R-1406
CU- 376
NEVIS- 270

Nevis Laboratories
Columbia University
Physics Department

Irvington, NY

NUCLEON STRUCTURE FUNCTIONS FROM HIGH ENERGY
NEUTRINO AND ANTINEUTRINO INTERACTIONS IN IRON

Edward Oltman

Reproduction in whole or in part
is permitted for any purpose by the
United States Government.

Submitted in partial fulfillment of
the requirements for the degree
of Doctor of Philosophy in the
Graduate School of Arts and Sciences,
Columbia University

1989

National Science Foundation
NSF PHY 86-10898



R ANA



NUCLEON STRUCTURE FUNCTIONS FROM HIGH ENERGY
NEUTRINO AND ANTINEUTRINO INTERACTIONS IN IRON*t

Edward Oltman
Columbia University, New York, NY

*Research supported by the National Science Foundation.
tSubmitted in partial fulfillment of the requirement for the degree of Doctor of
Philosophy in the Graduate School of Arts and Sciences, Columbia University.

Abstract

Charged current nucleon structure functions obtained from high energy
neutrino and antineutrino interactions in iron are presented. These
were extracted from two separate exposures using the Fermilab narrow
band beam. The structure functions were used to test the validity of
two Quark Parton Model predictions: (1) F; measurements from this
analysis were compared to those from charged lepton scattering exper-
iments, indicating that both probes reveal the same nucleon structure.
(2) The Gross-Llewellyn Smith sum rule, which measures the valance
quark content of the nucleon, was evaluated at Q2 = 3 (GeV/ c)z, yield-
ing the value 2.791+0.08+0.13 which lies below the Quark Parton Model
prediction of three. When perturbative QCD corrections to this pre-
diction are included, the measurement is consistent with a value of the
QCD scale parameter Agrs < 435 MeV/c. Scaling violations were anal-
ysed in the context of perturbative QCD through the Altarelli-Parisi
evolution equations. A nonsinglet fit to zF3, which is independent of
the unmeasured gluon density, yielded Azz = 251713 + 89 MeV/c. A
singlet analysis of F3, which does depend on the gluon density, yielded
Azzs = 25573 £ 101 MeV/c. By simultaneously evolving F; and zF3,
this error was reduced by about 30% and the shape of the gluon density
was significantly constrained by the difference F; — 2z F3 which measures
the virtual ¢g content of the nucleon.
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Chapter 1

Introduction

1.1 Overview
This thesis is concerned with the inelastic charged current reactions
vu(@u) + N = p~ () + X (1.1)

measured with high energy beams of neutrinos and antineutrinos on an iron target.
Here, N refers to the (almost) isoscalar or “nucleon” target and X refers to the
inclusive hadronic final state. Figure 1.1 depicts the reaction as occurring through
the exchange of a single virtual W* between the leptonic (v—x) and hadronic (N~
X) currents. The use of high energy neutrino beams (more generally, lepton beams)
offers an attractive means for probing nucleon structure: (i) The properties of the
lepton vertex are well understood in terms of the V—A interaction {1] (V in the case of
charged lepton probes) and (ii) Dominance of the single particle exchange mechanism
is guaranteed by the small »—~W coupling constant (or £—y coupling, in the case of

1



2 ’ 1. Introduction

charged lepton scattering). Combining these properties with Lorentz invariance allows
the experimentally accessible cross sections, depending on three invariants, e.g. p- k;,
p-q and ¢? (Figure 1.1), to be expressed in terms of structure functions, which depend
only on the two invariant quantities needed to specify the hadronic vertex (p - ¢ and
g?). Our present understanding of the nucleon’s constituent nature (parton content)
and the dynamics governing the constituent interactions (QCD) is largely based on

studies of deep inelastic structure functions.

Measurements of structure functions are presented from the combined data of Fer-
milab experiments E616 and E701 using the dichromatic (narrow band) beam. The
neutrino source and flux analysis is discussed in Chapter 2. Approximately 250K
neutrino and 30K antineutrino induced events were measured and recorded by the
Lab E target/detector (Chapter 3). Of these, approximately 90K v and 10K ¥ events
surviving fiducial, reconstruction and kinematic cuts were used in the structure func-
tion analysis. Reconstruction of the final state muon’s angle and momentum and the
hadronic energy, sufficient quantities for specifying the inclusive reaction of Equa-
tion 1.1, are presented in Chapter 4. Measured event sums were then combined with
the calculated fluxes to form differential cross sections. In Chapter 5, the technique
used to correct the cross sections and extract structure functions is presented. F:
and zF3 were extracted with an assumed parametrization of R = o /or predicted
by QCD. The concluding chapter contains comparisons with other experiments and

comparisons with Quark Parton Model predictions and QCD.
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1.2 Theory

Figure 1.2 shows the kinematic plane describing the hadronic vertex. @Q? = —q?

is the magnitude of the 4-momentum transfer squared, v is the energy transfer in
the lab frame and M is the nucleon mass (p - ¢ = 2Mv). Elastic scattering off
the nucleon occurs at @? = 2Mv, where the invariant mass of the final state is
W? = M? and is shown as the solid line labeled z = 1. The resonance region
(X = A(1238),N(1450),A(1688)...) occurs for W? = M? + 2Mv — Q? less then a
few GeV? and is shown as dotted lines. The measurements and analysis presented in
this thesis correspond to the large (Q2,v) area on the right, referred to as the deep
inelastic region. Before going into the significance of this region, a brief historical

digression on the subject of electron scattering is presented.

1.2.1 A Brief History

Early elastic scattering experiments [2] using 400 to 600 MeV electrons on nuclear
targets (A) measured cross sections which deviated from those expected from a struc-
tureless target. These deviations were parametrized in terms of nuclear form factors,
F4(Q?) which for small energy transfers, v, correspond to the Fourier Transforms of
nuclear charge densities. At higher energies and correspondingly higher values of Q?,
these nuclear form factors suppressed the elastic e"—-nucleus cross sections as well as
the nuclear excitations observed in the recoil spectrum for v > Q?/2M 4. |Fa(Q?)[? is

a measure of the probability that the nucleus (or its excited states) will recoil coher-



4 1. Introduction

ently. However, a broad quasi—elastic structure visible in the recoil spectrum below
the elastic and resonance peaks (larger v) was observed to persist with increasing ¢?.
This corresponded to incoherent elastic electron scattering off the nuclear constituents
- individual nucleons, its broad shape arising from the Fermi motion of nucleons in
the nucleus. Higher energy (400 MeV to 16 GeV) elastic electron scattering measure-
ments (3] using hydrogen targets indicated, through the deviations of cross sections
expected from a pointlike proton, the emergence of nucleon structure. Nucleon form
factors!, as in the case of nuclear scattering, suppressed the elastic and resonance

peaks with increased Q2.

In 1968, the SLAC-MIT collaboration undertook the first extensive study of the
continuum or deep inelastic region of electron-proton scattering [4]. Contrary to
the expectation that cross sections (relative to the Mott cross section) would be
suppressed by (Q?)~* from the proton’s form factor [3], something quite different
was observed. Figure 1.3 shows the measured cross sections as a function of @Q? for
various values of W?; the gentle Q? variation of the inelastic relative to the elastic'

cross section is evident. When plotted as a function of w = 2Mv/Q? (see below), the

measured structure functions were found to be @? independent over a large range in

w [5], provided the low-W? data was excluded. This property is known as scaling.

A year prior [6] to the completion of SLAC data analysis, Bjorken [7] found,

based on studies of current commutation relations at infinite momentum, that in the

1At these larger Q?—values, a second form factor is required to describe the magnetic interaction.
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limit Q3 — oo with w = 2Mv/Q? fixed, the inelastic structure functions remain
finite and depend only on w. Feynman [8] provided an intuitive interpretation of this
asymptotic behaviour through the introduction of the parton model (See discussion
in Section 1.2.4): Deep inelastic lepton-nucleon scattering is viewed as the incoherent
sum of elastic lepton—parton scatterings, analogous to the relationship between in-
elastic electron—nucleus scattering to elastic electron-nucleon scattering. The scaling
variable £ = 1/w represents the nucleon’s momentum fraction carried by the struck
parton. Structure functions, in turn, are proportional to the momentum densities of

partons inside the nucleon.

The nuclear scattering phenomena discussed above can be qualitatively reexam-
ined in terms of the scaling variable 24, = Q?/2M v where M, is the nuclear mass
of atomic number A. In the region 1/R? <« @Q? <« 1/r?, where R and r are the nu-
clear and nucleon sizes respectively, the elastic e-nucleon peak scales in the variable
z4: it remains approximately constant in area with (z4) ~ 1/A4. As Q* — 1/r?,
a new structure scale emerges and the elastic e-nucleon peak displays scaling viola-
tions: it acquires a (Q?)~* dependance from the nucleon form factor. For Q2 > 1/r?
and for non-interacting, structureless partons, scaling once again emerges, with the
elastic e-parton peak at (z4) ~ 1/nA, where n is the number of partons in the
nucleon. Partons at small z, dubbed “wee-partons” by Feynman, complicate this
relation though. Wee—partons, hypothesized [9] to be virtual parton—-antiparton pairs

at small-z, would shift (z,) to a value smaller then that of the n “valence” partons.
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This is discussed further in Section 1.2.4.

1.2.2 Cross Section Formalism

Returning now to Figure 1.1, the structure of the neutrino nucleon cross section
describing Reaction 1.1 is considered. In the language of current current interactions,

the matrix element for the neutrino reaction can be written [10]:

Gr 1 _
= —ﬁmyu(kz,sz)%(lv— s Juw (K1, 81) < X|JchN;P,8 > (1.2)
lepton hadron
where GF is the weak coupling constant, Q% = —g? = —(k; — k;)? is the magnitude

of the square of the four-momentum transferred between the leptonic and hadronic
currents and My is the W* mass. (k;,s;) and (kj,s;) are the four momenta and
helicities of the incident neutrino and scattered muon respectively and (p, 8) is four-
momentum and helicity of the target nucleon of mass M. The u’s are the lepton
spinors, defined using the conventions of Reference [11] (e.g. u(k’,s')u(K',s') = 1).
The inclusive, spin—averaged cross section, proportional to |M|? takes the form

L 1 G'mm, B
dQ,dE, (1+Q*/ M) 2 E, E, (2r)? e

web, (1.3)

Here, E, and E, are the energies of the incident neutrino and final state muon in the
lab frame (nucleon at rest) and § is the solid angle the scattered muon lies in. The

leptonic tensor Lg, is given by (incident neutrinos)

Lo = Z Tu(k2, 32)Ya(1 — ¥5)uu(kry 81)T0 (Kay 81)78(1 — ¥s )uu(ks, 82) (1.4)

2 :
= [k2akss + kagkra — k1 - kagas — ikIkSeysas] - (1.5)
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For an incident antineutrino, the last term reverses sign. The hadronic tensor is
formally given by
1 a
WP = 2323 < NipolJE|X;p, o >< X; ', o|JZIN3p, 5 > (27)8 (g + p - 7))
s X
(1.6)
where all final states | X;p’, s’ > are summed over. The most general Lorentz invariant

structure for W is given by [12]

a . 27)
a8 _ _gobyy 4 PPy Py
W = —g™Wi+ S oWy — — W,

+ q’% W, + (¢ M+zp"q")ws

i(p*¢® —1°¢)
+ S We (1.7)

where the W; are real functions depending only invariants constructed from g and p,

e.g. @* = —¢® and p - q. In the limit of negligible lepton masses,

¢*Lag = ¢’Lag = 0 (1.8)

so that terms proportional to g* or ¢® in W*# can be ignored: these are the coefficients
of Wy, Wy and We. After contracting the lepton and hadron tensors, Equation 1.3

becomes (neglecting @?/M3,):

L . 20 N 3 yrow | B+ By a8 e
IdE, 2ﬂ_zE” cos sz + 2sin §Wl :i:—M—sln EW:' (1.9)

where lepton masses have been ignored. Neutrino and antineutrino scattering corre-
sponds to the positive and negative sign for the W3 term respectively. In general, the
structure functions W;(q?,p- ¢)s depend on the target and may depend as well on the

neutrino helicity.
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All kinematic quantities appearing in Equation 1.9 can be expressed in terms of
the measured quantities in the lab frame: these are E,, Ejoq = v and 6, the angle of

the final state muon. The relations are given by:

E, = E,+ Epa (1.10)
2 2 . 59

Q* = —¢*=~4E,E,sin ) (1.11)

pq = 2Mv (1.12)

An analogous derivation for charged lepton cross sections leads the same form as

Equation 1.9 with the following replacements:

G% 4a?
—
2m (@)

W; — 0 (1.14)

(1.13)

where W, and W, are pure V'V electromagnetic structure functions. (Aside from the
V A interference term (W;) absent in the electromagnetic case, the weak structure Wy
and W; include both VV and AA terms).

The structure functions appearing in Equation 1.9 are related to the nucleon.

absorption cross sections for different helicity W*s. In terms of o, og and og, the
absorption cross sections for left-handed, right-handed and scalar W's, the structure

functions can be written as:

K
W, = 1.15
T A AR (113
K Q?
W, = 2 1.16
P T G A TR LTS (116)
K 2
W = M (1.17)

RV A
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where K represents the flux of virtual Ws. It is worth noting at this point that for
electromagnetic interactions, parity invariance forces o, = op and W™ vanishes. In
this case, W™ represents the photoabsorption cross section for transverse polarized
vs (or = 1(oL + or)) and W™ represents the photoabsorption cross section for the
sum of transverse and longitudinal (scalar) ys. While there is some arbitrariness in
the definition of K, the ratio of absorbtion cross sections for longitudinal to transverse

bosons is well defined:

gs Wz 3

R(»Q)=7" = 3 (1 + %) ~1 (1.18)

It is convenient to express the cross section in variables appropriate for the study

of scaling and Q? violations to scaling. Equation 1.9 can be written in terms of

z = Q?/2Mv and ,Q? through the Jacobian transformation:

o0 |8(E,, Q)| do
dzdQ? |3(:1:,Q’) dE,dQ (1.19)
where
8(E,, )| _ n(E, - E,)
‘B(m,Q’) = BB (1.20)

The resulting cross section takes the form

?a® G
dzdQ? 27z

M v uF‘ v
[(1 —y— 2_;3’)uw;( )+ yl2 MW 1y (1 - %) 2 Wit )] (1.21)

where

It

bl =

y (1.22)

is the fraction of the neutrino energy transferred to the nucleon in the lab frame. y

is related to the scattering angle in the neutrino-nucleon center of momentum frame
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(see Section 1.2.3). In terms of z and y, the differential cross section takes the form

do*®)  GLME (1—4 Mzy
dedy 7w v- 2F

Mayy o) Y’ 23: F®) 4y ( %) z F;(V)I (1.23)

where the modern structure function notation has been used:

2eMW;(v, Q) = 2zFi(z,Q?) (1.24)
vWi(v,Q%) = Fy(z,Q7) (1.25)
zvWi(v, Q) = zFy(z,Q?) (1.26)

and R = or/or is given by:

W, v _ F Q*
R= (1 + Qz) -1= 50 (1 + i) -1 (1.27)

1.2.83 Structure Functions in the Parton Model

Structure functions in the Parton Model are developed intuitively from the notion that
deep inelastic scattering is an incoherent sum of elastic neutrino scatterings off quasi-
free, pointlike partons [8]. The elastic neutrino—parton scattering cross sections are
first presented. From these, the inelastic structure functions are constructed through
the introduction of parton distributions within a nucleon target.

The V-A structure of the charged weak current is assumed: For spin-} partons,
only left-handed partons and right handed anti-partons participate in the weak in-
teraction (See Figure 1.4). The elastic cross sections depend only on the square of
the center-of-momentum energy, s and the spin of the neutrino—parton system:

do*  Ggs
dcos@* 2«

% [angular factor] (1.28)
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where the angular factor depends on the total neutrino-parton spin. The variable
y = (E, — E,)/E, introduced in the previous section is related to the C.M. scattering

angle. In terms of the C.M. quantities,

_ ;_ Yom(E.+ Bemp), cos ) (1.29)
Yem(E; + Bempy)
~ o 1-— %(1 + cos6*), (1.30)

where ycur and B¢y are the Lorentz boost factors relating the C.M. frame to the lab
frame and (*) indicates quantities in the C.M. frame. In this expression, the muon
mass is ignored and and the elastic scattering condition Ej = E} has been made.

2
The elastic scattering cross sections take the form (in units of %ﬁi):

. . do do
Interaction total spin T o
v-q or U-q 0 1 2
v-g or U-q 1 (L':;""—')2 2(1—y)?

2cos L 4(1-y)

v-k or U-k ;

[

The last row corresponds to scattering off a spin-0 parton k. Other spin constituents
are not presented since their angular distributions will appear as linear combinations
of spin—0 and spin-} partons.

Inelastic structure functions are constructed from these elastic cross sections by
considering the constituent nature of a nucleon target. Figure 1.5 depicts the scat-
tering of a single parton in an “infinite momentum” frame, i.e. a frame where the
transverse momentum of partons in the target and all masses can be ignored. P is the

four momentum of the target nucleon in this frame and { represents the (longitudi-
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nal) momentum fraction carried by the struck parton. In terms of the 4-momentum
carried by the exchanged vector boson, g¢:

(EP+4q) = 26P-¢g-Q°=0 (1.31)

S
¢ = 2P.q 2Mv (132)

= z (1.33)

Thus, the Bjorken scaling variable z represents the momentum fraction carried by
the struck parton.

Parton densities in a target T, as measured by neutrinos (p*7(z)) or antineutrinos
(p"7(z)) are defined such that the probability of “seeing” a parton of type p (p = ¢,7
or k) inside T with a momentum fraction in the interval (z,z + dz) is p(z)dz. The
differential cross section for scattering off a parton p with momentum fraction in the

interval (z,z + dz) is obtained from Equation 1.28:

“v)p 2 =
dady = G,:rzs x [y-factor] p¥)(z)d= (1.34)

where the s has been replaced by zs, the square of the v(¥)-parton CM energy. In

terms of all target constituents, the double differential cross sections take the form

P _ %z_"[q"T(z)+(1—y)2q"T(z)+2(l—y)k"T(z)] (1.35)
dzdy T
Lo R (T(o) 4+ (19T (@) + AL - RT(e)]  (1.36)
dzdy 3

These expressions can be compared directly to the cross sections obtained from

Lorentz invariance (Equation 1.23), yielding:

2z F/ T — 9 [zq"(F)T+‘:cq"(F)T]
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POT [z O 4 2T 4 2,,kV(F)T] (1.37)

P27 — o [qu(l")T — qV(F)T] (1.38)

where the term proportional to @?/v? has been neglected. Thus, in the Parton Model,
deep inelastic structure functions are equal to the momentum fractions of partons in
the target.

The Parton Model expressions for charged lepton scattering are analogous. Instead

of Equation 1.28, the elastic scattering cross section takes the form

dot* _ 4ma’els

deost —  OF x [ angular factor] (1.39)
cos 0*

where e; is the i*h parton’s electric charge (in units of proton charge) of the parton
and a is the electromagnetic coupling constant. A consequence of The pure vector
nature of the electromagnetic current (ignoring electroweak interference) is that £+
and £~ couple to a given parton or its anti—parton with the same strength. The

resulting electromagnet structure functions are given by

22FT = ) ¢ [zqu+:v?1fT] (1.40)
FE = % efogl® + g +247] (1.41)

where the sum is over all parton charges. While neutrino scattering is sensitive to the
helicity content of the target, electromagnetic scattering measures the charge content.
It is worth noting that the structure functions presented in this section follow

from the assumption that the partons carry no transverse momentum. At available



14 1. Introduction

energies, partons will have non—negligible transverse momenta, which, in the absence

of spin—0 constituents, will contribute to the difference between F; and 2z F;.

1.2.4 Quark Parton Model Formalism

The Parton model does not make any predictions about the quantum numbers of
the constituents. Identification of the partons with the quarks introduced by Gell-
Mann [13] and Zwieg [14] to rationalize the the proliferation of “elementary particles”
appearing in the early 1960’s enhanced the status of both models to what is now called
the Quark Parton Model (QPM). Callen and Gross [15] found an asymptotic relation
which tested the current algebra assumption Bjorken used in his scaling hypothesis,
that currents consist of spin—% particles:

Jim Fy(z) = 22Fy(z) (1.42)
z fixed

The physical content can be seen from comparing Equations 1.15 and 1.16, and noting
that a spin—0 constituent can not absorb a transversely polarized particle. Early
electron scattering measurements [5] indicated R = or/or was small.

The charge assignments of quarks is tested through the comparison of struc-
ture functions measured with charged lepton and neutrino beams. In the elec-
troweak theory [16] quarks and leptons form weak iso-doublets and the charged
current interaction is mediated through the exchange of W%, the Iy = +1 mem-

bers of a weak iso—triplet. Consequently, neutrinos interact with Is = —1 quarks

D=t

or I = +% antiquarks and antineutrinos interact with I3 = +% quarks or I3 = —
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antiquarks. In terms of the quark and antiquark probability densities for a proton
target, d?(z),d (z),u?(z),@"(z)..., the parton densities appearing in Equations 1.37

take the form (proton target):

¢7(z) = d(z)+s%(z)
7%(z) = w(2)+2(z)
¢7(z) = v(z)+(z)

77(z) = d'(2)+3(2)

By appealing to symmetry arguments, parton densities for neutron and nucleon tar-
~ gets can be constructed from these same proton densities. Strong isospin invariance
suggests the following flavor symmetries between the proton and neutron densities of

the valence flavors (u and d):

d(z) =d’(z) =u"(z) ; u(z)=uP(z) =d"(z) (1.43)

d(z)=d(z) =a"(z) ; () =wP(z)=d (). (1.44)

It is reasonable to assume that the non-valence flavors satisfy:

s(z) = sP(x) = s"(z) ; c(z) =c(z) =c(=) (1.45)

3

#(z) =3"(z) ; c=(z) =(=) (1.46)
Thus, the neutron’s parton densities take the form

¢"(z) = u(z)+ s(z)

77(z) = d(=)+%<)
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¢"(z) = d(z)+c(z)
77(z) = u(=z)+3(2)

Finally, the isoscalar parton densities, 3(proton + neutron), become:

¢ = (o) + d(e) + 26(2)) (147)
= (u(e) + d(e) +2e(2)) (1.48)
N = %(E(z)—}-ﬁ(z)—*—%(z)) (1.49)
N = %(ﬁ(z)—kﬁ(z)—}-%(z)) (1.50)

The isoscalar structure function F; for neutrino scattering are obtained from substi-

tuting these densities into Equations 1.37:

FyN(z) = zu(z)+ z8(z) + zd(z) + zd(z) + zs(z) + z3(z) (1.51)

= FN(z) (1.52)

where s(z) = 3(z) is assumed and charm is neglected from now on. F;¥ and Ff
are constructed from Equation 1.41 using the same parton densities as above and the

quark charges:

2

FP = (%)2 (2d(z) + 2z + z3(2) + 23(=)) + (;) (zd(z) + zd(z)) (1.53)

Fir = (%)z (zu(z) + cuz + z5(2) + 23(z)) + (;) ’ (cu() + va(=)) . (1.54)

(1.55)
Combining these expressions gives the isoscalar structure function F/V:

FN = - (FP+ Ff) (1.56)

N =
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- 3
= 15_8 (zu+zﬂ+zd+zd+zs+x§— g(za+z§)) . (1.57)

Dividing by Equation 1.52 yields:

(1.58)

F,‘N i 1_§zs+z§
Szq+ =g

FyN 18
where ¢ = u + d + s and § = % + d + 5. The small correction term in brackets is a
consequence of the asymmetry of the s—c doublet. The flavor changing nature of the
charged current neutrino interaction induces a kinematic suppression for production
of heavy flavors (e.g. charm) which is not present in the electromagnetic interaction.
This is discussed in Chapter 5 and Appendix C.

Another test of the QPM has to do with the valence content of nucleon. In the
simplest formulation of quark model (three flavors, no orbital angular momentum)
hadrons are constructed from the fundamental (¢ = 8) and adjoint (§ = 8) repre-
sentations of flavor SU(3): Mesons are constructed as g§ = 3 ® 3 and baryons as
799 = 3® 3 ® 3. The three quarks which comprise the proton or neutron are referred
to as the valence quarks. The anti-partons appearing in the structure function a,s;
signments in the previous section are part of the flavor-singlet “sea” of virtual ¢-g
pairs, the “wee partons” in Feynman’s model. Thus, the parton densities include

both valence (nonsinglet) and sea quarks:

q(2) = gu(2) + 9.(2) = ((=) - 7(=)) + au() (1.59)

or

9(z) = g(=) — (=) (1.60)
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where the subscripts v and s indicate valence and sea densities respectively. From
the form of Equation 1.38, z F3 represents the momentum density of valence quarks.

Substitution of the isoscalar parton densities into Equation 1.38 yields:

eFN(z) = zu,(z)+ zd,(z) + 2z5(z) (1.61)

eFN(z) = =zu,(z)+ zd,(z) — 2zs(z) (1.62)

where u, = u—7 and d, = d—d are the proton’s valence densities. The asymmetry of
the s—c doublet results  F¥'Y # zFPN. The reported structure functions are averages

of neutrino and antineutrino:
zF3(z) = zu,(z) + zd,(z) (1.63)

Dividing the momentum density by the momentum fraction z yields the number
density of valence quarks in the nucleon. Integration of the number density over all

z leads to the Gross-Llewellyn Smith (GLS) sum rule [17]:

/ 4z Fy(e)= N, | (1.64)

z
where the value of N, prescribed by the QPM is three. Since zF3 does not contain
Feynman’s wee-partons, the value of n discussed in Section 1.2.1 is N, that is, 2 F;
should have a mean value 1/3A4 when z is taken as the nuclear momentum fraction.

While agreement between measured structure functions is in reasonable agreement

with the QPM predictions, certain puzzles remained. Four examples are:

¢ The notion of incoherent scattering off quasi-free quarks posed a serious dy-

namics problem: What holds the nucleon together?



1.2. Theory 19

o Higher statistics electron scattering experiments preformed by the SLAC-MIT
group and subsequent higher energy muon and neutrino scattering experiments

displayed weak violations to the predicted scaling law.

o The measured integral of F(z) (F£¥(z), equal to (3 x) the proton’s momentum
carried carried by quarks and antiquarks, only accounted half of the proton’s
momentum. Kuti and Weisskopf [18] suggested that neutral “gluons” which
do not directly interact with the lepton current carry this missing momentum.
Presumably an interaction between quarks mediated by gluons holds the nucleon

together.

Each of these puzzles are related to the dynamics of the strong interaction, issues not

addressed by the parton model.

1.2.5 Strong Interactions

A field theory of interacting quarks called Quantum Chromodynamics (QCD) emerged
[19] in the 1970s which satisfied the generally accepted requirements of locality, causal-
ity and renormalizability [20] and appeared to coincide with the QPM in the Bjorken
limit [21], a property known as asymptotic freedom. It is an example of a nonabelian
gauge theory introduced by Yang and Mills [22] and based on the local gauge group
SU(3).: The color degree of freedom (global SU(3).) introduced by Han and Nambu
[23] to solve the statistics problem (example: A**+ = uuu should be a totally sym-

metric L = 0 wave function, in conflict with Fermion statistics) and pursued by by
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others in an attempt to explain the saturation problem (the question of why only ¢g
and gqq states are realized in nature) was gauged tbl.u'o'ugh the introduction of eight
massless vector gluarns in analogy to the gauging the global U(1) symmetry (charge)

of electromagnetism through the photon.

The matter ﬁélds in QCD are colored quarks; their interactions are mediated
through the exchange of the QCD gauge fields. Each quark flavor appears in the
QCD Lagrangian as a 3—component vector (color) field of quark spinors. The QCD
Lagrangian conserves flavor, which corresponds to the conservation of electric charge,
baryon number, the third component if isospin (I3), strangeness, charm, etc. The
gauge coupling to all flavors is necessarily identical. This is in contrast to QED where
the photon can couple to any electric charge. To the extent that quark masses can

be ignored, QCD is flavor symmetric.

Asymptotic freedom is a direct consequence of the nonabelian gauge structure
of the theory [24], i.e. the gluon—gluon self coupling. This can be contrasted with
(abelian) QED which displays the opposite behavior. In QED, virtual ete™ pairs
surrounding a test charge polarize the vacuum, effectively screening the bare charge
at large distances (a.m decreases with increasing distance). In QCD, virtual ¢g also
polarize the vacuum, screening the color charge at long distances. However, the effect
of virtual gluons, which are themselves colored, is to anti-screen at long distances. For
eight colored gluons and fewer then seventeen quark flavors, the anti-screening effect

dominates. This means that the strong interaction coupling constant, as, decreases
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at short distances, corresponding to large momentum transfers. As @* — o0, as — 0
and the quarks are free: scale invariance is an asymptotic property of QCD.

To leading order in perturbation theory, the running (i.e. renormalized) QCD
coupling constant is given by:

ar

(11 = In;) In(Q7/A7) (1.65)

as(@Q?) =

where n; is the number of quark flavors and Q? is the momentum scale characterizing
a given process. A is the “hidden scale parameter” of QCD. It enters the theory
because the gluons couple to themselves inducing gluon-gluon scattering but no scale?

to measure it with. These scattering amplitudes are renormalized for off-shell gluons,

2

uon = —A3: Since QCD is infra-red divergent they can not be renormalized for

m
real gluons (A = 0).

Contact with structure functions is made through the application of the opera-
tor product expansion [25] and renormalization group equations [26] to perturbative
QCD. Structure function moments, related to the product of currents at small dis-

tance, can be written in the factorized form [27]:

/ dzz"" Fi(2, Q") = 3 Cii(as(Q))(0F(Q™) + CPa(as(Q"))(0Z(QY)  (1.66)

where F} is either Fy,z ' F; or F; and the sum runs over flavors. (O%) and (Of ) are
the reduced quark and gluon operator matrix elements and Cf, and C§, are the Wil-

son Coeflicient functions. The coeflicient functions, which satisfy the renormalization

2In the absence of quark masses, all quantities entering the QCD Lagrangian are dimensionless.

Quark masses have no bearing on this discussion
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group equations, are calculable in perturbative QCD,

CI Q%) o 1+ iQ)C‘I“MO( 2)

ogy(@) « e | o) (1.67)
while only the Q? evolution of the operator matrix elements are specified:

(03(Q) = Texp [ [ 427t ] (02(@2). (1.68)

Here, p and p' = ¢;,q; or G, t = InQ?/A? and T means the t'-ordering of the
exponential. The anomalous dimensions of the p-operator, 7,‘:"', which governs the

Q? evolution of the p-operator are also calculable in perturbation theory:

(@)= 2@ (@Y 0, oy (169
The short distance (large @?) behaviour of the structure function moments are dom-
inated by the coefficient functions of the “leading twist” operators: QCD predicts
deviations to Bjorken scaling that are logarithmic in @?. Inclusion of higher twist
operators contributes to scaling violations that depend on inverse powers of Q% which
can be ignored at large Q2.

Another way to describe the @2 variation of the structure functions is through
Altarelli-Parisi equations [28]. Application of the inverse Mellin transform to Equa-

tion 1.66 leads to a set of evolution equations in z-space. The transformed operator

matrix elements are identified with the QCD~-improved parton densities:

p(2,07) = 5 [ dna=(02(Q7)), (1.70)

271 J-ico
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where p = G,u,%,d,d,... Their Q? evolutions, corresponding to Equation 1.68 are
given by:

dq,-(:v,t) _ ld_y
i =

5 o (501) a0+ > P, (24) 3wt
+Pye (‘—;-t) G(y,t)l (1.71)

et _ [
dt =

> Pig Gat) gi(y,t) + %:ij (g’t) 7;(y,t)

| +Fe (g,t) G(y,t)] (1.72)

dG(z,t) /ld_y
dt - 2 y

E,-: Pgq; (5" t) gi(y,t) + Z,: FPog; (-:;,t) g3;(y,t)
+Pgg Gt) G(y,t)] (1.73)

where ¢t = In(Q?/A?) and the sums are over quark flavors. The splitting functions
Py, which are related to the inverse Mellin transforms of the anomalous dimensions,
express the tendency for a parton of type p' carrying 2 momentum fraction y to be
resolved as a parton of type p, with momentum momentum fraction z < y. Examples
of QCD processes contributing to the P,,’s are shown in Figure 1.6.

By exploiting the symmetries of QCD, contact with the nucleon structure func-

tions can be made. Charge invariance implies:
Pog; = Pag;3 Pag; = Py (1.74)
Pyc = P65 Pgq; = Pog,. (1.75)
Additional symmetries follow from the equivalence of flavors in the massless theory:

Po.ai = Py;q;5 (1.76)

5
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Pog; = Ppuq (i #jand k #1); (1.77)

PQ-'G = Pq,'G; PGq.‘ = PGq,' (178)

with analogous expressions involving antiquarks. The parton density evolution equa-

tions can be expressed as

g - [ () e a1
it = [ (o) stweromme (5 cwne] - cuan
O - [ ]k (2, t) 1) + Poo (2,1) G(y,t)] (181)

where

gne(Z,t) = Z(‘B(z,t)—q{(xvt)) (1.82)
ql(z)t) = Z(qi(z,t)+qi(z’t)) (1'83)

i

are the nonsinglet and singlet quark densities respectively, and the sum is over all Ny
flavors. Since quarks and antiquarks couple with equal strength to the gluons, there
is no gluon contribution to the evolution of ¢,,. Note that at leading order in ag,
Prg, = Py =0foralli # jand Py’ = P,

The physically measurable quantities are not the parton densities, but the struc-
ture functions. Transforming the product of parton operators and coeflicient func-
tions in Equation 1.66 into z—space requires the convolution of their inverse Mellin

Transforms:

2Fy(2,Q%) = / [cq ( ’) 20(y, Q%) + Cf (g,Qz) G(y, Q’)] (1.84)
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z ' Fy(z, Q%)

/: [c% ( ,Q’) 2(y, Q") + 7 (5,@’) G(y,Qz)l (1.85)

z
y

/: Cs (;-,Q’) ane(¥, Q7). (1.86)

I

F3(2:, Qz)

Equations 1.84-1.86 are of the form of a “product” of calculable short distance cross
sections, the C’s, and non-perturbative pieces describing the soft nucleon interior. A
consequence of this “factorization” is the universality of the parton densities: They
should depend only on the target and not the process under study, e.g. leptopro-
duction, Drell-Yan, etc. To leading order in ag, the transformed quark coefficient
functions are proportional to §(1 — z/y) and the transformed gluon coefficient func-
tions vanish (See Equation 1.67). In this case, F; = zq, and zF3 = zq,, identically.
The QCD expressions for the structure functions coincide with the Quark Parton
Model, apart from the Q? dependance arising from Equations 1.79 and 1.80. The
Gross-Llewellyn Smith sum rule, the Callen—Gross relation and other QPM relations
hold. The nucleon’s momentum not carried by quarks, roughly half, is accounted for
by the gluons.

When next-to-leading order (NLO) corrections are included, the coefficient func-
tions vitiate the quark assignments given by the QPM and other QPM predictions
[29]. Definitions of parton densities, coefficient functions and A acquire a degree
of ambiguity when NLO effects are included. Ultraviolet divergences encountered
beyond the tree level must be regulated and removed by some renormalization pro-
gramme, of which there are infinitely many to choose from [30]. To any finite order

(> 1) in perturbation theory, A depends on this choice. The factorization of structure
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functions into a product of short distance cross sections and parton densities (Equa-
tion 1.66 or 1.84-1.86) is not unique. This freedom of choice leads to ambiguities in
the definitions of both [31].

Figure 1.7 illustrates scaling violations predicted by QCD for the valence—quark,
antiquark and gluon densities. Each of these momentum densities shrinks to lower
values of z with increasing Q2. There is a similarity between the the scaling violations
dipicted in Figure 1.7 and that discussed at the end of Section 1.2.1: in both cases, as
new structure is revealed, more constituents emerge, each carying a smaller fraction of
the target’s momentum. In QCD, the new structure is the sea of ¢g pairs and gluons.
However, the rate at which cross sections change as this new structure appears is only
logarithmic in Q? as compared with the (Q?)~* dependance of the elastic e"—nucleon

cross sections.



Chapter 2

The Neutrino Source

2.1 Introduction

A beam of muon type neutrinos is formed when charged pions and kaons decay in
flight. In this experiment, a primary beam of protons was targeted on a BeO target
forming a wide band secondary hadron beam. These secondaries were then sign—
and momentum-selected ({p) ranging from 120 to 250 GeV/c for each polarity with
Ap/(p) =~ 0.1) before entering an evacuated decay pipe where a fraction of the pions

and kaons subsequently decayed:
ror K - p+v,. (2.1)

The small momentum bite results in the characteristic dichromatic neutrino spectrum.
Figure 2.1 shows the correlation of reconstructed event energy verses event radius at

27
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the Lab E! detector for a +250 GeV/c momentum setting. The high-energy band
corresponds to neutrinos originating from kaon decays and the low—energy band corre-
sponds to neutrinos from pion decays. A more detailed description of the dichromatic
beam is presented in Section 2.5.

Traditionally, calculation of the dichromatic flux spectrum was based entirely on
the measured properties of the secondary beam: (a) The energy and radial depen-
dance of the flux was computed from the measured momentum spectrum (mean and
rms spread) and angular divergence of the secondary beam and (b) the normaliza-
tions were computed from the measured intensities and particle fractions. In this
analysis, only the secondary beam measurements pertaining to (a) were used. The
ability to separate pion-induced from kaon-induced events together with consistency
requirements applied to the measured event distributions were used to establish the
neutrino flux normalizations. The methods used to normalize the fluxes are presented
in Appendix A.

At each setting 2, of the secondary beam the neutrino flux ¢:(E,r) = number of

v’s/GeV/cm? at the Lab E detector, can be expressed as:

$(E,r) = N;¢7(E,r) + Nio{ (E,r) + ¢{"°(E,r), (2.2)

where N, and Nk are the total pion and kaon intensities. The flux analysis presented

in this chapter is restricted to the calculation of ¢™ and ¢*, the neutrino fluxes at

1Lab E is the name of the building that houses the neutrino detector. Its position relative to the

neutrino source is shown in Figure 2.2
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Lab E per pion or kaon respectively and ¢" B, the wideband neutrino flux originating

from secondary decays prior to momentum selection.

2.2 The Primary Beam

Pions and kaons were produced by 400 GeV/c protons from the accelerator striking
a 33 cm long beryllium oxide target. Figures 2.2 and 2.3 shows the layout of the
accelerator, primary target and Lab E detector. The accelerator was able to provide
a burst of protons roughly every ten to twenty seconds. Three different extraction
modes were employed during the two running periods?’: E616 had a 2 msec and
500 msec extraction; E701 had in addition, a series of up to five “pings” or mini
fast extractions separated by approximately one second. The Lab E detector was
gated on during the extraction period for normal data triggers; the shorter spill times
reduced the cosmic ray contamination of the triggers. On the other hand, due to the
long dead time of the spark chambers (~ 50 msec) a maximum of one event could be
logged per fast spill. The advent of pings in E701 allowed several fast spill events to
be logged per machine cycle.

Three devices were used to measure the primary beam intensity: a secondary
emission monitor, a resonant cavity tuned to the radio frequency of the machine (rf

cavity) and a beam current transformer. The primary beam intensity was required

2Throughout this thesis, the Fermilab experiment numbers E616 and E701 are used to designate

the running periods.
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for the wideband background calculation discussed in Section 2.5. Typical intensities
of protons on target were 1013 protons/pulse for normal fast spill and one fifth that
for individual pings. Figure 2.4 shows the accelerator magnet current and proton

beam intensity over one acceleration/extraction cycle.

2.3 The Secondary Beam

The secondaries enter a system of dipoles quadrupoles and beam collimators (see
Figure 2.5a), referred to as the dichromatic train, which perform sign and momen-
tum selection and focusing. The following is a simple description of the dichromatic
train’s operation (see Figure 2.5b). First, the quadrapole magnets just downstream
of the target provided a point-to-parallel focus. The beam was separated according to
momentum by the first of two sets of dipoles. Momentum selection was achieved by
passing this beam through a collimator which absorbed all but a narrow momentum
bite (Ap/{p) =~ 0.1). Primaries not interacting with the target were dumped in a steel
block which was moved to an appropriate location in the train according to the sign
and momentum setting of the train. The second set of dipoles recombine the diverging
portion of the beam emerging from the collimator. Bending occurred primarily in the
horizontal plane, although the entire train was laid out like a corkscrew to prevent
the beam from pointing directly towards Lab E. This design helped minimize the
wideband contamination.

The secondary beam emerged from the train through a 13 cm x 4 cm aperture,
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having an angular dispersion of approximately .2 mrad in both vertical and hori-
zontal planes. Composition of the beam varied with momentum and polarity. For
positive settings, protons made up the dominant fraction and pions less then 50% and
kaons less then 5%. For the negative settings, pions made up the dominant fraction
with kaons less then about 6%. Figure 2.6 shows the number of secondary particles

produced and transmitted, per proton on target for E616 [32].

Ten different settings of the train were used during the two running periods.
Nominal momentum settings of +250, +200, +165, +140, and +120 Gev/c were
used in E616 ( “+” refers to sign of secondaries selected) and +250, +200, +165,

+140 and +100 Gev/c in E701. Table 2.1 summarizes these running modes.

2.4 Secondary Beam Monitoring

Two secondary beam monitoring stations were located in the decay region 132 m
(target manhole) and 310 m (expansion port) from the downstream end of the train
(see Figure 2.3). Two types of ionization chambers were located in each of these, pro-
viding beam position, profile and total intensity measurements. A focusing Cerenkov
counter and rf cavity were also located in the expansion port. The use and calibration
of each device are detailed in the references [32,33]. The measurements required for
the calculation of ¢™ and ¢¥ in Equation 2.2 are the transverse position, angular
divergence, mean momentum (p) and rms spread in momentum oy, of the beam in

the decay region.
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Position measurements were made with a set of split-plate ion chambers which
measured the average vertical and horizontal position of the beam on a spill-by-spill
basis. This information was used online as a feedback for beam steering and offline to
insure stability of the neutrino beam center at Lab E. The secondary beam profile was
monitored with vertical and horizontal segmented wire ion chambers (SWICs) having
a spatial resolution of about 8 mm. Two separate profiles provided a measure of
the angular divergence. Figure 2.7 shows typical expansion port and target manhole

beam profiles.

The Cerenkov counter provided information about both the composition and the
momentum spectrum of the secondary beam. Two different counters were used for
the E616 and E701 runs; the latter was designed to reduce diffraction (the E701
counter had a 212 cm radiator verses 189 cm for E616) and to remove the pressure
dependence of the optics. Figure 2.8 shows the counter used in the E701 running.
Both counters operate by measuring light collected at a fixed angle as a function of

the radiator’s pressure, P, related to the index of refraction by
n~1+kKP K = 4.605 x 10~°mm Hg at 273°K. (2.3)

An ideal beam of charged particles traversing an infinitely long medium with 8 > 1/n,

induces coherent radiation at the Cerenkov angle

cosfc = ,31; (2.4)
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For relativistic particles of mass m
B=1l—— (2.5)
Combining this expression with Equation 2.3 leads to the approximation
1 m?
P~ — 0L +—|. 2.6
e+ (26)

Differentiating yields the relationship between the momentum spread and pressure

spread:

AP Ap
— 2. 2.7
-~ 2 (27)

The area under the pressure curve is proportional to the intensity of particles of mass

Beam interactions with upstream material produced low energy debris which con-
tributed to the pressure curve. Light not originating in the radiator also contributed
to the pressure curve. These backgrounds were measured (pressure curves were taken
with additional material placed in the beam and with the shutter closed) and sub-
tracted. Figure 2.9 shows a background-subtracted pressure curve superimposed on
fits to the modeled response for positrons, pions, kaons and protons. The model in-
cludes the broadening of peaks due to finite angular acceptance (light was collected
from the angular region .7 < § < 1 mrad) and diffraction [34] of the counter, angular
dispersion, momentum spread and decay products (mostly muons) of the secondary
beam and transition radiation. The fit parameters were the intensities and means

and widths of the pion, kaon and proton momenta. A 200 GeV/c proton beam trans-
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ported from the accelerator with the production target removed was used to calibrate

the counter response.

2.5 The Neutrinos

Decays yielding muon type neutrinos along with their branching ratios are shown
here:
Tt o ut +uy, 100%
Kt > pt 4y, 64% (2.8)
Kt > n°+pt+v, 3%
plus charge conjugates. The most important of these are the two-body decay modes:
it is these that give rise to the dichrom;tic spectrum. Conservation of 4~-momentum
in the two-body decays demands a monoenergetic neutrino in the meson rest frame.
Boosting the neutrino to the lab frame results in an energy which is dependent only
on its angle or radial position at the Lab E detector. In terms of the parent me-
son’s Lorentz boost factor, v = Etl,“b/m,cz, and the mean distance from the decay
point to Lab E, L, the radial dependance (at Lab E) of the neutrino energy is given

approximately by

Emaz
Ell(r) - 1 + 727'2/L2 (2.9)
where
m) —m? .,
Enaz = MEP (2.10)

2
mP
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is the maximum neutrino energy. For neutrinos originating from kaon decay, the
maximum energy is roughly 96% of the parent kaon energy while for pion decay the
maximum is about 43% of the pion energy. The finite spread in the secondary beam
momentum and angle does not change the qualitative energy-radius correlation as is
apparent in Figure 2.1. The solid line in Figure 2.1, known as the energy separatrix,

is parametrized in analogy to Equation 2.9:

ESEP(r) = 1—% (2.11)

where E, and 8 were chosen to optimize the separation. Fully reconstructed events
in the Lab E detector were categorized as pion or kaon events for Epeq, < ESEF(r)
or E,eas > ESEF (E) respectively. The separatrix parameters are listed in Table 2.2

for each secondary setting.

2.5.1 Dichromatic Monte Carlo

The calculation of ¢™ and ¢¥ in Equation 2.2 consisted of three steps. Pion and
kaon rays with the measured properties of the secondary beam were generated. Their
decays were then simulated in accordance with the known branching ratios and kine-
matic constraints. Finally, the daughter neutrinos were propagated to the Lab E
detector, binned in E and » and normalized to the generated number of secondary
rays.

Hadron rays were generated by using measured [35] secondary production spectra

from p-BeO as an input to the ray-tracing program, DECAY TURTLE |[36]. This
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program used the surveyed coordinates of the beam line magnets and collimators to
produce rays at the exit aperture of the dichromatic train. Since thin lens approxima-
tions were employed, rays transported far from the optical axis were not expected to
be reliably modeled. The transported rays were compared to the measured profiles,
(p) and g, of the secondary beam and the daughter neutrinos generated from these
rays (see below) were compared with the measured event spectra at the Lab E detec-
tor. Small adjustments to the DECAY TURTLE rays were then made to optimize

these comparisons:

Angular Divergence: This effects both the overall normalization and radial de-
pendance of the neutrino flux at Lab E. Neutrinos from pion decay are most
sensitive due to large Lorentz factor. Adjustments to the angular divergence
were made based on both SWIC profiles and radial dependance of pion-induced
events at Lab E. Uncertainties in angular divergence limited usable pion flux to

r < 30 in at Lab E.

Mean Momentum: Shapes of pion Cerenkov peaks are dominated by angular di-
vergence and diffraction. Small adjustments in the mean momenta were made
which were based on the kaon Cerenkov peaks and on event energies observed

at Lab E at small radii.

rms Momentum Spread : The momentum spread of secondary beam was mea-
sured from both the kaon and the proton Cerenkov peaks. Variations in this

spread were found to have little effect on the predicted event spectra at Lab E.
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Consequently, the momentum spreads predicted by DECAY TURTLE were not

adjusted.

Beam Centers : Secondary beam centers at the exit aperture of the train were

adjusted to match event beam centers at Lab E.

Adjustments to the DECAY TURTLE rays were of the form

g — z0+5,, (212)
0. — (1+as, )0, (2.13)
(7 — (1+e)(p) (2.14)

where zo, 8, and (p) are the position, angle with respect to the z—direction and
momentum of the ray at the train exit aperture, with analogous expressions for yo and
f,. Detailed comparisons for E616 and E701 settings can be found in References [37]
and [33] respectively.

Neutrino rays were generated from the (adjusted) secondary rays and binned in
E and r with a separate Monte Carlo. The probability for a pion or kaon at the
exit aperture of the train to decay before reaching the dump, 1 — e~£/*", ranges from
2.5% to 5% for pions and 17% to 31% for kaons for the secondary momentum settings
used in this experiment. Rather then using the actual decay probabilities, a decay

point z was generated for each ray according to the normalized distribution

1

—=/ver 2.1
yer(l — e"L/’YC")e (2.15)
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where L is the total decay length. Each daughter neutrino was then assigned a weight
equal to the actual probability. Two—body decays for pions and two— and three-body

decays for kaons were simulated in accordance with the branching ratios shown in 2.8.

Neutrinos from the two-body decay modes were histogrammed in energy for each
5-inch beam centered radial bin at Lab E. Gaussian fits to each energy histogram
were used to parametrize the number and energy of neutrinos per pion or kaon as a
function of radius. Neutrinos from three-body decays were binned in 5-inch radial and
5 GeV energy bins. Figure 2.10a shows the integrated neutrino flux spectra at Lab E
originating from pion, kaon 2-body, kaon 3-body and wideband decays, integrated
over radii less then 10 inches for the +250 GeV/c secondary setting. Figuré 2.10b
shows the same flux spectra integrated over the fiducial area used in the structure
function analysis: r < 30 inch for E < ESEP(r) and r < 50 inch in for E > ESEP(r).
Figure 2.11 shows the neutrino and antineutrino flux spectra integrated over the

fiducial area for all settings combined.

2.5.2 Wideband Neutrinos

The neutrino flux arising from secondary decays prior to momentum selection, ¢" 2 in
Equation 2.2, was taken [38] to be independent of position at Lab E and proportional

to the total primary intensity on target:

¢WB(E1T) = Nprt'meB/primw(E) (2-16)
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where Npyim is the number of protons on target, fwp/prim is a normalization and W

is an empirical function of the form:

(1 — e~E/E0) E<Lb
W(E) = (2.17)
(1 — e E/Eo)e~(E-b)e E >
Special runs taken with the momentum-defining collimator in the dichromatic train

closed were used to model the wideband flux spectrum. The event spectrum is related

to the wideband flux as follows

N(E)dE

Nio(E) [ [2mrdrg®(8,r)| dE (2.18)

= NtNW;meB/p,;mAW(E)dE, (2.19)

where N, is the number of target nuclei, A is the transverse area and o is the total
cross section. Since the wideband flux was expected to depend on the position of the
primary beam dump, the constants Eq, b, ¢, and fwp/prim Were fit independently for
each position of the primary dump used: one position for all negative settings of the
train, and one position for each of the positive settings. Since the closed-slit running
was very limited in E701, fits to E616 data were used. Table 2.4 lists the constants

for each secondary setting.



Chapter 3

The Lab E Detector

3.1 General Requirements

The properties of a detector capable of measuring neutrino induced interactions are
largely dictated by the weak interaction. In particular, the “smallness” of Gp ~
1/M%, imposes the most obvious requirement: the target must be quite massive in
order to allow sufficient opportunity for an interaction to occur. As the interaction’s
final state is likely to be absorbed within such a target (with the exception of muons
or neutrinos) the target must permit for both triggering and measurement. The
two major types of neutrino detectors are the bubble chamber and the electronic
detector. This experiment employs the later. In the former case, the target is the
liquid in the bubble chamber: its ionization by charged particles makes the entire
fiducial mass active. Triggering is done off-line: one picture is taken per machine
cycle and a (human) scanner’s recognition of an event constitutes a trigger. The

40
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main advantage of the bubble chamber is its ability to make detailed measurements
of the final state. However, the fiducial mass, hence event rate, is limited by the
low densities of liquids and the difficulty of superheating a large volume of liquid.
Electronic detectors, on the other hand, achieve higher event rates by using a passive
high density solid sandwiched between active layers. Triggering is done online and the
digitized information is written directly to magnetic tape for offline analysis. Because
of the high average density, detailed information about the final state is unavailable;
however, structure function analysis requires only the final state muon momentum

and angle and the total hadronic energy, quantities which are readily measurable.

3.2 Overview of Detector

Lab E, located 940 m downstream of the secondary beam dump, housed the neutrino
detector. The apparatus was divided into two pieces: the upstream part functioned as
both the neutrino target and hadronic calorimeter; the downstream part was the muon
spectrometer (Figure 3.1). Both parts were made of iron instrumented with spark
chambers for tracking muons and scintillation counters for triggering and calorimetry.
Figure 3.2 shows a detailed view of one of the six (four in E701) moveable target carts.
Each cart consisted of approximately 140 cm of steel: between each 10 cm (~ 1.7
interaction lengths) was a scintillation counter — the active medium of the sampling
calorimeter; between each 20 cm (~ 11 radiation lengths) was a spark chamber for

measuring the 2— and y—views of the final state muon. The transverse size of the target



42 3. The Lab E Detector

was a square with a 3 m edge. The muon spectrometer, a magnetized (~ 17 kQ) steel
toroid of radius 1.8 m, was divided into three moveable carts (Figure 3.2). Each
consisted of approximately 80 cm of steel: between each 20 cm was a scintillator;
between each 40 cm (80 cm in E701) was a spark chamber.

The entire apparatus weighs about 1000 ton of which the target portion weighs
680 tons. The fiducial region (a beam centered cylinder of 50 inch radius and 40 ft
length) corresponds to 280 tons for E616 and 160 tons for E701, or in terms of density,
5360 gm/cm? and 3090 gm/cm? respectively. The probability for a 100 GeV neutrino

to interact in the fiducial volume is on the order of 10~°

3.3 The Muon Tracking System

The spark chambers provided the information required to reconstruct the final state
muon angle and momentum. By tracking the muon in the target upstream towards
the event vertex, its angle was determined and by tracking it through spectrometer,
its momentum was determined. Multiple scattering was the limiting factor in the
resolution of both measurements.

Each spark chamber was constructed from two 1 in thick aluminum clad Hexcell
panels held apart by .5 in plexiglas spacers (see Figure 3.3). Glued to the inside face of
each panel were mylar backed planes of wires (1 mm spacing), one each of horizontal
and vertical orientation. A gas system provided one atmosphere of a neon-helium-

ethanol mixture (89%, 10% and 1% respectively) which was constantly recycled and
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purified. The wire planes, in each view, were connected to magnetostrictive wands
running along two of the edges of the chamber. When the detector triggered, a 5 kV
pulse was applied across the planes of wires. An ionizing particle (e.g. muon) which
passes through the chamber just prior to pulsing causes a violent electrical discharge
(spark) to occur at the location of the lingering ion trail. An electromagnetic pulse, in
turn, occurs in the nearest wires in each view. These pulses travel to magnetostrictive
wands creating acoustic pulses which propagate to their ends. The measurement of
the arrival time, together with the known velocity of sound in the wand, provide the

coordinate measurement.

Transformer coils at the end of each wand translate the acoustic pulses into elec-
trical signals. The readout electronics for each wand (i.e. view) consisted of a pream-
plifier, a spark chamber interface (SCI) and a multitime digitizer (MTD). The SCI
processed the preamplified analog signal (found the center of the pulse and converted
it to a digital pulse) and the MTD associated a time and saved each of up to 16 arriv-
ing pulses. By comparing the arrival times of these pulses to fiducial pulses generated
on each wand, the position of the spark (in each view) could be calculated. The

intrinsic spatial resolution of the spark chambers was + .5 mm.

The high voltage pulse was ~ 6.5kV for E616 and ~ 10kV for E701. In both
experiments the pulse duration was 200 ns. A DC clearing field of 90V (30V) was
applied to the chambers in the target (toroid) as well as a 10-ms 600V pulsed field.

The memory time was thereby reduced to approximately 30 ms.
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Instrumentation of the Wonder Building detector for E701 depleted the capabil-
ities of the Lab E detector. Table 3.1 summarizes the differences between the two

experiments.

3.4 Scintillation Counters

Scintillation counters served two purposes in the Lab E apparatus: they constituted
the active media for calorimetry and defined the various triggering conditions. All of
the counters employed a technique using wavelength shifters to minimize the number
of photomultiplier tubes needed to view the large active areas involved. The basic
principles governing their operation are described here. Ionization produced by the
passage of a charged particle through the counter stimulated the emission of UV light
from the primary fluor. This iight, having a short attenuation length, Aj4en ~ 1 mm,
was absorbed by the secondary fluor and reemitted isotropically as blue light with
Aatten ~ 1.5 m. The blue light entered the light pipes, separated from the counter by
an air gap, and was wavelength shifted again to green light with Ajgen ~ 3 m. That
green light satisfying the condition of total internal reflection propagated through the
guides to the phototubes. While this technique of using successive wavelength shifts
allowed a large area to be read out with a small number of phototubes, the spatial
variation of the counter response was large: near the corners of the counters, the
pulse height resulting from a given energy deposition was as much as twice that of

an equivalent deposition at the center.
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3.4.1 The Calorimetry Counters

The target portion of the detector functioned as a sampling calorimeter. Hadrons
produced at the neutrino interaction vertex initiate a hadronic cascade through sub-
sequent strong interactions in the target steel. Eventually the total energy is absorbed
in the steel. The primary mechanism of energy dissipation is through ionization losses.
Scintillation counters interspersed in the steel sample these ionization losses. On av-

erage, the sum of the sampled energy is proportional to the total hadronic energy.

The target counters were constructed from 10 ft x 10 ft x 1 in lucite tanks filled
with a mixture of liquid scintillator and wave shifter. Along the edges of the tank
were eight 5 ft BBQ doped (wavelength shifter) light pipes that fed into four RCA

6342A photomultiplier tubes. Figures 3.4 show construction details.

The counter front-end electronics (Figure 3.5) distributed phototube pulse-height
for triggering and recording. Linear sums of the four phototube pulse-heights were
used by the triggers in the form of energies and thresholds. Delayed signals were
integrated and digitized by three separate ADCs: individual tubes were read into 15—
bit Lecroy 2280 ADCs (minimum ionizing particle typically at ~ 100 channels above
pedestal and hadron showers rarely saturate); linear sums of the four phototubes
on each counters were read into 10-bit Lecroy 2249 ADCs (minimum ionizing a few
channels above pedestal, saturation also rare); phototubes from distant counters were
summed to recover catastrophic depositions which saturated the 10-bit ADCs and

were read into a separate 10-bit ADC.
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A monitoring system for tracking the relative gains of the four phototubes was
necessary for proper energy reconstruction. Each counter was provided with an exter-
nal light source for this purpose. Between beam spills, a fiber optic system delivered
a light pulse to the center of each counter and the response of the four tubes was

recorded.

3.4.2 The Trigger Counters

While the counters described above were also used for triggering (see below), ad-
ditional counters located immediately downstream of each toroid cart and at the
extreme upstream end of the detector were used exclusively for triggering purposes.
The toroid trigger counters were constructed from two 5 ft x 10 ft x 1.5 in acrylic
sheets, each fitted with four shifter bars and two RCA 56 AVP photomultiplier tubes.
A veto wall located at the upstream end of Lab E was fashioned out of twelve 10 ft x
2.5 ft acrylic scintillators, each viewed by two photomultiplier tubes. The total area

covered was about 15 ft x 20 ft.

3.5 Triggering

Several different triggers were used for both physics and diagnostic purposes. Deep
inelastic neutrino interactions have a distinct signature: the appearance of energy
deposition in the detector with no visible agent initiating it. Charged current events

are further distinguished by the presence of a final state muon. All physics triggers
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included the condition that the veto wall did not fire (VETO) insuring that the
interaction was not initiated by a charged particle. This was the only element common
to all physics triggers. Additional diagnostic triggers for monitoring the efficiency of
the physics triggers and supplying calibration data were also used. A description of

the triggers used in the structure function analysis is presented here.

Trigger 1: The Muon Trigger This is the primary charged current trigger used
in the structure function analysis. In addition to VETO, it required a muon
to pass through (1) the first target cart and (2) at least the first third of the
toroid. No hadron energy requirement was made. Its efficiency is high for the

low y = Epaq/ E, events in which the final state muons are very forward.

Trigger 3: The Penetration Trigger This trigger requires (1) VETO, (2) at least
4 GeV of hadronic energy deposited in the target, and (3) a net penetration
(muon or hadronic showel;) of at least 16 consecutive planes of counters. Pen-
etration trigger efficiency is high for events with Ep,4 above ~ 10 GeV. Apart.
from a small region (very large—y) the Muon and Penetration triggers cover the
entire charged—current phase—space, with a sizable overlap region. Penetration
triggers are used in the structure function analysis for events which point to-
wards the T2 counter but range out before reaching it. Penetration triggers are

also used in the flux normalization procedure discussed in Appendix A.

Trigger 4: The Efficiency Trigger This diagnostic trigger was redundant with

and independent of (except for the VETO requirement) the Muon Trigger for
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a subset of charged current events. It was used to monitor the efficiency of the

Muon Trigger.

Trigger 6: The Straight Through Trigger As the name implies, this trigger se-

lected a sample of muons passing through the entire detector.

Figure 3.6 shows the logic for the muon trigger. $9-5S12 and 51-5S4 are discriminated
signals from the upstream and downstream four counters in the most downstream
target cart. T2, T3 and T4 are discriminated signals from the trigger counters down-
stream from the first, second and third toroid carts. The more stringent trigger

requirement for slow spill cycles was imposed to reduce cosmic rays.

3.6 Data Acquisition

The Lab E apparatus was alive during specific times (gates) during the accelerator
cycle. In addition to the normal beam gates, triggers were accepted during separate
cosmic ray gate to monitor backgrounds from that source. (The integrated time for
which cosmic ray triggers were accepted was roughly ten times the actual beam gated
time.) Special computer generated triggers were also taken to measure the ADC
pedestals. It was necessary to read each triggered event directly into the computer
before the next trigger could be accepted! The digitized information from the various

components of the detector (times from the spark chamber MTDs, ADC channels from

1Not all triggers were read out: Trigger sums for each run were recorded with scalars and used

to monitor deadtimes.
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the phototubes and individual hardware bits) were read into a PDP 11/50 computer
using a serial CAMAC interface. The computer performed online diagnostics and
spooled the data onto magnetic tape. Beamline information was made available by
a Lockheed MAC computer during data taking and recorded as well. The MAC also
allowed the experimenter to monitor and make (or request) necessary adjustments to

the beamline magnets.



Chapter 4

Event Analysis

4.1 Introduction

In this chapter, the event analysis required for extraction of structure functions is

presented. The kinematic quantities required to specify the inclusive reaction
vu(Tu) + N = = () + X (4.1)

are E, and 0,,, the final state muon’s energy and angle with respect to the neutrino
direction and Ej},q, the hadronic energy of the final state X. Reconstruction of these
quantities, along with their resolutions, are presented here. Event cuts and binning in
the varia.bles z and @2, required for structure function extraction, are also discussed.
Finally, energy calibrations and their uncertainties, which contribute to the systematic
errors in the extracted structure functions, are discussed.

50
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4.2 Muon Reconstruction

Reconstruction of the final state muon — the determination of its energy, E,,, and
angle at the event vertex, 8,, — follows from the analysis of the spark chamber data.
Both measurements are largely limited by multiple Coulomb scattering. Multiple
scattering induces correlations between the measured points which must be taken
into account by the track-fitting procedure. Furthermore, the degree of correlation
depends on the muon momentum. A fit to the measured track positions in the target,
incorporating momentum dependent multiple scattering correlations, was used to
determine ,. The momentum determination required both the angle and projected
position of the muon at the toroid front face (i.e. a target track fit) together with
the measured track positions in the toroid chambers. This interdependence between

target and toroid fits required iteration.

4.2.1 The Target Track: 4,,v.,v,

First the event vertex position was estimated: The z—position (v,) was determined by
locating the most upstream counter in the target with pulse height above threshold
(see Section 4.3). The transverse vertex position (v.,v,) was estimated as the centroid
of spark chamber hits in the shower. Next, the muon track was found and fit to a
straight line (no multiple scattering). The muon momentum was estimated from a fit
to the projected position and angle at the toroid front face together with the toroid

chamber hit. In the next iteration, both 8, and the muon angle at the toroid front face
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were determined from a multiple scattering fit (using the estimated momentum) to
the target track. The transverse vertex measurement was improved by extrapolating
this fit backwards into the shower.

Track parameters (position and angle of the track at the interaction vertex or

toroid front face) were determined from a x? minimization,

X" =222 (zi — 2f) M5 (z; — ), (4.2)

where the sum is over the measurement planes, ¢: z; and z{ are the measured and
predicted (straight line) track positions respectively. M;; is the error matrix,

: L2 L
M;; = ((zi — z})(z; — 25)) = D) _ o} —3'5 + 7” (2kj + 2hi) + zrizej| + oabi;  (4.3)
k=1

where L, is the distance between the k** and (k + 1)* measurement planes and

Zki = Yti_ks1 Lm is the distance from the k** to i** plane, and

.015

= W(L,, /Lyraa)*’? (4.4)

Ok

is the mean multiple scattering deflection in the interval L;. The last term in Equa-
tion 4.3, 09, is the intrinsic resolution of the spark chamber. In the absence of multiple
scattering, o = 0 and M;; would be diagonal.

From Equation 4.3, it is clear that for a given z—position, the fit position and
angle are most sensitive to nearby points. Thus, 8, is most sensitive to the mea-
sured track positions closest to the interaction point. Its resolution improves for
cases where the track positions can be reliably found near the vertex; and, through

Equation 4.4, it improves with increasing muon momentum. The minimum tracking
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distance from the vertex, limited by spark chamber saturation in the shower region,
has been parametrized [38] in terms of the measured hadronic energy deposition. The

f,-resolution was parametrized as

b
gg. = a+ — 4.5

m

where a and b depend on Ej.q and are given in Table 4.1.

4.2.2 Momentum Fitting in the Toroid

Momentum finding was achieved by a x? minimization. The fit parameters were
the muon momentum, position and angle at the toroid front face. However in this
case, the M;; in equation 4.2 depend on one of the fit parameters. The minimization
problem was linearized by alternately calculating the error matrix from the most
recent estimate of the momentum and minimizing the x? with fixed error matrix.
Convergence was specified by the requirement that the muon momentum change
by less then 2% in an iteration. The treatment of fit failures is discussed below.
The predicted track points, z7, were calculated by propagating the muon from the
toroid front face through the magnetized steel in small steps. In each step, the muon
momentum acquired a small transverse component, induced by the magnetic field
and a reduction in magnitude associated with the ionization losses (Section 4.2.3).
The magnetic field map used to propagate the muon through the spectrometer

is a parametrization of a numerical solution to the magnetostatic boundary value

problem for the toroid. Measurements of the magnetic field in the gaps of each steel
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disk comprising the toroid and the measured current in the toroidal winding were
supplied to the computer program POISSON [39]. The field measurements were
made with a Hall Probe at several different radii. The measured integral [ |B|d{
constitutes one of the absolute energy calibrations used in this analysis. Including
uncertainties in the magnetization curve and susceptibility of the steel, the absolute
calibration of the spectrometer is estimated accurate to about 1%. This value is
supported by Fermilab experiment E595 [40] which used the same spectrometer and

a momentum-analysed muon beam for direct calibration.

We can estimate the spectrometer’s resolution as follows: For small angles with
respect to the toroid axis (a fair approximation for all but the lowest momentum
muons), the muon sees a uniform magnetic field and its trajectory lies in a plane.
The radius of curvature, r, for a unit charge in a uniform magnetic field is given
by |p| = .3|B|r (MKSA units and |[p| in GeV/c). For a uniform magnetic field
region of length L, the angular deflection is § = L/r or |p| = .3|B|L/6 = p./0,
where p; is the transverse momentum kick supplied by the field. (Using 1.7 T as the
mean field strength and noting that the toroid steel fills roughly half of the length
L =99 m, pp = 245 GeV/c). Thus, the resolution is limited by the ability to
measure the trajectory’s net angular displacement. In the expressions below, ‘m.s.’
refers to multiple scattering, A refers to the effective transverse resolution of the spark
chambers, L is the length of the toroid and L:ﬁ is the effective radiation length of

the toroid (~ L/2). A is taken to be .5 mm/+/3, since there are three spark chambers
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immediately downstream of the toroid, each with .5 mm resolution.

(#lel)* = (B) (50" (4.)

92

.015 172 .245
60m.-. =—|L L:ij ~ T 4.7
lpl (2/2:4) Ip| (£.7)
80A = LA/2 ~ .0001 < 86,,.,.; (4.8)

therefore,
2 )

(8lpl)* ~ (%) (60m.)* = IlTpll ~ 9.6%. (4.9)

A detailed analysis of realistic trajectories, with chamber inefficiencies and bad
hits, yields similar results: the resolution is multiple scattering limited and é|p|/|p| =~
11%. This resolution was used in the Monte-Carlo simulation described in Chapter 5.

Several types of momentum reconstruction failures were common. If after five
iterations the procedure led to a non-physical momentum, or the x? surface was very
flat, or x? was too large (x?/dof > 9 for E616 and x?/dof > 25 for E701) the event
was cut. About 3% (8%) of the E616 (E701) data with Ej,q > 10 GeV failed the
reconstruction requirements. For the E701 data, roughly a third of the failures were
refit by hand. Most failures were found to occur at low momenta. Figure 4.1 shows
the reconstruction efficiency as a function of the muon momentum at the toroid front
face. The solid line is a fit to the efficiency used in the event Monte Carlo (Chapter 5)
to simulate these losses. For the E616 data, all of the failures were refit by hand [41]

yielding an overall efficiency of about 99%.
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4.2.3 Muon Energy Losses

Muons, like all charged particles, undergo energy losses when passing through matter.
Collisions with atomic electrons give rise to a Landau distribution of energy losses
with the most probable value of about dE/dz = 11.6 MeV /cm for relativistic muons
in steel. These losses were accounted for in both momentum fitting and calculation of
E,,, the muon energy at the event vertex. In calculating the z in Equation 4.2, 11.6
MeV was subtracted from the muon energy for each centimeter of path-length as the
predicted trajectory was propagated through the toroid. E, was calculated by adding
11.6 MeV for each centimeter of path-length between the vertex and toroid front
face to the energy supplied by the toroid analysis. For muons that ranged out before
reaching the toroid, £, was determined to within 0.4 GeV from known range-energy

in steel.

Catastrophic losses (the high energy tail of the Landau spectrum) were accounted
for in two different ways. Between the end of the hadronic shower and the toroid
front face, the calorimetry information was used directly. Any excess energy deposi-
tion above a minimum ionizing threshold was added back to E,,. However, within the
hadronic shower, there was no way to isolate sﬁch losses from the hadron energy on an
event by event basis. As a consequence, the measured hadron (muon) energies were
systematically higher (lower) then the true values. This effect was simulated in the
event Monte Carlo discussed in Section 5.2.1. The simulation required a parametriza-

tion of the catastrophic losses as a function of muon momentum. Figure 4.2 shows
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cumulative probabilities for catastrophic losses for various muon momenta. These
probabilities were determined from a study of “visible” losses between the shower
and and toroid front face. Twelve P, bins between 0 and 240 GeV/c and 60 energy

loss bins between 1.5 and 61.5 GeV were used.

4.3 Hadron Energy Determination

The extraction of hadron shower energy from the calorimeter involved several steps.
For each scintillation counter ¢, pulse-heights from the four photomultiplier tubes
was converted to an equivalent number of minimum ionizing particles, NM!F. This
conversion accounted for both the phototube gain drifts with time and the spatial
variation of the counter response. Since the primary mechanism for the shower’s
energy dissipation is through ionization losses, the total energy is proportional, on
average, to Y.; NMIP where the sum is over all counters in the shower. Finally,

the hadron shower was obtained by multiplying NM!? by the calibration constant

(Section 4.4) and subtracting off the muon’s ionization losses.

4.3.1 Muon Pesaks

Conversion of phototube pulse-height into an equivalent number of minimizing ioniz-
ing particles afforded a convenient means of maintaining relative and absolute calibra-
tions. The calorimeter was continuously exposed to a flux of muons which, on average,

deposited a fixed amount of ionization energy in each counter. Figure 4.3 shows the
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energy loss spectrum, in units of NM!Ps, for muons passing through a counter. The
“muon peak” is defined as a measure the most probable pulse-height, in units of
pedestal-subtracted ADC channels, corresponding to the passage of a muon through
the center of a balanced counter (see Section 4.3.3). Rather then defining the muon
peak as the average pulse-height which is subject to fluctuations arising from the tails
of the distributions, a truncated mean value was used. The algorithm for determining
the truncated mean is unimportant, as long as it is consistently used. (Unfortunately,
two different definitions were used in the E616 and E701 running periods. The resolu-
tion of these differences are discussed in Section 4.4.) Both algorithms were iterative:
the muon peak was defined as the mean value, g, in the interval 0.0x to 2.0 for E616
and 0.1p to 2.0u for E701. The muon peaks were used for two different purposes: they
were used to monitor and correct for temporal and spatial variation of the counters
with time; and they were used in the absolute conversion if NP to GeV. The former
use relates only to relative calibrations and do not depend on the definition chosen.
However, the absolute calibration does depend on the definition of muon peak and is

discussed in Section 4.4.

4.3.2 Gain Drifts

Over the course of several months running, the phototube gains drifted from their
initial values. At the beginning of each running period, the gains were adjusted
to produce equal responses to a radioactive source placed at the the center of each

counter. Relative gain shifts were monitored during the run by tracking the relative
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pulse-heights in each of the four phototubes induced by hadronic energy depositions
in the center of each counter. A set of corrections was calculated and updated roughly
every three days and used to restore the original balance. Drifts in the overall gains
of each counter were monitored through the muon peaks. These were also updated

every three days and used to generate corrections.

4.83.3 Counter Maps

The raw pedestal-subtracted pulse-height ig proportional to the number of photons
reaching the phototubes. Light attenuation in the scintillator and the shifter bars re-
sulted in a variation with position of the number photons reaching each phototube for
a given energy deposition. This variation was modeled and removed by dividing the
raw pulse-height in each counter by its own map correction. Since the drifts in gains
were removed first, the counter maps were determined only once per running period.
Two different techniques were employed to determine the maps. E616 employed a
physical model [41] of each counter based on its geometry and attenuation lengths.
Pulse-heights in each of the four phototubes from hadronic energy depositions over
the area of each counter were fit to this model. In E701, the spatial response was
measured directly with muons. For each counter, muon peaks were determined in
each 8-inch cell of a 15 x 15 grid. The resulting grid of muon peaks was then fit to
a 4** order polynomial in = and y. Figure 4.4 shows contours of equal response for
a typical counter using this technique. The map corrections used in E616 and E701,

averaged over the 54 counters in the E701 fiducial region, did not display systematic
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differences.

4.3.4 Longitudinal Extent of Hadron Shower

A typical charged—current event has an easily recognized signature in the calorime-
ter. Looking from the upstream to the downstream end of the target, the signature is
characterized by a set of counters with no pulse-height followed by a set of counters
with large pulse-height followed by a set of counters with small pulse-height (Fig-
ure 4.5). The first region indicates that the interaction is induced by a neutrino. The
second region arises from the cascade of hadrons induced by the fragmentation of
the target nucleon. Finally, the outgoing muon leaves the shower and continues to
deposit energy in each counter until it leaves the calorimeter.

Fluctuations in energy deposition, especially near the downstream end of the
shower, cloud the demarcation of the three regions. By scanning the counters from
upstream to downstream, the event vertex and the downstream end of the shower were
determined as follows. The z—position of the event vertex was defined as the upstream
counter of the first occurrence of two consecutive counters with N¥IP > 25. Two dif-
ferent algorithms for determining the z—position of the downstream shower end were
used in E616 and E701: In E616 (E701) SHEND was defined as the counter immedi-
ately upstream of the first occurrence of three consecutive counters with NV, JM IP < 2(4)
with (NMIP) < 2(4) for the next three beyond that. For a given hadronic deposition,
the E616 algorithm yields a longer shower length, hence more counters to sum over.

This difference is discussed in the next section.
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4.4 Energy Calibrations

A calibration run in 1980 using a beam of momentum-analysed hadrons and muons
(E = 25, 50, 90, 200 and 250 GeV) established the conversion from NMIP to GeV

and is shown in Figure 4.6. The calibration and resolution are
INMIP — (2157 £ .0006) GeV (4.10)

and

OEp.d = (.72 + .20) + (.81 + -03)\/Ehad (4.11)

where the energies appearing in Equation 4.11 are in GeV. Since the the calibration
data was analysed with the E616 muon peak and SHEND algorithms (apart from
the muon’s energy loss subtraction), NMIP was converted directly to GeV by Equa-
tion 4.10. With the E701 algorithms, the sa.me.da.ta yielded a definition of muon
peak that is larger (lower limit of truncated interval was higher) and a hadron shower

length that is smaller, resulting in
INMIP < 2157 GeV (4.12)

In fact, the E701 data was mistakenly analysed with the calibration given by Equa-
tion 4.10. This error was detected and corrected by examining the self-consistency
of the data. Consider the miscalibrations of the hadron energy, muon energy and

neutrino energy (Chapter 2) resulting in

EMEAS (14 a,)ETRVE (4.13)
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Eﬁf“ls — (1 +ﬂMd)E,T£UE (4.14)

EPRED  _, (14§,)ETRUE, (4.15)

Then the ratio of the measured to predicted energy (from the event Monte Carlo,

discussed in Chapter 5) as a function of y = EMFAS /| EMEAS takes the form

EMEAS

R(y) = EPRED (4.16)
1+ a, (Bhad — o)y

= 4,17

146, 1 + Brad — (Braa — @)y (4.17)

~ 14+a,— 8, + (Bhea — au)y. (4.18)

Thus, the slope of R(y) corresponds to the relative hadron energy to muon energy
calibration and the offset from unity of the intercept corresponds to to the relative
muon energy to neutrino energy (e.g. secondary beam momentum for events near the
beam axis — see Chapter 2) calibrations.

The usable y-region for this test is limited by acceptance. For neutrino events
with energy E, and muon angle §,, the maximum value of y for which the entire
z-interval is accessible is

B, (1—cosb,)
Ymaz = E.(1—cosf,)+ M

(4.19)

where M is the nucleon mass and the muon mass has been ignored. Since good
geometrical acceptance is limited to 4, < 200 mr, only high energy data was used for
this test (for E, = 100 GeV, Ymaz = .68), i.e. events induced by neutrinos originating
from kaon decays. Figure 4.7 shows the ratio of measured to predicted energy of kaon

events for E701 using the calibration relation given by Equation 4.10. A simultaneous
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fit to the five energy settings of the form 4.17 was performed in the region .05 < y <
Ymaz With seven free parameters: A §, for each setting and an overall o, and Bpaq
were fit for. The fit parameters, summarized in Table 4.2 yielded a, = .0107 £ .0031
and Bpaqg = —.0447 1.0049 with a x? of 71 for 68 degrees of freedom. As expected, the
hadron energy calibration given in Equation 4.10 was too low. This procedure was
repeated twice, changing only the hadron energy calibration. The final hadron energy
adjustment, Epog — 1.048FEp,q yielded, for the simultaneous fit, a, = .0014 + .0033
and Bpgg = —.0015+.0055. Figure 4.8 shows R(y) after this adjustment and Table 4.2
summarizes the fit. The E616 fits are shown in Table 4.3.

The question remains: Is the 4.8% adjustment applied to the E701 hadron energy
numerically consistent with the differences between the E616 and E701 analysis? The
effects of the different algorithms discussed above (E616 or E701) were determined

by applying them separately to the same data and are summarized here:

¢ Definition of equivalent number of minimum ionizing particles (Section 4.3.1):
The number of ADC channels corresponding to a minimum ionizing particle
(NMIP = 1) was found to be 5% higher for the E701 algorithm. This results in

a lower Ej.q for E701.

¢ Definition of hadronic shower end (Section 4.3.4): Ej,q is calculated by summing
counter pulse-height from the vertex to the shower end. Ej,4 was systematically
higher for the E701 algorithm by two NM!Ps independent of neutrino energy.

For the kaon data, which was used in the E vs. y studies, this amounted to a
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0.6% increase in Ep,q4 for the E701 algorithm.

Taken together, these two effects suggest the need for a 4.4% correction. In addition
to the individual algorithm comparisons, an overall comparison was made. Using the
E616 and E701 definitions of NMIP on the E616 and E701 data sets respectively,
the mean pulse-heights for muons, in NM!Ps was fit to a linear function of muon

momentum:

NMIP - 1.218 +.0012 x (p, (in GeV))
(4.20)

NMIP = 1.177 + .0011 x (p, (in GeV)).

This comparison, suggesting the need for 3.5% correction to the E701 hadron energy,
together with the 4.4% estimate given above is consistent with the 4.8% adjustment

made.

4.5 Structure Function Analysis

Structure function extraction requires measured event sums in bins of (z,log @?). Bin

sizes were chosen on the basis of resolution and event statistics. Twelve z—bins,

0.00 <z <0.03 015 <x2<0.20 040 <z < 0.50
0.03 <2 <006 020 <z <0.25 0.50 <2 <0.60

(4.21)
006 <2 <010 025 <2< 0.30 0.60 <z <0.70

010 < <015 030 <2<040 0.70 <z < 1.00

and twelve log;, @2 of constant width, Alog,, @ = .2 between 0.0 and 2.4 were used

in this analysis.
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Figures 4.9a and 4.9b show the z— and log Q?-resolutions as a function of z and Q?:
The solid lines indicate the total resolutions; the dotted, dashed and dot-dashed lines
indicate the contributions from the 8,-, E,- and Ejp,4-resolutions. All resolutions
were calculated using the neutrino flux energy spectrum shown in Figure 2.11. Except
for the low—z bins, the z-resolution is dominated by the Ej,s-resolution at low Q?
and the E,-resolution at high @2. At small , the z— and log Q*-resolutions are both
dominated by the 8, resolution. Above z = .05, the log @?-resolution is dominated
by the E, resolution.

Separate histograms were maintained for each energy setting and secondary type
(above or below the energy separatrix). The measured event sums were formed after

applying fiducial, acceptance, “quality” and kinematic cuts.
1. Fiducial: Depends on the spatial coordinate of the event vertex

(a) Longitudinal containment of the hadron shower was insured by cutting
events with less then 2 m. of steel between the vertex and downstream:

end of the calorimeter.

(b) Muon induced backgrounds were eliminated by requiring at least two quiet
counters upstream of the event vertex to augment the VETO requirement

of the trigger.

(c) Transverse containment of the hadron shower was insured by cutting events
with a vertex beyond an apparatus centered square of 2.79 m edge. A

beam centered circle cut of 1.27 m radius was also applied, eliminating
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regions with large map corrections. The latter cut was required for the

flux normalization procedure (Appendix A).

2. Acceptance: The straight line projection of the final state muon was required

to

(a) lie inside an apparatus centered circle of 1.75 m. radius at the toroid front

face,

(b) lie inside of an apparatus centered square of 2.79 m. side at the position

of the T2 trigger counter,

(c) have less then 30% of its path length within an apparatus centered cylinder

of 12.7 cm. within the toroid.

For muons that do not range out before T2, these cuts insure good momentum-
reconstruction efficiency. These cuts, collectively referred to as the acceptance

cut, are diseussed further in Section 5.2.

3. Quality: Several cuts to insure the quality of the data were applied. These

include:

(a) Reconstruction failures in both the target and toroid were eliminated.

(b) A beam centered circle cut of 76.2 cm. was applied to events originating
from pion decays. Beyond this, the neutrino flux modeling becomes unre-

liable, due to uncertainties in the secondary beam’s angular divergence.



4.5. Structure Function Analysis 67

(c) Data taking cycles were eliminated when the secondary beam profile mon-

itors indicated a large departure from nominal centers.

4. Kinematic: These cuts are related to the above categories but are presented

separately to indicate the kinematic range of the reported structure functions:

(a) Cutting events with E, < 4 GeV insures that the final state muon was

energetic enough to penetrate the longest anticipated hadron shower.

(b) Cutting events with Ep,g < 10 Gev limits the reliance on an extrapola-
tion of the calorimeter’s calibration. The calibration run measured the

calorimeter response down to 25 GeV.

(c) Cutting events with 8, > 200 mrad. insured reasonable geometric accep-

tance.

Table 4.4 traces the measured event sums through the various cuts. Measured event
distributions are shown in Chapter 5 where they are compared with the Monte Carlo

generated distributions



Chapter 5

Structure Function Extraction

5.1 Overview

Apart from small corrections (typically less then a few percent) discussed below, the

differential cross section for the reaction »(#)+ N — p~(p*)+ X takes the form (See

Chapter 1)
") ) G}MEy Mzy 14 4M?2%/Q? 2
Zdlg@ ®9) = — 3 [(l‘y‘ 25 T2 1+ REq) ) P®9)

(v 2)enieier] -

The structure function R(z,Q?) = or/or appearing in Equation 5.1, the ratio of
cross sections for longitudinally and transversely polarized W%, is not measured in
this analysis. Instead, the structure functions F; and zF; are extracted with an
assumed parameterization of R predicted by QCD (See Appendix B).

It follows from Equation 5.1 that for fized neutrino energy E, the structure function
F; (2F3) is proportional to the sum (difference) of the neutrino and antineutrino

68



5.1. Overview 69

cross sections. Since the cross sections depend on (E,z,Q?) while the structure
functions depend only on (z,Q?), cross sections measured at different energies must
be averaged: The mean cross sections, evaluated at (zo, @2) and averaged over the

flux energy spectrum, are defined as:
o v(P) o (V)
- - v(v) E
<dz:dlog Q2> (:1:0, QO) deQV(")(E) /dE@ (E)(hdl ( zO’QO) ( )
Here “()(E)dE is the number of neutrinos (antineutrinos) in the energy interval
[E,E + dE]. The relation between the structure functions and the averaged cross

sections is obtained by averaging Equations 5.1 over the same flux spectra:

d*a” n ,
<dbdlogQ2>v(z°’Q°) = (a2)u Fa(20, Q3) + (aa)vzFs(z0, Q3) (5.3)

<$fczz> (20,@3) = (as)oFa(eo, Q) — (aa)oeFa(w0,Q8)  (5.4)

where a; and e3 are the coeflicients of F3; and zF; appearing in Equation 5.1. Note
that (a;), # (a;)7 since the neutrino and antineutrino flux spectra have different
shapes (See Figure 2.11). Flux-weighted mean values of y and y? for neutrinos and
antineutrinos are listed in Table 5.2.

The extraction of structure functions was complicated by various experimental
effects and model corrections. Resolution smearing of the measured quantities, ac-
ceptance and finite event statistics required a Monte Carlo simulation for the calcu-
lation of differential cross sections. Corrections to Equation 5.1 were required to de-
scribe scattering off a real iron target. Both the experimental and model corrections

required for the structure function extraction depended on the structure functions
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themselves. A self-consistent, iterative approach was used: the required corrections
for the (n + 1)* iteration were parametrized in terms of the n** iteration structure
functions. Figure 5.1 depicts the structure of the analysis presented in this chapter.

In Section 5.2, the derivation of mean cross sections from measured event sums and
flux integrals is presented. Corrections to Equation 5.1 for scattering off a physical
iron target are discussed in Section 5.3. The techniques used to calculate the statistical
errors and estimate the systematic errors are presented in Sections 5.4 and 5.5. Details
of the differential cross section modeling and flux normalizations can be found in the

appendices.

5.2 Differential Cross Sections: Experimental Corrections

Experimentally, the measured cross sections in a given kinematic bin takes the form

< drov® >"‘°‘" Y. data"”)

e 2y — oHP)
dedlog Q3 (20,Q0) = € [ dE$Y®)(E) Az Alog Q3

(5.5)
v(v) :

where ¥ data*®) is the event sum in the (z,Q?) bin and C*™) are corrections for the

following experimental effects:

e Geometrical Acceptance - The finite transverse size of the apparatus induces an

inefficiency for triggering on events with large 6,..

e Resolution Smearing - The measured quantities are smeared by the intrinsic

resolution of the apparatus.
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e Bin Center - The variation of the cross sections within a finite bin shifts the

mean z and Q? values from the geometric center (zo, @3).

These effects were modeled with a Monte Carlo simulation. As input, the calcula-
tion used the flux spectra, a model for the physical differential cross sections (see
Appendix C), the detector geometry and a parametrization of its resolution. The

corrected mean differential cross section for neutrinos or antineutrinos is:

do me?; Q) = Y data «
&dlogQ?/ 7Y " [dE®(E)AzAlog Q?
Y. SMR*=! ¥ GEN*='  AzAlogQ? 42 gmodel )
SSME X 5 SME=T < 5 GENA [ ®a(5) Tiog 03 (Br70: Q%)

where Y~ GEN and Y} SMR are the Monte Carlo event sums before and after resolu-
tion smearing in the (z,Q?) bin. A = 1 indicates perfect acceptance and o™ is
the cross section assumed in the Monte Carlo. The individual corrections appearing
on the second line are: acceptance correction, which depend on the smeared quanti-
ties; resolution smearing correction; and bin center corrections where the numerator
(AzAlog Q? times integral) corresponds to all events occurring at the geometric cen-
ter as would be the case for an infinitesimal bin size. Each of these corrections, along

with their statistical errors (from the Monte Carlo) are listed in Table 5.1. After

factoring, the expression takes a much simpler form:

d’a meas > data d2 gmodel ,
<tb:dlog Q2> (o, Qg) - Y SMR X <¢b:dlog Q2> (zo, Qo)}- (5.6)

Thus, it was only necessary to accumulate Monte Carlo sums for smeared events

passing the acceptance requirements.
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5.2.1 The Event Monte Carlo

The Monte Carlo was broken into two pieces, as indicated in Figure 5.1 The DST
writer generated events with unit weight according to the neutrino spectrum together
with an initial parameterization of the cross sections. For each setting of the secondary

beam, events were generated such that in a given energy and radial interval

dZ model

&N;(E,r) = pLN4 / & / e AL (5.7)

? and j labels the flux category

Here, pLN4 is the number of target nuclei per cm
(neutrinos originating from pion, kaon or wide-band decays). For j = pion or kaon,
¢;(E,r) are the unnormalized neutrino fluxes (# of v’s/GeV/cm?) at Lab E. Their
energy and radial dependance are discussed in Chapter 2 and their normalizations
were roughly estimated. The required adjustments to their normalizations are dis-
cussed in Section 5.2.3 and Appendix A. ¢wp(E,r) is the normalized wide-band flux,
also discussed in Chapter 2.

The cross section model used in the event generation was constructed from an

0t* iteration). Within each energy

initial parametrization of the structure functions (
interval, the scaling variables z and y were thrown with the cross section as the parent
distribution. The z-coordinate of each event vertex was thrown from a distribution
proportional to the target density and the azimuthal angle was thrown flat. A separate
file was made for each primary setting used in the analysis. The number of generated

events was chosen to be roughly ten (twenty) times the measured number of events

for positive (negative) settings.



5.2. Differential Cross Sections: Experimental Corrections 73

A separate program was used to calculate the Monte Carlo event sums: iterating
was accomplished by re-weighting the DST events by the ratio of new to initial cross
sections. For every DST event, the generated quantities were smeared in accordance
with the resolutions presented in Chapter 4. The event weight was calculated in terms
of the generated quantities, while the kinematic and acceptance cuts were applied to
the smeared variables before binning. Since each iteration used the same events,
statistical fluctuations between iterations were eliminated.

Resolution smearing of the generated events was carried out in several steps. First,
the hadron shower length was thrown from a gaussian distribution. Its mean and rms

were parametrized in terms of the generated hadron energy,

<L) = _6-4 + 64-8 loglo(Ehad)
(5.8)
oy = 17.1 4 6.5log,o(Ehaa),

where the lengths are in cm of steel and Ej,q is in GeV. This parametrization was
obtained from data taken with the apparatus placed in a momentum-analysed hadron
beam [42]. Catastrophic energy losses for the muon within the shower were thrown
from the probability distributions of Figure 4.2. Since this energy is not accessible
experimentally, it was added to the generated hadron energy and subtracted from the

generated muon energy. The smeared hadron energy was then calculated as:

ok
Ejag — N—Ehad (5.9)
Ehaa

where N was thrown from a Poisson distribution with mean g, constructed from the
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calorimeter resolution:

&)
” =
a.Ehad

0E,.. = 0.72+0.381 Eyaq. (5.10)

For large Ep.q (large p), the hadron energy smearing becomes gaussian, while at low
E}aq the poisson smearing insures a non—negative result.
8,,, the angle of the final state muon, was then thrown from a gaussian distribution

with rms given by

b
0'9“ =a+ I?T (5.11)
»

where a and b depend on the smeared hadron energy and are given in Table 4.1.
Finally, the muon was propagated to the spectrometer front face with ionization
and catastrophic energy losses subtracted. The muon’s smeared momentum at the
spectrometer front face was thrown from a gaussian distribution with an rms given
by

Tp, = 0.11p,,. (5.12)

Ionization losses incurred from the vertex to the spectrometer and catastrophic losses
from the hadron shower end to the spectrometer were then added back to the smeared
muon energy yielding the smeared muon energy at the event vertex.

The acceptance cut discussed in Section 4.5 was designed to guarantee that passing
events could, in general, be momentum analysed: Since the polarity of the spectrom-

eter current was chosen to focus (bend towards beam axis) the final state muon (g ~’s
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for positive settings and ut’s for negative settings of the secondary beam), the re-
quirement that the muon’s straight line projection intersects the trigger counter is a
conservative guarantee that the apparatus triggers. The additional requirements that
the straight line projection intersect the front face of the toroid and spend less then
30% of its path length inside the hole (zero field region) eliminated the small number
of events with muons passing through little or no magnetic field. Thus, these geo-
metric requirements on the final state muon allowed for a simple means of acceptance

simulation.

As discussed in Section 4.2, the reconstruction efficiency for events passing these
cuts was not perfect. The solid curve in Figure 4.1 was used to simulate the re-
construction efficiency for E701 by cutting Monte Carlo events with r > e.z(PFF)
where r is a random number on (0,1) and P]F is the smeared muon momentum at
the toroid front face. For E616, all reconstruction failures were refit by hand. The
residual failures (about 1%) were assumed to independent of momentum and the

efficiencies given in Table 4.6 of Reference [41] were used.

The inefficiencies associated with the veto deadtime (common to all neutrino trig-
gers) and target track reconstruction failures do not depend on the event kinematics.
Thus, these inefficiencies only affected the overall levels of the Monte Carlo predic-
tions. These small, unknown levels were combined with and treated as part of the

unknown flux levels, discussed in the next section and Appendix A

Figures 5.2a—d show comparisons between the Monte Carlo and data for the raw
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measured quantities: (a) beam centered event radius; (b) 8,; (c) Epaa; and (d) E,.
Figures 5.3a—c show the comparisons for the derived quantities: (a) E, = E, + Epad;
(b) y = Epad/E,; and (c) z ~ E,E,03. Figures 5.4a and b show event sums in each

z and log @? bin.

5.2.2 Relative Flux Determination

The event Monte Carlo was used to calculate the Y- SMR appearing in Equation 5.6.
Since these event sums, generated through Equation 5.7, are proportional to the un-
known flux levels, a total of 30 adjustments (pion and kaon fluxes for each of the
fifteen energy settings) to the ¢;’s were required. These adjustments were obtained
in two steps: Relative flux normalizations for the settings of each polarity (seventeen
relative adjustments for the positive settings and eleven for the negative) were fixed
by assuming the the energy dependance predicted by the cross section model. At
each secondary setting, the adjustments were found by forcing agreement between
measured and predicted event sums, accumulated over the kinematic range used in
the structure function analysis. The adjustments calculated at each iteration of the
extraction procedure reflected the cross section’s energy dependance predicted by
the previous iteration’s structure functions. Since the cross section model appear-
ing in Equation 5.7 was constructed from structure functions (depending only on =z
and Q?) multiplying known kinematic factors, the procedure is internally consistent.
However, this procedure can not provide the overall level or the relative neutrino—to-

antineutrino level. These remaining normalizations are described in Appendix A.
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For each primary setting, six categories of Monte Carlo event sums were main-
tained: events were generated from three flux categories (neutrinos originating from
pion, kaon and wide-band decays) each of which could lie above or below the en-
ergy separatrix after smearing. These sums were then compared with the measured
“pion” and “kaon” event sums to determine the (relative) adjustments to the ¢; in
Equation 5.7:

Ni = [f' foe M+ Mg, ]

Ny = 3 [fer;—.x + fxMyg_x + MéVB—oK] (5.13)
where N: (N} ) is the observed event sum at secondary setting i with E, < ESEP(r)
(E, > ESEP(r)). S is the statistical factor indicating the relative number of simulated
to measured events: S = 10 (20) for positive (negative) settings. M,_,, are the re-
weighted Monte Carlo sums for events of generated type a and reconstructed type
b. All sums were accumulated over the entire kinematic range used in the structure
function analysis. The M,_x and Mg_,, account for events miss—classified on the
basis of the energy separatrix.

The Monte Carlo event sums appearing in Equation 5.6, for each (z,log @?) bin,

were expressed in terms of the fi’s and fi’s and the event sums generated by Equa-

tion 5.7:

3 SMRY®) = 1) SVIM Y Y Y f(E MR (5.14)

i=v(¥) a=%,K b=x,K
sets.

The constant appearing in front of the sum is the overall neutrino (antineutrino)

adjustment, also calculated at each iteration, and is discussed in Appendix A. At
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each iteration, the (3 SMR,_.;)* are sums of weights, each calculated as the ratio
of the cross section from the previous iteration to the cross section appearing in
Equation 5.7. These weights were calculated in terms of the generated variables, while
the event cuts and binning were based on the smeared variables. The Monte Carlo
event sums from the wideband component, proportional to the measured intensity of
primary protons on target, were subtracted off the measured event sums:

Z data’®) = Z [E datd’ — gvl(—i) (Z SMRWB—-»«,K)‘] . (5.15)
i=v(7)

sets.

Finally, the total neutrino (antineutrino) flux is given by

SENE)=£i7 Y Y fidi(E). (5.16)
i:v(?)a:w'x
sets.

These flux spectra are shown in Figure 2.11. They were used to calculate the flux

averaged quantities (Equation 5.2) appearing in Equations 5.24 and 5.25

5.3 Differential Cross Sections: Model Corrections

Various effects not present in Equation 5.1 are required of a physical description of
neutrino-iron scattering. Physical effects incorporated in the cross section model

include:

e Non-Isoscalar Correction: Iron has a 6.85% excess of neutrons over protons.
This increases the neutrino and decreases the antineutrino cross sections relative

to an isoscalar target.
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o Strange Sea Correction: s — ¢ # 0 results zFy # zF} The strange sea was
assumed to have the same functional dependance on z and Q? as the nonstrange

sea: 8 =3 = 7% or 3d [43]. the charmed sea was assumed zero.

o Charm Production Threshold Correction — Production of a heavy flavor (charm)
results in a suppression of the inclusive cross sections. The slow rescaling model
[44] with m. = 1.5GeV/c? was used to calculate this effect. This correction was

required for parton model tests (Section 6.3) and QCD fits (Section 6.4)

e Radiative Corrections — Colinear emission of photons by the outgoing muon
shifts the observed muon energy down and hadron energy up. The measured
differential cross sections were corrected using the prescription of De Rijula et

al. [45].

e W2 Propagator — This was absorbed into the definition of G%:

G2 — G%"
T+ (/M)

where My, was taken to be 81.8 GeV/c? [46].

(5.17)

These physical effects were “removed” from the measured cross sections to produce
“corrected” structure functions. Removal of these effects allow direct comparisons
with experiments using using different probes and targets as well as various quark-
based models.

The physical cross section model was constructed from a modified Buras-Gaemers

parameterization of quark momentum densities [47]. These include the proton’s va-
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lence quark densities, zu,(z, @?) and zd,(z, @?), a single sea density, z5(z,Q?), and
R(z,Q?). A discussion of their parametrizations is presented in Appendix B. These
same momentum densities were also used to parametrize the corrected structure func-

tions:

, _
F(2,Q%) = 11++4f4(:::3€;2 [24(2,Q%) + 2ds (2, Q) +25(2,Q")]
zF3(z,Q%) = zu,(z,Q?) + zd,(z,Q%). (5.18)

The physical cross sections were modelled as follows:

1. Effective quark momentum densities for iron, ¢*®*) and () incorporating fla-
vor asymmetries and charm production were constructed from the momentum

densities mentioned above.

2. Uncorrected (i.e. physical) structure functions were formed from these quark

densities:

2F® = [¢0 170 (5.19)
- v(v) 2 _
@) 1+ R (CD, Q ) v(V)
Fy TR 2 (5.20)
2FP = [¢0 -] (5.21)

3. These were then used to form neutrino (antineutrino) cross sections:

&o*® GMEy [v*, @ Mz 5 \ o
dzdlog Q* - x : [%—22}-1( '+ (1 —vT 2Ey) FO (y B y?) 2}-3(_)]

(5.22)
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4. These cross sections were then treated as the Born terms in the radiative for-

mulations.

Details of this construction are contained in Appendix C.
Radiative and propagator effects were “removed” from the measured differential

cross sections through a modification of Equation 5.6:

d2 o meas _ Z data fcrgjgdel .
<dvd1°s Q’> Hp(%’Qg) = S SMR” <dcdlog Qz> (z0,Q0)  (5:23)

where RP indicates radiative and propagator effects have been removed and oFpl!

is given in Equation 5.22. The remaining effects were “removed” from the measured

cross sections through the modification of Equations 5.3 and 5.4:

d’ v meas
<WaéQz> = (ag)sz + (0.3),,22F3 + 5" (5.24)
RP
d2 v meas _
<WC;Q2> = (az)aFg - (0.3)7121‘-‘3 + & (525)
RP
where
por - (_Lowp L : (5.26)
dzdlog Q? dzdlogQ? ()

The unknown structure functions appearing in Equation 5.24 and 5.25 were solved
for in terms of the measured, radiatively corrected cross sections. The cross sections
api»ea.ring in Equation 5.26 are the modeled quantities: cr(','(v) is obtained by substitut-
ing Equations 5.18 in Equation 5.1 and a;(g) is given by Equation 5.22. Figures 5.5a

and 5.5b show the effects of the various model corrections on the extracted structure

functions. The curves were obtained by turning off each effect one at a time.
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The measured, differential cross sections, with radiative and propagator correc-
tions applied (lefthand sides of Equations 5.24 and 5.4) are listed in Table 5.2. The
mean values of y and y?, from which (a;),(7) and (as),() can be calculated are also

shown.

5.4 Statistical Errors

The error matrix, for a given kinematic bin, was expressed in terms of the likelihood
function, £. The probability of observing M” neutrino and M” antineutrino events

in a bin is given by

MY —py MY —py
K € by €™
L(Fz, :BF3) = M”' . MF! (5.27)
where the “true” numbers of events are given by
po(p) = 2 [(az)v(v)Fz + (a3)y(z)2 Fs + 6] . (5.28)

Here, ® represents the flux, including the experimental and radiative corrections and
is given by
= -1
~ _ 2520
v(®) _ v(V) RP
¢ (Z SMER ) [< dzdlog Q? >,,(,—,)J (5.29)

The error matrix V' can be expressed [48] in terms of the likelihood function:

B 8% log L(F,,z F3)
oF.OF;

(V)= (5.30)

Thus,

(2 (a2).) , (#(az)o)’

v =
( )Fz F Ui{y 0'12;{?

(5.31)
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(V_l):l:F;zF: = (Qvo(‘;{av)u)z + (670("213_)7)2 (5.32)
(V YRers = (V ')erE
_ (<1>")’Sz:)u(as>u _ (QF)’;{F(%)V, (5.33)

where the bin contents in the denominator have been written in terms of their Poisson
€rrors:

MY®) = o}5 (5.34)
Instead of using the measured event sums (M*()) to calculate the error matrix,
predicted event sums were used. This is especially important for bins with small
event statistics. The contribution to the bin content errors from the finite Monte

Carlo statistics was added in quadrature:

_ v(®)\ ? , i
P = Y SMR'® 4 (ﬁ) Y SR (Z SMRﬁ_,,,) (5.35)

i=w(¥) a,b=
sets, =K

where 5“(%) is the statistical factor and 3 SMR3_,, are the sum of the square of the

weights (See Equation 5.14 and text following). The structure functions along with

their errors are given in Table 5.3. The square roots of the diagonal elements of V'

are AF, and Az F;3 and the off diagonal piece is AF; Az F;.

5.5 Systematic Errors

Systematic errors in the structure functions, arising from uncertainties in the various
quantities entering into the analysis, have been estimated. All systematic errors

were estimated from Monte Carlo calculations. This is especially important for errors
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which effect the measured bin contents since the systematic errors are smaller then the
statistical errors. A nominal “data” set was first generated using the Monte Carlo.
The event statistics were a factor of 10 and 20 times higher then the actual data
for neutrinos and antineutrinos respectively. From these, a nominal set of structure
functions was was generated (i.e. o™*** = g™°?! in Equation 5.6). For each systematic
effect considered, a new “data” set (hadron or muon energy calibration uncertainties)
or flux spectrum (secondary energy calibration, angular dispersion or relative neutrino
to antineutrino normalization uncertainty) was generated. A new structure set was
then extracted from the new “data” and or fluxes using the procedure described in
this chapter. Absolute neutrino and antineutrino flux normalizations were determined
for each set as described in Appendix A.

Tables 5.4a and 4b list F; and z F3 along with their statistical errors and estimates
of the following systematic errors: The first three columns are the estimated changes
in the structure functions for a 1% increase the hadron energy, muon energy and
secondary beam energy calibrations. The fourth column shows the changes for a
simultaneous 1% increase in all three. The last two columns show the changes for a
1.7% increase in the relative antineutrino—-to-neutrino flux normalization (keeping the
sum of neutrino and antineutrino total cross section slopes fixed, that is ® — 0.995%*
and & — 1.011¢”) and a 10% increase in the angular dispersion of the secondary

beam.



Chapter 6

Comparisons and Conclusions

In this final chapter, the structure functions presented in the previous chapter are
compared with other experimental results and some of the theoretical expectations
discussed in Chapter 1. Comparisons with recent neutrino scattering results are dis-
cussed in Section 6.1. For these comparisons, structure functions have been extracted
from the present data set with the same assumptions (total cross section slopes,
strange sea, R = o /or and charm production) that were used in the other analyses.
Comparisons with charged lepton scattering results are presented in Section 6.2 in
the context of the Quark Parton Model (QPM) prediction, FyV ~ %F,‘iN . Another
QPM test discussed is the Gross—Llewellyn Smith sum rule, which measures the va-
lence quark content of the nucleon. In Section 6.3, observed deviations from scaling
behaviour predicted by the QPM are analysed in the context of perturbative Quan-
tum Chromodynamics (QCD) through the Altarelli-Parisi [28] evolution equations.
Fits to these equations were used to determine the QCD scale parameter, A, and

85
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“QCD-improved” parton densities.

6.1 Comparisons With Other Neutrino Experiments

Comparisons of structure function results from different neutrino experiments are
complicated by different assumptions entering into their extraction from the measured
differential cross sections. In practice, neutrino experiments using isoscalar (or near
isoscalar) targets report two structure functions, F; and zF3. In reality, there are six
structure functions (neglecting structure functions multiplying terms proportional to

lepton masses) for a given target, T — 2z F'T 2z FPT F¥T F¥T g FYT and 2 FYT:

dzdv(F)T GZME y’ (v Mz v(V Yy v(v
dzdy T r [72F2()T+(1—-y_ Ey) F,”T+y(1—§) R
(6.1)

where the cross sections shown are radiatively corrected. These structure functions
could be extracted, in principle, by fitting the y—dependance of the differential cross
sections in each (z,Q?)-bin. However this is not what is done. Instead, “F,” and
“gF3” are extracted by combining sums and differences of measured neutrino and
antineutrino differential cross sections as discussed in Chapter 5; the results depend
on their assumed relationship to the six structure functions mentioned above. Also,
since neutrino and antineutrino cross sections are combined, the resulting structure
functions depend in a non—trivial way on the assumed total cross section slopes.
Table 6.1 lists the assumptions used in the structure function extraction for each

experiment considered. Structure functions were extracted from the data set used
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in this analysis incorporating each set of assumptions used in the other analyses,
allowing direct comparisons.

A summary of the assumed relations between the six structure functions appearing
in Equation 6.1 and reported isoscalar structure functions is presented here. Since
R = or/or is smalll, 2zF, =~ F; and an assumed parametrization of R is used to
eliminate 2z Fy:

14+ Q?/v?

FV(F)T — ——FV(F)T 6.2
T T T RG,gh (6:2)

where R = R*T = R’T is usually assumed. Common choices of R are R = 0 and
R =“Rgcp”, the later being a parametrization of a next-to-leading order QCD fit.
Experiments using a non-isoscalar target, T', must correct their measured differ-

ential cross sections to obtain nucleon structure functions:

Pa®)T Zr d20¥®® Ay — Zp d2oM)m

- = =2 6.3
dzdy Ar dedy | Ap  dedy (6:3)
~ d20.v(B)N (ZT 1) dZ(a.u(F)p _ a.v(?)n) (6 4)
T dedy Ar 2 dzdy ’ '

where Ar and Zr are the atomic mass and number respectively, for a target T'. Quark
Parton Model (QPM) relations are usually assumed to compute the correction term

(See Section 1.2.4):

viv)p _ p(Pn _ﬂ_ —zd) — u
2 BT = ot [(zd - 2d) 