor that limits acceptance is the single jet ET threshold

imposed by the trigger. We can use the approximate equation for dijet mass from

x2.6 to show how this is so. Remember,

MJJ = 2ET cosh �
�

for two jets with the same ET . This can be written in terms of �� as:

�� = cosh�1
�
MJJ

2ET

�
:

If our triggers had perfect step-function-like thresholds, then the higher limit in ��

could be determined using the trigger threshold and the dijet mass threshold only.

Although this simple approximation does work reasonable well for obtaining the

�� limit in acceptance, the detailed acceptance calculation to follow can show any

deviations from 
at over the whole range in ��.

The smearing process consists of several steps which will now be discussed

in detail. First, each parton is considered to be a jet and smeared as follows:

1. The measured jet ET is determined using the Papageno energy and position

and inverting the jet energy correction. This is required since the jet energy
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and position resolutions are known in terms of measured jet ET , not corrected

jet ET . The uncertainties in the jet energy correction process will be handled

separately from the acceptance calculations.

2. The ET is smeared using the jet ET resolution �ts as determined in x5.3.3.
Di�erent �ts are used depending on jet � position.

3. The jet � and � positions are smeared using the position resolution deter-

mined in x4.2.2.

4. The jet energy correction is now applied to the smeared energy and position.

After we have obtained a smeared energy and position for each jet, new 4-vectors

are calculated and the smeared MJJ ; �
�, and �boost are obtained. Cuts (the same

as used on the unsmeared distribution) are then placed on the smeared MJJ and

�boost as well as the average uncorrected jet ET .

Next we determine the e�ciency for this con�guration of jets to pass the

fake jet cuts. The requirements made on the data are that the electromagnetic

fraction of the two jets be between .05 and .95 and that the coarse hadronic fraction

be below 0.4 (See x5.2 for more details.) Using the full detector simulation the e�-

ciencies, �(�;ET), for these cuts (shown in Figures 5.31 and 5.32) are parameterized

as follows:

� = :995 � 1

E1:4
T

j�j < :8

� = 1� (:03744 + :0005663ET ) exp

2
4�

 j�j � 1:05

:15

!2
3
5 :8 < j�j < 1:4

� = :995 j�j > 1:4

Since these are single jet e�ciencies, the total fake jet cut event e�ciency is the

product of the e�ciency of each jet and is used to modify the weighting for each

event in the distribution.

Lastly the trigger e�ciency for the dijet con�guration is calculated. Since

the trigger is in two steps, level 1 and level 2 (see x3.4 and x5.1), an e�ciency for
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each level will be determined and the event e�ciency will be the product of the

two:

�total = �L1�L2:

The level 2 e�ciency is determined from the single jet level 2 e�ciencies in the

following way:

�L2 = 1 � (1� �1)(1 � �2)

where �i is the level 2 e�ciency of jet i. Whereas the total e�ciency requires both

level 1 and level 2 to �re ( a Boolean \and"), here we require one \or" the other

jet to cause a trigger, hence the di�erent mathematical equations.

The level 1 e�ciency depends on the � and ET of both jets. For the

simplest case of a one-tower trigger such as JET MIN or JET LOW, which requires

one trigger tower with ET greater than a certain threshold, the process is the same

as that for level 2 e�ciencies above. If �i is the e�ciency for jet i to have caused

a trigger tower to go above threshold, then the total level 1 e�ciency is

�L1 = 1 � (1� �1)(1 � �2):

For triggers which require two or more towers above threshold, the equations be-

come more complicated. For JET MEDIUM, which requires 2 towers over 7 GeV

ET , there are now three di�erent ways this can be satis�ed: one or the other jet

could �re two towers or each jet could �re one tower. If �ij is the e�ciency for jet

i to �re j trigger towers, then the expression for the total level 1 e�ciency is:

�L1 = 1 � (1� �12)(1 � �22)(1� �11�
2
1):

This can be extended to 3 trigger towers (JET HIGH):

�L1 = 1 � (1 � �13)(1 � �23)(1� �11�
2
2)(1� �12�

2
1)

or 4 towers (JET MAX):

�L1 = 1 � (1� �14)(1 � �24)(1� �12�
2
2)(1� �11�

2
3)(1� �13�

2
1):
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Table 6.6: Mass ranges and triggers used to plot dijet angular distributions.
Mass j�boostj Trigger � �� cos �� Number
Range Cut Name limit limit limit of Events

100 - 150 2.0 JET MIN 14 1.32 .86 11000
150 - 250 2.0 JET LOW 14 1.32 .86 18000
250 - 350 1.5 JET LOW 49 1.95 .96 4600
350 - 450 1.5 JET MEDIUM 35 1.76 .94 2200
450 - 550 1.5 JET HIGH 20 1.50 .90 1200
550 - 1.5 JET MAX 13 1.28 .86 450
450 - .9 JET LOW 180 2.60 .99 550

The trigger e�ciencies obtained are then used to weight the events as they

enter the distribution. This smeared distribution is then divided by the unsmeared

distribution to obtain the acceptance. Note that this method is sensitive to the

choice of input (unsmeared) distribution. Leading order QCD with Q2 = P 2
T=4

was used in the calculation above. The dependence of the acceptance on the form

of the input distribution was tested by comparing the results obtained using a 
at

(pure Rutherford scattering) versus � distribution and comparing with the results

obtained above. The di�erence in shape was seen to be less than 1%.

The acceptances were calculated for the mass ranges and triggers shown

in Table 6.6. As can be seen, each trigger is used for one plot of a certain range

in mass, with the exception of JET LOW, which is used for three, one utilizing a

high mass threshold to generate a distribution which extends to very large angles.

Nearly 400,000 events were taken with this trigger, far more than any other, making

it the most useful for the large-angle distribution.

The acceptances for all 7 combinations of triggers and dijet mass ranges

have been generated and are shown as acceptance vs. � in Figures 6.48 and 6.49.

The limit that will be used when plotting the data is shown in Table 6.6. The lines

indicate the systematic uncertainties which will be discussed in the next section.

Several features of the acceptance curves are noteworthy. The intermediate

and high mass acceptances are seen to increase slightly as the angle increases, this
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Figure 6.48: Acceptance versus � for di�erent mass ranges.
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Figure 6.49: Acceptance versus � for di�erent mass ranges.
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is due to mass smearing from lower masses to above-threshold masses (also called

\feed-down e�ect") that increases at larger angles where the jet energy resolution

is worse. Generally the acceptances are quite 
at, varying by 5-10% typically over

the range used. The � limit can be seen to correspond to the point where the

acceptance begins to drop steeply. The JET LOW MJJ > 450 GeV plot is the

exception. In order to extend the measured range as far as possible, the useable

acceptance was allowed to drop to nearly 70%.

6.2 Systematic Uncertainties

The systematic uncertainties consist of two independent parts; the uncertainty in

acceptance and the energy scale uncertainty. The uncertainties in the acceptances

shown in the above Figures are derived from uncertainties in the jet trigger e�cien-

cies, the fake jet cut e�ciencies, and the resolution and position smearing. Also

included is the possible systematic � shift uncertainty. One of the largest e�ects

is the fake jet cut e�ciency uncertainty in the crack region, which is due mainly

to poor Monte Carlo statistics there and uncertainty in applicability of the Monte

Carlo results in this complex region. Also a large e�ect, the � position resolution

uncertainty is somewhat large due to questions about the simulation's reliability.

Overall, though, the 
atness of the acceptance over the large ranges in angle mean

the uncertainties are small, ranging from 2% to 5% depending on trigger and mass

range.

The energy scale uncertainty makes a larger contribution to the overall

systematic uncertainty. The slope of the � distribution depends on the parameters

of the energy correction to some extent. The relevant parameters of the energy

scale include the response of the jet relative to the photon, the electromagnetic scale

and out-of-cone correction, the underlying event energy, and the dijet PT -balance

�-dependent correction, each of which has an associated uncertainty as discussed

in x5.3. To obtain the e�ect on the angular distribution, the dN=d� distributions

are generated three times using actual data. Once using the nominal energy scale,
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once using the uncertainty limits on the energy scale parameters which cause the

distribution to steepen, and lastly using the limits that cause the distribution to


atten in slope. The curves are then normalized to each other so that if the slopes

are di�erent, they will all cross in the middle. The energy scale uncertainty is then

determined by measuring the di�erence in the curves at the extremes of �. For

instance, if the di�erence between the 
atter curve and the nominal curve is 7%

at one end and 8% at the other, and the steeper curve is 6% di�erent at one end

and 7% di�erent at the other, then the energy scale uncertainty is the average of

these four numbers, or 7%. This re
ects the uncertainty in the slope due to the

uncertainty in the energy scale.

The single largest e�ect is the uncertainty in the slope of the jet-photon

response. In Figure 6.50 the nominal as well as the 
attest and steepest reasonable

�ts to the data. The data and the form of the �ts are the same as that used in

x5.3.1 and shown in Figure 5.42. The lack of substantial data above a jet energy

of 100 GeV is the major cause of this uncertainty. This e�ect alone is responsible

for about 5% of the total systematic uncertainty.

At lower masses, the energy o�set (zero-suppression and underlying event)

uncertainty is a large e�ect as well, contributing up to 4% to the total systematic

uncertainty in the shape of the distributions. At higher masses (larger angular

range) the �-dependent uncertainty was a large e�ect, up to a 6% contribution for

the large � range plot (JET LOW, MJJ > 450 GeV.)

The energy scale and acceptance uncertainties are independent and so are

added in quadrature to obtain an overall systematic uncertainty. In the dN=d� dis-

tributions, this error is shown separately from the data, which has only statistical

error bars.

6.3 Dijet Angular Distributions

The distributions for the seven mass ranges in Table 6.6 will be shown plotted as

dN=d� versus � where both the data and the theory have been normalized to unity
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Figure 6.50: Nominal and upper and lower limits of slope of the jet response.

over the range in � used. The O(�2
s) predictions have been generated using Q2 =

P 2
T=4 and MRS S0 [7] parton distributions. The NLO curves have been generated

using the choice Q2 =
�

MJJ

4cosh (0:7��)

�2
(see x2.6.3.) If this choice of scale was used

for the leading order curves, the result would be almost indistinguishable from the

NLO curves. The form used for the O(�3
s) scale was not known beforehand, it

was only available after the NLO predictions were calculated. Before the O(�3
s)

predictions, there was no reason to doubt that the choice Q2 = P 2
T=4 was not the

best one to make. It is on this basis, therefore, that the leading order predictions

are presented using this momentum scale, that it is the a priori leading order QCD

scale choice.

Note that due to expansion of possibilities of the form of Q from Q = APT

to Q = AMJJ=2 coshB�
� that virtually any (positive) slope of the leading order

curve is attainable by a suitable choice of parameters. However, the NLO curve

is much less sensitive to the scale choice due to cancellation in the higher order

terms. Ellis, Kunszt, and Soper determined that for changes of a factor of two
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about the nominal scale choice (A=0.5, B=0.7), the slope of the leading order

curve varied by 40% whereas the NLO curve varied by only 10%, indicating much

less dependence on the scale at O(�3
s)[11].

As mentioned in x2.6.1, the Collins-Soper angle gives a more accurate

de�nition of the center-of-mass angle in the presence of transverse boosts of the

dijet system. It is useful to compare the result using each angular de�nition. In

Figure 6.51 we see the comparison between the distributions derived using the

Collins-Soper angle and the simpler de�nition for mass ranges 100 < MJJ < 150

GeV and 250 < MJJ < 350 GeV. A slight di�erence is seen in the low mass plot

where the Collins-Soper angle gives a slope that is about 5% steeper than the

simple angular de�nition. No di�erence between the two methods is visible in

the higher mass range, presumably since only at the lowest masses are transverse

boosts large enough to perturb the measurements. But perhaps the di�erence is

simply lost in the larger statistical errors of the higher mass ranges.

Comparisons to O(�2
s) plots will be made using the Collins-Soper an-

gle. The O(�3
s) predictions, however, were calculated using the simple de�nition

�� = 1
2
(�1� �2) where jets 1 and 2 are the two highest ET jets in the event. These

calculations can have up to 3 jets in the event, so the dijets can be boosted trans-

verse to the beam. Therefore, using the Collins-Soper angle to compare with O(�3
s)

predictions would be incorrect and the de�nition used in the theory calculation will

also be used in the data for all such comparisons. Since the distributions obtained

using each de�nition is the same for masses above 250 GeV, those plots will be

shown only once, using the de�nition �� = 1
2(�1 � �2) to compare to both O(�2

s)

and O(�3
s) QCD predictions.

We are now prepared to show the acceptance-corrected angular distribu-

tions for the 7 mass ranges and trigger combinations of Table 6.6. We will go

through each mass range and show the relevant angular distributions along with

the theoretical predictions and a short discussion of the results. A summary of the

results of the �ts appears in Table 6.7.
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Figure 6.51: Comparison of angular distributions dN=d� vs. � using the simple
de�nition �� = 1

2(�1 � �2) and the Collins-Soper angle. Two di�erent mass ranges
are shown and no acceptance corrections have been made.
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JET MIN: 100 < MJJ < 150 GeV

The O(�2
s) QCD prediction is compared to the distribution obtained using the

Collins-Soper angle in Figure 6.52. The distribution obtained using the �� =

1
2
(�1 � �2) de�nition is shown in Figure 6.53 compared to both leading and next-

to-leading order QCD predictions. The data is seen to prefer the steeper O(�2
s)

QCD prediction over the O(�3
s) curve. In fact the data has a slightly steeper slope

than even the leading order curve1. The NLO prediction is a very poor �t, with

a 7% signi�cance level. Only the large size of the systematic uncertainty ( 6.5%

compared to 5% statistical) prevents us from ruling out the NLO curve. Since the

major di�erence between the leading and the next-to-leading order predictions is

the steeper slope of the leading order curve, and all the curves are normalized to

unity, the major discrepancies will be seen at the extremes of the plots.

JET LOW: 150 < MJJ < 250 GeV

The O(�2
s) QCD prediction is compared to the distribution obtained using the

Collins-Soper angle in Figure 6.54. The distribution obtained using the �� =

1
2
(�1 � �2) de�nition is also shown in Figure 6.55 compared to both leading and

next-to-leading order QCD predictions. The tendency is also towards the steeper

O(�2
s) curve, although now the data is closer to the shape of the NLO prediction.

The systematic uncertainties (which here are 5.4%, much larger than the statistical

error of about 3.5%) again dominate and make it impossible to state a preference.

JET LOW: 250 < MJJ < 350 GeV

The data is compared to O(�2
s) and O(�3

s) QCD predictions in Figure 6.56. For

these masses and above the di�erence between the Collins-Soper and �� = 1
2
(�1��2)

is negligible so the latter de�nition will be used since that is what is used to derive

1This may be due in part to the �-dependent bias discussed at the end of x5.3.2. The correction

for this e�ect was not applied in the data shown and tends to steepen distributions which rely

on low-ET jets. This e�ects mainly the plots 100 < MJJ < 150 GeV and 150 < MJJ < 250 GeV
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Figure 6.52: dN=d� versus � for 100 < MJJ < 150 distribution obtained using the
Collins-Soper angle and compared to leading order QCD.
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Figure 6.53: dN=d� versus � for 100 < MJJ < 150 distribution obtained us-
ing the simple de�nition �� = 1

2(�1 � �2) compared to both leading order and
next-to-leading order.
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Figure 6.54: dN=d� versus � for 150 < MJJ < 250 distribution obtained using the
Collins-Soper angle compared to leading order QCD.
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Figure 6.55: dN=d� versus � for 150 < MJJ < 250 distribution obtained us-
ing the simple de�nition �� = 1

2(�1 � �2) compared to both leading order and
next-to-leading order.
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the O(�3
s) curves.

Over this larger angular range the slope di�erence between the O(�2
s)

and O(�3
s) curves becomes a larger overall e�ect. The di�erence between the two

curves is about 15% at low � compared to the combined statistical and systematic

uncertainty of 12.5%. The data agrees quite well with the next-to-leading order

prediction, but also with the leading order curve.

JET MEDIUM: 350 < MJJ < 450 GeV

In Figure 6.57 the distribution is compared to both leading and next-to-leading

order QCD predictions. The data is clearly in better agreement with the 
atter

O(�3
s) curve. The O(�

2
s) curve is a somewhat poor �t with a signi�cance level of

only 11%.

JET HIGH: 450 < MJJ < 550 GeV

In Figure 6.58 the distribution is compared to both leading and next-to-leading

order QCD predictions. The data seems to favor a 
atter distribution than the

leading order and even slightly 
atter than the NLO curve. The steep O(�2
s) curve

is here ruled out at the 1% signi�cance level. The O(�3
s) curve is a poor �t due to

what seems to be large statistical 
uctuations but still acceptable with only a 9%

signi�cance level.

JET MAX: MJJ > 550 GeV

Figure 6.59 shows the comparison of the distribution to both leading and next-to-

leading order QCD predictions. The data cannot be used to reject either curve,

although neither is a very good �t. This data will also be used in the search for

composite quarks which will be discussed in the next section.
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Figure 6.56: dN=d� versus � for 250 < MJJ < 350.
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Figure 6.57: dN=d� versus � for 350 < MJJ < 450.
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Figure 6.58: dN=d� versus � for 450 < MJJ < 550.
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Figure 6.59: dN=d� versus � for MJJ > 550 GeV.
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Table 6.7: Results of �ts of O(�2
s) and O(�3

s) QCD predictions to the data. �2

signi�cance levels in % are shown.
Mass Trigger O(�2

s) O(�3
s)

100 - 150 JET MIN 98 7
150 - 250 JET LOW 100 90
250 - 350 JET LOW 80 100
350 - 450 JET MEDIUM 11 94
450 - 550 JET HIGH .2 9
550 - JET MAX 9 31
450 - JET LOW 75 95

JET LOW: MJJ > 450 GeV

In Figure 6.60 the distribution is compared to both leading and next-to-leading

order QCD predictions. The large mass threshold which provides the very large

angular reach of the data also limits the statistics to somewhat low levels. This

data is in good qualitative agreement with both curves, although the signi�cance

levels show a slight preference for the O(�3
s) curve. It is worth noting that this

measurement extends the range in � by more than a factor of 7 over previous

attempts[30, 38, 39].

Summary

Although all the mass ranges have nominal agreement with the NLO QCD predic-

tions, a clear trend is seen in Table 6.7 toward better agreement with NLO (i.e.,


atter distributions) for dijet masses greater than 250 GeV and better agreement

with leading order QCD curves (steeper distributions) for masses lower than about

250 GeV.

It should be noted that the theoretical curves are not without their own

intrinsic uncertainties. The momentum scale sensitivity is very large and this gives

an uncertainty of 10% for the O(�3
s) curves. This is equivalent to the di�erence

between the data points and the NLO curve in Figure 6.53 (100 < MJJ < 150

GeV.) Perhaps a di�erent choice of the form of the momentum scale could give
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Figure 6.60: dN=d� versus � for MJJ > 450 GeV.
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Table 6.8: Results of �ts of O(�2
s) QCD with a quark-quark contact term. Shown

is �2 signi�cance levels as a function of �C.
�C �2 probability in %

800 GeV < :1
900 GeV < :1
1000 GeV < :1
1100 GeV 1.0
1200 GeV 9

better agreement with lower mass data.

6.4 Search for Quark Substructure

In this section we will use the high-mass data to put a limit on the scale of quark

compositeness, �C (see x2.6.4.) We will use the MJJ > 550 GeV data compared

to leading order curves generated with various values of �C. The data was taken

with the JET MAX trigger, which was not prescaled (see x5.1.1.) By calculating

signi�cance levels we will determine the largest value of �C that we can reject and

take that as our upper limit on the scale of a composite interaction.

Various values of �C have been used to generate curves and some are

shown in Figure 6.61 along with pure leading order QCD (�C = 1.) Table 6.8

shows the results of �tting the curves as a function of �C. Note that due to the

shape of the contact-term-altered plots, the majority of our discrimination power

is at low �, where the di�erence in shape is largest.

As can be seen from the Table, we can rule out �C = 1:1 TeV at the 5%

signi�cance level. The current highest published limit is 1.4 TeV from CDF single-

jet inclusive cross sections [40] and the current highest limit from this method

is 1.0 TeV from CDF [30]. Our limit is comparable although we have twice the

integrated luminosity. This is due mainly to the poor range in � of this trigger,

which had a large single jet ET threshold of 125 GeV. The range in � can be

increased by increasing the mass threshold (which also increases the sensitivity to
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Figure 6.61: dN=d� versus � forMJJ > 550 GeV compared to O(�2
s) QCD without

a contact term and with �C = 0:9 Tev and �C = 1:1 TeV.
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higher �C), but the subsequent loss of statistics negates any advantage.

The momentum scale used for the curves shown above was Q2 = P 2
T=4 and

the question arises what the results might be if the O(�3
s)- determined scale Q =

MJJ=4 cosh (0:7��) were used instead in the same leading order calculation. Since

it is 
atter with no contact term added it should be steeper after the compositeness

scale is introduced, perhaps allowing a higher �C limit. Curves have been generated

using the NLO momentum scale and compared to data, and although they are

slightly steeper, the signi�cance levels were lowered only slightly, from 9% to 7%

for �C = 1:2 TeV and from 1.0% to 0.6% for �C = 1:1 TeV.

Another approach to compositeness would be to try to obtain a scale �C

by minimizing the �2 of the �t[41]. This shall be done using the knowledge that

the compositeness signal increases the cross section at low � which implies that

the cross sections with and without the contact term converge at high �. Using

this information, we shall proceed by �rst normalizing the leading order QCD non-

contact-term cross section to the three highest data points (the range from 10 to

13 in � for theMJJ > 550 GeV plot used here.) Then the �t is performed between

the data and the leading order plus contact term curve where the contact term

curve has been scaled using the same normalization correction. In other words, the

relative scale between the curves with and without a contact term is maintained.

This procedure is also sensitive to the form of the momentum scale used

and so has been done using both the leading order Q = PT=2 and the next-to-

leading-order-derived Q = MJJ=4 cosh (0:7�
�). The results including the best �t

values of �C are shown in Figure 6.62. The signi�cance levels are 40% using the

scale Q = PT=2 and �C = 1:4 TeV and 50These values of �C are those multiples

of 100 GeV that provided the best �t.

As can be seen from Figure 6.62, although better than leading order alone,

the addition of a contact term does not make a curve that �ts the data particularly

well. It should be emphasized that the use of this procedure implies absolutely

no claim for a compositeness signal in the data. We can only state a lower limit
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Figure 6.62: dN=d� versus � forMJJ > 550 GeV. (Top): Leading order QCD alone
and the best-�t curve LO QCD plus a contact term using the momentum scale
Q = PT=2. (Bottom): Same but using NLO-derived scale Q =MJJ=4 cosh (0:7��)
and leading order QCD.



137

on �C of 1.1 TeV as derived above. This exercise is illustrative of the type of

procedure that might be employed should a more de�nite compositeness signature

appear in future data. That is, using the high � data for normalization and seeing

if su�cient excess events are observed at low � to make a claim for a statistically

signi�cant observed signal.

6.5 Conclusion

The D� detector has made possible new measurements of the dijet angular dis-

tribution that, for the �rst time, are of su�cient precision to enable a possible

distinction between leading order QCD and the new O(�3
s) QCD predictions. The

data shows reasonable agreement with O(�3
s) predictions over the entire mass range

from 100 to 550 GeV. With the leading order momentum scale choice Q2 = P 2
T=4,

the leading order curves give very good agreement for low masses (MJJ < 350

GeV, but give worse �ts for masses greater than this. In fact, for the mass range

450 - 550 Gev, the leading order �t is inconsistent with the data at the 1% level.

However, when theoretical uncertainties are included, which can give uncertainties

in the slope of the distribution of up to 40% for leading order and 10% for O(�3
s)

theory curves, no substantial distinction can be made between leading order and

O(�3
s) QCD theory on the basis of this data.

With large statistics at low masses and low systematic uncertainties, mea-

surements of QCD phenomena have moved from simple \qualitative agreement"

to more precise tests of the theory. The experimental uncertainties are at approx-

imately the same or even slightly lower than the theoretical uncertainties for some

mass ranges. The large uniform range of calorimetry has extended the range of

measurable angles much farther than previously possible. Additionally, a limit on

quark compositeness of �C = 1:1 TeV has been obtained.
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