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• 

one can derive a value for the "mixing angle", Ow. This angle describes the mixing of 

the SU(2)i and U(l)y sectors of the Standard Model, and is an integral parameter of the 

theory. If the Standard Model is correct, then the measured values of Ow must be the 

same for all physical phenomena. Measurement of the mixing angle with many different 

processes, then, is an important test of the consistency of the model. 
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Chapter 2 

Theory 

By 1960, the phenomenology of the charged weak interactions was beginning to be under-

stood, but there was no complete theory, like QED, for the weak interactions. It was clear, 

however, that both the weak and electromagnetic interactions share important properties: 

each uses a single coupling constant to describe a large number of physical phenomena, 

and both are mediated by spin-one fields. As early as 1957 Schwinger [7] suggested that 

the weak and electromagnetic forces were generated by an isospin triplet of fields; the two 

charged fields generated the weak interactions, while the neutral field was responsible for 

electromagnetism. This simple model ran into phenomenological trouble, but it is of his tor-

ical importance as the first to suggest that the weak and electromagnetic interactions could 

be unified. 

In 1961, Glashow [1) proposed a '·partial symmetry" for the weak and electromagnetic 

interactions. In this model, weak interactions are described by two components of an isotopic 

spin group, SU(2)v which has coupling constant g and couples only to left-handed particles 

and right-handed antiparticles. The form of the SU(2)i interaction is determined by weak 

interaction phenomenology. The electromagnetic interaction is included by introducing a 

U( 1) group with coupling constant g' which couples to hypercharge, in analogy with the 

Gell-Mann-Nishijima [SJ model relating strangeness, baryon number, isospin, and charge in 
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Figure 2.2: Momenta and spins in inverse muon decay, e-iie ___...µ-iiµ. A single arrow 
indicates the direction of a particle's momentum vector, while the double arrow shows the 
projection of the particle's spin. 

inversion. 

Assuming massless fermions, the angular distribution of the emitted muon in the inverse 

muon decay example is given by [11] 

d<7 2 
-d 

0 
= (1 + cosfJ) , cos 

(2.15) 

where (J is defined to be the angle between the incoming electron and outgoing muon in the 

rest frame of thew-, as shown in Figure 2.2. A convenient quantity for characterizing the 

angular distribution is the forward-backward asymmetry, AFB, defined by 
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