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Measurement of Charm Semileptonic Form Factors 

by 

David Michael Schmidt 

ABSTRACT 

We report on the first measurement of the three form factors governing 

the charm semileptonic decay, fl+--+ f<* 0 e+ve. This measurement attempts 

to utilize all the form factor information contained in the data, observed by 

Fermilab photoproduction experiment E691, by performing a maximum likeli­

hood fit using the complete five-dimensional decay distribution for this decay 

mode. The presence of significant smearing and acceptance effects prompted 

us to develop a generalized maximum likelihood fitting technique, which is 

also presented. In addition, we compare the measured form factors with those 

from predictions of various theoretical models and discuss the relationship be­

tween the charm form factors measured here and those that are needed in 

determining important elements of the Kobayashi-Maskawa mixing matrix. 
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1 Introduction 

The Standard Model has been very successful in describing the phenomena 

of particle physics, both qualitatively as well as quantitatively. Although this 

model is fairly specific, there are many free parameters as well as lingering 

questions about the origin of its structure. For example, the Standard Model 

makes no prediction for the mass of the quarks and leptons nor does it explain 

why there are three generations. An interesting phenomenon that the model 

can incorporate, but not require, is the fact the the weak interactions couple 

to a mixed set of quark mass eigenstates. The weak decay of a quark occurs 

by virtual W emission just as for a lepton-in fact the coupling is exactly 

the same. The W couples only to leptons or quarks of the same family. If 

there were no difference between the weak quark eigenstates and the mass 

eigenstates, then the s quark would not decay. However, the s quark does 

decay (we observe the decay of the K meson) and we say that this is because 

it is part of the weak d quark eigentstate. 

-1-



2 Introduction 

1.1 The Kobayashi-Maskawa Matrix 

This is incorporated into the Standard Model by replacing the charge -1/3 

quarks (d, s, b) in a weak interaction with the mixed quarks, (d', s', b'), such 

that 

(
d') (Vud Vus Vub) (d) 
S: = Vcd Vcs Vcb S · 
b Vid vts Vib b 

(1.1) 

Here Vi; are elements of the unitary Kobayashi-Maskawa mixing matrix which 

can be parametrized in terms of three real angles and one phase.
1 

In principle, 

the elements of this matrix can be determined by comparing the decay rate 

of real W bosons to quarks versus leptons. This, however, is experimentally 

difficult since the the quarks manifest themselves as jets of hadrons so that 

the :flavor of the initial quark is difficult to identify. The information that 

we do have on the Kobayashi-Maskawa matrix comes mostly from beta decay 

of nucleons or semileptonic decays of hadrons. This dissertation concerns 

itself with a semileptonic decay of then+ charm meson which is important, 

although indirectly, for the determination of some of the Kobayashi-Maskawa 

matrix elements. 

1.2 Beta Decay 

As a useful example, consider the determination of the Kobayashi-Maskawa 

matrix element, Vud, by nuclear beta decay. Here a d quark in an initial nu-

deus, N, decays into au quark and forms a final nucleus, n, with the emission 
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of an electron and a neutrino. The effective matrix element for this pro­

cess is ~Vudhµlµ where Gp is the Fermi coupling constant which can be 

determined by muon decay, lµ = e;µ(l + ;s)ve is the leptonic current, and 

hµ = u;µ(l + ;s)d is the hadronic current. If the quarks were not bound 

in nuclei then the decay rate could be calculated directly from this matrix 

element. However, the quarks are bound and this can. affect the interaction 

amplitude. To first order, the amplitude for the decay with bound quarks is 

(1.2) 

where IN) and In) are the quantum states of the initial and final nuclei, respec­

tively. Even though we can not calculate this matrix element perturbatively, 

we can use the fact that isospin is a very good symmetry of the strong in-

teractions to estimate the matrix element between nuclei of the same isospin 

doublet. 

If the initial and final nuclei have spin zero then the most general form of 

the hadronic current is 

(n(p)I hµ IN(P)) = !+(t)(Pµ + p") + f-(t)(PP. - pµ) (1.3) 

where t = (PP. - pP.)2 is the squared momentum transfer or the squared mass 

of the electron-neutrino system. This form follows from Lorentz invariance. 

The parameters, f ±, are functions of the possible Lorentz scalars, of which t 

may be taken as the only dynamical scalar. These parameters are known as 

form factors and completely determine the decay. By comparing the behavior 
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of both sides of eq. (1.3) under a parity transformation one can see that only 

the vector term in the hadronic current survives; hence these form factors are 

called vector form factors. In order to determine.Vud from the measured decay 

rate the value of the form factors must be known. 

In the limit that isospin is an exact symmetry, the u and d quarks form 

an isospin doublet and the hadronic current, hµ, is conserved. The matrix 

elements of the conserved charge, Q = J d3xh0 (x ), between the states IN} and 

In), which are isospin eigenstates, can then be determined by the structure of 

the isospin group, SU(2)~ In this limit one finds that f +(tmax) is unity and 

f-(tmax) is zero. These values are obtained at t = tmax since here the final 

nucleus is stationary with respect to the initial nucleus. Corrections to these 

values are expected to be on the order of ( M ( d) - M ( u)) / Aqc D which is only a 

few percent. Basically the symmetry is insuring that the wave functions for the 

initial and final state nuclei are identical so that the matrix element should 

be large-in this case unity. Such decays are known as superallowed Fermi 

transitions. The value given by the Particle Data Group; IVudl = 0.9744 ± 

0.0010, is obtained from these decays. Without isospin symmetry the form 

factors would be much less certain and the error on Vud correspondingly larger. 

1.3 Charm 

Such is the case for the element Vcs. The relevant decay here is the semilep­

tonic decay, D -t K eve. The same matrix element applies as for beta decay, 

with the nuclei wave functions being replaced by those of the D and the I<. 
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In this case isospin does not help. Instead one calculates values for the form 

factors using models; such as treating the mesons as non-relativistic bound 

states of an effective potential. One can also use QCD sum rules and lattice 

QCD. All of these methods, however, are only good to about 20%. Thus the 

value given by the Particle Data Group 
3 Vcs = 1.0 ± 0.2 is limited by the the-

oretical uncertainties rather than the experimentally determined decay rate 

which gives IVcsl2 lf+(O)l2 = 0.49 ± 0.10. 

With the constraint of unitarity within three generations, Vcs is determined 

much more precisely to be within [0.9735, 0.9751] at a 90% confidence limit~ 

Thus we can turn the argument around and measure the form factors in charm 

decay using this precise value of Vcs· This provides a sensitive test of the 

models which would be used in determining the very important and least 

known values, Vcb and Vub· The form factors measured in n+ ~ k 0e+ve 

are consistent with those predicted by most models. However, for the form 

factors in fl+~ f(*Oe+lle (and n- ~ /{*Oe-ile)! which is the subject of this 

dissertation, it will be shown that the models fail. 

1.4 Bottom and HQET 

The failure of the models in charm decay makes their reliability in calculat-

ing bottom decay form factors suspect. This in turn implies there will be large 

* Recent measurements of the Z cross section indicate that there are indeed only 3 
. 4 

generations. 
t C P-conjugate states are implied throughout unless otherwise noted. 
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uncertainties in the values of Vcb and Vub which ultimately determine the com­

plete Kobayashi-Maskawa matrix. Recently, however, a new set of symmetries 

for heavy quarks in QCD has been discovered which puts the calculation of 

the bottom form factors on much firmer ground. The situation is very similar 

to that for the superallowed transitions of beta decay. When the heavy quark 

mass is much greater than the typical QCD energy scale (MQ > AQcD) the 

value of the quark mass decouples from the low energy effective Lagrangian for 

QCD. 
5 In this limit the heavy quark acts as a static source of color. Thus to 

the extent that the b and c quark masses are large, the B and D pseudoscalar 

mesons are degenerate and form a SU(2) doublet. Then the form factors in 

the decay B-+ Deve can be calculated in the same manner as for the super­

allowed nuclear beta decays-again at t = tmax in order to satisfy the static 

requirement. There is, however, a small correction due to the running of the 

coupling constant, as, between the c and b mass scales. 

There is an additional symmetry in this heavy quark effective theory 

(HQET) due to the fact that the spin of the heavy quark also decouples from 

the Lagrangian~ This allows one to relate the form factors in pseudoscalar 

to vector meson decay to those of pseudoscalar to pseudoscalar decay. The 

result is that there is one universal form factor, ~(tmax -t) with normalization 

e(o) = 1 from symmetry, from which all other form factors can be determined. 

Corrections to these predictions are expected at the level of AQcD/ MQ. For B 

to D decays this implies corrections of the order of 5% and 20% respectively. 

Fortunately, it has been shown that the order AQcD/ MQ corrections vanish 
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at the zero recoil limit oft = tmax; away from this point the corrections do 

not vanish but have been calculated using QCD sum rules~ Since sum rule 

calculations have a typical uncertainty of about 20%, the uncertainty on the 

form factors-and therefore on Vcb-should be on the order of a few percent. 

The situation is noi as clean for determining Vub since the u quark is 

certainly not heavy in the HQET sense. Nevertheless, the form factors in 

c --+ d decay can be related to those of b --+ u decay near t = tmax * using 

both HQET and isospin symmetries. And the c --+ d form factors can be 

measured using the value of Vcd which is known to a few percent, assuming 

three generation unitarity. Thus it appears likely that a precise determination 

of Vcb and Vub can be made using the symmetries of H QET. 

It is important to verify the validity of the HQET symmetries and the 

extent to which corrections can be estimated. One way to do this is to measure 

the ratio of form factors governing the decay B --+ D* lv1. This dissertation 

presents (among other things) a measurement of the form factor ratios in 

n+--+ K* 0e+ve which can serve as a prototype for measuring the B form 

factor ratios. Moreover, the D form factors are interesting in themselves since 

they can be used to test the factorization hypothesis in charm hadronic decays, 

related to the form factors in B--+ K*e+e- using the symmetries of HQET, 
7 

and serve as a significant test for any method which attempts to calculate 

* The matching condition is that the velocity of the daughter mesons, in the rest frame 

of the parent meson, must be equal. This means, for example, that the D --+ plv1 

form factors, over the full range oft, only map into the last 17% of the t range of the 

B --+ plv1 form factors. 
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heavy quark semileptonic form factors. The extent to which HQET can be 

tested by the measured charm form factors will be discussed in the concluding 

chapter. 



2 Kinematics 

This chapter defines the kinematics involved in the decay n+---+ .k*0 e+ Ve. First 

the form factors are defined from the hadronic part of the matrix element. 

Then the matrix element is evaluated within the helicity formalism. Finally, 

the differential decay rate is obtained which will be used in determining the 

form factors from the the data distribution. 

2.1 Form Factors 

The diagram representing the decay fl+-+ K*0 e+ve is shown in Fig. 2.1. 

This is known as a spectator decay since the light quark does not participate 

and is merely a spectator in the interaction. In analogy to the beta decay 

amplitude discussed in the introduction, the amplitude for this process is 

(2.1) 

where G F is the Fermi coupling constant, e is the polarization vector of the 

f<* 0 , and lµ is the lepton current, e1µ(l + 1s)ve. The weak and strong inter­

actions are not coupled, so the matrix element, or amplitude, factorizes into a 

-9-
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Figure 2.1 Spectator diagram of the semileptonic decay, n+-+K*0e+ve. 

hadronic current and a leptonic current. As discussed in the introduction, we 

do not know how to calculate the hadronic part of the matrix element so we 

parametrize it in terms of form factors. We simply ask how many ways can 

we form a vector out of the momentum vectors of the D and the .k*0 and the 

polarization vector of the K*0 • The most general form can be written 

(2.2) 

where qµ = Pµ - kµ is the momentum transfer and t = q2 • This form follows 

from Lorentz invariance and the requirement that each term be linear in the 

polarization vector. The form factors, Ai(t) and V(t), are functions of the only 

dynamical scalar, which we take to bet (others are possible but they can be 

writ ten in terms of t and the masses). 



2.1 Form Factors 11 

By examining how each side of eq. (2.2) behaves under a parity transfor­

mation one can identify the Ai with the axial vector part of hµ and V with the 

vector part of hµ- Since the D is a pseudoscalar, the hadronic matrix element 

is odd under parity reversal for the axial vector part of hµ and even for the 

vector part. The polarization vector is odd under parity reversal, hence the 

Ai must be axial vector form factors. The totally anti-symmetric tensor in 

the final term of eq. (2.2) produces a axial vector which is even under parity 

reversal; hence the identification of V as a vector form factor. 

In addition, by examining how each side behaves under parity and time 

reversal one can see that the form factors must be real if the interaction is time­

reversal invariant. This transformation interchanges bras and kets and takes 

operators into their adjoints. Time reversal changes the signs of momenta and 

spins, but then parity reversal changes the momenta back. Thus, 

(K*(k, s)I hµ ID(p))PT = ± (D(p)I ht IK*(k, -s)) 

= ± (K*(k, -s)I hµ ID(p))* 
(2.3) 

where the+(-) sign is for the axial vector (vector) parts of hµ. Since e(-s) = 

C ( s), it follows that all the form factors are real if the interaction is time 

reversal invariant. This is why the imaginary factor of i is included in the last 

term of eq. (2.2). 
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2.2 Matrix Element 

The f<•O decays strongly to K-1r+ and f<07ro with a branching ratio of 

2/3 and 1 /3 respectively. What we observe in the detector is the decay n+ --+ 

K-1r+e+ve. The f<•O can be identified, statistically, by a peak in a plot of the 

mass of the K-1r+ system, labeled MK7r, at the mass of the f<* 0
• 

The matrix element for the observed process is the product of the matrix 

elements for n+--+ k*0 e+ Ve and for .k*0 --+ K-1r+ and an additional factor 

for the propagator of the K*0 . Thus the complete matrix element, M, is 

M = LMl(f<*0 --+ K-1r+) Pl(f<*0
) Ml(D+-+f<*0e+ve) (2.4) 

l 

where Pl(k*0
) = [M_k. - M_k7r - iMK·f(MK7r)]-1 represents the K*0 propa­

gator and the sum is over the helicities of the K*0 , .A E { -1, 0, + 1}. 

In calculating this matrix element it is convenient to break the decay, fl+-+ 

k*0e+ve, into a series of two-body decays, n+ --+ k*0w+ and w+ --+ e+ve. 

Then 

(2.5) 

The virtual w+ would in general have a fourth time-like helicity component. 

However, this goes to zero in the limit that the electron is massless, which is a 

very good approximation at the energy scales for this decay. It will be shown 
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below that 

(2.6) 

where the H >. are called helicity amplitudes and are functions of the form 

factors. 

The evaluation of M>.2 (W+ --+ e+ve) is particularly simple since, if the 

electron is massless, we know that it must have positive helicity and the neu-

trino must have negative helicity. This follows from the V - A form of the 

leptonic current. Since the helicities of the parent and daughter particles are 

known, thew+ decay matrix element can therefore be written in terms of the 

appropriate Wigner cl-function~ The result is, 

{ 

(1 +cos Be), 

M>.(W+---+ e+ve) = (1 - cosOe) ei2x, 

-../2. sin Be e'X, 

A=l 

A= -1 

A=O 

(2.7) 

where any proportionality constants are to be included in C(t) in eq. (2.6). 

Here, Be is the angle between the e+ and the direction opposite that of the 

K*0 in the rest frame of the w+. The axial angle x is the angle between the 

decay planes of the e+ve and the K-Tr+ systems in then+ rest frame. 

A similar analysis can be applied to the matrix element for the K*0 decay 

yielding: 

,\ = ±1 

A=O 
(2.8) 

where B(MK'lr) is a proportionality constant. Here, Bv is the angle between 

the K- and the direction opposite that of the w+ measured in the rest frame 
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of the f<•O. The propagator of the w+ just generates the Fermi constant. 

Putting everything together and taking the absolute square yields: 

IMl2 

(Mk1r - M'k.)2 + M'k.f2(MK1r) x 

{ [(1 + cos0e)2 IH+(t)l2 + (1 - cos0e)21H-(t)12
] sin2 o. 

+ 4 sin2 Be cos2 Bv I Ho( t) 12 
- 2 sin2 Be sin2 Bv ~( ei2x n+H-) 

- 4 sin Be (l +cos Be) sin Bv cos Bv ~( eix H~Ho) 

+ 4 sin Oe (1 - cos Oe) sin Ov cos O.!R( eix H;..Ho)}. 

(2.9) 

This structure follows simply from angular momentum conservation and the 

V - A character of the w+ decay; the interesting physics issues are contained 

in the helicity amplitudes. 

2.3 Helicity Amplitudes 

The helicity amplitudes, as given in eq. (2.6), are defined in terms of the 

matrix element, M(D+---+ f<1? W~). Since the hadronic and leptonic parts 

of this element factorize, we can write 

(2.10) 

where Lµ is the effective leptonic current and tA
2 

is the polarization vector 

of the w+. The hadronic amplitude was defined in terms of the form factors 

in eq. (2.2) using the requirements of Lorentz invariance and linearity in the 
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polarization. The same requirements applied to the leptonic part of eq. (2.10) 

yields the most general form, 

(2.11) 

where C(t) is a possible proportionality constant which can depend on t. We 

have used the fact that for the spatial polarization vectors, t:A · q = O; this is 

not true for the time-like polarization vector, but this term is negligible since 

the electron may be considered massless. 

We are now in position to evaluate the matrix element in eq. (2.10). To be 

definite, it is useful to explicitly write out the polarization vectors. We chose 

a coordinate system, in the rest frame of then+, in which the positive z-axis 

is in the direction of the f<*0
• Then, 

'± = ~ ( 1, ±i' 0' 0) 

E± = ~(1, 'fi, 0, 0) 

e~ =Ml (0,0,EK·,I<) 
K7r 

E~ = ~(0,0,-Ew,K) 
(2.12) 

where/{ is the magnitude of the spatial momentum of the f<*O (or the W+) 

in the rest frame of then+. In eq. (2.12) the fourth component of each vector 

is the time-like component. These helicity vectors satisfy the orthonormality 

relation (for both e and t:), exl. 62 = 8Ai,A2. Putting everything together one 

finds that M(D+ ~ f<X~ wt;)= C(t)HA8A1,A2 where the HA, determined by 
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the relation H>. = f~µ (K*(k),61 hµ ID(p)), are: 

(2.13) 

The A3 form factor drops out since it is proportional to qµ and fl · q = 0. 

This occurs because we have dropped the time-like helicity component of the 

virtual w+. The A3 form factor couples to this helicity component which is 

non-negligible only if the charged lepton is fairly massive, such as with a r+. 

2.3.l Partial Waves 

At this point it is useful to change from a helicity point of view to a 

partial wave point of view and ask which form factors are present in which 

partial waves. This decay is from a pseudoscalar to two vector particles which 

can occur via. S, P, and D waves. For two-body decays the amplitude must be 

proportional to K 1 where K is the magnitude of the momentum of the daughter 

particles in the parent rest frame, and l is the orbital angular momentum. Since 

we have shown that the amplitude for D+ --+ J?*OW+ is proportional to the 

helicity amplitudes, we can simply look at eq. (2.13) and identify Ai(t) with 

the S-wave, V(t) with the P-wave, and A2(t) with the D-wave. 
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2.4 Decay Rate 

The differential decay rate is given by the formula 

(27r )4 2 
dI' = 2MD IMI d'P4(D; I<, 7r, e, v) (2.14) 

where d'P4(D; K, 7r, e, v) is the four-body phase space element. In evaluating 

this it is useful to break the decay into a series of two-body decays using the 

recursive relation 

(2.15) 

where qµ =Pi+ p~. The two-body phase space element is given by 

(2.16) 

where S is the squared mass of the parent particle and P is the magnitude 

of the spatial momentum of the daughter particles in the rest frame of the 

parent. The angles are the usual polar angles and are measured in the rest 

frame of the parent. Using the angles defined above for the matrix element, 

one finds that 

(2.17) 

where Pk is the magnitude of the momentum of the I<- in the rest frame of 

the [{* 0 . 
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All that remains is to evaluate the two proportionality functions, C(t) and 

B(MK1r ). B(MK1r) can be expressed in terms of the total decay rate for the 

R*0 since 

(2.18) 

and the matrix element, M>.(K*0 -t K-tr+), was given in terms of B(MK1r) 

in eq. (2.8). One finds that 

(2.19) 

Here, the total rate, or width, of the K*0 is written as a function of the mass, 

MK7r· Since the f<•O is a vector particle and decays into two scalar particles, 

the daughter particles must be in a relative P-wave. The amplitude for the 

decay must be therefore be proportional to Pk. In addition, the phase space 

element for this decay contributes another factor of Pk/ MK1r· Thus, the total 

decay rate is proportional to P2 / MK7r and Pk is a function of MKr· For this 

reason we parametrize I'(MKr) in the following way: 

(2.20) 

where r(K*0 ) is the measured, average width. The effect of this mass depen-

dence is to skew the otherwise symmetric Breit-Wigner distribution towards 

higher mass values. 
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The C(t) function can be calculated by expanding out the original matrix 

element, eq. (2.1 ). One finds simply that 

2 t 
IC(t)I = 2· (2.21) 

With this, all the unknown factors have been determined and we can present 

the full differential decay rate in all of its glory: 

2 2 3 MK·f(MK7r) 
dr = GplVcsl 2(47r)5M_b (M'k'lr - M'f<.)2 + M'f<.r2(MK11") Kt x 

{ [ (1 +cos o.)2 IH+(t)l2 + (1 - cos o.)21H-(t)12
] sin2 o. 

+4 sin2 Be cos2 Bv IHo(t)l 2 
- 2 sin2Be sin2Bv ?R( ei2x n+H-) 

-4 sin Be (1 +cos Be) sin Bv cos Bv ?R( eix H+Ho) 

+4 sin 80 (1 - cos 80 ) sin Ov cos o.~( eix H~Ho)} 

x dM}11" dt dcos Bvdcos Bedx. 

(2.22) 

The only free parameters are the form factors which are buried in the helicity 

amplitudes (eq. (2.13)). By comparing the distribution of the experimental 

data to this differential decay rate we can estimate the value of the form 

factors. 

In calculating the total decay rate the integrals over the angles are simple 

and yield 

r -J G}IVcsl2 
MK· f(MK11") 

- 967r4 MiJ (Mk11" - Mk.)2 + Mk.f2(MK11") x (2.23) 

Kt (IH+(t)1 2 + IH-(t)12 + IHo(t)1 2
) dM}11" dt 

where the integral over t extends from the squared mass of the electron ( ef­

fectively zero) to tmax = (MD - MK7r )2• In the limit that the f<* 0 width is 
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negligible then the Breit-Wigner term becomes 

(2.24) 

This is only good to about 10% since the f(•O is not a narrow resonance. 



3 The Experiment 
and Data 

Fermilab photoproduction experiment E691 has been described in detail pre­

viously~ This chapter describes those aspects of the experiment pertinent for 

observing the decay fl+-+ k*0e+ve and then summarizes the cuts used in the 

extraction of the signal. 

3.1 Brief Description of Experiment 

The experiment was based at Fermilab and took data from April through 

August of 1985. It was a fixed-target experiment with a tagged photon beam 

at an average energy of 120 GeV incident on a 5 cm long piece of Beryllium. 

The spectrometer, illustrated in Fig. 3.1, consists of silicon microstrip detectors 

(SMD), drift chambers around two magn~ts, Cerenkov counters, calorimeters, 

and a muon detector at the very back. The SMDs (to be described in more 

detail below) are all within 25 cm downstream of the target and with 16 µm hit 

resolution, they provide precise track coordinates for charged particles close 

to the interaction region. This is crucial in being able to isolate decay vertices 

from production vertices. 

- 21 -
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Figure 3.1 Illustration of the E691 spectrometer. 
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The drift chambers, being located upstream and downstream of the mag­

nets, allow one to measure the momentum and sign of the charge of particles 

from the deviation that occurred within the regions of the magnets. The track 

measurements made by the drift chanbers are also matched with those ob­

served in the SMDs. Together with the momentum estimate, the Cerenkov 

detectors provide information about the mass or identification of the charged 

particle. Electrons and muons are further identified using the electromagnetic 

calorimeter and the muon detector, respectively. The hadronic calorimeter 

allows identification of neutral hadrons. In summary, the SMDs provide geo­

metrical information while the rest of the spectrometer provides momentum, 

energy, and charge information. 

3.2 The SMDs 

The key feature of the SMDs which makes them so important in isolating 

charm events is their ability to measure the position of a charged track very 

precisely. To illustrate how this is accomplished, consider the schematic of 

a typical E691 SMD shown in Fig. 3.2. It consists of a 290 µm thick layer 

of slightly n-doped (an excess of negatively charged carriers) silicon with a 

thin layer of n-type material (Arsenic) on the bottom and strips of p-type (an 

excess of positively charged carriers) material (Boron) on the top. Aluminum 

is placed in contact with the Arsenic below and with the Boron above, in order 

to provide for a good ohmic connection to outside electronics. 

The interface between the p-strips and the bulk n-type silicon forms a 
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l Silicon 
(n-doped) 

Figure 3.2 Cross section of an E691 SMD. 

Boron 
(p-type) 

Arsenic 
(n-type) 

p-n junction. The mobile positive and negative charges of the p- and n-type 

regions, respectively, diffuse and cancel each other when they meet near the 

interface. This ionizes the fixed lattice charges near the interface leaving an 

excess of negative charge on the p-side and positive charge on the n-side. 

An electrical potential thus forms replacing the kinetic energy of the mobile 

earners. This small region of depleted charge carriers is called the depletion 

region. 

If a charged particle traverses the silicon, electron-hole pairs are produced. 

Typically there are about 21000 pairs for 290 µm of silicon. This is the sig-

nal which we would like to detect. However, these electrons and holes will 

recombine as they diffuse through the silicon. If the electron-hole pairs were 

generated within the depletion region, though, then the potential in this re­

gion would seperate the electrons and holes, driving the electrons towards the 

p-side and the holes towards the n-side. The depeletion region is enlarged by 
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applying a reverse bias voltage, V,,, between the aluminum of the two sides of 

the silicon. Usually between 40 V and 100 V is required to fully deplete the 

290 µm of bulk silicon depending on its resistivity (Vdepleted ~ 1 /-JP). In this 

way the cloud of holes generated by a charged particle is forced towards the 

p-type strips so that the position of the particle is identified by which strip 

produces an excess current. 

The strips are about 30 µm wide and have a pitch (separation) of 50 µm. 

Thus, the SMDs should be able to locate the transverse position of the charged 

track to within 50 µm, or with a resolution characterized by a standard de­

viation of 50 µm/'10. ~ 14 µm. In practice E691 SMDs had a resolution of 

about 16 µm. 

Top View 

< 25cm ;;.. 

I I I I "' ~ Scm 
Beam ~ Target x y v XY v xy v 

SMD Planes 

Figure 3.3 Top view of SMD telescope showing the relative location and 
orientation (x, y, or v) of each SM D plane. 

Each SMD, however, can only measure the transverse position of a charged 

track in one dimension. Ultimately, one would like to know the position and 

direction of a track. To this end a telescope was formed using 9 planes of 

SMDs measuring positions in x, y, and v (rotated about 20° from x) views as 
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shown in Fig. 3.3. The angular acceptance of this telescope was ±100 mrad 

and the per-plane efficiency was about 95%. In order to not waste the precision 

of each SMD, the mounting of each was carefully controlled and monitored to 

maintain a relative rotational offset about the beam axis of less than 0.8 mrad. 

To measure the small charge of 21000 electrons, the p-type strips were 

wire bonded to strips on a printed circuit fan-out board which were then 

connected to current-sensitive preamplifiers. This method is in contrast to the 

one presented in the Appendix, where the preamplifiers are integrated into a 

small chip which can be bonded directly to the strips. The preamplifiers had 

a gain of about 200 and an equivalent noise charge of about 1600 e- to be 

compared to the expected signal size of about 21000 e- ~ The signals from 

the preamplifiers were then sent to a set of discriminators which determined 

which strip had registered a "hit". The criteria for a hit was whether the 

measured signal was larger than 0.4 times that which was expected from a 

minimum ionizing particle. This threshold was reasonably efficient for large 

angle tracks, but high enough to keep noise rates down to a manageable level 

(typically 1 noise hit per plane per trigger). A more detailed description and 

analysis of a silicon detector amplification system (to be used in the CLEO-II 

experiment) is presented in the Appendix. 

* For a definition of equivalent noise charge please see the Appendix. 
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3.3 Extraction of Signal 

The key element in extracting the decay n+-+ f<*0e+ve, f<*O -+ K-7r+ 

from the general data set is the ability to require a well-isolated decay vertex 

of the proper topology using the high-precision silicon microstrip detector. 

Three-particle K 7re combinations are selected using only tracks which are well 

defined in the microstrip and drift-chamber systems. Electrons are identified 

by the pattern of energy deposition in the electromagnetic calorimeter. We 

identify tracks as electrons with an electron probability corresponding to a 

typical efficiency for electrons and pions of 61 % and 0.3%, respectively. A 

cleaner electron sample with electron and pion efficiencies of 44% and 0.13% 

is also used. Furthermore, only electrons with a lab energy of 12 Ge V or 

more are kept and those consistent with beam pair conversions are eliminated. 

To suppress electrons from pair conversions from 7ro decays we also eliminate 

electrons for which the other member of the pair is seen in the spectrometer. 

Tracks are identified as K- or 7r+ by requiring the Cerenkov probability 

for both the kaon and pion to be greater than 0.4. The pion is required to pass 

through at least the first magnet while the electron and kaon must pass through 

both magnets. Only neutral K 7r combinations are used. Combinations in 

which the kaon and the electron have opposite (same) charges are labeled 

right- (wrong-) sign combinations. 

The selected K 7re tracks are required to emanate from a decay vertex 

separated from the primary event vertex by at least 10 standard deviations 

plus an additional distance corresponding to 0.2 ps proper decay time. In 



28 The Experiment and Data 

addition, the x2 per degree of freedom of the decay vertex is required to be 

less than 3.5. Another vertex cut requires the D line of flight to point back 

to the primary vertex. The maximum neutrino momentum, transverse to that 

of the K 7re momentum, is given by equating the mass of the K 7rev system 

(assuming the neutrino is transverse to the K 7r e direction) to the mass of the 

D. With this we can obtain the maximum displacement of the K 7re line of 

flight at the primary vertex. We require that the K 7re line of flight point back 

to the primary vertex to within this distance plus 2.5 times the resolution. 

Two other vertex cuts require that all of the decay tracks pass closer to the 

decay vertex than to any other possible vertex, and that no other tracks pass 

within 65 µm of the decay vertex. 

To remove some known backgrounds, we identified and removed seven 

events in which the electron could have been a misidentified pion from the 

dominant n+ --+ K-7r+7r+ decay. Possible n•+ --+ 7r+ n°, n° --+ K-e+ve 

events in which the bachelor pion appears to come from the decay vertex due 

to the low Q value of the D*+ decay are also removed. And finally, a few 

events with I< 7re masses greater than then+ mass or with decay times longer 

than 4 n+ lifetimes are also eliminated. 

The I< 7re mass spectrum of the remaining 318 right-sign and 66 wrong­

sign combinations is shown in Fig. 3.4. A majority of the events lie below 

the n+ mass due to the missing neutrino. Our Monte Carlo simulation is in 

good agreement with the shape of this spectrum, with the wrong-sign back­

ground subtracted. The decay-time distribution of these events is also in good 
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Figure 3.4 Spectrum of K'T1f'±e± masses for the standard cuts. The 
wrong-sign (K=F1f'±e=F) distribution is superimposed (dashed line). 

agreement with that of the Monte Carlo simulation. 

3.3.1 Backgrounds 

Conversion electrons and misidentified pions are the major sources of back-

ground; both of which lead to charge-symmetric backgrounds. The first, 

which is the largest background, is manifestly charge symmetric; the charge 

symmetry of the second was checked using backgrounds for hadronic decay 

modes. The most serious non-charge-symmetric background is due to the de­

cay n+ --+ K-7r+7r+7ro where one of the charged pions is misidentified as an 

electron and the 11'"0 is undetected. To estimate the magnitude of this feed-

through a Monte Carlo simulation of this decay was performed and the events 

were passed through the same analysis code as for the signal. For the K* and 

nonresonant cases, it was found that a possible 1 ± 1 and 3 ± 3 events could 
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be present in the data sample. Smaller backgrounds are expected for other 

n+ decay modes. Thus the magnitude and shape of the background should 

be represented well by the wrong-sign data. 

An additional check that wrong-sign events are a good measure of the 

background is obtained by studying the data with a variety of tighter cuts. 

By requiring tighter electron and kaon identification probabilities and a x2 

per degree of freedom of 1.75 for the decay vertex, a sample of 169 right-sign 

and 14 wrong-sign events is obtained. The background has been reduced by 

a factor of 5, while the signal is smaller by the ratio of efficiencies, within the 

statistical errors. 

3.3.2 Magnitude of Background 

The K 7r mass spectrum for the right- and wrong- sign events, using the 

standard cuts, is shown in Fig. 3.5. Clearly the K* resonance is dominant. To 

estimate the amount of non-resonant K 7r in the data a Monte Carlo simulation 

of D+ ~ K-1r+e+ve was performed using a phase-space mass distribution 

with the K 7r system in an S-wave state. The resulting distribution of events 

was used to fit the K 7r mass spectrum of the real data, together with the Breit­

Wigner of the K*, and the wrong sign data events. The number of observed 

K* 's from the fit is 227 ± 20 and the number of non-resonant events is 25 ± 18. 

To get the final branching ratios the fit will be performed later using a more 

nearly correct shape for the K*. But for now this gives us a good estimate 

of the non-resonant component of the data, which together with the charge­

symmetric background, make up the total background for the K* signal. 
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Figure 3.5 The K 7r mass spectrum with right-sign (solid) and 
wrong-sign (dashed) combinations. 

3.4 Determining Kinematic Variables 

In order to measure the form factors, the kinematic variables, cos Bv, cos Be, 

x, and t defined in Chpt. 2 need to be determined for each event. This is com-

plicated because of the missing neutrino information. The direction of the Dis 

taken to be the line between the primary and decay vertices. The component 

of the neutrino momentum transverse to this direction can be determined by 

equating it to the transverse momentum of the K 7re system. The longitudinal 

neutrino momentum, however, is unknown since the total momentum of the D 

is not known. However, energy and momentum conservation, using the known 

mass of then+, determine the longitudinal momentum to within a quadratic 

ambiguity. Since the momentum spectrum of the D is expected to be domi­

nated by lower rather than higher momentum, the solution with the lower D 
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momentum is taken. A Monte Carlo simulation demonstrated that this was 

the correct solution most often; however, making the wrong choice for some 

fraction of the events results in smearing. The chosen values of the kinematic 

variables are not necessarily the true or correct values. Smearing from this 

two-fold ambiguity adds to the smearing from limited resolution and poses an 

important problem for measuring the form factors. This will be addressed in 

more detail in Chapter 5. Nevertheless, by making a choice for the longitudinal 

momentum of the neutrino all kinematic variables are uniquely determined. 



4 Information 
and Minimum 
Variance 

The form factor ratios are buried in the complicated di:ff erential decay distri­

bution and it is not at all obvious how their values can be estimated from 

the data. It would be useful to know where, in the 4-dimensional space of 

observable variables, the information on the form factors is large and which 

variables are most important for their estimation. This chapter analyzes the 

properties of the decay distribution relative to the form factors and obtains 

expected minimum variances using the Cramer-rao theorem. 

4.1 Form Factor Parametrization 

Since there are only about 200 events in the data sample it is not possible 

to obtain the t-dependence of the form factors directly from the data. Instead, 

we choose to parametrize the t-dependence of the form factors using a pole­

dominant form such that Ai(t) = Ai(0)/(1 - t/M1) and V(t) = V(0)/(1 -

t/M~), where MA= 2.5 GeV and Mv = 2.1 GeV represent the masses of 

the lowest mass cs states with JP = 1 + and 1- respectively. This form is 

consistent with those used by the authors of the various models which predict 

- 33 -
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form factor values at a particular value of t and then extrapolate to other 

values oft using a parametrization. Nevertheless, this is an assumption and 

the dependence of the results on this assumption will be discussed later. 

Having made this parametrization, the differential decay rate now depends 

only on the three constants Ai (0), A2(0), and V(O). Since the A1 (0) parameter 

is present in all three helicity amplitudes it serves as a normalization constant 

and may be brought out front in the differential decay rate formula. Thus the 

angular and t-dependence of the data will determine the form factor ratios, 

R2 = A2(0)/ A1 (0) and Rv = V(O)/ Ai (0), while the measured branching ratio 

will determine the normalization, A1 (0). 

4.2 Information on Helicity Amplitudes 

It is easy to see how one can extract the relative amplitudes of the helicities 

as compared to those of the form factor ratios. The decay distribution, after 

integrating over x and neglecting constants and the dependence on MK7r, is 

r ( t' cos e v' cos e e) = [ r + ( t) ( 1 + cos e e) 2 + r - ( t) ( 1 - cos e e) 2] sin 2 
(} v 

+ 4 sin2 Oe cos2 Bvf o(t) 

where fi(t) = I<tHf (t) are the helicity rates and from eq. (2.13), 

(4.1) 
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H (t) _ (MD+ MK1r) 2 MDK Rv 
± - (1-t/M1) =f MD+MK1r(l-t/M~) 

From this distribution one can readily tell that the longitudinal term, r 0, 

will be dominant near cos Bv = ±1 whereas the transverse terms, r ±, will be 

dominant near cos Bv = 0. Furthermore, r _ and r + are separated in cos Be. 

This is illustrated in Fig. 4.1. Hence, merely projecting the data onto cos Bv 

and cos Be would allow one to determine the relative amplitudes of the helicity 

rates. Since it is the form factor ratios which determine the magnitude of the 

relative helicity amplitudes, it must also be possible to separate and determine 

the form factor ratios themselves from this two-dimensional projection of the 

data. 

The different helicity amplitudes have different shapes over t. This yields 

additional information about the relative magnitudes of the helicities and 

therefore the form factor ratios. The functions ri(t) are plotted in Fig. 4.2 for 

R2 = 0. 7 and Rv = 2.0 which are typical of model predictions~ Near t = 0 

the longitudinal amplitude is clearly dominant. The transverse terms grow as 

t increases till at about t = 0.7 GeV2 where r _ surpasses fo. Near t = tmax 

all three amplitudes are equal but diminishing towards zero. Here the f<* 0 has 

* The values R2 = 0.7 and Rv = 2.0, will be used throughout this chapter unless 
explicitly stated otherwise. 
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Figure 4.1 Illustration of where the different helicity rates are dominant 
in cosOe . cosOv space . 

zero recoil momentum so that helicities are ill-defined and whence all three 

must be equal in magnitude. 

The top insert of Fig. 4.2 shows the derivative of the helicity rates with 

respect to the form factor ratios . The longitudinal rate is a function only of Rz 

whereas the transverse rates are functions only of Rv. This graph indicates 

that the total rate near t = 0 is a strong function of Rz and that an excess of 

events at this point would yield a lower value for Rz. The transverse terms are 

not so well separated in t; most of the information on the relative magnitudes 

of these rates-and therefore on Rv-comes from the cos Be dependence. 

The above analysis yields a qualitative description of information on the 

helicity rates available within the three-dimensional decay distribution. This 

translates into information about the form factor ratios since the helicity rates 
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Figure 4.2 Helicity rates as a function oft for R2 = 0.7 and Rv = 2.0. 
Top insert shows the derivative of the helicity rates with respect to R2 and 

Rv as a function of t. 

are functions of them. Nevertheless, it would be useful to be able to quantita-

tively analyze the information available on the form factor ratios themselves. 

Then it would be possible to estimate the expected errors on our measurement 

of R2 and Rv as well as how much information is gained by including x in the 

fit. 

4.3 Information on Form Factor Ratios 

The Cramer-rao theorem relates the minimum variance of an estimate 

of a parameter to the information content of this parameter contained in its 

probability distribution.1° For a parameter, µ, with (normalized) probability 

----------- --- -
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distribution, P(x; µ),over the observable variable, x, the information per event 

is: 

J (ap) 2 
1 

I(µ)= Bµ p dx. (4.3) 

The Cramer-rao theorem states that the minimum variance on an estimate of 

µis given by 

1 
Vmin(µ) = nl(µ) (4.4) 

where n is the number of events used in the estimate. If there is more than 

one parameter to be estimated then the information becomes a matrix with 

elements, 

f (8P8P) 1 
Iij(µ) = Bµi Bµj p dx (4.5) 

and the minimum variance matrix is equal to the inverse of the information 

matrix divided by the number of events. Note that diagonal elements of the 

variance matrix may be much larger than the inverse of the diagonal elements 

of the information matrix if there are large off-diagonal elements. 

One can identify the locations of the minimum or maximum information 

of a parameter simply by looking at a plot of the information distribution, 

(8I' /8µ) 2 /r, over the observable variables. Figure 4.3 shows this forµ replaced 

by R2 and Rv, over the 2-dimensional spaces in cos Bv,cos Be and t,cos Bv. 

For this calculation, the total differential distribution was integrated over all 

other variables except the two to be used in the plot, before calculating the 

information distribution. The maximum information on R2 occurs at t = 0, 
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Table 4.1 Minimum errors on R2 and Rv. 

Space Variables -Jn <1min(R2) Vn <Tmin(Rv) p 

t, COS Ov, COS Be, X 3.53 4.64 -.30 

t, COS Bv, cos Be 3.66 6.10 -.32 

cos (} v , cos Be 5.70 7.10 -.49 

cos Be = O, and cos Bv = ±1. There is little information about R2 at large t 

and cos Ov near zero. The compliment is true for Rv except near t = tmax 

where there is no information on either parameter. In addition, it can be seen 

that overall there is more information on R2 due to the large peaks near t = 0. 

The information matrix has been calculated for R2 and Rv for different 

combinations of observable variables in two through four dimensions. Table 4.1 

presents the results in terms of the minimum sigma, <Tmin(i) = Jlii, and the 

correlation coefficient, p = \!i,j / JVi,i V;,;. Adding t to the fit significantly 

decreases the error on R2 corresponding to a doubling of the information. The 

error on Rv is also decreased but not by as much. Adding x to the fit does 

not affect the precision of R2 but does decrease the error on Rv by about 

25%. These calculations have not taken into account the affects of smearing 

acceptance or background. The minimum errors would rise with these effects 

included, with the error on R2 rising strongly if the acceptance is low near 

t = 0 where the majority of the information on R2 is obtained. 



5 Fit Technique 

A common technique for determining physical parameters from a data set is the 

maximum likelihood method in which one finds the values of the parameters 

which maximize the likelihood of the data set. The likelihood is calculated from 

an analytical probability distribution parametrized by the physical variables 

to be estimated. Thus one might expect that to estimate the form factor ratios 

all that needs to be done is to maximize the likelihood of the data using the 

full differential decay rate formula, eq. (2.22). The effects of acceptance and 

smearing, however, distort the data from the underlying physical distribution. 

If these effects are large then an analytical form for the distorted distribution 

must be found in order to perform a maximum likelihood fit. It may be very 

difficult to obtain an analytical form for the distorted distribution, however, 

especially over many dimensions. This is the situation we are confronted with. 

We wish to make a multi-dimensional maximum likelihood fit in order to use 

as much of the available information as possible; however, smearing due to 

incomplete information about the neutrino is significant and very difficult to 

parametrize over the multi-dimensional space of observables. This chapter first 

- 41 -
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details the acceptance and smearing problem and then explains our solution 

for making a maximum likelihood fit over many dimensions in the presence of 

such effects. 

5.1 Smearing and Acceptance 

5.1.1 Smearing 

As described in section 3.4 the quadratic ambiguity in the longitudinal 

momentum of the neutrino causes smearing so that the calculated values of 

the kinematic variables (i.e. cos Ov, cos Oe, t, and x) are sometimes different 

from their true values. Another cause of smearing is limited resolution in the 

direction of the D. This is taken to be the direction between the reconstructed 

production and decay vertices. However, the resolution on each of these ver­

tices is limited, thereby limiting the resolution on the direction of the D. 

One way to see the magnitude of the smearing is to take the Monte Carlo 

events and to calculate the variance of the smeared values around the true 

values. This was done as a function of the true variables so that one could see 

how the smearing changes over the full range of values. The results are shown 

in Fig. 5.1 for all four variables. The smearing corresponds to a standard 

deviation of between 10% to 30% of each variables range. Furthermore, the 

largest smearing occurs near t = 0 and cos Oe = -1 which, as discussed in the 

previous chapter, is where most of the information on R2 and Rv, respectively, 

is contained. This means that the information contained in the data is much 

less than that calculated in Chapter 4; thus, the errors on R2 and Rv will be 
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larger than the minimum errors calculated from the Cramer-Rao theorem. 

The effect of the smearing on the shape of the differential decay distribu­

tion is to flatten it out so that any peaks or valleys are less prominent. In 

addition, the large smearing at the edge of the range of t and cos fJ e skews 

the decay distribution towards higher t and cos Oe. Both these effects are 

significant and need to be included in measuring the form factor ratios. 

5.1.2 Acceptance 

The major effect of the acceptance is due to the requirement that the 

electron laboratory energy be greater than 12 Ge V which causes a low efficiency 

for decays with low t and cos Oe near -1. Again the Monte Carlo events are 

very useful for demonstrating this. Having generated the Monte Carlo with 

a known distribution over the kinematic variables, the resulting shape of the 

accepted Monte Carlo events can be compared and a shape for the acceptance 

calculated. The shape of the acceptance for all four variables is shown in 

Fig. 5.2. The acceptance drops about 90% from cos Oe = 1 to cos Oe = -1. 

This also tends to bias the observed decay distribution towards high cos Oe thus 

hiding the dominant H_ term which populates the area near cos Oe = -1. 

The effects of smearing and acceptance are significant and need to be 

included in the measurement of the form factors. We can use the Monte Carlo 

to estimate the shape of the smearing and acceptance functions, however, it 

is very difficult to parametrize them over the full four-dimensional space. For 

this reason a new fitting technique was developed which is described in the 

next section. 
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5.2 Descrip'tion of Technique 

Consider the maximum likelihood estimate of the polarization of a particle 

with differential decay distribution given by f(x, µ) = (1 + µx 2
). Here xis the 

cosine of the decay angle and the parameter µ, which is to be estimated with 

a maximum likelihood fit, is related to the polarization. The data consists of 

a set of n events with values of x, {Xi}. The log-likelihood of these events is 

given by 
n 

ln L = L (in r( Xi' µ) - In N (µ)) (5.1) 
i=l 

where N(µ) is the normalization, N(µ) = J f(x, µ) dx. The maximum like-

lihood estimate of the parameter µ is that value of µ which maximizes the 

log-likelihood of the data. This is the standard maximum likelihood method 

of estimation of a parameter given an analytical formula for the probability 

distribution, r( x, µ ). 

In our case, f ( x, µ) is the full differential decay distribution given in 

eq. (2.22); x represents the variables cos Bv, cos Be, t, and x; and µ repre­

sents R2 and Rv. In addition, the effects of acceptance and smearing distort 

the data so that it is no longer distributed according to r(x, µ) but rather 

according to some other distribution. This modified, observable distribution, 

F(x, µ), which is a function of the smeared, measured variables, x, is related 

to the underlying physical distribution by the equation: 

F(X,µ) = A(X) j S(X,x)f(x,µ)dx (5.2) 
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where A(x) is the acceptance function, and S(x, x) represents the smearing. 

It is this function, F( x, µ ), which should be used in the calculation of the 

likelihood, 
n 

lnL = L(lnF(xi,µ)- lnN(µ)) 
i=l . 

(5.3) 

with N(µ) = J F(x, µ) dx. However, in order to get an analytical form for 

F( x, µ ), one must have an analytical form for the acceptance and smearing 

functions. Often this is accomplished by using a Monte Carlo simulation of 

the experiment. This scheme becomes very difficult, however, when the space 

of observables is multi-dimensional. Information about the shape of the ac-

ceptance and smearing functions is still contained in the Monte Carlo events; 

it is just difficult to parametrize. 

Our method uses Monte Carlo events directly in the log-likelihood cal­

culation. If our Monte Carlo simulation of the experiment properly includes 

the effects of smearing and acceptance, then Monte Carlo events that at the 

generated level are generated according to the distribution r(x, µ),will at the 

observable level be distributed according to F( x, µ ). With a large enough set 

of Monte Carlo events the shape of F(x, µ) can be determined well enough so 

that the log-likelihood of the data can be calculated for a given value of µ. 

In order to perform a maximum likelihood fit using Monte Carlo events di­

rectly there are two main problems that must be solved: (1) generating large 

amounts of Monte Carlo events for different values of µ efficiently, and (2) 

calculating the log-likelihood from the Monte Carlo events even though there 

is not an analytical form for F( x, µ ). 
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The first problem can be solved by using the same set of Monte Carlo 

events and weighting each event for a given value ofµ. First, generate a set of 

m Monte Carlo events which at the generator level are distributed uniformly 

over the space of unsmeared observables, x. Let Yi (we use the letter y to 

distinguish Monte Carlo events from data events) be the generator-level values 

of the unsmeared observables for the j'th Monte Carlo event, and Yi be the 

values of the smeared observables, x, for that same Monte Carlo event. Record 

the set {y;, Yi} for each Monte Carlo event. Then by weighting each Monte 

Carlo event with the value of r(y;, µ) using the unsmeared values, the set 

{y;} of smeared values will be distributed according to F(x, µ). In this way 

the same set of Monte Carlo events can be used to represent F(x, µ) for any 

value ofµ. 

Generating the Monte Carlo events distributed uniformly might be ineffi­

cient. More generally, one can factorize the function, r(x, µ), into two terms: 

one which depends on µ, W(x, µ), and one which is independent ofµ, P(x). 

Then one generates Monte Carlo events according to P( x) and weights them 

with W(x,µ). We chose P(x) to be the phase space distribution, including 

the Breit-Wigner term, and W(x, µ)the matrix element squared. 

The solution to the second problem comes from the fact that a histogram 

of weighted Monte Carlo events will asymptotically become indistinguishable 

from a plot of F( x, µ) as the number of Monte Carlo events increases and the 

size of the histogram bins decreases. One can estimate F(xi, µ) for each data 

event by forming a small volume in x space centered about Xi, summing the 
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weights of the Monte Carlo events whose smeared observable values, Yi, lie in 

this volume, and dividing by the size of the volume. By centering the volume 

around the point of interest a linear change in F over the volume does not 

contribute any error to the estimate of F( Xi, µ); only non-linear variations of F 

over the volume contributes to this systematic error. In addition, each Monte 

Carlo event may be in more than one volume. Normalization is accomplished 

by demanding that the sum of the weights of all Monte Carlo events is unity­

for each value of µ. 

With this technique the log-likelihood of the set of data events is given by 

lnL = tin(L:ii;inVi W(y;,µ)) 
i=l C(µ)Vi 

(5.4) 

where Vi is the volume centered around Xi and C(µ) = L:j=1 W(y;, µ) is the 

normalization. 

There is also some amount of background present in the data set. Having 

estimated that out of a total of n events there are NB background events dis-

tributed according to a normalized distribution, PB(x), then the log-likelihood 

is given by 

Using this method for calculating the log-likelihood one can make a maxi­

mum likelihood fit to the data over any number of dimensions even with large 

smearing and acceptance effects. 
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The systematic errors associated with this fitting technique are due to: 

a) any non-linearity in F over the small volumes, Vi and b) limited Monte 

Carlo statistics in each volume. To minimize the former, volume size should 

be chosen small enough that F varies only linearly over the volume. However, 

with smaller volumes, fewer Monte Carlo events will be included in the calcu­

lation of F(xi, µ), which will result in an increase of the systematic error of 

the second type. 

One can estimate the magnitude of the first type of systematic error by 

redoing the fit with different volume sizes. For very small volumes the resulting 

values of µ will vary greatly due to limited Monte Carlo statistics but will be 

centered around the true µ. As the volume size is increased, the variation in 

the resulting values ofµ for different fits will decrease but the average should 

remain centered around the true value if non-linear effects are not large at this 

volume size. But as the volume size increases to where non-linear effects are 

important, then the resulting values ofµ will start to diverge from the true 

value. If there are enough Monte Carlo events there will be a range of volume 

sizes where the resulting values of µ are fairly stable. The standard deviation 

of these values within this nearly stable region is an estimate of the systematic 

error of the first type. 

By holding the volumes fixed and redoing the fit a number of times with 

independent sets of Monte Carlo events, one can estimate the magnitude of 

the systematic error of the second type. A simple way of doing this is to divide 

the full Monte Carlo sample into 4 separate files and to perform the fit with 
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these 4 samples. The standard deviation of the resulting values ofµ divided 

by 2 is then an estimate of the systematic error of the second type, assuming 

that this varies as the square root of the number of Monte Carlo events used. 

If the magnitude of these systematic errors is found to be unacceptably large 

then one can always reduce them by generating more Monte Carlo events. 



6 Fit Results 

Historically, we first measured the form factor ratios using only cos Bv and 

cos Be. After being satisfied that things were working well in two-dimensions, 

the fit was extended to include first t and then X· For this dissertation, the 

fit will be described in detail for just the three-dimensional case and for the 

addition of x since it was treated in a special way. Nevertheless, results from 

the two- through four-dimensional cases are shown. Having determined the 

form factor ratios, the branching ratio is measured using the measured values 

of the form factor ratios to estimate the acceptance. Then using the branching 

ratio value, the absolute value of Ai(O) is calculated followed by that of A2(0) 

and V(O). 

6.1 Three-Dimensional Fit 

Monte Carlo events were generated distributed according to phase space 

plus the Breit-Wigner of the .i<*0 , 
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where K is the momentum of the K*0 in the rest frame of then+. To get the 

distorted, observed distribution, F(i, cos Bv, cos Be; R2, Rv ), the Monte Carlo 

events are weighted with the matrix element squared (after integrating over x), 

W(t, cos Ov, cos O.; R2, Rv) = t{ 4 sin2 o. cos2 OvlHo(t)12 

+ [(1 +cos o.)2 IH+(t)l2+(1 - cos o.)21H-(t)l2] sin2 Ov} 

(6.2) 

using the generated, unsmeared values of the dynamical variables. The helicity 

amplitudes are parametrized by two form factor ratios ( R2 , Rv) which are the 

quantities to be estimated (theµ parameters of the previous Chpt.); 

Here MA= 2.53 GeV and Mv = 2.11 GeV are the values of the poles used in 

assuming a single pole dominance for the t-dependence of the form factors. A 

total of 9000 accepted (out of one million generated) Monte Carlo events are 

used. 

In calculating the log-likelihood, Monte Carlo events are binned into small 

three-dimensional volumes centered about each data point. As can be seen by 

the plots of the data in Fig. 6.1 at the end of this section, the distributions are 
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fairly linear so that bins of the order of 1/10 the range of each variable per side 

should be mostly free of non-linear effects which can increase the systematic 

error of the fit. This then will be a good starting volume size although different 

volume sizes will need to be used in order to establish the stability of the fit 

and to estimate systematic errors. We use the same volume size throughout 

the three-dimensional space with the exception of data events which occur 

near the boundary. For these events we shrink the volume so that the data 

event remains in the center. In addition we omit from the fit any data events 

whose Monte Carlo volumes did not contain at least 4 Monte Carlo events. 

This only occurs near the boundaries where volumes have been decreased a 

great deal and does not significantly affect the results. 

The code which performs the fit consists of an initialization and a mini­

mization section. The initialization section reads in the data and Monte Carlo 

events, calculates the volume dimensions for each data point, and identifies the 

Monte Carlo events which fall into each data event volume. Data events which 

do not contain at least 4 Monte Carlo events in their volumes are eliminated 

here. The minimization section consists of varying the values of R2 and Rv 

until the negative log-likelihood, calculated using equation (5.5), is minimized. 

In order to minimize the amount of background, the fit is performed us­

ing data events which are within the K*0 mass range of (0.8408, 0.9434] GeV. 

Only those Monte Carlo events whose true value of Mx1r is within this range are 

also used. This is important since the value of Mx1r is used in calculating the 

weights. In addition, since the maximum oft depends on the value of Mx?r we 
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Table 6.1 Results of fits for different volume dimensions. 

Volume (xl0-3 ) ~cos Bv ~cos Be ~t R2 lnRv 

0.004 0.033 0.027 0.05 -0.1±0.5 -0.7 ± 0.7 

0.36 0.067 0.053 0.1 0.2 ± 0.5 0.6 ± 0.4 

0.81 0.09 0.09 0.1 0.1±0.5 0.6 ± 0.4 

1.2 0.1 0.08 0.15 0.0 ± 0.5 0.6 ± 0.4 

4.0 0.2 0.1 0.2 -0.2 ± 0.5 0.7 ± 0.4 

4.05 0.15 0.12 0.225 -0.l ± 0.4 0.6 ± 0.4 

32.4 0.3 0.24 0.45 -0.4 ± 0.5 0.8 ± 0.4 

employ the normalized variable, y = t/tmax, when comparing smeared data to 

smeared Monte Carlo events in the fit. From our estimate of the total amount 

of background over the full MK7r range given in Chapter 2, and the assumed 

shape of the background distribution, we estimate that there are 21±5 back­

ground events within the narrow M K7r range. For the background shape over 

the three-dimensional space of the fit, we want to use a parametrization which 

is consistent with that of the wrong-sign data. There are not many events 

in the wrong-sign sample so this information is very limited. Nevertheless, it 

appeared that a distribution that is uniform in cos Bv and cos Be and linear in 

twas appropriate. We fit they-distribution of the wrong-sign data to a linear 

function and used this, normalized over the full three-dimensional space, as 

the background shape. The result is P(y, cos Bv, cos Be) = (3y + 0.2)/3.4 for 

the background function. 

With this method it is important to perform the fit a number of times, 

varying the volume dimensions and number of Monte Carlo events used, in 
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Table 6.2 Result of fits with 4 independent Monte Carlo samples. 

R2 lnRv 

0.1 ± 0.5 0.5 ± 0.4 

0.0 ± 0.5 0.4 ± 0.5 

0.4 ± 0.4 0.6 ± 0.4 

0.1 ± 0.4 0.5 ± 0.4 

order to insure the fit is stable and to estimate the magnitude of systematic 

errors. Table 6.1 shows the results of fits for different volume sizes using the 

same number of Monte Carlo events. Here we have expressed the results in 

terms of lnRv which has a distribution that is more nearly Normal. The errors 

shown in the table are the statistical errors obtained by locating where the log­

likelihood decreases by 0.5 from its maximal value. The results are fairly stable 

over a wide range of volumes with the exception of the very largest and the 

very smallest volumes. Neglecting these extreme cases, the average of the 

remaining values becomes our best estimate of the central values. Thus our 

measurement is R2 = 0.0 ± 0.5, InRv = 0.6 ± 0.4 where the errors shown are 

only the statistical errors from the data. 

To estimate the systematic error of the first type, we take the standard 

deviation of the fit values from the trials within the nearly stable region. This 

yields u1 = 0.16 and u1 = 0.04 for R2 and lnRv respectively. 

To estimate the systematic error of the second type, we hold the volume 

dimensions fixed at the ones shown in the forth row of Table 6.1 which yield 

the best central values, divide the Monte Carlo events into 4 files, and redo 



6.1 Three-Dimensional Fit 57 

the fit with these 4 independent sets. The results are shown in Table 6.2. The 

standard deviation of the values for R2 and lnRv is taken as an estimate of 

the second type of systematic error for a quarter of the Monte Carlo events. 

Assuming this error goes as 1 / VN, the error for the full Monte Carlo sample 

should be half these values. This yields u2 = 0.09 and u2 = 0.08 for R2 

and lnRv respectively. The total systematic error we take to be the sum 

(in quadrature) of these two types of systematic errors. Thus our result is 

R2 = 0.0 ± 0.5 ± 0.2, lnRv = 0.6 ± 0.4 ± 0.1, or Rv = 1.8 ± 0.7 ± 0.2, 

where the first error is statistical associated with the data and the second is 

systematic associated with the fit method. There is also the systematic errors 

associated with the data and with the uncertainty in the background; these 

will be discussed for the final four-dimensional fit in the next section. 

We looked at many plots to check the integrity of the fit. Figure 6.1 

compares the data and Monte Carlo distributions over various slices through 

the three-dimensional space. In all cases the data and Monte Carlo follow 

each other quite well. Also, one can see that the deviation of the Monte Carlo 

around a smooth curve is much smaller than that of the data. This indicates 

that the systematic error due to the statistics of the Monte Carlo is small 

compared to that of the data. 
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Figure 6.1 Projection of the data (dots with error bars) and Monte 
Carlo (solid histogram) events onto cosOe. cosOv. and t/tmaz:· The Monte 

Carlo events are weighted using the measured form factor ratios. 
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6.2 Four-Dimensional Fit 

In addition to the longitudinal and transverse terms in the matrix element, 

there are also three interference terms which depend on the angle between the 

decay planes of the e- Ve and the K- 1r+, labeled x, 

-2 sin2Be sin2Bv cos 2x H+H-

-4 sin Be (1 +cos Be) sin Bv cos Bv cos X H+Ho (6.4) 

+4 sin Be (1 - cos Be) sin Bv cos Bv cos X H-Ho. 

These terms integrate to zero and were not used in the previous three-dimen­

sional fit. The H_Ho term should be largest but only over a small region of 

phase space. We have plotted the data and Monte Carlo events as a function 

of X in Fig. 6.2 using the values of the form factor ratios found above. One can 

see the expected cos x dependence in (a); however, the small cos 2x dependence 

that is expected in (b) is lost in the limited statistics of the data. The fact 

that the data and Monte Carlo projections match each other fairly well over 

x provides an independent check that the data and Monte Carlo agree since 

nowhere was information about x used in the previous fit. 

Including x in the fit is complicated by the large smearing that occurs 

when x is ill-defined. This happens when the K- 1r+ or the e- Ve lie in a line 

with the direction of then+. Fortunately this is where the interference terms 

go to zero. Rather than bin the Monte Carlo into four-dimensional bins, which 

would have decreased the number of Monte Carlo events per bin, we decided to 

do the following. We bin the Monte Carlo events into three-dimensional boxes 
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out the cos x dependence. (b) is a standard projection which should have a 
small cos 2x dependence. 

7t 

as before, and when adding the weights around each data event include the 

interference weights but evaluated with Xdata + Xobserved - Xgenerated replacing 

Xgenerated· When the smearing is small, generated and observed x are close 

so one gets the weight at the x of the data. When the smearing is large then 

the weights fluctuate and add up to zero. Thus by rotating the x that goes 

into the weights in this way, one is effectively getting out the weight at the x 

of the data event. This works because the amount of smearing in x is largely 

determined solely by the values of cos Oe and cos Ov. 

Putting this into the fit we find R2 = 0.0±0.5±0.15 and Rv = 2.0±0.6±0.3 

where the first error is due to the statistics of the data and the second comes 

from the systematics of the fitting method calculated in the way described for 
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the three-dimensional fit. In making this fit we assumed that 21 out of the 

204 data events were background and were distributed in a manner consistent 

with the wrong-sign data. The choice of 21 had a standard deviation of 5, 

also found from the wrong-sign data. By varying 21 by 5 either way we found 

the error due to this uncertainty was .1 for R2 and .04 for Rv. The choice for 

possible background distributions also led to a similarly small error. 

We felt the greatest error in the Monte Carlo itself was in the electron 

identification efficiency. We estimated this could be off by at most 7% and 

modified each Monte Carlo event weight by 1 - .07 ~ where E is the energy 

(in Ge V) of the electron in the lab frame and the 12 comes from the fact that 

we have a 12 GeV electron energy cutoff. We used a linear dependence since 

a constant term would go out in the normalization. The resulting deviation of 

R2 and Rv was less than 10% of the error due to that of the fitting method. 

Adding these systematic errors in quadrature with those due to the fitting 

method yields our final result: 

R2 = 0.0 ± 0.5 ± 0.2 Rv = 2.0 ± 0.6 ± 0.3 (6.5) 

with correlation coefficient, PR2 ,Rv = -0.23. With these values we can calcu­

late the ratio of longitudinal to transverse polarization and compare it to the 

value measured earlier 11 using this same data set. That measurement found 

f;: = 2.4!~:~ ± 0.2 and only used the cos Ov projection of the data. The value 

using the measured form factor ratios from the full four-dimensional distribu­

tion of the data is f;: = 1.8!8:~ ± 0.3. This is consistent with the previous 
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Table 6.3 Summary of results on R2 and Rv and comparison with 
theoretical minimum errors. 

Space Variables Fit R2 ± u(R2 ) Fit Rv ± (TkV> mm D"(R2) 
min tT(RJi:::) 

'Rv 

t, COS 011 , COS Oe, X 0.0 ± 0.5 2.0 ± 0.30 0.26 0.17 

t, COS 011 , COS Oe 0.0 ± 0.5 1.8 ± 0.39 0.27 0.23 

COS 011 , COS Oe 0 4+1.0 
- . -1.6 3.0 ± 0.55 0.42 0.26 

result, however, the errors are smaller by more than a factor of two. This gain 

in precision comes about mainly from adding t to the fit. The transverse he­

licity amplitudes are proportional tot and die at t = 0, while the longitudinal 

helicity amplitude has no suppression at this point. Thus one obtains very 

good separation. 

6.2.1 Summary 

It is useful to compare the results of the fits in two through four dimen-

sions and with the minimum errors calculated in Chapter 4. This is shown 

in Table 6.3. The minimum errors were calculated assuming the values of 

R2 = 0. 7 and Rv = 2.0. With different values for R2 and Rv the minimum 

errors will change. We have attempted to account for this by tabulating the 

ratio of the error to the central value for Rv. This is not useful for R2 since the 

central values are close to zero. Nevertheless, it appears from Table 6.3 that 

the measured errors follow the pattern of the minimum ones quite well. The 

two-dimensional fit yielded rather large errors; adding t to the fit significantly 

decreased the error on R2. Adding x to the fit reduced the error on Rv. In 

general, there is about a factor of two difference between the measured errors 
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and the minimum possible errors. This means that the effects of smearing and 

acceptance eliminated about three quarters of the possible information. This 

was expected given the poor acceptance and large smearing near t = O and 

cos Be = -1 which is where the information on R2 and Rv, respectively, is 

greatest. 

6.3 Branching Ratio 

Having obtained the form factor ratios, we re-analyze the branching ratio. 

The previous measurement of the branching ratio 
11 

used a value for I H +I/ I H _ I 

derived from a model 
12 

and the value of f L/fr derived from the observed 

cos Ov dependence. The effective form factor ratios implicit in these values 

are different from those we have measured, which affects the estimate of the 

efficiency used to obtain the branching ratio. The method is to first fit the data 

projected onto MK7r to obtain the number of n+ ~ J{*0 e+ve events present. 

Then we calculate the efficiency for this mode and divide the found number of 

events by this efficiency to obtain the total number of n+ ~ K*0e+ve events 

present in the full data set. Finally we compare this number to that for the 

mode, n+ ~ J<-7r+7r+, and use a previously measured value of the branching 

ratio for this mode to get the branching ratio of fl+~ .f{*O e+ Ve. 

To fit the data projected onto the MK?r axis we need the functional form 

of the signal as well as that for the background. For the signal, we again 

use the Monte Carlo events directly, weighting them using the measured form 

factor ratios. We do this because phase space and the matrix element alter 
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the shape of the signal when projected onto the MK'lr axis so that it is not just 

that of the Breit-Wigner. The previous analysis of the branching ratio 
11 

used 

a plain Breit-Wigner shape for the signal; thus the present analysis differs in 

not only using a different shape for the signal, but also a different efficiency 

from different form factor ratios. We also include radiative corrections to the 

electron spectrum as outlined in Ref. 13 (this only has a 0. 7% effect). 
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Figure 6.3 (a) S-wave Monte Carlo data (dots with error bars) and 
fitted Gamma distribution (solid curve). (b) wrong-sign data (dots with 

error bars) and its fitted Gamma distribution. 

1.2 

The background consists of nonresonant K-11"+ signal plus true back­

ground events. To estimate the shape of the nonresonant signal, we generated 

Monte Carlo events in which the K-11"+ are in a relative S-wave state. That 

distribution is shown in Fig. 6.3 (a) along with a fit to a Gamma distribution 

of the form, xo:e-f3x. Here, x = (MK?r - Mo), a and /3, are parameters to 

be determined and Mo is set to 0.63 GeV. The estimated values of a and 



6.3 Branching Ratio 65 

f3 are 1.2 ± 0.1 and 8. 7 ± 0.4 respectively. For the true background we use 

the wrong-sign data. Its distribution is shown in Fig. 6.3 (b) along with its 

Gamma distribution. Here the values of a and (3 were found to be 1.8 ± 0.8 

and 14 ± 5 respectively. So there is not much difference between the shape 

of the nonresonant signal and the true background. Thus we simply use one 

distribution for the background; that of a gamma distribution whose param-

eters, a and {3 are consistent with those shown above. These parameters will 

be varied within the errors shown above and the fit performed a number of 

times in order to estimate the systematic error associated with not knowing 

the exact shape of the background. 

We use a binned maximum likelihood fit with the negative log-likelihood 

given by: 

Nbina 

-ln(L) = Ns +NB - :E Ni In [NsPs(i) + NBPB(i)] (6.6) 
i=l 

where Ni is the number of data events in the i'th bin, Ns and NB are the 

number of signal and background events, respectively, to be determined, and 

Ps(i) and PB(i) are the signal and background probabilities at the MK1r value 

of the i'th bin. This form of the log-likelihood includes the Poisson probability 

of finding the total number of events when expecting ( N s + NB) events so 

that one can extract the actual values of N s and NB from the fit instead 

of just their ratio. For Ps( i) we add up the weights of the Monte Carlo 

events which lie in the i'th bin, divide by the bin width, and divide by the 

sum of weights of all the Monte Carlo events to insure proper normalization. 
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Figure 6.4 Histogram of K 11'" mass distribution together with that of the 
fitting function. The shape of the background used in the fit is also shown. 

For PB(i), we simply take the value of the normalized Gamma distribution 

at the central value of MK'lr for the i'th bin. The fit is made in the MK1r 

mass range, [0.6371, 1.4021] Ge V where there are 317 data events. We find 

Ns = 209 ± 18 ± 9 and NB= 108 ± 17 ± 9. The systematic errors are 2.7% 

from the choice of binning, 3.3% from the uncertainty of the background shape, 

and 0. 7% due to the errors of R2 and Rv. The resulting signal plus background 

shape together with that of the data is shown in Fig. 6.4. The previous analysis 

found 227 signal events. The difference is due to the modifications of the Breit-

Wigner shape described earlier. 

The efficiency is calculated by summing the weights of the accepted Monte 

Carlo events and dividing by the sum of the weights of the generated Monte 
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Carlo events. Again, the measured values of the form factor ratios are used 

when calculating the weight for an event. With these form factors, the ef­

ficiency is found to be (1.32 ± 0.03 ± 0.09)%. Here the systematic error is 

dominated by the 7% error on the electron identification efficiency. The effi­

ciency corrected number of n+-+ K*0e+ve events is thus 15870 ± 1330 ± 1320 

where the errors on the efficiency are treated as systematic. To correct for 

a possible contamination from n+ -+ K-7r+7r+7ro a Monte Carlo simulation 

of this mode was performed. The efficiency for a n+ -+ K-7r+7r+7ro event 

to simulate a n+-+ k*0e+ve event was found to be 3 x 10-5 • Assuming a 

branching ratio for this mode of 7%, we expect about 0.5% of the data events 

to be from this mode. To correct for this we lower the efficiency corrected 

number of events by 0.5% to obtain 15790 events. This number, however, only 

includes k*0 -+ K-7r+. A third of the time, k*0 decays to K 07r0 • Thus the 

actual efficiency corrected number of fl+-+J?*Oe+ve is 23690±1990±1970. 

To obtain the branching ratio we compare to the mode n+ -+ K- 7r+ 7r+ 

such that 

Br(D+-+ K*0e+ve) _ N(k*0) £(K-7r+7r+) 
Br(D+ -+ K-7r+7r+) - N(J<-7r+7r+) £(K*0 ) 

(6.7) 

where N is the efficiency corrected number of events and £ is the effective 

luminosity for each mode. It turns out that this ratio of luminosities is not 

one but 1.045 ± 0.01 due to some runs being missed in the stripping process. 

Then+-+ K-7r+7r+ mode has been standardized within E691 since it is used 

as a normalization mode. The efficiency corrected number of n+ -+ 1<-7r+ 7r+ 

• 
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events is 51870 ± 1820. From equation (6.7) we obtain a branching ratio 

for n+ ~ K*0e+ve of (0.48 ± 0.04 ± 0.04)Br(D+ ~ K-1r+1r+). Using the 

measured value of Br(D+ -~ K-1r+1r+) = (9.11 ± 1.3 ± 0.4)% obtained by 

the Mark III collaboration 
14 

and treating the errors in this measurement as 

systematic, yields 

+ -.o + Br(D ~ K e Ve) = ( 4.4 ± 0.4 ± 0.8)%. {6.8) 

This is not much different from the 4.5 value found in the previous analysis 11 

because although the efficiency went down, so did the number of observed 

events. 

6.4 The Normalized Form Factors 

We calculate Ai (0) by equating the total decay rate of this mode to the 

measured branching ratio divided by the lifetime of then+. The total decay 

rate is given by 

where the helicity amplitudes, given in eq. (6.3), depend on the values of R2 

and Rv. We use the measured values of the form factor ratios, the branching 
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ratio, and the lifetime 
15 

TD+ = 1.090 ± 0.030 ± 0.025 ps, all obtained from the 

E691 experiment. With Vcs = 0.975 we find 

Ai(O) = 0.46 ± 0.05 ± 0.05 A2(0) = 0.0 ± 0.2 ± 0.1 V(O) = 0.9 ± 0.3 ± 0.1. 

The statistical error for Ai (0) comes from a statistical error of 0.04 and 0.02 

for the form factor ratios and the branching ratio, respectively. The A1 (0) 

systematic error is built out of systematic errors of 0.02 and 0.04 for the form 

factor ratios and the branching ratio, respectively. Only the uncertainty of R2 

and Rv contributes significantly to the errors of A2(0) and V(O). 

The only assumption that is made in measuring the form factors is the 

dependence on t. Because of the limited range oft (tmax/M; = 0.2, where Mv 

is the value of the vector pole mass), the results are only sensitive to the slope 

of the form factor near t = 0, and only mildly sensitive to that. In some models, 

other forms for the t dependence are used, but they are effectively equivalent 

at the present level of the measurement. The only quantitative information 

on the t dependence of charm form factors comes in the D0 ~ I<- e+ Ve mode, 

in which the pole mass is measured directly.i
6 

That result can be expressed as 

f(t) = fp(t)(l +St), where fp is the simple pole form with the vector mass 

and Sis a measure of the correction to the slope, which was measured to be 

0.00±0.07. A similar uncertainty in the pole form used for the present analysis 

would cause an additional error of ±0.015 in Ai (0), ±0.04 in A2(0), and ±0.02 

in V(O). When these errors are added in quadrature to other systematic errors, 

the total systematic error does not change at the level of precision quoted; those 
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systematic errors are in turn smaller than the statistical errors. Thus there 

is no significant change in the form factors unless the t dependence is both 

outside the range of models and in complete disagreement with that measured 

in D 0 --.. K- e+ lie. 



7 Conclusions 

Having determined the form factor values we compare these results with those 

of other experiments and predictions from theory. Finally we look to the future 

and examine how these and future measurements of charm form factors will 

effect the determination of the Kobayashi-Maskawa matrix elements, Vcb and 

7 .1 Other Experiments 

After we published the measurement of the form factors 
17 

two other exper-

imental groups subsequently made their own measurements: Fermilab exper­

iments E653
18 

and E687.
19 

Both these experiments observe the semi-muonic 

decay n+ --+ f<*O µ+ve. The same form factors govern this decay~ The only 

significant effect of the muon is to increase the lower limit oft from the elec-

tron mass squared to that of the muon mass squared. This effect was included 

in the measurement by E653 and they were able to demonstrate that the mea-

* A fourth form factor which is always proportional to the lepton mass in the decay rate 

is still not important for muons. 

- 71 -
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Table 7.1 Results from this work compared with those of other 
experiments. 

E691 E653
18 

E687
19 

Wtd. Avg. 

R2 0.0 ± 0.5 ± 0.2 0.8 ± 0.2 ± 0.1 0.5 ± 0.4 0.65 ± 0.1 

Rv 2.0 ± 0.6 ± 0.3 2.0 ± 0.3 ± 0.2 2.1±0.6 2.0 ± 0.3 

Ai(O) 0.46 ± 0.05 ± 0.05 0.49 ± 0.07 0.475 ± 0.05 

A2(0) 0.0 ± 0.2 ± 0.1 0.4 ± 0.14 0.2 ± 0.2 0.26 ± 0.1 

V(O) 0.9 ± 0.3 ± 0.1 1.0 ± 0.3 1.0 ± 0.3 1.0 ± 0.2 

sured form factor ratios were stable with respect to a cut on the minimum 

allowed value of t / tmax. 

Table 7 .1 compares the results of this work with those of other experiments. 

The weighted average (as used by the Particle Data Group) of the results for 

each quantity is also listed. The E687 group has only presented results on the 

form factor ratios. We use the weighted average of Ai(O) to compute the values 

of A2(0) and V(O) from their measured form factor ratios. Both the E653 

and the E687 results are consistent with ours with the greatest discrepancy 

occurring for A2(0) and R2 where there is about a two sigma difference. 

Perhaps the most surprising aspect of the E653 result is that their errors for 

the form factor ratios are so small; they are a factor of two smaller than ours. 

Yet, they do not have much more data than we do; we have 204 events with 

21 as background whereas they have 305 events with about 20 as background. 

They do have better vertex resolution and acceptance, however. One can check 

whether it is actually possible to obtain such small errors by using the results 

presented in Chpt. 4 on the minimum possible errors. Those results, scaled for 
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Table 7.2 Comparison of measured form factors with theoretical 
predictions. 

Group V(O) 

Experiment Wtd. Avg. 0.475 ± 0.05 0.26± 0.1 1.0 ± 0.2 

Models 

Sum Rules 

Lattice 

ISGW
20 

AW/GS
21 

BSW
22 

KS23 

BBD
24 

AOS
25 

BKS
26 

0.8 

0.8 

0.9 

LO 

0.5 ± 0.15 

0.9 ± 0.2 

0.8 

0.6 

1.2 

1.0 

0.6 ± 0.15 

0.8 ± 0.3 

1.1 

1.5 

1.3 

1.0 

1.1±0.25 

1.7 ± 0.6 

0.8 ± 0.14 ± 0.3 0.6 ± 0.14 ± 0.2 1.4 ± 0.5 ± 0.5 

LMS
27 

0.52 ± (0.07 x 3) 0.1 ± (0.35 x 3) 0.85 ± (0.08 x 3) 

285 events are: O'min(R2) == 0.21 and O"min(Rv) = 0.28 to be compared with 

E653's measured statistical errors of 0.23 and 0.33 respectively. Thus their 

errors are right at the minimum possible edge. This is surprising given the 

existence of acceptance and smearing effects plus background in the real data 

which are not included in the calculation of the minimum possible errors. 

7 .2 Comparison with Theory 

To expedite comparisons, the weighted average of the measured form fac-

tors are listed together with theoretical predictions in Table 7.2. All of the 

models fail to predict the low measured values of the two axial vector form 

factors. This observation is even more striking when one takes into account 

the fact that there is generally good agreement between predicted and mea-

sured values of the vector form factor governing the decay D ~ /{eve. Thus 
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it appears that the models systematically fail with axial vector form factors 

but succeed with vector form factors. 

After the discrepancy between the models and measured values became 

known, BSW reanalyzed their model to see if this discrepancy could be rec­

onciled:8 They found that the form factors had a strong dependence on the 

value of a quarkmass-dependent integral over the meson wave functions. They 

therefore let the value of this integral be a free parameter and listed the value 

of the form factors as a function of this parameter. However, this modification 

left the ratio, Rv, constant at 1.4 which is about two sigmas away from the 

weighted average of the measured values, 2.0 ± 0.3. Similarly, ISGW tried to 

reconcile the non-relativistic quark model but found that only a 20% change 

could be affected-which is not enough~
9 

Unfortunately, the QCD Sum Rules and Lattice QCD results, which have 

a stronger grounding in the Standard Model, are at present not known very 

precisely so that they are consistent, at about the two sigma level, with both 

the measured values and the model values. Nevertheless, the central values 

from these two approaches tend to be going in the right direction, towards 

lower values for the axial vector form factors. 

The application of HQET symmetries to this decay is difficult since the 

corrections are of the order AQcD /Ms which is between 70 and 200%. So 

clearly, at least the first order corrections would need to be calculated in order 

to even guess at the form factors from an H QET point of view. The first 

order corrections have been calculated for b ~ c decay using QCD sum rules~ 
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The form factor ratios, R2 and Rv, are defined for B --+ D* lv1 decay in the 

same way as for charm decay and in the limit of exact HQET symmetry these 

quantities are unity. It is interesting to note that the first order corrections 

for the b decay form factors find R2 decreasing by 10% and Rv increasing by 

about 30%. 

Although the D+-+ J{*0e+ve form factors appear to be difficult to calculate 

theoretically, fortunately, they can be measured and this information is useful 

in itself. For example the measured charm factors can be used to test the fac­

torization hypothesis in charm hadronic decays, be related to the form factors 

in B--+ K*e+e- using the symmetries of HQET,
7 

and serve as a significant 

test for any future theory which attempts to calculate heavy quark semilep­

tonic form factors. In addition, the method developed here for measuring form 

factors from the complete di:ff erential decay distribution serves as a prototype 

for similar measurements in the decays B -t D* lv1 and D ~ plvz which are 

needed to determine the important Kobayashi-Maskawa matrix elements, Vcb 

and Vub· 



APPENDIX A 

Cleo-II Silicon Detectors 

Silicon vertex detectors have been successful in identifying charm meson de­

cay vertices in fixed target experiments such as E691 and are now finding use 

in collider experiments for tagging events with heavy quarks and measuring 

lifetimes. A silicon microstrip detector is presently being constructed for the 

CLEO-II experiment at the CESR e+e- collider, operating at center of mass 

energies close to the i(4S). This detector will permit the identification of 

detached decay vertices from charmed mesons, tau leptons, and other long­

lived particles. Since the momentum spectrum of tracks at the i( 48) is soft 

the detector must be as low mass as possible; in addition, it must provide z 

measurements in order to reconstruct vertices in 3 dimensions. These consid­

erations have led to the use of double-sided silicon microstrip detectors. 

Double sided silicon detectors operate in the same manner as for the single 

sided detectors described in Chpt. 3. The main difference is that instead of 

having a uniform layer of n-type material on the back, there are a set of strips 

of n-type material. This is shown in Fig. A.1. These strips, when biased, 

attract the cloud of electrons that are generated by an ionizing particle, so 

that the position of the ionizing particle can be determined on this n-side in 

the same manner as for the p-type strips on the opposite side of the detector. 

By orienting then-strips perpendicular to those on the p-side, both the x and 

y positions of the ionizing particle can be measured. There is an additional 

feature that makes the n-side a bit more complicated than the p-side. An 
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n-side It' readout strips ~ 

Bulk Silicon 

p-side readout strips 

Figure A.1 Schematic of a double sided silicon detector. 

accumulation layer of negative charge carriers exists at the interface of the 

Si02 and the bulk silicon which is highly conductive. This would serve to short 

all the strips on then-side. To isolate then-strips, p-type strips are deposited 

between the n-strips which drive away the electrons in the accumulation layer. 

This is also shown in Fig. A.1. 

Instead of using a fan-out printed circuit board to connect the sense strips 

to the (rather large) preamplifiers as was done in E691, here the preamplifiers 

for a whole set of strips (64 to be exact) are formed together into one chip which 

can be bonded directly to the silicon detector. The CAMEX multiplexing 

amplifier, developed at the MPI-Munich 
30 

is used as the preamplifier for both 

the n- and p-strips. The rest of this appendix describes the results of studies 

done by the author for high signal/noise operation of the silicon microstrip 

detectors using the CAMEX. 
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Figure A.2 Schematic of a single channel of the CAM EX. 

A.1 Operation and Gain of the CAMEX 

A schematic diagram of a single channel of the CAMEX is shown in 

Fig. A.2. The principle of operation is to sample the charge present on the 

sense strip four times before and after the passage of an ionizing particle and 

to take the difference. The series of events which allows this to happen is 

given here. Once RI is opened, charge at the input is converted into voltage 

at Ul. The switches, Sl through S4, are sequentially closed and reopened. If 

R2 is closed, the closing of each S switch will bring charge into the right side 

of the four capacitors to keep the voltage zero on that side. Then when R2 is 

opened, the closing of each S switch will put charge on the capacitor across 

the second amplifier equal to the amount of new charge that is needed at each 

sampling capacitor. The net result is that the output voltage, at the closing 

of each S switch, will be proportional to the charge difference at the input 

between when that S switch was closed (before R2 was opened) and when 

that S switch was closed (after R2 was opened). The output of each sampling 

capacitor is summed to produce the final output. So ideally this results in 
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Figure A.3 Plot of Gain vs. time between charge injection and closing of 
the next S switch. 

four fold sampling before and after the signal arrives. 

In practice, however, signal can be degraded due to rise times of the am-

plifiers in the CAMEX. One would like to know the time it takes for charge 

on the input to become fully amplified at point Ul as well as how long the 

S switches must be left open in order to assure full gain. In order to mea-

sure these quantities, a precision capacitor of 18 ± 0.5 pF was bonded to the 

input of a CAMEX channel and a voltage pulse of known magnitude applied 

to this capacitor. This results in charge being injected into the CAMEX. By 

monitoring the relative times of the injected charge and the sequencing of the 

switches on the CAMEX one can obtain the desired rise times. 

It was observed that the gain, or output level, depends on the time between 

charge injection and the closing of the first S switch. A plot of this is shown 

in Fig. A.3. This curve was fit to a rising exponential and a time constant of 

100 ns was found. This then is effectively the rise time constant of the first 

amplifier. 
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Figure A.4 Gain vs. width of S switch. 

Since the values of the capacitance and applied voltage were measured, 

one can obtain the absolute gain of the CAMEX by the relation Vou.t = GCVin 

where G is the Gain. From the value of Vout when the output has risen to its 

maximum value one obtains a gain of G = 14.3±0.3 mV/ JC for a total of four 

samples. For this paper, a Gain of 14 mV/ JC will be assumed throughout 

unless explicitly stated otherwise. 

It was also observed that the output level decreases if the time that the 

S switch is open decreases below a certain value. With the same setup as 

described above, the width of the S switch was varied, making sure that the 

switch did not open till at least 500 ns after charge was injected. The resulting 

plot of effective gain vs. switch open time is shown in Fig. A.4. The switches 

must be open for no less than 100 ns in order to achieve full gain. 
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A.2 Noise Studies 

In general, operation of the CAMEX requires considerable care in order to 

minimize noise. Adding a detector only compounds the problem. This section 

presents the results of some studies which sought to identify sources of noise 

and what can be done to reduce or eliminate their effects. 

A.2.1 CAM EX Without Detector 

Much can be learned by studying the dependence of noise on the time 

between S switches. We define the sampling time of the CAMEX, T8 , as the 

time between the falling edge of successive S switches. For a CAMEX without 

a detector connected, the noise has been found to be independent of this sam-

pling time. The best noise value observed, using all the known noise-reducing 

techniques listed below, is an equivalent noise charge (ENC) of 290 e- ~ In 

addition to the incoherent noise stated above there is a coherent noise (com-

mon to all channels on the CAMEX) that has been subtracted in software. 

This noise is usually between 100 and 200 e- (added in quadrature), again 

using all known noise-reducing techniques. Furthermore, both the coherent 

and incoherent noise are fairly uniform across all channels. Fig. A.5 (a and 

b) shows the total noise for each channel and the noise after subtracting the 

common mode component. 

The most drastic of the techniques used for reducing noise is the grounding 

of test pulse lines at the hybrid. As shown in Fig. A.5 (a' and b') the noise 

* ENC is defined as that charge, Q, on the input of the CAMEX which would result in 
a signal whose magnitude is numerically the same as that of the u of the noise. 
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Figure A.5 Total noise (a) and noise after subtracting the common 
mode component (b) vs. channel number. This is with all known 

noise-reducing techniques being used. Total noise (a') and noise after 
subtracting the common mode component (b') vs. channel number. This is 

from a CAMEX without the testpulse lines grounded. 
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without the testpulse lines grounded is very large and there is a distinct pattern 

for every third channel. This pattern, in fact, was a clue that the testpulse lines 

were involved since the three testpulse lines connect every third channel and 

one of the testpulse lines starts at the high channel number end. The other two 

testpulse lines start at the low channel number end. It was discovered that 

charge injection effects from the S switches opening and closing were much 

larger than on the CAMEXes from an older batch which did not show this 

noise pattern. It is believed that these charge injection effects which appear 

as variations on the output line were being picked up by the testpulse lines 

along the strip cable which contains them both. The testpulse lines connect 

to capacitors which inject charge into the input of the CAMEX. The testpulse 

capacitors have been measured to be 0.63 pF so that noise on the order of 

a thousand electrons could result from voltage variations of only a millivolt. 

This problem was compounded by the fact that the output line driver on the 

hybrid was amplifying signals with frequencies of 1 MHz and above and the 

charge injection occurred at the sampling frequency which was 2.5 MHz. This 

latter problem was easily eliminated by shorting out the line driver, but the 

bulk of the noise still remained. Various grounding and shielding techniques 

were tried but the only way that was found that could eliminate the problem 

was to ground the testpulse lines at the hybrid. 

The problem with grounding the testpulse lines is that one can not use 

them for testing gains on the CAMEX. In order to try to preserve the ability to 

test gains on the CAMEX a voltage divider was added to the testpulse lines at 
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the hybrid, with all three testpulse lines connected together. It was found that 

a factor of 100 in attenuation was sufficient to suppress the charge injection 

effects to an acceptable level. With this attenuation, an ENC of 340 e- was 

obtained but with a large common mode noise of 1000 e-. The large common 

mode noise appears the same as when the testpulse line pads on the CAMEX 

are left unbonded and therefore ungrounded. So it appears that the resistor 

used in the voltage divider (resistors as low as 10 n have been tried) leave 

the testpulse lines effectively ungrounded. At this point in time the effects 

of attenuating each test pulse line separately have not been investigated, nor 

have the effects of using a solid state switch. 

In addition to noise resulting from pickup on the testpulse lines, a num­

ber of other sources have been identified and are listed together with their 

magnitude and remedy below: 

1. The average pedestal level, or nominal output level of a CAMEX, changes 

as a function of the time between the last reset of Rl and the trigger 

(opening of R2). Fig. A.6 shows the average pedestal level, in electrons, 

for the 64 channels of a CAMEX plotted against the time difference be­

tween the reopening of Rl and the opening of R2 (arrival of trigger). 

One can see that for times up to about 160 µs the average pedestal 

level is changing by many thousands of electrons. This is probably due 

to charge injection effects from the reopening of Rl being propagated 

through the CAMEX electronics. If one operates in such a way that 

triggers arrive at various time intervals after resetting Rl, and with at 
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least some triggers arriving within 160 µs, then the resulting variations 

in pedestals will appear as common mode noise. The magnitude of this 

noise could be as large as thousands of electrons. One could, in prin-

ciple, eliminate this noise by operating in such a way that the trigger 

arrives at precisely the same interval. However, the slope of this plot 

is sufficiently large that one would need to insure that the interval was 

constant to a high degree of precision. The other alternative is to simply 

veto all triggers until 160 µs after the reopening of Rl. It is expected 

that it will be possible to run in this manner at CLEO without much 

increase in dead time. 

2. It has been found that noise, both coherent and incoherent, is reduced by 

100 to 200 e- by shielding the cable carrying all the input and output 

lines to the CAMEX, and by not connecting this shield to ground at 

either end. The reason for this latter part is not understood, but for 

the former it is believed that shielding reduces the effects of pickup 
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among the various input and output lines within the cable. Obviously, 

the amount of pickup will depend on the particular circumstances of 

any given setup, nevertheless, it will remain true that it is important to 

shield and isolate both input and output lines as well as possible. 

3. There can be variations between the ground of the CAMEX and the 

ground of the ADC electronics. These variations will appear as noise on 

the digitized output. An effective way to reduce this is to amplify the 

output signal close to the CAMEX. This not only reduces the effects of 

changing grounds, but also reduces the effects of any pickup the might 

occur along the cable connecting the output to the ADC. For the present 

setup, it was found that by amplifying the output by a factor of 10, 

reduced the common mode noise by about 50 e- and the incoherent 

noise by bout 100 e- (in quadrature). 

A.2.2 CAMEX With Detector 

With the addition of a detector noise increases due to the capacitance on 

the input of the CAMEX as well as noise from the detector itself. In addition, 

it has been found necessary to filter the bias line supplying the bias voltage 

for the detectors with a simple RC filter. This is necessary, in that if the filter 

is not present then noise, both coherent and incoherent, will be present at the 

level of the expected signal size. What has been done is to connect the bias 

line to the bias pad on one side of the detector through a IMO resistor and 

then connect the ground from the power supply to the bias pad on the other 

side of the detector, with a capacitor across the two sides of the detector. For 
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the detectors and power supplies used thus far, a value of RC ~ 5 x 10-2 s has 

been found to be sufficient. It is not clear how universal this number is; one 

may need a larger value depending on the particular detector or power supply 

used. Furthermore, by measuring the voltage drop across the lMf! resistor, 

one can monitor the leakage current of the detector. 

The noise resulting from the capacitance that the detector adds to t.he 

input of the CAMEX is actually due to the series voltage noise from the 

first amplifier in the CAMEX. The capacitor turns this into charge noise at 

the input of the CAMEX. According to the CAMEX spec. sheet, the total 

noise increases roughly linearly with input capacitance with a slope of about 

30 e-/pF. 

With the addition of a detector, the noise is also found to increase with 

increasing sampling period, Ts· This was not the case for a pure CAMEX so 

this noise must be from the detector. A plot of noise squared versus Ts is 

shown in Fig. A.7 for the p-side of the detectors~ The noise grows rapidly 

with Ts so that at above 1 µs the detector noise dominates. But at 400 ns, 

which is close to the sampling period which is expected to be used in CLEO, 

this noise is minimal. Fitting this plot to a quadratic yields 

where Ts is in µsand ENC is in electrons. The constant term implies an ENC 

of 332±15 e-. 

* The conversion between electrons and ADC units is 1 ADC= 58.3 e-. 
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Figure A.7 Noise squared plotted as a function of the sampling period, 
T,, for the p-side of a detector. The line is a fit to the data using a second 

order polynomial. 

For the n-side of the detectors with polysilicon bias resistors and wide p-

barriers the noise squared is shown in Fig. A.8. As can be seen, the noise is 

approximately linear in this case with the parametrization being given by 

ENC2
( 'Ts) = (2.7 ± 0.3) x 105 + (1.26 ± 0.07) x 105 

'Ts. (A.2) 

The constant term is much bigger here and translates into an ENC of 520 ± 

29 e-. Attempting to understand these plots in terms of the expected sources 

of noise in the detector is the subject of the next section. 

A.3 Noise as Information 

It is important to try to understand the source of noise intrinsic to the 

detector. As was seen in the previous section, this noise is different on the p-

side than on the n-side. If one could identify the source of this difference, one 

might be better able to reduce the noise. The expected sources of noise are the 
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Figure A.8 Noise squared plotted as a function of the sampling period, 
r,, for the n-side of the detectors. The line is a fit to the data using a first 

order polynomial. 

thermal or Johnson noise from the bias resistor, and shot noise associated with 

the leakage current. This section is devoted to the attempt at understanding 

the observed noise results in terms of these sources. 

A.3.1 Theory 

The relationship between observed noise spectrum and noise source is given 

by 

00 

u
2 = ~ J N(w) IH(w)l2 dw (A.3) 

0 

where N ( w) is the spectral power density of the noise source and H ( w) is the 

transfer function of the electronics connecting the point of origin of the noise 

with the output~
1 

As an example, consider the case of a RC circuit where the 

noise source is the Johnson noise of the resistor and the output is the charge 

on the capacitor. The Johnson noise may be considered to be a parallel source 
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of current with a spectral power density of
32 

N(w) = 2kT = d(/
2

) 
R dw 

(A.4) 

This noise spectrum is constant for all frequencies and is therefore also called 

white noise. 

I 
c 

....,_ _____ , Q 

R 
out 

Figure A.9 Diagram of RC circuit showing thermal noise as a parallel 
source of current noise, I. 

The equivalent circuit with current source, I, is shown in Fig. A.9. The 

transfer function between the current source and the output is H(w) = l-~w°Rc· 

The mean square charge noise on the output is then 

(A.5) 

The effect of the electronics, which takes the current source to the charge 

sensitive output, is to change the frequency shape of the noise from one that 

is constant to one that decreases as ~ for w ~ -Ile. In this case, the total 

noise on the output is independent of R. 
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For silicon detectors, a similar circuit applies. Here, the resistor is the bias 

resistor and the capacitor represents the AC coupling capacitor. The charge 

at the output goes to the input of the CAMEX. In addition, there is a parallel 

capacitance which is dominated by the interstrip capacitance. This makes the 

transfer function l-iw:{b+ci). 

Shot noise from the leakage current of the detectors is also present. This 

noise has a white power spectrum as well, with amplitude ql where q is the 

charge of the electron, and I is the leakage current~
3 

The total noise power 

spectrum is then the sum of the Johnson and shot noise power spectra. 

A.3.2 Effect of CAMEX on Noise Spectrum 

The CAMEX has its own effective transfer function which will modify the 

noise spectrum and it is necessary to know this function if one is to understand 

the observed noise. To obtain the total noise in an extended series of electronics 

one simply multiplies the absolute square of the separate transfer functions 

together and integrates this with the total noise spectral power density. With 

H ( w) being the transfer function of the C AMEX, the total mean square charge 

noise on the output of each channel of a CAMEX due to the Johnson and shot 

noise is given by 

(A.6) 

The transfer function of the CAMEX may be obtained by taking the 

Fourier transform of the time-dependent impulse response function of the 
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CAMEX; this is the response of the CAMEX to a delta-like charge pulse. 

For an ideal CAMEX, with zero rise and fall times, the quadruple sampling 

produces the impulse response function 

) G{ ( Ts 3Ts 5Ts 1Ts 
h(r =- 6r--)+6(r--)+8(r--)+8(r--) 

4 2 2 2 2 

( 
Ts) 3Ts 5Ts) ( 7Ts } -8 T + - - 6(T + -) - 6(T + - - 8 T + -) 
2 2 2 2 

(A.7) 

where Ts is the sampling time and G is the gain for four samples, 14 mV/ JC. 

Taking the absolute square of the Fourier transform of this function yields 

This function, the noise weighting function of the CAMEX, is periodic and does 

not decrease for large w. For high frequencies, the rise time of the CAMEX 

comes into play, reducing the effects of the high frequency noise. It was shown 

in the first section that the effective rise time constant of the CAMEX is 100 ns. 

One may include this effect by multiplying an additional factor of 1+ 12 2 , 
W TR 

where TR is the rise time constant, to the above noise weighting function. 

A.3.3 Testing CAMEX Noise Weighting Function 

It is important to be confident that this weighting function, and the pro-

cedure for obtaining the total noise, is correct. One piece of evidence is that 

the weighting function for one sample, obtained in the above manner, agrees 

with the one obtained in an early paper on the CAMEX. 
34 

Another check 

is to compare the noise predicted using the above weighting function to the 
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measured noise from a known source. What was done was to inject charge into 

the CAMEX with a sine wave of known frequency and amplitude. A function 

generator was connected to a capacitor of C = 4.7 pF which was bonded to 

the input of a channel on a CAMEX. Since the input is of a single frequency, 

the total noise on the output is simply given by 

G A 
u = -IH(w)IC 10 4 v2 

(A.9) 

Here C ~is the power of the input noise of angular frequency, w, where A is the 

amplitude of the input voltage sine wave. This is plotted in ADC units perm V 

of input voltage as a function of the frequency of the sine wave in Fig. A.10. 

By varying the frequency of the function generator, this same pattern was 

observed on the output of the CAMEX. The maximum and minimum occurred 

at the frequencies expected. Moreover, the sigma of the output was measured 

for frequencies of 189 kHz and 108 kHz with amplitudes of 5 m V and 10 m V 

respectively. For the former case, the observed sigma was 260 and the expected 

value using the above weighting function is 265. For the latter frequency, the 

observed sigma was 198 and the expected value was 200. Taking into account 

the uncertainties involved (about 5% just for the capacitance) there is good 

agreement between the predictions of this model and the observed results. 

A.3.4 Evaluation of Total Noise Integral 

Confident that the weighting function is correct, let us turn to the main 

problem of calculating the expected noise from the Johnson and shot noise 

sources. At this point, this amounts to performing an integration. One can 
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Figure A.10 Calculated noise in ADC units on the output of a CAMEX 
with a sampling period of 5.8µs, for an input sine wave voltage of lmV 

through a capacitor of 4.1pF. Th~s is plotted vs. frequency, in MHz, of the 
sine wave. 

simplify this integral by noting that the effect of the rise time of the CAMEX 

can be neglected without much error as long as the sampling time is large 

compared to the rise time. In doing so the noise will be only underestimated, 

with the amount of this error increasing for smaller sampling times. Also, it is 

useful to rewrite the noise weighting function so that all terms are of the form, 

sin2(x), using trigonometric identities. Then all terms in the integral are of 

the form 

(A.10) 

where w1 = R(C~C.). The total mean square noise is then 

2 2kT a2c2 

a =( R + ql) l6w1( C + Ci) 2 x 

[-sf(l) - 21(2) + f(3) + 4f(4) + 3/(5) + 2/(6) + f(1)] 
(A.11) 
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Or, in terms of the equivalent noise charge, ENC = a /G~ A plot of this 

function vs. R(d°.tc.) is shown in Fig. A.11. There is a peak at about 0.5 above 

which the noise decreases to a constant value. For all of the cases of interest, 

however, the RC value is much larger than the sampling time. This means 

that only the part of the curve below the peak is applicable. 
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Figure A.11 Plot showing the theoretical shape of noise squared as a 
function of R(d°+ci). 

A.3.5 Comparison With P-Side Noise 

It was shown in the previous subsection that the noise on the p-side grows 

quadratically with sampling period. This cannot be understood in terms of the 

expected white noise. For large RC, one has at most a linear rise in noise. Ex­

panding out the exponentials gives ENC2 = (ql + ¥)4(b~~i)2 T8 • In units of 

electrons, this is ENC(e-)2 = (c~~.)2 [0.086J(nA)+4.4/ R(mO)] x 10-5 r8 (µs). 

Comparing this formula with the fit value shown in the previous section, and 

* Recall that ENC is defined as the charge, Q, such that QG = u. 
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using the measured leakage current value of 1 nA per strip plus the expected 

value of C /( C +Ci) of 0.8, yields a value for the bias resistor of 28!tg Mn. 

This is consistent with an independently measured lower limit of 100 Mn at 

the level of about 2u because of the highly asymmetric errors. The quadratic 

component of the noise is not understood; nevertheless, the large RC value 

implies that the spectral power density of the noise source, whatever it is, must 

be of the 1 / f form in order to produce a quadratic dependence. 

A.3.6 Comparison With N-Side Noise 

For the n-side, the noise was found to be consistent with a linear depen­

dence on Ts as shown in the previous section. However, the bias resistor was 

independently measured to be 3.5 Mn and the capacitance at about 10 pF so 

that RC is only about 35 µs. This value of RC is not large enough to justify 

using only the linear terms in the noise function. For this reason a fit of the 

data was performed using the full noise function. The parameters to be found 

were taken to be R(C +Ci), the normalization in front of the above noise 

function, and a constant representing the noise that is independent of Ts. The 

fit is shown in Fig. A.12. The resulting value of RC was 65!t8 µsand for the 

normalization, a value of .95 ± .08. Taki~g C = 11.4 pF from an independent 

measurement, and using the measured leakage current of 0.5 nA, one can solve 

for the bias resistor and C + Ci. The results are 5!~ Mn and 13!~ pF re­

spectively. These results are consistent with the values of 3.5 Mn and 12 pF 

obtained in an independent measurement. The fit value of the constant noise 

term is 79±5.5 which translates into an ENC of about 500 e-. If this were due 
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Figure A.12 Fit of noise from then-side of a detector. 
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solely to the capacitance of the detector and taking ENC= 290 + 30C(pF), 

then one obtains C = 7.6 ± 0.3 pF. This is higher than the expected value of 

about 1 pF. It is not clear what the source of this noise is. It could be within 

the detector itself, or it could be that the CAMEX used with this detector (it 

was from the new batch of CAMEXes) has a capacitance noise slope that is 

much larger than 30 e- /pF. This is currently under investigation. 

A.4 Summary of Main Noise Results 

A number of techniques have been found which reduce the noise. These 

are outlined here together with the magnitude of their effect on the ENC: 

• Have time between R2 and Rl greater than 100 µs. {1000 e-) 

• Leave the shield of strip cables unconnected. {130 e-) 

• Have an RC > 1 Mn x 50 nF = .05 s filter on the bias line to each 

detector. (2000 e-) 
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• Amplify the output before sending it down a long cable. This reduces 

pickup and the effects of ground differences between the ADC and the 

CAMEX. (100 e-) 

With these noise reducing techniques the ENC of a blank CAMEX is about 

300 e-. For the new batch of CAMEXes, however, the testpulse lines need 

to be grounded or attenuated by a factor of at least 100. With a detector 

connected, the noise on the p-side is about 340 e- at a sampling time of 

400 ns and grows quadratically with sampling time. This quadratic rise is 

indicative of a } current noise source. For the n-side, the noise is about 

570 e- at a sampling time of 400 ns and grows linearly with sampling time. 

The magnitude of the linear rise is consistent with what would be expected 

from the Johnson noise associated with the bias resistor. The excess noise 

on then-side compared to the p-side could be due to either unknown sources 

within the detector itself, or an unusually large noise vs. input capacitance 

slope for the new batch of CAMEXes. 
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