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D± mesons have been observed in photoproduction in Fermilab experiment E687. A 

sample of approximately 2500 events of the decay D± -t K=F?r±?r± has been analyzed. 

The cross section for x I > 0 is measured to be 

BR· u = 0.368 ± 0.073 ± 0.111 µb/Be nucleus 

at our average photon energy of 220 Ge V. The cross section dependence on incident 

photon energy, Feynman x, and transverse momentum has also been measured and 

found to be in good agreement with other measurements. 

The lifetime of the n± has been measured to be 1.061 ± 0.039 ± 0.020 picoseconds. 

This measurement is also in good agreement with recent results. 
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LIST OF ABBREVIATIONS 

Beam Gamma Monitor: an electromagnetic shower counter at zero 
degrees, designed to collect primarily uninteracted beam photons. 

Branching Ratio: the fraction of parent particles which decay a certain 
way. 

Electron Beam Trigger scintillator counter which counts electrons in 
the electron beam. 

Central Hadron Calorimeter: hadron calorimeter at zero degrees, which 
supplements the Hadron Calorimeter. 

Hadron Calorimeter: calorimeter to measure the energy of charged 
hadrons. This device is also used for triggering. 

Two planes of scintillators: one with counters arranged horizontally, 
the other with the planes arranged vertically. These counters are used 
for triggering. 

Inner Electromagnetic shower counter: detects electromagnetic parti: 
des at smaller angles. 

Master Gate: the trigger which initiates basic data aquisition. 

Outer Electromagnetic shower counter: large aperture device for de
tecting electromagnetic particles. 

Outer Hodoscope: large aperture scintillator array, used for triggering. 

Photon Gluon Fusion: a model for predicting heavy quark production. 

Proportional Wire Chamber: wire chamber for detecting charged particles. 

Recoil Electron Shower Hodoscope: a set of electromagnetic shower 
cells which detect the recoil electron. 

RESHLO Trigger condition which requires energy deposition in 1, 2, or 3 adjacent 
cells in the RESH counter. 

SSD Silicon Strip Detector: the high resolution, silicon microstrip vertexing 
detector. 

TRl Scintillator trigger counter immediately upstream of the microstrip 
detector. 
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INTRODUCTION 

In 1964, Bjorken and Glashow [1] proposed the existence of a fourth quark, so 

that the number of quarks equaled the number of (known) leptons. In 1970, Glashow, 

Iliopoulos, and Maiani [2) proposed a theory of weak interactions, which required a fourth 

quark to explain the absence of strangeness-changing neutral currents. The discovery 

of the J/1./J in 1974 [3,4] led to speculations that this particle might be the lowest mass 

cc vector meson. Subsequent observation of excited 1./J states [5] cemented this idea. In 

1976, the first D mesons (open charm) were observed. [6,7] 

Much of the early experimental work on D mesons has been done at e+e- ma

chines. About 40% of e+e- events (well above threshold) are charm events, and beam

energy constraints significantly improve mass resolution as well as reject considerable 

background. However, these machines are limited by their luminosity. Much higher 

luminosity can be reached with photon beams, and although charm events constitute 

only about 1 % of the events well above charm threshold, the absolute rate of produc

tion is higher than in e+e- machines. Photon beams can also sample the entire charm 

spectrum simultaneously. Unfortunately, background rejection is a more difficult task. 

Recently however, advances in technology (i.e., silicon microstrips) have made it possible 

to accurately measure decay vertexes of charm particles. Using the D meson lifetime, 

then, can significantly reduce the background. 

E687 uses a high-luminosity bremsstrahlung photon beam to collect large samples 

of charm particles. A photon interacts in a Beryllium (or Silicon) target producing 

primary reaction products in the forward direction, including occasional charm particles. 

Generally speaking, nuclear fragments will travel at large angles and will not be detected. 

The charm particles will travel a certain distance (for n±, a few centimeters) before 

decaying. The charm particle itself is not detected, but its charged decay daughters 

will leave tracks in the high resolution silicon microstrip vertex detector, and in the 

wire tracking chambers in the main spectrometer. The tracks' positions and directions 

can be reconstructed, and their bends in the analysis magnets will provide momentum 
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information. With the aid of particle identification information from Cerenkov counters, 

we can reconstruct the original charm particle by forming an invariant mass. Since 

hadronic background is substantial in fixed target experiments, it is necessary to rely 

on the decay distance of the charm particle to distinguish these charm particles from 

hadronic background. This effort is aided greatly by the advanced, high-resolution 

silicon microstrip vertex detector, which can determine decay vertexes to high accuracy. 

The charm sample obtained by E687 in this way is comparable to the world's largest 

charm sample. This thesis will concentrate on three areas of D± phenomena: production 

dynamics, lifetime, and decay structure. 
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CHAPTER 1 

Theory 

1.1 Photon-Gluon Fusion Model 

In the photon-gluon fusion (PGF) mechanism [8] for the photoproduction of heavy 

flavored states, the photon "fuses" with a gluon from the target nucleon, and creates a cc 
pair. The relevant diagrams are shown in Figure 1.1. The cross section for this process 

can be given as the cross section for the quark-level subprocess, 0-(w, x), convoluted with 

the gluon distribution function: 

1 

cr(w) = j dxG(x,Q2 )u(w,x) (1.1) 

Xm&n 

where G(x, Q2 ) is the gluonic structure of the proton, which can be a function of the Q2 

of the process, Xmin = 4m2v/ s, and s is the total squared center of mass energy for this 

process: s = m! + 2mNw where w is the energy of the photon, and mN is the mass of 

the target nucleon. The quark sub-process cross section, calculated to first order in 0:8 

IS: 

A 27ro:0:8 (e )2 [ 2 (1 + ,8) l cr(w,x)= s eq (l+1-1/2)ln l-,8 -,8(1+1) (1.2) 

wheres= xs, I= 4m~/s, ,8 = ~' By experimentally measuring the charm cross 

section, we can examine the predictive power of QCD. 

Unfortunately, neither the gluon structure, the mass of the charm quark, nor the 

strong coupling constant ( a 8 ) are known with high accuracy. Traditionally, the Q2 

dependance of the gluon structure function is ignored, and the form is taken to be: 

(1.3) 

with N9 generally taken to be 5-10. The behavior of the gluon structure function at low x 

is a matter of considerable interest and speculation. Recently, the CHARM collaboration 
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has derived gluon distribution functions from neutrino data [9]. 

different gluon distribution functions. 

Figure 1.2 shows 

The PGF model will also predict the form of the differential cross section (du/ dx f) 

as a function of Feynman x ( x f) of the charm quarks. However, the differential cross 

section for mesons will have a different behavior, due to effects of fragmentation, that 

is, how the charm quarks dress themselves into colorless particles. 

Figure 1.3 shows PGF cross section calculations for different gluon structure func

tions and quark masses. Figure 1.4 shows the differential cross section for quarks, and 

for mesons, assuming a dressing function. 

In 1988, Ellis and Nason [10] calculated second-order (in a 8 ) corrections to the 

PGF cross section. (Some example Feynman diagrams are shown in Figure 1.5.) These 

corrections are quite large. Although the shape of the u(w) does not change much (at 

high photon energies) the overall level increases by a factor of 2 to 4. These second-order 

calculations will be used when comparing the E687 results to theory. (See Chapter 5.) 

1.2 Associated Production 

QCD-based models like PGF are symmetric in charm and anti-charm. Associated 

production models claim that charm quarks are likely to combine with target baryon 

quarks, producing charm baryons. This leaves the anti-charm quark, which will materi

alize as an anti-charm meson. This model thus predicts an excess of anti-charm mesons 

relative to charm mesons. This is a well-known phenomenon in strange hyperon produc

tion right above threshold. The associated production mechanism was used to explain 

the complete lack of n° events at a medium-energy ( 40-70 GeV) photoproduction exper

iment at the CERN SPS [11], although several hundred no were seen. We expect that 

associated production effects will diminish as photon energies are increased, that is, the 

charm meson to anti-charm meson ratio may be a function of the meson momentum. 

4 



1.3 n± Mesons 

1.3.1 Lifetime of then± 

The lifetime of the n± meson has interested physicists since its discovery. Using 

simple valence-quark diagrams (Figure 1.6a), where the non-charm quark in a n± or 

n° meson is just a spectator' one would expect the lifetimes of the n± and the n° to 

be equal, since the identity of the spectator cannot make any difference. Unfortunately, 

the lifetime of the n± is about 2.5 times longer than the n° ! It was thought that 

the annihilation diagram (Figure l.6b ), which exists for the n° but not the n± was 

responsible for this discrepancy. Recently, however, this explanation has fallen into 

disfavor. The currently favored theory [12] is that the charged- and (effective) 

neutral-current diagrams (Figure 1. 7), which for the n± produce identical final states, 

interfere destructively ' thus lengthening the lifetime of the n± relative to the n°. 

1.3.2 Dynamic Sub-structure of then± --+ KT1r±1r± 

MARK III noticed very strange-looking Dalitz plots of the n± --+ KT1r±1r± decay 

[13]. They attributed the distributions to the interference of the n± --+ K*(892)7r± 

decay with non-resonant background, which they were unable to describe adequately. 

Subsequently, Diakonou and Diakonos [14] have found that by assuming that then±--+ 

KT1r±1r± decay is dominated by n± --+ K*(892)7r± and n± --+ KQ'(l430)7r±' which 

interfere significantly, the MarkIII effects can be well-described. 
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CHAPTER2 

Apparatus 

2.1 Beamline 

The Wideband beamline was designed to be as versatile as possible. In different 

configurations, it can transport neutral hadrons, electrons, muons, pions, or photons to 

the experimental target. While E687 uses the clean photon beam for experimental data, 

other beams are useful for calibration. 

The FNAL Tevatron provides 800 GeV protons to the Proton East (PE) line. (See 

Figure 2.1). These protons are incident on a 46 cm beryllium production target (about 

77% of a radiation length, 89% of an interaction length). The charged particles are 

swept out of the resulting beam, leaving neutrons, neutral kaons, and photons (pri

marily from 11"0 decay). The neutral beam impinges on a lead converter of about 60% 

radiation length which converts photons to e+e- pairs. The electrons are captured and 

transported around a beam dump, in which the leftover neutral particles are absorbed. 

In the process of transporting the electrons, the secondary beam energy is selected: 350 

Ge V for this analysis. The steering magnet apertures and collimators are such to allow 

for a large (about ±13%) momentum bite, hence the "Wideband" name. The elec

tron beam impinges on a lead radiator of about 20% radiation length which produces 

the final bremsstrahlung photon beam. (Additional beamline material increases the to

tal radiator to 27% of a radiation length.) The recoil electrons are swept out of the 

beamline with sweeper magnets, where they are recorded in the Recoil Electron Shower 

Hodoscope (RESH). The RESH is a system of 10 lead-scintillator shower counters shown 

in Figure 2.2. The position of the hit cell gives the energy of the recoil electron. 

Photons from the beamline will either interact in the target to produce events, or 

travel through the center of the spectrometer, to be collected at the Beam Gamma Moni

tor (BGM). The BGM consists of 45 layers of lead (0.32 cm thick) interleaved with Lucite 

(0.32 cm thick). The BGM serves two purposes: 1) as a luminosity monitor, its signal 
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is discriminated, and a scaler counts each signal corresponding to energy deposition in 

the BGM of 133 GeV or more. (More on luminosity in chapter 5.) 2) as a multiple 

bremsstrahlung photon collector, it measures the energy deposition from photons from 

the electromagnetic shower in the radiator which did not interact in the target. Using 

the average value for the energy of the incident electron, the RESH and BGM supply 

us with enough information to estimate the energy of the interacting photon. (More on 

photon energy estimation in Chapter 3). 

2.2 Targets 

The experiment used three major targets: 
1 

two beryllium targets ("5-Be" and "4-

Be") and a silicon wafer target ("Si"). The 5-Be (4-Be) target consists of 2 (1) square, 

large transverse Be segments, 2.54 cm on a side and 0.8128 cm thick. (See Figure 2.3). 

These segments are oriented at 45 degrees with respect to the vertical view, as shown in 

the figure. The remaining 3 segments are smaller transverse pieces of beryllium, 0.8128 

cm thick, hexagonal-shaped to match the high resolution area of the microstrip detector. 

The gaps between segments are 75-200 microns. The total radiation length of the 5-Be 

( 4-Be) target is 11.5% (9.2%). 

The Si target consists of 29 silicon wafers of 220 micron thickness interleaved with 

300 micron Be wafers, followed by 19 silicon wafers of 250 micron thickness, with 250 

micron gaps between wafers. (See Figure 2.4.) The total radiation length of the Si 

target is 14.4% (11.9% from Si, 2.5% from Be). The Si wafers were pulse-height analyzed 

so that jumps in charge multiplicity from one plane to another would localize the primary 

interaction point. Although data taken with the Si target are used in this analysis, the 

charge multiplicity information is not used here. 

2.3 Spectrometer 

The E687 spectrometer was designed as a multi-purpose device. It consists of several 

systems: tracking, Cerenkov particle identification, calorimetry, muon identification, 

1 Also some minor targets, including $4. 75 in quarters. 
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and trigger. Table 2.1 gives locations and sizes of each device in the spectrometer. 

Figure 2.5 shows the plan and elevation views of the spectrometer. 

2.3.1 Tracking 

The tracking system consists of two momentum-analyzing magnets, 5 multi-wire 

proportional chambers, and 12 planes of silicon microstrip detector planes. The magnets, 

Ml and M2, are run with opposite polarity, with current chosen to give momentum kicks 

of 0.400 GeV and -0.850 GeV, respectively 

The wire chambers (PWCs) consist of 4 views (except P4), an X and a Y (measuring) 

view, plus U and V views at ± arctan (.2) from the Y view. Wire chambers PO and P3 

are sized to match the aperture of the analysis magnets; the other chambers are matched 

to the acceptance of the spectrometer (except P4). Our original P4 was destroyed 

by fire [15), and was replaced with a similar chamber, but smaller, and with only 3 

views: X, U, and V (with same stereo angles). All chambers were run with argon-ethane 

(65%/35%) bubbled through ethyl alcohol. Table 2.2 gives specifications of the PWCs. 

The microstrips (SSDs) are organized into 4 stations of 3 views each (i, j, and k 

views); see Figure 2.6. The first station consists of strips of width 25 microns in the 

inner region, and 50 microns in the outer region. The other planes have 50 micron strips 

in the inner region and 100 micron strips in the outer region (Figure 2.6). The strips 

are read out in an analog way: charge division among strips is used to improve the 

resolution of the device. 

2.3.2 Particle Identification 

The E687 particle identification system consists of three threshold Cerenkov coun

ters. Cerenkov counters Cl and C2 are located between the two magnets, and counter 

C3 is located downstream of the second magnet. Each counter consists of about 100 

cells. Light from Cerenkov radiation is reflected off mirrors on the downstream face of 

the counter into phototubes. C3 and the outer region of Cl are outfitted with focussing 

mirrors. C2 and the inner section of Cl use planar mirrors at 45 degrees to the beamline. 

Specifications of the Cerenkov counters is summarized in Table 2.3. 
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2.3.3 Calorimetry 

E687 has two electromagnetic shower counters, one large aperture Outer Electro

magnetic shower counter (OE) just upstream of Ml, for electromagnetic identification 

of particles in the outer spectrometer, and one Inner Electromagnetic shower counter 

(IE) for the inner spectrometer. Each shower counter consists of layers of lead and 

scintillator. Neither is used for this analysis. 

The Hadron Calorimeter (HC) consists of 28 iron plates of 4.42 cm thickness (8 

interaction lengths total), interleaved with sense planes, 2.86 cm thick. The sense planes 

consist of proportional tubes filled with 50% argon and 50% ethane. (In later runs, 1 % 

ethyl alcohol vapor was added.) The signals are read capacitively from pads ganged 

together longitudinally to form towers. The hole in the HC is covered by a Central 

Hadron Calorimeter (CHC). The CHC consists of 16 layers of 3.8 cm thick depleted 

uranium slabs, clad with 0.24 cm thick steel, interleaved with 0.635 cm thick scintillator. 

The total amount of material is 6.4 interaction lengths. Together, the HC and CHC are 

used in the second level trigger, which requires that at least 35 GeV of energy is deposited 

in the hadrometers. 

2.3.4 Muon System 

The Muon system consists of planes of scintillator and gas proportional tubes. The 

outer muon system (OM) was just downstream of and shielded by the Ml magnet steel. 

OM comprised 2 planes of prop tubes and 2 planes of scintillator. The inner muon 

system was just downstream of the muon filter steel, comprising 4 prop tube planes and 

3 scintillator planes. The muon system is not used in this analysis. 

2.4 Trigger 

Like most high energy experiments, E687 uses a two-level trigger system. The first 

level trigger, or Master Gate, is responsible for gating the data aquisition devices so that 

wire chambers can be read out, latches set, ADC's gated, etc. The Master Gate also 

holds off subsequent triggers, while the second level trigger is at work. The second level 

trigger, using PWC information, latch information, and ADC pulse height information, 
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makes a decision as to whether the event is to be accepted or not. If the event is accepted, 

the inhibit against additional triggers continues while additional data aquisition tasks 

are completed (digitization of ADC information, readout into buffers, etc). If the event 

is not to be accepted, the second level trigger issues a fast clear, the data aquisition 

devices are cleared, and the inhibit is released. 

2.4.1 First Level Triggering 

Several trigger counters are used in E687: A scintillator counter in the electron 

beamline, TO; a scintillator in the photon beam, AO; two scintillators placed on either 

side of the photon beam pipe (for detecting muons in the beam halo), TMl and TM2; 

and scintillator counters just upstream and just downstream of the microstrip detector, 

TRI and TR2. A schematic drawing of the target region trigger counters is shown in 

Figure 2.7. The first level (or minimum bias) trigger (Master Gate, or MG) requires 

a charged particle in the electron beam (TO), no charged particle in the photon beam 

(AO), no muon from an upstream target (T Ml+ T M2) and charged particles emerging 

from the target (TR1·TR2). In addition we require two or more charged bodies in the 

spectrometer. This is accomplished with two trigger hodoscopes: The inner hodoscope, 

HxV and the outer hodoscope, OH. (Figure 2.8.) HxV is a set of crossed scintillators, 

located just downstream of the last PWC. A 7.1 cm gap separates the east and west 

halves, to allow uninteresting e+ e- pairs to pass through. The OH is a layer of scintil

lators attached to the upstream face of the OE. The OH also has a gap between east 

and west halves. The Master Gate requires either two or more bodies in the H x V, or 

at least one body in the H x V and at least one body in the OH. The total Master Gate 

logical requirement is thus: 

MG = T . [ ( (H x V);:::1hody . OH) EB (H x V);:::2hody] (2.1.a) 

where 

T = AO · TO · TRI · TR2 · TMl + TM2 (2.1.b) 
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2.4.2 Second Level Triggering 

The second level trigger required at least 35 GeV deposited in the HC, at least one 

hit in the x view of PO (outside the pair region), and a signal in the RESH counter. 

Additional second level triggers (not used in this analysis), are a muon pair trigger, a 

prescaled e+e- pairs trigger, and a prescaled MG. 
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Table 2.1: Spectrometer layout 

Device Z location• (cm) Z length (cm) Transverse Size (cm) 

5-Be target -3.11 4.11 see text 

SSDl 4.63 1.07 2.48 x 3.50 

SSD2 10.69 1.07 4.96 x 4.96 

SSD3 16.72 1.07 4.96 x 4.96 

SSD4 28.66 1.07 4.96 x 4.96 

Ml Up. Shield 77.44 17.78 336.00 x 384.00 

Ml Up. Shield hole 77.44 17.78 25.40 x 101.60 

Ml steel 220.95 167.64 350.52 x 546.10 

Ml hole 220.95 167.64 76.20 x 127.00 

Ml Down. Shield . 370.17 8.90 336.00 x 384.00 

Ml Down. Shield hole 370.17 8.90 76.20 x 127.00 

PO 405.08 17.78 76.20 x 127.00 

Cl 519.75 187.90 101.60 x 152.40 

Pl 644.26 17.78 152.40 x 228.60 

C2 757.00 187.96 152.40 x 228.60 

P2 878.47 17.78 152.40 x 228.60 

OE 962.99 132.40 270.00 x 300.00 

OE hole 962.99 132.40 48.60 x 83.20 

M2 Up. Shield 1091.43 8.90 336.00 x 384.00 

M2 Up. Shield hole 1091.43 8.90 76.20 x 127.00 

M2 steel 1238.11 167.64 350.52 x 546.10 

M2 hole 1238.11 167.64 76.20 x 127.00 

M2 Down. Shield 1383.52 8.90 336.00 x 384.00 

• Z locations are measured from the front face of the Granite Block (which supports 
the microstrip detector) to the center of the device. 
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Table 2.1: (continued) Spectrometer layout 

Device Z location (cm) Z length (cm) Transverse Size (cm) 

M2 Down. Shield hole 1383.52 8.90 76.20 x 127.00 

OµX 1399.24 10.00 304.80 x 508.00 

0µ X hole 1399.24 10.00 101.60 x 162.56 

Oµ y 1416.94 10.00 304.80 x 508.00 

Oµ Y hole 1416.94 10.00 101.60 x 162.56 

P3 1442.60 17.78 76.20 x 127.00 

Oµ H 1474.56 15.00 304.80 x 487.68 

Oµ H hole 1474.56 15.00 121.92 x 152.40 

Oµ V 1505.06 22.80 304.80 x 508.00 

Oµ V hole 1505.06 22.80 121.92 x 152.40 

C3 1884.42 711.20 190.50 x 228.60 

P4 2288.89 17.78 101.60 x 152.40 

HxV 2328.19 9.22 141.60 x 246.00 

HxV gap 2328.19 9.22 7.10 x 365.80 

IE 2399.67 76.84 123.12 x 123.12 

IE hole 2399.67 76.84 10.16 x 10.16 

HC 2569.78 219.30 203.20 x 304.80 

HC hole 2569.78 219.30 30.00 (diameter) 

BGM 2704.03 40.64 25.40 x 22.86 

CHC 2778.00 101.60 45. 72 x 45. 72 

µ filterl iron 2895.66 128.60 231.14 x 330.20 

µ filterl hole 2895.66 128.60 10.16 x 10.16 

Iµ IX 2973.48 10.00 203.20 x 304.80 

Iµ lY 2993.21 10.00 203.20 x 304.80 
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Table 2.1: (continued) Spectrometer layout 

Device Z location (cm) Z length (cm) Transverse Size (cm) 

Iµ IV 3012.52 15.30 213.36 x 304.80 

Iµ lH 3036.07 9.00 203.20 x 304.80 

µ filter2 iron 3079.66 63.00 231.14 x 330.20 

µ filter2 hole 3079.66 63.00 10.16 x 10.16 

Iµ 2X 3138.95 10.00 203.20 x 304.80 

Iµ 2Y 3158.09 10.00 203.20 x 304.80 

Iµ 2H 3178.25 9.00 203.20 x 304.80 

Table 2.2: PWC Specifications 

# instrumented wires 

Station Pitch x u v y 

PO 2mm 376 640 640 640 

Pl 3mm 512 832 832 768 

P2 3mm 512 832 832 768 

P3 2mm 376 640 640 640 

P4 X: 2mm; U,V: 3mm 336 768 768 -

Table 2.3: Cerenkov Counter Specifications 

Photoelectron Thresholds (Ge V) 

Counter Gas cells yield (ave) 7r K p 

Cl 50% He/50% N2 90 2.6 6.7 23.3 44.3 

C2 N20 110 8 4.4 16.2 30.9 

C3 He 100 9 17.0 60.8 116.2 
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CHAPTER3 

Analysis 

3.1 Reconstruction and Analysis 

3.1.1 SSD Track Reconstruction 

The microstrip tracks are found by finding projections in the 3 views, then by match

ing the projections in space. Each projection is required to have at least 3 hits. Hit 

sharing is allowed. The resulting track is required to have a x2 per degree of freedom 

of 8 or less. Tracks which share projections are arbitrated by their x2 values. Leftover 

hits are then used to search for wide-angle or highly multiple-scattered tracks. The res

olution of tracks which consist entirely of hits in the high resolution section of the SSD 

(extrapolated to the center of the target) is determined to be: 

O"x = llµm 1 + ( 17.5PGeV)
2 

1 + ( 25GpeV) 
2 

Uy= 7.7µm (3.1) 

where the second term in the square root is the contribution due to multiple scattering 

effects. 

3.1.2 PWC Track Reconstruction 

PWC tracks are also found by projections. U,V, and Y view projections are found 

using PWC information only, and X (non-bend) view projections are found by matching 

hits to SSD track extrapolations. The projections are then matched, and must pass a 

x2 per degree of freedom cut. Tracks must not have more than 4 missing hits total, and 

no more than 2 missing hits can be from the same chamber. When all tracks with a 

SSD extension are found, X projections are found using PWC information alone, and 

matched to unused U, V, and Y projections. 
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In addition, "recovery" routines were used to find tracks in more difficult classes, 

such as SSD extensions into PO and Pl, and 3 chamber extensions into P3. 

3.1.3 Linking 

SSD tracks and PWC tracks are "linked" by matching extrapolations at the center 

of Ml. The x and y positions as well as the slope in x are matched. Prospective links 

are subjected to a fit of all the hits, and must pass a x2 cut. 

3.1.4 Momentum Determination 

When all magnetic corrections have been applied to the tracks, the momentum can 

be determined by the bend of the track in Ml and/or M2. The momentum resolution 

IS: 

3.4% ( lOO~e V) 1+c1;ev)2 for Ml; 
O"p 

(3.2) -= p 2 

l.4% (10o~eV) 1 + (23~eV) for M2 

where, again, the second term in the square root is the contribution due to multiple 

scattering. 

3.1.5 Particle Identification 

For each track traversing a Cerenkov counter, if the momentum is known and a 

particle identification (electron, pion, kaon, or proton) is assumed, predictions can be 

made about the Cerenkov light which the track contributes to associated cells (the cell 

the track hits, and all adjacent cells). If the light yield of the cells is greater than a certain 

noise level, the counter is called "on" for that track. If a cell could conceivably be "on" 

due to more than one track in the vicinity of the cell, then the counter is called "confused" 

for that track. Given the momentum of the track, the thresholds of the counters, and the 

on/off. pattern for the track, the track can be placed (to the extent the three Cerenkov 

counters agree) into a definite or ambiguous identification category. Figure 3.1 shows 

the momentum ranges for which certain particle identification categories can be found. 
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Particularly important (since charm particles tend to decay into strange particles) are 

the kaon categories. 

3.1.6 Vertex Reconstruction (Stand-alone Method) 

The stand-alone vertexing algorithm is run on each event as part of the standard 

reconstruction. The algorithm tries to find free-form vertexes using only microstrip 

tracks. First, all tracks are put into one vertex, the x2 of the vertex is calculated. If 

the x2 is not acceptable, then the "worst" track (the track which contributes the most 

to the "badness" of the x2 ) is ejected from the vertex. The x2 of the new vertex is then 

calculated. The process repeats until a vertex of acceptable x2 is found. The algorithm 

is then applied to the ejected tracks, trying to form additional vertexes from them, until 

finally there is a list of acceptable vertexes (and some leftover tracks). The algorithm is 

able to find at least one vertex in about 50% of the events. 

Since the stand-alone vertex algorithm is run on every event, the vertexes provided 

by this algorithm can be used by subsequent reconstruction techniques, for instance, 

finding neutral Vees, or determining the momentum of some categories of tracks. 

Unfortunately, the stand-alone vertex algorithm is not very efficient at finding decay 

vertexes of short-lived particles. When two vertexes are close together, they can coalesce 

into one vertex, with a x2 acceptable to the algorithm. Additionally, small angle tracks 

from charm secondaries are often consistent with the primary or secondary vertex. 

3.1. 7 Vertex Reconstruction (Candidate-driven Method) 

Because of the limitations of the stand-alone vertexing algorithm, a second vertexing 

algorithm was developed. This algorithm is run only when a possible fully-reconstructed 

"candidate" is found (for instance, by virtue of its invariant mass). The tracks in the 

candidate are then used to create a single "candidate" momentum vector. This candidate 

momentum vector is extrapolated backwards and used as a "seed" track for forming a 

primary vertex. The extrapolation errors for the "seed" track are computed from the full 

· covariance matrix of the tracks composing the charm candidate. Tracks are attached 

to the seed track in various combinations and the vertex with the largest number of 
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tracks which has a confidence level of at least 2.5% is accepted as the primary vertex. 

This algorithm produces a number of chi-squared variables: the x2 of the candidate 

(secondary) vertex, the x2 of the primary vertex, and a x2 of the fit which determines 

the distance between the primary and secondary vertexes. In addition, the algorithm 

returns complete covariance matrices for the found vertexes. This algorithm can not 

only find primary and secondary vertexes which are very close, it can also find primary 

vertexes where there is only one track (in addition to the candidate seed track). 

3.2 Data Reduction 

During the 1987-88 run, E687 took 75 million triggers (60 million were hadronic 

triggers) which were written onto 1200 9-track magnetic tapes. A reduced data sample 

is obtained through use of a skim process. The skim was run on all the reconstructed data 

on the Fermilab AMDAHL machine. The n± 's used in this data analysis were obtained 

from a skim stream which was designed to keep all Cabibbo-allowed and Cabibbo singly

and multiply-suppressed decays of charmed mesons into all possible combinations of 

charged kaons, charged pions and Ks 's, up to 6 bodies [16]. This skim combines 

kinematic requirements with vertexing requirements. 

For the n± -+ KT7r±7r± decay, every possible combination of 3 linked tracks with 

total charge of ±1 is formed. The oppositely charged track is declared the kaon. This 

three-track group is considered an acceptable n± candidate if 

a) Its invariant mass is between 1.60 GeV and 2.22 GeV 

b) The candidate-driven vertex algorithm is successfully performed on the candidate. 

c) The log of the confidence level of the fit of the candidate (secondary) vertex is 

greater than -5.0 (which corresponds to a confidence level of about 0.00674). 

d) The kaon is identified as K definite, K/p ambiguous, or K/7r /e ambiguous (for 

momenta greater than 60.8 GeV) AND the significance of separation between the 

secondary and primary vertexes (L/aJ is greater than 2.5 

OR 

33 



The kaon is identified as anything EXCEPT e definite, 7r definite, e/7r ambiguous, 

or p definite AND L / u L is greater than 5.5. 

3.3 n± Analysis 

The n± -+ K=F7r±7r± sample used for this analysis must necessarily include the 

requirements from the n± skim. In addition, some of the cuts were made more strict, 

and an extra cut was applied: 

a) The confidence level of the fit of the candidate (secondary) vertex greater than 

1 %. This exceeds the cut required by the skim. 

b) The kaon identified as K definite, K/p ambiguous, or K/7r/e ambiguous (for mo

menta greater than 60.8 GeV). This cut exceeds the requirement of the skim. 

e) The significance of separation between the secondary and primary vertexes (L/uL) 

greater than 3. This cut exceeds the requirement of the skim. 

!) The pions NOT identified as K definite, p definite, or K/p ambiguous. 

The power of the candidate-driven vertexing algorithm is demonstrated in Fig

ure 3.2. The data sample is from an early data reduction algorithm which does not use 

the candidate-driven vertexing algorithm. The background of the sample is reduced by 

an order of magnitude by requesting a significance of detachment (L/uL) of 8 or greater. 

Figure 3.2also shows an± signal where there is only one track (in addition to the "seed" 

track) in the primary vertex. 

Then± signal used in this analysis is shown in Figure 3.3. 

3.4 Photon Energy Measurement 

Crucial to measuring the cross section is the measurement of the photon energy. 

Assuming a nominal electron beam energy (350 GeV), and measuring the energy of the 

recoil electron in the RESH: 

E1oss = Ebeam - Erecoil (3.3) 
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(See Figure 3.4). In the case where the "lost" energy is radiated into a number of photons 

(multi-bremsstrahlung), equation 3.3 does not give the energy of the interacting photon. 

However, the BGM (the EM calorimeter at zero degrees) will capture the energy of the 

non-interacting multi-brem photons, which we can subtract from E1oss to get the photon 

energy, w: 

W = Ebea.m - Erecoil - EBGM (3.4) 

Of course, equation 3.4 will not be accurate if, in addition to the multi-brem photons, 

there are e+e- pairs generated in the incident electron shower. However, the presence 

of accompanying pairs is not serious for three reasons: 1) extra pairs occur in only 

about 10% of the electron showers, 2) most of the e+ e- pairs will be low energy and 

thus not greatly subtract from the measured photon energy and 3) if the e+e- pairs are 

energetic, the electron will very likely be swept into the RESH along with the original 

recoil electron, thus causing two separated hits in the RESH, which is vetoed in the 

second level trigger. 

There are several problems associated with measuring the photon energy with equa

tion 3.4. First, the energy of the incident electron is not measured. The secondary 

electron beam is tuned to an energy of 350 Gev, but the momentum bite is large (about 

±13%). Thus, we only "know" the electron energy to about ±45 GeV. 

Secondly, the recoil energy measured by the RESH is quantized, since the energy is 

measured magnetically by the position of the struck cell. The position of the hit cell 

will measure the bend angle of the recoil electron through the sweeper magnets, and 

thus the energy of the recoil electron. The recoil electron energy is given as the nominal 

energy of the cell (the energy of an electron hitting the cell in the center), or, if two 

adjacent cells fire, the energy of an electron hitting the crack between the two cells. 

Thus, ERESH is one of 19 different values (10 cells plus 9 cracks between cells). The 

cells are arranged such that low energy photons "see" more granularity of the RESH 

measurement. (Figure 3.4.) 

Thirdly, there is a significant pile-up problem in the BGM. Thus, the BGM will not 

only see the multibrem photons, but also stray photons from a piled-up event. Pile-up 
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in the BGM occurs in about 35% of the events. This will artificially lower the energy 

measurement of the photon. 

We attempt to compensate for these effects when we measure low photon energies 

by comparing the photon energy estimate from equation 3.4 above to the sum of the 

momenta of the charged tracks in the event. This should be a lower bound on the photon 

energy, so for low (less than 200 Ge V) energy photons, we take the larger of equation 

3.4 and Etracks· We chose Etra.cks approximately 25% of the time. 
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Figure 3.1: Momentum ranges where certain Cerenkov identification classes are possible 

a.) for tracks passing through a.11 three Cerenkov counters, and b) for tracks passing 

through only Cl a.nd C2. 
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Figure 3.2: These plots illustrate the power of the candidate-driven vertexing algorithm: 

a) a selection of K:f.7r±7r± events from an early data reduction, which did not use the 

candidate-driven vertex algorithm. This sample requires only Cerenkov identification 

on the K (K definite, K/p ambiguous, or if the momentum is above 60.8 GeV, e/K/7r 

ambiguous). b) The sample with an additional requirement that the significance of 

separation (L/uL) between the primary and secondary vertexes be at lea.st 8. Notice 

that the background has dropped by an order of magnitude. c) The sample with the 

additional cut that the confidence level of the secondary vertex (the candidate vertex) 

be at lea.st 2%. d) A sample of n± events which only have one track (in addition to the 

candidate "seed" track) in the primary vertex. Stand-alone vertexing algorithms cannot 

find one-track vertexes. 
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Figure 3.3: a) The general n± sample used in this analysis as described in section 

3.2, and signals with stricter significance of detachment requirements: b) L / u L > 5, c) 

L/uL > 8, d) L/uL > 11, e) L/uL > 15. The stricter requirements are used for special 

applications. 
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Figure 3.4: a) The E1088 energy spectrum, showing the granularity of the spectrum 

measured by the RESH. b) The measurement of the photon beam energy: E10 ss- Ebgm· 
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CHAPTER4 

Monte Carlo 

The Monte Carlo used for simulating E687 has to be carefully designed to take into 

account some unique problems. First, the long radiator (which produces the photon 

beam from the electron beam) will create several photons for each electron shower, 

causing problems we call multi-bremsstrahlung complications. We need to have some 

mechanism to decide which of the multi-brem photons is to produce a charm interaction. 

Secondly, our Be targets were very unusually shaped, {Figure 2.3) and the beam spot 

exceeds the edges of these targets, which cause targeting correction problems. 

4.1 The Event Generator 

Event generation includes all simulation of the incident beam, the production of 

the primary charm particles, and the decay of all particles. The generation is done 

by a program called GENERIC, which allows the user to freely choose most of the 

parameters of the experimental conditions, as well as the production and decay models 

of the particles. 

4.1.1 Beam and Targeting Simulation 

GENERIC starts by simulating the electron in the secondary beamline, which will 

bremsstrahlung to form the photon beam. The electron's energy is given by the exper

imentally measured distribution. (Measured by running a low intensity electron beam 

into the BGM.) Figure 4.1 shows the measured electron distribution and the distribution 

simulated by GENERIC. 

In order to simulate the photon flux of the beam, <I>( x, y) where x, y is the trans

verse position of the beam, we must assume that the electron profile is the same as the 

photon beam profile. Because the beam spot is larger than the target segments, <I>( x, y) 

is modeled according to primary vertex distributions of photons which interact in the 
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larger scintillator trigger counter TRl, which is just upstream of the microstrips (Fig

ure 2.7). Figure 4.2 shows the x and y vertex distributions in TRl. Clearly the x and 

y distributions are not independent, the x distribution is more peaked for central values 

of y. After some experimentation, we found we could model the beam using elliptical 

probability contours. Since the x beam size is twice as broad as the y beam size, we 

invent a variable, R: 

R = V(x - Xc)2 + (2 (y - Yc)) 2 (4.1) 

where (xc, Ye) is the center of the beam spot. We assume the beam is azimuthally 

symmetric in R. This method is called the R-parameterization method. An R value is 

chosen from 0 to Rmax and an angle from 0 to 27r, and the x and y values calculated. 

Figure 4.3 shows the R distribution. 

The electron then showers, according to 27% radiation length. First, a classical 

amount of energy is subtracted, to account for radiated photons of energy less than 

5 Me V. Then the electron is stepped through the radiator material, according to a mean 

free path of radiation. The electron is allowed to multiple-scatter. The resulting photons 

are tested for conversions, and all shower products are traced until the daughters are 

less than 10 MeV, or have succeeded in exiting the radiator volume. 

The dual problems of targeting and multi-brem photon activation can be addressed 

in the following way. Each of the photons resulting from the electron shower is given 

a possible interaction point by the x, y position of the radiating electron at the point 

of radiation, and a z position drawn uniformly from the upstream face of the target 

to A = L 0 u0 /umc(w), where L 0 exceeds the maximum length of the target, Umc(w) 

is the cross section energy dependence being simulated by the Monte Carlo and u 0 is 

a reference cross section for dimensionality purposes. The photon interaction point 

( x, y, z) is activated into a charm particle with activation probability given by: 

{ 
0 if outside the target; 

A= 
1 if inside the target 
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The probability of a photon being activated into a charm particle is then given by: 

p = (O'(w)) (p(x,y, z)) ~(x,y)dxdy dz 
O' Po Lo 

(4.3) 

where p( x, y, z) is the density function of the target, which is 0 outside the target and 

p0 inside the target. By following this prescription, we simultaneously select a charm 

activation as a function of O'(w), and properly simulate the targeting. 

At this point we have to introduce some complications. One of the experimental 

targets uses Silicon as well as Beryllium, so we must modify equation 4.2: 

{ 

0 if outside the target; 

A = 1 if inside Si; 

P(Be)/ P(Si) if inside Be. 

(4.4) 

That is, if the activation point is in Be, it is only activated about 79% of the time. Here, 

we assume an A 1 dependence of the interaction cross section. 

We also correct for the attenuation of the photon beam in z, by vetoing a fraction 

of activated photons by checking for pair conversion. A conversion location is given as 

x, y of the photon activation location, and a Zconv chosen according to the distribution 

exp(-zconv/.A(w)) where .A(w) is an energy dependent mean free path where .A(w -+ 

oo) -+ (9/7)Xo, (Figure 4.4) where X 0 is the radiation length of the target material. 

If the conversion location is upstream of the interaction location, then this activation is 

vetoed. 

In the case that two (or more) photons in the same event are both activated into 

charm, only the last activation is considered valid. The other photon(s) are de-activated. 

In any event where there is a photon activation into charm, the accompanying pho

tons are tested for conversions according to the method stated above. If these conversion 

locations are inside the target volume, then the electron pairs accompany the charmed 

event. Any unconverted photons also accompany the event. 

We keep track of the number of Monte Carlo beam electrons necessary to create the 

sample of Monte Carlo charm events. We also simulate a BGM counter by incrementing 
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the BGM count for every electron which radiates at least 133 GeV into photons. Of 

course, the luminosity must be scaled to account for the role of the reference cross 

section. Derivation of this scale factor can be found in Appendix A. 

4.1.2 Charm Particle Generation 

Once a photon energy is chosen, the charm particles can be produced. For this 

analysis, a Pi distribution is simulated according to results from Fermilab experiment 

E691 [17]: 

dN/d(Pi)mc ex exp(-1.07Pi) 

An Xf (the longitudinal momentum in the center of mass frame divided by the maxi

mum possible longitudinal momentum) is also chosen with a distribution given by the 

parameterization of E691: 

The P 1- and x f determine the momentum of the fl±. 

The particles decay according to an appropriate matrix element, generally just phase 

space. Additional decay matrix elements are available for semi-leptonic decays, reso

nance decays, and special decays (such as pseudo-scalar to vector plus pseudo-scalar, or 

vector to three pseudo-scalars). 

4.1.3 Additional Event Particles 

Backward jets are created according to the Feynman-Field prescription [18] to add 

particles to the primary vertex. The jets are propagated with respect to the overall 

center of mass with energy of JS/2. Occasionally, two separate events (caused by two 

separate beam electrons) are observed in the same gate. In this case, the second "piled

up" event is virtually always a photon conversion. We call these conversions embedded 

pairs. These conversions are different from multi-bremsstrahlung conversions, in that 

the vertex location is not correlated at all with the charm interaction vertex. To mimic 

this effect in the Monte Carlo, embedded pairs are added to 17% of the events. For 
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expediency, a photon is generated with a simple energy spectrum, 1/w. The energy is 

divided between the electron and the positron according to a flat distribution. A vertex 

location is chosen randomly in the target volume. 

4.2 Event Simulation 

The event simulation is done by a program called ROGUE. This program simulates 

responses of the spectrometer devices to the particles, as well as the particles responses 

(magnetic deflection, multiple Coulomb scattering, etc.,) to the spectrometer. 

The basic philosophy of ROGUE is to trace each particle in turn, by stepping the 

particle to specified stopping locations, until the particle uses up its given decay path, 

fails to clear an aperture, or leaves the spectrometer. Stopping locations are points 

where some action must be undertaken: at wire chamber planes to simulate hits, at 

specified points for multiple scattering, at the aperture of a device to determine if the 

particle is accepted by it. When all the particles are finished being tracked, then the 

event is "digitized", and written to tape. 

4.2.1 Tracking 

Charged particles are traced through the spectrometer with a TURTLE tracing 

procedure: the deflection of the particle is determined according to its momentum and 

the magnetic field that it is experiencing. 

At each SSD plane, a SSD hit is simulated. The amount of charge deposited is 

given by a Landau distribution, fit to microstrip data. Charge sharing between strips is 

given by a simple geometrical model based on the thickness of the ionization cloud and 

the intersection of the track with the detector plane [19]. Multiple scattering occurs at 

the middle plane of the stack. Before digitizing, spurious hits are added according to a 

Gaussian noise distribution. 

At each PWC plane, the relevant coordinate is stored for later digitizing. For each 

hit, the adjacencies are determined. Each plane is characterized by an adjacency fraction, 

af, which is how often a hit is associated with an adjacent hit. These numbers are 
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measured from the data, and are typically 4-6%. A band of width af':~.w (where ~w is 

the wire spacing) in the central region between two wires is the adjacency region. Any 

track passing in the adjacency region will cause hits in both wires. 

Before digitizing, some hits are removed to simulate chamber inefficiency. Each plane 

has a characteristic efficiency, calculated from the data (about 80-98%). If a removed 

hit has an adjacency, the adjacency is removed also. 

Certain locations are set up as multiple scattering stops. At these locations, the 

particle's direction is changed by adding ~x', and ~y1 to the x and y slopes where ~x', 

and ~y1 are gaussian distributions with width: 

.014 GeV -./LR 
<7MCS = Ip I (4.5) 

Where LR is the radiation length of the multiple scattering volume being simulated, 

and I P I is the magnitude of the particle's momentum. At multiple scattering stops, 

electrons and positrons also undergo bremsstrahlung. 

Neutral particles are also moved through the spectrometer, stopping only for aper

tures and calorimeters. 

4.2.2 Cerenkov 

Charged tracks which pass through the Cerenkov counters, and which are above 

threshold, will throw off photons according to the mean free path of Cerenkov radiation 

in the particular counter. These photons are then traced to the mirrors, reflected and 

traced into the collection cones (if any) to the photomultiplier tube. Inefficiencies due 

to radiator transparency, mirror reflectivity, and photocathode quantum efficiency are 

all considered (averaged over wavelength). Electronics noise is not simulated in the 

Cerenkov counters. 

4.2.3 Triggers 

The HxV and OH scintillators are set "on" with probability according to their 

measured efficiency each time a charged particle strikes the counter. The measured 
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efficiencies are generally 95-98%. The Master Gate, which initiates the data aquisition 

process, is formed using the HxV and OH signals (see equation 2.1.a). The T trigger 

(see equation 2.1. b) is assumed to be 100% efficient. 

To simulate the RESH response, we calculate the x position of the recoil electron at 

the RESH counter. The energy is shared among the hit and adjacent cells. The second 

level trigger required a signal in the RESH consisting of 1, 2, or 3 adjacent RESH cells to 

be "on" (RESHLO trigger) as determined by the electromagnetic shower response. The 

cells are "on" if the deposited energy in the cell is more than 20% of the the energy of a 

nominal recoil electron which would hit the center of the cell as determined magnetically 

by its bend in the sweeper magnet. 

The hadronic (HC) trigger response is simulated by adding the total energy of 

charged particles which hit the face of the Hadron Calorimeter, except for the energy of 

electrons, and positrons, which is assumed to be absorbed in the IE, and muons which 

are assumed to deposit no energy in the hadrometer. The trigger is simulated according 

to a parameterization of the trigger efficiency as a function of the sum of the momenta 

of charged tracks hitting the HC (not including tracks which go through the hole in the 

center.) [20). The data and fits for the HC trigger efficiency are shown in Figure 4.5 

for different running periods. 

The multiplicity trigger is "on" if there is at least one hit in POX outside the central 

region (pair region). 

The second level trigger requires the Master Gate, RESHLO trigger, HC trigger, 

and the multiplicity trigger to all be "on". 

4.3 Run Period Simulation 

The various changes in triggering, performance, and targeting conditions were re

flected in the Monte Carlo. The 1987-88 data run is divided into 8 run periods. These 

run periods are delineated by downtimes, target changes, or beam changes. Important 

differences in these run periods are considered by the Monte Carlo: 

1. Target type. 

47 



2. Target location. 

3. Beam location. 

4. PWC efficiency. 

5. HC trigger efficiency. 

In order to simulate the targeting properly, trigger efficiency, and reconstruction effi

ciency, (crucial for measuring cross sections,) the Monte Carlo simulates a "mini-data

run". GENERIC selects a run period for each beam electron simulated. The run periods 

\are distributed proportional to their luminosity in the data. 
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Figure 4.1: The measured energy distribution of the electron beam (histogram) and the 

distribution simulated in the Monte Carlo (curve). 

49 



-8 
C.l -

Vertex Distribution at TR1 

a) 
0 

-1 

-2 

-3 

-4'-'-'_._,__._._......_......_.__.._._.L...L...JL...L..L....L....L..J.....J-.__._.....L..L.........._. 

-4 -3 -2 -1 0 

200 c) 
150 

-2 

Xv (cm) 

0 

Xv (cm) 

-2 0 
Yv (cm) 

1 2 

2 

2 

Xv distributions 

d) 
20 

e) 
80 

40 

20 

0 1--.--~~~~~~-4-i.:;::,,,,-....~............1 
30 

-2 0 
Xv (cm) 

f) 

2 

I .... 
0 

" 
~ 

" 
I 

0 

°' -

I .... 

°' " 
~ 

" I .... 
0 -

Figure 4.2: a) Vertex distribution of interactions in the TRl trigger counter (which gives 

the photon flux ~(x, y) ). The top edge is clearly visible. b) x distribution of interactions 

in TRl (the histogram is the data, and the curve is the Monte Carlo simulation.) c) y 

distribution. Again the edge of the counter is visible. d)-f) x distributions for different 
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Figure 4.3: The measured (histogram) and simulated (curve) R-distribution, as de

scribed in the text. 
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Figure 4.5: The Hadrometer trigger (EHADM) efficiency as a function of the sum of 

the momenta of the tracks hitting the face of the HC (Ehad) for different run periods. 
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CHAPTERS 

n± Cross Sections 

5.1 Problems Caused by Poor Resolution 

We would like to measure the n± photoproduction cross section as a function of 

photon energy ( w) and the differential cross section (du/ dx f) as a function of Feynman x 

(xJ ). Feynman xis given by: 

(5.1) 

where ED is the lab frame energy of then±, Pz is its longitudinal momentum, and mN 

is the mass of the target nucleon. For Xf > 0.25, Xf ::::::: PD/w, where PD is the total 

lab frame momentum of the n±. The momentum is well-determined, but the photon 

energy is uncertain to ±45 Ge V. Therefore, the uncertainty on x f is: 

for Xj > 0.25 (5.2) 

For example, for a photon energy of 150 GeV, equation 5.2 implies a 30% uncertainty 

in x Ji which is more than ±0.2 for x f greater than x f = 0. 70. Uncertainty of ±0.2 is 

large on the scale of the anticipated fall-off of du/dxf at large Xf· 

The serious resolution effects in w and x f pose serious problems in measuring the 

cross section and differential cross section. An event measured at x / and w* will not 

give direct information about the cross section at x / and w*, because each measured 

x / represents a range of true x f values. Similarly, the number of events in a given w* 

range reflects the cross sections over a large range of true w values. In addition, poor 

resolution gives rise to correlations between cross section ranges. Consider two D..x1 bins 

which are completely unresolvable from each other. The number of data entries in one 

bin will not only be affected by the cross section in that bin, but also by the cross section 
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in the adjacent bin. The two bins will be highly negatively correlated: the sum of the 

cross sections will be well determined, but the difference will not be, due the the sloshing 

of events from one bin to the other. In the limit where the bins are nearly completely 

unresolvable, the errors on the cross section will be much larger than the statistical error 

on the number of events in a bin. The method we use for finding cross sections uses a 

Monte Carlo to determine the true x I, w ranges represented by certain measured x /, 

w* ranges, and then the cross section is unfolded from the resolution effects [21]. The 

unfolding process will take into account the enhanced errors due to correlations between 

bins. 

5.2 Method for Measuring Cross Sections 

We bin the data in joint bins of the measured quantities Axj and Aw* (the super

script* indicates measured quantities). Thus, if we have 4 Xf bins and 3 w bins, there 

will be 3 x 4 = 12 measured (AxjAw*) bins. 

The number of events produced in the a'th true Ax I Aw bin (Greek indices will 

indicate true quantities, and Roman indices will indicate measured quantities) will be the 

average cross section for that bin times an appropriate luminosity factor and efficiency 

for that bin: 

(5.3) 

There will be a measurement matrix, Kia, which transforms events which actually occur 

in the a'th bin into events in the i'th measured bin. The number of events that are 

found in the i'th bin is then: 

a a 
(5.4) 

In general, the solution of equation 5.4 is a linear transformation: 

Ca= LPai ni (5.5) 
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In the case where the number of measured bins is the same as the number of true bins, 

then the solution to the cross section problem is exactly constrained: 

that is, 

R-1 
Pai= · IQ 

(5.6a) 

(5.6b) 

In general however, a fit for the the cross section given a redundant number of ni data 

entries is found by minimizing the following x2 (once the Ria matrix is computed from 

Monte Carlo): 

The solution to this standard minimization problem gives: 

(5.7) 

Equation 5. 7 represents the optimal variance solution when all variables are Poisson 

distributed and uncorrelated, and there is no background. 

In order to count the number of n± 's which occur in a particular bin, we need to 

incorporate some sort of background subtraction in our technique. In principle, one 

could make invariant mass plots for each measured .6.xj.6.w* bin, fit the signal peak to 

find ni, and then multiply by the p matrix to calculate Ca. An alternative is to make 

separate weighted histograms for each desired Ca measurement. An event is entered into 

a given a histogram with a weight of Pai, where i is the measured bin that the event falls 

into. The resulting histogram will have a signal peak over a smooth background. The 

area under the peak, < Perini >,will be the model independent, unbiased, background

subtracted estimator for Ca according to equation 5.5. 
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In actual practice, we do not wish to measure cross sections for individual ~x f ~W 

bins, rather we wish to make a histogram for each, say, ~x I bin, where the ~w bins 

have been summed over. The weighted histogram scheme is ideal for this purpose. 

The individual weights for the a bins belonging to the concatenated "super-bin" are 

added, forming a "super-weight". The event is added once to the super-bin cross section 

histogram weighted by the super-weight. 

5.3 Constructing the Ria matrix 

We construct the Ria matrix from Monte Carlo. Since the Monte Carlo adequately 

(we hope) simulates the experimental apparatus and analysis procedures, the measure

ment matrix, Kion and the efficiency function, ta, are the same as for data. Similarly, 

we assume that the Monte Carlo properly simulates the photon spectrum. Then the Ria 

matrix will be the same for Monte Carlo and data, except for a factor normalizing the 

total luminosity: 

(dat) 
R· _ Ctot R(mc) 

m - (me) ia 
ctot 

(5.8) 

Since the normalization factor is a ratio, we can chose any luminosity indicator that we 

want. Our choice, the BGM scaler, is justified in section 5.5. 

We now turn to a discussion of how the Ria and Pai matrices are computed by the 

Monte Carlo. The basic idea is to increment a matrix, Gia for each event which falls in 

the true a'th bin, and is measured in the i'th bin, then 

(5.9) 

The cimc) is the Monte Carlo cross section used to simulate data, and is given by: 

C. = T 0,,, T dx : (x,w) (5.10) 

Wta Xta 
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5.4 Error Calculation 

We have assumed that the signal errors are Poisson distributed and uncorrelated 

such that: 

(5.11) 

The anticipated errors for the cross section fit are: 

(5.12) 

The error on Ca will be: 

u(Ca) = J~ n;r?,,; (5.13) 

From this we see that the variance on Ca is the sum of all weights in a bin added in 

quadrature. This is the standard way of computing errors in a weighted histogram, 

which means that the error in the signal peak in the weighted histogram will be the 

error on Ca. If one fits the weighted mass plot with standard weight errors for each 

mass bin, then the error in the area under the invariant mass peak will reflect both the 

errors from equation 5.13 as well as the additional error caused by the background. 

In addition to these errors there will be some error associated with the finite statistics 

of the Monte Carlo, with which was made the Pai matrix. If we include the Monte Carlo 

errors, then the errors on the cross sections given by equation 5.13 should be modified: 

(5.14) 

(See Appendix B.) Since we typically have 10 times the Monte Carlo sample as data, 

the error must be scaled by about 1.05. 

5.5 Luminosity 

To monitor luminosity, a scintillator counter (BT) counts electrons in the secondary 

beamline. Unfortunately, this counter will also count pions which contaminate the beam

line, but which do not contribute significantly to the photon flux. The BT counter has 
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also been shown to have a pile-up problem at high rates; a. problem due to multiply 

occupied rf buckets. 

Thus, due to the difficulty of understanding the BT counter, we use the Beam 

Gamma Monitor (BGM) as a luminosity counter. Its signal is counted every time there 

is at least 133 GeV deposited in the BGM. Since the BGM counts photons, the count is 

not compromised by the pion contamination in the secondary beamline. There is also 

less problem with pile-up: two electrons which arrive within the resolving time of the 

BGM scaler can cause a maximum of one count in the BGM, but the photon radiation 

from the two electrons is more likely to exceed the BGM threshold than photon radiation 

from one electron. These competing effects will cancel, as shown in Figure 5.1. 

The BGM rate is artificially depleted when photons destined for the BGM are ab

sorbed (pair-produce) in the spectrometer. A simple Monte Carlo is used to determine 

these effects. Uninteracted photons are traced through the spectrometer. If the photon 

pair-produces in the spectrometer then the electrons are traced through the spectrom

eter. In some cases, one or both of the electrons are focussed back to the BGM, where 

their. energy is deposited. This Monte Carlo shows that the number of BGM counts 

should be multiplied by 1.044 for the 4-Be target, 1.055 for the 5-Be target, and 1.079 

for the Si target to get the true number of times an electron from the secondary beamline 

gives off at least 133 Ge V's worth of photons. 

The recorded counts in the BGM must be corrected not only for the absorption 

factor, but also for livetime. Photons which arrive during the deadtime of the experiment 

do not exist as far as luminosity is concerned. The livetime for this experiment is 

typically 75%, which is measured by comparing a free-running ((H x Vh1hody ·OH) EB 

(H x Vh2body) to one which is inhibited during the experimental deadtime. 

For each spill found in the data sample, the relevant entry in the Spill Scaler Record is 

looked up. If the BGM count is in the record, it is multiplied by the relevant absorbtion

correction factor, and adjusted for livetime. A running sum is kept of the total. For 

about 5% of the spills, no BGM scaler entry is found (due to hardware glitches, etc.) 

We estimate the BGM counts for the spill by using the average BGM counts for the 

particular run period. 
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5.6 Results 

The n± sample used to measure cross sections includes the general requirements 

previously explained, plus several additional cuts. First, we wish to clean up the signal 

a bit more, so we apply a harder significance of detachment cut: L/aL > 5. Two cuts 

are added to ensure that the data sample passes the same trigger requirements as the 

Monte Carlo: 

1. The second level trigger in data includes not only the hadronic energy trigger, 

but also prescaled Master Gate, muon pair trigger, etc. Since the Monte Carlo 

does not simulate any of these triggers, events are required to satisfy the hadronic 

energy trigger. 

2. During certain times in the data run, the RESH requirement was removed from the 

second level trigger. Events from these run periods are kept only if the RESHLO 

trigger requirement is satisfied in addition to the second level trigger requirement. 

Two other cuts were added to ensure the quality of the data sample: 

3. Several reconstructed tapes (20%) were mis-written, so that BGM energy informa

tion was unavailable. Since we do not want to bias our photon energy estimation 

by ignoring or inventing BGM information, we remove these tapes from the data 

sample. 

4. Luminosity information was unavailable for a few runs. Data from these runs is 

ignored. 

In total, the sample includes about 1760 n± events and is shown in Figure 0.1. When 

making the Ger weighted histograms, we choose to histogram the normalized mass dif

ference, (mv - mmeas)/am. This is because the mass resolution can be a function of 

the n± momentum, and thus Xf· The fit for the normalized mass difference can be 

constrained so that the gaussian width equals 1. 

The i and a bins are chosen to be the same. We chose w bins so that their width is 

approximately twice thew resolution. The exact bin boundaries take into account the 

structure inherent in the measured photon spectrum. Because the RESH measures only 

quantized energies, thew spectrum will have spikes (Figure 0.2). The subtraction of 
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of the BGM energy smears these spikes toward lower energies. We chose bins so that 

spikes and their smears are included in the same bin. The bins are 

x1bins w bins (GeV) 

0.0 - 0.2 100 - 184 

0.2 - 0.45 184 - 261 

0.45 - 0.65 261 - 350 

0.65 - 1.0 

The n± signal, partitioned into these bins, is shown in Figure 5.4. 

The Monte Carlo sample includes about 19,000 reconstructed D events. These events 

were generated with a linear cross section for photon energies above 50 GeV; the slope 

was based on early cross section calculations: 

u(w)mc ex ~:~ (w - 50 GeV) 

The generated x f distribution is described in detail in Chapter 4. The n± --+ K=f7r±7r± 

proceeds according to three-body phase space. The recoil state is chosen to be a generic 

charm quark, which is allowed to be any of the well-established charm mesons or baryons. 

For bookkeeping simplicity, care was taken to ensure that the recoil charm particle did 

not at any time produce a n± --+ K=f7r±7r± decay. 

To compare the Monte Carlo model to the data, we can bin the Monte Carlo as we 

did for the data in Figure 5.4, fit for the number of n± in each bin, and divide by the 

total. This will give a fractional yield for each bin. We can compare to the fractional 

yield of data for each bin: 
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Table 5.1: Fractional yield for Data (Monte Carlo) 

w = 100 - 184 184 - 261 261 - 350 GeV 

Xj= 0. - 0.2 3. 7 ± 1.0% (3.1 %) 10.2 ± 1.6% (8.2%) 3.2 ± 0.9% ( 4.8%) 

0.2 - 0.45 16.9 ± 1.6% (11.6%) 23.5 ± 2.1% (22.7%) 7.1 ± 1.0% (11.2%) 

0.45 - 0.65 7. 7 ± 1.0% (8.2%) 10.6 ± 1.2% (11.4%) 4.1 ± 0.6% (4.4%) 

0.65 - 1.0 5.5 ± 0.8% ( 4.3%) 4.3 ± 0.7% (4.6%) 0.8 ± 0.3% (1.2%) 

The Monte Carlo was run without any absorption of tracks. This will make the 

efficiency of the Monte Carlo artificially high with respect to the data. The absorption 

can be added to the Monte Carlo in a post hoc fashion during the analysis. For each 

track in a n± decay, its probability of absorption is calculated, by the distance it travels 

in the target and the meson absorption length. The absorption length is pretty much the 

same for kaons and pions, and is independent of momentum in the momentum ranges 

we deal with. This absorption calculation shows that about 8% of the Monte Carlo D± 

signal will vanish due to absorbtion, thus we will have to multiply our measured cross 

sections by 1.08 to take into account this effect. 

In addition, the Cerenkov efficiency for identifying the kaon in the Monte Carlo is 

better than for the data. Since the efficiency difference is independent of momentum, 

we can compensate for this effect by scaling the final cross sections. The scale factor 

is determined experimentally with D 0 's from D* decay [22]. Since a clear D0 signal 

without Cerenkov identification is easily obtained by cutting on the D*-D0 mass differ

ence, the effects of the Kaon identification requirement can be determined. The scale 

factor due to Cerenkov efficiency is about 1.21. 

The combined scale factor for absorption and Cerenkov effects is thus 1.30. This 

factor will be applied to our measured cross sections. These effects will also contribute 

to the systematic error. 

The weighted histograms of the normalized mass difference for the various C0 , as 

well as the fit to to signal peak, are shown in Figure 5.5. The cross section results are 

shown in Figure 5.6. The measured cross sections are for inclusive D+ and n- per Be 

nucleus times the branching ratio for n± -t K=i::1r±1r±. The cross section as a function 
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of photon energy includes the x f region from 0. to 1. We have included a systematic 

error of 30%, added in quadrature. (See section 5.7.) 

The measured cross section for inclusive n± is determined to be 

BR· a= 0.368 ± 0.073 ± 0.111 µb/Be nucleus 

at our average photon energy of 220 Ge V. 

A recent photoproduction experiment at the Fermilab Tagged Photon Lab [17] pub

lished an± inclusive cross section of 1.34 ± 0.03 ± 0.23 µb/Be nucleus, for Xf > 0.2 

at their average energy of 145 GeV. From their parameterization of the cross section 

as a function of x f, we find that about 34.3% of their cross section is between x f = 0. 

and x 1= 0.2. We must scale their cross section by 1.52 to account for the the fraction 

between x f = 0 and x f = 0.2. Multiplying by the branching ratio that they used, 9.1 %, 

their BR· a becomes 0.186 ± 0.031 µb/Be nucleus, where the systematic and statistical 

error have been added in quadrature and scaled by the same factor as the cross section. 

The value measured in this analysis for 142 GeV is 0.242 ±0.034 ±0.073 µb/Be nucleus. 

This number is consistent with the E691 measurement, within errors. 

Most of the published cross section results are for total cc production. To prepare 

the E687 result for comparison with these published results, we must first divide out the 

branching ratio of the decay n± ~ KT7r±7r± to get the total inclusive cross section for 

n±. (We use the currently accepted value of 7.9%.) We must then invoke a scale factor 

which is the inverse of the fraction of the total cc cross section which is n±. The E691 

total cc cross section at 145 GeV is approximately 4.93 µb/Be nucleus (17]. Comparing 

the E691 cc cross section to their n± cross section (corrected for their x f range), the 

E691 scale factor from n± to cc cross sections is 2.42. We will apply that scale factor 

to this analysis. The resulting estimated cc cross sections from this analysis are shown 

with other cross section measurements, as well as the PGF cross section calculations of 

Ellis and Nason [10], in Figure 5.7. 
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5. 7 Systematic Error 

There are many factors which will contribute to the systematic error of the cross 

sections. We try to pay particular attention to factors which will make our measured 

cross section larger than the true cross section, because E687 measurements tend to be 

somewhat higher than other measured results. 

1. Since the beam profile, <I>(x, y) was measured with devices which were not ade

quately large for the task, the R-parameterization of the <I>( x, y) could inadequately 

describe the true beam profile. If for instance, we over-attribute the beam to the 

halo section, then the luminosity-to-charm ratio will be low in Monte Carlo com

pared to data. This means that our cross section measurement is higher than 

the true cross section. If however, there is more beam halo in data than we are 

describing in Monte Carlo, then our current measured cross section is lower than 

the true cross section. 

2. The Hadron Calorimeter trigger is not well understood. At a certain point in the 

running the Central Hadron Calorimeter, CHC, was accidentally removed from the 

energy sum which constituted the hadronic energy trigger. With the central region 

missing, the HC trigger effectively becomes a transverse energy trigger. Since the 

transverse energy for charm is larger than for the ordinary hadronic events with 

which the HC trigger was parameterized, the HC trigger could actually be more 

efficient in charm data than in Monte Carlo, which means that our measured cross 

section is higher than the true cross section. 

3. Similarly, charm events will be kaon rich. Kaons will leave less energy in the Inner 

Electromagnetic counter (immediately upstream of the HC), and thus deposit more 

energy in the HC, again making the HC trigger efficiency greater for charm data 

than for the ordinary hadronic events with which HC trigger was parameterized. 

Again, this means that our measured cross section is higher than the the true cross 

section. 

4. If noise in the PWCs adversely affects our ability to reconstruct tracks, then the 

Monte Carlo track reconstruction efficiency will be artificially high. Again, this 

causes our measured cross section to be lower than the true cross section. 
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5. Since the P4 used in this experiment was undersized, a sizable number of particles 

strike the aluminum frame. If these particles shower, it will increase the efficiency 

of the HxV trigger (since the HxV counters are immediately downstream of P4.) 

This effect will mean that our measured cross sections are higher than the true 

cross section. 

We estimate that the combined systematic effects cause a 30% systematic error in the 

cross sections. 
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Figure 5.1: The ratio of the BGM scaler to the number of electrons as a function of 

the number of protons delivered to the wideband beam (SEM). (The number of electrons 

is counted by the BT scintillator, which suffers from pile-up due to multiply occupied 

rf buckets. The pile-up can be eorrected by a simple model based in the duty factor 

of the beam.) The BGM/e ratio is constant over the entire range of delivered protons, 

indicating that the BGM scaler has no problem with pileup. 

65 



> 
Q) 

~ 

0 
~ 

"'-
rn 

...,_) 

~ 
Q) 

> 
Q) 

K7T7T 

1000 

750 

500 

250 

0 
1.6 

(cross section sample) 

1757 ± 70 D±'s 

1.7 1.8 1.9 2 2.1 

invariant mass (GeV) 
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Figure 5.7: Comparison of various charm cross section measurements to photon-gluon 

fusion calculations of Ellis and Nason [10]. The central line represents the calculation, 

and the upper and lower curves represent theoretical uncertainty. Calculations for charm 

quark mass of: a) 1.2 GeV, b) 1.5 GeV, and c) 1.8 GeV. The data points are also from 

Ellis and Nason, see references therein. 
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6.1 Method 

CHAPTER 6 

n± Lifetime 

In general, a lifetime fit proceeds by fitting the data to an exponential: 

dN 
dt ex exp(-tmeas/r) 

where t is the proper time. However, attempting to separate the signal from the back

ground on an event-by event basis is impossible, so some method must be invented to 

take care of the contamination by the background. In doing so, one can bring in an 

appreciable amount of systematical error due to Monte Carlo model dependence or a 

particular chosen parameterization. In addition, in this case, the n± sample is obtained 

through use of a significance of detachment cut, which implies a minimum lifetime (on 

an event-by-event basis). We wish to find a lifetime measurement method which will 

include minimal model dependence or parameterization and will be able to deal with 

the effects of the significance of detachment cuts. 

Fermilab Experiment E691 has devised a clever method which addresses the above 

issues [23]. This lifetime method fits for a modified proper time, t = tmea.s - Aut, 

where O"t is the error on the individual event. That is, we "start the clock" (A) on an 

event-by-event basis, using the individual errors for that event. The modified proper 

time distribution will also be exponential. This method allows us to incorporate a 

significance-of-detachment requirement (which removes zero lifetime background), but 

lose as few real charm events as possible. 

The method we use to find lifetimes is a binned maximum likelihood fit to an expo

nential, with sideband background subtraction. ("Sidebands" are invariant mass regions 

at higher or lower mass than the charm particle signal region.) Since this method uses 

no parameterization for the lifetime of the background, it does not suffer from system

atic uncertainty arising from such a parameterization. Since the background will include 
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both zero-lifetime background as well as "charm leftovers", a suitable background pa

rameterization is difficult to construct. In addition there is very little statistical power 

in parameterizing the background, and the systematic effects are difficult to understand. 

6.2 Lifetime Resolution 

The measured proper time and the error in the proper time are calculated from the 

decay length of the n± and its error: 

L mD 
tmeas = - -p 

C D 

UL mD 
Ut=--

C PD 
(6.1) 

where mD and PD are the mass and momentum of the n±. Our resolutions are 

studied using a sample of n°'s which come from n•'s [24]. Cutting on the mass difference 

between the n° and n• gives a n° sample which is selected only kinematically, with no 

lifetime requirements at all. Plotting the fraction of n°'s which survive a L/aL cut, and 

using the world average lifetime, at is found to be about 0.048 ps. We can confirm this 

number with Monte Carlo by measuring the difference between the measured lifetime 

and the generated lifetime. From Monte Carlo, at is about 0.045 ps. (See Figure 6.1.) 

6.3 Binned Maximum Likelihood 

In each lifetime bin, centered at ti, there will be Si signal events and Bi back

ground events, for a total of Ni = Si + Bi events. The total number of signal events is 

Stot = Ei Si. The likelihood function (assuming Poisson statistics) is: 

where 

N; £=IT µi e-µ; 
N

·' I• 

(6.2) 

(6.3) 

The function t:(t) is a modulator function which describes how the measured events are 

expected to deviate from a true exponential. Minimizing (- ln £) with respect to r 
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produces a lifetime. We can repeat this calculation for different values of A, the "clock

starting" point. 

6.4 The ~( t) Function 

The t:(t) function takes into account two factors. First, the reconstruction efficiency 

may have a dependence on decay distance, and thus proper time. Second, resolution 

effects will move events from their true lifetime bins into adjacent bins. 

Some examples of the effects included in the t:( t) function: 

1. Events with very long lifetimes will verticize inside the microstrips. The daughters 

from this decay will be less likely to be reconstructed. 

2. Daughter particles which traverse a longer distance of the target are more likely 

to be absorbed, lowering the efficiency for shorter-lived events. 

3. The angular acceptance of the SSDs may discriminate against events which "open 

up" far upstream of the SSD. 

4. For very short-lived events, resolution effects may cause the the measured lifetime 

to fluctuate negative. Since there are no "negative lifetime" events to fluctuate 

high and compensate, there will be a depletion of events at very short lifetimes. 

The effects listed above, as well as other efficiency effects, are difficult to calculate, 

so we determine t:( t) from Monte Carlo. We measure the deviance of the measured 

distribution from the assumption that the reconstructed events are distributed according 

to an exponential. For each lifetime bin: 

Nrnc 
fi = --~·--

e-tif r 
Nfotc -- tl.t 

T 

(6.4) 

where Nie is the number of Monte Carlo events reconstructed in bin i, Nt~tc is the total 

number of reconstructed Monte Carlo events, T is the Monte Carlo lifetime, and tl.t is . 

the bin width. 
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6.5 Additional Sources of Uncertainty 

In addition to the uncertainty of the lifetime due to the fit, there are two additional 

sources of lifetime uncertainty: that due to fluctuations in the sidebands, and that due 

to fluctuations in the Monte Carlo. 

The variance of the fit parameter, a, measured by maximum likelihood is given by: 

--\: = J dt }8F/8a)
2 

(]'ex <J' ( F - Fpred) 
(6.5) 

where F is the data which are being fit to, and Fpred is the theoretical function being fit 

for. In the usual case, there is no error in Fpred, since the fit function is known, so the 

total variance of F - Fpred is just the variance of F. In our case, however, we do have 

an uncertainty in Fpred, due to statistical fluctuations in the sideband background, and 

due to fluctuations in the Monte Carlo, which determines f. 

6.5.1 Uncertainty Contributed by Sideband Subtraction 

The sideband subtraction method assumes that the time evolution of the background 

under the signal peak is well-described by the sideband background. Clearly, the error on 

the background estimation will decrease as the sideband width is increased. However, as 

the sidebands grow farther from the signal region, the more unreliable their description 

of the lifetime distribution of the signal-region background. Some compromise between 

the two effects must be made. 

The anticipated variance of the measured lifetime will be given by: 

(6.6) 

where our fitting function is Nred(t) = sred + Bred, where sred is the predicted 

signal, sred = t(t)Stotexp(-t/r)/r and Bred is the predicted background, Bred = 

RB[6 where Bf6 is the number of events in the sidebands and R is the ratio of the 

width of the signal region to the combined width of the sideband regions. The data we 

are fitting is given by Ni = Si +Bi. In the case where Nred is totally determined, 
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that is, ignoring fluctuations in € and B 8 b, the denominator for equation 6.6 becomes 

u2(Ni - Nred) = u2(Ni) = Ni. If however, we include the effects of the variance of 

the sideband background, the denominator in equation 6.6 becomes: 

u2(Ni - Nred) = u2(Ni) + u2(Nred) 

= u2(Ni) + u2(sred) + u2(Bted) 

= u2(Ni) + u2(Sf'ed) + R2 u2(Bfb) 

= u2(Ni) + R2 u2(Bfb) 

(6.7a) 

(6. 7b) 

(6.7c) 

(6. 7d) 

where we have ignored uncertainty in the €function in step 6.7d, so that the variance 

of the predicted signal is zero. The variance of a yield is, of course, just the yield itself. 

We then scale the errors reported by the maximum likelihood fitter by the ratio of the 

original anticipated error to the new (sideband-corrected) anticipated error: 

J dt(8S~r)2 

J dt-(_8S_/_8r_)
2
_ 

N: + R2 B~b 
' ' 

6.5.2 Uncertainty Contributed by Monte Carlo 

(6.8) 

In addition, the lifetime uncertainty will include effects due to fluctuations in the 

Monte Carlo lifetime distributions. These fluctuations will cause uncertainties in the 

t(t) function, and therefore the fitting function. It is obviously better to have as much 

Monte Carlo as possible, and certainly the Monte Carlo sample should be much larger 

than the data sample. 

If we work in the limit of negligible background 

(6.9a) 

The variance of (sred) ultimately comes from Monte Carlo counting statistics. Since 

sred oc € (equation 6.3), and € oc N["'C (equation 6.4), then u2(Sf'ed)f sred = 1/N["'C 
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and 

(6.9b) 

Here we make some approximations to simplify the calculation of the new error. 

Since the x2 has been minimized, Si ~ sred. Also, if the Monte Carlo lifetime is 

identical to the data, the measured Monte Carlo events will fall into lifetime bins in the 

same proportion as the data, so that Si/ Ni( me) will just be Stot/ Nt<:";c). Thus 

u2(S· _ Sl!red) ~ S· (i + Stot ) 
I I I (me) 

Ntot 
(6.9c) 

The constant term (1 + Stotf Nt~'":c)) can be pulled out of the integral of equation 6.6, 

which means that the new error is given by: 

6.6 Lifetime Results 

1 + Ntot 
N(mc) 

tot 
(6.10) 

The n± sample selected for the lifetime analysis includes all of the analysis require

ments previously explained, as well as a cut which removes events with either primary 

or secondary vertexes in the TRI trigger counter. This cut removes background with 

secondary interactions, which may distort the lifetime measurement. Only events with 

lifetimes less than 6r v± are used. The sample includes about 2600 n± 's and is shown 

m Figure 6.2. 

The requirements of the skim and the analysis are relatively bias-free, except for the 

significance-of-detachment cut of L/u L > 3. Since a significance of detachment cut is 

implicit in our lifetime method (in fact it is just A), the skim requirement merely forces 

a lower bound on our choice of A. 
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The signal region is chosen to be ±25 MeV of the accepted value of the D± mass, 

and the sideband background regions are chosen to be 50 Me V wide and separated from 

the signal region by 40 MeV. The R factor, therefore, is 1/2. Typical scale factors due 

to sideband fluctuations are about 1.04 to 1.06. The signal and sideband regions are 

illustrated in Figure 6.2. The number of t bins in the binned maximum likelihood fit is 

chosen to be 25, although the results do not change appreciably when 100 bins are used. 

The Monte Carlo sample, which requires the same analysis cuts as the data, consists 

of about 23,000 events, about 9 times larger than the data sample. The generated r ± 
. D 

of the Monte Carlo events is 1.067 ps. Figure 6.3 shows c::(t) functions for A = 3 

and A = 5. This function deviates significantly from 1 at large lifetimes because of the 

inefficiency of reconstruction for events which decay inside the microstrips. However, 

the c::( t) function shows very small corrections at short lifetimes. The u r scale factor due 

to Monte Carlo fluctuations (equation 6.10) is about 1.05. 

Figure 6.4 shows sample lifetime fits for A = 3 and A = 5. The points plotted are 

the background-subtracted number of events in the bin divided by the c::(t) function; the 

error bars are simply the square root of that number. The line shows the result of the 

fit. Figure 6.5 shows the measured lifetime using different values of A. 

To quote a lifetime, we want to use an A region where the signal-to-background is 

relatively good. At A values greater than about 7.5, the signal-to-background is greater 

than 3 to 1. We also want to minimize our dependance on the modulator function, c::, 

measured from the Monte Carlo. At an A cut of about 14, 10% of the data will come 

from lifetime regions which are appreciably influenced by c::. Thus, we average the lifetime 

values at A = 8 to A= 14. Systematic error is estimated to be 0.020 ps by looking at 

the magnitude of Monte Carlo corrections and the fluctuations of the measured lifetime 

for different values of A. Thus, the n± lifetime measured in this analysis is: 

TD± = 1.061 ± 0.039 ± 0.020 ps 

Figure 6.6 shows this result in comparison with other recent lifetime measurements. A 

remarkably consistent picture emerges. 
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Figure 6.1: a) The fraction of D0 's passing a certain L/uLcut. By using the lifetime of 

the D0 and a resolution of Ur= 0.048 ps, one gets the plotted line. The line matches the 

data very well. b) Distribution of differences between the reconstructed and generated 

lifetime of Monte Carlo events. The width of this distribution is 0.045 ps. 
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7.1 Charge Asymmetry 

CHAPTER7 

Additional n± Studies 

Associated production models will predict an excess of n- (anti-charm) mesons. 

Studies were done to find the ratio of n+ to n-. For several values of LI <TL' the signal 

was split into positive and negative histograms. These signals were fit to a gaussian with 

a fixed width equal to the width of the fit to the total signal. The signals and fits are 

shown in Figure 7.1. In each case there appears to be a slight excess of n+ mesons, 

although the yields of the positive and negative D's are consistent within errors. The 

Monte Carlo exhibits no charge asymmetry. The charge ratio for data and Monte Carlo 

is summarized in Table 7.1. 

Table 7 .1: Charge Asymmetry for data and Monte Carlo 

L/<T L > n+ / n- (data) n+;n- (MC) 

5 1.042 ± 0.062 1.001 ± 0.014 

8 1.073 ± 0.062 0.998 ± 0.015 

11 1.057 ± 0.062 1.006 ± 0.016 

15 1.066 ± 0.068 1.019 ± 0.018 

The D+ / v- ratio result is obtained by averaging the values for the different L /<TL 

cuts and using a typical error bar. The result is: 

number of n+ = 1.060 ± 0.063 
number of n-

The anti-charm excess predicted by associated production models will be particu

larly noticeable near threshold. Thus, we look at the charge asymmetry for different 
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momentum ranges. Here, we use the normalized mass difference, (mn - mmeas)/um, 

since the width of the signal may be a function of momentum. If we use the normalized 

mass difference, we can constrain the fit to be of width = 1. The results are found in 

Figure 7.2. Again, although there may be a slight excess of n+ mesons, the excess is 

not statistically significant. There is no noticeable dependance on the momentum. We 

see no evidence of an excess of n- which is predicted by associated production models. 

7.2 Transverse Momentum Distribution 

We have also studied the n± distribution as a function of transverse momentum 

squared, Pi. From Monte Carlo we determine that the acceptance is fiat in Pi out to 

about 8 or 10 GeV2, where we run out of statistics. (See Figure 7.3.) To plot the Pi 
distribution, we make sideband-subtracted weighted histograms. Two mass sidebands, 

from 1.74 to 1.78 GeV and 1.96 to 2.00 GeV are chosen. Each sideband is the same 

width as the signal region which extends from 1.85 to 1.89 GeV. Therefore, events 

whose mass falls in the sideband region are added to the histogram with a weight of 

-0.5: Events in the signal region are incremented with a weight of 1.0. Histograms are 

made for various significance of detachment requirements. The harder the cut on the 

significance of detachment, the less the background, and the less we rely on the validity 

of the sideband subtraction. Of course, there will be fewer events as we cut harder. The 

Pl. distributions are shown in Figure 7.4. The distributions are fit to exponentials of 

polynomials in Pi: 

The fits for the various L / u cuts are very consistent. Taking the average of the ai and 

a2 values for the different L/ O" L cuts gives: 

ai = -0.925 ± 0.050/ GeV2 

a2 = 0.0368 ± 0.0071/ GeV4 
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7.3 Dynamic Substructure in then±-+ K=Fr±r± decay 

The D± sample for the purpose of making Dalitz plots must be fairly clean. The 

sample used is the usual sample with a harder significance of detachment cut: L/uL > 15. 

We then use only events in in the D± mass region: 1.83 GeV < mv < 1.90 GeV. Since 

there are two identical pions in the final state, it is appropriate to select a specific one of 

the K=F7r± masses to plot against the mass of the 7r±7r±. (Technically known as "folding" 

the Dalitz plot.) Conventionally, one selects the lower of the two K=F'Tr± masses. In the 

absence of interesting effects, we expect the events to spread uniformly throughout the 

allowed region of the Dalitz plot. Figure 7.5a shows the Dalitz plot for Monte Carlo 

events, where the D± -+ K=F7r±7r± decay is governed solely by three-body phase-space. 

It has been claimed [13,25] that about 20% of the D± -+ K=F7r±7r± proceed via 

D± -+ K*(892)7r±. The Dalitz plot for a Monte Carlo with this fraction of K* events is 

shown in Figure 7.5b. A clear, narrow K* band can be seen in this Monte Carlo Dalitz 

plot. 

The Dalitz plot for the data sample is shown in Figure 7.6. Clearly the distribution 

of events in the Dalitz plot is not uniform, although no clear resonance bands can be 

seen. The data resemble neither of the Monte Carlo Dalitz plots. The Dalitz 

plot and its projections are shown in Figure 7.7, along with Marklll data [13,31]. The 

distributions are very similar. 

Figure 7.8 shows the (K=F7r±)1ow mass for the D± sample described above, and for 

the K* -added Monte Carlo. The Monte Carlo K* signal is evident, but no corresponding 

signal can be seen in the data. We then try to enhance the possible K* signal by taking 

into account conservation of angular momentum. Since the D± is a pseudo-scalar, which 

decays into a vector (K*) and a pseudo-scalar (7r±), we expect the angle between the 

the two pions, as viewed in the K* center of mass, to be distributed according to cos2 0. 

Cutting on I cos2 ()I we get the K=F7r± mass plots shown in Figure 7.9. 

Diakonou and Diakonos [14] have postulated that most of the D± -+ K=F7r±7r± signal 

is due to D± -+ K*(892)7r± and n± -+ K~(1430)7r±, which interfere so significantly, 

that the relative amounts of K*(892) and K~(1430) must be derived from complicated 

Monte Carlos which take into account the effects of interference. 
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Figure 7 .1: The n± signal, and charge separated signals for various values of L / u L. 
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CHAPTERS 

Conclusion and Summary 

Fermilab experiment E687 has seen a large sample of n± charm mesons in the 

decay n± -+ K~1f'±1f'±. This sample is comparable to the world's largest sample. With 

this sample we have been able to study the production dynamics, the lifetime, and the 

dynamic substructure of the decay. This chapter will summarize the results. 

We have been able to extend cross section measurements out to the world's highest 

photon energies. At our average photon energy of 220 GeV, the cross section times 

branching ratio for inclusive photoproduction of n± is: 

BR· u = 0.368 ± 0.073 ± 0.111 µb/Be nucleus 

for x 1> 0. Our cross section result at a photon energy of 142 GeV agrees with recent 

results from Fermilab experiment E691, at 145 GeV [17]. Our cross section as a function 

of photon energy shows a gentle rise, consistent with a compendium of cross section 

results. Our estimate of the total cc cross section as a function of energy appears 

somewhat higher than other measurements, although it is consistent with other data 

within errors. Our measured cross section agrees well with the photon-gluon fusion 

model calculated to second order in a 8 , for me near 1.5 GeV [10]. The cross section as 

a function of x f is also presented. 

We are able to make very precise measurements of lifetimes with the aid of our 

Silicon microstrip vertex detector. The lifetime of the n± meson is calculated using 

a binned maximum likelihood technique with sideband background subtraction. The 

lifetime of the n± is measured to be: 

TD± = 1.061 ± 0.039 ± 0.020 picoseconds 

The lifetime is consistent with other lifetime results and with the world average. 
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The ratio of n+ ton- has been measured and is found to be consistent with 1. 

number of n+ = 1.060 ± 0.063 
number of n-

The ratio is not a function of momentum. No evidence is seen for associated production. 

The transverse momentum (squared) distribution for n± was measured. The distri

bution is fit to the form: 

ai = -0.925 ± 0.050/ GeV2 

a2 = 0.0368 ± 0.0071/ GeV4 

Dynamic substructure is found in the n± -+ K-=F7r±7r± decay, although no clear 

resonances are seen. The results agree with the Mark III data. The substructure is 

described by Diakanou and Diakanos [14], who attribute the lack of clear resonances to 

interference between the K*(892) and the K;(1430). 
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APPENDIX A 

Calculation of the Monte Carlo Luminosity Scale Factor 

A.1 Charm Particles Produced in Data: 

A small target element of density PA and thickness dz, irradiated by dn'Y photons 

will produce dnc charm particles, assuming a cross section per nucleus of u~A), which is 

different for different nuclei: 

(
.Na) (A) dnc = dn'Y A Uc PA dz (A.I) 

where .Na is A vagadro's number, and A is the atomic weight of the nucleus in question. 

We write dn'Y in terms of the photon flux, 

dn'Y = cl}( .i) dxdy (A.2) 

and 

dnc = (:a) u~A) PA c)}(.i) dxdydz (A.3) 

To get the total number of charm particles produced, we must add up the contri

butions from all these tiny target elements. Let us first determine the total number of 

charm particles created during a single run period, by the Si target. First, we find the 

total number of charm particles which are contributed by the Si sections of the target 

by integrating equation A.3 over the Silicon portion of the target: 

N (Si) J ( .Na ) (Si) ( .... ) ;r,.( .... ) d d d c = A(Si) Uc P(Si) X ':I.' X X y Z (A.4a) 

Where P(Si)(.i) is the spatially varying density function, which is p~Si) inside the Si 

sections of the Si target, and 0 elsewhere. The contribution from the Be sections of the 
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Si target to the total number of charm particles produced is: 

NJBe) = J (!e)) u~Be) P(Be)(i) <I>(i) dxdydz (A.4b) 

Where P(Be)(i) is p~Be) inside the Be sections of the Si target, and 0 elsewhere. The 

total number of charmed particles during this run is then 

(Si) N(Be) 
Nc(data) = Ne + c 

If we assume that the cross section goes as A 1 then 

(Be) (Si) 
Uc Uc 

A(Be) . A(Si) 

and we can write the total number of charm particles produced as: 

Where 

N Na (Si) j d3 .;r,.( .... ) ( .... ) 
c(data) = A(Si) Uc X '.l' X p X 

p(x) = { ~(Si) 
P(Be) 

if outside target; 

if inside the Si sections; 

if inside the Be sections. 

We introduce the total number of incident photons: 

N-y(data) = j dxdy <I>(x, y, z = 0) 

and an effective target length: 

f d3x <I>(i) p(i)/ P(Si) 
fen= J d2x<I>(x, y, z = 0) 

(A.5) 

(A.6) 

(A.7) 

(A.8) 

(A.9) 

(A.IO) 

then the number of charm particles produced during the the run period is given by: 

N N ( Na ) (Si) f 
c(data) = -y(data) A(Si) Uc P(Si) eff (A.11) 

We can follow the same arguments for each of the run periods, even with different 

targets. We replace the p(i) function with pi(i) where the index i indicates the run 
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period. This target density function is still given by equation A.8, namely, O if outside 

the target, P(Si) if in Silicon, and P(Be) if in Beryllium. The spatially varying photon 

flux will also change for each run period: cI>-+ <I>i, and Ny -+ N~ and thus the effective 

lengths for the different run periods are: 

t = I dax <I>i(x) pi(x)/ P(si) 

eff J d2x<I>i(X, y, z = 0) (A.12) 

If we introduce the total number of photons from the 1987-88 run, and the fractions of 

photons in each of the run periods (fi) such that: 

Ni t Ntot 
-y(data) = Ji -y(data) (A.13) 

then we can write the combined total of charmed particles that E687 got during its 

1987-88 run as: 

tot tot .Na P(Si) (Si) ~ i 
Nc(data) = N-y(data) A(Si) Uc L....t fi f,eff (A.14) 

A.2 Charm Particles Produced in Monte Carlo 

Let us look at the charm particles produced in GENERIC during one run seg

ment. Our photon activation locations are chosen with an x, y distribution according 

to <I>( x, y) and the z location is chosen from the upstream face of the target to dis

tance A = A0 u0 /umc, where A0 is the length of the longest target, the 5-Be target: 

A0 = 4.06 cm. (We define a A0 in this way so that it can be factored out when we sum 

over run periods.) The activation locations are then distributed according to: 

( 
<I>(x, y) dxdy) (Umc dz) 
J <Fx <I>(x, y) UoAo 

(A.15) 

Once we have chosen the possible activation location, we activate the photon into a 

charm particle with an activation probability given by: 

{ 

0 if outside the target; 

A = 1 if inside Si; 

P(Be)/ P(Si) if inside Be. 

(A.16) 
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Comparing equation A.16 with equation A.8, we see that the probability of activation 

is just p(x)/P(Si)· 

Thus, the probability that any given photon turns into a charm particle is given 

by the integration of the activation locations (equation A.15) times the probability of 

activation (equation A.16): 

p = ( Umc) (J d3
x <I>(x, y) p(x)/ P(Si)) _ Umc feJJ 

u 0 A 0 J d2x<I>(x,y) UoAo 
(A.17) 

where we have again introduced the concept of the effective target length as given in 

equation A.10. 

If N"'f(mc) photons are generated, then the number of charm particles created will 

be: 

N"'f(mc) Umc feJJ 
Nc(mc) = A 

Uo o 
(A.18) 

Again, we sum over the run periods: N'Y(mc) -+ N~(mc)' fe/J -+ £~/J and the total 

number of charmed particles produced in a MC run is: 

Ntot Ntot U me '"' F £i 
c(mc) = 'Y(mc) -A L.J Ji e/J Uo o . 

(A.19) 
I 

where we have used the photon fraction for each run period, and the total number of 

photons for all run periods. 

A.3 Comparing Data to MC 

Since we have arranged the Monte Carlo so that the /i are the same as for data, and 

the photon fluxes are the same as for data, the ~/J are the same for data and Monte 

Carlo. Further, if the cross sections are the same for Monte Carlo and data, we can use 

equations A.14 and A.19 to predict the number of charm particles in the data: 

Ntot _ Ntot (N;(~ata)) (Na P(Si) Aouo) 
c(data) - c(mc) Ntot A . 

'Y(mc) (Sa) 
(A.20) 

That is, since the charm-particle-to-photon ratio is artificially boosted in the Monte 

Carlo, we must multiply the counted Monte Carlo luminosity by a scale factor, the last 
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term in parentheses. The effective Monte Carlo luminosity is given by: 

" _ " (Na P(Si) Aouo) 
'-'eff - '-'me A 

(Si) 
(A.21) 
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APPENDIX B 

Cross Section Errors Caused by Monte Carlo Statistics 

In general, the anticipated errors for the cross section fits are: 

< hCa hC/3 >= L Pai ni P/3i (B.1) 

and the error on Ca is: 

o-(C.) = Jz;, n;p!; (B.2) 

If errors on the Pai matrix are considered (due to finite Monte Carlo statistics, then 

(B.3) 

where we are using the repeated index summation convention (except for a, which is 

never to be summed over). Autocorrelating and throwing out cross terms (which vanish 

if estimates are unbiased) we get: 

< hCa hCa > =Pai Pai ni+ < hpaj hpak > njnk 

= Pai Pai ni + O"~c 
(B.4) 

The familiar first term is the just error due to fluctuations in the number of charm events 

found in the data (equation B.1). The second term is the additional error arising from 

the uncertainty of the Pai matrix elements. If the cross section measurement is correct 

then: 

(B.5) 

101 



We consider the case of the just-constrained limit, where p - R-1• The inverse 

relation between these two correlates their errors: 

Using equation B.6 we can reduce equation B.5 to: 

(B.7) 

Now, the Ria matrix is measured from Monte Carlo by equation 5.9: Ria 

9 Gia I cimc)' where we have used 9 to replace the ratio of the luminosities. The bracketed 

term in equation B. 7 can be written as: 

(B.8) 

Substituting into equation B. 7, we get: 

as long as C(mc) = C(data). If we let mi = l:,a Gi,a we get: 

2 2 
(]' me = 9 Pai ffii Pai (B.10) 

an expression which is analogous to the first term of equation B.4. Since we are assuming 

C (mc) - c(data) th a - a , en 

m . - _!_R· c(mc) - _!_ n · 
t - Set Ct - t 

g 9 
(B.11) 
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Thus: 

2 
<7 me = g Pai ni Pai 

< hCa hCa >=Pai Pai ni (1 + g) (B.12) 

Since we have assumed the cross sections for Monte Carlo and data are identical, and 

since the Monte Carlo simulation is identical to data, then the ratio of the luminosities 

of the Monte Carlo and data will be the same as the ratio of the charm events found 

in Monte Carlo and data: g = Ndata/ Nmc· Thus, to include the effects of Monte Carlo 

statistics, the errors of the cross sections given by equation B.2 should be modified: 

(B.13) 
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