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THIRD-ORDER CHARGED PARTICLE BEAM OPTICS

Leonid Sagalovsky, Ph. D.
Department of Physics
University of Illinois at Urbana-Champaign, 1989

ABSTRACT

‘The motion of a charged particle through a magnetic field configuration can be described
in terms of deviation from a certain ideal trajectory. One uses power series expansion of the
phase-space coordinates to obtain the transfer matrices for a particular optical system.

In this thesis we present a complete third-order theory of computing transfer matrices and
apply it to magnetic elements in an accelerator beam-line. A particular attention is devoted
to studying particles’ orbits in an extended fringing field of a dipole magnet. Analytical
solutions are obtained up to the third order in the formalism of the matrix theory. They
contain form factors describing the fall-off pattern of the field. These form factors are
dimensionless line infegra.ls of the field strength and its derivative. There is one such integral
in the first-order solution, two in the second, and nine in the third.

An alternate way of describing charged particle optics is also presented. It is based on
a Hamiltonian treatment and uses certain symplectic operators, which are defined in terms
of Poisson brackets, to parametrize the transfer map of a system. We apply this approach
to the fringing field problem and obtain a third-order solution. We furthermore show how
to convert this solution into conventional transfer matrices by examining the connectien

between the non-canonical matrix theory and the Hamiltonian description.
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PREFACE

The Chapters in this dissertaiion are arranged as follows:

Chapter 1 gives an overview of the charged particle beam optics, its meth(;ds and
aptlications. Here, we define the curvilinear coordinate system, derive the equations
of motion, and show how to obtain a general third-order transfer matrix solution for
mid-plane symmetric magnetic elements. We also obtain a formula for concatenating

nonlinear matrices to obtain the transport map for a system of elements.

Chapter 2 deals with application of general methods to jdeal multipole magnets. First-,
second-, and third-order transfer matrices are calculated for dipole, quadrupole, sex-

tupole, and octupole in the formalism of a computer code TRANSPORT.

Chapter 3 is the main part of the thesis. It gives a solution to the problem of determin-
ing the effects of an extended fringe fieid of a dipole magnet. The method of solution is
detailed and the field parametrization scheme is described. All the calculations leading

to obtaining the transport matrices through the third order are carried out here.

Chapter 4 introduces Hamiltonian methods, which are based on Lie Algebraic operators
defined in terms of Poisson brackets. Relevant theorems are given and the results are
applied to the dipole fringe field problem. Again, the third-order solution is obtained
and a procedure to obtain TRANSPORT matrices from the Lie Algebraic sclntion is
described.

The lonely Appendix applies the transfer matrix methods to the case of a curved
boundary.
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Chapter 1

General Theory of Charged Particle
Beam Optics

1.1 Introduction

Beams of charged particles are used in nuclear and high-energy experiments to explore the
structure of matter. Magnetic fields guide and focus the beam onto the target and additional

magnetic fields are used to analyze the products of microscopic collisions.

The optics of charged particle beams studies the effect of magnetic fields on the paths of
a group of moving charged particles. A beam of particles can be influenced in a way similar
to the focusing of light by an optical lens or the dispersion into colors by a prism. It may
be changed in direction, brought together to a small spot, or have its particles separated by
momentum. The beam line is an optical system with different types of magnets accomplishing
these different funciions.

Given a magnetic element, to understand the optics means to relate the coordinates
and momenta of a particle before and after its passage through this element, as shown
schematically in Fig. 1.1. The relationship, or the transfer map, can be used to design an
optical device with various desired properties.

The relation between the initial and final quantities can always in principle be obtained by

integrating numerically the equations of motion. In general, however, numerical integration



give much insight into the behavior of an optical system or what could be dene to change it.
A common procedure, first developed in [1], is to seek an expansion of the final quantities in
the form of & power series in the initial quantities.

A charged particle in a magnetic field B experiences a Lorenz force F
FP=g¢gvxB (1.1)

Here q is the charge of the particle, and v is its velocity. We can use Eq. 1.1 to formulate
a differential equation of motion with time as the independent variable. Given an initial
position and velocity, the equation can be solved for the particle’s position as a function of
time. In charged particle optics, however, one is not so much interested in finding a particle’s
position as a function of time as in determining the path it follows. The independent variable
is then taken to be the distance along a particular one of the many trajectories passing down
the beam line, the so called reference trajectory.

The positions and momeanta of the other particles may be defined in terms of that of
the reference particle. We will use the variable ¢ to denote distance along the reference
trajectory. At any point on the reference trajectory, longitudinal or ¢ axis is defined in the
direction of the reference velocity. The two transverse coordinates z and y are orthogonal to
t axis, with z horizontal and y vertical. The general description of this moving coordinate
system is given in Section 1.2. ’

Transverse distances from the reference trajectories z and y are two of the spatial coor-
dinates of the phase space. The third coordinate is l, the difference in path length between
a given trajectory and the reference icajectory. Three quantities specifying the momentum
of the particle are chosen to be the two direction tangents, 2’ and y’, and the fractional de-
viation from the reference momentum, §. The direction tangents are the ratios of transverse

to longitudinal momentum components,

=02 and y =D (1.2)
y 4 Pe
The fractional momentum deviation is given by
P =po(1+6) (1.3)



where pg is the reference momentum.

In a uniform magnetic field, a charged particle whose velocity vector is perpendicular to
the field moves in a circular path. The radius p of the circle is related to the field B, the
momentum p, and the charge ¢, in the units of high energy physics, by

3.3356p[GeV/c] = B[Tesla]p[meters] (1.4)

Using Eq. 1.4 for the reference momentum, one determines the: field of the bending magnets
in the beam line. The bending magnets, or dipoles, are those that change the direction of
the reference trajectory. They are used to transmit the particles to a specific location and
also to determine different ranges of momenta present in the beam.

Other common beam line components are quadrupoles and sextupoles, whose cross sec-
tions are shown in Fig. 1.2 together with that of a dipole. Both possess a magnetic axis
where the field is zero and are usually placed in the beam line so that this axis is along
the reference trajectory. The quadrupole field strength depends linearly on the distance
from the axis. Quadrupoles are used for focusing a beam of particles. The sextupole field
depends quadratically on the distance from the axis. Sextupoles are used to correct for the
momentum dependence of the focusing strength of quadrupoles. Higher order multipoles
are also sometimes used in the beam lines for higher order corrections, as well as “combined
function” elements that have more than one magnetic multipole component.

By analogy with the light optics, the beam optics can be classified by orders. In a
common procedure, the transfer map of a magnetic element is sought as a power series
expansion of the final phase space coordinates (z,z',y,y',{,5) in terms of the initial ones. In
the lowest order, this approach yields the linear matrix approximation of paraxial optics. The
higher (nonlinear) terms in such an expansion provide a description in terms of aberration
coeflicients, whose number grows rapidly with order although not all of them are independent.

We start the detailed discussion of the matrix theory by describing the basic assumptions

about the beam line elements and introducing the moving coordinate system.
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Figure 1.1: An optical system consisting of an optical device preceded and followed by simple
transit. The relationship between initial and final coordinates is described by a transfer map.
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Figure 1.2: Cross sections for dipole, quadrupole, and sextupole magnets, respectively. The
magnetic midplane and local coordinate system are showx.



1.2  Curvilinear Coordinate System

Designs of charged particle optical systems are invariably based on two assumptions:
1. The existence of a reference trajectory;
2. Midplane symmetry (except for‘solenoids).

The reference trajectory is taken to be the path of a charged particle with certain specified
initial conditions. The magretic elements are laid out along this trajectory, and a particle
with the reference momentum which follows the reference trajectory initially will continue
to do so through all the magnetic elements. It will pass along the axes of quadrupoles,
sextupoles, and cctupoles and experience a uniform magnetic field in a combined function
magnet. Therefore, through a bending magnet the reference trajectory is an arc of a circle,
while through all other magnetic elements it is a straight line. Thus, it is ssummed to have
a piecewise constant curvature.

The midplane symmetry restriction means that relative to a plane designated as the
magnetic midplane, the magnetic scalar potential ¢ is an odd function in the transverse
coordinate y, i. e. ¢(z,¥,t) = —¢(z,~y,t). This restriction greatly simplifies the calcula-
tions; and from experience in designing beam transport systems, it appears that for most
applications there is little, if any, advantage to be gained from a more complicated field pat-
tern. For particle accelerators or nuclear physics spectrometers, midplane symmetry is often
assumed for the system in its entirety. For systems such as the SLAC linear collider, or the
Fermilab beam transfer system, midplane symmetry may apply separately to parts of the
entire system. At the very least, each magnetic element is taken to be midplane symmetric.

Because of the symmetry, the only non-zero component of the magnetic field on the
midplane is the component perpendicular to that plane. Eq. 1.1 implies that a particle
starting on the midplane will never leave it. In particular, the reference trajectory is confined
to the symmetry plane of an element.

The general right-hand curvilinear coordinate system (z,y,t) is shown in Fig. 1.3. A
point O on the reference trajecfoty is taken to be the origin. A point A is specified by the
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Figure 1.3: Curvilinear coordinate system. Unit vectors %, ¥, t “move” along the reference
trajectory.



vrc length ¢ measured along the reference curve from O to 4. To specify an arbitrary point
B lying in the midplane, one constructs a line segment from B to the reference trajectory
intersecting the latter perpendicularly at A: the point A provides one coordinate ¢, the
length of the segment BA is the second coordinate z. To specify an off the midplane point
C, one constructs a line segment from C to the plane, intersecting the latter perpendicularly
at B: the point B provides the two coordinates ¢ and z, the length of the segment CB is
the third coordinate .

Three mutually perpendicular unit vectors (%,§,t) are defined as follows. At a point
A, t is tangent to the reference trajectory and is directed in the direction of motion of
particles; X and § are perpendicular to £, and are respectively parallel and perpendicular to
the symmetry plane. The unit vectors (k,¥,t) constitute a local right-handed coordinate

system and satisfy the relations:

1
i
ot td,
X
o>

>
il
X
w>

(1.5)

o>
1l
o
X
>

Using the prime to denote the derivative with respect to the independent variable t, we

may write the equations describing the rate of change of the unit vectors:

x = ht
¥y =0 (1.6)
t = —rk

where h = h(t) is the curvature, equal to the reciprocal of the reference trajectory’s local
radius p. ‘

At any specified position in the system, an arbitrary charged particle can be represented
by a six-dimensionzal phase space vector Z = (z,2',y,7',1, 5).

We are now ready to derive the equations of motion in the curvilinear coordinates we
have defined.



1.3 Equations of Motion

The equations of motion for transverse coordinates are derived from Eq. 1.1, equating the
Lorenz force to the time rate of change of the momentum and eliminating time in favor of
the distance parameter 2.

Let v be the speed of the particle, p its momentum magnitude, T its position vector, and
T the distance traversed on its own trajectory; the last two are shown in Fig. 1.3. Then,
the velocity and momentum vectors are equal to vdT/dT and pdT/dT respectively, where
dT/dT is a unit vector tangent to the particle trajectory. Since the Lorenz force is always

perpendicular to the direction of motion, p is a constant of motion and the equation becomes

ST 4T B ir
ey e 1)
Next, we transform Eq. 1.7 to the curvilinear coordinate system. To this end, we may
write
dT _ dT/dt dT’
dT — dT/dt ~ 4T
" &*T 14 (dT’ )
dT* ~ T'dt‘dT"
or 2
T 1T d
NZ_~ g 2 L @
T =T~ s a®
The resulting equation of motion becomes
1T d q
™ _ = —(T")? = (v .
2 (T dt(T) pT (T x B) (1.8)

In this coordinate system, the differential line element is given by
dT = Xdz + ydy + (1 + hz)tdt

and
(dT)" = dT - dT = dz® + dy® + (1 + hz)?dt?

By taking d/dt of the above equations, it follows that

(T') = (@) + (') + (1 + ha)?



Ld

2dt(Tl)2 — z':z:"+y'y"—§— (1 + ha:)(ha:’-i— h':!:)

T=z%+yy+(1+ ha:)f;
and
T ~ 5(2”._*_ %'z +S’y” +$"y' + i'(l + hz) + E(ha:' + h':c)
Use of the relations of Eq. 1.5, reduces the expression for T" to
T =%[z" - a(i+ he)] + yy" +1 (2ha' + h'z]

The Eq. 1.8 may now be separated into its component parts,

:B'

(T

x {[z" — k(1 + hz)] - [='z" + ¥'y"(1 + hz)(he' + h'z)]}

! 1
+ ¥ {y" = o B 0V (14 ek + Bz)] ;

(T
+ ¢ {(Zh:r:’ + h'z) - g—l—(-;_—,'—)l?l [@'2" + y'y"(1 + ha)(ha' + h'z)]}

= %T' {%[w'B. — (14 h=)B,) + ¥ [(1 + h)B, — 'B) + & ['B, —y'B.]} (19)

where

T — \/(zr)z +(@') + (1 + he)
The equation of motion for the reference particle is readily obtained from Eq. 1.9 by

setting z, z', y, and ¥’ equal to zero and momentum magnitude to py. One obtains:

h(t) == = pio.B,,(o,o, t) or Bp= ‘% (i.10)

1
P

We now discuss the “order-by-order” solution to Eq. 1.9.

1.4 Aberration Expansion and Transfer Matrices

Our phase space variables describe the deviations from the reference trajectory, given by

Eq. 1.10. Assuming the deviations are small, we may seek the solution to Eq 1.9 as a power

series in the initial conditions.



Let Z° be a six-dimensional vector of initial conditions. Then, the solution vector Z at a

point ¢ can be written as

;] 6 8 6 6 6
Z(8) =3 By()Z)+ 3 5 Tial8) 2020 + 2o S U222 + - - (1.11)
=1  i=lk=j i=1lk=j =k .
BT:rrnu 1 :;rnu SBTZrml

Eq. 1.11 can be viewed as a transfer map from Z° to Z . Aberration coefficients R;;(t),
Tii(t), and Ugjp(t) form first, second, and third order transfer matrices respectively. They
determine the optical properties of a system.

To obtain the transfer matrices to a desired order, the following procedure is followed:

1. Magnetic field B(z,y,t) is expanded around the reference trajectory using Maxwell’s

equations and midplane symmetry;
2. Eq. 1.9 is expanded to the desired order;
3. Eq. 1.11 is substituted into the expanded equations;

4. Equating coefficients of the same terms in initial conditions, one obtains differential

equations for the transfer matrix coeficients;

5. The n'® order coefficients satisfy linear second-order (in terms of the order of differenti-
ation) equations characteristic of forced harmonic oscillators, with the “driving terms”
involving coefficients of order (n — 1) and lower. It is, therefore, possible to obtain
solutions in a systematic order-by-order way, employing Green’s function integration

of the equations.

In the next section, we carry out the above procedure to the third order.

1.5 Third Order Optics

1.5.1 Field Expansion
The static magnetic field in vacuum may be expressed in terms of a scalar potential ¢ by

B=Vg (1.12)

10



We will expand the scalar potential in the curvilinear coordinates about the reference tra-
jectory.

The existence of the median symmetry requires that ¢ be an odd function of ¥,

¢(z,9,t) = —¢(=, ~3,1) O (113)
The most general expanded form of ¢ may be expressed as follows:
i y¥H
#(=,3,1) §§A,.+1,,( )= (2 @D (1.14)
The Laplace equation, which ¢ satisfies, has the following form in the (z,y,t) coordinates,
2
vie= (1 ’:h )3 [(1 +h )%‘g] + Z_y? + (1 -}-lhz)gz [(1 +1h:v) %?J =0 (1.15)

Substitution of Eq. 1.14 into Eq. 1.15 gives the recursion formula for the coefficients,

~Aziya; = A23+1 Ky JhAz.+1,J— =7 h’A2.+1 J+3
(33 + DhAzisagan + 3535 — DA Asigr s +n(n — 1R Agignia (1.16)
+ 3jhAsivai1+ 35(5 — DA Agiya iz + 5 — 1)(5 — 2)R% Aziya j-a

Eq. 1.16 expresses all the coefficients in terms of the midplane field

oo 2:_«i
By(z,0,t) =" Al,,-F (1.17)
r !

B,
A = ( oI )
==y=0

The z-direction derivatives of B, on the reference trajectory define B, over the entire median

where

(1.18)

plane, hence the field B over the whole space. The field components are given by

:B’ 2|+l
Ba(z,y,t) = ZZ Asivin(t) ! (2, +1)!
t—OJ_O
y
Bu(z,y,t) = g]z:%Aa"*'l'J '———(21,)! (]-19)
1 3 zi ydH
B t) =
¢(z,!h ) (1 + hE) at (1 + hz) g]z_(:) 2:+1'J l(21 + ]_)l

1



The coefficients up to the fourth degree terms in z and y are given explicitly below from

Eq. 1.18,
A;jo = _A'I'O - Alg — hAu
A.31 = _A,l,l + 21’114’1’0 + I'LIA’IO - Alg —_ hA.12 + hz All (1.20)
If the field expansion is terminated with the third order terms, we obtain from Eq. 1.19
1 2 1 3
B. = Auy+ Aoy + 'Z-Ala-’ﬂ v+ EA:ny + e
1 1 1 1
B, = A+ Anpz+ "2'1‘112:152 + 'Z"A:soy2 + gAla-’Bs + '2-4‘1313?:1/2 + .- (1.21)
1 1
B = Ayy+ Ayzy — Alohzy + '2'A;232 - A;]hzzy + A’mhz‘l’zy + EAgoys +oeee

It is evident that B, B, and B, are all expressed in terms of Ao, Ay, Ayg, Ays and

their derivatives with respect to t. Consider B, on the midplane only,

1 1
Bu(z:, O,t) = AlO + An:c + 5‘22.413 + 5$3A13 + -

B 498 1 8B, 2, 18°B, 3y
= —_— z+ - '+ - o4 .-
Vie=y=0 2 3 N~
—r Oz 2=y=0 2 9z emy=0 6 Oz e=y=0 e
dipole N - Y N—— 4
quadrupole sextupole octupole

The successive derivatives identify the terms as being dipole, quadrupole, sextupole, oc-
tupole, etc. in the field expansion. It is useful to express the midplane field in terms of
dimensionless “multipole strength” coefficients ki(t), ka(t), ks(t),

By(=,0,8) = B,(0,0,2) [i — kyha + kah®s* + kyh%sd + .- ] (1.22)

with
b - 1 8B,
' T T |rB, bz

1 8B,

lz=y=0
e _ [_1 &8,
* = |6#B, o®

2=y=0

z=y=0
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We now make use of Eq. 1.10; to the third order the expansions for the magnetic field

components become
Bo(z,y,t) = %o [-—hzkly + 2B3kgzy 4+ 3R3ka2ty
q
4 1 4 2 1 1 YN/
+(—k ka—-3-h k,+§hhkl+gh k]
1 "2 1 n 1 4 1 AV 1 m_3
+ S(h) kr + hh"ky — —h*ky + Z(B')* + ZhR")y? + - -
3 3 6 6 3
By(z,y,t) = Z—;g [h — ’kyz + BPkaz® + hkaz® 4 (—h3k- + %h:’kl - -;—)'7,”)112
+ (—3h'ks — hik; + 2RR'K} + %h’k;’ (1.24)
+ (R')ky + hh"ky — —;—h‘kl + %(h')’ + AR Yzy? + .- ]
Byz,y,t) = ’_;9 [y + (—h?K, — 2hhky — WAy
+ (—-;:hak; ~ KWk + %h“k; + %h’h’kl)ya
+ (R + 387 ks + k) + 207 R'ky + BPR)a?y + -]
1.5.2 Equations Expanded to Third Order

If we retain only terms through third order in z and y and their derivatives in Eq. 1.9, the

z and y components of the equation of motion become

z" — h(1 + hz) — o'(hz’ + k'z) + hh'z*z’ + h?z(=')?
— (1 - 2ha)(2"(2')? +y"2'y) = %T' [v'B, — (1 + hz)B,]

(1.25)

y" — y'(ha' + h'z) + y'(hh'z® + hPz2')

— (1 - 2hz)(="2'y' + y"(3')")

Il

%T' [~2'B, + (1 + hz)B,]

Solving for z” and y” to the third order and noting that

1 — 2,2 1 2 2 3 3 2 2
7 =1—he+h'z ‘E((”') +(y'))-—hz3+-2—hz((z’) + @)+

13



we get

n

¢" = h(1+hz)+ ' (h'z + 2h2’) - hzo'(k'z + 2ka')
3 1
+ ;% [B,a:’y' - B, (1 + 2hz + h*z® + E(:':’)2 + E(y')z)
1 1
+ Bt (yl(l + h:c) + 5(21)2‘1/1 + E(yr)a)}
(1.26)
v" = y'(h'z+2ha’) — ha'y'(K'z + 2hz')
2
+ z% [B,_ (1 + 2hz + h?z? + —21-(2:')2 + 5(y')’) — Byz'y'
—B, (Z'(l + h:v) + %’_(zl):i + %(zI)ZyI)]
Combining Eq. 1.26 with the expanded field components of Eq. 1.24 and letting

Do Po 2 3
— = =1-§4+6 -4 4o
P po(l+6)

we can finally express the differential equations for ¢ and y to the third order as follows,

2"+ (1—k)h’z = h6—(1— 2k + k)h%® + h'zo' + (2~ k1)h?z6
+ 5h() + %(h" — Bk + Bhy)y? + hlyy’ — %h(y")"’ — hs?
+ (k1 — 2ky ~ ka)h*a® — hh'z?2' + (1 — 2k, + ko)h326
~(2- gkl)h’z(m’)’ - [%(h')’ +ky Gh‘ +hRY 4 (h')2)
FZRRK + ZRKY — 3hk, 3hks| 37 ~ (R + 20'k; hayy
+ %h’klz(y')n - (2 - Kk )h?z67 + gh(z')26 ~ Kk 2'yy’
— (B — K%, + 283k — Wyy's + Sh()5 + he®
(1.27)
V' +Rky = 2~k + k)Rzy + k'zy' — h'z'y + hz'y' + Rk yé
— (k1 — 4k — 3ks)h*z?y — hh'Z3y' + (2h'k, + hky)hzz'y
— (2 = k)h?z2'y’ + 2ks — k)hSzy6 — -;-h’kl(a:')zy + h'z'ys

14



+ha'y S+ [Shh+ (W) = (Gh — Shh? ~ (W) By

1 3 e ay  on
+§hh’k§ + %h’k;’ — ks = h“kg] P = Sk~ Bhyd

1.5.3 Linear Equations and Characteristic Rays

Before considering the full third-order solution to Eq. 1.27, let us look at its linear part.
Keeping terms to the first order only, we obtain from Eq. 1.27,

'+ (1 - k)h’z = hé
v +hyy = 0 (1.28)
The equation for z is inhomogeneous, and its general solution is the sum of a particular
solution and the general solution of the homogeneous equation. There are two linearly inde-

pendent solutions for both z and y homogeneous equations. The most general solution of a

homogeneous linear second order differential equations is a linear sum of the two independent

solutions with arbitrary coeflicients.

We can define the two solutions of each homogeneous equation and the particular solution

of the inhomogeneous equation for z as follows,

1. The unit sine-like function s.(t) in the bend plane (the magnetic midplane) with initial
conditions 5,(0) = 0, s,(0) = 1; and 6 = 0.

2. The unit cosine-like function ¢.(t) in the bend plane with c.(0) = 1, ¢/(0) = 0; and
§=0.

3. The dispersion function d.(t) in the bend plane with d.(0) = 0, d(0) =0; and & = 1.
4. The unit sine-like function s,(¢) in the non-bend plane with s,(0) = 0, 5,(0) = 1.
5. The unit, cosine-like function ¢,(t) in the non-bend plane with ¢,(0) = 1, e (0)=0.

The sine- and cosine-like functions are linearly independent solutions of the homogeneous

equations. The dispersion function is a particular solution to the inhomogeneous equation for

15



z. The functions are named after the trigonometric functions with similar initial conditions.
These five functions are defined as characteristic rays of a magnetic system. As will be shown
below, they determine all the higher order aberration coefficients. Fig. 1.4 through Fig. 1.8

illustrate the characteristic rays, including their passage through a region of magnetic field.

16
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Figure 1.4: The sine-like trajectory s.(¢) in the magnetic midplane.
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Figure 1.5: The cosine-like trajectory c.(t) in the magnetic midplane.
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Figure 1.7: The sine-like trajectory 5y(t) in the non-bend plane.
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Figure 1.8: The cosine-like trajectory c,(t) in the non-bend plane.
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The general solution of the linear equations for z and Y can now be written as

z(t) = cu(t)zo + 82(t)wg + do(2)6
¥(8) = {thyo+ sy(t)ys (1.29)

I

The dispersion function can be obtained from the inhomogeneous term A(t)§ and the homo-
geneous solutions. A particular solution of an inhomogeneous equation of the form
¢"+kq=f
can be given by an integral
¢
q =/0 G(t,7)f(r)dr

The Green’s function G(t,7) can be evaluated in terms of the homogeneous solutions, the

sine- and the cosine-like functions, as
G(t,7) = s(t)e(r) — c(t)s(7) (1.30)

Using this general prescription, the expression for the dispersion function can be written

0a(t) = 0:(t) [ exlWb(r)ir — eu(®) [ on(rIb(r)ar (1.31)

The first order transfer matrix R;; has the following form

c(t) a.(t) o 0 0 d,

“ ) o 0 o 4

_ 0 0 ct) s(¢) 0 o0
B=1 0 o 2@ 1) 0 o (1.32)

Ry Ry 0 0 1 R

0 0 0 0 o0 1

The “path-length” matrix coefficients are found from the expression for {

1 ‘22 | dy 2 M
-/0 [(;1;) + (EF) +(1+he) ] —13dr (1.33)
Expanding the square root and retaining only linear terms yields

= [ " h(r)a(r)dr (1.34)

20



Using Eq. 1.29, we can express the path-length difference [ in terms of the initial coordinates,

¢ i t
p— !
l_/(; cx(T)h(7)dr :z:o+/(; 3o(7)h(r)dr = +/0 do(1)h(T)dr 6 (1.35)
~ 7 ~ —_— ~ | ——
Ry, Rsa Ry

Next, we tackle higher order matrix elements.
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1.5.4 ‘Equations for Aberration Coefficients

Substituting expansions of Eq. 1.11 inio Eq. 1.27, we derive a differential equation for each
of the first, second, and third order aberration coefficients: Bij(t), Tie(t), and Uiu(t). A
systematic pattern evolves:

c'z'—i-k:cz:() c;'-{-k:cy:O

sy + k:s,, =0 .9;' + k:.sy =0 (1.36)

@+ke=f. q+keg="f
where k2 = (1 — k;)h? and k3 = k1h? for the z and y motions, respectively. The first two of
these equations represent the equations of motion for the characteristic rays discussed in the
previous subsection. The third differential equation for g represents the equation of motion
for the first-order dispersion d. and for any one of the higher order aberration coefficients,

where the driving term f has a characteristic form for each of these coefficients. For example,

the driving term for d, is h(t). The coefficients g satisiy the following boundary conditions,
q(0) =4'(0) =0

The driving terms f; can be found as follows (5]. The two differential equations in Eq. 1.27

can be schematically represented by the generic equation
zf' + kiz; = Z D.’jlj + Z Z E;,-;,z,-z,, + E Z Z F,-jk,z_,-zkzl (1.37)
J ik J k1

where the components z; denote the six phase-space variables z, z', y, ¥, I, 8. Putting

Eq. 1.11 into the above series, we get the driving terms for Ty
Fir(7) = 32X Bimn Rons(r) Br (7) (1.38)
m 0

The third-order driving terms for Uijni then depend on matrices Eijx and Fiji as well as the

second-order terms T;;,
it = 2 BomnBons(7)Toia(T) + 3 3 BT () Boa(7)
+2.3°3" Finmp Ri(7) Roni(7) Rpa(7) (1.39)

m n p
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Tables 1.1 and 1.2 give the driving terms for each of the possible second-order and
third-order matrix elements, respectivaly. The terms not listed are those not allowed by
considerations of midplane symmetry; they are identically equal to zero.

The second and third order aberration coefficients are evaluated by the same method

used to derive the first-order dispersion function, namely, the Green’s function integral,

q= /: G(t,7)f(r)dr

with G(t,T) given by Eq. 1.30.

The “angle” matrix elements are found by differentiating the “position” matrix elements:

Dijn = Tx’jk
Th"e = :;jk
and (1.40)
Uy = Uy
Uju = Ugjn

The matrix elements pertaining to the longitudinal coordinate ! are found from the
general expression for the path-length difference given in Eq. 1.33, which is reproduced

below,
_ i ld=a, dyy ] i
l-[) {[(d‘r) +(E) + (1 + hz) ~1%dr (1.41)
Now, when expanding the square root, we retain terms up to third order. The result is
o 1{de, ,dy,] 1 [ dz., dy.,
= [ {er+ 3 [Gor o] - ot [G2r + Bplar sy
Substituting expanded expressions for z(7), de/dr, and dy/dr into the above equation, we

derive explicit expressions for each of the longitudinal matrix elements. An element q is

given by
i
91=/0 fi(r)dr (1.43)
Non-zero second- and third-order path-length matrix elements q and the corresponding

integrands f; are listed in Tables 1.3 and 1.4, respectively.
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The driving terms and the Green’s function integrals complete the solution of the general
third-order theory. What remains is to find explicit soluticns for specific magnetic elements.
In the next chapter, we specialize to cases where the parameters describing the magnetic
field configuration are independent of ¢. The only regions where k is typically not constant
are the fringe fields at the boundaries of dipole magnets. They require special treatment and

will be considered in later chapters.
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Table 1.1: Driving Terms for Second-Order Matrix Elements

[Matrix Element l

Driving Term

9 fz

T (2k1 = 1 = ky)h® + Reod, + Fh(c)?

Ti1a 2(2ky — 1 — ky)h3ca8, + B(casl, + clse) + hels!,

The (2 = k1)h?s0 + 22k — 1 — ka)iicod, + K'(cad, + . d.) + he'd!

Thaz (2k1 — 1 — ka)h%s + h's s + 1h(sL)?

Thae (2 = k1)h?ss + 2(2k; — 1 — ka)hs.d, + B(s,d", + sld,) + hs'd'

Thas %(h" - klh3 + 2k2h'3)c: + h'CvC;, - %h(c:;)z

Tiaa (R — kak® + 2kyh3)s,c, + K(eysy + c,8y) — halc,

Tias (A" — kLB + 2kzh%)s] + h'sys!, — Fh(s,)?

Tigs —h + (2 — k1 )h%de + (2ks — 1 — kp)R3E2 + K'd.d’, + 2p(d.)?
Ty fy

Tun 2k = ke, T W(ed, — oy TR,

Ta14 2(ky — ky)hPe sy + h'(czs! — cls,) + he.sl,

Ton (ks — by Wsncy + K(snch — shey) + holc

Thzs 2(kg — k1 )R3s.3, + h'(szs;, — sLs,) + hsls!,

Tsas nh’c, + 2(ky — ky)hPe,d, — h'(c,d, — c,dz) + hel,d.

Ta4s nh?sy + 2(k; — ky)h3s,d, — K(s,d, — s d.) + hsld.,
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Table 1.2: Driving Terms for Third-Order Matrix Elements

| g |

f2

Unn

—(2Cgh4k3 + (462’14 + 4Tlllczh3)k2 + ("262’14 - 8T111€zh3 - 361(62)2112)]01
+(2elcth — 2Tincl, — 2T o)W + 4Thich® + 4e,(cl)2h? — 2T4,,¢2h)/2

Ura

((6ceLh®ky + (—2c3h + 2Ty51 )k — 8cocLh? + 2T h)s, + (—6c2htks
+(—12cgh4 - 4T111h3)k2 -+ (Gc:h‘ + 8Tulh3 + 3(6’2)2]12)’01 + (‘4018:’:’1
,,,,,,,,,,,,,,,,,,,,, +2T15 )k’ — 4T11h® — 4(c,)?h?)s, — 4T11gch3ky + 8Typac.h%ky + (2Ty13c,

+2T15¢2)h' — 4T11ze:h3 + 2T 5L h) /2

Urn1e

~(6c3dzhks + (12c3d AT + (4Tind, — 22 + 4T116¢2 1% kg + (—6c3dhY + (—8T111d,
+4c3 — 8Ty1ec0)h3 + (—6ezcldl — 3(cL)%d: + 2T11)h%)ky + ((2¢3dl, + 4cpcld, )b
—ZTlnd; - 2T{ud3 - 2T1156; - ZT{IBCg)h’ + (4T111dz - 26: + 4T113c,)h3
H(8eaced; + 4(ct)?dy — 4Tyn)h? + (=2T41,d), — 3(cL)? — 2TY14cl)h)/2

Unizn

((Bcah®ky — 4c RT)(aL)7 + ((6cLhTkr — dcohl — 8L i), + 2Th gk
+2T;uh)8; + (—6C2h4k3 - 126,_.’14*2 + 663h4k1 - 2c',hh’)a§ + (—4T112h3k7
+8T112h3ky + 27§13k’ — 4T112h%) s, — 4T 230,k kg + 8T1z3c-h3ky + (2T 23c”,

+2Th39¢5 )R’ — 4T1a3¢:h° + 2TY,,cLh) /2

Urizs

((3c=dl + 3cd. )h%k, + (—2czd-h + Tyi6)h + (—4cod — 4c.d,)h?
+(3C'z -+ Tl'le)h)'s:’: + (—Gcsdzh‘k;; + (—-126=dzh4 + (263 - 2T116)h3)k2
+(6€=dzh4 + (—'403 + 4T113)’!3 + 3C;d’=hz kl + ((-—201{1; - 2C;d=)h
+T{l°)h' + (26,, - 2T113)h3 - 46:,(1;’12)63 + (*—2T1ud: - 2T126¢=)h3k2
+((4T112d; + 4Thz6c.)h® — Tyah?)ky + (T112dl, + TY,5d. + Tizec’,
+T126¢s )R’ + (—2T113d ~ 2Ty30¢2 )12 + 2P1azh? + (Thyodl + Tipec' b

Uiias

(6cacghks + (6cqc2h% + (4T313cy — 4Th33co)h>)ks + (~deacyhh’ — 2c ¢ ) R)E]
—cchkY -*; (—2e2¢)(h')? — dcacyc b’ — 2c,c3Rh" — czcgh? + (—2Ta33¢,
+8T1a3¢2)A° + (e2(c))? — 2cc el )h3)ky — czcy (') + (2Tnac!, + 2Tp50,

+2T133C; + 2T{336,)h’ + 2T313(:yh” - 4T133C¢h3 + (—2T§,3c;, + 2T{33c:_.)h)/2

Uniaa

(—czcyh®k] + (—2cac,hh" + (cacl — chey)AT)ky + Tarah! — T3:3h)s),
+(6czcyhtks + (6co¢,h* + 2T313h%)k;5 + (—deqc hh' — ez Rk — c.c h3kY
H(=2¢20y(R')? — 2e.c b’ — 2e,c hh — cocyh? ~ Tayah® — cLel h)ky
—€acy(R')? + T3y3h' + Tarah")sy + (2Ts14¢y — 2T134¢2)h3ks + (~Ta14cy
+4Tya4cz )h3ky + (Taracy + Tiiaey + Tazach + Tiagez ) + Tayqcyh”
—2T3n0ceh® + (~Thiue) + Thauch)h

Uiias

(cch®ky(s])? + ((—2¢.R7K, + (—4czhh’ — 2¢,h3)k1)s, + 2T, 40" — 2T3,4h)s;,
+(6c hks + 6c hikqy — de hh'k] — e h?kY + (—2¢-(h')? — 2¢,hR"
—c,,h‘)kl —_ c,(h’)’)az + (4T3uh3k3 - 2T314h3k1 + 2T5uh' + 2T314h")8y
-—4T144C,,h3k2 + 8T1446,h3k1 + (2T144¢; + 2T{44Cz)h’ - 4T144C,,h3 + 2T{4¢C;h)/2

Uues

—(6codzhk3 + (12c.dThT + ((—4e, + 4T116)d, + 4Tyescz )h”) kg + (—6c.d2 BT
+((8C, - STllg)d_-, - 8T166ca)h3 + (—:’l::(d._'z)z - 6c;d,,d', — 2c,
+2T113)h2)k1 + ((4c-_.,d,d,’, + 2c',d:)h - 2Tugd; — ZT{mdz — 2Teec,
—2Tggcz)l’ + ((—4cx + 4Th16)dz + 4Tygece)h? + (4c.(dL)? + 8ctd.dl + 4c,

~4Tu1e)h? + ((=6c}, — 2T41)dy —~ 2Tgqct)h)/2
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A |

((3h%k; — 4h%)s,(s,)? + (—2h'sE £ 2T1zah | 2TIh)o, 1 (_2hiks
- 4’34.‘33 + 2’34.‘31)32 + (—4T122h3k2 + 8T133h3k1 T 2T{22h' - 4T122h3)8=)/2

((3d-h*ky — 4d h? + 3R)(sL)® + ((6d_h%k; — 4d hH — 8dLh)s,
+ 2Tha6h’ + 2T{agh)s}, + (—6dhtks + (—12d.h* + 2h3)k; + (6d h*
- 4h3)k1 - Zd;hh' + 2’13)32 + (—4T1mh3k2 -+ STlgghakl + 2T1'26h’
— 4T136h°)8; — 4T129d . h3k; + (8Ty32d k3 — 2T132h%)ky + (2Th22dL + 2T 5,d, )R
— 4Ty99d h3 + 4T133h2 + 2Tl'nd;h)/2

Uszaa

—((2cyc;h2k1 — 2Tk’ — 2T{33h).§; + (—663’14]63 + (—66:’14 + 4T]33h3)k2
+ (4cihh’ + 2eye, h?) k] + cIR2EY + (2¢3(R')? + deycl hh' + 2¢3hA"
+ cjh* — 8Tyaah® ~ (c!)2h?)ky + 3 (K')? = 2T}33h' + 4T1a3h3)s,
- 4T323th3k: + 2T323Cyh3k1 -+ (-—2T323¢;1 - 2T:§33cy)h' - 2T3236yh" + ZTézac;Ih)/Z

Uiaas

(—-Cyhakld’: + (—Cyhzki + (—2cyhh' + c;‘hz)kl)s, + T3)3h’ - T;;,sh)s;
+ (~€j Wk1s, + (6eyhiks + Bc,hks + (—deyhh! — LRIk, — c, bk
+ (—26,,(’1’)2 - Zc;,hh’ - 2Cyhh” - cyh4)k1 - cy(h’)’)5, + 2T323h3k2
— T323h®k; + Thaah' + Taash")sy + (Trash’ + Tiagh)sl, + (—2T134h%k,
+ 4T134h3k1 + Tll:“h' - 2T134h3)6¢ + 2T3g4cﬂh3kg - T334cyh3k1 + (Tauc;
+ T324€y)W + Tazacyh” ~ T3a4c3h

Usgas

(RTFs8,(,)7 + ((— 2051, + (—ZKOR, — 4RRTEy ), )ay 1 ZTsaald — ZTipgh)al
+ (6583 + 6h*k; ~ 4hh'k] — h7EY + (—~2(K')? — 2RAY — hd)ky
— (h’)’)a,az + (4T324h3k2 -~ 2T334h3k1 + ZTA“II' + 2T334h")8v + (2T144h'
+ ZT{“h)&; + (-—4T144h3kz + 8T144h3k1 + 2T1'44h' - 4T144h3)3=)/2

Uizes

((6ded; h?ky + (—2d3h + 2Tige) R — 8d,dLhT + (6d., + 2T1gg)h)s".
+(—6d2h%ks + (~12d2h% + (4d, — 4Ty0e)h%)k; + (6d3h% + (—8d; + 8Tgs)h3
+ (3(d2)? + 2)h% )by + (—4ddLh + 2T eg)h' + (4d, — 4T ge) R
+ (—4(d;)2 — 4)h?)s, — 4T120d, A3k, + (8T126d2h® — 2T135h2)k1 + (2T12ed.,
+ 2Ty56d2 )b’ ~ 4T19ed 3 + 4Ti36h3 + 2T ,0dh)/2

Uiazs

(68:11,_.’1”63 + (St:fld;eh4 + (—4T133d, - 263 + 4T3366v)h3)k2 + (——4c2d,,hh’
— 2cycld )k — cid B2k + (—2¢d(h")? - deyeydohh! — 2cid hb" — cld bt
+ (8Thaadz + cf) — 2Tszge, )h% + (—2e,0,d, + (<} Yd: — 2Thas)jh?)ky
= ¢jd=(W')? + (2T1asd,, + 2T}ayd, + (~2¢, + 2T338)cy, + 2T53g¢, )R
+ (=€ + Tagacy W — 4Tyadsh + 4Tsagh? + (2Thsod, + (¢1)F — 2Thyac! Yh)/2

Usae

(—cydah?®, + (~2eydohh T (cyd, + o)Ay + (—ey F Toa)
+ (€} — Thag)h)e!, + (6cydaiy + (6e,dalts + (—2c, + 2Tx30)B%) ks
+ (~ e, dohh’ ~ cidoh?)k] — cydph3Y + (~2c,do(K')? — 261 d, kb — 2c,d, A"
- Cvdﬂ,h4 + (c,, - Ta:m)ha - C;d;h’)kl - C”dz(h')n + (—C;
+ T336)h’ + (—cy + Ta26)h")ay + (—2Tyaud, + 2T346cy )h3k3 + ((4T124d-
~ Taaocy)h® — T1ah? )by + (Tiaudy, + Tigeds + Tagach + Thge, )’
+ Ta;scyh" — 2T a4d h% + 2Tyaeh? + (Tl':“d; - Témc;,)h
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Uss4e

(ks + B)(3, VF + (—2doh7K, + (~4dohR — 2dLiE)ky — ZW)s,
+2To4ah’ — 2Thegh)s!, + (6duh*ks + (6dgh* — 2K3)ky — 4d, hh'E,
~dohRY + (<2, (W)? — 2 hRY — d b4+ Bk — do(R)R — h7)a2
+(4T345h3k2 - 2T345h3k1 + 2T§46hi + 2T346h”)6y ~ 4T144d=h3k2 + (8T144dzh3
—2T144h2)k1 + (2T144d’: + 2T1'44dz)h’ —_ 4T144dzh3 + 4T144h2 + 2T1'44d;h)/2

Ulﬂﬂﬁ

—(ngh“ka + (4(1‘.:,’_.’1'4 + (—2d3_. + 4T155dz)h3)kz + (—2dgh4 + (4d: — 8T135d:)h3
+(-—3dz(d'z)2 —2d, + 2Tles)h2)k1 + (2d3d’=h - 2Tmad;_. - 2T1’eedz)h' + (—-2d§
+4T100dz)h* + (4d2(d})? + 4d, — 4T160)R2 + (—3(dL)? — 2T} gedl — 2)h)/2

dy

By

Usi1a

(6cZeyh*ka + (8c2cyh® + (4Thasc, + 4Ts1ac2)h% )k + 2¢,¢Lc B2k, + (4c chcy bl
—-262.6”’14 + (—4Tu1cy - 4T313Cz)h3 + (2czc;c; - (c;)ch)hﬂ)kl + (-—263.6;1’).
+2T111¢'y - 2T1'ncy it 2T313€.'_! -+ 2Télac=)hl - 4C=Cizczlh2 + (ZT{HCL -+ 2T£136;)h)/2

Usii4

((2czcyhky + (—2¢2h + 2T011)R' = dc,cLh® + 2T111h)s}, + (6c3htky
+(8¢:h4 + 4T1nh3)kg + 2c,c;h2ki + (46,6;’1’].’ - 2(:3,’14 - 4T111h3 - (C;)zhz)kl
~2T1'11h')8y + 4T3uczh3k2 - 4T314c,h3k1 + (—2T314CL_ + ZT:;HC,,)’I.’ + 2T§“c’zh)/2

U3123

(czcyh®k] + (2c.c, hh" + (ca€y — chey)h?)ky — Togah! — 2¢,¢) b3
+T313h) 8, + (6cacyhks + (8ccyh? + 2T5y3h° )k, + cocyh?ky + (2cc hh'
—2¢zcyht ~ 2754303 + cxeyh? )k + (—2czchh + Tiya)h' — 2¢c;cyh?)s;
+(2Tuzey + 2Tasez )hks + (~2Tnae, — 2Tagac,)h3ky + (Thaac;, — Tiy5ey
~Ta23¢5 + T5a3a )b’ + (Tfach + Thaach )b

Uajas

((e=h*ky — 2¢,h%)sL + (cLh*ky — 2¢.hR" - 2¢Lh*)s, + Tyyah'
+T113h)8, + ((coh?k] + (2c.hh! — cLh?)ky)s!, + (6cohks + 8c htk,
+C’=h2k; + (ZC;hh' - 2Czh‘)k1)83 + 2T111h3k3 - ZT]_nhakl - Tl'lzh')ay
H(—Tnah’ + T4 4h)s, + (2Ts14h3k; - 2Ta14hky + Thy 418, + 2Ts04cah3kq
—-2T334czh3k1 + (—T334C; + T§24c,)h' + T3’24C;.h

Usyag

6c=cydzh‘k3 -+ (8c,cyd,h‘ + (2T313d, + (—203 + 2T115)Cv + 2T333C,)h3)l’cz + (c,cyd’,
+ele,d )Rk, + ((2¢c,¢ydl, + 2¢,cydz )hh' — 2¢.¢,d h* + (—2T31a3d; + (2¢, — 2T116)cy
—2T336¢2)h3 + ((ezey — chey)d’, + czeyde + Tap3)h3)k,y + (—2¢zcld-h
—Taad}, + T}5d, + Tuecy, + (¢} — Tiyq)cy — Taaact,
+T3a6ce )2’ + (~2ezcid), — 2¢tc)da)h? + (Thyad!. + (', + Tia)e; + Tizecl )R

Uaiae

((cadl, + cLdo)h3ky + (—2c.d-h + Ti16)h' + (—2¢c,d., - 2cld,.)h?
+(c% + Tire)h)s}, + (6czdzh%ks + (Be,d, bt + (—2cz + 2T116)h3)k; + (c.d.,
+ezda )2k + ((202d), + 2eld, )b — 2e.d b4 + (2¢; ~ 2Tn16)R® — cLd\h2)k,
Hez ~ T{y4)h")s, + (2Ta14dp + 2Ta4a¢z)h3kg + ((—2T514d; — 2T346c, )h3
+T314k% ) k1 + (=Tauad, + T3149s —~ T30, + T3ee2)h' + (T3,49% + T346¢:)h

Usazaa

—(eyh?ka(sL)? + ((—2c, 5%k + (—de bk’ — 2cyh?)ky + 4chh?)s, + 2Tagsh’
—-2T523h)a; + (—chh‘ka - Sc,h"kg + chh4k1 + Zc{,hh')a: + (—4T333h3k3 + 4T323h3k1
-—2T523hl)63 -~ 4T1236yh3k3 + 4T1zgcuhak1 + (—ZTHQCL + 2T{226")h' - 2T{22C§lh)/2

Uaazs

(((20ky — 4h7)s.8, — 2hK'83 + 2T 0ol 2Tazh) 8}, + (— A2k (D)2
+(2K%k] + 4hR'ky )8 5!, + (6hk; + 8RAE, — 2h*ky )83 + 4T133h%k; — 4T132h%k,
—-ZTllzzh')by + (-2T3uh' + 2T5“h)a'z + (4T324h3k2 - 4T324h3k1 + 2T3’24h')33)/2
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fy

(cyda By T (20, da bl + (—cyd., + Cds B0y + (Cy — Toag)
~2¢ydzh? + (e, + Tiag)h)sl + (6cydzhtks + (8cydoh* + (—2cy + 2Ta) h3)k;
+eydyh?ky + (2eydlhh! — 2¢,doh® + (2¢, — 2Ts36)k3 + ¢!, dLh?)ky
+(—2c;d,_.h + T:;SB)h’ - 2C{,d;h2)8, + (2T323dz + 2T1mc,,)h3kz
+((—2T393d> — 2Th6cy ) b3 + Ta23h?)ky + (—Ta23d’, + Thade
+Thaacy — Tiz0¢y)h’ + (Tiaad;, + Thsecy)h

Uazae

((dzhzkl - 2d.h% + h)s, + (dLh*k, — 2d_hh' —- Zd:,h’)s,
+T126K' + T{,Gh)s;‘ + ((dzhzk'l + (2d.hR' — d;hz)kl + h")sl,
(6dhks + (8d bt — 2h3)ky + dLATK] + (24 AR — 2d 54 + 29)ky )5,
+2T36h3kq + (—Tgmh’ + Tieh)sl, + (2T34dl3k2 — 2Ta6h3ky + Témh’)sz
+2T324d-h%kg + (=2T334d2h% + Ta24h?)ky + (=Tagad’, + Tpgd)h! + Thoudlh

Usaas

~(6cyh%ks + (2c)h* ~ 12T13ac, h)ks — 4cTRR'RY — SRZEY + (—2e5(H)?
~2cyhh" + cjh* + 12T133c,h® + 9¢y(ch )*h? )by — c3(H')?
+(—6T1330;l + GT{”Cy)h’ - 2cghh" - GT{MC;’h)/G

Usaas

—((6eyeyh®ky — 2T1a3h’ — 2Tfaah)s!, + (6c2hks + (2c2h% — dTh33h7 ks
—4cihh'k] ~ kY + (—2¢3(K')? - 2c3hR" + €3ht + 4Tygah?
+3(C:‘)2h2)k1 - Cz(h’)2 + 2T{33h' - 2cf,hh”)au - 4T134Cyh3k2 + 4T134€vh3k1
+(=2Tha4c) + 2T134¢y )b’ — 2T3,cyh) /2

Uszas

—(3cyh?ky(s})? + (6c, hTk1sy — 2Tha4h’ — 2T]3 k)8, + (6cyh*ks + 2¢,h%k;
~dcyhh'ky — e h3kY + (—2¢y(B')? — 2cyhh" + cyhd)ky — cy(R')?
—2cyhh")s: + (—4T134h3k2 + 4T134h3k1 + 2T{34h')8y - 4T144cyh3k2 + 4T144Cyh3k1
H(=2Ts0ac) + Tl )W FThgel 1)/

Uaaee

(chdgh"ka + (86,,!13’1‘ + ((—4cy + 4T333)d= + 4T1(mcy)h3)kg + 2cyd=d;h2k;
+(dcydod, hh' — 2c,dZh* + ((4cy — 4T336)d, — 4T16a¢, )B° + (—cy(dL)?
+2c;,dzdlz - ch + 2T333)h2)k1 + (——26;}{:,’1 + (2cy - 2T333)d; + 2T3'35d=
+2Ti006, — 2Tlogt ' — 4l dadh? + (2, + 2Tisg)d + 2Tigecl )2

Uaaas

—(9h7k18,(8))% + (—6T14sh’ — 6T},4h)al, + (6hiks + 2hiks — ARR'F, — R3EY + (—2(W')?
—2hR" + h4)ky — (K')? — 2hh")83 4 (—12T104h%k; + 12T1aah®k; + 6T), 1')s,)/6

Uzsee

((2ded;h7ky + (—2d2h + 2Tren)l — 4dodLRT + (2d, T 2Tigg)h)ol
+(6d2h4k3 + (Bd:h‘ + (-—4(1. + 4ng)h3)kg + 2d=d;h2k'1 + (4dzd’thh' - Zdih4
+(4d — 4Ts00)° + (~(dy )7 ~ 2)R)ky 4 (2 = 2Tigg )a,
+4T343d,h3k2 + (-—4T343d,,h3 + 2T343h:)k1 + (—2T343d; -+ 2T546d=)h' + 2T546d;h)/2
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Table 1.3: Integrands for Second-Order Path-Length Matrix Elements

Matrix Element | Integrand
q fi
Tsn hTy + %(C;)z
Ts12 hTi2+ s’
Ts1e hTne + c.d,
Tsa3 RTi23 + 3(s.)?
Ts26 hTyze + sLd!
Tsaa hTyas + %(CL)Z
T34 hTi34 + 8!,
T4 hTy4 + %(8;)2
Tsee hTige + 2(d.)?

Table 1.4: Integrands for Third-Order Path-Length Matrix Elements

Matrix Element Integrand
q Ji

Usin hUyn — %c,(c’z)zh + T1,,¢,
Usua hUsy1; - czc,hsl, + Tins, — %(c;)’ha,, + Ti1aC
Usne hUs116 — caCyd b — %(‘—"z)zdzh + Tid, + AP
Usiza hUy120 — %Czh(s',)z —  hazsl + TY 8! + Tiaacs
Us11e hUnize — cod hsl, — c,dohsl, + Thigst — cld.ha, + Tinad; + Tiz6c,
Usias hUyz33 — %c,,(c;)"'h +~T:;13°;, + T;aSC;
Usias hUyy34 — cacy hs) + Tiasl, + T3146, + Tiac,
Usi44 hUi14a — %‘-‘zh(-";,)z + T:gu-’;, + Tiaacs
Us1ea hUree —~ jea(d.)?h — Coled b + T} gd! + Tigec.
Usaaa hUyzzs — %hﬂz(ﬂﬁ,)n + Ty339.,
Usaae hUy226 — il'dmh(""a)z - d’zh"ra; + Tise8, + Ti5,d;
Usaas hUiga3 + TY,,8. — %(C;,)’hsz + T:;gac;,
Usaas hUy3a4 — cyhsas) + Tiaasy + Tiast, + T30,
Usaaa hUyz44 — %h"r(-’;)ﬂ + T:;u-’;; + T1445
Usaes hUyze8 — d,d’ hs!, + Tegst, — %(d’z)’hs, + 1134,
Us3ze hUy336 — %(C:,)’dzh + T3qqd., + T;;'aec;, '
Usae hUya46 — c,d-hs), + Tiae3y + Ti3udl, + Tsiecy
U544a hUl445 - %d,h(s;‘)z + T3'468L + Tl'44d;
Usese hUges — 3d.(d.)2h + Tead:
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Chapter 2

Third Order Optics for Ideal
Magnets

2.1 Introduction

Once the equations of motion are obtained, Taylor-expanded transfer maps can be calculated
for various magneto-optical elements which can the be concatenated, following well-defined
rules, to obtain a resultant map that characterizes the entire system [2,3] or used to study
beam properties as the beam passes through each element [4]. There exist various computer

codes, e. g. [12,14,16}, that use the matrix approach to perform accelerator lattice designs,

optics analysis, and beam tracking.

In this chapter, we consider the optical properties of common accelerator components:
a dipole, a quadrupole, a sextupole, and an octupole. We assume that the multipole fields
abruptly go to zero at the boundary of the magnetic element. Thus, we limit the generality

of the problem discussed in the previous chapter to the cases where h, k1, k3, k3 are constant.

We also introduce so called “TRANSPORT notation”, which is used in the computer
program TRANSPORT (2] for designing charged particle transport systems. It simply trans-
forms the curvilinear coordinate system (z,y,t) into the local rectangular system (z,y,2),

consistent in passing from one magnetic element to the next.

Before we take up the magnetic multipoles, let us mention the simplest of the optical
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elements, a pure drift with zero magnetic field. The equations of motion become simply,

' = 0
¥y = 0

and
82(t) = s8,(t) =1t

e(t) = ¢t) =1
da(t) =0

The drift is a linear, non-chromatic (momentum independent)

following first-order transfer matrix,

1 L0 oo

01000

; 0 01 L O
daft

R = 0 00 10

¢ 0 0 01

0 000O

where L is the length extent of the drift.

Qo Qoo

(2.1)

(2.2)

element described by the

(2.3)

There are also two non-zero second-order matrix elements describing the path-length

difference in the drift. From Eq. 1.33, we get

nglz;ft = Ed:;-:x;ft — L
2
2.2 Pure Dipole
2.2.1 First-Order Matrix

For a pure dipole, the field is equal to a constant,

B:(z,y,t) = 0
Bll(z’yat) = Bp
B(z,y,t) = 0
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and h(t) = 1/po = const, ky = k3 = k3 = 0. The homogeneous solutions to Eq. 1.28 become:
(t) posin ¢
s(t) = in —
° Po

t
c(t) = cos o
s(t) = ¢t (2.6)

ot) = 1

The dispersion function d.(t) is evaluated from Eq. 1.31:

ot t ot
d:(t) = sin— [ cos Zdr —cos = [ sin Zdr
7 Po Jo Po Po Jo Po
t
= Po (1 - CO8 '—>
Po
= poll - e:(t)] (2.7)

The path-length matrix elements are obtained from Eq. 1.35:

t T t t
Hyy = ]{ cos —d-L = sin — = 3(t)
0 Po po Po Po

¢ t
Ry = /(; sin ;,T;dr = po (1 — €08 ;;) = po [l — c(t)] (2.8)

Ru= [ (L= ea(r) dr =t — su(2)

So, together with Eq. 2.6, the first-order transfer map for a pure dipole is described by

the following matrix,

c 55 0 0 0 po(l—c.)
—82/p3 2 0 00 s./p0
. 0 0 1 ¢ 0 0
dipole __
R - 0 0 010 0 (2'9)
azfpo pof{l—c;) 0 0 1 -3,
0 0 000 1

2.2.2 Nonlinear Matrix Elements

In order to obtain physically useful results, it is necessary to introduce a rectangular coordi-

nate system. So far, the discussion of matrix elements’ computation has concerned a single
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magnetic element. All derivatives have been with respect to distance along the reference
trajectory, assuming constant radius of curvature. We want to be able to calculate the first-,
second-, and third-order transfer matrices from those of the individual element. To this end,
we must express nonlinear matrix elements in a coordinate system which is consistent in
passing from one element to the next. The curvilinear coordinate (z,9,%) is not consistent in
this regard, since the curvature 4 of the central trajectory changes abruptly at the boundary
of a dipole magnet.

Theréfore, we will employ a rectangular system whose transverse coordinates are the
same as those of the curvilinear system at one particular point and whose longitudinal axis
points in the instantaneous direction of £, at that one reference point. The Cartesian systems
(z,9,2) at the entrance and the exit of a bending magnet are shown in Fig. 2.1. We define
the “TRANSPORT coordinates” as follows,

Ty = 2
_ dz =z oz
B il e ¥
T3 = y (2.10)
dy ¢ v
2y = —=1=
dz 2z 14h2
Ty = 1
Tg = &

The difference between the coordinate systems has an effect only on nonlinear terms.
Expressing the matrix elements in the rectangular system in terms of those in the curvilinear

system, which we denote with the superscript ¢, we have for the second-order terms:

Ty = T§,; + ks,

Ty = 5, - he.c,

Tz = T5y; + hsl, — h(ces!, — C,32)
Tae = Tig — h(c.d] + c.d,)

Taa3 = T5,; — hs,s!,

Taze = T5pe — h(s-d] + 82d;)
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€,

Figure 2.1: Cartesian systems at the entrance and the exit of a dipole magnet. The z-axis
points in the instantaneous direction of the reference trajectory.
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Taes = T5eq — hd.d.

Ts14 = T5i4 + ks,

Ths = T, — he.c),

Toa =TS, + hs; — hc,s;
Tias = Tfp3 — hs.c,
Ty = Tfu - hszc;
Tise = Tpe — held,
Tus = T5ie — hsld,

Only the elements different in the two systems are listed. Similarly, for the third-order terms,

the connection formulas are:

Vins = Ufyyp + Thypk

Uriaa = Uy, + 2TS,0

Urize = Ufus + szeh

Uiiag = Ufl:u + Tf:uh

Uiia = Ufian + 2T5,0

Unu = Ujyy, + e h? — (Tiuc, + Tyea )b

Uanz = Uy, + ((2 - € )h? — Tiyh)sl + ((2c: — 1)cLh? — T51h)ss
~(Tfpel, + Tf,e. — T5a)h

Unie = Uy + (c2d. + 2cpc,dz)h? — (Tiud, + Thade + Tfiec, + TFigcz)h

Uriaz = Ugyyy + ((2Cz — 2)h%s, — T h)sl, + chisy — T5shs,
 CHA T5sac= — 2T5,)h

Usize = Ug pq + ((2cz —1)dh? ~ Tteh)s, + (((2¢. — 1)d, + 2c.d.)h?* — T5,6h)s.

—(Tfud' + nzd + les + Tzzs)h

Unas = Ufjpy ~ (Tiases + Tisaca)h

Unas = U3y — (Tfaedl + Thauce — T53 )b

Unas = Upygy — (Tipacl, + Tipgca — 2T50 )R

Unes = Ujyge + (2cod.d, + cedi)h? — (Tfed., + Thed: + Tieec, + Tioqcz)h

Usaza = Ugyay + (K233 — Tiash)s, — Tipshs,
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Uzaze = Ufype + (2doh?sz — Tiyeh)s, + dph?s] — Thghss — (Tipd), + T5pade )b
Uszss = Ufyzs — Traghs;, — Tigshs-

Unaaa = Ugzsy — Tis4hsy, — Tiashs,

Unass = Ugyyq — Tiashs, — T5uuhse

Unass = Uszes + (€207 — Tiggh)s, + (2d-dh? — T5ieh)s. — (Tfyedl, + Tgpeds )
Uzase = Ugzag — (Tiaad; + Tiaadz)h

Uzase = Ugzee — (Tisedz + Ti3d:)R

Vrsse = Ujpie — (Tiiud; + T54udz)h

Uzess = Usges + d2d,h? — (Tigedl, + T5pedz)h

Usia = Uspy + Tish

Usiza = Uspps + Tipsh

Usiza = Ugpp, + 2T§24h

Usie = Ujyyq + T5ieh

Usiia = U3 + cgc;h’ - (Tfuc;; + Tfiscz)h

Uiins = Uy + (e — ce)h? — Tfuh)“"y + (Tha— T§i42)h

Uia = Ugps + ((2¢; — 1)e)h? — T 5h)s, — (Tflz"; + Tiyace — Tpa)h

Unze = Ufppq + ((2¢c - 2)R%s, — Thah)s, — Tiahse + (275, — Thac:)h
Usiss = Ufpas + 2¢2€,d:h" — (Tfiad. + Tiiecy + Tiaeca)h

Usias = Ufua + ((Zcz - l)d,_.h,’ - Tf1eh)5;, - (T fudz + ez — Tfm)h

Uiaza = Ufpps + C:;hz“’: ~ Ti2ahsz — Tfnc;h

Usaza = Ufpyy + (W55 — szzh)";; — T34hse

Uszs = Ufzag + (2,207 — Tiigh}o. — (Tipade + Thaec) )k

Usus = Ufyq + (245752 — Theh)sy — Tiyghse — T d:h

Uazs = Ufaaa - Tfaac;h

Uszas = Ufyy, — Tfsah"'y — Thycyh
Usaas = Uy — Tiaghsy, — Ty ik
Usses = Ufzgq + €, d2h? — (Tfsedz + Tiaec) )k
Utsss = Ul — Tipuhs,,

Usses = Ufwe + (d:h’ - T, feeh)";, — Tiiedeh

%
%
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Then, using the Green’s function integral with
G(t,T) = ppsin {t=1)

Gy(t,7) = (t—T)

and the driving terms given in Tables 1.1 and 1.2, we obtain the transverse matrix elements,

3z = posin(t/po)
cz = cos(t/pg)

T = —(1- c2)/(2p0)
Tiya = Szcz/ Po

Tns = 8,
T2 = Po-‘lz(l - Cz)
Tize = 3.(1 — c;)
Ta = —Po(l — C:e)/2
Thes = —53/(2p0)
T34 = tsz/po

T324 = pot(1 — ¢;)

Tug=1t—s,

Ui = /8 — c.hA/8 + SH3/8 — k34 + e, b8

Uiz = c3hs, /8 + cih3s, /8 — c2h3s, /8

Urite = hs,t/2 — ha t/2 — 1l 2588 /8 — hBs2 /2 + chs} + 5¢,h%s2 /8
—3h3s2 /2 + k33 + hs? /2 + Eh 4 + cth/2 — 3h/2 ~ c.h/4

Uniaz = —h?s,t/4 — 3c2h?s, /8 — 3cts, /8 — €28:/8 — 28, + 33, /2
—3h? /8 + c.h?[8 — ¢S /8 + 3/2 + 2 — 11c,/8

Unize = —Coht/2 + czt/(2h) + c2h3s. /4 + cAha, /4 — €29:/(4h) — c2s, /(4h)

Uniag = —h?s.2 /4 + R2s,t /2 + cut /4 — 5, /4 + 2/2-1/2

Unies = —h?s,t/2 + 5,t/2 + czhis? + htst — czh?s} — c h*s3 /2
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+c3h?s2 /2 + c,h?s2 /2 — 2h%82 — 332/2 — ¢t + 2

Unaza = cot/4 4+ c2h?s. /4 + cls. /4 — s,/2 — 3c8/(8h2) + 53 /(4h%) — 2 /h?
+c./(8h?) — 3c3 /8 + 3¢, /8

Uraze = hazt/4 + 3c2hs, /8 + 3cis./(8R) + c2s./(BR) — czs-/h + 82/(2h)
+c;h/8 — ch/8 + ¢, /(8h) — 3 /(2h) — 2 /(2h) + Te./(8R)

Usaas = 3243 [4 — ot [(4h%) — cot[2 + 3. /(4h3) + €282/2 + c./h? — 1/R?

Urus = ¢z /(2k) — 2 /(2h)

Usess = 1/(2h) — c3/(2h)

Usinie = —h* 3[4 + c h?s.t/4 + h3s.t + K24 — c.h?s. /4 — h?s,

Uniaa = A3/12 + 83 /4 — co8,t /4 ~ 25,8 — c2t/4 + 5t /4
+3;.+c2/2+2c, — 5/2

Usus = ht*[4 — cohs t/4 — 3ht[4 + t/(2h) + 3eshsn /4 — cosa/(2h)

Uszaa = —t3/12 + c3t/(4h*) — t/(4h*) — /2 + co8./2
+c2/(2h%) ~ 2¢./h? + 3/(2k?)

Uszas = —ht?[4 — 13 [(4R) + co5.t/(4h) +t/h — 5./
—c3/(4h) — c./h + 5/(4k)

Usias = 82/2 — /2

Only non-zero “position” matrix elements are listed above. The “angle” matrix elements
Taiky Taje and Usjer, Ugje are found from the connection formulas and differentiation of -
the “position” matrix elements. The basic trigonometric integrals used in evaluating dipole
terms through the Green’s function integration are given in Table 2.1.

For the path-length difference terms, we have the following relations between the two

coordinate systems:

Tsia = Tga+ kR,

Usna = Ui + hTscu
Usinn = Uscua + 2hT5‘22
Usize = Ugne + hT;ze
Usiaa = U, 5134 T hTsc:u
Usia = Ufl« + 2hT§44

Again, only the differing terms are shown. The matrix elements are given by the integrals
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Table 2.1: Basic Integrals Used in Evaluating Dipole Matrix Elements

Q) G
Cs 3.
I (t+ cz8.) /2
T 8, —h3s3/3
cl (3 — ch?s3 + s, + 4c.3,) /8
32 (1—-¢)/R?
C28. s3/2
€z3z (1-c)/(3h%)
Y (1 - ) (a7
e (£ cus) | (21
cz82 a2/3
c2s? (t+ coh?s. — c3s.) [ (8R2)
8 (c2 —3cz +2)/(3h)
83 si/4
st (3t — czh?8% + s, — 4c,5.) / (8R*)
et (R?s.t + ¢, — 1) /h?
cit (8% + 2¢,3,t — 52) /4
3zt (82 — cot) /A3
285t (h?st — 3t + c.s,) [ (4h?)
83t (8 — 2¢.5,t + 83) / (4h?)
ct? /6 + co9, (£2/2 — 1/ (4h?)) — szt/4 4 c2t/ (4h?)
casot? | (= (2 — h¥s2) (2R — 1) + dc h2s t — 1) /(8h*)
53t | (/6 — c.s. (/2 — 1/ (4h%)) + s2t/4 — 2t/ (4h?)) /b2
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in the Tables 1.3, 1.4 for the second and third order respectively.

Thus, we have succeded in obtaining transfer matrices for a dipole magnet. We can
express the results with respect to the angle through which the beam is bent, ¢ = t/p.
Additional optical effect is produced by the boundaries of the dipole if they are not normal
to the reference trajectory. We discuss this point in great detail in the next chapter.

Next, we consider higher multipoles.
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2.3 Quadrupole

2.3.1 First-Order Matrix
A pure quadrupole, whose cross-sectional configuration is shown in Fig. 2.2, produces the
field described by the following scalar potentiai ¢,

Byzy
a

¢)=

(2.11)

where a is the pole-tip radius and B, is the magnitude of the field at the pole-tip radius.
The reference trajectory through a quadrupole is a straight line, known as the optical

axis. Since h = 0 for a quadrupole, there is no need to introduce a new rectangular coordinate

system as we did for the case of a dipole. The magnetic field components are given by the

gradient of the scalar potential,

B, = '@ =gy
a
B
B, = —:3 = gz (2.12)

with g denoting the magnitude of the field gradient. To obtain the equation of motion, we
put in Eq. 1.27

h =0
klhz = ——q'g'
Do
kz =0 (2.13)
ka = 0
Defining
a9
ky=—
! Do
we obtain from Eq. 1.28,
:z:"-f-k:a: =0
y'—ky = 0 (2.14)
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Figure 2.2: The cross section of a quadrupole; a is the distance from the optical axis to the
nearest point on the pole tip.
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In the usual convention the pole-tip field is positive, so that k2 > 0 and the magnetic field
tends to restore the trajectory toward the optical axis in the horizontal plane and to deflect

it away from the optical axis in the vertical plane. The characteristic rays for the quadrupole

are:

1

s2(t) = sinkgt

. kq ?

cz(t) = coskyt

d(t) = 0 (2.15)

3,(t) = —l—sinhkqt
kq

cy(t) = coshk,t

The first-order transfer matrix is then given by,

Cz s, 0 0 00

~k!: cc 0 0 0 0

0 0 sy, 00
R o 2.16
0 0 klsy ¢ 0 0 (2.15)

0 0 0 ¢ 10

0 6 0 o0 01

A single quadrupole always focuses the beam in one plane and defocuses it in the other.
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2.3.2 Nonlinear Matrix Elements

The Green’s functions for the quadrupole are:

sinkq(i — 1)

Gz(t,T) = k
q

sinh kot — 1)
kq

The only non-zero second-order matrix elements are the chromatic, 6-dependent, terms,

Gy(t,7) =

T116 = k:ts,/2

Tig = (30 —tce) /2
nge = —kgtsy/Z
Tae = (sy—tcy) /2

The third-order terms are evaluated with the help of integrals given in Table 2.2:

Unin = (3k33,92(48) + 24k2e. st — 12k8ts.)/64

Uz = ((6k7 + 3kg)eos0(4t) — 24Kk] co,(2t) — 24855 + (48K — 48K2ch)s,
+(36k] — 24k?)tc.)/64

Uniaz = —((6k] + 3k3)s23-(4t) + 24k} s.8.(2t) + 48k;c,s: + (36k: ~ 24k})ts.
+24c5 — 24¢,)/64

Unias = —((kgce92(2t) — kjszco(2t) + 2k}s,)s,(2t) + (3k3s.c,(2t) — 2k35.)s.(2t)
+k:c,c:(2t) + (2k3c.co(2t) — GkZC,)cy(Zt) - tlls',‘:tsz + 3.’02(:,)/32

Uniaa = —((3k}5282(2t) + kicc.(2t) — 4k3c.)s,(2t) + k3coc,(2t)s=(2t) — k2s.c3(2t)
+2k2s,c,(2t) — K3s,)/16

Uriae = —((Kje28a(2t) — kiaqco(2t) + 2k25.)s,(2t) + (3k3s2cy(2¢) + 2Kk23.)s.(2t)
+(3caca(2t) — 4c,)cy(2t) + 2c.c.(2t) + 4k:t.9,, —¢z)/32

Unies = ((5k3s. + 2k3te,)s(2t) — 2kJts c.(2t) + 6k3c.s2 — 8k3ts. — 2k3t*c.)/16

Urana = —(3k3cz82(4t) + (24 — 24t )s. — 12K3tc,) /64

Unass = ((kj9232(2t) + Kjceca(2t) + 2K3c,)s,(2t) + (2k2¢. — 3K2c.c,(2t))s.(2t)
+k3s2cy(2t) + (2k752¢2(2t) — 2k35.)cy(2t) + 4k3s,c.(2t) — 5ks, — 4k3tc.)/32

Urazs = —((3k}cz82(2t) — 3k35.c.(2t) — 4k2s,)s,(2t) — kls.c,(2t)s(2t)
—cz€3(2t) — 2c.c.(2t) + 3¢, )/16
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Unaas = ((K73282(2t) + 3cze2(2t) + 2¢,)3,(2t) + (—3c.cy(2t) — 2¢.)s-(2t)
+382¢2(2t) ey (2t) + 632c.(2t) — 93, + 4tc,)/32

Uizes = —((2k3ts; + 3c,)s.(2t) + 2tczco(2t) + 2k3s3 + 2k3t?s, — 8tc.)/16

Usns = —((kfeya=(2¢) + kisyc.(2t) — 2k} s,)s,(2t) + (2k2s, — k3syc,(2t))s.(2t)
—2k3cyc)(2t) + (6k2c, — kicyca(2t))e,(2t) — 4kits, — 3k]c,)/32

Using = ((kjsy82(2t) + 3k2cyc.(2t) - 2k3cy)sy(2t) 4 (—k2cyey(2t) — 2k2e,)s.(2t)
+(2k] sy — 3k2s,c.(2t))c,(2t) — 4kisyc.(2t) + 5k3s, + 4k2te,)/32

Usias = —((3k33y84(2t) — kleyco(2t))s,(2t) + (4k3e, — 3k2cycy(2t))s.(2t)
+(k3syca(2t) — 2k23,)c, (2t) + k2s,)/16

Usias = ((3kjcys2(2t) + k2s,c.(2t))s, (2¢) + (—3KkJsycy(2t) — 4k3s,)s.(2t) — cyc2(2t)
+2¢yc0(2¢)cy (2t) + 2¢yc.(2t) — 3¢,)/16

Usaas = ((kjcys2(2t) + 3k2s,c.(2t) + 2k}sy)s,(2t) + (2k3s, — k2syc,(2t))s.(2t)
—2¢ycy(2t) + (4ey — cyea(2t))e,(2t) — 2cyco(2t) + 4k3tsy + ¢,)/32

Usaaa = —((K3ay52(2t) + 3eyca(26) + 2,)a,(2t) + (—cyey (26) — 26,)3,(2t)
—38y2(2t)cy (2t) — 65,c,(2t) + 95, — dtc,)/32

Ussza = (3ks,5,(4t) — 24kcy sy — 12k3ts,) /64

Usaan = —((357 + 6k3)eys,(41) — 20k3cy s, (2t) — 24k2a5 + (—48K3ch — 48k4)s3
+(36k; — 24k3)tc,)/64

Usass = ((6k; + 3k3)s,8,(4t) + 24k]s,s,(2t) — 48kgcy 3y, + (—24%323 24klc,)s]
+(36k2 — 24k!)ts,)/64

Usses = ((3k78, — 2k3tc,)s,(2t) + 2kjtsyc,(2t) — 6k3c,s? + 8k3ts, + 2k3t?c,)/16

Usess = —(3kjcys,(4t) + (—24k2c3 — 24k2)s3 — 12k24c, ) /84

ey

Usiss = ((2ktsy, — c,)3,(2t) — 2teyc,(2t) + 6k3s3 + 2k3t%s, + 4tc,)/16

Again, only the non-zero “position” matrix elements are given; corresponding “angle”

terms are obtained by differentiation.
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Table 2.2: Basic Integrals Used in Evaluating Quadrupole Matrix Elements

I(t) L I(r)dr
ct [12¢ + s,,(4) + 8s,(2t)] /32
8¢ $3(t) [1 + 2(t)] /4
sjcd — (4t — s, (48)] /32
sy si(t)/ (442)
sl [12¢ + s,(4t) — 83,(2t)] /32
{lsu(38) + B8y (8)] 32(8) + [3,(31) + 5 (£)] (£)/ k2 — 8} /40
casley {ley(38) — 50, (8)] 3a(2) + [38,(3¢) — 53, (t)] e=(t)} / (40K2)
cicy {s2(2t) [c,(2) + 2] + 8,(2t) [c(2t) + 2] + 4t} /16
sye, {s2(2t)35(2t) + [ey(2t) + 2] co(2t) /3 — 3/k3} /16
cis? {o=(2t) [e(28) — 2] + 5,(2t) [ca(2t) + 2] — 42} / (16K2)
c [12¢ + s, (4t) + 8s,(2t)] /32
Sa3yC; {[3¢,(3¢) + 5e (8)] 8a(t) — [5,(3¢t) + Sa,(£)] ea(t)} / (40K2)
3a8ycy {[34(38) — 5, (t)] a(t) — [e(38) — 5oy (£)] ca(t)/K2 — 4/K2} / (4082)
80Ca’ {22(2t)s,(2t) — [ey(2t) + 2] eo(28)/R2 + 3/R2} /16 ‘
82C28,C, [82(2t)e, (2t) — ca(2t)s,(2¢)] / (16k§%
P {82(2)s,(2t) — [cy(2t) — 2] o, (26) /K2 ~ 1/K2} / (1682)
s.cle, {82(36)8,(t) — 3a(3)cy (£)/K2 + 552(£)ay (£) — Sea(t)ey (£)/R2 + 8/k2} /40
[32(3¢)cy () = 3ea(3t)3y () + Saa(t)ey(t) — 5ea(t)s,(£)] / (40K2)
52c2 (1~ () / (45})
i = {les(2t) + 2] 5a(2t) — 3,(2) [e=(2t) + 2] — 42} / (1642)
s2syc, — {s(2t)s,(28) + [e(2t) — 2] e, (2t)/ K2 + 1/k2}/ ile:)
sled ~ {{eu(28) — 2] 52(28) + 5,(2t) [ca(2t) — 2] + 4t} / (16kY)
sicacy — [382(3)y(t) + €2(38)3,,(t) — 5aa(t)ey(2) — Sea(t)s, (2)] / (40K2)
slcesy | — [382(38)5y(t) + co(3t)ey(£)/KE = 5o (t)s,(t) — Sea(t)ey(t)/ k3 + 4/k2] / (a0k2)
sic? [4t — s.(4t)] /32
s3ca 83(t)/4

[12 + s.(4t) — 8s.(2¢)] / (32k7)
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2.4 Sextupole

2.4.1 First-Order Matrix

The sextupole is purely non-linear element in a sense that jis first-order transfer matrix is
identical to that of a drift space. It has six poles, as shown in Fig. 2.3, and its scalar potential
¢ is a solution of the Laplace’s equation symmetric under a 1298° rotation. It is also odd in

the vertical coordinate y because of the midplane symmetry:
B,
= m(&’czy - 9% (2.17)

where a is the pole-tip radius and B, is the magnitude of the field at the pole-tip radius.
The gradient of ¢ gives the components of the field,

B, = ZFzy
By
B, = P—(z’—y’) (2.18)

Like the quadrupole, the sextupole possesses an optical axis. To obtain the equation of

motion, we put in Eq. 1.27

h =0
kl = 0

kah® = %Ekf (2.19)
l’s’!a = 0

Since the fields have no linear dependence, a pure sextupole has the first-order properties of

a drift space and the characteristic rays are of particularly simple form,

5.(t) = s,(t)=t
ea(t) = ¢t)=1 (2.20)
d(t) = 0 ‘

Ii
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Figure 2.3: The cross section of a sextupole; a is the distance from the optical axis to the
nearest point on the pole tip.
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2.4.2 Nonlinear Matrix Elements

The sextupole Green’s function is quite simple,
G.(t, 1) = G,(t, T)=t—71

The non-zero “position” elements are obtained in a straightforward manner from the

driving terms of Tables 1.1 and 1.2,

Ty = —k383/2
Ty = —k363/3
Ty = —~k*4/12
Ty3s = k33/2
Tyse = k3t3/3
Tyag = k*4/12
Ty = k343

Tys = k*3/3
Ty = k33/3
Tias = k2t4/6

Unn = kit4/12
Urina = k35/12
Urnie = k3t?/2
Upiaa = k3t5/36
Usize = k3t3/3
Upias = K34/12
Uniae = K4t5/10
Usiaa = k328/60
Uizza = k:t7/252
Uinie = kJt*/12
Urazs = —k2t8/60
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Uizas = k3t8/90
Uyaaa = k3t7/252
Uizze = —k3t3/2
Upsie = —k3t3/3
Urue = —k3t4/12
Uania = kit4/12
Usine = —k*t%/60
Uspas = kit5/10
Usias = k3t8/90
Usizs = —kJt?
Usise = —k3t3/3
Uspaz = k3t8/60
Usaze = KA7/252
Usaze = —k3t3/3
Uszes = —k3t4/6
Usana = KA4/12
Usasa = KA5/12
Usass = KA28/36
Usias = KA7/252

!

2.5 Octupole

The scalar potential of an octupole, another purely non-linear element, is given by

Fig. 2.4 shows the cross section of an octupole along its optical axis. The field components

are:

B
$=—(zy ~ 23°)
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Figure 2.4: The cross section of an octupole; a is the distance from the optical axis to the
nearest point on the pole tip.
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First-order transfer matrix is that of a drift space with characteristic functions given by

Eq. 2.20 and
Ga(t,7) = Gy(ty7) =t -1

The driving terms are obtained by putting

h = 0
by = 0
ko= 0 (2.23)
ksh* = % = k?
0

The non-zero “position” elements are:

Unn = —k3t?/2
Uina = —k3t3/2
Unias = —k3t4/4
Uniza = 3k3t2 /2
Uniaq = k33
Usas = K3t4/4
Uszaa = —k3t5/20
Uraas = K283/2
Uriae = k3t4/2
Uiaes = 3K3t5/20
Usus = 3k3t3/2
Usiie = K2t3/2
Usias = kJt3
Uniae = E2t4/2
Uszaz = k3t4/4
Uszzq = 3k3t5/20
Usaaz = —k2t?/2
Usagq = —k:ta/Z

53



Usass = —K3t4/4
U3444 = —k3t5/20

All the second-order matrix elements are zero for the octupole since the field components
have no quadratic terms. Thus, the first and second order optics of a system is not changed

by an octupole addition.
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2.6 System of Elements

The magnetic elements discussed in this chapter are the only multipoles that contribute to the
third-order optics. One can combine them in different systems to satisfy specific requirements
of an accelerator or a beam line. To this end, we must know how to concatenate the transfer
matrices of individual elements to obtain the transfer matrix of a system.

Consider a succession of two elements, the first taking a particle from £, to ¢,, the second —
from ¢, to £. We would like to find matrices R{;*?, T2, UP? describing the transformation
from ¢, to 3 given the transfer matrices for the two elements.

The transformation through the first element is described up to the third order by

(1) = L Hi0) + 30 3 T8V, 0)24(0) + 330 3 U e 0)eu(0)en(0) (2.20)
i=1 j=lk=1 j=lk=1lI=1

Here our definition of the matrices T and U differs from the one given by Eq. 1.11 in that

the matrices here are rectangular rather than triangular. The use of rectangular matrices

makes the nonlinear concatenations easier to derive. The difference between the two sets of

matrices is that the off-diagonal elements of the rectangular matrices are exactly half and

third of the corresponding elements of the triangular matrices for the second and third order

terms respectively.

Similarly, the transformation through the second element is given by

zi(2) = z RG™Dz(1) + i 3 T Ve i(1)2a(1) + 2 z z UG Dz;(1)za(1)2i(1) (2.25)

J=1k=1 i=1k=11=1
Substituting Eq. 2.24 intc Eq. 2.25, we can obtain the transfer mairices for the combined
transformation through both elements,
(0—3) (1.-.2) (01)
k
T,(;:_'Z) — Z R(IHZ)T(OHI) + Z (1»-.2) (0»—~1) R(O;—:l) (2.26)

slm
1

U‘(;)’:;ﬂ) — ZR(IHZ)U(OHI) + ZT(1H2) [ (OHI)T,(‘:;—J) + T'E:]EI)RESHI)]

wmnn

+ E -3 R(OHI) R(o.—q) R(o.-u)

imnp
mnp
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Using Eq. 2.26, we can obtain transfer matrices for any system of optical elements.

Next, we turn our attention to the case neglected in this chapter, namely the ¢-dependent

magnetic fringe regions.
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Chapter 3

Fringe Field Optics

3.1 Introduction

In this chapter we consider the effect of the magnetic boundary on the particles’ trajectories.
In the fringe region, the midplane field acquires longitudinal dependence, i. e. the quantities
h, ky, k3, k3 will in general no longer be constant but rather will be functions of . This fact
presents special problems in obtaining the transfer matrices.

The fringing fields of a dipole are especially troublesome because they affect the reference
trajectory and violate the implicit assumption of it having a piecewise constant curvature.
Put differently, a particle with the reference momentum which starts out following the ref-
erence trajectory will no longer do so after it passes through the fringing field region; it will
experience a zeroth order shift.

One way to avoid the complication is simply to neglect the fringe field. In the sharp cut-
off approximation, one assumes that the field abruptly goes to zero at the effective boundary,
a fictitious edge placed so that the field line integral is conserved. First and second order
transfer matrices in this model are expected to give a useful approximation to the actual
optics. The third order elements, however, would contain divergent integrals leading to
infinities due to the assumed field discontinuity [3,11].

With the advances of more precise magnet manufacturing and with more stringent re-
quirements put on the accelerator optics, such as a micron range final focusing at the Stanford

Linear Collider and effective handling of high intensity medical accelerator beams, one needs
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to give a more earnest consideration to the fringing field problem. In the language of the

transfer matrix theory it means to know how to obtain a solution at least to the third order.

Koz the sharp cut-off approximation, the problem has been solved to the second order (13].
For a less sudden, more realistic field behavior, a practical solution exists for the first order

only [10] and even that relies on considering special cases rather than giving a full treatment.

To have the full third order treatment, one has to deal with the extended fringing fields.
Mathematically, the net effect of the boundary can be represented by a “thin lens”, a fictitious
optical element of zero thickness, located at the plane perpendicular to the assumed reference
trajectory. The influence of the field on the reference trajectory itself is described by a zeroth
order transfer matrix. The really hard part is to solve the equations of motion through the
fringing regions, expressing the solution in terms of physically useful parameters. One such
parameter is the gap size between the poles, which measures the spatial extent of the fringe
field region; another ~ the pole face rotation angle, which the boundary of the dipole makes -

with the reference trajectory. Various line integrals of the field will also enter into the matrix

solution.

The computation of the transfer matrices for the fringing field of 2 dipole involves solving
nonlinear differential equations. Although conceptually straight-forward, the calculations are
quite involved and algebra (especially for the third-order case) is exceedingly tedious because
of the multitude of terms encountered in obtaining a solution. Throughout the calculations,

much use is made of a symbolic algebraic manipulation computer package MACSYMA [15].

Higher multipoles - quadrupoles, sextupoles, etc. — do not present the problems of a
dipole. Since they possess an optical axis, where the field is zero, the central trajectory
passing through it will not be affected in the fringe region. No new mathematical develop-
ments are needed since the fringing field can be modelled as a succession of thin multipolss
successively weakening in strength, each treated in the framework of the previous chapter.

We take up the case of a quadrupole to illustrate this point in the following section.
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3.2 Transfer Map for Quadrupole Fringe Region

In the fringe region of length T', the quadrupole strength k,(t) varies smoothly from its
constant value inside the quadrupole to zero in the field-free region. We can consider this
region as being made up of tiny quadrupoles of different k,’s stacked up tightly next to each
other. Suppose there are V such quadrupoles, each of length At, with varying strengths ki,
t=0,...,N.

In the first order, a short quadrupole can be treated as a thin lens with the principal

plane located at its center. From Eq. 2.16, the transfer matrix for the 7*® element is given
by

i [ 1Fiag At
R = ( F(kiYAt 1F1A8 (3.1)

where the F sign refers to the t-z and t-y planes respectively.

The matrix for the whole region is obtained my multiplying the N individual matrices,

N
R(T) = [IR' = R¥RM!, R!

=1 .
LIS, (N — ) + 1) (AR Nas
F oL (k) At 153 2E, (2 - 1) (KA
(3.2)
1F NAt S (k)AL + O(NAL) NAt
F ol (k) At 1+0(NA®) )
Taking the limits At — 0, N — oo, and (NAt) — T, we get the approximate linear map
for the quadrupole fringe region,

_(1FTL Rty T
R(T) = ( =R 1 )

In the second order, the only non-zero terms are the chromatic ones. For the it® thin lens

(3.3)

element, we have

i i ‘ i |y
Tie = T = —Tasa = —T4e = i(kq)zAtz
Tll.ze = que =0 (3'4)
Tzim = —Tise = (k;)nAt
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We can write the transformation between the elements i and (2 + 1) as follows,

Zigp \ _ @i % +3(ki)P At 0 26
(25-4-1 ) =R (zf) + ( :i:(kg)z/_\t i%(k;)"’Atz 255 (3.5)

where z is a generic variable denoting both z and y, R' is given by Eq. 3.1, and the + sign
refers to the t-z and t-y planes respectively.
Transforming Eq. 3.5 through all N elements, we get
zfv ) — RNRN—I...Rl / Z(,] \
2y \z )

[ EITLRW -+ 1] (k)ar o 208
3, (k)AL £3 TN, (2 - 1) (k) A zh6
(3.6)
0

_ R(T>(§?)+(iNAtz:fil(k;)zAt+0(NAt2> ') (a)

' 5L (k) At O(NA#)
Taking the limits, we obtain the following non-zero second order terms,
T
Tne(T) = —Tsae(T) = T/o k:(t)dt
3.7
T2
Tuo(T) = ~Tue(T) = [ Ki(t)at

The third order elements can be found by concatenating Usir’s for the thin lens elements
according to the last equation of Eq. 2.26. In that equation, the second summation gives
a zero contribution because all the first-order chromatic terms, which get multiplied by the
non-zero second-order terms, are identically zero. However, the concatenations are quite
tedious and the general results will not be given here.

In the following section, we turn our attention to the dipole fringe fields for the first time.

3.3 Matrix Approach to Dipole Fringe Optics

3.3.1 Mathematical Formulation

A dipole magnet can have its field boundary not perpendiculaf to the reference trajectory

at the entrance or exit pole. The field then provides an additional focusing on a particle. A
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Figure 3.1: A dipole magnet with non-normal entrance and exit field boundaries.
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dipole magnet with rotated pole faces is shown in Fig. 3.1. The entrance pole face rotation
angle is labelled B, and the exit pole face rotation angle is labelled ;. The angles are both
positive. In general, a pole face rotation angle is defined as positive if magnet iron is removed
for positive z and added for negative z. :

The field in the air gap makes a gradual transition from the longitudinally uniform interior
field to the field-free region external to the magnet. We would like to obtain transfer matrices
for the fringe region of a rotated boundary.

We consider the entrance of the bending magnet shown in Fig. 3.2. The net effect of the
fringe field of an inclined boundary can be mathematically represented by a fictitious optical
element of zero thickness, located at the reference plane. The transfer matrix for such a lens

is given by a product of three transformations,
MOHf — MﬁHfMlH?MUHl (3.8)
where

1. M® !is a transformation from the reference plane to the beginning of the fringe region
through the pure drift field;

2. M™% is the transformation through the fringe region;

3. M*f is the transformation from the end of the fringe region back to the reference

plane through the pure bend field.

A word about coordinate systems is appropriate here. We have to distinguish between
the beam system and the magnet system (Fig. 3.2). The beam system (2,2,y) is centered
around the point where the imagined reference trajectory intersects the field’s boundary.
The z-axis points in the direction of the reference trajectory and (z,z = 0) is the reference
plane. The magnet system (s,u,y) is centered at the same point as the beam system and
has its s-axis pointing in the direction perpendicular to the field boundary. Two systems
are rotated with respect to each other around the y-axis by an angle 8. Our final matrix

solution has to be expressed in terms of the beam coordinates at z = 0.
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Figure 3.2: Dipole entrance. Reference plane is normal to the design trajectory.

63



3.3.2 First Order Calculation

We define coordinate s to be normal to the actual pole face and coordinate v — tangent to it.
It is convenient to measure the extent of the transition field region in terms of the vertical
separation of the magnetic poles d. We assume that d is small compared to the radius of
curvature p of the reference trajectory in the interior of the magnet, and will derive the effect
of the fringe region as an expansion in the ratio ¢ = d/p.
We assume the midplane field depends on s only, i. e. we neglect the effects connected to
the finite width of the magnet. We define
B(y=0
h(s) = u(?éo )

where By is the constant field well inside the dipole. We assume further that the effective

(3.9)

boundary is chosen so that

/ h(s)ds = s* (3.10)
for s* > d.
Below, we obtain first-order matrix elements expanded to the second order in the “field

extent” parameter e. We follow the procedure suggested by Eq. 3.8. .

Transformation M®; Drift Region

First, we transform from the reference plane z = 0 to the beginning of the fringe region
8 = 3, through a pure drift. (Point s, is chosen somewhat arbitrarily since the fringe field

never truly goes to zero; we take s; to be the point where the field is zero to the accuracy of

a measurement.)

The equations of motion are simply

&z &Py
Pl i (3.11)
which are solved by
z(z) = zo+ehz
¥(2) = wo+ype (3.12)
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At the plane s = 3,, we have
2y = 2(s = 8;) = 2y tan § + 9y sec B
where, from Eq. 3.12,
z1 = 29 + Tp21
Solving Eq. 3.13 and Eq. 3.14 simultaneously for z;, we get

_ zotan B + 3, secf
2= 1~—izghtan

(3.13)

(3.14)

(3.15)

Substituting 2; into Eq. 3.12 and Taylor expanding to the first order in the initial conditions,

we obtain

2y = sysecf+aotanf + zpsysecBtanf + - -

£y = zo+zhHsisecf+---
z = T

!
Y1 = Yo+ YpS1secB+---

! !

1. = Y%

Let us introduce the scaled variables:

. w
= -
p
g=12
P
.o
4= —
p
o
= -
d

Then, the linear drift map simply looks as follows,

1 €3 sec
R'ng‘:Rng:(o 11 ﬂ)
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We can also write the relationships between the two sets of coordinates,

v = zsinf+ zcosf
8 = zcosf —zsinf

(3.18)
du du/dz  z'+{1ianp
ds dsfdz  1—z'tanf
dy dy/dz  y'secf
ds ds/dz ~ 1—z'tanf

Using Eq. 3.18, we can write the transformation M®! in the (3,%,9) system. Expanding

to the first order in the initial conditions, we get

%y = e31tanf + (Zgsecf + €5, sec? Bzy)

i1 = tanf + sec® Az},

#1 = o+ €3y secPy, (3.19)
1 = ypsecf

where the dot denotes d/ds. Anticipating future expansions, we notice that the variable
2; may not be assumed “small”, in a sense of being proportional to the initial conditions,
because of the zero order term tan 3. We define a new variable w(s) as a deviation from the

reference trajectory,
u(s) = w(s)+ A(s)
w(s) = u(s)+ A(s) (3.20)

where

A(s) = u™(s) = u(s)

mn=26=w=y") =§=0

At 3 = 31, we have

il

Ay
A, = tanf

€3 tan
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(3.21)

Tosec + €3y sec? Bz,

]

wy
Wy = sec’ fz)
Transformation M : Fringe Region

Here, we transform from the beginning of the fringe region at s = s, to its end at 3 = s,.

The normalized field 4(s) takes on values 0 and 1 at these respective endpoints and

/‘2 h(s)ds = sy (3.22)

”

The equations of motion can be written as follows in the (s,u,y) coordinates,
d (dufds\  q(dy
(%) - H(2e-n)
d (dy/ds\ ¢ du
ES— ( T ) - ; Bu - 'EB: (323)

du 2 dy\\2

Using Maxwell’s equations and the midplane symmetry we can expand the magnetic field

where

components around b(s) = B,(s,u,y = 0) :
db(s)  1d4%(s) ,
B,(S,u,y) = ds 'y"'g ds? /e X

By(s,u,y) = 0 (3.24)
14%
By(s,uy) = o)~ 20N

Using the above expansions and the fact that

q_bs) 1 1
b(s)i ~ Bop(1+8) h(s)p(l +8)

we can write the equations of motion as follows,

i = -T[f(1+47)+ ]
= T g (1+37) + fig] (3.25)

T
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where the dot, as before, denotes d/ds and

_ 1 g _l 2)
f“p(1+5) (h hyi = 5hy

9= (iuly - ﬁﬁy”)
p(1+6) 6
We can use Eq. 3.20 to expand the equations of motion in the variables representing the
deviations from the reference trajectory A(s). We can write the equation for A by putting
u(s) = A(s),y =9 = § = 0 in Eq. 3.25: |

A= —%(1 + A% (3.26)
with the initial conditions
A(sy) = s tan g A(sl) = tanf

The equations for w(s) and y(s) can then be written to the first order in “small” quantities

as follows,
- —(1+A’)%( 34 11'}-—5) h
14+ A2 P
. . d {h \-: .
i = — n (2
i A(1+ A?) P (py) (3.27)
Eq. 3.26 can be integrated to yield
. . i . 3
A@G) = A(5) — € / [1+ A%(s))? h(s)ds (3.28)
3

The above equation can readily be solved by iteration to O(e?)

A(3) = tan B — esecaﬂ/’: h(sjds + ge’ tan Bsec g (/: h,(.s)d.q)2 (3.29)

Integrating, we get A:

A(3) = egtanf — secaﬂ‘/_‘ [. h(s')ds'ds (3.30)
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Eq. 3.27 can be rewritten in the dimensionless form as follows,

d _ .

-—;w = W

d . 1_ A2\ 3A -
Ew = —eh(3)(1+ A?) (1+A2w—5>
d_

i’ 9

d. _ x 4 "2 1 d -

i = A0y AL og)

where the initial conditions are
W(3) =Wy wW(3) =1
&) =5 ¥(E) =4
Let us solve Eq. 3.31 to O(?) using order-by-order iteration procedure:

#®a) = @yte | ju’;‘"‘l)(s)ds
W50(5) = 1y = e [ p)hl) D o)ds +5 [ " a(o)h(s)ds
§E) = fite / ") (a)ds \
§96) = 6= p@HETE) + [ Loh(o)g Do)

where

P(3) = A(l + A’)%
4(8) = (1 + A?)F

We can use Eq. 3.29 to expand p, and ¢, to O(€?):

_ . 1+ . 2 " 3+
o) B LD Uy D) (1
ge(3) = €sec®* B — 38 —— S;:S'Bﬂ h(s)ds + -
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and then

dp.  1+sin®*g 1SinB(3+sin? @), 5
- =€ vy h + 2¢ pvy? h./:l h(s)ds +

Starting with the initial conditions as the zeroth order iterates, the successive iterations
of Eq. 3.32 produce the transfer map at the endpoint 3 = 3;:
Wy = 1y + 1y [6(52 —§) —3e*sin@sec’ § fq f' h(s')ds'ds]
3y 51
3 »
+8€* sec® h(s')ds'ds
€ se ﬂ/s, /-:1 (8")ds
Wy = iy {1 — 3ed3sinfsec’ @ + %6252(1 + 4sin® B) sec* ,B]
+6 [e.‘s‘g sec’ B — 3€%53 sin ( sec® ,8]
T2 = 7 [1 — €3;sin B sec® B
1 . &3 po
+e?sect B (53‘;(1 + 2sin? ) — (1 + sin? ,H)_/_' / h’(s')ds'ds)]
i &1
i [.s(s2 — 5) — ¥ sin Fsec’ 8 (5,(5, ~a)- [ [ h(s')ds'ds)] (3.33)
7% i _
Y2 = - [sinﬁseczﬂ —esectg ((1 + 2sin? 8)3; — (1+ sinzﬂ)‘[ ’ hz(s)ds)
5
3 & 2
+ésin Bsec B (-(3 + 26" B)5] - (1+5ia?) [ [ Ho(a')a'ds
2 LI
~(7 + 3sin? ﬂ)/ ’ / hz(s)h(s')ds'ds)] + [1 — esin Bsec’ B(3, — 3y)
a Iy
+e?sec* g (((1 +2sin? 8)3; — (1 + sin® B) /" h’(s)ds) (52 — 51)
)
+(1 + sin? B) / " [ W(s")ds'ds — sin? g / 8 / ’ h(s’)ds'd.s)}
s Ja & V5

where we have used Eq. 3.22 to evaluate the field integral at 3,.

Transformation M?~%: Pure Bend Region

The final transformation is through a pure bend from the end of the fringe region at s = g,
back to the initial plane z = 0.
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The equations of motion are :

e ),
Elrerey)) 7
(
d y )
- ‘ | =0 (3.34)
(12?497
We can rewrite the above equations as follows,
"noo__ 1 12 12 12 %
2" = ————-p(1+6)(1+z ) (142" + %)
" 1 ’ 1 13 13 %
v = e (1+ 27+ ) (3.35)
The equations can be expanded
wo_ 1 e
) | A
1
VoS Tyt (3.36)

and solved as a power series in z; we have the following dimensionless solution at z = 0,
' 1
T = 52 - 2;22 - —2;(1 - 6)
2
3 1
2y = zp+%(1-6)+ -z-m;.?, (25 +2z3) + 52;‘
373 = ﬂ; - y;fz (3.37)
S S
Yo = ¥it+eivih+ oz
Next, we would like to connect (23, £1, 24,72, ¥3) to (32,2,13, §2,72). Using Eq. 3.18 and
Eq. 3.20, we get
I ]
23 = esecfB3; — e*sinf secaﬂf / h(s')ds'ds + w,sin B
¥ iy

; s
B3 = —€elsec? ﬂ/ ’ / h(s')ds'ds + 3 cos B
i [
2
2, = —edzsec+ fz—sinﬂ sec® 353 + 1 cos® B + 2€ris, 5, sin B (3.38)

2 .
Y2 = Yacos( + eyz53tanf — %3}2 tan® 333 sec 8
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Putting Eq. 3.38 into Eq. 3.37 and expanding to the appropriate orders, we obtain the

transfer map for the uniform bend region:
2—23 = € seczﬁ ( / / h{ ')ds'ds) —L (‘wz _ ﬂu"‘gn)rosﬂ
8y 53

—e [u‘:z sin? Bsec® 8 (32—2 - ./'_-:2 /: h(s')ds'ds)
] 1] 22

+ibg tan 3 (233 - j ’ / h(s’)ds’ds) + 52 sec? ﬂ]
g5 = €'sinfsec’B ( / / h(s")ds' ds) + Wy sin 3 + 13 cos? @ (3.39)

+€33 (23 sin B — bsecf) — € -:iu':,.i’ ~ &sinAsec® B = h(s")ds'ds

2 2 n v

~ — _ . 2 ’ d 1 )
73 §a — €Y283 — €*43 sin B sec ﬂ( ./;1 -/3‘1 h(s")ds'ds
Y3 = Yzco08f + €y35ztan B — Eyza, sec? 8

The coordinate independent, or zeroth order, terms can be seen present in the expansions

for the horizontal variables. These terms are second order in e,

Now, we are ready for the final step of putting all the transfer maps together.

Combined Transformation M/

The net transfer map for the fringing field region is given by a matrix product of the three

individual transformations,

MO = pI-3 pg1003 001 (3.40)

In the derivations above, we have assumed that at each stage the expansions are carried
out to the order that assures the correct final result to the first order in the initial conditions
(z0,25,%0,%4) and to the second order in the “field extent” parameter €. The need to keep
track of the orders arises from the fact that we solve the equa.tmns of motion by looking for a
power series solution, in effect, in two independent “small” vanables' € and the phase space

coordinates’ deviation. In other words, we need to decide g priori to what order in either
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parameter we want the final map to be, and then carry out the expansions at each stage
accordingly.

We perform the following transformations,

T 0 ‘1—01 'lIJ'_) T 3
1 . M ?
) w w T
Ol TPl TR T
Yo )1 Y2 Y3
! ° ) '
Yo n 2 Ys

The matrix elements depend on some trigonometric functions of the angle 4 and line integrals

of the field. There are four such independent integrals which are given below together with
1 [ I 1 + I4:

L = / ds /:ds’[ho(s')—h(s')]
n= * ds[L — h(s)]h(s)

L o= [ ds[1-i(s)] /:ds'm(s') (3.41)

i

1

/; ds[1 — h3(s)] / ds'h(s")
= o[- [

where ho is the sharp-cutoff fringing field function given by a simple step function,

L

ho(3) = ©(3)

and we have

sg 7 ; ' r
2= / ds | ds'hy(s')
2 0 #

The five dimensionless integrals defined above have one property in common: their inte-
grands go to zero at both the lower and the upper limits. This fact removes the ambiguity
in determining s, and 3,. In fact, the limits of integration can be taken respectively to —oo
and +oo. In practice, one just needs to measure the line integrals between a point where the

field is sufficiently close to zero and a point where it is equal to its deep-inside-the-magnet

value.
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The complete transfer map for the final coordinates is given below,

I sin? § 2sin @ I
Fe = g2 1 = 2 ' 2 — bt
o € cos Il + [1 “h cos?* ﬁ] R cosd B cos? 8
g, sinf 2, 3sin’® g 2, 25inf3
T = €I, ssﬂ-i—:z:otanﬁ-{—:co [1—}— Lh— cosi § — be Ilm

0
¥ o= g [1 - W (b -+ 1)+ sinzﬂ))} - %'l cj;?ﬁ

(14 sin®B) L sin 3
cos3 @ cos®

(I1 sin® 8 + (I3 + I5)(1 + sin® ﬁ))}

y} = —o [tanﬂ —ely

2

! 1 €
t¥ [ + cost 3

(213 + ) — (1 +sn )|

(3.42)

If we put € = 0 in Eq. 3.42, we will obtain the well-known matrix elements for the linear

sharp-cutoff approximation [3,10].

3.3.3 Nonlinear Transfer Map for the Fringe Region

Let us look for the transfer map up to the third order in the phase-space coordmates and,

for simplicity, up to the first order in €. The three individual transformations M%1, M1

and M?~3 will now have to be expanded to third order jn the “small” variables.

Here, we look at the fringe region map; the complete transformation M/ will be given

in the next section. We go back to Eq. 3.25 and expand it to the third order in w, W

,y7 y)

and §. The result can be written in the form of the dimensionless equations as follows,

o
d_.i- = w
‘fi—? = —ch (3WTIT, - 6T3)
&
-+ %Tg—zra + ldihyyrl —¢h ( —afy Pa - 311)51‘211" + -;—3'/21‘1 -+ 521':1’)}
1 d&h . .

+ |52 5 (309°Tars - gr2) 4 = ® (635T — 736T)

—eh (511',31‘4 - gu-,’srs + %Wr, + 3687T7T, — %gﬂarl - m;*)]
ay .
s Y
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1 . 1,
Eg = _diE (hg) [F2F2 + (1[.}1‘3 — 6I’§I‘2) + (§w2P4 — W6F3 + 5']/2:[‘2 + 521‘3112)]

1 d (dh 4\,
+6_6335 (Fy ) Ty

I = (1—%—A3)i =secf — esinﬂsecaﬂ/_a h(s)ds +---
a1

‘where

I‘Z:———é_———-:sinﬂ—s _.h(s)ds+---
(1+A2) &

W

3:

(1+247)

(1+a9)F

T, = M = sin B(2 + cos® B) — 3ecos® ﬂ/ h(s)ds + -
(14 A2)

and the initial conditions are

= (1 + sin’® B) sec B —esinﬂsecaﬂ(2+coszﬂ/;jh(s)ds) +

11-1(51) = ‘l.l—)l 11)(51) = 'li)l

¥E) =5 (&)=
We will try to solve Eq. 3.43 using the order-by-order method similar to the Green’s

function integration employed for the case of an ideal magnet.

Second Order Coefficients

We can write the most general second-order solution to Eq. 3.43 as follows,

W = Ry + Righy + Ryeb

+T1203 + Ti2616 + Traads + Thaadads + T1443? + Tige6®
W = Raay + Rieb

+T29007 + Taz61916 + Tassfs + Tasafnin + T24493 + Taeeb® (3.44)
¥ = Raaji+ Raan

75



+ 3231181 + Tazatings + Taasiind + Ta46916
¥ = Ruii+ Ry
+Taz3tin g + Tagaingy + T, 436910 + Tya6716
where matrices R and T are both functions of 5.

Putting Eq. 3.44 into Eq. 3.43 and equating second-order terms multiplying the same

products of the initial conditions, we get the following equations for Tiin’s,

d

EET“" = €Ty

d

ET%J' = —3el'iT3hTy;; + Jai;

d

d—jTa,'j = €Ty; (3.45)
d d

ET«';‘ = “FEEE (hT3i5) + fui

The initial conditions are simply
Tin(3=35)=0

The functions fy;; and fy;; are given in Table 3.1, where the prime is used to denote d/ds.
First order matrix elements R;; were obtained in the previous section. We give them here

again for completeness:
By =1
i rs
Rz = €(3— 5;)— 3€?sin B sec? ﬂ/ / h(s')ds'ds
_ a7 Jd5n
R = ésec®B [ [ h(s')ds'd
16 esecﬂ/ﬁ‘/il (s")ds'ds
i 3 5 2
Ry = 1-3¢ sinﬂseczﬂ/_ h(s)ds + 562(1 + 4sin? B) sect 8 (/_ h(s)ds)
i l s 2 "
Ry = esecaﬂ[ h(s)ds — 3€* sin B sec® B (/ h(s)ds)
[ a
']
Raz = 1— esinﬂsec’ﬂ/ h(s)ds
a

+e¥sect B [-;-(1 +25in? g) ( / , h(s)ds) "1+ sin? 8) / / hﬂ(s')ds'és]
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Ryy = €(3—35)— sinfsec’f [(5 — 5) /: h(s)ds — /: ‘/;: h(s’)ds'ds]
Ry = —sinBsec?Bh + esect 8 [(l‘-}— 2sin? B) h/i h{s)ds — (1 + sin® B) /i B (s) ds:l
—ezsin,@secsﬁ{ =(3 + 2sin* 3) (/ h(s )ds) — (1 +sin*B) / f h?*(s")ds'ds

(7 + 3sin? B) / [ hz(s)h(s')ds’ds]
Ry = 1—esinfsec? B(5 - 5)h

+etsect B [(s ~5) ((1 +25in?6) [ :—h(s)ds = (@ +sin?g) [ h’(s)ds)

+(1 +sin’ B) /; /‘_’ h*(s')ds'ds — sin”ﬂ/; /; h(s')ds'ds]
Reg = 1 o

Eq. 3.45 can be solved by iteration to a desired order in €. We get the following expansion

series:

Tuis) = ¢ Tulo)ds
Tus@) = [ fasleds = 3¢ [ THa(o)ils) [ Fuso')ds'ds

+oé [ ' Ti()a(a)h(s) [ TN (") [ faij(s")ds"ds'ds + - (3.45)
Tos(a) = < [ Fuslo)istds — [ THTo)h() / [ htsndstasas ...
Tula) = [ fusla)ds =TT (@) Tas0) + [ 3 [T (o)] o) Tase)ds

non-zero second order coefficients calculated to O(¢) are given below,

h 7 . ¥
Tiaz = 2eorif Zscl:seﬁ [Sh fh h(s)ds — (5 + sin® B) ‘/;1 hz(s)ds]

Tou = i [(5= 50b = (1 +sin?9) [ (o]

_ 3 (1 + sin’ ,B)
Tya = —5€ cosﬂ -/31 h(s)ds
Tye = 3¢ smﬂ

o1 f Ja h(s)ds
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T233 =

T234

€
cos? 3 J;

1 dk sinf | _dh 2 212
h(s)ds — 13
2ccos®8 ds  2cos’ g [ ./ (s)ds = sin® 8

[sin2 B(2 +sin2,3coszﬂ)h[ R (s)ds — w/ 73 (s)ds

L€
cos’ 3
_sin ,B

(4+5sin? 8 — 251n4,3)h2/ h(s)ds
+ Z(1 + 6sin? ﬁ)g ( /;, h(.s)ds) — (1 + sin? ﬁ)% / / hz(s’)ds’ds}
;:ﬁ [(E - 51)% — sin® ﬂh}

:i:s'lga [(4 + cos® B)(3 — 5;)A% — 2(1 + sin? Bk /:h(s)ds

(8 + cos? B) / K3(s)ds + 5(5 51)% / h(s)ds — % / / h(s’)ds’ds}

€ h ;
2cos? @ [(5 - 3!)(‘;_5(5 — 81— 2sin” BR) + (2 — 3 cos? B) /'_‘ h(s)d.é]

€ ¥
o / h(s)ds

(1 + sin ﬁ)
=y / h(s)ds

sin 8 h(s)ds

(1 + sin*3) mﬁ
- cos O h+2e [
1+smﬂ

cos 3

0= ot [0 o

smﬂ (3 — 5))h

© o B

(4 + 25in? ﬂ)h/ h(s)ds — (3 + sin ﬂ)/ hz(s)ds]

(3 et Sl)h

The above coefficients can be evaluated at the final point 5 = 3; by using Eq. 3.22 and the
boundary values k(3;) = 1, [dh/d5](5;) = 0.
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Third Order Coeflicients

The third order terms are obtained in much the same fashion as the second order terms,
although their calculation is much more cumbersome. We add the third order terms with
coefficients Uyju to the expansions in Eq. 3.44. Then, we put Eq. 3.44 into Eq. 3.43 and
equate third-order terfns multiplying the same products of the initial conditions. We obtain

the following equations for U x’s,

%Ulijk = €Uy,

%Uﬁjk = —3eliTahUnjk + Goiji

d%ua..j,, = Uz (3.47)
d%U«jk = —I’?I‘a%(hUa-‘jk)ﬂLym

with initial conditions

Usji(3 = 51) = 0
The functions gy, and gsijx depend on T,’s, R;;’s and Tiji’s, and are given in Table 3.2
(again, the prime is used to denote d/ds).

Eq. 3.47 can also be solved by iteration; matrix elements Uy;u satisfy the same integral
expansion as do the elements T;;. in Eq. 3.46. The iterative integration is straightforward,
and we do not explicitly list here the 20 non-zero matrix elements. It is worth mentioning,
however, that after we evaluate all the integrals at 3 = 3;, there remains one coefficient
which contains a divergent (in the sharp cut-off approximation) e~ term:

2(1 +5in? g) (7 (dh(s’))’ ds' 4ot

decost g Uy ds'

U4333 ==

The complete list of the field line integrals appearing in the final fringe region map will

be given in the following section.
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Table 3.1: Driving Terms For Second-Order Mairix Elements

| Tisn | fisw l

T2z —3eRZ,T'3h/2

Taz6 3€(R2al'iT; — RyyRyeTa )k

Ta33 (#3,13R" + 2eR33 RysT1 A" — €’ R3;T'sh)/(2¢)

Toas | (RazR3 T 3h" 4+ €(Raa Ry + R3sRy3)T1hA' — € RyzRygT 1h)/€
T4 (f3,5h" + 2eR3 Ry T b — € RE,T, h)/(2€)

Tes —E(3R§6F3 - Gstr'{’rz + 21-':1’)’1«/2

P — Ry Ry3'3h' — €Ry3 RyaT3h

Tuza — Ry Ry, Iah' — €Rya RysT'3h

Tyas (R33I3T; — BagR3al'3)h' + e(RyaT3T; — fogflal's)h
Tyse (R34T'iT; — RogRa T )b’ + e(RyaT3T; — RpgRygl 3)h
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Table 3.2: Driving Terms For Third-Order Matrix Elements

| Uijia | gijkt ]
Usazz —(R3,T4 + 6Ry3T52T'3)he/2
Uazze —(3R3,Ro6T's + (6T222R2q + 6R22T526 — 3R2,)T'3 — 67220 5 )he/2
Usaza (3R23R3,T'i{Ts + 2T323 Raal'3)R"/(2¢€) + (Ra2RazRaal',
+(Ta23R43 + Ra3Tga)T'1)h’ — (6R29Taaal's + RaaR2:Ts + 2Typ3 Raal'y )he/2
Uzzas (3Ra2R33R34I'3T; + (Ta33R34 + Ta24Ra3)T3)R" fe
+((R23R33R44 + R32R34R43)T3 + (Ta23Rag + TazaRaz + R3aTizs + R34T423)T1 )R’
+(=3R23T334l's — RagRyzRaaly + (—TuzaRas — TazaRya)Ty)he
Uszz44 (3R22R3,IiTs + 2T334 R3,T3)h" [(2€) + (Raz R34 Raal's + (TazaRas + R34T44)T1 )R
—(6R23T344I‘3 + RzzRLPg + 2T424R44F1)h€/2
Uzz66 —~(3R33R3T4 + (6R33T268 — 6R33Raq + 6T220R3a)T'3 + (—6T525 + 6R33)T'3T, )he/2
Uzaae (3R38R§31‘§I‘3 + (2R33T335 - R§3)P‘{)h"/(2e)
: +(R26R3aR4aT's + (R33Tyas — RaaRus + TazeRea)T1 )R
~(6T233R26T's + (—6T303'} + RogR3,) 3 + (2R43Taze — R2,)T:)he/2
Uzass (3R26R33R34I'i s + (RasTaas — RasRas + TazeRas)L3)W"Je + (R0 Rz Raa
+Ry6R34R43) 3 + (R3sTyss — RasRaa + TazeRas + RagTaze — RasRaz + Ta46R43)T1 )R
+(—3T334 2613 + (3733473 — RagRa3R44)T'2 + (—R43Taas + RyaReg — T436R44) 1) he
U2443 (3R25R§4I‘{I\g + (2R34T348 - R?M)I‘:li)h”/(ZE)
+(R26R34R4aT'3 + (R34Taas — R3eRus + T346Rag)T1 )R
—(6T244R26T3 + (—6T24aT'] + R26R3,) s + (2R44Tass — R3,)T1)he/2
Uszges —(R3eT4 + (6 R26T266 — 3R3,)T'3 + (—6T268 + 6Rog)'2T; — 2T 1)he/2
Usazs | ~(R33Ra3l4 + (2Tp33Ra3 + 2Ry3Ta33) L2 )W /2 — (R, Raals + (2T222R43 + 2R22T433)T2 ) he/2
Uszza | —(R33R3sl's + (2T223R34 + 2R32T224)T3) /2 — (R3,R4aT4 + (2Ta02Ras + 2R22T434)T'3) he/2
Usaas (—RazRagR33ls + (—RaaTa36 + (~Tage + Raz)Raz — R36T333)T'3 + T323l'3T3 )R’
+(—RazR2gRasl's + (—RaaTuze + (—Ta2e + Ryz)Raz — Ra6T423)T'3 + Ty23l'2T'5 ) he
Usz4e (—Ra2R26R34s + (—Ra3T346 + (—T328 + Raz)Ras — RaeT324) 3 + Ta24I'4T2 K
+(—Ra2RagR4sT's + (—RazTusg + (—Taze + R22)Ras — RaeTs24)T3 + Taz4T'iT5 ) he
Uyaas R%;,I‘gl‘gh’”/(ﬁez) + R§3R43r§r’2h"’/(26) - (2T233R33I‘3 + R33R13r2)h'/2
—(2T333R43T3 + Rﬁsrz)he/z
Ussas | R33R34TiT2h"™/(26%) + (R2;Ras + 2Ra3Ra4Ra3) 20307 [(2€) — (21233 Rag + 2T 234Ra3)T3
+(2R33Ra3Res + RasR3;)T2)R' /2 — ((2Ta3aRas + 2T224Ra3)T5 + 3R3;R4T3)he/2
Usass | RaaR3T1T3h"[(26%) + (2R33RpaRs + R34 Ra3) T30 [ (2€) — ((2T234R34 + 2T244 Ra3)Ta
+(Ras B3, + 2R34Ra3Rea)T2)R' /2 — ((2T234 Ras + 2T244Re3)Ts + 3R43RZ, T )he/2
Usace ~(R3gR3als + (2R36T336 + (2T206 — 2R36)Rsa)la + (—2T336 + 2R33)TET3)R! 2
—(R3eR43ls + (2R26Ty36 + (2T265 — 2R26)R43)T'3 + (—2Ty3s + 2R43)T2T; ) he/2
TUrnas R3,TIT2107] (66%) + RE,RaalIT3h" ] (26) — (2TyuBasls + RadBA,T5 )W 2
—(2T,“R44I‘3 + R§4I‘2)he/2
Ussge —(R3sRaal's + (2Ra6T346 + (2T206 — 2R36) Bas)T'3 + (— 27246 + 2R34)TiT,)R! /2

—(R3gR4als + (2R36T446 + (2T208 — 2R36) Rag)T3 + (—2Tugs + 2R44)I'3T; ) he/2
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3.4 Complete Second and Third Order Map for Dipole Frin
Field

oo
o~

3.4.1 Drift Region Transformation

Expanding Eq. 3.12 and Eq. Eq. 3.18 to the third order in the initial conditions, we obtain

the drift region map (50’ 3«'3’?70, y(')) — (wla'l"’hgl)gl)a

W1 = (Zo+ edyzysecf)sec + (50:1;6 + €31 2’ sec ﬁ) secGtan 3
+ (:Eo 2t + €3, )2 sec ﬁ) sec ftan’ g
W = zgysec’ f+ 2y’ sec? ftan B + 24> sec? Btan? B (3.48)
B = (Jo + €51yysec B) + (Zoy) + €5124y, sec B) tan B
+ (:Eoz:,y{, + €31 zh? o), sec ﬂ) tan® @

Y1 = ypsecf + zhygsecHtan B+ zh 2yl sectan® g3

3.4.2 Transformation through Pure Bend Region

For the uniform field region, we need to solve Eq. 3.35 at the endpoint z = 0 to the third
order in the final coordinates of the transformation through the fringe region, (13,3, 72, ¥2)-
The equations can be solved exactly for z and y as follows.

Dividing one equation by the other, we obtain

" !

<
&

'y’
~=—;'-:1+:1:’2

(3.49)

"

&

8

Next, we separate the variables and integrate both parts from the initial point z = z,,

2 p'dy’ z dy'
oo s / ek (3.50)
I z Y
’2 ]
lha (L”,) =¥ (3.51)
2 1+ 24 Ya

Solving for '

']
y = —ﬂ._z\h + ' (3.52)
Vi+ 2
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and putting the above expression into Eq. 3.35, we obtain the decoupled equation for z’,

dz’ 1 y;z 12 %
_—_— 1 1 3.53
dz o(1+8) +1+:7:’22( e ) (3.53)
Separating variables and integrating,
z dz’' 2
= + -2 [Td (3.54)
-/Zg (1+ w,z)i p(l'*'ls) ].+ 2:'22 z2

we get

d %2 1 yh?
T = 1 1 + z— 2 3'55
(1 + a:"")i (1 + 2,22)5 (1 +6) \J’Ti-;( 2) (3.55)

which we can solve for z' explicitly,

o= (1+8) ~ 1+ 2" + %’(s — 2) (3.56)

[(1 TP+ 2251+ )14 2 + i (2 - Z) — (1 + =4* + 3 ?)(z - iz)’] ’

Putting Eq. 3.56 into Eq. 3.52, we get the solution for ¥/,

/

]
y = Ya - (3.57)
[0+ 87+ 20300+ B)/TH 257 3372 — ) — (14 25+ 475 2y’

The final point of integration is z3 = 0, so

-

¥3=1y'(2=10) (3.58)

We can integrate Eq. 3.56 and Eq. 3.57 from Z, to 0 to obtain # and i respectively:

T3 = T3

L
2

(48 = [(14+0) - 20501 + )iayL+ 275 07— 0+ 24+ 33
Vit 2?4y

(3.59)

L (1+9) {sin—l[ zh }_Sin_l[m'z(1+5)+22\/1+m'23+y55}
VI1+2h?+ oyt V1+ z5? (1+45')\/1+z§2
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Next, we need to solve for (22, %2, 24, J2, y4) to the third order in (2,12, 72,92) and the

first order in €. Using Eq. 3.18 and Eq. 3.20, we get

Z; = (W4 Ap)sinf + €d;cos 8 = e3zsecH + wasin B+ - - -

Tz = (W3+ Aj)cosf — €3,sinf =1y cos 3+ ---

, (u'zz+A2)—tanﬂ _ . 2 .
= - = —€8ysecl + 2 3.60
z, 1% (03 + Ag) tan B 83 sec B + 1y (cos B+ eszism ﬂ) (3.60)
—i} sin B cos 3 (cos2 B + 3€s, sin ﬂ) + s sin® B cos? B (cos2 B+ 4ed, sinﬁ) + .-
Y2 = ¥
/g 6€C .
¥y = Yasech 92 (cos B + €3, tan §)

1+ (w2 + Az) tan 8 B
—w3yz sin B cos B (cos B + 2¢3, tan B8)+ 11'133}2 sin® 8 cos? B (cos B + 3€3, tan B)+---

Putting Eq. 3.60 into Eq. 3.56, Eq. 3.57, and Eq. 3.59 and expanding to the appropri-
ate orders, we get the full transformation through the pure bend field (B2, 2, F2,2) >

(531 3’3,?73,3/:'4);

T3 = [y — €datiny] cos B
_psinf
— |w
sinf3
2

+ Watz(cos® B + 2€3, sin B) —-11_)3663—;58(3,3 — 2e3, cos? ﬂ] sin A

+ [wga + wabd (sinﬂcoszﬂ - ;e(l ~ 3sin? ﬂ)) cos 3

. _ COS _ _ 3 . .
~w2y§esz — 1,6%€3, secfd — wgesz sin 3 cos® ,B] sinf+.-.

[£]

[

= [35in 8 + ia(cos? B + 2¢5, sin ) — be3, sec ]

- [u‘rg&sinﬂ + i3 (sinﬂcos’ﬂ - ;652(1 — 3sin? ,B)) cos 3

. cos in3 3
—73€3, 5 b _ 65, sec ﬂ] + [mg# + tTJgu'zz(E cos? B + 3¢3; sin 4) sin? B

3 . .a, 3 .

“5@;5652 sinBtanf + u‘:zwi(i cos? B + 6€3, sin 8) sin B cos? B
cos? 3
2
+‘u'1; (cos2 Bsinf — €33(3 — 7sin? ﬂ)) sin 3 cos? 8- gu'xgﬁe.?z cos® 8

—3wW3136€3; sin B cos B + u'lzy)g (

+ €33 sin F) sin B + ;6% sin B (3.61)
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cos 3

5 — 6%e3, secﬂ] +

F3 = [§2— §2€82) — [W2g2(cos B + e53tan B) — 1ip12€3, cos Blsin B

—yiedy sin G cos® B — §26eay

+ [y (sin B cos? B — €5y(1 — 3sin’ B)) — tirkiz€5 sin B cos? Blsinf+ -
Y3 = ¥2(cos B+ €33 tan B) — wafe (sinﬂ cos’ B — e53(1 — 3 sinz,@))

. 3
+ {u')%g}z(cosﬂ + €53 tan ) sz b + Waiy72(cos® B + €3, sin B) sin B cos B
—Wyyy8edy sin B + Wiy (sinﬂ cos? B — €33(2 — 5sin? ﬂ)) sin B cos B

—11.12:()25652 COS2 ﬂ] +

3.4.3 Matrix Elements for Combined Nonlinear Map

Combining Eq. 3.48 and Eq. 3.61 with the results of the previous section on the fringe region
transformation, we can obtain the whole map (%o, z}), o, %) — (&7, 2,57,y ) as the sought
power series,
Z Rijz; + Z Z Tijrzizy + Z Z Z Uijuzjzre (3.62)
i=1 =1 k=j J=1k=jI=k
where we again use the TRANSPORT notation of Eq. 2.10. The matrix elements R;;, Tijx,
Uijwt contain dimensionless field line integrals, some of which were given in Eq. 3.41. Their
integrands go rapidly to zero at both integration limits. As noted above, this fact allows to
remove the uncertainty in the extent of the fringe region and gives a practical definition for
field measurements.
The nonlinear terms for the combined map are obiained from the three individual trans-

formations using Eq. 2.26 expanded to O(e).

Second Order Matrix Elements

The second-order solution contains two integral form factors,

L= :” ds[L — h(3)]h(5)

[ asiL - waw(a) (3.63)

i

I
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The 10 non-zero terms are given below:

tan?
Ty = - 2 A +oeee
sec? B sin 3(5 + sin? B)
Tiaa = T2 —<h 2costfd o
Tny = tan®B+ ...
Tgm = —tanﬂ+--~
sin@(1 +sin?B)  sin’p 4 cos?f3
= —€ - - 1
Taaa 2cos3 g cos® B(5 — cos® ) ~ 1o 2
_ 2 sin A(8 + cos? 3)
T234 = —tan ﬂ — EIz COS‘IB + e (3-64)
- . 2
T3]3 = tanzﬁ — GIQSlnﬂ(l -I; S ﬂ) +---
cost @
. 2
T,u,; = —tanzﬂ-*-ffgmnﬁ(l-tmn ﬂ)+---
cost 3
. - 2
Tas = —sec?B+ GIzsmﬂ(s i sin ) -
cost 3
2(1 + sin?
Tize = ta.nﬂ——el'z—(-j—il—n—@-!--“
cos3 3

The above matrix elements are in perfect agreement with the known sharp-cutoff approxi-

mation results [13] , € = 0.

Third Order Matrix Elements

The third-order solution contains nine integral form factors: I;, I, and Iy encountered in

the first and second order solution plus the six more given below, all of which include the

square of the field derivative,
+oo )\ ?
B = /_ ds(d';(f))
= [t (@) .
Jg-/_mda(ds)s |
+o0 5\ ?
Ja = / ds ('”;(_3)) & (3.65)




S = /:’ds (d';(:)>2§ Z ds'h(s)

W= [ ( )/ o [ dsns

The 34 non-zero terms are given below,

Uiz = —tan®f+---
tan?
Uie = 2 e +
sin? B(1 +sin?8)  sin3gB cos2 Jé]
Uum = - 2cost 3 te cos8 3 [12(5 ~cos'h) - 2 ] +
sin B(1 + sin ﬂ) 2sm2 B(1+ cos? )
Unase = 3 -
cos3 8 cos® 3
5 8 sin?
Uiz3s = tanfsec’f — GIz( +18¢in"f + sin’ ) +
2cost 8
sec? 8 sin A(5 + sin? B)
= - el
Usase 2 + cos' B
t 3
Unn = — B +oeee
2
3
Uniz = 2 tan® g + - -
Uson - SB(2+cos?B)
2122 = 9 cosd ﬁ
Unze = —tan’f+-
u _ tan?p e, sin® A(1 + sin® ﬁ)
nw = — cos®
Ustas = 2tan®B+ GCS;:GB [In(l — 8sin’ @ — 5sin* B + 2sin® B) + Igsin® G cos? ﬂ] +
Upas = sin#(1 — 3sin 3) e sin’(8 + cos? 4) +

2co83f3 cos® 3
Unese = tanfB+:--

Uyza = 3tan?fsec’ g

sxnﬁ . . . .
—e5— Seost B [12(9 + 35sin? B 4 2sin? B + 45in® B) + 21 sin® B cos? ,B] +
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Uszag = —2tanfsec’f Izﬂ(9+24sin2ﬁ —sin'f) + .-
Uszasg = _sinA(1 + sin” ﬂ)
cos3 G
Uzase = tan?f — Zsmﬂ(ljsm ﬂ)_*_
cost 3
. 2
Usiia = tan®f — el o0 ﬂ(l—:sm A) "
os® 3
Usigs = sinﬁ(1+sin2ﬂ) IZsmz,B(3+sm ﬁ)
cos® 3 cos’ B
Usize = —tan2ﬂ+e[2251nﬂ(l+5m ﬁ)+
costf3
2(1+sin?g) . (1+5sin’p)
U. = |2
o [3 4cost T2t 6cost 3 }
sin 4 R
By o5 [Izsm B (7+3sm ﬂ) — 8Igsin® B — 6I,J; + 21J; —3.]6] R
_ 2sinp
Usaza = §cos3ﬂ 9c0 53 [Iz(l+3sm B — sin* g) - 3J3] 4.
tan3 .
Upia = ——— B +»sI,,$m ?B(1 + sin® ﬂ)+
2 2cos% 8
t 2
Vo = =27
Upaa = —ta.nzﬁ.{. elzsinz ﬂ(1+sin2 ﬂ)
2cosb g
« 2 . 2
Upize = —2ta.n3ﬂ+51225m ﬂ(35+s1n B) e
cos® 3
Usie = tan?p — el °mﬂ(1'”’m ﬂ)
cost 3
Uszs = _sinﬂ(2+coszﬂ)+ 3(1 + 3sin? B)
2cos3 8 ¢ cos® 3
Upze = sec’p— 2smﬂ(5;}-5m ﬂ)+---
cost
J1 2(1 + sin? ﬂ) s]nﬂ
U. = -1 _ . 2
a9 ¢ 3costf  12costf [sin® 8 (1 + 6 cos? ) + 6, —42J,] + -
Usaza = [sin’ﬂ(1+6cos2’3)_6_]2}

4cost 8
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3 e . 3
Ugggg = ——z-tan,B-i—Zcossﬂ [12(4+2351n2ﬂ-—4sm4ﬂ)—3J3] 4.
3 in?
U4368 = -—tanﬂ.{—f]z_g}.j-_snli_ﬁ_)_*_,.,
cos®

As a simple exercise, we can model the field function h(3) by a polynomial whose first
and second derivatives vanish at the end-points and whose integral over the fringe region

is equal to 1. Taking 3, = —3; = 1, we take the lowest order polynomial satisfying the
boundary conditions:
_ 0 15| >1
h(3) = _ _ T 3.66
(3) {§+f—83—233+%35 3] > 1 (3.66)
The form-factor integrals can then be evaluated and we get the following result,

11 = —0.07 = —13/3 J] =071 ~ 1012/3
I, =022 Jy, =0.00
13=0.03 ng/S J3 =0.07%Iz/3
L =011~ 1;/2 Jy=0.14 = 20,/3
I520.04NI2/5 J5:0.03z13/6
Ig = 0.11 =~ I3/2 Je=0.04 = I,/5
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Chapter 4

Hamiltonian Methods

4.1 Introduction

In this chapter we turn our attention to a completely different approach to the charged
particle beam optics. Despite successes of the iransfer matrix method in giving practical
solutions, it has some deficiencies. Basically, the matrix theory is a straightforward attack
on nonlinear differential equations which does not take into account the physical origin of
the equations. There is no attempt to take advantage of the underlying symmetries of the
beam transport arising from its being a Hamiltonian motion. For example, it is clear that
not all of the matrix elements are independent and that there are interdependencies between
the different optical orders, but it is not clear how to get at them. Also, in the case of the
dipole fringe field, we remarked that equations describing various matrix terms were to be
solved by iteration as a power series in the “field extent” parameter €. Much care was needed
in keeping track of the orders of many different terms to ensure the proper expansion at the
end (this was due to the fact that some elements had O(e™!) terms). Is there a way to obtain
a solution not based on the ¢ expansion? In short, we would like to have some means to
obtain physical rather than purely mathematical insight into the problem of charged particle
beam transport.

Hemiltonian methods which will be described in this chapter afford us such means. They
use the symplectic, or area preserving, property of the transfer map and some Poisson bracket

operators to obtain certain homogeneous polynomials f, of degree n in the canonical phase-
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space variables, which uniquely describe the optics to the order (n—1).

We will describe the Hamiltonian machinery required to solve transport problems up to
the third order and will apply it to the case of the dipole fringe field. We will also show how
to transform the solution into the usual noncanonical TRANSPORT variables and how to

obtain the desired transfer matrices from the polynomials f,.

The methods, largely developed in [7], which use symplecticity of Hamiltonian flow maps
are called Lie Algebraic, because the Poisson bracket operators introduced to solve the prob-

lem form a Lie Algebra.

4.2 Lie Algebraic Approach

4.2.1 Mathematical Tools

Consider motion with three degrees of freedom governed by 2 Hamiltonian H (z,t), where z =
(41,P1,93, P2, 93, P3) is a generalized coordinate-momentum 6-vector and ¢ is an independent

variable. Suppose we are interested in trajectories near some given trajectory, z9. Define
Z=2z7-128 (4.1)

The evolution of Z is governed by some new Hamiltonian H(Z,t). In fact, if we expand H

in a power series of Z, we get,

H="Hy+Hs+Hy+--  (42)

where each 7, is 2 homogeneous polynomial of degree n in Z. Our task is to determine
the final state, Zf = Z(t’), given the initial state, Z° = Z(t'). A solution to the problem is
constituted by the knowledge of the transfer map, M,

Z! = MZ (4.3)

In addition to the matrix representation, there also exists the Lie Algebraic representation

of the transfer map M. We start with a few definitions.
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Let f be a given function of the phase space and let g be any function. Associated with
each f, we define a Lie operator acting on general functions g and denoted by: f:asa
Poisson bracket operation,

. 0f 89 8f dg

:f:9=[f,g] =§(5;api an{) (4.4)

Lie operators possess an important property which will be useful to us later. It can be shown
from the Jacobi identity for Poisson brackets that the commutator of two Lie operators,

denoted by curly brackets, is again a Lie operator, which can be calculated in terms of a

Poisson bracket,
{:fy:9:}=[f,q): (4.5)

Next, we define a Lie transformation associated with [, exp(: f :), which is given by the

exponential series,

exp(: f:) =" % (4.6)

n=0

More explicitly, the action of exp(: f :) on an arbitrary function g is as follows,

x2(: £ )9 =9+ [f,9) + 21f, [Frll + - (47)

1t can be shown (9] that Lie transformations, which form a Lie Algebra under commuta-
tion, are symplectic (Hamiltonian generated) and to every symplectic map there corresponds
a unique function f. Therefore, the map M of Eq. 4.3 can be uniquely represented by a Lie
transformation,

M =exp(: f:) (4.8)

Furthermore, there exist a theorem which gives sense to the idea of classification by orders
[7,11]:

Theorem 1 (Factorization Theorem) Let M be an analytic symplectic map which maps

the origin of phase space into itself,

Z! = MZ
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Then M has a unique Lie Algebraic factorization,

M =...exp(: fs:)exp(: f3:)exp(: f2 2) (4.9)

where each f.(Z) is a homogeneous polynomial of degree n in Z.

The expansion in Eq. 4.9 up to the f, term completely specifies the optics up to the
order (n — 1) in a sense that if we were to write Eq. 4.9 as a power series in Z using Eq. 4.7
we would obtain matrix expansion correct to the order (n — 1). Also, written in the form of

Eq. 4.9, the representation of M remains symplectic truncated at any point, since a product

of two symplectic transformations is symplectic.
Our aim is evident now. To obtain the full third order optics, we must derive the

polynomials f5, f3, and f, characterizing M from the polynomials H,, H3, Hy characterizing
H.

4.2.2 Equation of Motion for Map M

We will denote the differentiation with respect to the independent variable ¢ with a dot. Let

us start by taking a derivative of an arbitrary function g,
3(Z(1)) = § (M(1)2) = M(t)g (2°) (4.10)
Also, the equation of motion for g is given by its Poisson bracket with the Hamiltonian,
9(2() = 9 (2(t)), H (Z(2),1)] (4.11)

Using general properties of symplectic maps (11}, we can manipulate the right hand side of

Eq. 4.11 in the following manner,

[9(Z),H(Z,t)] = [g(Mz-‘),H(Mz*,t)]
= [Mo (2), M1 (259)] = Mg (2),7(2,0)]
= M[-H(2't),9(Z)] = M:—H (Z,t) : g (2°) (4.12)
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Comparing Eq. 4.10 and Eq. 4.12, we find the result,
Mg (Zi) =M:-H (Zi,t) 1g (Z") (4.13)
Since the function ¢ is arbitrary, we see that M satisfies the following equation of motion,
M=M: -1 (%) (4.14)
For the Hamiltonians with the commuting property
M (2Z,¢) 7 (2,¢")] = 0 (4.15)
we can integrate Eq. 4.14 to obtain the exact result

M = exp (— : /t “H (z',¢) at :) (4.16)

Since H has the form of Eq. 4.2, its integral can be written as follows,
¢ o0
- H(Z ) dt' =Y b, (2t 1
fm (@)@ = X h (2) (w10

where h, are homogeneous polynomials of degree n in the variables Z¢. Hence, M can be

written in the form

M=exp: 3 b ) (418)

n=2

We now turn our attention to expressing Eq. 4.18 in the form of Eq. 4.9. The approach

will be similar to the Dyson’s expansion employed in quantum field theory, which uses the

interaction picture.
4.2.3 Interaction Picture
We can write the map M in the factored product form
M= MM3M; = MpM, (4.19)
Also, we can decompose H into a sum of homogeneous polynomials,

H=H2+7{3+H4+"'=H2+Hﬂ (4.20)
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The subscript R denotes “remaining” terms.

Differentiation of Eq. 4.19 yields the result
M = MM, + MpM, (4.21)
Combining Eq. 4.14 with Eq. 4.19 and Eq. 4.20, we obtain
MpMa + MMz = MaMy i —Hy — Hp = MpMy: —Hy : + MMy : ~Hp:  (4.22)
Tt will be shown later that M, is required to satisfy the equation
My =My :—Hy: (4.23)
Then, it follows from Eq. 4.22 and Eq. 4.23 that
MpM; = MpM, : —Hp : (4.24)

or equivalently
Mp = MM, : ~Hy : M (4.25)

The quantity M; : —Hp : M3 can be simplified using the properties of Lie transformations

as follows,
Mz —Hp: M7 = —HD (4.26)
where the “interaction” Hamiltonian i is given by the expression
HE* (25,t) = MoHg (2,8) = Ha (A ) (4.21)
With this simplification the equation for My takes the final form
MR = Ma Hilined ';1“ : . (4.28)

By construction, Mg and Hp involve polynomials only of the third degree and higher;
the same is true for M, as will be shown later. So, Eq. 4.28 for Mp involves polynomials
only of the third degree and higher, which correspond to the nonlinear part of the map.
Next, we turn to the calculation of the linear part M,.
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4.2.4 Linear Map M,
Let us denote the action of M, on Z¢ with Z(t),
Z(t) = MaZ' = exp(: f, :)Z (4.29)

or, in expanded form,
_ . .1 .
Z(t)ZZ‘+:f2:Z'+§:fg:2Z‘+--< (4.30)
Before proceeding further, let us look at the degrees of various Lie operators and poly-

nomials. For a homogeneous polynomial fn, we let d denote the degree,

d(fo)=n (4.31)

For the operation of taking a Poisson bracket of two polynomials f and f;, which involves

multiplication and two differentiations, we have
A([fer i) = k+1— 2= d(fu) + d(f) — 2 (4.32)

which can be written in terms of a Lie operator as follows
A fu ) = d(f) + d(f) — 2 (4.33)

For a set of m homogeneous polynomials fY F3,... ™ (the superscript labels the polynomial

not its degree) and an arbitrary homogeneous polynomial g, of degree n, Eq. 4.33 can be

?
generalized to give the relation

d(:flzzfzz...:f"':g,,)=n—2m+id(fj) (4.34)

j=1
Now, if we apply Eq. 4.34 to the tight hand side of Eq. 4.30, we will observe that all the
terms in the expansion are of degree 1. Hence, M; is a linear transformation which can be

represented by a 6 x 6 matrix M. In the component form, we can write
Zi(t) = MaZi =Y Mu(t)2; (4.35)
b

So, the computation of M, is equivalent to finding the matrix M.
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The time evolution of M;, and hence of M, is governed by quadratic part of the Hamil-

tonian H,, which can be written in the following form,

1 < rre
Hz = 5 Z Sab(t)Z;Zg
ab

(4.36)

where S is a symmetric matrix. Next, we check the consistency of Eq. 4.23. Applying : —H, :

to Zt, we get
t—Hy: Z: = ZJmSabZ{;

ab

where the matrix J is defined in terms of the fundamental Poisson bracket,

Jos = 23, 2]

or, in the matrix form for the 6-dimensional phase space,

01 0 0 0 O
-10 0 0 0 0
J= 0 0 0 1 0 o
0 0 -10 0 o
0 0 0 0 0 1
0 0 0 0 -1 0

Now, we can compute the right hand side of Eq. 4.23,

My:—Hy:Z) = My JuSuZ;
ab
:ZJdaS‘,,,MQZ,f = Zjdasabz—ib
ab

ab

=§Jd,5abecZ;' = (Jsmz’)

or, in the matrix form,

My:—Hy: T = ISMTZ!

The left hand side of Eq. 4.23 gives

MT = 7 = MT
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Comparing right hand sides of Eq. 4.41 and Eq. 4.42, we see that they are both of degree
1in 2%, and so Eq. 4.23 is consistent. The matrix M must satisfy the following differential
equation,

M=JSM (4.43)
with the initial condition
M(Z)=1I

required by the stipulation that M, and hence both M3 and Mp, be the identity map T
when ¢ = #,

Eq. 4.43 can be integrated to yield a unique solution

t
M = exp ( / JS(t’)dt’) (4.44)
tl
from which we see that
¢
Cfp = / JS(t')dt! (4.45)
tl
The explicit form of f; is not required for the subsequent calculations and so will not be
worked out here. Instead, we turn our attention to the nonlinear part of the map.
4.2.5 Computation of Higher Order Polynomials

Integrating both parts of Eq. 4.28, we get the following result,
t Y
Mp(t) =T + /a A Mp() s M) - (4.46)
We can solve Eq. 4.46 be repeated iteration, obtaining the following time ordered series,

t ) t e . .
Mp(t) =T + /v, dt' s —HEE) : + /t- dt’ [t M) —HE) e (4.47)

fil

We now use Eq. 4.47 to obtain explicit formulas for the polynomials f; and f,, which we
need to specify the optics of a system up to the third order. By definition, Mp is given by

the expansion

Mp =...exp(: fy:)exp(: fa:) (4.48)
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which can be applied to some homogeneous polynomial g, to yield with the help of Eq. 4.7
1
MRg" = "‘(1+ : .f4 : +) <1+ 5f4 : ‘f"?- 1f4 22 -{----)gn
1
= 9n+(=f3:9n)+<§=f3=29n+=f4=gn>+~- (4.49)

We have grouped the terms according to the degree using Eq. 4.34; the degrees displayed
are n, (n + 1), and (n + 2) respectively.
Next, we apply Eq. 4.47 to the same polynomial g, using the obvious decomposition

HE =M+ (4.50)
We obtain the following result,
t .
Mpgn = gn+ (/ dt’ : —H(t') :gn) (4.51)
f3d

+ /t dt' : —HM(t') : g + /t dt’ /" dt” =M (E") s M () r g | -
té 4 " té té 3 3 "

where again the terms have been grouped according to the degree.

Comparing terms of the same degree in Eq. 4.49 and Eq. 4.51, we find the following

relations,

 for= /:: dt' ; —H(g) (4.52)

1. .2 . — ¢ . intdyry . ¢ 1 ¢ " int g 11 intf g/
sify: +.f4.—/ﬁdt _—y (t).+/;dt/”_ di" M) M) . (4.53)

Both sides of Eq. 4.52 are Lie operators. We can remove the colons and write the explicit

formula for f; as follows,
t .
fa=-— / dEHR(Y) (4.54)
tl

Both sides of the above equation are of the same degree, satisfying the requirement for

consistency.

Eq. 4.53 can be solved for : f, : to yield
t .
fa: o= /t Cat' s ) (4.55)

¢ Tl ¢ " Aint /i intg 7 1 t ’ ¢ " Int i int /o7
+ t‘.ua[t, dt" : — M) - 3 (t):wi‘/;dt/ﬁdt D M) IR
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where the use have been made of Eq. 4.52. The right hand side of Eq. 4.55 needs to be
manipulated to bring the term in the form of a Lie operator. The last term in Eq. 4.55,

which is equal to : f, :* /2, can be rewritten as a time ordered integral:
1 1 e ¢ . . . .
5" f3 = 5 ) dt’ / dt" (: —HFH(E") = —HEH() s+ =AY —HF (") :) (4.56)
tt A
Substituting Eq. 4.56 into Eq. 4.55, we obtain the result
¢ . 1 gt ¢ . .
D fa= / Jdt' s —HP) +3 / dt’ / _ dt”{: ~HFH(E") :, s —HIM(t") :} (4.57)
o i #
Now we can use Eq. 4.5 to express the commutator in Eq. 4.57 as a Lie operator:
{: =2 (t) -, i) i} = [~ ), —H ()] - (4.58)

Thanks to Eq. 4.58, we have succeeded in rendering the right hand side of Eq. 4.55 to be in

the form of a Lie operator. Removing the colons, we obtain the explicit formula for fa

£ "'ntl lt-l ¢ L) int g0 ink( 47

fo=— [ are; ()45 [, d [ [, v ) (4.59)
4.2.6 Summary of Results

We can summarize the results of this section in the following theorem.

Theorem 2 Consider a system governed by a Hamiltonian H = H, + Hs + Hy+---. Then,
the polynomials f3, fs, fs used in the factorization of Eq. 4.9 satisfy the following differential

equalions,

M = JSM
fs = —Hm (4.60)
fo = —HP ’21' tfa: (—HZY)
with the initial conditions
M (Z’.) =7

Fo(Z) = fu(Z) =0
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M is the 6 x 6 matrix representation of exp(: f; 1),
exp(: f2:)Z = MZ

the 6 x 6 matrix S is obtained from H, using

1
Ha(Z,t) = 3 > Su(t)Z.2 (4.61)
ab
and J is the basic Poisson bracket matrix,

0 1.0 0 0 0

-10 0 0 0 O

sl o001 00

- 0 0 -1 0 o0 O

0 0 0 0 0 1

0 0 0 0 -1 0

Finally, Hi* and Hi™ are defined by -
H(Z) = H(MZ) . (4.62)

We are now ready to apply the Hamiltonian methods to the problem of calculating the
optical properties of the dipole fringe field. We will compute the matrix M together with the

polynomials f; and f; and then, from them, obtain the coefficients in the Taylor expansion,

X‘;ﬁnal — Z R Xs + Z z Top X X, + ZE Z Usbed Xp X Xg + - - (4.63)
b b ¢ b ¢ d

where X is the usual TRANSPORT 6-vector, X = (z,z",3,v', [, 6).

4.3 Dipole Fringe Region Map
4.3.1 Problem Formulation

The geometry of the problem is shown in Fig. 4.1. We consider the entrance pole face of a
dipole. Here, the coordinate s is perpendicular to the magnetic boundary and z and y are
the other two coordinates in the orthogonal set (s,2,y). The design trajectory makes an
angle B with the s-axis as it enters the fringe region. We would like to relate the coordinates
at s = 3, with those at s = 5;. We assume that the magnetic field B(s) = B,(s,0,0) goes

smoothly from zero at s, to the constant vaiue B, at s,.
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trajectory

Figure 4.1: Fringe region at the entrance of a dipole.
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4.3.2 Fringe Region Hamiltonian

Hamiltonian for the motion of a relativistic charged particle has the form
H = e¢ + c[m®c® + (P — eA/c)?]? (4.64)

We can change the independent variable to s, the distance along the line perpendicular to

the pole face, by defining another Hamiltonian,
H = -Py(z, P.,y, P,,t,—H) (4.65)
We get (¢ = 0),
H=—ed,fe~ B[ —m> — (P, — eA,[c)® — (P, — ed,[c)?]} (4.66)

For the case of the uniform field inside the magnet, the vector potential has only one com-

ponent:
A,=4,=0
B B
Az = B...l - —2!—y2 — -Zs-y4 4 e (4.67)
where

B.= [ " B(s')ds'

-0

Bl:—d:

_ 1&B

3= — e —

6 ds?
and B(s) = B,(s,0,0).
Note that (t,—H) play the role of the third coordinate and conjugate momentum in
Eq. 4.66. We can make a canonical transformation to a more convenient pair, (1,6), where

§ = (P — P,)/F, is the usual fractional deviation from the design momentum and 7 is given
by

T = —(Pyc)ft (4.68)
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where (¢ is the speed of the off-momentum particle,

(1+4)

= (4.69)
V67 + (1~ 838
Rewriting Eq. 4.66, we get,
H=—[P21+6) (P, - ed,]c) — A (4.70)
Next, we rescale the variables in Eq. 4.70,
P’-'v!l
pz,y - '?0
_ed;
9= = PoC
H
K = —
Py
We obtain,
L
== [(1+6) — (p. —0.) - Ak (4.71)
The scaled field b can be written as follows,
. e 1B
b= —B=-— 4.72
Poc P Bo ( )

where By is the constant field well inside the magnet.

Now, we rewrite the Hamiltonian in terms of deviations from the design trajectory. We

define vector x,

T1 \ z— 29
2 Pe — P2
T3 Yy

= 4.73
T4 Py ( )
Tp T - Td
Tg . 5

where the superscript d refers to the design coordinates. Since the Hamiltonian does not
explicitly depend on z, p¢ = const = sin B. We can write the full Hamiltonian to the 4tk

order,

b b 1
K=—[1+226+23~ (z3+sinf8—b_, + —21:::; + Z“zg)’ -2 (4.74)
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Defining

we can write,

K=—all-Vi~V; - Vs - VyJ3

where
i
Va
Vi

V,

Expanding Eq. 4.76, we get the Hamiltonian K(x, s) for the evolution of x,

where

4]
2
Vi

"3

4

™2

2
F(ng — Zg)

1
F(zg + ghyzd + 2% — z3)

1

—blzgzcz
n? 3

1 b,
2aa (s F 3%

+

+

‘/12

8

W,

4

)

+

Vs

4

‘/13
16
sz

8

K=K+ K3+ Ks+---

32V,
16

5V
128

)

(4.75)

(4.76)

(4.77)

(4.78)

(4.79)

Note that our notation here is different from that of the previous chapter. In terms of

the normalized field variable h(5), we have simply

and

b(3) = EE—?

ba(a) = [ : h(s)ds
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4.3.3 Calculation of M

The matrix elements of M are found from the first equation in Eq. 4.60 and Eq. 4.61.
Quadratic part of the Hamiltonian KX is,

1.1 2g g
Kg = Eﬂ-(;.’zg -+ gblmg e ﬁmzzg + :Di + 1_1,51:3) (4.80)
From Eq. 4.61 we obtain S,
0 0 0 0 0 0
0 1/n3 0 0 0 —g/n°
10 0 gb/n 0 0 o
S=14¢ o 0 1/n 0 o (4.81)
0 0 0 0 0 0
0 —g/n® 0 0 0 g/
From the first equation in Eq. 4.60 we obtain the following equations,
1 g
P
Ml,.‘ - n_s'Mz,i - ;L_a'Me.i
My = Mg;=0
1
M, = —My; (4.82)
b
M = ‘ﬂMa.i
! n
9 9 ..
l‘dé". = —EMz,.' + 7—;53’16,.'
Here, we have used the prime to denote differentiation with respect to s.
Taking initial conditions into account, we can write the solution matrix,
1 Ml_g 0 0 0 Ml,ﬂ
0 1 0 0 0 o
_ 0 0 M3'3 M34 0 0
M=1,4 4 My; Mys 0 0 (4.83)
0 Miz 0 0 1 M,
0 0 0 0 0o 1
Integrating the equations for M;;’s we have,
Ma = [ e
= —o0 n"’(s’) s
: + g(s")
Mio=Mia=—Mye = - [ L3 gp 4.84
1,8 5,2 5,8 -0 73(3) 3 ( )
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The remaining matrix elements, Ms 3, Ma4, My3, My 4, cannot be obtained by quadratures.

From Eq. 4.82, we get the following result,

¢ 1
11’1’3'4 = / Ts’)-MlgA(S,)dS,

* g(s)ba(s')
M4,3 = - ~ "‘_n(—sT—Ma'g(S’)ds, (4‘85)
We can write the following equations for M3 3 and M, 4,
1 - 1 ‘ g(‘s’)bl(sl) ' '
Ms,a(s) = n(s)/ n(s’) M3 ,a(s")ds
7] . s)bl 3) '
M.(s) = n(s) /oo () M4 a(s)ds' (4.86)

We can solve Eq. 4.86 by iteration:

M3,3(3) = 1‘—/ / 1 g(sz)bl(SZ)dSstl

J—00 J-00 1(31) n(sz)

+/ /—m -/" -/oo n(sl) ilz()SZ) n(ia) 9(8’;2:()84) s4dsadsyds, + ( . 7)
4.8

Mgy(s) = 1— _/_‘m _'; 9(3;2i11()31) n(i,) sadsy
n o g(81)bi(s1) 1 g(sa)bi(sa) 1
+/ ./ ./ -0 n(s1) n(s2) n(s3) n(sq)

M3j 4 and M, 3 are then given by Eq. 4.85.

d34d33d82d31 + .-

It should be remarked that the iterated solutions given in Eq. 4.87 are just the power

series expansions in the “field extent” parameter €. Specifically, the displayed terms are
O(€%), O(€'), and O(€?) respectively.
The matrix elements represent the linear map for the canonical deviation variables.

4.3.4 Calculation of Lie Polynomials f; and f

We must integrate the last two equations in Eq. 4.60 to obtain f; and f,. Expanding Kj in
Eq. 4.79 and using Eq. 4.83, we can write

KiM(x,s) = Ki(Mx,s) ZT s)'I‘ (4.88)

i=1
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where T; is a homogeneous polynomial of the 3% degree in x:

¥
zirg
$3$§
TaT3T4
Zaz?
z::§ (4.89)
zizg
T3T4Tg
wiry

\ 2}
Coefficients T; are tabulated in Table 4.1. Integrating the equation for f; in Eq. 4.60, we
obtain the following result from Eq. 4.88,

== (}: T.-(s')r;) ds' (4.90)

=3
Il

=1
Let .
'T.'(S) = -/ T,-(s')ds' (4'91)
Then,
10
fi=nT, (4.92)
i=1
The differential equation for f; can be written as follows,
fi=—(KQ' + Ky) (4.93)
where
- 1 .
K4 = 5 : f3 : (K;m') (4.94)
We can write,
19
K&(x,9) = 3" Ui(a)=; (4.95)
i=1
and
} 19
Ky(x,3) =) Vi(s)=; (4.96)
=1
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where E; is a homogeneous polynomial of the 4" degree in x, which can be represented by

a 19-vector,

o3
zize
23]

zizawy
T3z
A
w3m§26
L3T3T4Tg
2)33)22)6

T2Tg (4.97)
z3
Eg$4
23z
zizl

T3z3

[

Il

The coefficients U;’s, V;’s are tabulated in Table 4.2 and Table 4.3 respectively.
Let

mm:-ﬁ;mwnwmma' (4.98)
Then,
fo=Yus (4.99)

We have succeeded in obtaining explicit formulas for the polynomials f; and fs. They depend
on some line integrals and the matrix elements of M. If one has measured the field b(s), it is
possible to obtain 7;’s and w;’s numerically. Alternatively, we can go back to the e expansion,
expanding the integrals to a desired order. There is no need to decide a priori what that
order should be.

Lie algebraic expansion of Eq. 4.9 can be used to describe the optics of a system without

reducing it to a Taylor expansion [8]. However, we would like to obtain the TRANSPORT

109



matrices up to the third order to compare with the results of the previous section. Our pro-
cedure would be as follows. First, we obtain the canonical matrix representation. Then, we
transform to the TRANSPORT variables. Finally, the TRANSPORT matrices are obtained
from Taylor expanding in the TRANSPORT variables.
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Table 4.1: Coeflicients in the Expansion of Kim

[ T; |
g9/(2n%)
—(1+24%)/(2n°)

(M3ab1 + M3,9)/(20°)
(M33Ms4by + My 3 M, 4g) /7
(M3.51 + M3 ,g)/(20°)

(9(3 — n?))/(2n°)
—(M33hvg + M3,)/(20°)
—(M3,3M34b19 + My 3My4)/(n3)
_(M:?.-:blg + M42.4)/(277'3)
—9°/(2n°)

W= Nm]O]WIND| ] .

oy
(=}
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Table 4.2: Coefficients in the Expansion of Kint

K U; Il
1 (n? + 54%) / (8n7)
2 —(3gn® + 5¢%) / (2n7)
3 (3M2,b,g + M3 )n? +3M2 by g° + 3M3,9°) / (4n)
4 | ((3M33Ms 4b1g + My M) + 3M; 3 M 4b1g° + 3Ms3My,49%) [ (20°)
5 (3M2,b1g + M2 )n? 1 3M34bg® + 3M2,g*) / (4nd)
6 (2n* +15¢%)/ (4nT)
7 — (M2 bin? + 3M3 b, g2 + 3M3,9) / (2n5)
8 — (M3,3M3,4b1n2 + 3M33M; 4b,g* + 3M,3M,.g)/ (n®)
9 ~ (M3,bin? + 3M3 by g + 3M2,g) / (2n5)
10 (3gn* — 59) / (2n7)
11 ((ZMg,abiig + 21’3’1‘434.3)":l + M3.bi° + 2M3 M3 3byg + M:,a) / (8n?)
12 (M5 M, ibog + 252 M, M 0)0” + M3, 0 15047
+(M3 My 3 M, ¢ + MMy M ,)big + M3 M, 4]/(203)
13 (63 aM3 bsg + 6b2 M7 M3 n? +30M3 3 M3 big
+(M§,3M.§,4 +4Maa My MM, 4 + M§,4M3_3)bly
+3M3.3M3.4]/(4"3)
14 (—(M2;b,g + Mia)n® +3M33big + 3MZ,) / (4nF)
15 [(2M3,3M§'4b3_q + 2b§M3’3M§"4)n2 + M3.3M§4b§g2
+(M3,3M3,4M§, 4 F M§,4M4,3M4,4)51§ + M M3 1/(27°)
16 | (—(Ms3M; b9 + MyaM,4)n? + 3My 3 M;4b19 + 3My3 My 4) [ (20°)
17| ((2M3bag + 261 M3,)n* + M b3 + 2M2 M2 g + M},) / (8n3)
18 (—(M2 brg + MZ Jn? 1 3M3 big +3M2,) [ (4n5)
9 =)/ (87
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Table 4.3: Coefficients in the Expansion of K,

L2 Vi |
1 0
2 0
3 73Ty — Tamy
4 2T3T5 — 2T3T5
5 Tals — Tyry
6 0
7 T3T3 - TaTg - T4T7 + T4T7
8 2T3T9 - 2T31’9 o 2T5T7 + 2T5T7
9 T4T9 - T41‘9 - TsTg -+ TsTg
10 0
11 0
12 0
13 0
14 T7T3 - T1T'g
15 0
16 2T7T9 -~ 2T7’7'9
17 0
18 Tng — TeTg
19 0
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4.3.5 Canonical Matrix Representation

We can expand the exponentials in Eq. 4.9 to obtain the following power series,

gl = Mz, = .. -exp(: fa :) exp(: fa 1) My,
1
= ...(1+:f4:+---)(1+:f3:+;:,f3:2—i—---)Maba:b
1
= Mapze+ : f3: Myzy + (: fa: —1—-2- : fa :2)Mabxb + ... (4.100)

where the terms appear according to their order.

Also, we can write a formal power series expansion in the canonical variables as follows,
2] = Mz = Maszy + Qupetya, + Wascazpz.za + - - - (4.101)

where we sum over the repeated indices and take b < ¢ < d to avoid the occurrence of the

same ferms in the sum; e =1,...,6

We can identify the terms in Eq. 4.100 with the matrices of Eq. 4.101 according to the

order:

2 fai Mgy —— Qgpezpz.

1
(: fa: +5 fa P My, s WabcdTo 24 (4.102)

There are 72 non-zero matrix elements out of total 498 (6 x 83): 12 Mu's, 20 Qs

and 40 Wea’s. They depend on 7;’s and w;’s. The elements of Q and W are tabulated in
Table 4.4 and Table 4.5 respectively.
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Table 4.4: Second Order Canonical Matrix Elements Qg

Q1,22 —3ny
Q1.3,3 —T3
Q 1,3,4 —T4
Q1,4,4 —T5
Q1,2,6 —21y
Ql,e.e —Tg

Q32,3 27’3M3.4 — M3.3T4
Qaz4 | M3ty — 2M3 375
Qa6 | 2Ma s — M3 375
Q3,46 | Maaa — 2M3 379
Q4,3 | 2TaMy s — T4 M,y 5
Qaza | TaMyy — 2M, 375
Q4,3.e 2M4,4T7 -~ M4,37’a
Qa8 | Maams — 2M4 379

Qs.m —Ta
Qs,3,3 —T7
Q5,3.4 —T8
Q5,44 —Tp
Q52,6 —27¢
Qse6 —3r10
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Table 4.5: Third Order Canonical Matrix Elements Wabed

Wi2.2,2 —4wy

Wizaa —2ws

Wi2,3,4 —2w,

Wi 244 —2wg

Wis26 —3ws

Wl,3,3,6 TaTs — Wy — T4T7

Wisae 21379 — wg — 2757y

Wisase —Wwy + T4Tp — T5Ts

Wisee —2wg

Wl.s,e.e —Wio

Wia33 —273M3375 ~ Maqws + M3 373 /2 + 2w M 4
W3,3.3,3 4M3,4wu - Ms,awn

W34 —2M33ws — 215 M 475 + M qw, + Mj,72/2
Wsi34 M 4wz — 2M; 3w13

Waaaa 2Ms qwy3 — 3M; aws

Wi a4 M3 qw15 — 4 M3 30,7

W6 | —27aMs a0 — Masws + M3 37418 + 2M3 gy — 2M3 37577
Wianue | —2Ms3wg — 213 My 419 + Ms4ws + Ms 41478 — 2Ms 47574
Wiaee —M3au1e + 2M;5 swis ~ 2M3 3777 + Ms37¢/2

Wi 40,6 —2M;,3018 + M; 406 — 2M347179 + M3 472
Wiz —273 My 375 + 2wa My 4 — (wy — T8 )My a/2
W33, AM, sy — My 3wy

Wiz —2M, 3w — 213 M, 475 + (wq + 72 YMy4/2
Wiaa.4 3M, w1z — 2M, 3wi1a

Wiz44 2My 4wz — 3IM, 3we5

Wiaaa M,y qwy5 — 4 My 3wy7

W4.z,3.s —27'3M4.3Ts — M4,3we + T4M4.3T s+ 2M4,4w7 - 2M4,37'57'7
Winae | —2M, 3w — 213 M, 475 + My aws + T4 My 418 — 2M, 47577
Wq.a,e.s —M4,3wm + 2M4,4w14 - 2M4,3T77'9 + M4,3T ,;" / 2
Wises —2M, w18 + My qwig — 2M, 47779 + M, 72/2

W5 2,2,2 —w;

Ws.23,3 —T3Tg — Wr + T477

Wi.2.3.4 —27379 — wg + 27577

Ws,2,4,4 ~Wy — T4Tp + T57Ts

Ws.2,2,6 —2we

Wsaae —2wy4

Ws 346 —2uwyg

W16 —2wyg

Ws,:,e,s —3wyg

Ws 666 —4wyg
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4.3.6 Transformation to TRANSPORT Coordinates

Let X denote the TRANSPORT coordinates,

Xy z—2? \

Xz 2 — :B'd

X.

x|= ;’, (4.103)
X5 L-1¢

Xa )

We want to work out the transformation between the canonical set (21,22, 25, 24) and the
TRANSPORT set (X1, X3,X3,X,4) at the beginning (B = 0) and the end of the entrance
fringe region (B = B,). Here, we ignore the 5* coordinate and the §t* coordinate (§) is the

same for both sets.

Angles z', y' can be related to the mechanical momentum components as follows,

o P
= 5
Pm
"= I 4.104
y P (4.104)

Here the superscript m denotes “mechanical”,

Pl = \/P*— (Pm): - (Ppy:
where
pr=p_ S
c
and
We can write in terms of the scaled variables,

’ Pz — @

\/(1 + 6)2 - (P: - ac)z - P,";
' Py

\/(1 +6)* - (P — a;)? - P:

T

f

(4.105)
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These expressions in Eq. 4.105 may be inverted by solving for p, and p, :

!
D = @, + -_E.._i)m_.._.:
/1 + ml., + yl«
14+ 8)y
Py = —-—-——1( — )i = (4.106)

We now evaluate Eq. 4.105 and Eq. 4.106 at the final and the initial point of the entrance
fringe region respectively.

1. At the final point s = s,, we have
B = Bo

bl = b3 =0
and
_ _ Ll
2.(s3) _'b_l(.s,) = /_ " h(s')ds

where,as before,
B(s)
By
Recalling that p, = z; + sin 8 and § =sinf — b_y, we get,

h(s) =

X{ = a:{
x{ = -2+ ikl
"V +af)— (2] + g — (el
X{ = (4.107)
x{ = 4

VA +al) - (af + g)2 — (]2

2. At the initial point s = 3;, we have
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Noting that ' = tan 8 initially, we get

2, = Xy
2 = —sinf+ (1+ Xe)(X2 + tan B)
1+ (X3 +tan B)? + X3
23 = X (4.108)
2, = (14 X)X,
Y1+ (Xz + tan B)? + X3

We are now ready to obtain the TRANSPORT transfer matrices.

4.3.7 TRANSPORT Matrices

Given matrices M, Q, W of Eq. 4.101, we can obtain TRANSPORT mairices R, T,U of
Eq. 4.63 as follows:

1. Expand Eq. 4.107 in a power series to obtain,
X] =Ry~ o] + T ol a] + Uz M ofelzf + - (4.109)
2. Substitute the power expansion of Eq. 4.101 for x in Eq. 4.109 to obtain,
X! =Ry oy + T2 X myz, + UK my g + - (4.110)
3. Expand Eq. 4.108 in a power series to obtain,
Ty = Rap Xy " + TE " X X + UX X, X Xy + - - - (4.111)
and substitute Eq. 4.111 into Eq. 4.110 to obtain the desired Rapy Tovey Unbea-
The results are given below. We have 10 non-zero elements in the first order,

Ry = 1
Rl,2 = M1'20053ﬂ
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Rig = My 2sin 8+ My g
Ryn = cos"’ﬁ/n3

¥

Hpe = (sing - g)/n’

Riz = M,z

Riy = Mucosf
Rys = M,a/n

Riy = M, cosf/n
Rgg = 1

20 non-zero elements in the second order,

Tizp = — (3M1,g cos* Asin B + 67 cos® ﬂ) /2
Tige = (M, — 273) cos® B — 67, cos® Bsin B
T1,3,3 = T3

T34 = —74cosf

s = — (M1,2 cos® Bsin B 4 275 cos? ﬁ) /2
Tige = —37ysin’f — 2rsinf — 74

Tp22 = —3cos'p (nz sinf — gcos? ﬂ) / (21!.5)

Ta26 = 3gcos®f(sinf — g) /n®

Toss = Misg/ (20°)

Toas = My M,y g cos B/n3

Thys = - (cos2 Bsinf — Mf',g cos? ,3) / (211.3)

68 = (3g sin? B — (2 + 492) sinf — gn? 4+ 3g) / (2n5)
T2 = (2r3May — M;,374) cos® 8

T34 = (Myqry - 2M3a75) cos? B — M; 4 cos® Asin 8
Taae = (2r3Mz4 — M3a1y)sin B — My grg -+ 2M;y 47y
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= (Maa7y — 2M;3375) cos Bsin B + (—~2Maate + Ms 75 + M3 ,4) cos 3

= ((2T3M4'4 — TaMy3)n? + M4,3g) cos® 3 /n?

= - [11114'471,2 cos’ Bsin B + ((2M4,37'5 — Ty My 4)n® — M4,4g) cos* ﬁ] /n®

= [(@2raMys — 7sMyg)n® + Miag) sin B + (2Maarr ~ Myre) n? ~ My /n®
= - [((2M4,31'5 — TaMy4)n® — M4,49) cos (Bsin B

+ ((2M4,3‘rs — Myama — My4)n? + M4,4) cos ,3] [n®

and 40 non-zero elements in the third order,

Ui,2,2,2
U226
Ui2,33
Ui234
Ui2,44
Ui2s8
U133,
U348

Ui g8
Uises
Uz 3,22

Uszz,2,6

Usz,3,3

Uz 2,34
Uz2,44

Uzz6.6

U233

Uzzu8

Uzaas

il

il

(1871 cos” Bsin B — 8w cos® B — 5Mi 3 cos” B + 4 M, 5 cos® B)/2

—((24wy cos® 8 + (3M;y,; — 673) cos® B) sin § + (6wa + 3071) cos® B — 187 cos* B)/2
—2w3 cos’ B

T4 cos? Bsin B — 2wy cos? B8

(671 cos® B + 475 cos® B) sin B + (~4ws — 3Mj,3)cos® B + 2M1_2 cos® B)/2

—12w; cos® Bsin® B + (—6wy ~ 611) cos® Bsin B + (—2wg — 273) cos® B

—2w3 8in [ + 1315 — Wy — Ty7Y

(27579 — wg — 27577 — 74) cos B — 2w, cos B sinf3

(671 cos? Bsin? B + (—dws + 275 — M, 3) cos? Bsin B

+(—2wg + 27479 — 271578 — 475) cos? B)/2

~4wy sin® B — 3w; sin? B ~ 2wg sin B — wyg

~(9gn® cos” Bsin B + (4n® - 5) cos? B + 5nt cos” B — 4nt cos® B)/(2n")

—{{(122® - 15) cos® B — 9gn? cos* B) sin 3

+(15g — 21gn?) cos® B + 9gn? cos* B)/(2n7)

(((47aMy,aMy 0 — 21sMZ5)g — 2M(5)n* + 3M3,) cos® B/ (2n°)

—(M4,3M4,4gn’ (.‘.OS2 ﬂ sinﬂ

+(((2M42'3T5 - 2‘1’3M42’4)g + 2M4'3M4'4)n2 - 3M4’3M4l4) cos? ﬁ)/‘l’l5

—~({3g cos® 8 + 2Mj 4gn® cos® B) sin B + ((AMy3My g5 — 214 M2 ,)g + 2M2 4 + 3)n?
~3M ) cos® B — 2n? cos® 8) /(2n°)

({1897 — 30g) cos® BsinB + (12n% — 15) cos® B + (6n* — 3357 + 30) cos® B)/(2n7)
(((4raMy My 4 — 21'4M42’3)g - 2M}3)n? + 3M3'3) sin 8

+(4My 3 My 417 — 21‘42‘,37'8)9"2 - 3M§'3g)/ (2n°)

—((((2M3 375 — 2maM} 4)g + 2M, 3 My 4)n? — 3M, 3 My 4) cos Bsin B

+((2M42’379 o ZM:AT"( — M4'3M4,4)gn2 + 3M4.3M4.4g) cos ﬂ)/ns

—((((4MasMy 475 — 214 M] ()g + 2M], + 3)n? — 3M2, ~ 3) cos® Bsin B — 3g cos* B
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Us6,6,6

Us 3,23
Usz2,4
Usz2ze

Uz

Uz a3z
Usaag
Us a4

Usaes

Usq,44
Us,q,66

Us2.23

Us224

Us23a

Us248

H((4Ms,3Myamo — 2M] 45 — 2M7 )gn® + (3M2, + 3)g) cos? §)/ (2n°)

—((4n® - 5)sin® B + ¢(15 — 6n?) sin? 4 — (2n* + 15¢%) sin B — g(3n® + 5))/(2n7)
((3M3374 — 673 M3 4) cos? 8 sin 38

+(—4msM3,375 — 2Ms 3w + M 372 + 4w3M3 4) cos® B) /2

((10M3,375 — 5M3 474) cos® Bsin B + (~4Mj 305 — 4T3 M3 475

+2M3 4ws + M3 472) cos” 8 — 3M3,4cos® B+ 2M, 4 cos® B)/2

(—413 M3 375 — 2M3 304 + M3,373 + 4wy My 4) cos® Bsin

—(273 M3 319 + Mj 3w — M 3418 — 2M3 4wz + 2Mj 37577 + Msa74 — 213M3 4) cos® 8
((—4Ma3ws — 473 M3 475 + 2M;,4w4 + M3 473) cost 8

+(2Ma 375 — Ma,s7s — My 4) cos® B) sin 3 + (—2M3,3wp — 213 Mj 479 + M3 4wg
+Ma,47478 — 2Ma 47577 — 6 Ma 375 + 3Ms,474) cos? B + (2M; 75 — M3 474) cos® B
4M3 4w11 — M3 3013

(3M3,4013 — 2M3 3043) cos B

(M3 37y — 273M3 4) coszﬂsinﬂ + (4 M3 4013 — 6.M3 3w;5) cos? B)/2

~((47aM3 375 + 2M3 304 — M3 a7d — dwsM; 4) sin? B

+(473 Ma,379 + 2M3 3wg — 2M3,37478 — 4 M3 4wy + 4 M3 3757;) sin

+2Mj,3w1g ~ 4M3 4014 + 4Ms 37779 ~ M3 318)/2

((2M3,375 — M3 474) cos® Bsin 8 + (—8M3 3w1r + 2Ms,4w15 —~ M3 4) cos® B)/2
~((4M3,3w5 + 473 M3 475 — 2M3,4w4 — M3 472) cos Bsin? 8

+(4M3,3w9 + 473 M3 41 — 2M,4wg — 2M3 47475 + 4 My 4757y

+4M3,375 — 2Mj3 474) cosBsin B + (4M3 3018 — 2M3 qung + (4M34m1 + 4 M3 3) g
—Ma 418 — 2M;,473) cos B) /2

—(((673My,4 — 374 My 3 )0 + 3M,,3gn?) cos? Bsin B

H((4maMy375 — dwa My 4 + (2wy — 73)My 3)nt + ((274My3 ~ 4T3My 4)g + 2M, 3)n?
—3My,3) cos® B)/(2n°)

(((1OM; 375 — 5T M, g)nt — 5My,4gn*) cos® Bsin B

H(—AMyaws ~ 473 My 475 + (204 + 72) My )0t + ((2muMayg — 4My 375)g — 2M, 4)n?
+3M,,4) cos” B — 3M, 4n* cos® B +2M 4n® cos® §)/ (2n°)

—(((47sMa 375 — 4waMy 4 + (2wg — 72 WMyz)nt + ((21aMy 5 — 43 M, 4)g + 2M, 3)n°
~3M,3) cos® Bsin g + ((2r3My 375 + My 305 — TaMy 378 — 2My ywr + 2M, 37577
=213 My 4 + TaMya)nt + (M, 378 — 2My a1 — My 3)g

213 Mas — 1My 2)n? + 3M, 3g) cos B) /n®

=((((4Ma,3w05 + 4T3 My 475 + (—2wq — 73)My 4)nt + ((4My375 — 274 M, 4)g + 2M, 4)n?
~3Mays) cos® B+ ((~2Mi 570 + Miats + My a)nd — M, 4n?) cos? f) sin B
+((2My 3w + 273 M, 479 — M,y qws — T4 M, 475 + 2My 45Ty + 6 My 375 — 3raMy 4)nt
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Us 3,33
Uyza,za4

Uszaa

Uszae6

U4,

Usae

+((2My 379 — My 473 — 3My 4)g — 2My 375 + 74 My 4)n® + 3Mjy 49) cos® B

+((7aMy s — 2My 375)n* + My 4g77) cos® §)/n°

—((2M4 3w12 ~ 8 My qwyy)n? — M43,3)/ (2n)

—((4My,3013 — 6 My 4w12)n? — 3MZ 1My 4) cos B/(2n°)

—(((273Ma,q — T4 M4y 3)n? + My ag) cos® Bsin 2

H((6My3w1s — 4My gwia)n® — 3My 3 M7 ,) cos? B)/(2n°)

—(((4maMy 375 — dwsMy 4 + (2wy — 'r,f)M‘,'g)n4 + ((274Ma 3 — 473 M4 4)g + 2My 3)n?
—3M,3) sin? B + ((473Mya7g + 2My aws — 214 My 378 — 4 My g7 + AMy 37517 )nt
+((2Ma,3m8 — &My 477)g + dTaMy 4 — 274 My 3)n® + 6 M 3g) sin 8

+(2Mj 3w1g — 4Mj 4014 + 4 My 3779 — My 373 )0

+(—2M4,378 + 4My 477 + My 3)n? — 3My 3)/(20°)

(((2My,375 — T4My 4)n® — My 49) cos® Bsin B

+H((~8Maawrr + 2My quns — Mya)n? + M) cos® B)/(2n°)

—(((4My 305 + 473 My 475 + (—2w4 — 75)Mya)n* + (4 My 375 — 274 My 4)g + 2My 4)n?
—3M,4) cos Bsin® B + ((4M, 3w + 473 My 479 — 2My qws — 274 My 478 + 4 My 47577
+4 My 375 — 214 My o)t + (4 My 37 ~ 2My 4T — 2My 4)g — AMy 375 + 274 M 4)n?
+6My,ag) cos Bsin B + ((4Mj awis — 2M; qw15 + (4My a7 + 4 My 3) T — My 472
~2Mya1g)n? + (—4My 1o + 2My 478 + 3IMy 4)n? — 3M 4) cos B)/(2n°)
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4.4 Discussion of Results

The second and third order elements given in the previous section provide a more general
result for the combined nonlinear map than those given in Chapter 3 in that they are not
expanded in €. To compare the two, we must expand all the integrals to O(e). In the end,
all the integrals appearing in the matrix elements computed in this Chapter are functions of

the first-order matrix M which itself depends on the field line integral

ba(e)=c [ jh(s)ds

and its products with the field derivatives.

Needless to say, the expansion procedure is quite tedious and involves Juggling a great
deal of integrals. Although the relation between the two sets of matrix elements is not
obvious, after long algebraic manipulations we do get the same answer to the right order in
€. We have verified all the terms through the second order and selected terms in the third
order, and they indeed do agree.

Hamiltonian methods give a much more elegant approach of solving the problem, but in
the end we must pay the price of dealing with a more complicated answer. Although there
is some inter-relationship between the different terms, it seems to be buried in the double,
triple and quadruple field integrals. If an analytic form of the field is known or can be fitted
from the measurements as some function of 5, all the integrals can be evaluated numerically
and the matrix elements can be obtained as pure functions of the rotation angle A. In fact,

this is a general approach taken in 8]. A single-parameter function such as

1 3
h(3) = - |14+ ——=
(3) 5 [ + r—__gz_{_ez}
can be used to model the field by fitting the “field extent” e. All the matrices can then be

obtained by direct integration.
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Appendix A

Effect of a Curved Boundary

A.1 Introduction

It is possible for a boundary of a dipole to have some curvature in addition to being inclined
with respect to the reference trajectory. Even for a geometrically straight dipole edge, the
fringe field may possess an effective curvature due to the finite width of the magnet and
the extended nature of the field. The effect of the curvature must be incorporated into the

dipole fringe field optics.

Working in the sharp-cutoff approximation, one can show [13] that the optical effects due
to the boundary curvature first manifest itself only in the second order. In fact, just three
second-order terms are affected; they are the terms describing the dependence of the angular

variables 2/, y' on the beam displacements zo, o.

In this section, we investigate the effect of the extended field of a curved boundary on
the optics up to the third order. Using the mathematical machinery of Chapter 3, we obtain

the € expanded matrix elements. We calculate the linear terms to O(€?) and the higher order
terms to O(e).

The midplane fringe field of a curved boundary is mathematically equivalent to the field
of an inclined boundary with some dependence on the transverse coordinate u. We do not
need to recalculate pure drift and bend transformations and must focus attention only on

the fringe field region.
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A.2 Equations of Motion

For the boundary with an effective curvature K , the midplane vertical component of the

magnetic field may be written as follows,
K,
By(s,4,0) = Bo (h + - hu ) (A.1)

where all the quantities are as defined in Chapter 3.
We can get all the components of the full three-dimensional magnetic field from Eq. A1

using Maxwell’s equations and the midplane symmetry. We obtain the following relation,

[ 1 18
Ba(8’u7 3/) = _y - Eyavz + .- '_ 5;-321(3,“: 0)
] | 19
Bu(saua'y) = _y Ey Vet | 8a U(31u’ 0) (Az)
By(s,u,y) = |[1- %yzv’ + -+« By(s,,0)
! ]

where \
8? a
2 _ e —_—
V= (032 + Buz)

Applying Eq. A.3 to Eq. A.1, we get the result

[dh K &h ,

B‘(S,'qu) - BO ;1‘;+‘2—E‘9—2~u]y+...
dh

Bu(syu,y) = BOKE'""_'I'F"' (A.3)
18k, Kdh , , Kd&h,,

Buloswy) = Bo|h—5omy'+ 54,0 ‘y)—zdsa“”]+"'

The equations of motion can be written as follows,

1

i -T [f (1 +a?) + gij]
§ = ~T[g(1+5) + fis] (A.4)

I

Here, T is given by
1
3

T=[1+d+
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and

K 1. )

_. rK=0 2 .2y L 2.2 §.2 -
F= P04 gy bt = 97) = 5 Ray? = By
=0 i Bty G )|

-

where f%=° and gX=0 are given right after Eq. 3.25 in Chapter 3.
By putting u(s) = A(s), y =9 = § = 0in Eq. A.4, we can obtain the equation of motion

for the reference trajectory. We can write it as follows in the dimensionless form,

d

"EA = €A
d. . k ~,dh ‘

with the initial conditions

A(s) = esitanf  A($) = tanf
where k is the scaled curvature strength,
"k=Kp
We can solve Eq. A.5 by iteration to O(¢?) to obtain the result
. . k
A(3) = AK=3) - 62552 sec® A tan® Gh(3)
A(s) = AX=%(3) _ (A.8)
where A¥=0 and AX=0 are given in Eq. 3.29 and Egq. 3.30.
Next, we would like to write the full third-order equation similar to Eq. 3.43. Denoting

coordinates @, ), §, ¥, § with vector components (;, we can schematically represent the

differential equations expanded from Eq. A.4 as follows,

(G = e :
G2 = Do AaG+ Y Mojnide + PIDIDIL IT M eleNe
F 7 K 7 k1
Cé = €C4 (A.7)

G = 2 AGGHY Y Ml + X3 @4l
j ik i k1
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where the prime denotes d/d5 and matrices Aijy Iijp, ®i5 all depend on 3 and can be split

into k-dependent and k-independent parts,
Aij = A+ X
i = I + i (A.8)
it = By + dim

The superscript 0 refers to the k = 0 terms, which are all functions of AK=° and appear in
Eq. 3.43.

The solution to the third order may be represented by the usual power series,
6= R+ 3 Tadi + 3 3 3 U200 (A.9)
J ik i k1

where (s represent the initial conditions at § = 31-

By putting Eq. A.9 into Eq. A.8 and collecting terms of the same initial conditjons,
we obtain equation for the matrix elements which can be solved using the procedure of
Chapter 3. We will look for the matrix elements which are affected by the curvature term

in the field expansion.

A.3 First-Order Matrix Elements

We will show that the curvature effects on the first-order elements are of O(e?). Nonzero

contributions J;; are as follows,
An = k [e tan f§ sec® 93
+ (3 tan? faec! 65 | h(s)ds + sec® B / ’ / ’ h(s')ds’ds)] B
Ay = —gke’ tan’ @sec A5H
Az = %ke2 tan® A sec® #3530’
Az = —k [e (-21— tan® B sec 33%h" — tan fsec ﬂ.‘ih’)

€ (%(1 + sin? 8) tan® B sec* A(ahh' + 521" /i h(s)ds)
i
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tan® 3 Bsh" s')ds'ds
+ tan”® B sec” 33 / /"

—t 205k [ h(s)ds — sec® BH $)ds'ds |
an® B sec’ G5 / (s)ds —sec® B [1.[‘
Ag = —ike tan® Bsec B3R

Obtaining equations for R;; from Eq. A.8 and solviug thcm by iteration, we can identify

the curvature contribution. Counting the orders of € a% each iteration step, we get

Ru(s) = EAY()+e [ [ Aaa(s')ds'ds
R12(§) = R(x’z(g) )
En(s) = R%(3)+ /;:Ands
+ ( /:A”(S)J/; " A9 ()ds'ds + / jAgz(s) An(s ’)ds’ds)

+e (/:/\31(5)/ f Ay (8")ds"ds'ds + A () j: ‘/:’ z\n(s")ds"ds'ds)
Rp(3) = R3,(3)+ /: Aga(s)ds + e/ﬁ(s - 51)/\21(8)(13
Ruls) = Rs)
Rao(3) = R%(3)+ /; Aao(s)ds

Here, as above, superscript 0 refers to the k == § elements. By putting 1 — 3 and 2 — 4 in
the first four of the above expressions, we obtain the curvature contributions to the terms
Ra3, R3q, Rys, and By,

Performing the integrations, we get the “curvature corrections” at the fringe region’s
endpoint 3 = 3;. Then, we combine them with the linear elements describing transformations

through the drift and the bend. Let us define
Tij; = R‘-j - Ro

as the change in matrix elements due to the curvature. Then the nonzero terms to O(¢?) are

4sin g

h

Tir = —4k€

5L
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a1 = —ke vy [(1 + sin® A)I, ~ 3sin® A(I; + 15)}
ros = 2ké? csci:fﬁ [sin2 B +2(I; + I4)]
2
ras = —2ke? ::;agll
o - el
T = -k 3 [sin B(2 + sin’ B)T, — 3sin? B(J; + 1)
T = ke :;:2% L

where integrals I, are given in Eq. 3.41.

A.4 Nonlinear Matrix Elements

We notice from Eq. A.6 that to the first order in € the reference trajectory remains unaffected.
In particular, this fact means that I',,’s introduced in Chapter 3 and appearing in the equation
of motion are unchanged to O(e). The second-order nonzero “curvature corrections” of

Eq. A.9 can be written as follows,

M1 = %P—%
ds 2
Ta1p = —3k%AI‘EI‘g
Taig = k%&ri
Wygn = —Z—k%ﬁzfa
——— gk%ATgrz
T = KL, + 22 gy,
mu = —kStArT
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dh ., I3

Te8 = _kds A*L 2
dh d*h _
T413 = kd_I‘2 k d AI‘”I‘;),
T414 = —k%ﬁAer‘z
dh - dzh ~ I‘
7423 = kds Arz d zAz(rlI‘z + —
dh ., T
T424 = —kEAzf'
dh d?h A?
Taze = —k— a5 API +k eds? 2 I‘ZFQ
2
Taa8 — k‘;’j a Pzrz

Similar formulas can be obtained for the third-order “curvature corrections” Bijh-

The elements n;; and ¢;; go into driving terms fije for the second order and g;;u for
the third order, respectively. We just obtain additional terms in Eq. 3.45 and Eq. 3.47. The
c-expansion methods are still valid and the order-by-order solution method can be used. -
Other than performing additional integrations, there is no new work involved in obtaining
the nonlinear matrix elements. In the end, the & dependent terms will contain no new form
factor integrals. Just like in the zero curvature case, the higher order solution requires only

the knowledge of the linear matrix elements, which were obtained in the previous section.
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